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Abstract

Fungal biotrophic phytopathogens such as Magnaporthe oryzae, the causal agent

of rice blast disease, are becoming increasingly important in crop losses world-

wide with the onset of anthropogenic climate change and monoculture farming

practices. The use of model organisms such as the grass species Brachypodium

distachyon provides the opportunity undertake large-scale integrated omics anal-

yses that would otherwise be infeasible. These can provide insights into the

system-wide responses of plants to pathogen infection as well as identify areas of

the host plant system that could be targets for pathogen manipulation.

A spectral binning method for high resolution metabolome fingerprinting was

developed along with the R package binneR as a software implementation for

routine application of the method. This was applied to investigate experimental

control and robustness in plant-pathogen interactions, with the development of a

new inoculation strategy for appropriately controlling inoculum derived responses

unrelated to M. oryzae pathogenesis. Large-scale, high resolution metabolomic

fingerprinting and profiling, along with RNA-Seq transcriptomic analyses, were

conducted for the interaction between B. distachyon and M. oryzae and identi-

fied dynamic changes during the pre-symptomatic biotrophic phases. Both data

and knowledge driven omics integration strategies identified associations between

the transcriptomic and metabolomic changes during the interaction, with chloro-

plasts and nitrogen metabolism found as key response areas. A disease resistance

locus Rbr1 was identified using QTL analyses on chromosome 4 of B. distachyon

for resistance to M. oryzae utilising computer vision based phenotyping. Eight

candidate NB-LRR resistance genes were found within this locus.
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Preface

This thesis presents research with the intention of integrating omics analyses for

the investigation of the interaction between Brachypodium distachyon and Magna-

porthe oryzae. Chapter 1 is a general introduction to cover key themes in plant

pathogen interactions and introduce omics technologies. Chapter 2 contains

the general methodologies used throughout the thesis. Chapter 3 presents the

development of a spectral binning method for high resolution metabolome finger-

printing. Chapter 4 investigates elements of experimental control and robustness

in omics analyses of plant-pathogen interactions. Chapter 5 presents results of

metabolomic and transcriptomic analyses of the pre-symptomatic phases of the

interaction between B. distachyon and M. oryzae. Chapter 6 aims to build on

the results of Chapter 5, by directly integrating data from these omics analyses

to identify key pathways involved in the interaction. Chapter 7 presents the

identification of a disease resistance locus to M. oryzae in B. distachyon, utilising

computer vision based phenotyping. Finally Chapter 8 summarises the general

conclusions and presents opportunities for future research.

In the interest of open and reproducible research, only open-source bioinfor-

matics software has been used. This thesis has been written using a combination

of LATEXand the R package knitr, to allow the direct integration of both experi-

mental data and analysis code into its compilation, ensuring both reproducibility

and transparency. All LATEXand R source code and data underlying the figures

and tables presented here can be found in Appendix A along with compilation

instructions. All other analysis code and workflows used can be accessed at

https://github.com/jasenfinch.
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Chapter 1

General introduction

With the onset of anthropogenic climate change, widespread monoculture farming

practices and increasing human populations, plant pathogens present an increas-

ing threat to global food security. Rice blast, the most destructive disease of rice,

destroys between 10 and 30% annually of the global rice crop. This is enough

rice to feed the equivalent of the UK population each year (Dean et al. 2005).

Not only has there been greater incidence of emergent pathogens such as Phy-

tophthora ramorum, but there is also an increase in virulence of already estab-

lished pathogens (Fisher et al. 2012). It is vital to understand the molecular basis

of how pathogens colonise plant tissues and in turn how plants defend themselves

so that appropriate methods of control and resistant varieties can be developed.

Model organisms have had a central role across the biological sciences in in-

vestigating fundamental aspects of biological systems. From the use of Saccha-

romyces cerevisiae for investigating genetics and cell biology to the wide appli-

cation of Arabidopsis thaliana for plant development and light sensing. The field

of plant pathology is no different. Model organisms are essential for investigating

plant-pathogen interactions. Their use can simplify practical constraints such as

specific growth needs, allowing the investigation of fundamental questions that

can be inferable upon other plant-pathogen interactions.

The interaction between the model grass species Brachypodium distachyon and

the model plant pathogen Magnaporthe oryzae has been developed as a model
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(a) Brachypodium distachyon
(b) Magnaporthe oryzae

Figure 1.1: The host and pathogen. a) 21 day old B. distachyon. b) 16 day
old M. oryzae cultures on PDA media.

interaction to study dynamic host-pathogen interactions (Parker et al. 2008).

1.1 The host: Brachypodium distachyon

B. distachyon is temperate grass species whose natural range spans from the

Mediterranean to the Middle East. It has status as a model grass species due to

its small size, fast growth rate, short life cycle minimal growth requirements and

is readily genetically transformable (Draper et al. 2001; Vogel et al. 2006). B.

distachyon is diploid with 5 chromosomes and genome sequencing of the ecotype

Bd21 has revealed a small genome of only 272 Mb (Brachypodium Initiative

2010). Phylogenetically it has a close proximity to important crop species such

as wheat, barley and rice.

Well over 40 ecotypes have been collected that show variation in flowering

time, vernalisation requirements and domestication traits such spikelet and grain

morphology. It is self-pollinating making it suitable for developing mapping pop-

ulations for the investigation of segregating traits. This has led to it’s application

as a model for bioenergy crops whose genomes are normally large and complex

(Opanowicz et al. 2008)

B. distachyon also shows diversity in responses of ecotypes to a number of

important phytopathogens that cause significant crop losses. These include the

rust disease causing Puccinia and Magnaporthe oryzae (Draper et al. 2001).
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1.2 The pathogen: Magnaporthe oryzae

M. oryzae, the causal agent of rice blast disease, is a haploid ascomycete fungus.

It has widespread occurance and is present in all rice growing regions throughout

the world.

M. oryzae is heterothallic with two mating types present, MAT1-1 and MAT1-

2, the pairing of isolates carrying opposite mating types will form sexual fruiting

bodies. It can be transformed using a number of selective markers including

complementary auxotrophic markers. This makes it readily amenable to genetic

analyses.

It has model phytopathogen status and it’s genome has been sequenced yield-

ing a 40.3Mb genome (Dean et al. 2005). M. oryzae is able to infect all aerial

parts of rice and it’s spore germination and infection mechanisms are well char-

acterized. It is also able to infect roots and systematically spread through the

tissue of susceptible hosts (Sesma and Osbourn 2004).

Formally known as M. grisea, M. oryzae has been identified as a distinct

species through multilocus gene genealogy and host preference. M. grisea is

associated with specificity to the grass genus Digitaria (Couch and Kohn 2002).

Magnaporthe has a wide host range and has been reported to occur on more than

50 grass species including other important cereal crops such as wheat and barley.

It’s interaction with that of B. distachyon has been found to closely resemble

those with rice (Routledge et al. 2004). The B. distachyon ecotype Bd21 shows a

compatible response (susceptible) and the ecotype ABR6 shows an incompatible

response (resistance) with M. oryzae.

1.3 The infection of cycle of M. oryzae

The infection cycle of M. oryzae begins with aerially dispersed three-celled conidia

landing upon the leaf cuticle. Spore germination is triggered by high humidity or

the presence of dew. A strong adhesive is secreted from the spore tip that is used

stick to the leaf surface. This contains α-linked-mannosyl and glucosyl residues
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as well as protein and lipid components. These are released upon hydration of

the spore.

The emergence of of a germ tube quickly ensues within 30 minutes of attach-

ment (Hamer et al. 1988). There is a short period of host recognition where the

presence of cutin and lipid monomers is sensed prior to committing to appre-

sorium development. The spore will subsequently develops into a dome shaped

appresorium; the structure with which the fungal pathogen breaches the cuticle

layer and enters the host tissue.

Tugor pressure is generated within the appresorium by the accumulation of

glycerol, drawing in water by osmosis. This can generate up to 8 MPa of pressure

and forces a penetration peg through the cell wall (de Jong et al. 1997). The

conidium then undergoes programmed cell death, which is essential to the pene-

tration process (Veneault-Fourrey et al. 2006). Penetration of the host cell wall

allows the proliferation of a bulbous fungal invasion hyphae and invagination of

the host cell membrane. This differentiates into a specialised feeding structure

known as a haustoria; the nutritional interface through which host manipulation

can occur (O’Connell and Panstruga 2006). It begins the biotrophic phase of

the colonisation process and occurs within 30 hours of initial spore germination.

These initial phases of the interaction are shown in Figure 1.2.

From the initial colonisation of the primary host cell, secondary spread into

adjacent cells occurs through plasmodesmata and M. oryzae proliferates through

the host tissue. Then, around 4 days after spore germination, M. oryzae shifts into

a necrotophic phase and will actively kill host cells producing the characteristic

blast lesions. This shift to necrotrophy is thought to release a burst of nutrients

that enable it to sporulate (Talbot 1995). Sporulation occurs under high humidity

and spores are disseminated by wind, completing its infection cycle.
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Figure 1.2: The initial host colonisation phases of Magnaporthe oryzae.

1.4 Pathogen infection strategies and plant de-

fences at the molecular level

Plant pathogens have a diverse range of life strategies across all plant tissue types.

Biotrophic pathogens will maintain host viability during infection, subverting it

in order to gain nutrition. Necrotrophs actively kill host tissue, deriving nutri-

tion from breakdown products released during this process. Hemi-biotrophs such

as M. oryzae have both biotrophic and necrotrophic phases to their life cycle

with biotrophy during initial infection phases, switching to necrotrophy prior to

sporulation. Bacteria will inhabit apoplastic spaces, entering through stomatal

pores or wounding. Alternatively many fungal pathogens will directly penetrate

epidermal cells, forming intimate interfaces with the plant cells.

Unlike animals, plants lack an adaptive mobile immune system of specialized

cells, the only purpose of which is to neutralise invading pathogens. Instead they

rely upon the innate immunity of each individual cell to be able to appropriately

recognise and defend against these diverse pathogen strategies (Dodds and Rath-

jen 2010). These defences consist of both constitutive and inducible responses.

Successful pathogens have to successfully suppress plant defences and subvert

the host system in order to gain the nutrients required to complete their life cycle.

They do this through the use of specialised effector proteins that are secreted into
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the host tissue during infection.

1.4.1 The ‘zigzag’ model of the plant pathogen interac-

tions

Plant-pathogen interactions can be represented by a four phased ‘zigzag’ model

(Jones and Dangl 2006). This describes the ‘zigzag’ between successful pathogen

colonisation and successful host resistance as infection proceeds.

The initial phase is the recognition of pathogen-associated molecular pat-

tern (PAMP)s by the plant. PAMPs are highly conserved molecules that are

widely distributed between microbial species. They will often carry out essential

functions within the pathogen species, but will be absent from the host species.

Identified PAMPs include flagellin in bacteria and chitin in fungi. The ability

of plants to recognise these PAMPs will vary between species, depending on the

co-evolution of species with particular pathogens (Chisholm et al. 2006).

The recognition of PAMPs is mediated by transmembrane pattern recognition

receptors. These trigger signalling cascades that initiate host defences in response

to the pathogen presence. The characterisation of pattern recognition receptors

has proved difficult, however they have been hypothesised to be analogous to

Toll-like receptors in mammals. These contain extracellular leucine rich repeat

and intracellular TIR domains that mediate signal transduction upon pattern

recognition (Ingle, Carstens, and Denby 2006). FLS2, a receptor like kinase

containing an extracellular leucine-rich repeat domain in Arabidopsis has been

shown to bind the flagellin constituent flg22 (Chinchilla et al. 2006).

The second phase is essential for successful pathogens and that is the suppres-

sion of the PAMP triggered immune responses by the pathogen. Effector proteins

are deployed into the host tissue that allow the pathogen to overcome the plant

defences and continue with infection.

The third phase is the specific recognition of the pathogen effectors intra-

cellularly by host nucleotide-binding leucine-rich repeat (NB-LRR) proteins and

results in effector triggered immunity. NB-LRRs and the genetic basis of plant
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resistance to disease is discussed further in Section 7.1.2. Any subsequent phases

will be a repetition of pathogen suppression of defences and host recognition as

a result of the plant and pathogen arms race during co-evolution.

1.4.2 Pathogen subversion by effectors

Effectors are molecules secreted by phytopathogens that modulate the interaction

between a pathogen and it’s host. Their role is to suppress host defences and

subvert the host system for nutritional gain. They can function both inter and

intra cellularly.

Fungal plant pathogens have extensive effector repertoires, with the functional

constituents dependent on the lifestyle of the pathogen. Biotrophic fungi require

effectors that will suppress host defences; whereas necrotrophs will require ef-

fectors that will directly kill plant cells. The proportions of cell wall degrading

enzymes in necrotrophs or hemi-biotrophs are higher than in biotrophs but are

comparable to those of saprotrophs. M. oryzae has a repertoire of over 1500

putatively secreted proteins (Lo Presti et al. 2015).

Knowledge is still limited on how fungal plant pathogens translocate effector

proteins into host cells. M. oryzae has two distinct secretion systems for translo-

cating effectors within host tissues. Effectors that are secreted extracellularly

follow conventional secretory pathways of filamentous fungi. However, those that

are translocated into the host tissue utilise a biotrophic interfacial complex. This

is a plant-derived interfacial structure, lying outside of the fungal cell membrane

and wall. It is associated with a secretion system that involves exocyst compo-

nents and the Sso1 t-SNARE to deliver effectors into the host cell (Giraldo et al.

2013).

Effectors have diverse functions for both suppressing host defences as well

as subverting host cells. Those such as the M. oryzae effector Slpl can bind to

chitin and is able to suppress chitin elicited PAMP triggered immunity (Mentlak

et al. 2012). The Avr-Piz-t effector suppresses the generation of reactive oxygen

species (ROS) during PAMP triggered responses by inhibiting the rice RING E3
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ubiquitin ligase APIP6 (Park et al. 2012).

Ustilago maydis secretes high amounts of chorismate mutase into the cyto-

plasm of the host plant cells during colonisation. This reduces the levels of

chorismate within the cells, which serves as a precursor to the salicylic acid syn-

thesis. Therefore, the cell’s ability to utilize salicylic acid for defence responses

is diminished and promotes the virulence of U. maydis (Djamei et al. 2011).

In M.oryzae, an avirulence gene ACE1 (a polyketide synthase) is up-regulated

during penetration phases; however, it is not predicted to be secreted and localises

in appressorial cytoplasm. This suggests that an unknown secondary metabolite

that is synthesised by Ace1 could be acting as an effector (Bohnert 2004). Sec-

ondary metabolite effectors are also speculated to exist in Colletotrichum higgin-

sianum. Twelve secondary metabolism clusters have been found to be induced

before penetration and during biotrophy (O’Connell et al. 2012).

Other fungal pathogen effector targets include protease inhibition and the

disruption of plant immune receptors. No effectors have yet been identified that

redirect plant metabolism that would allow fungal pathogens to meet their nu-

tritional needs (Lo Presti et al. 2015).

1.4.3 Plant defences against pathogens

Plants have a number of defences, both constitutive and induced, in order defend

themselves against pathogen invasion. The plant cuticle and cell wall presents the

first obstacle that a prospective fungal phytopathogen must overcome in order

to begin colonising the host tissue. Thick cuticle and wax layers can provide a

defence against fungal pathogens that directly penetrate the host tissue (Hématy,

Cherk, and Somerville 2009).

Plants cells are also able to induce the formation of papillae at sites of active

pathogen penetration. Although the exact form and constituents of papillae vary

between plant species, these are areas of cell wall thickening that form plugs or

collars inhibit the penetration of the pathogen or restrict the activity of hausto-

rial feeding structures (Meyer et al. 2009). Typical constituents in the formation
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of papillae include callose, phenolics, phenolic polyamines as well as pectin and

xyloglucans. ROS are also required in this process with hydrogen peroxide essen-

tial to allowing phenolic crosslinking for cell wall strengthening (Mellersh et al.

2002).

Arguably the most important of the induced host defences is that of the

hypersensitive response. Host plant cells being colonised by a pathogen will elicit

a form of programmed cell death in order to contain the pathogen and prevent its

further spread into surrounding tissues. There are forms of both micro and macro

responses where many or few cells will be involved. The hypersensitive response

varies among plant species and pathogen interaction but can be associated with

granulation of the cell cytoplasm, an oxidative burst through the generation of

ROS and the appearance of localised, non-spreading necrotic lesions (Mur et al.

2008). The response is induced through the recognition of pathogen effectors

during initial pathogen infection.

ROS form an essential part of plant defence responses to pathogens. There

is rapid accumulation after pathogen recognition that is known as an oxidative

burst. This substantially alters the cellular environment, altering pH, ion fluxes

and protein phosphorylation. It can create an antimicrobial environment, acting

directly against pathogen colonisation. However, ROS also acts in cellular sig-

nalling and can induce the hypersensitive response and the expression of defence

related genes (Desikan, Neill, and Hancock 2000).

ROS can be produced by a range of cellular processes and includes superox-

ide radicals, hydrogen peroxide, hydroxyl radical and nitric oxide. Superoxide

radicals can be produced by NADPH oxidase, leakage from electron transport

chains in both mitochondria and chloroplasts and xanthine oxidase. Peroxidases

can form hydrogen peroxide from superoxide dismutase or dismutation can occur

spontaneously (O’Brien et al. 2012).

Phytoalexins are low molecular weight secondary metabolites with antimicro-

bial activity, that are synthesised upon the recognition of pathogen attack. They

are a heterogeneous and diverse group of compounds, with repertoires varying

9



greatly between plant species and their induction is also pathogen specific.

1.5 Metabolite and gene expression changes as-

sociated with biotrophic fungal infection of

cereal hosts

There is evidence to suggest commonality in the reprogramming of cereal host

metabolism during biotrophic fungal infection. Similar metabolite changes be-

tween different cereal hosts interacting with the same fungal biotroph as well

as between different fungal biotrophs and the same host. Parker et al. (2009)

found identical patterns of metabolomic change during compatible interactions

between M. oryzae and rice, barley and B. distachyon. Accumulations of malate

and polyamines suggested a disruption to the generation of defensive ROS. Also

accumulations of quinate and non-polymerised lignin precursors suggested di-

version of the shikimic acid pathway and modulation of the phenylpropanoid

pathway.

Voll (2011) also found commonality between metabolite changes in compatible

interactions, but used a diverse set of fungal biotroph pathosystems; U. maydis

and C. graminicola on maize and Blumeria graminis f.sp. hordei on barley.

Stages of early and late biotrophic phases could be identified associated between

the pathosystems using natural clustering based on 42 water soluble metabolites.

Increases in glutamine, asparagine and glucose and reductions in phosphoenol

pyruvate and 3-phosphoglycerate were found to be common post-penetration host

changes between the pathosystems.

Interestingly, transcriptome data for these pathosystems was unable to dis-

criminate the biotrophic phases in a way similar to the metabolites. However,

alterations to genes involved in the TCA cycle, nucleotide energy metabolism

and amino acid metabolism were found to be consistent between the interactions.

This highlighted the importance of metabolic energy and alterations of amino
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acid pools during early biotrophy.

Alongside these commonalities between pathosystems, there have been a di-

verse range of gene expression and metabolite pathways associated with the fungal

infection of cereal hosts. These include areas of primary metabolism, secondary

metabolism and hormone signalling. Increases in both sucrose and hexoses have

been found around the infection sites of compatible interactions between B. grami-

nis and barley (Swarbrick, Schulze-Lefert, and Scholes 2006). This was associated

with the preferential uptake of hexoses by the fungal pathogen and the subse-

quent transition of infected host cells from carbon sources to carbon sinks. Pools

of amino acids such as alanine were found to be less affected in incompatible

interactions of M. oryzae and rice compared to compatible interactions (Jones

et al. 2011).

Fungal biotroph infection induces many secondary metabolite pathways that

include genes and metabolites involved in the production of phytoalexins, an-

tioxidants and lignin precursors. Biosynthesis of phytoalexins involves the induc-

tion of a number of primary metabolic pathways such as the shikimate pathway

and acetate-malonate pathways. They are commonly derived from the phenyl-

propanoids, flavonoids and isoflavonoids, sesquiterpenes and polyketides (Ahuja,

Kissen, and Bones 2012). Momilactones are diterpene compounds that have been

found to be synthesised in rice, in response to M. oryzae infection and severely

restricted the pathogen growth in vitro (Hasegawa et al. 2010).

Antioxidants such as glutathione, ascorbate and polyphenols such as fla-

vanoids have been shown to be important regulators of oxidative stress in many

plant pathogen interactions. Doehlemann et al. (2008) found an induction of

seven glutathione S-transferase genes after just 12 hours of infection of maize

by U. maydis. Elevated levels of glutathione were found 24 hours post inocula-

tion (hpi) and a high reduction state of the glutathione pool was also found to

be maintained throughout the rest of the interaction. Levels of ascorbate and

tocopherol were unaffected.

As mentioned previously, Parker et al. (2009) found evidence of modulation in
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the production of lignin precursors in compatible interactions of M. oryzae with

cereal hosts. Lignin precursors such as sinapoyl alcohol, caffeoylquinatte, ferulate

were found to accumulate. Along with the lack of primary cell wall thickening that

was observed during the interaction, it was hypothesised that this accumulation

was a as a result of insufficient ROS production for mono-lignan polymerisation

and potentially a diversion of the phenylpropanoid pathway by pathogen effectors.

Hormone signalling plays an important part in cereal host responses to fungal

biotrophic infection. A number of hormones have been implicated which include

salicylic and jasmonic acid, auxins and gibberellins (Pieterse et al. 2012). They

mediate the induction of signalling pathways that alters the expression many

genes and metabolite pathways. Salicylic acid levels in resistant interactions

of Fusarium graminearum and wheat were found to be elevated 3 hpi (Ding

et al. 2011). Concordant with this elevation was increases in the expression

of the phenylalanine ammonia lyase gene involved in salicylic acid biosynthesis.

β-(1,3;1,4)-glucanase-2 expression, which responds exclusively to salicylic acid

signalling, also showed the same increased profile at 3 hpi.

1.6 The modern plant pathologist’s omics tool-

box

Omics technologies encompass the holistic analysis of cellular environments. There

are now numerous omics layers that describe individual aspects of the cellular

hierarchy. This includes the transcriptome, which describes the total mRNA

molecules expressed from an organisms genes and the metabolome that describes

the entire metabolite complement present within an organism.

Recent technological advances such as next generation sequencing (NGS) have

revolutionised omics research and has provided unprecedented volumes of genomic

and transcriptomic information. The development of high resolution (HR) MS

has also revolutionised the fields of metabolomics and proteomics allowing in-

creasing profiling capabilities (Mochida and Shinozaki 2011). Metabolomic and
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transcriptomic techniques are further discussed in Sections 3.1, 5.1.1 and 5.1.3.

Technological advances in omics introduces new challenges with respect to

data processing, analysis and storage. They are often concomitant with magni-

tude increases in sample throughput, volumes of acquired data and the numbers

of measured variables. This requires the development of software tools that are

not only able to process the data using methods appropriate to the new tech-

niques, but are also able to execute it efficiently with respect to processing time

and required computational resources as well as being user-friendly. These tools

should also be open-source freeware, allowing easy access and adoption by the sci-

entific community. An example is the development of Bowtie 2, a read alignment

tool, developed as a result of the increasing throughput of NGS and the need for

fast and efficient alignment of sequencing reads to reference genomes (Langmead

and Salzberg 2012).

High performance computing is now an essential part of omics analyses. The

routine use clusters of compute nodes provides the necessary memory and pro-

cessing resources that not only makes the analysis of large omics data sets possible

but routine (O’Driscoll, Daugelaite, and Sleator 2013). Software tools need to be

able to take advantage of parallel processing; where computation is distributed

across many processors, substantially reducing the necessary computational time.

Both long and short term storage of the copious volumes of data produce by omics

technologies also requires appropriate infrastructure.

The holistic nature of omics techniques means that many variables are simulta-

neously measured. This provides high dimensional data sets that require powerful

data mining techniques to extract information relevant to the biological question.

Machine learning algorithms that construct representations by learning from the

data, are commonly applied in metabolomics analyses with the aim of deriving

relationships between groups of biological observations (classes) and measured

variables (features) (Enot et al. 2008). These algorithms include Random Forest

and Support Vector Machines and Artificial Neural Networks, all of which have

previously been applied to metabolomic analyses (Ward et al. 2010; Mahadevan
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et al. 2008; Brougham et al. 2011). Random Forest is discussed further in Section

4.1.2.

With the high dimensional nature of omics data sets, consideration needs to

be given to the concept of false discovery and the strategies required to avoid it.

When many variables are simultaneously measured, the chance that any one of

these is coincidently related to the biological question also increases. This can be

further enhanced by bias, inadequate sample size and the inappropriate choice

of analytical technique (Broadhurst and Kell 2006). These factors need to be

considered when designing omics experiments to ensure that the results obtained

are valid and that resources are not squandered. Closely linked to this is the

need for adequate validation of the results obtained to ensure that they are both

relevant and reproducible. Omics validation is discussed further in Section 4.1.3.

The integration of omics data is becoming increasingly important to broaden

the holistic views beyond that of the individual omics layers. Omics integration

is further discussed in Section 6.1.1.

1.7 Systems biology and biological networks

There is still contention as to the exact definition of the field of systems biology.

One definition is the study of interactions among biological components using

models or networks to integrate genes, metabolites, proteins, regulatory elements

and other cellular components (Yuan et al. 2008). In investigating biological

systems, models of system characteristics can be used to predict the outcomes of

system alterations to produce a phenotype of interest. Currently omics analyses

provide best technological answer to holistically investigating biological systems.

However, even though these analyses provide copious amounts of data, they are

often incomplete and only focus on a single aspect of the biological system.

Biological systems can be represented as networks containing a series of nodes

connected by edges. Nodes can represent genes, proteins or metabolites. The

edges are the connections between the nodes that could represent co-expression,

protein-protein interactions or metabolite correlations. They can also be either
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directed or undirected depending on the type of association being represented. For

instance, an irreversible enzyme catalyzed metabolite reaction would represent a

directed edge where as a correlation between two gene expression profiles would

represent an undirected edge (Gehlenborg et al. 2010).

Measures of network topology can be used to compare the structure and con-

nectivity of a network. The degree distribution is the probability that a selected

node has k links. This is useful for determining a networks type, whether a net-

work is randomly structured or scale-free. Clustering coefficients can be used to

characterize the tendency of nodes to form clusters within networks. Biological

networks often have a scale-free topology, where the connectivity within the net-

work is characterised by a power-law degree distribution. A result of this is that

they will contain highly connected nodes known as hubs as well as distinct groups

of connected nodes known as modules (Barabási and Oltvai 2004). The identi-

fication of hubs and modules within biological networks is an important part of

inferring biological function. Hubs can represent key regulatory bottlenecks, such

as transcription factors that can be responsible for the functional regulation of

large modules of other co-regulated genes.

In plant-pathogen interactions, hubs and modules are not only key in the

initiation of host defences but are also important in the pathogen subversion of

the host network. Proteins involved in pathogen recognition signalling pathways

are also likely hubs that will then initiate modules of genes involved in defence

initiation (Pritchard and Birch 2011). However, because of the highly connected

nature of these hubs, they can often form efficient pathogen effector targets.

Perturbation of a hub, over other targets, will have an effect on the broadest

regions of function; that system robustness is unlikely to overcome.

1.8 Aims

The central aim of this thesis is to apply integrative omics analyses to investi-

gate the interaction between B. distachyon and M. oryzae; with emphasis on

its biotrophic, pre-symptomatic phases. This will utilize both HR metabolomic
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techniques as well as RNA sequencing (RNA-Seq) transcriptomic analyses. Al-

terations in metabolite and gene expression levels as a result of M. oryzae coloni-

sation will be identified during these phases in both compatible and incompatible

interactions.

The identification of metabolic and transcriptional alterations occurring dur-

ing the interaction can provide insight into the infection and defence strategies

employed by M. oryzae and B. distachyon. M. oryzae has to successfully sup-

press host defences and subvert host metabolism in order to acquire the nutrition

needed to complete its life cycle. Conversely B. distachyon has to successfully

recognise the presence of the pathogen and initiate appropriate defence responses

to halt the infection. Understanding the system changes that occur during these

process can provide useful targets for further research and potentially the devel-

opment of durable resistance in these interactions.

In an addition to the integrative omics analyses for studying this interaction,

there will also be application of computer vision phenotyping and quantitative

trait loci (QTL) analyses to investigate the genetic basis of resistance to M. oryzae

in B. distachyon. This forms an important aspect of understanding the context of

the alterations in metabolite and gene expression changes during the interaction.

The overall aims and objectives can be summarised as follow:

• Develop methods for the processing of flow infusion electrospray (FIE)-HR

MS data, suitable for metabolomic fingerprinting.

• Determine appropriate control measures for experiments involving plant-

pathogen interactions and investigate the robustness of system changes be-

tween independent inoculations during asymptomatic phases

• Use metabolomic and transcriptomic analyses to investigate system pertur-

bation during pre-symptomatic phases of the B. distachyon and M. oryzae

interaction.

• Integrate metabolomic and transcriptomic data to elucidate key pathways

involved during the biotrophic phases of the interaction.
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• Use computer vision based phenotyping to identify gene loci in B. dis-

tachyon linked to M. oryzae resistance.
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Chapter 2

General materials and methods

2.1 B. distachyon growth conditions

Seed of the B. distachyon ecotypes ABR6 and Bd21 were sown in sterilized Lev-

ington’s Universal Compost (Levington Horticulture, Suffolk, UK) mixed with

gravel (50:50 v/v) into modular plastic trays with 6 seeds per module. Plants

were grown to 21 days old in environmentally controlled growth rooms (Polysec,

R. J. Hicks Refrigeration, Aberystwyth, UK) at 23 ◦C under a 16 hour light pe-

riod. Plants were watered daily, never being allowed to stand in water. Plants

were illuminated using 55 W high-frequency lighting tubes and supplemented with

30 W clear tube cooled lighting with plants placed 60 cm from the light bank.

Seed stocks were maintained by allowing self pollination. The ecotype ABR6

required vernalisation to induce flowering. Vernalisation was induced by placing

plants in a 4 ◦C cold room for six weeks, prior to being returned to the normal

growth conditions; flowering occurred 3-4 weeks post vernalisation. Seed was

collected and placed in dry storage at room temperature until required.
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2.2 M. oryzae maintenance and growth condi-

tions

The M. oryzae strain Guy11 (mating type MAT1-2) was maintained on potato

dextrose agar (PDA) (Oxoid, Hampshire, UK) prepared as 39 g L−1 and auto-

claved at 121 ◦C for 15 minutes. Plates were cultured in a temperature controlled

incubator (Gallenkamp Illuminated Cooled Incubator 9, Loughborough, UK) at

23 ◦C for 14 days under a 16 hour light period. Pathogenicity was maintained

by re-isolation of M. oryzae spores from infected B. distachyon leaf tissue as

described by Parker et al. (2008).

2.3 M. oryzae inoculum preparation and B. dis-

tachyon inoculation

Conidial suspensions of M. oryzae were prepared as described in Parker et al.

(2008) by scraping mycelia from the surface of culture plates in 0.2% (w/v) gela-

tine solution. Suspensions were then centrifuged (RT7, Sorvall) at 2500 rpm

for 5 minutes at room temperature. The supernatant was then poured off, re-

suspended in gelatine solution and re-centrifuged. The final suspension was re-

suspended in gelatine solution using a volume of 1.4 mL/plate giving a conidial

density of 1010 conidia/mL. Condial concentrations were adjusted accordingly

after estimating density using a microscope and haemocytometer.

