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Abstract

This PhD project is a collaboration between Smart Light Devices, Ltd. in Aberdeen
and Aberystwyth University on the development of such 3D laser scanners with an
ultimate aim to inspect the underwater oil and gas pipes or structure. At the end of
this project, a workable and full functional 3D laser scanner is to be developed. This
PhD project puts a particular emphasis on the engineering and implementation of the
scanner according to real applications’ requirements. Our 3D laser scanner is based on
the principle of triangulation and its high accuracy over a short range scanning. Accurate
3D data can be obtained from a triangle between the scanner, camera lens, laser source,
and the object being scanned. Once the distance between the scanner camera lens and
laser source (stereo baseline) is known and the laser projection angle can be measured by
the goniometer, all the X,Y,Z coordinates of the object surface can be obtained through
trigonometry.

This 3D laser scanner development involves a lot of issues and tasks including image
noise removal, laser peak detection, corner detection, camera calibration and 3D recon-
struction. These issues and tasks have been addressed, analysed and improved during the
PhD period. Firstly, the Sparse Code Shrinkage (SCS) image de-noise is implemented,
since it is one of the most suitable de-noising methods for our laser images with dark
background and white laser stripe. Secondly, there are already plenty of methods for
corner and laser peak detection, it is necessary to compare and evaluate which is the
most suitable for our 3D laser scanner. Thus, comparative studies are carried out and
their results are presented in this thesis. Thirdly, our scanner is based on laser trian-
gulation, in this case, laser projection angle α and baseline distance D from the centre
of the camera lens to laser source plays a crucial role in 3D reconstruction. However,
these two parameters are hard to measure directly, and there are no particular tools
designed for this purpose. Thus, a new approach is proposed in this thesis to estimate
them which combines camera calibration results with the precise linear stage. Fourthly,
it is very expensive to customize an accurate positional pattern for camera calibration,
due to budget limit, this pattern is printed by a printer or even painted on a paper or
white board which is inaccurate and contains errors in absolute distance and location.
An iterative camera calibration method is proposed. It can compensate up to 10% error
and the calibration parameters remain stable. Finally, in the underwater applications,
the light travel angle is changed from water to air which makes the normal calibration
method less accurate. Hence, a new approach is proposed to compensate between the
estimate and real distance in 3D reconstruction with normal calibration parameters. Ex-
perimental results show the proposed methods reduce the distance error in 3D down to
±0.2mm underwater. Overall, the developed scanning systems have been successfully
applied in several real scanning and 3D modelling projects such as mooring chain, un-
derwater pipeline surface and reducer. Positive feedback has been received from these
projects, the scanning results satisfy the resolution and accuracy requirements.
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Chapter 1

Introduction

In 2007, Smart Light Devices, Ltd. and Aberystwyth University agreed to collaborate on
a project to develop 3D laser scanners for underwater oil and gas scanning. The project
intended to build a 3D laser scanner for oil and gas industry inspection, such as pipeline
internal/external surface survey, object structure analyses. The final objective is after
three years’ research, there will be a workable, robust 3D scanning system developed
and tested. It includes the 3D laser scanner components’ and software kits development.
Any issues, problems, and technology used or invented during the development will be
counted into part of PhD research. The great advantages of this project are that all
the used and developed methods, theories and programs can be applied in real world
applications directly. Most of the problems, bugs and issues in the real applications need
to be solved immediately. It is dual learning processes between research and application.
In addition, working in the real applications gives us great opportunities to deal with
the challenges from real tests such as the cable is broken, the computer gets crashed,
software contain bugs which may not happen in the lab. Comparing with the research
in a lab, there are more factors to be considered. The complex real applications always
come with different and special requirements. The scanner and software needs to be
adapted to fit those requirements. Moreover, the system running speed, data storage
and environmental issues also need to be taken into account. Overall, this is not only
pure research but also implementation engineering and optimization.

In underwater inspection, there are needs for sensors that can determine the structure
of an asset. These measurements are usually represented as a 3D digital point cloud and
used for engineering calculations, maintenance planning, and ROV (Remotely operated
underwater vehicle1) localization. The most prevalent technology in this field is sonar.

1A remotely operated vehicle (ROV) is a tethered underwater vehicle. They are widely used in deep
water industries like offshore hydrocarbon extraction. Sometimes, an ROV is called a remotely operated
underwater vehicle to distinguish it from remote control vehicles operating on land or in the air. dROVs
are unoccupied and highly maneuverable vessels operated by a person aboard. They are linked to the ship
by a tether (sometimes referred to as an umbilical cable), a group of cables that carry electrical power,
video and data signals back and forth between the operator and the vehicle. High power applications
will often use hydraulics in addition to electrical cabling. Most ROVs are equipped with at least a video
camera and lights. Additional equipment is commonly added to expand the vehicle’s capabilities. These
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High frequency multi-beam sonar systems are capable of capturing complete 3D digital
point-cloud representations of underwater environments. There are however physical
limitations to the resolution capability of these technologies for understanding small and
important features of structures as cracks and erosion in concrete structures, welds and
dents in metallic marine infrastructure. However, 3D laser scanners are able to capture
details of underwater assets that are previously unobtainable.

There is huge market and demand for underwater 3d scanning particularly in oil
and gas pipe inspection, survey and science research. Underwater laser scanners provide
several clear advantages over sonar systems at relatively short ranges. The measurement
resolution is multiple orders of magnitude higher, enabling very dense point clouds. Mea-
surements made from dense laser point clouds will in general be much more accurate than
those taken from relatively sparse sonar point clouds. The typical sonar system has a
scan range from 0 ∼ 1m with about 5cm resolution. With laser scanner, the range can be
from 0 ∼ 3m with up to < 1mm resolution. Additionally, laser systems are not affected
by confined spaces prone to acoustic echoes. The ideal application for an underwater
laser scanner involves short-range, high-detail measurements of specific locations on an
asset. Such applications include damage assessment, archaeological documentation, and
quality control/inspection.

1.1 Scanning procedure

In this section, a brief description of the entire 3D scanning procedure is presented.
Fig.1.1 shows the most used scanner designs with dual laser sources. The camera is
placed in the middle of the block and the two laser sources are placed at two sides with a
projection angle about 60◦. During the scanning, one side of the laser will be turned on
and sweep the object surface. For the reason of the camera field of view (FOV), the laser
projection angle and object’s shape (like a sphere), the scanner will not be able to cover
the entire surface. Therefore, by controlling the linear stage to travel in reverse direction
with other laser, it is able to sweep the object’s rest surface. These two different 3D
scans can be merged thereafter so that a larger coverage of the object can be built.

Base on this design, Fig.1.2 shows the main steps of the entire process in 3D scanning.
Steps 1 ∼ 5 are to calibrate the whole system and obtain the important parameters for
Step 8, such as camera focal length and laser projection angle. They are normally done
in the lab before the equipment is sent out. Step 9 may not be necessary in most cases
which depends on the client’s requirement. In some of the steps such as 2, 5, 7, they
involve image acquisition and processing. Feature detection and noise removal methods
are applied to these steps. The details can be found in the later chapters.

Basically, the scanner is made of an optical camera and laser stripe generators, plus
positioning tools. For instance, the linear stage holds and moves the scanner to acquiring
3D coordinates in one axis. Development of this 3D scanning system requires a wide
range of knowledge including camera calibration, image noise removal, feature detection,

may include sonar, magnetometers, a still camera, a manipulator or cutting arm, water samplers, and
instruments that measure water clarity, light penetration and temperature.
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Figure 1.1: Dual lasers 3D scanner design

Figure 1.2: The 3D scanning main steps
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data acquisition and communication between hardware and software, 3D reconstruction,
data storage and visualization, data analysis and classification. Fig.1.3 shows the dia-
gram that contains all tasks, techniques, and topics which have to be achieved, used,
developed or relevant to this project.

Figure 1.3: The decomposition of the PhD project

Feature detection is a very important preprocessing step for all those relative tasks,
including laser peak detection, corner/circle detection which are used for camera cali-
bration. By comparing the well-known existing corner detection methods [49], the most
suitable detector for our applications can be selected like in [11]. In the same way, by
evaluating the existing laser peak detection methods, the FIR [24] convolution method
is the most accurate and adaptable, even though the laser stripe is usually saturated due
to the highly reflective surface and the higher laser power.

Camera calibration is another important step: it relates the 3D real world to the
projected 2D images and allows the reconstruction of the 3D world from its captured
2D images. To this end, it has two main purposes: (1) find out the intrinsic/extrinsic
parameters for achieving geometry information [83, 3]; (2) remove the distortion which
comes from the nature of camera’s lens. The distortion factors are able to model and
remove the lens distortion. These calibration parameters are crucial parts of any 3D
laser scanner. The distortion factors can be used for image distortion removal and in-
trinsic/extrinsic parameters are used for 3D reconstruction in our triangulation based 3D
scanner, which is explained in Chapter 5. Even though camera calibration is somewhat
mature after dozens of years’ research and development, a novel iterative refinement
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based method is proposed in this thesis for more accurate camera calibration results.
The main factor that affects the calibration result is the control point detection and
actual calibration pattern design. There are plenty of feature detection methods that
can be used nowadays and give us reasonably precise detection. However, the accurate
locations of such patterns require precise engineering and are costly to build [16]. Hence,
the inaccurate 3D location of control points is considered in the proposed method, which
can compensate up to 10% absolute error in x, y, z coordinates based on our currently
3D scanner’s setting.

National Research Council of Canada is among the earliest institutes for the devel-
opment of the triangulation based laser scanning technologies in 19782 [54]. The trian-
gulation based laser scanning technologies are relatively easy to implement and cheap to
run. Our laser scanner based on this principle as shown in Fig.5.1. The crucial task is
to estimate the laser stripe projection angle α and the distance D between the centre of
the lens to the laser. These two parameters and the position of laser dots in the image
fully determine the shape and size of the triangle and give the location of the laser hit
point on the object surface in 3D space. However, the distance D from the centre of
the lens to laser and the projection angle α are almost impossible to measure directly,
since they are difficult to define and locate inside two physical objects and determine a
reference for the measurement of the projection angle. A new approach makes full use
of the precise linear stage and the image formation geometry proposed to estimate these
two parameters in Chapter 5.

It is a great challenge to apply our scanner in underwater environments. The main
difficulty is the water index that is different from air, thus the light bends an angle when
it travels from the air into the water as Fig.1.4 shows. Various index values will lead to
various bending angles. Temperature, salinity and soluble matter inside (sea/river) water
also affect its index and thus light refraction. This kind of refraction affects the entire
system including camera calibration and triangulation. More details about refraction,
light bending can be found in Chapter 5.4. However, it is still possible to implement a
3D scanner in the underwater environment. Experimental Chapter 6 and real projects
Chapter 7.2 show some examples and analysis when our system applied to underwater
applications. Overall, this thesis is about the research, developing and building the 3D
laser scanning system. All the methods, technologies and related researches serve this
ultimate goal. Thus, the project puts special emphasis on the pragmatic development of
the scanner, rather than on the advance of the techniques involved. A reliable, robust
and ready for real application 3D laser scanner was built after this PhD project. The
next chapter will show a brief survey of existing scanning technologies as compared to
our system.

1.2 Thesis structure

This thesis is structured and organized as follows based on the scanning procedure:

2Access on 4th July, 2011, http://en.wikipedia.org/wiki/3D scanner#Triangulation
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Figure 1.4: Light entering water from the air.

Chapter 3 evaluates the most widely used and latest methods in three image pro-
cessing tasks: Noise removal, corner and laser peak detection. (1) In the noise removal,
the method ”Sparse Code Shrinkage image denoise” (SCS will be the abbreviation in the
following content) is evaluated. It has better performance to remove Gaussian noise than
other commonly used noise removal techniques such as Gaussian, median and Wienier
filters. (2) A comparative study is carried out over the most commonly used corner
detection methods including Harris, SUSAN corner detectors. The corner detection is
an important pre-step for camera calibration and those detected corners are used as
2D input dataset. By the evaluation, the most accurate, robust and resistant to noise
method will be selected. (3) To be able to recover the geometry information from the
triangulation based laser scanner, the laser peak location must be detected precisely and
efficiently. It is necessary to compare these peak detection methods and know how they
affect the final 3D model accuracy.

Chapter 4 firstly describes the camera calibration concepts including perspective
projection model, distortion model and optimization. After that, a new camera distortion
model is proposed. It has the ability to model the lens distortion but not require any
prior knowledge about what kind of distortion of the lens was subject to. In addition, an
iterative camera calibration method is proposed to compensate the inaccurate 3D object.
Even though the 3D object contains up to 10% absolute distance error, the calibration
parameters remain stable.

Chapter 5 proposes a new approach to estimate the laser projection angle and baseline
length, which is the distance from the laser to the camera’s CCD, lens. These two
parameters play important roles in our triangulation based 3D laser scanner. They are
used to recover the 3D geometry information from the 2D laser stripe images. However,
the baseline length is almost impossible to measure directly because of their physical
limitation, in which case, firstly, it is difficult, if not impossible, to localize the centres of
these components; secondly, even though they can be localized, they lie inside and thus
are not accessible for direct distance measurement. The proposed method manipulates
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other available components like the precise linear stage and related geometry for the
estimation of the parameters of interest.

Chapter 6 presents the experimental results based on the techniques and methods
described and proposed in the previous chapters. Individual experiment is carried out
for each task as follows:

1. Image noise removal

2. Corner detection

3. Laser peak detection

4. Lens distortion modelling

5. Camera calibration result refinement

The performance of the various methods and their impact on the 3D reconstruction
accuracy will be evaluated. Finally, all the techniques and methods will bring into the
system together for overall evaluation.

Chapter 7 describes all the main scanning projects we did during the PhD study
period. The algorithms and methods were applied to applications in the real world.
Thus, the reliability, speed, or any other concerns need to be counted in. Compared with
the experiments just in the lab, sometimes the real world problems are unpredictable.
Thus, this real world scenario provides us with a great opportunity to test our products,
algorithms, methods and programs. The feedbacks from the scanning jobs are one of the
critical parts in our research.
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Chapter 2

Literature Review

2.1 3D Laser scanner’s history

At a conference in 1959, Gordon Gould published the term LASER in the paper ”The
LASER”, Light Amplification by Stimulated Emission of Radiation [25]. Gould’s lin-
guistic intention was using the ”Laser” word particle as a suffix - to accurately denote
the spectrum of the light emitted by the LASER device; thus x-rays: xaser, ultraviolet:
uvaser, et cetera; none established itself as a discrete term, although ”raser” was briefly
popular for denoting radio-frequency-emitting devices.

The word laser started as an acronym for ”light amplification by stimulated emission
of radiation”; in modern usage ”light” broadly denotes electromagnetic radiation of any
frequency, not only visible light, hence infrared laser, ultraviolet laser, X-ray laser, and
so on. Because the microwave predecessor of the laser, the maser, was developed first,
devices of this sort operating at microwave and radio frequencies are referred to as
”masers”rather than ”microwave lasers”or ”radio lasers”. In the early technical literature,
especially at Bell Telephone Laboratories, the laser was called an optical maser; this term
is now obsolete. 1

Since the laser is invented, it was developed for 3D imaging and came into the market
very quickly, below is the brief Summary of Milestones, 2

• 1968 - Academics from Cambridge University produced the prototype of a laser-
based digitizing scientific instrument called Sweepnik.

• 1969 - Laser-Scan founded at Madingley Road to produce Sweepniks.

• 1972 - First sale of Sweepnik by Laser-Scan.

• 1972 - Prototype HRD-1 large-screen display and plotter built.

• 1973 - First cartographic software written for the HRD-1, led to sales into early
digital mapping.

1Access on 22nd July, 2011, http://en.wikipedia.org/wiki/Laser#cite note-3
2Access on 22nd July, 2011, http://www.pghardy.net/lsl/lsl history.html
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After that, this laser 3D scanner is widely used, in the meanwhile, different types of
3D scanner were invented. A short survey is presented in the next section.

2.2 Existing 3D scanners survey

A survey of existing 3D scanning technologies is presented in this section. A 3D scanner
is a device that samples data on the shape and possibly the appearance (i.e. color) of
a real world object or environment (background). The collected data can then be used
to construct digital, three dimensional models useful for a wide variety of applications.
For example, these devices are used extensively by the entertainment industry in the
production of movies and video games. Other common applications of this technology
include industrial design, reverse engineering and prototyping, quality control/inspection
and documentation of cultural artifacts. A well-established classification divides them
into two types: contact and non-contact 3D scanners. Non-contact 3D scanners can
be further divided into two main categories: active and passive scanners 3. There are
varieties of technologies that fall under each of these categories. Apparently, the process
of contact scanning might modify or damage the scanned object. The consequence is
very significant when scanning delicate or valuable objects. Hence, contact scanners have
limited applications. In this survey, we focus on the non-contact 3D scanners. There are
several techniques used in non-contact 3D scanners to collect data. The following are a
few commonly used techniques:

2.2.1 Structured light scanner

Optical 3D measurement technology is one of the most effective methods to acquire
object 3D information. It belongs to non-contact measurement with the advantages of
non-contact to measure surface and high sampling density. Among the methods, the
encoded structured light is widely used in such fields as 3D reconstruction and industrial
measurement because of its advantages in high accuracy, high measuring speed, low cost
and so on. There are two key steps in this system:

2.2.1.1 Calibration

Before doing the actual scanning, this projector-camera system needs to be precisely cali-
brated for a successful and accurate reconstruction. This is especially true for multi-view
reconstructions, where a given surface point is reconstructed several times and the cor-
responding reconstructed points have to meet in 3D space. Papers [67, 15, 46] presented
some of these projector-camera system calibration methods. In short, the projector can
be modelled as an inverse camera (i.e., one in which light travels in the opposite direction
as usual). Under this model, calibration proceeds in a similar manner as with cameras.
Rather than photographing fixed checker boards, the known checker board patterns are
projected and their distorted appearance is photographed when reflected from a diffuse

3http://en.wikipedia.org/wiki/3D_scanner

http://en.wikipedia.org/wiki/3D_scanner
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rigid object. This approach has the advantage of being a direct extension of Zhang’s
calibration algorithm for the cameras. As a result, much of the software can be shared
between camera calibration and projector calibration.

2.2.1.2 Encoding

In the premise of acquiring camera calibration parameters such as focal length, another
key problem with the encoded structured light method is to determine image sampling
point, which determines the object sampling point, and encoding stripe region (namely
projecting angle) in encoding patterns. Encoding methods can be classified into three
categories: time encoding, space encoding and direct encoding with their unique merits
and drawbacks. Existing time encoding method divides projecting angle by binary code
or Gray code [82], that sometimes are combined with phase shift [26, 68] to subdivide
projecting angle [72]. Fig.2.1 is one of the typical structured light scanner setups.

Figure 2.1: Geometry of structured light setup

To better understand light encoding, we can start from very simple ”desktop scanner”
originally proposed by Bouguet and Perona [6] as shown in Fig.2.2: (a) The scanning set
up composed of five primary items: a digital camera, a point-like light source, a stick,
two planar surfaces, and a calibration checkerboard (not shown). Note that the light
source and camera must be separated so that cast shadow planes and camera rays do
not meet at small incidence angles. (b) The stick is slowly waved in front of the point
light to cast a planar shadow that translates from left to right in the scene. The position
and orientation of the shadow plane, in the world coordinate system, are estimated by
observing its position on the planar surfaces. After calibrating the camera, a 3D model
can be recovered by triangulation of each optical ray by the shadow plane that first
entered the corresponding scene point.

The primary benefit of introducing the projector is to eliminate the mechanical
motion required in swept-plane scanning systems (e.g., laser striping or the desktop
scanner[6]) and lower down the system cost and complexity. Assuming minimal lens
distortion, the projector can be used to display a single column (or row) of white pixels
translating against a black background; thus, 1024 (or 768) images would be required
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Figure 2.2: 3D photography using planar shadows

to assign the correspondences, between camera pixels and projector columns (or rows).
After establishing the correspondences and calibrating the system, a 3D point cloud is
reconstructed using familiar ray-plane triangulation. However, a simple swept-plane se-
quence does not fully exploit the projector. Since we are free to project arbitrary 24-bit
colour images, one would expect that there exists a sequence of coded patterns, besides
a simple translation of a single stripe, that allow the projector-camera correspondences
to be assigned in relatively few frames. In general, the identity of each plane can be en-
coded spatially (i.e., within a single frame) or temporally (i.e., across multiple frames),
or with a combination of both spatial and temporal encodings. There are benefits and
drawbacks to each strategy. For instance, purely spatial encodings allow a single static
pattern to be used for reconstruction, enabling dynamic scenes to be captured. Alterna-
tively, purely temporal encodings are more likely to benefit from redundancy, reducing
reconstruction artifacts. A comprehensive assessment of such codes is presented by Salvi
[68]

2.2.2 Time-of-flight laser scanner

The time-of-flight 3D laser scanner is another active scanner using laser light to probe
the subject. It is similar as a time-of-flight laser range finder. The laser range finder
finds the distance of a surface by timing the round-trip time of a pulse of light. A laser is
used to emit a pulse of light and the amount of time before the reflected light is seen by
a detector is timed. Since the speed c of light is known, the round-trip time determines
the travel distance of the light, which is twice the distance between the scanner and the
surface. If t is the round-trip time, then the distance can be estimated as: (c · t)/2. The
accuracy of a time-of-flight 3D laser scanner depends on how precisely we can measure
the time t. 3.3 picoseconds (approx.) is the time taken for light to travel 1 millimetre.
The laser range finder only detects the distance of one point in its direction of view.
Thus, the scanner scans in its entire field of view one point at a time by changing its
direction of view in order to scan different points. The view direction of the laser range
finder can be changed either by rotating the range finder itself, or by using a system of
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rotating mirrors. The latter method is commonly used because mirrors are much lighter
and can thus be rotated much faster with greater accuracy. Typical time-of-flight 3D
laser scanners can measure the distance of from 10,000 to 100,000 points every second.

Clearly, the advantage of this scanner is their capability of operating over very long
distances on the order of kilometres. This scanner is thus suitable for scanning large
structures like buildings or geographic features. However, compared with other types of
scanners, it has disadvantages in accuracy. Due to the high speed of light, it is relatively
difficult to time the round-trip time, leading the accuracy of the distance measurement
to be relatively low, in the order of millimetres [9].

2.2.3 Triangulation based laser scanner

Figure 2.3: Laser-based optical triangulation (a)

The triangulation based 3D laser scanner is the most widely use technique in 3D
data acquisition. Basically, it shines a laser spot on the subject and exploits a camera
to look for the location of the laser dot. Depending on how far away the laser strikes
a surface, the laser dot/stripe appears at different places in the camera’s field of view.
To recover the geometrical structure of visible surface of objects from 2D images, the
laser-based optical triangulation method has been used in 3D scanning system. Fig.2.3
and Fig.2.4 depict the optical geometry of an optical probe (single 3D points) [3]. The
laser stripe can be treated as many dots, each dot captured in the image can be reversed
from 2D(x, y) point to 3D(X,Y,Z). The relationship among the parameters of interest
in this optical probe can be found in the law of cosines. This laser-based triangulation
model will be used in the following calculation. Knowing two angles (α, β) of the triangle
relative to its base (baseline D) determines the dimension of this triangle.
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Figure 2.4: Laser-based optical triangulation (b)

2.2.4 Current air 3D scanning system

The evaluation of 3D (three dimensional) scanners is presented on paper [8] for obtaining
3D models or objects which can be used to build virtual reality systems. The evaluation
methodology applies the MCDM (Multi Criteria Decision Making) concepts. It helps
decision makers to select the best 3D scanner, based on several criteria through compar-
ing the results obtained by applying three different MCDM methods. The 3D scanners
evaluated in [8] are shown in Fig.2.5. They cover the three main categories mentioned
above:

• Time of flight: Laser Scanner LS880

• Triangulation:

- Laser based: Laser Scan Arm

- Projector based: Star Cam FW-3, Atos I, Atos III Model Maker Z

The result shows that the best tool is Laser scanner LS880 from Faro Technologies
and the second best is Laser ScanArm from the same company. However, this LS800
based on TOF method has some disadvantages. Firstly, it may generate huge amount
of points and increase a lot of workload after scanning. Secondly, because of TOF, the
farther the object is to the scanner, the better the result is. This brings the benefits of
long distance object scanning since it is easier to measure the 3D depth with relatively
longer light travel time. Therefore, for close range (< 1m) object scanning, it may not
be the best. Laser ScanArm is more suitable for the close range scanning, the only
disadvantage will be the error from mechanical arm, and the reading of movement of
those arms may not be accurate enough.
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Figure 2.5: Identification and selection of 3D scanners

2.2.5 Current underwater 3D scanning system

The previous sections show some examples of 3D scanners which is designed to work
in air. For underwater 3D scanning, it does need some special design. Images taken
from underwater scenes usually suffer from poor contrast. Water-induced contrast decay
varies across the scene and is exponential in the depths of scene points, which prevents
standard computer vision algorithms from operating properly. Compared with a 3D laser
scanner in the air, underwater scanning is much more complicated due to the following
factors:

1. The water/air index differences cause light refraction and thus change the entire
perspective geometry of the camera as shown in Fig.1.4. The general camera
calibration model cannot be applied. In addition, the light refraction affects the
laser triangulation.

2. All the equipment needs to be waterproof. The camera and laser source should
be able to fit into the cylinder or some waterproof container. At the same time,
some of the equipment cannot be put in underwater such as: normal high accuracy
linear/rotation stage. So far, we have not found any of these stages that can be
operated underwater directly.

3. Due to the complex underwater circumstances, it is necessary to perform image
restoration[76], enhancement and colour correction [64].
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Fig.2.6 shows one of the underwater circumstances, the colour of the left image is
far away from its reality on the right. Depending on the refraction index of water
and absorption, the water colour can be green or yellow. Since our system uses a mono
camera, this factor still reduces our laser intensity and affects the light capturing. Fig.2.7
shows such crinkle pattern. When the water is very calm, its undulations resemble weak
positive and negative lenses, the negative ones diffusing the light, resulting in dark
patches while the positive ones focusing the light into bright patches. This effect also
causes the creative ’cathedral’ rays, sometimes visible. The mud in water will be another
circumstance as shown in Fig.2.8.

Figure 2.6: Underwater circumstances: Incorrect Colour

Figure 2.7: Underwater circumstances: Crinkle patterns

There are many factors to be considered and it is much more complicated to build a
3D scanner that can operate underwater. The scanning accuracy or resolution is lower
than normal air 3D scanner. A lot of aspects can be improved and more tests need to be
done. Furthermore, it is possible to extend the usage of the underwater laser scanning
in any transparent medium like glass. In the 3D scanner market, only a few companies
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Figure 2.8: Underwater circumstances: The mud

are managing to provide 3D underwater scanning services like 2G underwater scanner4

which is shown in Fig.2.9. Fig.2.10 shows USL-100 mounted on an underwater robot
(ROV). Here is how it works: the head of the sensor sweeps a line of laser light over a
surface and obtains measurements of hundreds of points along the line at each position,
capturing thousands of points per second. It is designed for scanning cylinder shaped
object like oil and gas pipeline. However, this rotation design has its defect to scan
non-cylinder shape object. When the motor rotates, the laser may not illuminate the
entire surface. Fig.2.11 explains this rotation scanner operating inside a pipeline. The
motor rotates at every angle but when the laser hits the flat surface, there are still some
blind areas. Camera cannot receive any reflected signal since the laser cannot illuminate
in such areas.

OptoPig 5 in Fig.2.12 is also designed for pipeline scanning with much larger diame-
ter. However, this equipment is much more expensive to rent, not many customers can
afford.

2.3 Summary

The 3D scanner technologies are already developed and implemented in many fields
but here is a huge market for the automatic inspection of the oil and gas pipes. The
current techniques are mainly based on human intervention. It is lack of accuracy and
speed, and operates on a small scale. There is a large room for modern techniques
to play in this aspect but only a few of them that can be applied in the underwater
working environment, such as sub-sea inspection, oil industry. Clearly, the time-of-flight
scanner is not accurate enough and the type of TOF camera is much more expensive
than a normal camera. Structure light scanner system may be able to put into the water
but the light source from the projector is much less compact compared with the laser
source. In addition, the projector is more expensive and hard to build the waterproof

4http://www.2grobotics.com
5http://www.neo.no/products/optopig.html

http://www.2grobotics.com
http://www.neo.no/products/optopig.html


2.3. SUMMARY 28

Figure 2.9: The ULS-100

Figure 2.10: ULS-100 attached to ROV
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Figure 2.11: The rotational scan by ULS-100

Figure 2.12: The OptoPig
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container. Camera-laser triangulation system is the best option to implement in the
underwater environment. Compared wither others, the camera laser triangulation system
has advantages of low cost, being much easier to develop and apply in different areas.
The key to reversing the 2D points in images to 3D is to have the known 3D scene
reference location or the moving step in XY Z direction. There are some hand-held 3D
scanner such as David 3D scanner6 and Handyscan 3D scanners7. Some of these 3D
scanners using known 3D points as references to obtain the laser stripe location in a 3D
scene, while some of the others are sticking lots of white dots on the object’s surface to do
the 3D model assignment and registration. Such methods also use some of the structured
light scanner to register 3D data from different views of scanning. Both of them have
limitation applying to underwater. It is easy to see that putting 3D reference points or
dots is not practical when applying underwater. In our cases, the 3D location is achieved
from the precise movement of linear/rotation stage. To sum up, using the camera-laser
triangulation based method would be the best to apply in underwater scanning so far.

6http://www.david-laserscanner.com
7http://www.creaform3d.com/en/handyscan3d/products/default.aspx

http://www.david-laserscanner.com
http://www.creaform3d.com/en/handyscan3d/products/default.aspx
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Chapter 3

Image processing

Image processing is the pre-stage essential step during the entire scanning. It includes
image filtering, noise removal, feature point detection, geometric image transformations
or object tracking, etc. The main image processing in this project includes image noise
removal and feature detection. Noise removal is the most pre-stage step and applied
in all the image processing tasks. Feature detections include laser peak and corner
detection. Those detected corners are used in camera calibration to compute camera
geometric, optical characteristics (intrinsic parameters) and lens distortion factors. With
such information, it is able to reconstruct the 2D laser peaks to 3D points.

This chapter is structured and organized as follows based on the order of these image
processing methods applied in the scanning procedure:

The first section is the earliest step from image processing tasks: noise removal. In
this section, a Sparse Code Shrinkage denoise method is introduced. A comparative
study is carried on using natural and 3D scanner’s images in later Chapter.6.1.

The second section is one of the feature detection: corner detection. Chessboard
pattern is easy to make and detect. These detected corner location is used for camera
calibration such as [79, 83]. A comparative study in later Chapter.6.2 is to find out the
best from existing corner detection methods.

In the last section, brief outlines of existing peak detection methods are presented.
Laser peak detection is used to extract the peak of the laser stripe in the row of the
captured image. Precise peak location in image P (xi, yi) is a crucial factor to recover
the 3D information in our triangulation based scanner as shown in Fig.2.3 and Fig.2.4.
Detailed comparative study is carried on using artificial and 3D scanner’s images in later
Chapter.6.3

3.1 Sparse Code Shrinkage image denoise

Image noise is the digital equivalent of film grain for analogue cameras. For digital
images, this noise appears as random speckles on an otherwise smooth surface and can
significantly degrade image quality. Although noise often detracts from an image, it
is sometimes desirable since it can add an old-fashioned, grainy look to an image that
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is reminiscent of early film. Some noise can also increase the apparent sharpness of
an image. Noise increases with the sensitivity setting in the camera, the length of the
exposure, temperature, and even varies amongst different camera models.

Noise is an inherent property of digital imaging sensors. The laws of physics make it
impossible to eliminate noise, and they force a trade-off between noise levels and other
properties like sensor size or sensitivity. Photons, for instance, arrive at random intervals,
so the simple task of counting them during an exposure– which is the basic function of
a pixel in a sensor – is subject to sampling error. When the exposure is shortened or the
pixel size is reduced, there are fewer photons to ”average out” the sampling error, so the
noise increases relative to the signal.

The image in a digital camera comes from a non-digital component: the CCD or
CMOS image sensor. An image sensor is typically comprised of a matrix of light sensors.
A light sensor can be thought of as simply a device that converts light into an electric
charge. Each square of the image sensor matrix is a photo site, usually with one light
sensor ’painted’ on it. A photo site generally corresponds to one pixel in your digital
image. When light (photons) strikes the image sensor, electrons are produced. These
”photoelectrons” give rise to analog signals and then converted into digital pixels by an
Analog to Digital (A/D) Converter.

Causes of Noise There are a number of sources of noise contamination. Heat
generated might free electrons from the image sensor itself, thus contaminating the ”true”
photoelectrons. These ”thermal electrons”give rise to a form of noise called thermal noise
or dark current.

Another type of noise is more akin to the ’grain’ obtained by using a high ISO film.
When we use a higher ISO, we are amplifying the signal we receive from the light photons.
Unfortunately, as we amplify the signal, we also amplify the background electrical noise
that is present in any electrical system.

In low light environment, there is not enough light to have proper exposure. The
longer we allow the image sensor to collect the weak signal, the more background elec-
trical noise it collects. In this case, the background electrical noise may be higher than
the signal.

Laser image is a special case with white laser stripe and dark background. Thus,
white noise such as dots, lumps have heavier impact to laser image than the normal
colour image. Gaussian blur/smooth[58] is a good method to reduce noise. Basically, it
is a smooth filter applied to the image. It may decrease the laser stripe intensity or shift
the peak location. In our case, most of the noise is coming from the electronic noise.
Fig.3.1 is one of the captured laser stripes with a lot of white dots around it. The closer
the camera to the electronic equipment, like motor and transformers, the heavier the
noise is. The noise appears randomly, they are flying everywhere in the image. While
our scanner works in dark environment, the noise becomes much more sensitive and
heavier. Sometimes, the scanner needs to continue capturing for a long period and the
camera’s CMOS sensor will generate much heavier noise in high temperature after long
operation. Because the CCD and CMOS’ manufacturing technically differ, the CMOS
sensor would produce much more noise than CCD sensor in normal temperature (e.g.
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25◦). If the temperature is high, the CCD sensor actually generating more noise than the
CMOS sensor. Therefore, Sparse Code Shrinkage image denoise [35] approach is applied
in our scanner to remove noise. It is an extended method based on the independent
component analysis (ICA) [37]. The detailed description and experimental results can
be found in the next sub-section.

Figure 3.1: An example of noisy laser stripes

Before any mathematical method applies to remove or lower down the noise level,
there some tips are given below:

1. Use the high noise resistant cables and connect them properly.

2. Use the proper camera filter to get rid of the light source we do not want.

3. Put the camera as far as possible away from the equipments such as motor, elec-
tricity transformer, etc.

4. Make sure that the laser signal is higher than the background/noise. If the laser
intensity is too low or the background is too bright, then it is impossible to separate
them.

To remove the heavy noise in our 3D scanning system or any other image equipment,
the ”Sparse Code Shrinkage image denoise” in [33] was implemented. Sparse coding is a
coding of the data such that for any given input vector, only a few of the components
of the code will be significantly active. The type of coding was originally motivated
by neurophysiological considerations, and simulations of the methods based on sparse
coding, producing results match measurements from real neurons quite well [60, 61, 33].
In theory, sparse coding is a method for finding a neural network representation of
multidimensional data in which only a small number of neurons are significant at the
same time. The idea constitutes the rationale behind Sparse Code Shrinkage (SCS) is
to use a basis that is more suitable for image denoise. Considering a random vector
X, which have been corrupted by additive Gaussian white. Estimating a sparse code
for it will give us a transform, which will concentrate much of the energy of the sample
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vectors into only a few components. If our transform is orthogonal, then the noise will
still be Gaussian and white in the transform basis. Thus, we have effectively separated
the signal from the noise, and by setting small components to zero, we will remove a
large part of the noise but only a little of the signal [32].

Denote by x = (x1, x2, .....xn)
T the observed and n-dimensional random vector that

is input to a neural network, and by s = (s1, s2, .....sn)
T is the vector of the transformed

component variables, which are the n linear outputs of the network. Denoting further
the weight vectors of the neurons by wi, i = 1, ....n, and by W = (w1, ....wn)

T the weight
matrix whose rows are the weight vectors, the linear relationship is given by

s = Wx (3.1.1)

We assume here that the number of sparse components, i.e., the number of neurons,
equals the number of observed variables, but this need not be the case in general. Sparse
coding can now be formulated as a search for weight matrix W such that the components
si are as ”sparse” as possible. A zero-mean random variable si is called sparse when it
has a probability density function with a peak at zero, and heavy tails; for all practical
purposes, sparsity is equivalent to super gaussianity 1 or positive kurtosis2[42].

3.1.1 Independent Component Analysis(ICA) and Image Data

Sparse coding is closely related to independent component analysis (ICA) [39]. The term
”independent” is associated with statistical properties of the components si. The model
can be defined as follows:

x = As. (3.1.2)

where x and s are column vectors with entries xi and si respectively, and A is the mixing
matrix. jth entry for the vector x can be expressed as:

xj = aj1s1 + aj2s2 + ......+ ajmsm (3.1.3)

In this model, si are latent variables and the mixing process or matrix is assumed to
be unknown. From this perspective, ICA is closely related to the method so called
Blind Source Separation (BSS). Inverting the relation, one obtains s from Equation
3.1.1: s = Wx, with W being the pseudo inverse of A. In this denoise method, ICA is
used to extract features from data (mixing matrix) and its inverse W . This extraction
procedure provides a more data-dependent representation of given images than any other
transformation like principal component analysis (PCA). The main steps in the whole
image denoise process are given in the following sections.

1Super-Gaussianity may be thought of as implying both a sharper peak and heavier tail than the
corresponding Gaussian [62]

2In probability theory and statistics, kurtosis is a measure of the ”peakedness” of the probability
distribution of a real-valued random variable, although some sources are insistent that heavy tails, and
not peakedness, is what is really being measured by kurtosis. [41] Higher kurtosis means more of the
variance is the result of infrequent extreme deviations, as opposed to frequent modestly sized deviations.
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3.1.2 Image data pre-processing

Before applying an ICA algorithm on the data, it is usually very useful to do some
pre-processing. In this section, we discuss some pre-processing techniques that make
the problem of ICA estimation simpler and better conditioned. The image data would
be the vector from the original image and all the variables in the vector are randomly
chosen. This vector is defined as X.

1. Local mean When ICA is applied to image data, it usually gives one component
representing the local mean image intensity. This component normally has a dis-
tribution that is not sparse, often even sub-Gaussian. Thus, it must be treated
separately from the other, super-Gaussian components. However, since the com-
ponent generally has a large variance, it is relatively unaffected by the noise, and
a simplification is to simply leave it alone. The most basic and necessary step is to
center data X. For example, subtract local mean gray-scale value from each patch
and normalize to zero mean and unit variance.

2. Normalizing the local variance Normalizing the input data to zero mean and
unit variance will cause the component statistics to be a lot less super Gaussian
than in the non-normalized case, with few components sparser than those given by
the Laplace distribution. This can be done in both the estimation of parameters,
and in the denoising procedure.

