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Abstract

Biodiversity is declining globally primarily because of climatic change and anthropogenic
impacts. In Europe, protected sites (e.g. Natura 2000) have been established to prevent
further loss of biodiversity and protect key habitats from further deterioration, including
from previous detrimental management practices. In the UK and particularly Wales, even
protected habitats lack a coherent management approach leaving conservation bodies to
work with communities to protect their biodiversity. Few systems exist for consistently,
routinely and spatially quantifying biodiversity, assessing impacts of past management
and guiding and predicting the consequences of future actions, including those relating
to policy. Most current monitoring systems still rely solely on field observations and field
surveys with little input from very high resolution (VHR; ≤ 2m) airborne and space data
to provide baseline data suitable for monitoring the extent and condition of habitats over
time.

In order to investigate the use of VHR optical imagery for monitoring, the potential for
WV2 spectral indices data to be used as indicators of condition for protected bog sites was
evaluated and a method developed which could be used within a protected site monitoring
system for monitoring both flora and fauna distributions. In developing an approach
this study focuses primarily on the protected lowland raised bog at Cors Fochno where
encroachment by grass species (primarily Molinia caerulea and Phragmites australis)
over decades, coupled with management actions focusing on conserving the integrity of
the bog system, has led or is anticipated to lead to transitions in state with consequences
on biodiversity, particularly species richness, distributions and abundance.

Field spectroradiometer data was used to develop a method for identifying optimum
months of the year and best indices for species discrimination on Cors Fochno protected
site that can later be used within a system for accurate classification of species. Methods
developed, and ecological information from field data, were used with WV2 data acquired
over 3 time periods (March, July and November) to produce a multiscale classification
(LCCS to species level) of Cors Fochno SSSI and it’s surrounding landscape suitable
for use within a monitoring system. Within the SSSI WV2 satellite derived parameters
(spectral indices and classified dominant plant species) that relate to environmental
variables relevant to invertebrate habitat suitability and invertebrate plant food sources
were used to test associations with selected invertebrate species and assemblages assessed
and map habitat suitability.

An ANOVA F-ratio method provided a successful method to assess the distinctive phe-
nological differences between spectral data of the key lowland raised bog plant species.
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It demonstrated the importance of phenological data for selecting the best months and
the best spectral indices for species discrimination and was used with success to select
optimum WV2 imagery acquisitions for a more successful species classification. Clas-
sification of varying scales, from landscape to species level, was carried out effectively
with good overall accuracies (over 81%) by using LCCS and an adapted EODHaM sys-
tem classification method. This enabled the use of indices values as input using the
best indices and image acquisition times for species discrimination, along with ecological
information gathered in field surveys. WV2 satellite derived spectral indices, and WV2
satellite derived dominant plant species classified using the developed system which were
indicative of the ecological gradients of the lowland raised bog, were used to show as-
sociations between invertebrate data (Araneae, Coleoptera and Diptera) sampled across
the bog and were shown to be useful as invertebrate diversity and distribution indicators.
This research demonstrates that spectral indices derived from VHR optical imagery can
be used as indicators of the composition, structure and functional diversity of a lowland
raised bog.

A key component was the development of a framework for sampling the SSSI. From
these observations and models, a conceptual framework for creating a baseline which
can be used and developed for quantifying losses and gains in biodiversity as a function
of satellite-observed changes in habitat extent and condition was proposed. Through this
approach, a better understanding of the drivers and impacts (both actual and potential)
of change is anticipated with direct benefits for conservation, sustainable use of the
environment and environmental and agricultural policy.
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Chapter 1

Introduction

Across the world there are a diverse range of habitats and landscapes that have been

shaped for centuries by human activity. This activity has often resulted in the loss

of many significant habitats and consequently the species and biodiversity that they

support. As multiple pressures on fragile habitats increase worldwide, so important areas

of biodiversity require comprehensive mapping and monitoring to underpin and inform

programmes of protection. In recent decades remote sensing has grown to become a key

tool to map and investigate these habitats, but only with improvements in methodology

and resolution will it become possible to map and monitor species distributions and

biodiversity with greater spatial accuracy. This research investigates the significance of

remote sensing and its application for monitoring a major protected raised bog habitat

in Wales: Cors Fochno.

1.1 Protected habitats and biodiversity, 1992 to present

In 1992 in recognition of declining trends the UK agreed and signed up to the Rio

Earth Summit programme (Convention on Biological Diversity or CBD) to develop a

’Biodiversity Action Plan’. From this the first ’UK Biodiversity Action Plan’ (UK BAP)

was published in 1994. This delivered action plans for aiding recovery of the most

threatened species and habitats while national reports were produced every three to five

years (Defra, 2007). Following devolution in Wales in 1998, the Welsh Government

(WG) developed it’s own strategies for biodiversity, conservation and the environment
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1. Introduction

(JNCC, 2012b) although these were incorporated into a shared vision adopted in 2007

for future work at a UK level.

Documentation to support this included the EU Gothenberg agreement (in 2001) which

was an implementation agreement for the CBD target to halt the loss of biodiversity

by 2010. With the failure to meet the target of halting the loss of biodiversity by 2010

Wales has now adopted a new target to reverse biodiversity declines by 2026 and is

obliged to meet the Achi CBD 2020 target. A UK Post 2010 Biodiversity Framework

was developed with the launch of a new EU Biodiversity Strategy (EUBS)

In 1992 the EC Directive on the Conservation of Wild Birds (EU, 2009) and the EC

Directive on the Conservation of Natural Habitats and Wild Flora and Fauna (EU, 1992)

also established a legislative framework for protecting and conserving Europe’s wildlife

and habitats (Sundseth, 2014). Central to this policy was the creation of a coherent

ecological network of protected areas across the EU, known as NATURA 2000. This

network comprises of Special Protection Areas (SPAs) to help conserve vulnerable birds

(listed in Annex 1 of the Birds Directive) and Special Areas of Conservation (SACs)

for the conservation of other rare species and threatened natural habitats (under the

Habitats Directive). These areas exist to provide a high level of protection to 69 species

and 55 habitats that are threatened internationally.

Within Wales Natura 2000 consists of a total of 20 SPAs for vulnerable birds and 92 SACs

for other rare species and threatened natural habitats all managed by Natural Resources

Wales (JNCC, 2012a). Along with areas across Europe, they form an unparalleled

network of international importance. While some Natura 2000 species and habitats are

thriving, in over 50% of occurrences they are declining and in poor condition. For this

reason focused and coordinated action is essential.

The Natura 2000 programme will identify pressures and plan the actions that are required

to significantly improve the condition of these features, safeguarding them for the future.

This work requires comprehensive monitoring of habitats and species important to each
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site and should include monitoring of surrounding landscapes to inform on external

pressures to the protected habitats. The Natura 2000 programme will also be used to

inform the Wales Prioritised Action Framework in order to achieve the European Union’s

Biodiversity Strategy (EUBS) to 2020. With these targets in mind, the WG are keen to

progress with monitoring and protecting biodiversity and recognise that more research

and evidence is required to support these efforts. It is hoped that this PhD will in part,

address this requirement for research and evidence into ’Assessment of Remote Sensing

Attributes as Biodiversity Indicators’

1.2 Current status of ecosystems and protected sites

in Wales

Current ’State of the Environment’ assessments are presented biannually in Wales and

are an initial attempt at systematically monitoring Welsh biodiversity. The 2012 ’State

of the Environment’ report stated that these sites appeared to be stable or showed no

clear trend. However it is apparent that biodiversity indicators are still under develop-

ment and are yet to be defined (Statistical Directorate 2009). Each protected site in

Wales is currently monitored but the methods are somewhat dependant on a variety of

factors including the site, funds, and individual choices of assessments with some sites

having far more attention than others. At present, monitoring of biodiversity is not con-

sistent, with only some species and taxonomic groups having long-term monitoring data

whilst others are not regularly monitored (Blackstock et al., 2012). The direct drivers

of biodiversity change (and loss) in Wales include land-use change (particularly agricul-

tural intensification and softwood afforestation in Wales); pollution; climate change and

invasive species.

From these reports it is clear that consistent, permanent monitoring schemes needs to

be introduced, in particular for monitoring habitat response to degradation or restoration
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within a site. Of equal importance are responses of a site to external drivers of change

such as agricultural and forestry activity, which may border or surround the site. This

information can then be used to assess biodiversity losses or gains and provide further

input into management practices as well as informing policy makers who are creating

policies that determine the impact of external practices on these sites.

In Wales, in order to identify which of the pressures or drivers of change are affecting

protected sites, improved detailed monitoring and surveillance of each site is required.

Inventories of existing levels and spatial patterns of biodiversity are essential for short-

term as well as long-term management strategies. For terrestrial sites the objectives of

management are provided as part of a Core Management Plan which also includes the

results of monitoring and advice on any action required.

As recognised in the UK National Ecosystems Technical report (Blackstock et al., 2012),

ongoing scientific assessments are needed to assess the impacts of development and

environmental change on the biodiversity and landscapes of Wales. These requiring

sustainable and effective monitoring procedures.

Species inventories, when repeated over time, are used as a tool to monitor the loss or

gain of species in protected sites (Droege et al., 1998). However, these inventories are

time consuming and costly and methods used to collate these inventories are not without

issues. Species inventories for many sites are often concentrated on specific areas without

good spatial coverage of a site. They can be sparse due to funding and time limitations

or due to site conditions (difficult to traverse), so that the true distribution and richness

patterns particularly of the rare and indicator species are often unknown. Information

on richness patterns, distributions and rare and indicator species as well as inventories

of invertebrates would be invaluable to conservation and monitoring of a protected site

(McGeoch et al., 2011a).
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1.3 Current earth observation systems for monitoring

biodiversity

Internationally it was recognised that a lack of integration and unbalanced coverage in

biodiversity observation systems and environmental datasets needed to be addressed.

Systems and networks were required to integrate biodiversity information systems from

ground sourced field data to remote sensing data. The Group on Earth Biodiversity

Observation Network (GEOBON) was initially formed in 2008 by government agencies

and intergovernmental and international organizations to address these issues. GEOBON

is working internationally to create a global monitoring network integrating masses of

biological information with data and forecast on climate, anthropogenic change and other

threats to biodiversity. These data can then be used to provide valuable information for

addressing policy as well as providing an open-access platform for sharing biodiversity

data, methods and tools. The current lack of integration of this data can impede the

work of policymakers’ and conservation managers’. Interlinking ground and satellite data

through GEOBON should improve policymakers and conservation managers plans and

have the capability to assess the effectiveness of their actions.

A European branch, the European Biodiversity Observation Network (EUBON) was

formed. The main objective of EUBON is to create significant input from Europe into the

GEOBON. The recent (2008-2012) European Biodiversity Observation Network project

(EBONE) focused on developing an effective system integrating these as a pilot for

GEOBON.

Despite these recent initiatives a JNCC report (2011) stated that evidence gaps still exist

in information, location, extent, and condition of habitats. Of particular importance to

the protection of conservation sites was the development of methods that can ensure

more targeted fieldwork and biodiversity surveillance despite constrained resources (JNCC
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report 2011). Remote sensing data could be instrumental in providing methods that can

ensure more targeted surveillance.

To ensure observation networks and increasingly sophisticated integrated systems are

improved the capabilities of new technologies such as high resolution remote sensing

satellite systems need to be researched and investigated. To address these needs two

European Framework (FP7) projects were set up to explore and develop a potential

earth observation system for monitoring of Natura 2000 sites in Europe (Lang et al.,

2015). The ’multi-scale service for monitoring Natura 2000 habitats of European com-

munity interest’ (MS.MONINA) and the ’biodiversity multi-source monitoring system:

from space to species (BIOSOS)’ project. Of particular interest to this research is the

BIOSOS developed system, named EO Data for Habitat Monitoring (EODHaM) (Lucas

et al., 2015). This system integrates remotely sensed data from satellite sensors and

ground sourced data to create both landcover and habitat classes and is based on expert

knowledge elicited from botanists, ecologists, remote sensing experts and management

authorities (Blonda et al., 2012). This system has been designed to incorporate multi-

image data to provide seasonal, temporal change and spatial distribution data to provide

a classification of vegetation. EODHaM has capability within this method to extract

spectral, structural and spatial information that have the potential to act as biodiversity

indicators. It is recognised that further processes need to be developed to investigate

the use of these links at site level.

1.4 General benefits and reasons for using remote

sensing data

Despite decades of development the use of remote sensing for accurate, detailed and

complete conservation status assessment and monitoring of natural habitats, such as

required in the European Natura 2000 context, is still rarely exploited (Spanhove et al.,
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2012).

Remote sensing techniques need to be further developed to identify and monitor fea-

tures indicative of favourable or unfavourable condition (Medcalf et al., 2012). These

features can be monitored depending on what they represent (e.g. high amounts of

non-photosynthetic vegetation (NPV) retrieved from winter images could represent ar-

eas of invasive species such as Molinia caerulea and Phragmites australis). The JNCC

report 2011 (JNCC, 2011) made recommendations for future work to include mapping

of among other factors, habitat context and measures that supported the assessment of

the condition of these sites (e.g. the amount of NPV) or habitat types (e.g. dry heath,

wet heath, humid heath).

Although the EODHaM system has mainly been tested and used for vegetation classi-

fication it has the potential to be adapted further and can be used to provide valuable

data and variables that are important to the monitoring of protected sites. The potential

for variables that relate to invertebrate associations has not yet been fully recognised and

more research to guide the selection of these is required. Remote sensing data could be

used to extrapolate records either in the form of vegetation classifications and/or habi-

tat suitability models (HSM) or species distribution models (SDM) of flora and fauna.

These can indicate further areas where species may occur and, in turn, greatly improve

our knowledge of their distribution and vulnerability.

Remote sensing can act as a powerful tool to assess the extent and condition of habitats

and associated species diversity as well as quantifying losses, degradation or recovery

associated with specific events or processes (Nagendra et al., 2013). By understanding

some of the associations derived from the remote sensing data we can start to understand

the implications of changes to extent and condition of ecosystems.

