

Levitating Laser Heating Techniques for Synchrotron Radiation Experiments.

A Thesis submitted to Aberystwyth University in the subject of Physics for the Degree of Master of Philosophy.

By

Stephen David Fearn

February 2009

Abstract

This project is about the design, development and construction of individual components and equipment associated with a 125 watt Carbon Dioxide laser heated aerodynamic furnace that was capable of levitating and melting a 2mm sphere in a dedicated containerless nozzle. The technique allows a specimen to be heated to 3000° Kelvin, and the purity of the sample to be investigated without contamination. This novel experiment was designed and tested at Aberystwyth University, and subsequently installed and operated on the Synchrotron Radiation Source 6.2 x-ray beamline. Experiments using the laser heated aerodynamic furnace on refractory oxides at high temperatures have allowed the successful investigation of structural dynamics at the nano and atomic level, by the use Rapid2 detectors, with particular interest in the recalescence and supercooled regions, with subsequent investigations resulting in the discovery and observations of the polyamorphic rotor.

Acknowledgements

I would like to take this opportunity for thanking all those people who contributed both directly and indirectly, to the completion of this thesis.

Prof. G. Neville Greaves for showing the confidence in allowing me to do this thesis and in giving me a free reign in the design and development of this exciting experiment.

Dr Tudor Jenkins for his guidance and support in the writing of this thesis.

Dr Dave Langstaff for his help and support in the initial development of the LabVIEW software.

Dr Martin Wilding, Dr Florian Kagl and all the academic staff of the Institute of Mathematics and Physics.

Dr Louis Hennett for his guidance of the experiment as it has developed over the last few years.

Mr Clive Willson for his continual support.

Mr John Parry and Mr David Francis for their outstanding contribution in the mechanical fabrication of the experiment, and their continual support in the development of the instrumentation.

Mr Les Dean and Mr Dave Lewis for the help in electronic designs.

Dr Chris Martin 6.2 beamline Daresbury Laboratories for all the outstanding contributions towards the success of this facility, from initial installation to operational experiments.

Mr Alfie Nield for all his technical help and support during the initial installations onto the Daresbury Beamline.

All the staff of the Daresbury laboratory.

Levitating Laser Heating Techniques for Synchrotron Radiation Experiments

Contents

Chapter 1	Overa	ll Design	5	
	1.1. B	Bench	7	
	1.2. C	Optics table	8	
	1.3. B	Breadboard	8	
•	1.4. P	olycarbonate box	9	
	1.5. P	yrometer mounts	10	
	1.6. S	ample holder	-	11
	1.7. N	lirrors	11	
	1.8. E	external Interfacing	12	
	1.9. R	References	14	
	1.10.A	Appendix Detail plans of beamline 6.2		
Chapter 2	Carbo	on Dioxide Laser	15	
	2.1.	Inductive heating	15	
	2.2	Laser Operation	17	
	2.3	Synrad evolution laser	18	
	2.4	RF3000 laser power supply	20	
	2.5	Environmental control facilities	21	
	2.6	UC2000 Laser controller	23	
	2.7	Laser Diode	25	
	2.8	Auxiliary Signal Connector	26	
	2.9	Conclusions	29	
	2.10	References	29	

Chapter 3	Optic	al Pyrometry	30
	3.1	Choice of Optical Pyrometry	31
	3.2	Black body radiation	31
	3.3	Luxtron optical pyrometer	32
	3.4	Basic pyrometer operation	33
	3.5	Pyrometer Input Options	34
	3.6	Sample Alignment	36
	3.7	Daresbury Synchrotron Experimentation	37
	3.8	LabVIEW	38
	3.9	Conclusions	39
	3.10	References	40
	3.11	Luxtron calibration report	41
Chapter 4	Mass	Flow Controller	42
	4.1	Volume reservoir	42
	4.2	Brooks mass flow controller	43
	4.3	Description of mass flow controller	44
	4.4	Computer use of DDE Software	45
	4.5	Conclusions and Future experiments	47
	Apper	ndix MODEL 5850S	48
		Flowtech Calibration Certificate	49
Chapter 5	Laser	Power Meter	50
	5.1	Introduction	50
	5.2	Probe	51