3. Whitening Another necessary pre-processing strategy in ICA is to first whiten the
observed variables. This means that before applying the ICAmethod, we transform
the images’ vector X to be X̃ which is white. The whitening transformation
is always possible. The popular method for whitening is to use the eigen-value
decomposition (EVD) of the covariance matrix E{XXT } = EDET and E is the
orthogonal matrix of eigenvectors of E{XXT } and D is the diagonal matrix of its
eigenvalues. Thus, the whitening can be done by using Equations 3.1.4 and 3.1.5

x̃ = ED−1/2ETx (3.1.4)

where the matrix D−1/2 is computed by a simple component-wise operation as

D−1/2 = diag(d
−1/2
1 , ......diag(d−1/2

n )). (3.1.5)

3.1.3 FastICA

In modeling image data for ICA, subimages of size N×N , taken from an arbitrary sized
image, is considered as the observations of the nx1, letting n = N2, random vector x of
Eq. 3.1.2. In this view, each x can be considered as a linear combination of the columns
of the mixing matrix A, each of which is weighted by the independent components si.
For instance, such a subimage would be obtained by superposing the patches of Fig 3.2,
each patch being weighted by the corresponding independent component of the sparse
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code. Hence the patches of Fig 3.2 correspond to the columns of the mixing matrix and
the independent components to sparse codes. In the ideal setup, the mixing matrix A is
square, i.e. n = m or there as many observed mixtures as the independent components,
hence the relation in Eq.3.1.2 can be inverted to s=W.x where the matrix W is called
the separating or demixing matrix. What ICA achieves is the estimation of the matrices
A and W by just using the observed mixtures x that are indeed subimages written in
the vector form. Once such a transformation pair is found, extraction of sparse codes is
a simple matter of matrix-vector multiplication through s=W.x.[33].

The FastICA algorithm is a computationally highly efficient method for performing
the estimation of ICA. It uses a fixed-point iteration scheme that has been found in
independent experiments to be 10-100 times faster than conventional gradient descent
methods for ICA. Another advantage of the FastICA algorithm is that it can be used
to perform projection pursuit as well, thus providing a general-purpose data analysis
method that can be used both in an exploratory fashion and for estimation of indepen-
dent components (or sources)[34]. It can be derived as an approximate Newton iteration.
The basic algorithm is as follows:

1. Choose an initial weight vector W

2. Iterate: w+ = E{xg(wTx)} − E{g′(wTx)}w

3. Normalize: w = w+/‖w+‖

4. If not converged, goes back to 2

Finally, the result of separating (weight) and mixing matrix have relationship W ( −
1) = A, and matrix W should satisfy the orthogonality and done by3.1.6

W ←W (W TW )−1/2 (3.1.6)

The natural scene images 3.2 and 3.3 are used to test the FastICA outlined above.

Figure 3.2: ICA test image 1
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Figure 3.3: ICA test image 2

After having applied FastICA, the matrix W should look like Fig.3.4. If the test data
are totally about synthetic scene such as the buildings, then the matrix would look like
Fig.3.5. From these two images, much stronger continuous lines and edges can be seen
in the synthetic scene, as expected.

Figure 3.4: The orthogonal sparsifying matrix
of natural scene (8 by 8 patch)

Figure 3.5: The orthogonal sparsifying matrix
of synthetic scene (16 by 16 patch)

3.1.3.1 Maximum likelihood de-noising of non-Gaussian random variables

In order to derive maximum-likelihood denoising of a non-Gaussian data corrupted by
zero mean Gaussian noise with variance σ2, the following additive model is considered

y = s+ v (3.1.7)

where y is the corrupted version of non-Gaussian random variable s and v is the noise:
E(v) = 0 and std(v) = σ. We want to estimate the original signal s. Denoting by p the
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probability density of s, and by f = − log p, it’s the negative log-density, the maximum
likelihood method gives the following estimator for s:

ŝ = argminu
1

2σ2
(y − u)2 + f(u) (3.1.8)

Assuming that f is strictly convex and differentiable, this minimization is equivalent to
solving the following equation:

1

σ2
(ŝ− y) + f

′

(ŝ) = 0 (3.1.9)

or ŝ = g(y) with g−1(u) = u+ σ2f ′(u)

3.1.4 Sparse density models

To use the estimator defined by ŝ = g(y), the densities of the si need to be modelled
with a parameterization that is expressive enough. Sparse data are characterized as being
mildly or strongly sparse. The general expressions for such models are given below. Note
that the Laplacian density is somewhat between them as shown in Fig.3.6. The form of
these models is called shrinkage function g(u) corresponding to the above distributions
in Fig.3.6.

Figure 3.6: Plots of densities corresponding to different models of sparse components. Solid
line: Laplace density. Dashed line: a typical moderately sparse(super-Gaussian) density. Dash-
dotted line: a typical strongly sparse(super-Gaussian) density. Dotted line: Gaussian density for

reference.[due to Hyvaarinen et al. 1999]

3.1.4.1 Mildly sparse densities

For mildly sparse densities, g(u) can be represented as[36]:

g(u) =
1

1 + σ2a
sign(u)max(0, | u | −bσ2) (3.1.10)
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where

b =
2ps(0)E{s2} − E{|s|}
E{s2} − [E{|s|}]2 (3.1.11)

a =
1

E{s2} [1− E{|s|}b] (3.1.12)

where ps0 is the value of the density function of s at zero.

3.1.4.2 Strongly sparse densities

For the strongly sparse densities, g(u) can be represented as

g(u) =
1

2d
sign(u)max(0,

|u| − ad

2
+

1

2

√

((|u| + ad)2 − 4σ2(σ + 3)) (3.1.13)

where
d =

√

E{s2} (3.1.14)

α =
2− k +

√

k(k + 4)

2k − 1
with k = d2ps(0)

2 (3.1.15)

a =
√

α(a+ 1)/2 (3.1.16)

and σ2 is the noise variance in all cases.

3.1.5 Sparse code denoise

The effects of the functions shown in Fig.3.7 is to reduce the absolute value of its argu-
ment by an amount determined by the noise level. Small arguments are set to zero. The
overall effect is a reduction in Gaussian noise by restoring sparseness back. To deter-
mine which model to use, it is suggested in the limiting case of Laplacian density that
the value

√

E{s2}ps(0) happens to be 1/
√
2. The model is mildly sparse below it and

strongly sparse above it. However, experience shows that sparse code extracted from
real image data happens to follow a strong sparsity.

If the noise variance σ2 is unknown, one might estimate it, by multiplying by 0.6475
the mean absolute deviation of the yi corresponding to the very sparsest si

The SCS technique is summarized as follows:

1. Build a noise-free set of data z that has the same statistical properties as the
n-dimensional data x that we want to denoise.

2. Use data z to estimate the sparse coding transformation W = Wopt by estimating
and fractionalizing the ICA transform matrix W .

3. For every i = 1, 2, · · · , n, estimate a density model for si = wT
i z, using the model

described above. Also, estimate the relevant parameters.
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Figure 3.7: Plots of the shrinkage functions. Solid line: shrinkage corresponding to Laplace
density. Dashed line: shrinkage corresponding to moderately sparse(super-Gaussian) density.
Dash-dotted line: shrinkage corresponding to strongly sparse(super-Gaussian) density. Dotted

line: y=x for reference. [due to Hyvaarinen et al. 1999]

4. For every noisy data sample x(t), t = 1, 2, · · · , T , which are samples of a noisy
version x, compute the projections on the sparsifying basis:

y(t) = Wx̂(t) (3.1.17)

5. Apply the shrinkage operator gi corresponding to the density model of si to every
component yi(t) of y(t), for every t, obtaining:

ŝi(t) = gi(yi(t)); (3.1.18)

6. Transform back to original variable to obtain estimates of the noise-free data x(t)

x̂(t) = W T ŝ(t) (3.1.19)
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3.2 Corner Detection

Interest point detection is widely used and as an early step in many computer vision
tasks such as camera calibration that requires fast and efficient feature extraction and
matching. Since the camera calibration is one of the important steps in our scanning
process, it is necessary to evaluate and select which corner detection method is the best.
In this section, alternative corner measures will be tested and a comparative evaluation
of those different techniques is carried out.

3.2.1 Introduction

The use of interest points (corner detectors) to find corresponding points across multiple
images and the corresponding points between an image and a real object is a key step in
many image processing and computer vision applications. The most notable applications
include image matching [40], real-time gesture recognition[45], mouth detection[48] and
motion tracking and robot navigation. In the past decades, many interest point detectors
developed, one of the earliest is that of Moravec [57], which measures intensity differences
by shifting a small mask in eight principal directions. Harris and Stephens[27] later
expanded the Moravec operator to include a function that enables intensity variation
to be measured in any direction. Many different interest point detectors have been
proposed with a wide range of definitions for what points in an image are interesting.
Some detectors find points of high local symmetry, others find areas of highly varying
texture, while others locate corner points. Corner points are interesting as they are
formed from two or more edges and edges usually define the boundary between two
different objects or parts of the same object.

There are a significant number of different approaches for detecting corners. Figure
3.8 shows a time-line of the corner detectors have been developed. There are three main
approaches for detection of corners in gray scale images: edge-related, topology, and
autocorrelation. Most of the corner detectors discussed here can be placed into one of
these categories. However, it should be made clear that the classification is somewhat
subjective as most of the detectors have multiple interpretations and thus could be
classified into more than one category.

Figure 3.8: Time line of corner detectors

Although some work on comparing and evaluating interesting point detectors have
published [70, 75, 84, 44], only [84, 44] provide the comparison of different cornerness
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measures. Most of them haven’t drawn conclusion or evaluation to which cornerness
measure is most appropriate in different situations. Though [44] provides a quantitative
evaluation on [13, 14, 71, 27] but most of the comparable methods are the extensions
based on [27]. In addition, in our 3D scanner, the corner detection result has significant
effect on the camera calibration and 3D model’s accuracy. Therefore, a comparative
study on such kind of effect on camera calibration and 3D reconstruction of the latest
corner detectors is necessary and carried out. In section 3.2.2, each of the corner detec-
tors selected for the comparative study is outlined. Section 6.2 presents the evaluation
results using both synthetic and real world datasets including our the samples from our
underwater scanning system.

3.2.2 Outlines of corner detectors

In this section the corner detectors used in the comparative study in [27, 59, 73, 56] are
outlined. These methods are historically significant, widely used, and well suited for a
particular application (i.e. real-time).

3.2.2.1 Harris and Stephens / Plessey corner detection

Harris and Stephens improved Moravec’s corner detector by considering the differential
of the corner scores with respect to direction directly, instead of using shifted patches.
This corner detector is an alternative approach used in feature detection. This corner
detection defines a measure of corner strength H(x, y), for each pixel(x,y) in the image
through constructing an autocorrelation matrix M :

M =

[

A C
C B

]

(3.2.1)

where A = ( ∂I∂x)
2
⊗

w, B = (∂I∂y )
2
⊗

w, C = ( ∂I∂x ,
∂I
∂y )

2
⊗

w, and
⊗

is the convolution

operator, w is the Gaussian window 3. The H(x, y) is defined as:

H(x, y) = det(M) − k(trace(M))2 (3.2.2)

det(M) = λ1λ2 = AB − C2 (3.2.3)

trace(M) = λ1 + λ2 = A+B (3.2.4)

M =

[ ∑

I2x
∑

IxIy
∑

IxIy
∑

I2y

]

(3.2.5)

where

•
∑

is over a small region around a corner

• Ix is the gradient with respect to x

3For clarity in exposition the Gaussian weighting factor e−(x2+y2)/(2σ2)
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• Iy is the gradient with respect to y

• λ1 and λ2 are two eigenvalues of matrix M

This matrix is a Harris matrix. If a circular window (or circularly weighted window,
such as a Gaussian) is used, then the response will be isotropic. If λ1 ≈ 0 and λ2 ≈ 0
then this pixel has no features of interest. If λ1 ≈ 0 and λ2 has some large positive value,
then an edge is found. If λ1 and λ2 have large positive values, then a corner is found.

3.2.2.2 Noble corner detection

This corner detector is strongly based on the Harris corner Detector outlined above.
Noble [59] uses the same process as Harris in order to obtain the autocorrelation matrix
M . Considering that the variable k in Harris and Stephens measure was too weak and
difficult to set up, he proposed a new cornerness measure H(x, y) as follows:

H =
det(M)

trace(M) + ε
(3.2.6)

which removes the parameter k, but introduces the small constant ε to avoid a singular
denominator in case of a rank zero divisor.

3.2.2.3 SUSAN corner detector

SUSAN as an acronym stands for Smallest Univalue Segment Assimilating Nucleus. The
SUSAN algorithm includes image noise filtering, edge finding and corner detection. This
principle is implemented using digital approximation of a circular mask. SUSAN places
a circular mask over the pixel to be tested (the nucleus). As shown in Figure 3.9, a
circular mask is shown at five image positions, if the brightness of each pixel within a
mask is compared with the brightness of that mask’s nucleus then an area of the mask
can be defined which has the same (or similar) brightness as the nucleus. This area of
the mask shall be known as the ”USAN”, an acronym standing for ”Univalue Segment
Assimilating Nucleus”. In Figure 3.10 each mask from Figure 3.9 is depicted with its
USAN shown in white. This concept of each image point having associated with it a local
area of similar brightness is the basis for the SUSAN principle. The local area or USAN
contains much information about the structure of the image. It is effective in region
finding on a small scale. From the size, centroid and second moments of the USAN two
dimensional features and edges can be detected. The area of an USAN conveys the most
important information about the structure of the image in the region around any point
in question. As can be seen from Figures 3.9 and 3.10, the USAN area is at a maximum
when the nucleus lies in a flat region of the image surface, it falls to half of this maximum
very near a straight edge, and falls even further when inside a corner. It is this property
of the USAN’s area which is used as the main determinant of the presence of edges and
two dimensional features.

Consideration of the above arguments and observation of the examples and results
shown in Figures, the SUSAN principle can be formulated as:
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Figure 3.9: Four circular masks at different places on a simple image

Figure 3.10: Four circular masks with similar colouring; USANs are shown as the white parts
of the masks

An image processed to give as output inverted USAN area has edges and two di-
mensional feature strongly enhanced, with the two dimensional features more strongly
enhanced than edges.

The implementation of this principle into a corner detector is similar to an edge
detection. Suppose that the mask is M , and pixel in this mask is represented by ~m ∈M .
The nucleus is at ~m0. Every pixel is compared to the nucleus using the comparison
function:

c(~m) = e
(I(~m)−I(~m0))

6

t (3.2.7)

where t determines the radius of the mask, and the power of the exponent has been
determined empirically. The area of the SUSAN is given by

n(M) =
∑

~m∈M

c(~m) (3.2.8)
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If c is the rectangular function, then n is the number of pixels in the mask which are
within t of the nucleus. The response of the SUSAN operator is given by:

R(M) =

{

g − n(M) if n(M) < g

0 otherwise,
(3.2.9)

where g is named the ”geometric threshold”. In other words the SUSAN operator only
has a positive score if the area is small enough. The locally smallest USAN can be found
using non-maximal suppression, and this is the complete SUSAN operator. The value t
determines how similar points have to be in the nucleus before they are considered part
of the univalue segment. The value of g determines the minimum size of the univalue
segment. If g is large enough, then this becomes an edge detector. For corner detection,
two further steps are used. Firstly, the centroid of the USAN is found. A proper corner
will have the centroid far from the nucleus. Secondly, all points on the line from the
nucleus through the centroid out to the edge of the mask are in the SUSAN.

3.2.2.4 Corner detector based on global and local curvature properties

Corner detector based on global and local curvature properties [11] is an extended version
of the CSS method presented in [55] and [56]. The CCS method is a curvature-based
detector that detects both fine and coarse feature accurately at low computational cost.
To begin with, the curvature, K, from [66] is defined as follows:

K(u, σ) =
Ẋ(u, σ)Ÿ (u, σ) − Ẍ(u, σ)Ÿ (u, σ)

[Ẋ(u, σ)2 + Ẏ (u, σ)2]1.5
(3.2.10)

where Ẋ(u, σ) = x(u) ⊗ ġ(u, σ), Ẍ(u, σ) = x(u) ⊗ g̈(u, σ), Ẏ (u, σ) = y(u) ⊗ ġ(u, σ),
Ÿ (u, σ) = y(u) ⊗ g̈(u, σ), and ⊗ is the convolution operator, while g(u, σ) denotes a
Gaussian of width σ and ġ(u, σ) and g̈(u, σ) are the first and second derivatives of
g(u, σ) respectively. The traditional single-scale algorithms detect corners by considering
their local properties, and usually either miss fine features or detect noisy pixels as
false corners. Compared to the traditional single-scale algorithms, this version of corner
detector is to utilize global and local curvature properties, and balance their influence
when extracting corners. Its main steps can be summarized as follows:

1. Detect the edges using Canny edge detector to obtain a binary edge map.

2. Extract contours form the edge map. When the edge reaches an end, fill the
gap and continue the extraction till the end point is nearly connected to another
end point, or marks this point as T-junction corner if the end points are nearly
connected to an edge contour, but not to another end.

3. Compute the curvature at a fixed low scale, and regard the local maxima of absolute
curvature as corner candidates.
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4. Compute a threshold adaptively according to the mean curvature within a region
of support. Round corners are removed by comparing the curvature of corner
candidates with adaptive threshold.

5. Remove the false corners based on a dynamically recalculated region of support,
evaluate the angles of the remaining corners.

6. Finally, consider the end points of open contours, and mark them as corners unless
they are very close to another corner.
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3.3 Laser Peak Detection

Laser peak detection is used for locating the peak position in a laser image. The object’s
surface 3D information is recovered by the laser projection angle, camera calibration
parameters and peak location in the laser images. Thus, laser peak is one of the most
important steps during the entire scanning process. Fig.3.11 shows a typical profile of
laser line intensities. Even though the maximum pixel value is around 125, its exact
location is uncertain yet and needs to be estimated. Hence, it is necessary to know
which laser peak detection method is more accurate and precise in our 3D laser scanning
system.

Figure 3.11: Typical intensity values of a laser profile

3.3.1 Outlines of peak detection methods

Fisher and Naidu [22] compared some of the popular detection methods including: (1)
Gaussian approximation (GA),(2) Center of Mass (CM), (3) Linear Interpolation (LIP)
(4) Parabolic estimator (PE) (5) Blais and Rioux detector (BR). These methods con-
sider the peak and nearby (2 ∽ 4) pixels intensity. However, the laser stripe maybe
saturated and cross over ten pixels in the worst case (Image size: 720 × 576) and they
may fail in such condition. In 2004, Josep Forest proposed the FIR method based on
FIR filter. It is able to detect the peak in high saturated and noisy laser image. It is
interesting to compare these detectors’ performance and effect in our 3D model accu-
racy. Hence, brief outline of these laser peak detectors will be given in this section and
a comparative study based on 3D model will be carried out in experiment Section 6.3.

3.3.1.1 Gaussian approximation

This algorithm uses the three highest, contiguous intensity values around the observed
peak of the stripe and assumes that the observed peak shape fits a Gaussian profile.
This assumption is true as the laser light incident on the scene is known to be nearly
Gaussian distributed as Figure 3.12 shows. The sub pixel offset of the peak is given by:

α =
ln(f(x− 1)) − ln(f(x+ 1))

2(ln(f(x− 1))− 2 ln(f(x)) + ln(f(x+ 1)))
(3.3.1)
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Figure 3.12: Typical Laser beam

As f(x) is intensity of a pixel x and is usually integers in the range 0-255, the log
calculation can be performed by table lookup.

3.3.1.2 Center of Mass

The center-of-mass algorithm also assumes that the spread of intensity values across
the stripe conform to a Gaussian distribution. Thus, the location of the peak can be
computed by a simple weighted-average method. The sub pixel location of the peak is
given by:

α =
f(x+ 1)− f(x− 1)

f(x− 1) + f(x) + f(x+ 1)
(3.3.2)

3.3.1.3 Linear Interpolation

This method assumes that a simple, linear relationship defines the spread of intensity
values before and after the peak. Thus, if the three highest intensities are identified as
before, then:
If f(x+ 1) > f(x− 1)

α =
f(x+ 1)− f(x− 1)

2 ∗ (f(x)− f(x− 1))
(3.3.3)

else

α =
f(x+ 1)− f(x− 1)

2 ∗ (f(x)− f(x+ 1))
(3.3.4)

3.3.1.4 Parabolic Estimator

A continuous version of the peak finder is derivable from the Taylor series expansion of
the signal near the peak. If the peak is at f(x+ δ) while δ is introduced, α is estimated
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and we observe the signal at f(x), then we have:

α =
f(x− 1)− f(x+ 1)

2(f(x+ 1)− 2f(x) + f(x− 1))
(3.3.5)

3.3.1.5 Blais and Rioux Detectors

Blais and Rioux[4] introduced fourth and eighth order linear filters:

g4(x) = f(x− 2) + f(x− 1)− f(x+ 1)− f(x+ 2)
g8(x) = f(x− 4) + f(x− 3) + f(x− 2) + f(x− 1)−

f(x+ 1)− f(x+ 2)− f(x+ 3)− f(x+ 4)
(3.3.6)

and a second order filter
g2(x) = f(x− 1)− f(x+ 1) (3.3.7)

These operators act like a form of numerical derivative operator. The peak position is
estimated as above by if f(x+ 1) > f(x− 1)

δ̂ =
g(x)

g(x)− g(x+ 1)
(3.3.8)

Or if f(x+ 1) < f(x− 1) we have

δ̂ =
g(x− 1)

g(x− 1)− g(x)
(3.3.9)

3.3.1.6 FIR Filter

Sometimes, when the captured laser image is not so perfect, the maximum intensity
points will spread over several pixels. For instance, the intensity values would be
[115, 169, 255, 255, 255, 255, 255, 255, 255, 135], which means the laser stripe is saturated
in the middle. In the worst case, saturate area will be more than ten pixels wide.
Fig.3.133.14 is an example of row data in an high saturated laser stripe. The saturated
area crosses seven pixels in this row data. In paper [24], Forest reported a digital filtering
techniques (FIR) in order to cope with the scanning of different surface with different
optical properties and noise levels including laser saturation. From the point of view
of signal processing, it seems reasonable to consider it as the manifestation of a noisy
signal, which complies with the principle of superposition. Regarding each row of the
stripe image as a signal, a digital low pass filter can be designed with the right cut-off
frequency, attenuation and transition band width parameters.

The specific steps so called FIR filter are given below:

1. Estimate the filter coefficients using Matlab fdatool function.

2. Compute the convolution of the row signals with the coefficients of the filter esti-
mated in Step.1.
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Figure 3.13: Saturated laser row
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Figure 3.14: Enlarged laser row saturated area

3. Compute first derivative of the filtered signal from Step.2

4. The maximum grey level value is selected

5. The signal is tracked from its maximum, left to right in the image, until the first
negative value is found.

6. A straight line is computed between the points corresponding to the first negative
and the last positive signal value, and the zero crossing is computed. Fig.3.15
summarise this process and equation 3.3.10 shows how the estimation of the zero
crossing is computed.

Figure 3.15: First order derivative’s zero cross
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X̂ = x0 −
y0(x1 − x0)

y1 − y0
(3.3.10)
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Chapter 4

Camera Calibration

Range images are becoming more and more widely used to model 3D environment, such
as planning path from the starting to the destination location, and avoid any obstacle
on the way to its destination for robot navigation. 3D data can be captured through
using the latest laser scanning systems or stereo vision systems. Whichever method
is adopted to capture the 3D data, it is usually necessary to model image formation,
calibrate camera parameters of interest, and correct the obtained distorted data due to
the unavoidable distortion of the physical camera lens. Otherwise, the analysis of the
resulting distorted data may provide biased information. Thus, camera calibration and
image correction is a necessary and important step for 3D metric measurement.

This chapter is structured as follows: Section 4.1 describes the background and ne-
cessity of the camera calibration; Section 4.2 describes the basic categorization of camera
calibration, three main lens distortion models and the explanation of some commonly
used calibration parameters; Section 4.3 describes the perspective projection model and
general calibration procedure; Section 4.4 proposes a fraction distortion model; Sec-
tion 4.5 proposes an iterative camera calibration method. Both proposed methods’
experimental results are presented in Section 6.5.

4.1 Introduction and Background

Camera calibration in the context of three-dimensional data capture is the process of
determining the internal camera geometric and optical characteristics (intrinsic param-
eters) and/or the 3D position and orientation of the camera frame relative to a certain
world coordinate system (extrinsic parameters) [79]. The fundamental task of calibration
is to find the parameters of the projection model that links the known 3D points and
their projections and then rebuild/identify the object using these parameters. The rela-
tionship of the points’ position in the object space and the corresponding points in the
image is determined by the camera imaging geometry. This geometry is characterized
by camera intrinsic/extrinsic parameters. The process of camera calibration is to find
these parameters, the camera position and orientation in the world coordinate system.

Camera calibration is often used (1) as an early stage in Computer Vision and es-
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pecially in the field of augmented reality; (2) in the application of Stereo vision where
the camera projection matrices of two cameras are used to calculate the 3D world co-
ordinates of a point viewed by both cameras; (3) as an early stage in image processing.
When a camera is used, light from the environment is focused on an image plane and
captured. This process reduces the dimensions of the data taken in by the camera from
three to two (light from a 3D scene is stored in a 2D image). Each pixel in the image
plane therefore corresponds to a shaft of light from the original scene. Camera calibra-
tion determines which incoming light is associated with each pixel in the resulting image.
In an ideal pinhole camera, a simple projection matrix is enough to do this. With more
complicated camera systems, errors resulting from misaligned lenses and deformations
in their structures can result in more complex distortions in the final image.

4.2 Calibration Methods

The existing camera calibration techniques can be classified broadly into the follow-
ing four main categories: calibration rig based, self calibration, auto-calibration, and
parameter free correction:

• The calibration rig based approaches require the knowledge of correspondences
between the 3D calibration rig and its projective image. The rig contains either
non-coplanar points [79, 29] or coplanar points [83]. While the approach in [83] is
based on the rigidity constraint on the rigid rotation matrix, that in [79] is based
on the radial alignment constraint. The calibration usually involves two-steps. In
the first step, a crude estimate of the parameters of interest is obtained often with
closed form solutions. In the second step, all parameters of interest are iteratively
optimized globally through minimizing some error functions. One of the most
widely used objective functions is the sum of the squared back-projection errors.

• The self calibration techniques require just a single projective image. The distortion
parameters can be estimated using either the projective geometry [17, 18, 20] or in
the frequency domain [21]. The former applies the property that the projections of
lines are still lines in the corrected image. Thus, the curvatures of line segments in
the distorted image are due to the camera distortion. In this case, various objective
functions can be constructed: minimising distances from the points to best fit line
segments [17], slope variation of the line segments [20], etc. In contrast, the latter
observes that the Fourier transform of the signal before and after distortion is
correlated which can be defined as the bicoherence. The first order radial distortion
parameter can be estimated as one of the candidates sampled from an interval
that minimises the bicoherence. The experimental results show that the frequency
domain method is by no means comparable to that based on calibration rigs for
camera calibration and correction.

• Auto-calibration approaches require at least two projective images of the same
scene and are often based on epipolar geometry [65]. To calibrate the intrinsic
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camera parameters, the constraints on the plane at infinity and the quadrics in
that plane are often constructed. Usually, auto calibration approaches do not
consider the camera distortion. Even so, it was observed in [5] that it is often
difficult to estimate the focal length, the estimation of the principal point is often
unstable, and there is an ambiguity in calibrating the focal length, the principal
point, and the camera position.

• Parameter free approaches [28] take only the radial distortion into account and
estimate the distortion factor for each point. To estimate the distortion factors, a
planar calibration grid is required and a constraint on the center of distortion and
the homography H transforming calibration grid points in the Euclidean space
into the undistorted image points in pixel coordinates is derived. Interestingly
enough, the constraint is very similar to that on the fundamental matrix, which
results in the estimation of the first two rows of H. To estimate the third row of
H, an assumption of monotonicity of distortion with regard to the radial distance
is made. This assumption implies that the neighbouring undistorted points should
not differ significantly whose squared difference can be minimised, resulting in the
relative parameters being estimated in the least squares sense.

4.2.1 The Lens distortion

The basic camera calibration usually includes two main tasks: 1) find the parameters of
the projection model including extrinsic and intrinsic parameters; 2) model and estimate
the camera lens distortion parameters so that the captured images can be un-distorted.
This section will describe several lens distortion models in Task 2 and explain how they
affect the quality of the captured images.

Aberrations are departures of the performance of an optical system from the pre-
dictions of paraxial optics. Aberration leads to blurring of the image produced by an
image-forming optical system. It occurs when light from one point of an object after
transmission through the system does not converge into (or does not diverge from) a
single point. 1 There are three main types of aberrations which can affect the image
quality. The first one is caused by the imperfect lens shape and manifests itself by radial
positional error only, whereas the second and the third types of distortion are generally
caused by improper lens and camera assembly and generate both radial and tangential
errors in point positions, see Figure 4.1, [80].

1. Radial Distortion: Radial distortion causes an inward or outward displacement
of giving image point from its ideal location. These types of distortion are mainly
caused by flawed radial curvature of the lens elements. A negative radial displace-
ment of the image point is referred to as barrel distortion. It causes outer points
to crowd increasingly together and the scale to decrease. A positive radial dis-
placement is referred to as pincushion distortion. It causes outer points to spread

1Access on 3rd August, 2011, http://en.wikipedia.org/wiki/Aberration in optical systems
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Figure 4.1: Radial and tangential distortions

Figure 4.2: Effect of radial distortion. Solid lines: no distortion; dashed lines: with radial
distortion (a: negative, b: positive)
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Figure 4.3: Effect of tangential distortion. Solid lines: no distortion; dashed lines: with
tangential distortion

and the scale to increase. This type of distortion is strictly symmetric about the
optical axis. Fig.4.2 illustrates the effect of radial distortion [80].

2. Decentring Distortion: Actual optical systems are subject to various degrees of
decentring, that is , the optical centres of the lens elements are not strictly collinear.
This defect introduces what is called decentring distortion. This distortion has both
radial and tangential components [80].

3. Prism Distortion Thin prism distortion arises from imperfection in lens design
and manufacturing as well as camera assembly (for example, slight tilt of some lens
elements or the image sensing array). These types of distortion can be adequately
modelled by the adjunction of thin prism to the optical system, causing additional
amounts of radial and tangential distortions [80]. Such distortions can be expressed
as

δρp = (i1ρ
2 + i2ρ

4 + · · · )sin(ϕ− ϕ1)
δtp = (i1ρ

2 + i2ρ
4 + · · · )cos(ϕ − ϕ1)

(4.2.1)

where ρ1 is the angle between the positive u axis and the axis of maximum tan-
gential distortion shown in Fig.4.3

4.2.2 Calibration parameters

Below are the common definitions in [79, 83] of camera calibration parameters including
intrinsic and extrinsic parameters of pinhole perspective projection model and used in
the entire thesis:

• f : Effective focal length of the pin-hole camera (mm or pixel).



4.3. PERSPECTIVE GEOMETRY MODEL 57

• dx, dy : Center to center distance between adjacent sensor elements in X and Y
(mm).

• Cx, Cy : Principal point coordinates (that is usually at the image centre).

• Ncx : Number of sensor elements in x direction of the camera (sels).

• Nfx : Number of pixels in x direction of the frame grabber (pixel).

• sx : scale factor for uncertainty in the re-sampling of the horizontal scan line in
the frame grabber.

• k1, k2 · · · , kn : N-th order radial lens distortion coefficient.

• p1, p2 : Tangential lens distortion coefficient.

• Rx, Ry, Rz : Rotation angles around the x, y, and z axes for the transformation
between the world and camera coordinate systems,

• tx, ty, tz : Translation components along the x, y, and z axes for the transformation
between the world and camera coordinate system.

4.3 Perspective Geometry Model

To understand how the 3D real world can be digitized into a computer, it is necessary
to understand the image acquisition process. The role of the camera in machine vision
is analogous to that of the eyes in biological systems. For the sake of simplification,
the ideal pinhole model camera is often used to approximate this function. It has an
infinitesimally small hole, which allows light enters before forming an inverted image on
the camera surface facing the hole. Normally, a pinhole camera places the image plane
between the focal point of the camera and the object, so that the image is not inverted.
This mapping of three dimensions onto two, is called a perspective projection (see Figure
4.4), and perspective geometry is fundamental to the understanding of image formation
and analysis.

Based on this perspective projection model (assuming the lens is distortion free), a
scene view is formed by projecting 3D points into the image plane by the perspective
transformation. This transformation can be represented as Eq.4.3.1 or 4.3.2

sm′ = A[R|t]M (4.3.1)

Or

s





u
v
1



 =





fx 0 cx
0 fy cy
0 0 1









r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz













X
Y
Z
1









(4.3.2)

where (X,Y,Z) are the coordinates of a 3D point in the world coordinate system, (u, v)
are the coordinates of the projection point in the 2D image plane in pixels. A is called a
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Figure 4.4: Perspective projection in the traditional pinhole camera model

camera matrix, including intrinsic parameters. (cx, cy) is a principal point (it is usually
the image centre as initial guess), and fx, fy are the focal lengths expressed in pixel-
related units along x and y axes respectively. Thus, if an image from a camera is scaled
by some factor, all of these parameters should be scaled (multiplied/divided, respectively)
by the same factor. The matrix of intrinsic parameters does not depend on the scene
viewed and, once estimated, can be re-used (as long as the focal length is fixed (in
case of zoom lens)). The joint rotation-translation matrix [R|t] is called a matrix of
extrinsic parameters. It is used to describe the camera motion around a static scene, or
vice versa, rigid motion of an object in front of still camera. That is, [R|t] transforms
a point (X,Y,Z) in 3D world coordinate system to a point (x, y, z) in a local camera
centred coordinate system, fixed with respect to the camera. The transformation above
is equivalent to the following (when z 6= 0 ):





x
y
z



 = R





X
Y
Z



+ t (4.3.3)

Hence, a point in 3D world can be transformed to 2D image plane as: [83, 17]

x′ = x/z
y′ = y/z
u = fx ∗ x′ + cx
v = fy ∗ y′ + cy.

(4.3.4)

Real camera lenses usually have distortion and distort the captured images. Mostly,
the distortion contains radial distortion and slight tangential distortion. The distor-
tion model that is used for correcting the radial and tangential distortion components
is usually known as radial polynomial model [30] and Decentring model [81]. Radial
polynomial model is represented as:

rd = ru(1 + k1r
2
2 + k2r

4
u + · · · + kpr

2p
u ). (4.3.5)
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Decentring polynomial model is represented as:

xd = p1(r
2
u + 2x2u) + 2p2xuyu

yd = p2(r
2
u + 2y2u) + 2p1xuyu.

(4.3.6)

where (xd, yd) is the distorted point and (xu, yu) is the distortion free point. Thus,
taking Eq. 4.3.5 and Eq. 4.3.6 into account, the coordinate transformation model in Eq.
4.3.4 can be extended with distortion factors:

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y′2) + 2p2x
′y′

where r2 = x′2 + y′2,
u = fx ∗ x′′ + cx
v = fy ∗ y′′ + cy

(4.3.7)

k1, k2, k3 are the radial distortion coefficients, and p1, p2 are tangential distortion coef-
ficients. Normally, 6th order coefficient is enough, higher-order coefficient is negligible
and thus can be omitted.

Altogether, there are 15 unknown parameters if considering distortion model in
Eq. 4.3.7 including: 4 intrinsic parameters A = (fx, fy, cx, cy), 6 extrinsic parameters
R = (R1, R2, R3) and t = (tx, ty, tz) and 5 distortion parameters D = (k1, k2, k3, p1, p2),
while the fraction distortion model described below also contains 5 distortion parame-
ters D = (k1, k2, k3, k4, k5) which has 16 parameters instead with the rotation matrix
represented by a quaternion in 4 parameters. No matter which model is used to optimize
these parameters, the following commonly used objective function [83] is built based on
Eq.4.3.1 and Eq.4.3.2:

J = min
A,D,Ri,ti

n
∑

i=1

m
∑

j=1

‖Pij − m̆(A,D,Ri, Ti,Mj)‖2 (4.3.8)

where m̆(A,D,Ri, ti,Mj) is the re-projection points Mj in image i. This function
minimizes the differences between 3D re-projected points Mj in the image plane i and
given image Pij . This non-linear optimization is performed using Levenberg-Marquardt
algorithm [50]. The initial guess of A, (Ri, ti | i = 1...n), (R | t) can be obtained
with closed-form solution and maximum likelihood estimation [83], relaxing the rigidity
constraint on the rotation matrix R or in the image formation model in 4.3.7.
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4.4 Fraction Distortion Model

The acquisition and analysis of 3D data attract more and more attention from the
robot vision community for the representation of the objects of interest in the process of
object modelling, classification and recognition [2]. Accurate camera calibration is a pre-
requisite step for 3D metric measurement using either the latest laser scanning techniques
or stereo vision systems. Without correction, the captured data are distorted, which may
give an illusion to the shape of the objects of interest. Subsequent analysis of such data
is not accurate or even meaningless.

In this section, we propose a novel camera distortion model which attempts to model
the overall distortion. In this case, no knowledge is required about what the camera
distortion is: radial, decentring, or thin prism. This attempt is practical, since in reality,
we probably have little idea about what distortion the captured image is subject to. The
actual distortion of the camera is not known and need to be investigated using the various
metrics: collinearity constraint, parallel, perpendicularity. On the other hand, the novel
model attempts to combat the imaging noise. This is very important to the subsequent
data analysis, since all imaging devices introduce some amount of noise caused by point
sampling, quantization of measurements, reflective properties, etc.

In order to estimate the parameters in the novel camera distortion model, we em-
ploy the Levernburg-Marquardt (LM) algorithm to globally optimize all the parameters
of interest through minimizing the sum of squared differences between the transformed
distorted projected 3D world points and their given distorted image points. Four param-
eters are used to model the image formation: focal length (fx, fy), aspect ratio s, and
the principal point (u0, v0). Seven parameters are used to model the camera orientation
and position: a quaternion q is used to describe the camera orientation and a 3D vector t
is used to describe the camera position in the world coordinate system. Five parameters
are used to describe the camera distortions.

For the sake of fair testing, we did not use the results from the Zhang [83] algorithm
directly for a comparative study. Instead, we employ again the LM algorithm to glob-
ally optimize its estimation results through minimising the sum of squared differences
between the transformed distorted projected 3D world points and their given distorted
image points with the camera distortion explicitly modelled as both radial and decen-
tring ones in 4 parameters altogether. Such a comparative study is valuable, since it can
reveal whether the explicit knowledge of the camera distortion is beneficial to successful
image point correction. The performance of camera calibration algorithms is measured
from two aspects: (1) Absolute and relative correction errors. This is in contrast with the
commonly used average correction error which does not take into account the fact that
the distortion in the middle area of images is little, while the distortion in the peripheral
area is more pronounced. As such, the average correction error may not be informative
to the performance of algorithms; and (2) the collinearity constraint on points. While
the collinear points lie on curves in the distorted image, they should lie on the collinear
line segments after correction. The collinear fitting errors are measured as: maximum
fitting error (MFE), average fitting error (AFE), and the standard deviation of fitting
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errors (SDFE) of points on different line segments. The experiments based on both
synthetic data and real images show that the proposed algorithm produces encouraging
camera calibration and correction results.