Remote sensing data can be used to help target field surveys (Medcalf et al., 2012)

thereby reducing costs, and can be used to extrapolate into areas that may be difficult

or dangerous to access. Forming a baseline from which one can assess change or make
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predictions is imperative to monitoring processes. This requires good spatial coverage

in order to obtain a clear picture of all ecosystem processes occurring. Remote sensing

can play a key role in establishing these baselines.

Once a baseline is created for flora and fauna remote sensing can provide a spatial tool

for both assessment of change and to predict the effects of change. This could provide

further valuable information on losses and gains of biodiversity to either inform policy,

planning or management of protected sites. Sustained observations are essential in Wales

for key environmental parameters that impact on ecosystems and human health, and are

predictive of environmental progress and sustainability. This includes research to refine

the suite of indicators for the Wales Environment Strategy and the Natural Environment

Framework.

1.5 Key considerations

1.5.1 Vegetation classification

Remote sensing data is often used to create a vegetation classification which may be

used to produce further habitat suitability maps for a species. However, systems have

not developed sufficiently to provide an overall flora and fauna monitoring capability that

can be used to provide information on the flora and fauna representative of the effects

of ecological gradients which may represent effects of degradation. These ecological

gradients can influence the presence of species and species assemblages (Del Rio Mora,

2014).

A vegetation classification can provide a wealth of data for monitoring purposes how-

ever, the connections between species or habitat data and other biodiversity needs to

be made. Monitoring vegetation or plant species just because they are easy to monitor

is insufficient. For example what a species stands for is important to assess in order
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to understand what a change in its abundance means (Jongman, 2013). Vegetation

species abundance and dominance can relate to ecological gradients as well as to the

abundance of fauna species (Grime et al., 2007). Recognising these ecological gradi-

ents in vegetation classifications can provide recordable features that are indicative of

favourable and unfavourable conditions. Very often these gradients can be recognised

by looking at the vegetation present (Grime et al., 2007). Although vegetation mapping

and classification using remote sensing is widely practised there is less emphasis placed

on recording species that may relate to these ecological gradients. The typical output of

a system such as EODHaM is a vegetation classification, however, there are numerous

other outputs that can be extracted that could be used to provide associations with

fauna (Lucas et al., 2015). Both vegetation classifications and biophysical parameters

(e.g. vegetation indices) could prove important in providing associations with other flora

or fauna biodiversity.

1.5.2 Fauna associations

Although habitat suitability models and species distribution models have been used to

extrapolate known fauna species’ habitats using remote sensing data, there are still many

gaps in knowledge of how variables extracted from satellite imagery can be applied,

and how effective they may be. Focus has been placed on mapping mammalian, bird

and plant species (Pettorelli et al., 2011; Swatantran et al., 2012; Coops and Catling,

2002) with little research on invertebrate distribution. Invertebrate habitat suitability

modelling is often carried out to locate areas of pestilence where crops or vegetation

have been damaged en mass (Huang et al., 2008; Eklundh et al., 2009). On balance

the study of possible invertebrate associations made using satellite derived data is still

in its infancy.

Landcover maps derived from remote sensing used in habitat suitability models are often

not detailed enough to provide any valuable associations with fauna (Bradley and Fleish-
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man, 2008a; Eyre et al., 2003). For areas where very high resolution satellite imagery is

used maps of more dominant species may be made (Burai et al., 2015; Lane et al., 2014)

and a fauna species occurrence can be associated with a single vegetation species (e.g.

caterpillars). However, many fauna species do not rely on one specific plant species and

may be better predicted by other environmental variables. Predictive powers of models

can be improved by adding continuous data relating to vegetation structure, productiv-

ity and phenology which may influence the quality of habitat for some species (Bradley

and Fleishman, 2008a). Studies have been done using vegetation indices (Buermann

et al., 2008; Lafage et al., 2013; Lassau et al., 2005) and LiDAR (Hill and Hinsley, 2015;

Müller and Brandl, 2009) to provide more continuous data than vegetation classifications

alone. These combinations have proved to be more effective than stand alone vegetation

classification variables.

HSMs and SDMs usually focus on individual distributions although recent developments

are recognising that they may be developed to produce effective distributions of whole

communities (Guisan and Rahbek, 2011; Bonthoux et al., 2013; Harris, 2015), thereby

providing a more accurate picture of ecosystem interactions.

Functional groups of biodiversity are now becoming of interest to policy makers as it is

now being recognised that the linking of functional groups with habitats and vegetation

may produce effective measures of biodiversity assessment. It would therefore be useful if

links could be made between properties derived from satellite data and functional groups

(e.g. Plant Senescence Reflectance Index which indicates the amount of dead vegetation

or litter and invertebrate detritus feeders).

HSMs and SDMs also help to provide more spatially consistent information on a species

and can be used as a predictive tool to aid management.
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1.5.3 Plant phenology

In order to use the best satellite imagery for input into a system the most suitable

dates for acquisition are required. The phenology of plant species plays an important

role in vegetation classifications (Hill et al., 2010; Lucas et al., 2010) and effects the

distribution of fauna species (Regniere and Nealis, 2002; Regniere, 2003). In Wales

and Britain as a whole there are dramatic seasonal variations throughout the year and

this seasonal variation can also vary from year to year. Microclimates, differences in

altitude, coastal positioning etc. all have an influence on the seasonal growth patterns

of plant species. These seasonal differences can have major impacts on any classifications

recorded from satellite imagery causing inaccuracies at larger scales (Xie et al., 2008).

A system is required that can make use of these phenological differences in vegetation

species to aid vegetation species discrimination. They can also be used to gain further

information on the ecological responses of species, and could prove to be particularly

useful in determining areas of more competitive invasive species from the endemic less

productive native species. The phenology of a plant species is also of importance to many

invertebrate species (Loranger et al., 2012; Prishchepov et al., 2012) and information

derived from satellite data regarding a plant’s phenology could be useful for forming

associations.

1.6 Choice of study site

The UK National Ecosystem Report highlights that further research is urgently required

to assess the overall extent and condition of the UK’s peatlands and peat soils and

how land management, especially grazing, burning and tree planting, impacts on carbon

storage and the loss of carbon as carbon dioxide and methane (Blackstock et al., 2012).

Both raised and blanket bogs are on the UK BAP priority habitat list -2007 (JNCC,
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2011) and are areas of focus for protection and prevention of degradation.

Increases in drainage to bog areas along with drainage and nitrogen deposition from

surrounding areas can have serious consequences for the future of a peatland. Increases

in these can cause serious peat deterioration. Encroachment by species such as Molinia,

which further dry out areas of peat and assist in changing the flora and fauna diversity

of the area, can also seriously shrink the peatland so reducing its size.

Climate change is also of major concern as this is often rapid and reduces the ability of

environments to adapt, with dire consequences for the associated and endemic species

present. Many of these species, e.g. sphagnum, are what regulate the peatlands by

producing further layers of peat and so perpetuating the storage of carbon, another

important consideration aside from the preservation of Carbon sinks.

One of the largest European low raised bogs of national and international importance,

Cors Fochno, was selected for this study. It is a protected Ramsar site, NNR, SSSI, SAC,

SPA, and Natura 2000 site and supports many rare and endemic species.

As this is a relatively flat area it means that many issues which confound remote sensing

imagery are removed or reduced (e.g. topographical shading, orthorectifying and at-

mospheric correction issues). Atmospheric conditions such as water vapor content and

aerosols (related to visibility) can vary more across a scene in upland bog areas. Key

parameters for atmospheric correction, namely aerosol optical thickness (AOT; related

to visibility) and water vapour change with respect to elevation. Being a flat site en-

ables a single model parametrisation to be used for the atmospheric correction, greatly

simplifying the correction process. Areas with hills and or cliffs around them are also

prone to shadowing effects in imagery. Using a bog site that is flat with no nearby

surrounding hills removes some of these issues and this means more focus can be placed

on the methods and interpretation of results obtained from research, allowing greater

focus on the flora and fauna monitoring methods. Cors Fochno, as with many bogs,

is also an area for which remote sensing imagery is virtually the only safe way to map
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vegetation and fauna in areas that are extremely fragile, difficult or dangerous to access

and monitor. The main difficulties are the danger and difficulties of traversing the peat

due to the possibility of sinking, and the fact that the vegetation is easily damaged under

foot and consists of rare flora and fauna species that should not be disturbed. Already

much of the recorded fauna data derives mainly from the verges of the bog or from along

the easily accessible boardwalk area. Remote sensing data along with habitat suitability

models and species distribution models is vital in extrapolating data to areas that are

not accessible in order to get a truer picture of the distributions of fauna and flora on

this protected site.

In the past there has been a substantial amount of anthropogenic activity which has

caused peat degradation including historic programmes of drainage and cutting (Poucher,

2009). This has led to the encroachment of invasive species such as Molinia caerulea.

Monitoring of the progression of the invasive species and deterioration of endemic species

can be useful to monitor and guide the restoration and conservation managements to

prevent further degradation of the peat and habitats.

1.7 Aims and objectives

1.7.1 Aims

The aim of this study was to explore the potential for indicators of condition for protected

bog sites to be derived from Earth Observation, such that a protected site monitoring

system could be formed. This study focuses on VHR optical imagery (in this case WV2

data) for retrieving biophysical parameters to identify key flora species and assess their

potential for identifying invertebrate community and species habitat associations.
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1. Introduction

1.7.2 Objectives

1. Develop a method using field collated spectral data for identifying optimum months

of the year and best indices for species discrimination on Cors Fochno protected site

that can later be used within a system for accurate classification of species using WV2

satellite data.

2. Assess the use of methods and ecological information developed for use with WV2

data acquired over 3 time periods (March, July and November) and to produce a multi-

scale classification of Cors Fochno SSSI and it’s surrounding landscape suitable for use

within a monitoring system.

3. Use WV2 satellite derived parameters that relate to environmental variables relevant

to invertebrate habitat suitability and invertebrate plant food sources to assess their

associations with selected invertebrate species and assemblages.

1.7.3 Hypotheses:

1. The ANOVA F-ratio method provides a successful method to statistically show that

distinctive phenological differences of key lowland plant species on a lowland raised

bog are important for selecting the best months and best spectral indices for species

discrimination and can be used to select optimum WV2 imagery acquisitions for a more

successful species classification.

2. Classification of varying scales, from landscape to species level, can be carried out

effectively with good accuracy results within one classification process, using an F-ratio

method for best indices and image time selection, and ecological information gathered in

field surveys to produce a system that is repeatable for improved monitoring purposes.

3. WV2 satellite derived spectral indices and WV2 satellite derived dominant plant

species can be used together as invertebrate diversity and distribution indicators.
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1.8 Thesis outline by chapters

1. Introduction

The reasons for the need for a monitoring system globally and nationally are discussed

with potential gaps in the use of remote sensing data for this identified. The aims and

objectives are outlined.

2. Background

This chapter provides a review on what biodiversity is. Current methods that use remote

sensing data to assess both flora and invertebrate fauna are discussed in brief. (Each

results chapter has a further review on these.)

3. Study site

This chapter establishes the study site, Cors Fochno used for this research and describes

current monitoring regimes of the protected Natura 2000 site.

4. Species discrimination using field spectro-radiometer data

With a view to creating a vegetation classification in chapter 5 the research in this chapter

was carried out to investigate species discrimination. Spectral data and spectral derived

indices collated from ground data were investigated to determine species discrimination.

Phenological differences in species were used to assess satellite acquisition suitability. A

selection process for the most suitable indices that provide the best species discrimination

was developed.

5. Vegetation classification

A comparison of the spectral indices from ground results in chapter 4 and the satel-

lite derived indices was made. Using the methods and results developed in chapter 4 a

vegetation classification was carried out using WV2 satellite data using a modified EOD-

HaM system. A classification of the dominant species was made and its practical was
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demonstrated providing condition information for reserve management purposes.

6. Evaluation of remote sensing derived attributes as invertebrate biodiversity

indicators

A method for sampling ground dwelling (Aranea, Coleoptera) and aerial (Diptera) inver-

tebrates over degradation gradients in difficult terrain was developed. Associations be-

tween invertebrate species assemblages and satellite derived vegetation data from chapter

5 (vegetation species classified and vegetation indices) were made. A single species was

selected to demonstrate the systems use for mapping habitat suitability.

7. Discussion

The final discussion focuses on how this work has improved and contributed to biodi-

versity monitoring of protected sites.Further work and application to policy and national

and international biodiversity targets are discussed.
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Chapter 2

Background

2.1 Introduction

Ecosystem assessment and monitoring requires the development and application of suit-

able indicators. They need to be reliable and capable of simplifying complex relationships,

quantifiable and transparent in order to enable an easy communication, and fit for the

purpose of indication (Feld et al., 2010).

It is important that these variables are sensitive to short-term and more medium-term

biodiversity change. They need to be relevant to understand the impact of drivers of

biodiversity change, and if possible, to assess policy responses and should be repeatable

(temporal) and scalable (spatial). They should have a biological basis and be related to

biodiversity state. They should be easily measurable. They should be able to capture

the different levels of biodiversity. These indicators and methods should be transferable

across different sites and ecosystems. In this case they also need to be a set of variables

that are not dependent on particular questions of today but relevant in the medium-

term.

To assess biodiversity indicators it is important to establish what is meant by biodiversity

and changes in biodiversity. Changes in biodiversity can be defined as the following:

• An increase/decrease in a population

• A change in species richness

17



2. Background

• Loss of keystone or indicator species

• An increase in secondary, primary species, native, alien and invasive species

• A shift in species dominance

In order to investigate changes in biodiversity utilising remote sensing data a number of

questions should be addressed;

Utilizing remote sensing data:

a) Do observed changes in the extent and condition of habitats reflect a change in the

biodiversity and in what way?

b) What is observed that impacts directly on the biodiversity?

c) What inputs can be made to SDMs that can be used to assess change?

d) What are the effects of these changes on species assemblages?

