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Axisymmetric Problems Involving Fractures with Moving Boundaries

by Daniel Peck

In this thesis, the class of axisymmetrical problems with moving boundaries, which are

related to fracture, is considered. This is achieved through investigations into three

separate examples; solid particle erosion, hydraulic fracturing, and particles in the Hele-

Shaw cell. In this way, the methods used to study such problems will be demonstrated.

The first examination considers the case of an axisymmetric indenter, defined by a power

law, impacting an elastic medium. The primary motivation of this work is to determine

the cause of the threshold fracture paradox, which concerns the relationship between

the indenter shape and the initial energy required to cause a fracture in the impacted

medium. In this study, the formation of cracks is determined through an incubation

time based approach, which accounts for the dynamic nature of the impact. The effect

of incorporating inertial terms in the medium is also examined, and the implications for

the study of high velocity impacts by small indenters are discussed.

Next, the problem of a radial (penny-shaped) hydraulic fracture is considered, with a 3D

axisymmetric crack forming around a point source in the center. The aim of this effort

is to provide a high accuracy numerical solver, based on an explicit level set algorithm.

This is achieved through application of the proper Stefan-type condition, which describes

the moving boundary, alongside extensive use of the known relationships between the

parameters crack-tip asymptotics. Two cases are considered; the first is the classical

formulation, while the second incorporates the effect of tangential stress induced by the

fluid on the fracture walls. The level of computational error is determined against newly

constructed analytical benchmarks. The obtained solutions are used to determine the

accuracy of other results available in the literature.
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https://www.aber.ac.uk/en/maths/
https://www.aber.ac.uk/en/impacs/


iii

Finally, the case of multiple moving particles and stationary obstacles inside the Hele-

Shaw cell is examined. The boundary is assumed to be free-moving, with additional fluid

entering or leaving the system through a point source at the origin. The evolution of the

fluid boundary is modeled based on a Green’s function approach, which is approximated

asymptotically. A numerical solver is developed to provide high accuracy approximations

for the systems development over time, which also accounts for collisions between the

particles. A method of utilizing this model to study the apparent viscosity of fluids used

in hydraulic fracturing is outlined.
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Chapter 1

Introduction

1.1 Motivation

In the course of this work, the problems which will be examined meet four fundamental

requirements. The first is that the problems are axisymmetric in nature, with a 1D

examination of the problem being able to provide a three-dimensional picture of the

physical process. In addition, these problems will involve free boundaries whose position

is, in principle, unknown. These boundaries will also be moving and evolving over time,

according to some specific condition or criterion. In most cases, it will be assumed that

this movement is slow, and as such inertial terms can be ignored. Finally, the problems

will be related to fracture, either through a direct examination of crack formation or

growth, or through having potential applications in studies related to fracture.

While there are a wide range of problems matching this description, in various fields and

research areas, it is clear that not all can be considered here. Instead, a representative

sample of such systems has been chosen, that will help to illustrate some of the unique

issues encountered when investigating this topic.

The first such example is that of solid particle erosion. Here, a small indenter, defined

by a power-law, impacts into a medium, possibly at high speed. The investigation will

examine the initial energy of an impacting object required to cause a fracture. This

work will study the classical problem of solid-solid interaction, with a rigid indenter

hitting an elastic medium. It should be noted however that erosion problems are not

limited to just solid-solid impacts, and it can be a solid-fluid interaction in some cases

(e.g. water-based erosion, or a plane flying through clouds). A primary aspect of this

investigation will be the incorporation of time-based effects, which is a departure from

the largely quasi-static methods found in the literature.

1
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For the next examination, the case of hydraulic fracture (HF) will be considered. This

is the process by which large quantities of fluid, containing particles, is pumped into a

small fracture within a layer of rock. The pressure exerted by the fluid subsequently

causes the fracture to expand and extend. This complicated solid-fluid interaction has

been the subject of extensive study over the years, in part due to its wide range of

applications; not just in fracking, but also geothermal energy, carbon-storage and even

biomedical studies. In spite of this, there is still no model which can incorporate all

of the important characteristics of such a fracture. Even the classical, highly simplified

1D models, which were initially developed in the 1960’s, only began to obtain accurate

solutions in recent years. This work will focus on the radial (penny-shaped) formulation

of HF, developing more accurate and efficient numerical solvers for the classical model,

as well as incorporating the previously neglected effect of tangential stress.

The final system to be considered will be that of multiple moving particles and obstacles

in the Hele-Shaw cell. The cell comprises of two plates, pressed together such that

the gap is sufficiently small, with a fluid placed between them. This fluid will then

have a continuous boundary, which can expand or shrink as more fluid is added to,

or removed from, the system. While the problem is not inherently axisymmetric in

nature, nor containing fractures, it is analogous to problems encountered in hydraulic

fracturing. In this vein, an examination of the effect of solid particle inclusion on the

fluid boundary development, where the initial fluid domain is defined by a unit circle,

can yield important results concerning the apparent viscosity of fluids used in HF (more

details are provided in Appendix. G). Carrying out such efforts however requires that

the simulations of particles in the Hele-Shaw cell be able to incorporate deviations in

the growth of the fluid boundary, and so an initial, generalized, investigation is required.

This is what will be provided here, developing a numerical model capable of simulating

the evolution of the fluid boundary, as well as the movement of particles within the fluid,

over time.

While work on these largely 1D problems may seem simple, the unique features asso-

ciated often prevents the use of standard approaches. One such interesting dynamic

of these problems is that, while the equations involved may often be linear, the prob-

lems themselves are inherintly non-linear. This is simply the result of the moving free

boundary, and the need to model its evolution over time, typically through the use of a

Stefan-type condition. As such, when attempting to obtain solutions to these systems,

often methods from linear problems can be adapted (for example: use of Green’s func-

tions, conformal mappings, integral equations, etc). However, even in this case, the final

form of the solution will remain non-linear when considered over time.
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In spite of this, it will sometimes be possible to obtain analytical solutions, such as for

the PKN model of HF [129], the Polubarinova-Galin solutions for the Hele-Shaw cell

[64, 179], or for the threshold fracture energy in solid particle erosion [10]. This will

however only be true in very specific cases. In practice, particularly when studying the

general case rather than specific examples, the problems become more complicated, and

require dedicated numerical techniques in order to obtain resolutions.

1.2 Structure of the thesis

The thesis is structured such that each problem variant has its own dedicated chapter,

with the problem of solid particle erosion being considered in Chapter 3, the development

of a radial hydraulic fracture in Chapter 4, and finally the movement of particles in the

Hele-Shaw cell in Chapter 5. In order to ensure conciseness in each chapter, material

which is of importance, but is not fundamental to understanding the problem and its

resolution, is relegated to the appendices. A more detailed outline is provided below.

In Chapter 2, background theories concerning the criterion which describe the moving

boundaries are outlined. In Sect. 2.2, the Stefan condition, and Stefan-type conditions,

are examined. This begins with an examination of the initial Stefan problem, describing

the freezing of water to ice, and the evolution of the boundary between the two lay-

ers. Analogous conditions are provided for each of the problem variants, with a brief

discussion of their usefulness and applicability in each case. The second part of the

chapter, Sect. 2.3, concerns the fracture criterion which are used in the case of particle

erosion and hydraulic fracture. The classical Griffith-Irwin criterion is outlined, and its

applicability to each specific problem is discussed. Where required, alternative fracture

criterion are provided, alongside an examination of their benefits.

The problem of solid particle erosion, and the radial fractures which result from it, is

investigated in Chapter 3. The primary aim of the work is to explain the paradoxical

result obtained by Argatov, Mishuris & Petrov [10], who found that the qualitative

behaviour of the threshold fracture energy solely depends upon the impact duration.

Due to the huge body of work which has been developed into the phenomena of erosion

impact, a full summary of the state of the art is not feasible, however a description of

the most relevant theories is provided in Sect. 3.1, alongside a review of the literature.

In Sect. 3.2, the first investigation into the threshold fracture energy is conducted. This

attempts to resolve the paradox by improving the accuracy of the previous approach,

which is achieved through an examination of the stress function at fixed spacial points.
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Additionally, a method for predicting the time and location of the initial radial fracture

is outlined, and the effect of various problem parameters examined.

In Sect. 3.3, a second investigation into the effect case of a single erosion impact into

an elastic half-space is conducted. This aims to update the model by Argatov, Mishuris

& Petrov [10] by incorporating the effect of inertial terms during the initial phase of

the impact. This is achieved by incorporating a supersonic stage into the model, based

on the formulation provided by Borodich [27]. The subsonic stage is then reformulated

to incorporate the new initial conditions, with a transitory phase added to ensure a

smooth transition between the two formulations. Once the full system of equations has

been derived, the numerical algorithm for obtaining the threshold fracture energy is

introduced, and results are presented. Finally, a summary of all results presented in the

chapter, as well as their meaning with regards to the threshold fracture paradox and the

study of erosion, is given in Sect. 3.4.

In Chapter 4, the case of a radial hydraulic fracture (sometimes referred to as penny-

shaped HF) is examined. This begins in Sect. 4.1, with a review of the theoretical

background for 1D formulations of HF, and an examination of the literature. After this,

derivations for the governing equations of specific importance to the presented work are

given, as well as providing a mathematical description of the fluid and solid behaviour.

The investigation into radial HF begins in Sect. 4.2, with an examination of the classical

formulation of a penny-shaped crack. A new approach, based on that of Wrobel &

Mishuris for the PKN/KGD models of HF [229], is outlined. This involves rigorous

use of the system asymptotics, combined with a modular construction of the numerical

algorithm, to provide a method of finding solutions to the problem with a higher level

of accuracy and efficiency than previous efforts. Self-similar solutions are provided for

the case of an impermeable solid, alongside an analysis of the results, and a comparison

with previous benchmark/asymptotic solutions is conducted.

The second part of this chapter, Sect. 4.3, is dedicated to formulating, resolving and

examining an updated formulation of radial HF. This new formulation accounts for

the effect of tangential stress, induced by the fluid on the fracture walls. This pre-

viously neglected characteristic has recently been shown to play a crucial role on the

qualitative behaviour of the system in the case of small fracture toughness [230]. The

new formulation is outlined, and a high accuracy solver is developed to obtain solutions.

Comparisons with the classical penny-shaped model are provided, alongside an examina-

tion of the effect of incorporating tangential stress on the efficiency of the computational

algorithm.

In Chapter 5, a model is developed to examine the effect of placing multiple obstacles

and moving particles in the Hele-Shaw cell. An outline of the problem is provided
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in Sect. 5.1, where important concepts and equations are also given, and a literature

review is conducted. A discussion of practical applications is provided at the end of the

section, with an outline for a method of investigating the apparent viscosity of fluids

used in hydraulic fracturing being relegated to Appendix. G. In Sect. 5.2, a mathematical

formulation of the problem is provided, alongside an asymptotic solution based on the

method by Maz’ya, Movchan & Nieves [138, 139]. A computational algorithm is outlined

and implemented. The effect of particle inclusion on the fluid boundary is examined.

Methods for handling particle interaction, which is not incorporated directly into the

analytical model, are provided. An examination of the effect of including large numbers

of particles in the Hele-Shaw cell is conducted.

Finally, in Chapter 6, a summary of the results is provided. Here, the unique aspects of

axisymmetric problems with moving boundaries are again discussed. Additional context

for the investigations is given, and potential future avenues of research for each problem

variant is provided.



Chapter 2

Theoretical background

2.1 Introduction

In this thesis three problems which are largely separate, but have common themes, are

considered. For the sake of clarity, the full theoretical background for each of them

will be provided at the beginning of each individual chapter, rather than having them

collected here. Instead, in this chapter we will outline the commonalities between the

different systems being studied, in order to better understand the underlying philosophy

of the techniques used to study axisymmetric problems with moving boundaries.

2.2 Stefan type condition for moving boundary problems

A Stefan condition describes the law of motion on the boundary between two differ-

ent phases of matter. This condition is typically derived from investigations into the

conservation laws of the system, in terms of either energy or volume depending on the

problem. As such this condition will often provide a detailed physical explanation of the

system. Unfortunately, it is not always well posed, and may even degenerate, preventing

the obtaining of useful information about the problem. A more detailed examination of

the Stefan condition, as well as its relevance to the problems investigated, is provided

below.

2.2.1 The classical Stefan problem

The condition is named for Josef Stefan, who derived the heat balance condition for a

liquid-solid interface in 1D [208, 209]. The original aim of the model was to provide an

6
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improved theory for the growth and shrinking of polar ice, which had previously been

examined assuming an unrealistic linear temperature profile in the solid phase [225].

S(t)

T = Tm

0

x

Solid Liquid

Tb

Figure 2.1: The problem formulation for the 1D Stefan problem, at some time t > 0.
Here the fixed left boundary x = 0 is at fixed temperature T = Tb, while the moving
boundary S(t) has temperature T = Tm, where Tm is the melting point of the liquid.

The schematic for the classical Stefan problem is provided in Fig. 2.1. It is defined over a

semi-infinite region x ≥ 0, which is initially filled with a liquid. The fixed boundary x = 0

is assumed to always have temperature T = Tb < Tm, with Tm being the known melting

point of the liquid. As a result the fluid will solidify over time, with the process beginning

at x = 0 and slowly progressing through the liquid. The solid-liquid interface between

the two layers, labeled S(t), will be defined by the temperature condition T = Tm. The

primary aim of the model is to study the movement of this boundary, and the factors

which affect it.

The equations defining the temperature in each region are simply provided by the Fourier

heat laws [85] as follows:

Solid layer:

CSρS
∂TS
∂t

= KS
∂2TS
∂x2

, 0 < x < S(t), t > 0, (2.1)

TS(0, t) = Tb < Tm, t > 0, (2.2)

where K is the thermal conductivity, C is the specific heat, and ρ is the density. The

subscripts S and L denote the solid and liquid layers respectively, while subscript M is

used for the interface.

Liquid layer:

CLρL
∂TL
∂t

+ CLρLux
∂TL
∂x

= KL
∂2TL
∂x2

, S(t) < x <∞, t > 0, (2.3)

TL(x, 0) = T0, TL(x, t)|x→∞ = T0. (2.4)
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Additionally, if the density of the solid and liquid layers are different, the term ux is

obtained from the mass balance condition:

ρLux = (ρL − ρS)
dS

dt
. (2.5)

Interface:

The definition of the interface layer x = S(t), is given by the conditions:

TS = Tm = TL, S(0) = 0. (2.6)

As we are focusing on the Stefan condition, the key aim here is to obtain an expression

for the growth of the boundary S(t). This can be achieved through an examination of

the heat within the system, which must maintain the balance:

[
K
∂T

∂x

]solid

liquid
= − [H]solid

liquid
dS

dt
, (2.7)

where H is the enthalpy per unit volume. Noting the interrelationships between the

various measures of heat in the system, it is a simple matter to expand this equation

into the form:

KS
∂TS
∂x
−KL

∂TL
∂x

= [lρS + (ρLCL − ρSCS)Tm]
dS

dt
, (2.8)

where l is the latent heat of fusion. This, combined with equations/conditions (2.1)-(2.6),

form the traditional 1D Stefan problem. While Stefan was only able to provide trivial

and approximate solutions, a feat which should not be underestimated, extensive work

has since gone towards providing a wider range of techniques for solving such problems,

both in 1D as well as higher dimensions, and for a range of geometries [44, 85, 101, 192].

While this problem was originally only envisioned to examine the growth of polar ice

caps, the method of examining the moving boundary has had a significant impact on a

wide range of problems in applied mathematics. In particular, for its use of equation

(2.8), which is known as the Stefan condition, to describe the moving interface.

In the case of more general problems involving such interfaces, conditions such as this are

known as Stefan-type conditions, and are an invaluable tool for examining the evolution

of a system, which contains a moving boundary, over time. As such, they will be a

common feature of the problems examined in this work, and the remainder of this

section is devoted to providing descriptions of the Stefan-type conditions for each of the

considered problems.
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2.2.2 Boundary growth in the Hele-Shaw cell

Of all the problems posed here, the Hele-Shaw cell is the one which is most similar to

the classical Stefan problem. In this case however, the temperature is assumed constant,

and it is the pressure throughout the fluid which determines the movement of the free

boundary. The final form of the Stefan condition is given by:

∂w

∂t
= − h2

12µ
∇p, (2.9)

where w defines the moving boundary, h is the height of the cell, µ is the fluid viscosity

and p is the net fluid pressure. The full derivation of this equation is provided in

Sect. 5.1.2.1.

It should be noted that, while this is similar to the original Stefan problem, this does

not mean that condition (2.9) always provides a successful approach in this case. The

general formulation is well-posed in the case of fluid injection, however stability analysis

can easily show that the problem becomes ill-posed when considering fluid suction from

the domain [157]. This becomes a significant issue in the case of small fluid domains,

when the analytical solutions defined using conformal mappings exhibit cusp formation.

As such, alternative or updated approaches may be required to examine such problem

variants.

In general however, the Stefan condition provides the most efficient and powerful method

of examining boundary development in the Hele-Shaw cell, and as such will be the

approach utilized in the body of this work.

2.2.3 Hydraulic fracturing and the speed equation

The need for an accurate method of fracture front tracing has long been noted in the

study of hydraulic fracture. Unfortunately, singularities in the main equations near the

fracture tip often prevent accurate analysis of the crack tip, with previous methods

relying on the undetermined product of the aperture and pressure derivative.

In 1990, a Stefan-type condition for tracing the fracture front was outlined by Kemp

[114], however it was abandoned shortly thereafter. It was only recently, when it was

rediscovered by Linkov [127], that its significance came to be fully appreciated. Naming

this condition the speed equation, it has since been shown to allow for the obtaining of

high accuracy numerical solutions to the problem of 1D hydraulic fracture [128, 132,

165, 229].
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The Stefan-type condition itself is obtained from evaluating the fluid mass balance equa-

tion for hydraulic fracturing near the fracture tip. We begin by considering the case of a

fracture which is driven by a Newtonian fluid emanating from a point source at the ori-

gin (we consider here the toughness dominated regime, i.e. when the material toughness

of the rock is greater than zero). As such it will grow axisymmetrically, independent of

the angle θ (in cylindrical coordinates). Because of this, the fracture dimensions will be

fully described by its length and aperture, which are denoted {l(t), w(r, t)} respectively

(note that here w again stands for the boundary growth, but is fundamentally separate

from the Hele-Shaw cell described previously).

The fluid mass balance equation for this system will be given by (this is derived explicitly

later in Sect. 4.1.3.4):
∂w

∂t
+

1

r

∂

∂r
(rq) + ql = 0, (2.10)

where ql(r, t) is the fluid leak-off into the surrounding rock, while the fluid flow rate

q(r, t) can be expressed as (derived later in Sect. 4.1.3.1):

q = wv = − w3

12µ

∂p

∂r
, (2.11)

where µ is the fluid viscosity, p is the pressure exerted by the fluid on the fracture walls,

and v is the particle velocity (i.e. the velocity of fluid moving within the fracture).

As we are wishing to examine the near-tip region, it is clear that the functions asymptotic

approximations will be highly accurate. These can be expressed in the form1:

p(r, t) = p0(t) log (l(t)− r) + p1(t) + p2(t)
√
l(t)− r + . . . , r → l(t), (2.12)

w(r, t) = w0(t)
√
l(t)− r + w1(t) (l(t)− r) + . . . , r → l(t), (2.13)

q(r, t) = −w
3(r, t)

12µ

∂p

∂r
∼ w3

0(t)p0(t)

12µ

√
l(t)− r, r → l(t). (2.14)

As such, inserting into (2.10), we obtain:

w0(t)

2

(
l′(t)− w2

0(t)p0(t)

12µ

)
1√

l(t)− r
+ ql +O (1) = 0, r → l(t). (2.15)

Assuming that the fluid leakoff is not singular at the fracture front2:

ql(r, t) = O (1) , r → l(t), (2.16)

1An example of how these are obtained, in the case when incorporated tangential traction in the
fluid, is provided in [230]

2In fact it need only be a higher order than the leading term in (2.15) for the result here to remain
valid. A similar Stefan-type condition can still be obtained if the fluid leak-off at the crack tip is of the
same order as in (2.15) (e.g. when Carter leak-off is assumed), using the same method outlined here,
however the form of (2.18) will be different and as such this case will not be considered in this work.
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then, in order for (2.15) to be satisfied, we must have:

l′(t) =
w2

0(t)p0(t)

12µ
. (2.17)

Finally, noting the asymptotics for the particle velocity near the fracture front (compare

(2.11) and (2.14)), we obtain the speed equation:

dl

dt
= v0(t), (2.18)

where v0(t) is the first term of the asymptotics for the particle velocity at the fracture tip.

It is worth noting that this equation remains valid irrespective of the fluid rheology [127],

as well as in the viscosity dominated regime (where the fracture asymptotics differ).

The form of the speed equation is an intuitive result in the absence of fluid lag, where

the fluid boundary moves in line with the fracture front. Importantly however, the

particle velocity in this region is non-singular, and the asymptotic terms can be read-

ily obtained, providing a computationally efficient method of examining the hydraulic

fractures growth.

2.2.4 Erosion

In the case of solid particle erosion, defining the moving boundary is more complicated

than in other cases. This is due to the fact that the impacted medium is approximated

by an elastic body, and as such deformation of this medium can result in the outer areas

of the indenter being below the level of the medium (z = 0), but not being in contact

with the impacted material (see Fig. 2.2). Due to this, care must be taken to ensure that

the contact area is properly defined, and assumptions made concerning the behaviour of

the medium will play a crucial role in describing the moving boundary. One consequence

of this is that the supersonic and subsonic formulations must be considered separately.

Here, only the primary results related to the rate of the growth of the contact radius in

each case will be given, with a more complete analysis of the problem being provided at

the beginning of Chapter. 3.

2.2.4.1 Subsonic (Hertzian) formulation

In the studies conducted here, it will be assumed that the indenter geometry is defined

by the shape function:

z = B1−λrλ, λ > 1, (2.19)
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a(t)
w(t)

z

0

Figure 2.2: Elastic deformation of the impacted half-plane in the subsonic regime,
shown in the case of a rounded cone indenter. Here a(t) is the contact radius, and w(t)

the indenter depth.

which is taken to allow the formulation to model a wide range of indenter geometries

(e.g. λ → 1 defines a rounded cone, λ = 2 a half-sphere, and λ → ∞ a cylinder), with

an aim to determining the effect of particle shape on the characteristics of the resulting

impact. In addition, it is assumed that it is perfectly blunt, so deformation, fracturing

and chipping of the impacter do not need to be incorporated into the model. Finally,

only the case of an orthogonal impact with an elastic medium is considered, as this is

the one which imparts the most energy to the elastic medium, and as such will be the

type of impact most likely to cause fracture initiation (a more thorough outline of the

models assumptions and formulation is provided in Chapter. 3).

In the subsonic case, provided that inertial terms within the impacted medium are

neglected, the equation of motion takes the form [65, 66]:

m
d2w

dt2
= −k1w

β, (2.20)

where m is the mass of the indenter, while k1 is a known constant. To obtain an equation

for the penetration depth over time, we first note the conditions:

dw

dt

∣∣∣∣
t=0

= v0, w(t0) = w0, (2.21)

with w0 being the maximum penetration depth, and v0 the initial velocity of the indenter.

With this, integrating (2.20) twice yields that the penetration depth w can be defined
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in the following way (see [10] for the full derivation):

w(t) = w0U

(
λ+ 1

λ
;
v0

w0
t

)
, (2.22)

where the function U is defined by the relationship:

∫ U
(
λ+1
λ

;
v0
w0
t
)

0

1√
1− ξ

2λ+1
λ

dξ =
v0

w0
t. (2.23)

Meanwhile, utilizing the fundamental theorem of calculus, we can express the velocity

of the indenter over time as:

v(t) =
dw

dt
= v0

√
1−

(
w(t)

w0

) 2λ+1
λ

. (2.24)

As such, given that the contact radius a(t) spreads as:

ȧ(t) =
1

λ
B

λ−1
λ w

1−λ
λ (t)

dw

dt
, (2.25)

we obtain the Stefan-type condition in this case:

ȧ(t) =
1

λ
B

λ−1
λ v0w

1−λ
λ (t)

√
1−

(
w(t)

w0

) 2λ+1
λ

. (2.26)

It should be noted that in the formulation presented here the Stefan-type condition does

not play a crucial role. This is merely due to the fact that simpler relationships between

the contact radius and other problem parameters exist (i.e. (3.25)), allowing the erosion

front to be traced over time without the use of this equation.

2.2.4.2 Supersonic formulation

We consider the supersonic regime, when the contact radius of the indenter is expanding

faster than the wave speed in the medium. This prevents the medium from dissipating

the energy induced by the impact as effectively as in the subsonic case, leading to

different impact characteristics. One example of this is that, in the supersonic case, the

cusp formation exhibited is negligible compared to that in the subsonic stage (compare

the level of elastic deformation of the medium around the indenter in Figs. 2.2 & 2.3). It

should also be stated that, as the indenter velocity will decrease throughout the course

of the impact, it will eventually be moving below the wave speed of the medium, and as

such will exit the supersonic regime. Because of this, at some point there will transition
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a(t)

w(t)

z

0

Figure 2.3: Elastic deformation of the impacted half-plane in the supersonic stage,
for the case of a rounded cone indenter. Here a(t) is the contact radius, and w(t) the

indenter depth.

from the supersonic regime to the subsonic case considered previously, with the moment

of transition being calculated directly from the Stefan-type condition for this case (this

will be explained in more detail below).

We again consider a rigid indenter, defined by a power-law shape function (2.19), im-

pacting an elastic medium, although this time inertial terms within the elastic media will

also be incorporated into the model. The equations defining the penetration depth of the

indenter over time, equivalent to relations (2.22)-(2.23) obtained in the subsonic case,

are instead derived from the generalized solutions provided by Borodich [27], which were

obtained from a study of the integral equations related to the problem. For a power-law

shaped indenter of the form (2.19), we have:

w(t) = wsF
−1

(
v0

ws
t

)
, (2.27)

where:

F (y, µ) =

∫ y

0

1

1− ξµ
dξ, µ =

λ+ 2

λ
, 0 < y < 1. (2.28)

while ws is a known constant, and v0 is the initial velocity of the indenter.

Next, as there is no elastic deformation around the indenter, the relation between the

penetration depth and contact radius follows from simply evaluating the particle shape

function (2.19) along the boundary:

w(t) = B1−λaλ(t), λ > 1, (2.29)
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from which, with only slight manipulation, the rate of expansion of the contact radius

can be obtained:

ȧ(t) =
1

λ
B

λ−1
λ w

1−λ
λ (t)

dw

dt
. (2.30)

Combining the above, and utilizing the fundamental theorem of calculus, we obtain a

Stefan-type condition describing the movement of the contact radius:

ȧ(t) =
1

λ
B

λ−1
λ v0w

1−λ
λ (t)

[
1−

(
w(t)

ws

)µ]
. (2.31)

While the Stefan-type condition does not play a considerable role when examining the

subsonic case, here it is crucial. This is because, as mentioned previously, there will be

a transition between the supersonic and subsonic case during the course of the impact

event, which must be calculated from the Stefan-type condition. Put explicitly, the

moment in time t∗ when the supersonic stage ceases to apply is defined as the point at

which the rate of expansion of the contact radius is identical to the wave speed of the

medium, which can be expressed by the condition:

ȧ(t∗) = c, c =

√
E

ρ
, (2.32)

where c is the wave speed in the impacted medium, defined in terms of its Young’s

modulus E and material density ρ. Given this, any model which attempts to incorporate

both regimes will need to take account of the Stefan-type equation (2.31).

2.3 Fracture criterion

2.3.1 The Griffith-Irwin criterion

The Griffith approach was originally designed to examine ideal brittle fractures [84]. It

considered the energy of new surfaces formed during fracture Γ, often named the specific

energy of a fracture. This could then be used to examine when fracture formation would

initiate using the energetic balance equation:

∆U + ∆Γ = ∆A, (2.33)

where U is the deformation energy and A is the work of external forces. This relation

was then applied to model a fracture, with half-length a, in an infinite domain which is

subject to a remote stress σ at infinity. Assuming that the area of the unloaded zone was

circular, and had a radius equal to the half-length of the fracture, integral techniques
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can be used to transform this into the relation (see [152] for more details):

G = σ2πa, (2.34)

where G is the strain energy release rate.

The approach was revolutionary, but its applicability was limited due to the fact that

perfectly brittle fractures are fairly rare in nature. This changed when the theory was

extended by Irwin [104] to cover quasi-brittle fracture3 as well. This was achieved by

defining the stress intensity factor of the material for a mode I crack (this is an ‘opening’

crack, for more details on different fracture modes see Sect. 4.1.3.2, in particular Fig. 4.4),

KI , as follows:

KI = σ
√
πa, (2.35)

and performing an analysis of the stress field ahead of the fracture. It was demonstrated

that this stress intensity factor remains the dominant force in determining the fracture

evolution in the case of quasi-brittle materials, with the new form of (2.34) being:

G ∝ K2
I . (2.36)

Through a more thorough analysis, and relating this to the static fracture toughness

KIc, the criterion for crack propagation in a quasi-brittle material can be obtained:

KI ≤ KIc, (2.37)

Additionally, in the case where cracks grow along a trajectory where KI is maximal,

this criterion can be assumed to take the stronger form:

KI = KIc, (2.38)

which is typically referred to as either the Irwin or Griffith-Irwin fracture criterion.

The above ’classical’ approach has been shown to conform to the results obtained by

experiments in numerous cases (a number of examples are provided in [182]), however it

is not universal. In some specific cases the assumptions used when deriving or applying

(2.38) are not satisfied, and as a result the classical criterion requires updating. Two

relevant examples of this are outlined below.

3These are fractures where the crack surface effectively acts as the boundary between elastic and
plastic regions, in particular at the fracture tip. Because of this, the interaction between the two can be
effectively modeled as cohesion forces. See [16] for more details.
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2.3.2 High velocity erosion impact

In the case of when short-term pulses are applied, the quantitative accuracy of predic-

tions made using the Griffith-Irwin criterion decreases considerably.

In the experimental paper by Kalthoff & Shockey [110], an essentially rectangular tensile

load pulse was utilized in impacts whose duration lasted only a few microseconds. Their

setup allowed for the creation of a large number of cracks in the target, as well as

examining the stability of the impacted plates to further impacts. Their experiment

conclusively demonstrated that the traditional criterion of unstable crack germination

was poorly suited to the dynamic case.

Since then numerous experiments (for example: [33, 98]), investigating dynamic fractures

in brittle materials, have observed a similar failure of classical approaches to accurately

predict results. This is in part due to the fact that, for dynamic impacts, the discrete

(’quantum’) characteristic of the process as load pulses are applied becomes increasingly

important. Additionally the inability of the material to dissipate energy (or ’relax’),

means that the incubation time prior to fracture plays a decisive role, and static attempts

to examine the system fail as a result. Both of these aspects can be demonstrated by

studying dynamic fracture in a lattice structure [76, 201, 202].

In response to this, several alternative methods and criteria for modeling dynamic brittle

fracture have been suggested, many of which are outlined in [149]. The culmination

of these is the incubation time based fracture criterion (sometimes referred to as the

structural-temporal criterion), which takes the following form [166]:

1

τ

∫ t

t−τ

1

d

∫ d

0
σ(r, t′) dr dt′ ≤ σc, (2.39)

where σc is the static strength of the material and σ is the tension stress. The parameter

τ is the experimentally obtained incubation constant, which characterizes the strain

(stress) rate sensitivity of the material, and whose physical meaning is related to the

relaxation time of the material. Meanwhile d is a length scale parameter, which is

determined in static tests on specimens with microcracks. It is worth noting that, if

Irwin’s small yielding approximation is assumed:

d =
2K2

Ic

πσ2
c

, (2.40)

then this criterion reduces to the Irwin criterion (2.38) under quasi-static conditions.

This criterion can therefore replicate the accuracy of the classical criterion in standard

static tests, but has also been shown to produce accurate predictions in dynamics tests

[171, 173].
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In simple 1D cases (2.39) can be simplified to:

γ(r, t) =
1

σcτ

∫ t

t−τ
σ(r, t′) dt′, (2.41)

with the incubation time based fracture criterion being formulated as:

G(r) = {min t ∈ [0, T ] : γ(r, t) = 1} , (2.42)

here T is the impact duration, while G represents the minimum time to fracture for any

fixed radial position r. It is worth noting that, provided function G is injective, we can

define the time of initial fracture t∗, alongside associated position r∗, as follows:

t∗ = minG(r), r∗ = G−1(t∗), (2.43)

where G−1 is the inverse of the fracture criterion function (2.42).

2.3.3 Hydraulic fracture and tangential stress

In the case of 1D hydraulic fracture models, typically the classical Irwin criterion (2.38)

has been utilized. This was considered appropriate because it was traditionally assumed

that the effect of hydraulically induced shear stress, denoted τ , was negligible in com-

parison with the fluid pressure:

|τ | � |p|, (2.44)

This has been assumed for all 1D models since their creation (for example; in the KGD

case [207]).

However, in the recent work of Wrobel, Mishuris & Piccolroaz [230], it was demonstrated

that (2.44) was not satisfied at the crack opening, while the tangential term may also

influence the asymptotic behaviour at the fracture tip. This is particularly troubling

due to the fact that the near-tip behaviour is crucial to the solution [34, 35].

An updated fracture criterion has been proposed by Wrobel, Mishuris & Piccolroaz,

which was developed from an examination of the energy release rate, utilizing a J-

integral approach first introduced by Rice [185], near the fracture tip [230]:

K2
Ic = K2

I + 4(1− ν)KIKf (2.45)

where ν denotes the Poisson ratio, while Kf is the shear stress intensity factor. Mean-

while KIc represents the material toughness, which is separate from the static fracture
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toughness considered previously, and is a constant characterizing the resistance of a

given material to crack extension (for more details see [16]).

It is immediately apparent that (2.45) reduces to the classical Irwin criterion when

taking Kf = 0. It should be noted as well that the stress intensity factors KI and Kf

are not independent. They are in fact related by the following formula:

Kf =
p0

G− p0
KI , (2.46)

where p0(KIc) is the leading term of the pressure asymptotics at the fracture tip, while

G denotes the shear modulus. One important caveat to this relationship is the fact that:

p0(KIc)→ G, KIc → 0. (2.47)

As such, in the case of zero material toughness, only the non-local component KI van-

ishes, while the shear stress intensity factor takes a non zero value Kf > 0. This has a

significant effect on the fracture asymptotics in the zero or small toughness case, elim-

inating the singular perturbation problem which previously arose when transitioning

between the viscosity and toughness dominated regimes.



Chapter 3

Threshold fracture energy in solid

particle erosion

This work was published in the papers:

Threshold fracture energy in solid particle erosion: improved estimate for a rigid inden-

ter impacting an elastic medium, Meccanica 50(12):2995-3011, 2015

Resolution of the threshold fracture energy paradox for solid particle erosion, Philosoph-

ical Magazine, 96(36):3775-3789, 2016

3.1 Theoretical background and literature review

3.1.1 Problem description and motivation

Erosion impact describes a range of problems, unified by the fact that they typically in-

volve small indenters colliding with a larger medium. While the study of erosion in other

fields almost universally describes volume loss, within the field of applied mathematics

it is not always required for the term to qualify. Instead, any damage to the impacted

medium (e.g. fracture) caused by an indentation event warrants use of the term.

Erosion may come in numerous forms. One simple example is the number of indentations

involved, typically split into the case of a single event, or multiple impacts. Another

is whether the indentation is slow (quasi-static), which is more easily resolved, or if it

occurs quickly (dynamic), in which case numerous additional factors need to be taken

into account. Other differences may be more subtle. In the case of erosion by a fluid

particle, the solid-fluid interaction which occurs may be difficult to predict. This is

especially true if the fluid indenter is a corrosive substance, when the resulting interplay

20



Threshold fracture energy in solid particle erosion 21

between the mechanical damage of the impact and the corrosion of the impacted medium

needs to be approached as an entirely unique ‘erosion-corrosion’ problem.

On top of the variation between the number of indenters and their form, there is also

a wide variety of factors which need to be accounted for in a specific impact. The

initial angle of the indenter will determine how much of the energy is transfered to the

medium, and how much material is lost. There will also be large differences in system

behaviour depending on the velocity of the impacter, particularly if it is initially traveling

at supersonic velocities. The characteristics will also clearly depend on the impacted

material, will its response be elastic or plastic, brittle or ductile.

This wide range of variability between problems has made it difficult to construct gen-

eralized approaches, and means that the field relies heavily on experimental results. A

good overview of erosion, both experimental and theoretical, can be found in [182].

Despite its difficulties, this is obviously a phenomena of great importance, with ap-

plications not just in natural processes such as meteorite impacts [142], but also in

various technological processes, for example shot peening [200] and the development of

armor/anti-armor materials [109]. In the case of impact by a fluid, the relevance to

sea-based erosion, the movement of planes through clouds, and inside industrial steam

turbines [231] are also immediately obvious. Due to this wide range of uses, erosion

has been a much studied phenomena, with numerous avenues of investigation in the

literature.

As a result of the large scope of this topic a full summary of the field can not be

provided here, however, in the remainder of this section, we will explore in more detail

those which are most relevant to the current investigation. In particular we will describe

the initial Hertzian models developed to describe particle indentation, alongside their

limitations. Important effects to consider when examining a single impact will also be

briefly outlined for the sake of completeness, however only so far as is needed to justify

either incorporating or neglecting them within the following investigation. Finally, a

thorough description of the threshold fracture energy of an impact, whose study is the

primary motivation of this work, will be provided alongside a detailed review of existing

research into the subject.

3.1.2 Hertzian formulations

In the 1880’s, the first analytical solutions for the impact of a blunt indenter with an

elastic half-plane where provided by Hertz [93, 94] (translations into English are provided

in [95]). The model assumed that friction forces could be safely ignored, and that
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the indenter was impacting normal to the surface. These initial works, alongside later

additions (most notably be Harding & Sneddon [89]), provided the impact geometries

and stress fields for a small number of fixed indenter shapes. This framework was

so influential that such events came to be known as Hertzian impacts, and much of

the current work into erosion impacts can trace its roots back to these original papers

(including the formulation presented in the body of this chapter). As such, a brief

introduction to these models in the case of a cone, sphere and flat-bottomed cylinder

will be provided below. A more in-depth analysis of the key results of these early models

can be found in books [61, 108].

3.1.2.1 Rigid cone

The case of a rigid cone indenter was first derived by Sneddon [205]. It should be noted

that the formulation provided there merely requires that the indenter is ‘conical-headed’

(pencil shaped), and as such is more general than the other Hertzian solutions. The

version given below is provided explicitly in [61, p. 96-99].

α

a0

w

a

Figure 3.1: Geometry of the conical-headed indenter, here α is the half-angle used to
define the shape of the cone in the Hertz formulation. The full height of the indenter

is not defined.

The indenter depth, w, is given by the following formula:

w(r) =


(
π
2 −

r
a

)
α cot (α) , r ≤ a

α

[
arcsin

(
a
r

)
+
√

r2

a2
− 1− r

a

]
cotα, r > a

(3.1)

where a is the contact radius. The total pressure on the contact area, P , is meanwhile

given by:

P =


2E tan(α)
π(1−ν2)

w2
0, w0 ≤ 1

2πa0 cot (α)

2Ea0
1−ν2

(
w0 − 1

4πa0 cot (α)
)
, w0 >

1
2πa0 cot (α)

(3.2)
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where E is the Young’s modulus, ν the Poisson ratio, a0 the radius of the conical-

headed punch, and w0 is the penetration depth (i.e. w0 = maxr w(r)). The mean

contact pressure takes the form:

p0 =
E

2 (1− ν2)
cot (α) , (3.3)

through which the stresses along the surface, σr, can be expressed as:

σr(r) =


[
− arccosh

(
1
ρ

)
+ (1−2ν)

2ρ2

{
1−

√
1− ρ2 + ρ2 log

(
1+
√

1−ρ2
ρ

)}]
p0, ρ ≤ 1

(1−2ν)
2ρ2

p0, ρ > 1

(3.4)

where ρ = r/a is the dimensionless radial coordinate.

3.1.2.2 Spherical indenter

The case of a perfectly spherical indenter was initially provided by Hertz [95], while a

more explicit description of the formulation is provided in [61, p. 87-90].

a0

w

a

Figure 3.2: Geometry of the spherical indenter, with radius a0, used in the Hertz
formulation.

The penetration depth of the indenter is given by:

w(r) =


3π(1−ν2)

8Ea

(
2a2 − r2

)
p0, r ≤ a

3(1−ν2)
4Ea

[(
2a2 − r2

)
arcsin

(
a
r

)
+ ar

√
1− a2

r2

]
p0, r > a

(3.5)



Threshold fracture energy in solid particle erosion 24

where p0 is the mean pressure beneath the indenter, while p is the contact pressure

distribution, given by:

p(r) =
3P

2πa2

√
1− r2

a2
, r ≤ a. (3.6)

As a result, the loading force takes the form:

P =
4E
√
a0

3(1− ν2)
w

3
2
0 , (3.7)

where a0 is the radius of the indenter and w0 is the penetration depth (i.e. w0 =

maxr w(r)).

The radial stress distribution on the surface is:

σr(r) =


[

(1−2ν)a2

2r2

(
1−

√
1− r2

a2

)
− 3

2

√
1− r2

a2

]
p0, r ≤ a,

(1−2ν)a2

2r2
p0, r > a.

(3.8)

3.1.2.3 Flat-bottomed cylinder

The solution to the problem of indentation of an elastic half-plane by a flat-bottomed

cylinder was first obtained by Sneddon [203]. The resulting formulation, taken from the

original paper alongside the representation given in [61, p. 92-96], is presented below.

a0

w

a

Figure 3.3: Geometry of the indentation by a flat-bottomed cylinder, with radius a0,
used in the Hertz formulation.

The penetration depth of the indenter takes the form:

w(r) =


π(1−ν2)

2E ap0, r ≤ a,
1−ν2
E ap0 arcsin

(
a
r

)
, r > a,

(3.9)
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where p0 is the mean pressure applied by the indenter, while the contact pressure dis-

tribution is given by:

p(r) =
P

2πa2
√

1− r2

a2

. (3.10)

As a result of this, the total load on the pillar can be shown to be:

P =
2E

1− ν2
aw0, (3.11)

where w0 is the penetration depth (i.e. w0 = maxr w(r)).

Finally, the surface stresses beneath the indenter are given by:

σr(r) =
P

2πa2

[
− 1√

1− ρ2
+

1− 2ν

ρ2

(
1−

√
1− ρ2

)]
, ρ ≤ 1, (3.12)

where ρ = r/a is the dimensionless coordinate.

3.1.2.4 The limitations of Hertz theory

While the Hertz theory provided a solid basis for future investigations into erosion

impact, it was not without its limitations.

One clear but significant downside of the given approach was that it modeled indenters

of fixed shape. As such, while it was able to provide a relatively accurate description

of specific impacts it could, at best, provide weak bounds for predicting the effects of

real-world erosion problems. This inherent weakness is however common in indentation

studies.

A more serious detriment of the theory is that it provides only a quasi-static description.

As such it fails to take account of dynamic effects, which can play a crucial role in the

fracture of brittle materials (see Sect. 2.3.2).

An addition problem with the Hertz theory was found when attempting to utilize it to

predict fracture. An experimental investigation was conducted by Auerbach into ‘ring’

(circumferential) fractures forming in glass, following an impact by a spherical indenter

with radius a0. When examining the maximum impact load P required to initiate such

a crack, he found that P ∼ a0 for small indenters [15]. This relationship contradicts that

predicted by the Hertzian approach where, utilizing (3.7) and taking a maximum tensile

stress fracture criterion, the relationship P ∼ a2
0 is obtained. This discrepancy came to

be known as Auerbach’s law, and it prompted numerous investigations attempting to

provide a physical explanation for its existence (see e.g. [60, 62]).
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One final criticism of the approach was best expressed by Storey, stating that it: “as-

sumed that, in the neighbourhood of contact, the surfaces of the bodies and, hence, the

distance between their corresponding points can be represented by second degree equa-

tions.” [210]. This assumption further limited the predictive capabilities of the theory,

and became a key point on which others would attempt to improve.

3.1.2.5 Shtaerman-Kilchevsky theory of quasi-static blunt impact

One (previously mentioned) problem with Hertz theory was that it assumed that the

surface of interacting bodies could be described by second degree equations. This ap-

proach, while greatly simplifying the mathematics involved, did not necessarily provide

an accurate description of the problem. The first successful efforts to correct this flaw

were undertaken by Shtaerman [199, 210]. However, they were not widely followed up.

In another paper Shtaerman, utilizing advances in the study of integral equations and

potential theory, managed to generalize the approach of Hertz to cover punches defined

by a monomial function of r to the degree λ, where λ ≥ 2 is an even number [198]. This

was later extended by Kilchevsky to provide an accurate description for any λ > 1 [117].

These generalizations greatly increased the applicability of the theory, and allowed for

more accurate studies into the effect of indenter shape on the impact characteristics.

During this time, additions to the model were made by Galin [66], who managed to

provide addition quasi-static relations between various impact parameters (provided

here in (3.15)-(3.16)). This, combined with the results by Shtaerman & Kilchevsky,

yields a fully quasi-static theory of erosion by a power-law shaped indenter.

Unfortunately, these results were not widely adopted outside of the Soviet Union. This

was likely, in part, due to the fact that few of the papers were translated into other

languages. Similarly, incorporating the effects of a general particle shape was, and still

remains, an at best secondary concern to most researchers working in the field.

3.1.3 Important effects and alternate approaches

While there were clear limitations to the initial Hertzian theories, their potential for

describing erosion impacts lead others to improve and update the approach. This was

achieved through updating the initial model, the incorporation of additional, previously

neglected, effects, and through comparison with experimental results.

A brief, and by no means complete, examination of these efforts is given below. The

aim is to provide a description of the theories underlying the current work, as well as
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examinations of other developments which are of importance to understanding both the

achievements, as well as the limitations, of the presented model.

3.1.3.1 Incorporating friction and adhesion

Efforts to study the effect of adhesion (normal contact) and friction (sliding contact) in

erosion impacts largely owe their beginnings to the work of Galin [66], who conducted

some of the first examinations of the phenomena. These preliminary investigations

were analogous to the aforementioned Hertz solutions, utilizing the same framework to

investigate the effect of each phenomena.

When working with axisymmetric punch impacts involving friction, Galin assumed that

the indenter was rotating with a fixed angular momentum. The aim of which was to

obtain the relationship between the indenter shape and the momentum required to rotate

the object during the impact, the results of which have clear application to industry. In

this work Galin was able to provide solutions to specific cases, using a similar quasi-static

formulation to that of the Hertz solutions.

More recent investigations however have tended to focus on the effect of purely sliding

motion, or have been concerned with tribology (where both contacting objects are in

motion). Summaries of developments in these areas can be found in [80, 81].

Meanwhile, the first full solutions for punch indentation with adhesion where provided

for specific cases, with a spherical indenter being given by Soldatenkov [206], followed

by a rigid cone geometry by Borodich et al [29]. These efforts where later generalised

by Borodich, Galanov & Suarez-Alvarez [30], who provided a solution for erosion by a

power-law shaped axisymmetric punch, incorporating an adhesive (no-slip) condition at

the contact region. This was achieved through the framework of the Boussinesq-Kendall

approach to erosion impacts [31], with the inclusion of the JKR (Johnson, Kendall &

Roberts) model of adhesive contact [115]. Using such a model to make quantitative

predictions is not a simple matter however, due to difficulties in estimating the adhesive

properties of the contacting materials [28].

Additionally, more complicated models have been developed, particularly in recent years.

These models deal with indentation into a material containing multiple ’layers’, instead

of a single elastic half-space. A good example of such an approach is given in [12].

It should be also noted that the work presented here will neglect the effects of both

friction and adhesion at the contact interface, which do play a role, especially for oblique

impacts [13]. However, this simplifying assumption is often made in the literature in

the case of normal impact incidence [106], as considered here. Additionally, as this
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work is a preliminary investigation into the viability of the presented approach, it is

more appropriate to first take the simplest form, with the potential to incorporate other

complicated phenomena at a later time.

3.1.3.2 Supersonic stage

While the standard approach to impact erosion, through the assumption of a slow moving

indenter impacting a half-plane, provides a reasonable approximation to most problems,

there are special cases where it fails to take account of crucial effects. One particularly

notable example is when the initial velocity of the indenter is higher than the wavespeed

of the impacted medium. In this case, the ability of the medium to dissipate energy

is greatly reduced, while the energy imparted by the impact is obviously higher than

in subsonic impacts. This is particularly relevant to the investigation conducted here,

given the important role that the ability of the material to ’relax’ plays in the formation

of fracture (see Sect. 2.3.2). The differing qualitative characteristics between the two

regimes also leads to different problem geometries, such as the differing cusp formation

between subsonic and supersonic impacts, as noted in Sect. 2.2.4 (compare Fig. 2.2 &

2.3).

The extent to which this difference will play a role however is not entirely clear. This is

because the indenter velocity will rapidly decrease during the impact, and as such the

supersonic, and intermediate transonic, regimes will only take up a small fraction of the

total impact duration. Whether this small portion of the total time will be sufficient

to significantly alter the impact characteristics is open to debate. Additionally, this

is not something which can be easily examined through experimental techniques, as

having the indenter begin in the supersonic regime will require you to increase its initial

velocity, or change the impacted material to one with a lower density, making it difficult

to determine which effects are solely a response to the differing regime.

This uncertainty about the effect of neglecting any potential supersonic stage, combined

with the prevalence of quasi-static approaches, and the increased difficulty associated

with incorporating inertial terms, means that there are few extensive examinations of

this topic in the literature.