	5.3	RS232 serial communication	52
	5.4	Experimental procedure	52
	5.5	Further investigations	53
	Арре	endix Certificate of Calibration Power Instrument	54
		Certificate of Calibration Powermeter Probe	55
Chapter 6	Optic	S	56
	6.1	Objectives and initial configuration	56
	6.2	Optics table	57
	6.3	Beam Splitter	58
	6.4	Mirrors	58
	6.5	Focusing lenses	58
	6.6	Fixed focal length mirrors	59
	6.7	Mirror alignment	61
	6.8	Daresbury configuration	62
	6.9	Remote control mirrors	63
	6.10	Thermal mirrors	65
	6.11	Final mirror choice	66
	Appe	ndix Circuit diagram of servo controller	67
		Acknowledgements	67
Chapter 7	Nozzl	e Design and Sample Stage for liquid levitation	68
	7.1	Boron Nitride nozzles	68
	7.2	Sample sphere characteristics during levitation	71
	7.3	Nozzle dimensions	72
	7.4	Aluminium nozzles	73

	7.5	Water cooled sample stage		74
	7.6	Sample stage vertical adjustment		75
	7.7	Future developments of the sample stage		77
Chapter 8 79	X-ray	beam alignment		
	8.1	X-ray beam characteristics		79
	8.2	Beam size		81
	8.3	Establishing datum Line		81
	8.4	Beam alignment and size		82
	8.5	GDA software		84
	8.6	XAFS table		84
	8.7	Horizontal nozzle alignment		84
	8.8	Vertical nozzle position		86
	8.9	Detector systems		88
	8.10	Conclusions		89
	8.11	References		90
Chapter 9	LabV	IEW Software Control		91
	9.1 La	abVIEW	92	
	9.2 La	abVIEW interfacing		93
	9.3 D	/A conversion	94	
	9.4 La	abVIEW software		96
	9.5 La	aser and software status	97	
	9.6 M	lanufacturing anomalies and interference		98
	9.7 O	ptical Pyrometry LabVIEW control software	100	
	9.8	Vertical sample stage interface		101
	9.9	External triggering		103

	9.10	Future developments	104
Chapter 10	Lasei	r Shutter	105
	10.1	Laser beam shutter	106
	10.2	Construction and operation	106
	10.3	Shutter Status	109
	10.4	Remote indicator	109
	10.5	Remote shutter key control box	110
	10.6	System upgrade	112
	10.7	Conclusions	112
Chapter 11	Safety	y Protocol and video diagnostics	113
	11.1	Safety factors for the use of class 4 lasers	113
	11.2	Interlock control system	115
	11.3	Experimental alignment	117
	11.4	Laser Emergencies	119
	11.5	Emergency Kill switches	119
	11.6	Laser safety glasses	120
	11.7	Polycarbonate enclosure	120
	11.8	Smoke detector	121
	11.9	Ceramic beam stops	121
	11.10	Welding glass filters	121
	11.11	Compressed air	122
	11.12	Compressed gases	122
	11.13	Chilled water	122
	11.14	Video camera surveillance	123

	11.15 Radio cameras	124
	11.16 Microscope camera	125
	11.17 Sample plane video camera	126
	11.18 External safety camera	126
	11.19 High speed camera	127
	11.20 Recording video imaging of liquid drops	127
Appendices	 Photo-Sonics Specification sheet Interlock and shutter circuit diagram 	
	3. Standing orders	
Chapter 12	Results	130
	12.1 Melting	130
	12.2 Recalescence	131
	12.3 Supercooling	132
	12.4 High and low density transition	133
	12.5 Future experiments	138
	12.6 Conclusions	139
	12.6.1 Twin laser system	139
	12.6.2 Twin laser shutter	139
	12.6.3 Video monitoring	140
	12.7 References	140
	12.8 Published papers 141	

List of Figures

- Figure A. Schematic operation of the laser furnace in conjunction with the equipment on the 6.2 beamline at the Daresbury Synchrotron Radiation Source. 3
- Figure B. Molten sample levitating at 2000° K in the x-ray beam, picture taken through Pb window of the 6.2 beamline hutch.

1.1	Side elevation schematic, illustrating optimal sample position with respect to x-ray beam po	sition
	and wide (WAX) and small (SAX) angle detectors.	6
1.2	Schematic plan and side view, illustrating initial component layout with respective dimension	ons.7
1.3	Side and front view of all experimental components in position assembled on the optics ben	ch on
	the dedicated laser stand at the Aberystwyth Material Physics Laboratory.	8
1.4	Plan view looking into the polycarbonate enclosure during furnace development.	9
1.5	Internal view of the polycarbonate box during initial setup on the 6.2 beamline.	10
1.6	Beamline view of the levitating furnace during setup with the guide laser illuminating the	
	levitating sample; also in view are the sample stage cooling pipes and the gas delivery pipes	s. 11
1.7	Levitation furnace installed into the 6.2 beamline at Daresbury Laboratory.	12
2.1	Inductive heating and levitating techniques.	16
2.2	Schematical laser operation.	17
2.3	Synrad evolution laser attached via adjustable legs to optics bench.	19
2.4	RF3000 controller and dedicated power supply.	20
2.5	a) Chilled water pump unit for regulating temperature through the heat exchanger.	22
	b) Heat exchanger for dissipating heat from the laser head through the demineralised water	
	system at Daresbury Laboratory.	22
2.6	UC2000 laser controller incorporating manual and remote control of the laser.	23
2.7	Computer serial communication serial port and LabVIEW digital to analogue communication	on
	port.	24