The following background information is important to assist in formulating responses and

answers to the above points and questions and is the basis of understandings of biological

indicators and the linking of ecological research with remote sensing research.

2.2 Biodiversity

2.2.1 What is biodiversity and why measure it

Due to pressures from anthropogenic and or natural disturbances on biodiversity it is

increasingly important to assess biodiversity using easily measured appropriate variables.

To establish which variables to use, an understanding of the attributes, layers and spatial

contexts of biodiversity is required in order to extract useful and meaningful indicators

of biodiversity. When trying to assess biodiversity or develop biodiversity indicators

it is important to establish what biodiversity means and why we need to measure it.

Biodiversity (biological diversity) reflects the number, variety and variability of living
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2. Background

organisms and how these change from one location to another and over time. Biodiversity

includes diversity within species (genetic diversity), between species (species diversity),

and between ecosystems (ecosystem diversity) (Magurran and McGill, 2011).

Figure 2.1: Compositional, structural, and functional biodiversity shown as
interconnected spheres, each encompassing multiple levels of organisation.
This conceptual framework may facilitate selection of indicators that repre-
sent the many aspects of biodiversity that warrant attention in environmental
monitoring and assessment programs (adapted from Noss (2008)).

2.2.2 Characteristics of biodiversity

There are three primary attributes of biodiversity - composition, structure and function

(Noss, 2008). These three attributes together determine the biodiversity of an area
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(Figure 2.1). Compositional attributes describe the biodiversity components of an area

(e.g. species composition, habitat types), structural attributes relate to the physical

organisation (patterns) and size of a habitat, and functional attributes outline the pro-

cesses affecting life within the area such as disturbance and predator-prey relationships.

These three characteristics of biodiversity are all interdependent of each other (Noss,

2008).

Figure 2.2: Indicator variables for inventory, monitoring and assessing ter-
restrial biodiversity at three levels of organisation, including a sampling of
inventory and monitoring tools and techniques (adapted from Noss (2008)).
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2.2.3 Biodiversity hierarchy

Biodiversity hierarchy presents another perspective of biodiversity and consists of re-

gional landscapes, community-ecosystem, species-population, and genetic levels (Noss,

1983).

Regional landscapes refer to the complexity of land forms, vegetation types and land

uses (Urban et al., 1987). Landscape features such as patch size, heterogeneity and

connectivity can control species composition and abundance and population viability of

sensitive species (Noss and Harris, 1986).

At community-ecosystem level, an ecosystem is an entire system of biotic and abiotic

components that interact in the same place. These include a wide range of biological,

physical and chemical processes. All of these have influence on each other creating a

delicate balance that can easily change in one direction or the other if any of these

components are altered or change in any way. At a smaller micro scale, the population-

species level, community ecology analyses parts of the ecosystems focus on species

interactions, diversity and distributions within the ecosystems.

Giving species interactions a spatial perspective places them in a context in which their

interactions with ecosystem processes may be assessed (Jones and Lawton, 1995). The

way in which the measures of biodiversity vary over space and time is a key feature

of biodiversity, and therefore only assessments using these dimensions can provide in-

sights into the relationships between changes in biodiversity and changes in ecosystem

functioning (Naeem et al., 1999).

Combining as many of these perspectives of ecological systems as is possible should

improve the prediction of ecosystem assessment and function with the combination al-

lowing ecologists to consider biodiversity as a driver of ecosystem functioning (Naeem

et al., 1999).

21



2. Background

2.3 Biodiversity indicators

Indicators of biodiversity are required to help prioritize and conserve habitats (Sarker,

2002) and are often used to inform in decision making in land use planning. They

are needed to help determine and monitor management goals, to identify actual or

potential stressors on biodiversity, to assess impacts on biodiversity and to analyse habitat

conditions, which allow for comparisons over time.

2.3.1 What are biodiversity indicators?

The definition of biodiversity in itself is far too simple and it is far better to define

components of biodiversity in order to ’provide a framework for identifying specific,

measurable indicators to monitor change and assess overall status of biodiversity’ (Noss,

2008). An indicator is, in effect, a surrogate for biodiversity that uses variables or at-

tributes to represent the distribution and abundance of species and communities and is

used as an indicator of the well-being of ecological systems. They are variables that pro-

vide quantitative data to measure the state of biodiversity (e.g., rarity, threat), impacts

on biodiversity (sensitivity to change), or drivers of biodiversity change (natural versus

man-made change).

It is not possible to measure and document the complete biodiversity of an area (Freuden-

berger and Harvey, 2003) and it is impossible for a single measure to capture all dimen-

sions of the compositional, structural and functional attributes of biodiversity adequately.

However, it is imperative that there is a link between management aims and indicators

and the types and levels of biodiversity (Ferris and Humphrey, 1999). It is recommended

to use indicators that focus on both key habitats as well as species (Landres et al., 1988)

and that the indicators should include compositional, structural and functional biodiver-

sity at multiple levels; i.e. regional landscape, community-ecosystem and population-
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species (Figure 2.2) (Noss, 2008). A similar approach has been followed and applied to

biodiversity monitoring by the Government for South Australia ( Figure 2.3).

Figure 2.3: Attributes (components, patterns and processes) of the biodi-
versity hierarchy (adapted from Peck (1998)).

Biodiversity can also be estimated using species richness. This approach involves ex-

tensive field surveys. However, remote sensing can be a better option to estimate

biodiversity using higher taxa and environmental surrogates thus minimizing extensive

field surveys. This is particularly important in areas that are inaccessible or difficult to

reach and where fragility and diversity or heterogeneity is the major constraint, as with

Cors Fochno.

Biodiversity is a dynamic feature of ecosystems that changes in response to a wide range

of natural and anthropogenic influences. The relationship between these influences on

biodiversity is complex (Murthy et al., 2003). For example specialisation of a population

is a precondition for sensitivity to habitat change (Pearson, 1994; Ferris and Humphrey,
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1999). Remote sensing data has become an important tool with which to investigate

the spatial and temporal dynamics of these systems. Historical archives of aerial and

satellite data can also be used to help monitor changes and assess land management

processes and drivers of change.

2.3.2 Suitability and sensitivity of an indicator

There are many aspects that one needs to consider when selecting and using a suitable

indicator. Selection of an indicator can depend on issues at stake and the relevance of the

indicator to management questions. Questions relevant to management or policy may

steer the selection of indicators. The question can be posed as ’what are we monitoring

and why?’ (Noss, 2008). The indicator should have the capacity to differentiate between

natural and anthropogenic changes.

Indicators need to be repeatable and reproducible and suitable for statistical analysis.

Initial baseline values are required to serve as a reference, which are applicable at different

scales and represent many habitats. Indicators need to correlate with the biodiversity

and it is important to know the ecology of any species that may be used as indicators. It

is important to know of interrelationships between indicators and species/groups present

(Lindenmayer and Margules, 2000). Another factor equally important is the feasibility

of using certain indicators such as time or the cost of investigation.

An assessment based on a combination of a number of indicators is often the most

effective way of assessing the biodiversity within a landscape or ecosystem. Zebisch

et al. (2004) assessed biodiversity of a landscape by using six indicators, with two for

each attribute: composition, structure and function. From this study they found that

the most sensitive indicators were compositional attributes, and that irregularities where

one attribute changed more than another were beneficial for determining management

impacts.
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2.3.3 Other biodiversity measures

Explaining patterns of species diversity at the species level is one of the most complex

problems in ecology because diversity is usually the outcome of many contributing fac-

tors whose relative importance varies with spatial and temporal scale (Diamond, 1988).

Species composition is possibly more important to monitor than species richness as it

is the dominant or most abundant species that are usually the key species drivers of an

ecosystem. Species richness and number of distinct plant functional types are measures

that are often used to assess biodiversity. Estimates of turnover are also important al-

though very difficult to do accurately due to the lack of data available. However, this

is where RS data can allow some of these gaps to be filled. There are three terms of

biodiversity over spatial scales known as alpha, beta and gamma diversity (Whittaker,

1972).

Alpha diversity is the diversity within a particular habitat or ecosystem. This is usually

known as the number of different species present in an ecosystem or area. However, it

is not just the number of species that create the diversity. Diversity depends also on

evenness which compares the similarity of the population size for each of the species

present. Species numbers recorded across a transect across transition areas can be

used to provide a measure of alpha diversity of each habitat/vegetation type across the

gradients.

There are several indices created to measure species biodiversity; the most popular are

the Simpson Index and the Shannon Index. These indices focus on the relative species

richness and abundance and/or the pattern of species distribution. These biodiversity

indices can be used for identifying areas of high natural or human disturbance (Magurran

and McGill, 2011).

Beta diversity can be used to compare different sampling areas. Measures of biodiversity

are often used to compare two ecosystems or to determine changes over time in a given
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region. Beta diversity measures the present status and changes of species diversity

between ecosystems or areas. The number of taxa that are unique to each of the

ecosystems are compared. Beta diversity can be used in temporal studies and can

indicate the spatial turnover of species composition across habitats and environmental

gradients.

2.4 Monitoring vegetation

2.4.1 Vegetation maps

Vegetation is often considered to be the best single biodiversity surrogate for habitat and

ecosystems (Lindenmayer et al., 2014). Different land cover and vegetation classification

approaches vary in their potential to provide information and useful detail. It is imperative

to perform validation of these classification results to estimate and to improve vegetation

classification (Kerr and Ostrovsky, 2003b). Miller (2000) stated that vegetation is often

used to indicate particular habitats. However, a habitat is much more complex and does

in fact describe an area with a combination of resources (e.g. food, cover and water)

and environmental conditions, that allows a given species or population to survive and

reproduce. Habitat is in this therefore linked to a species, or species group, that share

the same ecological requirements. Bunce et al. (2008) define habitat as an element of

the land surface that can be consistently defined spatially in the field in order to define

the principal environments in which organisms live.

Traditionally, vegetation mapping and information about vegetation condition and com-

position have been collected using ground based assessments, usually on protected sites

for the purpose of monitoring (Gibbons and Freudenberger, 2006). However, remote

sensing of protected sites can provide conservation managers with up to date data within

and around the sites. It can provide detailed information regarding habitat status pro-

26



2. Background

viding information on land cover and its vegetation structure. With the help of high

resolution satellite imagery, vegetation of different biodiversity rich regions can be stud-

ied in both time and space. As well as producing detailed vegetation maps this data

has been used to significantly improve species distribution modelling, species richness

modelling, alpha diversity, beta diversity, and measures of both productivity and hetero-

geneity (Gillespie et al., 2008). Examples of biodiversity surrogates can include maps

of ecological communities (Lindenmayer et al., 2014). Different representative vegeta-

tion patches can be sampled using ecological surveys and remote sensing imagery, and

results can be extrapolated on a regional scale. Essential to the use of vegetation as

an indicator/measure is a correlation or link between it and the biological diversity of

that particular vegetation. Vegetation maps produced by remote sensing methods can

increase the accuracy of maps of associated species distributions (Briggs and Freuden-

berger, 2006). However, although vegetation maps are frequently used for indicating

biodiversity associations, they cannot necessarily on their own act as indicators of bio-

diversity (Burgman and Lindenmayer, 1998).

2.4.2 Classification systems

To work well within a remote sensing system and for use within programs developed for

analysis of satellite imagery, it is best to use or incorporate a classification system that

correlates well with remote sensing methods, as well as one that uses characteristics

which equate to data that can be extracted from the remote sensing data.

Plant functional types are often used to classify plants according to their physical, phylo-

genetic and phenological characteristics in order to develop vegetation maps and models.

The most important approaches to plant functional groupings are based on the use of

functional characteristics. Functional grouping of species allows us to simplify biodiver-

sity to components that can identify patterns or processes, and effects and interactions

between species at different levels of organization (Duckworth et al., 2000). Plant
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functional types and their traits are useful measures that aid the understanding of the

ecological processes of competition and succession. They are fundamental to under-

standing changes over time showing interactions between components of biodiversity of

plant communities and ecosystems and can provide a basis for predicting changes when

components of the biodiversity are altered or lost (Lamont, 1992).

There are four main kinds of functional groupings (Reich et al., 2003).

a) Qualitative properties that can be used to classify groups of plants based on certain

characteristics such as life form and type of photosynthesis, among others.

b) Quantitative characteristics, such as growth rate, specific leaf area, maximum pho-

tosynthetic capacity, etc.

c) A combination of quantitative characteristics that may influence each other, such as

leaves, seeds, and tree height.

d) Responses to specific environmental factors (e.g.; the C-S-R scheme of plant strate-

gies proposed by Grime which allows species to be grouped).

2.4.3 LCCS and EODHaM

The characteristics within these four main groups are all extractable either directly or

indirectly from a variety of remote sensing data. However, it is not just the character-

istics but also the method by which these characteristics are extracted and used within

a classification system that need to fit into remote sensing methods. A hierarchical

rule based method of classification is often found to be useful particularly for classify-

ing segmented or defined areas with hard boundaries. The Land Cover Classification

System (LCCS) is such an approach and uses quantitative characteristics, qualitative

characteristics and environmental factors (Figure 2.4) to classify covers of all functional
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groupings suggested by Reich et al (Di Gregorio and Jansen, 2000). In short the LCCS

system defines the observed biophysical cover on the earth’s surface. These biophysical

properties of vegetation are of particular use, with comparisons being made to spectral

information obtained from satellite imagery along with structural data from sources such

as LiDAR.

The LCCS classifications have been implemented within the Earth Observation Data

for Habitat Monitoring (EODHaM) system and the hierarchical system of classification

for the LCCS works well with the remote sensing methods. The EODHaM system is

a hierarchical system for classifying vegetation. It was developed to support conserva-

tion and protected areas and surroundings by the EU-funded BIOdiversity multi-SOurce

monitoring System: from Space TO Species (BIO SOS) project (Lucas et al., 2015).

The EODHaM system has adopted the Food and Agriculture Organization Land Cover

Classification System (LCCS) taxonomy which can be adapted or translated to other

classifications. The EODHaM system uses a combination of pixel and object-based pro-

cedures with a 1st and 2nd stage which use earth observation (EO) data alone with

expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3

and beyond) (Figure 2.4).
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The LCCS classification is arranged such that the initial steps identify areas that are either

vegetated or non-vegetated (Figure 2.4), this being level 1 of the LCCS classification.