One particularly interesting recent investigation was conducted by Wang, Fleck & Evans

[226], who performed an FEM-based investigation into a potentially supersonic erosion

impact into thermal barrier coatings. The use of purely numerical techniques allowed

them to avoid the difficulties associated with incorporating wave effects directly into an

analytical approach. In addition, it allowed for a large range of effects to be examined,

such as impact angle, initial velocity and indenter shape. Unfortunately, given the
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non-linear nature of the problem, the accuracy of such techniques has not been proven

conclusively.

An alternative method for examining the problem is through asymptotic approaches.

One notable example is the work of Argatov [11], which investigated the asymptotics

of a spherical indenters equation of motion in the supersonic and subsonic regimes. It

was shown that there could be significant deviations from the results obtaining using

Hertzian approaches, although this depended on the values of the problem parameters

(i.e. medium density, Young’s modulus, etc..). Unfortunately, while this approach shows

great promise, it requires the formulation to be highly specialized, preventing a more

generalized examination of the phenomena.

More relevant to the current work however are the purely analytical approaches to the

problem of a rigid punch impacting an elastodynamic half-plane. The first of which

was provided in the paper by Thompson & Robinson [214], who developed a ’simple’

solution for such a system, subject to certain constraints, utilizing a self-similar potential

based approach. This was later improved upon by Borodich [27], whose more general

investigation considered an arbitrarily shaped indenter impacting an elastodynamic half-

space, a problem geometry similar to previous Hertzian approaches. Through the use

of integral equations, Borodich was able to provide exact solutions for the important

problem parameters, most notably the indenter depth over time (see (2.27)-(2.28)).

To the best of the authors knowledge, this remains the only complete and generalized

analytical formulation for such an impact, and as such will be the one employed here

when attempting to incorporate the effect of inertial terms into the model.

3.1.3.3 Computational methods

While numerous computational models have already been discussed in the above sec-

tions, it is important to elaborate further on the use and limitations of such approaches,

as well as the effect that modern computing has had on the study of erosion problems.

The application of finite element models (FEMs) to erosion problems began almost as

soon as the FEM approaches began to appear in the literature. This is in large part due

to their application to studying the effectiveness and efficiency of armour, resulting in

significant military interest. As a result of this application however, many of the works

in this direction are not released to the general public, making it difficult to assess the

true state of the art.

In spite of this, specialized FEM based approaches do still appear in the literature. A

good example of early computational models for indentation problems was provided in
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[83]. The technical report successfully attempted to provide a qualitatively accurate

description of dynamic impact by a soft projectile where, for previously mentioned rea-

sons, the classical Hertzian approach fails to do so. This work has the benefit of being

accompanied by experimental data, providing an assessment of the accuracy of the fi-

nal FEM-based results. Unfortunately, such experimental verification of computational

models is rarely conducted in the literature and, noting the non-linearity of the prob-

lem (which can cause computational errors to rapidly accumulate), the level of error of

obtained solutions is typically not known.

Examples of more recent models include those examining shot-peening [107], erosion

based wear [227], as well as the aforementioned supersonic impact into thermal barrier

coatings [226], amongst others. This however demonstrates one of the limitations of

purely computational approaches, as the numerical simulations have to be extensively

tailored to specific cases. Similarly, attempting to account for the non-linearity of these

problems means that such simulations are also likely to have lengthy computation times,

making them unsuitable for investigations like that provided in Sect. 3.3, where there

is a need to conduct thousands of simulations in order to iterate to a final result (see

Sect. 3.3.4.1).

In the pursuit of alternative computational approaches, which attempt to avoid some

of the more obvious problems of purely numerical techniques, multiple semi-analytical

methods have been developed [105, 195], and have shown reasonable success. Unfor-

tunately these are often also tailored to specific cases, and suffer from many of the

limitations of the classical approach as well. Most notably, they frequently utilize a

fixed indenter shape, greatly limiting their applicability.

While only a very brief look at FEM and semi-analytical methods has been provided

here, it is sufficient to see why they are not suitable for the given work. Put simply, the

investigation conducted here focuses on the indenter shape, where using the numerical

approaches described above would require a unique simulation for each particle geometry.

As such, analytical investigation for a generalized indenter are clearly preferable if they

provide a viable method of approach. Meanwhile, as previously mentioned, the second

investigation requires thousands of simulations to be run in order to iterate towards a

final result, which would be overly computationally intensive if based on high accuracy

numerical techniques.

As a final note concerning the impact of improved numerical techniques on the study

of particle erosion, it is important to make clear the effect that modern computing, and

more precisely the development of specialized mathematical software, has had on purely

analytical approaches. This new tool has made special and inverse functions, for example

the hypergeometric functions, or the inverse of (3.23), easier to compute. As such, it
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is now possible to generalize theories which previously would have been impossible to

obtain solutions for, such as the work presented here. Additionally, this allows for a

more accurate testing of previously obtained analytical solutions, and an easier way to

detect misprints, as demonstrated in [63].

3.1.4 Impact induced fracture

3.1.4.1 The geometry of surface fractures

 

 

Figure 3.4: Geometry of surface fractures, denoted by black lines, which occur fol-
lowing an erosion impact, whose center is marked with an ’x’. Here we show: (a)
circumferential fracture (also known as ’Hertzian’ rings), (b) radial (tangential) frac-

ture.

In any erosion event, the form of surface fractures which occur, and whether they do

occur, is determined by the properties of the impact. This includes not only the initial

energy of the indenter, but also the properties of the impacted medium, alongside con-

siderations such as whether it is a static or dynamic indentation. A brief outline of the

most common types of surface fracture is given below.

The first common form of surface fracture is circumferential fracture. These are ax-

isymmetric fractures occurring around the impact center (see Fig. 3.4a). This form of

fracture is occasionally referred to as a ’Hertzian ring’, due to it being predicted by

the classical approach of Hertz. It should be noted that this is the only common form

of surface fracture which does not require any preexisting weaknesses in the impacted

medium, but is instead the result of a build-up of tension during the indentation process.

As such, circumferential fractures are common in many erosion impacts, however they

often require a longer incubation time to form than cracks caused by structural weak-

nesses in the impacted material. This fracture type is of particular importance, as it is
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the primary cause of damage in brittle materials which experience an elastic response

to the impact [59].

Radial fracture meanwhile takes the form of rapidly occurring cracks, which spread

orthogonal to the impact center (see Fig. 3.4b). This is because they follow lines of

preexisting weakness in the indented material, and as such require a lower initial energy

to instigate. Due to this condition however, radial fractures will not occur in all erosion

impacts, and their behaviour is highly dependent on the properties of the impacted

medium.

The final form of surface fracture, which are common in elastic erosion impacts, are

micro-cracks. These are by far the hardest form of fracture to predict, and their genera-

tion can often be ignored in the case of a single impact. In the case of multiple impacts

however, they play a crucial role, due to their effect on the materials stress field and

ability to resist tension build-up. Their presence may lead to the type of preexisting

weakness required for radial fracture, although typically such weaknesses are instead

structural. In the case of circumferential fracture however, small preexisting cracks in

the medium can be responsible for the initial activation of the fracture, resulting in a

lower threshold energy being required, as well as changing the initial position of the

fracture and its incubation time. For this reason, while the generation of micro-cracks is

often considered almost trivial in the case of a single impact, their existence in a mate-

rial greatly increases the difficulty associated with making accurate predictions regarding

fracture.

In the body of this work, we will only consider the case of a single erosion impact, into

a perfectly elastic medium (i.e. without micro-defects or preexisting weakness). As

such, the only form of surface crack which place a significant role will be circumferential

fractures, which will be perfectly axisymmetric in nature.

3.1.4.2 Fracture criterion

In fracture mechanics, the classical approach has always relied on the Griffith and Irwin

criterion, which were obtained using a quasi-static approach, to predict fracture, (these

have already been outlined in Sect. 2.3). However, it has been demonstrated experimen-

tally that they fail to obtain accurate predictions for dynamic systems (see Sect. 2.3.2).

As such, the major transition in the development and use of fracture criterion in recent

years has aimed to create a more complete theory, which can provide a better description

of both regimes.

One such approach is to simply update the classical Irwin criterion, using dynamic stress

intensity factors (DSIFs) [154]. This method is only practical however in computational
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models, as it simply uses relations between the state of the system and the stress intensity

factor(s) to ’update’ the value of the DSIFs at each step. Given the unknown accuracy

of these numerical approaches, this is best used for very specific problems, rather than

the general approach aimed for here.

Updated analytical approaches have also been developed. One of the first was initially

formulated by Barenblatt, with improvements added by others, and relied on incorporat-

ing the effect of ’cohesion’ of the material. This integral formulation was closely related

to the initial Irwin formulation, but relied on different fundamental assumptions. A

good summary of the approach can be found in [16]. Unfortunately while this formu-

lation was able to obtain improved predictions for quasi-static problems over classical

methods, its usefulness to the dynamic case was never conclusively proven.

In this work however we shall utilize the incubation time based fracture criterion (some-

times referred to as the structural-temporal criterion) previously outlined in Sect. 2.3.2.

This is because, while the above criterion can achieve a high degree of accuracy in specific

cases, they are unable to account for the important temporal effects which affect small

scale impacts. More specifically, the incubation time based approach takes the local

rupture stress history into account, which represents the nature of the kinetic processes

underlying the formation of macroscopic breaks, yield flow or phase transformation [149].

These dynamic effects become essential for impacts over time periods comparable with

the preparatory relaxation processes accompanying the development of micro-defects

in the material structure, and make it possible to predict unstable behaviour of the

dynamic-strength characteristics.

This incubation time based approach has also been demonstrated to achieve a high

correspondence with experimental results in such cases [159]. Further, it offers a more

unified interpretation of dynamic effects, with applicability in seemingly different physi-

cal processes such as the pulsed fracture of solids [170], electrical breakdown, and phase

transitions under the action of fast energy fluxes [167]. As such, it is perfectly suited to

the current work.

3.1.4.3 Oblique incidence

Investigations into the effect of impact angle on erosion damage began primarily through

numerical and experimental techniques. Unfortunately, due to the nature of the field,

most of these investigations have been largely focused on the effect of angle on material

volume loss, with fracture being at best a secondary concern.
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Theoretical understanding concerning the effects of indentation at an angle is often

achieved through examinations of shot-peening [2, 96], which can either be directly

applied by industry, or used as an analogy for armour technologies.

The conclusion which can easily be drawn from the results of these endeavors is that, in

all cases, the energy of the erosion punch is most efficiently delivered to the medium by

an impact normal to the surface. As such, this special case can be considered to produce

an upper bound for all possible impact angles when determining the risks of fracture in

the medium resulting from an erosion impact1. For this reason, considerations of the

impact angle can be neglected in these preliminary investigations.

3.1.5 Threshold fracture energy

In the above, a general overview of the study of erosion, from an applied mathematical

perspective, was given. This next section will instead look into one specific aspect of

erosion impacts, called the threshold fracture energy. This concept, and new methods

of studying it, will form the basis of the investigations undertaken in this chapter, and

will therefore be covered in more detail.

3.1.5.1 Definition of the threshold fracture energy

The threshold fracture energy of an impact, ε∗0, is defined as the initial energy required

for an indenter to cause a fracture in a given medium (i.e. no fracture occurs if ε0 < ε∗0,

while a fracture occurs for ε0 ≥ ε∗0).

The initial motivation for examining this phenomena was provided by experimental re-

sults [112, 215]. These experiments, measuring the initial velocity required to cause a

fracture in the medium, found that the threshold velocity for particles with a relatively

large radius are approximately the same, whereas reducing the radius leads to a sig-

nificant increase in the threshold velocities. Given that the impact duration depends

largely on the particle size, these results demonstrated that the behaviour of the thresh-

old velocity can be divided into two branches: one static, for large-size particles, and

the other dynamic, for small-sized indenters. The conventional approach when studying

the strength problem only permits one to calculate values of the threshold velocities

by applying the critical stress criterion, and as such can only explain the static branch

[182].

1It should be noted that, as a result of this, volume loss from the impacted material may be higher
when the impact is at a low angle instead of normal to the surface. As the presented work is only
concerned with fracture however, this effect will be neglected.
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As such, investigations of the threshold fracture energy allow researchers to develop

methods which overcome the limitations of previous frameworks, resulting in a number

of studies into the phenomena in recent years. These new formulations should however be

considered preliminary investigations, as it is still not clear whether all of the important

impact parameters have been incorporated. In fact, the results of the most recent models

appear to give rise to a paradoxical result, indicating that a deeper understanding of

the underlying processes is required.

Here the basis of these theories will be provided, as well as a brief overview of their

failings. In doing so, the primary motivation for the presented work will be made clear.

3.1.5.2 Theories of threshold fracture energy

Early analytical approaches to the threshold fracture energy typically relied on classical

linear elastic fracture mechanics, which as previously mentioned could not explain key

experimental results. As such these approaches will not be examined in detail here.

A good example of one however is provided in [19], with details of other such models

provided in the appendix of the cited paper.

Modern approaches to examining the threshold fracture energy can trace their roots to

the preliminary examination carried out by Morozov et al [150], examining the creation

of impact craters on other planets. This short paper, only three pages long, developed

the philosophy of the approaches which would follow. Most notably the use of the

incubation time based fracture criterion, which allowed the model to fully account for

the dynamic loading pulse. Further, the prediction made by the model was shown to be

in line with known results, establishing the credibility of such an approach.

With the underlying philosophy in place, the first models providing a full description of

impact events could be provided. These were derived for fixed particle geometries, in

order to simplify the mathematics during these initial investigations.

In the paper by Volkov, Gorbushin & Petrov [224], the case of a sphere, cylinder, and

a particle defined by the shape function z = Ar4, were considered. The structural-

temporal approach was again employed. It was shown that the behavior of the threshold

energy strongly depends on particle shape. It was also noted that the energy dependence

on the radius has a local minimum in the cases of a spherical particle and a particle whose

contacting surface is described by the equation z = Ar4, while it does not have such a

minimum in the case of a cylinder. This difference has been confirmed analytically [77],

although the critical shape parameter for which the change in behaviour occurs wasn’t

identified in this study.
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In order to better examine this phenomenon, the framework was generalized in the re-

cent work by Argatov, Mishuris & Petrov [10], which instead modeled a particle defined

by the shape function z = Arλ, with λ > 1. Their approach, which utilized the pre-

viously mentioned Shtaerman-Kilchevsky theory of quasi-static blunt impact, alongside

a dynamic evaluation of the impact loading pulse, provided a method of analyzing the

impact which was able to account for both spacial and temporal effects. The use of

the incubation time based fracture criterion, meant that the final theory was able to

provide an analytical relationship between the initial energy of the indenter and the for-

mation of surface fractures, something which could previously only be examined through

experimental methods.

3.1.5.3 The threshold fracture paradox

In the more general examination of the relationship between indenter shape and the

threshold fracture energy by Argatov, Mishuris & Petrov [10], they provided a detailed

asymptotic analysis of the transition from smooth indentor shapes (whose contact region

varies in the impact process), to a cylindrical shape, providing a bound on the initial

energy required for fracture initiation. Using this approach, they demonstrated that the

threshold fracture energy, ε∗0, was proportional to the half-time of the impact, t0, in the

following way:

ε∗0 ∝ t
λ−5.5
λ−1

0 . (3.13)

While this successfully provided an answer to the question posed in [224], showing that

the change in behaviour of the threshold fracture energy occurred for when the shape

parameter crossed a critical value, λ∗ = 5.5, it was not clear why this was the case. The

papers authors could find no physical justification for this critical value, and why the

change in system behaviour was independent of the other problem parameters.

This came to be called the threshold fracture paradox. Put simply: what is the physical

meaning of the critical shape parameter λ∗ = 5.5.

There are two obvious resolutions to the problem. The first is that there is some un-

derlying physical process, which has yet to be identified. Alternatively, it could be that

there is some important physical aspect of the impact has been neglected, and the fact

that it provides this value of the critical shape parameter is just a symptom of the model

being unable to make physically realistic predictions. This possibility is especially trou-

bling, given that the initial aim of these studies was to provide approaches capable of

overcoming the limitations of previous methods, and accounting for all of the significant

impact characteristics.
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Given the importance of solving this problem to future investigations of the threshold

fracture energy, the primary aim of this chapter will be to provide a clear resolution

to the threshold fracture paradox. This will be achieved by making improvements and

modifications to the original model by Argatov, Mishuris & Petrov, with an aim to

provide an understanding of the physical processes which determine the critical shape

parameter λ∗.

3.2 An improved estimate for the threshold fracture en-

ergy

3.2.1 Introduction

The first investigation into the threshold fracture paradox will attempt to resolve the

problem through improvements to the original model by Argatov, Mishuris & Petrov,

while keeping the design, philosophy and fundamental assumptions of the approach in-

tact. If this manages to provide some physical explanation for the value of the critical

shape parameter, or alter the behaviour of the obtained bound (3.13), then the para-

dox will be resolved. If not, then more drastic alterations will be required in order to

determine its cause.

3.2.1.1 Aims of the initial investigation

In this section, we will attempt to improve on the bound for the threshold fracture

energy provided in the initial paper by Argatov, Mishuris & Petrov [10]. This will be

achieved by eliminating a physically unrealistic aspect of the previous evaluation. There,

the fracture criterion was evaluated along the contact radius, which varied over time.

However, to provide an accurate physical description, only fixed spacial points should be

analyzed. As such, the key difference in approach taken here will be to locate the fixed

point in the spacial domain for which the integral of the stress function is maximized,

with this position then being used to obtain an improved bound on the initial energy

required for fracture.

By doing so, it will be possible to demonstrate whether the critical shape parameter,

λ∗ = 5.5, is an inherent feature of the previous model, or if some new value is yielded. In

either case, a greater understanding of the threshold fracture paradox will be obtained.

In addition to this, switching to evaluating fixed spacial points opens up new possibilities

for the model. Most notably, the incubation time based fracture criterion can be applied
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for arbitrary initial conditions, in order to determine the time and position of the initial

fracture. This is something which is difficult to determine experimentally, and as such

providing a new approach could have valuable applications.

3.2.1.2 Philosophy of the given approach

As previously discussed in Sect. 2.3.2 & 3.1.4.2, it is absolutely crucial that time de-

pendent effects are incorporated into the model if an accurate description of fracture

initiation resulting from dynamic impact is to be achieved. Unfortunately, the creation

of a fully dynamic model which is able to account for various particle geometries, whilst

also providing an accurate description of the surface stresses induced in the impacted

medium, is beyond the capabilities of current mathematical tools. Because of this, an

alternative approach will have to be developed which can provide a reasonable approxi-

mation of the impact over time.

This is achieved by combining the relations between problem parameters obtained using

quasi-static models with a time dependent description of the indenter penetration depth

obtained through a dynamic investigation of the impacts equation of motion. In doing

so, it is possible to approximate a time dependent description of each problem parameter,

including the surface stresses necessary to predict crack formation using the incubation

time based fracture criterion (see Sect. 2.3.2 for a full description of this criterion).

It should be noted that such an approach is not uncommon in the literature (e.g. in

[10, 150, 224]), including being the central philosophy of the model developed by Argatov,

Mishuris & Petrov which we wish to examine.

In practice, Argatov, Mishuris & Petrov achieved this by utilizing the quasi-static

Shtaerman-Kilchevsky formulation (see Sect. 3.1.2.5), alongside an associated descrip-

tion of the stress function by Johnson [108] (stated here in (3.26)-(3.27)). This yielded

detailed relationships between the various problem parameters. A dynamic description

of the indenter penetration depth was then obtained (given here by (3.17)-(3.23)). Com-

bining these results, a fully time dependent approximation of the indentation process

was then obtained. This was then used to derive a bound on the initial energy of an

impact required to cause crack initiation, through analysis of the fracture criterion along

the contact radius over the impact duration.

As previously stated, the aim of this work is to eliminate an unrealistic aspect of this

approach to obtaining the threshold fracture energy, namely choosing to evaluate the

stress function along a moving path rather than for a fixed spacial point. Achieving this

first requires an understanding of the behaviour of the surface stress and fracture crite-

rion functions. This can then be used to determine the fixed spacial point at which the
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fracture criterion is maximised for any given impact, from which the model of Argatov,

Mishuris & Petrov can be updated and an improved bound on the threshold fracture

energy can be obtained. The behaviour of this new bound can then be compared with

the results of the initial paper, which provides the only comparable results available, to

determine if there is any change in the critical shape parameter λ∗ (the importance and

meaning of this parameter is outlined in Sect. 3.1.5.3).

Interestingly, conducting a thorough analysis of the surface stresses will inevitably lead

to a numerical model capable of predicting the time and location of any initial circum-

ferential surface fracture resulting from a given impact, for arbitrary initial conditions.

This will be achieved using standard numerical techniques, with the details of its con-

struction being given in Sect. 3.2.3.

With this in mind, the initial investigation is organized as follows. In Sect. 3.2.2 we con-

sider the quasi-static case, presenting a comprehensive form of the Shtaerman-Kilchevsky

theory of blunt impact [117, 198]. We utilize solutions obtained by Galin [65, 66] for the

frictionless case of a general non-polynomial axisymetric indenter. The expression for

impulse of the indenter punch is derived. In Sect. 3.2.3 the stress function is formulated

and simplified, applying the approach of Johnson [108]. Then numerical analysis of

the resulting model is conducted using parameters for material properties taken from

literature [168]. The incubation time based fracture criterion [149, 166] is introduced in

Sect. 3.2.4, and we examine the predicted time and position of initial radial fractures,

and the relation between particle parameters and the resulting fracture. In Sect. 3.2.5

the radial distance at which the stress function is maximised for any given impact is

identified. This result is applied in Sect. 3.2.6 to obtain the maximum value of the stress

function prior to fracture for a given impact. In Sect. 3.2.7 we derive an equation for

the threshold fracture energy, and a comparison with previous results [10] is conducted.

Finally, a summary of the work and results is provided in Sect. 3.2.8.

3.2.2 Initial problem formulation

We start by considering the case of a blunt indenter acting quasi-statically on an elastic

half-space. We will follow the approach by Argatov, Mishuris & Petrov [10]. Previous

results will be replicated only where necessary.

Let the shape of an axisymmetric punch be described by:

z = B1−λrλ, (3.14)
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where λ > 1 is a real number and B is a constant having dimension [length]. From [65]

(See also [66]), it follows that the relationship between the contact force, P , and the

indenter displacement, w, can be represented in the following way:

P = k1w
λ+1
λ , (3.15)

where:

k1 = Π1(λ)
E

(1− ν2)
B

λ−1
λ , Π1(λ) =

2
2
λλ

λ−1
λ

λ+ 1
Γ(λ)

1
λΓ

(
λ

2

)− 2
λ

. (3.16)

Here E and ν represent Young’s modulus and Poisson’s ratio of the semi-infinite elastic

body, while Γ(x) is the Gamma function.

Equation (3.15) provides a key relationship between important variables involved in the

problem, however it is obtained using a quasi-static formulation. As such, in order

to account for the crucial time dependent effects discussed previously in Sect. 2.3.2 &

3.1.4.2, this will have to be extended to a time dependent form. This is achieved through

the introduction of the indenters equation of motion, which can be used to obtain a time

dependent description of the indenter penetration depth over time. Combining these

two sets of relations (quasi-static and dynamic) allows for a complete description of the

indentation process, which can be used to approximate the time-dependent form of the

problem.

Denoting the mass of the indenter as m, its inital velocity as v0 and noting (3.15), we

can write the indenter’s equation of motion as follows:

m
d2w

dt2
= −k1w

β. (3.17)

The initial conditions are:

w(0) = 0,
dw

dt
(0) = v0, (3.18)

with:

β =
λ+ 1

λ
, (3.19)

As the indenter is penetrating an elastic half-space, for an impact duration T0 = 2t0,

we have that t0 is the time when the indenter depth w(t) reaches its maximum w0, and

further that v(t0) = 0. As a result of this, from [10] and [26], we have that:

w0 =

(
(β + 1)mv2

0

2k1

) 1
β+1

, (3.20)
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t0 =
w0

v0
Iβ, Iβ =

∫ 1

0

1√
1− xβ+1

dx =

√
πΓ
(

1
β+1

)
(β + 1) Γ

(
β+3

2(β+1)

) . (3.21)

Having obtained equations for w0 and t0 we can introduce new dimensionless variables.

Following exactly the steps from [10] for equations (3.17) and (3.18), we define the

indenter depth in terms of a new parameter U(β; (v0/w0)t):

w(t) = w0U

(
β;
v0

w0
t

)
, (3.22)

where: ∫ U
(
β;
v0
w0
t
)

0

dξ√
1− ξβ+1

=
v0

w0
t. (3.23)

This provides us with an explicit equation for U(β; (v0/w0)t). If we denote the left-hand

side of (3.23) by F (U), then U(β; (v0/w0)t) = (w0/v0)F−1(t), where F−1 is the inverse

of F . We also note that Iβ = F (1).

3.2.3 Surface stress distribution of the indented half-plane

3.2.3.1 Analytical formulation

A thorough investigation of the impact process requires both a derivation and under-

standing of the spacial-temporal stress function. At the start of this subsection we will

again follow the approach by Argatov, Mishuris & Petrov [10]. The resulting stress

function has a more accessible form than that proposed in [10]. A comparison with the

Hertz solution is conducted.

The contact pressure beneath a blunt indenter with shape function (3.14) is given by:

p(r) =
λ+ 1

2
p0

∫ √1−ρ2

0
(ρ2 + ξ2)

λ−2
2 dξ, (3.24)

Here ρ = r/a is the dimensionless radial coordinate, p0 = P/(πa2) is the mean contact

pressure, a is the radius of the contact area given by:

a =

[(
1− ν2

)
Bλ−1

Π1(λ)E
P

] 1
λ+1

, (3.25)

where Π1(λ) is as defined in (3.16).
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From [108, p.76-80] we have that the radial and circular stresses throughout the surface

of the elastic half-space can be expressed in terms of the function:

L(ξ) =

∫ 1

ξ

ηp(η) dη

(η2 − ξ2)1/2
, (3.26)

as follows:

σr(ρ) =


−p(ρ)− 2(1− 2ν)

πρ2

(∫ 1

ρ

ξL(ξ) dξ

(ξ2 − ρ2)1/2
−
∫ 1

0
L(ξ) dξ

)
, ρ ≤ 1

2(1− 2ν)

πρ2

∫ 1

0
L(ξ) dξ, ρ > 1,

(3.27)

σθ(ρ) =



−2νp(ρ) +
2(1− 2ν)

πρ2

(∫ 1

ρ

ξL(ξ) dξ

(ξ2 − ρ2)1/2
−
∫ 1

0
L(ξ) dξ

)
+

4

πρ

(
ν
d

dρ
+

1− ν
ρ

)∫ ρ

0

ξL(ξ) dξ

(ρ2 − ξ2)1/2
, ρ ≤ 1

−2(1− 2ν)

πρ2

∫ 1

0
L(ξ) dξ, ρ > 1.

(3.28)

These expressions can be simplified by inserting (3.26) and changing the order of inte-

gration. We obtain:

σr(ρ) =


−p(ρ) +

1− 2ν

ρ2

∫ ρ

0
ηp(η) dη, ρ ≤ 1

1− 2ν

ρ2

∫ 1

0
ηp(η) dη, ρ > 1,

(3.29)

σθ(ρ) =



−2νp(ρ)− 1− 2ν

ρ2

∫ ρ

0
ηp(η) dη

+
2

πρ

(
ν
d

dρ
+

1− ν
ρ

)∫ 1

0
ηp(η) log

(
η + ρ

|η − ρ|

)
dη, ρ ≤ 1

−1− 2ν

ρ2

∫ 1

0
ηp(η) dη, ρ > 1.

(3.30)

Finally, as noted in [10], from (3.24) we have that:∫ 1

0
ηp(η) dη =

P

2πa2
, (3.31)

which simplifies the stress function for ρ > 1.
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Remark: In the cases λ = 1, λ = 2 and λ→∞ the stress function (3.30) tends to that

of the Hertz solution for the impact with an elastic half-space of a rigid cone, sphere

and cylinder respectively (see Appendix. A). We note however that the mean contact

pressure p0 doesn’t converge to the Hertz solution in the case of a rigid cone (λ = 1)

(for summary of Hertz solutions, see Sect. 3.1.2).

The above equations and relations (3.15)-(3.16), (3.20)-(3.23), (3.24)-(3.25), (3.29)-

(3.31) combine to provide a fully time dependent description of the impact, yielding

a simple model which describes the indentation penetration depth, contact pressure,

stress function and contact radius. In practice, the model is now able to approximate

such an impact for arbitrary initial conditions. The fracture criterion will be introduced

later to complete this model of erosion induced fracture.

The initial numerical model is, for the most part, developed using standard numeri-

cal techniques. Unknown impact constants (e.g. the maximum penetration depth of

the indenter w0) are obtained directly from given their relationships with the arbitrary

initial conditions using (3.20)-(3.21) (in the computations provided here these are com-

plimented by (3.62) and (3.67) to ensure consistency of results throughout the paper).

The inverse relation of (3.23) is obtained using a cubic-spline based approximation. This

is then placed into (3.22) to develop a time dependent description of the penetration

depth. Relations (3.15), (3.25) are used to provide time dependent forms of the contact

force and contact radius respectively. The non-time dependent components of the stress

function, for fixed spacial points, are obtained from (3.24), (3.29). Numerical techniques,

such as evaluation of the leading asymptotic terms analytically, are used to increase the

accuracy and efficiency of computations. The stress function can then be extended to

the temporal case by introducing the known time dependent forms of the contact force

and radius. With this, a complete picture of the impact domain over time is realized.

3.2.3.2 Numerical examination of stress behaviour

In order to utilize the incubation time approach for this impact problem we have to inte-

grate the stress function over multiple time periods. The final derivation of an equation

for the threshold fracture energy will require knowledge of the period over which this

integral is maximized for fixed spacial positions. As a result it is important to examine

the shape of the radial stress function (3.29), as a function of both time and position,

and analyse how it changes as we vary the shape parameter λ.
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In Fig. 3.5 & 3.6 we present graphs of the stress function for ε0 = 375 J, V = 2× 10−6

m3, and the material properties corresponding to gabbro-diabase2 [168]: E = 6.2×109

N/m2, ν = 0.26, ρ0 = 2400 kg/m3. Remaining values were obtained using (3.14)-(3.16),

(3.21)-(3.23), (3.62) and (3.67).
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Figure 3.5: The stress function (3.29) for (a,b) λ = 1.5 and (c,d) λ = 2. Here figures
on the left show the stress over r for fixed time, while those on the right show how the
stress for a set r behaves over time 2t0. Note a clear change in behaviour when λ ≥ 2

in comparison with λ < 2 at the point r = 0..

In cases where r is fixed, we always ensure to evaluate the stress function at two λ-

dependent points; amax = a(t0) and r0 defined as:

r0 = {min r : σr(r, t) ≥ 0 ∀ t ∈ [0, 2t0]} . (3.32)

There are many observations that can be made about the behaviour of the stress func-

tion as λ increases. The first is that, for λ≤2 the minimum of the stress function occurs

2A type of concrete for which all necessary material parameters are known.
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Figure 3.6: The stress function (3.29) for (a,b) λ = 5.5, (c,d) λ = 20. Graphs (a,c)
are over r for fixed time, while (b,d) show how the stress for a set r behaves over time

2t0.

at the point of impact (r = 0), however this minimum tends quickly towards the edge of

the contact region as the shape parameter increases. This is highlighted in the example

λ = 20 in Fig. 3.6.

Another observation is that, except for λ < 2, the maximum magnitude of the stress

function rises as λ increases. Additionally, for all λ, the stress function is maximised for

r = amax, t = t0 and, along the line r = amax, it increases monotonically for t < t0 and

decreases monotonically for t > t0.
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Figure 3.7: The function G(r) (seconds) (3.34), denoting the minimum time to frac-
ture for various fixed spacial positions r. Here we take V = 2×10−6m3, while showing:
(a) the results for various fixed λ = {2, 4, 6}, (b) the minimum time to fracture for fixed
λ = 2, with various values of the tensile stress σc. Here the benchmark static material
strength is σc = 44.04 × 106 Nm−2. We note that in each case there is a pronounced

minimum for the function G.

3.2.4 Incubation time based fracture criterion

For the reasons outlined in Sect. 2.3.2, we utilize an incubation time based fracture

criterion [169, 172] to predict fracture. Stated briefly, this criterion incorporates the

relaxation time of the material, and can thus account for the stress buildup occurring

during dynamic impact. As a result, it is able to accurately predict previously neglected

temporal effects, and has been shown to coincide with experimental results [149, 172]. It

should also be noted that it reduces to the classical Irwin criterion (2.38) under quasi-

static conditions, meaning that its inclusion will ensure the model is accurate for both

dynamic and quasi-static impacts.

In the simplest case, for the impact interaction of a superellipsoid particle with an elastic

half-space, it is defined in terms of the criterion function:

γ(r, t) =
1

τ σc

∫ t

t−τ
σr(r, s) ds. (3.33)

The incubation time based fracture criterion G can then be formulated as follows [166]:

G(r) = {min t ∈ [0, 2t0] : γ(r, t) = 1} , (3.34)

where σc is the tensile strength of the elastic material (a parameter evaluated under

quasi-static loading conditions), τ is the incubation time of the fracture process (a mea-

sure of stress-rate sensitivity of the material, which is calculated quasi-experimentally).
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It is clear that G may not be surjective however, assuming that criterion (3.34) is

injective, we can obtain the inverse of G. Denoting the time of the initial fracture

t∗ for any impact, with associated position r∗, we can state these in terms of the time

criterion G (3.34):

t∗ = minG(r), r∗ = G−1(t∗). (3.35)

This simple formulation is only intended to define the initial breakage and can’t be used

to predict subsequent behaviour.

3.2.4.1 Predicted fracture time

The time-based fracture criterion is designed to allow the calculation of the minimum

time to fracture of a material over a range of scale levels [166].

To apply this criterion we need to find G(r) (3.34), from which t∗ and r∗ can be obtained

by (3.35). Graphs of G(r) are shown in Fig. 3.7, while the relationship between different

indenter properties and the incubation time prior to fracture are displayed in Fig. 3.8 &

3.9. In simulations the same constants are used as in Sect. 3.2.3.2, in addition to τ = 44

µs, σc = 44.04×106 Nm−2 (as for gabbro-diabase, [168]).

In Fig. 3.7a we can see the general characteristics of the incubation time based fracture

criterion. From Fig. 3.7b however it is clear that, when σc grows, there is a large increase

in the expected incubation time, accompanied by a small increase in the position of the

initial fracture.

From the plots of t∗ and r∗ in Fig. 3.8 it follows that there is a clear change of behaviour

as λ increases, although beyond this it is obvious that the volume of the indenter plays

a more important role.

The effect on t∗ and r∗ when varying the initial velocity in Fig. 3.9 is more readily

apparent. It is clear that a higher initial velocity reduces the incubation time prior to

fracture.
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Figure 3.8: The (a,b) minimum time to fracture t∗ (3.35) and the (c,d) minimum
radial distance r∗ at which it will occur over λ for various fixed indenter volumes V
(note that smaller volumes correspond to higher initial velocities and, for fixed λ, longer

impact durations).

3.2.5 Analysis of the properties of function γ involved in the fracture

criterion

With the underlying model developed, and a method of determining the value of the

criterion function γ devised, we are now in a position to fix the physically unrealistic

assumption of the initial model by Argatov, Mishuris & Petrov [10]. This will be achieved

by finding the spacial position, and associated time period, over which the fracture

criterion function γ is maximized for any given impact. Once this is determined we

will be able to state with certainty that, if the fracture criterion is not satisfied when

evaluated at this point, then no fracture will occur in the medium for the given impact.

As a result, the threshold fracture energy for a set of given initial conditions will simply

be the initial energy required to satisfy the fracture criterion at this point, allowing a
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Figure 3.9: The (a,b) minimum time to fracture t∗ (3.35) and the (c,d) minimum
radial distance r∗ at which it will occur over v0 for various fixed λ.

comparison with the original results by Argatov, Mishuris & Petrov to be conducted.

With this in mind, we begin the analysis of the properties of the criterion function γ.

3.2.5.1 Maximum of γ for fixed point rmax

We wish to determine the value of the (spatial) radial coordinate, and associated time

period [t − τ, t ], for which the criterion function (3.33) is maximised. In doing this

it will be possible to find the conditions necessary for (3.34) to be uniquely valued,

providing an explicit condition for fracture initiation and an improved estimate of the

threshold fracture energy.
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Let us define the time dependent position rmax as follows:

rmax(t) = {r : γ(r, t) = max γ(r, t), t ∈ [0, 2t0]} . (3.36)

The criterion (3.33) can then be maximised for time tmax:

tmax = {t ∈ [0, 2t0] : γ(rmax, t) = max γ(rmax, t)} . (3.37)

It is clear from the integral interval in (3.33) that there will be two seperate cases when

evaluating this criterion, defined by whether or not the condition τ > 2t0 is satisfied, as

shown in Fig. 3.10. We will examine these possibilities separately before collating the

results.
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Figure 3.10: In the case τ ≥ 2t0, the criterion function (3.33) can only be evaluated for
regions beginning at the y-axis (t = 0). However for the case τ < 2t0, as shown above,
it can integrate over intervals throughout the range, allowing different starting points

of integration, and therefore changing the resulting behaviour of the time criterion.

The case τ ≥ 2t0

Graphs of the function γ (3.33) are shown in Fig. 3.11, while the value of rmax for val-

ues of t (when evaluating the region [0 , t ]) are shown in Fig. 3.12. In all simulations

the properties of gabbro-diabase are used, with a projectile of fixed initial energy and

volume, the constants for which are stated explicitly in Sect. 3.2.3.2 & 3.2.4.1.

It is clear from Fig. 3.11 & 3.12 that the equation for rmax(t), evaluated for any time t,

yields:
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Figure 3.11: Plot of the criterion function γ (3.33) for λ = 2, t0 ≤ τ/2 for: (a) a
fixed range of time over which the integral is evaluated and varying r, (b) the effect of
varying the integral range on fixed values of r. It is clear that γ is maximised when

evaluated over the whole time interval.
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Figure 3.12: The value of rmax for which the criterion function γ is maximised when
evaluated over time [0, t] for 2t0 ≤ τ with (a) λ = 2 and (b) λ = 7.

rmax(t) =


a(t), t < t0,

a(t0) = amax, t0 ≤ t ≤ 2t0.
(3.38)

From the behaviour of the stress function it follows that σr (rmax(t), t) ≥ 0 for t ∈ [0, 2t0].

As a result, for the case τ ≥ 2t0, the time criterion will be maximised when evaluated

over the entire impact duration.

Combining the above we can state with confidence that, in the case τ > 2t0, no fracture
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will occur as a result of the impact if the time criterion (3.34) is not achieved when

evaluating the point r = amax over the time range [0, 2t0].

The case τ < 2t0

In order to achieve an impact duration larger than those previously modeled, we change

the volume of the indenter to V = 100×10−6 m3 (the remaining constants are kept the

same as previously stated).
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Figure 3.13: Plot of the criterion function γ (3.33) for λ = 2, 2t0 > τ , for: (a) a fixed
range of time over which the integral is evaluated for varying r, (b) the effect of varying

the integral range for fixed values of r.
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Figure 3.14: The value of rmax (3.36) for which the time criterion is maximised when
evaluated over time [0, t] for 2t0 > τ with (a) λ = 2 and (b) λ = 7.



Threshold fracture energy in solid particle erosion 53

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

 

 

maxr≥0 γ(r, t)

1 + τ/2t0

(a)

t/t0

0 0.5 1 1.5 2
0

0.5

1

1.5

 

 

maxr≥0 γ(r, t)

1 + τ/2t0

(b)

t/t0

Figure 3.15: The criterion function γ(rmax(t), t) for (a) λ = 2 and (b) λ = 7, 2t0 >
τ . The monotonic nature of the function has disappeared, however there is a clear

maximum value at t = t0 + τ/2.

From Fig. 3.13 it follows that, unlike in the previous case, the function γ(amax, t) is

no longer monotonically increasing, and its distribution is instead far more similar to

the behaviour of the stress function. Therefore the time interval over which we wish to

evaluate γ(rmax(t), t) in order to maximise G (3.34) will be different from that found in

the previous case. The behaviour of the maximum of the criterion function is shown in

Fig. 3.15.

Similarly, for large t0, Fig. 3.14 shows that the formula for rmax, while identical to the

previous case for t ≤ t0, differs in the region where t > t0. The explicit equation for

rmax(t) in this case is:

rmax(t) =



a(t), t < t0,

a(t0) = amax, t0 ≤ t ≤ t0 + τ,

a(t− τ), t0 + τ < t ≤ 2t0.

(3.39)

It is clear from analysis of the stress function in Sect. 3.2.4 that σr(amax, t) achieves its

maximum at the midpoint t0. Combining this fact with the results from Fig. 3.15 it

stands to reason that, for the case τ < 2t0, the region of integration for which (3.34)

will be maximised is [t0 − τ/2, t0 + τ/2 ], for r = amax.
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3.2.5.2 Time dependent stress function for r = amax

From the previous subsection it is clear that the criterion function γ (3.33) achieves it’s

maximum when evaluated along the point r = amax. In order to make use of this in

deriving the minimum energy required for fracture initiation we need to obtain the time

dependent stress function σr(amax, t).

Let us start by noting that we have ρ =amax/a(t) > 1 except in the case t = t0 when

ρ = 1. What’s more, as p(1) = 0, the stress function from (3.29) takes the form:

σr(amax, t) =
(1− 2ν)a(t)2

a2
max

∫ 1

0
ηp(η) dη. (3.40)

Now, by (3.31), and applying equations (3.14)-(3.16) we have:

σr(amax, t) =
Π1(λ)E (1− 2ν)

2π (1− ν2) a2
max

B1−λa(t)λ+1. (3.41)

Using the same steps as above for the point ρ = 1, it can be easily shown that the time

dependent stress function along the line r(t) = a(t) yields:

σr(a(t), t) =
Π1(λ)E (1− 2ν)

2π (1− ν2)
B1−λa(t)λ−1. (3.42)

Taking t = t0 in (3.41), and using the notation σr(amax, t0) = σmax, we obtain the

boundary condition:

σmax =
Π1(λ)E (1− 2ν)

2π (1− ν2)
B1−λaλ−1

max. (3.43)

Note that this condition also holds for (3.42). Placing (3.43) into (3.41) and (3.42) we

obtain the relations:

σr(amax, t) = σmax

(
a(t)

amax

)λ+1

, (3.44)

σr(a(t), t) = σmax

(
a(t)

amax

)λ−1

. (3.45)

By combining (3.44) and (3.45), one can find the following formula for the stress func-

tions:

σr(a(t), t) = σ
2

λ+1
max σr(amax, t)

λ−1
λ+1 . (3.46)

Finally, we use (3.41) and (3.43) to eliminate the term amax, and then by applying (3.14)

the final formulae for the stress function is derived:

σr(amax, t) =

[
Π1(λ)E (1− 2ν)

2π (1− ν2)
B

1−λ
λ

]λ+1
λ−1

σ
− 2
λ−1

max w(t)
λ+1
λ . (3.47)
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3.2.6 The maximum of the stress function prior to fracture

Now that the spacial position for which the fracture criterion is maximised is known, and

the function describing the surfaces stresses at this point has been derived, determining

the threshold fracture energy simply requires obtaining the critical value of this stress

function needed to initiate a fracture for a given impact. As the fracture criterion is

time dependent, this will require a dynamic description of the surface stress, which

can be obtained by assuming a sinusoidal impact loading pulse, and determining its

behaviour by comparison with the time dependent indenter penetration depth. Once

this is completed, it will simply be a matter of manipulating the known equations in

order to determine the threshold fracture energy.

We let ω(t), t ∈ [0, T0], be the shape function of an impact loading pulse. Then, the

stress variation along the contact region is given by:

σr(a(t), t) = σmax ω(t). (3.48)

By (3.46), we can obtain this in terms of the stress function for amax:

σr(amax, t) = σmax ω(t)
λ+1
λ−1 . (3.49)

Substituting expression (3.49) into (3.48), before using (3.34) evaluated at the point

r = amax, we arrive at the critical (threshold) stress amplitude leading to fracture,

σ∗max:

σ∗max =
τ σc

maxt∈[0,T0]

∫ t
t−τ ω(s)

λ+1
λ−1 ds

. (3.50)

Meanwhile, using equations (3.16), (3.19) and (3.20) we have, for the maximum inden-

tation:

w0 = Π2(λ)

[
1− ν2

E

] λ
2λ+1

B
1−λ
2λ+1

[
mv2

0

] λ
2λ+1 , (3.51)

where, for Π1(λ) as in (3.16):

Π2(λ) =

(
2λ+ 1

2λΠ1(λ)

) λ
2λ+1

. (3.52)

Now, substituting (3.19), (3.21), (3.22), (3.51) into (3.47), and noting (3.49), one obtains:

σmax = Π3(λ) (1− 2ν)

[
E

1− ν2

] λ+2
2λ+1

B
3(1−λ)
2λ+1

[
mv2

0

] λ−1
2λ+1 , (3.53)

ω(t) = U
λ−1
λ

(
λ+ 1

λ
;
Iβ
t0
t

)
, (3.54)
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where:

Π3(λ) =
Π1(λ)Π2(λ)

λ−1
λ

2π
. (3.55)

Since the shape function of the impact loading pulse is symmetric around t = t0, we can

transform (3.50) into the following form:

σ∗max =
τ σc∫ t0+τ/2

t0−τ/2 ω(s)
λ+1
λ−1 ds

. (3.56)

Noting (3.54), we introduce the auxiliary function:

Υ(β, t0) =
1

2t0

∫ t0+τ/2

t0−τ/2
Uβ
(
β;
Iβ
t0
s

)
ds. (3.57)

The evaluation of Υ depends on the relation between the incubation time τ and the

impact duration T0 = 2t0. For 2t0 ≤ τ we have:

Υ(β, t0) =
1

t0

∫ t0

0
Uβ
(
β;
Iβ
t0
s

)
ds. (3.58)

Changing the order of integration by using the variable χ = Iβs/t0, we obtain the

following simplification:

Υ(β, t0) =
1

Iβ

∫ Iβ

0
Uβ(β;χ) dχ. (3.59)

Using the same method for τ < 2t0, one has:

Υ(β, t0) =
1

Iβ

∫ Iβ

Iβ(1−τ/2t0)
Uβ(β;χ) dχ. (3.60)

Then, combining the above with (3.56), it is clear that:

σ∗max =
τ σc

2t0Υ(β, t0)
. (3.61)

3.2.7 Prediction of the threshold fracture energy

In order to ensure results comparible with [10], we take the mass of a general axisym-

metric superellipsoid centered on the coordinate origin to be described by the following

equation:

m = Π4(λ)ρ0B
3, (3.62)

where ρ0 is the material density of the indenter and:

Π4(λ) =
4π

3
λ−

(λ+2)
λ−1 Γ

(
2

λ

)
Γ

(
1

λ

)
Γ

(
3

λ

)−1

. (3.63)
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Substitution of (3.62) into (3.53) yields:

σmax = Π5(λ)(1− 2ν)

[
E

1− ν2

] λ+2
2λ+1

ρ
λ−1
2λ+1

0 v
2(λ−1)
2λ+1

0 , (3.64)

where:

Π5(λ) = Π3(λ)Π4(λ)
λ−1
2λ+1 . (3.65)

Rearranging (3.64) one obtains an expression for v0:

v0 =

(
σmax

Π5(λ)(1− 2ν)

) 2λ+1
2(λ−1)

[
1− ν2

E

] λ+2
2(λ−1)

ρ
− 1

2
0 . (3.66)

Now, combining (3.16), (3.19), (3.20), (3.21), (3.52) and (3.62), we can show that:

t0 = Π6(λ)

[
1− ν2

E

] λ
2λ+1

Bρ
λ

2λ+1

0 v
− 1

2λ+1

0 , (3.67)

where:

Π6(λ) = IβΠ2(λ)Π4(λ)
λ

2λ+1 . (3.68)

After substituting (3.66) into (3.67) and some simple transformations, constant B takes

the value:

B =
t0

Π6(λ)

[
σmax

Π5(λ) (1− 2ν)

] 1
2(λ−1)

[
E

1− ν2

] λ−2
2(λ−1)

ρ
− 1

2
0 . (3.69)

Finally, by utilizing (3.62), (3.66), (3.69) and using the definition of kinetic energy we

obtain the initial energy required for fracture ε0:

ε0 = αλσ
4λ+5
2(λ−1)
max t30, (3.70)

αλ =
Π4(λ)

2Π6(λ)3

[
1

Π5(λ)(1− 2ν)

] 4λ+5
2(λ−1)

[
E

1− ν2

] λ−10
2(λ−1)

ρ
− 3

2
0 . (3.71)

Note that the form of ε0 is the same as the one calculated along the contact region in

[10]. By expanding the term for σmax from (3.61) in (3.70) the critical shape parameter

value λ∗ = 5.5 is easily identified:

ε0 ∝ t
λ−5.5
λ−1

0 Υ(β, t0)
− (4λ+5)

2(λ−1) . (3.72)

A comparison of this prediction of the threshold fracture energy and that derived in [10]

is provided in Fig. 3.16. It is clear that in all cases the newly derived bound is higher

for all λ, and that there is a far less sharp change in behaviour at the point t0 = τ/2
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Figure 3.16: Comparison of the newly derived bound (3.70) on the initial energy
required for fracture initiation (Solid lines on the graph) with the previously derived
equivalent [10] (dashed lines) for various fixed values of λ, as a function of the impulse

length 2t0 (µs). The apparent intersection in (c) is explored further in Fig. 3.17.

(2t0 = 44µs).

3.2.8 Summary

It has been shown in Sect. 3.2.4.1 that we can now predict the time to fracture, with as-

sociated radial position, for a wide range of particle shapes, sizes and initial conditions,

which gives a deeper understanding of the important parameters in erosion fractures.