A non-pathogenic control was subsequently prepared by subjecting a portion

of the conidial suspension to two rounds of snap freezing in liquid nitrogen, thaw-

ing in a 35 ◦C water bath and sonication for 5 minutes to completely neutralise

the fungal spores.

B. distachyon plants were inoculated at 21 days old. Plants were spray inocu-

lated with approximately 2.5 mL of conidial suspension per plant using an artists

airbrush (Model 250-2, Badger, USA). Plants were then placed into plastic prop-

agator trays to maintain high humidity and removed no sooner than 2 days post
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inoculation. Control and infected plants to be harvested at the same time point

were placed into the same plastic propagator ensuring no contact between plants

of differing treatment.

2.4 Harvesting of plant material

B. distachyon leaf tissue was harvested by detaching the 2nd fully developed leaf

from the base of each plant. The middle 4 cm segment was excised and imme-

diately placed in a 2 mL Eppendorf tube containing a 4 mm steel ball bearing

and snap frozen in liquid nitrogen. Samples were stored at −80 ◦C until extrac-

tion. Where more than one leaf was sampled, details are given where appropriate.

Unless otherwise stated, plants were removed from high humidity conditions im-

mediately before harvesting. All harvesting was conducted in the growth room

to avoid environmental fluctuations.

2.5 Large-scale inoculations to investigate the

pre-symptomatic phases of the B. distachyon

and M. oryzae

Three independent, large scale inoculations of the B. distachyon ecotypes ABR6

(incompatible) and Bd21 (compatible) were undertaken simultaneously with con-

trol and infected tissue harvested at 12 hour intervals from 0-60 hpi. The indepen-

dent inoculations were conducted at weekly intervals. 12 metabolomics replicates

were harvested as described in Section 2.4 and combining two leaf sections per

replicate for each treatment class at each time point in each experiment giving

36 total replicates for each class. Concurrently, one transcriptomics replicate was

harvested for each treatment class by combining 10 B. distachyon leaf sections

per replicate, at each time point in each experiment, giving 3 total replicates for

each class.

20



2.6 Metabolite Extraction

For global metabolite extraction, frozen samples were milled using a Retsch mm

301 Mixer Mill at 30 Hz for 30 seconds then placed on crushed ice. Pre-chilled

extraction solvent (CHCl3:MeOH:H2O; 1:2.5:1; v:v:v) was immediately added

using 700 µL/leaf and suspended by vortexing (Scientific Industries Vortex Genie-

2). Samples were then placed on a orbital shaker (FATSN002, Favorgen Biotech

Corp) for 20 minutes at 1,400 rpm and a temperature of 4 ◦C. After shaking,

samples were centrifuged (EBA 12R, Hettich) at 13,000 rpm for 6 minutes at

0 ◦C. The supernatant was then transferred to a clean 2 mL Eppendorf tube and

the pellet discarded. Samples were stored at −80 ◦C until MS analysis.

Samples for liquid-chromatography (LC)-HRMS analysis were prepared firstly

by complete drying of 400 µL of sample in a centrifugal vacuum evaporator (Uni-

vapo 150H + Unijet II refrigerated aspirator, Uniequip) for approximately 2

hours. The samples were then reconstituted in 40 µL of pre-chilled ultra-pure

water (18 Ω), vortexted and then sonicated (Ultra wave) at 60 Hz for 15 minutes.

Samples were shaken in an orbital shaker for 20 minutes at 1,400 rpm at 4 ◦C

and centrifuged at 14,000 rpm for 8 minutes at 0 ◦C. The supernatant was then

carefully transferred into a 200 µL vial. The samples were made up no more than

4 hours prior to analysis and were stored a 4 ◦C.

Samples for quality control (QC) were prepared prior to the drying down of

samples by combining an aliquot of each of samples that were to be analysed.

These samples were then prepared in the same way as all of the other samples.

2.7 FIE-HRMS analysis and data processing

FIE-HRMS analysis was performed in an Exactive Orbitrap mass spectrometer

(ThermoFinnigan, San Jose, CA) coupled to an Accela (ThermoFinnigan, San

Jose, CA) ultra-performance liquid chromatography front-end. 20 µL of sample

was delivered to the electrospray ionisation source in a flow solvent of pre-mixed

HPLC grade methanol and ultra-pure water (7:3). Data was acquired for a total
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of 3 minutes. The flow rate was maintained at 200 µL min−1 for the first 1.5

minutes then raised to 600 µL min−1 up to 3 minutes.

Both positive and negative ionisation modes were acquired simultaneously

using polarity switching. Scans for each ionisation mode consisted of a single

scan event, ranging from 55-1000 mass to charge ratio (m/z ) in positive mode

and 63-1000 m/z in negative mode at a scan rate of 1 Hz. An automatic gain

control target of 5 x 105 was used and the resolution set at 100,000 and a maximum

injection time of 250 ms.

Raw data was acquired as profile data in the proprietary ThermoFinnigan file

format (.RAW). These were converted to the mzXML format and centroided using

the msconvert tool (TransProteomicPipeline, http://proteowizard.sourceforge.

net/tools.shtml).

Scans representing the infusion peak of each sample were selected and data was

spectrally binned using the R package binneR (https://github.com/jasenfinch/

binneR) using a bin width of 0.01 atomic mass units (amu). The data was then

total ion count (TIC) normalised and m/z filtered based on a 66% maximum

class occupancy threshold across all classes.

2.8 LC-HRMS analysis and data processing

LC-HRMS analyses were performed on an Orbitrap Fusion Tribrid mass spec-

trometer (Thermo Scientific) that was coupled to a Unimate 3000 liquid chro-

matography tower (Dionex, Thermo Scientific). A Hypersil Gold reverse phase

C18 column (2.1 mm x 150 mm; particle size 1.9 µm) was used for chromatog-

raphy, maintained at a temperature of 60 ◦C. The mobile phases fro gradient

elution consisted of ultra-pure water - formic acid (100:0.1) (A), LC-MS grade

methanol -formic acid (100:0.1) (B) and HPLC grade isopropyl alcohol - LCMS

grade methanol (1:1) (C). The initial condition was A:B (99:1.0) for 0.5 minutes

and the percentage of B increased linearly over 6 minutes, to 60.0%. The per-

centage of B was increased further for another 4 minutes to 100% and held for 2

minutes. C was introduced over 0.1 minutes to 100% and held for 1.4 minutes.
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Prior to re-equilibration, C 100% was switched to B 100% in 0.1 minutes, and

then the starting conditions A:B (99:1) held for 3.4 minutes. This gave a total

method time of 17 minutes. The flow rate was kept at 400 µL min−1 except for

between 12.1 and 13.6 minutes where it was reduced to 300 µL min−1.

Similar to the FIE-HRMS analyses raw data was acquired as profile data in

the proprietary ThermoFinnigan file format (.RAW). These were converted to

the mzXML format, centroided and the ionisation modes separated using the

msconvert tool (TransProteomicPipeline, http://proteowizard.sourceforge.

net/tools.shtml).

Signal processing of converted LC-HRMS data was performed using XCMS

(Smith et al. 2006). The presence of technical outliers was assessed prior to

peak detection by ensuring the stability of sample TIC. Any sample with a TIC

± 3 standard deviations of the batch median were removed from subsequent

analyses. The continuous wavelet transform algorithm was used for peak picking

(Tautenhahn, Böttcher, and Neumann 2008). The tolerated deviation between

consecutive scans was set at 1.5 parts per million (ppm) with a minimum and

maximum peak width of 2 and 40 seconds respectively. The ordered bijective

interpolated warping algorithm was used for retention time correction (Prince

and Marcotte 2006) following peak detection.

Peak grouping was performed using a density matching method across all

the samples with a tolerated m/z size of ± 0.015 amu and a chromatographic

bandwidth of 5 seconds. A minimum threshold for group occupancy was set at

60% for each class. Each peak group represented a unique m/z and retention time

value, each to 2 decimal places. For peak infilling, the XCMS fillPeaks method

was used to integrate intensity regions missed during the initial peak detection.

QC sample variable filtering applied by calculating the coefficient of variance

for each peak across the QC samples. Peaks with a coefficient of variance below

25% were removed to ensure analytical reproducibility of identified features. The

data was subsequently log10 transformed.
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2.9 FIE-HRMS and LC-HRMS data mining

The data mining of both FIE-HRMS and LC-HRMS was performed using custom

workflows found at https://github.com/jasenfinch/Orbi_FIE and https://

github.com/jasenfinch/LC-HRMS respectively. Data quality and structure was

initially assessed using principle component analysis (PCA). Outlier samples were

removed if their Mahalonobis distance of the first two principle components was

outside the 95% confidence interval. An initial assessment of class discrimination

was conducted using principle component linear discriminant analysis (PC-LDA)

prior to supervised machine learning based classification.

Unless otherwise stated, binary classification was performed using the AC-

CEST function of the FIEmspro R package (http://users.aber.ac.uk/jhd)

using Random Forest. The classification accuracy, margin of classification and

area under the ROC curve (AUC) were calculated based on 100 bootstrapped

re-sampling iterations, the data partitioned at 63.2% for the creation of test and

training sets. Variable importance was based on variable selection frequency

using 1% threshold for approximate false positive rate based on the binomial

distribution (Konukoglu and Ganz 2014)).

2.10 Putative metabolite annotation

2.10.1 FIE-HRMS

Accurate masses of 0.01 amu spectrally binned explanatory features were ex-

tracted by creating electronic class master mixes after spectrally binning the

unprocessed data to 0.00001 amu. For each 0.01 amu explanatory bin, the

most intense accurate mass signal across all samples was extracted for that bin.

Semi-automated annotation was performed using R routines found at https:

//github.com/jasenfinch/mzAnnotation. This included putative ionisation

product database searches using the annotation tool MZedDB (Draper et al.

2009) and molecular formula generation based on the ‘Seven Golden Rules’ using
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a 5 ppm window (Kind and Fiehn 2007). Correlation analyses were also applied

between all identified spectral 0.01 amu bins. Mass difference matching was ap-

plied to significantly correlated bins (p < 0.05) to identify isotopic, adduct and

metabolic associations based on relationships found in Table 3.4.

2.10.2 LC-HRMS

For LC-HRMS data the R package CAMERA was used for initial identification of

adduct and isotopic relationships (Kuhl et al. 2012). Pseudo-spectra were formed

at 0.7% of full width half maximum and within group correlations between ex-

tracted ion chromatograms filtered based on a threshold of 0.8. The set of adduct

and isotope rules used for association can be found in Appendix B. Putative ion-

isation product database searches and molecular formula generation for accurate

masses was conducted as for the FIE-HRMS features.

2.11 RNA extraction, library preparation and

sequencing of RNA-Seq samples

RNA-Seq samples were extracted using the RNEasy Plant Mini Kit (Qiagen)

for total RNA extracts eluted in RNase free water. Total RNA extract con-

centrations were quantified using a Nanodrop 1000 spectrophotometer (Thermo

Scientific). RNA integrity assessment, library preparation and sequencing were

performed by the Earlham Institute (Norwich, UK). cDNA libraries were pre-

pared and sequenced using the Illumina Truseq HT protocol on a HiSeq 2000

Sequencing System (Illumina) with a 126 bp paired end metric. 36 samples were

sequenced in total from three time points (12, 24 and 48 hpi) for both ecotypes

and multiplexed across 3 lanes.
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2.12 Transcriptomic data mining

Fastqc was used to assess sequencing read quality (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). The Trimmomatic tool was subsequently

used to remove the first 10 bp from each read due to over-representation in the

per base sequence content (Bolger, Lohse, and Usadel 2014). Tophat was used

to align reads using assembly v3.0 of B. distachyon genome and v3.1 annotation.

A maximum and minimum intron length of 50000 and 70 were used based on

Mandadi and Scholthof (2015). Cufflinks was used for transcriptome assembly

using the default parameters. Cuffdiff was used for differential expression anal-

ysis, again using the default parameters. The Mapman Mercator tool was used

for ontological assignment of identified genes for use in enrichment analyses. The

Fischer exact test was used in enrichment analyses to test for over-representation

of functional ontologies.
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Chapter 3

Spectral binning for untargeted

FIE-HRMS metabolome

fingerprinting

3.1 Introduction

With no single analytical technique able to survey the entire chemical composition

of complex biological matrices, investigators have to utilize multiple techniques to

study an organisms metabolome. This includes both profiling and fingerprinting

techniques.

Metabolome fingerprinting is the global and high-throughput analysis of crude

sample extracts for classification or screening (Dunn, Bailey, and Johnson 2005).

It provides a key branch point in the metabolomic pipeline as a first pass ana-

lytical tool that is able to inform further more targeted analyses, based on the

identification of compounds of interest. It is primarily used for classification or

regression with sample metadata (Draper et al. 2013).

There are a number of analytical techniques that can be used to provide

a fingerprinting platform; including Fourier transform (FT)-infrared (IR) spec-

troscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, and direct injection

(DI)-MS or FIE-MS. Mass spectrometric techniques have the advantage over
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other analytical methods in that they allow a greater potential for metabolite

identification (Beckmann et al. 2008). Added to this is the recent addition of

high resolution mass spectrometry instrumentation can provide fingerprints with

orders of magnitude finer detail and thus are more representative of an organisms

metabolome.

3.1.1 High resolution mass spectrometry

MS is the measurement of the m/z of ionized chemical species. As MS has

developed so too has the resolution capabilities of the instrumentation. The last

decade has seen the introduction of high resolution mass analyzers that have

revolutionised the capabilities and applications of MS instrumentation in the

laboratory.

For a single m/z spectral peak (m), resolving power (RP) can be defined as:

RP =
m

∆m50%

(3.1)

Using full width at half maximum as the specified fraction. Mass analyzers

with a resolving power m/∆m50% > 10, 000 are considered to be high resolution

(Xian, Hendrickson, and Marshall 2012). This includes time of flight (TOF) and

ultra-high resolution, FT-MS analyzers such as ion-cyclotron resonance (ICR) and

Orbitrap analyzers. Orbitrap based analyzers are becoming the standard instru-

mentation for HRMS and will be the primary focus here due to their ultra-high

resolution capabilities, low cost, low maintenance and bench top size compared

to ICR mass analyzers.

FT-MS is based on the measurement of frequencies emitted by ion motional

amplitude rather than ion deflection and stability that TOF and quadrupole

analyzers use respectively. Frequencies are first transformed from the time domain

to the frequency domain, then to the mass domain to give the final mass spectrum.

Signals from a wide m/z range can be detected simultaneously allowing the entire

spectrum to be yielded in a single scan (Marshall and Hendrickson 2008).
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In an Orbitrap, radio frequencies are generated by axial oscillation of ions in

an electrostatic quadrologarithmic potential well. Ions rotate around a central

electrode creating oscillations between 50 and 150 kHz for m/z 200-2000. Dif-

ferential image-current detection is achieved by an outer electrode that is split

into two halves (Hu et al. 2005). Orbitraps requires the uniform injection of ions

into the analyzer, which is enabled by a C-trap. A C-trap alongside the Orbitrap

not only allows storage of ions prior to analysis but ensures the required coherent

motion to be achieved during injection. The small size of the Orbitrap allows

close proximity of the C-trap and so reduces the potential for TOF discrimina-

tion (Hardman and Makarov 2003). Dynamic range is affected by the amount

of ions injected from the C-trap due to space charge repulsions. Mass resolving

power is proportional to 1/(m/z)1/2 and unlike ICR, decreases more slowly with

m/z . Orbitrap scan time is typically 1 second when both ionisation modes are

acquired simultaneously.

The accuracy of Orbitrap mass analyzers is typically < 5 ppm but < 2 ppm is

achievable depending on whether internal or external calibration is used. Variabil-

ity in accuracy when external calibration is used is mainly temperature dependent

due to instability of the inner electrode voltage. Internal calibration is limited by

space charge effects that change between scans (Makarov et al. 2006).

There are a number of benefits to using high resolution as opposed to low

resolution instruments. Higher resolution allows better deconvolution of peaks

and therefore signal intensities that are reflective of a single metabolite, as op-

posed to the combination of multiple metabolites with similar masses. The use of

ultra high mass accuracy allows the calculation of elemental composition and the

generation of empirical molecular formulas. However, as the m/z increases, the

number of possible molecular formulas also exponentially increases. The applica-

tion of the seven golden rules for molecular formula generation provides a method

for substantial filtering of molecular formulas, although the use of isotopic ratio

patterns is still essential for narrowing down candidate molecular formulas (Kind

and Fiehn 2007). A resolution of greater than 100,000 allows the separation of
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isobaric peaks which allows their use for molecular formula elucidation. It has

been shown previously that isotopic abundance measurements in both FT-ICR-

MS and Orbitrap-MS have the ability to increase the number of single empirical

molecular formula assignments (Weber et al. 2011).

3.1.2 Spectral binning for signal processing

The spectral binning of data, where spectral data are grouped based on a common

interval, is a common practice among many signal processing disciplines. It is a

form of quantization that allows a reduction of data complexity which can then

facilitate further analyses. It has common application in spectral radiometry

where spectral regions can be binned to reduce data complexity (Dell’Endice et

al. 2009).

Within metabolomics, spectral binning has previously been applied to the

processing NMR spectroscopy and nominal mass FIE-MS fingerprinting (Wishart

2008; Beckmann et al. 2008). In both cases, spectral binning was achieved using

the rounding of measurements and subsequent averaging or summing. It allows

small deviations in measurements between samples to be overcome. This allows

comparability between observations and therefore the use of statistical analyses.

3.1.3 Untargeted FIE-MS metabolome fingerprinting

FIE-MS fingerprinting is an analytical technique that provides a global overview

of total sample metabolite composition, that does not incorporate chromato-

graphic separation (Goodacre et al. 2004). Electrospray ionisation is the most

common of ionisation techniques and is a ‘soft’ technique that induces the loss

or gain of a proton or adduct, with ions tending to only have a single or double

charge (Draper et al. 2013). Minimal sample preparation is needed and crude,

global extracts containing both polar and non-polar metabolites are suitable.

With electrospray ionisation, a number of techniques can be used to introduce

the sample to the mass spectrometer. For direct injection the sample is manually

injected directly into the ion source using a syringe pump. Flow infusion incor-
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porates the use of an auto-sampler which allows automated introduction of the

sample to the electrospray ion source by infusion into a mobile phase. A ‘plug’

flow is created, across which signal intensities can be averaged to give a samples

chemical fingerprint (Figure 3.1; Beckmann et al. 2008). This provides relatively

simple data pre-processing compared to chromatographic techniques.

Further to the use of auto-samplers for flow infusion sample introduction is

the use of chip-based nano infusion devices such as the NanoMateTM. These do

not require the addition of a mobile phase during sample introduction (Southam

et al. 2007).

The lack of chromatographic separation substantially reduces analysis time

(< 5 mins per sample) and cost compared to LC-MS or gas chromotography

(GC)-MS. Analyses involving chromatography will also be subject to ‘drift’ over

large sample batches, further complicating data processing and subsequent anal-

ysis. Without this constraint in FIE-MS fingerprinting, large batch sizes can be

consistently run and so routine analyses of 1000’s of samples becomes feasible.

Hierarchical based FIE-MS fingerprinting techniques incorporate the use of

both high and low resolution instrumentation. Low resolution instrumentation is

first used for initial FIE-MS fingerprinting. This allows classification and feature

selection analyses to firstly be conducted to identify explanatory features relevant

to the biological question. Then HRMS instrumentation is used to analyse class

master mixes to provide high mass accuracy m/z information for explanatory

feature structural identification.

The primary goal of metabolome fingerprinting is the classification or discrim-

ination of biological samples of different origin (Enot et al. 2008). Owing to its

relative simplicity and high-throughput nature, FIE-MS fingerprinting has been

applied to a wide range biological problems and sample matrices (Draper et al.

2013). These include a variety of plant based matrices discriminating potato cul-

tivars (Beckmann et al. 2007), polyphenol content in berry fruits (McDougall,

Martinussen, and Stewart 2008) and wound responses in Arabidopsis thaliana

(Grata et al. 2007).
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Figure 3.1: An example B. distachyon FIE-MS ion chromatogram.
Dashed red lines show retention times between which the sample ‘plug’ flow is
analysed.

3.2 Aims

During the early phases of this PhD project, there was a transition from using

low-resolution, nominal mass based MS instrumentation towards the use of HR

Orbitrap-MS instruments. This required the development of new data processing

methods and bespoke software tools able to deal with the magnitude increases in

data volume and complexity to allow routine FIE-HRMS metabolome fingerprint-

ing analyses. The aim of this chapter therefore is to present the development of

spectral binning as a pragmatic solution to processing FIE-HRMS fingerprinting

data. This allows increased resolution and data density over previous nomi-

nal mass based methods but can still retain low computational requirements and

therefore processing time that are characteristic of fingerprinting techniques. Fur-

ther to this, the necessary data pre-treatments will be considered with respect

to data transformation and normalisation as well as missing values and class

occupancy. The increased resolution also improves the potential for metabolite

annotation compared to nominal mass techniques. This potential will be inves-

tigated in terms how increased resolution and the correlations between adducts,

isotopes and metabolically related metabolites allows more confidence in annota-
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tion assignment. This provides the following questions to address:

• Present the R package binneR developed for the spectral binning of FIE-

HRMS fingerprinting data.

• Determine optimal bin size for FIE-HRMS fingerprinting data.

• Assess the data pre-treatments that are required prior to further analyses.

• Investigate the considerations that are needed for missing values and class

occupancy.

• Determine the impact of increased bin resolution improve the potential for

metabolite assignment.

3.3 Materials and Methods

3.3.1 Preparation and MS analysis of example B. dis-

tachyon sample

In order to investigate aspects of spectral binning, an example B. distachyon

sample was prepared using the B. distachyon ecotype ABR1. Plants were grown

as described in Section 2.1 to 21 days old. A total of 7 B. distachyon plants

were harvested and metabolites extracted using a global extraction method as

described in Sections 2.4 and 2.6 giving a total extract volume of 4.9 mL. 55 con-

secutive technical injections of the example B. distachyon sample were analysed

by FIE-HRMS, centroided and converted to mzML using msconvert as described

in Section 2.7. The files were spectrally binned using the binneR package (avail-

able at https://github.com/jasenfinch/binneR), developed as part of this

project that will be further discussed in Section 3.4.1. Differing numbers of these

injections were used to investigate the different aspects of spectral binning for

FIE-HRMS. The numbers of injections used is stated where appropriate.
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3.3.2 Performance testing for the R package binneR

To test the computational requirements for use of the binneR package the R pack-

ages profvis (https://cran.r-project.org/web/packages/profvis/index.html)

and rbenchmark (https://cran.r-project.org/web/packages/rbenchmark/

index.html) were used for peak memory usage and performance bench mark-

ing respectively of the binneR package. The data used was that of FIE-HRMS

fingerprinting of the pre-symptomatic phases of the interaction between B. dis-

tachyon and M. oryzae described in more detail in Section 5.3.

3.3.3 Investigation of missing value imputation

To test the effects of missing value imputation upon spectrally binned FIE-HRMS

fingerprints, treatment and control data from the 36 hpi time point of the re-

sistant ABR6 interaction from the large scale FIE-HRMS fingerprinting of the

pre-symptomatic phases of the interaction between B. distachyon and M. oryzae

described in Sections 2.5 and 2.7. All the samples were TIC normalised and

differing class occupancy filtering treatments were applied (none, minimum and

maximum) using a two-thirds threshold. kNN imputation was then used to im-

pute all missing values still present within the matrices using the FIEmspro R

package. The margin value between the treatment and control classes of the im-

puted and un-imputed data were computed using Random Forest classification,

as described in Section 2.9, to assess the impact of imputation upon the differing

pre-treatment conditions.

3.4 Results and Discussion

3.4.1 Development of the R package binneR

This section discusses the the development of a software package called binneR

(available at https://github.com/jasenfinch/binneR) during this project for

spectral binning of FIE-HRMS data as an implementation in the statistical pro-
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gramming environment R. R is open source freeware that is widely used for data

analysis and visualization in the biological sciences with a dedicated package

repository Bioconductor (Crawley 2013; Huber et al. 2015).

The package provides utility for building a 2-dimensional intensity matrix for

one or multiple FIE-HRMS data files with columns as m/z and rows as samples,

using the functions sampProcess and readFiles. This intensity matrix can then

be used for downstream analyses such as classification and feature selection. The

Bioconductor R package mzR is used for file parsing so a range of file formats

are supported such as the open source formats mzXML or mzML (Pedrioli et al.

2004; Martens et al. 2011). The use of centroided data is preferable over profile

data as this substantially reduces data volume and therefore computational time.

This also reduces the effect ‘bin splitting’, an artifact of spectral binning that is

discussed in Section 3.4.2. Data files containing single or multiple scan modes are

supported as well as multiple scan ranges. Other parameters include the bin width

by specifying the number of decimal places for rounding and the range of scans

over which the data should be averaged. Parallel computing is also supported

allowing the parallized parsing of files and processing of individual acquisition

modes.

The spectral binning of an individual sample firstly requires m/z intensities

within each scan to be rounded and sum aggregated to the required bin width.

Next, any missing bins within a given scan need to be added and filled with

zero intensity values. Bin intensities can then be averaged across the scans to

give the intensity matrix for the given sample. For processing multiple samples,

further addition of missing bins is required before the intensity matrix can be

constructed.

An important requirement of the use of spectral binning for FIE-HRMS

metabolome fingerprinting is that it requires little computational time and re-

sources. As shown in Table 3.1 the processing of 50 data files at bin widths of

0.01 and 0.00001 amu can be done in less than 1 minute and requires little mem-

ory. Even parallel processing 1000 files at a bin width 0.01 can be achieved in
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Table 3.1: Computational requirements for sprectral binning of FIE-
HRMS metabolomic fingerprinting data using the R package binneR.
Data files from the large-scale B.distachyon/M. oryzae described in Section 5.3.
The processing time is based on 10 replications.

Processing
Time

(minutes)
No.

Samples
Bin

Width
(amu)

Single
Core

8
Cores

Peak
Memory
Usage
(MB)

50 0.01 0.39 0.29 59.85
50 0.00001 0.96 0.79 190.84

1000 0.01 7.65 4.08 1059.22
1000 0.00001 30.97 62.49 167379.70

under 5 minutes with memory requirements well within that of a modern stan-

dard desktop PC. This makes the routine processing of 1000’s of samples easily

feasible if binning at a width of 0.01 amu.

Computing requirements become much more substantial when trying to pro-

cess 1000 data files at a bin width of 0.00001 amu. Here memory usage increases

due to the exponential increase in the number of bins as the bin width decreases

(Table 3.2). Also the use of parallel processing becomes infeasible with a increase

in processing time. This is due to the increased overheads caused by increased

memory requirements.

The package also contains a Shiny application for viewing raw mzXML or

mzML files named viewSpectrum. Shiny is an R package that allows the devel-

opment of interactive, web browser based applications (Chang et al. 2016). The

application allows the visualization of ion chromatograms and mass spectrums

with selectable retention time and mass ranges. Bin width can be selected by

choosing the number of decimal places by which to round. This application is

particularly useful for identifying the correct ‘plug flow’ scans for averaging across

when spectral binning (Figure 3.1). A screenshot of the application can be found

in Appendix C.
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3.4.2 Optimal bin size for FIE-HRMS metabolome finger-

printing

The selection of the optimal bin width for spectral binning of FIE-HRMS metabolome

fingerprinting data is a compromise between retaining as high resolution as pos-

sible without reducing the quality of the data. A reduction of data quality would

include an increase in the proportion of missing data as well as the introduction

of processing artifacts.

As the bin width decreases the number of variables exponentially increases in

both modes (Table 3.2). Firstly, this imposes a computational constraint which

has been discussed in Section 3.4.1 and is highly important when considering

optimal bin width. Table 3.2 also shows that the proportion of missing values

greatly increases. This is due to the deviation of peaks both between scans of

a sample and between samples. These deviations are as a result of changes in

parameters such as temperature and space charge compensation during Fourier

transformation which is calculated on a scan by scan basis (Hu et al. 2005). These

parameter changes are difficult to accurately account for and so makes correcting

for and aligning deviating peaks difficult. An example of deviation is shown in

Figure 3.2 where there is a deviation of up to 0.00032 amu between samples. This

means that peaks are able to freely shift between bins when a bin width of 0.0001

or less is used and so introduce a high degree of artificial missing data. This rules

out bin widths below 0.0001 amu as appropriate widths to use for FIE-HRMS

data.

Another consideration for bin width choice is the introduction of artifacts

such as peak splitting. This would be caused by the deviation of a bin such as

in Figure 3.2 occurring near to a bin boundary. The result of this is that two

adjacent bins would be obtained for what in reality is a single peak. An example

of this is shown in Figure 3.3a which shows the density of peaks within a single

bin at a width of 0.01 amu. It is likely that this bin contains two real peaks;

however, also projected upon this is the bin boundaries if a width of 0.001 amu

was used. It can clearly be seen that the larger peak would be ‘split’ between
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two bins, thus adding artificial data.

The relationship between two adjacent ‘split’ bins would be negative as shown

in Figure 3.3b. This is likely to be as a result of the centroided data and the

averaging across scans so that a peak will only fall into one or other of the bins.

Due to the random nature of the deviation, when the scans are averaged one of the

bins will have a higher intensity than the other, proportional to the actual peak

intensity. It is especially likely if an odd number of scans is used. The likelihood

of peak splitting is also increased as the m/z increases due to the reduction in

resolution and the increase in peak width.

A common issue in FT-MS spectra is the presence of Gibbs occilations or

‘ripples’ that can occur either side of a high intensity peak. These are echos

of the main peak and are a result of the FT (Marshall and Hendrickson 2008).

The presence of these would further complicate the application of peak picking

routines upon these high resolution data. Detection of these peaks would result

the addition of artifacts into the data, although compensating for them would

not be trivial.

The introduction of these artifacts into the data could have an effect of over-

inflating discrimination between classes if a split bin happens to be explanatory

in the context of the biological question. This would be likely to happen at

bin widths of 0.01 and 0.001, however with the order of magnitude increase in

resolution at 0.001 amu the likelihood of this occurring is much greater.

Increasing the bin width also increases the likelihood that one bin will contain

peaks from multiple metabolites. This has implication for downstream data anal-

ysis as feature trends become convoluted and difficult to interpret in the context

of the biological question. It also makes putative annotation of features more

difficult as the correlations between bins become less reflective of the underlying

metabolite, isotope and adduct relationships (see Section 3.4.4).

A bin width of 0.01 amu provides the best compromise between retaining

resolution and not introducing substantial amounts of missing data or artifacts.

Therefore this can be considered the optimal bin size for FIE-HRMS metabolome
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fingerprinting data.

3.4.3 FIE-HRMS data pre-treatment

Post raw data processing and prior to downstream statistical analyses, pre-

treatment of metabolome fingerprinting data is an essential step to ensure data

quality and integrity (Enot et al. 2008). It is important that appropriate pre-

treatment strategies are used not only for the analytical technique being applied

but are also suitable for the statistical or machine learning analyses that are to

be used on the data. For instance, it has been previously identified that the scal-

ing of metabolomic data can greatly influence the accuracy of model classification

depending on the classifier being used (Gromski et al. 2015b). Here, data normali-

sation, transformation, variable occupancy filtering and missing value imputation

will be discussed in the context of spectrally binned FIE-HRMS metabolomic fin-

gerprinting.