This is followed by the splitting of these classes into terrestrial vegetated, aquatic

vegetated and terrestrial non-vegetated and aquatic non-vegetated, forming level

2 of the LCCS (Figure 2.4). Both of these levels form the 1st stage of the EODHaM

system (Figure 2.4).

Moving on to level 3 of the LCCS classification system requires splitting of level 2

classes into further categories relating to the vegetation lifeforms, such as woody trees,

woody shrubs, herbaceous forbs, herbaceous graminoids, lichens and mosses. Further

progress up the levels requires splitting classes into those associated with cover and

height (Figure 2.5).

Many of these LCCS classes can be obtained with the aid of remote sensing data and

consequently the EODHaM system has been structured to allow use of a diverse range

of spaceborne and airborne remote sensing data acquired at very high resolution (VHR;

e.g., Quickbird or Worldview-2) or HR, with focus on optical data but with capacity

to integrate other sensor modes (e.g., LiDAR, RADAR). The EODHaM system is now

undertaken using open source code.
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Figure 2.5: Layers within the LCCS tool indicating the pathway to obtaining
the final LCCS code (in this case, semi-natural grasslands dominated by
Molinia caerulea).
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2.5 The use of remote sensing data to map vegeta-

tion

2.5.1 Reflective properties of vegetation

Remote sensing techniques have been developed which use measures of spectral re-

flectance to infer structure, composition and functioning of plant canopies. The spectral

reflectance data of vegetation are used to differentiate between plant species and com-

munities. Plant foliar chemistry, leaf structure, canopy structure and moisture content

can vary greatly between species and communities. These differences produce different

spectral reflectance curves (Figure 2.6 ) and measures derived from remote sensing data

containing this information can be used to differentiate vegetation types and species. In

order to help classify and identify plant species, some knowledge of how these attributes

contribute to differences in spectral reflectance curves is important.

Leaf pigments, water content, carbon content, and nitrogen content are the most impor-

tant components that affect spectral properties of leaves. The three main pigments in

a plants’ leaf are chlorophyll, caratenoids and anthocyanins. Relative concentrations of

these pigments can vary significantly. These pigments serve a number of purposes and

are important to the function and health of a plant. Plants that are very green tend to

have high concentrations of chlorophyll. Chlorophyll is used to convert light into energy

so is related to photosynthetic rates. Carotenoids (orange reflectance), xanthophylls

(yellow reflectance) and anthocyanins (red reflectance) are more prevalent in plants that

are either stressed or senescing and as a result, plants appear visibly yellow or shades of

brown (Jones and Vaughan, 2010).
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Figure 2.6: Typical spectral response characteristics for photosynthetic
(green) vegetation (PV) and non photosynthetic vegetation (NPV) (adapted
from Beeri et al. (2007)).

Reflectance from leaves is influenced by leaf structure. The arrangement of cells, air

and water within a leaf determine the reflectance particularly in the infra-red region.

Vegetation generally shows a strong reflectance within the near infra red (NIR) region.

NIR is not absorbed by plant pigments. Plants that are healthy with turgid mesophyll

cell walls reflect more NIR than is transmitted through. By monitoring the difference in

the NIR and the visible region inferences can be made on the plants’ health, productivity

and senescence.

When a leaf or plant senesces it loses the pigments and moisture content, and con-

sequently cell structure changes. The spectral curve of this is then very different to

that of the spectral curve when it was a healthy or photosynthesising leaf or plant (Fig-
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ure 2.6)

Plants will contain different quantities of water dependant on their leaf geometry, canopy

architecture, their water requirements or as a prerequisite of their environmental con-

ditions. For these reasons there are significant differences in water content between

species, and even among plants of the same species there can be significant differences

due to leaf thickness, water availability, and plant health.

Measures that relate to these attributes of a plant can often be estimated by using

vegetation indices and other remote sensing indices which use two or three of the spectral

bands relating to the above biophysical and biochemical attributes of vegetation.

2.5.2 Remote Sensors

Instruments which record spectral reflectance data are called optical sensors. There are

many optical sensors flown either by satellite or aircraft with varying capabilities. Sensors

that are suitable for conservation monitoring are dependant upon the user’s needs and

size of the area. The nature of vegetation classification and the scale of the study

area dictate the choice of suitable spatial resolution and type of sensor required (Hengl,

206).

Both multispectral and hyperspectral imagery are used for such vegetation mapping but

it is recognised that high and very high resolution imagery is underutilised in conservation

research although it is more typically used to map vegetation at regional and local scales

(Xie et al., 2008; Boyle et al., 2014).

Hyperspectral imagery can be suitable for providing spectral data that can be used for

vegetation classifications based on vegetation types or dominant species. Having a higher

level of spectral detail (large number of narrow bands) in hyperspectral images gives bet-

ter capability to detect the previously unobserved. The level of spectral detail afforded

by hyperspectral sensors such as EO-1 enhances vegetation characteristics that are diffi-
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cult to discriminate with multi-spectral broad band satellites such as WV2 (Marshall and

Thenkabail, 2015). However, there are limitations associated with spatial and temporal

acquisitions as well as complexities with preprocessing (Lucas et al., 2012c). Hyperspec-

tral imagery contains more vegetation information than multispectral imagery giving it

a higher level of spectral detail which in theory should give a better capability to identify

discernible differences in vegetation. However, this also adds a level of complexity and

this, coupled with complex heterogeneous habitats, can lead to increased difficulties in

classification. While useful for research purposes this would not be ideal for developing

techniques which could be developed to form a monitoring system.

Multispectral imagery can have anywhere between 3 to 10 spectral band widths available.

Whilst these provide far less spectral data than hyperspectral imagery they provide far

more flexibility in terms of being able to use multi-temporal images for better species

or habitat discrimination (Xie et al., 2008) as well as change analysis. The ability to

monitor change within a landscape is an important conservation monitoring need.

Very high resolution (VHR) satellites such as WorldView-2 are now providing the com-

bination of high spatial and spectral resolution in the same platform (Nagendra and

Rocchini, 2008). The WorldView-2 (WV2) sensor provides highly suitable imagery for

small protected site monitoring in terms of resolution and the number and type of spec-

tral bands it provides (Table 2.1). It also provides a higher resolution than most similar

multispectral satellites and records 8 closely focused bands. The bands have been chosen

for their sensitivity in regions relevant to land classification (Globe, 2012).
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Satellite MS Pixel size No.of Bandwidths
Sensor (m) Spectral Bands

EROS-C 2.8 4 Blue, green, red, NIR
GEOEYE-1 1.64 4 Blue, green, red, NIR

IKONOS 4 4 Blue, green, red, NIR
KOPMPSAT-2 4 4 Blue, green, red, NIR

Orbview 3 4 4 Blue, green, red, NIR
Quickbird 2.4 4 Blue, green, red, NIR
RapidEye 5 5 Blue, green, red, red-edge, NIR

Worldview2 2 8 Coastal, blue, green, yellow,
red, red-edge, NIR1, NIR2

Table 2.1: High resolution multispectral (MS) satellite sensors available.
(65m resolution, at nadir)

Most other multispectral high resolution sensors record 4 bands, blue, green, red and

NIR (Table 2.1). Both RapidEye and WV2 sensors record an extra band, the red-edge

band which is proven to help with accuracy and sensitivity for vegetation classification.

However, WV2 has a further 3 extra bands, coastal, yellow and NIR2 (Table 2.1).

The 8 bands (Figure 2.2)are specifically targeted at plant identification, vegetation land

cover types, with coastal and wetlands applications (Elsharkawy et al., 2012). A further

panchromatic band is provided at 50cm resolution.

Sensor Band Wavelength (nm) Pixel size (m)

PAN 450 - 800 0.5

Multispectral Bands

Coastal Band 400 - 450 2
Blue 450 - 510 2

Green 510 - 580 2
Yellow 580 - 620 2

Red 630 - 690 2
Red Edge 700 - 740 2

NIR 1 770 - 890 2
NIR 2 860 - 1040 2

Table 2.2: Worldview 2

Recent studies using WV2 have given promising results regarding species separation and
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vegetation mapping for conservation monitoring. Cho et al. (2015) were able to use

it to discriminate three dominant tree species and to identify grass and shrubby areas

in canopy gaps with an overall accuracy of ≈89.3%. It provides promising results for

vegetation mapping including heterogeneous landscapes (Rapinel et al., 2014; Nunez-

Casillas et al., 2012), with derived vegetation maps found to be more detailed than

existing ones (Nunez-Casillas et al., 2012).

Field spectroradiometer

In order to investigate and understand vegetation reflectance it is useful to use ground

data where terrain shadows and atmospheric interference do not complicate the findings.

A field spectroradiometer can measure the reflectance just as the sensor on a satellite

or aircraft can and will provide in-situ calibration of surface reflectance. A field spec-

troradiometer can record the entire solar reflected portion of the spectrum, 350 to 2500

nm (Figure 2.6) and can be used to collate spectral libraries of vegetation species. It

cannot be guaranteed that all vegetation classes or plant species will be easy to discrimi-

nate when producing a vegetation classification from satellite imagery. An initial ground

assessment using a field spectroradiometer could save both time and investment.

Knowing how the spectral responses of plants and their biophysical and biochemical

attributes relate to these with phenological changes can improve our abilities to discrim-

inate species (Somers and Asner, 2012). Baldeck and Asner (2014) used non-seasonal

field spectroradiometer readings to improve the accuracy of their tree crown classifica-

tions and found that they were able to use it to test separability of species as well as

using the data to interpret how much training data they required. Schmidt and Skidmore

(2003) collected field spectrometer readings during one summer period for 27 saltmarsh

vegetation types. They proved from this data that there were significant differences in

the vegetation spectra and that this therefore showed that spectral libraries created in

the field could be used to identify vegetation species within hyperspectral imagery.

It is also important to assess the timing for image acquisition and so knowledge of the
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temporal spectral response of the vegetation ecosystem is essential before acquiring satel-

lite imagery (Cole et al., 2014). Cole et al. (2014) used phenological spectral responses

of key vegetation (Calluna vulgaris) to inform on best acquisition dates but found that

this was dependant upon species. Laba et al. (2005) used field spectroradiometry to

assess the best time to discriminate invasive species such as Phragmites australis and

found August to be the best period to discriminating this and other species. Comparisons

of these results with satellite spectral data was not made, however, Ustin and Santos

(2010) compared their ground spectral response results with hyperspectral imagery and

found they showed a similar shape and magnitude but with poor agreement for aquatic

species.

2.5.3 Vegetation indices

Remote sensing provides techniques to identify groups of species with functional differ-

ences by their particular biophysical properties. Using remote sensing data discrimination

of vegetation types can be achieved by using biophysical attributes such as plant pro-

ductivity and moisture content of vegetation (Lucas et al., 2007). Such techniques can

allow for identification of biophysical and biochemical attributes, which is essential for

biodiversity assessment, land cover characterization etc. (Wang et al., 2010a). They can

facilitate identification of the biophysical attributes which can be used to discriminate

plant functional types. Attributes such as water content, photosynthesis, specific leaf

area, and chlorophyll content account for a substantial part of the functional differences

observed among species from different successional stages, as well as among individuals

of the same species growing in different stages. Vegetation indices and other remote

sensing indices which relate to biophysical properties of vegetation such as productivity,

photosynthetic, non-photosynthetic, structure, and composition can be used to assist

with establishing and mapping ecosystem status. Differences in these indices between

species at key times of the year can also prove to be important for discriminating species
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(Castro and Sanchez-Azofeifa, 2008).

Vegetation Indices are quantitative measures derived from two or three spectral bands

(Jones and Vaughan, 2010). These indices are used in order to maximise sensitivity

to plant biophysical attributes and refine and enhance the precision of spectral data by

minimising the effect of external (e.g. atmospheric and sun angle effects) and internal

(topography and canopy background) factors on the spectral data (Baret and Guyot,

1991). Vegetation Indices have been used widely in the assessment of biomass, plant

stress/health and crop production (Jackson and Huete, 1991).

Different sensors will provide information in different spectral bands so as a result there

are often indices specifically developed for a sensor. Classification of vegetation using

indices (Table 2.3) was one of the main methods employed within the EODHaM system

for habitat and species discrimination, where WV2 was used in mapping habitats. The

indices listed in Table 2.3 can all be derived from broadband multispectral data namely

Worldview 2 data and provide useful information for the discrimination and mapping of

different vegetation types.

Table 2.3: Indices that have been used in the development of the BIOSOS
project for discriminating and mapping land covers and vegetation.
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One of the most commonly used indices for vegetaion mapping is the normalised dif-

ference vegetation index (NDVI). This is a measure derived by dividing the difference

between near-infrared and red reflectance measurements by their sum. NDVI is based

on the spectral properties of green vegetation contrasting with its soil background. The

index is strongly correlated with aboveground net primary productivity (NPP) and can

be used as a measure of photosynthetically active biomass (Tucker and Sellers, 1986).

These attributes can be used to provide an index of ecosystem function (Kerr and Ostro-

vsky, 2003a). The relationship between diversity and productivity has been the subject

of a long standing debate in ecology. NDVI has been related to the distribution of both

plant and animal species diversity (Figure 2.7).

Figure 2.7: relationship between species richness and four indices of environ-
mental productivity for 55 ungulate mammal species in East Africa (Skidmore
and Oindo, 2003)

Percentage of vegetation cover can also be estimated using Normalized Difference veg-

etation Index (NDVI) (Table 2.8) (Purevdorj et al., 1998). These provide useful tools

also for monitoring livestock production, agriculture and desertification.
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Figure 2.8: Relationships between percent vegetation cover and the vege-
tation indices. (Purevdorj et al., 1998)

One index that makes use of the unique red-edge band available to WV2 is the plant

senescent reflectance index (PSRI) (Table 2.8), an alternative to using end-members of

dead or senescent vegetation (Lucas et al., 2011b).