2.8	Externally coupled laser diode used for optical alignment of the carbon dioxide laser.	25
2.9	Remote monitoring indicator box for showing RF3000 and laser status; also included is	solenoid
	activation indicator to confirm that the shutter is operational.	27
3.1	Position of the optical pyrometer head with respect to the high temperature levitating sa	mple.30
3.2	Graph illustrating relationship between relative energy and wave length.	32
3.3	Luxtron optical pyrometer.	32
3.4	Schematic block diagram of the operative of the Luxtron optical pyrometer.	33
3.5	Initial development layout of the pyrometer position prior to beamline installation.	34
3.6	Final position using H bridge support enabling the pyrometer to straddle the x-ray	
	delivery tube.	
	35	
3.7	Laser diode adaptor used for optical pyrometer alignment onto the levitating sample.	36
3.8	H bridge pyrometer configuration suitable for straddling the x-ray delivery tube.	37
3.9	RS232 pin identification and protocol.	39
4.0	Computer port communication and Luxtron communication facilities.	39
4.1	Schematic layout requirements of control gas delivery for levitation.	42
4.2	Schematic operation of the Brooks mass flow controller, enabling controlled delivery of	f gas to
	the sample head for levitation.	43
4.3	Computer communications port and mass flow controller setup.	45
4.4	RS232 interconnections between digital mass flow controller and computer.	46
4.5	Manufacturer schematics of the Brooks mass flow controller.	48
5.1	Molectron laser power meter.	50
5.2	Molectron power head.	51
5.3	Schematic experimental layout of power meter.	52
5.4	Powermeter instrument calibration certificate.	54

5.5	Powermeter probe calibration certificate.	55
6.1	Sample stage position on the 6.2 Beamline with x-ray and laser beam paths.	56
6.2	Schematical component layout of aerodynamic laser-heated furnace.	57
6.3	Schematic experimental layout of plain mirrors and carbon dioxide focusing lenses.	59
6.4	Illustration of relative positions of focused mirrors and respective focal lengths.	60
6.5	Video image taken from the microscope camera illustrating levitating molten sample wit	h heated
	beam position.	61
6.6	Mirror profiles illustrating vertical and horizontal adjustment, allowing accurate position	ing of
	the laser beam onto the sample.	62
6.7	Confined geometry of the levitator laser furnace installed on the 6.2 beamline.	63
6.8	Server motors illustrating vertical mirror position adjustment.	64
6.9	Master and slave control box used for remotely controlling the accurate position	
	of mirrors.	65
6.10	Customized mirror heat sink for dissipating heat generated by laser power including remo	ote
	vertical pitch adjustment.	66
6.11	Circuit design of servo controlled motors, adapted for mirror motor control.	67
7.1	Examples of boron nitride nozzles showing the dimensions of the sample	
	throat and gas inlet.	69
7.2	Boron nitride nozzle viewed through electron microscope.	70
7.3	Polished surface structure of Boron nitride nozzle.	70
7.4	Nozzle schematic for cup and cone shaped designs.	72
7.5	Illustration of sample instability during levitation.	72
7.6	Nozzle design and cooled sample stage.	73
7.7	Plan view of cooled sample stage incorporating gas inlet and x-ray beam path.	74