The relation between particle shape and time to fracture is shown to be strongly de-

pendent on the particle volume. However in general having a blunter indenter results

in the initial fracture located further away from the impact center. It was shown that
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is not representative of a greater trend or phenomena.

increasing the initial velocity of the particle reduces the time to fracture initiation, with

the initial fracture occurring closer to the impact center.

Additionally the threshold particle energy estimation corresponding to the initiation of

surface fracture in the elastic half-space shows considerable improvement on the previous

effort of Argatov, Mishuris & Petrov [10]; both in terms of being a tighter quantitative

bound, and in having better qualitative behaviour during the change between cases at

the point t0 = τ/2 as a result of more physically realistic assumptions (see comparison

in Fig. 3.16). It confirms that the value of the fracture energy does significantly depend

on the load duration and has a marked global minimum in the so-called subcritical

case when λ < λ∗. It is also shown that for λ > λ∗ the fracture energy achieves its

zero global minimum with decreasing impact duration. The existence of energetically

optimal modes of dynamic impact has been demonstrated. In particular, it has been

shown that the energy input for fracture can be optimized to minimize the energy cost

of the process. It is important that the effect itself turns out to be dependent on the

bluntness of the particle’s contacting surface.

Unfortunately however, in this section we set out to explain the value of the critical

shape parameter λ∗; to either demonstrate that it’s appearance was the result of a

lack of accuracy in the previous approach, or to find some physical explanation of the

phenomena. Ultimately, while an explicit relation for the threshold energy required for

surface fracture has been obtained, this hasn’t yielded any new information concerning

this unexplained parameter.

This ‘non-result’ is telling, as it makes it clear that the critical shape parameter is

intrinsic to the model itself. As a result, if no physical explanation can be found for it
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within the model, then this paradox indicates that important characteristics of erosion

impact over small timescales are being neglected by the current approach.

3.3 An updated model for solid particle erosion

3.3.1 Introduction

From the results of the preceding investigation, it is clear that the value of the critical

shape parameter is in some way embedded into the original model of Argatov, Mishuris

& Petrov [10]. As such, in order to determine whether this is due to a yet unknown

physical effect, or a failure of the previous model to produce accurate predictions, we

will have to modify the model.

Noting that the original approach was designed to examine high velocity impacts, and

that the effect is related to the indenter shape, there is only one assumption which is

likely to significantly effect the final result, namely the failure to incorporate inertial

terms (i.e. energy dissipation through wave effects in the elastic medium). However,

this assumption was made in order to simplify the underlying mathematics, and incor-

porating this effect throughout the duration of the model is beyond the ability of current

analytical approaches. Given this, an intelligently chosen compromise will have to be

made.

This can be achieved by noting that, in general, the effect of energy dissipation is

particularly important during the initial, supersonic, stage of the impact. Therefore, as

the aim of this investigation is to determine the meaning of the critical shape parameter,

and not to develop a predictive model, it will be sufficient to only include inertial terms

during the early moments of the indentation.

There are however complications which arise from using such an approach. Most im-

portantly, the different assumptions used when determining the elastic deformation of

the impacted material (see Sect. 2.2.4), result in differing formulations for the contact

pressure and radius between the two stages. As no model for axisymmetric indentation

exists which precisely describes the transition between these two cases, this will instead

have to be approximated. This can be achieved by ’gluing’ the solutions together, using

an appropriately chosen smooth ’sewing’ function, but comes at a cost. While real-life

transitions between supersonic and subsonic stages are accompanied by a shock wave,

which dissipates energy through the medium, the glued solution will not exhibit such

behaviour. Because of this, the total energy in the system might not be conserved during
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the transition. In principle, this could be overcome using a specifically calibrated sewing

function, but that will not be investigated here.

To state this explicitly, the system derived and obtained here will provide the basic

qualitative behaviour necessary to determine the effect of the supersonic stage on the

critical shape parameter λ∗, but will not have any quantitative predictive capabilities in

its presented form.

Another factor worthy of note is that here we attempt to update the model of Argatov,

Mishuris & Petrov [10], and not the approach displayed in Sect. 3.2. This means that

the threshold fracture energy will be evaluated along the contact radius, rather than

for a fixed spacial point. This will successfully provide a lower bound on the initial

energy required for fracture initiation, however is less accurate and physically realistic

than that shown previously. The reason for this approach is two fold: i.) evaluating

along the contact radius greatly simplifies the mathematics of the model, which is a

advantageous for this preliminary investigation, ii.) it was demonstrated previously

that this assumption will not effect the final qualitative behaviour of the system, and

as this model is not designed to provide quantitative predictions, modeling each fixed

spacial point only adds unnecessary complications.

The remainder of this chapter is constructed as follows. Sect. 3.3.2 sees the construc-

tion of an updated model for single erosion impact during the various regimes. In

Sect. 3.3.2.1 Borodich’s solution for the supersonic stage is stated, and the resulting set

of equations determining the initial moments of the impact are formulated. Following

this in Sect. 3.3.2.2 the relevant equations from the previous model by Argatov, Mishuris

& Petrov are given, with some being rederived to account for the new initial conditions

when entering the subsonic stage. Finally in Sect. 3.3.2.3 any discontinuities between

the two approaches are eliminated. The numerical results are detailed in Sect. 3.3.3. We

briefly reintroduce the incubation time based fracture criterion in Sect. 3.3.3.1, before

formulating the initial algorithm in Sect. 3.3.3.2, and calculating the threshold fracture

energy for various λ in Sect. 3.3.3.3, with some details being relegated to Appendix. B.

This is followed by an examination and discussion of the critical shape parameter in

Sect. 3.3.4. Finally the important results are collated and discussed in Sect. 3.3.5.

3.3.2 Constructing a new model of erosion impact

3.3.2.1 The supersonic stage

The general solution of the contact problem during the supersonic stage was presented

by Borodich [27], and allows one to obtain the temporal dependencies of both the contact
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force and the penetration depth. The general formulation for an arbitrary convex shaped

indenter was presented, with specific shapes in the form of a cone, elliptic paraboloid

and a pyramid being evaluated. Here, the results from [27] are used to describe the

indentation process during the supersonic stage, for an axisymmetric blunt indenter,

again defined by the shape function (3.14). As a result, the contact area, S(w), is

related to the penetration depth w as:

S(w) = πB2− 2
λw

2
λ . (3.73)

In an accordance with Borodich’s solution, the time dependence of the penetration depth

w can be implicitly calculated as follows:

t(W ) =

∫ W

0

dw

v0 − ρmcπ
mµ B

3−µwµ
,

µ =
λ+ 2

λ
, 1 < µ < 3,

(3.74)

where v0 and m are the initial velocity and mass of the projectile respectively, ρm

is elastic media density and c is the velocity of the longitudinal waves. Some simple

algebraic transformations of (3.74) yield:

t(W ) =
ws
v0

∫ W
ws

0

dξ

1− ξµ
,

ws = B

(
µmv0

πρmc
B−3

) 1
µ

.

(3.75)

Thus we know the function F (y, µ), which implicitly describes the relationship between

the penetration depth w and the time t

F (y, µ) =

∫ y

0

dξ

1− ξµ
, 0 < y < 1. (3.76)

It should be noted that F (y, µ) is a monotonic increasing function over 0 < y < 1 for

every 1 < µ < 3, and its value increases from zero to infinity. It is however possible to

determine the inverse function, F−1, which allows us to obtain the particular solution

for a considered projectile shape.

As a result, the supersonic indentation of a blunt indenter into the elastic half-plane is

defined by the following relationship (3.76):

wd(t) = wsF
−1

(
v0

ws
t

)
, (3.77)
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while the other problem parameters: the indenter velocity, vd(t), and total force, Pd(t),

are given by the following relations:

vd(t) = ẇd(t),

Pd(t) = πρmcvd(t)B
2

(
wd(t)

B

)µ−1

.
(3.78)

The end of the supersonic stage, denoted t∗, is that moment in time when the outward

velocity of the contact area becomes equal to velocity of the longitudinal waves c. The

value of t∗ can be calculated as the solution to the equation

ȧ(t∗) = c, (3.79)

where the longitudinal wave speed is that of a one-dimensional solid, namely:

c =

√
E

ρm
, (3.80)

equation (3.79) can be written in the form:

ȧ(t∗) =
1

λ
(wd(t∗))

1
λ
−1B

λ−1
λ v0

(
1−

(
wd(t∗)

ws

)µ)
. (3.81)

Thus, one can now evaluate the time t∗ and calculate boundary values of the penetration

depth w∗ = wd(t∗), contact radius, a∗ = ad(t∗), and the projectile velocity v∗ = vd(t∗).

Moreover, one can observe that t∗ → 0 as ρm → 0.

Unfortunately there are no exact solutions for the stress distribution during the super-

sonic stage, only the normal stresses for the central point r = 0 of projectile.

3.3.2.2 The subsonic stage

During the subsonic stage (t > t∗) we utilize the Shtaerman-Kilchevsky theory, which

has previously been applied to the case of quasi-static blunt impact by Argatov, Mishuris

& Petrov [10], and outlined in Sect. 3.2.2. In this case we will add the subscript qs to

variables to denote the subsonic stage (quasi-static approach).

The primary initial equations remain the same as those given in (3.14)-(3.19), however

they now utilize the following initial conditions from the supersonic stage [10]:

wqs(t∗) = w∗,
dwqs
dt
|t=t∗ = v∗. (3.82)
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Multiplying both sides of equation (3.17) by dw
dt before integrating, we obtain:

m

2
(v2
qs − v∗2) = − k1

β + 1
(wβ+1

qs − w∗β+1). (3.83)

The maximum penetration depth w0 can be calculated by substituting vqs = 0 into

equation (3.83)

w0 =

(
(β + 1)mv∗

2

2k1
+ w∗

β+1

) 1
β+1

. (3.84)

A second integration of (3.83) gives us the the temporal dependence of the penetration

depth wqs(t) during the subsonic stage

∫ t

t∗

dt = t− t∗ = ∆t = w0

√
m(β + 1)

2k1w0
β+1

U
(wqs
w0

, β
)
, (3.85)

where:

U(
wqs
w0

, β) =

∫ wqs
w0

w∗
w0

dh√
1− hβ+1

. (3.86)

Thus, the estimated time, tqs, when the penetration reaches its maximum value w0 is as

follows ∫ t0

t∗

dt = t0 − t∗ = tqs = w0

(
m(β + 1)

2k1w0
β+1

) 1
2

U(1, β), (3.87)

where t0 is time duration of the load stage. Using (3.84) this can transformed into:

t0 = t∗ +
w0

v∗

√
1− 2k1w

β+1
∗

(β + 1)mv2
∗ + 2k1w

β+1
∗

U (1, β) . (3.88)

Since damping occurs, due to the quasi static nature of the formulation, the duration of

the unload stage t∗∗ − t0 exaggerates the value t0. For this reason we have to solve the

equation (3.17) one more time with the new initial conditions:

wqs(t0) = w0,
dwqs
dt

∣∣
t=t0

= 0. (3.89)

The first integration give us the projectile velocity in the reverse direction:

dwqs
dt

= −

√
2k1w0

β+1

(β + 1)m
·

√
1−

(
wqs
w0

)β+1

. (3.90)

Thus, the value of t∗∗ can be determined from the following expression:

t∗∗ − t0 = w0

√
(β + 1)m

2k1w0
β+1

∫ 1

0

dh√
1− hβ+1

. (3.91)
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Note that t∗∗ − t0 > t0. Indeed, the latter is equivalent to

w0

√
(β + 1)m

2k1w0
β+1

∫ w∗
w0

0

dh√
1− hβ+1

> t∗.

3.3.2.3 Coupling of the solutions for supersonic and subsonic stages

Because of the peculiarities of the dynamic solution by Borodrich and quasi-static solu-

tion by Shtaerman, the function which describes the temporal dependence of the contact

area radius will be discontinuous at the time t∗. This is due to the fact that the super-

sonic and subsonic stages have different physical principles determining the relationship

between penetration depth and contact area, and the penetration depth w(t) is contin-

uous in this model (by design). In order to avoid this irregularity, let us introduce the

smooth function χ(x), which continuously matches the two solutions within the interval

[0.95t∗, 1.05t∗]

χ(t) =

{
1, 0 < t < 0.95t∗,

0, 1.05t∗ < t.
(3.92)

Also, we employ this function χ(x) to sew the contact force P (t), the equation of which

also has a discontinuity at the point t∗.

a(t) = ad(t)χ(t) + aqs(t)
(
χ(t)− 1

)
, 0 < t < t∗∗,

P (t) = Pd(t)χ(t) + Pqs(t)
(
χ(t)− 1

)
, 0 < t < t∗∗.

(3.93)

Additionally the mean contact area, which allows us to calculate the stress field under

the projectile, is defined as p0 = P/(πa2) and can be approximated in a similar way:

p0(t) =
Pd(t)

πa2
d(t)

χ(t) +
Pqs(t)

πa2
qs(t)

(
χ(t)− 1

)
, 0 < t < t∗∗. (3.94)

Since Borodich’s solution does not contain any information about the surface stresses,

we enrich the quasi-static solution by extrapolating the corresponding results into the

supersonic stage. As such we assume the contact pressure beneath the indenter takes

the form (3.24), while the surface stresses are calculated according to (3.29). This

approximation will be sufficient as we are only attempting to examine the behaviour

along the edge of the contact area (ρ = r/a(t) = 1), and are only seeking a qualitatively

accurate result. We have, from (3.29) and (3.31), that the maximum radial stresses

along the contact radius are given by:

σr(1, t) = (1− 2ν)

∫ 1

0
ηp(η)dη =

(1− 2ν)P

2πa2
=

(1− 2ν)

2
p0(t). (3.95)
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As a result, at any time during the penetration process, the approximated solution to

the problem will be given by the formulas (3.24), (3.94), (3.95). Note that all of these

representations are exact near the ends of the time interval. Indeed, for very small

times, Borodich’s formulas give the exact solution for the supersonic regime, while the

Shtaerman solution precisely describes the projectile behavior during the quasi-static

stage.

3.3.3 Estimation of the energy costs for the fracture initiation

3.3.3.1 Incubation time fracture criterion

The previous analysis [10] allows us to produce a lower bound on the fracture pulse of

the tensile stresses. Additionally, in Sect. 3.2, it was shown that instead considering

the stress pulses for fixed points on the material surface doesn’t qualitatively alter the

final behavior of the threshold energy in relation to the impact duration. Hence, here,

we employ the lower estimate of the fracture pulses with a view to avoiding additional

computational difficulties.

The threshold amplitudes of pulses caused by particle impacts are again evaluated using

an incubation time approach, which can be effectively applied to explain a number of

general dynamic fracture effects caused both by high strain rate and short pulse loading

[20, 169, 174]. Further details of the corresponding fracture criterion, referred to as the

incubation time based fracture criterion, are provided in Sect. 2.3.2. Here, we take it in

its simplest form, for a brittle fracture, which can be written as follows:

1

τ

∫ t

t−τ
σ(s) ds ≤ σc, (3.96)

where σc is the static strength of the material and τ is the incubation time of the fracture.

This criterion has been successfully used to model a multitude of fracture problems, and

has proved itself to be a quite simple and effective method of fracture prediction. It

permits us to determine the necessary conditions required for fracture over a wide range

of impacts.

3.3.3.2 Description of the algorithm

The algorithm used to calculate the threshold fracture energy for a fixed value of λ

utilizes the fact that the stress function at the fracture front is a positively valued func-

tion, which monotonically increases with increasing v0. As such we define the following



Threshold fracture energy in solid particle erosion 67

function:

Υ (v0) =
1

τσc
max
t∈[0,t∗∗]

(∫ t

t−τ
σ(t́)dt́

)
− 1, (3.97)

which has the property that:

Υ(v0)


> 0, v0 = v∗0 + δ,

≡ 0, v0 = v∗0,

< 0, v0 = v∗0 − δ,

(3.98)

for any arbitrary δ > 0. As such a simple iterative procedure can be utilized in order to

obtain v∗0 to a desired level of accuracy.

A second concern is to ensue consistency of results between this paper and the previous

investigations in [10] and Sect. 3.2. In order to achieve this the constants B and m will

have to be chosen in such a way as to coincide as ρm → 0. This is completed in the first

step of the algorithm, and as such the first step could be discarded when carrying out a

more general investigation.

With this in place, the algorithm is defined as follows:

1. Choose an arbitrary tp, which will approximate t0. From this calculate the con-

stants B and m using equations (50) and (57) in [10]. Additionally compute an

initial expected value of the initial velocity required for fracture initiation, vp, us-

ing equation (56) in the aforementioned paper.

Note: While the value tp → t0 as ρm → 0, the two will not be related in this

formulation. It is simply an arbitrary starting point chosen to ensure the results

are consistent with previous investigations, and is discarded after this step.

2. Using the value vp create an initial interval in which v∗0, the initial velocity required

for fracture initiation, is expected to occur (e.g. vδ = [vp − δ, vp, vp + δ]).

3. Compute the system of equations given in Sect. 3.3.2 for each value of vδ, and

obtain the time dependent stress function.

4. Compute the function Υ (v0) from (3.97) for each value of vδ. Use its properties

(3.98) to obtain a refined interval vδ containing v∗0.

5. Iterate steps 2-4 until a desired level of accuracy is reached. The threshold fracture

energy ε0 is then calculated from the obtained v∗0.
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3.3.3.3 Results for fixed λ

The material constants used in calculations are those for gabbro-diabase [168], which is

the same as used previously in [10] and Sect. 3.2. The values are as follows: E = 6.2×109

N/m2, ν = 0.26, σc = 44.04× 106 N/m2, τ = 44 µs, while the density of the indenter is

given by: ρ0 = 2400 kg/m3. Results are displayed in Fig. 3.18, for λ = {2, 3, 4, 5}.
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Figure 3.18: Values of the threshold fracture energy ε0, for various fixed impacted
material densities ρm, when (a) λ = 2 (b) λ = 3 (c) λ = 4 (d) λ = 5. Here ρ0 = 2400

kg/m3 is the density of the indenter.

It is clear from these results that the threshold fracture energy decreases as the material

density ρm increases, however the effect is only apparent for impacts with short dura-

tions. This makes intuitive sense, given that v0 decreases monotonically as the impact

duration is increased, and as such the supersonic stage will play a far greater role in

rapid impacts.
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Additionally, it is immediately apparent from the results in Fig. 3.18 that the critical

shape parameter λ∗ will decrease when eroding a more dense material, as no unique

minimum exists for ε0 when taking λ ≥ 2 when ρm ≥ 0.05ρ0 but does for ρm = 0 (this

is explained in more detail below e.g. Fig. 3.19). Furthermore, given that the threshold

fracture energy seems to tend to zero for all λ in these graphs, it is safe to assume

that the critical shape parameter will have λ∗ → 1 rapidly as the material density is

increased.

3.3.4 Critical shape parameter λ∗ for various material densities

3.3.4.1 Obtaining the critical shape parameter

With the basis of the model now developed, it is possible to begin an investigation into

the nature of the critical shape parameter, λ∗, when a non-zero density of the impacted

medium is assumed. In this way, we will be able to show whether a physical explanation

can be given for the previously obtained paradoxical value of λ∗ = 5.5.

The method of obtaining the critical shape parameter λ∗ relies on noting the behaviour

of the threshold fracture energy for very small impact durations t∗∗. As demonstrated

in Fig. 3.19, when λ < λ∗, the derivative of the threshold fracture energy ε0 will be

negative, while this derivative will be positive for λ > λ∗ and zero for the critical shape

parameter. As such the algorithm is designed to obtain the sign of this derivative near

the origin for a range of λ, before using the results to iteratively work towards the desired

critical shape parameter. A full explanation of the algorithm is given below.
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Figure 3.19: Behaviour of the threshold fracture energy ε0 for small t∗∗, shown here
for ρm = 0.
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1. Choose a value of the impacted material density ρm. Alongside this an initial

overestimate λp = [λ1, . . . , λn] for the potential range of λ∗ is taken.

2. Then, for each λ ∈ λp:

• Arbitrary initial points 0 < t1p < t2p are taken3. These approximate t0 as in the

previous algorithm, and must be sufficiently small to predict the behaviour

of the derivative of ε0 as t∗∗ → 0.

• The threshold fracture energy, ε0, is obtained, for each value of tp =
{
t1p, t

2
p

}
,

using the algorithm outlined in Sect. 3.3.3.2, to a required level of accuracy.

• The derivative of ε0, with respect to t∗∗, is approximated between t1p and t2p.

3. With the value of the derivative obtained for each λ ∈ λp, a new interval in which

λ∗ exists for the given ρm is obtained.

4. A new λp is defined using the obtained interval for λ∗, and steps 2-3 are repeated

until a desired level of accuracy is reached.

This algorithm allows one to obtain the value of λ∗ for a given material density ρm, and

as such by repeating the we can begin to study the relationship between the impacted

material density and the threshold fracture energy. In practice we have found that it is

often simpler to instead begin with a value λ, and then iterate to discover the density

ρ∗m for which it is the critical shape parameter.

3.3.4.2 Results for various impacted material densities

Numerical simulations were conducted using the same values for the impact parameters

as in Sect. 3.3.3.3, with the addition of taking tp = {2, 2.5} × 10−6 seconds. The results

obtained are shown in Fig. 3.20.

It is clear from this that the critical shape parameter λ∗ decreases when impacting ma-

terials with higher densities. There is however a clear divergence from previous results

which must be expanded upon, which isn’t made obvious in the above figure.

In previous investigations, it has been the case that taking λ = λ∗ will yield a non-unique

minimum energy required for fracture. However this will not always be the case under

the revised scheme. In order to explain this further, we define the following:

ρ∗m (λ) = {ρm : λ∗(ρm) = λ}
3Here the values t1p, t

2
p must be small enough to accurately model the asymptotic behaviour, but also

not so small as to require infeasible velocities. See Appendix B for a more thorough examination of this
choice.
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Figure 3.20: Numerically obtained lower bound of the critical shape parameter λ∗

for various impacted material densities ρm. Here ρ0 = 2400 kg/m3 is the density of the
indenter material.

An example of the threshold fracture energy, evaluated taking ρm = ρ∗m when λ = 3 is

given in Fig. 3.21.

0 1 2 3 4 5

x 10
−5

0

10

20

30

40

50

60

70

80

 

 

ρ = 0

ρ = 0.95ρ
∗

ρ = ρ
∗

ρ = 1.05ρ
∗ε0

t∗∗

Figure 3.21: Value of the threshold fracture energy ε0, evaluated when λ = 3 for
ρm = 0 (blue line), ρm = ρ∗m (black crosses) and ρm = ρ∗m× 1± 0.05 (green crosses, red
circles). It is clear that a unique minimum occurs for both ρm ≤ ρ∗m, however we will

have ε0 → 0 for ρm > ρ∗m.

It is clear from this that the minimum energy required for fracture is not unique, however

as any increase in the impacted material density results in having ε0 → 0 as t∗∗ → 0 it

is the highest value of λ for which a minimum threshold fracture energy exists. As a

result, while this value of λ∗ still maintains its most important quality, that of defining
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the point when a change in case between having a unique threshold fracture energy and

none existing occurs, it is of a weaker form than described in previous papers.

3.3.5 Summary of results for the updated model

In this section, an updated approach to erosion impact was created, which incorporated

both the supersonic stage from Borodich [27] and the subsonic regime from Argatov,

Mishuris & Petrov [10]. The final model provides a qualitative description of the event,

in a dynamic setting, with the surface fractures which occur being predicted using an

incubation time based fracture criterion, which accounts for the temporal-structural

characteristics of the impact.

Through an examination of the updated model, it was demonstrated that the critical

shape parameter λ∗ is dependent on the speed of waves propagating in the impacted

medium. This confirms the previous stated hypothesis, that the value λ∗ = 5.5 which

was obtained by Argatov, Mishuris & Petrov [10], and evaluated using a higher accuracy

approach in Sect. 3.2, was due to a failure of the model to incorporate the effect of inertial

terms in the elastic half-plane. With this result, the threshold fracture paradox has been

resolved.

It should be noted again that the results provided by the final model only demonstrate

the qualitative behaviour of the solution. The current formulation utilizes a non-unique

gluing function, and as such can not make quantitatively accurate predictions. However,

should an accurate scheme for modeling the transonic regime be developed, to link the

dynamic supersonic stage with the quasi-static subsonic stage, then this approach could

potentially be used to form the basis for such a predictive model. This wasn’t attempted

here as it was not required to resolve the threshold fracture paradox, and as such would

only have introduced numerous unnecessary complications (outlined in Sect. 3.1).

3.4 Concluding remarks about threshold fracture energy

in solid particle erosion

In this chapter, an examination of axisymmetric erosion, through a dynamic formulation

which accounted for the moving contact boundary, was conducted. The primary moti-

vational effort was to determine the meaning of the critical shape parameter λ∗ = 5.5,

which was obtained in the investigation by Argatov, Mishuris & Petrov [10]. This has

clearly been achieved, with it being successfully demonstrated that this occurred due to

a failure of the original model to incorporate the effect of inertial terms during the initial,
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supersonic, stage of the impact. It is noteworthy that incorporating the proper Stefan-

type condition during the early stages of the impact played a crucial role in determining

the true physical characteristics of the erosion process.

This result runs counter to the traditional wisdom that, for short-time impacts into

an elastic half-plane, the effects of waves in the medium will be negligible and can be

safely ignored. While this may be the case for indenters with a low (subsonic) initial

velocity, there will be important qualitative differences in behaviour of the impact when

the initial impact velocity is faster than the waves in the medium.

This result may not be entirely unique or surprising, the fact that systems display

differing behaviour when supersonic speeds are involved is not new, but it does have

some troubling implications.

The most obvious of these is the fact that no analytical model exists which allows

for a range of particle geometries, whilst also incorporating both the supersonic and

subsonic stages, and the transition between them, in a way which allows for quantitative

predictions. While the model outlined in Sect. 3.3 presents a useful starting point in this

endeavour, the lack of a uniquely defined transition between the two regimes severely

limits its applicability. Devising such a linkage may be possible through an examination

of the energy within the system, but is clearly well beyond the limit of this investigation.



Chapter 4

Particle velocity based

hydrofracturing algorithm for a

penny-shaped crack

This work will form the basis for three papers, which are currently in preparation.

In this chapter, all variables with a “∼” symbol are normalized, while the self-similar

formulation is denoted with “∧”.

4.1 Theoretical background and literature review

4.1.1 Motivations and difficulties

Hydraulic fracturing (HF) is the term used to describe a fluid driven crack, a phenomena

which occurs in nature (e.g. sub-glacial drainage), but has come to the forefront due

to its use in industry, in such technologies as: shell-gas retrieval [43], the extraction

of geothermal energy [153] or as a byproduct of underground waste storage [4]. The

large variety of applications necessitates a greater understanding of the process, however

attempting to model HF is both mathematically and numerically challenging. Some of

the notable physical, mathematical and computational difficulties are:

• A need to take account of the moving fracture front, which is complicated by the

fact that the fracture front boundary conditions are ill-posed [127].

• The need to incorporate interactions between the solid and fluid phases, which

leads to both non-linearity of the governing equations (which may also degenerate

74
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at singular points in the domain), as well as a typically non-local relationship

between the fracture aperture and fluid pressure.

• Hydraulic fracturing occurs over a wide variety of length and time scales, with

consequences for certain processes that define fracture growth.

• The fluids used in hydraulic fracturing, referred to as the treatment, often exhibit

non-Newtonian behaviour [36]. Additionally, particles (proppant) are regularly

added during later stages in the HF process, which must also be accounted for.

• Fluid leak-off into the surrounding rock formation. This can have a dramatic

impact on the behaviour of a fracture, however due to the pressures, length scales

and other factors attempts to reproduce and model it in a laboratory are often

unreliable [162]. Additionally, this is typically approximated using Carter’s law

[39], however this formulation has little experimental verification, and relies on

theoretical assumptions which can not be used in real-time operations [23].

• The fracture front will typically travel faster than the fluid, creating a region with

essentially zero pressure between them [67].

As a result of these difficulties, among others, simplified models are often used when

studying hydraulic fracture. Such models both allow for important interrelationships

between the various mechanisms and parameter of the problem to be obtained/approxi-

mated, as well as providing useful points of comparison for sophisticated computational

models.

4.1.2 1D models of hydraulic fracturing

The first simplified theoretical models of hydraulic fractures were created in the 1950s

(see for example [90] and [103]). Over time however, subsequent research led to the

formulation of the three so-called classic 1D models. All of the models are capable

of incorporating fluid leak-off, non-Newtonian fluid rheology and allow the fracture to

develop over time. In some cases fluid lag can be incorporated into the models, however

this is not typically assumed.

The basic founding principles, as well as the subsequent differences between these models,

are outlined below.
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Figure 4.1: Schematic illustrating the PKN model [6].

4.1.2.1 The PKN model

The simplest of the three, the PKN model was first proposed by Perkins & Kern [163],

with later additions by Nordgren [156] delivering the form which is recognized today. The

fracture geometry is shown in Fig. 4.1, with the crack assumed to be of fixed height.

This assumption results in the elasticity equation taking the form of a linear, local

relationship between the aperture and pressure, as opposed to the inherently non-linear,

non-local elasticity usually encountered when attempting to model HF.

It is worth stating that this simplification does not inhibit the usefulness of the model.

The PKN formulation provides a reliable approximation of long fractures whose height

is limited, while having cross sections which are elliptical in nature [219]. As a result

this approach, alongside the KGD model, continued to be used when designing fracture

treatments into the 1990’s [6]. In addition, investigations into the PKN model can yield

results which have significance for more complicated approaches, such as the notable

investigation by Kemp into the behaviour of the solution at the fracture front [114],

which was later extended to the other 1D models in the form of the speed equation

based approach to fracture front tracing [127, 128, 132, 165, 229].
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Figure 4.2: Schematic illustrating the KGD model [6].

4.1.2.2 The KGD model

Originally formulated independently by Khristianovic & Zheltov [116] and Geertsma &

de Klerk [72], the geometry of the KGD (plane strain) model assumes fracture of infinite

height but finite length, as shown in Fig. 4.2. As a result, the elasticity operator provid-

ing the relationship between the fracture aperture and net fluid pressure is inherently

non-local in nature.

The KGD formulation is primarily applicable for fractures whose height is significantly

greater than their length, and for which plane strain assumptions are applicable to hor-

izontal sections [6, 219]. As such this model greatly complements the PKN formulation,

where the fracture length is greater than its height, in the design of fracture treatments.

An additional benefit of the KGD approach is that the asymptotics at the fracture tip

are identical to those in the radial model, allowing a useful point of comparison with

both the final 1D model and experimental results [34].

4.1.2.3 The radial model

Figure 4.3: Schematic illustrating the radial (penny-shaped) model [6].
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The radial model of hydraulic fracture, sometimes referred to as the penny-shaped model,

was first proposed by Sneddon [3, 204]. The basic geometry of the fracture is provided in

Fig. 4.3, with the fluid entering the crack through a point-source, resulting in a singular

fluid flow rate at the center, which the fracture grows about in a symmetrical fashion.

The radial formulation is primarily applicable to homogeneous reservoir conditions, but

requires that the fluid injection can be reasonably considered a point source. It however

has the distinction of being the only one of the 1D models to approximate a three dimen-

sional system, making it a useful point of comparison when developing more advanced

3D computer models [125].

4.1.2.4 Significance of the radial model

Although these models are highly simplified they were used for decades to investigate

inherent features of the underlying physical process, the mathematical structure of the

solution, and to help design hydraulic fracture treatments. Additionally the last thirty

years has seen a substantial advance through the cyclical revision of these classic formu-

lations. However, they have been superseded by more advanced models in most practical

applications, specifically the various pseudo 3D [134], planar 3D [51, 161, 221] and fully

3D models [6, 46]. These often have the advantage of being able to incorporate addi-

tional features, such as piecewise extension of the fracture front due to fluid lag [37], or

the case involving multiple cracks [122]. Unfortunately, while in rare case these models

can be tested against experiments [123], this typically is not possible.

As such, despite the existence of more advanced approaches, the 1D approximations still

have some notable uses:

• To investigate some inherent features of the underlying physical phenomenon and

corresponding mathematical solutions (e.g. [68]).

• To construct and validate computational algorithms [147], most notably those

which rely on phase field [144], distinct element [46] and peridynamic [151] based

approaches, which allow for efficient modeling of complex geometries but do not

model the crack explicitly.

• The KGD and radial models of hydraulic fracture mimic the tip behaviour of a

planar 3D fracture [34].

• The solutions obtained by this model can be successfully applied as a bench-

mark when investigating he performance of 2D and 3D computational schemes

(see [125]).
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In light of these applications, having high accuracy numerical benchmark solutions which

can be computed quickly and efficiently, particularly for the radial formulation, is of the

upmost importance in the study of hydraulic fracture.

Unfortunately there is not a substantial body of suitable benchmarks available for the

radial model. One can mention here the work by Advani et al [7], where the approximate

time-dependent solution for both Newtonian and non-Newtonian fluids was obtained

for special cases using a Lagrangian formulation. However, its accuracy has not been

convincingly proven. An early simulator of penny-shaped fracture was presented by

Meyer [143]; it relies on transforming non-linear equations into “more linear” ones, that

are solved using integral equations. Numerical solutions, alongside with comparison

with earlier results, were also provided. However, the accuracy of the final results is

unknown.

The field saw a major advancement with the work of Savitski & Detournay [196], where

asymptotic solutions for zero and large toughness regimes were given for a Newtonian

fluid. The authors’ use of the crack tip asymptotics, combined with appropriate multi-

scaling techniques, allowed them to obtain a solution in the form of an infinite series of

base functions. An additional asymptotic solution for the toughness dominated regime,

for a Newtonian fluid, over small and large time scales was given by Bunger, Detournay

& Garagash [35]. These asymptotic solutions were later shown to agree reasonably well

with experimental results [34].

Recent work by Kanaun [111] provides a completely different discretized approach to

the time-dependent form of the problem, with a three-parameter approximation of the

solution also given. The model provides an approximate solution for Newtonian fluids in

the toughness dominated regime without fluid leak-off, correlated with that from [143].

However, the approach cannot be applied to small toughness and the viscosity dominate

regimes.

In work of Dontsov [50], closed-form approximate solutions are given based on the known

solution asymptotics, with the numerical solver remaining valid in each of the limiting

regimes. The accuracy of this approach was analyzed against previous numerical results,

achieving an error below 1% for the crack opening, but as high as 2% when approximating

the pressure function. Finally, we mention the numerical solution of Linkov [131, 132]

for a class of Newtonian and shear-thinning fluids, with computations provided for the

viscosity dominated case. A comparison of the numerical data with that from [196] shows

perfect agreement in the respective cases. Neither of the mentioned solutions however

were carefully verified, nor yield simple formulas (such as those for the KGD model in

[165, 229], that can be easily used by researchers as benchmarks without constructing

the numerical algorithm).
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It is clear from this that examination that there is still work to be done, as no complete

benchmark exists which accounts for all the properties of the fracture: fluid rheology,

viscosity/toughness dominated regimes and the effects of fluid leak-off. Meanwhile pre-

vious work on the PKN/KGD models demonstrated that the combination of utilizing

a particle velocity based approach, along with the inverse elasticity operator, yielded

a benchmark which modeled all these features while also achieving the highest level of

accuracy and efficiency [129, 165, 229].

4.1.3 The governing equations for radial HF

As the radial model of hydraulic fracture includes numerous interrelations between its

variables, as well as a variety of methodologies with which to describe the fluid rheology,

proppant inclusion and fluid leak-off, not all will be outlined here. However some of the

equations and parameters are important to this investigation, and as such are outlined

below.

4.1.3.1 The Poiseuille equation

The Poiseuille equation is the relation between the fluid flow, fracture aperture and the

pressure. It is derived analogously to the case of the Hele-Shaw cell (Sect. 5.1.2.1), with

an examination of the unidirectional fluid flow between two parallel boundary walls. In

order to ensure a comparison between the two cases, we will consider here only the case

of a Newtonian fluid.

The initial investigation begins with the Navier-Stokes equations. These are a set of non-

linear partial differential equations which describe the flow of fluids, taking the following

form in Cartesian coordinates:

ρ

(
∂v

∂t
+ v.∇v

)
= ∇. (−pI + τ) + ρg, (4.1)

where v = (vx, vy, vz) is the velocity vector, p represents the fluid pressure, τ the stress

tensor and g denotes the body forces, which we will neglect from here on.

Given the geometry of the hydraulic fracture, we can assume that the fluid moves ac-

cording to a parabolic distribution of the velocity vectors v. Therefore, provided the

flow is slow and parallel to the boundary wall, then [223]:

∂v

∂t
= 0, vz = 0. (4.2)
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It can also be assumed that the fluid is incompressible:

∇.v = 0. (4.3)

Composing (4.1) into three scalar components, while noting with the above, the systems

governing equations becomes:
∂vx
∂x

+
∂vy
∂y

= 0, (4.4)

∂p

∂x
=
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

,

∂p

∂y
=
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

,

∂p

∂z
=
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

.

(4.5)

For the stress tensor, we assume that the only non-zero component is the shear stress:

τxz = µ
∂vx
∂z

, τyz = 0, (4.6)

Combining with (4.5)1, we have:

∂

∂z

[
∂vx
∂z

]
=

1

µ

∂p

∂x
. (4.7)

With this, we define the aperture of the fracture as w(x), with the crack walls at z =

±w/2, and impose a symmetry condition around the centerline:

∂vx
∂z

∣∣∣∣
z=0

= 0, (4.8)

alongside the no-slip boundary condition:

vx

(
z = ±w

2

)
= 0. (4.9)

As such, integrating (4.7) twice and imposing the above conditions, we obtain:

vx =
1

2µ

∂p

∂x

[
z2 −

(w
2

)2
]
, (4.10)

Now, we examine the average velocity of the fluid within the fracture, which is obtained

by averaging over the height of the fracture. This will be described by:

v(x) =
1

w

∫ w/2

−w/2
vx dz = − w2

12µ

∂p

∂x
, (4.11)
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as a result, the fluid flow rate in the fracture will take the form:

q(x) = vw = − w3

12µ

∂p

∂x
. (4.12)

It should be noted that, while we have only considered the Newtonian case here, the

method of obtaining the Poiseuille equation for shear-thinning fluids remains the same,

with the only difference being that the shear stress term (4.6) will instead take the form:

τxz = M

∣∣∣∣∂vx∂z
∣∣∣∣n−1 ∂vx

∂z
, (4.13)

where the constants M , n define the rheology of the fluid, using a power-law based

approach (see Sect. 4.1.3.5).

4.1.3.2 Elasticity equations (solid mechanics)

The relationship between the fracture aperture and the net pressure exerted on the solid

walls was first obtained by Arin & Erdogan [14]. This was achieved by approximating the

crack as a layer sandwiched between two dissimilar infinite half-planes. The relationship

between these two crucial system parameters were then obtained through the framework

of elasticity theory, assuming that the fracture only propagated as a straight crack in

Mode I (see Fig. 4.4).

The obtained relationship between the fracture aperture and pressure in this case, labeled

the elasticity equations, is given by:

p(r, t) =
E

(1− ν2)l(t)
A[w](r, t), w(r, t) =

(1− ν2)l(t)

E
A−1[p](r, t) (4.14)

Mode I:
Opening

Mode II:
In-plane shear

Mode III:
Out-of-plane shear

Figure 4.4: The three modes of fracture, credit: Wikimedia Commons.
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with the operator A and its inverse taking the form:

A[w] = −
∫ 1

0

∂w(ηl(t), t)

∂η
M

[
r

l(t)
, η

]
dη (4.15)

A−1[p] =
8

π

∫ 1

r/l(t)

ξ√
ξ2 − (r/l(t))2

∫ 1

0

ηp(ηξl(t), t)√
1− η2

dη dξ

≡ 8

π

∫ 1

0
ηp(ηl(t), t)G

[
r

l(t)
, η

]
dη

(4.16)

where the kernels of the pertinent operators are:

M [ξ, s] =
1

2π


1
ξK
(
s2

ξ2

)
+ ξ

s2−ξ2E
(
s2

ξ2

)
, ξ > s

s
s2−ξ2E

(
ξ2

s2

)
, s > ξ

(4.17)

G(ξ, s) =


1
ξF

(
arcsin

(√
1−ξ2
1−s2

) ∣∣∣ s2ξ2) , ξ > s

1
sF
(

arcsin
(√

1−s2
1−ξ2

) ∣∣∣ ξ2s2) , s > ξ

(4.18)

with K, E being complete elliptic integrals of the first and second kinds respectively,

and F the incomplete elliptic integral of the first kind (the full definitions of these are

provided in [5]). An example of how the above kernels are obtained is provided in

Appendix. E.2, where relations (4.41)1, (4.42), (4.17) are derived. It is immediately

apparent that these relationships are inherently non-local in nature (i.e. evaluating the

aperture w(r) for fixed r in (4.41)2, (4.43), requires integrating the pressure over the

whole domain, and visa versa, so the behaviour of these functions are not determined

locally).

While this is the form of the elasticity relations used in the classical formulation of

radial hydraulic fracture, the fact that it only applies to fractures propagating in Mode

I means that it fails to account for the effect of shear-stress induced by the fluid on the

walls of the crack, which was recently shown by Wrobel, Mishuris & Piccolroaz to play

a not insignificant role in the fracture behaviour [230]. As such the elasticity equation

requires updating if it is to incorporate this effect.

This can be achieved using the results of the recent paper by Piccolroaz & Mishuris

[176]. In this work, they again approximated the crack as a layer sandwiched between

two dissimilar infinite half-planes, however they were able to provide formulae for the

relationship between the fracture pressure and the displacement in the general 3D case,

incorporating all three fracture modes (see Fig. 4.4). The results, for a crack lying on

the plane x2 = 0, are detailed below.
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Defining the average, < f >, and the jump, [[f ]], of a function across the plane containing

the crack as follows:

< f > (x1, x3) =
1

2

[
f(x1, 0

+, x3) + f(x1, 0
−, x3)

]
, (4.19)

[[f ]] (x1, x3) = f(x1, 0
+, x3)− f(x1, 0

−, x3), (4.20)

the relationship between the pressure and the displacement is given by:

< p > +A(s) [[p]] = B(s) [[u]](−) ,
√
x2

1 + x2
3 < L(t). (4.21)

where L(t) is the fracture length and, provided the medium is homogeneous, we have:

A(s) =
1− 2ν

8 (1− ν)
Q(s)


0 − ∂

∂x1
0

∂
∂x1

0 ∂
∂x3

0 − ∂
∂x3

0

 , (4.22)

B(s) =
E

8 (1− ν2)
Q(s)


∂2

∂x21
+ (1− ν) ∂2

∂x23
0 ν ∂2

∂x1∂x3

0 ∂2

∂x21
+ ∂2

∂x23
0

ν ∂2

∂x1∂x3
0 (1− ν) ∂2

∂x21
+ ∂2

∂x23

 , (4.23)

with:

Q(s) = P−QP−, P− =

φ(x1),
√
x2

1 + x2
3 ≤ L(t)

0, otherwise
, (4.24)

Q(φ) =
1

π

∫ ∞
−∞

∫ ∞
−∞

φ (ξ1, ξ3)√
(x1 − ξ1)2 + (x3 − ξ3)2

dξ1 dξ3. (4.25)

It should be noted that this formulation is in Cartesian coordinates, and as such will have

to be transformed into radial coordinates if the elasticity relations are to be updated.

4.1.3.3 Boundary condition

The fracture opening (r = 0)

The boundary condition on the fracture opening (r = 0) defines the rate at which fluid is

pumped into the fracture. It is worth noting that, as this is assumed to be a point source,

the fluid flux q will be singular at this point. It can in fact be shown asymptotically

that:

q ∼ q0(t)

r
, r → 0, (4.26)

for some unknown q0(t).
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In addition to this, we must note that the fluid will be entering the fracture uniformly

from this source, traveling orthogonal from the center towards the fracture tip (no ro-

tation). As such, the boundary condition can be obtained by averaging the fluid flow

emanating from the source, giving the following conditions:∫
∂Ω0

q.n dr = Q0,

∫
∂Ω0

q.s dr = 0, (4.27)

here n and s are the normal and parallel vectors respectively, while the boundary domain

δΩ0 is defined as:

∂Ω0 =
{

lim
ε→0

εeiθ : θ ∈ [0, 2π)
}

(4.28)

Noting that in this case we have n = r dr/dθ, alongside that the first asymptotic term

(4.26), condition (4.27)1 yields:

Q0 =

∫ 2π

0
q0(t) dθ = 2πq0(t) (4.29)

As such, combining the above with (4.26) and taking the limit, the boundary condition

immediately follows:

lim
r→0

rq =
Q0

2π
. (4.30)

The fracture tip (r = l(t))

The boundary conditions at the fracture tip depend on the assumptions used when

creating the model. In hydraulic fracturing, it has been shown experimentally that the

fluid inside the crack does not always extend to the fracture tip, a phenomenon referred

to as fluid lag [21, 49]. Instead there is a cyclical process, described in [175] as follows:

“The growth of macroscopic tension fractures consists of short periods of extension of

the crack by fracture, separated by longer periods during which the pore fluid flows

into the crack.” This step-wise extension of the fracture front has been demonstrated

experimentally in hydrogels [37, 177].

This effect is most often ignored when examining the 1D models of hydraulic fracture, as

the effect of fluid lag is typically small, and is considered to be highly localized. In spite

of this, attempts have been made to incorporate it into the early stages of the model, or

for shallow fractures, where the influence of this phenomena will be more pronounced

[69, 70, 124, 130].

In the work presented here however, it will be assumed that no fluid lag occurs. This is

in line with the classical formulation of 1D hydraulic fracture, and as such the crack tip
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boundary conditions are given by:

w(1, t) = 0, q(1, t) = 0, (4.31)

4.1.3.4 Fluid mass and balance equations

The fluid mass conservation equation, sometimes referred to as the continuity equation,

is one of the most fundamental and well known equations in fluid mechanics, and as such

its derivation will not be repeated here (a full explanation and derivation can be found

in [17]). In the case of penny-shaped hydraulic fracture, this equation will be given in

radial coordinates by:

∂w

∂t
+

1

r

∂

∂r
(rq) + ql = 0, 0 < r < l(t), (4.32)

where w(r, t) is the fracture aperture, q is the fluid flow rate and ql is the fluid leak-off

to the surrounding rock. This equation simply ensures that the quantity of fluid in the

system is accounted for at any given moment in time.

An alternative representation of this is the Reynolds equation, which is obtained by

substituting the Poiseuille equation (4.12) into the continuity equation (4.32):

∂w

∂t
=

1

12µr

∂

∂r

(
rw3∂p

∂r

)
− ql, 0 < r < l(t). (4.33)

This equation simply describes the relationship between the pressure and aperture over

time.

In order to obtain the fluid balance equation, we multiply the continuity equation (4.32)

by the radial coordinate r, before integrating twice, for the fluid domain [0, l(t)] over

time [0, t]:

∫ t

0

∫ l(s)

0
r
∂w

∂s
drds+

∫ t

0

∫ l(s)

0

∂

∂r
(rq(r, s)) drds+

∫ t

0

∫ l(s)

0
rql(r, s) drds = 0. (4.34)

Assuming that we can safely change the order of integration in the leftmost integral, and

noting the boundary conditions at both the fracture front and opening (4.30)-(4.31), we

can express this as:∫ l(t)

0
r

∫ t

0

∂w

∂s
dsdr +

∫ t

0

∫ l(s)

0
rql(r, s) drds =

1

2π

∫ t

0
Q0(s) ds. (4.35)

Finally, if we take the following non-zero initial conditions:

l(0) = l∗, w(r, 0) = w∗(r), (4.36)
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we obtain the final form of the fluid balance equation:∫ l(t)

0
r [w(r, t)− w∗(r)] dr +

∫ t

0

∫ l(s)

0
rql(r, s) drds =

1

2π

∫ t

0
Q0(s) ds. (4.37)

This equation simply ensures that the volume of fluid within the system is accounted

for over time. It is worth noting that this equation has previously been used to trace

the fracture front in the absence of a proper Stefan-type condition (as it links the known

pumping rate with the total volume of fluid in the fracture, allowing the rate of fracture

growth to be determined if relations between the fluid volume, pressure and aperture

are assumed predefined).

4.1.3.5 Fluid rheology

When studying fluid driven fracture, it is clearly of vital importance that the rheological

properties of the fracturing fluid are properly accounted for. While in special cases the

fluid can be modeled as a Newtonian one (for example in low permeability reservoirs),

most fracturing fluids used in conventional reservoirs exhibit non-Newtonian behaviour.

As such the representation of the relation between the shear stress and strain rates shown

in (5.2) no longer applies, and to correctly model this behaviour a power law approach

will be employed. Such a modification is common in the literature, and which has been

shown to reasonably approximate the necessary properties [36, 219]:

τ = Mγ̇n (4.38)

where n is the “fluid behaviour index” and M is the “consistency index”. Newtonian

fluids have behavioural index n = 1, in which case the consistency index is simply the

dynamic viscosity M = µ. Meanwhile n = 0 denotes the case of a perfectly plastic fluid,

with M = σY is the yield stress. Finally fluids in the range 0 < n < 1 are referred to as

shear-thinning fluids.

It should be noted that this two-parameter model can’t accurately approximate the

fracturing fluids behaviour at high or low shear rates [197], and that alternative models

do exist in the literature more able to approximate the fluids rheological properties. One

of the most powerful examples is the Carreau model [38], however this approach proves

too complicated to use in conjuncture with 1D hydraulic fracturing problems, as no

closed form of the Poiseuile equation can be obtained. Alternative three (the Hershel-

Bulkley law [92]) or four (truncated power law [120]) parameter models do exist, however

they are scarcely used in the literature for problems of this form. In order to maintain

consistency with past results we therefore revert to the two-parameter power model for

the fracturing fluid.