3.4.3.1 Normalisation and transformation

Not only are FIE-HRMS fingerprints highly dimensional but are also heteroscedas-

tic in nature and contain a range of variable intensity magnitudes (van den Berg

et al. 2006). The majority of variables within a typical FIE-HRMS fingerprint

are of low abundance with 93% of the fingerprint m/z constituting only 1% of the

TIC (Figure 3.4a). This means that fingerprints are dominated by a relatively

small number of highly intense m/z . Also the lower the intensity of a given m/z ,

the higher its relative variance (Figure 3.4b). This presents a major challenge

for data pre-treatment without distorting or introducing artifacts into the data

structure that would then affect the outcome of downstream analyses.

Normalisation can be used to account for technical variance introduced dur-

ing an experiment, sample preparation or mass spectrometric analysis. The type

of normalisation used is often experiment dependent. The sample context will

dictate where artificial variance is likely to be introduced and therefore needs

accounting for. There is a need in mass spectrometry based metabolomics to
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Table 3.2: Spectral binning width: variable numbers and missing val-
ues. Variable numbers and missing value percentages are given for 10 technical
injections of the example B. distachyon sample scanning between 70 and 1000
m/z.

Mode Bin
Width
(amu)

No.
Variables

% Missing
Values

Negative

1 806 42
0.1 2631 69.8

0.01 4315 73.2
0.001 6885 74.8

0.0001 14900 81.6
0.00001 23753 86.7

Positive

1 868 31.3
0.1 3354 56.7

0.01 7387 67.9
0.001 14277 74.7

0.0001 31529 83
0.00001 48331 87.1

(a) Deviation between scans
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(b) Deviation between technical injections
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Figure 3.2: Mass deviation of the base peak malic acid [M-H]1- between
scans and injections. Based on technical injections of the example B. dis-
tachyon sample. The dashed red line is the average measured m/z . The dashed
blue line is the theoretical m/z of malic acid [M-H]1-.
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(a) Density plot of bin n268.03
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(b) Relationship between adjacent bins n268.033 and n268.032
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Figure 3.3: Example of peak splitting at bin width 0.001. (a) Density of
peaks within bin n268.03 taken as an average across 43 technical injections of
the example B. distachyon sample. Red lines denote 0.001 bin width boundaries.
Shaded areas denote the bins that are plotted in (b). (b) Scatter plot of bin
intensities for 43 technical injections of the example B. distachyon sample. The
line of best fit denotes the negative linear relationship (R2 = 0.798, p < 0.001)
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account for instrument variability during sample run time. In metabolome pro-

filing, where chromatographic separation us used prior to MS analysis, internal

standards are often introduced to samples, the variability of which can be used to

account for instrument variability over the course of a sample batch (Fiehn et al.

2000). However, for FIE-MS metabolome fingerprinting this is not an option due

to the effects of ion suppression.

TIC normalisation is often used in metabolome fingerprinting to account for

variability in instrument sensitivity and sample concentration (Enot et al. 2008).

The effect of TIC normalisation on m/z can be seen in Figure 3.5a. The presence

of a few dominant m/z that account for a high proportion of the TIC within the

fingerprint (Figure 3.4a) means that only these m/z will be affected as they are

most likely to be diagnostic of instrument sensitivity and sample concentration.

TIC normalisation on an individual sample basis becomes an issue when a high

intensity signal is also explanatory for the biological question the experiment is

trying to answer. Not only could this accentuate how explanatory the m/z is but

is also likely to introduce spurious knowledge into the fingerprint data. Therefore

care needs to be take when applying this normalisation.

There are two potential strategies for applying TIC normalisation when sam-

ple TIC becomes class dependent. The first from Enot et al. (2008) allows a

samples TIC to be corrected to directly remove class dependency by removing

the difference between a class’s TIC and the average TIC prior to correction. The

second suggested by Draper et al. (2013) allows TIC normalisation to be applied

to only correct for instrument variability within or between batches by averaging

the TIC across all the samples in a randomised block or batch prior to normalisa-

tion. This relies on samples being analysed in a randomised block manner. The

most suitable strategy for applying TIC will be dependent on experiment context

and the source of the variability.

Data transformation and scaling are statistical practices used to allow data to

meet the assumptions of a particular statistical inference such as those of paramet-

ric tests. They are commonly used in metabolomics prior to downstream analyses
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such as PCA. Common transformation practices in metabolomics include auto-

scaling, Pareto scaling and log10 transformation. These techniques aim to reduce

the magnitude differences in scale between m/z and reduce heteroscedasticity.

However, they are often poor at handling variables with high relative standard

deviation and can inflate measurement errors such as instrument variability (van

den Berg et al. 2006). Figure 3.5b shows the effect of log10 transformation on the

example B.distachyon sample metabolome fingerprint. Here it is the noisy, low

intensity signals (Figure 3.4b) whose trends are affected.

The importance of the data pre-treatment steps in the metabolomics work-

flow should not be overlooked as it can have a significant effect on the outcome

of both multivariate and univariate analysis techniques (Gromski et al. 2015b).

Commonly used techniques such as PCA and partial least squares discriminant

analysis (PLS-DA) are sensitive to magnitude differences variance between vari-

ables. Random Forest is insensitive to variable magnitude and does not have the

assumption requirements of parametric tests (Breiman 2001). It has been found

to outperform many other classifiers when dealing with metabolomics data sets

(Scott et al. 2013). Using this technique would not require significant data pre-

treatment which is an important consideration when deciding upon appropriate

downstream analyses.

Lastly, another consideration is the order in which these data pre-treatments

are performed. Enot et al. (2008) suggests a log10 transformation prior to a

TIC normalisation. The effect of this can be seen in Figure 3.5c. This has

had an effect of substantially distorting the data and likely contribute spurious

information. The pseudo scaling effect of the log10 transformation would have

substantially increased the contribution of the noisy, low intensity signals to the

TIC, post transformation. This in turn would reduce the ability of the TIC to

correct for sample and machine variability.
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Figure 3.4: T
he example B. distachyon sample fingerprint m/z intensities and vari-
ability. Based on 43 injections of the example B. distachyon sample binned to
0.01 amu giving a total of 12180 bins. Intensities were averaged across all injec-
tions for (a). The dashed line in (a) indicates the point above which intensities
above (bars coloured red) constitute 99% of the fingerprint TIC.
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(a) TIC normalisation
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Figure 3.5: The effect of TIC normalisation and log10 transformation on
fingerprint m/z. Based on 43 injections of the example B. distachyon sample
binned to 0.01 amu. r calculated by pearsons correlation between 765 raw and
pre-treated negative ion mode bins.
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3.4.3.2 Bin occupancy and missing value imputation

As can be seen in Table 3.2, zero or missing values can make up a large proportion

(approx. 70% at a bin width of 0.01 amu) of spectral binned metabolome finger-

prints. There are likely to be a number of sources of these including biological

variation, variability in detection and the instrument limit of detection. Instru-

mental sources present a problem for analysing metabolome fingerprint data. A

zero value in a fingerprint does not necessarily equate to an absence of a metabo-

lite in the sample. Suitable treatment of missing values is crucial for removing

noise and improving the interpretability of the metabolome fingerprinting data

as many analysis techniques are heavily influenced by zero values (Hrydziuszko

and Viant 2012).

Figure 3.6 shows the distribution of missing values by bin occupancy for 10

technical injections of the example B. distachyon sample. Even without the

addition of biological variation, 83% of bins have an occupancy of 50% or less.

This represents a substantial proportion of the fingerprint that is likely to be

background noise and variability in detection due to the co-occurrence of low

occupancy and low signal intensity (Figure 3.6b).

A simple solution to dealing with missing values would be to exclude bins

below a threshold occupancy from further analyses. However, this can be com-

plicated by the presence of class structure within a data set as this could exclude

bins showing presence and absence between classes. A more suitable solution in

this case would be to only exclude bins whose maximum occupancy across all

classes is below a certain threshold. This way, presence and absence trends will

be retained; although a higher proportion of noise will also be retained. The

former strategy is likely to be better suited to regression based analyses where

there is no discrete class structure within the data.

The effect of these occupancy filtering strategies on a simple binary classifi-

cation problem is shown in Table 3.3. The use of all bins retains a high propor-

tion of missing values and so substantially reduces the Random Forest margin.

Margins are a measure of classification performance and are discussed in Section
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4.1.3. Using full occupancy filtering substantially reduces the number of variables,

completely removes all missing values and improves the discrimination between

classes. There is little difference between the Random Forest margins when class

occupancy thresholding is used. Using a maximum occupancy threshold increases

the number of variables by 139 compared to using a minimum threshold. However

this also almost doubles the proportion of missing values present.

These results highlight the need for suitable variable filtering prior to clas-

sification as it can substantially improve the results by the removal of missing

vales and highly variable data from the analyses. However, the way in which this

filtering is performed can also have an effect of the results of analyses and is also

likely to be dependent on the experimental context. The presence of explanatory

features within a data set that are analytically reproducible and have low num-

bers of missing values across all classes will be less affected by variable filtering

than a data set where the presence of missing values has a biological origin. An

example would include presence and absence metabolites, potentially present in

plant pathogen interactions.

Similar issues with missing values have long been recognised in microarray

based transcriptomics and a plethora of imputation algorithms exist that use a

wide variety of strategies on which to base imputed values. These include global,

local and knowledge based strategies (Moorthy, Mohamad, and Deris 2014). Miss-

ing values in metabolomics data sets have had comparatively little attention;

however, it has been previously identified that k-nearest neighbour (kNN) im-

putation has provided an optimal method in direct injection Fourier transform

ion cyclotron resonance mass spectrometry based fingerprinting (Hrydziuszko and

Viant 2012).

Table 3.3 shows the effect of kNN imputation using different occupancy filter-

ing strategies on Random Forest classification. Imputation using all bins, com-

pletely removed all discriminatory power between the classes compared to the

un-imputed data. This likely reflects a reduction in the accuracy of the imputa-

tion algorithm due to the high proportion of noise and missing values (Jörnsten
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et al. 2005). Imputation on minimum class occupancy thresholded data yielded a

very similar Random Forest margins to the un-imputed. Interestingly, the impu-

tation on maximum class occupancy thresholded data showed a drop in Random

Forest margin that produced almost identical results to the minimum class occu-

pancy thresholded data.

These results show that suitable variable filtering is needed prior to impu-

tation. However, the similarity between imputed maximum and minimum class

occupancy thresholded data reflects the presence of highly explanatory features

that also contain very few missing values. Therefore, similar to the need to occu-

pancy filter FIE-HRMS metabolome fingerprinting data, the suitability of missing

value imputation will also be dependent on the experimental context.

3.4.4 Metabolite annotation using FIE-HRMS metabolome

fingerprinting data

One of the key uses of metabolome fingerprinting is as a branch point in the

metabolomics pipeline to inform decisions for further more targeted metabolite

analyses. The putative annotation of explanatory features identified within this

data thus provides the potential to further improve the utilisation of this tech-

nique within this context.

FIE-HRMS data has previously been used for putative metabolite identifi-

cation in hierarchical approaches where a low resolution instrument is used for

initial sample analysis and classification. Explanatory features are then targeted

using a high resolution instrument on which class master mixes are analysed to

obtain accurate mass information and allow putative metabolite identification

(Draper et al. 2013).

A major advantage to using the spectral binning approach with high resolution

data over these hierarchical approaches is that the accurate mass data is already

available without the need for further instrument analyses. Sample electronic

master mixes can be created by spectral binning the FIE-HRMS data using a bin

width of 0.00001 amu. Accurate masses for explanatory features identified from
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Figure 3.6: Distributions of bin occupancy and signal intensity. Percent-
age occupancy was calculated for negative mode across 10 technical injections of
the example B. distachyon sample that included 4315 bins. a) shows the distri-
bution of occupancy. b) shows occupancy plotted against intensity.

Table 3.3: The effect of class occupancy filtering and kNN imputation on
binary classification. Negative ion mode FIE-HRMS metabolome fingerprint
data was spectrally binned using a width of 0.01. Random Forest classification
margins are shown using data from infected and control leaf tissue at 36 hours
post inoculation from a resistant interaction between the B.distachyon ABR6 and
M. oryzae. Further experimental details can be found in Section 5.3.

Data Matrix No.
Variables

% Missing
Values

Random
Forest
Margin

All Bins 15632 89.3 0.20
Full Occupancy 374 0.0 0.35
Min. 2/3 Occupancy 660 6.6 0.30
Max. 2/3 Occupancy 799 12.3 0.33

All Bins Imputed 15632 0.0 0.07
Min. 2/3 Occupancy Imputed 660 0.0 0.29
Max. 2/3 Occupancy Imputed 799 0.0 0.28
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analyses using 0.01 amu spectrally binned data can then be extracted and plotted

similarly to what is shown in Figure 3.3a. These can then assessed for the presence

of multiple peaks or potentially split bins. Further binning could then be used to

extract peak trends if multiple peaks are present to further identify which peak is

explanatory. Alternatively algorithms such as the continuous wavelet transform

could be used to peak pick within the given region and extract accurate masses for

putative metabolite identification (Tautenhahn, Böttcher, and Neumann 2008).

The use of correlations to find associations between m/z within metabolome

fingerprints is the first step in annotating a feature. Associations can include

isotopic and adduct relationships as well as metabolically related metabolites such

as those that are found within the same metabolic pathway (biotransformations)

(Overy et al. 2008). With the increased resolution that spectral binning using

a width of 0.01 amu provides, compared to that nominal mass binning, allows

the potential for improved metabolite relationships to be identified. The more

deconvolved nature of the bins means that differences between adduct, isotope

and biotransformations will be better resolved.

Table 3.4 shows the mass changes for some common isotope, adduct and

biotransformations found within FIE-MS fingerprints. For the most part, many

of these relationships can be resolved at nominal mass, especially the adducts.

However, there are a few important relationships that can only be resolved at a

bin width of 0.01 amu and provide valuable information when annotating m/z

features. One example is the ability to resolve the difference between a 13C

isotopic relationship and two related metabolites with a mass difference equivalent

to the loss of an ammonia group and gain of an amine group. At nominal mass,

both associations would have a difference of 1. However, using a bin width 0.01

would give the former a difference again of 1 but the later would give a difference

of 0.98. This allows this relationship to be properly assigned without having to

assess signal intensity ratios. This is shown in Tables 3.5 and 3.6 where the bin

n133 is highly correlated, with a difference of 1, with n132 at nominal mass. At a

bin width of 0.01 however, this difference can be resolved to 0.98 which can rule
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out the 13C isotopic relationship and give a likely molecular formula difference of

an alcohol loss and amine group gain between the two metabolites in question.

This difference has been deduced without the need to compare signal intensity

ratios with relative isotopic abundance ratios. What can also be seen in Tables

3.5 and 3.6 is that these lists of correlations are very similar. The added 100

fold increase in resolution using a bin width of 0.01 allows substantially more

confidence in assigning likely molecular relationships between the bins.

With the added a priori knowledge gained from correlation analyses using

high resolution data, tools such as molecular formula generators and ionisation

databases such as MZedDB can be used to assign putative molecular formula or

metabolite identities with substantially greater confidence (Draper et al. 2009).

This in turn greatly increases the quality of hypotheses that can be generated

from this kind of metabolome fingerprinting data.

The confirmation beyond that of putative metabolite identities in metabolome

fingerprints requires the comparison of MS/MSn spectra derived from standards

with those acquired from the sample in question (Overy et al. 2008). Due to

the increased resolution obtained by FIE-HRMS metabolome fingerprinting, ex-

planatory features become more deconvolved and metabolite identity can be more

readily be assigned. However, the use of FIE-MS/MSn for metabolite confirma-

tion is limited as mass analyzers such as quadrupoles are only able to isolate a

minimum m/z window of 0.1 amu. This means that fragmentation of m/z in the

context of FIE-MS is infeasible and would require chromatographic separation to

ensure the reliability of MS/MSn spectra.

3.4.5 A general workflow for spectral binning based FIE-

HRMS metabolomic fingerprinting analyses

The aspects of processing and analysing FIE-HRMS using a spectral binning ap-

proach that have been discussed previously, allows the development of a general-

isable workflow that should be applicable to most experimental questions (Figure

3.7). Initial sample collection and preparation will likely be highly dependent on
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Table 3.4: Common m/z relationships found within FIE-MS
metabolomic fingerprints. Adduct mass changes are relative to a protonated
or deprotonated parent ion depending on the acquisition mode.

Name Type Mass Change (amu) MF Change Mode
Dephosphorylation Biotransformation -79.96633 -[PO3H2]+[H] +/-
Decarboxylation Biotransformation -43.98983 -[CHO2]+[H] +/-
H2O loss Adduct -18.01056 [M+H-H2O]1+ +
Dehydration Biotransformation -18.01056 -[H2O] +/-
Dehydrogenation Biotransformation -2.01565 -[H2] +/-
Transamination 1 Biotransformation -0.02381 -[O]+[NH2] +/-
Ammonia ligation Biotransformation 0.98402 -[OH]+[NH2] +/-
13C Isotope 1.00335 iC13 +/-
34S Isotope 1.99579 iS34 +/-
37Cl Isotope 1.99704 iCl37 -
41K Isotope 1.99812 iK41 +/-
18O Isotope 2.00425 iO18 +/-
Hydrogenation Biotransformation 2.01565 +[H2] +/-
Alcohol to carboxylic group Biotransformation 13.97926 -[H2]+[O] +/-
Methylation Biotransformation 14.01565 -[H]+[CH3] +/-
Transamination 2 Biotransformation 15.0109 -[H]+[NH2] +/-
K and Na adduct difference Adduct difference 15.97394 K-Na +
Hydroxylation Biotransformation 15.99491 -[H]+[OH] +/-
NH4 adduct Adduct 17.026 [M+NH4]1+ +
Hydration Biotransformation 18.01056 +[H2O] +/-
Na adduct Adduct 21.9814 [M+Na]1+ +
Methyl to carboxylic acid Biotransformation 29.97418 -[H3]+[HO2] +/-
Cl adduct Adduct 35.97723 [M+Cl]1- -
K adduct Adduct 37.95533 [M+K]1+ +
Carboxylation Biotransformation 43.98983 -[H]+[CHO2] +/-
Sulphation Biotransformation 79.95681 -[H]+[SO3] +/-
Phosphorylation Biotransformation 79.96633 -[H]+[PO3H2] +/-

the experimental design and requirements of the biological tissue to be analysed.

For instance, plant leaf tissue will require milling prior to the addition of ex-

traction solvent whereas aqueous matrices such as urine will not. In most cases,

a global extraction solvent of chloroform, methanol and water (1:2.5:1) will be

suitable (Beckmann et al. 2008). Orbitrap FIE-HRMS fingerprinting methods are

likely to differ little between sample types. Cleaning of the electrospray ionisation

source and instrument calibration would be required between batches of samples.

Data processing, analysis and annotation can be achieved using a pseudo-

hierarchical approach were different spectral bin sizes are used for statistical anal-

yses and extraction of accurate mass peaks for annotation of explanatory features.

This can be seen as a pseudo-hierarchical approach as the accurate mass infor-

mation has already been acquired during the Orbitrap FIE-HRMS analyses and

so the samples do not require further analysis on a high resolution instrument.

Explanatory bins relevant to the biological question should be identified by

applying classification and feature selection techniques such as Random Forest

on spectrally binned data using a bin width of 0.01 amu. Accurate masses for
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Table 3.5: Bin n132 correlations. Top 15 significant correlations shown (p
< 0.05) based on 43 injections of the example B. distachyon sample spectrally
binned to nominal mass.

Bin r m/z Difference
n146 0.94 14.00
n97 0.93 -35.00
n145 0.91 13.00
n79 0.91 -53.00
n135 0.86 3.00
n115 0.83 -17.00
n102 0.83 -30.00
n341 0.82 209.00
n91 0.82 -41.00
n99 0.81 -33.00
n342 0.80 210.00
n133 0.80 1.00
n71 0.80 -61.00
n128 0.80 -4.00
n306 0.79 174.00

Table 3.6: Bin n132.03 correlations. Top 15 significant correlations shown (p
< 0.05) based on 43 injections of the example B. distachyon sample spectrally
binned to using a bin width of 0.01.

Bin r m/z Difference
n146.05 0.94 14.02
n96.97 0.93 -35.06
n96.96 0.91 -35.07
n145.06 0.91 13.03
n78.96 0.91 -53.07
n135.03 0.86 3.00
n379.16 0.85 247.13
n115 0.83 -17.03
n102.06 0.83 -29.97
n90.99 0.82 -41.04
n133.01 0.80 0.98
n71.01 0.80 -61.02
n128.04 0.79 -3.99
n306.08 0.79 174.05
n191.06 0.78 59.03
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these explanatory bins can then be extracted from 0.00001 amu spectrally binned

data as described in Section 3.4.4. This can then be used alongside the 0.01 amu

binned data for putative annotation.

The putatively annotated, spectrally binned data would then be suitable for

further analyses such as their integration with other omics data for hypothesis

generation and biological interpretation. Alternatively, this data can be used to

inform the use of further metabolomics analyses such as gas or liquid chromatog-

raphy based MS or quantitative MRM analyses. FIE-HRMS analyses could also

be used to ensure the integrity of samples or the identification of particular chem-

ical classes within explanatory feature lists can be used to inform these further

analyses.

3.5 Concluding remarks

The central theme of this chapter was to present use of spectral binning as a

viable and pragmatic technique for FIE-HRMS metabolomic fingerprinting. The

development of the R package binneR allows implementation of this the technique.

A bin width of 0.01 amu was established as the optimal bin width for spectral

binning. Low computation requirements means that routine analysis in excess

1000 samples becomes feasible on a standard desktop PC.

With the analytical and data processing advantages that spectrally binned

FIE-HRMS metabolome fingerprinting provides, it has been identified here that

much of the raw data that is obtained is noisy and can be highly variable. There-

fore rigorous data pre-treatment strategies need to be applied in order account

for sample variability and missing data, without introducing bias or spurious

knowledge into the data that would affect downstream analyses. The applica-

tion of data pre-treatments is likely to be dependent on both experiment and

sample context. However, it has also been shown that the order in which data

pre-treatments are applied can have a significant effect on the data.

The increased resolution associated with FIE-HRMS fingerprinting also pro-

vides the potential for increased confidence in putative metabolite identification.
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Figure 3.7: A general workflow for FIE-HRMS analyses.

55



The obvious result of this is the improved quality in hypothesis generation that

can inform decisions regarding further chemical analyses and experimentation

thus further cementing the role of FIE-HRMS fingerprinting as an important

branch point in the metabolomics pipeline.

To conclude, this chapter has achieved its five aims as well as a proposed

workflow in which the technique can be applied. The next chapter provides an

example of the types of real world questions for which FIE-HRMS fingerprinting

is suitable. Specifically, this involves the application of the technique in answer-

ing questions related to experimental control and robustness in the interaction

between B. distachyon and M. oryzae.
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Chapter 4

Experimental control and

robustness in omics analyses of

plant-pathogen interactions

4.1 Introduction

When designing experiments involving plant-pathogen interactions, it is impor-

tant that all parameters are appropriately controlled to ensure that results are

both reproducible and the hypotheses generated are relevant to the biological

question. This becomes more crucial with large scale integrated omics experi-

ments, where there will be a high investment of both time and resources at all

stages; from the experimental set-up to sample analysis. As the number of mea-

sured variables increases, so too does the likelihood that an unknown confounding

factor will contribute to those variables and give rise to false discovery (Smith,

Ventura, and Prince 2013).

The utility of applying omics technologies to problems such as plant-pathogen

interactions is to allow inductive hypothesis generation that can direct further

scientific investigation through more traditional deductive methods. Without

careful appreciation of all the factors that underpin these complex interactions,

the quality of hypothesis generation can be misinformed.

57



4.1.1 Experimental considerations for omics experiments

involving plant-pathogen interactions

Due to the dynamic nature of plant-pathogen interactions a number of different

parameters need to be accounted for in order to effectively control for interacting

plant processes and reduce variability between samples. Different omics analyses

can also have different sampling and preparation requirements which have to be

accounted for when designing integrated analyses.

Sources of variability within experiments of plant pathogen interactions can

occur at all stages of the experimental process, from initial pathogen inoculation,

to sample collection, sample preparation and sample analysis (Beckmann et al.

2008). These sources will also be different depending on the patho-system in ques-

tion as different inoculation strategies are required for different plant pathogens.

For the interaction between B. distachyon and M. oryzae there are a number of

patho-system requirements that are integral to ensuring successful and uniform

pathogenesis. For instance, the fungal spores need to be applied to the leaf

surface, aerially and in suspension, to initiate spore germination (Parker et al.

2008). This requires a surfactant to allow adherence to the highly hydrophobic B.

distachyon leaf surface. The fungal spores also require high humidity conditions

(> 80%) in the initial phases of infection up to initial host cell penetration (Li,

Uddin, and Kaminski 2014). Parker et al. (2008) used the addition of gelatine to

the inoculum as a surfactant and placed inoculated plants into clear plastic bags as

solutions maintain high humidity. These are artificial experimental factors added

to this interaction that would not be found in the natural environment; they are

however, requirements for successful pathogenesis under laboratory conditions.

Therefore, they need to be appropriately controlled for by ensuring that there

are gelatine solution inoculated control plants that are placed under the same

high humidity conditions as the pathogen inoculated plants.

Plants are also under the influence of circadian rhythms and cellular devel-

opment that are likely to influence host responses to pathogen infection (Roden

and Ingle 2009). It is therefore important that plant tissues of the same devel-
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opmental stage are sampled and that infected and control inoculated plants are

sampled at the same point during the diurnal cycle to control for these changes.

Plant tissue harvesting and sample preparation can also influence the quality

and variability of samples for omics analyses. Care needs to be taken not to

introduce artificial variance that could alter or mask true changes in metabolites,

proteins or transcripts depending on the omics level being studied. Immediate

snap freezing of samples in liquid nitrogen is essential for halting all cellular

processes to provide a snap shot of the cellular state at the time of sampling

(De Vos et al. 2007). Also, for non quantitative metabolomics techniques such as

FIE-MS, uniform sample dry weight is essential to ensure that relative metabolite

concentrations are comparable between samples (Beckmann et al. 2008). This is

less important for omics such as RNA-seq based transcriptomics as RNA extract

concentration can be adjusted prior to cDNA library preparation and differences

in sequencing depth accounted for by normalisation (Dillies et al. 2013).

4.1.2 Random Forest for metabolomic data mining

Essential to extracting valuable information from metabolomic data sets is the

use of data mining techniques that are able handle the their complex and high

dimensional nature. Random Forest is ensemble machine learning method based

on the use of forests of decision trees, grown to make predictions, yielding both

classification accuracy and variable importance (Breiman 2001).

A single tree is grown using a bootstrapped subset of samples. At each node,

the variable that best splits the node is selected from a random subset of all vari-

ables, based on the classification and regression trees split criterion. Tree leaves

(terminal nodes) contain a fixed pre-specified number of observations. Bagging

allows aggregation of predictions across the forest, yielding classification accuracy

and variable importance values (Breiman 1996).

Random Forest is unaffected the scaling of data and are able to handle miss-

ing values. It is also able to handle both high dimensional and correlated data

without the need for prior dimension reduction, both of which are common in
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metabolomics data sets (Enot et al. 2008). It can yield both classification and

variable importance results that other machine learning techniques such as sup-

port vector machines and kNN are unable to do (Sandri and Zuccolotto 2006).

Random Forest has been shown to out perform other classifiers such as PC-LDA

and support vector machines when applied to chemometric data sets (Gromski

et al. 2015b; Scott et al. 2013)

There are three ways that variable importance can be measured with Random

Forest. These include the mean decrease in accuracy, the Gini impurity index and

selection frequencies. The mean decrease in accuracy or permuted importance,

uses the out of bag error estimate. When a given variable is left out, if classifica-

tion error increases then it can be assumed that the variable contributes to the

true classification of the observations. It can therefore be considered important.

The Gini impurity index can be determined by how well variables can split

the observations at individual nodes. It measures the performance of a variable

in separating the observations at the parent node into the left and right daughter

nodes. An increase in the Gini impurity index between two nodes indicates a

strong association with the true classification. A decrease in Gini impurity index

for a variable between nodes indicates an increase in the extent of splitting and

therefore a high variable rank.

An issue with the use of the mean decrease in accuracy and Gini impurity

index for variable importance is that they are relative to each individual forest.

They require heuristic thresholds to be set in order to compare feature subsets

(Konukoglu and Ganz 2014). Selection frequencies can be used as an alternative

method for variable importance. At each node within each individual tree of a

forest, the variable that is best able to split the data is selected. The selection

frequency is the number of times a given feature is selected across all nodes in the

entire forest. If there is no significant relationships between observation labels

and variables present in the forest, the probability of any given variable being

selected is:
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P (f ∗
n = f) =

1

F
(4.1)

Where P is the probability and F is the total number of variables. The

independence of trees within the forest means that variable selection for a given

node does not influence subsequent nodes. The probability of a variable being

selected then extends to any node within the forest (Konukoglu and Ganz 2014).

An approximate false positive rate for a given feature can be estimated using

binomial distribution using the equation:

P (Cf
k,T ) =

(
TK

k

)(
1

F

)k (
1− 1

F

)TK−k

(4.2)

Where T is the number of trees in the forest, K is the average number of nodes

per tree across the forest, k is the variable selection frequency and F is the total

number of variables.

4.1.3 Robustness and validation in omics analyses

Omics analyses by their very nature generate complex, high dimensional data sets.

Adding to this, most omics experiments have a very low sample to feature ratio,

usually due to high cost limiting sample analysis (Ioannidis and Khoury 2011).

This severely limits the statistical power available to investigators, therefore ro-

bust data mining techniques such as Random Forest and validation strategies

become critical for identifying relevant explanatory features, allowing confidence

in biological interpretation and an assessment of experimental robustness.

A common practice for supervised classification in bioinformatics and chemo-

metrics is to use re-sampling to account for sample paucity; where sample sets

are split into separate training and test sets. The training set can be used to

construct the model with a priori knowledge of sample class. The model can

then be used to predict the class labels of the test set and allow evaluation of
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the model performance. This process can be repeated to improve the precision of

performance estimates. A number of re-sampling strategies exist; cross validation

is popular in chemometrics but others such as bootstrapping are widely used in

statistics (Scott et al. 2013).

It has been identified previously that internal validation via re-sampling can

potentially overestimate classifier performance and lead to bias when validating

molecular classifiers (Castaldi, Dahabreh, and Ioannidis 2011). External valida-

tion using independently collected samples is the only sure method for avoiding

bias and over-fitting; however, it’s use in the validation of omics data sets is

still very limited with the biomedical sciences being one of the few areas where

external validation is essential (Collins et al. 2014).

In the case of plant-pathogen interaction experiments, different levels of sam-

ple independence exist. This could be separately performed inoculations and

sample analysis by the same investigators or inoculations and sample analyses

performed by independent investigators.

A binary classification model’s performance can be assessed by its ability to

correctly or incorrectly predict sample class labels. These measures include the

accuracy, AUC, Cohen’s Kappa coefficient and the margin. Accuracy, which is the

proportion of correctly predicted samples, assess a models overall effectiveness.

AUC accounts for the relationship between the models sensitivity and specificity

and assess a models ability to avoid false classification (Obuchowski, Lieber, and

Wians 2004). Cohen’s Kappa coefficient assesses a models accuracy in relation to

the expected accuracy and accounts for random chance (Ben-David 2008). The

margin is the difference between the true positives and maximum number of votes

for another class. This gives a finer estimate for model performance (Enot and

Draper 2007).