Information relating to the water content of vegetation normally requires the short wave

infra red (SWIR) regions. WV2 does not provide spectral data in the SWIR region.

Vegetation with a lower water content does however, display a higher reflectance in the

NIR region. This means a water band index (WBI) such as that employed by BIOSOS

used the NIR and the blue band (Lucas et al., 2011b). This proved to be more effective

for use with WV2 than the more widely known WBI using the 950-970 region, which in

the case of WV2 uses regions that fall within only the NIR2 band (Table 4.4) (Lucas

et al., 2011b).

2.5.4 Remote sensing classification methods

Classification using an object-orientated and rule-based approach has proved advanta-

geous when using higher spatial resolution imagery, especially when analysing for change
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detection (Coppin and Bauer, 1996).

The more traditional approach to classification is based on analysis of individual pixels

(Wang et al., 2004). However, when using Very High Resolution (VHR) images classi-

fication of land-covers does not require individual pixel resolution and a coarser scale is

sufficient if not better in terms of accuracy (Wang et al., 2004). Using a pixel based

approach for land-covers could increase the within-class spectral variance making the

separation of land-cover types difficult (Shaban and Dikshit, 2001).

However, with reduced scale (i.e. small protected sites) these issues with pixel based

classification are reduced. Also for discrimination of species within a heterogeneous habit

patches of dominant species may be quite small and not fit within anything larger than

the pixel size.

Classification systems using object based separation usually have one major drawback,

that the classes created from these all have discrete boundaries separating each other. In

reality many of these boundaries are gradual with graded transition zones and ecotones.

Processing and classifying images in this way can therefore result in a substantial loss of

information (Foody, 2000; Palmer et al., 2002). There are also issues when classifying

areas of varying heterogeneity and complex patterning. It is therefore necessary to include

a statistical quantification of uncertainties for these areas.

One important method of dealing with this is called spectral unmixing. This involves

using end members or pure pixel/object signatures to produce a sub-pixel classification.

End member extraction in the case of vegetation classification is the process of identifying

areas with a pure signature from a mixture, these may include areas of a highly dominant

species areas that are predominantly green or dead vegetation (Miao and Qi, 2007).

Such endmembers can be defined by selecting reflectance spectra in the field using a

field spectroradiometer (Abdel-Rahmana et al., 2010) or from known homogeneous areas

within an image. These areas are selected and used to produce fractions of endmembers

for areas of heterogeneity or mixed pixels. Once endmembers are selected spectral
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unmixing techniques can be employed to derive fractions of end members (classes) from

the mixed pixel or object. Linear spectral unmixing using these endmembers assigns a

value to pixels which can be interpretable as a cover fraction or abundance values (Plaza

et al., 2002). However this only works if all endmembers present are used within the

fractioning (Adams et al., 1995).

Vegetation Heterogeneity

Although the soft classification method described above offers classifications without

hard discrete boundaries, there are a number of other ways in which vegetation hetero-

geneity can be measured. These methods retain more information by using continuous

data rather than creating abrupt patch or threshold boundaries. Spectral heterogeneity

using reflectance values of pixels in remotely sensed images can be used to assess veg-

etation heterogeneity. There are a number of ways of looking at spectral heterogeneity.

Much of this work has been carried out on a landscape scale but methods can be applied

at different scales (Rocchini et al., 2010). Measures can be based on Vegetation Indices

e.g. NDVI values, an individual spectral band or by using a number of spectral bands.

A robust statistical method which takes spatial scales into account is based on ecologi-

cal theory and is often applied to calculating species richness at different spatial scales.

This powerful multiscale method is called rarefaction, and for remote sensing purposes

pixel values rather than species presence are used. Another variation on this multiscale

method involves using variograms or semivariograms; however Garrigues et al. (2006)

found these to indicate monoculture crops to be more heterogeneous and so is not a true

reflection perhaps of the heterogenity of vegeation types but more of its texture.

Vegetation Structure

One method of assessing vegetation structure is to use Light Detection And Ranging

(LiDAR). This is a remote sensing system which uses a laser to send a pulse of light to

44



2. Background

an object and uses a receiver to measure the intensity scattered back (backscattered)

(Mucher et al., 2013). LiDAR sensors are able to measure heights of objects and fea-

tures on the ground creating three dimensional distributions of plant canopies as well as

subcanopy topography. This can provide high resolution vegetation structure maps with

highly accurate estimates of vegetation canopy structure including height and cover.

Vegetation density can be estimated at different heights throughout the canopy (Tan,

2008) which enables 3 dimensional profiles of vegetation structures (Figure 2.9). This

demonstrates the potential for applications such as mapping emergent tree species and

sub-canopy layers that are important indicators of stratification for forest bird species

(Turner et al., 2003a).

Figure 2.9: Sampled trees within an example plot. (right) LiDAR data for
that plot. The green dots represent vegetation points (points where light
reflected off of trees) whereas the orange dots represent the ground (Image
by Leah Wasser).

Hinsley et al. (2002) used LiDAR to map forest structure and were able to find relation-

ships between canopy heights and chick mass which in turn gave a surrogate for breeding

success. This data could be used to predict habitat quality and to map species distri-

butions as a function of habitat structure (Hill et al., 2003). For non-forest structures

Davenport et al. (2000) devised a technique to measure the height of crops in farmland

fields as crop height is also an important predictor of bird species population and, in
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turn, can be used as a proxy for bird suitability.

The vegetation layer can be removed through modelling techniques, revealing the sur-

face under the vegetation. This provides a much-improved perspective on landscape

topography and can be used to measure topographic features otherwise concealed by

vegetation (Davies and Asner, 2014).

A number of studies have incorporated high resolution multispectral images with Li-

DAR thereby improving their overall application in ecological monitoring of change in

habitat structures and the associated effects on wildlife (Lucas et al., 2015; Leyequien

et al., 2007a). Methods have been developed to fuse multispectral and LIDAR data for

delineating individual tree crowns and estimating tree height (Tweddale, 2005). More

recently the BIOSOS development of the EODHAM method (Lucas et al., 2015) has

shown how the fusing of the two can be used successfully with classification systems

where the the vegetation structure, e.g height and life-form, are required.

2.6 Identifying the relationships between species and

their habitats

There are a range of different types of relationships between species and habitats and

in order to make links between these it is important to understand the role of the

species within the habitat. Species for purposes of monitoring are often placed into

specific categories, which indicate their functional importance, habitat specialisation

and dependence on environmental conditions.

Several authors highlight the use of indicator species with many well-known functional

interrelationships with other species (groups), as these play an important role in the func-

tioning of ecosystems (Ferris and Humphrey, 1999; Lindenmayer and Margules, 2000).

Ecological dominance is the degree to which a taxon is more numerous than its com-
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petitors in an ecological community, or makes up more of the biomass. Most ecological

communities are defined by their dominant species. Dominant species are also suggested

as indicators (Lindenmayer and Margules, 2000). In many ecosystems dominant species

seem to drive the system and play a critical role. These species could be considered as

keystone species. Studies of their ecology, spatial distribution and their relationship with

other components of ecosystem are important from a functional perspective. When cer-

tain environmental conditions are designated as the indicator (e.g., soil acidity, canopy

cover), a strong dependence of the indicator species on these conditions is necessary.

The identification of selected keystone species or umbrella species makes conservation

decisions easier.

Sometimes it is simpler to identify species that play the key role of holding together

the entire biological community or ecosystem. These species are known as ’keystone

species’ in ecological terms (e.g. Sphagnum on Cors Fochno). In most of the cases, it is

indeed groups of species rather than individual species that assume importance and these

species groups could be referred to as the ’keystone groups’ or ’functional groups’. The

population dynamics of keystone species define the pattern of succession of vegetation

(Khanina, 1998). The loss of a keystone species results in a range of dramatic cascading

effects that alters trophic dynamics, and other food web connections, and can cause the

extinction of other species (Fischer et al., 2006).

The relationships of fauna and other flora species with plant species of ecological domi-

nance are of importance when utilising remote sensing data as these are the species that

are more easily mapped through the interpretation of imagery.
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2.6.1 Relationships between invertebrates and derived RS vari-

ables

It is important to be able to relate the habitat requirements of specific fauna with their

habitats. Invertebrates often need different conditions at different stages of their life

cycle and usually have very specific needs at small scales (micro-habitat). Microhabitats

from different stages of an insect’s life often need to be close together. This means that

a habitat that is diverse or mosaiced at a range of scales with variations in structure

and vegetation species compositions are important. There are many challenges involved

in identifying invertebrate species of conservation concern. For this reason it is often

more effective to focus on better-known species for example the distribution of plants

(McGeoch et al., 2011b)

Remotely sensed imagery is used increasingly to detect insect habitats or the effects

of insects on their environment (Leyequien et al., 2007a). Vegetation classifications

can be used to provide data that can be used to correlate plant species or diversity

with invertebrates. Species such as butterfly, which are often host-specific and whose

diversity may correlate with underlying plant diversity have been linked to remote sensing

derived habitat types (Debinski et al., 1999). Debinski et al. (1999) reported that several

rare butterfly species significantly correlated with remotely sensed habitat types in the

Greater Yellowstone Ecosystem. The modelling of Luoto and Heikkinen (2005) also

supported the findings that specialist butterfly species distribution is closely related to

remotely sensed habitat types. British ground (Coleoptera, Carabidae) and water beetle

(Coleoptera spp.) species pool distribution strongly correlated with satellite-derived

land cover data (Eyre et al., 2003). Woodland invertebrate distributions have been

successfully associated with heterogeneity of landscape patches using satellite imagery

(Chust et al., 2003).

Vegetation indices derived from multi-spectral satellite imagery, whilst usually employed
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for assessing and monitoring vegetation, have been shown to act as surrogates of species

richness and abundance of many fauna species. Although few studies have investigated

the use of vegetation and other indices as surrogates, or as predicting habitat suitabil-

ity for invertebrates, there have been a number of more recent investigations which

have shown relationships between these indices and presence or abundance of various

invertebrate species. Lafage et al. (2013) found that the NDVI was strongly related to

activity-density and species richness for ground beetles, and had the potential as a low

cost method for mapping arthropod assemblages at large spatial scales on temperate

floodplains.

More research is required to relate the biophysical attributes derived from remote sensing

vegetation indices to invertebrates. There are relationships and associations between in-

vertebrates and many of these biophysical attributes that can be extracted from remote

sensing data (Leyequien et al., 2007a). Moisture, plant productivity and dead litter can

all be extracted from VHR satellite imagery. To illustrate this the following examples

could lead to the selection of indices such as WBI to test associations between inverte-

brates, such as spiders, and plant moisture content. It has been recognised in ground

survey experiments that both light and moisture were found to be two important bio-

physical attributes limiting the dominance and abundance of wolf spiders in bog habitats

and Hore and Uniyal (2008) found spider species to vary with moisture levels and canopy

cover.

Environmental heterogeneity is considered to be one of the main factors associated

with a high degree of biological diversity, given that areas with higher environmental

heterogeneity can host more species due to the greater number of available niches within

them (Gaston and Blackburn, 2000). Spectral heterogeneity or spectral variability, is

expected to be related to environmental heterogeneity and could therefore be used as a

powerful proxy of species diversity (Rocchini et al., 2010).

Lassau et al. (2005) used NDVI and standard deviation of NIR as indicators of low
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and high habitat complexity. They found a strong association between the NDVI and

habitat complexity and showed that ant species differences corresponded to differences

in habitat complexity. Lassau et al (2008) also showed that NDVI could be used as an

habitat complexity surrogate for predicting differences in beetle compositions in open

canopy forests (Lassau and Hochuli, 2007a).

Variables derived from LiDAR data have also been effective in predicting beetle as-

semblages (Müller and Brandl, 2009). They derived four environmental variables from

LiDAR: (i) altitude, (ii) SD of the canopy height (an index for vertical variation of the

canopy height, influenced by tree species combination), (iii) maximum tree height (pro-

vides information about the availability of at least one tall and old tree in a plot, which

is a surrogate for habitat continuity) and (iv) penetration rate (a proxy of microclimatic

conditions). Vierling et al (2011) also found they could derive spider community and

species distribution information using LiDAR data. LiDAR is a viable tool to assist

species-specific conservation as well as broader biodiversity planning efforts, not only for

a growing list of vertebrates but for invertebrates as well (Vierling et al., 2011).

2.6.2 Remote sensing data input into habitat suitability and

species distribution models

Species Distribution Models (SDMs) and Habitat Suitability Models (HSMs) can help

to provide additional species information for biodiversity assessment by extrapolating

species distributions in space and time. They can be used to develop spatially explicit

predictions of habitat suitability or quality. SDMs and HSMs support predictions of

how species distributions or location of suitable habitats might be affected by habitat

management or environmental change, and to predict the impacts of land use and climate

change on species distributions. They can be used to predict the impacts of invasive

species, restoration and habitat management, determine suitable locations for species
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reintroductions and predict the consequences of habitat loss.

Linking remote sensing to underlying ecological relationships can greatly improve species

habitat distribution models (Zimmermann et al., 2007). The method showed remote

sensing predictors improved the modelling of the distribution of tree species and was

especially useful when modelling rare and occasional species. Remote sensing maps,

when combined with species level ecological data, should give better predictions of the

distribution and abundance of those species within a heterogeneous landscape (Imhoff

et al., 1997).

Vegetation classification schemes can be integrated into SDMs to correlate individual

species with map classes (Franklin, 2008a). However, as the overall classification of most

landcover classifications are 75% to 95% accurate, this creates additional inaccuracies

when inputted into SDMs. A number of studies have focused on the use of RS derived

indices as input into SDMs (Zimmermann et al., 2007; Hassan and Bourque, 2009).