4.4.1 A new distortion model

The following notations are used throughout this section: lower case letters denote
scalars, |· | denotes the absolute value of a scalar, ||· || denotes the Euclidean norm of a
vector, I is an identify matrix, a× b denotes the cross product of vectors a and b, det(A)
denotes the determinant of the square matrix A, the subscripts w and c denote the 3D
points described in the world and camera centred coordinate systems, the subscripts f, u,
and d denote the points in the frame buffer, undistorted, and distorted image points, re-
spectively, variables withˆsigns denote the corrected or estimated ones, and superscript
T denotes the transpose of a vector or a matrix.

Inspired by the various camera distortion models summarised in Table 4.1 proposed
in the literature and in an attempt to model the overall camera distortion without priorly
knowing which distortion the lens is subject to and combat the imaging noise for accurate
camera calibration and correction, we propose the following camera distortion model:

xdi = xui
1+k2xui+k3yui

1−k1r2ui
,

ydi = yui
1+k4xui+k5yui

1−k1r2ui

(4.4.1)

where k1, k2, k3, k4, and k5 are unknown distortion parameters to be calibrated, Pdi =
(xdi, ydi)

T is distorted image point, Pui = (yui, yui)
T is undistorted image point:

xui = f R1pwi+tx
R3pwi+tz

,

yui = f
R2pwi+ty
R3pwi+tz

(4.4.2)

R1, R2 and R3 are the three rows of the camera orientation matrix R in the world
coordinate system, tx, ty and tz are the three components of the camera position t,
and r2ui = x2ui + y2ui is the squared radius distance from the principal point (cx, cy)

T to
the undistorted image point Pui. This model which is called a fraction model (FMC), is
applied to the projected 3D world points, and clearly has the property that when ru = 0,
the point has no distortion at all. With the increase of ru, the distortion in the points
also increases. This property conforms to the normal observation that the points in the
middle of the image are subject to less distortion, while the distortion of the points in
the peripheral area is more pronounced.

4.4.2 Calibration algorithm based on fraction distortion model

In this section, we estimate the unknown parameters in the proposed camera distortion
model (Equation 4.4.2) described in the last section and then summarise the main steps in
the proposed algorithm for camera calibration and correction. To this end, we minimise
the sum of the squared differences between the transformed distorted projected 3D world
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Table 4.1: Commonly used camera distortion models

Type Model Applicability

Radial polynomial model rd = ru(1 + k1r
2
u + k2r

4
u + · · ·+ kpr

2p
u ) Projected/Image points

Radial model [52] rd = ru(1 + k1ru + k2r
2
u) Projected points

Radial model [77] rd = ru(1 + k1r
2
u) Projected points

Radial division model [23] P̂f = 1
1+k1||Pf ||2

Pf Image points

Radial model [74] p̂f − C = (Pf − C)
∑d

i=0 ki||Pf − C||i Image points

Radial rational model [12] P̂f =
(

AT
1 x(i,j)

AT
3 x(i,j)

,
AT

2 x(i,j)

AT
3 x(i,j)

)

Image points

Decentering model [80]
xd = p1(r

2
u + 2x2u) + 2p2xuyu

yd = 2p1xuyu + p2(r
2
u + 2y2u)

Projected points

Thin Prism model [80]
xd = s1r

2
u

yd = s2r
2
u

Projected points
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points pwi = (xwi, ywi, zwi)
T and their given corresponding distorted projective image

points Pdi = (xdi, ydi)
T (i = 1, 2, · · · , n). The details of optimization are given as follows.

4.4.3 Pin-hole camera model

The relationship between a 3D world point pwi = (xwi, ywi, zwi)
T and its image point

Pfi = (xfi, yfi)
T in the image plane without distortion can be represented as:

Zci





xdi
ydi
1



 = A(Rt)

(

pwi

1

)

= Hpwi + T (4.4.3)

where H = AR,T = At, matrix A =





fx 0 Cx

0 fy Cy

0 0 1



 encodes the camera intrinsic

parameters, s is the aspect ratio of the pixel, f is the focus length of the camera,fx and
fy are the camera focal length in X and Y axis directions, (Cx, Cy) is the principal point,
and Zci is the depth of 3D world point pwi in the camera centred coordinate system.
These formulas are coincident with the perspective model in Section.4.3 above.

4.4.4 Optimization of all parameters

Taking the proposed camera distortion model in Equation 4.4.1 and the pin-hole camera
model Equation 4.4.3 into account, then altogether 16 parameters need to optimized:
4 intrinsic parameters IP = (fx, fy, Cx, Cy), 7 extrinsic parameters EP=(q,t where a
quaternion q is used to represent the camera orientation matrix R and three parameters
are used to represent camera position t in the world coordinate system), and 5 distortion
parameters DP = (k1, k2, k3, k4, k5). To optimize these 16 parameters, the following
objective function is built:

J1 = min
IP,EP,DP

n
∑

i=1

((x̂fi − xfi)
2 + (ŷfi − yfi)

2) (4.4.4)

which minimize the differences between the re-projected 3D points P̂fi in the image
plane and given image points Pfi. The initialization is required for the Levernburg-
Marquardt algorithm. The initialization was provided using the intrinsic and extrinsic
parameters estimated using the classical Zhang algorithm [83] with distortion parameters
all set to 0.

4.4.5 The correction of the distorted image points

From Equation 4.4.1, it can be seen that given the distorted image points Pdi = (xdi, ydi)
T ,

generally, there is no closed form solution to the undistorted points Pui = (xui, yui)
T .

While some researchers turn to the approximation method [30],[29], in this section, we



4.4. FRACTION DISTORTION MODEL 64

propose using the LM algorithm to correct the distorted points. To this end, the follow-
ing objective function is built:

J2 = min
x̂ui,ŷui

(x̂di − xdi)
2 + (ŷdi − ydi)

2 (4.4.5)

where x̂di = x̂ui
1+k̂2x̂ui+k̂3ŷui

1−k̂1r̂ui
, ŷdi = ŷui

1+k̂4x̂ui+k̂5ŷui
1−k̂1r̂ui

, r̂2ui = x̂2ui + ŷ2ui. The LM algo-

rithm was initialised by the distorted image points. Since the undistorted points around
the principal point are always very close to the distorted points and the undistorted
points should not be far away from the distorted points, the distorted points thus often
provide a good initialization for their optimized correction. As long as both the intrinsic
and distortion parameters have been calibrated with reasonable accuracy, then the ob-
jective function J2 usually well poses the image correction problem, leading the distorted
points to be accurately corrected.

4.4.6 Summary of the camera calibration and correction algorithm

The main steps in this camera calibration based on the proposed fraction distortion
model and correction algorithm can be summarised as follows:

1. Use Equation 4.4.1 to model the camera distortion;

2. Use the improved Zhang algorithm[83] to estimate both the intrinsic and extrinsic
parameters;

3. Apply the LM algorithm to minimise the objective function Equation 4.4.4 for an
optimal estimation of the camera intrinsic, extrinsic and distortion parameters.
The LM algorithm is initialised by the intrinsic and extrinsic parameters that were
estimated above by the Zhang algorithm and the distortion parameters that are
all set to zero;

4. Apply again the LM algorithm to minimise the objective function Equation 4.4.5
to correct the distorted points with the LM algorithm initialised by the distorted
points themselves.

Since the proposed algorithm is based on a fraction distortion model for camera
calibration, it is called the FMC algorithm in the rest of this thesis. As it operates
directly on 3D-2D correspondences and it has a linear computational complexity O(n)
in the number of 3D-2D correspondences used for camera calibration and correction.
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4.5 Iterative Camera Calibration

In most camera calibration methods, they assumed that the precise 2D and 3D coor-
dinates of the control points are available. However, in practice, this is not always the
case due to fact that the 3D pattern manufacturing process always introduces errors
to the pattern. In addition, the accuracy of control points detection is suffered from
image distortion. Therefore, this section we propose iterative based camera calibration
to reduce the errors from inaccurate 3D pattern and the effect from image distortion.

4.5.1 Some Backgrounds

Based on the above sections, we now consider how to improve existing methods to achieve
more accurate calibration results. From Eq.4.3.1 and Eq.4.3.2, it is known that camera
calibration requires two sets of input points: (X,Y,Z) and (u, v), where the former is
the 3D coordinates of the 3D points in world space, the latter is their 2D projection in
the image plane. Clearly, the more accurate 3D input points are, the more precise the
calibration results will be. Inaccurate calibration results can be analysed from reliability
of these two sets of points.

Precise 3D point’s pattern can be classified into two types: coplanar or non-coplanar,
as shown in Fig 4.6 and 4.5. Chessboard and circular pattern are normally used for cam-
era calibration, since various constraints can be extracted that can be used to constrain
the calibration process. Both of these pattern types have shown to be detectable with
sub-pixel accuracy, but the chessboard pattern deals with the misplacement error intro-
duced by radial distortion, which is easier to examine even by eye.

Figure 4.5: Coplanar chess pattern Figure 4.6: Non-coplanar circular pattern[29]

These patterns can be manufactured in precision engineering, which can narrow the
error down to ±0.01mm. However, such accurate 3D markers are very difficult and
expensive to build. It requires expensive tooling and need a remarkable amount of effort
for maintenance and verification. Although printing the patterns on a paper is an easy
and fast solution to prepare the 3D target, the accuracy is not always perfect. In paper
[1], it was mentioned that the normal ink-jet printer was more accurate, showing printing
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errors greatly below the measurement threshold of the ruler (i.e. sub-millimetre) both
with respect to the global chessboard size and its aspect ratio compared to a laser printer.
The reason is the different ways in which they work: ink-jet printer has internal linear
stage control, which should be more precise compared to rotate the hollow tube (heat
roller) in laser printers. However, the 3D pattern printing still contains some errors which
are unavoidable. To compensate the error, Jean-Marc [47] proposed a method which
reduces this type of error. In his proposed method, the 3D world points (Xw, Yw, Zw)
are varied and can be adjusted in global optimization.

The steps of this algorithm are as follows:

1. Input original 3D world coordinates (Xwj , Ywj, Zwj)

2. Perform the standard camera calibration (by [83] or [79]), and compute the re-
projection error ξ

3. Input 3D world coordinates as variables into the global optimization. The original
coordinates will be regarded as initial guess. Eq.4.3.8 can be extended to be:

n
∑

i=1

m
∑

j=1

‖Pij − P̆ (A,D,Ri, Ti,Xwj, Ywj, Zwj)‖2 (4.5.1)

By this method, the author claims that even the 3D points contain up to 10mm noise,
the calibration results are very close to the true solution. More details can be found in
the later experimental results section.

In Paper [1], Andrea proposed a similar method to compensate the inaccurate 3D
world pattern but using bundle adjustment to deal with a large number of unknown
variables. Below are the main steps:

1. Input original 3D world coordinates (Xwj , Ywj, Zwj)

2. Perform the standard camera calibration by [83] with existing input datasets in-
cluding detected feature points (like corners), and compute the re-projection error
ξ

3. The camera parameters obtained from the previous step are assumed to be correct,
the geometry of 3D input points can be rectified by the bundle adjustment for the
estimation of only the camera poses and scene (the 3D input points).

4. By the new set of parameters, a smaller re-projection error can be achieved.

5. Repeat Steps 2 ∼ 4 until the error ξ converges or the maximum number of iterations
has been reached

6. Once the error converges, a further step is needed, specifically we need to rescale
the newly created target (3D world input points) to fit the original one. This is
necessary since the bundle adjustment step does not guarantee scale invariance.
This adjustment step is performed by using the robust closed form point alignment
technique by [31].
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The key technique in Andrea method is bundle adjustment. Bundle adjustment is the
problem of refining a visual reconstruction to produce jointly optimal 3D structure and
viewing parameter (camera pose and/or calibration) estimates. Optimal means that
the parameter estimates are found by minimizing some cost function that quantifies
the model fitting error, and jointly means that the solution is simultaneously optimal
with respect to both structure and camera variables. The name refers to the ’bundle’
of light rays leaving each 3D feature and converging on each camera centre, which are
’adjust’ optimally with respect to both feature and camera positions. Equivalently, unlike
independent model methods, which merge partial reconstructions without updating their
internal structure-all of the structure and camera parameters are adjusted together ’in
one bundle’ [78].

After step 2, there are (Xw, Yw, Zw)n, n is the number of captured images by the
number of pattern points plus 15 calibration parameters that need to be optimized. For
example, an 8× 6 chessboard pattern in five captured images will bring 48× 5× 3 = 720
non-linear parameters to be adjusted. To increase the processing speed, sparse bundle
adjustment [51] is used in our application. It is far more efficient compared to the original
Levenberg-Marquardt Algorithm.

Datta [16] developed another iterative method to perform the refinement. It considers
the camera distortion and pattern position in the images that both affect the feature
detection and final calibration results. Here is the algorithm outline:

1. Detect the calibration pattern in the input images.

2. Use the detected control points to estimate the camera parameters.

3. Use the above camera parameters to undistort and un-project input images to a
canonical pattern.

4. Localize calibration pattern control points in the canonical pattern.

5. Project back the control points using the estimated camera parameters.

6. Use the projected control points to re-fine the camera parameters using Levenberg-
Marquardt.

7. Repeat Steps 3-6 until convergence or reach maximum iteration number.

The advantage of this method is un-project the images to a canonical pattern view,
which manifests as the fact to reduce the effect of lens distortion and increase the accu-
racy of feature detection in the canonical-front view. However, this canonical-front view
sometimes is hard to compute and the grid may appear outside the image plane after
un-distortion. It really limits the flexibility of using multi orientations of calibration
pattern, for example, the fish-eye lens may not be able to apply to this method; the cali-
bration pattern only limits to move/rotate at a small angle to make sure the grid appears
in the image after the images being undistorted. Hence, our experiment only considers
Andrea method for comparison against the proposed iterative camera calibration.
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Usually, the given the 3D world points (Xwj, Ywj,Xwj) and 2D image points (uj , vj)
are fixed and used throughout the whole process of camera calibration, assuming that
they are accurate. However, in practice, the image points are detected from the distorted
images, and thus, are not accurate. This implies that after the camera parameters have
been estimated in each iteration of the calibration, the images should be un-distorted
and the feature points have to be re-detected from the un-distorted images for more
accuracy.

4.5.2 Combination and further development

From the description in the above sections, it can be inferred that Datta’s and Andrea’s
methods are compatible with each other. Thus, we propose a new method which com-
bines the advantage within the above algorithms and considers the input 2D detected
feature points altogether. The images used for feature detection always come with more
or less lens distortion. Such image distortion affects the feature detection accuracy and
brings error in final calibration results. To reduce such lens distortion affection on fea-
ture detection like corner or circular detection, it is possible to un-distort the image
before the detection. Based on this observation and the previous sections, we propose a
combination method to achieve higher accuracy camera calibration.

Here are the main steps in the proposed method:

1. Camera Calibration (for example, Zhang [83] or Tsai [79]) obtains the calibration
parameters.

2. Bundle adjustment to have a new set of 3D points which have better fit and
minimum re-projection error.

3. A further step is needed, specifically we need to rescale the newly created target
(3D world input points) to fit the original one. This is necessary since the bundle
adjustment step does not guarantee scale invariance. This adjustment step is
performed by using the robust closed form point alignment technique by [31].

4. Perform the calibration again and have a new set of parameters using the new set
3D points and the calibration parameters from step 1 as initial guess.

5. Un-distort the images to extract better corner position. (more precise corner lo-
cation can be achieved in distortion free images) Such corner position can be used
in the next iteration from step 1.

6. Repeat Steps 1 ∼ 5 until the error converges or its maximum number of iterations
has been reached.

The calibration result shown in Table.4.2 was obtained after 30 iterations. Total eight
chessboard pattern images were used in this example. The image size is 720 × 576 and
there are 48 corners in total. As it can be seen in this table, the re-projection error has
been decreased very fast in just two iterations, and parameters including fx, fy, Cx, Cy
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Round fx fy Cx Cy RPE

0 672.13252 728.37007 367.49119 311.85001 0.16970

1 676.50042 733.19166 366.45614 312.06166 0.10029

2 678.34047 735.28178 365.84873 312.13756 0.09912

3 679.24575 736.36300 365.41231 312.12981 0.09834

4 679.72589 736.98538 365.06730 312.06847 0.09768

5 679.97993 737.36290 364.78062 311.97429 0.09710

6 680.10293 737.59737 364.53471 311.86128 0.09656

7 680.14710 737.74460 364.31879 311.73866 0.09607

8 680.14339 737.83767 364.12578 311.61234 0.09561

9 680.11083 737.89690 363.95090 311.48610 0.09518

10 680.06130 737.93503 363.79083 311.36234 0.09477

11 680.00228 737.96007 363.64325 311.24255 0.09440

12 679.93844 737.97707 363.50651 311.12764 0.09404

13 679.87272 737.98925 363.37939 311.01814 0.09371

14 679.80694 737.99860 363.26099 310.91432 0.09340

15 679.74221 738.00639 363.15061 310.81632 0.09311

16 679.67919 738.01340 363.04769 310.72413 0.09283

17 679.61827 738.02011 362.95178 310.63772 0.09257

18 679.55963 738.02680 362.86250 310.55696 0.09233

19 679.50337 738.03365 362.77951 310.48173 0.09211

20 679.44949 738.04073 362.70253 310.41190 0.09190

21 679.39797 738.04810 362.63128 310.34729 0.09170

22 679.34875 738.05576 362.56551 310.28774 0.09151

23 679.30176 738.06372 362.50499 310.23309 0.09134

24 679.25693 738.07196 362.44951 310.18318 0.09117

25 679.21416 738.08046 362.39886 310.13782 0.09102

26 679.17339 738.08920 362.35284 310.09687 0.09088

27 679.13454 738.09816 362.31127 310.06016 0.09074

28 679.09752 738.10733 362.27395 310.02753 0.09062

29 679.06225 738.11666 362.24072 309.99884 0.09050

Table 4.2: Iterative camera calibration example, RPE: re-projection error, unit: pixel



4.5. ITERATIVE CAMERA CALIBRATION 70

converged after 26 iterations. Fig.4.7 shows more clearly how quickly the re-projection
error drops. From these result we can see that the detected feature points plays a key
role for accurate camera calibration.
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Figure 4.7: Re-projection error as a function of iteration numbers in iterative calibration
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Chapter 5

Scanner Calibration

This chapter presents our 3D laser scanner calibration which related to camera calibra-
tion and the final 3D reconstruction. The scanner calibration aims to estimate two most
important parameters: laser stripe projection angle α and baseline length D. Assuming
the baselineD, the laser projection angle α and camera intrinsic and extrinsic parameters
are known, then the 3D reconstruction should be straightforward by the trigonometry.
However, these two parameters can not be measured directly and there is no special
tools designed for that. A new approach to estimate the angle α and baseline length D
is proposed in the chapter. Once the laser stripe location Pi in captured image is known,
then Pi can be reversed back to 3D world space by simple triangulation. In addition, in
this chapter, we also discuss some camera calibration practical issues and propose their
resulting solutions.

5.1 Laser Camera Triangulation principles

To recover the geometrical structure of the visible surface of the objects of interest from
their 2D images, the laser-based optical triangulation method is used in the 3D scanning
system.

Fig.5.1 depicts the optical geometry of a scanning system [3]. Similarly, the laser
stripe can be treated as many dots, each dot captured in the image can be reversed from
2D (x, y) to 3D (X,Y,Z). The relationship among the parameters of interest in this
optical probe can be found by trigonometry. Two angles (α, β) and an edge (baseline D)
determines this triangle completely. By simple trigonometry, the (X,Y,Z) coordinates
of the illuminated point on the object can be estimated from its image point. If the laser
dot in 2D image has coordinates (xi, yi) where xi is larger than image centre Cx and
β < 90◦, then Xi, Yi, Zi are determined by Eq. 5.1.1, 5.1.2 and 5.1.3 below:

Zi =
Df

p+ f cot(α)
(5.1.1)

Yi =
Zi(yi − Cy)

f
(5.1.2)
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Figure 5.1: Laser-based optical triangulation [3]

Xi = X0 + n∆x (5.1.3)

where ∆x is the linear stage moving step, n is the number of steps moved so far, and
X0 is the standing position. If xi < Cx and β > 90◦, then (Zi, Yi) coordinates can be
computed as:

β = arctan
p

f
(5.1.4)

where p is the laser dot in camera’s CCD sensor, p = |xi − Cx|, β is the angle between
the CCD sensor plane and reflected laser beam, and α is the incident angle (or fixed
angle) of the laser beam/stripe. Hence, Zi

Zi = cos(α)

(

D tan(α) +
D cot(α)

tan(α− arctan(β))

)

. (5.1.5)

Once Zi is known, Yi and Zi can be computed by:

Yi =
Zi(yi − Cy)

f
(5.1.6)

Xi = X0 + n∆x (5.1.7)

The reason why different formulas were used to estimate 3D points coordinates is
when the angle β is larger than 90◦, the altitude of a triangle is outside, resulting in Zi

being estimated using another formula. Xi is related to linear stage moving step. For an
incremental change of distance ∆Z, one measures the incremental angle shift ∆β. The
angular shift ∆β caused by the displacement of the surface is observed through a shift
in the laser dot position ∆p = (p1 − p2). In practice, the main errors come from the
estimated measurement of p and baseline length D.

In our case, the laser and camera are placed like Fig.5.3. Ideally, they should be in
the same plane on the top of the linear stage. Since the triangulation described in Fig.5.1
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Figure 5.2: Ideal (left) and actual (right) lens position

is based on laser dot model, to be able to apply to laser stripes, it should be projecting
parallel to Y coordinate in camera CCD plane as shown in Fig.5.3. Meanwhile, the
camera should be placed at a projection angle at 90◦ exactly, otherwise CCD sensor is
not parallel to the base line D, the angle β is meaningless and the formulas above can
not apply any more.

Usually, the camera lens optical centre does not always lie on the line perpendicular
to and pass through the centre of the CCD sensor plane. It means when the light
rays go through the optical lens, they do not exactly focus on the CCD sensor’s plane
centre. This is the main reason why the calibrated image centre (Cx, Cy) always shifting
a bit as shown in Fig.5.2. The whole triangulation accuracy highly depends on the laser
projection angle α and baseline D, which is the distance between the camera lens’s centre
to the laser generator. To have accurate result, their measuring error should be as small
as possible. However, it is extremely hard to measure them directly. Therefore, in the
next section, a new method is proposed to estimate of these parameters and make full
use of the accurate linear movement stage.

Figure 5.3: Laser scanning setup in air

5.2 Laser stripe Angle and Base Line Estimation

To be able to apply the triangulation method described in the previous sections, param-
eter baseline length D and laser projection angle α should be precisely measured. In
practice, it is challenging to measure these parameters directly due to the underwater
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environment. [63] proposed a method using lithography film for reference of measure-
ments. They used the Z axis to calculate the laser beam angle α by taking two pictures
with the same camera. Firstly, they turned on the lasers and pasted the film on the
scanner table. Then they took two pictures as shown in Figure 5.4. Finally, they pro-
cessed these two pictures to find the distance between the centres of the laser stripes
with consideration of the fixed film in the pictures and the known centre positions of the
circles on it.

Figure 5.4: Two pictures used to calculate the laser beam angle in [63]

Alternatively, it is possible to use chessboard pattern like 5.12 and colour camera
to compute the laser projection angle α. Firstly, we take couples of pictures with laser
stripe projecting on the chessboard. Secondly, by the camera calibration parameters, it
is able to calculate the chessboard 3D positions and then obtain the laser stripe position
in 3D. Once we get this information, the laser projection angle α and tilt angle to camera
Y axis can be estimated. In this case, it doesn’t require the laser stripe perfectly aligned
as long as the stripe itself is straight.

However, both of the above methods require either colour camera or secondary light
source for the chessboard or lithography film to separate the laser stripe from the cal-
ibration pattern background. Most of our cases require mono camera (due to colour
aberration underwater) and no other light source can be used. If we use other light
source, the laser may become too weak to separate it from the background. If increasing
the laser power, the image may become highly saturated. Light filter sometimes may
help to reduce such saturation but it also filters out the background pattern that causes
the above estimation methods to fail. Hence, a novel method that makes full use of
highly accurate linear stage and mono camera is proposed:

1. Mount the scanning system onto the linear stage, pointing the laser and camera
to the stage travel direction

2. Turn on the system and capture image to extract the laser stripe. Then the angle
β1 can be computed by the camera’s focal length from the calibration. It is able
to compute average angle β1 to reduce the noise effect by multiple images which
captured in different times.

3. Control the stage moving step △d1 and capture another image and then angle β2



5.2. LASER STRIPE ANGLE AND BASE LINE ESTIMATION 75

Laser

f

d1D

d2D

d1

d3

d2

α
β1

β2

β3

Base Line (D)

CCD

Dx1 Dx2

Figure 5.5: Principle of laser-based optical triangulation
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can be computed. Again, it is able to compute average angle β2 to reduce the noise
effect by capturing multiple images.

4. Repeat step 3 to get △d2 and angle β3.

As D and α are unknown, moving distance △d1 and △d2 can be read from linear
stage, f is the focal length. Based on the triangulation, it is known: tan(β1) = d1/Dx1

and tan(α) = d1/Dx2, where Dx1 +Dx2 = D, hence,

D = d1

(

1

tan(β1)
+

1

tan(α)

)

,D = d2

(

1

tan(β2)
+

1

tan(α)

)

(5.2.1)

then

d1 =
D

(

1
tan(β1)

+ 1
tan(α)

) (5.2.2)

similarly, the d2 can be derived as

d2 =
D

(

1
tan(β2)

+ 1
tan(α)

) (5.2.3)

Also, d2 − d1 = △d1, where d1 is the first round linear stage movement, hence, the
following equation holds:

D =
△d1

1
1

tan(β2)
+ 1

tan(α)

− 1
1

tan(β1)
+ 1

tan(α)

(5.2.4)

Repeating the same steps as before, mark down the linear movement △d2 and it can
be inferred:

D =
△d2

1
1

tan(β3)
+ 1

tan(α)

− 1
1

tan(β2)
+ 1

tan(α)

(5.2.5)

Combining the last two equations, unknown variable D can be removed, hence,

△d2
△d1

=

1
1

tan(β3)
+ 1

tan(α)

− 1
1

tan(β2)
+ 1

tan(α)

1
1

tan(β2)
+ 1

tan(α)

− 1
1

tan(β1)
+ 1

tan(α)

(5.2.6)

In this equation, only tan(α) is unknown and can be solved. Once it has been solved,
the baseline length D can be determined. In real experiments, the linear stage movement
can be alike to simplify the equation which means △d2

△d1
= 1. Surely, repeat the process

to obtain average would give better optimization results.
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Figure 5.6: Laser generator
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5.3 Some Practical issues

5.3.1 Adjust the laser generator

It is important to make sure the laser stripe itself is straight. Otherwise, the laser stripe
bending can cause laser dot triangulation model in Fig.5.1 fail to extend as laser stripe
model and such geometry trigonometry is no longer stand. As shown in Fig.5.6, adjust
the laser and the light generator to make sure the laser itself is straight. There is a way
to verify whether the laser is bent: turn on the camera and take a snapshot of laser
stripes and perform image un-distortion. Fig.5.7 shows the snapshot and its undistorted
image. Once we get the laser peak, the least-squares technique 1 can be applied:

Figure 5.7: Laser stripe adjustment

Certainly, to verify this laser stripe straight or not, each sample point of the peaks
xi, yi, i = 1, . . . n. can be fit to a straight line model y = a + bx with a total error E
defined in Eq.5.3.1 as small as possible. Also, the correlation coefficient R2 defined in
Eq.5.3.11 gives the quality of this least squares fitting to the original data.

E(a, b) =
n
∑

i=1

[yi − (a+ bxi)]
2 (5.3.1)

and

∂(E)

∂a
= −2

n
∑

i=1

[yi − (a+ bxi)] = 0 (5.3.2)

∂(E)

∂b
= −2

n
∑

i=1

[yi − (a+ bxi)]xi = 0 (5.3.3)

1http://mathworld.wolfram.com/LeastSquaresFitting.html

http://mathworld.wolfram.com/LeastSquaresFitting.html
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These lead to the equations

na+ b

n
∑

i=1

xi =

n
∑

i=1

yi (5.3.4)

a
n
∑

i=1

xi + b
n
∑

i=1

x2i =
n
∑

i=1

xiyi (5.3.5)

Solving these equations by matrix inverse, we have

a =

ȳ(
n
∑

i=1
x2i )− x̄

n
∑

i=1
xiyi

n
∑

i=1
x2i − nx̄2

(5.3.6)

where x̄andȳ are the average of xi, yi, then

b =

(
n
∑

i=1
x2i xiyi)− nx̄ȳ

n
∑

i=1
x2i x

2
i − nx̄2

(5.3.7)

By [43], they can rewrite by defining the sum of squares:

ssxx =
n
∑

i=1

(xi − x̄)2 (5.3.8)

ssyy =
n
∑

i=1

(yi − ȳ)2 (5.3.9)

ssxy =
n
∑

i=1

(xi − x̄)(yi − ȳ) (5.3.10)

Then, the correlation coefficient R2 is finally defined as:

R2 =
ss2xy

ssxxssyy
(5.3.11)

In the example as shown in Fig.5.7, its correlation coefficient R2 = 0.99996, which
means 99.996% of the data that is the closest to the best fit line. Thus, laser stripe is
straight in the camera view. Such calculation it is in real time and the laser generator
can be adjusted carefully until the correlation coefficient R2 as close to 100% as possible.
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5.3.2 Laser tilts versus camera Y-axis

Laser tilts versus camera Y axis is one of the parameters of the scanner which should be
corrected. The laser triangulation model in Fig.5.1 is based on laser dot. To be able to
apply to laser stripe and have accurate scanning, the laser stripe should be parallel to
the camera Y axis. Hence, it needs very precisely assembling of scanner parts. However,
it is possible to compensate laser tilt error from the assembly of the system.

x1,y1

x2,y2

Figure 5.8: Laser strip tilt

The laser tilt can be calculated by linear least-squares fitting. Actually, its tilting
angle is the slop of its best fitting line as long as the stripe is straight. Of course,
the captured image should be un-distorted in the beginning. Such procedure can be
performed in air before the scanner applied underwater. Fig.5.8 shows a tilt laser stripe,
its slope is the tilting angle to the camera Y axis, which can be compensated by Eq.5.3.12,
where κ is the laser tilt.

κ = x2−x1
y2−y1

x′ = x′tilt − κ× y′
(5.3.12)

where (x1, y1), (x2, y2) are two select points on the laser stripe, x′, y′ are their cor-
rected point. Such laser tilt calculation can be used in air laser scanning which allow
using third part light source, colour laser or even lithography film. In underwater en-
vironment, we still need to make sure the laser parallel to camera Y axis as much as
possible then our laser stripe and baseline estimation method can be applied.

5.3.3 Camera and linear stage Y coordinate mismatch

The mismatch between the XY axes of the camera and linear stage may happen as
illustrated in Fig.5.9. To correct this, we can put a perpendicular white string with
heavy metal piece at the end of it. By gravitational attraction, the string will stabilize
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and straight enough to be the reference. Calculating the slope of the line in the image by
the linear least square fitting will tell us how much the camera XY axes have been bent
relative to the linear stage, and the camera can then be adjusted to make it perfectly fit
with the Y axis vertical to the ground.

Figure 5.9: XY coordinates mismatch

5.3.4 Angle λ

The angle between the X axis of the linear stage and that of the scanner system as shown
in Fig.5.10 would be anther parameter to be calculated. When placing the scanner on
the top of the linear stage, it is not easy to make sure that their X-axes are the same.
The actual moving distance X ′ of the scanner needs to be compensated by Eq.5.3.13 as
a function of the moving distance X of the linear stage and the angle λ between them.

X
′

=
X

cos(λ)
(5.3.13)

There are two ways to compensate or correct the angle λ as shown in Fig.5.10 and
5.11:

1. Directly measure the distance D1 and D2 from both ends of the linear stage of the
board which is vertical to the ground, as shown in Fig.5.11 to make sure D1 = D2,
thus, λ = 0.

2. Place a chessboard on the board and capture its image, then perform corner detec-
tion, using camera calibration parameters to un-distort the image and the corners.
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Figure 5.10: The angle between the linear stage and camera in X-axis, which is due to their
imprecise assembly.

Figure 5.11: Compensate for the angle λ
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The board and chessboard can be adjusted to vertical to the ground carefully, thus
the formed lines by the corners on the captured image should be parallel or vertical
to each other. Ideally, if the camera Y axis is parallel to the board, the grid made
by these corners should have the same size.

Clearly, these two ways can be combined together. One possibility is to adjust the
linear stage directly as the first method and then use camera calibration and linear fitting
to check if the camera is parallel to the chessboard.

Figure 5.12: Using a chessboard to measure the tilt of the camera.

5.4 Underwater Scanning issues

Water Index There are many factors change the water index, which means that the
light refractive angle may change, and thus affect the camera calibration result. It is
easier to conduct experiments using an air/water model to obtain the index of refraction
of the light relative to the air or glass. The index of refraction is the ratio of the travel
velocity of the light in vacuum to that in water: light travels more slowly in water
than in vacuum (or in the air). Thus, it is always greater than one. In our case, the
laser beam travels from seawater, goes through the front glass and passes the camera
lens to CCD through the air. Obviously, the ingredient of the seawater is complex. It
includes: temperature, salinity and pressure/stress. Generally, the first two factors are
more important.

Theoretically, in various degrees, all transparent media are dispersive. Thus, they
bend light as a function of its wavelength. Specifically, in the visible portion of the
spectrum (approximately 4300-6900 Angstroms) the index of refraction is generally a
decreasing function of the wavelength: the violet light is bent more than the red light.
Furthermore, the rate of change of the index of refraction also increases as the wavelength
decreases. Table 5.1 shows the results of some measurements of the index of refraction
of water, n(w), with respect to the dry air at the same temperature T as water and a
pressure of 760mm−Hg.
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Wave Length (Angstroms) T = 10◦C T = 20◦C T = 30◦C

7065 1.3307 1.3300 1.3290
5893 1.3337 1.3330 1.3319
5016 1.3371 1.3364 1.3353
4047 1.3435 1.3427 1.3417

Table 5.1: Index of the refraction of water as a function of the wavelength and water temperature

Another factor is the salinity of the seawater. It does have some effect on the light
refraction. In the huge part of the ocean that remains hidden, the seawater is salty, cold,
dark and deep. Salinity is usually expressed as grams of salts dissolved in a kilogram
of seawater (gm/kg). Average salt content in the ocean is 35 grams per kilogram of the
seawater. Table 5.2 shows how the seawater index n(w) increases with regards to salinity
for the sodium D-lines (mean: 5893 Angstroms) at 18◦ [19].

Salinity (gm/kg) increase in n(w) example

5 0.00097 northern Baltic Sea
10 0.00194
15 0.00290
20 0.00386 bight of Biafra
25 0.00482
30 0.00577
35 0.00673 Atlantic surface
40 0.00769 northern Red sea

Table 5.2: Changes in index of refraction due to salinity

The index of refraction is also a function of the water pressure, but the dependence is
quite weak because of the relative incompressibility of the water. In fact, over the normal
ranges of temperatures (0-30C), the approximate increase in n(w) is 0.000016 when the
water pressure increases by one atmosphere 2. Clearly, the most significant factors that
affect n(w) are the wavelength of the light, salinity and temperature of the water. To
reduce their effect on the detection accuracy of the laser spot in the image and simulate
the working environment of the 3D scanner in subsea, the salinity, average temperature
and wavelength of the laser scanning should be measured in advance. A calibration and
optimization is done in the water with the same salinity and temperature which remain
the index consistent.

5.5 Underwater camera calibration

[77] clearly describes the principle of the normal camera model as presented in Chap-
ter.4.3. The perspective geometry model in the air would be very different from that

2Atmosphere, unit of pressure: the pressure that will support a column of mercury with 760mm high
at sea level and 0 degrees centigrade



5.5. UNDERWATER CAMERA CALIBRATION 85

underwater. Here the perspective projection model is shown again in Fig.5.13. Fig.
5.14 shows the perspective model underwater as comparison. Apparently, the viewpoint
(with dash line) at the bottom is following the normal perspective projection. However,
the real viewpoint is moved forward due to the light refraction of the water. Hence, the
application of the perspective model underwater may cause error.

Figure 5.13: Perspective projection in the pinhole camera model

Figure 5.14: Perspective projection model in an underwater environment [77]

Since no standard manufacturing data sheet will provide the camera focal length
based on water, it is hard to find a ground truth reference to verify the underwater
camera calibration results. However, the normal calibration based on the perspective
model may apply to underwater with some corrections. The detail is shown in later
section.
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5.6 Optimization

To sum up, the angles (α, β), water refraction, lens and CCD position are uncertain
factors. Their measurements from the direct survey are not always accurate enough and
can easily go wrong. Hence, a new method is proposed to optimize the measurements. It
is performed after parameters have been measured and estimated. The method follows
the basic triangulation principle: every 2D point in the CCD sensory plane or every pixel
in the captured image can be referred to a real 3D point. If all the factors including the
camera’s parameters (focal length f , distortion factors) and triangulation factors (angles
(α, β), base line D) are precisely measured, the relationship between 2D− 3D should be
fixed. If not, then the error can be minimized by comparing the real measurement and
estimated values. The main steps for the optimization are as follows:

Figure 5.15: Triangulation optimization

1. Mount the laser scanner onto the linear stage. The stage movement is controllable
and the minimum step is 0.16um. Real measurement can be read directly from
software.

2. Adjust the laser holder and camera by gradienter to make sure that they are
horizontal to the linear stage. At the same time, the laser line should be projecting
vertically to the linear stage and the CCD sensor in the camera. This also means
that the CCD sensor is vertical to the linear stage.

3. Place a flat object such as a white board vertically in front of the scanner as
Fig.5.15

4. Control the linear stage moving forward/backward to the board by a small step
of 0.1mm, for example, record the distance Z from camera’s CCD sensor to the
board, take a picture in every step of the stage movement. As the linear stage
moves, the position in the white board hit by the laser line also changes. The
value Z can be estimated by Eq.5.1.1 or Eq.5.1.5. The actual Z can be directly
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read from the stage movement. Hence, every estimated Ze can be corrected by
Zc = f(Ze).

5. The 3D scene parameter Y can be estimated from Eq.5.1.6, while X comes directly
from the linear stage or any other motion sensor.