Not only is it important to assess classifier performance when comparing mod-

els but it is also important to asses the feature stability underlying these models.

Two models could have similar performance measures, however it may be differ-

ent features responsible for this. This is important in omics analyses as it is the

62



explanatory features that are of interest in the biological interpretation of these

data (He and Yu 2010). There are numerous methods available for assessing

feature stability. Methods such as the Jaccard’s Index can be used to compare

feature subsets (Saeys, Abeel, and Peer 2008), with the equation shown below:

J(A,B) =
|A ∩B|
|A ∪B|

(4.3)

Here A and B are feature subsets of arbitrary cardinality. This is useful for

comparing lists of explanatory features above a certain threshold. Other methods,

such as the Canberra distance, are useful for comparing the rankings of entire

feature lists (Jurman et al. 2008). The equation is shown below:

d(p,q) =
n∑

i=1

|pi − qi|
|pi|+ |qi|

(4.4)

Where p and q are vectors of rankings with identical cardinality. Relative

Canberra distance can be calculated by dividing the Canberra distance by the

maximum possible Canberra distance for the given vector lengths. This measure

has the advantage over others such as Spearman’s rank coefficient as it gives

weight to the top ranked features that are of more interest (He and Yu 2010).

4.2 Aims

The aim of this chapter is to objectively assess key elements of the B. distachyon

and M. oryzae patho-system related to appropriate experimental control and the

robustness of the metabolomic changes that are observed during the interaction.

Specifically, this relates to the potential of the fungal inoculum to elicit plant

responses other than those specifically related to infection. This could have ma-

jor implications for the quality and relevance of hypotheses generated from omics

data from this interaction. Also important to the relevance of generated hypothe-

ses is the reproducibility of the data underpinning these. If the experimental
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conditions cannot be sufficiently well replicated between independent inoculation

events then hypotheses generated cannot have practical relevance in elucidating

the molecular mechanisms underlying the interaction. This provides us with the

following aims:

• Assess the extent of impact the inoculum has on the interaction metabolome.

• Develop methods for controlling potentially inoculum related responses.

• Assess the robustness of interaction metabolomic responses across multiple

inoculations.

4.3 Materials and Methods

4.3.1 Inoculations to investigate the inoculum related metabolomic

changes in B. distachyon as a result of M. oryzae

inoculation

The B. distachyon ecotype Bd21 and M. oryzae were grown as described in Sec-

tions 2.1 and 2.2. Three inoculum treatments were used; gelatine only solu-

tion as a surfactant control, a non-pathogenic inoculum containing inviable M.

oryzae spores to control for the inoculum constituents and a pathogenic inocu-

lum containing viable M. oryzae spores. The preparation of the pathogenic and

non-pathogenic inoculum are described in Section 2.3. The gelatine solution was

prepared as 0.2% (w/v). Plants were inoculated and placed under high humid-

ity conditions as described in Section 2.3. 10 replicate plants were harvested as

described in Section 2.4 at 0, 24 and 48 hpi.

Samples were globally extracted as described in Section 2.6. FIE-HRMS

metabolome fingerprinting analysis and data pre-processing was performed as

described in Section 2.7. PCA and PC-LDA were used to initially assess FIE-

HRMS data quality. Random Forest classification and feature selection were

used to assess class discrimination and explanatory features as described in Sec-
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tion 2.9. A 1% selection frequency false positive rate (FPR) was used as a cut

off for explanatory features.

4.3.2 Inoculum preparation and LC-MS analyses to in-

vestigate the effect of centrifugation on inoculum

constituents

To investigate the effect of centrifugation on inoculum constituents, a pathogenic

inoculum was prepared which was then centrifuged and washed with the su-

pernatant retained. This gave four inoculum components for investigation. The

gelatine solution and pathogenic inoculum were prepared as described in Sections

4.3.1 and 2.3 respectively. The inoculum supernatant and centrifuged inoculum

were prepared by taking a portion of the pathogenic inoculum and centrifuging at

2500rpm for 5 minutes with the supernatant poured off and kept. The remaining

pellet was then re-suspended in gelatine solution, vortexed and re-centrifuged as

before. The supernatant was poured off and discarded and the pellet re-suspended

in gelatine solution.

Samples were extracted by adding 500 µl of methanol to 500 µl of inoculum

component. The samples were then sonicated for 5 minutes, shaken for 20 min-

utes at 1400 rpm and centrifuged at 14000 rpm for 4 minutes. The supernatant

was then pipetted into a fresh 2 ml eppendorf. Samples were prepared for LC-

HRMS analysis as described in Section 2.6. LC-HRMS analysis was performed

as described in Section 2.8.

4.3.3 Independent inoculations of B. distachyon with M.oryzae

and Random Forest classification using an external

validation re-sampling strategy

For investigation of the robustness of metabolome responses during the pre-

symptomatic phases of the susceptible and resistant B.distachyon and M. oryzae

interactions, metabolome fingerprinting data was used from the three indepen-
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dent inoculations described in Section 2.5. All six time points were used (0 - 60

hpi) for both ecotypes (ABR6 and Bd21) with 12 replicates for each treatment

and control class at each time point. Sample extraction, FIE-HRMS fingerprint-

ing, spectral binning and pre-treatment were preformed as described in Sections

2.6 and 2.7 respectively. Samples from all three inoculations were randomised

together into equally represented blocks for sample extraction and again for FIE-

HRMS fingerprinting.

To compare metabolome responses in each of the independent inoculations,

Random Forest classification was performed using an external validation re-

sampling strategy using R (version 3.2.3) and the randomForest package with

a custom written script (Appendix D). 10 re-sampling iterations of Random For-

est using 1000 trees were performed for each of the 3 possible experiment training

and test combinations (1+2˜3, 1+3˜2, 2+3˜1). Each combination consisted of

binary comparisons between infected and control treatments for each of the 6

time points for each of the ecotypes. Training and test partitions were sampled

without replacement using an external validation strategy where 8 replicates were

taken from each of 2 experiments for each treatment for training and 8 replicates

were sampled without replacement from the remaining experiment for each treat-

ment for testing. Random Forest model performance measures (accuracy, Cohen’s

Kappa coefficients, AUC and margin) were calculated at each re-sampling itera-

tion and mean aggregated across iterations. False positive rates for feature selec-

tion frequencies were also calculated at each re-sampling iteration (as described

in Section 4.1.2) and mean aggregated across iterations.

4.4 Results and Discussion

4.4.1 Experimental control of the B. distachyon and M.

oryzae interaction

Previous metabolomic studies using this interaction by Allwood et al. (2006),

Parker (2006) and Zubair (2014) have used control plants that have been inoc-
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ulated with only gelatine solution, to control for its use as a surfactant in the

preparation of the inoculum. Inoculations conducted at the commencement of

this PhD project indicated that the inoculum was having an additive effect, other

than those of the intended pathogen infection. It was observed that significant

discrimination between inoculated and control plants could be obtained at 0 hpi

(see Section 4.4.1.2). This would not be expected as infection would not have

yet taken place at this time. Compounding this effect, is that for studying the

pre-symptomatic phases of this interaction, a higher density of spores is needed

to elicit a detectable metabolomic response due to the relatively low number of

cells involved during initial host colonisation (approximately 1-3 host cells per

fungal spore) (O’Connell and Panstruga 2006). It was inferred that this dis-

crimination was as a result of initial differences between the inoculum and the

gelatine solution control due to the inoculum preparation. Therefore, an exper-

iment was undertaken in order to test this hypothesis and to allow the effect of

the inoculum upon the host to be assessed. Three treatment types were used: the

standard gelatine solution, the standard pathogenic inoculum at two times spore

density and a non-pathogenic inoculum containing non-viable M. oryzae spores

(see Section 4.3.1).

4.4.1.1 Control treatments for inoculating B. distachyon with M.

oryzae

Common sterilisation methods include heat, radiation and chemical treatments.

The use of heat to sterilise the inoculum was considered unsuitable as the tem-

peratures that would be needed in order to effectively kill the spores would also

be likely to cause a breakdown of molecules within the inoculum. This would

be detectable in the chemical fingerprints and add to discrimination between the

inoculum treatments at 0 hpi. Radiation treatments were also considered inap-

propriate for similar reasons. Ultra violet light is commonly used for sterilisation.

This would cause breakdown of sensitive molecules within the inoculum and thus

chemically alter it (Braga et al. 2015).
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There are numerous chemical treatments for sterilising fungal spores. Many

of these such as formaldehyde are carcinogenic and likely to not only be toxic to

the spores but also to the plant when the inoculum is applied so is likely to elicit

a host response. Also the addition of a chemical to the inoculum will alter its

composition.

Another option would to be to use genetically modified spores that arrest

in development prior to primary host cell penetration (Xu and Hamer 1996).

This would not require pre-treatment of the inoculum and provide a control for

fungal constituents other than the fungal spores. However, it would be difficult

to control the spore concentration as well as inoculum concentration so that it

would be exactly comparable to that of the pathogenic inoculum, as two separate

fungal cultures would be necessary to produce the pathogenic and non-pathogenic

inoculum.

The treatment that was chosen in order to effectively sterilize the inoculum,

with the least impact upon it, was to use two rounds of snap freezing in liquid

nitrogen, thawing using a water bath and sonication for 5 minutes. A similar

method has previously been used for quenching yeast cultures prior to extraction

for metabolomic analysis (Murray, Beckmann, and Kitano 2007). The effect of

this treatment is to rupture the spores; however, this was not considered to be

detrimental. Any enzymes released that have the potential to chemically alter

the inoculum would likely to have already been released during the scraping of

the fungal hyphae from the surface of the PDA media, so will have also affected

the untreated virulent inoculum. Bd21 plants did not show any visible signs

of infection 5 days after inoculation, neither was M. oryzae growth obtained

when PDA media was inoculated with this inoculum confirming its complete

neutralisation.

4.4.1.2 Host responses to the pathogen inoculum

Table 4.1 shows the Random Forest classification results of pairwise comparisons

between each treatment type at each sampled time point. There were explana-
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Table 4.1: Random Forest classification results for comparisons of in-
oculation treatment responses. GS = gelatine solution; PI = pathogenic
inoculum; NPI = non-pathogenic inoculum.

hpi Comparison Accuracy AUC Margin

0
GS vs PI 0.96 1.00 0.33

GS vs NPI 0.92 0.99 0.27
PI vs NPI 0.32 0.29 -0.08

24
GS vs PI 0.99 1.00 0.46

GS vs NPI 1.00 1.00 0.49
PI vs NPI 0.57 0.65 0.03

48
GS vs PI 1.00 1.00 0.59

GS vs NPI 1.00 1.00 0.56
PI vs NPI 0.96 0.99 0.33

tory margin values (> 0.3) obtained for comparisons between the gelatine solution

and pathogenic inoculum and the gelatine solution and the non-pathogenic in-

oculum at all time points, with the margins increasing as the hpi increases. Non-

significant margin values were obtained in comparisons between the pathogenic

inoculum and the non-pathogenic inoculum at both 0 and 24 hpi; however, sig-

nificant margin values were obtained at 48 hpi.

These results indicate that not only is there a difference in chemical compo-

sition between both the non-pathogenic inoculum and the gelatine solution at

0 hpi, but the increased margin values at subsequent time points suggests that

there is a differential response to this inoculum. These plant tissue responses

cannot only be attributed to the presence of the spores as there are no viable

spores within the non-pathogenic inoculum.

If metabolites present in the inoculum were acting passively upon the host

leaf surface then only metabolite trends such as Figure 4.1a would be expected

for explanatory m/z at 0 hpi. This m/z is showing a consistent increase between

the inoculum and gelatine solution treatments across all time points. However,

metabolite trends such as those in Figures 4.1 b, c & d indicate that constituents

of the inoculum other than the spores are also contributing to the interaction

metabolomic response. The metabolite trend shown in Figure 4.1b is similar

to that of Figure 4.1a in that it is explanatory at all time points between the

inoculum and the gelatine solution treatments; however, it also increases in level
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as the experiment progresses. The metabolite trend shown in Figure 4.1c is not

explanatory at 0 hpi but it is explanatory at both 24 and 48 hpi. This can likely

be attributed to a response to the presence of the pathogenic inoculum as it is not

explanatory in comparisons between the pathogenic inoculum and non-pathogenic

inoculum at any time point. The metabolite trend shown in Figure 4.1d is most

interesting at 48 hours where opposite trends are found in the infected tissue,

depending on which control treatment is used. The response would be increased

if taken relative to the gelatine solution but decreased if relative to the non-

pathogenic inoculum.

Zubair (2014) advocated filtering out m/z that are explanatory at 0 hpi as a

suitable strategy to account for the significant discrimination between inoculum

and control at 0 hpi. This strategy would be suitable for effectively accounting for

features showing trends such in Figure 4.1a removing some or most of the variance

for which the inoculum is directly responsible. However, it would not account

for the variance that is caused by the underlying host responses to inoculum

constituents other than the pathogen spores. It would be an unsuitable strategy

for accounting for metabolite trends shown in Figures 4.1 b, c & d.

4.4.1.3 Inoculum constituents

The putative annotations for inoculum associated metabolites that were found to

be explanatory in both comparisons between the gelatine solution and inoculum

or neutral inoculum are shown in Table 4.2. All these features are increased

in the inoculated plants with positive fold changes. The main sources of these

metabolites are likely to be through release from the break up of fungal mycelia

and those dissolved from the PDA media, on which the M. oryzae is cultured

during inoculum preparation.

The annotations include a number of fatty acids such as linoleic acid. Fatty

acids are important signalling molecules within plants and have been associated

with responses to both biotic and abiotic stresses (Hou, Ufer, and Bartels 2015).

Lipoxygenase oxidation products of fatty acids such as linoleic acid and have been
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Figure 4.1: Example m/z trends of explanatory features between inoc-
ulation treatment comparisons. Points show class mean intensities (N=10).
Error bars show 95% confidence intervals estimated using the t distribution.
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found to accumulate in plant tissues during pathogen infection. There is evidence

that they are linked to salicylic acid signalling, systemic acquired resistance and

have been found to accumulate during the hypersensitive response in a number of

plant pathogen interactions (Kachroo and Kachroo 2009). Also the accumulation

hydroxy linolenic acid in rice has been found to enhance resistance to M. oryzae

by inhibiting its growth (Yara et al. 2008).

Glucose was also identified as an inoculum associated metabolite (Table 4.2).

Not only is it an important energy source within plant cells but is also recognised

as an important signalling molecule (Rolland, Baena-Gonzalez, and Sheen 2006).

Glucose levels are sensed by plant cells both intracellularly via hexokinase and ex-

tracellularly via G proteins. They allow the plant to monitor cellular homeostasis

and energy status (Hanson and Smeekens 2009). Sugar sensing has been linked to

both plant innate immunity and responses to stress (Baena-González and Sheen

2008; Moghaddam and Van Den Ende 2012). Alterations to sucrose:hexose ratios

within plant tissues have been shown to induce the anthocyanin biosynthesis in

Arabidopsis (Solfanelli et al. 2006). The application of foliar carbohydrates has

also been suggested as a potential method for crop protection by priming the

innate plant immune response (Trouvelot et al. 2014).

The presence of high levels of glucose on the leaf surface could stimulate the

blooming of epiphytic microbes. Epiphytic bacteria have been shown to readily

uptake simple sugars on the leaf surface (Mercier and Lindow 2000). If this bloom-

ing is sufficient, this is likely to add to the composition of the leaf metabolome as

well as deplete inoculum glucose levels. This would add to treatment class dis-

crimination and present glucose trends that would be unrepresentative of changes

that could potentially be occurring as a result of M. oryzae infection.

Other inoculum constituents will be recognised by the plant cells as PAMPs

that elicit innate immune responses (Liu et al. 2013). Although the neutral

inoculum is unable to elicit a full PAMP triggered immune response, resulting in

the hypersensitive response, just the presence of fungal cell wall fragments such

as chitin are likely to be recognised and responded to by the plant cells (Liu et al.
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2013).

The inoculum contains metabolites that can both be used as nutrients and as

key parts of signalling cascades within plant cells. When the inoculum is sprayed

upon the leaf surface, these metabolites still need to breach highly hydrophobic

cutical layer of the B. distachyon leaf. The permeability of plant surfaces to

dissolved nutrients has been extensively studied. Liphophilic compounds are able

to directly permeate the cuticular layer; however the mechanisms by which polar

compounds can directly permeate are still poorly understood (Schönherr 2006).

Trichomes and stomatal pores on the B. distachyon leaf surface are likely areas

where uptake of dissolved inoculum constituents could occur (Fernández and

Brown 2013).

The composition of apoplastic spaces are highly monitored by plant cell mem-

branes, especially during plant pathogen invasion (Sattelmacher 2001; Pignocchi

and Foyer 2003). Stomatal entry would allow these inoculum constituents to

cause a compositional change in the apoplast and responses by cells in the meso-

phyll layers. Stomatal uptake is also likely to be exacerbated by stomatal opening

caused by the high humidity conditions in which the plants are placed post inoc-

ulation to enhance M. oryzae spore germination.

4.4.1.4 Reducing the impact of inoculum associated metabolites

As has been shown in the preceding sections, the pathogen inoculum can have

a substantial influence on host responses other than M. oryzae pathogenesis.

Figure 4.2 shows C18 LC-HRMS ion chromatograms of the separate inoculum

components. There are substantial composition differences between the gelatine

solution and the inoculum. Much of this composition can be removed simply

by centrifuging the inoculum, removing the supernatant and re-suspending the

debris in gelatine solution. This reduction in inoculum constituents can clearly be

seen between the ion chromatogram of the inoculum and centrifuged inoculum.

Difficulty was found in trying remove all hyphal fragments from the inocu-

lum. There was a three quarters reduction in inoculum spore density from
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2× 105 conidia/ml to 0.5× 105 conidia/ml when filtering was used due to the

matted nature of the hyphal fragments. This would require four times as many

M. oryzae cultures to provide an inoculum of sufficient spore density. This was

seen as logistically impractical, especially for large scale inoculations.

Combining this inoculum cleaning by centrifugation with neutralising the

spores for control treatments provided an inoculation method that not only sub-

stantially reduces the host responses to it, but controls for any host responses

elicited by PAMPs still present. PAMP triggered responses by the host would be

seen as confounding to the biological question as they can be elicited even when

plants are inoculated with non-viable spores.

4.4.2 Assessing the robustness of patho-system metabolomic

changes

Individual analysis of independent inoculation experiments suggests that there is

variability in the consistency of explanatory features found between each experi-

ment using Random Forest feature selection in both compatible and incompatible

interactions. In both interactions, only 19-20% of explanatory features were found

consistently in all 3 experiments (Figure 4.3). The proportions of features shared

by at least two experiments also varies. In the incompatible interaction of ABR6,

only 19.2% and 20.5% of features were found to be shared between experiments

1 & 2 and 1 & 3 respectively. This is also true for the compatible interaction

of Bd21 but the difference was less pronounced. The issue with assessing the

interaction metabolome responses in this manner is that it does not account for

the reproducibility of the underlying metabolite trends. Explanatory feature list

occupancy doesn’t describe whether a feature is either increased or decreased or

to what extent. Also placing all the samples into one large re-sampling model to

see if discrimination can still be achieved would also be ineffective. The training

and test sets would not effectively account for the independence of the inoculation

experiments and so potentially bias results. However, more replicates could be

used in the training and test sets, although the re-sampling results would be less
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Figure 4.2: Negative mode base peak ion chromatograms of inoculum
components analysed by C18 LC-HRMS. See Section 4.3.2 for inoculum
preparation details.

76



(a) ABR6

8.22%
0%

30.1%
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19.2%
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21.9%

Experiment 1 Experiment 2

Experiment 3

(b) Bd21

13%
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4.35%

19.6%

8.7%

21.7%

Experiment 1 Experiment 2

Experiment 3

Figure 4.3: Venn diagrams comparing explanatory features between in-
dividual inoculation experiments. Explanatory features were taken from
comparisons between infected and control treatments across time points 12, 24,
36, 48, 60 hpi that had a selection frequency FPR below 1%. Totals of 73 and
46 features were found for ABR6 and Bd21 respectively. Percentages are given
to three significant figures.

interpretable. Using a re-sampling strategy that incorporates external validation

accounts for this independence and allows more robust identification of consis-

tently reproducible features. The following sections assess the results of applying

this strategy to the B. distachyon and M. oryzae interaction.

4.4.2.1 Classification performance using external validation re-sampling

By comparing the Random Forest model performances for each combination

of experiment comparison when using an external validation re-sampling strat-

egy it can provide indications of the robustness of metabolome changes between

treatment classes, between independent inoculation experiments. Metabolomic

changes at a particular time point could be considered robust if consistent perfor-

mance measures are obtained between all training and test combinations, irrespec-

tive of the extent of discrimination between treatments classes. However, time

points with higher discrimination would be more likely to have greater variabil-

ity in model performance as a greater proportion of robust explanatory features
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would be required to maintain high model performance (i.e. poor treatment dis-

crimination is easier to reproduce). Limits of acceptable deviation would depend

on the extent of discrimination between the treatment classes at a particular

time point and the consistency of performance measures for the other experiment

comparisons. Poor robustness would be characterised by either an substantial

increase or decrease in performance measures of a particular training and test

combination (Sokolova and Lapalme 2009).

Tables 4.3 and 4.4 show the classification performance measures for each re-

sampling comparison combination at each time point for ABR6 and Bd21 respec-

tively. Interestingly, model performance of each comparison combination was not

consistent between time points in both ecotypes. For instance, in the compatible

interaction of Bd21 the comparison of experiments 1 and 2 versus experiment 3

performed worst at 12 hpi whereas at 24 hpi the comparison of experiments 2

and 3 versus experiment 1 performed worst (Table 4.4).

The 0 hpi time point shows consistently poor performance in both ecotypes

for all training and test combinations. This is to be expected as no host or

pathogen responses will have yet begun. The 60 hpi time point in ABR6 shows

consistently high accuracy, Kappa and AUC measures with margins of 0.4 for

comparisons 1+2˜3 and 1+3˜2. However, comparison 2+3˜1 shows a substantial

drop in performance with a margin of 0.2, half that of the other comparisons.

This suggests the presence of a cohort of features that are explanatory between

infected and control treatments in experiments 2 and 3 but are not explanatory

in experiment 1. Therefore the training models constructed using samples from

experiments 2 and 3 have over-fitted and poorly predict the samples from exper-

iment 1. Although, the high discrimination found for the other comparisons at

this time point suggest that there are still a proportion of explanatory features

present in experiment 1 that are able to predict the features in experiments 2 and

3.
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Table 4.3: ABR6 random forest classification performance using an ex-
ternal validation resampling approach. Comparisons are given as formulas
for which experiments were used for model training (+) and which experiment
was used for testing (˜).

hpi Comparison Accuracy Kappa AUC Margin

0
1+2˜3 0.57 0.14 0.57 0.03
1+3˜2 0.61 0.21 0.62 0.03
2+3˜1 0.60 0.20 0.60 0.03

12
1+2˜3 0.98 0.96 0.98 0.33
1+3˜2 1.00 1.00 1.00 0.37
2+3˜1 0.96 0.91 0.96 0.24

24
1+2˜3 0.96 0.91 0.96 0.32
1+3˜2 0.99 0.99 0.99 0.36
2+3˜1 0.93 0.86 0.93 0.27

36
1+2˜3 0.71 0.41 0.71 0.15
1+3˜2 0.79 0.59 0.79 0.14
2+3˜1 0.79 0.59 0.79 0.12

48
1+2˜3 0.84 0.68 0.84 0.28
1+3˜2 1.00 1.00 1.00 0.37
2+3˜1 0.91 0.81 0.91 0.21

60
1+2˜3 1.00 1.00 1.00 0.40
1+3˜2 1.00 1.00 1.00 0.42
2+3˜1 0.59 0.19 0.59 0.21

Table 4.4: Bd21 random forest classification performance using an ex-
ternal validation resampling approach. Comparisons are given as formulas
for which experiments were used for model training (+) and which experiment
was used for testing (˜).

hpi Comparison Accuracy Kappa AUC Margin

0
1+2˜3 0.54 0.09 0.54 0.02
1+3˜2 0.61 0.21 0.61 0.03
2+3˜1 0.62 0.24 0.62 0.04

12
1+2˜3 0.73 0.46 0.73 0.14
1+3˜2 0.85 0.70 0.85 0.23
2+3˜1 0.89 0.78 0.89 0.18

24
1+2˜3 0.77 0.54 0.77 0.16
1+3˜2 0.89 0.78 0.89 0.18
2+3˜1 0.60 0.20 0.60 0.09

36
1+2˜3 0.68 0.36 0.68 0.19
1+3˜2 0.94 0.89 0.94 0.23
2+3˜1 0.63 0.26 0.63 0.17

48
1+2˜3 0.86 0.72 0.86 0.21
1+3˜2 0.96 0.91 0.96 0.23
2+3˜1 0.88 0.76 0.88 0.21

60
1+2˜3 0.88 0.76 0.88 0.32
1+3˜2 0.87 0.74 0.87 0.28
2+3˜1 0.98 0.96 0.98 0.23
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4.4.2.2 Feature stability between externally validated re-sample ex-

periment combinations

Although the model performance measures discussed in the previous section give

indications of the robustness of the metabolomic changes found between indepen-

dent inoculations, assessing the stability of the underlying feature lists forms an

important part of the assessment. The importance of feature selection stability

has been identified in both biomarker discovery and differential gene expression

analysis where it forms an essential part of assessing experimental reproducibility

(Boulesteix and Slawski 2009; He and Yu 2010).

Feature selection stability in this context of plant/pathogen interactions is

likely to reflect consistent changes in metabolites of both the plant and pathogen

during pathogenesis. Stability will also be highly linked to the performance mea-

sures mentioned previously. Variability in model performance measures between

training and test comparisons will lead to poor feature stability between compar-

isons (Davis et al. 2006).

Figure 4.4 shows the mean Jaccard’s indexes and Canberra distances for the

comparisons in Tables 4.3 and 4.4. Similar to the classification performance mea-

sures, feature stability between the comparisons varied between time points. Also

the trends between the similarity measures differed for both ecotypes, with the

incompatible interaction of ABR6 differing more than the compatible interaction

of Bd21.

At 0 hpi, which had poor treatment discrimination in both ecotypes and

therefore yielded few explanatory features, had the lowest Jaccard’s index in

both ecotypes (Figures 4.4 a & b). However, the relative Canberra distances were

found to be highest. This suggests that in terms of the entire feature lists, 0 hpi is

showing the greatest feature stability. A lack of underlying system perturbation

by pathogenesis is the likely cause of this feature list stability but instability

of relevant features (Kalousis, Prados, and Hilario 2007). Contrastingly, where

significant class discrimination was obtained at 12 and 60 hpi in ABR6 and Bd21

respectively, a higher mean Jaccard’s index and lower mean Canberra distance
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was obtained.

Further understanding of the observed feature stability trends requires visu-

alising the trends of the features between the individual experiments. Figure

4.5 shows box plotted examples of feature trends between experiments and their

trends when all the data is combined for both ecotypes at 60 hpi.

If a feature was to be considered as robust and reproducible, it would need

to be showing consistent intensity trends between treatments between each ex-

periment. This can be seen in ABR6 for feature n132.03 (Figure 4.5b). This

consistency can further be seen when all samples are combined where the feature

appears to be highly explanatory. A similar trend in this feature is also seen in

Bd21, however it is not as consistent as that seen in ABR6. Although experiment

3 is showing the same decrease in infected tissue as the other two experiments,

the relative levels are slightly higher. In fact, the levels in the infected tissue over-

lap with the control levels of the other two experiments, reducing discrimination

when the samples are combined.

The feature trend of n191.06 in ABR6 shown in Figure 4.5c shows an increase

in infected tissue but only in experiments 2 and 3. Although experiment 1 shows

a slight increase, it is not to the extent of experiments 2 and 3. This feature

could still be considered robust but is likely to contribute to the drop in Random

Forest model performance when experiment 1 is used as the test set (Table 4.3).

An explanatory feature with poor robustness would be expected to be explana-

tory in one of the experiments but show either no change in other inoculation or

even an opposite trend. The feature n131.05 shown in Figure 4.5a shows poor

reproducibility with it being explanatory in experiment 2 with an increase in in-

fected tissue compared to control tissue. This trend is not seen in the other 2

experiments and overlapping interquartile ranges are seen when samples from all

the experiments are combined.

81



(a) Numbers of explanatory features

ABR6 Bd21

0 12 24 36 48 60 0 12 24 36 48 60

10

20

30

40

50

hpi

N
um

be
r 

of
 F

ea
tu

re
s

(b) Jaccard’s Index

ABR6 Bd21

0 12 24 36 48 60 0 12 24 36 48 60

0.2

0.4

0.6

hpi

Ja
cc

ar
d'

s 
In

de
x

(c) Relative Canberra Distance

ABR6 Bd21

0 12 24 36 48 60 0 12 24 36 48 60

0.500

0.525

0.550

0.575

0.600

hpi1 
−

 R
el

at
iv

e 
C

an
be

rr
a 

D
is

ta
nc

e

Figure 4.4: Feature similarity between experiment comparisons. Mean
similarity measures were calculated using feature lists used from the comparisons
shown in Tables 4.3 and 4.4. Error bars show ± 1 SD. Jaccard’s index was
calculated using feature with a selection frequency FPR below 1%. Relative
Canberra distance was calculated using complete feature lists of 1560 features.
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(a) n131.05
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Figure 4.5: Example box plots of feature experimental variability at 60
hpi. Left hand plots show individual experiment trends. Right hand plots show
trends when experiments are combined.
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4.4.3 Potential sources of experimental variability and fea-

ture instability

While every effort can be made to limit sample variability through careful exper-

imental design and adherence to protocol between inoculations, as shown in the

previous sections, variability and feature instability can still occur. The sources

of this variability are likely to have both technical and biological origins.

From a technical perspective the high dimensionality of metabolome finger-

print data is likely to introduce a degree of feature instability through the identi-

fication of false positives due to the relatively low feature to sample ratio (Broad-

hurst and Kell 2006). Also additive would be small yet unavoidable variability

that can be introduced at almost all stages of the experiment from initial inocu-

lation, sample collection, sample preparation and instrumental analysis.

With respect to variability of biological origin, this could have a number of

sources. The plants used in these inoculations require 21 days of growth prior

to inoculation. Although the plants are cultivated under temperature and light

regulated conditions, small variations in seed germination time along with temper-

ature and watering regimes over this period can cause variability in rates of both

sucrose production and nitrogen uptake which would lead to variability in the

extent of development between plants (Weitbrecht, Müller, and Leubner-Metzger

2011; Hikosaka et al. 2006; Gonzalez-dugo et al. 2010). Between inoculations,

this would give differences in the cellular system starting points of the host leaves

and likely affect the trajectories of host responses to pathogenesis (Pritchard and

Birch 2011). This is shown by the high discrimination between 0 hpi control

treatments in Table 4.5 and is unlikely due to control inoculum as no explana-

tory features were found in common when experiment comparisons are compared

between ecotypes.

Linked to developmental variability is the spatial diversity of cell types on an

individual host leaf. It has been shown that the transcriptome of maize leaves

differs along the proximal and distal plane as well as between bundle sheath and

mesophyll cells (Li et al. 2010b). The numerous cell types in the leaves of B. dis-
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tachyon including parenchyma, mesophyll and phloem means that many cellular

states are present. Also M. oryzae has tissue dependent infection strategies with

a fully biotrophic strategy adopted when invading rice root tissue. Although the

organ specific adaptation of M. oryzae has been shown, tissue specific adaptation

of infection strategy within the same organ has not yet been investigated.