HF algorithm for a penny-shaped crack 88

4.2 The classical penny-shaped model

4.2.1 Outline and motivation

As outlined in Sect. 4.1.2.4, while the penny-shaped model plays a significant role in

investigations into hydraulic fracture, there is a notable lack of efficient, accurate bench-

marks. This is most notable in the case of a toughness dominated fracture containing a

power-law based fluid, where there are no published benchmarks with a known level of

accuracy.

For this reason, we begin this investigation by attempting to remedy this deficiency in

the literature. This means providing a numerical solver, which is capable of resolving

problems in both the viscosity and toughness dominated regimes, for a power-law based

fluid, to a high level of accuracy, and without compromising computation times to do

so.

This will be achieved utilizing the approach outlined for the PKN and KGD cases in

[165, 229]. There, the speed equation (2.18), which is a Stefan-type condition, was

employed to trace the evolution of the fracture front. In this way, the singular nature

of the pressure function at the crack tip was overcome, allowing a far more accurate

evaluation of this crucial part of the fracture. This, combined with intelligent use of

the crack tip asymptotics, regularization of the Tikhonov type (the technical details

of which can be found in [118, 228]), and a specialised modular construction of the

numerical algorithm (referred to as the ’universal algorithm’), enables the scheme to

achieve highly accurate results without sacrificing computation time.

Introducing similar methods to the case of a penny-shaped fracture has recently been

achieved in the viscosity dominated case, with Linkov providing a numerical solution

with a claimed relative error below 10−4 [132]. This setup however lacked the previously

mentioned efficient modular structure used in the PKN and KGD cases, and as such

required N = 1000 boundary nodes to achieve this level of accuracy. Therefore, with

proper construction of the numerical algorithm, this level of accuracy can be achieved

with far shorter simulation times, which is a necessary step if the goal of computing

numerical solutions in real-time is to be achieved. Extending this effort to the toughness

dominated regime is also essential, if the effect of shear-stress induced by the fluid is to

be incorporated into the model.

This investigation into the classical penny-shaped model is organised as follows. The

basic system of equations describing the problem is given in Sect. 4.2.2. Next, normaliza-

tion to the dimensionless form is carried out. In Sect. 4.2.3, comprehensive information

about the solution asymptotics is presented, which is heavily utilized in the subsequent
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numerical implementation. New computational variables, the reduced particle velocity

and modified pressure derivative, are introduced. The advantages of both are outlined,

and the problem is reformulated in terms of the new variables. In Sect. 4.2.4 the gov-

erning system of equations is reduced to the time independent self-similar form. This

formulation is used in Sect. 4.2.5 to construct the computational algorithm. The accu-

racy and efficiency of computations are examined against newly introduced analytical

benchmark examples, whose construction is outlined in Appendix. D. Alternative error

measures are proposed for the cases where no closed-form analytical solution is available.

Then, numerical reference solutions are proposed for the variant of an impermeable solid.

Finally, the computational algorithm is used to verify other solutions available in the

literature.

4.2.2 Problem formulation

Let us consider a 3D penny-shaped crack, defined in polar coordinates by the system

{r, θ, z}, with associated crack dimensions {l(t), w(t)} as the fracture radius and aperture

respectively, noting that both are a function of time. The crack is driven by a point

source of power-law fluid located at the origin, and has a known pumping rate: Q0(t).

The fluid’s rheological properties are described by a power-law [36]. We have that, as

the flow is axisymmetric, all variables will be independent of the angle θ.

The fluid mass balance equation is as follows:

∂w

∂t
+

1

r

∂

∂r
(rq) + ql = 0, 0 < r < l(t), (4.39)

where ql(r, t) is the fluid leak-off function, representing the volumetric fluid loss to the

rock formation in the direction perpendicular to the crack surface per unit length of the

fracture. Throughout this paper we will assume it to be predefined and bounded at the

fracture tip, but it will not be prescribed any specific formulation.

Meanwhile, q(r, t) is the fluid flow rate inside the crack, given by the Poiseuille law:

qn = −w
2n+1

M ′
∂p

∂r
, (4.40)

with p(r, t) being the net fluid pressure on the fracture walls (i.e. p = pf − σ0, where pf

is the total pressure and σ0 is the confining stress), while the constant M ′ is a modified

fluid consistency index M ′ = 2n+1(2n+1)n/nnM , where 0 ≤ n ≤ 1 is the fluid behaviour

index.
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The non-local relationships between the fracture aperture and the pressure (elasticity

equations) are as follows:

p(r, t) =
E′

l(t)
A[w](r, t), w(r, t) =

l(t)

E′
A−1[p](r, t), (4.41)

where E′ = E/(1 − ν2), with E being the Young’s modulus and ν the Poisson ratio.

The operator A and its inverse take the form:

A[w] = −
∫ 1

0

∂w(ηl(t), t)

∂η
M

[
r

l(t)
, η

]
dη, (4.42)

A−1[p] =
8

π

∫ 1

r/l(t)

ξ√
ξ2 − (r/l(t))2

∫ 1

0

ηp(ηξl(t), t)√
1− η2

dη dξ

≡ 8

π

∫ 1

0
ηp(ηl(t), t)G

[
r

l(t)
, η

]
dη ,

(4.43)

for the pertinent kernels [113]:

M [ξ, s] =
1

2π


1
ξK
(
s2

ξ2

)
+ ξ

s2−ξ2E
(
s2

ξ2

)
, ξ > s

s
s2−ξ2E

(
ξ2

s2

)
, s > ξ

(4.44)

G(ξ, s) =


1
ξF

(
arcsin

(√
1−ξ2
1−s2

) ∣∣∣ s2ξ2) , ξ > s

1
sF
(

arcsin
(√

1−s2
1−ξ2

) ∣∣∣ ξ2s2) , s > ξ

(4.45)

K, E are the complete elliptic integrals of the first and second kinds respectively, and

F the incomplete elliptic integral of the first kind, given in [5].

These equations are supplemented by the boundary condition at r = 0, which defines

the intensity of the fluid source, Q0:

lim
r→0

rq(r, t) =
Q0(t)

2π
, (4.46)

the tip boundary conditions:

w(l(t), t) = 0, q(l(t), t) = 0, (4.47)

and appropriate initial conditions describing the starting crack opening and length:

w(r, 0) = w∗(r), l(0) = l0. (4.48)
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Additionally, it is assumed that the crack is in continuous mobile equilibrium, and as such

the classical crack propagation criterion of linear elastic fracture mechanics is imposed:

KI = KIc, (4.49)

where KIc is the material toughness while KI is the stress intensity factor. The latter

is computed according to the following formula [184]:

KI(t) =
2√
πl(t)

∫ l(t)

0

rp(r, t)√
l2(t)− r2

dr. (4.50)

Throughout this paper we accept the convention that when KIc = 0 the hydraulic

fracture propagates in the viscosity dominated regime. Otherwise the crack evolves in the

toughness dominated mode. Each of these two regimes is associated with qualitatively

different tip asymptotics, which constitutes a singular perturbation problem as KIc → 0,

and leads to serious computational difficulties in the small toughness range.

Finally, noting (4.39) and (4.46), the global fluid balance equation is given by:

∫ l(t)

0
r [w(r, t)− w∗(r)] dr +

∫ t

0

∫ l(t)

0
rql(r, τ) dr dτ =

1

2π

∫ t

0
Q0(τ) dτ. (4.51)

The above set of equations and conditions represent the typically considered formulation

for a penny-shaped hydraulic fracture [196].

In order to facilitate the analysis we shall utilize an additional dependent variable, v,

which describes the average speed of fluid flow through the fracture cross-section [147].

It will be referenced to in the text as the particle velocity, and is defined as:

v(r, t) =
q(r, t)

w(r, t)
, vn(r, t) = − 1

M ′
wn+1∂p

∂r
. (4.52)

Provided the fluid leak-off ql is finite at the crack tip, v has the following property:

lim
r→l(t)

v(r, t) = v0(t) <∞. (4.53)

Additionally, given that the fracture apex coincides with the fluid front (no lag), and

that the fluid leak-off at the fracture tip is weaker than the Carter law variant, the

so-called speed equation [127] holds:

dl

dt
= v0(t). (4.54)

This Stefan-type boundary condition constitutes an explicit method, as opposed to an

implicit level set method [161], and can be effectively used to construct a mechanism
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of fracture front tracing. The advantages of implementing such a condition have been

shown in [132, 165, 229].

4.2.2.1 Problem normalization

For the main body of the text, in order to make the presentation clearer, we will assume

during derivations that 0 < n < 1, however all results shown will be calculated according

to their respective models. Any modification to the governing equations and numerical

scheme in the limiting cases n = 0 and n = 1 are detailed in Appendix C.

We normalize the problem by introducing the following dimensionless variables:

r̃ =
r

l(t)
, t̃ =

t

t
1/n
n

, w̃(r̃, t̃) =
w(r, t)

l∗
, L(t̃) =

l(t)

l∗
, q̃l(r̃, t̃) =

t
1/n
n

l∗
ql(r, t),

q̃(r̃, t̃) =
t
1/n
n

l2∗
q(r, t), Q̃0(t̃) =

t
1/n
n

l2∗l(t)
Q0(t), ṽ(r̃, t̃) =

t
1/n
n

l∗
v(r, t),

p̃(r̃, t̃) =
tn
M ′

p(r, t), K̃Ic =
1

E′
√
l∗
KIc, tn =

M ′

E′
,

(4.55)

where r̃ ∈ [0, 1] and l∗ is chosen for convenience.

We note that such a normalization scheme has previously been used in [132, 165, 229],

and that it is not attributed to any particular influx regime or asymptotic behaviour of

the solution.

Under normalization scheme (4.55), the continuity equation (4.39) can be rewritten in

terms of the particle velocity (4.52) to obtain:

∂w̃

∂t̃
− L′(t̃)

L(t̃)
r̃
∂w̃

∂r̃
+

1

L(t̃)r̃

∂

∂r̃
(r̃w̃ṽ) + q̃l = 0. (4.56)

The particle velocity (4.40) is expressed as:

ṽ =

[
− w̃

n+1

L(t̃)

∂p̃

∂r̃

] 1
n

, (4.57)

while the speed equation is now given by combining (4.52)-(4.54):

ṽ0(t̃) = L′(t̃) =

[
− w̃

n+1

L(t̃)

∂p̃

∂r̃

] 1
n

r̃=1

<∞. (4.58)
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The global fluid balance equation (4.51) is transformed to:

∫ 1

0
r̃
[
L2(t̃)w̃(r̃, t̃)− L2(0)w̃∗(r̃)

]
dr̃ +

∫ t̃

0

∫ 1

0
r̃L2(τ)q̃l(r̃, τ) dr̃ dτ

=
1

2π

∫ t̃

0
L(τ)Q̃0(τ) dτ.

(4.59)

The notation for the elasticity equations (4.41)-(4.43) takes the form:

p̃(r̃, t̃) =
1

L(t̃)
A[w̃](r̃, t̃), w̃(r̃, t̃) = L(t̃)A−1[p̃](r̃, t̃), (4.60)

where the operators denote:

A[w̃](r̃, t̃) = −
∫ 1

0

∂w̃(η, t̃)

∂η
M [r̃, η] dη, (4.61)

A−1[p̃](r̃, t̃) =
8

π

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

ηp̃(ηξ, t̃)√
1− η2

dη dξ. (4.62)

From definition (4.50) and the fracture propagation condition (4.49) we have that:

K̃I = K̃Ic =
2√
π

√
L(t̃)

∫ 1

0

r̃p̃(r̃, t̃)√
1− r̃2

dr̃. (4.63)

Note that through proper manipulation of (4.62) and the use of (4.63), (4.60)2 can be

expressed in the following form (see Appendix. E):

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

0

∂p̃

∂y
(y, t̃)K(y, r̃) dy +

4√
π

√
L(t̃)K̃I

√
1− r̃2, (4.64)

for the kernel function K given by:

K(y, r̃) = y

[
E

(
arcsin (y)

∣∣∣∣ r̃2

y2

)
− E

(
arcsin (χ)

∣∣∣∣ r̃2

y2

)]
, (4.65)

where:

χ = min
(

1,
y

r̃

)
, (4.66)

with the function E(φ |m) denoting the incomplete elliptic integral of the second kind [5].

While this form of the elasticity operator has not previously been used in the case of a

penny-shaped fracture, an analogous form of the elasticity equation for the KGD model

has been utilized in [165, 229], where its advantages in numerical computations have

been demonstrated. Notably, the kernel function K exhibits better behaviour than the

weakly singular kernel G (4.45), having no singularities for any combination of {r̃, y}.
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Additionally, equation (4.57) can be easily transformed to obtain p′ and then substituted

into (4.64), meaning that the latter can be utilized without the additional step of deriving

the pressure function needed for the classic form of the operator.

Next the boundary conditions (4.47), in view of (4.53), transform to a single condition:

w̃(1, t̃) = 0, (4.67)

alongside the initial conditions (4.48):

w̃(r̃, 0) =
w∗(r)

l∗
, L0 =

l0
l∗
. (4.68)

The source strength (4.46) is now defined as:

Q̃0(t̃)

2π
= lim

r̃→0
r̃w̃(r̃, t̃)ṽ(r̃, t̃). (4.69)

While combining the above with (4.57) we obtain the following relationship:

lim
r̃→0

r̃n
∂p̃

∂r̃
= −

(
Q̃0(t̃)

2π

)n
L(t̃)

w̃2n+1(0, t̃)
, (4.70)

which provides a valuable insight into how the behaviour of the fluid pressure function

near to the source varies for differing values of n. The resulting pressure asymptotics at

the injection point, with corresponding aperture, are detailed below:

p̃(r̃, t̃) = p̃o0(t̃) + p̃o1(t̃)r̃1−n +O
(
r̃2−n) , r̃ → 0, (4.71)

w̃(r̃, t̃) = w̃o0(t̃) + w̃o1(t̃)r̃2−n +O
(
r̃2 log(r̃)

)
, r̃ → 0. (4.72)

It is worth restating that there are minor differences to both the asymptotics and funda-

mental equations in the limiting cases n = 0 and n = 1. These are explained in further

detail in Appendix C.

4.2.3 Crack tip asymptotics, the speed equation and proper variables

A universal algorithm for numerically simulating hydraulic fractures has recently been

introduced in [165, 229] and tested against the PKN and KGD (plane strain) mod-

els for Newtonian and shear-thinning fluids. It proved to be extremely efficient and

accurate. Its modular architecture enables one to adapt it to other HF models by sim-

ple replacement or adjustment of the basic blocks. In the following we will construct

a computational scheme for the radial fracture based on the universal algorithm. To
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this end we need to introduce appropriate computational variables, and to define the

basic asymptotic interrelations between them. For the sake of completeness detailed

information on the solutions tip asymptotic behaviour, for different regimes of crack

propagation, are presented below.

4.2.3.1 Crack tip asymptotics

Viscosity dominated regime (K̃Ic = 0)

In the viscosity dominated regime the crack tip asymptotics of the aperture and pressure

derivative can be expressed as follows:

w̃(r̃, t̃) = w̃0(t̃)
(
1− r̃2

)α0 + w̃1(t̃)
(
1− r̃2

)α1 + w̃2(t̃)
(
1− r̃2

)α2

+O
((

1− r̃2
)α2+δ

)
, r̃ → 1,

(4.73)

∂p̃

∂r̃
(r̃, t̃) = p̃0(t̃)

(
1− r̃2

)α0−2
+ p̃1(t̃)

(
1− r̃2

)α0−1
+O (1) , r̃ → 1. (4.74)

The crack tip asymptotics of the pressure function can be derived from the above,

however this form is given due to its use in computations (this will be explained in

further detail later).

As a consequence the particle velocity behaves as:

ṽ(r̃, t̃) = ṽ0(t̃) + ṽ1

(
t̃
) (

1− r̃2
)β1 +O

((
1− r̃2

)β2) , r̃ → 1. (4.75)

Note that we require ṽ0(t̃) > 0 to ensure the fracture is moving forward. The values

of constants αi, βi are given in Table 4.1. The general formulae for the limiting cases

n = 0 and n = 1 remain the same as (4.73)-(4.75), with the respective powers αi, βi

again being determined according to Table 4.1.

Now, let us adopt the following notation for the crack propagation speed, based on the

speed equation (4.58) and the tip asymptotics (4.75):

ṽ0(t̃) = L′(t̃) =

[
CL(w̃)

L2(t̃)

] 1
n

. (4.76)

Here L(w̃) > 0 is a known functional and C is a positive constant. In the viscosity

dominated regime we have that:

C =
2n

(n+ 2)2
cot

(
nπ

n+ 2

)
, L(w̃) = w̃n+2

0 . (4.77)
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Crack propagation regime α0 α1 α2 β1 β2

Viscosity dominated
2

n+ 2

n+ 4

n+ 2

2n+ 6

n+ 2
1

2n+ 2

n+ 2

Toughness dominated
1

2

3− n
2

5− 2n

2

2− n
2

1

Table 4.1: Values of the basic constants used in the asymptotic expansions for w̃ and
ṽ for 0 < n < 1.

Additionally, we can directly integrate (4.76) in order to obtain an expression for the

fracture length:

L(t̃) =

[
L1+ 2

n (0) +

(
1 +

2

n

)
C

1
n

∫ t̃

0
L

1
n (w̃) dτ

] n
n+2

. (4.78)

Toughness dominated regime (K̃Ic > 0)

Near the fracture front the form of the aperture and particle velocity asymptotics remains

the same as in the viscosity dominated regime (4.73), (4.75). Meanwhile the pressure

derivative asymptotics yields:

∂p̃

∂r̃
(r̃, t̃) = p̃0

(
1− r̃2

)α1−2
+ p̃1

(
1− r̃2

)α2−2
+O (1) , r̃ → 1. (4.79)

The values of αi, βi for this regime are provided in Table 4.1. The asymptotics in the

limiting cases n = 0 and n = 1 is given in Appendix C (equations (C.10) and (C.1)

respectively).

We again use notation (4.76) for the crack propagation speed, however the values of the

functional L and the C will in this case be:

C =
(3− n)(1− n)

4
tan

(nπ
2

)
, L(w̃) = w̃n+1

0 w̃1, (4.80)

while the fracture length will be given by (4.78).

4.2.3.2 Reformulation in terms of computational variables

It is readily apparent that the choice of computational variables plays a decisive role in

ensuring the accuracy and efficiency of the computational algorithm [118, 147, 229]. Let

us introduce a new system of proper variables which are conducive to robust numerical

computing.
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• The reduced particle velocity Φ(r̃, t̃):

Φ(r̃, t̃) = r̃ṽ(r̃, t̃)− r̃2ṽ0(t̃). (4.81)

It is a smooth, well behaved and non-singular variable that facilitates the numerical

computations immensely. It is bounded at the crack tip and the fracture origin.

The advantages of using an analogous variable in the PKN and KGD models have

previously been demonstrated in [165, 229].

• The modified pressure derivative Ω(r̃, t̃):

r̃nΩ(r̃, t̃) = r̃n
∂p̃

∂r̃
− Ω0(t̃), (4.82)

Ω0(t̃) = −

(
Q̃0(t̃)

2π

)n
L(t̃)

w̃2n+1(0, t̃)
. (4.83)

It reflects the singular tip behavior of p̃′r̃, having the same tip asymptotics as the

pressure derivative, however it is bounded at the fracture origin. From (4.82) the

pressure can be immediately reconstructed as:

p̃(r̃, t̃) =
Ω0(t̃)

1− n
r̃1−n + Cp(t̃) +

∫ r̃

0
Ω(ξ, t̃)dξ, (4.84)

where the term Cp follows from (4.63):

Cp(t̃) =
1

2

√
π

L(t̃)
K̃I −

√
πΓ
(

3−n
2

)
2 (1− n) Γ

(
2− n

2

)Ω0(t̃)−
∫ 1

0
Ω(y, t̃)

√
1− y2 dy. (4.85)

This auxiliary variable will primarily be used in numerical computation of the

elasticity operator.

The following interrelationship exists between the newly introduced variables:

Ω(r̃, t̃) =

(
Q̃0(t̃)

2πr̃

)n
L(t̃)

w̃2n+1(0, t̃)
− L(t̃)

w̃n+1(r̃, t̃)

[
Φ(r̃, t̃)

r̃
+ r̃ṽ0(t̃)

]n
. (4.86)

Since under this new scheme Φ is bounded at the fracture tip, the source strength (4.69)

and the boundary condition (4.67) can now be expressed as:

w̃(0, t̃)Φ(0, t̃) =
Q̃0(t̃)

2π
, w̃(1, t̃) = 0. (4.87)
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By utilizing the boundary condition (4.87)1, the relationship between the new variables

(4.86) can be represented in the form:

Ω
(
r̃, t̃
)

=
1

r̃n

[
Φn(0, t̃)

w̃n+1(0, t̃)
−
(
Φ(r̃, t̃) + r̃2ṽ0(t̃)

)n
w̃n+1(r̃, t̃)

]
. (4.88)

Note that this is not only a more concise representation of (4.86) but also does not

depend on L(t̃), which will be beneficial when computing the self-similar formulation.

In this way the computational scheme will be based on: the crack opening, w̃, the

reduced particle velocity, Φ, and an auxiliary variable, the modified fluid pressure, Ω.

By substituting the new variable Φ from (4.81) into the continuity equation (4.56), we

obtain the modified governing equation:

∂w̃

∂t̃
+

1

L(t̃)r̃

∂

∂r̃
(w̃Φ) +

2ṽ0

L(t̃)
w̃ + q̃l = 0, 0 < r̃ < 1. (4.89)

Additionally, the elasticity equation (4.64) can be now expressed as follows:

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

0
Ω(y, t̃)K(y, r̃) dy+

4√
π

√
L(t̃)K̃I

√
1− r̃2+

8

π
L(t̃)Ω0(t̃)Xn(r̃), (4.90)

where K is given in (4.65), while Xn is defined by:

Xn(r̃) =

√
πΓ
(

3−n
2

)
2 (n− 1) Γ

(
2− n

2

) [√1− r̃2 +
2F1

(
1
2 ,

n−2
2 ; n2 ; r̃2

)
n− 2

−
√
πr̃2−nΓ

(
n
2 − 1

)
2Γ
(
n−1

2

) ]
.

(4.91)

It can be easily shown that this function is well behaved in the limits.

4.2.4 Self-similar formulation

In this section we will reduce the problem to its time-independent self-similar version.

This formulation will be used to define the computational scheme used later on in the

numerical analysis.

We begin by assuming that a solution to the problem can be expressed through the

following seperation of variables:

w̃(r̃, t̃) = Ψ(t̃)ŵ(r̃), p̃(r̃, t̃) =
Ψ(t̃)

L(t̃)
p̂(r̃), q̃(r̃, t̃) =

Ψ2+ 2
n (t̃)

L
2
n (t̃)

q̂(r̃),

Q̃0(t̃) =
Ψ2+ 2

n (t̃)

L
2
n (t̃)

Q̂0, ṽ(r̃, t̃) =
Ψ1+ 2

n (t̃)

L
2
n (t̃)

v̂(r̃), Φ(r̃, t̃) =
Ψ1+ 2

n (t̃)

L
2
n

Φ̂(r̃),
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K̃I(t̃) =
Ψ(t̃)√
L(t̃)

K̂I , Ω(r̃, t̃) =
Ψ(t̃)

L(t̃)
Ω̂(r̃),

Ω0(t̃) =
Ψ(t̃)

L(t̃)
Ω̂0, Cp(t̃) =

Ψ(t̃)

L(t̃)
Ĉp,

(4.92)

where Ψ(t) is a smooth continuous function. By separating the variables in this manner

it becomes possible to reduce the problem to a time-independent formulation when

Ψ is described by an exponential or a power-law type function. From here on the

spatial components will be marked by a ‘hat’-symbol, and will describe the self-similar

quantities. It is worth noting that the separation of spatial and temporal components

given in (4.92) ensures that the qualitative bahaviour of the solution tip asymptotics

remains the same as in the time-dependent variant.

4.2.4.1 The self-similar representation of the problem

We wish to examine two variants of the time dependent function:

Ψ1(t̃) = eγt̃, Ψ2(t̃) =
(
a+ t̃

)γ
. (4.93)

In both cases the fluid leak-off function will be assumed to take the form:

q̃l(r̃, t̃) =
1

γ
Ψ′(t̃)q̂l(r̃). (4.94)

The self-similar reduced particle velocity (4.81), modified pressure derivative (4.82),

(4.83) and pressure (4.84) are defined by:

Φ̂(r̃) = r̃v̂(r̃)− r̃2v̂0, r̃nΩ̂(r̃) = r̃n
dp̂

dr̃
− Ω̂0, (4.95)

p̂(r̃) =
Ω̂0

1− n
r̃1−n + Ĉp +

∫ r̃

0
Ω̂(ξ)dξ, (4.96)

with

Ω̂0 = −

(
Q̂0

2π

)n
1

ŵ2n+1(0)
, (4.97)

Ĉp =

√
π

2
K̂I −

√
πΓ
(

3−n
2

)
2 (1− n) Γ

(
2− n

2

) Ω̂0 −
∫ 1

0
Ω̂(y)

√
1− y2 dy. (4.98)

It is immediately apparent from (4.76) and (4.92) that the self-similar crack propagation

speed is given by:

v̂0 = lim
r̃→1

[
−ŵn+1dp̂

dr̃

] 1
n

= (CL(ŵ))
1
n . (4.99)

Note again that the qualitative asymptotic behaviour of the aperture, pressure and

particle velocity as r̃ → 0 and r̃ → 1 remains the same as in the time dependent version
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of the problem (4.73), (4.74), (4.75), (4.79). The respective asymptotic formulae hold

provided that multipliers of the spatial terms are constant rather than being functions

of time.

The self-similar counterparts of the elasticity equations (4.60) and (4.61) are now:

p̂(r̃) = Â[ŵ](r̃), (4.100)

where:

Â[ŵ](r̃) = −
∫ 1

0

dŵ(η)

dη
M [r̃, η] dη, (4.101)

with its inverse being:

ŵ(r̃) =
8

π

∫ 1

0
Ω̂(y)K(y, r̃) dy +

4√
π
K̂I

√
1− r̃2 +

8

π
Ω̂0Xn(r̃). (4.102)

As the integral and function Xn(r̃) both tend to zero faster than the square root term at

the fracture tip, it immediately follows that, in the toughness dominated case (K̂Ic > 0),

the leading asymptotic term of the aperture (4.73) is given by:

ŵ0 =
4√
π
K̂I . (4.103)

The self-similar particle velocity takes the form:

v̂(r̃) =

[
−ŵn+1(r̃)

dp̂(r̃)

dr̃

] 1
n

. (4.104)

The governing equation (4.89) becomes:

1

r̃v̂0

d

dr̃

(
ŵΦ̂
)

= − (3− sn) ŵ − (1− sn)
q̂l
γ
, (4.105)

with the value of sn in each case, alongside the fracture length, provided in Table 4.2.

Meanwhile the fluid balance condition (4.59) becomes:

(3− sn)

∫ 1

0
r̃ŵ(r̃) dr̃ +

1− sn
γ

∫ 1

0
r̃q̂l dr̃ =

Q̂0

2πv̂0
. (4.106)

The self-similar stress intensity factor (4.63) is given by:

K̂I = K̂Ic =
2√
π

∫ 1

0

r̃p̂(r̃)√
1− r̃2

dr̃. (4.107)
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Self-similar law sn L(t̃)

Ψ(t̃) = eγt̃ 0
[
v̂0
γ

] n
n+2

eγt̃

Ψ(t̃) =
(
a+ t̃

)γ n
γ(n+2)+n

[
(n+2)v̂0
γ(n+2)+n

] n
n+2 (

a+ t̃
)γ+ n

n+2

Table 4.2: Table providing the fracture length L(t̃), which is obtained using (4.78)
and (4.99), and the constant sn, used in (4.105) and (4.106), for different variants of

the self-similar solution.

Finally, the system’s boundary conditions (4.87) transform to:

ŵ(0)Φ̂(0) =
Q̂0

2π
, ŵ(1) = 0. (4.108)

In the general case with 0 < n < 1 these equations represent the full self-similar problem.

Some modifications are necessary in the special cases when n = 0 and n = 1. These

differences are outlined in Appendix C.

4.2.5 Numerical results

In this section we will construct an iterative computational scheme for numerically simu-

lating hydraulic fracture. The approach is an extension of the universal algorithm intro-

duced in [165, 229]. The computations are divided between two basic blocks, the first of

which utilizes the continuity equation and the latter using the elasticity operator. The

previously introduced computational variables, alongside the known information about

the solution tip asymptotics, are employed extensively. The accuracy and efficiency of

the computations are verified against the newly introduced analytical benchmark exam-

ples. Then the numerical benchmark solutions are given. Finally, a comparative analysis

with other data available in the literature is delivered.

4.2.5.1 Computational scheme

The numerical approach is constructed through the framework of a universal algorithm,

previously introduced for the PKN and KGD models in [165, 229]. This is an explicit

scheme, as opposed to the implicit level set schemes commonly utilized in the litera-

ture (see e.g. [78, 122, 124, 161]). A full description of the algorithm is provided in

Appendix. F, however the basic realization is as follows:



HF algorithm for a penny-shaped crack 102

1. An initial approximation of the aperture ŵ = ŵj−1 is taken, such that it has the

correct asymptotic behaviour and satisfies the boundary conditions.

2. The fluid balance equation (4.106) is utilized to obtain the asymptotic term(s) ŵj0,1

needed to compute the particle velocity v̂j0 using (4.99).

3. Having the above values the reduced particle velocity Φ̂j is reconstructed by direct

integration of (4.105). Tikhonov type regularization is employed at this stage.

4. Equation (4.104) is then used to obtain an approximation of the modified pres-

sure derivative Ω̂, and the elasticity equation (4.102) serves to compute the next

approximation of the fracture aperture ŵj .

5. The system is iterated until all variables Φ̂, ŵ and v̂0 converge to within prescribed

tolerances.

We will demonstrate in this section that this scheme, combined with an appropriate

meshing strategy, yields a highly accurate algorithm. A more detailed description of the

algorithm’s construction has been outlined in [164, 165, 229].

It is worth noting that, due to the degeneration of the Poiseuille equation when n = 0,

it can no longer be used to compute the fluid flow rate or the particle velocity. However,

thanks to the modular structure of the proposed algorithm, one can easily adapt it to

this variant of the problem. In this case a special form of the elasticity equation (C.19)

is utilized to obtain the aperture, with the particle velocity being reconstructed using

relations (C.20) and (C.21).

4.2.5.2 Accuracy of computations

In this subsection we will investigate the accuracy of computations delivered by the pro-

posed numerical scheme. To this end a newly introduced set of analytical benchmark

solutions with a non-zero fluid leak-off function will be used. Alternative measures for

testing the numerical accuracy in the absence of exact solutions will then be proposed

and analysed. Next, the problem of a penny-shaped hydraulic fracture propagating in

an impermeable material will be considered. The accuracy of numerical solutions will

be verified by the aforementioned alternative measures. Simple, semi-analytical approx-

imations, which mimic the obtained numerical data to a prescribed level of accuracy,

will be provided. Finally, a comparative analysis with other solutions available in the

literature will be performed.
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4.2.5.3 Analysis of computational errors against analytical benchmarks

The first method of testing the computational accuracy is by comparison with analyti-

cal benchmark solutions. Respective closed-form benchmarks with predefined, non-zero,

leak-off functions are outlined in Appendix. D. They have been constructed for both the

viscosity and toughness dominated regimes, for a class of shear-thinning and Newtonian

fluids. All of the analytical benchmarks used for comparison are designed to ensure

physically realistic behaviour of the solution while maintaining the proper asymptotic

behaviour. In all numerical simulations the power-law variant of the time dependent

function Ψ2 (4.93)2 is used.

The accuracy of computations is depicted in Fig. 4.5, 4.6, for varying number of nodal

points N . A non-uniform spatial mesh was used, with meshing density increased near

the ends of the interval (the same type of mesh was used for all n). The measures δŵ,

δv̂, describing the average relative error of the crack opening and particle velocity, are

taken to be:

δŵ(N) =

∫ 1
0 r̃ |ŵ

∗(r̃)− ŵ(r̃)| dr̃∫ 1
0 r̃ŵ

∗(r̃) dr̃
, δv̂(N) =

∫ 1
0 r̃ |v̂

∗(r̃)− v̂(r̃)| dr̃∫ 1
0 r̃v̂

∗(r̃), dr̃
, (4.109)

where ŵ∗ and v̂∗ denote the exact solutions for ŵ and v̂.

The results clearly show that the value of both error measures decreases monotonically

with growing N . For a fixed number of nodal points N , δŵ is lower than δv̂, but within
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Figure 4.5: Relative average error of the crack aperture (4.109)1 obtained against
the analytical benchmark over N for the (a) viscosity dominated regime, (b) toughness

dominated regime.
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Figure 4.6: Relative average error of the particle velocity (4.109)2 obtained against
the analytical benchmark over N for the (a) viscosity dominated regime, (b) toughness

dominated regime.

the same order of magnitude. One can observe a sensitivity of the results to the value

of the fluid behaviour index n. Here, the level of error measures can vary up to one

order for a constant N . This trend can be alleviated by adjusting the mesh density

distribution to the value of n (i.e. to the varying asymptotics of solution), however,

given that the level of accuracy already achieved is far greater than that required in

practical application, this will not be conducted here. In general, it takes fewer than

N = 300 nodal points to achieve the relative errors of the level 10−7.

We note that the algorithm computes in under 30 seconds, even when taking N = 300

boundary nodes, regardless of the material toughness or fluid rheology being simulated.

A more detailed examination of the relationship between the number of boundary nodes

and computation times is provided in Sect. 4.3.5.5.

In cases when the exact solution is not prescribed an alternative method of testing the

solution accuracy is required. The method outlined here relies on the fact that the

solution converges to the exact value at a known rate, with respect to the number of

nodal points, which has been established numerically to behave as 1/N3. As a result

the following estimation holds:

∫ 1

0
rgi(r)dr = Ai +

Bi
N3

, i = 1, 2, (4.110)

where g1(r) = ŵ(r) and g2(r) = v̂(r). Ai and Bi are constants which can easily be

obtained using a least-squares approximation over various N . Next, one can define the
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limiting value of (4.110) as:

lim
N→∞

∫ 1

0
rgi(r)dr = Ai ≈

∫ 1

0
rg∗i (r)dr, i = 1, 2, (4.111)

where g∗1(r) = ŵ∗(r), g∗2(r) = v̂∗(r) represent the exact (potentially unknown) solution.

Knowing this, the following alternative error measures can be proposed:

egi(N) =

∣∣∣Ai − ∫ 1
0 rĝ

∗
i (r) dr

∣∣∣∫ 1
0 rĝ

∗
i (r) dr

, i = 1, 2. (4.112)

Using this strategy, it is possible to identify the relative rate at which the solution

converges: ew(N) for the aperture and ev(N) for the particle velocity. The results are

shown in Fig. 4.7, Fig. 4.8. It is notable that both δŵ and ew, as well as δv̂ and ev,

provide estimates of a similar order for a fixed N. Thus, they can be considered as

equivalent error measures and employed in the accuracy analysis in the cases when no

exact solution is available. As such, ew(N) and ev(N) will be used in the following

investigations.

It should be stated that the value of constants Ai and Bi, defining the limiting value of

the intregral as the number of boundary nodes tends to infinity, are obtained using a

least-squares approximation. Given this, if the integral does not converge to its limiting

value as an asymptote (i.e. convergence is uniformly from above, or uniformly from

below), then the limiting value obtained will still be obtained accurately enough to

provide a measure of the solution error, but the relative rate of convergence to this value

may not appear uniform (e.g. the non-monotonic convergene seen in Fig. 4.11a). As

such, the measure provides the order of the computation error, but should be interpreted

as an estimate rather than an exact value.

4.2.5.4 Impermeable solid - reference solutions

With a suitable measure for testing the solution accuracy in place we move onto ex-

amining the solution variant most frequently studied in the literature, the case with a

zero valued leak-off function and with Q̂0 = 1. Although there is no analytical solution

to this variant of the problem, due to its relative simplicity, it is commonly used when

testing numerical algorithms. For this reason it is very important that credible reference

data is provided for this case, which can be easily employed to verify various compu-

tational schemes. Both the viscosity and toughness dominated regimes (for different

values of the material toughness: K̂Ic = {1, 10, 100}) will be investigated. In the next
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Figure 4.7: Rate of convergence ew (4.112) of the numerical solution for the bench-
mark example: (a) viscosity dominated regime, (b) toughness dominated regime.
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Figure 4.8: Rate of convergence ev (4.112) of the numerical solution for the benchmark
example: (a) viscosity dominated regime, (b) toughness dominated regime.

subsection, accurate and simple approximations of the obtained numerical solutions will

be provided.

The results for the crack opening and particle velocity convergence rates are shown in

Figs. 4.9 - 4.12.

As can be seen, over the analyzed range of N , the computations are very accurate and

converge rapidly as the mesh density is increased. It is readily apparent from the above

that the computational error of the solver is below 10−7 for all values of the material

toughness and fluid index when taking N = 300 boundary nodes. This is clearly a
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Figure 4.9: Rate of convergence ew (4.112) of the numerical solution when Q0 = 1
with no fluid leak-off for the: (a) viscosity dominated regime, (b) toughness dominated

regime with K̂Ic = 1.
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Figure 4.10: Rate of convergence ew (4.112) of the numerical solution when Q0 = 1
with no fluid leak-off for the toughness dominated regime with: (a) K̂Ic = 10 and (b)

K̂Ic = 100.

sufficient level of accuracy, and larger numbers of nodes are not be examined here, while

N = 300 will be taken in subsequent sections when investigating solution behaviour.

In the viscosity dominated regime it can be seen that there is a lower sensitivity of ew and

ev to the value of n, however even in the toughness dominated mode the dependence of

ew on the fluid behaviour index becomes less pronounced as K̂Ic grows. A general trend

can be observed, in that the convergence rate is magnified as the self-similar material

toughness K̂Ic increases. This is due to the fact that, for large values of K̂Ic, the solution

tends to the limiting case of a uniformly pressurized immobile crack with a parabolic
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Figure 4.11: Rate of convergence ev (4.112) of the numerical solution when Q0 = 1
with no fluid leak-off for the: (a) viscosity dominated regime, (b) toughness dominated

regime with K̂Ic = 1.
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Figure 4.12: Rate of convergence ev (4.112) of the numerical solution when Q0 = 1
with no fluid leak-off for the toughness dominated regime with: (a) K̂Ic = 10 and (b)

K̂Ic = 100.

profile. To explain this tendency we present in Figs. 4.13-4.16 some additional data for

a single value of the fluid behavior index (n = 0.5).

It is immediately obvious that for K̂Ic > 2 the fracture aperture is almost entirely

described by the leading term of its crack tip asymptotics (for K̂Ic = 2 the maximal

deviation between them is approximately 1 percent). For the particle velocity it can be

seen that, while the effect is not as substantial as for the aperture, the crack propagation

speed v̂0 does become a better predictor of the parameter’s behaviour for larger values

of the material toughness. Meanwhile, the fluid pressure increases with growing K̂Ic,
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Figure 4.13: The aperture for n = 0.5 for different values of the fracture toughness:
(a) the normalized self-similar aperture, (b) the self-similar aperture divided by the

leading term of the crack tip asymptotics (4.73).

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

r̃

 

 

K̂Ic = 0

K̂Ic = 1

K̂Ic = 2

K̂Ic = 5

K̂Ic = 10

K̂Ic = 100

(a)

r̃v̂
(r̃

)

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

r̃

 

 

(b)
r̃
v̂
(r̃

)
v̂
0

Figure 4.14: The particle velocity for n = 0.5 for different values of the fracture
toughness: (a) the self-similar particle velocity, (b) the self-similar particle velocity

divided by the leading term of the crack tip asymptotics (4.75).

eventually becoming uniformly distributed over r̃. As a result of the decreasing pressure

gradient the velocity of the fluid flow is reduced. In Fig. 4.16 it can be seen that the

fluid flow rate rapidly converges to the limiting case with growing K̂Ic, however the rate

of convergence is greater for larger values of n. Indeed, as can be seen in Fig. 4.17, for

n = 1 the curves for K̂Ic = 1 and K̂Ic = 100 are indistinguishable, which is not the case

when n = 0.

In fact, the behaviour of the solution as K̂Ic →∞ can easily be shown to take the form:

ŵ(r̃) ∼ 4√
π
K̂I

√
1− r̃2, p̂(r̃) ∼

√
π

2
K̂I , v̂0 ∼

3

8
√
πK̂I(3− sn)

, (4.113)
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Figure 4.15: The pressure function for n = 0.5 for different values of the fracture
toughness: (a) the self-similar pressure function, (b) the self-similar pressure divided

by the value of the pressure at the fracture opening.
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Figure 4.16: The self-similar fluid flow rate for n = 0.5 for different values of the
fracture toughness.

r̃v̂(r̃) = v̂0

[
r̃2 +

3− sn
3

(
1− r̃2

)]
+O

(
K̂−1
Ic

)
, (4.114)

r̃q̂(r̃) =

√
1− r̃2

2π

[
3r̃2

3− sn
+
(
1− r̃2

)]
+O

(
K̂−1
Ic

)
, (4.115)

where sn is defined in Table 4.2. As a result the computations become far more efficient

in this case and the resulting solution is calculated to a far higher level of accuracy.

Combining the results shown above in Figs. 4.5 - 4.12, it is clear that the computations

presented here achieve a very high level of accuracy for both the aperture and particle

velocity regardless of the crack propagation regime. When using N = 300 the accuracy

of computations can almost always be assumed to be correct to a level of at least 10−7 for

the fracture aperture, and 2.5× 10−7 for the particle velocity. In this way the obtained
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Figure 4.17: The self-similar fluid flow rate for different values of the fracture tough-
ness when the fluid behaviour index is: (a) n=0 and (b) n=1.

data constitutes a very convenient and credible reference solution when testing other

computational schemes.

It is worth mentioning that the efficiency of computations achieved by this algorithm

means that this high level of accuracy does not come at the expense of simulation time.

The final algorithm requires fewer than 20 iterations to produce a solution. Simulation

times are also very short with this scheme, a more detailed analysis of which will be

provided in Sect. 4.3.5.5.

4.2.5.5 Verification of other results from the literature

In the following, using our highly accurate numerical scheme, we will verify the results

provided so far by other authors. Unfortunately, there are only a handful of papers

where respective data is provided in a form which enables comparison. In most cases

only graphs of the dependent variables are given. In order to make sure that the data

is comparable the zero leak-off case will again be examined, taking fixed Q̂0 = 1, with

transformations between the schemes outlined as necessary. Throughout this subsection

we will use N = 300 nodal points, which in previous subsections we have shown is

accurate to 7 significant digits.

We begin by analyzing the solution delivered by Linkov in [132] for the viscosity dom-

inated regime (K̂Ic = 0). Note that, as slightly different normalizations are used to

obtain the self-similar solution, the following transformations are required to obtain a

comparison between the results:

ŵ(r̃) = ζ
n
n+2 ŵL(r̃), p̂(r̃) = ζ

n
n+2 p̂L(r̃),
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v̂(r̃) = ζv̂L(r̃), Q̂0 =
1

ξ3
∗,n
ζ

2(n2+2)
n+2 Q̂L0 , (4.116)

q̂l(r̃) = ζ
n
n+2 q̂Ll (r̃), ξ∗,n =

(
2π

∫ 1

0
ςŵL(ς) dς

)− 1
3

,

where:

ζ =
3v̂0 (n+ 2)

2n+ 2
. (4.117)

Here ξ∗,n is Linkov’s normalized fracture length when Q0 = 1. It can easily be shown us-

ing the equation for fracture length from Table 4.2 that, in order for the two formulations

to coincide, the following scaling condition must be met:

ξ∗,n = ζ
2(n+1)
3(n+2) . (4.118)

The values of the self-similar fracture opening, crack propagation speed and fracture

half-length are shown in Table 4.3. The results obtained in [132] are included for com-

pleteness, and denoted with a superscript L. The notation ŵT (0) represents the trans-

formed crack opening computed according to (4.116)1 (this value is to be compared with

ŵL(0)).

n v̂0 ŵ(0) ŵT (0) ξ∗,n ŵL(0) ξL∗,n

0 0.1314342 1.688787 1.688787 0.7332914 1.6889 0.7330

0.1 0.1427914 1.602559 1.672277 0.7317711 1.6724 0.7318

0.2 0.1527660 1.535686 1.661661 0.7295243 1.6617 0.7296

0.3 0.1615208 1.482567 1.655773 0.7267291

0.4 0.1691971 1.439637 1.653833 0.7235073 1.6537 0.7236

0.5 0.1759138 1.404539 1.655334 0.7199395

0.6 0.1817680 1.375680 1.659981 0.7160755 1.6599 0.7162

0.7 0.1868366 1.351968 1.667648 0.7119399

0.8 0.1911776 1.332662 1.678369 0.7075363 1.6784 0.7076

0.9 0.1948308 1.317280 1.692338 0.7028480

1 0.1978175 1.305555 1.709934 0.6978375 1.7092 0.6978

Table 4.3: The values of fracture opening, crack propagation speed and half-length,
given to an accuracy of seven significant figures (which defines the solution accuracy
achievable for N = 300 using the authors’ solver). The final two columns, denoted
with superscript L, show the values provided in [132]. The symbols ŵT and ξ∗,n stand
for the transformed fracture opening and fracture half-length computed according to

(4.116). These values are to be compared with the last two columns.

It can easily be seen that there is a high level of correspondence between the results in

this paper and those provided by Linkov for different values of the fluid behaviour index

n. The maximum relative discrepancy is of the order 4.3× 10−4, which considering the

accuracy of our solution demonstrated in Sect. 4.2.5.3, describes the level of accuracy
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achieved by the solution from [132]. We note that, in our approach, it is sufficient to

take merely N = 40 points to have a similar accuracy (see Figs. 4.5-4.10).

Another solution to be analyzed is that from Savitski/Detournay [196], which provides

asymptotic approximations for both the viscosity and toughness dominated regimes in

the case of a Newtonian fracturing fluid. The interrelations between the self-similar

crack opening and crack propagation speed given in [196] and our results are as follows:

Ω̄m,0(r̃) =

[
4

9v̂0

] 1
3

ŵ(r̃), V (r̃) =
4

9v̂0
v̂(r̃). (4.119)

Savitski/Detournay specify the following asymptotic approximation for the self-similar

aperture:

Ω̄m,0(r̃) = 2
1
3 × 3

1
6
(
1− r̃2

) 2
3 +O

((
1− r̃2

) 5
3

)
, r̃ → 1. (4.120)

Using the relevant transformations yields:

ŵ(r̃) = 2
1
3 × 3

1
6

[
9v̂0

4

] 1
3 (

1− r̃2
) 2

3 +O
((

1− r̃2
) 5

3

)
, r̃ → 1. (4.121)

Note that interrelation between ŵ0 and v̂0 resulting from (4.121) is exactly the same

as the one defined by equations (4.76)-(4.77) based on the speed equation. Thus, any

solution in the viscosity dominated regime (for n = 1) preserving the latter will be

equivalent in terms of ŵ0 and v̂0 to the data provided in [196].

For the toughness dominated regime it is unfortunately not possible to perform the same

comparison as above with the results from [196]. This is due to the fact that Savitski

& Detournay’s solution is only self-similar in the limiting cases KI = {0,∞}, and is

a time dependent function of KI(t) in the interim. It is however possible to check the

ratio between the fracture pressure and aperture with the following equality:

ŵ(r̃)

p̂(r̃)
=

Ωk(r̃)

γ0Πk(r̃)
, (4.122)

where Ωk is Savitski & Detournay’s normalized aperture, Πk is the normalized pressure

and γ0 =
(
3/π
√

2
) 2

5 is the first term of the normalized asymptotic expansion of the

fracture length [196]. Noting that the paper gives the limiting values for KIc → ∞
as being Ωk,0 = (3/8π)

1
5
√

1− r̃2 and Πk,0 = π (π/12)
1
5 /8, it can easily be seen from

(4.113) that ratio (4.122) is satisfied in the limit. As such, we can evaluate the validity

of the asymptotic fromulae from [196] by examining the relative ratio between the two

sides of (4.122), which we will label δS, and define as follows:

S =
Ωk(r̃)

γ0Πk(r̃)
, S∗ =

ŵ(r̃)

p̂(r̃)
, δS =

|S − S∗|
|S∗|

. (4.123)
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Figure 4.18: Comparison of the ratio between the fracture aperture and pressure for
Savitski & Detournay’s solution and that presented in this paper for a few values of

the fracture toughness. Here δS shows the relative error.

In this way, the rate at which δS → 0 as K̂Ic → ∞ will determine the domain over

which the asympotic limit given in [196] (for infinite toughness) provides an accurate

approximation for the key system parameters. The results for this metric, pertaining to

the values K̂I = {1, 2, 5, 10, 100}, are provided in Fig. 4.18.

It is evident from this comparison that there is a clear correspondence between the

results of this paper and those obtained by Savitski/Detournay. The disparity between

respective data in the large toughness case, K̂Ic = 100, is compatible with the error

of our solution demonstrated for this model in Fig. 4.10. This is a strong verification

of the validity of the asymptotic formulae from [196]. However, the accuracy of those

approximations diminishes greatly for lower values of the fracture toughness, with an

error of order 10−1 when K̂I = 1. This, in turn, provides us with an estimate of when

the formula in [196] loses its practical applicability.

4.2.6 Summary of results for the classical model

In this section, the stated aim was to construct a high accuracy numerical solver for a

penny-shaped hydraulic fracture containing a fluid described by a power-law. It is clear

that this has now been achieved. The accuracy of the final algorithm was demonstrated

both against specially constructed analytical benchmarks, as well as through alternative

measures which utilized the solutions known rate of convergence as the number of nodes

increased. This model has been used to provide benchmark solutions for the particle

velocity and fracture opening, as well as to verify other results available in the literature.
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It should also be stated here that high accuracy numerical approximations of the solu-

tions obtained by this algorithm, in the case of an impermeable solid, have been created.