For certain distance, this 2D to 3D relationship is reliable. However, as the dis-
tance increases, the 3D location requires a sub-pixel accuracy in the CCD sensor. As
the sensor’s inherent capability (CCD resolution) is fixed, the relation is not reliable
any more if it exceeds the certain distance. Apparently, to measure farther object accu-
rately, a higher resolution camera should be adopted. Due to all those uncertain factors,
the correction of the estimated parameters is normally a necessary step before actually
outputting the data. A flat glass/air/water model is proposed in [77]. In our case, we
consider distortion coming from the lens and the refraction is fixed, which means most
of the distortion is radial. Table.5.3 shows the contrast between real and measured dis-
tance Z by the proposed estimation method. The actual measurement Za is the distance
between the laser stripe to the flat wall. Since we can open the camera’s front cap that
Za is measurable as a reference value. In the example, the linear stage movement is set
to △d = 10mm, the camera resolution is 720×576, the angle of view is 90◦ in air, 60◦ in
water, and focal length f = 764.323 obtained from the camera calibration method. Sub-
stituting these values into the formulas derived before yields baseline D = 110.840mm,
tan(α) = 1.967 and angle ∠α = 63.057◦.

Actual Za Estimated Ze Error ∆Z

150.000 150.248 0.248
160.000 159.512 0.488
170.000 168.594 1.406
180.000 178.012 1.988
190.000 186.015 3.985
200.000 194.812 5.188
210.000 203.455 6.545
220.000 212.078 7.922
230.000 220.657 9.344
240.000 229.165 10.834
250.000 237.579 12.420

Table 5.3: Actual and estimated depth (unit: mm)

Apparently, as the distance increases, the error between actual Za and estimated Ze

distance becomes bigger. Fig.5.16 shows that this error is non-linear but fits the second
order polynomial with correlation coefficient of 0.9999. Thus, the estimated Ze can be
corrected by the 2nd order polynomial function about the actual Za and estimated Ze.
For instance, in the case of Fig.5.16, the correction function is as follows:
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Zc = 0.0006 × Z2
e + 0.9166 × Ze − 1.462 (5.6.1)

where Zc and Ze are the distance before and after correction. By this correction, the
distance error can be reduced down to ±0.5mm. However, this fitting can be extended
to a higher order, for instance, in 4th order,

Zc = 0.0000001861 ×Z4
e − 0.0001535 ×Z3

e + 0.04753×Z2
e − 5.388×Ze + 312.4 (5.6.2)

with correlation coefficient of 0.99996, which is very similar to second order fitting.
Hence, as long as the correlation coefficient is close to 100%, this fitting is acceptable,
no matter in which order. Such correction is necessary and useful taken into account the
various uncertain factors in the calibration and measurements of the focal length of the
digital camera, principal point, the length of the baseline, among others.
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Figure 5.16: Za, Ze and their polynomial fitting

Fig.5.17 shows an example of 3D scanning before and after optimization. The blue
and red parts are from different viewpoints of scanning (from the dual laser scanner,
left and right laser). Before the optimization, they are displaced and the measurements
are not very accurate. In principle, if the 3D reconstructions are accurate, both of them
should be superimposed perfectly because we are using the same camera, the object is
still but the lasers are shutting at different angles. Obviously, after the optimization,
their superimposition is perfect with precise measurement.
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Figure 5.17: Left: mismatch 3D profile, Right: match 3D profile after optimization
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Chapter 6

Experimental results and analysis

Our 3D Laser scanner is a whole system composed of several different components. Each
component plays an important role in the entire system. It is interesting and important
to know each component’s impact on the final scanning results. To this end, a systematic
approach is adopted for the comparison and study of the effect of a particular component
on the final 3D reconstruction. This is in contrast with the previous study: different
components are investigated independently. While a particular component is controlled,
all others will remain the same. The 3D reconstruction error is measured as the relative
error between the ground truth and the estimated one. The ground truth is collected
from direct and careful measurement. Individual experiment is carried out based on
different components including:

1. Sparse Code Shrinkage image denoise

2. Corner detection

3. Laser peak detection

4. Fraction lens distortion model

5. Iterative camera calibration

Synthetic and real scanning data were used in these experiments. All the experiments
are evaluated based on the final 3D result. The final experiment combines all these se-
lected components into the system and compares the 3D result to the design without
the selected components. Hence, the entire experiment is organized as two parts: from
section 6.1 to section 6.5 are the independent investigation of different components and
methods. Section 6.6 investigates the difference on 3D reconstruction between the se-
lected methods/components and traditional methods so that whether such optimization
is effective can be investigated.
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6.1 Sparse Code Shrinkage image denoise

In this section, a comparative study is carried on the denoising methods using natural
and underwater scanned images from our 3D scanner to examine:

1. How noise affects image quality and its feature detection.

2. How noise affects the final 3d reconstruction.

3. Which method is the most effective to reduce noise on the final 3D reconstruction.

The widely and common used Gaussian filter, median filter and Wiener filter were
chosen for the comparative study. The parameters of these filters were empirically chosen
from the evaluation images.

6.1.1 Natural images

From Fig.6.1 to Fig.6.4 show the denoising results on a grasshopper and the famous
”Lena” image corrupted by Gaussian noise with a standard deviation of σ = 0.3 and
σ = 0.5 (the unity was the standard deviation of a given image). In these figures,
Gaussian noise was added as illustrated in the right top image. The next two rows show
the denoising results by Gaussian, median, Wiener filter and SCS respectively. The
Sparse Code Shrinkage method was applied using the estimated orthogonalized ICA
transform (8 × 8 windows), while Gaussian smoothing with 3 × 3 masks, median and
wiener filtering in 3 × 3 neighborhood at noise level σ = 0.3. When the noise level
increase to 0.5, all those masks and neighborhood increase to 5 × 5 to have a better
result.

Visually, even at heavy noise level σ = 0.5, the SCS still produces better noise
reduction and retaining the image features. The perceptual quality of SCS is significantly
better than the remaining ones and its denoise result is qualitatively very like those for
the lower noise level σ = 0.3. It seems it performs quite similar as a feature detector,
in that it retains those features that are clearly visible in the noisy data but cuts out
anything that is probably a result of the noise[38]. The Wiener filter gives fair results,
although it does not really eliminate the noise but more like image blurring. Visually,
Gaussian and median filter distorts the images important feature and sharpness. To
have a quantity measurement of these filters’ effect on the final 3D result, we compared
them based on the real data from our 3D scanner in the next section.

6.1.2 Real scanning data

It is important to know the influence of noise to the final 3D reconstruction accuracy and
the image denoising methods’ performance in the difficult imaging task. Therefore, we
evaluated them based on the real data. The equipment set up is illustrated as Fig.6.5.
There are two scanning targets in this scanning experiment: (1) Vertical flat wall and
(2) Cup. They include different complexities of geometry and thus can be used to test
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Figure 6.1: Result of denoising a grasshopper image with different methods when the noise level
is σ = 0.3. The Sparse Code Shrinkage method was applied using the estimated orthogonalized
ICA transform (8× 8 windows), while Gaussian smoothing with 3× 3 masks, median and wiener
filtering in 3× 3 neighborhood. Top left: original image, top right: noise added, second row left:
Gaussian smoothed, second row right: median filtered, third row left: wiener filtered, third row

right: SCS applied.
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Figure 6.2: Result of denoising a grasshopper image with different methods when the noise level
is σ = 0.5. The Sparse Code Shrinkage method was applied using the estimated orthogonalized
ICA transform (8× 8 windows), while Gaussian smoothing with 5× 5 masks, median and wiener
filtering in 5× 5 neighborhood. Top left: original image, top right: noise added, second row left:
Gaussian smoothed, second row right: median filtered, third row left: wiener filtered, third row

right: SCS applied.
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Figure 6.3: Result of denoising ’Lena’ with different methods when the noise level is σ = 0.3.The
Sparse Code Shrinkage method was applied using the estimated orthogonalized ICA transform
(8 × 8 windows), while Gaussian smoothing with 3 × 3 masks, median and wiener filtering in
3× 3 neighborhood. Top left: original image, top right: noise added, second row left: Gaussian
smoothed, second row right: median filtered, third row left: wiener filtered, third row right: SCS

applied.
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Figure 6.4: Result of denoising ’Lena’ with different methods when the noise level is σ =
0.5. The Sparse Code Shrinkage method was applied using the estimated orthogonalized ICA
transform (8 × 8 windows), while Gaussian smoothing with 5 × 5 masks, median and wiener
filtering in 5× 5 neighborhood. Top left: original image, top right: noise added, second row left:
Gaussian smoothed, second row right: median filtered, third row left: wiener filtered, third row

right: SCS applied.
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whether the proposed method is robust for 3D scanning. Planar, circular and cylindrical
features are often used to characterize the performance of 3D laser scanners[53]. To
eliminate any effect caused by other components such as camera calibration, the noise
was only added into the laser stripe images and the evaluation was made only based on
their 3D models.

6.1.2.1 Equipment Set Up

This is a test done underwater, all the equipment is waterproof. The camera is Bowtech
LCC-600, with a resolution of 720 × 576. The laser projection angle is about 60◦. The
linear stage moving step is 1mm. From the scanner to the wall distance is about 20cm.
The wall is painted in white and placed vertically to the scanner. Zhang ZhengYou[83]
camera calibration and the proposed scanner parameters estimation procedure (including
the baseline D and laser projection angle α) described in Chapter 5 were applied in this
experiment. Gaussian approximation laser peak detection [22] method was used to make
a fair comparison. Please note the global optimization method discussed in Section 5.6
was not used in both scanning objects for easy implementation. The accuracy may
be lower because the normal camera calibration was applied in underwater without
optimization. Underwater scanning often comes with heavier noise than in air. For
example, Fig.6.6 is the one of the example images. The noise came from water(such as
current, sediment, floating particles, sand, mud, clay and salinity) or electronic signal.
In most of cases, it is very hard to avoid, hence, to simulate the real applications,
different levels of artificial Gaussian noise were added to the images and then denoised
by Gaussian filter, median filter, Wiener filter and SCS respectively. After that, laser
peak is extracted by Gaussian approximate and reconstructions to 3D model. Each
noise level runs 100 times and the average is chosen as the final result. Orthogonal
linear regression is fitted to the flat wall 3D models and three measurements were picked
from cup model for accurate evaluation.

6.1.2.2 Results and analysis: Vertical Flat Wall

In this part, the scanner was placed to scan a vertical flat wall, therefore, the recon-
structed 3D model should be completely flat, too. It is able to estimate 3D model’s
roughness by fitting an orthogonal linear regression and calculate the perpendicular dis-
tance from the fitting to target model 1. This is similar to the simple linear regression in
2D fits a straight line to a set of data points. Thus, the sum of perpendicular distances
(or called orthogonal distances, SOD) and their sum of squared errors (SSE) between the
fitting model and the original can be used to measure flat wall 3D model smoothness.
Based on the 3D model’s smoothness/roughness, it is very easy and sensible to evaluate
the denoise method’s performance. Fig.6.8 is the visualization of 3D plane fitting on one
of the flat wall 3D models. The final generated 3D model contained over 30000 points.

1Access on 11th Feb, 2012, Fitting an Orthogonal Regression Using Principal Components Analysis
http://www.mathworks.co.uk/products/statistics/demos.html?file=/products/demos/shipping/stats/orthoregdemo.html
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In considering the 3D models have no redundancy filtering and the amount of 3D points,
the SSE and SOD went larger since they are the summed up values.

Figure 6.5: The scanner set up for scanning the flat wall

The fitting result is shown on Table.6.1. The first column is the noise level increases
from 0.1 to 0.5. In the second column, SSE represents the sum of square errors and SOD
represents the sum of orthogonal distances. The column ’Ref’ is the reconstruction result
by the laser peak without any noise removal technique applied. The next columns are
the denoise result by Gaussian, median, wiener and SCS filters respectively. In Gaussian
filter, σ2 represents different smooth strength levels. The parameters of median, wiener
and SCS filters have been adjusted to have the best denoise result.

When the noise increases, the SSE and SOD increase sharply. Even the noise level
increases just 0.1, the SSE error increases almost 70%. Since we compared the result
based on the roughness of the 3D model and the noise directly affects point 3D position
that both SSE and SOD errors are very sensitive to the noise. Fig.6.9 and Fig.6.10 show
the SSE and SOD errors at different noise levels. The red line is the ”Ref” result which
is without any denoising method applied. It can be observed from those results that:

1. Overall, SCS is the only method which actually brings down the errors except
Gaussian filter(as σ2 > 0.6). Wiener gives similar errors as the ’Ref’, but the
median filter results are far away from expected.

2. As the Gaussian smooth strength(σ2) increases, the laser peak images are getting
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Figure 6.6: An example of captured laser images

Figure 6.7: Flat wall 3D reconstruction. Left: The reconstructed point cloud from peak
detection. Right: The mesh of point cloud
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Figure 6.8: The visualization of 3D plane fitting on flat wall 3D model (1% of the total)

Table 6.1: Orthogonal linear regression fitting error in noisy 3D flat wall models. The Sparse
Code Shrinkage method was applied using the estimated orthogonalized ICA transform (8 ×
8 windows), while the mask in Gaussian smoothing and neighborhood in median and wiener
filtering increase from 3 × 3 to 5 × 5 as the noise level increase. σ1: Noise levels, σ2: Gaussian

smooth levels, SSE: sum of the squared errors, SOD: sum of orthogonal distances

σ1 Ref
Gaussian

Median Wiener SCS
σ2 = 0.3 σ2 = 0.6 σ2 = 0.9

0.0

SSE

391.15 - - - - - -
0.1 663.83 660.69 620.51 603.88 860.12 664.56 630.52
0.2 675.84 676.57 622.77 603.85 858.69 677.39 639.95
0.3 689.93 690.58 630.29 607.90 856.31 693.47 648.65
0.4 713.81 713.05 633.62 608.20 863.23 719.43 669.92
0.5 735.78 734.53 638.91 611.35 868.42 742.96 688.07

0.0

SOD

2732.90 - - - - - -
0.1 3638.15 3625.89 3529.50 3483.53 4071.10 3638.61 3536.92
0.2 3668.04 3669.67 3534.08 3480.55 4070.07 3671.13 3558.81
0.3 3695.58 3669.67 3557.75 3557.75 4062.57 3704.41 3573.48
0.4 3750.56 3748.53 3563.95 3507.88 4080.22 3764.71 3624.93
0.5 3797.44 3793.02 3579.07 3517.64 4091.18 3813.87 3664.38
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more blurry and smoother which lower down the flat wall 3D models’ roughness.
Hence, the SSE and SOD errors are getting smaller as σ2 increase since the scanning
object is flat. A Gaussian blur effect typically generated by convolving an image
with a kernel of Gaussian values. Therefore, the laser peaks are shifted during the
convolution and such effect is similar as 3D smoothing, the higher strength is, the
smoother and flatter the 3D wall model is. The flatter the 3D wall model is, the
smaller the SSE, SOD error are.

3. Median filter has the worst result. It has the largest SSE and SOD error in overall
experiment. The median filter considers each pixel in the image in turn and looks at
its nearby neighbours to decide whether or not it is representative of its surround-
ings. Instead of simply replacing the pixel value with the mean of neighbouring
pixel values, it replaces it with the median of those values. Its performance is not
that much better than Gaussian blur for high levels of noise, whereas, for speckle
noise and salt and pepper noise (impulsive noise), it is particularly effective. 2

Hence, median filter has poor denoise performance on our laser images corrupted
by Gaussian noise because it replaces each pixel with median of its surrounding
values.

4. Wiener filter has similar performance as Gaussian filter as σ2 = 0.3. Calculation
of the Wiener filter requires the assumption that the signal and noise processes are
second-order stationary 3. From this point, Wiener filter is MSE-optimal stationary
linear filter. Whereas, SCS exploits the statistical properties of data to be denoised
in a more realistic way than other filters. When our image data is rather sparsely
distributed, i.e. supergaussian, like our cases, SCS has the ability to smooth the
image without losing too much features.

6.1.2.3 Results and analysis: Cup

In this experiment, the scanning has similar set up as the flat wall. It was done in water
and equipment was waterproof. The camera resolution is 720× 576, the laser projection
angle is about 60◦. The linear stage moving step is 1mm. From the scanner to the
cup distance is about 15cm. [83] camera calibration and the proposed step described
in Chapter 5 were applied to estimate the scanner parameters (including the baseline
D and laser projection angle α). Gaussian approximation peak detection [22] method
was used. Fig.6.11 shows one of the scanning images when the laser swept the cup’s
surface. There are two large black letters: ”V” and inverted ”C” on the surface and the
laser does not reflect in this area. Fig.6.12 shows part of the 3D model and the letter
”V” can be clearly recognized. Hence, there are three measurements in this scanning
indicated by letters A, B, and C. To simulate the real applications, different levels of
artificial Gaussian noise were added to the image and then denoised by Gaussian filter,

2Access on 20th May 2013 http://en.wikipedia.org/wiki/Median filter
3Access on 20th May 2013 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/VELDHUIZEN/node15.html
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Figure 6.9: Orthogonal linear regression fitting error (SSE) on noisy 3D models
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Figure 6.10: Orthogonal linear regression fitting error (SOD) on noisy 3D models
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median filter, Wiener filter and SCS respectively. These measurements were taken from
the models at different noise levels. The result is shown in Table 6.2 and Figures 6.13,
6.14 and 6.15.

Figure 6.11: Scanning object - Cup and its three measurements: ’A’, ’B’, and ’C’

In Table.6.2, the first column is the selected measuring distances and σ1 is the noise
level, increases from 0.0 to 0.5. The third column is the real measurement. Column
”Ref” means the measurements were taken from the 3D models reconstructed from the
noisy images but without applying any denoising methods. The following columns show
the measurements de-noised by Gaussian filter, Median filter, Wiener filter and SCS
respectively. Since both of these measurements’ variation are very small and close, hence,
it is easier to compare from their relative error to real measurement. In Table.6.2, all
denoise results were compared to real values in RE (Relative error) columns. It can be
observed from this table that:

1. Measurement A remain stable at different noise levels in denoising methods. It is
because A is almost parallel to the linear stage moving direction and its reading is
very close to the stage moving steps.

2. Measurement B and C have much larger variation when noise added. For instance,
B is 22.02mm without noise corruption but increases to 23.11mm when the noise
level increase to 0.1. As the noise increases, the measurement B becomes slightly
large. For measurement C, it has up to 1mm error as noise increases.

3. SCS has an average RE of −2.5% in measurement A, while the other methods
have a maximum −3.78% RE. In measurement B, SCS has much smaller RE error
even in high noise levels (from 0.3 to 0.5) compared to the others. While SCS
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Figure 6.12: The cup’s 3D model
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Figure 6.13: Measurement ’A’ after denoise. Unit: mm
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Table 6.2: Validation experiments result and error in noisy 3D cup model. The Sparse Code Shrinkage method was applied using
the estimated orthogonalized ICA transform (8× 8 windows), while the mask in Gaussian smoothing and neighborhood in median and
wiener filtering increase from 3× 3 to 5× 5 as the noise level increase. σ1: Noise levels, σ2: Gaussian smooth levels, RE: Relative error,

STD: standard derivation

σ1 Real Ref
Gaussian

Median RE Wiener RE SCS RE
σ2 = 0.3 RE σ2 = 0.6 RE σ2 = 0.9 RE

A

0.0 6.61 6.33 - - - - - - - - - - - -
0.1 6.61 6.47 6.36 -3.78% 6.38 -3.48% 6.37 -3.63% 6.43 -2.72% 6.42 -2.87% 6.43 -2.72%
0.2 6.61 6.46 6.38 -3.48% 6.37 -3.63% 6.37 -3.63% 6.44 -2.57% 6.43 -2.72% 6.45 -2.42%
0.3 6.61 6.45 6.37 -3.63% 6.37 -3.63% 6.37 -3.63% 6.44 -2.57% 6.41 -3.03% 6.44 -2.57%
0.4 6.61 6.41 6.39 -3.33% 6.39 -3.33% 6.38 -3.48% 6.44 -2.57% 6.49 -1.82% 6.45 -2.42%
0.5 6.61 6.49 6.39 -3.33% 6.40 -3.18% 6.38 -3.48% 6.41 -3.03% 6.49 -1.82% 6.43 -2.72%
STD - - 0.01 - 0.04 - 0.01 - 0.01 - 0.04 - 0.01 -

B

0.0 20.92 22.02 - - - - - - - - - - - -
0.1 20.92 23.11 23.85 14.01% 24.02 14.82% 24.03 14.87% 23.43 12.00% 23.11 10.47% 22.80 8.99%
0.2 20.92 23.72 23.59 12.76% 24.18 15.58% 24.17 15.54% 23.56 12.62% 22.97 9.80% 22.96 9.75%
0.3 20.92 23.57 24.03 14.87% 23.88 14.15% 24.03 14.87% 23.65 13.05% 23.39 11.81% 23.29 11.33%
0.4 20.92 23.37 23.83 13.91% 23.85 14.01% 23.87 14.10% 23.55 12.57% 23.49 12.29% 23.55 12.57%
0.5 20.92 23.41 23.63 12.95% 23.73 13.43% 24.03 14.87% 23.56 12.62% 23.86 14.05% 23.45 12.09%
STD - - 0.18 - 0.17 - 0.11 - 0.08 - 0.35 - 0.32 -

C

0.0 34.85 33.94 - - - - - - - - - - - -
0.1 34.85 35.48 36.19 3.85% 36.33 4.25% 36.37 4.36% 35.69 2.41% 35.38 1.52% 35.29 1.26%
0.2 34.85 35.73 36.20 3.87% 36.50 4.73% 36.55 4.88% 35.88 2.96% 35.54 1.98% 35.34 1.41%
0.3 34.85 35.80 36.54 4.85% 36.15 3.73% 36.14 3.70% 35.69 2.41% 35.55 2.01% 35.39 1.55%
0.4 34.85 35.54 36.37 4.36% 36.33 4.25% 36.52 4.79% 35.7 2.44% 35.37 1.49% 35.42 1.64%
0.5 34.85 35.72 36.19 3.85% 36.56 4.91% 36.69 5.28% 35.69 2.41% 35.38 1.52% 35.37 1.49%
STD - - 0.16 - 0.16 - 0.21 - 0.08 - 0.09 - 0.05 -
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Figure 6.14: Measurement ’B’ after denoise. Unit: mm
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Figure 6.15: Measurement ’C’ after denoise. Unit: mm
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has a RE of 12.094% at the highest noise level, the Gaussian filter has a RE as
high as 15.54%, increasing by almost 2%. As mentioned before, A is parallel to
the linear stage moving direction and its measurement error mainly came from X
coordinate which is along the stage travel direction. In other words, errors from
Y,Z directions have much less impact compared to those on measurement B. In
measurement C, SCS maintains the RE error below 1.7%, while Gaussian, Median
and Wiener filters have an error up to 5.0%. Wiener filter has similar problem
as mentioned in above section, its assumption (the signal and noise processes are
second-order stationary) is not quite fitted in our cases. It has been discussed that
median filter replaces each pixel with median of its surrounding values in image.
Such process cause the laser peak shift or undetectable.

4. It is clear that Gaussian filter has worse performance than the previous experiment.
It is due to the scanning object’s shape, the Gaussian filter strength directly affects
flat wall 3D model’s shape and surface’s smoothness. As the smooth levels(σ2)
increase, SOD and SSE error are lower. However, it is different in this experiment.
As the smooth levels increase, the RE error is larger. When σ2 = 0.9, it has the
smallest SSE and SOD in the flat wall model but largest RE error in the cup model.
As mentioned before, the Gaussian smooth actually blurs the image and reduces
the image detail. Thus, it causes the laser peak shifting, which finally affect the
3D model’s accuracy. The higher the smooth strength σ2, the bigger the laser peak
shift.

5. In the noise free dataset, the three measurements still have up to 1.1mm absolute
error compared to real ones. The error may come from the system itself and the
light refraction in the water.

6.1.3 Conclusion

In this section, a detailed comparative study of three noise removal methods was carried
out using natural images and real 3D scanning images. Denoising is closely linked to
pattern recognition. Optimal denoising involves interpreting the noisy signal, and based
on that interpretation reconstruction of the original signal. Thus, SCS is suitable to
identify the features of the signal, and retains those features which is likely to be the
original signal like discarding those which probably are a result of noise. This is where
sparse code is useful. Since the important features in most natural signal are sparse that
sparse code will detect these features. For a random vector X (Image data, for example),
which have been corrupted with additive Gaussian white noise, estimating a sparse code
for it will give us a transform, which will concentrate much of the energy of the sample
vectors into only a few components. If our transform is orthogonal, then the noise will
still be Gaussian and white in the transform basis. Thus, we have effectively separated
the signal from the noise, and by setting small components to zero, we will remove
a large part of the noise but only a little of the signal [32]. The experimental result
is consistent with above theory. When our image data is rather sparsely distributed,
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i.e. supergaussian, SCS has the ability to smooth the image without losing too much
features, although some data is corrupted by synthetic noise.

Sparse Code Shrinkage exploits the statistical properties of the data to be denoised
in a more realistic way than Wiener filter that is known to be optimal for Gaussian data
and median filter, which does not deal with data statistics. SCS reduces noise without
blurring edges or other sharp features as much as Gaussian filter, median filter, or Wiener
filter. This is possible by the strongly non-linear nature of the shrinkage operator that
takes advantage of the inherent statistical structure of natural images.

Gaussian filter blurs the image but reduces the image detail. It smoothes the 2D
image and make the 3D surface much smoother. SSE and SOD errors are related to the
flatness of 3D model, hence, it has the best result in flat wall model. However, it has
the worst performance in the cup model since such smoothing actually shifts the laser
peak position.

Median filter has the largest SSE and SOD error in the overall experiment. It replaces
the pixel value with the median of neighbouring pixel values, it should have much better
performance for speckle noise and salt and pepper noise (impulsive noise) but not for
Gaussian noise. Hence, it performs not as well as Wiener filter and SCS.

In this experiment, the most important image feature is laser peak. The noise did
have heavy impact on image quality and final 3D reconstruction accuracy. The noise
distorted the laser peak location and effected the estimation of scanner’s parameters
(including the baselineD and laser projection angle α). In our experiment, the error is up
to 3.0mm in highest noise level. SCS denoise results provide better surface smoothness
and accuracy of 3D reconstruction in the overall comparison. However, the SCS has
disadvantage at the computational time. It takes about 25 seconds to denoise an image
with 720×576 resolution (orthogonalized ICA transform 8×8 windows) on an Intel Q6600
(2.4GHz) based PC. Since most of our applications do not require real time processing
and display, this SCS method is still able to apply in those cases. It is possible to speed
up the process by changing the entire program using parallel computing. In addition,
the SCS may be able to apply to colour images. Research is underway and results will
be reported in the future.
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6.2 Corner detection

In this section, the results of all the corner detectors outlined in section .3.2 are presented.
Generally, an ideal corner detector should satisfy a number of criteria:

• As many as possible ”True” corners detected;

• As few as possible ”False” corners detected;

• Corner points should be well localized;

• Repeatable: the corners can be detected from the images subject to different per-
spective projection transformations;

• Robust with respect to noise: the detected corners will not be heavily affected by
the imaging noise;

• Computationally efficient.

Our 3D laser scanner is a combined unit with different components and they are
connected and related to each other. Corner detection is one of the most important
components and it is the preprocessing step for camera calibration and image correction,
which affects final 3D reconstruction accuracy. Paper [11] proposed a new corner detector
and compared with Harris and SUSAN methods. The proposed CSS method in [11]
detects the maximum number of true corners with the fewest false and has the smallest
localization error. However, it didn’t validate its performance on the calibration pattern
such as the widely used chessboard. Hence, it is very important to evaluate in this
section:

1. These corner detectors detection accuracy of camera calibration target, such as
chessboard pattern.

2. Such detection result effect on the final 3D reconstruction based on real scanning
data.

6.2.1 Experimental setup

Some of the corner detectors can be downloaded from internet such as: SUSAN 4 and
CSS5. However, both of them only provide pixel level result. Hence, OpenCV’s corner
sub-pixel refining method from 6 based on such detected corners was applied to all the
detectors for fair comparison.

The test was done in underwater. The Bowtech LCC-600 camera with a resolution of
720×576 was used. The calibration target is a printed and laminated chessboard, sticking
on a flat black board. It contains 8 × 6 = 48 corners, every corner has 20mm distance

4Access on 20th Feb 2012 http://users.fmrib.ox.ac.uk/ steve/susan/
5Access on 20th Feb 2012 http://www.mathworks.com/matlabcentral/fileexchange/7652
6Access on 20th Feb 2012 http://opencv.itseez.com/modules/imgproc/doc/feature detection.html
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to each other. 10 images with different orientations of this flat board were captured
for Zhang ZhengYou [83] calibration method. To avoid the effect from shadow or the
refraction from water, all the rest area in the images has been painted black manually
except the chessboard area as shown in Fig.6.16. The calibration parameters can be used
for two purposes: (1) Image correction, (2) 3D reconstruction. Therefore, the scanner’s
parameters estimation procedure proposed in section.5.2 can be applied in this case to
verify the corner detection accuracy. The system was placed and set up as the scanner
parameters estimation described in section.5.2. The vertical flat board was placed in
front of the scanner. The scanner travelled 19 steps in 1mm interval, then 19 laser stripe
images were captured. To have a fair comparison, Gaussian approximation laser peak
detector was used in all cases. Each detector’s parameter was adjusted individually to
have the best results. There are two main aspects to be verified in this experiment:
(1) the laser images used in the scanner parameters estimation process should have
”Straight” laser after the correction by the calibration parameters, and (2) the 3D result
of those laser stripes should be ”Straight” in 3D space, too. Otherwise, non-straightness
shows that the error still exists in the undistorted images and 3D reconstruct results
and thus, such image calibration and correction, and 3D reconstruction methods are not
very accurate.

6.2.2 Results and analysis

The corner detection result are shown in figures from 6.17 to 6.20. The camera calibration
result based on these detected corners are shown on Table.6.3. It includes calibration
parameters: fx, fy, Cx, Cy, re-projection error ’RPE’ and pixel error Xe, Ye (They are the
pixel errors between detected corners and their corresponding 3D points re-projected in
the image plane in XY direction). As the table shows, Harris and Noble detectors have
very close calibration results with very low average pixel and re-projection errors. The
pixel error and ’RPE’ from SUSAN and CSS are almost 3 ∼ 4 times larger than Harris
and Noble.

To have clearer picture about these four corner detectors’ performance on our chess-
board images, Figures 6.23 and 6.24 show the individual detection results of Picture 0.
As we can see, most of the corners detected by Noble(blue cross) are located inside the
chessboard area with very few faulty in the image. Harris detected similar amount of
true corners as Noble’s but with some faulty corners which outside the chessboard area.
Since the chessboard corners represent variation in the gradient in the image, Harris and
Noble detector take the advantage by measuring the corner strength for each pixel in
XY directions. Although both Harris and Noble corner detectors based on the similar
principle but Noble’s cornerness measure H (See Chapter.3.2.6) is apparent more effec-
tive. It detected the maximum number of true chessboard corners with very few or even
none faulty.

SUSAN and CSS results are very poor compared to Harris and Noble detectors.
Clearly, CSS and SUSAN (Red square and yellow round) detect the single chessboard
corner as two individual corners which is significant lower down the calibration accuracy
although these paired corners are very close to each other. In addition, it is hard to
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determine which corner has more precise location than the other on these paired corners
does. Instead of using the image’s pixel gradient for corner detector, Susan operator
places a circular mask over the pixel to be tested (the nucleus) (See Chapter.3.2.2.3)
which may detect faulty corners or treat the single chessboard corner to be two sep-
arate ones. CSS method also has the same problem because of its early step: Canny
edge detector (See Chapter.3.2.2.4). No matter how we changed Canny edge detector’s
parameters using in CSS, it always treated the chessboard corner as circular instead of
cross. Fig.6.21 and 6.22 show two of the example detection results in Picture 0 with
canny edge. Apparently, it is impossible to convert these irregular circles between the
chessboard grids into individual corners. It might be caused by the blurry grid connec-
tion parts in the chessboard images. These incorrect corners’ locations have a heavy
effect on the calibration result. Susan re-projection error RPE and average pixel error
Xe, Ye in Table.6.3 increase over 234.70% than Noble and Harris result. CSS calibration
has even larger error, it increase over 367.91% than Harris and Noble’s.

Figure 6.16: Chessboard images for corner detection

Figure 6.17: Harris Corner detection result on the chessboard images. The image size is
720 × 576, total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Gaussian
smoothing with 3× 3 masks and the subpixel corner location refinement using 11× 11 searching

windows.
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Figure 6.18: Noble Corner detection result on the chessboard images. The image size is
720 × 576, total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Gaussian
smoothing with 3× 3 masks and the subpixel corner location refinement using 11× 11 searching

windows.

Figure 6.19: SUSAN Corner detection result on the chessboard images. The image size is
720× 576, total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Brightness

threshold is 20, distance threshold is 4, 3× 3 masks using in the image smoothing

Table 6.3: Camera calibration result with different corner detectors. Image size is 720 × 576,
total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Gaussian smoothing
with 3 × 3 masks and the subpixel corner location refinement using 11 × 11 searching windows
in Harris and Noble detectors. Susan’s brightness threshold is 20, distance threshold is 4, 3× 3
masks using in the image smoothing. CSS sensitivity thresholds L = 0.35, H = 0.0 for the Canny
method, minimum ratio C = 1.5 of major axis to minor axis of an ellipse; maximum obtuse angle

T = 162.0◦ that a corner when it is detected as a true corner. RPE: Re-projection error

fx fy Cx Cy RPE Xe Ye

Harris 1003.174 1067.540 341.634 295.416 0.268 0.205 0.172

Noble 1003.173 1067.539 341.634 295.415 0.268 0.205 0.172

SUSAN 1011.253 1075.131 355.623 297.027 0.897 0.522 0.453

CSS 1012.089 1074.732 344.844 290.587 0.986 0.698 0.696
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Figure 6.20: CSS Corner detection result on the chessboard images. The image size is 720×576,
total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Main parameters for
CSS: sensitivity thresholds L = 0.35, H = 0.0 for the Canny method, minimum ratio C = 1.5 of
major axis to minor axis of an ellipse; maximum obtuse angle T = 162.0◦ that a corner when it

is detected as a true corner

Figure 6.21: CSS corner detection result (a) on Picture 0. Left: detected edge by Canny.
Right: CSS corners. Sensitivity thresholds L = 0.35, H = 0.0 for the Canny method. Main
parameters for CSS: minimum ratio C = 1.5 of major axis to minor axis of an ellipse; maximum

obtuse angle T = 162.0◦ that a corner when it is detected as a true corner
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Figure 6.22: CSS corner detection result (b) on Picture 0. Left: detected edge by Canny.
Right: CSS corners. Sensitivity thresholds L = 0.65, H = 0.1 for the Canny method. Main
parameters for CSS: minimum ratio C = 1.7 of major axis to minor axis of an ellipse; maximum

obtuse angle T = 156.54◦ that a corner when it is detected as a true corner,

The calibration result is used for image undistortion and then applied in scanner
parameters estimation. The laser itself was carefully adjusted to be straight and parallel
to camera Y axis physically. Hence, these laser stripes should be straight in the images.
It may be bent in the image because of the lens distortion but the such distortion is able
to correct by the calibration parameters. The captured laser stripe images are shown
in Fig.6.25. These laser stripes were extracted by Gaussian approximation detector and
then the least square fitting was applied to estimate the laser stripe straightness for
each image. Tables 6.4 and 6.5 show the laser stripes’ straightness in 2D and 3D space
respectively. In the first table, R is the sum of squares of the residuals from the best-fit
line and α is the approximation laser stripe angle in the image plane. The smaller R the
better the least square fitting is. The closer the α to 90◦ is, the better the estimate as
the laser itself was placed vertically to the camera Y axis.

Harris and Noble have very close results as they based on similar corner detection
principle. Their calibration result are very close to each other even Harris has much
higher faulty corner detection rate. Therefor, their result of straightness measurement
of the laser stripe by image correction are very close, the difference between their results
is so tiny even can be ignored. Their corrected laser stripes only have 0.1 degree deviation
and fitting error is below 5.4 in average, which is the smallest. SUSAN has the worst
result in all cases. It has the biggest linear fitting error and the largest deviation of α.
Its average fitting error is 12.86% lager than Harris and Noble’s. It can be seen that such
out of true calibration result by SUSAN and CSS can not undistort the image accurately.
CSS provided slightly smaller maximum and minimum linear fitting error, however, its
α deviation and average R are still bigger than either Harris or Noble. This means that
the laser stripe after the un-distortion with CSS is unstable and tilting at bigger angle.

Such laser stripes straightness in 3D space can be another main aspect to verify the
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Figure 6.23: Picture 0 corner detection result by different methods. Image size is 720 × 576,
total 8 × 6 = 48 corners, every corner has 20mm distance to each other. Gaussian smoothing
with 3 × 3 masks and the subpixel corner location refinement using 11 × 11 searching windows
in Harris and Noble detectors. Susan’s brightness threshold is 20, distance threshold is 4, 3× 3
masks using in the image smoothing. CSS sensitivity thresholds L = 0.35, H = 0.0 for the Canny
method, minimum ratio C = 1.5 of major axis to minor axis of an ellipse; maximum obtuse angle

T = 162.0◦ that a corner when it is detected as a true corner.

Table 6.4: Laser stripes’ straightness in 2D images. R: fitting error, Unit:pixel. α: the laser
stripe angle, STD: standard deviation

Harris Noble SUSAN CSS

α R α R α R α R

Avg 89.903 5.372 89.903 5.372 89.893 6.063 89.895 5.385

Max 89.915 6.081 89.915 6.081 89.905 6.812 89.905 6.053

Min 89.882 4.926 89.882 4.926 89.875 5.599 89.879 4.908

STD 0.0099 0.3000 0.0099 0.2999 0.0082 0.3355 0.0074 0.3070
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Figure 6.24: Picture 0 corner detection zoomed in result. Picture 0 corner detection result by
different methods. Image size is 720 × 576, total 8 × 6 = 48 corners, every corner has 20mm
distance to each other. Gaussian smoothing with 3 × 3 masks and the subpixel corner location
refinement using 11 × 11 searching windows in Harris and Noble detectors. Susan’s brightness
threshold is 20, distance threshold is 4, 3×3 masks using in the image smoothing. CSS sensitivity
thresholds L = 0.35, H = 0.0 for the Canny method, minimum ratio C = 1.5 of major axis to
minor axis of an ellipse; maximum obtuse angle T = 162.0◦ that a corner when it is detected as

a true corner.