With the use of the spray application of the inoculum, there is the potential for

heterogeneity in spore density across the leaf surface . This allows the potential

for small areas to contain much higher densities of spores than other areas. It is

likely that this could cause heterogeneity in the intensity of systemic signalling

between cells and therefore the responses of these cells, depending on the sub-

cellular origin of these signals, especially in the early stages of host colonisation

(Mullineaux 2006).

Further to this is the temporal heterogeneity of pathogen colonisation (Parker

et al. 2008). With the colonisation of host tissue by M. oryzae occurring not only

horizontally, but also vertically through the leaf, there is the potential of different

cell types to be coming into contact and responding to the pathogen colonisation

at different times.

The sampling of leaf sections and subsequent homogenisation that has been

used here will not take into account the variability in these spatial and tempo-

ral factors. This variability is most likely to affect the stability of marginally

explanatory features rather than those that are highly explanatory.

Spatial and temporal heterogeneity of B. distachyon responses to M. oryzae

has the potential to be responsible for the presence of cohorts of related ex-

planatory features that, although showing the same trends in two of the three

experiments, are not found in the other. Over-fitting was found in ABR6 at 60

hpi (Section 4.4.2.1) when experiment 1 was used for testing. Figure 4.6 shows

the trends of the explanatory features that are responsible for this. These features

form 2 distinct groups, those that are decreased and those that are increased in

experiments 2 and 3.

In FIE-HRMS, a metabolite can be represented by more than one m/z due
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Table 4.5: Random Forest classification results of comparisons of 0 hpi
control treatments between experiments.

Ecotype Comparison Accuracy AUC Margin

ABR6
1 vs 2 0.88 0.98 0.27
1 vs 3 0.98 1.00 0.42
2 vs 3 1.00 1.00 0.43

Bd21
1 vs 2 0.94 0.99 0.32
1 vs 3 0.89 0.98 0.36
2 vs 3 0.79 0.91 0.19

to the presence of adducts and isotopes. This can be responsible for part of

these groups. However, related metabolites could represent co-regulated modules

present within these biological networks.

The regulation of biological networks is highly modular with regulatory hubs

responsible of the co-ordination of cellular response to stress conditions (Barabási

and Oltvai 2004). Hubs in plant defence include the MAPK induction of WRKY

transcription factors (Meng and Zhang 2013). Instability in the activation of

these key regulatory hubs between inoculations has important implications for

the validity of omics results based on single inoculations. If the origin of this

potential regulatory instability is biological rather than technical, it could provide

evidence of plasticity in network responses during plant defense.

4.5 Concluding remarks

The overall aim of this chapter was to objectively assess three basic but key ele-

ments of successful omics investigation of plant pathogen interactions. The appli-

cation of FIE-HRMS fingerprinting has allowed the identification that inoculum

constituents other than that of pathogenic fungal spores can elicit substantial

host responses. Not only can these confound host response caused M. oryzae

pathogenesis, but also mask them. This simple yet profound insight not only has

implications for the design of omics experiments involving the interaction between

B. distachyon and M. oryzae but also for investigating the interactions of plant

pathogen interactions in general, depending on the inoculum preparation and

inoculation techniques used. These responses could be controlled for by applica-
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Figure 4.6: Heat map of negative mode ABR6 m/z trends at 60 hpi.
Features shown are those that are explanatory in experiments 2 and 3 only. Rel-
ative log2 fold change were calculated using the ratio of mean intensities between
infected and control treatments. Ratios were then log2 transformed and sum
of squares scaled. m/z are ordered by hierarchical clustering and coloured by
K-means cluster occupancy (K=2).
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tion of a non-pathogenic inoculum that will elicit these responses but not cause

infection of the host tissue. Careful consideration is needed for all aspects of the

experimental process and thorough reporting of all aspects experimental set-up

when using omics to investigate these interactions. This ensures that results are

interpretable in the biological context for which they were intended.

An appropriate method of controlling for these inoculum induced responses

was developed by the use of a non-pathogenic inoculum. Freeze treatment and

agitation provided the most suitable method for neutralising M. oryzae spores,

without altering the composition of the inoculum.

FIE-HRMS fingerprinting allowed an assessment of the robustness of metabolome

changes observed between independent experiments to investigate the pre-symptomatic

phases of the interaction between B. distachyon and M. oryzae. Random For-

est classification and an external validation re-sampling strategy showed that

metabolome changes can vary between inoculations. This variability can also

be dynamic between time points; with some phases of pathogenesis more repro-

ducible than others. It highlights the need for variability between inoculations to

be taken into account when designing large scale omics experiments to investigate

plant/pathogen interactions.

There is opportunity for the integration of external validation into omics in-

vestigations involving plant-pathogen interactions. The cost of conducting exper-

iment repeats is substantially lower than for fields such as biomedicine were the

use of external validation is common. The ability to identify robust and stable

explanatory feature trends is key for ensuring the validity of further omics inte-

gration or more targeted pathway analyses involving quantitation. In the longer

term this will provide more fruitful hypothesis generation and improve the value

of the use of omics analyses.
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Chapter 5

Metabolomic and transcriptomic

analyses of the pre-symptomatic

phases of the B. distachyon and

M. oryzae interaction

5.1 Introduction

On the molecular level, the pre-symptomatic phases of biotrophic fungal plant-

pathogen interactions represent a key point that can decide the outcome of the

interaction. During these phases, pathogens are at their most vulnerable to host

defences. Nutritional resources are scarce and their extent of colonisation is lim-

ited. Failure to colonise beyond that of the primary host cell will mean almost

certain death. Biotrophic fungal pathogens have to successfully subvert the host

metabolism and establish a nutritional interface in order for successful colonisa-

tion to occur through to sporulation (O’Connell and Panstruga 2006).

Investigating plant-pathogen interactions using omics level analyses provides

a system wide overview of changes occurring during pathogen colonisation. As

mentioned in Chapter 4, the power of omics analyses is the valuable informa-

tion they provide for hypothesis generation. This can then allow further, more
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targeted experiments to both validate and extend findings. Applying multiple

levels of omics investigation further enhances interpretation of these data with

respect to the underlying mechanisms involved in the plant-pathogen interaction.

This chapter will apply both metabolomic and transcriptomic techniques to the

pre-symptomatic phases of the B. distachyon and M. oryzae interaction. These

techniques will include FIE-HRMS and LC-HRMS based metabolomics as well

as RNA-Seq based transcriptomics.

5.1.1 Untargeted LC-MS profiling for metabolomic inves-

tigations

Unlike the FIE-HRMS fingerprinting techniques previously discussed in Chapter

3, LC-MS profiling allows the chromatographic separation of sample analyte prior

to MS analysis. Electrospray ionisation is usually used as it is a soft ionisation

technique that limits fragmentation of the parent ion. An advantage of profiling

is that it allows the potential separation of compounds based on their chemical

properties (depending on the LC column that is used) and therefore isomers or

compounds of similar molecular mass are visible (Hagel and Facchini 2008). This

greatly improves the potential for metabolite annotation over that of techniques

such as FIE-MS. LC can be used in conjunction with a high resolution mass

spectrometer such as Orbitrap analysers, that can further improve annotation

potential.

Introduction of the time dimension requires prolonged acquisition time result-

ing in the potential for analytical variation. LC-MS profiling typically takes >

15 minutes per sample leading to in substantially lower throughout than that of

fingerprinting techniques (Beckmann et al. 2008). Columns can also suffer from

retention time drift over the course of an analytical run so making peak alignment

difficult.

LC-MS isn’t truly global a metabolomic technique as there will inevitably be

some targeting of sample chemistry based on the chromatographic conditions that

are used for analysis. These conditions will be dependent on the type of biological
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matrix being analysed and the compound types that are of interest. C18 reverse-

phase columns, where more polar compounds elute first, are commonly used

in the analysis of plant matrices due to their ability to separate phenolics and

flavonoids that are highly abundant (De Vos et al. 2007). Also commonly applied

is hydrophilic interaction liquid chromatography (HILIC) that better resolves

compounds that are poorly retained using reverse phase columns. These are

more suitable for separating amino acids and carbohydrate compounds within

plant matrices (Tolstikov and Fiehn 2002).

Due to the potential for analytical conditions to change over the course of

a sample batch, the use of QC measures are essential. These include the use of

internal standards, test mixtures as well as the most commonly used QC samples.

A QC sample consists of an aliquot of all biological samples that are to be anal-

ysed. It is therefore an aggregation of all the present biological variance. This QC

sample is injected multiple times at the start of a run in order to condition the

column, then injected at regular intervals throughout the analytical run. Samples

are best randomised in blocks based on the class structure, ensuring that each

class is equally represented in each block. QC injections can then flank each of

these randomised blocks during the run (Dunn et al. 2012).

PCA can be used to validate the stability of the QC injections over the course

of the analytical run. Such methods can also be used to ensure the analytical

reproducibility of the individual acquired LC-MS features. This is based on the

assumption that highly variable LC-MS features in the QC sample across an an-

alytical run, are variable are not analytically reproducible and therefore should

be excluded from the analysis. Thresholding of the coefficient of variation of the

individual features across the QC injections allows these highly variable features

to be removed prior subsequent statistical analyses. An upper limit of the coef-

ficient of variation of 30% can be used as a suitable threshold, however lowering

this will improve the reliability of the acquired features (Want et al. 2010).

Signal processing is required to align and extract m/z features from the LC-

MS profiles so that statistical analyses can be applied to identify differences be-
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tween the biological classes. There are numerous software packages that can be

used for this including MZMine, MetAlign and XCMS. Most commonly used is

XCMS that has both for which there is an R package and a cloud based interface

(Smith et al. 2006; Tautenhahn et al. 2012). It includes numerous algorithms for

peak detection, retention time correction, grouping of samples based on biological

origin and peak infilling. Extracted feature are a combination of m/z regions of

interest (ROI) and unique retention times.

As mentioned in Chapter 3 the data pre-treatment can affect the results of

classification and feature selection techniques (Gromski et al. 2015b). Appro-

priate data pre-treatments will be dependent on both the statistical analyses to

be applied and specific requirements of the experiment. Partial least squares

discriminant analysis is the most commonly applied multivariate techniques for

identifying biomarkers within metabolomics data sets (Gromski et al. 2015a).

Metabolite annotation strategies are similar to those as for FIE-MS and are

improved by the use of high resolution mass analysers. The added retention time

information also allows inference of the chemical properties of the compound

in question, depending on the chromatographic conditions used. Additionally

isotopic and adduct relationships will be restricted to the retention time of the

parent ion. Metabolite databases such as MZedDB and Metlin can be used for

putative ionisation product searches to identify candidate metabolite annotations

and LC-MS/MSn can be used to gain additional structural information.

5.1.2 Metabolomic analyses of plant pathogen interactions

There are numerous examples of metabolomic techniques being applied to investi-

gate plant pathogen interactions. These include pathogens from across kingdoms

with bacteria, fungi and viruses. These investigations have utilised a range of

metabolomic techniques from LC and GC-MS profiling as well as MS and NMR

fingerprinting (Allwood, Ellis, and Goodacre 2008).

A number of investigations have applied metabolomic techniques to investigate

the interactions of M. oryzae using a number of hosts. Parker et al. (2009) found
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similar metabolomic responses of rice, barley and B. distachyon between 1 and 5

days of infection. Allwood et al. (2006) applied FT-IR and identified phosoplipids

as key discriminatory non-polar metabolites. Jones et al. (2011) applied NMR

fingerprinting, LC and GC-MS profiling to compare compatible and incompatible

interactions of rice and M. oryzae, including a number of pre-symptomatic time

points. No significant differences were found in the responses prior to 24 hpi.

A number of amino acids including alanine were found to be diverging as the

responses diverged.

5.1.3 Whole transcriptome sequencing analyses using RNAseq

transcriptomics

Transcriptome profiling has been revolutionised in recent years by the application

of NGS for whole transcriptome sequencing using RNA-Seq. Transcriptomics has

previously been reliant on hybridisation and tag-based techniques, although each

has it’s limitations.

Hybridisation based micro-arrays using fluorescently labelled cDNA are rel-

atively inexpensive. However, they are reliant on prior sequence knowledge of

the target organism and does not ensure total coverage of the transcriptome.

Also this technique suffers from a low dynamic range due to a high background

through cross-hybridisation and signal saturation. This can make it difficult to

compare profiles between experiments and can require complex normalisation.

Tag based techniques were developed to overcome these issues however they are

expensive, many short reads cannot be mapped uniquely to the reference genomes

and isoforms are indistinguishable (Morozova, Hirst, and Marra 2009).

RNA-Seq can use either total or fractionated populations of RNA that are

fragmented and then converted to a library of cDNA. Adaptors are ligated to these

fragments and they are then sequenced with or without amplification using NGS.

Common sequencing technologies include Illumina HiSeq, Applied Biosystems

SOLiD and Roche 454 Life Science. Sequence reads are typically 30-400 bp,

depending on the sequencing technology that is used. Reads can be sequenced
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from one end or both ends to give single or paired end reads respectively (Wang,

Gerstein, and Snyder 2009).

Unlike DNA sequencing, transcriptome coverage from an RNA-Seq experi-

ment is difficult to estimate due to differing levels of transcription within cells,

depending on their state. Sample multiplexing, where different adapters are lig-

ated to the cDNA fragments depending on the sample of origin, allows multiple

samples to be run simultaneously that reduces cost. This however will also re-

duce the sequencing depth per sample (Trapnell et al. 2012). Adequate coverage

is dependent on the intended use of the data and is a compromise with cost.

Experiments intended to identify rare genes or isoforms will need considerably

more depth than those aimed at expression profiling of common genes, where the

sequencing of more replicates will be of value.

After sequencing, QC routines can be applied to remove poor quality reads or

trim reads to remove sequenced adapters. The reads can then either be aligned to

a reference genome, if one is available for the target organism, or de novo assembly

can be used to assemble the transcriptome. Tophat and Cufflinks are commonly

used open source software for reference genome alignment and transcriptome

assembly (Kim et al. 2013; Trapnell et al. 2013). Trinity is commonly used for

de novo assembly (Haas et al. 2013). The ability to assemble the transcriptome

without a reference genome is one of the major attractions to using this technique.

Considerable transcriptomic data can be obtained without first having to invest

in producing the necessary genomic resources. With later development of these

resources, previously de novo assembled RNA-Seq data sets can be revisited to

potentially yield more information (Wang, Gerstein, and Snyder 2009).

Not only is RNA-Seq able to generate transcript expression levels but it also

reveals complex information about the structure of the transcriptome. Exons can

be mapped with single base precision, allowing the connectivity between exons to

be investigated with regards to post transcriptional modifications such as splice

isoforms. It is also able to reveal the presence of novel genes (Martin et al. 2013).

Due to its lack of background noise and it’s sensitivity, RNA-Seq has a large

94



dynamic range. Transcriptional levels can be measured using the total number

of reads that fall within a reading frame. As longer reading frames will produce

a greater number fragments and therefore reads per mRNA, the total number

of reads of a reading frame need to be normalised by it’s length. Finally this is

then normalised by the total number of mapped reads across the entire genome

to account for variability in library size. The resulting measure of expression is

the reads per kilobase per million mapped reads (RPKM) value (Trapnell et al.

2012). These values have been shown to correlate highly with expression values

obtained from qPCR (Nagalakshmi et al. 2008).

Other methods have been developed for normalisation that include that of the

DESeq Bioconductor package and the trimmed mean of M-values of the edgeR

Bioconductor package. The method of the DESeq package assumes that most

genes are not differentially expressed between samples. Similar genes will there-

fore have read ratios close to 1. The median of this ratio for the lane provides a

correction factor that can be applied to all the read counts. The trimmed mean

of M-values is based on a similar assumption, using a weighted mean of log ratios

to estimate the correction factor (Dillies et al. 2013).

Differential expression analyses allow the identification of genes that are show-

ing statistically different expression as a result of an experimental condition.

There have been a number of computational methods for differential expression

analyses developed for RNA-Seq. The Cuffdiff software is able to test for dif-

ferential expression at individual transcript-level resolution and can control for

variability within replicate libraries (Trapnell et al. 2013). As many reads within

an RNA-Seq experiment can map to multiple regions of the genome, Cuffdiff is

able to estimate this over-dispersion and account for greater variability across

replicates than would be estimated by a simple Poisson distribution. Actual ex-

pression levels can then be estimated using a beta negative binomial distribution

which can then be used to test for significance between experimental conditions

(Rapaport et al. 2013).
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5.1.4 Transcriptomic analyses of plant pathogen interac-

tions

Similar to the application of metabolomics, there are numerous instances of the

application of both microarray and RNA-Seq based transcriptomics to plant-

pathogen interactions. These investigations have targeted transcriptomes of the

pathogen or host plant. Soanes et al. (2012) used RNA-Seq to investigate the

transcriptional changes occurring in M. oryzae during appresorium development.

Genes relating to quinate uptake and utilization were found to be up-regulated as

well as large scale gene expression changes relating to lipid metabolism, autophagy

and melanin biosynthesis.

Bagnaresi et al. (2012) compared the transcriptional responses of resistant

and susceptible rice genotypes using RNA-Seq at 24 hpi. Genes for diterpene

phytoalexin synthesis, chitinases and flavin monooxygenases were found to be

highly up-regulated in the resistant interaction. Similar gene onotology (GO)

terms were found in common between the response types, however the gene sets

contributing to these were found to be dissimilar.

The sensitivity and high dynamic range of RNA-Seq allows effective simulta-

neous profiling of both plant and fungal pathogen especially during early phases

when host tissue considerably outweighs pathogen tissue. Kawahara et al. (2012)

simultaneously analysed transcriptional changes in both rice and M. oryzae in

both compatible and incompatible interactions at 24 hpi. A conidial suspension

was used a control with which to compare with infected leaf tissue. Large scale

up-regulation of genes encoding secreted proteins were observed in M. oryzae.

Greater transcriptional changes in rice were found in the incompatible interac-

tion, which included phytoalexin biosynthetic genes.

5.2 Aims

The aim of this chapter is to assess the extent of metabolomic and transcriptomic

changes that occur during the pre-symptomatic phases of the B. distachyon and
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M. oryzae interaction; in both the compatible and incompatible situations of the

ecotypes Bd21 and ABR6 respectively. FIE-HRMS fingerprinting and LC-HRMS

profiling based metabolomic techniques along with RNA-Seq based transcrip-

tomics will be utilised. It will mainly be concerned with the extent of discrimina-

tion between treatment and control groups across a range of time points and the

relationship of these changes to the main microscopic events that occur during

early colonisation. It is meant as a prelude to Chapter 6, which will be concerned

with the integration of the multiple levels of omics data analysed here.

This provides us with the following aims with which to focus this chapter:

• Determine the extent of metabolome and transcriptome changes occurring

during the pre-symptomatic phases of M. oryzae colonisation of B. dis-

tachyon.

• Identify if metabolomic and transcriptome changes are synchronous with

key microscopic events during the B. distachyon and M. oryzae interaction.

5.3 Materials and Methods

5.3.1 Inoculation and harvesting of plant tissue

The experimental set-up was as detailed in Section 2.5 with inoculation of the

compatible and incompatible ecotypes Bd21 and ABR6 with M. oryzae. Plants

were inoculated as described in Section 2.3 with the control and infected plants for

each time point placed within the same plastic propagators. The plants remained

under high humidity conditions throughout the experiment and were removed 1

hour prior to sampling. Metabolomic samples were harvested as described in

Section 2.4 with two B. distachyon leaves placed in each eppendorf tube. For

transcriptomic samples, 10 similarly sampled B. distachyon leaves were placed in

each eppendorf tube.
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5.3.2 Metabolite and RNA extraction

A global extraction protocol was used for the extraction of the metabolomic sam-

ples as described in Section 2.6. 1.4 ml of extraction solvent (CHCl3:MeOH:H2O;

1:2.5:1; v:v:v) was added per sample. Samples for LC-HRMS analyses were fur-

ther prepared as described in Section 2.6. RNA was extracted from samples for

RNA-Seq analysis as described in Section 2.11

5.3.3 Mass spectral metabolomic analyses

FIE-HRMS analyses were conducted as described in Section 2.7. All 864 sam-

ples were distributed across 12 batches, each evenly randomised to ensure equal

class distribution across the batches. For LC-HRMS analyses, 10 samples were

randomly selected from each class. These samples were then pooled in pairs to

give 5 replicates per class for each inoculation, resulting in 15 replicates for each

treatment class. LC-HRMS analysis was conducted as described in Section 2.8

with each ecotype run separately across 3 batches each.

5.3.4 Metabolomic data mining

Pre-treatment and initial quality assessment of FIE-HRMS data was applied as

described in Section 2.7. Random Forest classification and feature selection with

an external validation resampling strategy were used to assess class discrimination

as described in Section 4.3.3. To give overall binary comparison classification and

feature selection results, the results were averaged across the independent experi-

ment comparisons. A threshold of 1% was applied to selection frequency FPR to

identify explanatory variables. Putative annotation of explanatory features was

conducted as described in Section 2.10.1.

XCMS was used for signal processing of LC-HRMS data as described in Sec-

tion 2.8. QC sample based variable filtering (N = 12) was applied as described

in Section 2.8. Random Forest classification and feature selection resampling

were conducted as described in Section 2.9. A threshold of 1% was applied to
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selection frequency FPR to identify explanatory variables. Putative annotation

of explanatory features was conducted as described in Section 2.10.2.

5.3.5 RNA-Seq and transcriptomic data mining

Library preparation and RNA-Seq was performed on RNA extracts as described in

Section 2.11. QC, read alignment, transcriptome assembly, differential expression

analysis and functional enrichment analysis of RNA-Seq reads was performed as

described in Section 2.12.

5.4 Results and discussion

5.4.1 Omics-level differences between the B. distachyon

ecotypes ABR6 and Bd21

Considerable geographic differences invariably increase the extent of genetic di-

versity within a species, especially over the ecological range of B. distachyon. The

ecotypes used to study this interaction with M.oryzae are no exception. ABR6,

whose origin is in Spain, shows substantial differences in some very important

phenotypic traits such as growth habit and vernalisation requirements. Under-

lying these phenotypic differences will be considerable genotypic differences that

are likely to affect a large proportions of the B. distachyon genome (Gordon et al.

2014).

As can be seen in Figure 5.1, substantial compositional differences were found

in both the metabolomes and transcriptomes of ABR6 and Bd21 that are unre-

lated to the colonisation of M. oryzae. This observation is of no surprise consid-

ering the distances between the geographical origin of these ecotypes, with ABR6

originating in Spain and Bd21 in Iraq (Routledge et al. 2004; Mur et al. 2011).

An important point to make about the presence of these differences in both

the metabolomes and transcriptomes of these ecotypes is that this is likely to

confound any direct comparisons of their responses to M. oryzae. With this in
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mind any comparisons that will be made between the compatible and incompat-

ible interactions here will be qualitative and observational in nature to avoid the

implications of this confounding factor.

5.4.2 Metabolomic changes during early phases of the B.

distachyon and M. oryzae interaction

Both FIE-HRMS fingerprinting and LC-HRMS profiling were used to analyse

metabolomic changes from 0-60 hpi. The following sections will assess the extent

of discrimination between infected and control treatments at each time point as

well as discuss the relationships between annotations of identified explanatory

m/z features.

5.4.2.1 Discrimination between control and infected tissue during pre-

symptomatic phases

Random Forest classification identified explanatory discrimination for M. oryzae

infection at a number of time points in both the FIE-HRMS and LC-HRMS

analyses (Figure 5.2). There was little discrimination found at 0 hpi in all analyses

due to the appropriate control of the experiments as discussed in Chapter 4.

Similar overall trends in random forest model margins were found in both the

FIE-HRMS and LC-HRMS analyses; however, the model margins for the LC-

HRMS were substantially more explanatory than the FIE-HRMS margins. There

was little explanatory discrimination in positive mode of the FIE-HRMS analyses.

The extent of discrimination was dynamic over the time course of infection in

both ecotypes. There was not a gradual linear progression of increasing discrimi-

nation as the time course progressed. Instead, there was a drop in discrimination

at either 24 or 36 hpi in both ecotypes and in both metabolomic analyses; with

discrimination increasing at time points subsequent to this (Figure 5.2). These

time points represent the points at which primary and secondary cell invasion are

occurring within the infection cycle. This reduction in discrimination could re-

flect a transitional phase between host recognition and the initiation of defences.
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Figure 5.1: Metabolome and transcriptome differences between the B.
distachyon ecotypes ABR6 and Bd21. a) PC-LDA of FIE-HRMS data
for a comparison between ABR6 and Bd21 across all infection time points and
treatments with 1560 variables. Tw value > 2 is considered explanatory (Enot
et al. 2008). b) PCA plot of Cufflinks assembled transcriptome using 28872
variables. c) Comparison of example C18 LC-HRMS QC chromatograms between
ABR6 and Bd21.
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However, these results agree with the relative extent of discrimination found by

Parker et al. (2009) between infected and healthy treatments of a compatible

interaction in the ecotype ABR1, with little relative discrimination 1 day after

inoculation and increasing discrimination up to 5 days after inoculation.

Interestingly, 12 hpi showed high explanatory discrimination in both ecotypes,

especially in negative ion mode of the LC-HRMS analyses. This high discrimina-

tion is likely to have several sources. Within the host, initial recognition of the

presence of the M. oryzae spores will be occurring by the detection of PAMPs

along with the initiation of innate host defences. The M. oryzae spores will also

have completed spore germination and would be undergoing appressorium devel-

opment. This is known to cause major metabolic shifts within the spores. It is

unclear as to which process would contribute most to this metabolic discrimina-

tion but it is likely that both processes are contributing to some degree.

The controlling of the experiment with the use of an inoculum containing in-

viable spores means that, if the discrimination identified at 12 hpi is caused by

host response to the presence of the M. oryzae spores, these responses would have

to be elicited by molecules secreted by the M. oryzae spores post germination.

These responses could not be as a result of just the presence of the spores on the

leaf surface as these have been controlled for. They would have to be as a result

of secretions from the spores, post germination.

As mentioned in Section 1.3, M. oryzae spores secrete an adhesive that ini-

tially allows the spores to anchor themselves to the highly hydrophobic leaf sur-

face. There is significant variability in the composition of adhesives used for

attachment by fungal pathogens; with no evidence of a common adhesive com-

pound in phytopathogenic fungal species (Tucker and Talbot 2001). M. oryzae

spores also secrete cuticle and cell wall degrading enzymes during appressorium

development; including cutinases cellulases and xylanases. These act to weaken

the cell wall of the primary host cell prior to penetration (Howard and Valent

1996). The recognition of secretions such as these, that are likely to be specialized

and particular to few fungal phytopathogens, could represent a more specialized
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aspect of the PAMP triggered responses beyond that of the recognition of generic

fungal constituents.

The most explanatory time point was found to be 60 hpi in both metabolomic

analyses and in both ecotypes. This is to be expected as it is the point at which

both the compatible and incompatible interactions are most developed in this time

course. In the compatible interaction of Bd21, it is the time point at which M.

oryzae would have invaded the greatest area of cells and therefore have the highest

number of plant cells directly responding to it. In the incompatible interaction of

ABR6, the host defences such as the hypersensitive response would be well under

way which are known to have major metabolic consequences (López-Gresa et al.

2010). Systemic signals would also have had more time than at previous time

points to reach the greatest number of cells and therefore have an additive affect

on the host response to the M. oryzae infection.

5.4.2.2 Explanatory m/z features identified during pre-symptomatic

infection phases

A total of 81 and 68 explanatory m/z were identified from both positive and

negative mode FIE-HRMS analyses for comparisons between control and infected

tissue across all time points in the incompatible interaction of ABR6 and the

compatible interaction of Bd21 respectively. In LC-HRMS analyses, 176 and 139

were identified respectively.

Of the 116 unique explanatory features identified across the infection time

course of both ecotypes in the FIE-HRMS analyses, 60% of these were assigned

putative molecular formulas or metabolite annotations. In the LC-HRMS anal-

yses, of the 275 unique explanatory features identified, 35% were assigned anno-

tations. These are shown in Tables 5.1 and 5.2. Full tables of the explanatory

features can be found in Appendix E. FIE-HRMS analyses identified a number

of amino acids, dipeptides and fatty acids as well as mono and di-saccharides

as explanatory features. The LC-HRMS analyses also identified fatty acids and

dipeptides but also a number of purines, pyrimidines and nucleosides.
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(a) FIE-HRMS

Negative Mode Positive Mode

0 12 24 36 48 60 0 12 24 36 48 60
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(b) LC-HRMS
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Figure 5.2: Random Forest margins for control and infected tissue com-
parisons between 0 and 60 hpi for both ABR6 and Bd21. Margins > 0.2
were considered explanatory.
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In the FIE-HRMS analyses of ABR6, the very early phases (12 and 24 hpi)

had the most explanatory features (Figure 5.3a). In the compatible interaction of

Bd21, the later phases (48 and 60 hpi) have the most explanatory features in both

the metabolomic analyses (Figures 5.3b & 5.4b). Few of the explanatory features

were shared between the time points, with 60 hpi usually having the greatest

proportion of unique features across all the analyses except for the LC-HRMS

analyses in the incompatible interaction of ABR6 where 12 hpi had the greatest

proportion of unique features (Figure 5.4b).

K means cluster analyses across both the interactions and metabolomic tech-

niques revealed an even split between up regulated and down regulated clusters

(Figures 5.5b, 5.6b & 5.7b). Except for the LC-HRMS analyses of the compatible

Bd21 interaction where up-regulated clusters were dominant (Figure 5.8b).

Both metabolomic analyses identified large clusters of m/z that showed a

decrease across all the time points from 12 hpi (Clusters 6, 6 and 2 in Figures 5.5a,

5.6a and 5.8a respectively). Other clusters (Clusters 1 and 2 in Figures 5.5a and

5.6a respectively) also showed a down regulation across all time points. Putative

annotations within these clusters include mono and di-saccharides, amino acids

as well as a number dipeptides, purines, pyrimidines and nucleosides (Tables 5.1

and 5.2). A reduction in these metabolites such as these is suggestive of their

catabolism for energy production (further discussion in Section 6.4.1).

A reduction in the levels of sucrose in infected tissue compared to control

tissue across all the time points in the compatible interaction of Bd21 does not

agree with the trends found by Parker et al. (2009). Increases in sucrose were

instead found at 48 and 72 hpi. This could be as a result the different control

treatments that were used for the experiments with Parker et al. (2009) using

a gelatin control treatment where as here a non-pathogenic inoculum has been

used (see Section 4.4.1)

There were clusters identified in both ecotypes and metabolomic analyses that

showed a likely influence of circadian rhythms with respect to the the responses

to M. oryzae infection (Clusters 1 & 2 in Figure 5.5a; 1,2 & 3 in Figure 5.6a; 1
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& 2 in 5.7a; 4 in 5.8a). The 12, 36 and 60 hpi time points were sampled 2 hours

before the end of the light cycle whereas the 24 and 48 hpi time points were

sampled 2 hours after the beginning of the light cycle. The trends explanatory

m/z within these clusters all share a common ‘zig-zag’ feature, where the time

points at each and of the light cycle share similar trends while those at opposite

ends differ.