7.8 Profile view of cooled sample stage illustrating optical pyrometer and laser beam path. 75

7.9	Vertical sample stage movement incorporating analogue and digital feedback.	76
7.10	Customised levitator head with sample stage cooling designed to minimalise air scatter.	77
7.11	Prototype aerodynamic levitator module designed to handle oxidising liquids and sufficient	ently
	small to be installed within the 60 cm radius space within the WAXS detector.	78
8.1	Illustrating the position of the sample holder with respect to the X-ray beam position and	the
	WAXS / SAXS detectors.	80
8.2	Profile illustration position of the sample and levitation stage with respect to the X-ray be	am path
	and the WAXS / SAXS detector.	81
8.3	Theodolite image illustrating central data line taken using a mobile phone camera.	82
8.4	Screen shot view of the GDA software illustrating the position and control of all	
	5 sets of slits.	83
8.5	X-ray sensitive paper positioned behind the sample, indicating beam position and size.	83
8.6	X-ray beam attenuation graph for horizontal sample position.	85
8.7	Polaroid image illustrating the shadow of drill position and sample holder in x-ray beam.	86
8.8	Drill position on top of the sample stage enabling horizontal position of the x-ray beam.	86
8.9	X-ray attenuation as the drill bit passes through the beam in the vertical position.	87
8.10	Block diagram and specification of Rapid2 detector.	88
8.11	WAXS detector template allowing accurate repositioning of the detector in	
	the x-ray beam.	89
9.1	Instrumentation for laser heating and temperature measurement controlled by LabVIEW.	91
9.2	Flow diagram of LabVIEW software initialisation for computer laser control.	92
9.3	Adlink Technology digital to analogue interface board which gives proportional output to	o the
	UC2000 laser controller.	94

9.4 Schematic of digital to analogue convertor used to control UC2000 laser controller. 95

9.5	Analogue output connections of the Adlink Technologies interface board used to control	the
	UC2000 laser controller.	95
9.6	LabVIEW construction block diagram window designed to communicate with the UC20	00 laser
	controller and Luxtron optical pyrometer.	96
9.7	Front panel interface for LabVIEW control of laser heating and temperature monitoring.	97
9.8	Synrad software specification anomaly.	98
9.9	Co plot of pyrometer output and laser power for a levitating super cooled drop, showing	
	intermediate interference spikes.	99
9.10	LabVIEW software flow diagram for initialising and communicating with the Luxtron op	otical
	pyrometer.	101
9.11	Detailed vertical adjustment of liquid drop height at different temperatures.	102
9.12	LabVIEW stepper motor control of vertical sample stage, with analogue and digital feed	oack
	potentiometers for sample position.	102
10.1	Schematical layout of laser shutter position.	105
10.2	Laser beam shutter schematics.	106
10.3	Internal layout of the laser shutter illustrating the default position of the laser beam stop,	the
	default return springs, interlock beam micro switches, the two way operating pneumatic	am and
	solenoid actuator.	107
10.4	External layout of laser shutter incorporating solenoid status indicator, pneumatic ram an	d two
	way actuator.	108
10.5	Laser shutter circuit diagram, incorporating air pressure switch, beam block position mor	nitoring
	and status indicators.	109
10.6	Remote laser status indicator panel and solenoid activation indicator.	109

Remote shutter key control panel, with shutter status indicators, remote shutter closing and 10.7 emergency laser disable panic button. 111

10.8	Remote shutter control circuit diagram.	111
10.9	Final operational laser shutter with compressed air indicator for monitoring air flow into	
	two-way pneumatic ram.	112
11.1	Schematic diagram of laser levitator furnace interlock system and how it integrates with	
	experimental beam line interlock system.	114
11.2	Experimental hutch interlock hazard display panel on MPW beam line 6.2.	115
11.3	Laser interlock control panel.	117
11.4	Laser emergency stop and shutter control box.	119
11.5	Polycarbonate box on test bench and polycarbonate box installed onto beamline.	120
11.6	Plan layouts of video cameras.	123
11.7	Radio camera on optical mount.	124
11.8	Video footage of liquid sample.	124
11.9	Microscope camera.	125
11.10	Video monitor illustrating the calibrated position of the liquid sample in the x-ray beam.	126
11.11	Photo-Sonic high speed camera remotely controlled to study molten samples.	127
11.12	Experimental control desk incorporating LabVIEW laser and pyrometer control computer	r, mass
	flow control computer, and video camera monitoring station and recording facilities.	128
12.1	Real time video capture of levitating molten sample, illustrating laser beam hot spot.	131
12.2	Co plot illustrating heating and cooling cycle of alumina, highlighting the melting stage a	nd
	recalescence regions as special regions of interest.	132
12.3	SAXS data for supercooled AY15, AY20 and AY25 liquids revealing the intensity of ran	dom
	fluctuation measured at the Synchrotron Radiation Source beamline 6.2.	134
12.4	Changes to the principle peak for AY20 between 2392K and 1515K, measured at the Syn	chrotron
	Radiation Source beam line 6.2.	135

12.5 Oscillating rotor.

136

12.6	Sequential rotating images of the liquid sample in the supercooled region.	136
12.7	Video images A to F illustrating horizontal rotation. Fluctuating image brightness for one	e pixel
	area compared with pyrometer output for one 4-s cycle. 180° rotations take 600ms, after	which
	the bead is virtually stationary.	137
12.8	Pyrometer readings of oscillating polyamorphic rotor.	138