Table 6.5: Laser stripes’ straightness in 3D space. R: fitting error, Unit:mm

R

Avg. Max Min

Harris 6.82183E-03 7.12712E-03 6.55633E-03

Noble 6.80162E-03 7.07617E-03 6.44695E-03

SUSAN 7.05875E-03 7.43426E-03 6.77432E-03

CSS 6.92812E-03 7.28983E-03 6.56996E-03
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Table 6.6: Absolute error of laser peak 3D reconstruction based on different corner detectors’
result. Ref: actual measurement, β : absolute error between the estimated value and actual

measurement, Unit:mm; STD: standard deviation

Ref. Harris β Noble β SUSAN β CSS β

158.000 158.404 0.404 158.404 0.404 160.520 2.520 159.561 1.561

159.000 159.358 0.358 159.358 0.358 161.477 2.477 160.517 1.517

160.000 160.375 0.375 160.375 0.375 162.496 2.496 160.517 0.517

161.000 161.372 0.372 161.372 0.372 163.496 2.496 161.774 0.774

162.000 162.391 0.391 162.392 0.392 164.517 2.517 163.554 1.554

163.000 163.350 0.350 163.350 0.350 165.475 2.475 164.514 1.514

164.000 164.372 0.372 164.372 0.372 166.496 2.496 165.536 1.536

165.000 165.338 0.338 165.338 0.338 167.465 2.465 166.503 1.503

166.000 166.348 0.348 166.348 0.348 168.475 2.475 167.513 1.513

167.000 167.340 0.340 167.340 0.340 169.468 2.468 168.506 1.506

168.000 168.374 0.374 168.374 0.374 170.503 2.503 169.540 1.540

169.000 169.335 0.335 169.335 0.335 171.465 2.465 170.502 1.502

170.000 170.369 0.369 170.369 0.369 172.500 2.500 171.536 1.536

171.000 171.334 0.334 171.334 0.334 173.467 2.467 172.501 1.501

172.000 172.350 0.350 172.350 0.350 174.481 2.481 173.518 1.518

173.000 173.315 0.315 173.315 0.315 175.447 2.447 174.482 1.482

174.000 174.366 0.366 174.366 0.366 176.496 2.496 175.535 1.535

175.000 175.325 0.325 175.325 0.325 177.456 2.456 176.493 1.493

176.000 176.360 0.360 176.360 0.360 178.492 2.492 177.528 1.528

Avg. - 0.357 - 0.357 - 2.484 - 1.428

STD. - 0.023 - 0.023 - 0.020 - 0.280
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Figure 6.25: The laser stripes images used for image correction

corner detection accuracy. Hence, All the laser stripes are reconstructed into 3D space by
the calibration and scanner parameters. The laser stripes’ linearity in 3D space and their
average fitting results are shown in the Table.6.5. R is the sum of orthogonal distances
by the least square fitting. Noble provides the smallest sum of orthogonal distances in
average. Its maximum and minimum values are smaller than the others. To have a
better idea about the corner detection effect on the final 3D reconstruction accuracy,
these laser stripes Z distances are shown in Table.6.6. Since the distance between the
camera to the vertical board is measurable then it can be used for verifying the accuracy
of 3D reconstruction. The initial distance ’Ref’ is set to 158.00mm and the scanner
travelled 18 steps in 1mm interval. Hence, the final distance is 176.00mm. Table.6.6
shows the laser stripes absolute error between the estimated from reconstruction and
actual value in 3D space. As mentioned before, the calibration result also applied in our
scanner parameters estimation process, therefore, the error from inaccurate calibration
result has been amplified in the laser stripe straightness and distance measurement in
3D. Clearly, Harris and Noble have the best result. They limit the error below 0.4mm,
the average absolute distances are only 0.357mm, which is 85.63% smaller than SUSAN
(2.484mm) and 75.00% than CSS (1.428mm).

6.2.3 Conclusion

In this section, we carried out a detailed comparative study of four corner detectors using
real chessboard images. In summary, Harris operator suffers from poor localization and is
computationally expensive but Noble corner detector has improved it. Considering that
the variable k in Harris measure was too weak and difficult to set up, Noble proposed the
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new cornerness measure with great improvement. Noble has achieved a far much better
detection rate (true/fault corners) in our chessboard images. It detected the maximum
number of true chessboard corners with very few or even none false ones in all cases.
Even though their calibration results are almost the same, Harris detector does take
much more time to eliminate the corners which are belonged to the chessboard patter.

Harris and Noble corner detection algorithms are superior to SUSAN algorithm.
The performance of SUSAN corner detector mainly depends on the similar comparison
function 3.2.7 which is not immune to certain factors impacting imaging, such as strong
luminance fluctuation, and noises. However, Harris and Noble corner detector is better
because it draws a Gaussian smoothing function into the detector, which makes great
contribution to improving the stability and reducing the impact of noise and that is why
SUSAN finds many false corners in the experiment [10].

CSS method is highly dependent on the edge detector used. Canny edge detector is
the default edge detector and used in our experiment. Because of that, CSS treats the
individual corner as two connected corners in our cases. Both of CSS and SUSAN need to
filter such corners manually to be able to use in camera calibration. It is time consuming
and impractical. In additional, it is hard to determine which one has more precise corner
location in those connected corners pairs and they may contain some missing detected
corners. Hence, Noble corner detection is the most suitable method in the chessboard
detection and chosen in our scanning system.
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6.3 Laser Peak Detection

This section compared six algorithms for determining the laser peak position of an image
line or stripe at sub-pixel level accuracy. A good laser peak detector should satisfy a
number of criteria:

1. Laser peak should be well localized at sub-pixel level;

2. Robust with respect to noise;

3. Robust with respect to laser saturation;

4. Computationally efficient;

Since our system and applications are not requiring real time peak detection that
criteria 1 ∼ 3 are more important in our cases. Depending on the laser profile, object
surface reflectivity and camera resolution, the laser stripe can have variable widths. New
technology brings larger camera CCD size and higher image resolution. For example,
the latest camera Canon 5D mark III has 21 mega-pixels and its maximum image size is
5, 616×3, 744. The laser stripe may have a width of over 50 pixels in the image captured
by it. The camera used in our laser scanning system has resolution of 720×576 in water
and 1440 × 1024 in air, which are much lower than the camera with ultra-high image
resolution. Such cameras were chosen because of the budget and underwater scanning
requirements such as weight, object size, capture speed and signal transmission. Due to
the laser projection angle, strength, object surface reflection rate and camera setting,
the laser stripe thickness/saturation may vary from 3 ∼ 10 pixels in our underwater
laser scanning system. Hence, how these detectors perform in highly saturated laser
stripe image has a huge impact on the final 3D reconstruction accuracy. Therefore, this
experiment focuses on their performance in the saturated laser stripe in artificial and
real images. Their performance in final 3D result will be evaluated based on the artificial
images and controllable camera parameters.

6.3.1 Real Laser Stripe Image

Figure 6.26 and 3.13 show one of the heavy noisy images and its example row data
in our experiment respectively. Clearly, there is some unwanted stripe pattern on the
images, which mainly causes by the low cost USB video capture stick and the overpower
laser stripe. Table.6.7 shows its saturated pixel intensity of from rows (image height)
184 ∼ 210. As we can see, the laser stripe saturation area is from 412 ∼ 418(image
width) and crossing pixels. The pixels intensity in these areas are 255. It can be inferred
from the figures and intensity table that the approximate laser peak locates at 415(image
width). It is a big challenge for the peak detectors to find out the accurate peak position
as the saturated part crossing over five pixels. Table.6.8 shows this laser example row
data’s peak detection result by six detectors. Fig.6.27 shows the plotted and enlarged
detected results. Clearly, when the laser stripe width is over five pixels, only FIR detected
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peak precisely. All the rest methods have more than three pixels error. It is because GA,
CM, LIP, PE and BR only consider the maximum light intensity and its nearby three
to five pixels to locate the peak at sub-pixel level. They are applicable in laser stripe
without heavy saturation and the laser energy pattern of such a stripe corresponds to
a Gaussian profile. It makes sense to detect the point/peak of maximum light intensity
in such case. However, in the cases like Fig.6.26, the maximum light intensity is 255
and cross over five pixels, the laser energy pattern is no longer corresponds to Gaussian
profile. Therefore, they detected faulty laser peaks which are shifted to left.

Figure 6.26: Saturated laser stripe image
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Table 6.7: Saturated laser stripe image pixel intensity table. Image size: 720 × 576 H: image
height, W: image width, Unit: pixel

❍
❍
❍
❍
❍❍

H
W

410 411 412 413 414 415 416 417 418 419 420

186 94.00 107.00 252.00 255.00 255.00 255.00 255.00 255.00 255.00 159.00 43.00

187 81.00 111.00 211.00 255.00 255.00 255.00 255.00 255.00 255.00 182.00 18.00

188 144.00 161.00 187.00 255.00 255.00 255.00 255.00 255.00 255.00 147.00 72.00

189 140.00 158.00 203.00 255.00 255.00 255.00 255.00 255.00 255.00 95.00 67.00

190 114.00 172.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 178.00 71.00

191 137.00 151.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 180.00 105.00

192 110.00 167.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 172.00 87.00

193 117.00 131.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 115.00 74.00

194 115.00 151.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 158.00 90.00

195 98.00 136.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 186.00 69.00

196 152.00 143.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 167.00 88.00

197 97.00 185.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 181.00 72.00

198 122.00 164.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 231.00 77.00

199 135.00 142.00 240.00 255.00 255.00 255.00 255.00 255.00 255.00 150.00 117.00

200 131.00 169.00 222.00 255.00 255.00 255.00 255.00 255.00 255.00 172.00 109.00

201 124.00 181.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 188.00 84.00

202 129.00 153.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 138.00 52.00

203 117.00 186.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 197.00 88.00

204 119.00 175.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 178.00 104.00

205 150.00 174.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 160.00 100.00

206 147.00 204.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 230.00 112.00

207 169.00 173.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 166.00 125.00

208 176.00 189.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 151.00 93.00

209 153.00 187.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 143.00 104.00

210 140.00 157.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 221.00 100.00
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Table 6.8: Saturated laser stripe image peak detection result Image size: 720× 576. W: image
width, Unit: pixel

❍
❍
❍
❍
❍❍

W
BR CM FIR GA LIP PEM

186 413.306 412.061 415.472 412.500 412.500 412.500

187 413.723 412.098 415.499 412.500 412.500 412.500

188 413.536 412.073 415.499 412.500 412.500 412.500

189 412.589 411.122 415.498 411.500 411.500 411.500

190 412.881 411.157 415.018 411.500 411.500 411.500

191 412.607 411.130 415.080 411.500 411.500 411.500

192 412.899 411.193 415.014 411.500 411.500 411.500

193 412.743 411.157 414.969 411.500 411.500 411.500

194 412.758 411.184 415.017 411.500 411.500 411.500

195 413.087 411.172 415.132 411.500 411.500 411.500

196 412.443 411.101 415.059 411.500 411.500 411.500

197 412.684 411.135 414.986 411.500 411.500 411.500

198 413.133 412.020 415.291 412.500 412.500 412.500

199 413.384 412.045 415.494 412.500 412.500 412.500

200 412.565 411.107 415.498 411.500 411.500 411.500

201 412.810 411.154 415.024 411.500 411.500 411.500

202 412.500 411.099 414.965 411.500 411.500 411.500

203 412.588 411.117 415.043 411.500 411.500 411.500

204 412.771 411.118 415.009 411.500 411.500 411.500

205 412.472 411.071 414.960 411.500 411.500 411.500

206 412.953 411.120 415.171 411.500 411.500 411.500

207 412.835 411.094 414.979 411.500 411.500 411.500

208 412.667 411.098 414.888 411.500 411.500 411.500

209 412.835 411.094 414.877 411.500 411.500 411.500

210 412.667 411.098 415.242 411.500 411.500 411.500



6.3. LASER PEAK DETECTION 125

Width

H
ei

gh
t

 

 

400 405 410 415 420 425

188

190

192

194

196

198

200

202

204

206

208

BR
CM
FIR
GA
LIP
PE

Figure 6.27: Laser peak detection result on saturated image by different methods. Image size:
720× 576
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6.3.2 Artificial Image

Sometimes it is hard to control laser property (such as the stripe width, strength) and find
out and determine the ground truth laser peak location. In addition, the scanning object
also affects the laser reflecting back to the camera and causes variable light saturation.
Hence, in this experiment, controllable artificial laser data is generated to evaluate the
peak detectors’ performance for laser stripes under different conditions. The effect of
laser peak deviation ε in 3D can be computed based on the triangulation equation 5.1.1
and 5.1.5 in section 5.1. Assuming the ground true laser peak (x, y) and its measured
value (x′, y′) has deviation (△x,△y). To be simplified, we set x < Cx, β < 90◦, and its
3D coordinates (X,Y,Z) can be estimated as follows:

X = X0 + n∆x (6.3.1)

Z =
Df

(Cx − x) + f cot(α)
(6.3.2)

Y =
Z(y − Cy)

f
(6.3.3)

where ∆x is the linear stage moving step, n is the number of steps moved so far, and
X0 is the standing position. The deviation ε between the true (X,Y,Z) and measured
value (X ′, Y ′, Z ′) in 3D can be computed from their absolute distance:

ε =
√

(X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2 (6.3.4)

6.3.2.1 Experimental setup

Here is the set-up for this simulation system. The camera and scanner parameters were
the same as in the corner detection experiment as shown in Table.6.9.

Table 6.9: Camera and scanner parameters

fx fy Cx Cy Angle α Base Line D

1002.84 1066.59 341.89 294.18 61.77◦ 97.30

Where Angle α is the laser projection angle and Base Line D is the laser to camera
CCD centre’s distance in millimetre. The system was underwater and the mono camera
has a resolution of 720 × 576. [83] method was used for camera calibration. Since laser
peak detection can be carried out in a row-by-row parallel process, the single row data
can be generated as follows, leading the entire laser stripes to be generated:

• The single row data dimension is [1× 720]

• The maximum intensities(255) were in the middle of the image, varying from 2 ∼ 10
pixels on both sides to simulate real saturation
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• Random noise (fewer than ten pixels) was added to the data except the peak
to simulate the background noise signal. This is because the noise effect on the
saturated part is so weak that can be ignored.

• Repeat the above steps to generate an image [576 × 720] with laser stripe in the
middle.

Fig.6.28 shows one of the artificial examples with three pixels saturated laser row
data. The enlarged saturated area is shown in Fig.6.29.
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Figure 6.28: Artificial saturated laser row data
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Figure 6.29: Enlarged saturated area in artifi-
cial laser row data

6.3.2.2 Results and analysis

The final detection result is shown in Table.6.10. The first column is different saturated
laser peak width in pixels. Second column is the ground truth peak location. It contains
two values: 360.00 and 359.50 because of the odd and even peak width. Column r is
the detected peaks by the six detection methods respectively. σ1 is the absolute error
in pixel in the image plane and σ2 is the absolute error in millimetre in 3D space after
reconstruction.

At low saturated level (below 3 pixels), all methods detect the peak very precisely
and their absolute errors σ1 are below 0.5 pixels. GA, LIP and PEM even have zero
pixel error as the laser stripe in two pixels width. GA, LIP and PEM have very similar
results in different saturation levels. It is because they all only consider the highest three
intensities and fail as SW >= 3. When the saturated area larger than three pixels, the
σ1 increase sharply. Only FIR maintains the error well as the saturation getting heavier.
Its maximum absolute error is only 0.007 pixels as the saturated laser width increases
from 2 ∼ 10 pixels. Based on the scanner and camera parameters in Table.6.9 and peak
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detection result, these laser peaks were reconstructed to 3D and then their deviation can
be computed and shown in the column σ2. Overall, in low saturation, the errors σ2 are
close to zero. When the saturated area has the maximum width of 10 pixels, CM has
the largest error: 4.024 pixels in 2D and 1.332mm in 3D. FIR not only considers the
laser frequency but also uses first order directly to locate the peak. Hence, it provides
the best result in the different saturation conditions with the error in 3D being only
0.001mm.

Table 6.10: Laser peak detection result on artificial laser stripe image. Image size: 720× 576,
Ref: Ground truth peak; SW: Saturated area width; r: Detected peak by different methods; σ1:

Absolute distance error in 2D, Unit: pixel; σ2: Absolute distance error in 3D, Unit: mm.

SW Ref
Blais CM FIR

r σ1 σ2 r σ1 σ2 r σ1 σ2
2 359.500 359.492 0.008 0.001 359.476 0.024 0.009 359.496 0.004 0.001
3 360.000 360.009 0.009 0.001 359.497 0.503 0.172 360.005 0.005 0.001
4 359.500 360.036 0.536 0.160 358.494 1.006 0.338 359.500 0.000 0.000
5 360.000 359.992 0.008 0.009 358.482 1.518 0.502 359.998 0.002 0.001
6 359.500 358.984 0.516 0.166 357.474 2.026 0.669 359.500 0.000 0.000
7 360.000 359.008 0.992 0.325 357.476 2.524 0.825 359.993 0.007 0.001
8 359.500 357.995 1.505 0.491 356.479 3.021 0.995 359.500 0.000 0.000
9 360.000 357.988 2.012 0.659 356.485 3.515 1.163 360.001 0.001 0.001
10 359.500 356.972 2.528 0.834 355.476 4.024 1.332 359.500 0.000 0.000

SW Ref
GA LIP PEM

r σ1 σ2 r σ1 σ2 r σ1 σ2
2 359.500 359.500 0.000 0.000 359.500 0.000 0.000 359.500 0.000 0.000
3 360.000 359.500 0.500 0.164 359.500 0.500 0.164 359.500 0.500 0.164
4 359.500 358.500 1.000 0.329 358.500 1.000 0.329 358.500 1.000 0.329
5 360.000 358.500 1.500 0.494 358.500 1.500 0.494 358.500 1.500 0.494
6 359.500 357.500 2.000 0.659 357.500 2.000 0.659 357.500 2.000 0.659
7 360.000 357.500 2.500 0.824 357.500 2.500 0.824 357.500 2.500 0.824
8 359.500 356.500 3.000 0.991 356.500 3.000 0.991 356.500 3.000 0.991
9 360.000 356.500 3.500 1.156 356.500 3.500 1.156 356.500 3.500 1.156
10 359.500 355.500 4.000 1.324 355.500 4.000 1.324 355.500 4.000 1.324

The laser peaks were reconstructed into 3D based on the camera and scanner pa-
rameters. From Equations 6.3.1, 6.3.3, 6.3.2 and Table 6.9, assuming the camera and
scanner parameters are fixed, laser peak P (x, y) has deviation δ in x (y is the row num-
ber), then its 3D accuracy totally relies on the peak detection method. However, the
relationship between the peak location error and its 3D reconstruction error is not linear.
For example, assuming the ground truth peak location (xi, yi) in the row data is from
xi = 1, 2, 3 · · · 718, 719, 720 and yi = 1. If each observed peak has one pixel detection
error, then its 3D reconstruction error can be computed by the camera and scanner
parameters mentioned above. The result is shown in Fig.6.30. The bottom left corner
is set as (0, 0), the width represents the X axis in the image coordinate system. The
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Figure 6.30: Error between observed peak position and ground truth in 3D reconstruction.
Observed peak position has an error between 1 ∼ 4 pixels. Calibration and 3D reconstruction
parameters: fx = 1002.84, fy = 1066.59, Cx = 341.89, Cy = 294.18, α = 61.77◦, BaseLine =

97.30mm

height represents the absolute 3D reconstruction error in different level of laser peak
pixel deviation(from 1 ∼ 4 pixels) in different X position. In our scanning system , the
closer the object to the scanner, the closer the laser stripe is toward the right side of the
image as width > 360 pixel; on the contrary, the farther the object, the more extent the
laser stripe moves toward the left (width< 360). Clearly, peak detection error has much
heavier impact on 3D accuracy as the laser stripe on the image left hand side. In other
words, if the distance between the object and scanner increase, then the 3D accuracy
drops sharply. When the laser stripe locates larger than 400 in X axis, its absolute 3D
error is below 1mm even the laser peak location error with large as 3 pixels. However, in
the range below 100 in X axis, the absolute 3D error dramatically increases to 8.5mm.
This is consistent with reality, as the distance between the scanner and object increases,
each pixel in the image represents a larger distance and causes the 3D reconstruction
accuracy decrease. Thus, the scanning object cannot be too far away or too close from
the scanner. Too far will lose the accuracy and too close may cause saturation due to
the object surface’s reflection or too high laser power.

6.3.3 Conclusion

In this experiment we compared the different peak detection methods’ performance in
different levels of laser saturation. Most of these methods only considering the highest
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intensity value of the laser stripe are working well over low saturation laser stripes.
Obviously, they are not accurate enough in heavily saturated laser stripes. As the laser
stripe’s width is over 3 pixels, all the methods except FIR start increasing detection
error. GA, CM, LIP, PE and BR only consider the maximum light intensity and the
nearby three to five pixels to locate the peak in sub-pixel level. They are applicable
in laser stripe without heavy saturation since the laser energy pattern of such a stripe
corresponds to a Gaussian profile. However, in high resolution size or high saturated
laser stripe image, the maximum light intensity(255) may cross over five pixels, the laser
energy pattern is no longer corresponds to Gaussian profile. Therefore, they detected
faulty laser peaks which are shifted to left in those cases. In this experiment, FIR filter
has the best performance in high saturated laser stripe image. The strong point of FIR
peak detector is the analysis of the row signals in the frequency domain, which yields to
the cut-off frequency and the transition band width for obtaining the coefficients of an
optimized filter[24]. Since the laser stripe row data is filtered by convolution that it is
easy to estimate the laser peak in the saturated part without shifted.

On the other hand, when the camera and scanner parameters fixed, the laser peak
and its 3D position relation is not linear. Hence, depending on where is laser stripe on the
image and its detection error, 3D reconstruction differs with various levels of 3D error.
One pixel of peak detection error would cause up to 2mm error in 3D reconstruction
based on current scanner set-up. Therefore, FIR laser detection is the most suitable
method in our system because of its strong resistance to laser saturation which often
happens in modern camera and underwater scanning environment.
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6.4 Fraction Lens Distortion Model

In this section, we evaluate the proposed camera distortion model(FMC) described in
section.4.4.1 using (1) real images from [83] in 7 for the camera calibration and image
correction; (2) real images from our 3D scanning system on its performance, including
the camera calibration, image correction and their effect on the final 3D reconstruction
accuracy.

6.4.1 Zhang’s data

Since it is hard to have ground truth data that we use the public Zhang’s data to evaluate
the proposed FMC algorithm for camera calibration and image correction in this section.

6.4.1.1 Experimental setup

The camera to be calibrated is an off the shelf PULNix CCD camera with 6 mm lens.
The image resolution is 640× 480. The model plane contains a pattern of 8× 8 squares.
In total, there are 256 corners. The size of the pattern is 17cm×17cm. Five images of the
plane under different orientations were taken as shown in 6.31. The camera distortion
model was explicitly described as the second order radial and decentring as Eq.6.4.1,
instead of just the first-order radial one in the original Zhang’s algorithm. We called it
”Zhang-RD” in this chapter to differentiate from the original one since the camera may
have decentring distortion.

xdi = xui(1 + k1r
2
ui + k2r

4
ui) + 2v1xuiyui + v2(r

2
ui + 2x2ui))

ydi = yui(1 + k1r
2
ui + k2r

4
ui) + v1(r

2
ui + 2y2ui + 2v2xuiyui)

(6.4.1)

Assuming that the data from Zhang’s website is ground truth, in order to simulate the
real world imaging noise due to the quantization, different reflectance properties of the
object surface, mechanical errors, etc., the Gaussian white noise with standard deviation
δ = 0.04τ was added to the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and
δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals of
1, simulating different levels of noise. Each calibration method will run 100 times at
each noise level, and their average is calculated as final result. Due to the fact that
the chessboard pattern in Fig.6.31 contains multiple lines, it is able to get a further idea
about the accuracy of the proposed FMC algorithm. We manually extracted the coplanar
points which should lie on 32 lines, segments in each Zhang’s image, total 160 in five
images. The coplanar points are corrected using the distortion parameters estimated by
the Zhang, Zhang-RD and FMC respectively and then we computed the best-fit linear
regression coefficients for each line and sum of squares of the residuals from the best-fit
line. The performance of the algorithms is measured as: maximum fitting error (MFE),
average fitting error (AFE) and the standard deviation of fitting errors (SDFE) of points
on these line segments.

7Access data: 2012-3-12 http://research.microsoft.com/en-us/um/people/zhang/Calib/
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6.4.1.2 Results and analysis

The result is shown in Tables 6.11, 6.12, 6.13 and Figures 6.32, 6.33 and 6.34. As
mentioned above, each calibration method runs 100 times at each noise level and their
average as the final result. The standard deviation σ for each parameter is also shown
in above tables. It can be clearly observed from these table and figures that:

1. Zhang and Zhang-RD produce quite similar intrinsic parameters result in different
noise levels. It is interesting to point out that FMC produces slightly different
principal point (Cx, Cy) but still successfully undistorted the images from the result
of collinear fitting. It is because Zhang, Zhang-RD distortion model actually using
very close to each other. Also the image correction is the principal point together
with distortion factors, different distortion model may lead to different distortion
factors and principal point. Besides, fx, fy are mostly used for describing the real
camera focal length, hence, they should be the same even in different methods. In
the experiment result, when τ = 0, all the methods have almost the same result.

2. The proposed FMC algorithm is always more accurate than other algorithms in
the sense of correcting the distorted image points when the imaging noise is heavy
enough (τ > 5, for example). FMC has much smaller σ in AFE and MFE at the
high noise levels (15 < τ < 25), which means FMC has better noise resistance.
SDFE describes the discrete levels of line fitting errors. Together with AFE, it
can indicate the overall line fitting error. It can be seen that FMC maintains the
smallest fitting error for the overall line segments.

3. In the low noise levels (as τ <= 5), all of the methods maintains the calibration
parameters error below one pixel. Zhang and Zhang-RD are slightly better than
the proposed FMC algorithm. This is because the former two algorithms make
full use of the prior knowledge of the camera distortion models. However, as the
noise level increasing, the noise weakens the regularities existing in the data about
the distortions that the camera was subject to. In this case, they fail to take the
advantage of the prior knowledge of the camera distortions for the calibration and
correction. This shows that the knowledge of radial and decentring distortions
does not necessarily always bring benefits to Zhang and Zhang-RD algorithm for
accurate camera calibration and image correction.

4. In different noise levels, FMC, Zhang and Zhang-RD have very close re-projection
error (RPE). Thus, it indicates the camera lens doesn’t contain decentring dis-
tortion or small enough to be ignored. Otherwise Zhang-RD should have smaller
RPE than the other two as it fully uses the prior knowledge of the camera distor-
tion model. It is consistent with collinear fitting results. Zhang-RD produces the
biggest AFE and MFE errors as the noise increases.

5. Heavy noise usually leads to less accurate estimation of the parameters of interest,
which is often within expectation.
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Figure 6.31: Five images of a model plane from [83]
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Table 6.11: Calibration and line segment fitting result using Zhang method. The image resolution is 640 × 480. The model plane
contains a pattern of 8×8 squares (17cm×17cm), in total there are 256 corners. Gaussian white noise with standard deviation δ = 0.04τ
was added to the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and δ = 0.02τ was added to image points Pfi where τ varied
from 0 to 25 at intervals of 1. µ: average result for each parameter; σ: standard deviation for each parameter, RPE: re-projection error

fx fy Cx Cy RPE AFE MFE SDFE

τ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0 832.148 0.000 832.183 0.000 304.061 0.000 206.384 0.000 0.337 0.000 0.187 0.000 0.784 0.000 0.135

1 832.183 0.294 832.189 0.326 303.885 0.476 206.511 0.309 0.364 0.003 0.187 0.002 0.785 0.003 0.136

2 832.087 1.064 832.131 1.073 304.234 0.631 206.404 1.201 0.435 0.009 0.190 0.005 0.786 0.007 0.137

3 832.464 0.907 832.497 0.944 303.924 0.907 206.430 1.114 0.535 0.009 0.190 0.005 0.788 0.005 0.136

4 831.652 2.093 831.689 2.050 304.570 1.497 206.405 2.460 0.638 0.015 0.200 0.013 0.819 0.021 0.145

5 832.044 1.748 831.986 1.737 303.840 2.623 206.608 2.002 0.759 0.019 0.200 0.009 0.813 0.044 0.145

6 831.438 2.937 831.451 2.806 304.538 3.309 206.393 2.526 0.891 0.028 0.206 0.032 0.845 0.306 0.151

7 832.551 2.405 832.662 2.524 303.481 2.479 205.917 3.374 1.022 0.021 0.209 0.038 0.859 0.210 0.150

8 832.949 3.172 832.868 3.198 303.903 3.645 206.946 4.431 1.149 0.031 0.218 0.023 0.910 0.249 0.161

9 832.527 3.913 832.622 3.999 302.196 5.334 205.034 2.812 1.277 0.034 0.233 0.028 1.219 0.110 0.186

10 833.378 5.158 833.308 5.062 303.350 5.654 206.886 4.966 1.416 0.039 0.224 0.045 0.934 0.650 0.167

11 831.866 4.370 831.907 4.430 304.135 7.463 205.031 3.997 1.566 0.040 0.260 0.116 1.351 1.283 0.219

12 831.703 4.869 831.808 5.005 304.376 6.782 206.026 4.252 1.690 0.036 0.286 0.070 1.481 0.762 0.250

13 830.850 5.273 831.129 5.626 304.265 5.718 207.319 4.946 1.830 0.052 0.275 0.090 1.753 0.496 0.263

14 832.742 4.619 832.704 4.401 304.849 3.523 204.539 4.850 1.925 0.049 0.302 0.082 1.394 0.725 0.243

15 831.525 6.074 831.768 6.299 306.811 5.335 206.839 5.169 2.101 0.049 0.358 0.059 2.436 0.832 0.354

16 833.553 5.918 833.838 5.667 301.939 6.349 203.265 6.878 2.251 0.051 0.365 0.094 2.091 0.955 0.339

17 830.061 6.459 829.876 6.787 307.711 9.967 206.798 5.196 2.396 0.056 0.359 0.116 2.033 1.295 0.333

18 831.997 7.707 831.870 7.812 302.127 12.507 205.032 7.909 2.512 0.098 0.379 0.158 2.783 3.084 0.400

19 830.989 8.427 831.000 8.532 306.275 9.607 207.057 7.454 2.654 0.095 0.463 0.257 3.103 1.471 0.488

20 829.756 8.712 829.675 8.486 305.457 11.801 204.950 9.035 2.790 0.076 0.472 0.219 3.483 4.639 0.544

21 834.123 10.524 834.065 10.021 302.385 14.058 203.349 13.396 2.938 0.068 0.497 0.165 3.499 2.300 0.552

22 832.421 5.431 832.578 6.033 305.984 11.636 208.185 8.609 3.100 0.092 0.613 0.157 6.625 3.305 0.903

23 831.725 6.325 831.420 6.315 298.930 10.482 203.263 9.732 3.202 0.050 0.574 0.295 6.165 2.412 0.826

24 829.874 12.705 829.917 12.633 303.947 11.110 206.710 13.674 3.340 0.114 0.610 0.370 6.185 3.976 0.900

25 831.215 14.351 831.278 14.255 302.647 16.056 204.747 16.793 3.491 0.120 0.702 0.565 9.454 7.931 1.150
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Table 6.12: Calibration and line segment fitting result using Zhang-RD method. The image resolution is 640× 480. The model plane
contains a pattern of 8×8 squares (17cm×17cm), in total there are 256 corners. Gaussian white noise with standard deviation δ = 0.04τ
was added to the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and δ = 0.02τ was added to image points Pfi where τ varied
from 0 to 25 at intervals of 1. µ: average result for each parameter; σ: standard deviation for each parameter, RPE: re-projection error

fx fy Cx Cy RPE AFE MFE SDFE

τ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0 832.883 0.000 832.820 0.000 304.139 0.000 208.616 0.000 0.334 0.000 0.185 0.000 0.786 0.000 0.144

1 832.928 0.252 832.878 0.250 304.343 0.501 208.558 0.724 0.362 0.005 0.188 0.003 0.785 0.007 0.145

2 832.890 0.403 832.842 0.413 303.973 0.756 208.714 1.040 0.434 0.006 0.188 0.005 0.793 0.006 0.144

3 833.245 1.105 833.250 1.107 303.887 1.397 208.140 2.663 0.529 0.011 0.193 0.009 0.801 0.014 0.146

4 832.799 0.618 832.671 0.680 304.416 2.790 209.824 2.424 0.640 0.015 0.206 0.015 0.909 0.047 0.161

5 833.030 0.905 832.923 0.961 304.735 3.645 208.403 2.586 0.759 0.021 0.203 0.033 0.812 0.346 0.152

6 833.476 2.052 833.431 2.194 303.408 2.263 208.534 4.411 0.883 0.022 0.206 0.029 0.855 0.198 0.156

7 832.122 1.860 832.082 1.885 306.346 5.452 210.555 5.248 1.035 0.022 0.246 0.038 1.196 0.163 0.199

8 833.379 1.913 833.470 1.824 305.449 6.188 209.708 4.731 1.159 0.035 0.252 0.062 0.986 0.481 0.189

9 833.110 3.177 832.769 3.044 303.050 7.988 209.164 3.833 1.289 0.035 0.253 0.095 1.313 0.720 0.210

10 833.529 3.283 833.512 3.277 306.742 5.831 209.490 4.978 1.417 0.033 0.300 0.068 1.597 0.637 0.249

11 833.132 3.192 832.794 3.364 302.449 6.859 208.363 6.941 1.553 0.041 0.284 0.070 1.174 0.783 0.222

12 832.955 2.979 832.840 3.128 306.159 3.960 208.569 7.647 1.683 0.040 0.327 0.065 1.872 0.460 0.279

13 833.637 3.264 833.432 3.411 305.129 6.262 208.283 6.918 1.837 0.042 0.339 0.055 1.652 0.706 0.270

14 832.319 3.699 832.134 3.414 302.293 7.961 205.847 7.296 1.954 0.045 0.381 0.113 1.814 1.025 0.297

15 832.561 4.224 832.410 4.472 303.811 9.357 209.465 9.638 2.097 0.062 0.426 0.098 2.858 1.537 0.425

16 832.812 5.670 832.556 5.808 303.196 11.129 210.300 9.354 2.209 0.083 0.380 0.190 2.277 2.336 0.337

17 830.086 5.507 830.324 5.219 300.389 9.914 206.816 7.928 2.358 0.080 0.512 0.149 4.168 3.162 0.582

18 834.430 6.635 834.230 6.634 304.023 14.965 210.901 13.855 2.493 0.057 0.480 0.154 3.388 1.685 0.504

19 830.728 7.350 830.737 7.326 303.742 12.393 204.751 9.482 2.620 0.073 0.628 0.160 5.266 1.785 0.744

20 832.939 5.525 832.762 5.661 306.235 11.416 207.555 12.022 2.821 0.057 0.637 0.203 3.843 1.754 0.625

21 832.334 8.226 832.552 8.067 300.986 13.534 209.819 13.634 2.883 0.118 0.603 0.362 4.638 4.744 0.735

22 833.399 7.414 833.424 7.248 303.598 12.777 209.697 23.241 3.046 0.078 0.672 0.330 5.481 4.405 0.758

23 832.742 9.037 832.660 8.923 302.526 14.340 210.522 14.869 3.166 0.093 0.722 0.343 6.202 5.838 0.848

24 834.098 10.131 834.307 10.381 305.370 18.509 212.040 16.002 3.325 0.101 0.742 0.453 5.188 6.264 0.809

25 834.058 8.498 833.893 8.610 302.267 17.693 210.363 13.088 3.479 0.102 0.876 0.393 7.917 6.810 1.062
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Table 6.13: Calibration and line segment fitting result using FMC method. The image resolution is 640×480. The model plane contains
a pattern of 8 × 8 squares (17cm× 17cm), in total there are 256 corners. Gaussian white noise with standard deviation δ = 0.04τ was
added to the coordinates of the 3D world points pwi(i = 1, 2, · · ·256) and δ = 0.02τ was added to image points Pfi where τ varied from

0 to 25 at intervals of 1. µ: average result for each parameter; σ: standard deviation for each parameter, RPE: re-projection error

fx fy Cx Cy RPE AFE MFE SDFE

τ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0 832.266 0.000 832.217 0.000 298.300 0.000 214.994 0.000 0.333 0.000 0.189 0.000 1.089 0.000 0.164

1 832.278 0.244 832.241 0.251 298.038 1.013 215.298 1.074 0.361 0.004 0.190 0.003 1.101 0.066 0.166

2 832.356 0.566 832.300 0.550 298.112 2.304 215.019 2.373 0.430 0.008 0.193 0.006 1.126 0.145 0.169

3 832.261 0.687 832.226 0.751 297.770 3.125 215.761 3.652 0.530 0.013 0.195 0.009 1.106 0.165 0.168

4 832.235 0.675 832.173 0.664 299.081 4.800 215.550 5.716 0.646 0.015 0.204 0.010 1.141 0.232 0.176

5 832.431 0.935 832.424 0.898 297.179 8.184 216.307 6.733 0.770 0.015 0.211 0.017 1.231 0.362 0.183

6 832.538 1.532 832.379 1.591 300.106 6.534 217.854 7.380 0.889 0.025 0.227 0.022 1.303 0.402 0.197

7 832.593 1.660 832.439 1.732 297.167 9.542 212.990 8.660 1.023 0.041 0.219 0.041 1.172 0.528 0.180

8 831.974 1.806 831.936 1.660 301.388 8.009 215.065 9.772 1.154 0.033 0.245 0.034 1.341 0.622 0.206

9 833.073 2.760 832.866 2.811 295.034 11.222 213.457 13.398 1.279 0.033 0.265 0.047 1.455 0.595 0.214

10 832.349 2.934 832.290 2.894 297.023 10.901 215.868 13.476 1.421 0.031 0.279 0.062 1.775 0.782 0.250

11 832.038 2.095 831.943 2.202 298.263 12.192 214.441 17.201 1.538 0.059 0.267 0.107 1.429 0.741 0.218

12 832.529 3.430 832.531 3.071 296.499 14.010 216.661 20.274 1.676 0.045 0.339 0.098 1.982 0.807 0.292

13 832.245 2.777 832.236 3.029 297.289 18.749 214.924 16.532 1.820 0.057 0.349 0.141 2.082 1.332 0.317

14 831.974 3.543 831.772 3.774 304.055 18.608 210.595 19.374 1.974 0.054 0.382 0.119 2.206 1.435 0.335

15 832.146 3.302 832.322 3.202 295.577 16.791 215.149 18.930 2.077 0.059 0.396 0.094 2.722 1.127 0.387

16 831.984 3.938 831.807 4.213 292.758 15.447 221.349 19.009 2.225 0.068 0.362 0.119 2.160 1.042 0.329

17 831.162 4.231 831.403 4.430 306.635 21.156 210.800 17.808 2.350 0.065 0.421 0.140 2.497 1.315 0.383

18 833.081 4.679 833.127 4.574 299.447 16.924 214.747 29.453 2.510 0.086 0.473 0.213 2.890 1.662 0.424

19 834.188 3.633 833.971 3.711 303.222 32.629 215.571 24.828 2.618 0.087 0.458 0.306 2.417 2.186 0.395

20 831.311 5.214 831.273 5.280 299.349 28.047 208.516 22.621 2.763 0.062 0.511 0.190 3.159 1.911 0.491

21 832.231 4.246 832.316 4.372 298.640 24.195 215.856 25.934 2.926 0.081 0.521 0.258 3.108 1.884 0.472

22 832.731 5.257 832.309 4.945 296.240 24.795 216.841 25.729 3.068 0.085 0.541 0.297 3.420 2.759 0.518

23 832.662 6.153 832.502 6.852 298.135 26.619 219.275 32.884 3.203 0.105 0.584 0.200 3.955 2.351 0.596

24 831.977 5.355 831.913 5.755 296.604 21.370 222.350 32.215 3.312 0.097 0.633 0.221 4.118 2.160 0.615

25 832.161 5.817 832.173 5.628 296.691 27.989 207.961 30.942 3.443 0.106 0.645 0.315 4.127 2.382 0.650
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Figure 6.32: The AFE line fitting error using different algorithms based on Zhang’s data. The
image resolution is 640×480. The model plane contains a pattern of 8×8 squares (17cm×17cm),
in total there are 256 corners. The coplanar points lie on 32 lines segments in each Zhang’s image,
total 160 in five images. Gaussian white noise with standard deviation δ = 0.04τ was added to
the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.33: The MFE line fitting error using different algorithms based on Zhang’s data. The
image resolution is 640×480. The model plane contains a pattern of 8×8 squares (17cm×17cm),
in total there are 256 corners. The coplanar points lie on 32 lines segments in each Zhang’s image,
total 160 in five images. Gaussian white noise with standard deviation δ = 0.04τ was added to
the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.34: The SDFE line fitting error using different algorithms based on Zhang’s data. The
image resolution is 640×480. The model plane contains a pattern of 8×8 squares (17cm×17cm),
in total there are 256 corners. The coplanar points lie on 32 lines segments in each Zhang’s image,
total 160 in five images. Gaussian white noise with standard deviation δ = 0.04τ was added to
the coordinates of the 3D world points pwi(i = 1, 2, · · · 256) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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6.4.2 Applied in 3D scanner data

In the previous section we evaluated the FMC using Zhang’s data for camera calibration
and image correction, it is important to know the influence of camera calibration and
image correction to the final 3D reconstruction accuracy. In this section, we use the real
image data from our 3D scanner to evaluate the proposed FMC algorithm for camera
calibration, image correction and 3D reconstruction. Since it is hardly to precisely
measure the lens distortion that the known 3D measurement can be used to evaluate the
proposed method in the 3D reconstruction alternatively.