Primary metabolism in plants is heavily governed by the daily oscillation

of light and temperature. Circadian regulation allow plants to pre-emptively

regulate responses to these daily cycles. For instance, carbon assimilation will

peak at the end of the light cycle as C3 photosynthesis is unable to occur under

darkness. This has important implications for energy availability at each end of

the light cycle with carbon starvation and starch degradation occurring during

and shortly after the dark period. Amino acids have also been found to peak at

the end of the light cycle (Farré and Weise 2012).

The sensitivity of explanatory features in their response to not only M. oryzae

but also to light cycle is of no surprise however it raises important points about

the underlying biological system. Plant defence responses are highly dependent

on the availability cellular energy resources. Cells with insufficient energy re-

sources will not be able to mount defence responses such as oxidative bursts and

the hypersensitive response. The coincidence of important events within the M.

oryzae infection process with differing points within the light cycle will likely

cause differences in the metabolic response that is achieved. Not only would this

have implications for host defence responses, but also for the nutrient acquisition

by M. oryzae. If metabolites such as sucrose or amino acids that are important

carbon and nitrogen sources for the fungus are only in abundance at the end of

the light cycle and if primary host cell colonisation (a point of nutrient starvation)

occurs at the start of the light cycle, the effector response of M. oryzae could be

affected.

In the LC-HRMS analyses of the incompatible ABR6 interaction, the largest

cluster (Cluster 3 in Figure 5.7a) shows up-regulation at 12 hpi. With the high
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discrimination identified in this time point from the classification results discussed

in Section 5.4.2.1, many explanatory features would be expected. For many m/z

to be clustering coherently suggests the presence of a highly co-ordinated response

within either the plant or pathogen. This cluster contains many of the putatively

annotated unsaturated fatty acids (Table 5.2). As discussed previously in Section

4.4.1.3, unsaturated fatty acids are known to be important signalling molecules

in plant defence responses. The presence of a cluster in Bd21 (Cluster 5 in Figure

5.8a) containing similar fatty acids (Table 5.2) suggests that these metabolic

changes could be as a result of defence signalling due to PAMP triggered host

responses. Similar clusters are also present in the FIE-HRMS analyses (Clusters

4 and 5 in Figures 5.5a and 5.6a).

Alternatively, these fatty acid changes could be as a result of lipid catabolism

for energy production within the pathogen spores during appresorium develop-

ment. Fatty acid β-oxidation to produce acetyl-CoA from triglyceride degrada-

tion is essential for appressorium development in M. oryzae. This is used by the

spores to fuel melanin and fungal cell wall biosynthesis synthesis as part of ap-

pressorium strengthening prior to turgor pressure generation (Wang et al. 2007).

The LC-HRMS analyses in the incompatible interaction of ABR6 identified

a small cluster of m/z that show a sharp sudden increase in the infected tissue

compared to the control tissue at 36 hpi. Also in the LC-HRMS analyses of the

compatible interaction of Bd21 there is a similar cluster with a sharp increase at

24 hpi. The function of these clusters is unclear as the only putative annotations

available is Hydroperoxy-octadecandienoate in Bd21.
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(a) ABR6
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Figure 5.3: Intersection plot of FIE-HRMS explanatory features iden-
tified by Random Forest in comparisons between control and infected
tissue at each time point. A selection frequency FPR of 1% was used for
explanatory m/z feature thresholding.
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(a) ABR6
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(b) Bd21
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Figure 5.4: Intersection plot of LC-HRMS explanatory m/z identified
by Random Forest in comparisons between control and infected tissue
at each time point. A selection frequency FPR of 1% was used for explanatory
m/z feature thresholding.
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(a) K-means Clusters
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Figure 5.5: K -means clustering of ABR6 explanatory m/z identified us-
ing FIE-HRMS. a) Log2 fold changes were normalised by the feature sum of
squares. The red line denotes the cluster means. b) Maximum distance hierar-
chical clustering used to associate the cluster means identified in a).
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(a) K-means Clusters
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Figure 5.6: K -means clustering of Bd21 explanatory m/z identified us-
ing FIE-HRMS.a) Log2 fold changes were normalised by the feature sum of
squares. The red line denotes the cluster means. b) Maximum distance hierar-
chical clustering used to associate the cluster means identified in a).
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(a) K-means Clusters
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Figure 5.7: K -means clustering of ABR6 explanatory m/z identified
using LC-HRMS.a) Log2 fold changes were normalised by the feature sum of
squares. The red line denotes the cluster means. b) Maximum distance hierar-
chical clustering used to associate the cluster means identified in a).
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(a) K-means Clusters
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Figure 5.8: K -means clustering of Bd21 explanatory m/z identified us-
ing LC-HRMS.a) Log2 fold changes were normalised by the feature sum of
squares. The red line denotes the cluster means. b) Maximum distance hierar-
chical clustering used to associate the cluster means identified in a).
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5.4.3 Transcriptomic changes during early phases of the

B. distachyon and M. oryzae interaction

RNA-Seq transcriptomic analyses were used to analyse the transcriptomic changes

at 12, 24 and 48 hpi using samples taken from the same inoculations as for the

metabolomic analyses discussed in Section 5.4.2.

Due to cost limitations, not all of the six time points were able to be analysed.

Therefore the three time points (12, 24 and 48 hpi) were chosen based on the

results on the metabolomic analyses as well as their coverage of key time points.

The time points 24 and 48 hpi are key microscopic time points where primary

and secondary host cell invasion is occurring in the compatible interaction. By 48

hpi in the incompatible interaction, the initiation of host defences is well under

way. 12 hpi was selected due to the extent of discrimination identified in the

metabolomics analyses. An assessment of the underlying host transcriptome was

seen as essential in understanding the source of this discrimination at such an

early phase of the infection process.

The transcriptomic results presented here are that of only the host transcrip-

tome. Due to the extent of multiplexing used for the RNA-Seq analysis, insuffi-

cient coverage was obtained in order to provide enough reads of M. oryzae origin

for a transcriptome assembly. No more than 1% of the reads obtained for any of

the infected samples in both interaction types could be aligned to the M. oryzae

genome.

5.4.3.1 The B.distachyon interaction transcriptome during pre-symptomatic

phases

A total of 33608 genes were detected across all the time points in both ecotypes.

Of these 27549 and 27750 were expressed in ABR6 and Bd21 respectively. Also

there was a total of 885 novel genes without previous annotations identified by

Tophat.

5547 and 5798 differentially expressed gene (DEG)s were found in ABR6 and

Bd21 respectively. Full lists of DEGs can be found in Appendix E. Similar trends
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were also found between the ecotypes in terms of the numbers of DEGs that were

found in comparisons between infected and control tissue across the three time

points (Figure 5.9). Surprisingly, 12 hpi had substantially more DEGs compared

to the other time points in both ecotypes and had the highest proportion of

DEGs only present at that time point. 24 hpi had the lowest proportion of DEGs

particular to that time point. Most of the genes that were deferentially expressed

at 24 hpi are also deferentially expressed at either all three time points or at 12

hpi.

These results generally concur with the extent of discrimination that was

found in the metabolomic analyses in that 12 hpi was highly explanatory, 24 hpi

was showing relatively little discrimination and 48 hpi was somewhere in between.

The extent of discrimination found in the transcriptomes of both the ecotypes at

12 hpi lends support to the idea that the origin metabolomic discrimination found

at the same time point is as a result of PAMP triggered pathogen recognition

responses within the host plant. This will further be discussed in Section 5.4.3.2.

5.4.3.2 Gene co-expression clusters and functional enrichment iden-

tified during pre-symptomatic infection phases

K means clustering was used to associate identified DEGs in co-expression clus-

ters (Figures 5.10 & 5.11). In order to assess cluster function, enrichment analyses

were used on Mapman bin ontology assignments to identify over-represented gene

function within the co-expression clusters (Figures 5.12 & 5.13). Mapman and

the Mapman bin ontology are discussed in Section 6.1.1. The clusters identified

in ABR6 show an even split between up and down regulated clusters except for

Cluster 6 that showed both up and down regulation across the time course (Figure

5.10b). Bd21 also showed an even split between up and down regulated cluster

with Cluster 2 showing both up and down regulation over the time course (Figure

5.11b). The largest cluster in the incompatible interaction of ABR6 containing

878 DEGs (Cluster 4 in Figure 5.10a), showed up-regulation in infected compared

to control tissue at all three time points. The largest cluster in the compatible
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Figure 5.9: Intersection plot of RNAseq DEGs for in comparisons be-
tween control and infected tissue at each time point. A significance
threshold of p < 0.05 was used for DEG identification.
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interaction of Bd21 containing 825 DEGs (Cluster 1 in Figure 5.11a), showed

up-regulation at 12 hpi with no difference in expression in infected compared to

control tissue at the later time points.

There were substantially more over-represented Mapman bins found in the

incompatible interaction of ABR6 compared to the compatible interaction of Bd21

(Figures 5.12 and 5.13). Also there were no over-represented bins found for

Clusters 4 and 12 in Bd21. There was a high degree of similarity in the bins that

were identified between the ecotypes. 99 and 57 Mapman bins were found to be

over-represented in ABR6 and Bd21 respectively. Of those found in Bd21, 75%

were also found in ABR6.

Further to the high numbers of DEGs found at 12 hpi, a number of clusters

were found in both ecotypes that showed both up and down regulated differential

responses at this time point (Figures 5.10 and 5.11). A notable functional re-

sponse found within these clusters was an up regulation of photosynthesis related

genes in both ecotypes at this time point (Clusters 6 and 10 in Figures 5.10a

and 5.11a respectively). This is likely as a result of PAMP triggered immune

responses. Photosynthetic productivity is an important part of the plants ability

to effectively activate an oxidative burst (Bolton 2009). These changes in the

expression of photosystem genes are likely to be in preparation of the production

of an oxidative burst as part the defence response (discussed further in Section

6.4.3.1).

Phenylpropanoid metabolism genes were also found to be over-represented in

clusters that were down regulated at 12 hpi in both ecotypes (Clusters 11 and 3

in Figures 5.10a and 5.11a respectively). There is little difference between expres-

sion in infected and control tissue at the subsequent time points. Interestingly,

the increases in the phenylpropanoid metabolites found in the compatible inter-

actions by Parker et al. (2009) were found at much later time points (> 24hpi).

Phenylpropanoid metabolism is usually associated with the production of lignin

monomers and phytoalexins during plant defence (Dixon et al. 2002). With this

differential expression occurring very early in the infection time course, it is likely
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that these changes are as a result of pathogen recognition responses. The reason

for their down regulation however is unclear.

Based on the over-represented bins present in Cluster 12 of ABR6 (Fig-

ure 5.10a), there is evidence of an oxidative burst are under way within the

B.distachyon leaf tissue by 48 hpi. This cluster is showing an increase of ex-

pression in infected tissue at 48 hpi and the over-representation of peroxidase

encoding genes. There is also the presence of thioredoxin genes that are likely

protectant measures against oxidative stress. ROS production encompassing a

large number of cells around infection sites has previously been detected by 48

hpi in the B. distachyon ecotype ABR5 (Parker et al. 2009).

Genes relating to the synthesis of tryptophan were found to be over-represented

in both ecotypes; although the trends of the clusters in which they were found

differ (Clusters 12 and 2 in Figures 5.10a and 5.11a respectively). In the incom-

patible interaction of ABR6 Cluster 12 is up-regulated at 48 hpi whereas in the

compatible interaction of Bd21 Cluster 2 is down regulated at 12 hpi. Tryptophan

synthesis is essential for auxin production and auxins are key signalling molecules

in plant defence alongside jasmonates and salicylic acid, although it shows vari-

ation in response to different pathogens (Kazan and Manners 2009). Auxins are

antagonistic to salicylic acid signalling responses but share many commonalities

with jasmonate responses. The cluster in Bd21 also contains salicylic acid syn-

thesis related genes which is closely associated with chorismate production, the

genes of which are also found in this cluster. However in ABR6, the purpose of

this expression module is unclear and does not look to be associated with salicylic

acid production. Interestingly, in both ecotypes, over-representation was found

for genes involved in jasmonic acid synthesis (Clusters 9 and 11 in Figures5.10a

and Cluster 7 in Figure 5.11a). These clusters all show a strong down regulation

at 12 hpi with little change at subsequent time points similar to the trends found

for Cluster 2 in Bd21 in which salicylic acid synthesis over-representation was

found. Doehlemann et al. (2008) found an up-regulation of jasmonic acid related

genes during the pathogen penetration phases of the maize and U. maydis in-
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teraction equivalent to 24 hpi in this interaction however these trends were not

found here.

In ABR6 it is likely that this up-regulation of genes involved in the tryp-

tophan synthetic pathway is linked to the initiation of host defence signalling

in the hypersensitive response at 48 hpi. In Bd21 it’s role may be more com-

plex and unclear. Their down-regulation at 12 hpi may be as part of the initial

host recognition response although this seems counter intuitive. A more obvious

explanation would be that this is part of pathogen suppression of host defence

responses. However, as it is happening so early in the infection time course, it

seems unlikely that the M. oryzae spores would be developed enough to begin to

secrete effectors that could elicit such a response.s

A potential example for subversion of host responses could be the presence of

over-represented ubiquitin, and specifically the E3 ligases, genes in both ecotypes.

However, the trends of the clusters in which they are present differ over the infec-

tion time course. In the incompatible interaction of ABR6 Cluster 10 shows up

regulation at all three of the time points. In the compatible interaction of Bd21

Cluster 1 shows up regulation at 12 hpi, with little differential expression at subse-

quent time points. A diverse range of plant pathogens across kingdoms (bacteria,

fungi and oomycetes) have been found to target ubiquitination processes in or-

der to subvert host defences (Pritchard and Birch 2011). Ubiquitination is a

key process in the initiation and execution of host defence responses. It is key

in the regulation of the oxidative burst, hormone signalling and gene induction.

The M. oryzae effector AvrPiz-t has been shown to target the RING E3 Ubiq-

uitin ligase APIP6 rice. This effector was shown to be trans-located during the

biotrophic phases of the infection process by 30 hpi. The initial up-regulation

of these ubiquitin genes would occur as part of the initial pathogen recognition

responses. The return of their expression levels to that of the control tissue in

Bd21 would seem to agree with these observations. Disruption of ubiquitin E3

transcription occurs soon after the initiation of the host pathogen haustoral in-

terface (24 hpi) in Bd21. Subsequently, the up-regulation of these genes ceases
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in Bd21, while in ABR6 their up-regulation is maintained. The B. distachyon

ortholog of APIP6 (Bradi2g35180) was not found to be deferentially expressed

in these experiments, which gives the potential for other effector targets to be

present in this interaction.

Cluster 1 in ABR6 contains genes showing up-regulation at 24 hpi. Significant

bins within this cluster suggest that substantial chromatin restructuring could

be occurring within the ABR6 cells as this cluster contains genes for histone

production. This is further discussed in Section 6.4.2.1
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(a) K-means Clusters
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Figure 5.10: K -means clustering to identify co-expression clusters of
ABR6 DEGs. a) Cluster means are plotted. Error bars are 95% confidence
intervals, estimated using the t distribution. b) Maximum distance hierarchical
clustering of cluster means identified in a). Cluster colours are retained between
the plots.
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(a) K-means Clusters
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Figure 5.11: K -means clustering to identify co-expression clusters of
Bd21 DEGs. a) Cluster means are plotted. Error bars are 95% confidence
intervals, estimated using the t distribution. b) Maximum distance hierarchical
clustering of cluster means identified in a). Cluster colours are retained between
the plots.
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Figure 5.12: Functional enrichment analysis of ABR6 co-expression clus-
ters. Clusters and cluster colours are based on those shown in 5.10. Mapman
bins were used for functional ontology assignment. Fischers exact test was used
to test for functional over-representation. An electronic version can be found in
Appendix F.
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Figure 5.13: Functional enrichment analysis of Bd21 co-expression clus-
ters. Clusters and cluster colours are based on those shown in 5.11. Mapman
bins were used for functional ontology assignment. Fischers exact test was used
to test for functional over-representation. An electronic version can be found in
Appendix F.
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5.5 Concluding remarks

These metabolomic and transcriptomic analyses have shown that infection by M.

oryzae causes significant changes during the time course analysed in both com-

patible and incompatible interactions. However, the extent of these changes were

dynamic over the course of infection and were not linear with disease progression.

Key microscopic events such as initial host cell penetration did not necessarily

confer greater transcriptional or metabolic changes. In fact, initial host colonisa-

tion phases at 24 and 36 hpi were found to have the least discrimination in the

metabolomic analyses and 24 hpi had the fewest identified DEGs. Interestingly

12 hpi was found to have substantial metabolomic and transcriptomic changes in

both interactions. It was hypothesised that these responses were associated with

PAMP triggered immune responses that would be caused by secreted compounds

and enzymes, post spore germination. This is likely to be caused by the adhesive

secretions that the spores use when attaching to the leaf surface as well as cell

wall degrading enzymes during appresorium development.

There was the potential for disruption to ubiquitination by M. oryzae in the

compatible interaction post 12 hpi. Also there was evidence for the activation

of an oxidative response in the incompatible interaction by 48 hpi with the up-

regulation of peroxidases and thioredoxins.

The overall objective of this chapter was to analyse each of the omics analyses

individually to generate initial hypotheses with some qualitative comparisons

between them. The following chapter will aim to directly integrate these data

sets in order make more objective comparisons between these analyses. This will

attempt to further inform the hypotheses generated in this chapter as well as

potentially identify new interesting aspects of these interaction responses.
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Chapter 6

Omics integration to elucidate

key pathways in the B.

distachyon and M. oryzae

interaction

6.1 Introduction

Omics analyses provide systems level measurements that can cover a wide range of

aspects of the cellular environment. One of the current challenges for investigators

in all fields of omics application is the interpretation of these large-scale data

sets with respect to the fundamental biological information that they contain.

Effective analysis and interpretation of omics data is also tightly linked with its

visualisation (Gehlenborg et al. 2010). Integrating of multiple omics data sets

provides a solution to this problem, allowing investigators to broaden the view of

the underlying biological system. However, this also creates it’s own challenges,

apart from further increasing the overall volume of available data.

The integration of omics data sets is especially important for studying dy-

namic processes such as plant-pathogen interactions. These are multi layered

processes where molecular interactions are not restricted to a single level of the
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cellular hierarchy. This includes both the subversion of host systems by fungal

pathogens for nutritional gain as well as the initiation of the complex host defence

responses.

6.1.1 Strategies for integrating omics data

Similar to the analysis and interpretation of individual omics levels, omics inte-

gration is centered upon identifying functional alterations and associations within

biological systems as a result of experimental perturbation. The crucial differ-

ence is that information from multiple omics levels is included in these in analyses.

Strategies for the integration of omics data sets can be separated into data and

knowledge driven approaches. The key distinction between these approaches is

the premise on which the biological network will be constructed from the omics

data. Data driven analyses attempt to identify all associations that may present

in the data and use these to inform biological interpretation. Knowledge driven

analyses use previously characterised pathways and associations and impose the

data upon these to see how they are altered by a biological process. These strate-

gies are not to be applied in isolation, with each able to inform the interpretation

of the other (Cavill et al. 2015).

Prior to integration, each omics level data set will require its own pre-treatments

to account for technical artifacts and biases that are particular to that analysis

(Joyce and Palsson 2006). For instance, LC-HRMS metabolomics data will need

substantially different processing requirements compared to RNA-Seq transcrip-

tomics (Sections 5.1.1 & 5.1.4). The data will also require standardisation if

potential cross-experiment variability is also going to be introduced. Omics data

from differing levels are measured in completely differing magnitudes of scale.

For instance, fold changes in gene expression do not necessarily have the same

biological significance to fold changes of metabolite concentrations of the same

magnitude. The relative trends with respect to the experimental perturbation

are of more interest for integrated analyses rather than their absolute magnitude.

Sum of squares normalisation of metabolite and transcript log2 fold changes has
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previously been used to integrate metabolomic and transcriptomic data (Hirai

et al. 2004).

Data driven omics integration uses the data to infer associations to represent

the edges of the underlying biological network. These strategies rely upon the

‘guilt by association’ heuristic that can identify modules of highly connected

nodes within the biological network. These are likely to have similar biological

function within the context of the experimental perturbation (Wolfe, Kohane,

and Butte 2005). Network associations can be calculated using correlations or

by using clustering algorithms such as k means clustering or self organising maps

(Gehlenborg et al. 2010). The addition of knowledge based functional ontology

based enrichment analyses allows the identification of over-represented functional

groups within the identified network modules. This can give biological context to

the identified clusters and also inform further predictions of gene or metabolite

function (Subramanian et al. 2005).

Knowledge driven omics integration analyses use previously established in-

formation collected about the biological system to derive network associations,

upon which the newly collected data can be imposed. These can include metabolic

pathways, signalling pathways or gene regulation pathways (Cavill et al. 2015).

Knowledge based approaches can be targeted by focusing upon active modules

identified using data driven approaches. This can then further enhance the in-

terpretation of the function of these modules by giving them further functional

context.

Crucial to these integration approaches is effective visualisation of the large

volumes of omics data. Associative data driven approaches have different require-

ments to the pathway based knowledge approaches. Data driven approaches can

be visualised through the use of heatmaps, dendrograms or interaction networks.

Due to the volumes of data, these visualisation techniques can quickly become

complex and overcrowded (Gehlenborg et al. 2010). Tools utilising these tech-

niques therefore need to be interactive to allow investigators to identify areas of

interest within the data.
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There are a number of tools that have been developed for the visualisation

of large and complex biological networks. Cytoscape allows interactive network

visualisation for integrating interaction networks, expression profiles and phe-

notypes. It also extensible with plug-ins that allow additional computational

analyses (Cline et al. 2007). Another tool is VANTED that is tailored more for

the visualisation and analysis of biological networks with related experimental

data (Junker, Klukas, and Schreiber 2006).

Mapman is an extensive tool that allows the visualisation of experimental data

in the context of metabolic pathways and biological processes in plants (Thimm

et al. 2004). It is based on functional modules of plant metabolism known ’bins’

that have > 200 hierarchical categories that include both genes and metabolites.

These groupings can then be used to display experimental data onto pathway

diagrams. Ontology maps of ‘bins’ are customisable. The web based Mercator

tool can be used for the functional annotation of gene sequences into Mapman

bins for previously uncharacterised organisms (Lohse et al. 2014). Due to the

plant orientated nature of Mapman ‘bin’ ontologies, they have been found to

outperform standard gene ontologies with respect to functional annotation (Klie

and Nikoloski 2012).

6.1.2 Omics integration for plant stress responses

There has be a wide application of integrated omics investigations across the

plant sciences. Many integrated analyses of plant stress have focused on abiotic

stress mainly using transcriptomic and metabolomic data. Hirai et al. (2004)

integrated FT-ICR-MS metabolomics and microarray transcriptomic data to in-

vestigate global responses to sulfur and nitrogen deficiency stress in A. thaliana.

A data driven approach was used that incorporated PCA and batch-learning

self-organising maps on relative log2 fold changes between treatment and control

classes of the gene and metabolite profiles. This allowed them to associate the

trends of genes and metabolites and suggested that general responses to these

stresses were involved. In particular genes and metabolites involved in glucosino-
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late metabolism were found to be coordinated.

There are few examples of the application of integrated omics analyses to in-

vestigate interactions between plants and their pathogens. Kumar et al. (2016)

integrated NMR metabolomics and quantitative label-free proteomics to investi-

gate the metabolic reprogramming of chickpea roots by Fusarium oxysporum by

applying both data driven and knowledge driven integration approaches. Hierar-

chical clustering was used to associate proteins with ontology enrichment analyses

applied to the identified clusters. Among these clusters, enrichment for proteins

involved in lignin biosynthesis, protein degradation, and defence responses were

found. Pathway mapping of proteins involved in lignin biosynthesis, phytoalexin

synthesis, glycolysis and the TCA cycle revealed an up-regulation in the sus-

ceptible cultivar with down-regulation in the resistant cultivar. From the NMR

metabolomics analyses, the phytoalexin luteolin was found to be decreased in the

susceptible cultivar along with alterations to a number of amino acids as well as

glucose and sucrose. Expression levels of a number of key genes were examined

which were found to support many of the metabolomic and proteomic alterations

already identified, particularly with respect to changes in carbon and nitrogen

metabolism of the resistant cultivar.

Similarly, Gunnaiah et al. (2012) integrated LC-HRMS metabolomics and

shotgun proteomic data to investigate resistance mechanisms of a QTL in Wheat

against Fusarium graminearum. Resistance related metabolites were identified

by correlating canonical discriminant vectors, used to classify the observations,

with resistance phenotypes. These were then pathway mapped along with the

proteomic profiles and identified metabolites involved in the phenylpropanoid

pathway and enzymes contributing to cell wall thickening as important for func-

tions of the QTL.

Other studies such as Doehlemann et al. (2008) and Voll (2011) have used both

metabolic and transcriptional data to investigate plant pathogen interactions.

However, they have used targeted metabolic analyses, focusing only on central

metabolites, usually using the transcriptomic analyses to inform the targeting of
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these metabolites. These are not strictly metabolomic techniques and cannot be

counted as integrative omics analyses.

6.2 Aims

The aim of this chapter is to integrate the explanatory feature trends of metabolite

and gene expression changes identified in Chapter 5. These changes can then

be related to their likely molecular sources; both of pathogen origin (system

manipulation and growth) and host defence responses (pathogen recognition and

defence initiation).

Data integration will utilise both data and knowledge driven strategies. This

gives the best chances of not only identifying changes that are directly linked to

prior knowledge but also novel associations that would be otherwise be missed.

Once data has been integrated from the two omics levels, the system differ-

ences between the compatible and incompatible responses can be compared and

contrasted. This will enable further identification of key areas of plant systems

that pathogens perturb in order to suppress host defences during early colonisa-

tion phases.

This provides us with the following aims for this chapter:

• Integrate data from metabolomic analyses to identify areas of metabolism

that are altered during the interaction.

• Integrate data from both metabolomic and transcriptomic analyses to iden-

tify associations indicative of pathogen perturbation or host defence re-

sponses.

• Identify key areas of metabolism that are altered during the interaction

from which specific hypotheses can be developed and compare these between

compatible and incompatible interactions.
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6.3 Materials and Methods

6.3.1 Metabolomic and transcriptomic data preparation

for integrative analyses

Metabolite and transcript profiles of explanatory m/z and differentially expressed

genes were identified and annotated from FIE-HRMS, LC-HRMS and RNA-Seq

of the pre-symptomatic phases of compatible and incompatible responses of the

interaction between B. distachyon with M. oryzae described in Sections 5.3.4 and

2.12. Only explanatory m/z with putative annotations of at least a molecular

formula were retained for integrative analyses with the removal of isotopic peaks.

For m/z with more than one adduct present, the m/z with the most intense signal

was retained. For metabolites that were represented in both the FIE-HRMS and

LC-HRMS explanatory features, the profile from the LC-HRMS analyses were

retained.

6.3.2 Integrative correlation network analysis and path-

way mapping of metabolomic and transcriptomic

data

For correlation network construction of data obtained from FIE-HRMS and LC-

HRMS metabolomic analyses Pearson’s correlations were calculated from the

treatment and control means at each time point (12, 24, 36, 48, 60 hpi) for

each of the ecotypes independently. Significant correlations were retained (p <

0.05) with non-significant correlations set to 0.

For correlation network construction for the integration of metabolite and

transcript profiles, metabolite trends were first standardised for integration by

taking log2 ratios between means of treatment and control classes at each time

point (12, 24, 48 hpi) for each ecotype. The ratios of each feature was then

normalised by its sum of squares to give relative fold changes. To reduce over-

crowding of correlation network visualisations, the relative fold changes of cluster
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means of gene co-expression clusters identified in Section 5.4.3 were used instead

of individual transcript profiles. This allowed the association of general clus-

ter functions identified by over-representation analysis of mapman bin ontologies

(Sections 2.12 & 5.4.3).

Relative fold change of treatment and control means at each time point (12,

24, 48 hpi) for individual metabolite and transcript profiles were used for pathway

mapping using and Mapman (version 3.5.1R2). Mapman bin ontologies were con-

structed using the Mercator tool as described in Section 2.12. Files for Mapman

analyses can be found in Appendix G.

6.4 Results and Discussion

6.4.1 Integration of metabolomic analyses

The results of the metabolomic analyses described in Chapter 5 were integrated to

both further their biological interpretation as well as ensure analytical agreement

between the data sets. The trends of the explanatory m/z identified in Section

5.4.2.2 with the same accurate mass within 5 ppm of each other were compared

between the FIE and LC-HRMS analyses.

As shown in Table 6.1, there were 8 and 4 m/z found with the same accurate

mass in ABR6 and Bd21 respectively. For all of the FIE-HRMS m/z with matches

there was only one corresponding LC-HRMS m/z . Of these, only two features

(n327.22, p203.14) in ABR6 did not have significant correlations (p < 0.05).

However in both cases, the significance of the correlations of these m/z were very

close to the threshold.

The positive correlation of the explanatory m/z between the two metabolomics

techniques allow two things. Firstly it allows the identification of FIE-HRMS bins

that contain multiple isomers that have then been chromatographically resolved

in the LC-HRMS analyses. This strategy can then allow duplicated features

between analyses to be removed. Secondly the coherence of these m/z allows val-

idation of the accuracy of the analytical approaches, signal processing and data
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pre-treatments used to make these metabolomic measurements.

Correlation networks were constructed using putative annotations from both

analyses for both ecotypes. For metabolites represented by multiple adducts, the

most intense adduct was selected. Isotope annotations were also removed. The

LC-HRMS m/z were retained for metabolites represented in both analyses. This

identified 78 and 57 annotated metabolites in ABR6 and Bd21 respectively.

The metabolites found in the incompatible interaction of ABR6 showed a

much greater diversity in trends over the infection time course compared to those

found in the compatible interaction of Bd21. This is shown by the smaller cluster

sizes in ABR6 in Figure 6.1 compared those of Bd21 in Figure 6.2. The metabolite

network of Bd21 can broadly be separated into two main negatively correlated

clusters.

It was identified in Section 5.4.2.2 that mono and di-saccharides and amino

acids as well as a number dipeptides, purines, pyrimidines and nucleosides were

present in clusters that were showing decreases in infected tissue compared to

infected tissue. These metabolites show clear association in both ecotypes when

the metabolite data sets are combined (Figures 6.1 & 6.2).

It is likely that the down-regulation of these metabolites is as a result of

energy production. Sucrose and glucose are obvious direct energy sources through

glycolysis. Plants are known to have the ability to degrade purines, pyrimidines

and their nuleosides in order to boost energy production (Zrenner et al. 2006).

Purine degradation can allow the production of glyoxylate via the production of

allantoin. This glyoxylate can then be fed into the glyoxylate cycle to produce

energy.

Pyrimidines can be catabolised to produce β alanine that can be used for

co-enzyme A biosynthesis which can then in turn be used for energy production.

Alanine has been putatively annotated in the FIE-HRMS analyses and is asso-

ciated with the pyrimidines in both ecotypes. Phospho-pantothenate is similarly

present in both ecotypes and in the same clusters, a metabolite present in the

co-enzyme A biosynthesis pathway.
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It is unclear as to which organism this catabolism is likely to be occurring

as it can be argued that energy production would be important in both organ-

isms during the entire time course of the infection. However, a point to add

is that these changes could potentially originate from M. oryzae as the all the

time points are similarly decreased instead of a gradual decrease over the time

course. As discussed in Section 5.4.2.2, β-oxidation of fatty acids is essential for

energy production in M. oryzae appressorium development and cell wall synthe-

sis during spore germination. With energy production already highlighted as a

requirement for primary cell penetration, these metabolites could represent other

energy sources that are also utilised by M. oryzae during this phase.