These simple formulae, which capture the behaviour of the benchmark solutions, make

it far easier for others to perform comparisons, which is particularly useful when exam-

ining more advanced algorithms. A full description of these semi-analytical solutions is

provided in the published paper1.

As a result, we can confidently state that incorporating the speed equation into computa-

tions involving the penny-shaped model provides clear advantages, in both the viscosity

and toughness dominated regimes. By incorporating aspects of the universal algorithm,

originally proposed in [165, 229], it is possible to develop a highly efficient algorithm for

studying the penny-shaped model of hydraulic fracture.

4.3 Radial model with tangential stress

4.3.1 Introduction and motivation

In the previous study of the classical penny-shaped model, a scheme was developed for

the case of a toughness dominated fracture. With this framework in place, it is possible

to incorporate the recent results of Wrobel, Mishuris & Piccolroaz [230], which are briefly

outlined in Sect. 2.3.3. Here it was demonstrated that the tangential stress induced by

the fluid on the fracture walls was not negligible as previously assumed, and that the

standard assumption used in the classical model, stated in (4.49), is not valid.

Taking the tangential stress into account, Wrobel, Mishuris & Piccolroaz managed to

obtain a new fracture criterion from an examination of the energy release rate at the

fracture tip. It was demonstrated that the fracture will always have the asymptotic

representation traditionally reserved for the toughness dominated regime (even when

KIc = 0).

In the original paper however, this new formulation was only provided in the KGD case.

In order to remedy this, here we provide an initial examination of the radial model when

tangential stresses are included. This will primarily consist of including the new fracture

criterion, stated in (2.45), into the model. Alongside this, in order to remain consistent

with the approach of the original authors, new normalization and self-similar schemes

will be utilized.

1These approximations were constructed by coauthor M. Perkowska, and as such are not included
here.
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One caveat is that, given this is only a preliminary investigation, we will not incorporate

the updated elasticity equation into the model. This is because, while the shear-stress

plays a significant qualitative role on the behaviour at the fracture tip, it is almost neg-

ligible throughout the rest of the domain (in comparison with other evaluated terms).

Given the non-local nature of the elasticity operator and its inverse, the addition of this

term will not have a significant quantitative effect on the final system, and will likely

be overshadowed by the errors introduced into the solution by its inclusion. The neg-

ligible nature of incorporating this term into the elasticity equation was demonstrated

numerically in the original investigation of the KGD case by Wrobel, Mishuris & Pic-

colroaz [230]. The form of the elasticity equation in this case is however provided in

Appendix. E.

The structure of this section is as follows. In Sect. 4.3.2 the system of equations describ-

ing a radial hydraulic fracture driven by a Newtonian fluid is outlined, alongside the

asymptotics describing key parameters at the crack tip, and the new fracture criterion

and shear stress intensity factor are introduced. With the full mathematical description

of the problem thus provided, an appropriate normalization scheme is introduced in

Sect. 4.3.3. The self-similar form of the problem, with the time component defined by

an exponential function, is given in Sect. 4.3.4. With the problem fully described, in

Sect. 4.3.5 the computational scheme for obtaining results is outlined, and its accuracy

demonstrated. An examination of the behaviour of key parameters is given in the case

of an impermeable solid. This is followed by a comparison of the updated scheme with

that developed previously for the classical formulation, both in terms of the solution

behaviour, as well as the efficiency of computations. Finally, a summary of the results

is given in Sect. 4.3.6

4.3.2 Problem formulation

We consider a 3D penny-shaped crack, defined in polar coordinates by the system

{r, θ, z}, with associated crack dimensions {l(t), w(t)} denoting the fracture radius and

aperture respectively. As the flow is axisymmetric, all variables will be independent of

the angle θ. Here we only consider the case when the fracture is driven by a Newtonian

fluid. As a result, many of the equations will be identical to those provided in Sect. 4.2.2,

setting the fluid index n = 1. They are repeated here for the sake of completeness.

The fluid mass balance equation is as follows:

∂w

∂t
+

1

r

∂

∂r
(rq) + ql = 0, 0 < r < l(t). (4.124)
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where ql(r, t) is the fluid leak-off function, representing the volumetric fluid loss to the

rock formation in the direction perpendicular to the crack surface per unit length of the

fracture. Throughout this paper we will assume it to be predefined and bounded at the

fracture tip.

Meanwhile q(r, t) is the fluid flow rate inside the crack, given by the Poiseuille law:

q = −w
3

M

∂p

∂r
, (4.125)

where the constant M = 12µ is the fluid consistency index. The elasticity relation

defining the deformation of the rock, without shear-stress terms, is given by:

p(r, t) = − k2

l(t)

∫ 1

0

∂w(ηl(t))

∂η
M
(

r

l(t)
, η

)
dη, 0 ≤ r < l(t), (4.126)

with its inverse:

w(r, t) =
8(1− ν2)

πE
l(t)

∫ 1

r/l(t)

ξ√
ξ2 − (r/l(t))2

∫ 1

0

ηp(ηξl(t), t)√
1− η2

dηdξ, (4.127)

where:

k2 =
E

2π(1− ν2)
. (4.128)

These equations are supplemented by the boundary condition at r = 0, which defines

the intensity of the fluid source, Q0:

lim
r→0

rq(r, t) =
Q0(t)

2π
, (4.129)

alongside the tip boundary conditions:

w(l(t), t) = 0, q(l(t), t) = 0. (4.130)

We assume that there is a preexisting fracture, starting with appropriate non-zero initial

conditions for the crack opening and length:

w(r, 0) = w∗(r), l(0) = l0, (4.131)

Finally the global balance equation takes the form:∫ l(t)

0
r [w(r, t)− w∗(r)] dr +

∫ t

0

∫ l(t)

0
rql(r, τ) dr dτ =

1

2π

∫ t

0
Q0(τ) dτ. (4.132)
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In addition to the above, we employ a new dependent variable named the particle ve-

locity, v, defined by:

v(r, t) =
q(r, t)

w(r, t)
= −w

2(r, t)

M

∂p

∂r
, (4.133)

It has the useful property that, provided the fluid leak-off ql is finite at the crack tip:

lim
r→l(t)

v(r, t) = v0(t) <∞, (4.134)

which, given that the fracture apex coincides with the fluid front (no lag), allows for

fracture front tracing through the so-called speed equation [127]:

dl

dt
= v0(t). (4.135)

This Stefan-type condition has previously been employed in 1D hydraulic fracture mod-

els, the advantages of which (alongside technical details) are shown in [118, 165, 228–230].

4.3.2.1 Crack tip asymptotics

In the classic radial model the basic modes of fracture propagation can be related to

the material toughness, with KIc = 0 indicating the viscosity dominated regime, while

KIc > 0 defines the toughness dominated regime. These two modes have been ex-

tensively studied, and have qualitatively different asymptotic behaviour, leading to a

singular perturbation problem when transitioning between the cases. In the revised HF

formulation however this problem is eliminated, as the introduction of shear stress in-

duced by the fluid ensures that the tip asymptotics remain the same irrespective of the

value of KIc.

The revised crack tip asymptotics are as follows [230]:

w(r, t) = w0(t)
√

1−R2+w1(t)
(
1−R2

)
+w2(t)

(
1−R2

) 3
2 log

(
1−R2

)
+. . . , R =

r

l(t)
→ 1,

(4.136)

p(r, t) = p0(t) log
(
1−R2

)
+p1(t)+p2(t)

√
1−R2+p3(t)

(
1−R2

)
log
(
1−R2

)
+. . . , R =

r

l(t)
→ 1,

(4.137)

additionally, we immediately have the following asymptotics for the particle velocity:

v(r, t) = v0(t) + v1(t)
√

1−R2 + . . . , R =
r

l(t)
→ 1, (4.138)

where:

v0(t) =
2w2

0(t)p0(t)

Ml(t)
, v1(t) =

w2
0(t)p2(t) + 4w0(t)w1(t)p0(t)

Ml(t)
, (4.139)
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4.3.2.2 Energy release rate

It has previously been shown that the crack tip asymptotics play a crucial role in the

behaviour of a hydraulic fracture [67, 196]. As such these must be examined in more

detail, which is achieved through an examination of the energy release rate (ERR),

accounting for the effect of tangential traction. The resulting steps are identical to

those provided in the KGD case, as the investigation is conducted in the vicinity of the

fracture front. Due to this fact, only the relevant results are provided here, while a

detailed explanation is provided in [230].

The form of the first term of the apertures asymptotic representation (4.136) is as follows:

w0(t) = γ (KI(t) +Kf (t)) , Kf =
w0(t)p0(t)

Bl(t)
, B =

4√
π

(1− ν), (4.140)

where:

γ =
4√
π

(1− ν2)

E
. (4.141)

Here the term Kf is denoted the shear stress intensity factor. The following relationships

exist between the stress intensity factors and the material toughness KIc:

KI =
KIc√

1 + 4(1− ν)ω̄
, Kf =

KIcω̄√
1 + 4(1− ν)ω̄

, ω̄ =
p0

G− p0
, (4.142)

where G is the shear modulus and p0 is the first term of the pressures asymptotic

representation at the fracture front (4.137). As such we can represent (4.140) in the

following form:

w0(t) =
γ(1 + ω̄)√

1 + 4(1− ν)ω̄
KIc. (4.143)

4.3.3 Normalisation

We introduce the following normalization scheme:

r̃ =
r

l(t)
, t̃ =

t

tn
, w̃(r̃, t̃) =

w(r, t)

l∗
, L(t̃) =

l(t)

l∗
, q̃l(r̃, t̃) =

tn
l∗
ql(r, t),

q̃(r̃, t̃) =
tn
l2∗
q(r, t), Q̃0(t̃) =

tn
2πl2∗l(t)

Q0(t), ṽ(r̃, t̃) =
tn
l∗
v(r, t),

p̃(r̃, t̃) =
tn
M
p(r, t), K̃{Ic,I,f} =

γ√
l∗
K{Ic,I,f}, tn =

M

k2
,

(4.144)

where r̃ ∈ [0, 1] and l∗ is chosen for convenience.
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Under this scheme, the Poiseuille equation provides the following relation for the particle

velocity (4.133):

ṽ = − w̃2

L(t̃)

∂p̃

∂r̃
, (4.145)

As such the fluid mass balance equation (4.124), alongside the global balance equation

(4.132), become:
∂w̃

∂t̃
− L′(t̃)

L(t̃)
r̃
∂w̃

∂r̃
+

1

r̃L(t̃)

∂

∂r̃
(r̃w̃ṽ) + q̃l = 0, (4.146)

∫ 1

0
r̃
[
L2(t̃)w̃(r̃, t̃)− L2(0)w̃∗(r̃)

]
dr̃ +

∫ t̃

0

∫ 1

0
r̃L2(s)q̃l(r̃, s) dr̃ ds =

∫ t̃

0
L(s)Q̃0(s) ds.

(4.147)

The elasticity equation (4.126) takes the form:

p̃(r̃, t̃) = − 1

L(t̃)

∫ 1

0

∂w̃

∂η
M [r̃, η] dη, (4.148)

alongside associated inverse (4.127):

w̃(r̃, t̃) =
4

π2
L(t̃)

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

ηp̃(ηξ, t̃)√
1− η2

dηdξ. (4.149)

We note that, following the approach from Sect. 4.2.2.1 (see Appendix. E), we can

rewrite this as:

w̃(r̃, t̃) =
4

π2
L(t̃)

[∫ 1

0

∂p̃(y, t̃)

∂y
K(y, r̃) dy +

√
1− r̃2

∫ 1

0

ηp̃(η, t̃)√
1− η2

dη

]
, (4.150)

where:

K(y, r̃) = y

[
E

(
arcsin(y)

∣∣∣∣ r̃2

y2

)
− E

(
arcsin(χ)

∣∣∣∣ r̃2

y2

)]
, χ = min

(y
r̃
, 1
)
. (4.151)

By evaluating the asymptotic limit of (4.150) at the crack tip, it can be shown that:

w̃0 =
4

π2
L(t̃)

∫ 1

0

ηp̃(η, t̃)√
1− η2

dη, (4.152)

which replaces the standard integral definition of the stress intensity factor.

The boundary conditions for the problem (4.129)-(4.130) are now given by:

lim
r̃→0

r̃w̃ṽ = Q̃0, (4.153)

w̃(1, t̃) = 0, q̃(1, t̃) = 0, (4.154)
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where the system has initial conditions (4.131):

w̃(r̃, 0) = w̃∗(r), L(0) = L0, (4.155)

The crack tip asymptotics (4.136), (4.137), (4.138) now take the form:

w̃(r̃, t̃) = w̃0(t̃)
√

1− r̃2 + w̃1(t̃)
(
1− r̃2

)
+ w̃2(t̃)

(
1− r̃2

) 3
2 log

(
1− r̃2

)
+ . . . , r̃ → 1,

(4.156)

p̃(r̃, t̃) = p̃0(t̃) log
(
1− r̃2

)
+ p̃1(t̃)+ p̃2(t̃)

√
1− r̃2 + p̃3

(
1− r̃2

)
log
(
1− r̃2

)
+. . . , r̃ → 1,

(4.157)

ṽ(r̃, t̃) = ṽ0(t̃) + ṽ1(t̃)
√

1− r̃2 + . . . , r̃ → 1, (4.158)

We note that we can rewrite the parameter ω̄ (4.142)3 as:

ω̃ =
p̃0

π(1− ν)− p̃0
. (4.159)

as such, the first term of the aperture asymptotics at the fracture tip are given by

(4.140), (4.143):

w̃0(t̃) =

√
L(t̃)

1 + ω̃√
1 + 4(1− ν)ω̃

K̃Ic =

√
L(t̃)

[
K̃I + K̃f

]
, (4.160)

while the stress intensity factors (4.142) are described by:

K̃I =
K̃Ic√

1 + 4(1− ν)ω̃
, K̃f =

K̃Icω̃√
1 + 4(1− ν)ω̃

, (4.161)

The Steffan condition (4.135), utilizing the Poiseuille equation (4.145) and terms from

the asymptotic representation (4.156)-(4.157), can be expressed as:

dL

dt̃
= ṽ0(t̃) = − 1

L(t̃)
lim
r̃→1

w̃2∂p̃

∂r̃
=

2w̃2
0p̃0

L(t̃)
, (4.162)

Utilizing (4.160), we can rewrite this condition as follows:

1

K̃2
Ic

ṽ0 = p̃0F (p̃0) , (4.163)

where:

F (p̃0) =
2π2 (1− ν)2

[π (1− ν) + (3− 4ν) p̃0] [π (1− ν)− p̃0]
. (4.164)

Noting the above definition, we can rewrite (4.160) in the form:

w̃0(t̃) = K̃Ic

√
L(t̃)F (p̃0), (4.165)
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Further, by integrating (4.162), we can obtain a formula for the crack length:

L(t̃) =

√
L2(0) + 4

∫ t̃

0
w̃2

0(s)p̃0(s) ds. (4.166)

4.3.4 Self-similar formulation

4.3.4.1 General case (KIc > 0)

We wish to formulate a self-similar solution described by an exponential function, such

that:

Q̃0(t̃) = Q̂0e
2αt̃, (4.167)

We search for a solution in the form:

w̃(r̃, t̃) =

√
L0Q̂0e

αt̃ŵ(r̃), L(t) = L
3
2
0

√
Q̂0e

αt̃, p̃(r̃, t̃) = p̂(r̃),

q̃l(r̃, t̃) = α

√
L0Q̂0e

αt̃q̂l(r̃), ṽ(r̃, t̃) =

√
Q̂0

L0
eαt̃v̂(r̃), q̃(r̃, t̃) = Q̂0e

2αt̃q̂(r̃), (4.168)

K̃{Ic,I,f} =
(
L0Q̂0

) 1
4
e
αt̃
2 K̂{Ic,I,f},

where:

v̂0 = v̂(1), L0 =

√
v̂0

α
. (4.169)

As such, the self-similar particle velocity will be defined as (4.145):

v̂(r̃) = −ŵ2(r̃)
dp̂(r̃)

dr̃
, (4.170)

The fluid mass and global balance equations (4.146)-(4.147) become:

ŵ − r̃ dŵ
dr̃

+
1

v̂0r̃

d

dr̃
(r̃ŵv̂) + q̂l = 0, (4.171)

3

∫ 1

0
r̃ŵ(r̃) dr̃ +

∫ 1

0
r̃q̂l(r̃) dr̃ =

1

v̂0
, (4.172)

The relationships between the pressure and aperture (4.148), (4.150) are given by:

p̂(r̃) = − 1

L0

∫ 1

0

dŵ

dη
M [r̃, η] dη, (4.173)
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ŵ(r̃) =
4

π2
L0

[∫ 1

0

dp̂

dy
K(y, r̃) dy +

√
1− r̃2

∫ 1

0

ηp̂(η)√
1− η2

dη

]
, (4.174)

while (4.152) becomes:

ŵ0 =
4

π2
L0

∫ 1

0

ηp̂(η)√
1− η2

dη, (4.175)

Alongside the source intensity and boundary conditions:

lim
r̃→0

r̃ŵv̂ = 1, (4.176)

ŵ(1) = 0, q̂(1) = 0, (4.177)

The crack tip asymptotics (4.156), (4.157), (4.158) now take the form:

ŵ(r̃) = ŵ0

√
1− r̃2 + ŵ1

(
1− r̃2

)
+ ŵ2

(
1− r̃2

) 3
2 log

(
1− r̃2

)
+ . . . , r̃ → 1, (4.178)

p̂(r̃) = p̂0 log
(
1− r̃2

)
+ p̂1 + p̂2

√
1− r̃2 + p̂3

(
1− r̃2

)
log
(
1− r̃2

)
+ . . . , r̃ → 1, (4.179)

v̂(r̃) = v̂0 + v̂1

√
1− r̃2 + . . . , r̃ → 1, (4.180)

Taking (4.169), (4.170) into account, the following relations are immediately apparent:

v̂0 = 2ŵ2
0p̂0, L0 = ŵ0

√
2p̂0

α
, (4.181)

We note that we can rewrite the parameter ω̃ (4.159) as:

ω̂ =
p̂0

π(1− ν)− p̂0
. (4.182)

As such, the first term of the aperture asymptotics at the fracture tip (4.160) are given

by:

ŵ0 =
√
L0

1 + ω̂√
1 + 4(1− ν)ω̂

K̂Ic =
√
L0

[
K̂I + K̂f

]
= K̂Ic

√
L0F (p̂0), (4.183)

where the stress intensity factors (4.161) are described by:

K̂I =
K̂Ic√

1 + 4(1− ν)ω̂
, K̂f =

K̂Icω̂√
1 + 4(1− ν)ω̂

, (4.184)

Noting the definition of F (p̂0) from (4.164), the relationships (4.181) and (4.183) imme-

diately yield:

(4ν − 3)p̂2
0 + 2π(1− ν)(1− 2ν)p̂0 −

√
2π2 (1− ν)2 K̂2

Ic

ŵ0
√
α

√
p̂0 + π2(1− ν)2 = 0, (4.185)
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4.3.4.2 Viscosity dominated case (KIc ≡ 0)

It can easily be shown from (4.185) that, noting we require p̂0 > 0 to have a physically

realistic result, we have the following in the viscosity dominated regime:

p̂0 = π (1− ν) +O
(
K̂2
Ic

)
, K̂Ic → 0. (4.186)

From this, alongside (4.183) and (4.184), it can be shown that:

ω̂ =
4(1− ν)ŵ2

0

L0K̂2
Ic

+O(1), K̂f ∼
ŵ0√
L0
, v̂0 ∼ π(1− ν)L0K̂

2
f , K̂Ic → 0, (4.187)

4.3.5 Numerical results

4.3.5.1 Computational scheme

The computation scheme utilized in this case is based on the approach outlined in

Sect. 4.2.5.1, and more fully described in Appendix. F. A brief outline is given below:

1. An initial approximation of the aperture ŵ = ŵj−1 is taken, such that it has the

correct asymptotic behaviour and satisfies the boundary conditions.

2. The fluid balance equation (4.172) is used to obtain the first asymptotic term of the

aperture ŵj0. Equation (4.185) is used to find p̂j0 and the parameters v̂j0, Lj0 follow

immediately from (4.181). Further asymptotic terms for the aperture, particle

velocity and pressure can also be obtained using analytical relations between them,

as well as numerical techniques.

3. Having the above, the (reduced) particle velocity is reconstructed from direct in-

tegration of (4.171), with the asymptotics of the functions used to increase the

accuracy and computation time. Tikhonov type regularization is employed at this

stage.

4. Equation (4.170) is now used to obtain an approximation of the (modified) pressure

derivative, and the elasticity equation (4.174), (4.175) serves to compute the next

approximation of the fracture aperture ŵj .

5. The system is iterated until the variables ŵ, p̂0, v̂, have converged to within pre-

scribed tolerances.

It should be noted that, in this case, we will not incorporate the new inverse elasticity

operator into computations. The reason for this is that, in the radial case, computing
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the elasticity operator presents the greatest challenge of any step in the algorithm. This

is especially true when we have K̂Ic < 1, as the first asymptotic coefficients (i.e. ŵ0,

v̂0,...) decrease in value, with a larger part of the solution being determined by later

terms. As such, numerical errors in this step are not as easily reduced by removing

asymptotic terms in this case. Adding additional terms will undoubtedly increase such

errors.

Meanwhile, the paper by Wrobel, Mishuris & Piccolroaz [230] demonstrated that incor-

porating the new elasticity operator into the algorithm had no significant effect on the

final result. As such, it is likely that any effect introducing this operator would have

will be hidden by the error it introduces. Given these facts, it has been decided not to

introduce a revised inverse elasticity equation into the algorithm at this stage.

4.3.5.2 Accuracy against analytical benchmarks

In order to obtain the accuracy of the numerical solution, analytical benchmark functions

are constructed. These are built from a series of base functions, which are known

solutions to the elasticity equation (4.174). The details of their construction are outlined

in Appendix. D.

The final computational algorithm utilizes a non-uniform mesh, consisting of N nodal

points. The accuracy of computations, using the measures provided by (4.109), are

depicted for varying N in Fig. 4.19. In these graphs, the maximum error over the

spacial distribution is also provided. Plots showing the full spacial distribution of the

relative errors is depicted in Fig. 4.20.
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Figure 4.19: Relative and maximum error of the numerical solution in comparison
with analytical benchmarks, for: (a) the fracture aperture, (b) the particle velocity.
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Figure 4.20: Spacial distribution of the relative error, obtained from the numerical
solution in comparison with analytical benchmarks, for: (a) the fracture aperture, (b)

the particle velocity.

It is clear from both of these figures that the numerical solution provides a high accuracy

approximation, even when taking a low number of nodal points. The maximum error of

solution for the aperture is below 10−4 when only N = 20 nodal points are used, while

the computation time is under five seconds. Meanwhile, when N = 300 spacial nodes are

taken, the solution accuracy is better than 10−7 at all points in the spacial domain, while

the average relative error is below 10−8 in for both the aperture and particle velocity.

As such, the numerical algorithm can both offer a high-speed result with a reasonable

accuracy, or a very high accuracy result with only slightly longer computation times.

4.3.5.3 Results for an impermeable solid

While testing against the numerical benchmark provides a useful method of analyzing

the error in the case when the exact solution is known, we once again require an approach

to testing the error level of the solution when no prescribed solution is known. In order

to achieve this we utilize the fact that, as in the classical case, the solution converges at

a known rate with respect to the number of nodal points: 1/N3. As such we can again

utilize (4.110)-(4.112), providing an alternative error measure for the solution.

We examine the case of an impermeable solid, such that the leak-off function is zero

valued. The rates of convergence are provided in Fig. 4.21, for various fixed values of

the stress intensity factor K̂Ic.

It is clear from Fig. 4.21 that, while the solution convergence provides a high level of

confidence in the solution when K̂Ic ≥ 1, universally achieving a level below 10−8 when

taking N = 300. Unfortunately, the case when K̂Ic = 0 does not exhibit the same
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Figure 4.21: Rate of convergence of the solution, obtained using a least-squares
method, for: (a) the fracture aperture, (b) the particle velocity.

behaviour. However, the error level obtained for K̂Ic ≤ 1 still remains below 10−4 when

N = 300, meaning that it still achieves a higher level of accuracy than that of comparable

solvers (see Sect. 4.2.5.5). As such, it can be said that the numerical solution provides

a suitable benchmark regardless of the value of K̂Ic.

With the validity of the benchmark demonstrated, an examination of the results can be

conducted.

Results for the primary problem variables, namely the aperture, particle velocity and

pressure, are given in Fig. 4.22. Meanwhile, a more substantial examination of the

relationship between the self-similar material toughness and the important problem pa-

rameters is provided in Figs. 4.23 & 4.24.

It is clear to see that, for small K̂Ic, the shear-stress plays a significant role in the

qualitative behaviour of the system. As seen in Fig. 4.23, when taking K̂Ic < 1 the

shear-stress is the larger of the two stress intensity factors. As a result, the asymptotics

at the fracture aperture are primarily defined by this parameter. This fact is important,

as it shows that it isn’t only the viscosity dominated case (K̂Ic = 0) which is affected

by the new formulation.

As the material toughness increases however, the significance of incorporating shear

stress into the model begins to rapidly decrease. In the limiting case K̂Ic → ∞, the

behaviour of the system will coincide with those in the classical formulation (see [196]).

It should be noted however that, due to the algorithms high level of stability in the case

of large fracture toughness, incorporating the effect of tangential stress into the model

does not have any noticable downsides in terms of solution accuracy or computation

time.
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Figure 4.22: Behaviour of the problem parameters when ν = 0.3. Here we display:
(a) the crack aperture, (b) the particle velocity, (c) the pressure inside the fracture.

One final thing to note is the similarity between the results for the penny-shaped in

comparison with the KGD case. The qualitative and quantitative behaviour of the stress

intensity factors is almost identical to that obtained by Wrobel, Mishuris & Piccolroaz

[230]. This is unsuprising, given the almost identical nature of the fracture front between

the two cases.

4.3.5.4 Comparison with the classical formulation

With numerical solvers for both the classical and reformulated models of radial HF now

developed, it is possible to examine the quantitative difference in parameter behaviour

between the two. To this end, the relative difference in the solution for the aperture and

particle velocity are provided in Fig. 4.25, with the relative and absolute differences for

the pressure function given in Fig. 4.26.
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Figure 4.23: The relationship between the self-similar material toughness K̂Ic and
the system stress intensity factors. Here we show the self-similar forms of: (a) the shear
stress indensity factor K̂f , (b) the stress intensity factor K̂I , (c) the ratio between the

stress intensity factors.

It is clear from Fig. 4.25 that the maximum relative deviation between the solutions

for the new and classical formulations is approximately 3%, for the fracture aperture

at the crack tip. This is almost identical to the difference reported in the KGD case

[230], which is not surprising given the identical behaviour of the two formulations in

that region. The relative difference in the particle velocity however is notably smaller,

not even surpassing 0.03% regardless of the value of K̂Ic taken.

Interestingly, the difference in solution for the aperture explains why the experimental

investigation by Bunger & Detournay [34] obtained incorrect values for the crack tip

asymptote in the viscosity dominated regime. As can be seen in Fig. 4.25a, the aperture

remains almost identical to the classical solution, with an asymptotic exponent of 2/3,

until very close to the fracture front. Given that their experimental data was described as
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Figure 4.24: The relationship between the self-similar material toughness K̂Ic and
the leading terms of the system asymptotics. Here we show the coefficients for: (a) the

fracture aperture ŵ0, (b) the pressure function p̂0.
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Figure 4.25: Relative difference in the solutions obtained for a penny-shaped fracture
with or without tangential stress, for: (a) the fracture aperture (with the blue circle

indicating the maximum deviation when K̂Ic = 0), (b) the particle velocity.

“measuring the full-field crack opening within 10% accuracy”, their experiment was not

capable of measuring the actual crack tip asymptote, and instead obtained the leading

near-tip term, which has an exponent of 2/3 in both formulations. As such, the model

presented here remains in line with current experimental results.

Meanwhile, for the pressure function, there is a far larger relative difference between the

solutions for the two formulations, achieving a maximum just below 102 in the viscosity

dominated regime. This is due to the pressure crossing the x-axis (i.e. p̂(r̃) = 0 for

some r̃ near to 1, see Fig. 4.22c), and as such isn’t seen when taking the absolute value

(compare Fig. 4.26a & 4.26b). The absolute difference however becomes very large at
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Figure 4.26: Relative difference in the solutions pressure function obtained for a
penny-shaped fracture with or without tangential stress: (a) the relative difference, (b)

the absolute difference.

the crack tip, exceeding 102, as the qualitative difference between the pressure solutions

leads to differing singularities, greatly affecting the result.

Overall, it is clear that over most of the fracture domain the difference in parameter

behaviour between the two formulations is not large. It should be noted however that,

while the quantitative differences between the solutions may not be overly significant, the

qualitative behaviour for small K̂Ic clearly is. This is most notable in terms of the system

asymptotics at the fracture tip, which are radically different in the classical formulation.

In addition, this change also eliminates the singular perturbation problem which is

typically encountered when transitioning from the viscosity to toughness dominated

regimes.

4.3.5.5 Effect of introducing tangential stress on computation times

One of the key concerns expressed by those working in HF about incorporating shear-

stress into the model, is that typically simulating a toughness dominated fracture takes

noticeably more time than for the viscosity dominated case2. Given that one of the

stated aims of this work on devising a new model of penny-shaped fracture was to

indeed reduce computation time, we will here investigate the effect on the algorithms

efficiency which has occurred due to incorporating the tangential stress.

The run-time of simulations of radial hydraulic fracture, when K̂Ic = 0, are provided in

Fig. 4.27. Here we show the simulation times, alongside the ratio between them, defined

2This view comes from discussions between colleagues and individuals working in the HF industry.
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as:

δt =
Simulation time with shear-stress

Simulation time in the classical case
, (4.188)

It is clear from the results that, while the incorporation of the tangential stress into the

model has had an effect on simulation times, it is not overly significant. This is especially

true given that, as can be seen in Fig. 4.27a, the total duration of simulations in either

case is less than 30 seconds, which is still faster than other comparable solvers. Whats

more, neglecting the effect of shear-stress leads to the theory failing to describe the true

qualitative behaviour of the system, whilst also causing a singular perturbation problem

in the case of small fracture toughness. Given that the difference in computation times

is less than 4 seconds, even when taking N = 300 nodal points, this seems like a high

price to pay.

4.3.6 Summary for radial HF with shear-stress

In this section the recently developed fracture criterion, incorporating the effects of

shear-stress, was introduced into the modeling of a penny-shaped hydraulic fracture.

A numerical algorithm capable of obtaining high accuracy solutions has been created,

which is sufficiently efficient to prevent a significant increase in computation times com-

pared with the classical formulation. A comparison of results obtained when including

the effect of tangential stresses, against those using the traditional fracture criterion,

has been conducted.
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It was demonstrated that, while there is not a large quantitative difference between the

results obtained for the classical and reformulated models of radial HF, there was a clear

disparity between the qualitative behaviour of the system parameters in the viscosity

dominated regime (when K̂Ic = 0). Namely, the system asymptotics at the crack tip

remain the same as in the toughness dominated regime (K̂Ic > 0), eliminating the

singular perturbation problem which plagued previous attempts at examining fractures

with small toughness, or cracks transitioning between the two regimes.

The model presented here however is not yet complete. The reformulated (inverse) elas-

ticity operator has yet to be incorporated which, while not expected to yield a significant

qualitative or quantitative difference to the final result, is needed for completeness. Ad-

ditionally, while the model presented here enjoys a high level of accuracy in all regimes,

there is still room for improvement in the viscosity dominated case. Finally, the numer-

ical algorithm presented here deals exclusively with the self-similar formulation of the

problem. In order to ensure that the final results enjoy as greater degree of applicability

as possible, this method should be extended to the transient (time-dependent) regime,

similar to that previously achieved for the PKN/KGD models [165].

4.4 Conclusions for the penny-shaped model

In this chapter, the case of an axisymmetric fluid driven fracture was examined, with

the aim of providing a highly accurate description of the moving boundary. The axisym-

metric formulation is of particular relevance to problems of this type, as the high level of

complexity makes modeling a ’true’ 3D variant of the problem incredibly difficult, mean-

ing that the radial case both offers the simplest method of analyzing a fully 3D model,

while also providing a method of testing advanced 3D (computational) approaches.

In order to objectively assess the success of this effort, analytical benchmark solutions for

the problem have been developed. This allows the accuracy of the numerical solver to be

examined and determined, something which was not previously possible. As a result, it

can confidently be stated that the numerical algorithm presented here achieves a solution

error below 10−8 in most cases. This was confirmed in the case of a impermeable solid

using a secondary error measure, based on the known rate of convergence of the numerical

solution. It is interesting to note that achieving this high level of accuracy was made

possible through proper application of the associated Stefan-type condition (the speed

equation), which helped to alleviate many of the difficulties arising from this complicated

solid-fluid interaction.
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Additionally, the first steps towards incorporating the effects of shear-stress into the

model have also been completed. This important modification, which requires updating

the fracture criterion, fundamentally changes the qualitative behaviour of the problem

parameters in the case with small fracture toughness. Further work is still required to

fully reformulate the problem, namely deriving the new form of the inverse elasticity

equation and incorporating it into the numerical algorithm. It should be noted however

that doing so is for the sake of completion, and will not significantly affect the final

results obtained by the solver.

Finally, although the model and numerical algorithm provided here present a significant

step forward in the modeling of axisymmetric HF, the work is far from completed. Most

notably, the results presented here only cover the self-similar variant of the problem.

This is not uncommon in the literature, however a more thorough understanding of this

phenomena will require simulating the transient (truly time dependent) regime. Addi-

tionally, important effects such as the fluid lag, and the associated piecewise extension

of the crack tip, are not incorporated into the given approach, despite playing a crucial

role in understanding how the fracture boundary develops over time. As such, there is

still much work to be done before we have a complete and comprehensive model of this

phenomena.



Chapter 5

Simulating the Hele-Shaw flow in

the presence of various obstacles

and moving particles

This work was published in the paper:

Simulating the Hele-Shaw flow in the presence of various obstacles and moving particles,

Meccanica, 51(5):1041-1055, 2016

5.1 Theoretical background and literature review

5.1.1 Problem description and motivation

Figure 5.1: Diagram of the Hele-Shaw configuration (credit: Wikimedia Commons).
Here h� 1 is the gap between the plates.

The Hele-Shaw flow was an experimental setup first devised in 1898 by H.S. Hele-Shaw

[91]. The system involves using two plates, pressed tightly together, with a fluid flowing

between them (see Fig. 5.1). The Hele-Shaw cell presents a similar setup, however the

fluid within the cell does not extend to the edges of the plates. The result is the existence

of a continuous fluid boundary, which expands or shrinks as fluid is either added to, or

removed from, the system. The advantage of this setup is that, provided the plates are

135
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close enough together, fluid flow between the plates (along the z-axis) ceases, and the

in simple cases involving a single source/sink (within the fluid), and a single fluid, the

system will no longer experiences turbulent effects. This type of flow is analogous to

other problems in microfluidics, and presents a valuable approximation for numerous

problems.

5.1.2 Governing equations

5.1.2.1 The Stefan-type equation

The Stefan-type equation for boundary development in the Hele-Shaw cell is analogous

to that in hydraulic fracturing, outlined in Sect. 4.1.3.1. It begins with an examination of

the unidirectional fluid flow between two parallel boundary walls, in this case the plates

of the cell. The key difference is that here in this case it will reduce to the study of a

two dimensional system, rather than the 1D system considered in the previous chapter.

The initial problem formulation is identical to that in equations (4.1)-(4.5). The inves-

tigation again begins with the Navier-Stokes equations, which describe fluid movement.

This flow is assumed to be slow, and to move parallel to the plates of the cell. In

addition, we assume that the (Newtonian) fluid is incompressible.

The first deviation between the two approaches is to note that, in this case, the rate of

deformation tensor γ̇ is defined by:

γ̇ =


0 0 ∂vx

∂z

0 0
∂vy
∂z

∂vx
∂z

∂vy
∂z 0

 (5.1)

As we are only considering the case when the Hele-Shaw cell contains a Newtonian fluid,

we can utilize the definition:

τ = µγ̇, (5.2)

where µ is the viscosity coefficient of the fluid in the cell.

Now, it is apparent from (5.1)-(5.2) that the shear term will be proportional to the

acceleration of the fluid (for each coordinate pair). Noting this, alongside the fact that

the length scales for x and y are O(1), while the length scale in the z direction is O(h),

while the fluid flow in the x and y directions is assumed to be slow, it can be safely

assumed that the shear terms acting between the plates of the cell will be significantly

larger than those acting in other directions. As a result of this, shear terms which are

not acting in the z-direction can be safely neglected, and the system of equations (4.5)
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will be approximated by:

∂p

∂x
=
∂τxz
∂z

,
∂p

∂y
=
∂τyz
∂z

,
∂p

∂z
=
∂τzz
∂z

. (5.3)

This, when combined with (5.1)-(5.2), and noting the symmetry conditions:

∂vx
∂z

∣∣∣∣
z=0

= 0,
∂vy
∂z

∣∣∣∣
z=0

= 0, (5.4)

gives:
∂vx
∂z

=
1

µ
z
∂p

∂x
,

∂vy
∂z

=
1

µ
z
∂p

∂y
. (5.5)

If we impose a no-slip condition on the plates of the cell:

vx

(
z = ±h

2

)
= 0, vy

(
z = ±h

2

)
= 0, (5.6)

the above immediately yields the velocity profiles:

vx =
1

2µ

[
z2 − h2

4

]
∂p

∂x
, vy =

1

2µ

[
z2 − h2

4

]
∂p

∂y
. (5.7)

As such we can evaluate the average velocity by taking the integral:

∂w

∂t
=

2

h

∫ h
2

0
v dz = − h2

12µ
∇p, (5.8)

This is often referred to as the Hele-Shaw equation. It is important to note that it

is independent of the z coordinate, being considered as a purely 2D problem. Due to

this fact, and for convenience, from this point on we consider the problem in terms of

complex variable z = x+ iy.

The similarity between the form of the Hele-Shaw equation and that of Darcy’s law,

which describes the flow of a viscous fluid through a porous medium, is immediately

apparent [47]. As such investigations of the Hele-Shaw flow in 2D can yield valuable

insight into some of the underlying mechanisms at play in 3D problems with viscous

fluids. This simplified model can also produce reasonable approximations in some specific

cases.

5.1.2.2 The Polubarinova-Galin equation

While studies of the Hele-Shaw flow provided interesting analogies for microfluidic ef-

fects, it was Polubarinova-Kochina and Galin who independently recognized that the
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∆p = Q0δO
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Figure 5.2: Problem formulation for a Hele-Shaw cell with free moving boundary.
The system is governed by the fluid pressure, which is defined by a Laplace equation
in the fluid, and a zero pressure boundary condition. Boundary evolution is defined by

its movement in the normal direction (no rotation).

free boundary formulation of the problem, with a finite pointwise source/sink, had po-

tential applications to the oil industry [64, 179, 223]. This setup is typically labeled as

the Hele-Shaw cell.

In this case we choose to examine the dimensionless form of the pressure, such that

p = 0 corresponds to atmospheric pressure, immediately yielding the zero surface tension

dynamic boundary condition:

p(z, t) = 0 ∀ z ∈ Γ(t) = δΩ(t), z = x+ iy, (5.9)

where Ω(t) indicates the domain of the fluid with free moving boundary Γ(t) = δΩ(t).

Additionally, the Hele-Shaw equation can be reduced to the Laplace equation. Incorpo-

rating the assumption that there is no rotation on the boundary provides the kinematic

boundary condition (5.11)1 (i.e. the free boundary evolution is defined by its normal

velocity). Combining these elements, the free boundary problem will be formulated as

follows:

∆p = Q0δO(z), z ∈ Ω(t), (5.10)

vn = v|Γ(t).n(t),
∂p

∂n

∣∣∣∣
z∈Γ(t)

= −vn, (5.11)

here Q0 is the strength of the fluid source/sink, δO is the Dirac measure centered on the

fluid source/sink at point O ∈ Ω(t) and n denotes the normal vector. A diagram of this

initial problem setup is provided in Fig. 5.2.
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We note that the Laplace equation directly implies that this problem can be examined

through the use of a Green’s function, transforming (5.8) into:

∂w

dt
= −Q0h

2

12µ
∇G(w; O; t), (5.12)

with G(w; O; t) being the Green’s function for the problem.

In addition to being described by a Green’s function, as the fluid flow is incompressible

and non-rotating we can introduce a complex potential W (z, t), <(W ) = p to describe

this problem. The real part of will satisfy the Dirichlet problem given by (5.9) and

(5.10), while being a multi-valued analytic function on Ω(t) for each fixed t. We can

now utilize the Cauchy-Riemann equations:

∂W

∂z
=
∂p

∂x
− i∂p

∂y
. (5.13)

Further, as we have already noted that a Green’s function can be used to describe the

problem, it immediately follows that the complex potential can be represented in the

form:

W (z, t) =
Q0

2π
log(z) + w0(z, t), (5.14)

where w0(z, t) is an analytic regular function in Ω(t).

In order to make full use of the complex potential, we introduce a conformal mapping

f(ζ, t) : U → Ω(t), where U = {ζ ∈ C : |ζ| < 1} is the unit disk. We specify that

this mapping will have the properties that: f(0, t) = 0 and ∂zf(0, t) > 0, while the

fluid boundary can now be defined as: Γ(t) =
{
f(eiθ, t) : θ ∈ [0, 2π)

}
. The conformal

mapping will also have an associated inverse g(z, t) : Ω(t)→ U (more detail on conformal

mappings can be found in Sect. 5.1.2.4).

With this notation in place, noting the definition of the outward normal to the boundary,

equation (5.11)1 yields the normal velocity:

vn = −<
(
∂W

∂ζ
ζ
∂ζf(ζ, t)

|∂ζf(ζ, t)|

)
. (5.15)

We can also take advantage of the fact that the Green’s function is invariant under

conformal mapping, from which (5.14) gives:

(W ◦ f) (ζ, t) =
Q0

2π
log(ζ),

∂W

∂ζ

∂f

∂ζ
(ζ, t) =

Q0

2πζ
. (5.16)
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With a little manipulation, combining the above yields the Polubarinova-Galin equation:

<

[
1

ζ

∂f

∂t

∂ζf(ζ, t)

|∂ζf(ζ, t)|

]
= −Q0(t)

2π
, |ζ| = 1, (5.17)

it should be noted that, in some texts within the literature, the sign of Q0 is reversed

to eliminate the negative term on the right hand side. The significance of this equation

is that it places stipulations on the form a conformal mapping can take whilst still

describing the evolution of the fluid boundary over time in the Hele-Shaw cell. This

allowed Polubarinova-Kochina [178, 179] and Galin [64] to independently develop the

first non-trivial solutions to the problem. The exact form of these solutions, alongside

several more recent efforts, are outlined in [86].

5.1.2.3 Modeling inclusions and particles

The study of the Hele-Shaw cell containing obstacles and particles is a rich field, in part

due to the fact that the cell itself is typically inexpensive to create, and can easily be

modified to provide a suitable allegory for various different practical applications. Here

we attempt to provide a brief overview of the works and approaches which are most

relevant to this particular investigation, namely those which incorporate a moving fluid

boundary and have the fluid entering the cell through a source/sink within the fluid

domain.

Recent investigations into the growth of the free flowing boundary in Hele-Shaw problems

with inclusions, or in constricted domains, finds its origins in the work of Richardson

[186]. This initial paper intended to extend the previous theories to model injection

moulds, namely to obtain the optimal position for placing air vents at the last places

to be filled by the fluid. Since then Richardson has published numerous papers on the

topic, building up the methods utilized by many of the researchers in the field [187–189].

Alongside this, a small number of computation solutions for obstacles in the Hele-Shaw

cell have begun to appear in recent years. There was the notable paper by McDonald

[141], which obtained approximate solutions for the Hele-Shaw flow in a half-plane, or in

the case of a circular inclusion. An alternative approach to modeling the Hele-Shaw cell

with inclusions was provided by Bogoyavlenskiy & Cotts, which utilized a random walk

approach to simulate the fluid/gas interactions around a solid obstacle at the edge of

the fluid domain, with a variety of differently shaped obstacles being examined [24]. It

should be noted however that the accuracy of this approach is not universally accepted

(for example the comment and author’s response to the original paper in [25, 222]).
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The first exact analytical solutions for the Hele-Shaw cell containing a stationary inclu-

sion were provided very recently by Marshall, both for the case of a circular obstacle

[136], as well as for a wall of finite length [137]. These solutions were obtained by con-

sidering the Schwarz function of the free boundary, which alongside the construction

of auxiliary functions and resolving a related Schwarz problem, allowed for the final

representation of the conformal mapping to be given in integral form. To the best

knowledge of the author, these remain the only exact solutions obtained for obstacles in

the Hele-Shaw cell1.

The possibility for a new asymptotics based approach was provided by Maz’ya, Movchan

& Nieves in [138, 139]. Here they detailed method of examining the boundary growth in

a domain containing several holes or inclusions. These developments were subsequently

modified and applied to the Hele-Shaw cell in the recent papers by Mishuris, Rogosin &

Wrobel [145, 146], with the notable advantage of being able to model both a stationary

and moving inclusion. This was achieved using equation (5.12), with the Green’s function

updated to incorporate both the Neumann and Dirichlet conditions resulting from the

particles inclusion. It was assumed to take the form:

Gε(x; O) = G(x; O) +N
(

x− z0

ε
,
O− z0

ε

)
+

1

2π
log

∣∣∣∣x−O

ε

∣∣∣∣
+ εD

(
x− z0

ε

)
.∇xH (z0,O) + εD

(
O− z0

ε

)
.∇OH (x, z0) + rε(x,O),

(5.18)

where:

• the inclusion is defined by its radius ε� 1 (relative to the size of the fluid domain)

and center z0 = (z0,x(t), z0,y(t)).

• |rε(x,O)| ≤ Const·ε2 is the remainder term for the asymptotic expansion, ensuring

a high level of approximation accuracy for small inclusions.

• N provides the Neumann function for the exterior of the re-scaled obstacle, which

is analogous to calculating the effect of the circular particle on the streamlines for

the fluid flow (see Fig. 5.3). Note that properly incorporating this effect requires

incorporating a log term (following the N in (5.18)), which acts as a correction

term.

• D gives the Dirichlet data on the boundary of the fluid domain. This describes

how the solution to the standard Dirichlet problem for the Hele-Shaw cell with a

free-moving boundary (5.9)-(5.10) (see also Fig. 5.2) has to be updated to account

1Other solutions for the Hele-Shaw cell containing particles exist, e.g. [180], however these focus only
on the effect of the Stokes flow on the particle, and provide no information about the fluid boundary.
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Figure 5.3: Streamlines around a circle cylinder without turbulent effects (e.g. in the
Hele-Shaw flow). As the flow is anti-symmetric around the particle it will not induce

rotation (Credit: Wikimedia commons).

for the transmission conditions resulting from the particles inclusion. This term

appears twice in order to satisfy the necessary symmetry conditions (i.e. if the x

and y coordinates are switched, that the solution will remain the same subject to

the corresponding transformation).

• G, H are the Green’s function for the fluid domain in the absence of inclusions

alongside its regular part (respectively).

A more rigorous definition of each component is provided in [146]. Furthermore, this

approach can be extended to objects in three dimensions (as opposed to the quasi-2D

formulation of the Hele-Shaw cell), as outlined by Nieves in [155].

In addition to the above, a secondary equation, dictating the movement of the particle

in the cell, is obtained using Newton’s equation of motion while accounting for the drag

caused by the contact between the circular inclusion and the cell walls. This equation

will therefore take the form:

mz′′0 =

∫
Γε

p(s) ds− κπε2z′0, (5.19)

with κ being the friction coefficient of the particle with the plates of the Hele-Shaw cell,

while the integral provides the hydrodynamic forces acting on the particle boundary.

Simplifying this, and replacing the pressure term with the corresponding Green’s func-

tion approximation (p = Q0G), the final equation for particle motion will be provided
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by:

z′′0 +
κπε2

m
z′0 =

Q0ε

m

∫ 2π

0
Gε (z0,x + ε cos θ, z0,y + ε sin θ; O; t) .n(in)(θ) dθ, (5.20)

z0(0) = z(0), z′0(0) = z(1), (5.21)

and n(in) denoting the internal normal vector on the boundary of the inclusion. It

should be noted that the particle was assumed circular, and as such non-rotating due

to: i) the flow being anti-symmetric on the particle boundary, causing rotational effects

induced by the flow to cancel out (see Fig. 5.3), ii) the inclusion being asymptotically

small, meaning that the pressure exerted by the fluid around the particle boundary can

be typically assumed constant (i.e. rotation will not result from hydrodynamic forces

alone).

5.1.2.4 The Schwarz-Christoffel mapping

When using the asymptotic methods outlined in the previous subsection, the end result

is a system of ordinary differential equations, which must then be resolved numerically.

Because of this, the evolving fluid boundary has to be replaced with a discrete approxi-

mation, which is achieved using a series of boundary nodes. Computing the final system

is complicated by the fact that the differential equations involved contain conformal

mappings. While multiple techniques exist to incorporate such transformations (for a

review of several, see e.g. [88]), here we will focus on utilizing the Schwarz-Christoffel

mapping. A detailed explanation of the theory behind, and implementation of, this

mapping can be found in [54], while a brief outline will be provided below.

To describe the process, the conformal mapping must first be defined. For some arbitrary

domain Ω ∈ R2, this will be a function g(x, y) : Ω→ U, where U denotes the unit circle.

We will label the unique inverse mapping g−1(ς, ζ) (see Fig. 5.4).