Plant productivity and biomass of ecosystems expressed as NDVI derived from remote

sensing data is hypothesized to influence species distribution and local abundance of

individuals (Seto et al., 2004; Oindo, 2002) and is often correlated to faunal species

occurance and diversity. Many studies have used NDVI as input into habitat suitability

models and found significant positive correlations between NDVI and mammal and bird

distributions (Osborne et al., 2001; Musiega and Kazadi, 2004; Zinner et al., 2001),

although very few studies have used remote sensing data in habitat suitability models

for invertebrates (Leyequien et al., 2007a).

Although many of the derived indices from remote sensing data are proxies for biotic

conditions that influence habitat suitability, most studies have focused on the use of

NDVI. Most studies using NDVI for invertebrate species distributions have used it to

locate insect attack, and subsequently linking with areas of canopy defoliation (Eklundh

et al., 2009; Wang et al., 2010b).
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Species assemblage data can also provide valuable information on ecological functioning

of habitats and SDMs have been used to investigate these assemblages. Guisan and

Rahbek (2011) state that there are two main approaches for predicting spatial patterns

of species assemblages. The first approach focuses on species richness that can be di-

rectly predicted using various variables thought to control the number of species existing.

The second approach applies species distribution modelling to a spatial stack of species.

This uses individual species distributions usually modelled using purely abiotic variables.

Guisan and Rahbek (2011) have suggested that to predict spatio-temporal species as-

semblages these two approaches should be compared or integrated (Figure 2.10). The

properties of species assemblages can include abundance, composition, functional and

structural characteristics (Guisan and Rahbek, 2011).

Figure 2.10: Diagram showing Species richness and SDMs used to model
communities of species (adapted from Guisan and Rahbek (2011))

SDMs and HSMs are useful in predicting future scenarios as variable changes can be
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entered into these models for predictive purposes. These indirect approaches using re-

mote sensing to model biodiversity ’hold the promise of not only getting better estimates

of species distributions and richness levels, but of also shedding light on the processes

underlying them’ (Turner et al., 2003b).

2.6.3 Conclusion

In order to assess and monitor ecosystems the selection and development of suitable

indicators of biodiversity is required. These need to be quantifiable and capable of

simplifying complex relationships (Feld et al., 2010). VHR satellite data provides spatial

and temporal data which is capable of providing measures or indicators of biodiversity

and biodiversity changes. Reflective properties of vegetation which relate to biophysical

attributes such as productivity and moisture content (Lucas et al., 2007) of vegetation

can be used indirectly as indicators of faunal species. Previous research using field

data has shown that vegetation distributions, heterogeneity, structure and condition can

show major associations with faunal distribution (McGeoch et al., 2011b). However,

although relationships and associations between invertebrates and remote sensing data

have been studied (Lafage et al. (2013); Leyequien et al. (2007a)) there has been little

work to investigate the use of remote sensing these biophysical attributes especially in

terms of monitoring changes across a protected site that may indicate losses or gains

of biodiversity. A method is required to both identify these botanical baselines and

associations with fauna that can be used to predict future and assess past events. Using

biophysical attributes derived from satellite imagery in the form of spectral indices which

can identify dominant species as well as indicate ecological gradients could be useful to

infer associations and habitat suitability for individual and communities of invertebrates.

Creating a system that as a whole could inform both spatially and temporarily on the

ecosystem functioning of a protected site.
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Study site

3.1 Peatlands in Wales

Peatlands occur throughout Wales (Figure 3.1) and can be divided into two broad types,

bogs and fens (Blackstock et al., 2010). They consist mostly of acidic peat, and rely

solely on rainfall for water and nutrients (ombrotrophic). Fens tend to be richer in

nutrients due to water feeding into them providing nutrients from other sources. Acid

bogs occur in lowlands or uplands and are known as raised or blanket in formation.

Blanket bog is usually found in the uplands and covers large expanses with a mantle of

peat (a ’blanket’ of peat). Lowland raised bogs are rain-fed and are usually less extensive

than blanket bog and are mainly in lowland areas. Raised bogs are so called due to the

formation of a raised dome of peat which has accumulated over millennia. All bogs are of

acidic, nutrient poor peat and contain plants that have adapted to these conditions. The

dominant species of blanket and raised bog are mostly, though not entirely the same

(Tansey, 1965). Typical peatland flora consists of Sphagnum (bog mosses), Calluna

vulgaris (heather) and Eriophorum species (cotton grass) with a number of other species

such as Drosera (sundew) which are well adapted to the nutrient poor conditions as well

as Molinia caerulea on upland bogs or drier areas of raised bog.

The study site for the following research was a lowland raised bog called Cors Fochno

situated in the mid-West region of Wales (Figure 3.1) and is described in the following

sections.
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Figure 3.1: Peaty soil types in Wales.(ECOSSE project)
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3.2 Cors Fochno

Figure 3.2: Aerial view of Cors Fochno bog with the Dyfi estuary to the
north (Crown copyright RCAHMW, 2012).

Cors Fochno (Figure 3.1) is a rare example of an estuarine raised bog (Figure 3.2) and

encompasses the largest area of intact, primary surface lowland raised bog in the UK with

an active peat-forming dome of ≈ 200 ha and surrounded by approximately 450 ha of

modified/secondary or degraded raised bog. Although a significant area (264 ha) of the

former peatland complex was used for agriculture the primary active bog of Cors Fochno

now accounts for around 4% of the total British resource of primary surface (i.e. uncut)

raised mire and is one of the few sites left that represents an active northern peatland

complex (Lovering, 2008). Cors Fochno is part of the Dyfi Site of Special Scientific

Interest (SSSI) and National Nature Reserve (NNR) managed by Natural Resources

Wales (NRW) formerly the Countryside Council for Wales (CCW) (Lovering, 2008). It

is designated as a Special Area of Conservation (SAC), and is part of the Dyfi-Cors

Fochno Ramsar site. The site also comprises part of the core conservation zone of the
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Dyfi Biosphere Reserve and is recognised as a site of national geological importance.

There are a number of special features which include both flora and fauna from which

these designations were approved (Table 3.1). These are where the focus of monitoring

and management of the site are placed.

Designated Feature Reason

SAC features

1 Active raised bogs Annex 1

2 Degraded raised bogs Annex 1

still capable of natural regeneration

3 Depressions on peat substrates Annex 1 - habitat part of ’active raised bog’

of the Rhyncosporion

Ramsar features

4 Estuarine raised mire All 3 Annex 1 SAC features

SSSI features

5 Raised bog ombrogenous All 3 Annex 1 SAC features

6 Redshank Tringa tetanus (<10%) of the Dyfi SSSI breeding population

(the largest breeding concentration in Wales)

7 Curlew Numenius arquata Entire Dyfi SSSI breeding population

8 Common snipe Gallinago gallinago (c20%) of the Dyfi SSSI breeding population.

9 Otter Lutra lutra Strong resident population.

10 Rosy marsh moth Coenophila subrosea Largest population of few (c6) in UK.

11 Large heath butterfly Coenonympha tullia Schedule 5 species. Strong population.

12 Bog bush-cricket Metrioptera bracyptera Strong population at one of few sites in Wales.

13 Heliophanus dampfi RDB. Only known site in Wales & England

14 Assemblage of RDB and/or 3 nationally scarce bog mosses Sphagnum pulchrum,

Nationally scarce bryophytes

S.fuscum and S. austinii ; and the nationally scarce

liverwort Pallavicinia lyelli

15 Assemblage of RDB and/or Nationally scarce Rhynchospora fusca

Nationally scarce vascular plants

16 Breeding bird assemblage of Part of Dyfi SSSI assemblage

lowland open waters and margins

17 Reptile assemblage Part of Dyfi SSSI assemblage

18 Peatland invertebrate assemblage Includes a range of RDB, nationally and locally scarce

species additional to those which qualify individually.

19 Quaternary geology of Wales Nationally important peat archive

Table 3.1: Designated special features for Cors Fochno site (adapted from
Lovering (2008))
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Cors Fochno bog contains a 7m archive of peat which has been developing as active

bog for the last 5000 years. Prior to this it was a floodplain covered in forest c.5000BP,

which later developed into fen around 4,500BP (Poucher, 2009).

Figure 3.3: Cross section and plan view of the key hydro-morphological
status of a raised bog showing the direction of flow of water in the system
(adapted from source, Charman (2002)).

Cors Fochno raised bog formed due to waterlogging which provided anaerobic conditions.

This slowed down dead plant material decomposition and caused an accumulation to form

peat. Peat continued to form over time until the bog surface was above groundwater

levels forming a dome shape. As a result of its distinct convex accumulation of peat

the main water supply for the central dome area is derived solely from atmospheric

inputs. Run off from streams and floods does not reach the surface of the raised dome

(Blackstock et al., 2010) creating a delicate balance between precipitation, evaporation

and runoff from the peat surface (Charman, 2002) (Figure 3.3).

The sloping edges of the dome appear drier than the rest of the ombrotrophic surface.

The vegetation on these slopes is based on a spongy layer of Sphagnum mosses but there

is a tendency for the surface to become drier with a loss of Sphagnum and an increase

in ericaceous shrubs. This is called the ’rand’. Around the edges of the bog there is a

minerotrophic lagg taking the form of poor fen and fen woodland. This lagg has had

peripheral damage due to draining and peat cutting in previous years.
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Figure 3.4: Cors Fochno bog a) Annex 1 habitats and b) SAC habitats,
2003,and Dyfi estuary c) Phase 1 habitat codes and d) dominant species,
2005 (created from data provided by NRW).
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3.2.1 Habitats and flora

Being one of the largest and best quality raised bogs in Britain, Cors Fochno supports

specialised ground flora. Vegetation maps of the main areas of the Dyfi reserve have been

carried out in the past to record the vegetation using a number of different classifications.

The SAC and Annex 1 habitats (Figure 3.4a & b) have been recorded for Cors Fochno

and were last mapped in 2003. In 2005 Phase 1 habitats were mapped along with

dominant species for the Dyfi estuary (Figure 3.4c & d). The SSSI and SAC area of

Cors Fochno was included within this survey.

A National Vegetation Classification (NVC (Rodwell, 1991)) of the SSSI has been com-

pleted and mapped (Figure 3.5) in 2008. The main NVC communities are spatially

mapped and the sub-communities are recorded as species composition for each quadrat.

Some of these species recorded within the SSSI are listed in Table 3.2.

Figure 3.5: NVC Cors Fochno 2008
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Species Lifeform On Cors Fochno found in
EU Habitat code NVC

Andromeda polifolia Shrub 7110, 7120 M18
Calluna vulgaris Shrub 7120 M18, M25
Cladonia portentosa Lichen 7110, 7120 M18
Drosera anglica Forb 7110 M18
Drosera rotundifolia Forb 7110 M18
Erica tetralix Shrub 7110, 7120 M18
Eriophorum angustifolium Graminoid 7110, 7120 M18
Eriophorum vaginatum Graminoid 7110, 7120 M18
Hypnum jutlandicum Moss 7110, 7120 M18
Juncus effusus Graminoid Non SAC M25, Agriculturally

improved fields
Molinia caerulea Graminoid Non SAC M18, M25
Myrica gale Shrub 7110, 7120, Non SAC M18, M25, Phragmites

swamp
Narthecium ossifragum Graminoid 7110, 7120 M18
Phragmites australis Graminoid Non SAC M18, M25
Pteridium aquilinum Forb Non SAC Bracken dominated

vegetation
Rhynchospora alba Graminoid 7110 M18
Schoenus nigricans Graminoid 7120 M18, M25
Sphagnum cuspidatum Moss 7110, 7120 M18
Sphagnum papillosum Moss 7110 M18
Sphagnum pulchrum Moss 7110 M18
Trichophorum cespitosum Graminoid 7120 M18
Betula pendula Tree Non SAC Dense scrub

Table 3.2: Some of the main species recorded on the SSSI site and the
areas (Annex I & NVC communities) they are found in (adapted from NRW
quadrat data, 2008).

Active unmodified primary bog (EU Habitat 7110)

The active raised bog consists of a raised dome with a mosaic of hummocks, lawns

and sphagnum filled hollows. Plants characteristic of the active dome include a typical

range of bog moss species (Sphagnum spp., Figure 3.6a), Erica tetralix (cross leaved

heath), Andromeda polyfolia (bog rosemary), Eriophorum augustifolium (common cot-

ton grass), Calluna vulgaris (heather), Drosera spp. (sundews) and Rhynchospora alba

(white beak-sedge). Myrica gale (bog myrtle), Eriophorum vaginatum (Hares tail cotton

grass) and Narthecium ossifragum (Bog asphodel) are also locally abundant. Scarcer
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species include Vaccinium oxycoccus (cranberry), Menyanthes trifolia (bogbean) and

Rhynchospora fusca (brown beak sedge). Key indicators of active bog include Sphag-

num pulchrum, S. cuspidatum, S. papillosum and Drosera anglica (greater sundew)

(Figure 3.6b).

(a) (b)

Figure 3.6: a) Central bog ecotope showing a high Sphagnum cover. b)
Drosera anglica is a carnivorous plant found in hollows on Cors Fochno.
Plant nutrients are in short supply in bogs and trapping and digesting insects
provides the plant with an alternate source. (Photos by Mike Bailey, NRW)

Modified or degraded/secondary bog (EU Habitat 7120)

The degraded bog is an area of raised bog where habitat restoration may be achievable.

In these areas there is a significant reduction in the cover and diversity of Sphagnum

spp. and other raised bog species. However, Sphagnum that has recovered in these areas

and are hopefully capable of peat formation. Molinia caerulea (purple moor grass) is

abundant on the more disturbed sections of the bog and Phragmites australis (common

reed), Juncus maritimus (sea rush) and Schoenus nigricans (black bog rush) occur on

areas affected by former saline incursion.
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The margins of the bog (Non SAC region)

Much of the outer areas of the SSSI are areas of degraded bog which have been drained

and had the top layer of peat removed through peat cutting. These are areas in which

the natural formation of peat has stopped due to intensive drainage and drying out and

or peat removal. Species such as Molinia caerulea can dominate as well as Pteridium

aquilinum on slightly raised and sloped land which is drier. Elsewhere bog has been

drained and agriculturally improved and large patches of Juncus effusus are often found

here.