6.4.2.1 Experimental setup

The equipment set up was similar as section 6.2.1. The image data used in this exper-
iment was from underwater scanning. The camera is Bowtech LCC-600 at a resolution
of 720 × 576. Its original lens is fish-eye (focal length = 2.9mm) model and has a field
of view (FOV) of 65◦ underwater. To reduce lens distortion effect, a pinhole lens was
fitted into this camera. It has a FOV of about 42◦ in water and focal length is 5.3mm.
The calibration target was a printed and laminated chessboard, sticking onto a flat black
board. It contains 8×6 corners, every corner has a distance of 20mm from each other. 10
chessboard images at different orientations were captured. The scanner was placed and
set up for parameter estimation as the procedure described in section 5.2. It contains a
vertical flat board in front of the scanner. The scanner travels toward to the flat board.
From the starting point to the other end, it travels 105 steps at 1mm interval, then total
105 laser stripe images were captured. To simulate the different working environments/-
conditions, the Gaussian white noise with standard deviation δ = 0.04τ was added to
the coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added
to image points Pfi where τ varied from 0 to 25 at intervals of 1, simulating different
levels of noise. Each calibration method will run 100 times on each noise level, and their
average is calculated as the final result. The calibration parameters may be different
under different noise levels. Thus, as the calibration parameters change, it is necessary
to perform the scanner parameter estimation described in section 5.2 again to obtain a
new set of scanner parameters including baseline D and angle α. Once we get the scan-
ner parameters and calibration results, laser peak detection(Gaussian approximation)
was applied to the corrected images and reconstruct the 3D model. There are two main
aspects to be verified under these calibration algorithms: (1) the laser stripes in the 2D
images should be ”Straight” after correction using the distortion factors; and (2) The
Z-axis distance should be as close as possible to the real in the 3D reconstruction.

6.4.2.2 Results and analysis

The calibration and laser stripes linear fitting results are shown in Tables 6.14, 6.15, 6.16
and Figures 6.35, 6.36, 6.37, 6.39,6.38 and 6.40. From these tables and figures, it can be
observed that: Zhang, Zhang-RD, and FMC have all successfully calibrated the camera.
The RPE (re-projection error) is very similar to each other at different noise levels.
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However, the laser stripe correction shows different results. Since the laser stripe
has been carefully adjusted to be straight physically, thus, the laser stripe in the images
should have the same property. Based on that, we undistorted the images using three
methods’ calibration results and then linear fitting was performed on the laser stripes
extracted from the images. The linear fitting error may look larger due to the fact: (1) the
images were taken from underwater with some unavoidable noise, (2) calibration result
may contain some error when applies air calibration methods into underwater and (3)
this process only using FMC without any other components like FIR laser peak detection
involved. Figure 6.35 and 6.36 show the average result: FMC has smaller fitting error
and the laser stripes are closer to 90◦ than the other two methods. At low noise level(like
τ < 5), all the corrected stripes angles are minimized between 89.82◦ ∼ 89.84◦ which
are very close to reality. Even the noise level increases to τ = 25, their angles’ error
is still below 0.3◦. In order to get a closer look, Figures 6.37, 6.39,6.38 and 6.40 show
the individual angles of the laser stripes captured at different linear stage positions by
the three algorithms at different noise levels. It is clearer that as noise increases, FMC
has the smallest deviation between the fitting angles and the real 90◦, which means
FMC has better image correction result than the other two. As the noise increases from
τ = 0 · · · 25, the angles’ deviation are limited to 0.3◦ as the laser stripes in different
image positions. Average angle results Zhang and Zhang-RD are similar, however, when
τ is high (like τ > 20) and the laser stripe number is over 80, the maximum angles’
deviation is over 0.8◦ by Zhang algorithm and 30◦ by Zhang-RD algorithm. This linear
fitting result is consistent with the previous section result using Zhang’s data: (1) FMC
has better noise resistance; (2) the knowledge of radial and decentring distortions does
not necessarily always bring benefits to Zhang and Zhang-RD algorithm for the image
undistortion.

Table 6.14: Calibration result by Zhang method and real 3D scanning data corrupted by
different multiples of a basic noise. The image size is 720× 576 and calibration target contains
8 × 6 = 48 corners, every corner has a distance of 20mm from each other. Gaussian white
noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at
intervals of 1. µ: average result for each parameter, σ: standard deviation for each parameter,

RPE: re-projection error

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1002.722 0.000 1066.884 0.000 348.681 0.000 292.736 0.000 0.270 0.000

5 1002.392 1.243 1066.501 1.294 348.942 1.231 293.477 1.232 0.664 0.040

10 1003.010 2.774 1067.175 2.779 350.093 1.691 296.004 2.162 1.224 0.060

15 1000.272 4.186 1064.157 4.442 356.045 3.220 300.527 3.702 1.839 0.123

20 1005.101 5.667 1067.928 5.663 360.504 4.447 297.403 3.514 2.394 0.145

25 1004.485 6.187 1068.166 6.612 361.601 5.422 312.405 5.082 3.065 0.144

To have better knowledge how these calibration results and image correction by these
three algorithms affect the final 3D reconstruction accuracy, all these 2D laser peaks are
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Table 6.15: Calibration result by Zhang-RD method and real 3D scanning data corrupted by
different multiples of a basic noise. The image size is 720× 576 and calibration target contains
8 × 6 = 48 corners, every corner has a distance of 20mm from each other. Gaussian white
noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at
intervals of 1. µ: average result for each parameter, σ: standard deviation for each parameter,

RPE: re-projection error.

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1003.148 0.000 1067.513 0.000 341.642 0.000 295.417 0.000 0.268 0.000

5 1003.180 1.079 1067.447 1.118 344.186 1.608 293.925 1.203 0.661 0.048

10 1003.744 2.882 1067.484 2.969 350.369 2.640 297.183 2.200 1.233 0.077

15 1003.271 3.308 1067.204 3.487 349.143 4.052 294.571 3.964 1.800 0.118

20 1003.164 4.378 1066.155 4.313 355.453 6.596 299.245 4.742 2.427 0.116

25 1002.372 6.821 1064.435 7.131 360.319 8.204 296.295 5.051 3.006 0.156

Table 6.16: Calibration result by FMC method and real 3D scanning data corrupted by different
multiples of a basic noise. The image size is 720× 576 and calibration target contains 8× 6 = 48
corners, every corner has a distance of 20mm from each other. Gaussian white noise with
standard deviation δ = 0.04τ was added to the coordinates of the 3D world points pwi(i =
1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals
of 1. µ: average result for each parameter, σ: standard deviation for each parameter, RPE:

re-projection error.

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1003.045 0.000 1067.614 0.000 342.684 0.000 299.454 0.000 0.267 0.000

5 1003.545 1.069 1068.084 1.155 345.916 3.977 301.023 3.770 0.649 0.038

10 1004.558 2.390 1069.021 2.564 353.043 8.157 295.096 7.415 1.248 0.061

15 1006.796 3.817 1071.431 4.007 366.779 10.689 298.359 10.115 1.812 0.103

20 1004.926 4.662 1069.714 4.871 351.495 16.494 300.930 12.784 2.447 0.147

25 1006.842 5.746 1070.410 6.201 352.013 24.475 291.665 16.102 3.022 0.174
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Figure 6.35: The average linear fitting error after the 2D image correction using different
calibration algorithms with various multiples of a basic noise. The image size is 720 × 576,
calibration target contains 8 × 6 = 48 corners, every corner has a distance of 20mm from each
other. The scanner travels 105 steps at 1mm interval. Total there are 105 images. Gaussian
white noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world
points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from 0

to 25 at intervals of 1.
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Figure 6.36: The average angle of laser stripes at each linear stage moving step based on
the linear fitting after the image correction using different calibration algorithms with various
multiples of a basic noise. The image size is 720 × 576, calibration target contains 8 × 6 = 48
corners, every corner has a distance of 20mm from each other. The scanner travels 105 steps
at 1mm interval. Total there are 105 images. Gaussian white noise with standard deviation
δ = 0.04τ was added to the coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ

was added to image points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.37: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction using Zhang algorithm with various multiples of a basic
noise. The image size is 720× 576, calibration target contains 8 × 6 = 48 corners, every corner
has a distance of 20mm from each other. The scanner travels 105 steps at 1mm interval. Total
there are 105 images. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points

Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.38: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction using Zhang-RD algorithm with various multiples of a
basic noise.(A) The image size is 720× 576, calibration target contains 8× 6 = 48 corners, every
corner has a distance of 20mm from each other. The scanner travels 105 steps at 1mm interval.
Total there are 105 images. Gaussian white noise with standard deviation δ = 0.04τ was added
to the coordinates of the 3D world points pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.39: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction using Zhang-RD algorithm with various multiples of a
basic noise.(B). The image size is 720× 576, calibration target contains 8× 6 = 48 corners, every
corner has a distance of 20mm from each other. The scanner travels 105 steps at 1mm interval.
Total there are 105 images. Gaussian white noise with standard deviation δ = 0.04τ was added
to the coordinates of the 3D world points pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.40: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction using FMC algorithm with various multiples of a basic
noise. The image size is 720× 576, calibration target contains 8 × 6 = 48 corners, every corner
has a distance of 20mm from each other. The scanner travels 105 steps at 1mm interval. Total
there are 105 images. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points

Pfi where τ varied from 0 to 25 at intervals of 1.
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Table 6.17: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on Zhang algorithm with various multiples
of a basic noise. The image size is 720× 576, calibration target contains 8 × 6 = 48 corners, every corner has a distance of 20mm from
each other. The scanner travels 105 steps at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at

intervals of 1. Ref: actual measurement, τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.00 148.82 0.82 0.08 148.87 0.87 0.08 148.81 0.81 0.07 149.19 1.19 0.07 149.27 1.27 0.07 149.57 1.57 0.06

158.00 158.71 0.71 0.09 158.76 0.76 0.09 158.70 0.70 0.09 159.08 1.08 0.09 159.17 1.17 0.09 159.46 1.46 0.08

168.00 168.71 0.71 0.11 168.76 0.76 0.11 168.70 0.70 0.11 169.08 1.08 0.11 169.17 1.17 0.11 169.46 1.46 0.11

178.00 178.71 0.71 0.12 178.76 0.76 0.12 178.70 0.70 0.12 179.09 1.09 0.12 179.17 1.17 0.13 179.47 1.47 0.13

188.00 188.69 0.69 0.14 188.74 0.74 0.14 188.68 0.68 0.14 189.06 1.06 0.15 189.15 1.15 0.15 189.44 1.44 0.16

198.00 198.65 0.65 0.15 198.70 0.70 0.15 198.64 0.64 0.15 199.01 1.01 0.16 199.10 1.10 0.16 199.39 1.39 0.18

208.00 208.62 0.62 0.14 208.67 0.67 0.14 208.61 0.61 0.14 208.98 0.98 0.15 209.08 1.08 0.15 209.35 1.35 0.17

218.00 218.57 0.57 0.15 218.62 0.62 0.15 218.57 0.57 0.16 218.94 0.94 0.17 219.04 1.04 0.16 219.29 1.29 0.19

228.00 228.64 0.64 0.14 228.68 0.68 0.14 228.63 0.63 0.14 229.00 1.00 0.15 229.12 1.12 0.14 229.34 1.34 0.17

238.00 238.67 0.67 0.16 238.71 0.71 0.16 238.67 0.67 0.17 239.04 1.04 0.18 239.17 1.17 0.17 239.37 1.37 0.21

248.00 248.69 0.69 0.16 248.73 0.73 0.16 248.70 0.70 0.16 249.06 1.06 0.17 249.22 1.22 0.16 249.38 1.38 0.19

253.00 253.71 0.71 0.16 253.75 0.75 0.16 253.72 0.72 0.16 254.08 1.08 0.17 254.26 1.26 0.16 254.40 1.40 0.18

Avg - 0.68 - - 0.73 - - 0.68 - - 1.05 - - 1.16 - - 1.41 -
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Table 6.18: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on Zhang-RD algorithm with various
multiples of a basic noise. The image size is 720 × 576, calibration target contains 8 × 6 = 48 corners, every corner has a distance of
20mm from each other. The scanner travels 105 steps at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was
added to the coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from

0 to 25 at intervals of 1. Ref: actual measurement, τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.00 147.85 0.15 0.07 148.26 0.26 0.04 148.31 0.31 0.07 148.38 0.38 0.07 148.62 0.62 0.07 148.55 0.55 0.09

158.00 157.74 0.26 0.08 158.26 0.26 0.07 158.20 0.20 0.09 158.38 0.38 0.05 158.62 0.62 0.09 158.55 0.65 0.10

168.00 167.74 0.26 0.10 168.15 0.15 0.08 168.20 0.20 0.11 168.27 0.27 0.07 168.51 0.51 0.11 168.65 0.65 0.11

178.00 177.74 0.26 0.12 178.15 0.15 0.08 178.20 0.20 0.12 178.27 0.27 0.07 178.51 0.51 0.12 178.65 0.65 0.12

188.00 187.72 0.28 0.14 188.13 0.13 0.10 188.18 0.18 0.13 188.25 0.25 0.08 188.49 0.49 0.14 188.67 0.67 0.13

198.00 197.68 0.32 0.15 198.09 0.09 0.12 198.14 0.14 0.13 198.21 0.21 0.08 198.44 0.44 0.15 198.70 0.70 0.14

208.00 207.65 0.35 0.15 208.06 0.06 0.12 208.11 0.11 0.12 208.18 0.18 0.09 208.41 0.41 0.15 208.71 0.71 0.12

218.00 217.61 0.39 0.17 218.02 0.02 0.14 218.07 0.07 0.12 218.14 0.14 0.10 218.36 0.36 0.16 218.72 0.72 0.14

228.00 227.67 0.33 0.16 228.08 0.08 0.12 228.14 0.14 0.13 228.20 0.20 0.08 228.42 0.42 0.15 228.61 0.61 0.12

238.00 237.70 0.30 0.18 238.11 0.11 0.12 238.18 0.18 0.16 238.24 0.24 0.10 238.45 0.45 0.18 238.51 0.51 0.15

248.00 247.72 0.28 0.18 248.13 0.13 0.13 248.21 0.21 0.16 248.26 0.26 0.10 248.46 0.46 0.17 248.41 0.41 0.14

253.00 252.73 0.27 0.18 253.15 0.15 0.13 253.23 0.23 0.16 253.29 0.29 0.10 253.48 0.48 0.17 253.34 0.34 0.15

Avg - 0.29 - - 0.13 - - 0.19 - - 0.26 - - 0.48 - - 0.59 -
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Table 6.19: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on FMC algorithm with various multiples
of a basic noise. The image size is 720× 576, calibration target contains 8 × 6 = 48 corners, every corner has a distance of 20mm from
each other. The scanner travels 105 steps at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at

intervals of 1. Ref: actual measurement, τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.00 148.00 0.00 0.06 148.28 0.28 0.06 148.09 0.09 0.08 148.42 0.42 0.07 148.21 0.21 0.06 148.54 0.54 0.08

158.00 158.11 0.11 0.08 158.18 0.18 0.05 158.20 0.20 0.09 158.31 0.31 0.09 158.31 0.31 0.06 158.43 0.43 0.09

168.00 168.11 0.11 0.10 168.18 0.18 0.07 168.20 0.20 0.11 168.31 0.31 0.11 168.31 0.31 0.08 168.43 0.43 0.11

178.00 178.11 0.11 0.11 178.18 0.18 0.07 178.20 0.20 0.12 178.31 0.31 0.13 178.31 0.31 0.09 178.43 0.43 0.12

188.00 188.13 0.13 0.14 188.16 0.16 0.08 188.22 0.22 0.14 188.29 0.29 0.16 188.33 0.33 0.10 188.41 0.41 0.14

198.00 198.18 0.18 0.15 198.12 0.12 0.09 198.26 0.26 0.15 198.24 0.24 0.18 198.37 0.37 0.10 198.36 0.36 0.15

208.00 208.21 0.21 0.15 208.09 0.09 0.10 208.30 0.30 0.14 208.20 0.20 0.17 208.40 0.40 0.10 208.33 0.33 0.14

218.00 218.26 0.26 0.18 218.06 0.06 0.11 218.34 0.34 0.16 218.16 0.16 0.19 218.43 0.43 0.10 218.29 0.29 0.15

228.00 228.20 0.20 0.16 228.13 0.13 0.11 228.29 0.29 0.14 228.21 0.21 0.17 228.35 0.35 0.11 228.36 0.36 0.13

238.00 238.18 0.18 0.18 238.19 0.19 0.12 238.26 0.26 0.17 238.25 0.25 0.21 238.29 0.29 0.15 238.39 0.39 0.16

248.00 248.17 0.17 0.18 248.23 0.23 0.13 248.26 0.26 0.16 248.26 0.26 0.20 248.24 0.24 0.16 248.42 0.42 0.14

253.00 253.17 0.17 0.18 253.26 0.26 0.13 253.25 0.25 0.16 253.28 0.28 0.19 253.21 0.21 0.15 253.44 0.44 0.14

Avg - 0.15 - - 0.17 - - 0.24 - - 0.27 - - 0.31 - - 0.40 -
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Figure 6.41: The laser stripes 3D reconstruction deviation using Zhang algorithms with various
multiples of a basic noise. The scanner travels 105 steps at 1mm interval. Gaussian white
noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at

intervals of 1.



6.4. FRACTION LENS DISTORTION MODEL 153

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Linear stage step

D
ev

ia
tio

n,
 U

ni
t:m

m

 

 

τ = 0
τ = 5
τ = 10
τ = 15
τ = 20
τ = 25

Figure 6.42: The laser stripes 3D reconstruction deviation based on Zhang-RD algorithm with
various multiples of a basic noise. The scanner travels 105 steps at 1mm interval. Gaussian
white noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world
points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from 0

to 25 at intervals of 1.
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Figure 6.43: The laser stripes 3D reconstruction deviation using FMC algorithms with various
multiples of a basic noise. The scanner travels 105 steps at 1mm interval. Gaussian white
noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at

intervals of 1.
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reconstructed to 3D. The initial distance D between camera CCD lens to the vertical
board is measurable and set to be 148.0mm. The linear stage was controlled to move
backward from the board in 1mm step. After 105 steps, the distance D was increased
to 253mm. The absolute error ∆ between the actual value (REF) and estimation (µ)
and standard deviation (σ) at each noise levels are shown in Tables 6.17, 6.18, 6.19. The
differences between ’REF’ and µ at different noise levels at each linear stage step are
shown on Figures 6.41, 6.42, and 6.43. It can be observed from these tables and figures
that:

1. Zhang algorithm has the biggest deviation and absolute error in all noise levels.
In the noise free dataset, its absolute error is up to 0.82mm. When τ = 25, it
increases to 1.57mm. In Fig.6.41, the deviation is between −1.5 ∼ 0.5mm, none
of them is close to range ±0.5mm.

2. Zhang-RD has much smaller error in considering the decentring distortion. Its
average absolute error is only 0.29mm over the noise free data, the derivation
is between −0.4 ∼ 0.8mm in Fig.6.42. It can be presumed that this lens has
decentring distortion and Zhang-RD making full use of this prior knowledge which
lens distortion model subject to.

3. FMC has better result without prior knowledge of the camera distortion models.
It can be seen from Table.6.19, FMC has the smallest absolute error in average. In
the noise free data, its maximum absolute error is only 0.26mm in average. Even
in the high noise level (like τ > 15), its maximum absolute error is only 0.54mm.
FMC’s deviation in Fig.6.43 is between −0.5 ∼ 0.5mm which is 66.7% smaller
than Zhang and 33.3% smaller than Zhang-RD. This shows that the FMC model
is powerful for the characterization and correction of the camera distortions.

4. The 3D reconstruction requires accurate calibration parameters and lens distortion
factors. In our case, the linear stage parameters estimation also requires the same
information because these scanner parameters are hard to measure them directly.
Therefor, the final 3D reconstruction result amplified the error coming from in-
correct calibration parameters and distortion factors. Such inaccurate calibration
result and distortion factor causes error in the scanner parameters including base-
line ’D’ and laser shutting angle α estimation. Eventually, all these errors affects
the triangulation based laser scanner 3D reconstruction accuracy which is consis-
tent with the experimental result showing above. It is completely feasible for FMC
to calibrate and correct the cameras without knowing the distortions that they are
subject to.

6.4.3 Conclusion

In this section, we evaluated an algorithm for camera calibration and correction. This
algorithm is based on a novel camera distortion model which attempts to model the over-
all distortion of the camera without knowing which distortion of the lens subject to and
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combat the imaging noise for more accurate camera calibration and correction results.
To estimate the parameters of interest, we globally optimized an objective function about
the sum of the back projection errors using the LM algorithm. For the initialization of
the LM algorithm, the classical Zhang algorithm [83] was implemented. After both the
intrinsic and distortion parameters have been calibrated, the distorted image points have
been corrected using again the LM algorithm initialized by the distorted image points
themselves. This LM algorithm minimizes the squared difference between the distorted
points and the transformed corrected points. As long as both the intrinsic and distor-
tion parameters have been calibrated with reasonable accuracy, then the minimization
is usually successful.

We experimentally demonstrated that the prior knowledge about the camera dis-
tortion does not necessarily always bring benefits to algorithms for accurate camera
calibration and correction. In reality, we probably have little idea about what distortion
the captured image is subject to. The actual distortion of the camera is not known
and need to be investigated. Camera distortion model is critical for camera calibration
and correction. What the accurate camera calibration and correction algorithm requires
is a powerful model to characterise the overall camera distortion and effectively resist
the imaging noise in the data. A comparative study based on both real images from
Zhang and the 3D scanner captured ones corrupted by reasonable levels of noise shows
that the proposed algorithm successfully calibrated and corrected the distorted image
points. Fractional model is more powerful than the polynomial model in describing the
distortions that the camera was subject to.

In additional, we compared 3D reconstruction result based on the calibration pa-
rameter with our 3D image data. It is shown that FMC does have better performance
compared to Zhang and Zhang-RD. The experimental results show that the proposed
algorithm successfully characterises the camera overall distortion, producing encourag-
ing results for camera calibration and correction and giving us the smallest deviation
between the estimation value and actual 3D measurement.
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6.5 Iterative Camera Calibration

In this section, we evaluate the proposed iterative camera calibration method described
in section.4.5 using synthetic and real images. The chessboard was used as the calibration
patterns in this chapter. The corners were detected by the same method to make sure
that the results are comparable. The Zhang-RD implemented in OpenCV [7] and Andrea
[1] method were selected to compare with the proposed method. Please note Andrea
method only considered the 3D input points as unknown variables while the proposed
method consider the 3D and the detected 2D feature points altogether.

6.5.1 Synthetic Data

To have a prior knowledge about the camera calibration result, synthetic data was gener-
ated to evaluate proposed iterative camera calibration method. The closer the calibration
result to the prior setting the better.

6.5.1.1 Experimental setup

METROVISIONLAB package [69] was used in this section to generate synthetic chess-
board pattern images. Fig.6.44 shows its user interface. It is easy to control all the
calibration parameters, chessboard size, synthetic noise and generate synthetic image.

In order to test how image resolution, focal length, and image noise affect the camera
calibration and thus the accuracy of 3D reconstruction, two sets of synthetic data (A,B)
were generated using the following parameters:

Here are the settings for the synthetic data A: Image size is 720× 576, Cx = 360.0,
Cy = 288.0, focal length f = 4.6mm, dx = 0.0086, dy = 0.0086 and offset of principal
point is Cu = 3.0, Cv = 4.0. Camera sensor and the calibration gauge object noise
are generated by random Gaussian noise, 0.02 and 0.01 respectively. The chessboard
contains 8× 6 grids, each grid size is 40 × 40mm. We generated five planes to simulate
five images captured from the real chessboard. Each camera capturing position’s rotation
and translation vectors settings is shown in Table 6.20. The rotation and translation
vectors unit are degree and mm respectively.

For the synthetic data B: Image size is 1024× 800, Cx = 512, Cy = 400, focal length
f = 8mm, dx = 0.0084, dy = 0.0086. Camera sensor and the calibration gauge object
noise are generated by random Gaussian noise, 0.04 and 0.02 respectively which are
higher than A. Offset for the coordinates of principal point is (4.0, 5.0). The chessboard
grids number and size are the same as setting A. Five planes was generated to simulate
five images captured from the real chessboard. Each camera capturing position’s rotation
and translation vectors settings is shown in Table 6.22. Focal length (fx, fy) unit con-
version from millimeter to pixel are fx(pixel) = fx(mm)/dx and fy(pixel) = fy(mm)/dy
in both settings.
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Figure 6.44: Synthetic chessboard generator by the MetrovisionLab package

Table 6.20: Synthetic camera orientation and position in setting (A)

♯ Rx Ry Rz Tx Ty Tz

0 8.00 0.00 0.00 -160.00 -150.00 430.00

1 11.00 6.00 -1.00 -190.00 -120.00 380.00

2 14.00 -14.00 -14.00 -150.00 -120.00 330.00

3 -7.00 -11.00 -11.00 -170.00 -170.00 380.00

4 10.00 3.00 -6.00 -200.00 -130.00 390.00
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Table 6.21: Calibration results of different methods from test (A). Image size is 720 × 576,
Cx = 360.0, Cy = 288.0, focal length f = 4.6mm, dx = 0.0086, dy = 0.0086 and offset of
principal point is Cu = 3.0, Cv = 4.0. Camera sensor and the calibration gauge object noise are
generated by random Gaussian noise, 0.02 and 0.01 respectively. The chessboard contains 8× 6
grids, each grid size is 40 × 40mm. Est: estimated value, σ: absolute error between estimated

value and reference. RPE: re-projection error.

Zhang-RD Andrea Proposed

Para. Ref. Est. σ Est. σ Est. σ

fx 534.88 535.98 1.10 534.93 0.05 534.33 0.55

fy 534.88 536.64 1.76 535.93 1.05 535.27 0.39

Cx 363.00 360.96 2.04 359.92 3.08 360.06 2.94

Cy 292.00 291.69 0.31 294.52 2.83 294.26 2.26

RPE - 0.211 - 0.117 - 0.111 -

SSE - 4.431 - 3.016 - 2.955 -

Table 6.22: Synthetic camera orientation and position in setting (B)

♯ Rx Ry Rz Tx Ty Tz

0 20.00 -14.00 1.00 -180.00 -120.00 400.00

1 26.00 0.00 -1.00 -170.00 -130.00 430.00

2 -15.00 4.00 8.00 -180.00 -190.00 610.00

3 -1.00 -17.00 0.00 -180.00 -140.00 490.00

4 -1.00 -14.00 13.00 -120.00 -150.00 460.00

Table 6.23: Calibration results of different methods from test (B). Image size is 1024 × 800,
Cx = 512, Cy = 400, focal length f = 8mm, dx = 0.0084, dy = 0.0086. Camera sensor
and the calibration gauge object noise are generated by random Gaussian noise, 0.04 and 0.02
respectively which are higher than A. Offset for the coordinates of principal point is (4.0, 5.0).
The chessboard contains 8 × 6 grids, each grid size is 40 × 40mm. Est: estimated value, σ:

absolute error between estimated value and reference. RPE: re-projection error.

Zhang-RD Andrea Proposed

Para. Ref. Est. σ Est. σ Est. σ

fx 952.38 951.35 1.02 951.36 1.02 952.92 0.54

fy 930.23 928.83 1.40 928.70 1.53 930.09 0.13

Cx 516.00 514.79 1.21 511.51 4.49 515.62 0.38

Cy 405.00 403.49 1.51 405.39 1.51 407.93 2.93

RPE - 0.224 - 0.121 - 0.114 -

SSE - 8.585 - 5.723 - 5.587 -



6.5. ITERATIVE CAMERA CALIBRATION 160

6.5.1.2 Results and analysis

Tables 6.21 and 6.23 show the calibration results and absolute error between calculated
result and reference by the three methods. The last two rows are re-projection errors
(RPE) and the sum of squared error (SSE 8). From above tables it can be seen that:

1. The proposed method performs better than the others even in the heavier noise
setting B. The proposed method calibration has more precise parameters fx, fy,
Cx, and Cy.

2. In both setting, the proposed and Andrea RPE error is smaller than Zhang-RD’s
method. The estimated focal length by proposed method is only about ±0.5 pixel
off the ground truth value. This shows that the iteration calibration is really useful
for higher accurate camera calibration.

3. It is well known that the calibration accuracy depends on the 2D(detected corners)
and 3D target(calibration target’ 3D coordinates) data. According to [1] and [47],
the calibration target’ 3D coordinates include systematic error which generated
during the manufacture process and it can be compensated by iterative method.
In each iteration, once plausible camera parameters are obtained, we assume them
to be correct and evaluate a more accurate target geometry by using a bundle
adjustment technique to estimate only camera poses and scene, and then new 3D
target data is generated. Since the estimated target is scaled towards the theoret-
ical one at each step during bundle adjustment, the final camera calibration could
be subject to an absolute scaling error that is not avoidable as the real measures of
the target are not known. Still, this error is averaged over the printing error of each
corner and has shown to be very small in our experience. The proposed method
takes a further step in considering image distortion effect on corner detection. In
each iteration, new corners will be detected again based on the images corrected by
the current distortion factors. It makes sense the corner detection should perform
better on distortion free images. Hence, the proposed method has about 3 ∼ 10%
smaller RPE and SSE error than the others.

6.5.2 Real chessboard pattern images

As you may have noticed in Fig.6.45, there are some indentations on the chessboard
grid. They are caused by the 2D/3D rendering by the PC graphic card and hard to
avoid when the chessboard images are generated. Consequently, such indentations may
introduce error to the camera calibration. To eliminate the possible synthetic error from
chessboard image generation and have better knowledge about the performance of the
proposed method in real applications, the scanner’s chessboard pattern images are used
in this section.

8SSE: the error in distorted image coordinates between the measured location of a feature point in
the image plane and its re-projected point through the calibrated model.
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Figure 6.45: MetrovisionLab synthetic chessboard sample

The section is divided into two parts: (1) Firstly, the real chessboard images from
underwater scanning were used to test the Zhang-RD, Andrea and the proposed algo-
rithm’s performance. (2) Secondly, artificial noise was added to the images or 3D input
points respectively to simulate the difficult tasks in real environments.

6.5.2.1 Noise free images

This experiment used chessboard pattern images without artificial noise added to eval-
uate the proposed method’s performance.

6.5.2.1.1 Experimental setup The camera has 1/3 inch CCD, image resolution is
720× 576, principal point Cx = 360, Cy = 288 and its offset are unknown. The camera’s
focal length f = 6.0mm, dx = 0.0086, dy = 0.0083. Chessboard grid size is 12× 8, each
grid is 20mm by 20mm. Eight pictures were taken in different positions. The chessboard
was printed on a normal A4 paper and laminated by two thin layer plastic. In this way,
we can assume the input 3D targets (chessboard pattern) are planar. In reality, even
after the lamination, the surface of the pattern cannot be guaranteed 100% flat and
corner to corner distance may not always be 20mm due to the mechanical problems
form printer or rugosity of the paper itself. This is also the main reason to introduce
the proposed method to reduce the side effect caused by low cost handmade chessboard
calibration pattern.

6.5.2.1.2 Results and analysis The calibration results by Zhang-RD, Andrea and
proposed methods are shown in the Table.6.24. It can be seen from the table that:

1. Camera focal length (fx, fy) shown in the table are in pixel and they can be con-
verted to millimeter unit. In Zhang-RD is fx = 672.132, fy = 728.37(pixels)
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Table 6.24: Calibration results of different methods using real data. The camera has 1/3
inch CCD, image resolution is 720× 576, principal point Cx = 360, Cy = 288 and its offset are
unknown. The camera’s focal length f = 6.0mm, dx = 0.0086, dy = 0.0083. Chessboard grid

size is 12× 8, each grid is 20mm by 20mm

fx fy Cx Cy RPE SSE

Zhang-RD 672.132 728.370 367.491 311.850 0.170 2.765

Andrea 679.449 738.040 362.702 310.412 0.092 0.811

Proposed 679.489 738.001 363.191 311.112 0.091 0.798
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Figure 6.46: Refined world points in 3D view, Red Circles: Optimized 3D world points, Blue
Stars: The original points
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and they converted to millimeter unit is 672.132 × 0.0084 = 5.780(mm), 728.37 ×
0.0083 = 6.045(mm), their average is 5.913mm. Andrea has slightly better re-
sult: f = 5.918mm. In contrast, the proposed method and calibrated the same
parameter as f = 5.985mm, which is much closer to the factory focal length value:
6.0mm.

2. The proposed method reduced re-projection error(RPE) about 43% than Zhang-
RD. In addition, its RPE and SSE error apparently smaller than Zhang-RD and
Andrea. As mentioned in above sections, the printed chessboard is laminated and
placed on a flat board, normally, we can set the initial Z-coordinate in 3D world
pattern to zero. However, the ground truth is not always as explained above, since
the paper itself and lamination may cause error in Z axis. Andrea and proposed
method are trying to correct or compensate such inaccurate 3D world points by
iterative process. Fig.6.46 shows the 3D world points after the iterative refinement.
It can be seen that the maximum error in Z-coordinate is about 1mm, which is
quite close to ground truth because such home-made chessboard’s surface is hard
to guaranty 100% flat and even. The thickness of the paper is no more than
1mm which measured by caliper. Fig.6.47 shows the flat view in XY-plane, most
of the points remain the same position with maximum ±0.3mm shifts. Similar
experiments will be performed again in later section.6.5.3 to verify these calibration
parameters resulting in the 3D reconstruction.

6.5.2.2 Artificial noise added

In this section, artificial noise was added to simulate the difficult tasks in real environ-
ments.

6.5.2.2.1 Experimental setup This experiment can be divided into two parts:
Firstly, we used the same captured images but added different levels of Gaussian

white noise from σ = 0.1 ∼ 0.5. Fig.6.48 shows one of the chessboard pattern images
with different levels of noise. Clearly, when the noise increases to σ = 0.5, it is a big
challenge to detect accurate corners.

Secondly, due to fact that the manufacturing process of the 3D pattern always in-
troduce errors to the calibration pattern. This part investigates how such inaccurate
3D pattern affects the camera calibration and correction. We assumed the chessboard
pattern is accurate in the image plane, and then the random noise was added to the
3D world points to simulate the error coming from manufacturing or any other source.
Then the performance of each calibration method can be tested as the input 3D world
points are inaccurate.

The chessboard grid size is 20mm and the added noise is varied from 1% ∼ 10%
in absolute distance (in X − Y coordinates), which causing maximum 2.0mm off to
the original position. In both experiments, each noise level will run 100 times and the
average will be the final result.
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6.5.2.2.2 Results and analysis: corrupted images The example noisy images
are shown in Fig.6.48, and the calibration results are shown in Table 6.25. Individual
calibration parameter comparison result chart is shown in figures from 6.49 to 6.52. To
have a more objective evaluation and eliminate the effect of the corner detection method,
all the methods used the same detection and noise removal method.

As shown in these figures and tables: (1) in the low level noise (0 ∼ 0.2), all the
results are fairly similar. The calibration parameters in Zhang-RD, Andrea, and the
proposed method have a maximum difference of 2.2, 2.0 and 1.14 pixels. When the noise
level increases to 0.5, the results are not stable any more, particularly Cx and Cy have
dramatic changes. The RPE error also increases as the noise level increases. However,
Andrea and proposed method provide smaller re-projection errors than Zhang-RD. (2)
θ in Table 6.25 is the standard deviation for all the parameters from noise (0 ∼ 0.5).
It can be seen STD increase as the noise level increase. Zhang-RD has the smallest
STD for all calibration parameters but has the largest STD for RPE which indicates
its calibration result is not stable and reliable in the high noise levels (like σ > 0.2).
(3) The noise do has heavy impact on the corner detection and brought error into the
detected corners, therefore, in the Eq.4.3.8, the Levenberg-Marquardt algorithm takes
much more time to converge with these inaccurate corners. (4) It can be observed that
as the noise levels increase, the maximum error of calibration parameters is about ten
pixels, which is less than 3% deviation. However, RPE error increases over 200%. It
is because re-projected points on image plane are hard to match the noisy 2D corners.
Obviously, in the heavy noise corrupted images, corner detection method plays a much
more important role during the entire calibration process. Thus, in the next experiment,
we introduce different noises into 3D world points to evaluate the performance of these
calibration methods.

6.5.2.2.3 Results and analysis: corrupted 3D points In this experiment, rea-
sonable artificial noise is added into the 3D world points to simulate real environment
and test the proposed method performance in such difficult task. The chessboard has
12 × 8 = 96 corners. Distance between each corner is designed to be 20mm. The intro-
duced different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y coordinates,
which is up to 2.0mm (10%) off from the original points inXY plane in our case. Fig.6.53
shows the corrupted 3D world points with different noise levels on the XY plane. Since
the noisy data was generated randomly, thus, the calibration needs to run 100 times for
each noise level and the average will be used as the final result.