Then, the Schwarz-Christoffel mapping begins by approximating the boundary using a

series of discrete nodal points, which we will label w1, . . . , wN . It can be shown that the

mapping from the unit circle, defined by nodal points z1, . . . , zN , to this boundary can

be described by the equation:

g−1(z) = A+ C

∫ z N∏
k=1

(
1− ξ

zk

)αk−1

dξ, A,C ∈ C, (5.22)
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Figure 5.4: Diagram illustrating the conformal mapping from an arbitrarily shaped
domain to the unit circle. Here the map g(x, y) transforms the point wk to an associated
nodal point on the unit circle, denoted zk. The unique inverse transform g−1 allows

the original system to be obtained from the data about the unit circle.

where we have wk = g−1(zk). The constants αk take values in the range 0 < αk ≤ 2 for

finite valued wk, subject to the following constraint:

N∑
k=1

αk = N − 2, (5.23)

The constant A describes the location of the center of the domain; in the case of the

Hele-Shaw cell the position of the fluid source O. It should be noted that the most

computationally intensive step when resolving this mapping is obtaining the integral in

(5.22). Unfortunately, no general equation exists for calculating the inverse transforma-

tion g(w). Instead, numerical techniques must be employed, the two most common of

which are outlined in [217].

In this work, the mapping is implemented using the Schwarz-Christoffel toolbox created

by Driscoll [52, 53] for use in a MatLab environment. Several numerical techniques are

utilized to ensure that this toolbox is employed as efficiently and effectively as possible,

the most important of which is briefly detailed below.

One problem encountered when computing solutions to the final system of equations

(provided in Sect. 5.2.4.1) is that both the conformal mapping and its derivative need to

be computed. In the case of a regularly shaped fluid domain (e.g. a unit circle) this is not

an issue, however for more irregular shaped domains the approximation of the derivative

obtained for the conformal mapping may be well below that needed to ensure accurate

computations in certain cases (in particular, when low numbers of boundary nodes, i.e.

20 or fewer, are being utilized). By way of illustration, imagine approximating the shape



Multiple obstacles and moving particles in the Hele-Shaw flow 145

provided in the right hand side of Fig. 5.4 using only a small number of nodal points. It

is clear that not all of the shapes complexity will be incorporated, and approximations

of the derivative will likely be inaccurate for at least a portion of the domain.

To combat this issue, the derivatives are instead transformed to be calculated from the

inverse mapping. As a result, computations take place on the unit circle, providing a

far better approximation when a smaller number of boundary nodes are used, and as

such yielding a more accurate result for the derivative. Interestingly, this approach also

means that, when shapes such as the unit circle are approximated using this scheme,

the results provided for the conformal mapping will be highly accurate even when only

a small number of boundary nodes are utilized. The accuracy achieved by the scheme,

and consequences of utilizing this particular transformation, will be outlined in more

detail in Sect. 5.2.5.1.

5.1.3 Alternative approaches to modeling the Hele-Shaw cell

In studies of the classical Hele-Shaw cell, in the case of fluid injection without obstacles,

approaches based on the Polubarinova-Galin equation are the most regularly utilized for

studies of the Hele-Shaw cell with a free moving boundary (except perhaps for unstable

configurations, such as the fingering effect), however they are not alone. One recently

introduced method instead constructs the problem as an equivalent minimisation prob-

lem in the L1 norm [216]. The final numerical algorithm is able to resolve the movement

of the free boundary with great efficiency and to a high level of accuracy. Unfortunately,

possibly because this approach is fairly new and underdeveloped, it is only valid in sta-

ble, well-posed cases. As such, it doesn’t present a significant improvement on previous

methods at the current time.

Many of the alternative avenues of investigation of the Hele-Shaw cell focus on the so-

called fingering effect (sometimes referred to as Saffman-Taylor instability [194]). This

occurs when there is an initial fluid within the Hele-Shaw cell, into which a second,

less viscous, fluid is subsequently injected. Modeling the resulting growing interface

between the two fluids is an ill-posed problem in the case of a fluid sink (although

can be well-posed for a fluid source), and as such can only be investigated using the

methods described above for a small class of initial configurations [8]. It should be

noted that understanding this phenomena would be of great benefit in the study of

hydraulic fracturing, where the fingering effect can cause significant difficulties during

the secondary displacement processes involved in oil recovery [79].

One such approach is to examine the Hele-Shaw moving boundary problem through

the use of kinetic undercooling regularization techniques [100, 183, 191]. This works by
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placing an additional constraint on the pressure at the fluid boundary, which is linked

to its rate of change. This small change in the problem formulation can lead to the

problem becoming well-posed in the case of fluid suction, or when investigating the

fingering effect, which it was not previously [71]. It should be noted that the utilization

of this condition has already been used to describe small bubbles in the Hele-Shaw cell

[45]. It can also be combined with the asymptotic formulation provided in Sect. 5.1.2.3

to provide a more stable and accurate approach to modeling inclusions within the fluid,

although work towards this is still ongoing [190].

In spite of such approaches, theory has often struggled to explain crucial features in

the results [40], which are often only identified through the numerous experiments that

have been conducted into Saffman-Taylor problems (e.g. [140, 181, 211]). Because of

this, a more general examination often requires highly accurate numerical algorithms,

for example: [41, 99, 102].

There are however downsides to these approaches, which prevent their use attempting

to model large numbers of small inclusions, as proposed here. Most notably, such an

approach would clearly be too computationally intensive to produce accurate results

within a reasonable time frame using current methods, and would certainly struggle to

produce the large number of solutions required for an investigation of the kind outlined in

Appendix. G (for investigating the relationship between the volume fraction of particles

within the fluid and the apparent viscosity). For this reason, the most practical method

of completing this task is through extending representation (5.18) to cover multiple

inclusions.

5.1.4 Practical applications of modeling particles in the Hele-Shaw cell

5.1.4.1 Hydraulic fracturing and the Hele-Shaw cell

It has already been noted in Sect. 4.1.3.1 that the formulation of the governing equations

of the fluid in HF rely on mostly identical assumptions to those used in the Hele-Shaw

cell. Namely, they begin by approximating an incompressible fluid flowing between two

parallel plates, with a no slip condition on the solid boundaries, and the velocity of the

fluid front is assumed to have a parabolic distribution. In both cases there is a moving

boundary, defined by a Stefan-type condition (outlined in Sect. 2.2). In addition, the

Reynolds equation in both cases, provided by (4.33) and (5.12), are both inherently non-

linear. The key difference between the cases is only in the form of the solid boundaries,

which are assumed to be elastic in the case of HF, while perfectly rigid for the Hele-Shaw

cell.
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When noting the similarities in the formulation of these problems, it is unsuprising that

the Hele-Shaw cell has been seen as a useful analogy for problems in the oil industry

for some time [64, 179, 223], including hydraulic fracturing (see e.g. [194]). One crucial

application is to study the behaviour of granular material in confined spaces, analogous

to the proppant particles which form a key component of the fluids used during HF

[42, 55, 135]. This is particularly important during the flowback stage, which occurs

when draining fluids from hydraulic fractures, as clumping of the material can lead to a

blockage. A good review of this topic can be found in [158].

Additionally, understanding the influence of the proppant on fluid behaviour at the

fracture tip is of critical importance, especially in the cases with fluid lag or piecewise

extension of the crack, where the narrow channel geometry will be well approximated

by the Hele-Shaw cell. One particular parameter which is poorly understood is the

apparent viscosity of the fracturing fluid. The fact that the apparent viscosity may vary

throughout the medium has previously been utilized in studies of two or three-phase

porous media, where the fracture is approximated using a Hele-Shaw cell [48, 75, 193].

However, little work has been carried out to determine the relation between the proppant

volume fracture and the apparent viscosity at the crack tip. This problem is exacerbated

by the fact that there is no clear concensus as to the most accurate form of this parameter

even in the general case. A more thorough discussion of the apparent viscosity, and

potential methods of using the model presented here to examine it, are presented in

Appendix. G.

5.1.4.2 Injection moulding

One of the key motivations provided in the literature for modeling inclusions in the

Hele-Shaw cell is its applications in the plastics industry. The most frequently noted

example is that of injection moulding, where a high viscosity fluid is pumped through a

strategically placed hole into a mould of prescribed shape. During the injection process

air must be allowed to escape from the mould, and as such vents must be properly placed

around the mould at the locations which will be the last to be filled by the fluid. In

the simple case this reduces to studying the free moving boundary of a Hele-Shaw cell

containing stationary obstacles (see [186] for a more extensive description).

Previously developed models, discussed in Sect. 5.1.2.3, have allowed for the growth of

the fluid boundary to be known in the case of a single inclusion or wall. However none

of the methods typically applied in the study of injection moulding are able to examine

the case with multiple inclusions (i.e. more than one vent in the plastic mould), which

greatly restricts the mould geometries which could be examined. The method presented
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here will therefore provide a considerable extension to the utilization of the Hele-Shaw

cell in this case.

5.1.4.3 Biology and biomedical experiments

The use of microfluidic devices, including so called ’lab on a chip’ technology, has been

a growing trend in the field of experimental biology over the last few decades, with

multiple journals devoted to its study. One particular example is the case of biomedicine,

where such devices were initially used to produce a large number of near-perfect spheres,

uniformly coated in a desired pharmaceutical substance, quickly and at a very low cost.

Since then, such systems have evolved to allow experimentation on numerous moving

micro-scale objects (e.g. red blood cells) simultaneously, and with a greater level of

control than might otherwise be possible. The recent colllection of papers edited by Li

& Zhou [126] provides a good introduction to some of these applications.

Many of these ’lab on a chip’ devices are Hele-Shaw cells in all but name, relying on the

unique properties of a fluid whose movement is constrained in one dimension (see e.g.

[57, 212]). Given this, it is somewhat unsuprising that interest in the Hele-Shaw cell has

also been growing within these fields in recent years.

One such experimental paper is the work of Abbyad et al [1], which not only utilized the

Hele-Shaw cell to conduct repeatable experiments on red blood cells, but also outlined

new techniques for increasing the level of control the operator had over the design of the

experiment. Namely, they demonstrated that through small alterations to the height of

the plates in specific areas (referred to as ’anchors’), or etching a groove in the plates of

the cell (referred to as ’rails’), any droplets or cells flowing through the medium could

be either held in place or directed to follow a prescribed path. Further, by anchoring

a specific cell in place, the fluid flowing through the Hele-Shaw cell could be used to

regulate its environment. Abbyad et al demonstrated this by anchoring a red blood

cell beneath a microscope, and cyclically increasing and decreasing the oxygen levels

surrounding it, allowing them to reproduce and study the sickling of the cells.

While experiments such as these do not include a moving fluid boundary, it is clearly

advantageous to be able to predict in advance the fluid flow around the inclusions within

the fluid, for example to ensure the even distribution of any substance added to the

medium. It should be noted however, that any successful model to fully describe the

more complicated ’lab on a chip’ designs would also need to incorporate the effect of walls

within the fluid. As such, the approach provided here can at present only be utilized for

simple cases, such as the above reference paper, with further additions required to fully

describe more complicated experiments.
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Finally, the method utilized here to represent inelastic collisions means that the model

may be used to examine problems where particles coalesce (or clump), such as the study

of biological systems where agglutination occurs.

5.2 Multiple obstacles and moving particles in the Hele-

Shaw flow

5.2.1 Introduction and outline

We consider a slow viscous flow in a narrow space between two parallel plates in presence

of various fixed or moving obstacles. The model is a modification of the well-known

Hele-Shaw moving boundary value problem, which in turn is an analogous to a one-

phase Stefan problem, and is a special case of the Navier-Stokes problem (see Sect. 2.2.2

& 5.1.2.1).

It is supposed that the driving mechanism for the flow is a one-point source/sink. The

movement of particles in the flow depends not only on the source/sink intensity, but also

on the friction between obstacles and plates, as well as on the particle interaction. In

addition, particle collisions must also be accounted for, however this can be approximated

to a reasonable level of accuracy during numerical implementation, and as such will not

be directly incorporated into the analytical model.

Such an investigation is achieved by reducing the problem to a mixed boundary value

problem for the Laplace equation in a multiply connected domain. Supposing the ex-

istence of moving particles in the flow, we have to add extra equations describing this

movement (also accounting for the different friction properties of the particles). Its ge-

ometric solution (parametrization of the moving front and trajectories of the moving

particles) is sought from equations given in terms of the Green’s function for the above

mixed boundary value problem.

The primary theoretical tool is an asymptotic analysis of the model based on the ap-

proximation of the Green’s function. This is obtained using the methods developed

by Maz’ya, Movchan & Nieves, who provided several uniform asymptotic formulas for

Green’s functions related to different boundary value problems for a number of differ-

ential operators in the case of singular perturbations of the domain [138, 139]. The

relevant formulation for the case of a single particle was given by Mishuris, Rogosin &

Wrobel [145, 146], and is provided here as (5.18)-(5.21) (see Sect. 5.1.2.3).

The intention of this work is to extended these results to the case of a Hele-Shaw cell con-

taining numerous small inclusions. This requires extending the asymptotic formulation,
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however the main body of the work is involved in developing a new numerical scheme to

accurately simulate the effect of multiple particle inclusion on the moving fluid bound-

ary. Of significant importance is ensuring that the computation times remain reasonable

without reducing solution accuracy (even when hundreds of asymptotically small par-

ticles are within the fluid), enforcing the previous and newly introduced assumptions

of the model, and achieving all of this in such a way as to allow for the potential in-

corporation of inter-particle effects (although these will not be fully introduced here).

In doing so, it must be demonstrated that the developed method continues to provide

comparably good results.

The motivation behind this is primarily for use as an analogy to slurry flow in hydraulic

fracturing, most notably at the fracture tip. In particular, by taking an axisymmetrical

initial fluid domain containing inclusions, it is possible to examine the relationship be-

tween the volume fraction of the system and the apparent viscosity. An initial outline

of the key concepts, as well as the methodology which would be used to investigate such

a relationship, is provided in Appendix. G.

This chapter is organised as follows. The problem is formulated in Sect. 5.2.2, with

the final set of equations describing the model being collected under the title Problem

HSM. Next, a modified form of the Mazya-Movchan-Nieves formula for the Green’s

function of a mixed boundary value problem for the Laplace equation is presented in

Sect. 5.2.3. It accounts for all the geometrical and physical assumptions of the considered

model. The components of the proposed uniform asymptotic formula are also presented

in this chapter. The full nature and possible representations of the asymptotic formula

is similar to that provided in [145, 146], and as such will not be fully examined in this

text2.

The final system of equations is presented in Sect. 5.2.4.1, with an explanation of

the computer model developed to solve the approximate system being provided in

Sect. 5.2.4.2. The accuracy of the computational model is examined in Sect. 5.2.5.

This is followed by an examination of numerical simulations involving different scenarios

for the particles movement, in particular noting the effect of the inclusions on the fluid

flow.

5.2.2 Problem formulation

We consider a two-dimensional potential flow of viscous incompressible fluid in the Hele-

Shaw cell, caused by a source/sink placed at the origin 0. There are a finite number of

2A full explanation of the steps taken is available in the supplementary material of the published
paper.
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rigid obstacles in the flow, which is supposed to be very slow. Each obstacle is moving

without rotation due to the pressure in the flow. Their movement can be faster or slower

depending on specific friction between an obstacle and the plates of the Hele-Shaw cell.

Let us denote the domain containing the fluid and particles by Ω(t) 3 0, which will

be an open simply connected domain encircled by the free boundary Γ(t) = ∂Ω(t) at

each time instant t ≥ 0. We study the flow over an, in principle, unknown time interval

I = [0, T ]. Here the maximum permissible value of time T will correspond with the

blow-up time of any potential solution (i.e. this may correspond with the moment when

the conformal mapping begins to experience cusp formation, or the solution breaks down

in some other capacity), and this time may be rather small, particularly in the case of

a fluid sink (extraction of the fluid).

The fluid is assumed to contain M obstacles, represented by closed subdomains of

Ω(t). Each of these are assumed to have a fixed circle-cylinder shape, and as such

can be defined in terms of their radius, denoted εk, alongside their moving or sta-

tionary center, given by zk(t). The closed subdomains can therefore be defined as:

Fk(t) :=
{
z ∈ R2 : |z− zk(t)| ≤ εk

}
, k = 1, . . . ,M . Meanwhile, the corresponding do-

main occupied by the fluid is denoted ΩM (t) = Ω(t) \
M⋃
k=1

Fk.
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Figure 5.5: Diagram of the initial configuration of the Hele-Shaw cell for an arbitrary
domain Ω. Here ω0 = dist{0,Γ(0)}.
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This formulation is demonstrated graphically in Fig. 5.5, as well as certain natural

assumptions which the parameters of the initial geometry must satisfy3:

1. Particle distribution:

• The initial distribution of the particles/obstacles must not place them too

close to the boundary, with the minimum distance determined by the radius

of the particle. Stated explicitly: dist{δFk(0), δΩ(0)} = bk > εk.

• Similarly the obstacles/particles must not come too close to the source/sink,

with the radius of the particle determining the minimum: dist{δFk(0),0} =

qk > εk.

• The inclusions must not overlap with each other, this can be stated as
M⋂
k=1

Fk =

∅. More explicitly we have, for all k, l = 1, . . . ,M , k 6= l, t ∈ I: : dk,l =

|zk(t)− zl(t)| > εk + εl

2. Domain size: The characteristic size of the initial domain Ω(0) is of order 1,

with bounds on the minimum and maximum initial distance as follows: 0 < c ≤
min dist{0,Ω(0)} ≤ max dist{0,Ω(0)} ≤ 1, where c < bk + 2εk.

It is convenient to re-scale the domains Fk by introducing new variables:

ξk =
1

εk
(x− zk) , (5.24)

as a result of this transformation, the domain of each particle being considered (previ-

ously Fk) will now be represented by a unit circle centered on the origin, which can be

represented by defining the updated domain:

F0(t) := B (O; 1) , (5.25)

which will allow us to obtain a generalized formulae for the effect of each inclusion on

the boundary. It should be noted however that the variable ξk will be different for each

particle, which must be accounted for when using this simplification to obtain solutions.

In order to ensure regularity of the boundary with time (that it is smooth and does not

experience solution blow-up before time T ), we impose the following initial condition on

the boundary (this is often referred to as the maximum regularity assertion, see [9]):

∂Ω(0) ∈ C2,α, 0 < α < 1, (5.26)

3It is worth noting that the constants c, bk, dk,l and qk aren’t dependent on any individual εk.
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where C2,α represents the space of functions which are Hölder continuous (i.e. in this

case the boundary is continuous twice differentiable).

Now we are at the position to formulate our problem (compare with: [87], [97]), which

is a generalization of the models considered in [145], [146]. Note that we will first

explicitly state each part of the problem using the standard notation, before providing

a more detailed explanation below.

Problem HSM. Find 2M + 3 unknown real-valued functions

{w(s, t); G(z; ζ; t); z1(t), . . . , zM (t)}, where zk(t) = (zk,1(t), zk,2(t)),

k = 1, . . . ,M , and w(s, t) = (w1(s, t), w2(s, t)) : ∂ U× I → R2 satisfying4

1. w(s, t) ∈ Γ(t) for all (s, t) ∈ ∂ U× I.

Here the function w defines a mapping from the boundary of a unit circle to the

free-moving boundary of the fluid, over the prescribed time interval I. This term

will be used to model the growth of the fluid boundary.

2. w(·, t) : ∂ U→ Γ(t) is a C2-diffeomorphism for each fixed t ∈ I.

The function w, defining the growth of the fluid boundary, must abide by the

previously stated regularity condition (5.26). That is to say it will be continuous

twice differentiable at all points in time over the interval I.

3. w(0)(s) = w(s, 0) is a given C2-diffeomorphism of the unit circle ∂ U, which de-

scribes the boundary Γ(0) of initial domain ΩM (0).

This will be the (known) initial condition for the function w, which ensures that

it corresponds to the boundary Γ(0) which we wish to model.

4. G(z; ζ; t) is Green’s function of the operator −4 subject to the mixed boundary

value problem, i.e. for each fixed t ∈ I:

∆G(z; ζ; t) + δ(z− ζ) = 0, z, ζ ∈ ΩM (t);

G(z; ζ; t) = 0, z ∈ Γ(t), ζ ∈ ΩM (t);

∂G(z; ζ; t)

∂nz
= 0, z ∈ ∂Fk(t), ζ ∈ ΩN (t), k = 1, . . . ,M ;

This is the definition of the Green’s function for this problem. These are simply

a restatement of the classical definition of the Hele-Shaw problem, detailed previ-

ously by (5.9)-(5.11) in Sect. 5.1.2.2, taking the Green’s function to be related to

the fluid pressure by: p = Q0G.

4Unknown magnitudes w, G, z0 depend on time t from a right-sided neighborhood I of t = 0. In
fact, for our problem we need to determine the value of G(z; ζ; t) only at the point ζ = O, but we keep
the extra variable ζ for computational reasons.
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5. ∂t w(s, t) = −Q0h2

12µ · ∇G(w(s, t);O; t) for all (s, t) ∈ ∂ U× I.

The Stefan-type governing equation for the evolution of the fluid boundary over

time. The way in which this is derived from the Navier-Stokes equation was de-

tailed in Sect. 5.1.2.1, while the final form shown here again follows from replacing

the pressure with the Green’s function.

6. d2zk(t)
dt2

+
κkπε

2
k

mk

dzk(t)
dt = Q0εk

mk

2π∫
0

G(zk,1(t) + εk cos θ, zk,2(t) + εk sin θ; ζ; t) · n(k)(θ)dθ;

This is the equation determining the movement of the particles within the Hele-

Shaw cell over time. It is obtained identically to the case of a single inclusion

(outlined in Sect. 5.1.2.3), utilizing Newton’s law of motion while accounting for

the drag between the particle and the walls of the cell, as well as noting the

relationship between the fluid pressure and the Green’s function.

7. zk(0) = z
(0)
k , z′k(0) = z

(1)
k .

The (known) initial conditions governing the movement of the particles.

Here h is the width of the Hele-Shaw cell, µ is viscosity coefficient of fluid in the cell, Q0

is the strength of the source/sink, κk are the friction coefficients for the contact of k-th

obstacle and the plates of the cell, mk = πε2
kρk is the mass of the k-th obstacle, n(k)(θ)

is the internal normal vector on the boundary of k-th obstacle, k = 1, . . . ,M .

The function w(s, t) = (w1(s, t), w2(s, t)) determines the parameterization of the un-

known free boundary ∂Ω(t). Meanwhile the movement of each obstacle can be described

in terms of the location of its variable center zk(t), which is permissible as the inclusions

are moving as rotation free rigid bodies. The assumption of non-rotation is valid as the

small size and circular shape of each particle mean that the pressure function around

its boundary can be assumed constant, while the term for friction with the fluid will be

negligible compared to that between the particle and the plates of the cell. It is worth

noting that the lubricative force between particles is not modeled in this chapter, as it is

not required to test the accuracy and limitations of the proposed asymptotic formulation

(in particular those detailing the relationships between the particles and the evolution

of the fluid boundary), however this can be added at a later time without requiring

modification of the underlying analytical formulation (as it would effect particle motion,

not the relationship with the free boundary).

The existence of a solution to the above problem can be shown in a way similar to

that for the Hele-Shaw cell with air bubbles in the flow (see, e.g. [58] and references

therein), or, alternatively, as we know there will be a unique solution in the case without

inclusions, by demonstrating that the contribution of the particles to the evolution of

the free-boundary will be both bounded and abide by the regularity condition (5.26)

prior to the time of solution blow-up.
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The aim of our study is to get an approximate solution to the problem HSM, and to

create a numerical system based upon it which describes the different behaviour of small

obstacles in the Hele-Shaw flow.

5.2.3 Uniform representation of Green’s function

The method of uniform asymptotic approximation of the Green’s function related to

different boundary value problems for a number of differential operators in singularly

and regularly perturbed domains was created and developed by Maz’ya, Movchan &

Nieves, a summary of which can be found in [139]. This method has additionally been

used to successfully examine the effect of an individual obstacle or particle in the Hele-

Shaw cell [145, 146] (see Sect. 5.1.2.3). In this analysis of Problem HSM, some slight

modifications to the asymptotic formula for Nε [138, (7.1)] is required, however as the

method remains similar it won’t be repeated here in full5.

Let Gε(x,y) be a Green’s function of the Laplace operator −∆ with the zero Neumann

data on ∂Fk, k = 1, . . . ,M, and the zero Dirichlet data on Γ. The function Gε(x,y) has

the following asymptotic representation

Gε(x,y) = GΩ(x,y) +
M∑
k=1

{
N (k)

(
x− zk
εk

,
y − zk
εk

)
+

1

2π
log

∣∣∣∣x− y

εk

∣∣∣∣}+ (5.27)

+

M∑
k=1

εk

{
D(k)

(
x− zk
εk

)
· ∇xH(zk,y) +D(k)

(
y − zk
εk

)
· ∇yH(x, zk)

}
+ rε(x,y),

where

|rε(x,y)| ≤ Const · ε2.

Here, analogous to that provided for the case of a single inclusion in Sect. 5.1.2.3, we

have:

• N (k) are solutions to the modified Neumann problems in the exterior of cl ω
(k)
ε .

These are the Neumann conditions describing the flow around each individual

obstacle ω
(k)
ε ,

• D(k) are dipole vectors corresponding to inclusion ω
(k)
ε .

These are the Dirichlet data describing the transmission conditions between each

5A large part of the omitted work was completed by co-authors Prof. G. Mishuris and Prof. S.V.
Rogosin, and as such only the steps necessary to properly outline the approach philosophy will be
provided.
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inclusion and the free-moving fluid boundary. Combined with the Neumann con-

ditions above they provide a complete description of the effect of each particle on

the evolution of the boundary in the Hele-Shaw cell.

• H corresponds to the regular part of the Green’s function.

• rε(x,y) describes the order of the asymptotic approximation.

As we are dealing with asymptotically small inclusions, this term will be neglegible,

ensuring that the Green’s function approximation provided by this scheme will be

highly accurate.

The uniform estimate for the remainder in the above mentioned [138, Thm 7.1] is proven

in the L∞-norm for the general case of a two-dimensional domain containing several small

inclusions. This estimate therefore remains valid in our case for any multiply connected

domain ΩM (t) with sufficiently small interval I of time variable t.

In this case, we accept the following notation for each instant of time t ∈ I.6 GΩ(x,y) =

G(x,y; t) is Green’s function of the Laplace operator −∆ for the simply connected

domain Ω = Ω(t) with zero Dirichlet data on ∂Ω(t), which is identical to that generating

the representation presented in the case of one obstacle in [145], [146].

GΩ(x; y) := G(x; y; t) = − 1

2π
log |g(x,y)| (5.28)

This is the Green’s function for the interior simply connected domain Ω(t). Here

g(x,y) = (g1(y,y), g2(x,y)) : Ω(t) → U is the normalized conformal mapping of Ω(t)

onto the unit disc U (g(x,y)
∣∣
x=y

= 0, and g′(x,y)
∣∣
x=y

> 0). Without loss of gener-

ality, we can simplify by only considering the case y = O. If g0(x) : Ω(t) → U is any

(non-normalized) mapping, then

g(x,y) = e− arg g′0(y) g0(x)− g0(y)

1− g0(y)g0(x)
.

Next, to more easily express the final Neumann and Dirichlet functions we introduce

auxiliary variables, which are related to the scaling of the small obstacles:

ξk =
1

εk
(x− zk) , ηk =

1

εk
(y − zk) , k = 1, . . . ,M. (5.29)

In this notation, N (k)(ξk, ηk), k = 1, . . . ,M , are the Neumann functions for the exterior

of the re-scaled obstacles Fk. In this case, they can be represented explicitly (see, e.g.,

6Note that, in the case of one obstacle, this modified formula coincides with that provided by Maz’ya,
Movchan & Nieves [139, (2.72)], see also [146].
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[160, p. 68]):

N (k)(ξk, ηk) = − 1

4π
log |ξk − ηk|2− (5.30)

− 1

4π
log

[
(|ξk|2 − 1)(|ηk|2 − 1) + |ξk − ηk|2

|ξk|2|ηk|2

]
.

Meanwhile the Dirichlet functions, expressed for circular obstacles, are calculated from

integrals using formula [82, (4.397.6)]:

D(k)
1 (ξk) =

1

2

ξk,1
(ξk,1)2 + (ξk,2)2

, D(k)
2 (ξk) =

1

2

ξk,2
(ξk,1)2 + (ξk,2)2

, k = 1, . . . ,M. (5.31)

In addition to the formulae for these functions, solving Problem HSM requires both

the derivatives and integrals to be calculated. These calculations are not included here,

however they are available in the supplementary material included with the published

paper, and the results are expressed in Sect. 5.2.4.1.

5.2.4 Computational algorithm

With the asymptotic relationships required now derived, it is possible to articulate the

approximate solution to Problem HSM and create a numerical model capable of per-

forming simulations for multiple particles within the Hele-Shaw cell. Additionally, the

results of these simulations can be used to more carefully examine the effect of ini-

tial particle distribution on both the evolution of the fluid boundary and the dynamic

behaviour of the particles themselves.

5.2.4.1 Final system of differential equations

It follows from the potential theory (see, e.g. [73, Ch. 8], also [138, Lemma 5.1]), that

for any compact subset D, D ⊂ ΩN (t)

(rε(x,y))′xj ≤ ε
3, j = 1, 2, x,y ∈ D.

Thus, the Problem (HSM) can be asymptotically approximated by the following system

of equations

∂twj(w; 0; z) = −Q0h
2

12µ

(
∂xjG(w; O) + Υj(w; 0; z)

)
(5.32)

d2zk,j
dt2

+
κπε2

k

mk

dzk,j(t)

dt
=
Q0ε

2
k

mk
I

(k)
j − c sign

(
dzk,j(t)

dt

) ∣∣∣∣dzk,j(t)dt

∣∣∣∣2 , k = 1, . . . ,M,

(5.33)
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where:

Υj =
M∑
k=1

(
K

(k)
j + ∂wjJ

(k)
1 (w; O) + ∂wjJ

(k)
2 (w; O)

)
, j = 1, 2 (5.34)

with initial conditions zk(0) = z
(0)
k , z′k(0) = z

(1)
k . Here w = (w1(s, t), w2(s, t)) is an

unknown parametrization of the external boundary ∂D(t),

zk = (zk,1(t), zk,2(t)) are unknown position of the center of the moving obstacles. The

additional term in the right side of (5.33) represents the drag force, where c is a constant

computed as: c = 0.5hcxεkρf/mk, and cx stands for the drag coefficient, while ρf denotes

the fluid density.

Here, in the right hand-side of equations (5.32), (5.34) we use the formulae:

∂xjG
Ω(w1(s, t), w2(s, t); 0, 0) = (5.35)

= − 1

2π

(
g1(w1(s, t), w2(s, t); 0, 0)∂wjg1(w1(s, t), w2(s, t); 0, 0)+

+g2(w1(s, t), w2(s, t); 0, 0)∂wjg2(w1(s, t), w2(s, t); 0, 0)
)
.

K
(k)
j = − 1

2π

{
(wj − zk,j)(z2

k,1 + z2
k,2) + ε2

kzk,j

[(w1 − zk,1)2 + (w2 − zk,2)2 − ε2
k][z

2
k,1 + z2

k,2 − ε2
k] + ε2

k(w
2
1 + w2

2)
−

(5.36)

−
wj − zk,j

(w1 − zk,1)2 + (w2 − zk,2)2

}
.

∂x1J
(k)
1 (w, O) =

ε2
k

2

(
(w2 − zk,2)2 − (w1 − zk,1)2

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x1H(zk;O)− (5.37)

−
2(w1 − zk,1)(w2 − zk,2)

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x2H(zk;O)

)
,

and

∂x2J
(k)
1 (w, O) =

ε2
k

2

(
−

2(w1 − zk,1)(w2 − zk,2)

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x1H(zk;O)− (5.38)

−
(w2 − zk,2)2 − (w1 − zk,1)2

((w1 − zk,1)2 + (w2 − zk,2)2)2
· ∂x2H(zk;O)

)
,

where the derivatives ∂xjH(zk; O) are:.

∂xjH(zk;O) =
1

2π

g1(zk;O)∂zk,jg1(zk;O) + g2(zk;O)∂zk,jg2(zk;O)

g2
1(zk;O) + g2

2(zk;O)
− (5.39)

− 1

2π

zk,j
z2
k,1 + z2

k,2

.
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At last

∂xjJ
(k)
2 (w, O) =

ε2
k

2

zk,1
z2
k,1 + z2

k,1

· ∂wjF1(w; zk) +
ε2
k

2

zk,2
z2
k,1 + z2

k,1

· ∂wjF2(w; zk). (5.40)

where

Fj := ∂yjH(w; zk) =
1

2π

g1(w; zk)∂zk,jg1(w; zk) + g2(w; zk)∂zk,jg2(w; zk)

g2
1(w; zk) + g2

2(w; zk)
+ (5.41)

+
1

2π

wj − zk,j
(w1 − zk,1)2 + (w2 − zk,2)2

, j = 1, 2, k = 1, . . . ,M.

Finally, the right-hand side of remaining equations (5.33) is given by:

I
(k)
j =

g1(zk; O)∂zk,jg1(zk; O) + g2(zk; O)∂zk,jg2(zk; O)

g2
1(zk; O) + g2

2(zk; O)
+ 3

zk,j
z2
k,1 + z2

k,2

. (5.42)

5.2.4.2 Description of the scheme

The computational scheme to solve the problem is analogical to that presented in [146].

It employs reduction of the system of governing equations (5.32)-(5.33) to the dynamic

system of the first order. To this end an additional dependent variable, the velocity of

particle, is introduced:

vk = z′k. (5.43)

Thus, for the boundary curve discretized by N points and for the M inclusions inside the

domain, one obtains a system composed of 2N+4M ordinary differential equations. The

system is solved by the standard MatLab ODE tool: ode45. The conformal mappings

of the domain free boundary are performed by the Schwarz-Christoffel toolbox [52, 53],

with the derivatives of the mapping calculated using subroutines based on spline approx-

imation. When the particles collisions are detected, using an “event locator” inside the

MatLab ode solver, the computations are discontinued. New initial conditions are then

defined assuming either; a perfectly elastic impact, or a purely inelastic impact (which

is achieved by ‘fusing’ the original particles together into a single, perfectly circular,

particle with a larger radius and preserving the objects mass). Next, the computational

process is resumed with the new initial conditions.

In all simulations, as the asymptotic approximation reduces in accuracy near the source/sink,

or near to the fluid boundary, three conditions are imposed to prevent the results being

adversely affected. The first two conditions are that, for any particle k, there must
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always be a minimum distance of εk to the source/sink and to the fluid boundary. Ad-

ditionally it will be required that the minimum radial distance between the source/sink

and the fluid boundary always remains larger than 0.1.

5.2.5 Numerical examples and discussions

5.2.5.1 Computational accuracy

In order to investigate the accuracy of computations we use two analytical benchmarks.

The first one is based on the classical solution by Polubarinova-Kochina [87, p. 29]. It

describes evolution of the fluid front in the domain without inclusions (ε = 0) for both,

the fluid sink and source. In [146] it was used to define the accuracy of computations

for such a limiting case. Meanwhile, to gauge the accuracy when particles are included,

we shall modify the basic system of equations by supplementing relation (5.32) with an

additional term:

∂twj(w; 0; z) = −Q0h
2

12µ

(
∂xjG(w; O) + Υj(w; 0; z)−Υj(w̃; 0; z)

)
, (5.44)

where w̃(s, t) is a solution by Polubarinova-Kochina. In this way, w̃(s, t) becomes a

solution of the system: (5.33), (5.44). Modification (5.44) can be interpreted as the

introduction of a special leak-off function (see [229]).

The second benchmark is built in exactly the same way on the assumption that the

reference solution, w̃(s, t), describes a circular shape. Its evolution in time, defined by

the radius R(t), can be easily determined from the fluid balance.

Note that the aforementioned manner of benchmark construction can be applied for any

known w(s, t) being a solution of the system:

∂twj(w; 0; z) = −Q0h
2

12µ
∂xjG(w; O). (5.45)

In Fig. 5.6 we present the evolution of the fluid free boundary for both benchmark cases.

For the fluid sink variant a transition from curve 1 to curve 2 is implemented (domain

contraction), while for the fluid source a reverse direction of domain transformation takes

place (domain expansion). The initial positions of inclusions are marked schematically

by two types of circles: solid line for three inclusions, dashed line for eight inclusions. In

our analysis we will consider both, the immobile (fixed at initial positions) and moving

inclusions. For the fixed inclusions the governing system of equations reduces to (5.44),

where in the right hand side the predefined values of z are introduced. The error of
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computations will be described by the relative error of radius vector r(θ, t) defining the

fluid boundary.

In the first test we investigate the influence of the number and size of inclusions on

the solution accuracy. To this end, the Polubarinova benchmark is considered. The

boundary curve is discretized by N = 140 points. The computational errors at the final

time, δr(θ, tmax), are shown in Fig. 5.7-5.8 for the fluid sink and source respectively, for

the case of immobile inclusions. Three different values of ε (0.1, 0.01, 0.001) are used.

For a reference we depict also the error distribution for the case of no inclusions. The

preliminary conclusion from this test is that regardless of the number and sizes of inclu-

sions slightly better accuracy is obtained for the domain expansion. This observation is

in line with the trend reported in [146], where also a better stability of computations

for the fluid source variant was noted. It shows that a general tendency of accuracy

deterioration with growing ε is present. The results for ε = 0.001 are in fact of the same

quality as those for ε = 0, but even for ε = 0.01 the error distribution indicates that its

average value is very close to that for ε = 0. There is not much difference in accuracy

for different number of inclusions, except for the case of ε = 0.1, where for the fluid sink

one obtains distinctly worse results. However, even then the maximal solution error is

still below one percent. Note that in such a case ε is no longer a small parameter.

For the second benchmark example, the circular domain, we obtained similar trends (for

this reason we do not illustrate them), but the solution accuracy was slightly better.

In the next test we shall consider to what degree the inclusions movement affects the

accuracy of computations. Let us analyze the Polubarinova benchmark in the fluid source

configuration for eight inclusions. Again three values of ε are considered: 0.1, 0.01,
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Figure 5.6: Domain configuration for the benchmark examples: a) Polubarinova
solution, b) circular domain. Fluid source/sink is located at the origin. Depending on
the chosen variant, the domain expands from curve 2 to 1 or contracts from 1 to 2.
Radius vector r(θ, t) defines the boundary shape. Two configuration of inclusions are

shown: solid lines - three inclusions, dashed lines - eight inclusions.
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Figure 5.7: The relative error of the radius vector r(θ, tmax) for the Polubarinova
benchmark for: a) three immobile inclusions, b) eight immobile inclusions. The fluid

sink variant was analyzed. The boundary curve was discretized by N=140 points.
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Figure 5.8: The relative error of the radius vector r(θ, tmax) for the Polubarinova
benchmark for: a) three immobile inclusions, b) eight immobile inclusions. The fluid
source variant was analyzed. The boundary curve was discretized by N=140 points.

0.001. For each of these variants we compare the error of computations, δr, obtained for

moving and immobile inclusions. The results of this comparison are depicted in Fig. 5.9.

It shows that the level of accuracy is the same for both, moving and immobile inclusions.

Only some slight differences in error distribution can be observed. Again, the accuracy

gradation depends on the size of inclusions, giving the substantial deterioration only for

the biggest inclusion ε = 0.1.

In the last test we investigate to what degree the density of discretization of the fluid

free boundary affects the accuracy of computations. This time both benchmarks, the

Polubarinova and circular domain solutions, are in use. We consider the fluid sink variant
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Figure 5.10: The relative errors of the radius vector for the sink variant of the problem
related to the number of the boundary nodes N : δmax - the maximal error (circular
markers), δav - the average error (triangular markers). Respective graphs refer to: a)

the Polubarinova benchmark, b) the circular domain benchmark.

for eight inclusions of different sizes (ε = {0.1, 0.01, 0.001}). A number of simulations

was performed for N varying from 20 to 140. For every value of N , the maximal and

average errors of the radius vector r(θ, tmax) were computed. The results are depicted

in Fig. 5.10, where for comparison also the curves for ε = 0 are shown. Respective

curves for the maximal error are distinguished by the circular markers, while triangular

markers are used for the average errors. The make the graphs more legible, the results for

ε = {0.01, 0.001} are denoted by markers only. For the Polubarinova benchmark there is

a clear trend of accuracy increase with growing N . The results for ε = {0.01, 0.001} are

almost identical as those for no-inclusions case. Appreciable deterioration of accuracy

is obtained for ε = 0, however even here the errors stabilize at the level 10−3.
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Quite a different situation is observed for the circular domain benchmark. Here, there

is a counterintuitive tendency of the error, with it increasing with growing numbers of

boundary nodes. This can be explained by the addition to the algorithm which was

outlined at the end of Sect. 5.1.2.4, where we compute the derivatives of our conformal

mapping along the boundary on the unit circle rather than on the original domain, with

splines being employed to increase the approximation even further. For regular shaped

domains, this approach is almost exact (observe that in the case without inclusions the

average relative error is approximately 10−8 for N = 20 boundary nodes, see Fig. 5.10b).

As a result of this already minuscule level of error for even small values of N , the

accuracy of the approximation can’t significantly increase, and the only effect of using

larger numbers of boundary node is to increase the rate at which computational errors

accumulate. For this reason, such a trend is much less distinct for ε = 0, where it is

the presence of very large inclusions which introduces the greatest errors. Note that the

results for ε = {0, 0.001, 0.01} obtained when taking N = 140 are of the same accuracy

level as for the Polubarinova benchmark (from Fig. 5.10, when N = 140 we have that

the average error for the Polubarinova benchmark is of order 10−4, which is identical to

the circular domains average, although it should be noted that the maximal errors are

clearly lower for the circular domain).

5.2.5.2 Collision strategies and particle interactions

In any fluid containing multiple particles and an explicit boundary there exist a multi-

tude of forces which aren’t directly accounted for within the present model. Rotational

forces needn’t be considered here as the model assumes that the particles are non-

rotating. The effect of other forces influencing the particle movement are likely to be

negligible compared to that of the friction term from the inclusions contact with the

cell wall (see [232] for more information on related forces). It should be noted however

that these effects can be incorporated at a later date with minimal difficulty, as the

Green’s function (5.27) will not need to be rederived. However, given that this is only

an initial examination to determine the accuracy and viability of the suggested method

for approximating the Hele-Shaw cell with multiple inclusions, this will not be done here.

The primary situation in which forces arise for which additional algorithms are required

is the case of particle collision. Complicating matters is the fact that, for particle col-

lisions within a fluid, the lubricative force prevents both perfectly elastic and inelastic

collisions, and it also decelerates particles near to the boundary (see [121]). Determining

the exact effect of this force on the final dynamics of the system however is beyond the
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Figure 5.11: Diagram of the simulation for elastic and inelastic impacts. Here the
black dotted lines show the initial positions, the red dotted line indicates the moment
of particle collision, the red and blue coloured areas provide the final particle and fluid

positions respectively, and the marker ’x’ indicates the position of the fluid sink.

scope of this work.

To compensate for this two separate steps are taken. The first is to increase the friction

coefficient of particles which become close to the boundary, which can be easily achieved

and prevents any objects leaving the fluid domain. The second is that, in the case of

particle collisions, both the perfectly elastic and inelastic cases will be modeled. While

this will not produce the most accurate representation of the dynamics of particle inter-

action within the fluid these two cases provide the opposing ends of the spectrum, and as

such if both can be modeled then the more accurate case involving the lubricative force

can added later through the use of additional algorithms. Further these cases are very

computationally efficient, and will ensure the model does not become overly cumbersome.

Simulations in the case of two particles with various properties, obtained for both elastic

and inelastic collisions, are shown in Fig. 5.12, while the setup is displayed in Fig. 5.11.

The post-collision particle movement is determined from the conservation of momentum

combined with; conservation of energy in the elastic case, and the conservation of mass

and volume for inelastic events. The initial fluid boundary is taken from the solution

to the first order Polubarinova-Kochina system in the case of a sink, with the final time

taken as t = 0.7 seconds. Here Q0h
2/24πµ = 1, ρk = 2.8 kg/m3 for both particles,
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κ = 0.01 (dimensionless) and initially ε = {0.1, 0.05} meters.

In the conducted tests, the presence of a small number of particle collisions lead to

only a minimal increase in the computation time (compared to similar systems with-

out collisions), and the decrease in accuracy was negligible compared to that induced

by other parameters (verified using the methods previously outlined in the previous

sub-chapter). Additionally it is clear from results concerning the relative boundary de-

formation between cases (Fig. 5.12) that the difference between perfectly elastic and

inelastic collisions is relatively small compared with the total change in boundary defor-

mation. The fact that the collision type has only a minor influence on the deformation

of the free boundary only improves the case for these efficient approximations over the

more intensive option of computing the lubricative force.

5.2.5.3 Particle position and parameters

With the abilities of the model established, we can now use it to examine the effect of

particle inclusion on the fluid flow within the Hele-Shaw cell. In the case of a unit circle

or Polubarinova initial fluid domain (considered here), the flow can best be understood

as traveling in the shortest possible straight line to the boundary (sink) from the source
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(boundary). Particles placed in the path of this line will redirect the flow around it.

Therefore positioning objects near to the source/sink will disrupt the largest portion of

the domain, as the proportion of the flow disturbed is greatest, and the fluid on the

opposite side of the source/sink will extend/drain faster to compensate. Conversely ob-

stacles near the boundary will produce very localized effects, although these effects will

be far larger in magnitude (compare variant 1&2 - close to the source, and variant 7&8

closer to the boundary, in Fig. 5.14a).

As a result of the fluid flow behaving in this manner the shape of the domain, size of

the inclusions and movement of the particles over time will play a crucial role in de-

termining the effect of particle placement on the fluid boundary evolution. Particles

with a low (or zero) initial velocity, or a sufficiently high friction coefficient, will remain

almost stationary relative to the movement of the fluid. In such situations the large

magnitude localized effects are often only present over short time periods. Similarly a

small inclusion size will only disrupt a small portion of the fluid flow, and as such the

overall effects will be minimal.

These differing effects on the boundary can be displayed using simple system in which a
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Figure 5.13: Diagram simulation for initially stationary particles in a ’Line’ formation.
Here the black dotted line shows the final boundary position, the light blue coloured
area provides the initial fluid position and the marker ’x’ indicates the position of the
fluid source. The coloured circles indicate the initial particle positions, with particles:

(1,2) heavy blue, (3,4) red, (5,6) green and (7,8) black.
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Figure 5.14: Comparison of the relative radial distance to the fluid boundary, δr,
measured at the final time, when there are (a) two particles (b) M particles within the

fluid at different radial distances to the boundary in the case of a fluid source.

variety of particles are placed within an initial domain defined by the Polubarinova solu-

tion. Note that differing configurations of particles will be utilized. A diagram showing

the setup is provided in Fig. 5.13, while the relative deviation of the boundary from the

case without inclusions is provided in Fig. 5.14. It is worth stating that, in the case with

M particles, inclusions k = 1, ..,M will be taken. Additionally the particles are given

an initial velocity of zero, as this will best demonstrate the effects on the boundary in

absence of additional factors, with the remaining material parameters kept identical to

those used in the previous subsection.

The localized effects for particles near the boundary, and wider domain effects for par-

ticles near the source, are both clearly present in Fig. 5.14a. Additionally it can be seen

in Fig. 5.14b that these effects compound as the number of particles increases. These

results perfectly match the previous description in terms of the fluid flowing between

the source and the boundary. Further the results are well within the expected level of

accuracy for this problem variant (see Fig. 5.8, ε = 10−1).

5.2.5.4 Simulations with many particles

While there is no theoretical maximum for the number of particles which can be simu-

lated the computation time will obviously become a limiting factor. In practice the par-

ticle numbers which can be reasonably computed is far more dependent on the distance

between each particle and; adjacent particles, the source/sink and the boundary. As a

result, with proper initial distribution (i.e. which does not violate initial assumptions,
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Figure 5.15: Diagram showing the initial position of the boundary (blue fill), the
initial distribution of the (a,b) M = 120 (c,d) M = 540 particles, and the expected
final boundary position is denoted by a black dashed line. Here the particle distributions

are (a,c) ordered or (b,d) generated semi-randomly.

or be designed to ensure more collisions than particles present), simulations involving

hundreds of particles can be easily completed within a reasonable computation time

(typically 1.5− 4.5 hours).

Four demonstrative examples are considered, with systems containing either 120 or 540

particles in an ordered or semi-random distribution. The ordered system was defined by

distributing particles into 8 rings around the source, within a fluid domain defined by a

unit circle. Semi-random distributions where meanwhile created by splitting the initial

domain into separate rings, and choosing particle angles and radial positions within each

ring using MatLab’s random number function, rejecting particle positions which lead to

overlaps. The initial volume fraction of particles within the fluid was kept constant
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Figure 5.16: The relative deformation of the boundary between the cases with M =
120, 540 particles and the case without inclusions. Here (a) is for particles in an ordered

distribution, while (b) is for a semi-random distribution.

between cases, such that ε = 10−2 for 540 particles. A diagram showing the initial dis-

tributions is shown in Fig. 5.15, while the resulting boundary deformation over a time

period of t = 0.1 is shown in Fig. 5.16.

It is clear from Fig. 5.16 that the deformation of the boundary in the case with many

particles is far more complicated than those previously examined, with systems con-

taining particles with a similar distribution and identical volume fractions resulting in

notably different changes to the fluid boundary. That the systems with particles in an

ordered distribution had a more periodic and predictable effect on the boundary defor-

mation is not surprising, however the fact that simulations involving large numbers of

particles lead to a far smoother boundary deformation in both cases, and can easily be

conducted using this model, provides a method by which internal effects can be more

readily studied.