In Bd21 a number of Calvin-Benson cycle metabolites along with malate

were also associated with the unsaturated fatty acids. The Calvin-Benson cycle

metabolites include glyceraldehyde-phosphate, ribose-phosphate and sedopeptulose-

phosphate. In ABR6 only glyceraldehyde phosphate and phospho-glycerate were

identified. The role of these metabolites in the interaction will be further dis-

cussed in Section 6.4.3.1.

Unsaturated fatty acids were identified in both metabolomic analyses and

were found to be associated together in both the ecotypes. These showed strong

upregulation at 12 hpi when pathogen recognition responses will be occurring.

As mentioned in Section 5.4.2.2, the likely functions of these include signalling

for the initiation of host defence responses as well as the result of lipid catabolism

for energy production. The role of these metabolites in the interaction will also

be further discussed in Section 6.4.3.1.
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Table 6.1: Correlations of explanatory m/z found in both FIE-HRMS
and LC-HRMS analyses. Class means (N=10) for each time point and treat-
ment for each ecotype. were used for pearson’s correlation of trends between the
metabolomic analyses excluding the 0 hpi samples. For ID’s of both techniques,
the lower case prefix refers to the ionisation acquisition mode and the following
number is the m/z. For LC-HRMS IDs the following number gives the retention
time of the m/z in minutes, prefixed by ’T’.

Ecotype FIE-HRMS ID LC-HRMS ID r p Value

ABR6

n131.07 nM131.07T6.28 0.96293 0.00004
n132.03 nM132.03T1.23 0.97543 0.00001
n277.03 nM277.03T1.29 0.79885 0.01672
n327.22 nM327.22T8.87 0.68730 0.05618
p136.06 pM136.06T1.42 0.98307 0.00000
p203.14 pM203.14T3.99 0.61738 0.05720
p246.16 pM246.16T1.25 0.97712 0.00001
p288.2 pM288.2T1.48 0.94388 0.00016

Bd21
n131.07 nM131.07T6.27 0.95957 0.00004
n342.11 nM342.11T1.41 0.92357 0.00027
p382.08 pM382.08T1.36 0.94024 0.00016
p517.01 pM517.01T1.36 0.91462 0.00027
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6.4.2 Integration of metabolomic and transcriptomic anal-

yses

As only three of the six presymptomatic time points that were analysed in the

metabolomic analyses of the B. distachyon and M. oryzae interaction, only ex-

planatory m/z present at 12, 24 and 48 hpi were used for integration with the

transcriptomic analyses. As for integrating the metabolomics analyses, putatively

annotated m/z that were not isotopic signals were carried for further analyses.

For those m/z with multiple adducts present, the most intense ion was selected.

The LC-HRMS m/z were selected for metabolites with annotations across both

metabolomic analyses.

6.4.2.1 Network analysis of metabolomic and transcriptomic analyses

To aid in the visualisation and interpretation of metabolomic and transcriptomic

networks, the cluster centers of the transcriptomic clusters identified in Figures

5.10 and 5.11 were used for integration with metabolite profiles. Contrary to the

metabolomic networks identified across all five of the early phase time points,

those constructed for the three transcriptomic and metabolomic time points

showed a lower diversity of trends in ABR6 than in Bd21.

It was found that in ABR6 the amino acids aspartate, asparagine, alanine and

glutamine were all closely associated with Cluster 12 of the transcriptomic data.

As shown in Figure 5.12, Mapman bins related amino acid synthesis were found

to be over-represented in Cluster 12. Also closely associated were the aromatic

amino acids tyrosine and tryptophan. Functionally enriched subdivisions of the

amino acid synthesis Mapman bins in Cluster 12 included transcripts involved

directly in the synthesis of these aromatic amino acids as well as indole-3-glycerol

phosphate synthesis. These amino acids were showing increases at 48 hpi, relative

to the other time points. This indicates that these changes are likely as a result of

the host defence responses. The amino acids aspartate, asparagine, alanine and

glutamine are likely to reflect key changes in metabolism for the mobilisation of

nitrogen resources.
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One of the key uses aromatic amino acid metabolism is in the biosynthesis

of auxins. Auxins are key factors in the regulation of plant defences and show

differential responses for different pathogens. These are antagonistic to salicylic

acid signalling but commonalities have been found with jasmonic acid signalling

(Kazan and Manners 2009). Transcripts relating to jasmonic acid synthesis were

also found to be over-represented in the similarly associated Cluster 11. Brassi-

nosteroid synthesis were found over-represented in Cluster 12 suggesting the likely

importance that hormone signalling is having in the host resistance response.

It was previously identified in Section 6.4.1 that purines, pyrimidines and

nucleosides were associating with other metabolites involved in energy production.

It was therefore inferred that changes in these metabolites could also be as a result

of this. Interestingly in the incompatible interaction of ABR6, these metabolites

are associated with genes in Cluster 1. This cluster was identified in Section

5.4.3.2 as being functionally over-represented for chromatin structure and showed

strong upregulation at 24 hpi.

Priming of chromatin structure is important for ensuring fast and robust ex-

pression of defence related gene expression (Conrath 2011). For instance in Ara-

bidopsis, ‘histone replacement’ of the H2A histone with the H2A.Z variant is cru-

cial for appropriately regulating salicylic acid induced plant immunity. Mutants

displayed phenotypes of hypersensitivity and spontaneous cell death (March-Dı́az

et al. 2008). This alteration to the expression of genes involved in histone produc-

tion suggests that chromatin rearrangement is occurring at 24 hpi and that this

could be pre-emptive of the substantial gene expression changes that would be

needed to elicit defence responses such as the hypersensitive response. However,

the link of this function with that of the cellular levels of purines, pyrimidines

and nucleosides is unclear.

Calvin-Benson cycle metabolites have already been identified as important

in both ecotypes as part of the host pathogen recognition responses at 12 hpi

along with that of unsaturated fatty acids in Section 6.4.1. These metabolites

were found to cluster with transcript Clusters 6 and 10 in ABR6 and Bd21 re-
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spectively. Both of these gene clusters are functionally over-represented for gene

involved in photosytems I and II. Interestingly, functional over-representation

of lipoxygensase genes were found in Clusters 11 and 7 in ABR6 and Bd21 re-

spectively. Both of these clusters are negatively associated with the clusters

containing photosynthesis over-representation, Calvin-Benson cycle metabolites

and unsaturated fatty acids. In ABR6, Cluster 5 was found to be associated with

the unsaturated fatty acids. Cluster 5 included over-represented transcripts for

chloroplastic ribosomal subunits. This implicates importance of the chloroplasts

in the host defence responses with this likely representing alterations to protein

synthesis occurring within the chloroplasts. These associations will be discussed

further in Section 6.4.3.1.
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6.4.2.2 Pathway mapping of metabolomic and transcriptomic analy-

ses

Mapman was used to map both transcriptional and metabolic changes to pri-

mary and secondary metabolic pathways. This identified substantial differences

between both the sampled time points and ecotypes (Figures 6.5, 6.6 & 6.7).

There was widespread down regulation of many genes found in cell wall, en-

ergy, lipid and secondary metabolism in Bd21 at 12 hpi. There were 5 clus-

ters (Clusters 2,3,5,7, & 11) identified in Bd21 (Figure 5.11a) that showed a

down-regulation at 12 hpi. These clusters contained a total of 2322 transcripts.

However, enrichment analyses identified few over-represented function groups.

Amongst these identified clusters there was variability in the trends of these tran-

scripts at the later time points (24 and 48 hpi). Cell wall and lipid metabolism

transcripts were over-represented in Cluster 7 as well as phenylpropanoid metabolism

in Cluster 3, each being down regulated at 12 hpi.

These areas of metabolism form key areas for host defences and targets for the

assimilation of nutrients by fungal pathogens. Subversion of these areas would

be necessary for any successful pathogen. This extensive down-regulation could

represent a subversion of host metabolism at a very early stage. Alternatively it

could represent differential innate immune responses inherent in Bd21 compared

to ABR6.

As discussed in Section 5.4.2.1, high discrimination between control and in-

fected treatments is likely to be the result of PAMP triggered responses to spore

secretions, post germination. Similar molecular responses would be expected be-

tween the ecotypes if these were generic innate responses to the presence of a

fungal pathogen. The extensive differences in responses shown in Figure 6.5 sug-

gest the contrary to this. However, it is unclear whether the extensive differences

in these responses are as a result of the underlying genetic variation between the

ecotypes in how they initially respond to the presence of fungal pathogens. Alter-

natively, these extensive differences could be directly linked to the recognition of

the presence M. oryzae and the subsequent resistance response that is elicited in
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ABR6. The initiation of defences that lead to incompatibility with ABR6 could

be elicited as early as 12 hpi, prior to primary host cell penetration by M. oryzae.

There were relatively few transcriptional and metabolic changes occurring

in Bd21 in the subsequent time points (Figures 6.6 & 6.7). In contrast in the

incompatible interaction ABR6, there is both up and down regulation of genes

distributed throughout the overview of metabolic pathways at both time points.

In Bd21 at 48 hpi there is down regulation of many genes involved in the

light dependant photosynthetic reactions as well as an up regulation of some

genes involved in amino acid synthesis. These areas of metabolism will be further

discussed in Sections 6.4.3.1 and 6.4.3.2
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(a) ABR6

(b) Bd21

Figure 6.5: Mapman visualisations of metabolism for 12 hpi metabolite
and gene expression changes. Trends are given as relative log2 ratios between
means of the treatment classes (N = 3). 820 and 754 data points are shown in
(a) and (b) respectively of explanatory metabolites identified using FIE-HRMS or
LC-HRMS and transcripts identified using RNA-Seq. Metabolites are represented
as circles and transcripts represented as squares.
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(a) ABR6

(b) Bd21

Figure 6.6: Mapman visualisations of metabolism for 24 hpi metabolite
and gene expression changes. Trends are given as relative log2 ratios between
means of the treatment classes (N = 3). 820 and 754 data points are shown in
(a) and (b) respectively of explanatory metabolites identified using FIE-HRMS or
LC-HRMS and transcripts identified using RNA-Seq. Metabolites are represented
as circles and transcripts represented as squares.
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(a) ABR6

(b) Bd21

Figure 6.7: Mapman visualisations of metabolism for 48 hpi metabolite
and gene expression changes. Trends are given as relative log2 ratios between
means of the treatment classes (N = 3). 820 and 754 data points are shown in
(a) and (b) respectively of explanatory metabolites identified using FIE-HRMS or
LC-HRMS and transcripts identified using RNA-Seq. Metabolites are represented
as circles and transcripts represented as squares.
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6.4.3 Key pathways in the early phases of the interaction

between M. oryzae and B. distachyon

A number of areas of metabolism and signalling have already been identified in

previous sections as be important during the pre-symptomatic phases of the B.

distachyon-M. oryzae interaction. The previous analyses have focused on com-

paring the relative ratios of differences between infected and control treatments

at each time point. This section will aim to highlight specific areas of metabolism

and focus on the profiles of individual genes and metabolites in order to generate

relevant hypotheses.

6.4.3.1 Chloroplasts are areas of metabolic and transcriptional change

in B. distachyon during M. oryzae infection

Chloroplasts have long been recognised as centers of molecular alterations occur-

ring during plant pathogen interactions. Not only do they function as carbon

assimilation sites but are also important in the generation of oxidative bursts

essential to the hypersensitive response. They therefore represent important tar-

gets for pathogen effectors for both nutrient assimilation and the suppression of

host defences.

Upon pathogen recognition, plant cells will reduce carbon assimilation and

transition from source into sink metabolism (Kangasjärvi et al. 2012). This is

thought to be the result of a number of reasons. The production of defence

related compounds would take priority and reduce the capacity of photosynthetic

assimilation. Also a reduction in photosynthesis could reduce the compartmental

damage caused by oxidative stress within chloroplasts.

Interestingly, a lack of correlation between photosynthetic rates and tran-

scriptional repression has been observed in whole leaf analyses of the interaction

between Arabidopsis and P. syringae (Bonfig et al. 2006). Targeted analyses

of just the infection sites for transcriptional analysis revealed that this is likely

due to a dilution of the transcriptional response when it is averaged across the

whole leaf. Correlation has also been found in the transcriptional response of
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ribulose-bisphosphate carboxylase (RuBisCo) and chlorophyll a/b-binding genes

(Swarbrick, Schulze-Lefert, and Scholes 2006).

The trend of phosphoglycerate levels in Figure 6.8a could reflect a reduction in

photosynthetic activity were levels are attenuated in the infected tissue compared

to the control tissue. Glycerate-3-phosphate is the product of the carboxylase re-

action between ribulose-1,5-bisphosphate catalysed by RuBisCo. There was no

transcriptional change found in genes encoding for the RuBisCo subunits; how-

ever the trend of phosphoglycerate shows a reduction in levels at 12 and 24 hpi in

both ecotypes. The trend is continued at 48 hpi in the incompatible interaction of

ABR6 but in the compatible interaction of Bd21 levels have returned to that seen

in the control. This return in Bd21 could reflect subversion of host photosynthetic

activity by M. oryzae in order to increase carbon assimilation for nutrient acqui-

sition. The trends of the genes shown in Figure 6.8b all show a down-regulation

in ABR6 with few differences in Bd21 except for Ubiquinol oxidase. This trend

could also be associated with the down regulation of photosynthesis during the

incompatible interaction with M. oryzae.

Chloroplasts as the generators of ROS are important in the elicitation of the

hypersensitive response. ROS can be formed from excess excitation energy in

photosystems I and II, depending on the light conditions. This is quickly scav-

enged by both the stromal and thylakoidal scavenging systems (Kangasjärvi et al.

2012). The generation of ROS can also be achieved from NADPH oxidases, in-

dependent of light conditions. However light-driven generation from chloroplasts

provides a less metabolically costly form of ROS generation. ROS production can

increase under high light conditions and it has been shown that this can enhance

the hypersensitive response in response to plant pathogens (Liu et al. 2007). In-

vestigations by Parker (2006) revealed the B. distachyon ecotype ABR5, that

exhibits an incompatible response to M. oryzae, could be induced to produce

a compatible interaction if incubated under dark conditions for 56 hours post

inoculation. This suggests the likely importance of light dependant ROS pro-

duction in the B. distachyon-M. oryzae interaction. The reduction of Ubiquinol
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oxidase expression observed in both ecotypes could be considered as a response

to allowing an increase in ROS within the chloroplast.

The production of polyunsaturated fatty acids from chloroplastic membranes

has been found to be important for the production of ROS in the Arabidopsis

and P. syringae (Yaeno, Matsuda, and Iba 2004). Polyunsaturated fatty acids

are produced by fatty acid desaturases and are able to induce NADPH oxidase

activity to produce ROS. Trienoic unsaturated fatty acids of chloroplastic ori-

gin such as hexadecatrienoic acid and linolenic acid have been found to increase

in Arabidopsis within just a few hours of exposure to avirulent strains of Pseu-

domonas syringae. Mutants showed that they were also essential for effective

reactive oxygen species generation (Yaeno, Matsuda, and Iba 2004). Oxylipins

can be produced by the addition of oxygen to polyunsaturated fatty acids. These

are known to be potent signalling molecules in plant responses to disease. In rice,

enhanced resistance to Magnaporthe grisea was found with the suppression of

ω-3 fatty acid desaturases and a deficiency of 18:3 derived oxylipins (Yara et al.

2008). They have also been found to be involved in the activation of salicylic acid

signalling and systemic responses (Ongena et al. 2004).

Lipoxygenase genes were found to show the same trends in both ecotypes

with up regulation in control tissue at 12 hpi (Figure 6.9a). This was also true

for the NADPH oxidase genes (Figure 6.9b). The ω-6-fatty acid desaturase gene

was decreased in infected tissue at all the time points in both the compatible

and incompatible interactions (Figure 6.9a). There was little relationship found

between the trends of the fatty acids levels and the genes involved in their produc-

tion as well as NADPH oxidases (Figure 6.9c). This likely reflects the regulation

of NADPH oxidases and the metabolism of these fatty acids for plant defence at

the enzyme level rather than that of the transcriptional level.
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(a) Profiles of metabolites involved in Calvin-Benson cycle reactions
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(b) Photosynthesis related gene expression profiles
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Figure 6.8: Profiles of explanatory photosynthesis related metabolites
and transcripts. Points show treatment means (N = 3 for transcripts and
N = 10 for metabolites) and error bars are one standard error of the mean.
Metabolites profiles were measured using either FIE-HRMS or LC-HRMS and
transcript profiles using RNA-Seq.
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(a) Lipoxygenase transcipts
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(b) NADPH oxidase transcripts
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(c) Unsaturated fatty acids

Linoleate

A
B

R
6

B
d21

12 24 48

0.00004

0.00008

0.00012

0.00016

5.0e−05

7.5e−05

1.0e−04

hpi

In
te

ns
ity

Dihydroxy
octadecatrienoate

A
B

R
6

B
d21

12 24 48

0.00005

0.00007

0.00009

0.00011

0.00013

5e−05

6e−05

7e−05

8e−05

9e−05

hpi

In
te

ns
ity

Hydroperxoxy
octadecatrienoate

A
B

R
6

B
d21

12 24 48

2.5e−05

5.0e−05

7.5e−05

1.0e−04

2.5e−05

5.0e−05

7.5e−05

hpi

In
te

ns
ity

Treatment

Control

Infected

Figure 6.9: Profiles of explanatory lipoxygenases, NADPH oxidases and
unsaturated fatty acids. Points show treatment means (N = 3 for transcripts
and N = 10 for metabolites) and error bars are one standard error of the mean.
Metabolites profiles were measured using either FIE-HRMS or LC-HRMS and
transcript profiles using RNA-Seq.
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6.4.3.2 Nitrogen metabolism is altered in both compatible and in-

compatible responses to M. oryzae infection

The amino acids glutamate, glutamine, asparagine and aspartate are important

nitrogen transport and storage molecules within plant tissues. The energy re-

quirements of plant defence can lead to the shuttling of these amino acids into

pathways for energy production (Bolton 2009). The GABA shunt is one such

pathway which allows carbon from glutamate to be fed directly into the TCA

cycle. The nitrogen status of plant tissue is highly linked to the success of disease

development in many interactions. Nitrogen deficiency in leaf tissue can encour-

age disease development with cells less able mount an effective disease response

(Solomon, Kar-chun, and Oliver 2003). Nitrogen is also involved in the produc-

tion of reactive nitrogen species that, together with ROS, are able to trigger the

hypersensitive response.

Plant tissues will mobilise nitrogen away from infection sites during pathogen

infection. This is hypothesised to be an attempt to deprive the pathogen of

vital nutrients for growth (Tavernier et al. 2007). Asparagine is the preferred

amino acid for nitrogen transport in plants due to its high nitrogen to carbon

ratio. Disease resistance to bacterial and oomycete pathogens is enhanced by the

conversion of aspartate to asparagine. The induction of asparagine synthetase 1

was associated with the infection of pepper by Xanthomonas campestris. Induc-

tion was also found to be induced by salicylic acid and jasmonic acid treatment

(Hwang, An, and Hwang 2011).

In the interaction between B. distachyon and M. oryzae an increase in as-

paragine was found at both 24 and 48 hpi in infected tissue in ABR6. Little dif-

ference was found in Bd21 (Figure 6.10a). Interestingly, Asparagine synthetase 1

was found to be down-regulated in infected tissue at 12 hpi with little difference at

later time points. Glutamine levels were also found to be reduced in infected tis-

sue of ABR6 at 12 hpi. It is the amide group of glutamine that is donated during

the formation of asparagine from aspartate by asparagine synthetase, suggesting

that these trends could be linked.
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Both alanine and aspartate levels were found to be reduced at all time points

(Figure 6.10a). Alanine transaminase catalyses the transamination between ala-

nine and α-ketoglutarate to produce pyruvate and glutamate. It was found to be

up regulated at 12 hpi suggesting its responsiveness during pathogen recognition

phases.

GABA was found to be reduced in infected tissue in both ecotypes at 12 hpi.

However, the GABA transaminase gene expression was found to be increased in

control tissue at this time point. This suggests that the changes in GABA level

are as a result of a decrease in control tissue rather than an increase in infected

tissue.

The results suggest that the alteration of nitrogen metabolism is important

during the initial pathogen recognition phases of this interaction with a number of

other alterations such as that of asparagine occurring at later phases. However,

there is also discordance between gene transcriptional changes and metabolite

changes associated with the levels of aspartate and alanine. Nitrogen metabolism

is heavily involved in the spatial aspects of plant disease responses, plant cells

responding differently depending on their proximity to an infection site. There-

fore the lack of spatial resolution in this data could be masking key differential

responses of cells in terms of their nitrogen metabolism.
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Figure 6.10: Profiles of explanatory nitrogen metabolism transcripts and
metabolites. Points show treatment means (N = 3 for transcripts and N = 10
for metabolites) and error bars are one standard error of the mean. Metabo-
lites profiles were measured using either FIE-HRMS or LC-HRMS and transcript
profiles using RNA-Seq.
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6.5 Concluding Remarks

With few previous examples of omics integration in the investigation of plant-

pathogen interactions, the results presented in this chapter represent the first

example of the integration of large scale transcriptomic and metabolomic analy-

ses in the pre-symptomatic phases of the B. distachyon and M. oryzae interaction.

Data integration revealed a strong correlation of explanatory features identified in

both metabolomic analyses confirmed analytical agreement between the analyses.

Network analyses of these data revealed the association of metabolically related

metabolites across the metabolomic techniques such as fatty acids, purines and

pyrimidines. Energy metabolism was was hypothesised as being altered in re-

sponse to M. oryzae infection in both compatible and incompatible interactions.

However, it was unclear as to which of the organisms in the interaction to which

these changes could be attributed, as both have high energy requirements for

responses during these phases.

The integration of data from both transcriptomic and metabolomic analyses

identified key association between alterations in gene expression and metabolism

during M. oryzae infection beyond that of their individual analysis. This included

links between amino acid trends with changes in amino acid synthesis of which

tryptophan synthesis was important. Alteration to genes involved in histone

production were also associated with the trends of purines and pyrimidines.

Pathway mapping identified that there was widespread transcriptional and

metabolic down-regulation in primary and secondary metabolism occurring in

Bd21 at 12 hpi, with reduced changes occurring at subsequent time points com-

pared to ABR6. With extensive transcriptional differences in the recognition

responses at 12 hpi it may be that these are associated with the initiation of the

incompatible responses of ABR6 rather than only that of general innate responses

to the presence of a fungal pathogen.

Network analysis and pathway mapping indicated that the chloroplasts were

important centers for responses to M. oryzae infection. Alterations to Calvin-

Benson cycle metabolites and genes associated with photosystems I and II were
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identified. It was hypothesised that these were related to alterations to photosyn-

thetic activity and that this could be associated with light dependant generation

of ROS production. Also changes to poly unsaturated fatty acids and oxylipins

that are thought to be of chloroplastic origin were hypothesised to be related to

light independent generation of ROS. There was discordance between transcrip-

tional and metabolic changes that suggested these roles in response to M. oryzae

are strongly influenced by regulation at the enzymatic level.

Nitrogen metabolism was also identified to be altered in both compatible and

incompatible interactions. Changes in the levels of amino acids and genes involved

in their synthesis were identified to be changing during pathogen recognition

phases. It was hypothesised that these changes could be as the result of energy

production needs as well as nitrogen transport. However due to the spatial nature

of the role of this metabolism in plant defence responses it was difficult to interpret

alterations only in their temporal context.

163



Chapter 7

Identification of the Rbr1 disease

resistance locus using computer

vision based phenotyping

7.1 Introduction

There has been considerable research effort expended to understand the genetic

bases of plant resistance to disease. As plant diseases contribute substantially to

annual global crop losses, this importantly stimulates the breeding of resistant

genotypes. In model interactions, such as that between B. distachyon and M.

oryzae, identifying the genes responsible for diversity in pathogen responses is

essential in elucidating the molecular mechanisms involved. However, the ability

to accurately identify resistant genotypes is dependant on precise and robust

phenotyping of plant responses to disease. Computer vision based techniques are

becoming the standard approaches for quantitatively assessing plant responses to

disease.
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7.1.1 Quantitative plant phenotyping using computer vi-

sion

The wide spread application of omics and NGS technologies has spurred the

need for automated, high throughput, quantitative plant phenotyping solutions.

Alongside this has also begun the development of the field of phenomics for which

computer vision is becoming ever important. As manual methods of plant phe-

notyping are often time consuming, computer vision improves throughput and

reduces the potential for operator error. Computer vision encompasses the use of

computers in the acquisition, processing and analysis of digital images. A general

outline of the elements of computer vision analyses are shown in Figure 7.1.

Methods for image acquisition are highly varied within computer vision and

are dependant on the experimental question and the biological scale of interest.

This can be from individual cells to field-wide phenotyping. Both standard and

confocal microscopy have been applied to enable image acquisition at the cellu-

lar level for investigations such as monitoring meristem or hypercotyl growth in

Arabidopsis (Sozzani et al. 2014). Digital cameras are most commonly used in

image acquisition due to their low cost and easy availability. This allows images

to be taken non-destructively at the whole plant or plant organ levels (Bock et al.

2010). The use of images taken from differing points of view can also be com-

bined to produce 3D data sets (Eliceiri et al. 2012). It is not only sensors that

rely upon the visible regions of the spectrum that have been applied to plant

phenotyping situations. Both X-ray computed tomography and NMR imaging

have been used for root phenotyping problems where easy access to the plant

organ is difficult (Metzner et al. 2015). Computer vision can also be applied at

the field scale where digital cameras or multispectral imaging equipment can be

mounted to unmanned aerial vehicles allowing entire experimental field plots to

be imaged aerially imaged (Araus and Cairns 2014).

Irrespective of the method of image acquisition, acquired images require pro-

cessing in order to extract measurements from features of interest upon which

statistical analyses can be made. Image segmentation methods allow the isola-
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Figure 7.1: A general workflow in computer vision analyses.

tion of features of interest. There are many different methods for doing so, the

most common of which of which is simple thresholding where pixel intensities

above or below a set threshold are excluded. This can be further enhanced by

the use of colour space transformations such as form RGB to HSV that allow

colour thresholding as opposed to the thresholding of individual grey scale chan-

nels. Edge detection allows segmentation through the detection of sharp changes

in pixel intensity around features of interest. Commonly 1st and 2nd derivatives

are used for detection. However these techniques are not trivial and are often

computationally intensive (Chen and Leung 2004). Clustering algorithms such

as K -means clustering can also be used for segmentation however they require

that there is a predefined set of features of interest (Zhang, Fritts, and Goldman

2008).

Once features of interest have been isolated, quantitative measures can then

be extracted. These measures will be dependant on the experimental question but

can commonly include area, colour and texture measures. Quantitative measures

of image features can then allow classification or statistical analyses on either a

whole image or individual feature basis.

With respect to the use of computer vision for characterising plant disease,

applications have included disease detection, classification of different disease

symptoms as well as disease symptom quantification (Barbedo 2013). Phadikar

and Sil (2008) used neural networks for identifying disease in rice that included

rice blast and brown spot. Peressotti et al. (2011) applied a semi-automated

computer vision workflow for quantifying the sporulation of downy mildew on

grape for resistance phenotyping.
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7.1.2 The genetic basis of plant resistance to disease

The plant immune system consists of a host of defence responses that can be

used to repel invading pathogens. These include both innate immune responses

that allow plants to resist non-specialized pathogens and specific responses for

specialized pathogens that have more sophisticated strategies in host colonisation.

The resistance of plants to disease causing pathogens can be divided into three

main categories; non-host, vertical and horizontal resistance.

Non-host resistance refers to a plants ability to resist pathogens for which it

is not a host. This can be due to physical barriers such as thick cuticular layers

on a leaf’s surface that prevent pathogen infection. It may also be that the a

plant does not provide a suitable environment on which the pathogen can grow

and extract the necessary nutrition it needs in order to reproduce or simply that

the pathogen cannot recognise the plant and initiate its colonisation.

Vertical resistance in its most basic form consists of individual gene-for-gene

interactions. A gene product in the plant can recognise a gene product from

the pathogen during the interaction which initiates defence responses leading to

host resistance. These pathogen gene products are known as effectors and are

secreted with the purpose of host defence suppression and subversion of cellular

processes for nutrient acquisition (Jones and Dangl 2006). Plant resistance gene

products are known as R proteins. Cell surface pattern-recognition receptors

monitor the extra cellular environment and are activated by recognising highly

conserved PAMPs. These are often leucine rich repeat or lysine motif kinases

and contribute mainly to innate immune responses. Intracellularly plants detect

pathogen colonisation using NB-LRR receptors. These constitute the majority

of R proteins present within plants (Eitas and Dangl 2010).

The evolutionary arms race that inevitably occurs between a pathogen and

its host has led to a diversity in the molecular interactions that occur between

effectors and R genes, beyond that of the gene-for-gene concept. There are three

main mechanisms of interaction; direct, guard and bait (Dodds and Rathjen

2010). In direct recognition, the effector binds directly to the NB-LRR receptor.
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Guard recognition requires an accessory protein that could either be the effector

target protein or a mimic, is modified by the effector which is then sensed by the

NB-LRR. The bait mechanism also requires an accessory protein which interacts

with the effector and is directly sensed by the NB-LRR. In other cases, several

NB-LRRs are required to mediate defence responses (Eitas and Dangl 2010). One

of the NB-LRRs will act as a sensor and is activated by the effector, the other as

a helper that is required for function.

NB-LRR receptors are multi-domain structures that allow them to act as

sensors, switches and response factors. They consist of two primary domains;

the nucleotide-binding site (NBS) and the carboxy-terminal LRRs. This class

of receptors can be divided based on the type of amino-terminal domain. These

are the toll interleukin 1 and coiled-coil domain containing NB-LRRs. Those

containing toll interleukin 1 regions are rarely found in grasses (Tan and Wu

2012).

Many R genes have been putatively identified in plant genomes. In rice,

85 complete rice blast resistance genes have been identified of which 80% are

NB-LRRs (Ballini et al. 2008). There is considerable diversity in NBS disease re-

sistance genes between maize, sorghum, Brachypodium and rice with only 3.83%

of 496 ancestral NBS families showing conservation between species (Li et al.

2010a). This reflects the highly specialised nature of these genes and a strong ef-

fect of natural selection in ensuring that a species can adapt to evolving pathogen

strategies. In Brachypodium, 239 nucleotide-binding site disease resistance genes

have been putatively identified (Tan and Wu 2012).

In interactions involving horizontal resistance, a spectrum of responses from

fully compatible to fully incompatible can be observed. This is often referred to

as partial or quantitative resistance. It is the result of genetic diversity across

many gene loci within both the plant and pathogen that regulate many layers of

plant defence and pathogen colonisation strategies (Poland et al. 2009).

Genes of many different functions have been related to horizontal resistance

and can be related to both constitutive and induced resistance responses. In rice,

168



it has been found that increased expression of constitutively expressed defence

genes can increase resistance to M. oryzae (Schaffrath et al. 2000). It is hypoth-

esised that many genes involved in horizontal resistance are involved in defence

responses such as cell wall thickening, production of cytotoxins and the hyper-

sensitive response. Oxalate oxidase-like proteins that are likely to be involved

in the production of oxidative bursts have been identified in rice as enhancers

of quantitative resistance (Walz et al. 2008). Influences of environmental factors

such as temperature, humidity and host nutrient status can also greatly affect

the outcome of quantitative interactions. Horizontal resistance is much less well

understood than vertical resistance due to its greater complexity and the number

of interacting gene loci.