Table 6.26 and Figures from 6.56 to 6.55 clearly show when the added noise increases
in 3D space, the most important calibration parameters by Zhang-RD method can not
remain stable, while the results by Andrea and proposed methods are more consistent.
For instance, when the noise level increases from 0% to 5% which has up to 1mm off
(Chessboard grid size is 20mm by 20mm) in 3D space, the maximum deviation of fx is
4.179 pixels by Zhang-RD, 1.022 by Andrea and 0.967 pixel by the proposed method
which is less than a single pixel. Even the noise level increases to 10%, which has 2mm
off from the original position in 3D space, the proposed method maintains the value well,
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(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

(e) σ = 0.5

Figure 6.48: Artificial noise added to the chessboard images
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Table 6.25: Calibration results of different methods from the corrupted image data. Different
levels of Gaussian white noise from σ = 0.1 ∼ 0.5 was added to the same captured images. Image
size is 720× 576, principal point Cx = 360, Cy = 288 and its offset are unknown. The camera’s
focal length f = 6.0mm, dx = 0.0086, dy = 0.0083. Chessboard grid size is 12 × 8, each grid is

20mm by 20mm. µ, θ: average and standard deviation of each calibration parameter.

fx fy Cx Cy RPE

Noise Level µ θ µ θ µ θ µ θ µ θ

σ = 0.0
Zhang-RD 672.132 0.000 728.370 0.000 367.491 0.000 311.850 0.000 0.170 0.000
Andrea 679.449 0.000 738.040 0.000 362.702 0.000 310.412 0.000 0.092 0.000
Proposed 679.489 0.000 738.001 0.000 363.191 0.000 311.112 0.000 0.091 0.000

σ = 0.1
Zhang-RD 671.499 1.308 727.682 1.396 367.103 0.668 311.937 0.539 0.209 0.040
Andrea 679.686 2.072 738.368 2.223 362.879 0.961 309.492 0.952 0.141 0.017
Proposed 677.880 1.661 736.296 1.793 363.728 1.661 310.023 1.799 0.096 0.008

σ = 0.2
Zhang-RD 673.298 2.605 729.512 2.810 369.327 1.110 311.794 1.221 0.317 0.037
Andrea 679.878 3.177 738.454 3.388 364.805 2.761 309.312 1.523 0.259 0.031
Proposed 678.945 2.303 737.437 2.395 364.325 3.970 310.506 4.013 0.142 0.015

σ = 0.3
Zhang-RD 675.664 2.750 732.401 3.037 365.108 2.785 313.940 1.769 0.453 0.062
Andrea 681.369 6.349 740.366 6.809 362.323 3.517 312.664 2.858 0.384 0.039
Proposed 680.480 3.817 739.298 4.085 362.125 6.001 313.860 5.200 0.195 0.030

σ = 0.4
Zhang-RD 674.682 4.225 731.183 4.475 368.679 2.542 313.528 2.158 0.581 0.104
Andrea 687.645 8.044 746.488 8.612 360.508 4.564 309.931 3.467 0.507 0.048
Proposed 684.589 5.388 741.744 5.660 366.425 7.698 314.553 7.140 0.250 0.045

σ = 0.5
Zhang-RD 674.774 4.432 731.289 4.866 366.742 3.413 311.296 3.501 0.716 0.118
Andrea 681.094 9.506 740.356 10.172 357.637 6.440 308.252 4.898 0.630 0.069
Proposed 681.583 5.284 741.533 5.874 356.534 7.484 307.094 7.572 0.314 0.055
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Figure 6.49: Calibrated parameter fx of different methods from images corrupted by artificial
noise. Image size is 720 × 576, principal point Cx = 360, Cy = 288 and its offset are unknown.
Different levels of Gaussian white noise from σ = 0.1 ∼ 0.5 was added to the same captured

images.
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Figure 6.50: Calibrated parameter fy of different methods from images corrupted by artificial
noise. Image size is 720 × 576, principal point Cx = 360, Cy = 288 and its offset are unknown.
Different levels of Gaussian white noise from σ = 0.1 ∼ 0.5 was added to the same captured

images.
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Figure 6.51: Calibrated parameter Cx of different methods from images corrupted by artificial
noise. Image size is 720 × 576, principal point Cx = 360, Cy = 288 and its offset are unknown.
Different levels of Gaussian white noise from σ = 0.1 ∼ 0.5 was added to the same captured

images.
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Figure 6.52: Calibrated parameter Cy of different methods from images corrupted by artificial
noise. Image size is 720 × 576, principal point Cx = 360, Cy = 288 and its offset are unknown.
Different levels of Gaussian white noise from σ = 0.1 ∼ 0.5 was added to the same captured

images.



6.5. ITERATIVE CAMERA CALIBRATION 170

0 50 100 150
−50

0

50

100

150

200

250

X−coordinate

Y
−

co
or

di
na

te

 

 

Original
With noise

(a) 1%

0 50 100 150
−50

0

50

100

150

200

250

X−coordinate

Y
−

co
or

di
na

te

 

 

Original
With Noise

(b) 3%

0 50 100 150
−50

0

50

100

150

200

250

X−coordinate

Y
−

co
or

di
na

te

 

 

Original
With noise

(c) 5%

0 50 100 150
−50

0

50

100

150

200

250

X−coordinate

Y
−

co
or

di
na

te

 

 

Original
With noise

(d) 7%

0 50 100 150
−50

0

50

100

150

200

250

X−coordinate

Y
−

co
or

di
na

te

 

 

Original
With noise

(e) 10%

Figure 6.53: Different percentages of synthetic noise added to the XY-plane. The chessboard
has 12× 8 = 96 corners. Distance between each corner is designed to be 20mm. The introduced
different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y coordinates, which is up to

2.0mm (10%) off from the original points in XY plane.
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Table 6.26: Calibration results of different methods with 3D world points corrupted by dif-
ferent levels of noise. The chessboard has 12 × 8 = 96 corners, each grid is 20mm by 20mm.
Distance between each corner is designed to be 20mm. The introduced different noise levels are
at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y coordinates, which is up to 2.0mm (10%) off from
the original points in XY plane. Image size is 720 × 576, principal point Cx = 360, Cy = 288
and its offset are unknown. µ, θ: average and standard deviation of each calibration parameter.

fx fy Cx Cy RPE

Noise Level µ θ µ θ µ θ µ θ µ θ

Zhang-RD

1% 673.464 0.276 729.811 0.295 366.659 0.188 311.410 0.231 0.299 0.010
3% 673.003 0.767 729.179 0.838 367.593 0.654 313.598 0.785 0.760 0.036
5% 669.285 1.268 725.276 1.369 365.026 0.928 310.009 1.321 1.238 0.064
7% 669.459 1.432 724.951 1.569 367.724 1.536 309.666 1.711 1.730 0.088
10% 667.537 2.657 723.226 2.876 365.547 2.238 307.967 2.481 2.465 0.134

Andrea

1% 678.523 0.035 737.043 0.030 363.656 0.185 310.467 0.226 0.078 0.001
3% 678.589 0.095 737.071 0.077 363.942 0.485 310.209 0.364 0.079 0.001
5% 678.427 0.215 736.939 0.192 362.998 1.102 310.285 1.409 0.078 0.001
7% 678.561 0.291 736.852 0.236 363.846 1.342 311.882 2.102 0.081 0.003
10% 677.619 0.370 735.960 0.327 359.466 1.835 312.551 2.053 0.083 0.003

Proposed

1% 678.522 0.310 736.936 0.342 363.642 0.200 311.224 0.143 0.080 0.003
3% 678.737 0.293 737.118 0.316 363.528 0.748 311.526 0.671 0.082 0.003
5% 678.919 0.408 737.317 0.424 363.851 1.123 310.735 0.812 0.082 0.004
7% 679.196 0.639 737.624 0.719 364.684 1.920 311.928 1.903 0.083 0.004
10% 678.247 0.689 736.457 0.646 361.741 1.993 312.684 2.216 0.085 0.006
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Figure 6.54: The calibrated parameter fx of interest as a function of artificial noise added in
3D space. The chessboard has 12× 8 = 96 corners. Distance between each corner is designed to
be 20mm. The introduced different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y

coordinates, which is up to 2.0mm (10%) off from the original points in XY plane.
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Figure 6.55: The calibrated parameter fy of interest as a function of artificial noise added in
3D space. The chessboard has 12× 8 = 96 corners. Distance between each corner is designed to
be 20mm. The introduced different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y

coordinates, which is up to 2.0mm (10%) off from the original points in XY plane.
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Figure 6.56: The calibrated parameter Cx of interest as a function of artificial noise added in
3D space. The chessboard has 12× 8 = 96 corners. Distance between each corner is designed to
be 20mm. The introduced different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y

coordinates, which is up to 2.0mm (10%) off from the original points in XY plane.
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Figure 6.57: The calibrated parameter Cy of interest as a function of artificial noise added in
3D space. The chessboard has 12× 8 = 96 corners. Distance between each corner is designed to
be 20mm. The introduced different noise levels are at 0.2, 0.6, 1.0, 1.4, 2.0 (Unit:mm) in X − Y

coordinates, which is up to 2.0mm (10%) off from the original points in XY plane.

the deviation is limited to about 1.8 pixels compared to 6.5 by Zhang-RD method and
3.5 pixels by Andrea method. θ is the standard deviation of each calibration parameter
during the 100 times running, the small the better. Zhang-RD has largest standard
deviation θ than the other two in all parameters. Andrea has the smallest θ but its
average result µ is bigger than the proposed method. To sum up, such noisy 3D points
do have side effect on the calibration. If the detected 2D corners are accurate but it
is easily to see that they can’t be precisely matched during the optimization by LM
method. However, the iteration process in proposed and Andrea method significantly
reduce such effect.

6.5.3 Applied in 3D scanner data

Camera calibration have heavy impact to the image correct and final 3D reconstruction
accuracy. In this section, we use the real image data from our 3D scanner to evaluate
the proposed iterative algorithm for camera calibration and 3D reconstruction.

6.5.3.1 Experimental setup

The same procedure and measurement in section 6.4.2 will be used for this evaluation.
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6.5.3.2 Results and analysis

The calibration, line segment fitting and 3D reconstruction results can be found on Tables
6.27, 6.28, 6.29, 6.30 and Figures 6.58, 6.59, 6.60,6.61, 6.62, 6.63. It can be observed
from these tables and figures that: (1) Andrea and proposed methods produce much
better calibration result of intrinsic, extrinsic parameters and 3D reconstruction. (2) As
expected, while the noise getting heavier, their re-projection and 3D reconstruction errors
increase. (3) While the noise is heavy enough (like τ > 10), the re-projection error from
Zhang-RD, Andrea method and proposed method increases rapidly from 1.233 ∼ 3.006,
0.279 ∼ 0.633 and 0.158 ∼ 0.304 respectively. Zhang-RD has almost ten times larger
error than proposed method. It is clear that the proposed method benefited from the
distortion free images for corner detection and it is more robust to noise than Andrea
and Zhang-RD methods. Its re-projection error only increases about 0.2 as the noise
level increases from τ = 0 to τ = 25.

The linear fitting results of the undistorted laser stripe images can be found in Figures
6.58, 6.59, 6.39, 6.38 6.60, 6.61. Overall, the laser stripes straightness by the proposed
method are nearly 90◦ in different noise levels and their deviation is limited to 0.3◦ in
average. Once we have the camera and scanner parameters, these laser stripes were
reconstructed into 3D. The results are shown in Tables 6.18, 6.29, 6.30 and Figures 6.42
6.62, 6.63. The proposed method has the smallest average absolute error between the
estimated and actual distances. It is only 0.15mm in the noise free data set. Compared
to 0.29mm by Zhang-RD and 0.19mm by Andrea, it reduced by 48.27% and 26.7%
respectively. Similar result can be found in the noisy dataset in the above tables. It
is clearly shown in the 3D reconstruction deviation in above figures that the proposed
method has limited errors between −0.3 ∼ 0.4mm in all noise levels, which is smaller
than either Andrea’s −0.6 ∼ 0.6mm or Zhang-RD’s −0.4 ∼ 0.8mm. Apparently, the
noise do have heavy impact to the calibration, specially the noise was added to 3D corner
coordinates. The noise increases the difficulty for the optimization in the non-iterative
process like Zhang-RD to converge and the result is not stable while the noise levels
increases. In addition, our scanner’s parameters estimation is highly depended on the
camera calibration result, hence, the final 3D error is larger. From above figures and
table we can notice that as the distance between the scanner and the flat board increase,
the 3D reconstruction absolute error is increasing and unstable too. It is because the
noise has much heavier impact to peak location as the object distance increase. As we
mentioned in section 6.3.2.2, the relation between 3D reconstruction error and laser peak
is not linear but exponential growth when the camera calibration parameters are known
and fixed.

6.5.4 Conclusion

In this section, we have proposed a novel algorithm for camera calibration and image
correction. This algorithm is based on the iteration procedure which considers the inac-
curacy of 3D pattern (like chessboard) and the lens distortion effect to the feature point
detection. A comparative study based on synthetic data, real image and data from our
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Table 6.27: Calibration result using Andrea method and the 3D scanner’s data corrupted by
different multiples of a basic noise. The image size is 720× 576 and calibration target contains
8 × 6 = 48 corners, every corner has a distance of 20mm from each other. Gaussian white
noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at
intervals of 1. µ: average result for each parameter, σ: standard deviation for each parameter,

RPE: re-projection error

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1019.571 0.000 1086.079 0.000 346.498 0.000 293.412 0.000 0.109 0.000

5 1020.878 1.630 1086.940 2.014 344.454 10.137 292.692 9.349 0.167 0.011

10 1019.930 3.689 1085.633 4.550 347.502 24.013 289.551 17.805 0.279 0.023

15 1020.596 5.460 1086.196 7.513 357.589 32.183 294.104 34.195 0.392 0.028

20 1018.891 5.059 1082.891 7.150 352.649 33.752 298.021 38.694 0.519 0.042

25 1012.404 8.456 1078.985 9.675 366.158 53.710 303.311 40.316 0.633 0.045

Table 6.28: Calibration result using proposed iterative method and the 3D scanner’s data
corrupted by different multiples of a basic noise. The image size is 720 × 576 and calibration
target contains 8×6 = 48 corners, every corner has a distance of 20mm from each other. Gaussian
white noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world
points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points Pfi where τ varied from
0 to 25 at intervals of 1. µ: average result for each parameter, σ: standard deviation for each

parameter, RPE: re-projection error

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1019.903 0.000 1086.512 0.000 347.048 0.000 292.904 0.000 0.112 0.000

5 1019.465 0.763 1086.062 1.134 343.501 7.406 283.283 11.858 0.128 0.011

10 1020.511 1.580 1085.725 2.685 365.786 20.413 292.043 15.873 0.158 0.020

15 1020.091 3.233 1086.573 3.506 334.849 23.321 316.435 31.373 0.204 0.024

20 1020.711 2.512 1086.274 5.218 339.599 25.667 332.895 18.633 0.245 0.028

25 1013.530 7.005 1078.160 6.843 409.536 40.818 273.827 35.613 0.304 0.032
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Figure 6.58: The average linear fitting error of laser stripes after the image correction using
different calibration algorithms at each multiple of a basic noise. The scanner travels 105 steps
at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points

Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.59: The average linear fitting angle of laser stripes after the image correction using
different calibration algorithms at each multiple of a basic noise. The scanner travels 105 steps
at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added to the
coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image points

Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.60: The average angle of laser stripes at each linear stage moving step based on
the linear fitting after the image correction using Andrea algorithm with various multiples of a
basic noise. The scanner travels 105 steps at 1mm interval. Gaussian white noise with standard
deviation δ = 0.04τ was added to the coordinates of the 3D world points pwi(i = 1, 2, · · ·48) and

δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.61: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction using proposed algorithm with various multiples of a
basic noise. The scanner travels 105 steps at 1mm interval. Gaussian white noise with standard
deviation δ = 0.04τ was added to the coordinates of the 3D world points pwi(i = 1, 2, · · ·48) and

δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals of 1.
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Table 6.29: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on Andrea algorithm with various
multiples of a basic noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals of 1. Ref: actual measurement,

τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.00 148.03 0.03 0.08 148.39 0.39 0.08 148.36 0.36 0.11 148.14 0.14 0.07 148.63 0.63 0.11 148.40 0.40 0.11

158.00 158.16 0.16 0.09 158.27 0.27 0.10 158.22 0.22 0.12 158.27 0.27 0.08 158.52 0.52 0.08 158.57 0.57 0.11

168.00 168.18 0.18 0.11 168.26 0.26 0.12 168.21 0.21 0.13 168.28 0.28 0.11 168.52 0.52 0.09 168.60 0.60 0.14

178.00 178.18 0.18 0.12 178.25 0.25 0.12 178.22 0.22 0.13 178.29 0.29 0.14 178.51 0.51 0.12 178.61 0.61 0.19

188.00 188.21 0.21 0.14 188.23 0.23 0.14 188.21 0.21 0.14 188.31 0.31 0.18 188.50 0.50 0.20 188.62 0.62 0.27

198.00 198.25 0.25 0.15 198.18 0.18 0.15 198.18 0.18 0.14 198.35 0.35 0.21 198.45 0.45 0.26 198.63 0.63 0.32

208.00 208.27 0.27 0.15 208.14 0.14 0.14 208.19 0.19 0.12 208.38 0.38 0.22 208.43 0.43 0.31 208.60 0.60 0.36

218.00 218.30 0.30 0.17 218.10 0.10 0.16 218.19 0.19 0.13 218.42 0.42 0.25 218.39 0.39 0.37 218.56 0.56 0.41

228.00 228.22 0.22 0.16 228.16 0.16 0.15 228.31 0.31 0.11 228.36 0.36 0.25 228.47 0.47 0.41 228.39 0.39 0.44

238.00 238.18 0.18 0.20 238.18 0.18 0.19 238.41 0.41 0.13 238.33 0.33 0.31 238.51 0.51 0.51 238.23 0.23 0.54

248.00 248.15 0.15 0.21 248.19 0.19 0.20 248.50 0.50 0.13 248.32 0.32 0.32 248.55 0.55 0.56 248.06 0.06 0.60

253.00 253.13 0.13 0.21 253.20 0.20 0.20 253.56 0.56 0.14 253.31 0.31 0.32 253.58 0.58 0.56 253.04 0.04 0.60

Avg - 0.19 - - 0.21 - - 0.30 - - 0.31 - - 0.51 - - 0.44 -
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Table 6.30: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on the proposed algorithm with various
multiples of a basic noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the coordinates of the 3D world points
pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image points Pfi where τ varied from 0 to 25 at intervals of 1. Ref: actual measurement,

τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.00 148.05 0.05 0.05 147.99 0.01 0.07 147.95 0.05 0.09 148.20 0.20 0.09 148.20 0.20 0.10 148.32 0.32 0.10

158.00 157.93 0.07 0.09 157.88 0.12 0.06 157.83 0.17 0.10 158.09 0.09 0.08 158.10 0.10 0.11 158.23 0.23 0.11

168.00 167.92 0.08 0.11 167.87 0.13 0.07 167.82 0.18 0.11 168.10 0.10 0.10 168.11 0.11 0.12 168.25 0.25 0.14

178.00 177.91 0.09 0.12 177.87 0.13 0.08 177.82 0.18 0.12 178.11 0.11 0.10 178.14 0.14 0.12 178.27 0.27 0.15

188.00 187.89 0.11 0.14 187.85 0.15 0.09 187.80 0.20 0.13 188.10 0.10 0.11 188.15 0.15 0.13 188.27 0.27 0.18

198.00 197.83 0.17 0.14 197.80 0.20 0.11 197.77 0.23 0.12 198.08 0.08 0.10 198.15 0.15 0.13 198.24 0.24 0.19

208.00 207.79 0.21 0.14 207.77 0.23 0.12 207.75 0.25 0.10 208.08 0.08 0.10 208.18 0.18 0.12 208.22 0.22 0.18

218.00 217.73 0.27 0.16 217.73 0.27 0.14 217.74 0.26 0.09 218.07 0.07 0.10 218.21 0.21 0.13 218.17 0.17 0.19

228.00 227.78 0.22 0.15 227.79 0.21 0.13 227.83 0.17 0.10 228.17 0.17 0.13 228.26 0.26 0.11 228.23 0.23 0.15

238.00 237.78 0.22 0.16 237.82 0.18 0.13 237.90 0.10 0.13 238.26 0.26 0.16 238.28 0.28 0.13 238.27 0.27 0.13

248.00 247.76 0.24 0.17 247.83 0.17 0.14 247.96 0.04 0.13 248.31 0.31 0.17 248.27 0.27 0.13 248.24 0.24 0.12

253.00 252.76 0.24 0.17 252.84 0.16 0.14 253.01 0.01 0.13 253.33 0.33 0.17 253.27 0.27 0.13 253.21 0.21 0.13

Avg - 0.15 - - 0.16 - - 0.16 - - 0.15 - - 0.20 - - 0.25 -
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Figure 6.62: The laser stripes 3D reconstruction error as a function of the linear stage moving
step based on Andrea algorithm with various multiples of a basic noise. The scanner travels 105
steps at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added to
the coordinates of the 3D world points pwi(i = 1, 2, · · · 48) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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Figure 6.63: The laser stripes 3D reconstruction error as a function of the linear stage moving
step based on the proposed algorithm with various multiples of a basic noise. The scanner travels
105 steps at 1mm interval. Gaussian white noise with standard deviation δ = 0.04τ was added
to the coordinates of the 3D world points pwi(i = 1, 2, · · ·48) and δ = 0.02τ was added to image

points Pfi where τ varied from 0 to 25 at intervals of 1.
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3D scanner corrupted by reasonable levels of noise shows that the proposed algorithm
successfully calibrated, corrected the distorted image and feature points and precisely
reconstructed the captured laser stripes in 3D space.

As we all known the 3D reconstruction result’s accuracy is related to accurate cali-
bration parameters including distortion factors and well estimated scanner parameters in
our triangulated scanning system. Since our estimation of scanner parameters is based
on the knowledge of camera calibration result, hence, inaccurate calibration amplifies
such error in 3D space. The proposed method benefited from performing the corner
detection on distortion free images and taking account of the errors coming from low
cost made calibration board. Its absolute error and standard deviation are much smaller
than Zhang-RD and Andrea’s.

Noble corner detector was selected in the experiment. The calibration pattern dis-
tortion does affect its gradient based search process for sub-pixel localization of control
points. Zhang-RD has the worst calibration and image correction performance in the
overall experiment because the corners were inaccurate since they detected from distorted
images. The corner detection do have better performance in distortion free image. That
is why Andrea’s has better result than Zhang-RD. However, the manufacturing process
of the 3D pattern will always introduce errors to the pattern. In addition, such precise
3D pattern is quite expensive. In most cases, the printed and laminated pattern is still
the first choice. Thus, inaccurate 3D pattern bring error into the calibration. This is
another reason why Zhang-RD has the worst performance. Andrea hasn’t considered
such effect from inaccurate input 3D coordinates. The proposed method has the best
result because it considers both conditions and using iterative method to refine the in-
put 2D/3D coordinates by (1) the corner detection run on the distortion free images
at each round; (2) it used the LM and bundle adjustment to refine the inaccurate 3D
coordinates. In other words, it directly save our budget since the precise calibration
pattern(like chessboard) is very expensive, particularly it need to be customized to fit
for our projects.

The iteration procedure also has its disadvantage: it takes more time to compute.
From the experiment, iteration in Andrea and proposed methods converged very quickly,
normally less than ten rounds. The proposed method takes about 2.2 seconds in each
round in a quad core Intel processor (Q6600 2.4 GHz) based PC. Andrea takes about
3.4 seconds. The proposed method reduces about 50% computational time.
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6.6 Overall system performance evaluation

This experiment aims for evaluating the performance with or without the components
investigated in the above sections. We are trying to compare and investigate the optimal
settings of different components with those and without optimization on the accuracy
of 3D reconstruction, so that we can gain knowledge whether optimal components will
lead to an optimal system.

6.6.1 Experimental setup

Similar procedure and measurement in section 6.4.2 is used for the evaluation. Table
6.31 shows the settings (A) and (B) with different combination of methods for scanning
tasks. Setting (A) evaluates the existing and general methods for camera calibration,
image noise removal, feature detection and 3D reconstruction. The window size for
Gaussian smoothing varies from 3× 3 to 7× 7 as the noise increases. Setting (B) applies
all the methods mentioned and investigated in the above sections. As we discussed
in above sections, SCS denoise is heavily time consuming procedure. It takes around
25 seconds to denoise a image with 720 × 576 resolution. It will be very long time
if considering the amount of chessboard and laser stripes images, SCS noise removal
applying in each iteration process and 100 times running at different noise levels. Hence,
we only took the pictures every 10mm instead of taking very millimetre, which gave us 11
images and the last step is 5mm because the limit of linear stage’s length. In total there
are 12 laser stripe images using in this experiment. To simulate the different working
environments/conditions, the Gaussian white noise with standard deviation δ = 0.04τ
was added to the 3D world points, pwi(i = 1, 2, · · · 48) and δ = 0.04τ was added to
the chessboard and laser stripe images, where τ varied from 0 to 25 at intervals of 1
simulating different levels of noise. The noise added to the 2D images is higher than
previous experiments(in this experiment δ = 0.04τ , the previous are δ = 0.02τ) because
it was directly added to the image itself instead of the detected 2D points. If the Gaussian
noise adding to 2D points has standard deviation δ = 0.02τ , where τ = 0 · · · 25 then the
corners have a maximum of 0.5 pixel shifted. It is reasonable and heavy enough to test
the calibration method but not for the test of the corner detection and noise removal
method. Hence, heavier noise δ = 0.4τ was added to the images in this experiment.
Each setting will run 100 times at different noise levels, and their average was calculated
as final results.

6.6.2 Results and analysis

The calibration results based on setting (A) and (B) are shown in Tables 6.32 and 6.33.
The proposed setting (B) produces much more stable and noise resistant results. The
re-projection error is much smaller using setting (B) than (A). The standard deviation
σ of each parameter in setting (B) is almost ten times smaller than in (A). It is clear
that these parameters average result µ are more stable and their standard deviation (σ)
are much smaller in setting (B) than (A). For example, the intrinsic parameters fx, fy
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Table 6.31: Two different settings applied with 3D scanner data

Setting A B

Noise removal Gaussian Smooth SCS

Corner detection Noble Noble

Laser peak detection Gaussian approximation FIR

Distortion model Radial + Decentring Fraction

Calibration Zhang-RD/OpenCV Proposed iterative

Optimization None Yes

Table 6.32: Calibration result with setting (A) based on the 3D scanner’s data corrupted by
different multiples of a basic noise. The window size for Gaussian smoothing varies from 3× 3 to
7× 7 as the noise increases. Gaussian white noise with standard deviation δ = 0.04τ was added
to the 3D world points, pwi(i = 1, 2, · · ·48) and δ = 0.04τ was added to the chessboard and laser
stripe images, where τ varied from 0 to 25 at intervals of 1. µ: average result for each parameter,

σ: standard deviation for each parameter, RPE: re-projection error

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1003.632 0.000 1068.132 0.000 343.578 0.000 291.598 0.000 0.229 0.000

5 1003.674 0.578 1067.984 0.658 352.248 2.562 282.799 2.123 0.609 0.037

10 1003.052 2.778 1068.616 3.077 343.604 6.744 294.003 5.266 1.230 0.115

15 1011.472 4.947 1082.465 5.190 326.729 9.749 264.735 14.227 1.702 0.234

20 1008.332 7.792 1069.681 8.759 321.777 11.148 302.528 14.194 2.385 0.222

25 1003.185 7.195 1066.618 7.544 345.812 17.784 306.883 25.689 2.919 0.382

Table 6.33: Calibration result with setting (B) based on the 3D scanner’s data corrupted by
different multiples of a basic noise. Gaussian white noise with standard deviation δ = 0.04τ was
added to the 3D world points, pwi(i = 1, 2, · · ·48) and δ = 0.04τ was added to the chessboard
and laser stripe images, where τ varied from 0 to 25 at intervals of 1. µ: average result for each

parameter, σ: standard deviation for each parameter, RPE: re-projection error

fx fy Cx Cy RPE

τ µ σ µ σ µ σ µ σ µ σ

0 1018.796 0.000 1084.733 0.000 344.809 0.000 300.027 0.000 0.110 0.000

5 1017.759 0.220 1083.588 0.345 348.664 4.101 297.564 4.469 0.137 0.001

10 1018.271 0.361 1084.170 0.601 350.092 7.759 298.857 8.824 0.138 0.002

15 1018.635 0.617 1084.606 0.833 343.505 12.327 297.754 12.909 0.142 0.003

20 1018.477 0.860 1084.192 1.200 350.931 12.949 296.782 13.882 0.144 0.005

25 1017.801 0.863 1084.172 1.105 348.332 13.461 294.955 15.589 0.150 0.003
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Table 6.34: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on setting (A) with various multiples
of a basic noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the 3D world points, pwi(i = 1, 2, · · ·48) and
δ = 0.04τ was added to the chessboard and laser stripe images, where τ varied from 0 to 25 at intervals of 1. Ref: actual measurement,

τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.000 149.010 1.010 0.073 149.480 1.480 0.090 148.370 0.370 0.072 149.100 1.100 0.151 147.350 0.650 0.144 151.350 3.350 0.127

158.000 158.910 0.910 0.085 159.380 1.380 0.098 158.270 0.270 0.082 159.000 1.000 0.148 157.240 0.760 0.131 161.240 3.240 0.123

168.000 168.910 0.910 0.105 169.380 1.380 0.113 168.270 0.270 0.102 169.000 1.000 0.149 167.240 0.760 0.136 171.240 3.240 0.126

178.000 178.910 0.910 0.110 179.380 1.380 0.112 178.260 0.260 0.109 179.000 1.000 0.134 177.240 0.760 0.137 181.240 3.240 0.118

188.000 188.870 0.870 0.125 189.340 1.340 0.121 188.230 0.230 0.126 188.960 0.960 0.126 187.190 0.810 0.150 191.190 3.190 0.125

198.000 198.800 0.800 0.126 199.270 1.270 0.115 198.170 0.170 0.121 198.890 0.890 0.108 197.130 0.870 0.163 201.110 3.110 0.128

208.000 208.750 0.750 0.119 209.220 1.220 0.099 208.120 0.120 0.103 208.830 0.830 0.087 207.060 0.940 0.179 211.040 3.040 0.138

218.000 218.660 0.660 0.119 219.140 1.140 0.096 218.060 0.060 0.086 218.760 0.760 0.080 216.950 1.050 0.197 220.920 2.920 0.166

228.000 228.710 0.710 0.122 229.190 1.190 0.094 228.130 0.130 0.108 228.780 0.780 0.080 226.930 1.070 0.207 230.900 2.900 0.199

238.000 238.690 0.690 0.144 239.170 1.170 0.112 238.150 0.150 0.125 238.750 0.750 0.102 236.830 1.170 0.243 240.790 2.790 0.252

248.000 248.650 0.650 0.151 249.150 1.150 0.118 248.150 0.150 0.122 248.720 0.720 0.132 246.700 1.300 0.298 250.630 2.630 0.310

253.000 253.640 0.640 0.140 254.150 1.150 0.112 253.160 0.160 0.116 253.710 0.710 0.157 251.630 1.370 0.309 255.540 2.540 0.318

Avg - 0.79 - - 1.27 - - 0.20 - - 0.88 - - 0.96 - - 3.02 -
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Table 6.35: Absolute error ∆ and standard deviation σ of laser peak 3D reconstruction based on setting (B) with various multiples
of a basic noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the 3D world points, pwi(i = 1, 2, · · ·48) and
δ = 0.04τ was added to the chessboard and laser stripe images, where τ varied from 0 to 25 at intervals of 1. Ref: actual measurement,

τ : multiple noise, µ estimated peak location. Unit:mm

τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

Ref µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ µ ∆ σ

148.000 148.040 0.040 0.067 148.340 0.340 0.072 148.140 0.140 0.071 148.390 0.390 0.050 148.380 0.380 0.081 148.120 0.120 0.134

158.000 157.930 0.070 0.054 158.220 0.220 0.081 158.020 0.020 0.082 158.270 0.270 0.060 158.260 0.260 0.087 158.010 0.010 0.124

168.000 167.930 0.070 0.059 168.210 0.210 0.087 168.010 0.010 0.089 168.260 0.260 0.070 168.250 0.250 0.095 168.000 0.000 0.111

178.000 177.930 0.070 0.062 178.200 0.200 0.097 178.000 0.000 0.100 178.250 0.250 0.070 178.240 0.240 0.100 177.990 0.010 0.099

188.000 187.910 0.090 0.061 188.170 0.170 0.093 187.970 0.030 0.104 188.220 0.220 0.091 188.210 0.210 0.105 187.950 0.050 0.093

198.000 197.860 0.140 0.073 198.120 0.120 0.078 197.920 0.080 0.098 198.170 0.170 0.103 198.160 0.160 0.103 197.900 0.100 0.080

208.000 207.810 0.190 0.081 208.080 0.080 0.062 207.880 0.120 0.079 208.130 0.130 0.100 208.110 0.110 0.087 207.860 0.140 0.069

218.000 217.750 0.250 0.098 218.000 0.000 0.065 217.800 0.200 0.074 218.050 0.050 0.113 218.040 0.040 0.086 217.790 0.210 0.091

228.000 227.780 0.220 0.081 228.030 0.030 0.072 227.830 0.170 0.089 228.080 0.080 0.104 228.080 0.080 0.099 227.830 0.170 0.093

238.000 237.780 0.220 0.092 237.990 0.010 0.080 237.790 0.210 0.093 238.040 0.040 0.105 238.030 0.030 0.105 237.790 0.210 0.124

248.000 247.750 0.250 0.100 247.950 0.050 0.079 247.750 0.250 0.093 247.980 0.020 0.115 247.980 0.020 0.108 247.750 0.250 0.122

253.000 252.730 0.270 0.087 252.940 0.060 0.095 252.740 0.260 0.113 252.980 0.020 0.119 253.000 0.000 0.130 252.760 0.240 0.133

Avg - 0.16 - - 0.12 - - 0.12 - - 0.16 - - 0.15 - - 0.13 -
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Figure 6.64: The average linear fitting error of laser stripes after the image correction using
different settings at each multiple of a basic noise. Gaussian white noise with standard deviation
δ = 0.04τ was added to the 3D world points, pwi(i = 1, 2, · · ·48) and δ = 0.04τ was added to the

chessboard and laser stripe images, where τ varied from 0 to 25 at intervals of 1.

vary within 1.5 pixels in Setting (B), which is much smaller than 16 pixels in (A). In
the highest noise level, the re-projection error in setting (B) is only 0.04 bigger than its
noise free data. It increases by only 36.37% as the noise vary from τ = 0 to τ = 25,
compared to setting (A) has increased over 13 times.

These intrinsic and distortion parameters were used to undistort the laser stripe
images and then performed the peak detection. After then, linear fitting was applied,
the fitting error and angles are shown in Figures 6.64, 6.65, 6.66 and 6.67. From these
figures we can observe that setting (B) undistorted images are better than those by
setting (A). The fitting errors are smaller and the laser stripes’ angles are closer to the
expected 90◦(vertical in camera Y-axis) in setting (B). For example, line fitting errors
based on setting (B) are around 1.6 in Fig.6.64. This appears much smaller than setting
(A), which fitting error varies from 1.5 to 2.5.

Both of these two sets of laser peak are reconstructed to 3D using their corresponding
camera and scanner parameters respectively. The results are shown in Tables 6.34 and
6.35. It is clear that the 3D reconstruction based on setting (B) has smaller absolute
error and standard derivation. Its maximum absolute error is 0.39mm and the average
deviation in different noise levels is below 0.15. However, the 3D reconstructed based
on setting (A) has a maximum deviation of 3.35mm and the average deviation is over
0.3 in different noise levels. It is clear that the result of Setting (B) is more stable in
different noise levels and closer to ground truth values.

From these results, it can be seen that each component plays important role in the
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Figure 6.65: The average angle of laser stripes for 10 moving steps based on the linear fitting
after the image correction based on different settings at each multiple of a basic noise. Gaussian
white noise with standard deviation δ = 0.04τ was added to the 3D world points, pwi(i =
1, 2, · · · 48) and δ = 0.04τ was added to the chessboard and laser stripe images, where τ varied

from 0 to 25 at intervals of 1.
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Figure 6.66: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction with setting (A) with various multiples (τ) of a basic
noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the 3D world points,
pwi(i = 1, 2, · · ·48) and δ = 0.04τ was added to the chessboard and laser stripe images, where τ

varied from 0 to 25 at intervals of 1.
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Figure 6.67: The average angle of laser stripes at each linear stage moving step based on the
linear fitting after the image correction with setting (B) with various multiples (τ) of a basic
noise. Gaussian white noise with standard deviation δ = 0.04τ was added to the 3D world points,
pwi(i = 1, 2, · · ·48) and δ = 0.04τ was added to the chessboard and laser stripe images, where τ

varied from 0 to 25 at intervals of 1.
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overall scanner system. The final result benefited from the advantage at each optimal
component in (B) than (A). Fox example, FIR has the ability to detect accurate peak in
highly saturated laser stripe image while a general method like Gaussian approximation
may fail. In such case, inaccurate peaks cause inaccurate scanner parameters’ such as
the laser projection angle α estimation and lead to inaccurate 3D reconstruction. It is
harder to determine how much the improvement of each component in the final result
using (B) than (A) but when each component performs better, the final system is more
advanced than just using the general methods.

6.6.3 Conclusion

In this experiment, we evaluated the performance of the 3D laser scanning system based
on different settings (A) and (B). Setting (B) has all the selected components for our
scanner. It is clear that the selected Setting (B) has much better performance than (A).
The only common method among them is corner detection, the rest methods/components
are different and have been already evaluated in previous sections. A comparative study
based on real images from 3D scanner corrupted by reasonable levels of noise shows
that the proposed algorithms successfully calibrated and corrected the distorted image
points. In additional, we compared 3D reconstruction result based on the calibration
parameters with our 3D image data. The results show that the setting (B) has more
advantages than the general methods in (A). The overall system has benefited from the
advantage of the proposed methods/components. It has smaller image correction error,
stronger noise resistance and better 3D reconstruction accuracy. By carefully selecting
different components mentioned above and system optimization, our scanning system is
able to achieve 0.15mm accuracy at close range scanning (148 ∼ 253mm) underwater.

Since we have investigated different components, including image noise removal meth-
ods, corner detection, laser peak detection, camera calibration, and scanner calibration
based on the real 3D scanning data. It can be observed from those results that:

1. To find out how the noise affect the image quality and our final 3D scanning result,
a detailed comparative study of noise removal methods was carried out using the
nature and real scanning images. From the result we can see the noise do have the
heaviest impact on our 3D scanning result. It can be observed from Table 6.2, it
has up to 2.8mm deviation of the three example measurements as the noise level
increases. In Table 6.1, even the noise just increases by 0.1, the SSE and SOD errors
increase by 61.12%, 29.43% after SCS denoise respectively. It is apparently larger to
other components in our scanning system. In addition, noise has significant heavy
impact on the performance of all the other components. For instance, it affects
the accuracy of corner detection and peak detection. These inaccurate corners
affects the camera calibration result. Such results and peak locations also affect
the scanner parameters estimation and final 3D reconstruction. The experimental
result shows Sparse Code Shrinkage method is only method retain the image feature
without blurring too much and reduce too much image detail as the noise levels
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increasing. It is because that SCS exploits the statistical properties of the data to
be denoised in a more realistic and deals with data statistics.