5.3 Conclusions for modeling multiple inclusions in the

Hele-Shaw cell

The evolution of a free moving fluid boundary, subject to the effect of moving particles in

the fluid flow from a point source/sink, has been examined. The proper Stefan condition

has been applied, alongside the use of conformal mappings and a Green’s function based

approach.
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In this way, an asymptotic approximation of the fluid flow within a Hele-Shaw cell

containing multiple free-moving particles has been obtained, which models both the

movement of the fluid boundary and the inclusions. A model based on this system of

equations has been created in a MatLab environment, which is capable of dealing with

situations involving hundreds of particles and any potential collisions between them.

The accuracy of the final model was assessed for various numbers and sizes of inclusions.

A brief examination into the effect of the particle inclusion on the fluid flow, primarily

through the resulting boundary distortion, was conducted. The key finding of the model

was the dual nature of the effect of initial particle distribution on the fluid boundary,

with particles close to the boundary causing very localized effects, while those near to

the source/sink affect the wider domain.

We now have a credible tool with which to simulate the fluid flow in a narrow channel

subject to the presence of multiple different inclusions and obstacles. The applicability

of this is clear, namely with regards to investigating the effective properties of the fluid

when it contains a large number of particles. This can be achieved through the use of an

axisymmetric formulation, however the exact method requires further development to

ensure a high level of rigor (the full details of this are outlined in detail in Appendix. G).

Once this is accomplished however, it has the potential to provide a new avenue of

investigation into the behaviour of fluids used in hydraulic fracturing near to the crack

tip, among other uses.



Chapter 6

Summary and final conclusions

In the course of this work, a series of axisymmetric problems with moving boundaries

and related to fracture were examined. In this way, the unique aspects of such systems

has been demonstrated.

The problem of solid particle erosion by a single rigid indenter was examined in Chap-

ter 3. Through a thorough investigation into the relationship between the indenter

geometry and the initial energy required to cause a fracture, it was demonstrated that

inertial terms in the impacted medium play a crucial role on the qualitative behaviour of

the system if there is a supersonic stage of the impact. In this way, it was shown that the

temporal effects, traditionally ignored during erosion studies, have to be incorporated

to properly explain dynamic impacts by small indenters. This includes incorporating

the proper Stefan-type condition to model the evolution of the contact area during the

initial stages, as well as choosing a fracture criterion which takes account of the ability

of the impacted material to dissipate energy induced by the impact loading pulse.

Unfortunately, while the final model produced in this chapter was able to provide a

qualitative description of the threshold fracture energy, much work still needs to be

done in order to provide a complete model of such erosion impacts. Most notably,

the transition between the supersonic and subsonic stages of the indentation are sewn

together using a gluing function, which does not provide a physically realistic description

of the transition. A proper model of this period of the impact would need to be derived in

order to produce an accurate formulation. Additionally, the current approach examines

the stress function along the impacts contact area, rather than at fixed spacial points.

This would have to be changed if the model is to produce a quantitative description of

the phenomena.

172
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In Chapter 4, the case of a radial hydraulic fracture was considered. It was demonstrated

that utilizing the proper Stefan-type condition, namely the speed equation, allows for the

movement of the fracture front to be more accurately traced. This eliminates many of the

previously noted difficulties, which arise due to the singular nature of the pressure at the

crack tip. As such, combined with intelligent use of data on the system asymptotics, and

a modular algorithm structure of the universal solver type, the final computer model is

able to produce very high accuracy solutions, typically with a relative error below 10−8.

This was confirmed both against newly constructed analytical benchmarks, as well as

an error measure based on the known rate of solution convergence.

Additionally, the effect of shear-stress was also incorporated into the axisymmetric model

of hydraulic fracture, which primarily involved updating the fracture criterion used to

determine the crack growth. In doing so it was shown that, while the quantitative

difference in solution behaviour was only significant at the fracture tip, the qualitative

behaviour of the solution was fundamentally altered in the case with zero fracture tough-

ness. Similarly, in the case of low fracture toughness, the singular perturbation problem

which existed previously was eliminated entirely.

Finally, the evolution of a free moving fluid boundary in the Hele-Shaw cell, subject to

the effects of moving particles and stationary obstacles in the fluid, was considered in

Chapter 5. This involved defining the Stefan condition in terms of a Green’s function,

which was then approximated using an asymptotic representation. This was resolved

to provide a final system of equations, with some terms being given in the form of a

conformal mapping to the unit circle. The final numerical model was demonstrated to

achieve a high level of accuracy, and was able to simulate large numbers of inclusions as

well as particle collisions.

One immediately apparent conclusion is the importance of properly applying the Stefan(-

type) condition when studying problems involving moving boundaries. In all of the cases

examined, this equation was either necessary to correctly model the qualitative physical

behaviour of the system, or at the very least massively simplified, and increased the

effectiveness of, any attempt to do so. Unfortunately, obtaining such a condition will

not always be possible for all problems of this type, however it is clear that it should be

the preferred route if it is available.

Finally, the fact that it is critical to take the appropriate fracture criterion in such

investigations has also been demonstrated. In the case of dynamic erosion by small-

sized indenters, failure to properly account for the ability of the material to dissipate

impact energy leads to results with little real-world applicability. Similarly, the failure

of the previous approaches to radial HF to use a fracture criterion which incorporated
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shear-stress effects lead to incorrect predictions of the systems qualitative behaviour,

most notably the parameters crack tip asymptotics.



Appendix A

Comparison with the Hertzian

formulation

The Hertzian formulation of erosion impacts, outlined in Sect. 3.1.2, still represents a

useful benchmark against which other approaches can be compared. While the two are

by no means identical, with the Hertzian model assuming a static impact compared to

the pulse loading of the presented formulation, a high level of corrolation in the initial

steps is to be expected, especially for the stress function provided in (3.30).

As such, a comparison of the three special cases, for which comparable results are avail-

able, is presented below.

A.1 Rigid cone (λ = 1)

α

r

r

Figure A.1: Geometry of the rigid cone indenter when λ = 1, here α = π/2 is the
half-angle used to define the shape of the cone in the Hertz formulation.
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In the case when of a rigid cone, the shape function for the indenter becomes z = r.

As such, the only comparison with the Sneddon formulation is the specific case when

α = π/2 (see Fig. A.1), for which the Hertzian solution presented in Sect. 3.1.2.1 reduces

to:

P =
2E

π (1− ν2)
w2, p =

E

2 (1− ν2)
, (A.1)

σr(r) =


[
− arccosh

(
1
ρ

)
+ (1−2ν)

2ρ2

{
1−

√
1− ρ2 + ρ2 log

(
1+
√

1−ρ2
ρ

)}]
p, ρ ≤ 1

(1−2ν)
2ρ2

p, ρ > 1

(A.2)

where ρ = r/a is the dimensionless coordinate.

Meanwhile, for the formulation presented in Sect. 3.2.2, we note from (3.16) that:

lim
λ→1

Π1(λ) = 2π, lim
λ→1

k1 =
2πE

1− ν2
, (A.3)

as such, the form of the contact force is immediately obtained from (3.15):

P =
2πE

1− ν2
w2, (A.4)

which does not correlate with the solution provided by Sneddon. The contact pressure

distribution is given by:

p =
P

πa2
=

2E

1− ν2
, (A.5)

where the contact radius a was obtained from (3.25). Additionally, the stress function

(3.30) reduces to:

σr(r) =

[
− log

(
1 +

√
1− ρ2

ρ

)
+

1− 2ν

ρ2

∫ ρ

0
η log

(
1 +

√
1− η2

η

)
dη

]
p, r ≤ a,

(A.6)

which yields:

σr(r) =

[
− arccosh

(
1

ρ

)
+

(1− 2ν)

2ρ2

{
1−

√
1− ρ2 + ρ2 log

(
1 +

√
1− ρ2

ρ

)}]
p, r ≤ a,

(A.7)

noting that:

arccosh

(
1

ρ

)
= log

(
1 +

√
1− ρ2

ρ

)
, 0 ≤ ρ ≤ 1. (A.8)

Finally, for r > a, the stress function is yielded from (3.31) to be:

σr(r) =
1− 2ν

2ρ2
p, r > a. (A.9)
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Combining the above, it is clear that there is a noticeable disparity between the Hertzian

formulation for impact by a rigid cone indenter and the presented formulation. It should

be noted however, that the formulation was only designed to deal with cases where λ > 1.

A.2 Spherical indenter (λ = 2)

a0

w

a

Figure A.2: Geometry of the half-sphere indenter, with radius a0, obtained when
taking λ = 2.

We begin by noting that, in order for the shape function defined in (3.14) to provide

a spherical indenter with radius a0, we require the shape constant B = a0. It should

be pointed out however that taking such a value means that the indenter in the pre-

sented formulation will define a half-sphere, rather than the full sphere approximated

by Hertz. As such, minor disparities between the formulation are to be expected. The

Hertzian formulation then remains identical to that presented in Sect. 3.1.2.2, and won’t

be repeated here.

In this case, the loading force can be shown from (3.15) to be:

P =
2
√

2E
√
a0

3 (1− ν2)
w

3
2 . (A.10)

The disparity between this result and that obtained by Hertz is simply a result of the

different indenter geometry assumed in the two cases. In fact, it has been shown in

previous investigations that loading force will coincide between the two cases if the same

geometry is assumed [224].

Next, the contact pressure from (3.24) becomes:

p(r) =
3P

2πa2

√
1− r2

a2
. (A.11)
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The stress function inside the contact area will be given by:

σr(r) =
3P

2πa2

[
−
√

1− ρ2 +
1− 2ν

ρ2

∫ ρ

0
η
√

1− η2 dη

]
, ρ ≤ 1, (A.12)

resolving the integral, we have:

σr(r) =
3P

2πa2

[
−
√

1− ρ2 +
1− 2ν

ρ2

{
1−

(
1− ρ2

) 3
2

}]
, ρ ≤ 1, (A.13)

while if ρ > 1, the stress function is given by (3.31).

In the case of a spherical indenter, it is clear that the only difference between the

formulations is the value of the total loading force P . This is easily explained by the

difference in geometry between the two models, with the loading force being higher

for the larger Hertzian indenter, but the distribution of that force remaining the same

between the cases.

A.3 Flat-bottomed cylinder (λ→∞)

The model completed by Sneddon for a static impact by a flat-bottomed cylinder into

an elastic half-plane, the details of which are displayed in Sect. 3.1.2.3, is the case in

which the closest correspondence between the two formulations is to be expected. It does

however represent the most difficult to accurately obtain using the presented model, as

it is the limiting case λ→∞ rather than an explicit value of the shape parameter. As

such, numerical methods will have to be employed for certain steps rather than taking

a purely analytical approach.

In this case, we have from (3.16)2 that:

lim
λ→∞

Π1(λ) = 2, (A.14)

as such (3.15) yields the contact force for this case:

P =
2EB

1− ν2
w. (A.15)

It is clear that, setting B = a0 yields the same result as obtained by Sneddon. Next, the

mean contact pressure is obtained from (3.24):

p(r) =
P

2πa2
lim
λ→∞

(λ+ 1)

∫ √1−ρ2

0

(
ρ2 + ξ2

)λ−2
2 dξ. (A.16)
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As such, for the two formulations two coincide (compare with (3.10)), we require that:

lim
λ→∞

(λ+ 1)

∫ √1−ρ2

0

(
ρ2 + ξ2

)λ−2
2 dξ =

1√
1− ρ2

. (A.17)

This will have to be demonstrated numerically, which we will achieve by examining the

function:

P(ρ, λ) = (λ+ 1)
√

1− ρ2

∫ √1−ρ2

0

(
ρ2 + ξ2

)λ−2
2 dξ, (A.18)

which should tend to unity as λ→∞ if (A.17) holds. The distribution of P for various

large λ is provided in Fig. A.3.
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Figure A.3: Comparison with the Sneddon solution, for the pressure distribution be-
neath a cylindrical indenter. Here P provides the ratio between the solutions (A.18),
with the requirement that P(ρ, λ)→ 1 as λ→∞, for all ρ ∈ [0, 1], if the two formula-

tions are identical.

As can be seen from the numerical examination of P, the formulations coincide for all

ρ ∈ [0, 1 − ε], where ε(λ) � 1 for large λ. It can be shown analytically that the two

formulations will not coincide in the limit at the point ρ = 1, where the Sneddon solution

is singular, while the contact pressure provided by (3.24) is undefined.

Given this high level of correspondence between the solutions, with the only significant

deviation occurring arbitrarily close to a singular point in the pressure distribution,

it is not unreasonable to state that the two formulations do coincide in the case of a

flat-bottomed cylindrical indenter.

Finally, inserting (A.17) into the formula for the stress function (3.30), we have:

σr(r) =
P

2πa2

[
− 1√

1− ρ2
+

1− 2ν

ρ2

∫ ρ

0

η√
1− η2

dη

]
, ρ ∈ [0, 1). (A.19)
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Resolving the integral, it is clear that this coincides with the Hertzian formulation.



Appendix B

Appropriate time intervals

In Sect. 3.3.4.1 we evaluate the system over some small time interval tp =
{
t1p, t

2
p

}
, using

the results in order to approximate the behaviour of the threshold fracture energy as

t→ 0. It is clear however that the choice of tp will influence the final result, and as such

we use this appendix to provide further information about how this interval is chosen.

The first problem we examine is that, in the limit, we have that v0 →∞ as t→ 0. As a

result taking points in time too close to zero may lead to results with little applicability

to real world situations. In order to investigate further we define:

T∗∗(λ) =
{

max (t∗∗) : v0(λ, t∗∗) ≥ 3× 108
}

(B.1)

which, in other words, provides the smallest impact duration for which the initial velocity

is less than the speed of light. This function can be easily obtained by iterative methods,

the results of which are shown in Fig. B.1.

It is obvious that we must take t1p > T∗∗(λ) when conducting any serious investigation,

however even taking t1p close to T∗∗(λ) will clearly still produce results which rely on

infeasible physical characteristics. It is similarly apparent that, as this papers approach

relies on the existence of an initial supersonic stage, the initial velocity of the indenter

must be sufficiently large for this stage to exist. These constraints place bounds on the

values of t1,2p which can be used, but won’t provide an exact interval over which the most

representative results may be obtained.

A secondary, although not insignificant, problem facing such an investigation is that

of ensuring accurate numerical results. This is particularly apparent for small impact

durations, where the extreme values taken by the functions, with the some tending to
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Figure B.1: The function (B.1) over a range of λ. This curve provides the minimum
time duration over which results have any real-world applicability.

infinity while others tend to zero, inevitably resulting in a loss of accuracy, particularly

during the supersonic stage. This provides not just an additional reason for accepting

a lower bound on the value of t1p, but also an additional constraint which should be

applied to t2p. Namely, in order to ensure that inaccuracies in the numerical results

don’t adversely effect our estimation of the gradient, we must have that the interval tp is

sufficiently large to ensure a significant difference in the values of the threshold fracture

energy at either end of the interval. This will decrease the tightness of the lower bound

obtained on the value of λ∗, but must be done to ensure reliable results.

Combining the above with the results of numerical experiments it was found that, when

maintaining t1p as a constant rather than as a function of λ, the best balance between

accuracy and ensuring physically meaningful results was obtained when taking t1p ≈
2× 10−6, t2p ≈ 2.5× 10−6 seconds.



Appendix C

Limiting cases: Newtonian and

plastic fluids

C.1 Newtonian fluid: n = 1

In the case of a Newtonian fluid the majority of the results remains the same as in the

general case (setting n = 1), but a few constants and functions will take alternate forms.

These are detailed below.

The crack tip asymptotics in the viscosity dominated regime can be described by general

relations (4.73)-(4.75). However, in the toughness dominated mode one has:

w̃(r̃, t̃) = w̃0(t̃)
√

1− r̃2 + w̃1(t̃)
(
1− r̃2

)
+ w̃2(t̃)

(
1− r̃2

) 3
2 log

(
1− r̃2

)
+O

((
1− r̃2

) 3
2

)
, r̃ → 1,

(C.1)

∂p̃

∂r̃
= p̃0(t̃)

(
1− r̃2

)−1
+ p̃1(t̃)

(
1− r̃2

)− 1
2 +O (1) , r̃ → 1. (C.2)

The respective asymptotic expansions at the crack inlet, for both the viscosity and

toughness dominated regimes, yield:

w̃(r̃, t̃) = w̃o0 + w̃o1r̃ +O
(
r̃2 log(r̃)

)
, r̃ → 0, (C.3)

p̃(r̃, t̃) = p̃o0(t̃) + p̃o1(t̃) log (r̃) +O (r̃) , r̃ → 0. (C.4)

It should be noted that the pressure is singular at the fracture origin, which is not the

case for non-Newtonian (n < 1) fluids.
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Meanwhile, the relationship between the new variable Ω and the pressure, in the time-

dependent formulation, follows from the definition (4.82):

p̃(r̃, t̃) = Ω0(t̃) log(r̃) + Cp(t̃) +

∫ r̃

0
Ω(ξ, t̃)dξ, (C.5)

where the time dependent constant Cp(t̃) is obtained by expanding (4.63) using (4.82):

Cp(t̃) =
1

2

√
π

L(t̃)
K̃I + [1− log (2)] Ω0(t̃)−

∫ 1

0
Ω(y, t̃)

√
1− y2 dy. (C.6)

Transforming into the self-similar formulation (4.92), these become:

p̂(r̃) = Ω̂0 log (r̃) + Ĉp +

∫ r̃

0
Ω̂(ξ) dξ, (C.7)

Ĉp =

√
π

2
K̂I + [1− log (2)] Ω̂0 −

∫ 1

0
Ω̂(y)

√
1− y2 dy. (C.8)

Finally, the auxiliary function Xn(r̃) will now be expressed as:

Xn(r̃) = r̃

(
π

2
− arctan

(
r̃√

1− r̃2

))
−
√

1− r̃2 ≡ r̃ arccos (r̃)−
√

1− r̃2. (C.9)

C.2 Perfectly plastic fluid: n = 0

In the case of a perfectly plastic fluid, alongside changes to the system asymptotics and

reformulated equations, the degeneration of the Poiseuille equation means that it cannot

be used to define the particle velocity ṽ, or the reduced particle velocity Φ. As a result

fundamental changes to the scheme are required. These are outlined below.

The crack tip asymptotics in the viscosity dominated regime remains in the same form as

was outlined in (4.73)-(4.75). In the toughness dominated mode however it now yields:

w̃(r̃, t̃) = w̃0(t̃)
√

1− r̃2 + w̃1(t̃)
(
1− r̃2

) 3
2 log

(
1− r̃2

)
+ w̃2(t̃)

(
1− r̃2

) 3
2

+O
((

1− r̃2
) 5

2

)
, r̃ → 1,

(C.10)

∂p̃

∂r̃
= p̃0(t̃)

(
1− r̃2

)− 1
2 +O (1) , r̃ → 1. (C.11)

The fracture opening and the fluid pressure can be estimated at the crack inlet as:

w̃(r̃, t̃) = w̃o0(t̃) +O
(
r̃2 log(r̃)

)
, r̃ → 0, (C.12)
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p̃(r̃, t̃) = p̃o0(t̃) + p̃o1(t̃)r̃ +O
(
r̃2
)
, r̃ → 0. (C.13)

Meanwhile, the relationship between the modified pressure derivative and the pressure

follows from the definition (4.82):

p̃(r̃, t̃) = r̃Ω0(t̃) + Cp(t̃) +

∫ r̃

0
Ω(ξ, t̃) dξ, (C.14)

where the constant Ĉp takes the form (4.63):

Cp =
1

2

√
π

L(t̃)
K̃I −

π

4
Ω0(t̃)−

∫ 1

0
Ω̂(y, t̃)

√
1− y2 dy. (C.15)

Note, from the form of the above, that the pressure is not be singular at the injection

point in this case. Transforming into the self-similar formulation (4.92) these become:

p̂(r̃) = r̃Ω̂0 + Ĉp +

∫ r̃

0
Ω(ξ) dξ, (C.16)

Ĉp =

√
π

2
K̂I −

π

4
Ω̂0 −

∫ 1

0
Ω̂(y)

√
1− y2 dy. (C.17)

It can be shown that the relationship between Ω and the fracture aperture (4.90) still

holds, with the function Xn(r̃) being given by:

Xn(r̃) = −π
8

[√
1− r̃2 + r̃2 log

(
r̃

1 +
√

1− r̃2

)]
≡ −π

8

[√
1− r̃2 − r̃2 arctanh

(√
1− r̃2

)]
.

(C.18)

In practice however, the degeneration of the Poiseuille equation means that a new scheme

for solving the governing equations must be devised. The first step towards this is to

note that the fracture aperture can be expressed as a non-linear integral equation:

ŵ(r̃) = − 8

π

∫ 1

0

1

ŵ(y)
K(y, r̃), dy +

4√
π
K̂I

√
1− r̃2, (C.19)

while the crack-propagation speed is calculated from the fluid balance equation (4.106)

as follows:

v̂0 =
Q̂0

2π
[
(3− ρ)

∫ 1
0 r̃ŵ(r̃) dr̃ + 1−ρ

γ

∫ 1
0 r̃q̂l dr̃

] . (C.20)

The reduced particle velocity Φ̂ can be determined by integrating (4.105):

Φ̂(r̃) =
v̂0

ŵ(r̃)

∫ 1

r̃
ξ

[
(3− ρ) ŵ(ξ) + (1− ρ)

q̂l(ξ)

γ

]
dξ. (C.21)



Appendix D

Analytical benchmarks for a

penny-shaped fracture

D.1 The classical formulation of radial HF

In the following we will present a way to construct a set of analytical benchmark solutions

that satisfy the system of governing equations (4.99)-(4.108) for the self-similar problem.

Those solutions can be easily extended through the relations (4.57)-(4.59), (4.63), (4.67),

(4.89) and (4.90) to the time dependent forms. In this way one can formulate a set of

analytical benchmark examples for both, the self-similar and the time dependent versions

of the problem.

The basic concept employed to derive the self-similar solutions is the same as that in

[229] for the KGD model. We assume that the crack aperture can be expressed as a

weighted sum of properly chosen base functions:

ŵ(r̃) =

M∑
i=0

λihi(r̃). (D.1)

The functions hi are selected in a way that enables one to: i) comply with the asymptotic

representation (4.73), ii) satisfy the respective boundary conditions (4.108), iii) compute

analytically the elasticity operator (4.101). The multipliers λi are to be chosen properly

to ensure the physically justified behaviour and desired properties of the solution.

Provided that iii) is satisfied, the fluid pressure function can be computed in a closed

form from (4.101) to give:

p̂(r̃) =
M∑
i=0

λiπi(r̃), (D.2)
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where each function πi corresponds to respective function hi.

The self-similar stress intensity factor follows immediately from the asymptotic bahviour

of functions hi and complies with (4.107). Next, the self-similar crack propagation speed,

v̂0 can be determined according to (4.99), while the particle velocity is computed from

(62) to produce:

v̂(r̃) =

−
[
M∑
i=0

λihi(r̃)

]n+1

·
M∑
i=0

λiπ
′
i(r̃)


1/n

. (D.3)

Consequently, the reduced particle velocity is defined by employing (D.2) in (4.95)1. The

influx magnitude, Q̂0, is computed from (4.108), while the modified pressure derivative

can be obtained from the definition (4.95)2, (4.97). Finally, the benchmark leak-off

function is determined by a transformation of (4.105) as:

q̂l(r̃) =
γ

1− ρ

[
(ρ− 3)ŵ(r̃)− 1

rv̂0

(
ŵ(r̃)φ̂(r̃)

)′]
, (D.4)

where the quantities on the right hand side are taken according to (D.1)-(D.3).

In this way, by using different values of the coefficients λi and different functions hi(r̃),

πi(r̃) one can construct a number of self-similar problems for various fluid behaviour

indices and crack propagation regimes, for which there exist known purely analytical

solutions in the form (D.1)-(D.3). The values of pumping rate, Q̂0, and the self-similar

material toughness, K̂Ic, can be tuned by the choice of magnitudes of respective coeffi-

cients λi.

The examples of base functions hi(r̃), πi(r̃) are collected in Table D.1.

To provide a very simple example of a numerical benchmarks which can be created using

the aforementioned methodology, we consider the following composite functions:

hA(r̃, α) = h5(r̃, α) +
π

1 + 2α
h0(r̃)− 2

1 + 2α
h1(r̃), (D.5)

hB(r̃, n) = −h2(r̃, n) +
n
√
πΓ
(

3−n
2

)
2Γ
(
2− n

2

) h0(r̃) +
2 (1− n) Γ

(
3−n

2

)
√
πΓ
(
2− n

2

) h1(r̃), (D.6)

with the corresponding pressure terms:

πA(r̃, α) = π5(r̃, α) +
π

1 + 2α
π0 −

2

1 + 2α
π1(r̃), (D.7)
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i πi(r̃) hi(r̃)

0 1 8
π

√
1− r̃2

1 r̃
√

1− r̃2 + r̃2 log
(

1+
√

1−r̃2
r̃

)

2 r̃1−n 2Γ( 3
2
−n

2 )Γ(n2−1)
Γ(2−n

2 )Γ(n2−
1
2)

[
r̃2−n − Γ(n2−

1
2)

√
πΓ(n2 ) 2F1

(
1
2 ,

n
2 − 1; n2 ; r̃2

)]

3 r̃2−n 2Γ(2−n
2 )Γ(n−3

2 )
Γ( 5−n

2 )Γ(n2−1)

[
r̃3−n − Γ(n2−1)

√
πΓ(n−1

2 )2F1

(
1
2 ,

n−3
2 ; n−1

2 ; r̃2
)]

4 log(r̃) 8
π

[
r̃ arccos (r̃) + (log(2)− 2)

√
1− r̃2

]

5
∑

k r̃2F1

(
1
2 − αk, 1; 1

2 ; r̃2
) ∑

k

2
√
π(1−r̃2)

αk

1+2αk

[
Γ(αk+ 1

2)
Γ(1+αk) 2F1

(
1
2 ,

1
2 + αk; 1 + αk; 1− r̃2

)
+

4Γ( 3
2

+αk)
(1+2αk)Γ(αk) 2F1

(
−1

2 ,
1
2 + αk; 1 + αk; 1− r̃2

)]
− 4

1+2αk
log
(

1+
√

1−r̃2
r̃

)

6 arctanh(r̃) 4
[
E
(
1− r̃2

)
−K

(
1− r̃2

)
+ log

(
1+
√

1−r̃2
r̃

)]
Table D.1: Table showing the components of the benchmark solutions. Here 2F1 is the
Gaussian hypergeometric function, while functions K, E represent the complete elliptic
integral of the first and second kinds respectively. Note that we adopt the notation
π5(x, α0, . . . , αM ), h5(x, α0, . . . , αM ) to indicate a summation over k = 1, 2, . . . ,M for

this section of the text.

πB(r̃, n) = −π2(r̃, n) +
n
√
πΓ
(

3−n
2

)
2Γ
(
2− n

2

) π0 +
2 (1− n) Γ

(
3−n

2

)
√
πΓ
(
2− n

2

) π1(r̃). (D.8)

Then the asymptotic behaviour of the respective functions at the fracture tip is: Then

the asymptotic behaviour of the respective functions at the fracture tip is:

hA(r̃, α) =
2
√
πΓ
(
α+ 1

2

)
Γ (α+ 1)

(
1− r̃2

)α
+O

((
1− r̃2

)min( 5
2
,α+1)

)
, r̃ → 1, (D.9)

πA(r̃, α) =

√
π (1− 2α) Γ (2− α)

2(1− α)Γ
(

3
2 − α

) (
1− r̃2

)α−1
+[

π

1 + 2α
− 2

1 + 2α
− Γ (α− 1)

2Γ (α)

]
+O

((
1− r̃2

)min(1,α)
)
, r̃ → 1,

(D.10)

hB(x, n) = O
((

1− r̃2
) 5

2

)
, r̃ → 1, (D.11)
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πB(x, n) =
Γ
(

3−n
2

)
Γ
(
2− n

2

) [n√π
2

+
2(1− n)√

π

]
− 1 +O

(
1− r̃2

)
, r̃ → 1. (D.12)

It can easily be seen from the above equations that the functions hA and πA will provide

the proper first term of the crack tip asymptotics for the aperture (4.73) and pressure

derivative (4.74), (4.79), provided that α is taken in accordance with Table 4.1. Further

terms may also be constructed, although subsequent (known) asymptotic terms of hA

and πA must be accounted for. Additionally the behaviour of hB, πB at the crack tip

ensures that it will not interfere with the final asymptotics of the benchmark at the

fracture front in a notable way.

Meanwhile, at the crack inlet, we have:

hA(r̃, α) =
2

1 + 2α

[
3 +

4α

1 + 2α
−H

(
α− 1

2

)]
+O(r̃2 log(r̃)), r̃ → 0, (D.13)

πA(r̃, α) =
π

1 + 2α
+O(r̃), r̃ → 0, (D.14)

hB(r̃, n) = −
2n
√
π (1− n) sec

(
nπ
2

)
(2− n) Γ

(
2− n

2

)
Γ
(
n−1

2

) +O(r̃2−n), r̃ → 0, (D.15)

πB(x, n) =
n
√
πΓ
(

3−n
2

)
2Γ
(
2− n

2

) +O
(
r̃1−n) , r̃ → 0, (D.16)

where H is the harmonic number function and α can be taken in accordance with Table

4.1. From this it can be easily seen that the required asymptotic representations of

the aperture (4.72) and pressure derivative (4.70) will be satisfied by hB and πB, while

the fracture opening asymptotics of hA and πA will not prevent the benchmark from

displaying the correct behaviour. As with the crack tip, here further asymptotic terms

can be accounted for using additional functions.

In this way, by linear combination of functions (D.5)-(D.8) and other functions from

Table D.1 one can build a benchmark example for the viscosity dominated regime of crack

propagation for a number of shear-thinning fluids, provided that α = α0. Moreover, by

incorporation of function h0 from Table D.1 we obtain a solution which mimics the

toughness dominated mode.

The above strategy have been successfully employed to create a set of analytical bench-

mark examples for the the varying crack propagation regimes and fluid behaviour indices.

The benchmarks used in Sect. 4.2.5 are outlined below.
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D.1.1 Viscosity dominated case (K̂Ic = 0)

D.1.1.1 Newtonian fluid (n = 1)

In this case, the constants λi take the following values:

λ0 =
π [34 + 7 log(2)]

112
, λ1 = −17

28
, λ2 = 0, λ3 = 0, λ4 = − π

16
, λ5 = 1, λ6 = 0,

(D.17)

where we have h5 (r̃, α0), π5 (r̃, α0). As such, the asymptotic behaviour at the fracture

tip is given by:

ŵ(r̃) =
2
√
πΓ
(

7
6

)
Γ
(

5
3

) (
1− r̃2

) 2
3 +O

((
1− r̃2

) 5
3

)
, r̃ → 1, (D.18)

dp̂(r̃)

dr̃
= −
√
πΓ
(

4
3

)
3Γ
(

5
6

) (
1− r̃2

)− 4
3 +O

((
1− r̃2

)− 1
3

)
, r̃ → 1, (D.19)

It can easily be shown that the aperture and pressure have the following properties at

the fracture opening:

ŵ(0) =
745

196
− 6

7
H

(
1

6

)
=

6

7

[
π
√

3

2
+

3 log(3)

2
+ log(4)− 263

168

]
, (D.20)

lim
r̃→0

r̃
dp̂

dr̃
= − π

16
, (D.21)

where H(x) represents the harmonic number function. From this, we obtain the value

of the source intensity:

Q̂0 = −2πw3(0) lim
r̃→0

r̃
dp̂

dr̃
=

27π2

343

[
π
√

3

2
+

3 log(3)

2
+ log(4)− 263

168

]3

, (D.22)

Additionally, we obtain:

v̂0 = − lim
r̃→1

ŵ2dp̂

dr̃
=

4π
3
2 Γ
(

4
3

)
3Γ
(

5
6

) [
Γ
(

7
6

)
Γ
(

5
3

)]2

=

√
3

64π3

[
Γ

(
1

3

)]9

. (D.23)

The exact form of the particle velocity is obtained from (D.3), while the fluid leak-off

are calculated numerically from (D.4), noting that φ̂ = r̃v̂ − r̃2v̂0.

D.1.1.2 Shear thinning fluid (0 < n < 1)

To ensure proper behaviour of the benchmark, we define the constants λi in formulation

(D.1), (D.2) in terms of three arbitrary functions of n, denoted σj(n), j = 0, 1, 2, as
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follows:

λ0 =
π(n+ 2)

n+ 6
σ0(n) +

n
√
πΓ
(

3−n
2

)
2Γ
(
2− n

2

) σ1(n) +
(n− 1)

√
πΓ
(
2− n

2

)
2Γ
(

5−n
2

) σ2(n),

λ1 = −2(n+ 2)

n+ 6
σ0(n) +

2(1− n)Γ
(

3−n
2

)
√
πΓ
(
2− n

2

) σ1(n) +
2(2− n)Γ

(
2− n

2

)
√
πΓ
(

5−n
2

) σ2(n),

λ2 = −σ1(n), λ3 = −σ2(n), λ4 = 0, λ5 = σ0(n), λ6 = 0,

(D.24)

where we have h5(r̃, α0), π5(r̃, α0). The values of σj(n) used for various values of n are

given in Table. D.2. These functions are chosen to ensure that the benchmark solution

is physically realistic. For intermediate values of n a spline based approximation of

functions σj(n) is used to choose appropriate values.

n σ0 σ1 σ2

0.1 0.525 0.500 0.575

0.2 0.680 0.300 0.650

0.3 0.600 0.270 0.850

0.4 0.550 0.250 0.900

0.5 0.550 0.270 0.210

0.6 0.540 0.250 0.220

0.7 0.540 0.250 0.225

0.8 0.550 0.250 0.250

0.9 0.580 0.300 0.290

1.0 0.550 0.033 0.000

Table D.2: The values of σj(n), j = 1, 2, 3, used for the analytical benchmark in
numerical simulations. The value n = 1 is used to approximate values when 0.9 < n < 1.

The benchmark solution will now have the following asymptotics at the crack tip:

ŵ(r̃) =
2
√
πΓ
(

n+6
2(n+2)

)
Γ
(
n+4
n+2

) σ0(n)
(
1− r̃2

)α0 +O
((

1− r̃2
)α0+1

)
, r̃ → 1, (D.25)

dp̂(r̃)

dr̃
= −

(2− n)
√
πΓ
(

2n+2
n+2

)
(n+ 2)Γ

(
3n+2

2(n+2)

) σ0(n)
(
1− r̃2

)α0−2
+O

((
1− r̃2

)α0−1
)
, r̃ → 1. (D.26)

Meanwhile, it can easily be shown that:

ŵ(0) =
2(n+ 2)

n+ 6

[
3n+ 26

n+ 6
−H

(
2− n

2(n+ 2)

)]
σ0(n) +

2nΓ
(

3−n
2

)
√
πΓ
(
2− n

2

) [1− 1

2− n

]
σ1(n)

+
2Γ
(
2− n

2

)
√
πΓ
(

5−n
2

) [ 2

3− n
− n

]
σ2(n),

(D.27)

lim
r̃→0

r̃n
dp̂(r̃)

dr̃
= −(1− n)σ1(n), (D.28)



Analytical benchmarks 192

As such, the source intensity will be given by:

Q̂0 = 2π
[
(1− n)σ1(n)ŵ2n+1(0)

] 1
n , (D.29)

While we also obtain:

v̂0 =


(2− n)

√
πΓ
(

2n+2
n+2

)
(n+ 2)Γ

(
3n+2

2(n+2)

)
2
√
πΓ
(

n+6
2(n+2)

)
Γ
(
n+4
n+2

)
n+1


1
n

σ
n+2
n

0 (n), (D.30)

The exact form of the particle velocity is obtained from (D.3), while the fluid leak-off

are calculated numerically from (D.4), noting that φ̂ = r̃v̂ − r̃2v̂0.

D.1.2 Toughness dominated (K̂Ic > 0)

D.1.2.1 Newtonian fluid (n = 1)

We take the following values for constants λi:

λ0 = 1, λ1 = 0.5, λ2 = 0, λ3 = 0, λ4 = −0.25, λ5 = 0, λ6 = −0.35, (D.31)

where we have h5(r̃, α1), π5(r̃, α1). As such the asymptotic representations at the frac-

ture tip will be given by:

ŵ(r̃) =

{
2

π
[5− log(2)]− 2

5

}√
1− r̃2 +

7π

20

(
1− r̃2

)
+O

((
1− r̃2

) 3
2

)
, r̃ → 1, (D.32)

dp̂(r̃)

dr̃
= − 7

20
(1− r̃2)−1 +O (1) , r̃ → 1, (D.33)

Meanwhile, it can easily be shown that:

ŵ(0) =
14 log(2)− 9

10
+

2 (6− log(2))

π
, lim

r̃→0
r̃
dp̂(r̃)

dr̃
= −1

4
, (D.34)

As such the source intensity is given by:

Q̂0 =
π

2

[
14 log(2)− 9

10
+

2 (6− log(2))

π

]3

, (D.35)

Additionally, the stress intensity factor takes the form:

K̂Ic = K̂I =
5− log(2)

2
√
π

−
√
π

10
, (D.36)
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While we also obtain:

v̂0 =
7

20

{
2

π
[5− log(2)]− 2

5

}2

, (D.37)

D.1.2.2 Shear thinning fluid (0 < n < 1)

To ensure proper behaviour of the benchmark, we define the constants λi in formulation

(D.1), (D.2) in terms of four arbitrary functions of n, denoted σj(n), j = 0, 1, 2, 3, as

follows:

λ0 =
π

8
σ0(n) +

π (10− 3n)

2(3− n)(4− n)
σ1(n) +

n
√
πΓ
(

3−n
2

)
2Γ
(
2− n

2

) σ2(n) +
(n− 1)

√
πΓ
(
2− n

2

)
2Γ
(

5−n
2

) σ3(n),

λ1 =
3n− 10

(3− n)(4− n)
σ1(n) +

2(1− n)Γ
(

3−n
2

)
√
πΓ
(
2− n

2

) σ2(n) +
2(2− n)Γ

(
2− n

2

)
√
πΓ
(

5−n
2

) σ3(n),

λ2 = −σ2(n), λ3 = −σ3(n), λ4 = 0, λ5 = σ1(n), λ6 = 0,

(D.38)

where we have h5(r̃, α1, α2), π5(r̃, α1, α2). The values of σj(n) used for various values

of n are given in Table. D.3. These functions are chosen to ensure that the benchmark

solution is physically realistic. For intermediate values of n a spline based approximation

of functions σj(n) is used to choose appropriate values.

n σ0 σ1 σ2 σ3

0.050 5.00 1.200 0.100 -1.00

0.100 2.75 1.000 0.125 -1.00

0.200 2.50 0.400 1.750 -0.05

0.300 2.25 0.500 1.450 -0.05

0.400 2.20 0.350 1.100 -0.05

0.500 1.75 0.500 1.000 -0.05

0.600 1.20 0.650 1.100 -0.05

0.700 1.20 0.650 1.500 -0.05

0.800 1.00 0.650 2.000 -0.05

0.900 1.00 0.750 2.200 -0.05

0.990 1.50 0.050 2.200 -0.50

0.999 2.00 0.005 2.500 -1.00

Table D.3: The values of σj , j = 0, 1, 2, 3, used for the analytical benchmark in
numerical simulations.

The benchmarks asymptotic representation at the fracture front are given by:

ŵ(r̃) = σ0(n)
√

1− r̃2 +
2
√
πΓ
(
2− n

2

)
Γ
(

5−n
2

) σ1(n)
(
1− r̃2

)α1 +O
((

1− r̃2
)α1+1

)
, r̃ → 1,

(D.39)

dp̂(r̃)

dr̃
= −
√
π(2− n)Γ

(
n+1

2

)
Γ
(
n
2

) σ1(n)
(
1− r̃2

)α1−2
+O

((
1− r̃2

)α1−1
)
, r̃ → 1, (D.40)
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p̂(x) =
π

8
σ0(n) +

[
π

1 + 2α1
− 2

1 + 2α1
− Γ (α1 − 1)

2Γ (α1)
+

π

1 + 2α2

− 2

1 + 2α2
− Γ (α2 − 1)

2Γ (α2)

]
σ1(n) +

[
Γ
(

3−n
2

)
Γ
(
2− n

2

) (n√π
2

+
2(1− n)√

π

)
− 1

]
σ2(n)

+

[
Γ
(
2− n

2

)
Γ
(

5−n
2

) ((n− 1)
√
π

2
+

2(2− n)√
π

)
− 1

]
σ3(n)

+

√
π(1− 2α1)Γ (2− α1)

2(1− α1)Γ
(

3
2 − α1

) σ1(n)
(
1− x2

)α1−1
+O

(
1− x2

)
, x→ 1.

(D.41)

Meanwhile, the values at the fracture opening are given by:

ŵ(0) = σ0(n) +

{
2

4− n

[
18− 5n

4− n
−H

(
1− n

2

)]
+

1

3− n

[
14− 5n

3− n
−H (2− n)

]}
σ1(n)

−
2n
√
π (1− n) sec

(
nπ
2

)
(2− n) Γ

(
2− n

2

)
Γ
(
n−1

2

)σ2(n)−
2
√
π (n− 1) (2− n) sec

(
(n−1)π

2

)
(3− n) Γ

(
5−n

2

)
Γ
(
n
2 − 1

) σ3(n),

(D.42)

lim
r̃→0

r̃n
dp̂(r̃)

dr̃
= −(1− n)σ2(n), (D.43)

As such the source strength intensity is:

Q̂0 = 2π
[
(1− n)σ2(n)ŵ2n+1(0)

] 1
n , (D.44)

Additionally, it can be shown that:

K̂Ic = K̂I =

√
π

4
σ0(n), (D.45)

while we have:

v̂0 =

[√
π(2− n)Γ

(
n+1

2

)
Γ
(
n
2

) σ1(n)

] 1
n

σ
n+1
n

0 (n), (D.46)

D.2 Radial fracture with shear-stress

While the methodology in this case will be largely identical to the previous section, the

different normalization scheme and self-similar formulation will require that we slightly

modify the approach.

We now take a solution in the form:

ŵ(r̃) = L0

N∑
i=0

λiĥi(r̃), p̂(r̃) =

N∑
i=0

λiπi(r̃), (D.47)
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Examples of the base functions ĥi(r̃), πi(r̃) are collected in Table. D.4. The subscript

indices are chosen to ensure consistency with the previous section.

i πi(r̃) hi(r̃)

0 1 4
π2

√
1− r̃2

1 r̃ 1
2π

[√
1− r̃2 + r̃2 log

(
1+
√

1−r̃2
r̃

)]
4 log(r̃) 4

π2

[
r̃ arccos (r̃) + (log(2)− 2)

√
1− r̃2

]

6 arctanh(r̃) 2
π

[
E
(
1− r̃2

)
−K

(
1− r̃2

)
+ log

(
1+
√

1−r̃2
r̃

)]
Table D.4: Table showing the components of the benchmark solutions. Here functions
K, E represent the complete elliptic integral of the first and second kinds respectively.

As a result, the system asymptotics will be as follows:

ŵ(r̃) =
L0

π

[
4λ0

π
+ λ1 +

4λ4 [log(2)− 1]

π
+ 2λ6

]√
1− r̃2

− λ6

2
L0(1− r̃2) +O

((
1− r̃2

) 3
2

)
, r̃ → 1,

(D.48)

p̂(r̃) = −λ6

2
log
(
1− r̃2

)
+ [λ0 + λ1 + log(2)λ6]− 1

2

[
λ1 + λ4 +

λ6

2

] (
1− r̃2

)
+O

(
(1− r̃)2

)
, r̃ → 1

(D.49)

It is immediately apparent that we require λ6 < 0 for a physically realistic solution.

Meanwhile, the definition of L0 provides the condition:

1

π

[
4λ0

π
+ λ1 +

4λ4 [log(2)− 1]

π
+ 2λ6

]√
−λ6

α
= 1, (D.50)

which we satisfy by taking:

λ0 =
π

4

[
π

√
− α

λ6
− λ1 −

4λ4 [log(2)− 1]

π
− 2λ6

]
. (D.51)

We must also satisfy the boundary condition:

lim
r̃→0
−ŵ3r̃

dp̂

dr̃
= 1, (D.52)
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noting that:

ŵ(0) =
L0

π

[
4λ0

π
+
λ1

2
+

4λ4 [log(2)− 2]

π
+ λ6 [2− log(4)]

]
, (D.53)

lim
r̃→0

r̃
dp̂

dr̃
= λ4, (D.54)

As such this condition becomes:

− λ4
L3

0

π3

{
4λ0

π
+
λ1

2
+

4λ4 [log(2)− 2]

π
+ λ6 [2− log(4)]

}3

= 1, (D.55)

which we satisfy by taking:

L0 = π

(
− 1

λ4

) 1
3
[

4λ0

π
+
λ1

2
+

4λ4 [log(2)− 2]

π
+ λ6 [2− log(4)]

]−1

. (D.56)

With the system constraints satisfied, the remaining constants and variables follow im-

mediately from the following relations:

v̂0 = 2ŵ2
0p̂0, (D.57)

while (4.182) and (4.183) yield that:

K̂Ic =
ŵ0

√
1 + 4(1− ν)ω̂√
L0 (1 + ω̂)

, ω̂ =
p̂0

π(1− ν)− p̂0
, (D.58)

with K̂I and K̂f following by (4.184):

K̂I =
K̂Ic√

1 + 4(1− ν)ω̂
, K̂f =

K̂Icω̂√
1 + 4(1− ν)ω̂

, (D.59)

The particle velocity is given by the Poiseuille equation:

Λ = r̃v̂ = −r̃ŵ2dp̂

dr̃
, (D.60)

while the fluid leak-off is obtained numerically from the fluid mass equation:

q̂l = r̃
dŵ

dr̃
− ŵ − 1

v̂0r̃

d

dr̃
(ŵΛ) , (D.61)
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Modifications to the elasticity

equation

E.1 Inverse elasticity equation with fracture propagation

criterion

We begin with the following form of the normalized inverse elasticity equation (4.60)2 ,

(4.62):

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

ηp̃(ηξ, t̃)√
1− η2

dη dξ, (E.1)

alongside the fracture propagation criterion (4.63):

K̃I = K̃Ic =
2√
π

√
L(t̃)

∫ 1

0

ηp̃(η, t̃)√
1− η2

dη. (E.2)

Now, relation (E.1) can be expanded as follows:

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

η√
1− η2

[
p̃(ηξ, t̃)− p̃(η, t̃) + p̃(η, t̃)

]
dη dξ. (E.3)

Removing the final pressure term from the brackets, and noting definition (E.2), this

becomes:

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

η√
1− η2

[
p̃(ηξ, t̃)− p̃(η, t̃)

]
dη dξ

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.4)
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Next, utilizing the fundamental theorem of calculus, we transform the difference between

the pressure functions into its integral equivalent:

w̃(r̃, t̃) =
8

π
L(t̃)

∫ 1

r̃

ξ√
ξ2 − r̃2

∫ 1

0

η√
1− η2

∫ ηξ

η

∂p̃(y, t̃)

∂y
dy dη dξ

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.5)

Changing the order of integration, we can place this in the form:

w̃(r̃, t̃) = − 8

π
L(t̃)

∫ 1

0

η√
1− η2

∫ η

ηr̃

∂p̃(y, t̃)

∂y

∫ y/η

r̃

ξ√
ξ2 − r̃2

dξ dy dη

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.6)

The integral on the right can be resolved, to yield:

w̃(r̃, t̃) = − 8

π
L(t̃)

∫ 1

0

η√
1− η2

∫ η

ηr̃

∂p̃(y, t̃)

∂y

√(
y

η

)2

− r̃2 dy dη

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.7)

We once again change the order of integration, which this time requires splitting the

integral into two separate domains:

w̃(r̃, t̃) = − 8

π
L(t̃)

∫ r̃

0

∂p̃(y, t̃)

∂y

∫ y/r̃

y

√
y2 − r̃2η2√

1− η2
dη dy

− 8

π
L(t̃)

∫ 1

r̃

∂p̃(y, t̃)

∂y

∫ 1

y

√
y2 − r̃2η2√

1− η2
dη dy

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.8)

Now, noting the definition of the incomplete elliptical integral of the second kind [5], it

can be shown that: ∫ √
y2 − r̃2η2√

1− η2
dη = yE

(
arcsin(η)

∣∣∣∣ r̃2

y2

)
, (E.9)

and as such (E.8) becomes:

w̃(r̃, t̃) =
8

π
L(t̃)

∫ r̃

0

∂p̃(y, t̃)

∂y
y

[
E

(
arcsin(y)

∣∣∣∣ r̃2

y2

)
− E

(
arcsin

(y
r̃

) ∣∣∣∣ r̃2

y2

)]
dy

+
8

π
L(t̃)

∫ 1

r̃

∂p̃(y, t̃)

∂y
y

[
E

(
arcsin(y)

∣∣∣∣ r̃2

y2

)
− E

(
arcsin(1)

∣∣∣∣ r̃2

y2

)]
dy

+
4√
π

√
L(t̃)K̃I

√
1− r̃2.

(E.10)
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Recombining the integrals through the use of a special function, (4.66), we obtain rep-

resentation (4.65).

E.2 Elasticity equation with tangential stress

We consider a 3D penny-shaped crack, defined in polar coordinates by the system

{r, θ, z}, with associated crack dimensions {l(t), w(t)} as the fracture radius and aperture

respectively. As the flow is axisymmetric, all variables will be independent of the angle θ.

The normal and tangential stress on the fracture walls (σ0 and τ respectively), created

by the fluid pressure, follows directly from lubrication theory (see for example [218]).