Two marginal areas which had in the past been agriculturally improved were purchased by

the then CCW (currently NRW). Since purchase twenty years ago these areas are
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Figure 3.7: NVC mapped vegetation of a) Aberleri fields and b) Tymawr
Mochno (created from data provided by NRW).
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being re-wetted and removed from their previous agricultural regimes, with the aim of

encouraging some bog species or marginal species to return to these areas that were

once primary active bog. These areas have therefore been mapped in higher resolution

than other areas to record any changes (Figure 3.7).

Wider landscape (Dyfi NNR)

Habitats surrounding the bog SSSI include mud and sand flats, sand dunes, saltmarshes,

reed swamp, marshy grassland, wet woodland and scrub, Juncus effusus/ rush pasture,

drier areas of acid grassland and bracken Pteridium aquilinum, and agricultural grasslands

grazed mainly by cattle and ponies.

3.2.2 Fauna in and around Cors Fochno

For much of Cors Fochno SSSI there is poor spatial coverage for the abundance and

distribution of many species due to scale and accessibility of areas. It can be seen from

Figure 3.8 that many of the observations or records are from either the edge of the bog

or in areas in close proximity to the boardwalk. The central areas are not void of fauna as

figure 3.8 suggests, but data are absent from these and other areas as they are difficult

to traverse on foot and it is easy to trample and damage the delicate and in many cases

rare vegetation.

A variety of birds including waders, redshank, water rail and reed warbler breed in and

around the raised bog, while hen harrier, merlin and hobby use the site to hunt prey.

Other notable species which are recorded on site include otter, water vole, harvest mouse,

adder, grass snake and slow worms (Lovering, 2008).
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Figure 3.8: Recent (1980s to present) NRW fauna records for Cors Fochno
and surrounding areas (created from data provided by NRW).

Invertebrates recorded at Cors Fochno

The invertebrate assemblages present on Cors Fochno include a wide range of nationally

scarce species (Lovering, 2008). Many of these species are dependant upon vegetation

types or species present or conditions provided. Some of the rare species found within

the primary active bog area include the large heath butterfly Coenonympha tullia (Fig-

ure 3.9a), bog bush-cricket Metrioptera bracyptera and small red damselfly Ceriagrion
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tenellum. The nationally rare rosy marsh moth Eugraphe subrosea (Figure 3.9b) only

found on 5 other sites in the UK has its largest population in the UK here and is un-

derstood to require sphagnum for pupation as well as their known food plant of Myrica

gale. Also present at its only locality in England and Wales is Heliophanus dampfi (Fig-

ure 3.9c), a spider found only on a small number of highest quality raised bogs in the

UK.

(a) (b)

(c)

Figure 3.9: Rare species found at Cors Fochno. a) Coenonympha tullia
(Large heath butterfly) a rare Lepidoptera and b) Eugraphe subrosea (Rosy
marsh moth) also rare which has its major British stronghold at Cors Fochno.
c)Heliophanus dampfi, a spider found only on a small number of highest
quality raised bogs in the UK.

A pitfall trapping programme as part of the Welsh Peatland survey was carried out at

Cors Fochno. This traversed the primary bog area and was carried out by NRW then

CCW from 1986/87 to 1996. The results were used to investigate the effects of a fire that

swept across the bog in 1986 and for the period 2009 to 2010. Formicidae, Coleoptera,

and Arachnida were recorded for these periods (Figures 3.10 and 3.11).
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Figure 3.10: Families and order yearly abundance recorded from pitfall traps
for the period 1986 until 1996.(created from data provided by NRW)

Amongst invertebrates recorded by pitfall traps on site are Carabidae. This family of

beetles are often used as ecological indicators (Lovei and Sunderland, 1996). There are a

number of species that specifically require the unique conditions present on Cors Fochno.

One of the most interesting of these is Agonum ericeti (Figure 3.12) a species which is

scarce in Britain with Cors Fochno being one of only five sites where it is found. It is

only found on oligotrophic mires with active sphagnum growth but the adults have been

shown to prefer warmth and dryness; it is the larvae which depend upon the permanently

wet Sphagnum to achieve maturity (Fowles, 1997).
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Figure 3.11: Species numbers per order or family recorded from pitfall traps
for the period 1986 until 1996.(created from data provided by NRW)

Figure 3.12: Agonum ericeti (6.5-8.5mm), a flightless Carabidae species
found on Cors Fochno.

Relationships between recorded species, families and orders can be inferred from the

data presented in figure 3.10. This data shows that overall abundance of invertebrates

trapped in pitfalls can fluctuate from year to year, and has in particular in this case,

probably due to the fire. Single year data should therefore be used carefully when it

comes to interpreting results.This single year data is useful for showing the best times

to trap and collect data.
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Figure 3.13: Seasonal pitfall data from 2009.(created from data provided
by NRW)

Collation of historic data can provide valuable information for interpretation of biodiver-

sity data. When using data from short periods of survey collection there are a number

of issues that one needs to be aware of. For example unusual seasonal weather could

skew the results. Historic data can help to provide a comparison that can be used to

help interpret current survey data and avoid inaccurate assumptions.

3.2.3 Pressures and threats

Drainage reclamation (Figure 3.14a) and hand peat cutting (Figure 3.14b) were exten-

sively carried out during the late 18th, 19th and early 20th century, and this activity,

together with the canalization and diversion of the River Leri through the bog (Fig-

ure 3.15), have led to habitat loss and fragmentation around the bog margins.
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(a) (b) .

Figure 3.14: Some past causes of bog degradation. a)Drainage and b)peat
cuttings (Poucher, 2009)

Many areas drained were improved for agriculture and the transitions between the estu-

arine environment in the north and the shingle and dune ridge to the west was severed

by the road and rail networks and the canalization of the River Leri. These impacts took

place in the first half of the 19th Century.

Figure 3.15: Canalisation and diversion of the River Leri. (Photo by P.
Laverty)
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The drainage has led to shrinkage and subsidence of the peat, which has impacted

on the vegetation species composition and dynamics, particularly in the margins and

partly because of increased burning under drier conditions. Vegetation dominated by

Molinea caerulea, scrub and wet woodland has replaced open bog in some marginal

areas (Figure 3.16). The future of the bog is under threat from sea level rise and climate

change, which are compounded by past and continuing flood defence and agricultural

land drainage management.

Figure 3.16: Encroachment of purple moor-grass and woody vegetation in
old peat cuttings. (Photo by Mike Bailey, CCW)

In 1986 an accidental fire caused a large swathe of the central bog area to be burnt

causing damge although apparently not permanent or longlasting to a section of the

central dome area.
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3.2.4 Management

The main objectives for management at Cors Fochno are to:

• Restore active peat forming conditions, maximising peat growth and elevation

• Prevent deterioration of the peat archive (through drying and oxidation) and loss

of carbon to the atmosphere.

• Restore areas of degraded mire by hydrological controls (Figure 3.17) and appro-

priate vegetation management.

• Maintain or increase all rare and notable species populations.

• Enhance the landscape quality of the bog and surrounding ecosystems.

• Monitor important conservation features and environmental influences (e.g. aerial

deposition).

• Maximise scientific research, education and access as far as compatible with the

scientific features.

Figure 3.17: An aerial view of a section of Cors Fochno showing hydrological
controls (damming of drains) to stabilize a high water-table and reduce sur-
face runoff, highlighted by winter frost (Crown Copyright RCAHMW, 2012).
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3.2.5 Areas of change

Cors Fochno and the surrounding areas have been subject to constant change over

centuries (Figure 3.18) either through anthropogenic or natural occurance.

Figure 3.18: Historic maps illustrating change over the recent centuries,
showing the disappearance of large waterbodies and the appearance of large
tracts of ditches and drainage on the bog between 1875 and 1922 (Copyright
Reserved)

This study focuses on investigating the areas of change, caused by drying out either

through anthropogenic or climatic influences. For Cors Fochno many areas drained and

used for peat cutting are the areas most affected by change and so focus is placed
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on comparing areas inundated by Molinia caerulea and Phragmites caerulea with areas

that have had less immediate anthropogenic influence and consequently less dramatic

long-term changes.

Focus needs to be concentrated on areas of change in order to try and quantify and

predict possible outcomes of changes in biodiversity of those regions. i.e. around the

bog margins. Areas of change can be clearly seen when looking at and comparing vertical

aerial images (1948) with recent satellite and aerial imagery (Figure 3.19).

The main areas that have encroached since 1948 on the bog area are broad-leaved

woodland, marshy grassland (Molinia & Molinia/Phragmites mix) and some areas of

bracken (Pteridium aquilinum) on drier rises. Areas which saw anthropogenic activity

such as peat cutting and ditching prior to 1948 are now classed as secondary bog, which

is also an area of change.

Figure 3.19: Llancynfelin 1948 and 2012
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3.2.6 The main management questions to be answered are:

1. Is the site deteriorating. Is the raised dome drying out (e.g.less Sphagnum pools)

and is the Molinia area encroaching?

2. What are the distributions and populations of rare and notable species? Are these

increasing or decreasing? Can these be maintained or increased?

3. What would be the effects on biodiversity of restoring areas of degraded mire?

4. Are surrounding landscapes changing and if so does this effect the site?
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Chapter 4

Species discrimination using field spec-

troradiometer data

4.1 Introduction

Successful classification of vegetation from satellite imagery depends on vegetation or

species spectral separability. To assess this separability and the most appropriate times

for satellite imagery to be acquired for optimising separability, field spectrometers were

used to collect ground based data. A field spectrometer records the spectral reflectance

of whatever surface it is aimed at and is useful for recording spectral reflectance of veg-

etation in the same way in which a satellite would, albeit at a far smaller scale. Many

studies of species discrimination have been undertaken from one single time period.

However, very few have investigated the seasonal implications on species’ reflectance

spectra or indeed how these differences between seasons. Baldeck and Asner (2014)

used field spectroradiometer readings to improve the accuracy of their tree crown classi-

fications and found that they were able to use it to evaluate the separability of species,

as well as to interpret how much training data they required. Schmidt and Skidmore

(2003) collected field spectrometer readings during one summer period for 27 saltmarsh

vegetation types. They proved from these data that there were significant differences in

the vegetation spectra and showed that the spectral libraries created in the field could be

used to identify vegetation species within hyperspectral imagery. Reflectance spectra of

different species were found to have either visually different reflectance shapes or statis-
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tical quantified differences (Vogelmann and Moss, 1993; Schmidt and Skidmore, 2001).

Where discrimination of species is less apparent from single data observations, phe-

nological differences can be considered. Vegetation phenology represents a potentially

significant source of information to aid land cover classification. Multiseasonal imagery

that captures the phenology have been used in land cover classification with some suc-

cess (Simonetti et al., 2014; Goetz et al., 2004). Many researchers have found that

using phenological data improved their species classifications (Elatawneh et al., 2013).

Seasonal change such as leaf-flush or senescence can be captured by satellite and it is

these changes that have previously been used with multi-seasonal data to improve forest

classifications (Jensen, 2000) as well as their under-story composition (Schaepman-Strub

et al., 2009). Phenological data are also valuable as a tool for documenting trends over

time. The phenological events are sensitive to environmental and climate variations and

can be used to detect and assess the impacts of such variations. Field spectrometers

can provide full spectral reflectance data often within the spectral ranges of 300nm and

2500nm. However, when using this data to produce species or habitat classifications on

protected sites, high resolution data are required to provide more detailed information.

A number of very high resolution satellites and hyperspectral imagery can be employed.

The hyperspectral data is capable of producing spectral reflectance data within the field

spectroradiometer range (300nm and 2500nm); however, processing and using hyper-

spectral data is often more costly, and the processing and atmospheric correction is

more difficult (Borengasser et al., 2008). There is also a danger of having too much

data/information which becomes difficult to decipher. Vegetation indices are useful pa-

rameters which can considerably reduce the data volumes for processing and analysis

(Coppin Correspond et al., 2004) and are also valuable for maximising sensitivity to

biophysical parameters (Charan Sahu, 2008).

Spectral vegetation indices have been used since the 1960s and are continuously evolving

to suite their uses (Bradley and Fleishman, 2008b). Both the use of phenological infor-

mation in satellite imagery and the use of vegetation indices are known to independently
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improve vegetation classifications (Dymond, 2002). Combinations of vegetation indices

with multiseasonal imagery that captures phenology has produced successful vegetation

classifications (Hill et al., 2010; Lucas et al., 2011a). However, most methods have not

used the combination of ground data and vegetation indices to analyse the effects of

phenology and the selection of suitable indices. This information will provide valuable

information for appropriate satellite, image selection and synchronisation of this within

a complete flora and fauna monitoring system. This chapter focuses on how these phe-

nological phases can be used in combination with vegetation indices which are suitable

for focusing on a number of biophysical attributes relevant to the species present in

healthy active bog as well as degraded bog and surrounding areas. The main aim of

this approach is to minimise the number of images required for separation of a number

of species within a relatively small site and to produce evidence of the most suitable

indices for use in classification. This chapter focuses on the vegetation indices selected,

developed and used within the BIOSOS programme.

Aims:

This study aims to use field spectro-radiometer data to develop a method for identifying

optimum months of the year and best indices for species discrimination on Cors Fochno

protected site, that can later be used within a system for accurate classification of

species.

Objectives:

1. Using ground collated spectral reflectance data for dominant species assess and

analyse the separability /similarity of species spectral data throughout the year (April to

November).

2. Apply the same assessment and analysis as in objective 1 to resampled spectral

reflectance data to correspond with the reflectance measurements from WV2 data.

3. Using results from objective 2 evaluate the best times for acquisition of WV2 satellite

data.
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All with a view to using the developed method for actual WV2 data within

Chapter 5.

Hypothesis:

The ANOVA F-ratio method provides a successful method to statistically show that

distinctive phenological differences of key lowland plant species on a lowland raised

bog are important for selecting the best months and best spectral indices for species

discrimination and can be used to select optimum WV2 imagery acquisitions for a more

successful species classification.