2. Laser peak detection plays the second important role because it is directly related
to the scanner parameter estimation and 3D reconstruction. Due to the fact that
our scanner parameters D and α are not directly measurable, and the accuracy of
such parameters estimation proposed in this thesis is mainly depended on the laser
peak detection and calibration result. Hence, the error come from laser peak will
be amplified in the final 3D reconstruction. In addition, these two parameters have
directly affect to our triangulation based 3D reconstruction accuracy. For example,
from Fig.6.30 we can see, as the laser peak detection error increases to 4 pixels,
the final 3D may contain up to 8mm error based on our current system settings
with fixed calibration parameters. Of course, the largest error only happens when
the laser is very close to the image edge. All the rest points have much smaller 3D
reconstruction error. Meanwhile, laser stripe saturation easily happens because of
the scanning environment, laser profile, scanning object’s surface and so on. If the
laser stripe is saturated, for example, when the laser peak crosses over 3 pixels, all
these methods start increasing detection error except FIR. It is because GA, CM,
LIP, PE and BR only consider the maximum light intensity and the nearby three
to five pixels to locate the peak in sub-pixel level. However, the laser row data is
filtered by convolution and first order derivate in FIR method. Then, it is much
easier to estimate the laser peak even in the highly saturated laser stripe.

3. Image correction and camera calibration also play very important roles and they
are related to each other. We proposed a fraction lens distortion model(FMC) and
iterative camera calibration in this thesis. Both of them significantly improved the
camera calibration and image correction accuracy. In reality, we probably have
little idea about what kind of the distortion the captured image is subject to and
the actual distortion of the camera lens is not known and need to be investigated.
FMC has the ability to model the overall distortion of the camera lens. From the
experimental result, it is clear that fractional model is more powerful than the
polynomial model in describing the distortions that the camera was subject to. In
the other hand, 2D/3D coordinates of the control points sometimes are shifted due
to lens distortion effect on the image feature detection or manufacturing process of
the 3D pattern. The proposed iterative camera calibration method reduces errors
from incorrect 2D/3D coordinates by (1) the corner detection run on distortion
free images in each round; (2) it used the LM and bundle adjustment. Fraction
distortion model and iterative camera calibration have similar effect on the final
3D result. It can be seen from Tables 6.17, 6.18 and 6.16, FMC distortion model
significantly reduces the distortion effect on the 3D accuracy. For example, as
the multiple noise increases to τ = 25, the average error is 1.41mm by radial
distortion, 0.61mm by radial + decentering distortion (Zhang-RD), and 0.42mm
by FMC. Iterative camera calibration is able to reduce the error from an inaccurate
calibration pattern. As shown in Table 6.30, as τ = 25, the average error is lowered
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to 0.25mm.

4. The iterative camera calibration experiment simulated how the corner detection
accuracy affect the final result within the noisy chessboard images. The fraction
distortion model experiment also has similar simulation: the noise directly added
to the detected corners. As the noise level increases to τ = 25, the corners has
maximum 0.5 pixel offset in the image plane. It can be seen that choosing different
distortion models or calibration methods has heavier impact on the final 3D result
than corner detector at the same noise level. Hence, corner detection has less
impact compared to other components.

5. As all the components combined together, the final error became even lower. the
optimization of each component does help the optimization of the whole system.
From Table 6.34 and 6.35, it can be seen that the average error drops from 3.02mm
in Setting (A) to 0.24mm in Setting (B). The rest error as a function of τ is also
smaller compared to those in Table 6.30.



195

Chapter 7

Real World Scanning Projects

This chapter contains all the main scanning projects we did during the PhD study. The
algorithms and methods are applied in real applications. Thus, the reliability, speed,
or any other concerns need to be counted in. Compared with the experiments just in
the lab, sometimes the real world problems are unpredictable. Thus, this real world
scenario provides us with a great opportunity to test our products, algorithms, methods
and programs. The feedbacks from the scanning jobs are one of the critical parts in our
research and enable us to keep on improving our techniques and products.

7.1 Air scanning

The air scanning project includes one main project that we did on April 2011.

7.1.1 Mooring Chain Scanning - 2011

7.1.1.1 User Requirement

This project planned to scan some broken links of mooring chain and used for stress
analysis to find out why they broke and how much the force was needed to make it
break. Another purpose is to have these mooring chains’ 3D models as a record in case
that any damage occurs to them in the future and used for claiming insurance. The
client required 0.05mm resolution and 0.5mm accuracy. Hence, the scanner set to be
0.045mm resolution to make sure the final data has enough density. Fig.7.1 shows the
customized 3D laser scanners including the supporting metal cubic frame.

The scanner was placed at one side of the metal cubic frame. The mooring chains
can be lifted up or down inside the frame by the crane. We can rotate the frame to have
four scanning positions, and such scanning process is called vertical scan. To be able
to have a wider view of scanning, we used dual laser scanner as shown in Fig. 7.1. In
each position, the linear stage travels left and right (up and down in vertical direction),
in this way it is able to cover about 180◦ scanning view. This project required the 3D
models to be constructed as individual links in each chain. Thus, we need to have a
horizontal scanning to capture inner sections on the top and bottom of each link. This
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Figure 7.1: The customized mooring chain 3D scanner

was due to the fact that the links are connected (hooked) to each other. Each link’s
top and bottom were covered by the links next to it. They had to be laid on the floor
with a particular pose to be able to scan the covered parts (covered by its neighbouring
links). The shadow on left image on Fig.7.2 explains the covered parts and right image is
the 3D model contains the covered parts. The scanner had a high speed mono ethernet
camera and is able to capture up to 60 frames per second and two lasers (called left or
right laser). After the horizontal and vertical scan, we can combine and merge all the
3D models from different position scans and create a single linked model of each chain
and their individual links.

7.1.1.2 Some Issues

There are some issues during the scanning process: firstly, these mooring chains are very
heavy, each link weighs over 80kg, and each chain contains over twelve links. Thus,
every movement of the chains requires a machine’s help and slows down our scanning
process a lot. In addition, the horizontal scan requires the links in a particular pose in
order to scan the hidden part. This means that only human force can adjust them in
the pose what we are looking for. This also slows down the entire scanning process a
lot even we had three people available to help. Secondly, the surface of the chain is very
rough, the laser cannot reflect the enough signal back to the camera even the lens’ iris is
fully opened. We had to use a black curtain to cover up the entire frame and paint the
chain on white (The client only requires the 3D model of the chains and colour is not
an issue). Another problem is due to their huge weight, we have to use a lifter to lift it
up and drag on the concrete floor. Every time we dragged the chain, the chain’s surface
including colour and marks has been slightly changed because of the friction from the
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Figure 7.2: Hidden part (the shaded regions) of the mooring chain links.

ground and thus affects our 3D model surface. Of course, these slightly changed surfaces
affect the final fusion of 3D models from different parts of the chain. However, such
slight changes/damages to the surface are unavoidable and the client understood and
accepted that.

Finally, some problems discussed in previous chapters happened in this project. For
example, the angle λ discussed in Chapter 5.3.4 needs to be estimated due to the me-
chanical design. As shown in Fig.5.10, there is a small angle λ between the X-axis of the
scanner and linear stage travel direction. Normally, this angle will be very small, even it
can be ignored. In this case, because the stage was lifted up instead of lying on the floor
or table horizontally. The position and weight of the scanner increased the angle λ and
it needed to be counted in for better scanning accuracy. This error can be compensated
by applying the Eq.5.3.13.

For the reason of confidentiality, the actual scanned 3D models on the field cannot be
displayed in this thesis. Therefore, only some of links scanning done in the lab based on
totally the same principle and procedure are shown in this chapter. Here is equipment set
up: the linear stage is 986mm long, scanning step (linear stage moving step) is 0.045mm,
the capture frame rate is 60 FPS, the image resolution is 1400×1024. The camera has an
ability to control the darkness, contrast, brightness, etc., which helps reduce the imaging
noise very well. Fig.7.4 shows the scanning laser stripe example. The laser itself is a
little bit thicker but image background is clean and dark enough. This laser stripe is
thicker due to the saturation, however, FIR laser peak detection method described in
3.3 is still able to detect the peak in the centre well as shown in Fig. 7.5.

Fig.7.3 shows a demonstration broken link to be scanned. Figs.7.6 and 7.7 show its
raw 3D models which were taken from four different views from the dual laser scans.
Clearly, there are some noisy lumps coming from some un-wanted light sources or back-
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Figure 7.3: A broken link to be scanned

Figure 7.4: An example of the laser stripe of the mooring chain during its scanning
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Figure 7.5: An example of peak detection on a laser stripe. Red: laser peak

ground in the 3D models and they can be deleted manually. These 3D models were
adjusted manually firstly and then used global alignment to minimize the registration
error. This process was done by third party software such as Geomagic Studio, Rapid
Form. The challenge during this process is that some areas in the 3D model have too
much noise and contain some un-wanted points which lead these multi-view registration
results far away from expectation. However, some of these un-wanted points can be
deleted manually and carefully. The noise may come from the rough object surface and
background light source. Some unwanted noisy points were generated from the inaccu-
rate peaks caused by too heavy laser saturation. When the intersection angle between
the laser stripe and object surface was too small and the laser stripe becomes wider than
expected (saturated). In such case, it may produce inaccuracy peaks.

Fig.7.8 shows this broken link’s 3D model combining all eight scans. This demon-
stration scanning was done in the lab and only vertical scans were taken since there
was no hidden part of this individual link. In our measurement, the deviation of this
scanning is about ±0.5mm compared to the direct measurement. In summary, the error
may come from two parts:

1. The surface of the object is too rough and some tiny features cannot be picked up.

2. The laser’s thickness. Obviously thinner laser stripe can pick up more details
than thick ones. However, to generate strong enough laser beams for such low
reflection surface(too rough), specialized lasers were required and consume much
higher power. Hence, the laser thickness became higher. It may cause some tiny
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Figure 7.6: Four different 3D views of the mooring chain links from the left laser scanner

piece of the edge of the links not be picked up and the deviation may be slightly
bigger.

However, our customer is satisfied with existing accuracy and resolution of our 3D model.
It is understandable to scan objects with such rough surface and heavy weight in a very
short period, the result is acceptable.

By scanning these mooring chains, our system was pushed to limit. The system ran
about 10 hours per day, 5 days a week for 4 weeks. Some practical issues that we hadn’t
met before came up. For example, the workshop was open, windy and full of dust,
which made our linear stage stuck for many times. It had to be cleaned before using
again. Such problem has never happened in the lab. The generated data was huge. For
example, in the vertical scan, at each position the left laser scanner has captured more
than 200000 pictures and the generated 3D file size was over 400MB. The amount of
data could be doubled if counting in right laser scans. It took a lot of time to process
the captured data. For instance, it took about one hour to finish laser peak detection
from just one position scanning file (200000 pictures in total) on a PC with Intel Core I7
3.20GHz using parallel computing method (actual detection rate is about 56f/s, image
resolution: 1400 × 1024). Therefore, it took up to five to six days just to finish one
link, and there are over twelve links for each chain, eight chains altogether. We had
not only just huge files stored on our hard drives but also applied our scanner to the
real applications. It is a great opportunity to test techniques we developed and the
programs we made. Luckily, our scanning was in air that eliminates a lot of hassle than
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Figure 7.7: Four different 3D views of the mooring chain links from the right laser scanner

Figure 7.8: The 3D model of the broken link
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scanning underwater. Furthermore, the mooring chain scan can be applied underwater,
the biggest problem is how to deploy the tools, for example, positioning the mooring
chain or claiming our scanner in the chain.

7.1.2 Well head Scanning - 2010

A well head is a general term used to describe the component at the surface of an oil
or gas well that provides the structural and pressure-containing interface for the drilling
and production equipment.1. Normally it is a bottom connector to Christmas tree which
distributes the oil or gas. Thus, this well head is one of the most important parts in
these oil and gas components. Anything wrong or even tiny leakage will lose money or
even stop the whole production.

7.1.2.1 User Requirement

This scanning job is to build the 3D model for inspecting the damage to the well head
and the inner thread. Fig.7.9 shows the well head we need to scan. This metal bar on
the top of the well head holds the rotation stage and the scanner. The rotation stage
will be placed on as much centre of the well head as possible, which make the rotation
centre overlap with the centre of the well head.

Figure 7.9: The well head to be scanned

7.1.2.2 Design and scanning

Since the demo scanning is in air and we don’t have to worry about how to build the
waterproof rotation stage. Otherwise, it will cause a real big problem. The scanner set
up is as follows: the image size is 720× 576 and the scan step is about 0.1◦ degree. The
diameter of the well head is 890mm. A 5p, 10p, and 50p coins on the inner thread is
used to check if the scanner can pick them up and their measurement accuracy.

1http://en.wikipedia.org/wiki/Wellhead
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Figure 7.10: The 3D model of the well head

Figure 7.11: The measurement of the coins in the 3D model of the well head
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Fig.7.10 shows the 3D model of this well head. The inner thread and coins can be
clearly seen on the 3D model. Fig.7.11 shows the measurement of this pound coin’s
radius and circumference measurement. As the figure shows R = 12.39347mm, which
is about 0.14mm off from R = 12.25mm, which is the radius of a real 10p coin. 2.
In this case, the relative error is 1.18%. It is well over the estimate since this just a
demo, the equipment is not well designed particularly the rotation stage, it is just a
simple gear motor. To improve the reflection properties of the well head, it was painted
with high refraction paint. This painting process thus created some scratches as shown
in the 3D model in Fig.7.10. Fig.7.12 more clearly explains the noise and reflection
during the scanning. However, this is demo scanning, all the equipment set-up was for
demonstration purpose, and even the scanning well head itself was designed for that.
Therefore, the painting and refraction issues can be solved in the field. It was a pity
that this project didn’t run after the demonstration because of customer’s tight financial
budget in 2010.

Figure 7.12: The scanning noise and reflection of the well head

7.2 Underwater Scanning

This is another part of the real scanning projects but in underwater environments. Com-
pared to the previous projects operated in the air, scanning an object inside water is
really challenging. The main difficulty lies in that the index of the water is completely
different from that in the air. Since the air is lightweight, transparent and the refraction
index is so small, thus the bending of light travel through the air will normally not be

2WiKi: Ten pence (British coin) http://en.wikipedia.org/wiki/Ten pence %28British coin%29
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considered. However, underwater is different since the light is bent, and different area’s
water has slightly different indexes that imply that the bending angles will be different.
In addition, the different wavelength of light will change the bending angle of light. The
complex environment of underwater, such as temperature, salinity and visibility will also
affect the final results. Thus, it is a great challenge for us to transform our scanner from
the air to underwater.

7.2.1 Laser stripe in water

To demonstrate the laser scanning operates underwater, some images, which come from
real scanning, are shown and different circumstances will be explained. The laser stripe
in Fig.7.13 is too thick, saturated and has a lot of refraction. It is still able to detect the
peak of this laser stripe but with very poor accuracy and rough 3D looking.

Figure 7.13: Left: Too thick and double layer laser stripe; Right: its 3D profile (Scan step:
0.25mm/s)

Fig.7.14 shows a significant improvement than the last result in Fig.7.13 after in-
creasing the scanning step and adjusting the laser thickness. This laser beam is much
thinner, focused and without double layer. Its 3D profile is smooth and detailed. Appar-
ently, smaller moving steps and thinner laser stripes have a huge effect on the final 3D
scanning results. Hence, it is believed that the scanning accuracy depends on different
object sizes, requirement of resolutions, the laser stripe width and moving steps. To scan
the surface of small objects like one pound coin, this laser stripe should be very thin
and moving step should be <= 0.1mm/s. On the contrary, to scan large objects, high
power laser, high resolution camera are needed and the moving step can be as large as
1 ∼ 5mm/s.

Actually, from these two examples, it can be seen that there is still a lot of noise if
the image is enlarged. To be able to capture laser stripe by mono cameras, all the other
light sources should be switched off to reduce the noise. Adjusting the exposure time,
ISO value and darkness can help to lower down the noise level. Unfortunately, most
of high speed cameras don’t contain manual control of CCD’s exposure time and ISO
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Figure 7.14: Left: Thinner laser stripe; Right: its 3D profile (Scan step: 0.1mm/s)

value. The capture speed of those coming with full manual control and high resolution
camera such as Nikon D300 is just three frames per second at full resolution. Hence,
there is always conflict between capture speed and noise in laser scanning applications.

On the other hand, these images from laser scanning always include high contrast,
which means the laser power cannot be too high or too low. Within a certain distance,
too high power laser will lead the laser stripe to be too thick and over contrasted. Too low
power laser will lead it hard to separate the background noise and laser stripe because
the reflection light from the object of interest is too low. However, by carefully selecting
the equipment and remoulding, our laser scanner is successfully applied to real world
applications with about ±0.5mm accuracy or even lower depends the scan distance and
laser projection angle. The detail of these projects will be given in the sub-section below.
These scanners have already been used for Oil&Gas industrial inspection.

7.2.2 Reducer Scanning - 2009

This damaged reducer is part of the cooling system in a nuclear power station. The
project intended to generate the 3D model for inspection and build a replacement reducer
based on the damaged part. The reducer is a cylinder with one end bigger than the other
and filled full of pure water. Fig.7.15 shows the scanners designed to work for this reducer
survey. It is a customized scanning system that contains the laser, digital camera, motion
sensor, rotation and linear stage. The scanner is mounted at the front of the rotation
stage that is then connected to the linear stage.
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7.2.2.1 User Requirements

The generated 3D model is for damage inspection. The client required precise 3D model
and measurement analysis. Since the reducer has a cylindrical shape with unequal ends
then the analyses including the 3D centre line of this cylinder and radius of each cross-
section. With this centre line and radius, it is able to compute each cross-section’s
ovality. Such cylinder shape object also can unwrap/open to be flat model and generate
contours image which displays the damage sections/parts intuitively.

7.2.2.2 Design and scanning

It is impossible to scan the whole pipe in one go. Hence, the system is designed to work
like this: the rotation stage scans one session by 360◦, then the linear stage drives the
scanner forward and rotates again to have another session. In total, there are six sessions
to be scanned. The 3D coordinate(X,Y,Z) are taken from the following steps:

1. Y is the step size (in mm) of arm’s moving direction

2. Assume Pi(xi, yi) is the peak location in the image, and Rx, Ry, Rz is the rotation
angle inXY Z axis. In this case, Ry is set to the rotation axis, Rx, Rz are set to zero.
Each step of Ry is 0.1◦. Hence, the peak location Pi(xi, yi) in 3D Pw(Xi, Yi, Zi)can
be computed by the camera calibration parameters and scanner parameters. Please
note that Xi = 0, and Yi is the step size, Zi is the distance between the pipe’s wall
to the camera lens.

3. Once we have Pw, it can be transformed to the world coordinate system P ′
w by the

rotation matrix R as show in Eq. 7.2.1

[R]Pw = P ′
w (7.2.1)

There are some problems happening when we did the scanning:

1. The rotation arm was not stable when it turned in the water because the arm
itself was long (about 1 meter) and heavy. The scanner mounted on the arm’s
end also increased the entire arm’s weight. Because of weight force, it was hard to
make sure that the arm was always staying at the same rotation center during the
scanning and it was a little bent down.

2. Even we adjusted the rotation arm and scanner carefully, it was hard or even
impossible to make sure that the arm was at the center of the reducer during
the scanning process. Because of that, in the 3D reconstruction, different sessions
would overlap and the session itself did not form a perfect circle. Fig.7.17 shows
a mismatch session in 3D display. It means that the rotation center points had
been shifted during the 360 degree rotation. That was caused by the camera/arm
shift or the arm doesn’t place at the centre of the scanner as Fig.7.16. The error
can be corrected by spiral function. Fig.7.18 shows the overlap parts between two
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sessions. As we can see, there are two layers. The only way to solve those problems
is to make a function which can adjust the session in X,Y,Z directions.

Figure 7.15: Front part of the scanner(a)

Figure 7.16: Front part of the scanner(b)

All the individual sessions were joined together as a complete reducer after the scan-
ning finished. Fig.7.19 shows different sessions which are marked by different colours (it
is not the real model for the work due to confidentiality, but it is similar). Fig.7.20 shows
the parts of the final 3D model. It can be seen that there are some indentations on the
bottom of the pipe. From the 3D model, the object’s size, the indentation’s location
and shape can be extracted. A contour diagram of the pipe can be built. Fig.7.21 shows
the contour diagram of the 3D model in Fig.7.20. The left hand side shows the scale
of depth, the blue areas in the figure shows the indentations of the pipe and the colour
variation indicates the changes in depth.
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Figure 7.17: Mismatch session Figure 7.18: A snapshot of the mismatch ses-
sion

Figure 7.19: Joined 3D reducer models together. Various colours represent different sections
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Figure 7.20: Contour diagram. Left: The surface of a scanned pipe. Right: Zoomed image of
the damage/corrosion

Figure 7.21: Contours highlighting the damage/corrosion
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7.2.2.3 Measurement Analysis - Radius and Centre Line

The reducer is columnar. In order to know how much the reducer bends and the shape
has been changed compared to the original design, it is necessary to compute the 3D
centre points. The difficulty comes from three main parts:

1. To be simplified, the reducer (columnar) is formed of millions of cycles in Y direc-
tion. Every 0.1mm step can be formed as a cycle. For instance, if Y = 200mm
the 3D points in cross-section which has |Yi − 200| <= 0.1 can be treated as one
cycle since they have very similar Y coordinates and almost planar. Nevertheless,
the numbers of points in different cycles are different. In addition, these points do
not lie exactly on the same ring, see Fig.7.22 and Fig.7.23.

2. In the connection parts, there is some overlap, also, the overlap would be happened
in the whole ring or just some parts of it as shown in Fig. 7.18. Due to that, the
different layers would have different centre points.

Figure 7.22: One of the crossing section of the reducer

Figure 7.23: The points on the crossing section

Thus, to compute a precise centre line, we need to consider the frequency of the
centre points in all layers. The centre points can be computed as shown in Fig.7.24:
Two lines can be formed through two pairs of the three points, the first passes through
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the first two points P1 and P2. Line b passes through the next two points P2 and P3.
The equations of these two lines are

ya = ma(x− x1) + y1 and yb = mb(x− x2) + y2 (7.2.2)

where m is the slope of the line given by:

ma =
y2 − y1
x2 − x1

and mb =
y3 − y2
x3 − x2

(7.2.3)

The center of the circle is the intersection of the two lines perpendicular to and passing
through the midpoints of the lines (P1, P2) and (P2, P3). A line perpendicular to a line
with slope m has slope −1

m , thus the equation of the lines perpendicular to lines a and b
and passing through the midpoints of (P1, P2) and (P2, P3) are

y′a = − 1

ma
{x− x1 + x2

2
}+ y1 + y2

2
(7.2.4)

y′b = −
1

mb
{x− x2 + x3

2
}+ y2 + y3

2
(7.2.5)

The three points should be picked with large angles. In other words, we cannot choose
three points that are close to each other in 3D space. The best instance is that the three
points form an equilateral triangle. For each cross section, there are many points, which
can generate multiple centres. Some of them are far away from the centre point cloud
because of the noise, thus, they will not be considered, only the most dense centre points
and their average are chosen for the actual centre. After we got the centre points in the
same cross section that has multiple layers. The multiple layers cause multiple centre
points, in this case, the point with the highest frequency of occurrence is chosen as the
3D centre point of this cross section.

Figure 7.24: Centre of a circle
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7.2.2.4 Measurement Analysis - Ovality

It is able to compute the ovality of this cross section by the center points. Fig.7.26 shows
one of the examples. To be simplified, the maximum and minimum radii are considered
the same, that means it would be a circle but actually, it is not. As a reference solution,
the property of the ovality would be given in our project including the maximum radius
and its perpendicularity radius. If the reducer is a column, then they should be equal.
If not, that means that this section has aberration. Fig.7.25 is the short radius in ellipse
measurement of the entire reducer in absolute distance. The green line is ideal radius and
the blue is the real. Clearly, there is some variation between the real and original design,
this ovality calculation gives a numerical way for the measurement and inspection.

Figure 7.25: Ovality measurements of the Reducer

Figure 7.26: Cross section’s Ovality
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7.2.2.5 Measurement Analysis - Unwrap the 3D reducer (Column)

In order to present the shape aberration of the reducer, the cylindrical shape 3D model
is un-wrapped (”opened”) to a flat model and paint in colour according to the surface’s
depth. It is easier to find out the aberration and measuring from this diagram. Fig.7.27
shows the unwrapped example and Fig.7.28 shows the contour image from the flat model.
The deep red parts would be the bumps of the reducer that have higher deviation com-
pared to the entire surface. This kind of information is what our customer was looking
for. With these diagrams and 3D models, they can easily find out the weak parts of the
reducer and repair them or even replace them with a new one.

Figure 7.27: Reducer’s contour extraction

Figure 7.28: Reducer’s unwrapped

The basic steps of the un-wrap computation are as follows:

1. Compute the centre line of the whole reducer

2. Compute the maximum and minimum radius of the whole reducer

3. Compute the angle α between the maximum and minimum radii displayed in Fig.
7.29

4. Use this angle to compute the points in that cross section’s arc length. Fox example,
point A in cross section i, we know the radius and centre by the pre-calculation,
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then we need to determine whether the angle β is larger than 180 or not. As shown
in Fig.7.30, to compute the angle with known three edges, the equation is:

cos(β) =
c2 + a2 − b2

2 ∗ a ∗ c (7.2.6)

then, the angle is β = arccos (cos(β))

5. When the angle is known, then circumference of circle can be computed directly.
Once we know the circumference that the circle can be un-wrapped.

Figure 7.29: Angle between maximum and minimum radii

Figure 7.30: The arc needs to be calculated

7.2.3 Pipe’s surface Scanning - 2010

This is an application required to mount the scanner on a Remotely Operated Vehicle
(ROV) in order to scan a damaged pipeline’s surface.
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7.2.3.1 User Requirements

The scanner composed of one laser source and one digital camera has a limitation in
this application, since it can only see about half of the required surface of the object in
Fig.7.32. It is impossible to scan the entire surface in one go. If so, then the scanner
must be placed much farther. In addition, the ROV always floats underwater whose
stability is not good enough. To reduce the effect of the movement of the ROV and have
a larger area of scanning profile, the quick scan should be performed. To this end, a
dual laser scanner is designed, illustrated in Fig.7.31. In this design, the left and right
laser sources have a field of view of around 90◦ respectively. The left and right profiles
captured are combined together to acquire about a 180◦ profile in one scan.

Figure 7.31: A model for dual laser scanner

7.2.3.2 Design and scanning

Fig.7.32 shows a prototype of the dual laser scanner which is under test underwater.
It is mounted on a hydraulic linear stage to scan the white pipe in front of it. That
mimics the situation running in subsea. The scanning purpose is to get the profile
of the bending/damaged part of the pipe. Fig.7.34 shows the final design of the dual
laser scanner. To reduce the refraction from the laser under water and front glass,
the shutter is designed to only allow the central laser line to pass. As we discussed
in the previous chapters, temperature, salinity, water index, etc., were all taken into
consideration and simulated in the tests. Fig.7.33 shows one of the 3D profiles after
scanning. The measuring radius of the hole at the top left is 5.19mm and its original
radius is 5.0mm with ±0.05mm tolerances. In this case, the measuring error is controlled
below 4% and our customer was happy with this accuracy.
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Figure 7.32: The prototype of dual laser scanner under testing. Top row: the scanner and the
damage/bent part need to be scanned. Bottom row: The 3D model of the surface
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Figure 7.33: 3D profile and measurement

Figure 7.34: The final design of the dual laser scanner
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Chapter 8

Conclusion

We have successfully built a workable 3D laser scanning system by the end of the period
for my PhD study. It involves a lot of technical details, such as image processing, camera
calibration, mechanical design, components/equipment selection and installation, and
eventually applying the developed system in real world applications. All these small
aspects in the developing process of this 3D laser scanning system require a wide range of
knowledge about electronics, mechanical control, optics, programming, and so on. Their
configuration and subsequent data processing also affect the final 3D reconstruction
accuracy.

For the image processing, I implemented the Sparse Code Shrinkage image de-noising
method which is more suitable for our laser images rather than the normal de-noising
methods like Gaussian noise removal. The only disadvantage is its processing speed.
However, in most of our cases, we have enough time to process our data and then this
technique is still good to apply. Meanwhile, to choose the best corner and laser peak
detection method, the comparison and evaluation study is performed between the most
well-known and modern methods, only the best fit methods have been chosen in our
laser scanning system.

To reduce the cost of building the scanner, the iterative method is proposed for accu-
rate camera calibration from a low cost and not very precise calibration pattern. There
are two key components in this method: (1) The world coordinates of the chessboard
pattern are considered as unknown variables and re-estimated in the global optimiza-
tion; (2) The feature (corner) detection is affected by lens distortion, it is much more
accurate if the detection performs on distortion-free image. Hence, to reduce such effect,
the corners’ locations are re-detected on the undistorted image again once the current
calibration parameters are obtained. By this procedure, even with an inaccurate pattern
board with up to 10% off in absolute distance, the calibration results maintain stable.

Laser stripe projection angle and baseline distance from the center of lens to laser are
the most important parameters in our triangulation based 3D scanning system. However,
they are difficult, even impossible, to measure directly due to the fact that the center
of camera lens and the laser source are extremely difficult to localize. To combat this
difficulty, combining the camera calibration parameters and precise linear stage, a new
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approach is proposed to estimate these parameters which only require at minimum three
movements of the entire scanner and capture three laser images. Of course, repeating
this approach will increase the estimation accuracy.

During the entire 3D scanner development, practical issues arise either from those
imperfect mechanical designs or extremely hard to control hardware, such as the position
of laser light generator, laser stripe tilt, scanner block tilt relative to the linear stage,
handling extremely large numbers of images, data size, cable connection etc. The entire
system is built from scratch and applied in the field. This thesis addressed and proposed
workable solutions for these issues. By the end of the research period, our scanner
system is able to achieve ±0.05mm accuracy in 35 ∼ 60cm scanning distance in air
(with a precise linear stage and 1400× 1024 resolution camera) and ±0.15mm accuracy
in 14.8 ∼ 25.3cm scanning distance underwater (with a linear stage and 720 × 576
resolution camera). However, when utilizing the higher resolution camera, thinner laser
stripe and close scanning distance, the accuracy can be even higher. Current 3d scanner
set up and accuracy is acceptable and satisfies the requirements of our applications in
oil and gas industry which demand accurate object scanning.

It is possible to apply our 3D laser scanner for underwater objects. The most im-
portant issue is the index of water different from the air. The light path is from water
to the camera front sapphire glass, and then to CCD. Obviously, when the light goes
through the sapphire glass, it bends by a very tiny angle which is depending on the
thickness and flatness of the glass. This angle is so tiny that can be ignored in the cal-
culation normally. In our case, the light travel from water to air and from air to water
is bent. This is the main source of error for underwater scanning when directly using
the air camera calibration methods. The water index is affected by many variables like
temperature, salinity, impurity etc., hence, the system calibration must be performed in
the identical water as in the field. By careful mounting the scanner and controlling the
linear stage, the scanning error can be minimized down to 0.2mm. This project has a
clear real world application in mind. Thus, it especially emphasizes the development of
a workable system, rather than just the advance of science involved. All the equipment,
software, technology we implemented have to be taken into account and can be tested
and applied in the real world. In these commercial applications, they all have different
requirements and purposes. It is much easier for us to evaluate our scanning system
and have feedback during these projects. The problems are discovered quickly and fixed
in the field and make our scanner more stable, compatible and more accurate. Further
research improves the scanning system. A number of real world projects clearly show
that the developed two generations of 3D laser scanning systems have been successfully
applied to scan the real world objects with sufficient speed and accuracy. On the whole,
the project has achieved the objectives set up.

In conclusion, the main contributions can be summarized as:

1. A comparative study of noise removal methods.

2. A comparative study of corner detection methods.

3. A comparative study of laser peak detection techniques.



221

4. Have proposed a novel camera distortion model.

5. Have proposed a novel method for estimation of the laser projection angle and the
distance between the laser source and the camera center.

6. Have proposed a novel iterative based camera calibration method to compensate
the error from inaccuracy 2D and 3D coordinates of the control points.

7. Carried out a comparative study of effect of various noise removal, corner detection,
laser peak detection, camera distortion model and camera calibration methods on
the accuracy of 3D reconstruction.

8. Have optimized the components of the laser scanning system for better accuracy.

9. Have developed two prototypes of laser scanners with different designs.

10. Have applied the developed 3D laser scanners to scan the real world objects and
solutions have been proposed to the various issues arising from these applications.

There is a huge market for 3D scanning for inspection and quality assurance in the
gas and oil industry, for example, gas/oil pipe inner/outer surface damage inspection
and oil platform structure analyses. However, the 3D scanners developed in this market
are limited and expensive. This is mainly because it is challenging for the development
of underwater 3D scanners, since it involves a large number of issues which may be
unpredictable and whose impact is not yet known exactly. Due to the fact that the
seawater has different absorption rates for lights with different wavelength and generate
blurring effects, which require image enhancement to correct the captured images. All
those lead to difficulty in applying the colour laser in our underwater laser scanning
systems. Whereas our underwater 3D scanner uses the green laser, which has a lower
absorption rate in seawater and will reflect most of the light. Together with the high
resolution underwater mono camera, our scanners have successfully been applied in our
real underwater scanning projects and achieve 0.2mm accuracy. Our scanners have
been applied to several projects in Norway, Dubai, and Aberdeen. The scanner must
be adjusted to fit for those projects’ special requirements due to the variation of the
scanning object’s size, shape, environment or the deployed equipment. Sometimes it is
very hard to deploy our tools on the scanning object since everything is underwater and
diver, hydraulic systems are necessary. The scanning object size and shape vary every
time which require a special support holder. More analysis of underwater scanning
results and interaction among various components inside the system should be taken
such as the underwater calibration, image enhancement, and compensation for the light
bending angle when it travels between water and air. Research is underway and results
will be reported in the future.
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Chapter 9

Appendix

9.1 Publications

Publication notice: The following papers have been published. The research and the
writing of these papers were performed within the Department of Computer Science
at Aberystwyth University and Smart Light Devices, Ltd. as an integral part of the
PhD programme of studies under the supervision of Dr.Yonghuai Liu, Professor Reyer
Zwiggelaar and Dr Ala Al-Obaidi.

1. Liu, Y.; Al-Obaidi, A.; Jakas, A. & Liu, J. Jain, L.; Wu, X.; Liu, H.; Gu, D.;
Howlett, R. J. & Liu, Y. (Eds.) A Fraction Distortion Model for Accurate Camera
Calibration and Correction. Robot Intelligence, Springer London, 2010, 169-190

2. Junjie Liu, Anthony Jakas, Ala Al-Obaidi, Yonghuai Liu. Practical issues and
Development of Underwater 3D Laser Scanners. Proceedings of 15th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation, 13-16
September 2010.

3. Junjie Liu Anthony Jakas, Ala Al-Obaidi, Yonghuai Liu. A comparative study
of different corner detection methods. Proceedings of The 8th IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and Automation
(CIRA2009), December 15-18, 2009.

4. Yonghuai Liu, Ala Al-Obaidi, Anthony Jakas, Junjie Liu. Accurate Camera Cal-
ibration Using the Collinearity Constraint. Proceedings of The 8th IEEE Inter-
national Symposium on Computational Intelligence in Robotics and Automation
(CIRA2009), December 15-18, 2009.

5. Junjie Liu, Ningfeng Wei, Yonghuai Liu. Accurate camera calibration for 3D data
acquisition: a comparative study. Robot Navigation: Strategies, Algorithms and
Motion Planning, Editor: Daiki It, Nova Science Publishers, Inc. 2008.
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9.2 Programmings

9.2.1 Parallel computing

Nowadays, multi-cores CPU and Solid-state drive make the image capture and process-
ing much faster than before. The hardware’s capabilities require special programming
skill to utilize fully. Parallel computing (it is a form of computation in which many
calculations are carried out simultaneously, operating on the principle that large prob-
lems can often be divided into smaller ones, which are then solved concurrently (”in
parallel”). There are several different forms of parallel computing: bit-level, instruction
level, data, and task parallelism. Parallelism has been employed for many years, mainly
in high-performance computing, but interest in it has grown lately due to the physical
constraints preventing frequency scaling. As power consumption (and consequently heat
generation) by computers has become a concern in recent years, parallel computing has
become the dominant paradigm in computer architecture, mainly in the form of multi-
core processors. Parallel programming 1 is one of the key programming skills especially
in real time computer vision system. Assume we have a high resolution, high speed
camera, just like one of our cameras Genie HM14002 whose maximum capture speed
in full resolution 1400 × 1024 is 60 fps and the total data rate transmission is up to
92MB/s(From camera to PC). Apparently, by the default in C/C++, the program runs
in serial which cannot exert the full power of multi-cores of CPU or deal with such huge
data input and processing. The traditional C/C++ program runs step by step, which
means it can only deal with one image in a single core of the CPU, the other cores are
not operating at all. For a quad core CPU, parallel computing can run four tasks at the
same time, which means it can process four images.

OpenMP3(Open Multi-Processing) is an application programming interface (API)
that supports multi-platform shared memory multiprocessing programming in C, C++
and Fortran on many architectures, including Unix and Microsoft Windows platforms. It
consists of a set of compiler directives, library routines, and environment variables that
influence run-time behaviour. It is supported in Visual Studio 2008 by default. I tested
it in the Sparse code de-noise method. The sparse coding transformation matrix W is
extracted from 13 training images set and its sub-window size is 8 × 8, patch number
is 6000. It iterates 100 times in the entire process. It total spent is 189.98 seconds
(Dual-Core E5200) which is 50% faster than the program without OpenMP. Of course,
there should be a lot optimization skill in my sparse code de-noise program: the matrix
operation and the mathematic function. It would be huge topic to combine mathematic
library such as Lapack(Linear Algebra PACKage) with parallel computing.

1http://en.wikipedia.org/wiki/Parallel_computing
2http://www.dalsa.com/mv/products/cameradetail.aspx?partNumber=CR-GM0x-H140x
3http://openmp.org/wp/

http://en.wikipedia.org/wiki/Parallel_computing
http://www.dalsa.com/mv/products/cameradetail.aspx?partNumber=CR-GM0x-H140x
http://openmp.org/wp/
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9.2.2 Thread

To a certain extent, parallel computing is multi-threads but distribute in different CPUs.
In Microsoft Windows System, there are two main types of thread, one is called GUI
thread, which could be the main thread of any GUI application which is used for receiv-
ing/responding to the user input, and the other one is called Worker thread which is
designed for a long calculation processing in the background. In our application, by the
worker thread the program still can respond to user’s order even there are huge image
data being processed at the same time. Fig.9.1 is my program for image processing.

Compiled with worker thread and OpenMP, the image processing speed is up, for
instance, the laser peak detection would be the most time consuming function, now its
detection speed is 45 frames per second at low CPU usage around 40%. However, the
hard drive capacity limits the detection speed since a hard drive in normal spindle speed
at 7200 RPM determines the seek time or latency. In addition, this detection performs
too many file IO: read the image, detect the laser peak and then write to hard drive.
In future, I will test my program performance in a solid state hard drive which gives us
much high capability in file IO.

Figure 9.1: The image processing toolbox
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