Crop breeding programs strive for durable disease resistance in the field. Sin-

gle R gene based resistance has had limited success due to pathogen adaptation

within 2-3 seasons. One exception to this is the mlo gene for powdery mildew

resistance in barley that has remained durable for more than 40 years, still being

widely used in across Europe (Brown 2015). Breeding models for durable disease

resistance rely on using multiple R genes as well as genes that enhance a number

of different aspects of the disease response. This greatly reduces the potential for

a pathogen to adapt and overcome resistant varieties.

7.1.3 Linking phenotype to genotype: QTL mapping to

identify disease resistance loci

A QTL is a gene locus or region that is responsible for a particular quantitative

phenotype of interest. These can encompass any number of linked genes within

the same QTL region or multiple QTLs linked to the same phenotypic trait.

QTL mapping encompasses the suite of techniques used to associate quantitative

phenotypes to genetic loci. These include the generation of mapping populations,

the use of genetic markers to construct linkage maps and QTL analysis for linking

markers to phenotype.

In order to link a phenotype to a genotype, firstly a population of individuals
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is required that is showing diversity or segregating for the trait of interest such as

a disease response (Figure 7.2). In self-pollinating species such as B. distachyon,

the generation of mapping populations is simple compared to cross pollinating

species. These can be crosses between inbred parental lines from which the F1

hybrids are further inbred to construct recombinant inbred lines (RIL).

With the generation of a population suitable for QTL mapping, genetic mark-

ers or polymorphisms need to be identified to map the genetic differences between

the individuals in the population, both physically and genetically. There are a

number of techniques that can be used to identify genetic markers. These can be

hybridization-based, polymerase chain reaction (PCR)-based or DNA sequence

based. Markers can be visualised by gel electrophoresis, staining or the addition

of radioactive or colourimetric probes (Collard et al. 2005). They can generally

be classed as dominant or co-dominant. Co-dominant markers can discriminate

between homozygotes and heterozygotes.

Genetic markers can be assembled into linkage maps that indicate their chro-

mosomal positions and the relative genetic distance between markers. They are

based on the principle that markers segregate via recombination during meiosis.

Tightly linked markers are more likely to be transmitted together from parent

to progeny. As there will be a mixture of parental and recombinant genotypes

present in a segregating population, the frequency of recombinant genotypes al-

lows the calculation of the genetic linkage or distance between markers (Collard

et al. 2005). Mapping functions can be used for calculating genetic distance. Most

commonly used are the Kosambi and Haldane functions, for which the units of

genetic distance is given in centiMorgans (cM). Genetic distance is not neces-

sarily related to physical distance, the relationship of which can vary across a

chromosome due to the presence of recombination ‘hot spots’ (Paris, Haen, and

Gill 2000).

The ABR6 x Bd21 mapping population consists of 155 RIL from a cross

between parental B.distachyon ecotypes ABR6 and Bd21 (Bettgenhaeuser et al.

2016). The founding F2 population was generated by self pollination of three
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individuals confirmed as hybrids in the F1 population, from the initial cross of the

parental lines. These lines were advanced by single seed decent to the F4 stage.

The genetic map was constructed by selecting single nucleotide polymorphism

(SNP) markers every 10 cM, based on the previously characterized Bd21 x Bd3-

1 F2 genetic map (Barbieri et al. 2012). This ensured an even distribution of

markers for both physical and genetic distance. At the F4 stage 115 lines were

genotyped for a total of 252 markers. The linkage map is shown in Figure 7.3.

QTL analysis can be used to detect the presence of QTLs for a particular

phenotypic trait within a mapped segregating population. There are three com-

mon techniques for detecting QTLs. Firstly, single-marker analyses use univariate

statistical techniques such as analysis of variance (ANOVA) to test for the pres-

ence of associations between the phenotypic trait and genetic markers on a single

marker basis (Tanksley 1993). Simple interval mapping (SIM) analyses the inter-

vals between adjacent markers and is able to compensate for recombination events

between markers. This is more statistically powerful than single-marker analyses

(Lander and Botstein 1989). Composite interval mapping (CIM) combines SIM

with a linear regression strategy, with additional genetic markers included in the

model. This allows the detection of multiple linked loci for a given phenotypic

trait. It is more sensitive for detecting QTLs than single-marker and SIM analyses

(Kao, Zeng, and Teasdale 1999). SIM and CIM analyses produce profiles across

each chromosome of logarithmic of odds (LOD) scores. Significance thresholds

for these scores can be calculated by permutation testing (Churchill and Doerge

1994).

QTL analyses have been applied to many crop species for a very wide range

of phenotypic traits from disease resistance, vernalisation requirements and yield.

In B. distachyon three QTLs have been identified for resistance to false brome

rust that were dynamic across developmental stages (Barbieri et al. 2012).
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(a) Bd21

(b) ABR6

Figure 7.2: Rice blast disease response phenotypes in the B. distachyon
ecotypes Bd21 and ABR6 6 days post inoculation. Bd21 shows a com-
patible interaction and ABR6 an incompatible interaction.

7.2 Aims

One of the main limitations in the omics analyses of this interaction in the pre-

ceding chapters is that the direct comparison of compatible and incompatible

interaction responses are confounded by the high discrimination between the two

ecotypes (Section 5.4.1). One way that this confounding factor could be overcome

in the future is to identify the gene loci that are responsible of resistance in ABR6.

Bd21 could then be genetically transformed so that it could elicit an incompatible

response to M. oryzae pathogenesis. This would then allow compatible and in-

compatible interactions to be directly compared, without the confounding effects

of the genetic diversity between ecotypes.

The central aim of this chapter is to identify gene loci that are potentially

responsible the differential phenotypes in ABR6 and Bd21 in response to M.

oryzae pathogenesis. This requires the application QTL mapping techniques

using a population of RILs from a cross between ABR6 and Bd21. In turn this

requires reliable and precise phenotyping of large numbers of individual plants.

Quality and reproducibility in phenotyping can be achieved using computer vision

based image analysis techniques over manual scoring. This chapter will also apply

computer vision based image analysis to quantitatively assess M. oryzae response

phenotypes. This provides us with the following aims for this chapter:

• Use computer vision based image analysis to quantitatively assess RIL re-

sponse phenotypes to M. oryzae pathogenesis.
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Figure 7.3: The ABR6 x Bd21 F4 genetic map.
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• Apply QTL analysis to identify gene loci responsible for ABR6 resistance

to M. oryzae pathogenesis.

• Identify potential candidate resistance genes within linked gene loci.

7.3 Materials and Methods

7.3.1 Inoculation of F4:5 ABR6 x Bd21 population with

rice blast

115 lines and parental ABR6 and Bd21 ecotypes were grown as described in

Section 2.1 with 5-6 plants of each line per module. The plants were inoculated

at 21 days old as described in Section 2.3. Propagator lids were removed two

days post inoculation.

7.3.2 Image acquisition and processing

At 6 days post inoculation the 3rd leaf from the base of each plant was detached

and scanned using an Epson GT-12000 flat-bed scanner at 800 dots per inch. The

acquired images were processed using a custom script in R (Appendix D). Details

of the image segmentation and feature extraction of rice blast disease responses

are described and explained in Section 7.4.1.

7.3.3 Manual scoring and QTL analyses

Manual scoring of rice blast disease response images were based on the obser-

vations of Routledge et al. (2004). The images were blindly scored three times

and the scores averaged for each line. Scoring used a scale from 0-4 based on the

extent of disease response scores; with 0 representing a highly resistant response

and scores of 4 representing a highly susceptible response and scores of 2 being

intermediate. Examples are shown in Table 7.1.

Analyses for QTL detection (simple interval mapping (SIM) and composite

interval mapping (CIM)) were performed using QTL Cartographer (Version 1.17j;
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http://statgen.ncsu.edu/qtlcart/). CIM was performed under an additive

model (H0:H1) with the selection of five background markers at a walking speed

of 2 cM and a window size of 10 cM. 1,000 permutations with reselection of

background markers were performed for determining the statistical significance

of QTLs. SIM was used for estimating the 2-LOD support intervals.
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7.4 Results and Discussion

7.4.1 Computer vision based analysis for quantitatively

assessing B.distachyon and M. oryzae interaction

phenotypes

The effective development of a computer vision based algorithm for assessing

plant-pathogen interaction phenotypes requires a logistically suitable and repro-

ducible method of image acquisition. Image aspect, quality and scale are all

important factors when deciding upon the most suitable method of image acqui-

sition to ensure that measured features are comparable between images (Bock et

al. 2010). It is also important to consider aspects related to the disease response

such as whether plants need to be imaged multiple times as well as at which time

points in the disease progression are most suitable.

Here it was decided that imaging the plants once, 6 days post inoculation

would provide disease symptoms most optimal for image acquisition. This gave

the best compromise for lesion size, without lesions coalescing, which would affect

the accuracy of lesion size and density measurements. It was also decided that

imaging detached leaves using a flat-bed scanner would provide a high degree of

reproducibility in aspect and scale between images that would be difficult with

whole plant imaging. The interest here was in accurate assessment of the disease

response rather than how the disease developed over time, allowing destructive

sampling to become a viable option.

7.4.1.1 Image segmentation of Rice Blast disease symptoms

Prior to extracting quantitative information from acquired images of disease phe-

notypes, the images needed to be partitioned to isolate ROI. In the case of rice

blast disease symptoms, the ROI are the disease legions associated with both the

compatible and incompatible responses (Figure 7.2).

The partitioning of rice blast disease related ROI was a two part process.

Firstly, the leaf needs to be segmented from the image background, to remove
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any unrelated noise that may have been acquired. Then the disease lesions can

be segmented from the rest of the healthy tissue. At each stage of this segmenta-

tion, a binary black and white reference image can be produced that defines the

boundaries of the ROI.

As can be seen in Figure 7.4, all the channels provide very clear differences

between the leaf and background. The histogram of the blue channel in Figure

7.4e shows how clearly the background can be defined; the background having

pixel intensities close to 100%, the leaf with values close to 0%. A threshold pixel

intensity of 35% in the blue channel was found to suitably segment the leaf the

image background.

Segmentation of the disease lesions from the healthy leaf tissue was found to

be more difficult than segmenting the leaf from the image background. This was

mainly due to the lighter colour found at the centre of compatible disease lesions

(Figure 7.5a). As can be seen in Figures 7.5b & c, the lesion information can be

seen in both the red and green channels, although the red channel is very subtle.

The green channel was suitable for directly thresholding the incompatible lesions

as there is a high pixel intensity difference between the lesions and surrounding

healthy tissue (Figure 7.4c). However, thresholding of the compatible lesions

directly on both the red and green channel was found to be ineffective. This was

due to the low pixel intensity difference between the lesion information and the

healthy leaf tissue. Colour space transformations such as HSV and LAV were

also found to be ineffective at providing suitable intensity differences to segment

entire compatible lesions. Subtracting the red channel from the green channel to

produce a pseudo-image was found to be an effective method for combining the

information held within these two channels, allowing the compatible lesions to be

effectively segmented (Figure 7.5d).

It was also found that the colour of healthy leaf tissue varied across all the

acquired images. The effect of this was to cause the relative frequencies of pixel

intensities to fluctuate and so making direct thresholding of the subtracted image

ineffective. Using the pixel intensity with the highest density on the image, it
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was found that subtracting 20% from this value gave a suitable threshold for

segmenting the incompatible lesions in the green channel (Figure 7.5e).

A similar strategy was used for thresholding the subtracted image for the

compatible lesions. Instead of subtracting a value from the maximum density

pixel intensity, 50% of this value was found to be a suitable threshold (Figure

7.5f). Using a dynamic thresholding approach for the lesion segmentation allows

for the individual RIL to vary in colour without compromising the partitioning

of disease symptom segmentation.

With the use of duel thresholding strategies for the compatible and incompat-

ible lesion types that, while being separate, are also able to threshold lesions with

some overlap, means that the entire spectrum of lesion types can be captured.

Figure 7.6 shows the results of the segmentation techniques described here for a

B. distachyon leaf showing a variety of lesion types. It can be seen that both leaf

and lesion boundaries have been accurately partitioned across the entire spectrum

of lesion types.

7.4.1.2 Extraction of disease related features

The segmentation of disease response related ROI, allows quantitative measure-

ments to be extracted. In relation to rice blast disease these features include

measures relating to lesion density, size, shape, colour and texture (Camargo and

Smith 2009). Measurements are extracted on an individual lesion basis which can

then be averaged to give the overall lesion measures for individual leaves.

The initial segmentation of the entire leaf allows the total leaf area to be

measured and therefore the lesion density. Size measures are extracted as pixel

counts but can be calibrated to ‘real world’ units by measuring the size of a single

pixel. For the acquired images, a single pixel is equivalent to 8.94 × 10−4 mm2.

The number of lesions segmented on an individual leaf can be divided by the leaf

area to give the lesion density.

Lesion area and eccentricity give measures of lesion size and shape. Similar to

leaf area, lesion area is also given in pixel counts that can be calibrated to mm2.
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(a) RGB image

(b) Red channel

(c) Green channel

(d) Blue channel

(e) Pixel intensity distributions
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Figure 7.4: RGB image channels of an example ABR6 leaf showing in-
compatible disease symptoms
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(a) RGB Image

(b) Red Channel

(c) Green Channel

(d) Red channel subtracted from the green channel

(e) Thresholding the green channel
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Figure 7.5: Lesion segmentation using image subtraction and threshold-
ing. e & f are density plots of c & d respectively. The red lines indicate the pixel
intensity with the highest density. The blue lines indicate the thresholding values
used.
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(a) Original Image

(b) Segmented leaf

(c) Segmented lesions

(d) Outlined segmented lesions

Figure 7.6: Segmentation results of Rice Blast disease response pheno-
types.

182



Eccentricity measures how elliptical a lesion is with circles having a value of 0

and straight lines a value of 1.

Lesion colour measures can be calculated by averaging pixel intensities across

the lesion for each RGB colour channel. Also the standard deviation can be

calculated which can indicate the extent of variability in a lesions colour.

Features relating to image texture can be used describe the spatial arrange-

ment of pixel intensities across a lesion. There are numerous measures that

are calculated based on co-occurrence matrices. These features include angular

second moment, contrast, correlation and entropy (Haralick, Shanmugan, and

Dinstein 1973).

As can be seen from Figures 7.7, 7.8 and 7.9, most of the extracted features

show little difference between the differential response phenotypes of Bd21 and

ABR6. The only feature that is showing a significant difference between the

ecotypes is lesion area. The compatible lesions of Bd21 are 5 times larger in

area than the incompatible lesion of ABR6 with averages of 0.43 and 0.09 mm2

respectively (Figure 7.7b).

As would be expected, lesion density did not show any difference between

the ecotypes (Figure 7.7a). This more likely to be affected by differences caused

during inoculation and the coalescence of lesions. It could potentially be a useful

measure when developing inoculation techniques as a way of checking for unifor-

mity in inoculation across a tray of plants. Interestingly, there was no appreciable

differences in the eccentricity between compatible and incompatible lesions (Fig-

ure 7.7c).

There was no difference found between compatible and incompatible lesions

in both their colour and texture features in both the red and green channels.

7.4.1.3 Validation of computer vision disease measurements

Important in the use of computer vision based image analysis for plant pheno-

typing is the validation of segmentation and feature extraction results relevant to

the biological question. This is especially important for quantifying plant disease
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Figure 7.7: Ecotype comparisons of density, size and shape fea-
tures extracted from leaf images. Elliptical eccentricity is calculated by√

1−minoraxis2/majoraxis2 with a circle having a value of 1 and a straight
line a value of 0. Error bars show 95% confidence intervals estimate using the t
distribution.
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Figure 7.8: Ecotype comparisons of colour features extracted from leaf
images. Individual graphs based on green and red RGB channels. Error bars
show 95% confidence intervals estimate using the t distribution.
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Figure 7.9: Ecotype comparisons of texture based features extracted
from leaf images. Texture features based on those described in (ref). Individual
graphs based on green and red RGB channels. Error bars show 95% confidence
intervals estimate using the t distribution.
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response phenotypes as these are complex phenotypes that involve a number of

factors that contribute to their classification. The main goal of using computer

vision for plant disease response quantification is that it can remove bias, sub-

jectivity and inconsistency that scoring based phenotyping can introduce (Bock,

Hotchkiss, and Wood 2016). Scoring based phenotyping approaches also require

a certain level of expertise and experience in identifying the correct phenotype.

This becomes even more complex when response phenotypes are quantitative in

nature. However, response scoring has application in this context in ensuring the

validity and relevance of image extracted measurements to the disease response

phenotype.

In the previous section (Section 7.4.1.2) it was identified that lesion area

showed a significant difference between ABR6 and Bd21. To confirm this associ-

ation, lesion area was compared to response scores of individuals from the entire

ABR6 x Bd21 mapping population (Figure 7.10). An exponential relationship

was identified with an R2 of 0.87 (p < 0.001) suggesting that lesion size con-

tributes to a substantial proportion to the characterisation of rice blast disease

response phenotypes.

7.4.2 The identification of linked loci for rice blast disease

resistance B. distachyon

The extraction of lesion area measurements, suitable as phenotypic indicators

of rice blast response between ABR6 and Bd21, allows their analysis for QTL

linkage. This section focuses on QTL analyses for QTLs related to rice blast

resistance and the identification of candidate NB-LRR resistance genes that may

be present in these regions.

7.4.2.1 QTL mapping to identify the Rbr1 disease resistance locus

CIM analyses of average lesion area from the F4:5 population against the F4 link-

age map identified two significantly linked markers on chromosome Bd4 (Figure

7.11a). This corresponds to markers Bd4 8406855 and Bd4 11697916. A third
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(a) Lesion area versus response score
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Figure 7.10: Validation of lesion area measurements using response
scores in the ABR6 x Bd21 mapping population.
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locus was identified (Bd4 43441185) that was just below the permuted LOD sig-

nificance threshold.

Figure 7.11b shows genotype-phenotype plots for each of the markers iden-

tified. Both markers Bd4 8406855 and Bd4 11697916 show clear linkage with

homozygotes for the ABR6 allele and heterozygotes showing lesions areas < 0.2

mm2 corresponding to a resistant disease response phenotype. The homozygotes

for the Bd21 allele (BB) are showing larger lesion areas corresponding to a sus-

ceptible response phenotype. However, there are a number of homozygous lines

that are also showing smaller mean lesion areas. This could be as a result of under

inoculation of those lines or the result of other environmental factors. In marker

Bd4 8406855 showed a few dominant homozygotes (AA) that had an average le-

sion area above 0.2 mm2. With the close proximity of these loci and insufficient

genetic resolution within the ABR6xBd21 genetic map, they were named as a

single locus, Rice Blast Resistance 1 (Rbr1).

7.4.2.2 Candidate NB-LRR genes at the Rbr1 locus

LOD support intervals from SIM were used to identify candidate NB-LRR genes

within the identified locus. Figure 7.12 shows the respective LOD support in-

terval of markers Bd4 8406855 and Bd4 11697916 with respect to their physical

distance. The intervals of these markers clearly overlap showing their close prox-

imity. There were a total of 102 found between the 2-LOD support interval

on B. distachyon chromosome 4. Of these genes, 8 have putative annotations

as NB-LRRs resistance genes (Tan and Wu 2012). These are shown in Table

7.2. No previous association of these genes has been found with disease resis-

tance. However, interactions of Bradi4g10030, Bradi4g10060, Bradi4g10190 and

Bradi4g10220 with micro RNAs have been previously identified in response to

Fusarium culmorum infection (Lucas, Bata, and Budak 2014).
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Figure 7.11: QTL analysis of lesion area data using the ABR6 x Bd21 F4

genetic map. a) Lesion area CIM results. The blue line denotes the permuted
LOD significance threshold based on 1000 permutations. b) Plots of markers
found to be above the LOD significance threshold.
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Figure 7.12: LOD support intervals of significant markers found in the
Rbr1 locus. Bold line denotes the physical position of the marker. The box
denotes the 1st LOD support interval. The whiskers denote the 2nd LOD support
interval.

Table 7.2: NB-LRRs identified within the 2-LOD support interval of the
Rbr1 locus.

Gene Start Stop Length Annotation
Bradi4g10030 9657274 9665856 8582 NBS LRR
Bradi4g10060 9703405 9712329 8924 NBS LRR
Bradi4g10180 9836900 9846084 9184 NBS LRR
Bradi4g10190 9872684 9878529 5845 NBS LRR
Bradi4g10220 9901509 9904547 3038 NBS LRR
Bradi4g11920 11867878 11871924 4046 NBS LRR
Bradi4g11930 11878021 11880671 2650 NBS LRR
Bradi4g11940 11900832 11903917 3085 NBS LRR
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7.5 Concluding remarks

This chapter has shown the applicability of computer vision approaches for ac-

curately phenotyping plant disease responses for the identification of linked gene

loci. A computer vision method was developed that was able to differentiate lesion

area between the compatible and incompatible responses of Bd21 and ABR6. This

method of image processing could potentially be applied to other plant pathogen

interactions with the adjustment of thresholding parameters for lesion segmenta-

tion. Also this would be dependant on the similarity of symptoms to those of the

interaction between B. distachyon and M. oryzae.

Lesion area measurements using computer vision were able to identify a signif-

icantly linked genetic locus (Rbr1), responsible for resistance and susceptibility

in ABR6 and Bd21. Within the Rbr1 locus, 8 candidate NB-LRR genes were

identified.

191



Chapter 8

General conclusions and future

work

8.1 Summary of general conclusions

The central aim of this thesis was to integrate omics analyses to investigate the

pre-symptomatic phases of both compatible and incompatible interactions of M.

oryzae and B. distachyon.

Accomplishing this required the development of a spectral binning method

for FIE-HRMS metabolome fingerprinting in Chapter 3. The software package

binneR was developed as a solution for applying spectral binning to FIE-HRMS

data. A bin width of 0.01 amu was found to be optimal for spectral binning; this

retained resolution, without introducing substantial amounts of missing data or

artifacts.

Noise and variability and missing data within FIE-HRMS fingerprints requires

rigorous data pre-treatment and filtering prior to statistical analysis. Suitable

normalisation, scaling and variable filtering need to be applied that are depen-

dent on the experiment and sample context. The added resolution of FIE-HRMS

fingerprints also allows increased confidence in putative metabolite identifica-

tion compared to previous nominal mass techniques. This has the potential

for substantially improving the quality of hypothesis generation when applying
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metabolome fingerprinting that can then better inform further metabolomic anal-

yses and experimentation.

The development of FIE-HRMS metabolome fingerprinting in Chapter 3

allowed key aspects of experimental control and robustness of the interaction

between B. distachyon and M. oryzae to be investigated in Chapter 4. It was

identified that inoculum constituents other than pathogenic fungal spores were

able to elicit substantial metabolomic responses in B. distachyon, unrelated to

pathogenesis of M. oryzae. A method of suitably controlling for these responses,

by the use of a non-pathogenic control inoculum, was developed using cycles of

deep freezing and vortexing to neutralise M. oryzae spores.

An external validation re-sampling approach was applied to investigate the

robustness of metabolome changes between independent inoculations in the pre-

symptomatic phases of both compatible and incompatible interaction of B. dis-

tachyon and M. oryzae. It was found that metabolome changes do vary between

inoculations and that this variability is dynamic between time points with some

phases of pathogenesis being more reproducible than others. This highlighted the

importance of taking into account the variability in inoculations when investigat-

ing plant-pathogen interactions using omics analyses.

The investigation of elements key of omics analyses of plant-pathogen in-

teractions in Chapter 4 allowed the application of both metabolomic analyses

and transcriptomics analysis of the pre-symptomatic phases of both compatible

and incompatible interactions between B. distachyon and M. oryzae. Chapter

5 identified a range of metabolites that were found to be altered during these

initial interaction phases. These included amino acids, fatty acids, purines and

pyrimidines in both compatible and incompatible interactions using FIE-HRMS

and LC-HRMS analyses. Gene co-expression clusters were also identified from

RNA-Seq transcriptomic analyses that included functional enrichment for tran-

scripts related to photosynthesis, amino acid synthesis and hormone metabolism

in both compatible and incompatible interactions. It was identified that the ex-

tent of metabolomic and transcriptomic changes were not found to be linear with
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disease progression with M. oryzae spore germination phases being more explana-

tory than it’s penetration and initial colonisation phases in both the compatible

and incompatible interactions.

With the genes and metabolites identified as explanatory during the interac-

tions between B. distachyon and M. oryzae in Chapter 5, Chapter 6 attempted

to directly integrate these omics data. Pathway and network analyses revealed

that chloroplasts were important centres in response to M.oryzae infection and

that nitrogen metabolism was altered in both compatible and incompatible re-

sponses. There were alterations to metabolites involved in light independent

photosynthetic reactions and genes involved in photosystems I and II. It was hy-

pothesised that this was in response to reductions in photosynthetic rates during

the initial host recognition phases. Alterations to lipoxygenase genes expression

changes and poly unsaturated fatty acids were also hypothesised to be related to

light independent generation of ROS. Changes in amino acids levels and genes

involved in their synthesis indicated that there was alteration to nitrogen mobil-

isation. However, the interpretation of these changes were difficult due to the

likely spatial differentiation of these responses.

There was a substantial difference in the extent of down regulation in primary

and secondary metabolism related genes and metabolites in the compatible com-

pared to the incompatible interaction during the spore germination phases. It

was hypothesised that these differences in pathogen recognition responses could

be related to the initiation of the incompatible responses rather than those of

only innate responses present in both the ecotypes.

It was identified in Chapter 5 that there were substantial transcriptome

and metabolome differences between the ecotypes used in the investigations of

compatible and incompatible interaction with M. oryzae. These would be likely to

confound direct comparison of compatible an incompatible responses. A solution

to this would be the use of transformed isogenic lines differing only in genes

responsible for responses to M. oryzae. To initiate investigations towards this

goal, a computer vision based approach was used to quantify disease responses for
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QTL analysis of RILs from an ABR6 x Bd21 mapping population. A significantly

linked genetic locus, subsequently named Rbr1, was found on chromosome 4 of B.

distachyon. There were 8 candidate NB-LRR disease resistance genes identified

within this locus.

The results presented here are a novel example of the integration of metabolomic

and transcriptomic analyses to investigate a plant-pathogen interaction. They lay

a foundation for substantial further investigation into elucidating key M. oryzae

effector targets within the B. distachyon system as well as pathways involved in

the resistant responses initiated by B. distachyon.

8.2 Future work

Immediately furthering these analyses presented in this thesis would require the

confirmation of putative metabolite annotations using MS/MSn analyses, compar-

ing fragmentation patterns with that of chemical standards. The transcriptional

profiles of RNA-Seq analyses would also require confirmation by qPCR analyses.

These integrative analyses could be enhanced by the application of further

omics levels such as proteomic analyses. As many of the molecular interactions in-

volved during plant-pathogen interactions are that of protein-protein interactions

and enzymatic disruption, the use of shotgun proteomic analyses could provide

valuable information in addition the transcriptional and metabolite associations

identified here (Haynes and Roberts 2007).

There are a number of technical issues in analysing this interaction using

omics analyses. The further characterisation of the Rbr1 locus and the eventual

transformation of Bd21 to yield a genotype resistant to M. oryzae would allow

the removal of genetic variability and direct comparisons between compatible

and incompatible interactions to be made. This could allow substantial char-

acterisation of the recognition pathways and response pathways involved in the

incompatible M. oryzae response as well as the identification of potential effector

targets involved in the suppression of these responses.

One of the limitations of the metabolomic analyses presented in this thesis
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is confidently assigning which organism is the source of the metabolite changes.

Unlike the transcriptional changes, where the alignment of reads to an organisms

genome allows automatic assignment, many primary metabolites will be shared

between the organisms.

In the interaction between A. thaliana and P. syringae, a dual metabolomics

approach has been developed utilising plant cell-pathogen co-cultures (Allwood

et al. 2010). The host and pathogen cells can be separated by differential fil-

tering and centrifugation, allowing metabolomic analyses to be conducted sep-

arately on each organism. Unlike bacterial pathogens that colonise the plant

apoplast, biotrophic fungal pathogens establish intimate interfaces with their

hosts (O’Connell et al. 2012). This would make the separation of plant cell-

pathogen co-cultures difficult. The utility of the use plant cell cultures is also

questionable for studying plant pathogen interactions when they are not under

the physiological constraints that would be found in planta (Allwood et al. 2010).

Stable isotopic labelling of the host and/or pathogen species could provide

an alternative means of assigning organism specific metabolic changes. This

would allow the differentiation of mass spectral signals resultant from either the

pathogen or the host (Godin, Fay, and Hopfgartner 2007). However, the changes

resolvable using this method are likely to be short lived as there will a dilution of

the isotope, Conducting the interaction would require the exposure of one or other

of the labelled organisms to an unlabelled environment. Horst et al. (2010) used

stable isotope labelled 15N to investigate alterations in nitrogen allocation dur-

ing the interaction between Zea mays and U. maydis, identifying that U. maydis

induced tumours showed a reduce assimilation of soil-derived 15NO –
3 becoming

strong nitrogen sinks.

Single cell metabolomics could provide another solution to organism specific

assignment. Cellular contents can be removed using a metal-coated microcappil-

lary under video-microscopy observation. This can be directly fed into a mass

spectrometer using nanospray ionisation. Ion mobility separation can be used to

provide further separation post ionisation (Fujii et al. 2015). Cellular contents of
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both the plant and fungal cells could be sampled independently giving organism

specific metabolite profiles. This could also be extended to single cell transcrip-

tomics, applying RNA-Seq to single cell mRNA profiles to investigate the gene

expression of the individual cells (Tang et al. 2009).

Closely linked to the issue of organism assignment of metabolite profiles is

the spatial changes occurring within plant tissues during pathogenesis. The re-

sults of this thesis deal only with the temporal changes; however, as discussed in

Sections 6.4.3.1 and 6.4.3.2, many cellular responses are spatially differentiated

during pathogenesis such as photosynthesis or nitrogen mobilisation responses.

Resolution of the spatial responses occurring across the leaf tissue would also

provide information as to the likely organism origin of those changes.

Applying omics analyses to investigate the spatial changes during plant pathogen

interactions would be reliant on appropriately sampling and analysing separate

regions of the plant tissue. There are a number of techniques that could be used in

order to achieve this. The single cell sampling by microcapillary and microscopic

observation discussed previously would provide one method that could allow both

transcriptomic and metabolomic analyses. Micro dissection of leaf regions would

also allow this (Kueger et al. 2012).

There are few metabolomic techniques that would allow spatial distributions

to be investigated. These include NMR spectroscopy that can be used to produce

metabolomic fingerprints of intact plant organs (Kim, Choi, and Verpoorte 2011).

Mass spectral imaging techniques utilising desorption electrospray ionisation and

matrix assisted laser desorption ionisation coupled to MS, can provide spatial

information on a wide range of molecules. They use solvent droplets or lasers

respectively to ionise molecules from the surface of intact plant tissues, however

they are other limited by necessary dehydration tissue pre-treatments prior to

analysis (Muller et al. 2011; Kaspar et al. 2011). A further method is the use of

laser ablation electrospray ionisation that can be used on fresh living plant tissue

and has been used to investigate the depletion of α-Tomatine at interaction sites

in tomato during Cladosporium fulvim infection (Etalo et al. 2015).
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Applying these suite of techniques would be essential in successfully elucidat-

ing the complex and dynamic system alterations that occur during B. distachyon

and M. oryzae interaction.
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