The equation for the net fluid pressure on the fracture walls (i.e. p = pf − σ0, σ0 is the

confining stress), including the tangential stress term, is given in Cartesian coordinates

(x1, x2, x3) by [176] (see Sect. 4.1.3.2, equations (4.20)-(4.25)):

p(r, t) =
E

8π(1− ν2)

∫
Ω

1√
(x1 − ξ1)2 + (x3 − ξ3)2

[
∂2w

∂ξ2
1

+
∂2w

∂ξ2
3

]
dξ1dξ3

− 1− 2ν

8π(1− ν)

∫
Ω

1√
(x1 − ξ1)2 + (x3 − ξ3)2

[
∂[[pξ1 ]]

∂ξ1
+
∂[[pξ3 ]]

∂ξ3

]
dξ1dξ3.

(E.11)

Here [[x]] indicates the jump in x (i.e. [[p]] = p+−p−), Ω =
{

(x1, x3) :
√
x2

1 + x2
3 ≤ l(t)

}
is the fracture domain, while E and ν are the Young’s modulus and Poisson ratio re-

spectively.

As the problem is invariant of the angle θ, the pressure term can be obtained by trans-

forming this into radial coordinates (r, θ), integrated with respect to the corresponding

variables (η1, η2). We obtain the relationship:

p(r, t) =
E

8π(1− ν2)

∫ l(t)

0

∂

∂η1

(
η1
∂w(η1, t)

∂η1

)∫ 2π

0

1√
r2 + η2

1 − 2rη1 cos(θ − η2)
dη2dη1

− 1− 2ν

4π (1− ν)

∫ l(t)

0

∂

∂η1
(η1τ (η1, t))

∫ 2π

0

1√
r2 + η2

1 − 2rη1 cos(θ − η2)
dη2 dη1.

(E.12)

It can be shown that:

∫ 2π

0

1√
r2 + η2

1 − 2rη1 cos(θ − η2)
dη2 =

4K
(

4rη1
(η1+r)2

)
|η1 + r|

, (E.13)

where K(x) is the complete elliptic integral of the first kind [5].
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Inserting this and using integration by parts, we have:

p(r, t) = −
∫ l(t)

0

[
k2
∂w

∂η1
− k1τ(η1)

]
M(r, η1) dη1, (E.14)

while substituting the dimensionless variable ρ = η1/l(t) gives the same representation

used in (4.41)1-(4.42):

p(r, t) = − 1

l(t)

∫ 1

0

[
k2
∂w(ρl(t))

∂ρ
− k1l(t)τ(ρl(t))

]
M
(

r

l(t)
, ρ

)
dρ, (E.15)

where:

M(r̃, ρ) =
1

2(r̃ + ρ)
K

(
4r̃ρ

(ρ+ r̃)2

)
− 1

2(r̃ − ρ)
E

(
4r̃ρ

(ρ+ r̃)2

)
=

1

2(r̃ + ρ)
K

(
1−

(
ρ− r̃
ρ+ r̃

)2
)
− 1

2(r̃ − ρ)
E

(
1−

(
ρ− r̃
ρ+ r̃

)2
)
,

(E.16)

k1 =
1− 2ν

π(1− ν)
, k2 =

E

2π(1− ν2)
. (E.17)

Here E(x) is the complete elliptic integral of the second kind [5]. It can be shown

numerically that, within the corresponding domains (0 ≤ r̃ ≤ 1, 0 ≤ ρ ≤ 1), this

kernel functionM is merely an alternative representation of the standard kernel for this

problem [113]:

M [r̃, ρ] =
1

2π


1
r̃K
(
ρ2

r̃2

)
+ r̃

ρ2−r̃2E
(
ρ2

r̃2

)
, r̃ > ρ

ρ
ρ2−r̃2E

(
r̃2

ρ2

)
, ρ > r̃

(E.18)

Additionally, it is worth noting that the constants k1, k2, are identical to those obtained

in the KGD case [230].

With the elasticity equation with tangential stresses obtained, it is clear that the next

step is to invert the operator and obtain the inverse relation. This is achieved by noting

that we can place (E.14) in the form:

p(r, t) = −
∫ l(t)

0
g′(x)M (r, x) dx, 0 < r < 1, (E.19)

where:

g(r) =

∫ l(t)

r

(
k1τ(s, t)− k2

∂w

∂s

)
ds = k2w(r, t) + k1

∫ l(t)

r
τ(s, t) ds. (E.20)



Modifications to the elasticity equation 201

From this, it immediately follows that the inverse relation must be (compare with the

classical result, see Sect. 4.2.2):

k2w(r, t) + k1

∫ l(t)

r
τ(s, t) ds =

4

π2
l(t)

∫ 1

r/l(t)

ξ√
ξ2 − (r/l(t))2

∫ 1

0

ηp(ηξl(t), t)√
1− η2

dηdξ,

(E.21)

In practice this form of the elasticity operator will not be employed during the examina-

tion in Sect. 4.3. This is because it has already been demonstrated that incorporating the

modified elasticity equation does not have a significant effect on the obtained solution

(see [230]), with the primary effects instead resulting from the updated energy release

rate based fracture criterion and the change in crack tip asymptotics in the viscosity

dominated regime. As such, the modified elasticity equation is best neglected in this

preliminary investigation.



Appendix F

Universal algorithm for a

penny-shaped crack

F.1 Introduction

A truly comprehensive description of the universal algorithm scheme for the KGD for-

mulation is provided in the thesis by Perkowska [164], and the underlying principles

will remain the same in the case of a penny-shaped crack. Those interested in a more

detailed examination of the construction philosophy are directed to the aforementioned

text. However, given the central role of the algorithm, which was only briefly outlined

in Sect. 4.2.5.1, the important details will be restated here for completeness.

F.1.1 Philosophy of the algorithms construction

The basis of construction of the universal algorithm is to utilize the asymptotic repre-

sentation of the problem parameters at the fracture front, which are known to provide

a reasonably accurate approximation of the solution (typically within 1%, see [196]),

whilst also accounting for the disparity between this and the exact solution. In this way,

use of the asymptotic coefficients ensures the computational method is both efficient

and stable, while continuing to account for the remainder minimizes the computational

error.

To accomplish this, the parameters will need to be reformulated in a more computation-

ally friendly way. This is achieved by basing them on the first few terms of the crack tip

asymptotes, (4.73) and (4.75) for the aperture and particle velocity respectively, while
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also incorporating an additional term:

ŵ(r̃) = ŵ0

(
1− r̃2

)α0 + ŵ1

(
1− r̃2

)α1 + δw(r̃), (F.1)

Λ = r̃v̂(r̃) = v̂0 + δΛ(r̃), (F.2)

where the term Λ is introduced to eliminate the singularity at the fluid well (r̃ = 0),

while providing a clearer demonstration of the algorithms construction than the reduced

particle velocity Φ. It should be noted that, in the toughness dominated case, an ad-

ditional asymptotic term ŵ2 can also be used to increase the accuracy, however this is

omitted here for the sake of simplicity.

With this representation in place, the algorithm will run using the scheme outlined in

Fig. F.1. Namely, it will consist of three main blocks, each of which is designed to

obtain an improved approximation for a given set of parameters, which are iterated

until a desired level of solution convergence is reached.

To maximize the effect of introducing the crack tip asymptotics, these will be used to

remove terms from any integrals and to resolve them analytically. Additionally, when

reconstructing the particle velocity, the Tikhonov type regularization is used to strictly

enforce the known asymptotic behaviour of the solution. These steps are have the effect

of both improving the efficiency, as well as reducing the computational errors, of the

final algorithm.

With the philosophy and general outline of the scheme in place, more specific details of

the algorithms workings can now be given.

F.2 Constructing the algorithm for a shear thinning fluid

In this section the mathematical and computational underpinnings of the algorithm,

for the classical penny-shaped formulation, will be outlined for the case of the a shear

thinning fluid (0 < n < 1). The underlying principles will remain the same when

a Newtonian fluid (n = 1) is modeled, however, for a perfectly plastic fluid (n = 0)

degeneration of the Pouseuille equation means that some modification is required (this

will be detailed later).

F.2.1 Block 1: Determining asymptotic terms

The first term of the aperture asymptotics is obtained from the fluid balance equation

(4.106), which, inserting the parameter representations given above, can be rearranged
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Figure F.1: A general overview of the universal algorithm used to obtain numerical
solutions for the self-similar radial formulation. The parameters asymptotic coefficients
and remainder terms are treated separately until post-processing. Blocks coloured in
orange are iterated until a desired level of solution convergence is reached. The full

details of each step are given in this appendix.

into the following form:

(3− sn) ŵ0v̂0

∫ 1

0
r̃
(
1− r̃2

)α0 dr̃ − Q̂0

2π

+ v̂0

{
(3− sn)

∫ 1

0
r̃
[
ŵ1

(
1− r̃2

)α1 + δw(r̃)
]
dr̃ +

1− sn
γ

∫ 1

0
r̃q̂l(r̃) dr̃

}
= 0.

(F.3)

The next step will depend on whether it is the viscosity or toughness dominated mode

being considered. Both are outlined below.
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F.2.1.1 Viscosity dominated regime (K̂Ic = 0)

In the viscosity dominated regime, the relationship between asymptotic parameters is

given by (4.77) and the speed equation (4.99), namely:

v̂0 =
[
Cŵn+2

0

] 1
n = C

1
n ŵ

1+ 2
n

0 , C =
2n

(n+ 2)2 cot

(
nπ

n+ 2

)
. (F.4)

Inserting the above into (F.3), and resolving integrals where possible, yields:

ŵ
2+ 2

n
0

α0 + 1
+

[
ŵ1

α1 + 1
+ 2

∫ 1

0
r̃δw(r̃) dr̃ +

2 (1− sn)

γ (3− sn)

∫ 1

0
r̃q̂l(r̃) dr̃

]
ŵ

1+ 2
n

0 − Q̂0

π (3− sn) C
1
n

= 0,

(F.5)

from which a solution for ŵ0 can be obtained numerically using either the Newton-

Raphson or Halley iterative methods, both of which are too well known to need explain-

ing here. Once ŵ0 is known, the constant v̂0 follows immediately from (F.4).

The only improved estimate for an asymptotic multiplier which has not yet been de-

scribed is for the constant ŵ1. While it is possible to determine it analytically from

the improved estimates for ŵ0 and v̂0, using relations between the various asymptotic

multipliers, this may require determining additional asymptotic coefficients for the pres-

sure and the particle velocity (some of which would need to be determined numerically),

leading to an increase in the error and computation times. Alternatively, ŵ1 can be

computed first, doing so either numerically, or using the aforementioned relationships

between asymptotic multipliers, from the result for the fracture aperture provided by

the previous iteration. If this can not be achieved, or does not create a stable or efficient

algorithm, then ŵ1 can be set to zero (meaning that the associated asymptotic term is

instead incorporated into δw(r̃)).

The option which is best suited may depend on the number of nodal points or the fluid

behaviour index, and the choice made for the final algorithm was determined through

experimentation. As such, it will not be provided in further detail here.

F.2.1.2 Toughness dominated regime (K̂Ic > 0)

In the toughness dominated regime, the first term of the aperture asymptotics ŵ0 is

given by (4.103), while its updated relation to the speed equation (4.99) is given by

(4.80):

v̂0 =
[
Cŵn+1

0 ŵ1

] 1
n = C

1
n ŵ

1+ 1
n

0 ŵ
1
n
1 , C =

(3− n)(1− n)

4
tan

(nπ
2

)
. (F.6)
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Following the same steps as previously, inserting the above into (F.3) yields:

ŵ
1+ 1

n
1

α1 + 1
+

[
ŵ0

α0 + 1
+ 2

∫ 1

0
r̃δw(r̃) dr̃ +

2 (1− sn)

γ (3− sn)

∫ 1

0
r̃q̂l(r̃) dr̃

]
ŵ

1
n
1 −

Q̂0ŵ
−(1+ 1

n)
0

π (3− sn) C
1
n

= 0.

(F.7)

Utilizing the same method as in the viscosity dominated case (either the Newton-Raphson

or Halley iterative methods) the asymptotic multiplier ŵ1 can now be obtained, with v̂0

following immediately after from (F.6).

F.2.2 Block 2: Reconstructing the particle velocity

With the main asymptotic terms obtained, it is now time to move onto reconstructing

their associated parameters. The first to undergo this process is the particle velocity

parameter Λ, which is achieved utilizing Tikhonov type regularization, the important

principles of which will be outlined below.

F.2.2.1 Initial results

The particle velocity will be reconstructed using the fluid mass balance equation (4.105).

Placing it in terms of parameter Λ, using (4.95) and (F.2), it takes the form:

d

dr̃
(ŵΛ) = v̂0

[
d

dr̃

(
r̃2ŵ

)
− (3− sn) r̃ŵ − 1− sn

γ
r̃q̂l

]
. (F.8)

Next, expanding this using definition (F.2), gives:

d

dr̃
(ŵδΛ) = −v̂0

[(
1− r̃2

) dŵ
dr̃

+ (1− sn) r̃ŵ +
1− sn
γ

r̃q̂l

]
= R(r̃), (F.9)

which, noting that a discrete approximation of each variable is used, yields:

ŵi+1δΛ,i+1 − ŵiδΛ,i =

∫ r̃i+1

r̃i

R(r̃) dr̃ = R̂i+1, (F.10)

where i = 1, 2, . . . , N represents the nodal points (with r1 = 0 and rN the closest to the

fracture tip, while ri < ri+1 for all i), while the notation R, R̂i has been introduced for

the sake of convenience.

To increase the accuracy to which R̂i is computed, terms that can be computed analyt-

ically will be removed. This is achieved by introducing the asymptotic terms from (F.1)
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into (F.9), giving:

R(r̃) = −v̂0

[
ŵ0r̃ (1− sn − 2α0)

(
1− r̃2

)α0 + ŵ1r̃ (1− sn − 2α1)
(
1− r̃2

)α1

+
(
1− r̃2

) d
dr̃

(δw) + (1− sn) r̃δw +
1− sn
γ

r̃q̂l

]
.

(F.11)

Integrating this, an alternate representation of R̂i is obtained:

R̂i+1 = −v̂0

{[
−(1− sn − 2α0) ŵ0

2 (α0 + 1)

(
1− r̃2

)α0+1 − (1− sn − 2α1) ŵ1

2 (α1 + 1)

(
1− r̃2

)α1+1

+
(
1− r̃2

)
δw

]r̃i+1

r̃=r̃i

+ (3− sn)

∫ ri+1

ri

r̃δw dr̃ +
1− sn
γ

∫ ri+1

ri

r̃q̂l dr̃

}
.

(F.12)

With this in place, the value of R̂i will be known to a high level of accuracy. Now all

that remains is to reconstruct the discrete approximation of function δΛ from this known

result. The Tikhonov type regularization scheme used to do this is outlined below.

F.2.2.2 Tikhonov type regularization

We begin by noting that, from (F.10), we have that:

δΛ,i =
wi+1δΛ,i+1 − R̂i+1

wi
. (F.13)

As such, given that all other terms are considered known, the particle velocity can

automatically be reconstructed once the value of δΛ,N has been determined.

The regularization scheme employed to reconstruct this point relies on the fact that the

parameters asymptotic representation at the crack tip is already known (see (4.75)).

Because of this, and noting that the point being sought, δΛ,N , is the closest to the

fracture front, it is clear that the following will provide a highly accurate approximation

of the remainder term:

δΛ(r̃) = Λ0 (1− r̃)β1 + Λ1 (1− r̃)β2 , (F.14)

where constants β1, β2 are given in Table. 4.1 for the various regimes, while Λ0 and Λ1

still need to be computed.



Universal algorithm for a penny-shaped crack 208

Next, applying this to the discrete mesh used to approximate the fracture, it is clear

that the following will be true:δΛ,N−1 = Λ0y
β1
N−1 + Λ1y

β2
N−1,

δΛ,N−2 = Λ0y
β1
N−2 + Λ1y

β2
N−2,

(F.15)

where yi = 1− ri. With a small amount of manipulation, equations for Λ0 and Λ1 can

be obtained:

Λ0 =
δΛ,N−1y

β2
N−2 − δΛ,N−2y

β2
N−1

yβ1N−1y
β2
N−2 − y

β2
N−1y

β1
N−2

, Λ1 =
δΛ,N−1y

β1
N−2 − δΛ,N−2y

β1
N−1

yβ2N−1y
β1
N−2 − y

β1
N−1y

β2
N−2

, (F.16)

from which it can easily be deduced that:

δΛ,N = Λ0y
β1
N + Λ1y

β2
N = K1δΛ,N−1 +K2δΛ,N−2, (F.17)

with:

K1 =
yβ2N−2y

β1
N − y

β1
N−2y

β2
N

yβ1N−1y
β2
N−2 − y

β2
N−1y

β1
N−2

, K2 =
yβ1N−1y

β2
N − y

β2
N−1y

β1
N

yβ1N−1y
β2
N−2 − y

β2
N−1y

β1
N−2

. (F.18)

Finally, combining the above with the definition of R̂i (F.10), we have that the following

will hold: 
ŵNδΛ,N − ŵN−1δΛ,N−1 = R̂N ,

ŵN−1δΛ,N−1 − ŵN−2δΛ,N−2 = R̂N−1,

δΛ,N = K1δΛ,N−1 +K2δΛ,N−2,

(F.19)

which, combining to eliminate δΛ,N−1 and δΛ,N−2, provides the value of the remainder

term at the crack tip:

δΛ,N =
−K2

(
R̂N + R̂N−1

)
ŵN−1 −K1R̂N ŵN−2

ŵN−1ŵN−2 −K2ŵN ŵN−1 −K1ŵN ŵN−2
. (F.20)

As such, the scheme for reconstructing the particle velocity is clear. First, a high accu-

racy evaluation of the integral R̂i, i = 1, . . . , N , is obtained from (F.12). Next, the final

term of the remainder is given by (F.20), with the rest of the remainder function δΛ fol-

lowing immediately by (F.13). With this reconstructed, the full discrete approximation

of the particle velocity is provided by inserting the improved approximations for v̂0 and

δΛ into (F.2).
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F.2.3 Block 3: Reconstructing the fracture aperture

F.2.3.1 Initial results and approach outline

With the first two blocks complete, improved estimates of the asymptotic multipliers

(ŵ0, ŵ1, v̂0) and the particle velocity (Λ) have been obtained. Now all that remains is

to determine the remainder term for the fracture aperture δw. This will be determined

using the elasticity equation (4.102), however small modifications are made to increase

the algorithms accuracy and stability. First, the pressure derivative must be calculated,

which follows directly from the Poiseuille equation (4.104):

r̃n
dp̂

dr̃
= − Λn

ŵn+1
, (F.21)

where the additional r̃ term is included to avoid introducing unnecessary singularities.

The modified pressure derivative then follows directly from the definitions (4.95)2, (4.97):

Ω̂(r̃) =
1

r̃n

[
r̃n
dp̂

dr̃
+

(
Q̂0

2π

)n
1

ŵ2n+1(0)

]
, (F.22)

which will take a constant value at the fracture well (r̃ = 0), but still be singular at the

crack tip (see (4.74), (4.79)).

The elasticity equation in this case (4.102) takes the form:

ŵ(r̃) =
8

π

∫ 1

0
Ω̂(y)K(y, r̃) dy +

4√
π
K̂I

√
1− r̃2 +

8

π
Ω̂0Xn(r̃). (F.23)

In order to calculate this accurately and efficiently, the approach taken is to remove the

singular terms of the modified pressure derivative analytically. This is possible because

the asymptotic representation at the crack tip is known (see (4.74), (4.79)), allowing us

to describe Ω̂ in the form:

Ω̂(r̃) = Ω̂1

(
1− r̃2

)αj−2
+ Ω̂2

(
1− r̃2

)αj+1−2
+ δΩ(r̃), (F.24)

where j = 0 in the viscosity dominated case, while j = 1 for the toughness dominated

regime. Now, using the Poiseuille equation (4.104), it can easily be shown that:

Ω̂1 = − v̂
n+1
0

ŵn+1
0

. (F.25)
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Given this, removing the Ω̂{1,2} terms simply requires that we find known function pairs

{hj ,Πj} which satisfy the condition:

hj(r̃) =
8

π

∫ 1

0

dΠj

dy
K(y, r̃) dy,

dΠj

dr̃
∼ c1

(
1− r̃2

)αj−2
, c1 ∈ R, (F.26)

Fortunately, such pairs have already been obtained when constructing the analytical

benchmarks (see Appendix. D), and are given in Table. D.1.

As a result, from the properties of Ω̂ and {hj ,Πj} (F.24), (F.26), it immediately follows

that the integral in (F.23) can be represented as:

8

π

∫ 1

0
Ω̂(y)K(y, r̃) dy =

Ω̂1

c1
hj(r̃) +

8

π

∫ 1

0

[
Ω̂(y)− Ω̂1

c1

dΠj

dr̃

]
K(y, r̃) dy, (F.27)

with the leading singularity of the integrand now being eliminated and evaluated ana-

lytically. This process can be repeated as necessary, although calculating the multiplier

needed to cancel out the leading term will clearly become more complicated as more are

added.

The technique presented above to remove subsequent asymptotic terms and evaluate

them analytically, preferably until the integrand is bounded over the whole domain, is

the basis of ensuring rapid and highly accurate evaluation of the elasticity equation.

However, given that the asymptotic expansion of the modified pressure derivative is

regime dependent (i.e. viscosity or toughness dominated), the final scheme will need to

be tailored to each specific case.

F.2.3.2 Viscosity dominated regime (K̂Ic = 0)

In the viscosity dominated regime with a shear-thinning fluid, the first combination used

to remove terms analytically are hA(r̃, α0) defined in (D.5), alongside associated pairing

ΠA(r̃, α0) given by (D.7). These have the property that:

hA(r̃, α0) =
8

π

∫ 1

0

dΠA(y, α0)

dy
K(y, r̃) dy, (F.28)

while, at the fracture front:

hA(r̃, α0) ∼
2
√
πΓ
(
α0 + 1

2

)
Γ (α0 + 1)

(
1− r̃2

)α0 , r̃ → 1, (F.29)

dΠA(r̃, α0)

dr̃
∼
√
π(1− 2α0)Γ (2− α0)

Γ
(

3
2 − α0

) (
1− r̃2

)α0−2
, r̃ → 1. (F.30)
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As a result, we immediately have that:

8

π

∫ 1

0
Ω̂(y)K(y, r̃) dy =

ŵ0Γ (α0 + 1)

2
√
πΓ
(
α0 + 1

2

)hA(r̃, α0)+
8

π

∫ 1

0

[
Ω̂(y) +m1

dΠA(y, α0)

dy

]
K(y, r̃) dy,

(F.31)

where:

m1 =
v̂n+1

0 Γ
(

3
2 − α0

)
ŵn+1

0

√
π (1− 2α0) Γ (2− α0)

, (F.32)

eliminates the leading singularity in the integrand at the crack tip (associated with the

Ω̂1 multiplier in (F.24)).

The same trick can easily be used again to eliminate the remaining singular term, this

time by utilizing the pair hA(r̃, α1), ΠA(r̃, α1), to give:

8

π

∫ 1

0

[
Ω̂(y) +m1

dΠA(y, α0)

dy

]
K(y, r̃) dy =

m2hA(r̃, α1) +
8

π

∫ 1

0

[
Ω̂(y) +m1

dΠA(y, α0)

dy
−m2

dΠA(y, α1)

dy

]
K(y, r̃) dy,

(F.33)

where the constant m2 can be calculated analytically, accounting for both the singular-

ities associated with Ω̂2 and the derivative of ΠA(r̃, α0), however in practice calculating

it numerically often produces a more stable algorithm.

Combining the above, and noting that K̂Ic = 0, the elasticity equation to be computed

(4.102) now takes the form:

ŵ(r̃) =
ŵ0Γ (α0 + 1)

2
√
πΓ
(
α0 + 1

2

)hA(r̃, α0) +m2hA(r̃, α1) +
8

π
Ω̂0Xn(r̃)

+
8

π

∫ 1

0

[
Ω̂(y) +m1

dΠA(y, α0)

dy
−m2

dΠA(y, α1)

dy

]
K(y, r̃) dy,

(F.34)

where the integrand on the right side of this equation no longer has any singularities,

greatly increasing the accuracy and efficiency of computations.

It should be noted that this combination of base functions is only valid in the shear-

thinning case, with different function pairs {hi,Πi} being required when modeling New-

tonian or perfectly plastic fluids. The methodology however remains the same, and all

relevant pairs are provided in Appendix. D.

F.2.3.3 Toughness dominated regime (K̂Ic > 0)

Here, the first asymptotic term of the aperture ŵ0 is already outside of the integral, as

such only the first term for the modified pressure derivative Ω̂1 needs to be extracted.

This is achieved using the same approach as in the viscosity dominated case, with the
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same function pair {hA(r̃, α1),ΠA(r̃, α1)}, having the following properties:

hA(r̃, α1) ∼
2
√
πΓ
(
α1 + 1

2

)
Γ (α1 + 1)

(
1− r̃2

)α1 , r̃ → 1, (F.35)

dΠA(r̃, α1)

dr̃
∼
√
π(1− 2α1)Γ (2− α1)

Γ
(

3
2 − α1

) (
1− r̃2

)α1−2
, r̃ → 1. (F.36)

As a result, using the same method of removing asymptotic terms demonstrated in

(F.27), the elasticity equation in this case takes the form:

ŵ(r̃) = ŵ0

√
1− r̃2 +

ŵ1Γ (α1 + 1)

2
√
πΓ
(
α1 + 1

2

)hA(r̃, α1) +
8

π
Ω̂0Xn(r̃)

+
8

π

∫ 1

0

[
Ω̂(y) +

v̂n+1
0 Γ

(
3
2 − α1

)
ŵn+1

0

√
π (1− 2α1) Γ (2− α1)

dΠA(y, α1)

dy

]
K(y, r̃) dy.

(F.37)

While only the leading singularity at the crack tip has been eliminated, the integrand

itself will now be bounded over the whole fracture domain. In practice, the efficiency

of the algorithm can still be improved through the removal of the second term, however

this will not be demonstrated here.

F.2.4 The completed universal algorithm

With the main blocks now in place, it is a simple matter to combine them and construct

the final numerical code. A specific overview of the algorithms steps is now given below:

1. Initial conditions: The fluid leak-off, material toughness and fluid index are

specified. The mesh defining the fracture, consisting of N nodal points, is specified

over the range [0, 1 − ε] for some small ε > 0 (for results presented in this work,

ε = 10−7 was used). The mesh is non-uniform, with the distribution of nodal points

being chosen to best minimize error over the whole domain (i.e. more points are

needed at the fracture front and opening).

Appropriate initial estimates of the parameters ŵ0, ŵ1, v̂0, δw(r̃), δΛ(r̃) are chosen,

ensuring that all interrelations and boundary conditions are satisfied.

2. Block 1: An improved estimate for the asymptotic coefficients ŵ0, ŵ1 and v̂0 is

obtained. This is achieved using (F.4)-(F.5) in the viscosity dominated regime, or

(4.103), (F.6)-(F.7) when K̂Ic > 0, as outlined in Sect. F.2.1.

3. Block 2: The particle velocity is reconstructed using Tikhonov type regulariza-

tion, described in detail in Sect. F.2.2, yielding an improved estimate of δΛ(r̃).
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4. Block 3: The elasticity equation is used to determine an improved estimate of

δw(r̃), with unbounded terms within the integral being evaluated analytically to

improve computational efficiency and accuracy, as explained in Sect. F.2.3. The

integral is typically evaluated using spline-based techniques, as the fact that the

integrand is both smooth and bounded facilitate this approach, however alternative

methods (e.g. trapezoidal rule) would also suffice. The boundary condition on the

fracture opening (4.108)1 is enforced at this point.

5. Picard iteration: In order to ensure the maximum possible stability of the al-

gorithm, the initial conditions for the next iteration are created using both the

original and improved estimates, using the formulae:

ŵ0,i+1 = aŵ0,i + (1− a)ŵ0,i−1, δw,i+1(r̃) = aδw,i(r̃) + (1− a)δw,i−1(r̃), (F.38)

δΛ,i+1(r̃) = bδΛ,i(r̃) + (1− b)δΛ,i−1(r̃), (F.39)

where the subscript i denotes the iteration, and 0 < a, b < 1. Note that we may

take a(N), b(N), and that values are chosen optimize the codes stability whilst

preserving the maximum level of efficiency. Once this is completed, the new initial

conditions are ready for the next iteration.

6. Convergence to a solution: Steps 2-5 are repeated until a predetermined level

of convergence is reached. This will typically be achieved by taking measures in

the form:

M1 =

∫ 1
0 r̃|ŵi+1(r̃)− ŵi(r̃)| dr̃∫ 1

0 r̃ŵi+1(r̃) dr̃
, M2 =

∫ 1
0 |Λi+1(r̃)− Λi(r̃)| dr̃∫ 1

0 Λi+1(r̃) dr̃
, (F.40)

with the condition for ceasing further iterations being: max (M1,M2) < ε, for

some small ε > 0.

7. Post-processing: The final outputs of the algorithm are the variables ŵ0, ŵ1, δw,

v̂0, δΛ. Further steps are needed to obtain the full form of the pressure function.

First, the modified pressure derivative Ω̂ is derived using (F.22). With this, the

final function can be obtained using equations (4.96)-(4.98), however, in order to

reduce any computational errors the same techniques are applied to the integral

as were used previously for the elasticity equation (see Sect. F.2.3). We have:

p̂(r̃) =
Ω̂0

1− n
r̃1−n + Ĉp +

∫ r̃

0
Ω̂(ξ) dξ, (F.41)
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where:

Ĉp =

√
π

2
K̂I −

√
πΓ
(

3−n
2

)
2(1− n)Γ

(
2− n

2

) Ω̂0 −
∫ 1

0
Ω̂(y)

√
1− y2 dy, (F.42)

and all terms except p̂, Ĉp are already explicitly known. Inserting the representa-

tion of Ω̂ defined in (F.24), these become:

p̂(r̃) =
Ω̂0

1− n
r̃1−n + Ĉp + Ω̂1r̃2F1

(
1

2
, 2− αj ;

3

2
; r̃2

)
+ Ω̂2r̃2F1

(
1

2
, 2− αj+1;

3

2
; r̃2

)
+

∫ r̃

0
δΩ(ξ) dξ,

(F.43)

with:

Ĉp =

√
π

2
K̂I −

√
πΓ
(

3−n
2

)
2(1− n)Γ

(
2− n

2

) Ω̂0 +

√
πΓ
(
αj − 1

2

)
2Γ (αj)

Ω̂1

+

√
πΓ
(
αj+1 − 1

2

)
2Γ (αj+1)

Ω̂2 +

∫ 1

0
δΩ(y)

√
1− y2 dy,

(F.44)

where Ω̂0 is given in (4.97) and Ω̂1 is provided by (F.25), while Ω̂2 can be obtained

numerically. With this complete, we now have a high accuracy approximation of

the pressure function, and the complete numerical solution.

The above represents a full description of the workings of the universal algorithm for a

shear-thinning fluid. Unfortunately, modifications do have to be made in the case when

the fracture is driven by either a Newtonian or perfectly plastic fluid.

In the former case (Newtonian), these changes are only slight, namely: i) in the toughness

dominated regime, equation (F.7) is simply a polynomial function and does not require

iterative methods to solve, ii) the function pair used to remove asymptotic terms of

the elasticity equation are no longer valid (see Sect. F.2.3), and must be replaced with

another {hj ,Πj} from Table. D.1. iii) the pressure function will now be obtained from

Ω̂ using equations (C.7)-(C.8), however, the same method of removing asymptotic terms

will still yield a high accuracy result.

The perfectly plastic case however requires far further modification, due to the degen-

eration of the Poiseuille equation. Because of this, the elasticity equation now takes the

form (C.19):

ŵ(r̃) = − 8

π

∫ 1

0

1

ŵ(y)
K(y, r̃), dy +

4√
π
K̂I

√
1− r̃2, (F.45)

where ŵ is the only unknown parameter. As such, this step is carried out first, indepen-

dently of other aspects of the algorithm, and is the only stage requiring any iterative

process. Once this is completed, the final solution for the aperture is known, and the par-

ticle velocity immediately follows from (C.20)-(C.21), while the pressure is determined
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using (4.97), (4.95)2, (4.104) and (C.16)-(C.17), which yield:

p̂(r̃) = − r̃

ŵ(0)
+ Ĉp +

∫ r̃

0

(
1

ŵ(0)
− 1

ŵ(ξ)

)
dξ, (F.46)

where:

Ĉp =

√
π

2
K̂I +

π

4ŵ(0)
−
∫ 1

0

(
1

ŵ(0)
− 1

ŵ(y)

)√
1− y2 dy. (F.47)

The same method of removing asymptotic terms can be applied to reduce the level of

computational error, however it will not be outlined here.

F.3 Concluding remarks

In the above, the scheme used to obtain high accuracy numerical solutions for a penny-

shaped fracture in the self-similar case was given. It should be noted that, while each

regime and case (i.e. viscosity or toughness dominated, plastic, shear thinning or New-

tonian fluid) may require different versions of each block to be used, the final code is

designed to determine the applicable combination and solve it automatically, meaning

that it is truly a ’universal’ algorithm.

This approach can also be extended to incorporate the transient (time-dependent) case,

with the necessary modifications and additions being explained in detail in [164]. This

however is not performed here.

Finally, the algorithm developed for the case of a radial fracture incorporating shear

stress induced by the fluid is based on the same philosophy and scheme. The key

difference is that the asymptotic representation of the pressure function at the crack tip

is also used extensively within the main algorithm. This means that additional work

must be done to approximate a larger number of parameters (i.e. ŵ0, ŵ1, v̂0, p̂0, p̂2),

however this also means that further interrelations between these asymptotic multipliers

can be utilized, and the removal of additional terms from the elasticity equation becomes

simpler to perform.



Appendix G

Apparent Viscosity in the

Hele-Shaw Cell

G.1 An introduction to apparent viscosity

G.1.1 The concept of apparent viscosity

The concept of apparent viscosity, sometimes referred to as effective viscosity, is one

of the fundamental simplifying assumptions made when modeling hydraulic fracturing

(HF). Originally proposed by Einstein [56], it states that the presence of a large number

of small particles within a fluid (the proppant) can be approximated through an increase

in the viscosity. This simplifying assumption is absolutely necessary when modeling HF,

as no analytical or numerical method could possibly hope to incorporate the complexity

of each individual particle within the fluid. Unfortunately however, despite its integral

role, there remains numerous formulations to describe the phenomena, and no clear

consensus as to which provides the most accurate approximation within a hydraulic

fracture.

G.1.2 Formulations for the apparent viscosity

A review of several of the most widely utilized formulations for the apparent viscosity

is provided in [22], while a general outline is included below:

• Einstein:

In his original paper introducing the concept of apparent viscosity, Einstein derived

216
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the following relation between the volume fraction of the fluid,

Φ =
volume of particles in the fluid

total volume of the fluid and particles
,

and the apparent viscosity:
µ

µ0
= 1 +AΦ. (G.1)

Here µ is the apparent viscosity, µ0 is the actual viscosity of the fluid, while the

constant A = 5/2 for 3D problems, and A = 2 for 2D systems [32]. It should

be noted however that this formulation does not take account of the interaction

between individual proppant particles, in particular the effect of Brownian motion,

and as such is only valid for low values of the volume fraction (typically Φ < 0.01)

[22, 119].

This form of the apparent viscosity, for a fluid modeled in 3D, was later expanded

by Batchelor & Green [18] to:

µ

µ0
= 1 +

5

2
Φ + βΦ2, (G.2)

where 5.2 < β < 7.6 is a constant depending on the way that the particles behave

within the fluid (e.g. if they have a uniform distribution).

• Vand :

An alternative model of apparent viscosity, designed to work when the volume

fraction of the fluid was relatively high (typically Φ > 0.1), was proposed by Vand

[220]. He assumed the relationship to take the form:

µ

µ0
= exp

(
k1Φ + k2Φ2

1− k3Φ

)
, (G.3)

where k1 = 2.5, k2 = 2.7 and k3 = 0.609. These coeffecients were derived based on

a theoretical approach. It should be noted that, if this formulation is expressed in

terms of a power series, then (G.2) is recovered with β = 7.349.

• Thomas:

A formulation which attempted to combine the effects of those above was presented

by Thomas [213] in the form:

µ

µ0
= 1 + 2.5Φ + 10.05Φ2 + 0.0027 exp (16.6Φ) , (G.4)

where the coeffecients were extrapolated from empirical data, taken from six

sources with 0.02 < Φ < 0.6. The primary aim of the above formulation was to
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minimize the contributions from a wide range of secondary effects in the system.

Unfortunately, this formulation has not been widely adopted within the literature.

• Mooney :

The final relationship which we will examine here was provided by Mooney [148],

and takes the form:
µ

µ0
= exp

(
AΦ

1− kΦ

)
, (G.5)

where the constant A is identical to that used in the Einstein formulation, while

k it commonly used as a fitting parameter.

It should be noted again that the formulations provided above do not represent an

exhaustive list, but merely an introduction to the most prevalent forms which these

relations take. One key reason for this abundance is the significance of internal effects

within the fluid, which are numerous, on the final contribution of the particles. As such,

providing a general formula is beyond the reach of current methods, and so instead

numerous, specialised formulations are required to provide a reasonable approximation

of this important effect.

G.1.3 Apparent viscosity in the Hele-Shaw cell and hydraulic fracture

In the previous subsection, it was noted that current investigations into the apparent

viscosity caused by the inclusion of particles in a fluid tend to be highly specialised, rather

than taking a general form. It is therefore somewhat strange to note that, despite the

significance of this assumption to all models of hydraulic fracturing, there has been a

significant lack of investigations into the formulation of apparent viscosity which is best

suited to this case. Other than the notable investigation by Kuzkin et al [119], where a

computer simulation of a fluid-proppant mixture was used to etrapolate the relationship

between the volume fraction and effective viscosity, the author can find no other works

investigating this relationship in the case of HF.

Given the numerous links between the formulation of the Hele-Shaw cell and that used

in models of hydraulic fractuing, outlined in detail in Sect. 5.1.4.1, conducting an initial

investigation into the apparent viscosity in the Hele-Shaw cell seems a sensible first

step towards a study of this phenomena. The simpler nature of the Hele-Shaw cell

would allow such an investigation to be completed far more easily, and the use of such

an approximation to study proppant in HF has already been well established in the

literature [42, 55, 135].

There is, however, little analysis of apparent viscosity in the Hele-Shaw cell available in

the literature. The only notable example which the author could locate was the paper
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by Luo & Pozrikidis [133], where they examined the effect of a single large particle,

inside an infinite Hele-Shaw flow, as it travelled close to one of the plane walls. The

primary aim of their investigation was to examine the effect of surface slip on the system

behaviour. Under these conditions, they provided the expression:

µ

µ0
= 1 +

5 (βp + 2)

2 (βp + 5)
Φ, (G.6)

where βp is the dimensionless Basset particle-slip coefficient, with βp → 0 in the case

of vanishing shear stresses and perfect slip (which recovers the Einstein formulation),

while βp →∞ for finite shear stresses and no-slip. The fact that this solution only mod-

els a single particle, and does not incorporate a moving fluid boundary, unfortunately

mitigates the value of the solution in the study of HF. It does however offer a useful

benchmark against which to test any numerical simulations into the apparent viscosity

in the Hele-Shaw cell.

As such, if investigations into the apparent viscosity in the Hele-Shaw cell are to be

conducted, a new approach will need to be created. The remainder of this appendix

will be dedicated to outline one possible method of approach, as well as the difficulties

which will be faced when ensuring that the study is rigorous, and the results reliable.

G.2 Obtaining the apparent viscosity from radial bound-

ary growth

As the intention of this study is to use simulations of free moving particles in the Hele-

Shaw cell to estimate the effect of volume fraction on apparent viscosity, it is imperative

that a method is derived by which to obtain the apparent viscosity directly from the

final radius of the free flowing boundary. In order to simplify the final relationship be-

tween viscosity and movement of the free flowing boundary we consider the case of a

Hele-Shaw cell whose fluid is initially a unit circle.

We begin with a fluid defined by the domain Ω(t), which contains a source/sink located

at point y ∈ Ω(t), t ≥ 0. The standard equation, in terms of a Green’s function, for the

growth of the boundary, ∂Ω(t), in the Hele-Shaw cell is given by (5.12):

∂tw(s, t) = −Q0h
2

12µ
· ∇G(w(s, t), t) (G.7)

Here w(s, t) is the 2D representation of the fluid boundary, which has Green’s function

G, Q0 is the strength of the source/sink, h is the height of the cell and µ is the (apparent)
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fluid viscosity.

In the case without particle inclusions, the Green’s function can be approximated with

the following asymptotic expansion:

G(x,y; t) =
1

2π
log

∣∣∣∣ 1

x− y

∣∣∣∣ (G.8)

Noting that this approximation will not be valid on the boundary, i.e. for x ∈ ∂Ω(t),

y ∈ Ω(t).

It is possible to take y = 0 without a loss of generality, and transform the system into

radial coordinates. In this case if follows from (G.8) that:

G(R, θ; t) =
1

2π
log

∣∣∣∣ 1

R (cos(θ) + i sin(θ))

∣∣∣∣ , R ≥ 0, θ ∈ [0, 2π) (G.9)

∂RG(R, θ; t) = − 1

2πR
(G.10)

As only the case of a unit circle is considered, the radius will be independent of θ.

Combining this with (G.7), (G.10) yields:

∂R

∂t
=

Q0h
2

24πµR
(G.11)

Solving the above, noting that t0 = 0, and rearranging shows:

R(t) =

√
R2

0 +
Q0h2

12πµ
t (G.12)

As R0 = 1, we have that the apparent viscosity is given by:

µ (R, t) =
Q0h

2t

12π (R(t)2 − 1)
(G.13)

Therefore, one possible method of determining the effect of particle inclusion on the

effective viscosity in the Hele-Shaw cell is immediately apparent. Namely, we simulate

the boundary growth for a domain containing a large number of particles, and use the

radius of the final boundary position to determine the apparent viscosity from (G.13).

G.3 Notable complications and effects

While the method of determining the apparent viscosity outlined in the previous sec-

tion works in principle, there are numerous complications which need to be taken into
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account. A detailed discription of some of these difficulties, alongside potential modifi-

cations to the method to ensure it is sufficiently rigorous, and the results reliable, are

given below.

G.3.1 Determining the radius of the fluid boundary

It is clear that in the limiting case, when there is an infinite number of particles evenly

distributed throughout the fluid, the final radius of the fluid boundary, R(t), will be

independent of the angle θ. However, any simulations conducted using the algorithm

developed in Sect. 5 will instead be approximating this using a finite number of particles,

and as such some dependence on the angle will be present in the final result (see e.g.

Figs. 5.15, 5.16). As such, an effective radius, R∗, which is independent of θ, will have

to be obtained from the final boundary deformation.

One clear, physically representative, approach is to obtain the effective radius from the

area of the fluid. This can be formulated as follows:

R∗(t) =

√
1

2π

∫ 2π

0
R2(θ, t) dθ, (G.14)

where the integral can be approximated either using the trapezium rule, or through

spline-based integration techniques. This effective radius can then be inserted into (G.13)

to provide the approximated apparent viscosity, while the maximum and minimum of

R(θ, t) can be used to provide error estimates for the final solution.

G.3.2 Maintaining a constant volume fraction

In the case of proppant particles within HF fluids, the volume fraction will remain

essentially constant over time, and the particles will be evenly distributed throughout

the fluid. However, in numerical simulations of the Hele-Shaw cell, the particles may

be unevenly distributed, causing the volume fraction to vary throughout the domain.

Similarly, as only the base liquid is being injected from the fluid source, the volume

fraction of the fluid will naturally decrease over time. Depending on the movement of

the particles, the regions near the fluid source or boundary may also become void of

particles entirely. It is therefore imperative, that any examination into the relationship

between the volume fraction and the radial boundary growth develops strategies to

minimise these potentially error inducing effects.
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G.3.2.1 Initial particle distribution

When attempting to model a substance uniformly distributed in a fluid using a large

number of particles, their initial position will clearly play an important role in deter-

mining the accuracy of the approximation. For example, placing all of the inclusions

in only one side of the cell would lead to a variation of the volume fraction throughout

the fluid domain, and therefore the results may be unrepresentative. To take ordered

distributions however may incur a similar effect. Additionally, in order to maintain the

constraints imposed on the original system of equations (see Sect. 5.2.2), the particles

must not overlap. For this reason the methodology by which initial particle distributions

are chosen must be carefully considered.

While there may be numerous ways to achieve a representative distribution, the method

which the author has found most effective at eliminating variations in the volume frac-

tion throughout the fluid is to split the domain into ’rings’. Each ring is defined by its

radial distance from the fluid source, with the number of rings and their width being

determined based on the radius of the inclusions. The number of particles within each

ring can then be selected to ensure that any variation in volume fraction between them

is minimized (or ideally eliminated). Particle positions within the ring are randomly

generated1, with particle overlap prevented through the use of an additional algorithm.

Examples of distributions generated by this approach are shown in Fig. G.1.
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Figure G.1: Quasi-random distributions for (a) 200 (b) 300 particles in a circular
domain defined by 140 boundary nodes. The ’rings’ splitting the domain are marked

by dashed lines.

1In the authors case; using the MatLab ’rand’ function, which generates a random number in the
interval (0,1) based on the uniform distribution.
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One additional advantage of this ring based approach, is that the intial velocity of

each particle can be defined by the ring that it is in. In this way, taking the initial

velocity normal to the particle source, it is possible to ensure that, to a certain degree,

the particles remain representatively distributed throughout the fluid over short time

periods. As such, the volume fraction during the early stages will remain relatively

constant throughout the domain.

While this method of defining the initial particle distribution accurately balances the

immediate concerns, it will clearly not be entirely representative of a system with hun-

dreds of thousands of particles. In order to counter this, multiple simulations must be

undertaken for each value of the volume fraction, with each using a different, indepen-

dently generated, distribution. By comparing the results of each simulation, an estimate

of the apparent viscosity, alongside its associated error, may be obtained.

G.3.2.2 The volume fraction over time

As the fluid domain expands, if the number and size of the inclusions is kept constant,

the volume fraction will clearly vary over the course of the simulation. Meanwhile, in

hydraulic fracturing the volume fraction is maintained through the continued addition

of particles as the fluid domain expands. While this effect can be partially replicated

through the use of additional algorithms, it would still lead to a variation in the volume

fraction, as particles could only be added in discrete steps rather than as a continuous

process. An alternate method of maintaining the volume fraction involves increasing the

radius of the existing particles throughout the simulation, in such a way as to ensure

a constant volume fraction. This approach would be less representative of the physical

process we are attempting to represent, but would reduce the level of variation over

time.

Unfortunately, in practice both methods only lead to convergent results over short time

periods (t < 0.15 seconds), after which the level of boundary deformation they predict

begins to diverge significantly. Further, for such short durations, there is only a minimal

difference between the results of these methods and the case when no additional action

is taken2. As such, it seems sensible to instead avoid both methods and only simulate

time periods below this threshold (without any particle addition or expansion), in order

to reduce rather than eliminate this potential problem.

2Other than linking the inital particle velocity to that of the boundary. See previous subsection.
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G.3.3 Maintaining asymptotic validity

In hydraulic fracturing, understanding the behaviour at the fracture tip is crucial when

attempting to create a suitable model. Similarly, any attempt to investigate the ap-

parent viscosity must be able to incorporate the contribution of particles near the fluid

boundary. This presents by far the largest difficulty in attempting to construct a suit-

able method for examining this effect through the use of numerical simulations, as the

initial assumptions used when creating the model require that the particles do not get

too close to the boundary or the point of fluid injection (see Sect. 5.2.2). As such, there

is an awkward conundrum when it comes to deciding the position of particles near to

either the boundary or the source; placing them too far away will cause the simulations

to miss crucial effects, while placing them too close could potentially mean simulating

systems for which the asymptotic approximation is not valid. Either of these situations

would severly damage the credibility of the final result. Unfortunately, there is no quick

fix for this dilemma.

One possible method of avoiding the loss of asymptotic validity is to instead approximate

a multi-layer radial medium, as described in [74]. In this case, the inner and outer

layers would simply contain fluid with a prescribed viscosity, essentially providing a

buffer between the particles and the source/boundary. The particles would then be

confined to a central layer, in between the other two. This approach is not without

difficulties however, most notably in providing a rigid definition of the boundary between

the seperate layers. Obtaining the value for the apparent viscosity from the final radial

boundary growth would also be far more complicated than in the previous example,

as the interface between the layers is an ill-posed problem, leading to Saffman-Taylor

instability (described in Sect. 5.1.3). As this instability would not be mimicked by the

model outlined in Sect. 5, it would be difficult to obtain results that were comparable.

In any case, this is one possible avenue for future research.

G.4 Summary

It is clear that further research into the apparent viscosity of fluids used in hydraulic

fracturing is necessary. Here, the basic outline of an investigative approach, using the

Hele-Shaw cell, has been given. However there are still numerous difficulties to overcome

before such an examination can be conducted.

While potential solutions have been given to the problem of maintaining a constant

volume fraction throughout the domain, they require a large number of simulations to

be conducted in order to obtain a single result. Additionally, the final result they provide
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will predominantly take the form of upper and lower bounds on the apparent viscosity

in the fluid. This, combined with the bounds obtained when determining the effective

radius, may lead to a range of possible values so large as to be meaningless. The only

way to avoid this is to run each simulation with a very large number of particles and

boundary nodes, which in itself may lead to an infeasible total computation time.

Noting this, alongside the fact that no concrete solution to the problem of asymptotic

validity has been provided, means that the method outlined requires serious refinement

before it can be utilized to obtain the apparent viscosity in the Hele-Shaw cell. It does

however demonstrate the beginnings of a new approach which, if successfully realized,

will yield valuable insights into one of the fundamental assumptions used in models of

hydraulic fracture.
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Sitzungsber. Akad. Wiss. Berlin Math. Kl., 98:473–484, 1889.
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