4.2 Methods

4.2.1 Collection and processing of field spectro-radiometer read-

ings

Field samples were recorded once in the first week of each month throughout 2013

from the very beginning of April through to November, between the hours of 11.00am

and 14.00pm under sunny, mostly cloudless conditions. 20 field spectrometer readings

were taken at random for each species at approximately 1m above the vegetation to

ensure a 50cm radius recording of the vegetation. An Analytical Spectral Devices (ASD)

spectro-radiometer was used to measure the in-situ reflectance. This was fitted with

a pistol grip with scrambler to homogenize the optical radiation and was specifically

used in this case for reflectance measurements. This spectrometer measured up to 2500

bands between 350nm and 2500nm and a white spectrolon panel was used to calibrate to

absolute reflectance. A photo of each vegetation species of that target location was also

collected to give a photographic representation to compare with the field spectrometer.

A differential GPS reading was taken from the centre of the target locations to help

relocate for monthly sampling and also to help locate it within satellite imagery. The
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fieldspectrometer data was collected and processed using the RS3 software provided.

This data was transformed afterwards using the ViewSpec programme also provided to

give a reflectance value for each recorded wavelength.

4.2.2 Spectral reflectance

The mean spectral reflectance for each species was graphically represented using R Stats

and visually compared with the photographic data (Figure 4.2) to give an indication of

the relevance of any seasonal changes seen within species’ spectral signatures. The

average reflectance spectra were graphically represented and all 20 readings for each

species were used for comparisons in analysis. Spectral angle analysis (within ENVI) was

also performed to assess if the spectral reflectance was significantly different to allow

discrimination of different species and also to assess what months were the best for

discrimination. The Spectral Angle Mapper (SAM) algorithm was used in the Spectral

Analyst within the program ENVI to compute the ”spectral angle” between the species

spectrum. Smaller angles represent closer matches to the reference spectra. The re-

sult indicates the radian of the spectral angle computed using the following equation

(Equation 4.1)(Wen and Yang, 2012).

α = cos−1

 ∑m
i=1 tiri[∑m

i−1 t
2
i

] 1
2 [
∑m

i=1 r
2
i ]

1
2

 (4.1)

Where

m = the number of bands.

ti= pixel spectrum.

ri = reference spectrum.

α = radian of the spectral angle
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Values produced by the spectral analyst for SAM indicate the similarity of the spectra

and is measured in radians. To extract this value a minimum and maximum angle size

can be set, in this case angle sizes were set to a minimum of 0 and a maximum of 0.25

radians. Petropoulos et al. (2010) showed that mapping accuracy became optimum be-

tween spectral angles of 0.2 and 0.3 when classifying burnt areas using Landsat imagery.

A lower spectral angle value could have been used to provide a more definite similar-

ity/dissimilarity, but on testing a smaller spectral angle it was noticed that the higher

angle size would provide more information for interpretation of spectra differences. As

this method was not the final method for discrimination, and was used merely to help

investigate differences the spectral angle size, it was not investigated further. Where

values were less than or equal to the minimum of 0 indicate a perfect match was indi-

cated and a score of 1 assigned. Values greater than or equal to the maximum of 0.25

radians received a score of 0. To summarise, a score of 1 indicated the spectra are a

perfect match and the two spectra being compared are the same species. A score of 0

indicated that the spectra are from separable and that species are different and highly

distinguishable.

Spectral reflectance analysis was carried out on field spectrometer data collated for

each of the ten species recorded. The first step to determine whether using these

different wavelength ranges had an effect on the separability with respect to using the

field spectrometer data. Consideration was also given to when these were translated to

corresponding WV2 bands to determine whether the separation of species was affected

by using a shorter range and to see if reducing to the 8 wavelengths used in WV2 also

had a further effect on the separability. For each pair of species the correlation between

the spectral curves were calculated.

The 3 different sets of wavelength values analysed were:

a. The reflectance values for wavelengths between 300 and 2500 nanometres recorded
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for each species by the field spectrometer at 1 nanometre intervals.

b. The reflectance values for wavelengths between 300 and 1000 nanometres to fall

within the wavelength range recorded by the WV2 satellite but at 1 nanometre intervals.

c. The reflectance values for the 8 wavelength values only, these being the same wave-

lengths recorded by WV2 satellite at 429, 480, 548, 608, 659, 723, 825, 915 nanome-

tres.

Between and within species variance was calculated and seasonal graphical representa-

tions made. Combining bothe between and within species data the F-ratio method as

described in section 4.2.4. was used to demonstrate the optimum period for species

separation.

4.2.3 Indices calculations

A number of indices which can be used to derive vegetation biophysical properties were

calculated from the spectral data. Indices which were used within the BIOSOS project for

vegetation discrimination were investigated in the same way as the spectral reflectance

data. Using these indices gives more precision to the spectral data and enables compar-

isons to be made with satellite data (Baret and Guyot, 1991).

Indices are incorporated within the EODHaM system. Indices that give relevant indirect

emphasis on certain selected biophysical properties were selected. Analysis of the field

spectroradiometer data in the World View 2 8 band format were carried out, following

on from the spectral angle analysis to investigate whether using the indices altered the

separability of species and best seasonal separability period/s in any way.
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Wavelength (nm) Band name Band symbol

429 Coastal ρMS1

480 Blue ρMS2

548 Green ρMS3

608 Yellow ρMS4

659 Red ρMS5

723 Red Edge ρMS6

825 NIR1 ρMS7

915 NIR2 ρMS8

Table 4.1: Worlview 2 bands showing wavelength values and codes for
indices formulas.

NDVI

The Normalised Difference Vegetation Index (NDVI) highlights areas of high plant pro-

ductivity (Rouse et al., 1973) (Figure 4.1a & b). It has become one of the most ex-

tensively used vegetation indices in ecological remote sensing (Miller and Rogan, 2007;

Pettorelli et al., 2005) The value of this index ranges from -1 to 1. The common range

for green vegetation is 0.2 to 0.8.

NDV I =
ρ825− ρ659

ρ825 + ρ659
(4.2)

PSRI

The Plant Senescence Reflectance Index (PSRI) highlights areas of dead and senescent

material (Figure 4.1c & d) was developed by Merzlyak et al. (1999) This index has been

used as a quantitative measure of leaf sensence and fruit ripening (Merzlyak et al., 1999)

and is sensitive to the caratinoid /chlorophyll ratio.

PSRI =
(ρ659− ρ480)

ρ723
(4.3)
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WBI

The Water Band Index (WBI) is useful for identifying areas of water or gives information

on moisture content of vegetation (Figure 4.1e & f). WBI highlights non-submerged

aquatic vegetation and open water and was developed for use in the BIOSOS project

(Lucas et al., 2011b).

WBI =
ρ480

ρ825
(4.4)

FDI

The Forest Discrimination Index (FDI) is useful for discriminating photosynthetic cover

and phenological differences (Bunting and Lucas, 2006). This was used within the

BIOSOS project to discriminate areas within specific vegetation categories (e.g. trees).

FDI = ρ825− (ρ723 + ρ429) (4.5)

REP

Red Edge Position (REP) is used to derive foliar chlorophyll concentrations and was

used within the BIOSOS project to discriminate areas of non-photosynthetic vegetation

(Curran et al., 1995). This particular formulation has also been used by the BIOSOS

project (Lucas et al., 2012b).

REP = ρ723− (ρ915− ρ659) (4.6)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Examples of some indices a) preNDVI, b) peakNDVI, c) preP-
SRI, d) peakPSRI, e) preWBI and f) peakWBI to demonstrate areas that
they highlight. Light to dark indicates high to low indices values. Light
areas in a) and b) are highlighing areas of productive green vegetation, in
c) and d) are highlighting dead vegetation and in e) and f) are highlighting
waterbodies and ditches.
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NIR Diff

The difference between the NIR1 and NIR2 (NIR Diff) gives a value for the region NIR1

to NIR2 and was specifically selected for use in the BIOSOS project for discriminating

the active bog area of Cors Fochno from the surrounding landscape (Lucas et al., 2012b,

2011b).

NIRDiff = ρ915− ρ825 (4.7)

BG The Blue green difference (BG) is used to calculate the height of the green peak

in spectral data and is useful for assessing chlorophyll content. This was developed and

used within BIOSOS (Lucas et al., 2011b).

BG =
(ρ480− ρ548)

(ρ480 + ρ548)
(4.8)

Woody The Woody index was created and used within BIOSOS to discriminate trees

and shrubs from other vegetation (Lucas et al., 2011b).

Woody = ρ429− ρ659 (4.9)

BR The Blue Red difference index (BR) is the difference between the blue and the red

wavelengths. It was used in BIOSOS project to discriminate areas of shrub from trees

where LiDAR data is not present or good enough (Lucas et al., 2011b).

BR = ρ480− ρ659 (4.10)

These indices were used within the BIOSOS project as they were selected using ecological

knowledge and trial and error to discriminate surfaces within the LCCS categories of

86



4. Species discrimination using field spectroradiometer data

classification (further explanation in Chapter 5). Their use within this project was to

test their suitability for discriminating to the plant species level. Other indices are

available but were not investigated as the aim was to investigate the method of selection

and not to test all other available indices for suitability.

4.2.4 Species separation analysis

As there are single values for indices rather than a series of 8 spectral reflectance values,

a different analysis method was required to test separability of the species data using

indices. As indices use different equations with different bands, the values of these varied.

This meant there were multiple variables with different scales which. For this reason all

index data was standardised first in R using Equation 4.11 before further analysis was

carried out in R (see scripts in appendix) to calculate variables (indices) with the greatest

separations between the species.

xi,1σ =
xi − x̄s
σx1s

(4.11)

To calculate the separations achieved by all of the variables in the multivariate data set

a separation index otherwise known as the ANOVA coefficient or F-ratio (F ) was cal-

culated. The F-ratio is an extension of Fisher’s discriminant (for use between only two

classes) which provides a measure of separability between multiple classes (Nicholson

et al., 1997). This method was used on each standardised index set. The analysis of

variance for between group (Equation 4.12) and analysis of variance for within group

(Equation 4.13) were calculated (Weinberg and Abramowitz, 2008). To achieve a sepa-

ration index for each index variable the between group variance was divided by it’s within

group variance (Equation 4.14) thus giving a separation value which indicates greater

or lesser separation when compared with other variable separation values. This value is

known as the F-ratio or F. The larger the value of F, the more likely it is that the null
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hypothesis of no differences between the group means is false (Anderson, 2001).

Between group variance:

V b =

∑
n(x− x̄)2

p− 1
(4.12)

Vb = Sum of squares between species

p = Total number of species

n = Total number of samples.

Within group was calulated as so:

V w =

∑
(n− 1)S2

N− p
(4.13)

Vw = Sum of squares within species

S = Standard deviation for each species

N = Total number of observations.

F =
Vb
Vw

(4.14)

This method is suitable for the data collated as although the F-ratio from an ANOVA test

is recommended for Gaussian data there is a general rule that when used on non-normal

data there is little effect on the F-ratio values (Tiku, 1971).

Although most of the data analysed is more or less normal some samples have slightly

skewed distributions. Scatter plots of best and least effective indices for separating

species were used to demonstrate whether this method is still effective at selecting the

most suitable indices.
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4.3 Results

4.3.1 Visual differences of species

The ten plant species selected for this analysis vary greatly in their seasonal growth

patterns and habits. These differences can be observed in Figure 4.2.

Evergreen species such as Calluna vulgaris stay green throughout the year but due to a

slow down of growth have a considerably larger quantity of dead leaf and dead flower in

the winter months (Figure 4.2). In July the plant clearly shows an increase in growth

and green leaf. In September there is a flush of pink flowers remaining and fading until

November.

Graminoid species such as Eriophorum angustifolium, Eriophorum vaginatum, Molinia

caerulea and Phragmites australis all have lush green growth from July, fading in October

and showing a mass of dead litter from November through to July again. For the lower

growing graminoids such as Eriophorum vaginatum emergent green vegetation is more

visible from above in June. The taller graminoids having dead vegetation that obscures

the initial emerging green vegetation in June. Eriophorum angustifolium is different in

that it has more dead litter visible all year long and less coverage of green productive

material in the July to October period than other graminoids. Its leaves have a noticeable

red anthrocyanin shade in November as it goes through autumnal senescence. Flowers

for Phragmites australis are a dark purple shade and the vegetation appears to take

on a more glaucous hue in August. By November the flowers have gone to seed and

produce large plumes of fluffy white seed heads as can still be seen in April (Figure 4.2)

Juncus effusus continues to have green material present although largely dead in winter

months. As with other graminoids there is a flush of green vegetation in July with live

green flowers appearing at the same time. Flowers mature by August turning a brown

shade.

89



4. Species discrimination using field spectroradiometer data

Myrica gale a deciduous shrub, has an orange flush of flowers in May with no leaf cover

at this time. By June green leaves have emerged with these increasing to their full

potential by July. Leaves remained green in early November unlike many of the other

deciduous plants.

Pteridium aquilinum, as with Molinia caerulea, is a plant that gives complete ground

coverage of dead litter in the winter months. It remains this way until a sudden emergence

of fast growing green vegetation in July with complete green coverage from then until

October when it starts to senesce with yellow and brown shades. By November it

was back to complete ground coverage with dead material and no green leaf at all.

This appeared to happen much faster for Pteridium aquilinum than for other species

sampled.

Both Sphagnum spp. sampled change very little in appearance throughout the year.

They are very different in colour with Sphagnum cuspidatum being a lime green and

Sphagnum pulchrum an amber shade. Both kept these colourings with a slight increase in

intensity of colour from July and decreasing again as autumn approaches. A tinge of lime

green in fresh growth appeared for Sphagnum pulchrum in July until September.

It can be seen too that for the autumnal months (November) there appears to be

more shading in the vegetation. This is a major consideration for gathering spectral

information. For species such as Myrica gale there were noticeable differences within

photography. The photograph of Myrica gale for November contained a large range of

contrast with dark shade, green vegetation and very light bright areas. The photo from

the July period had less contrast with few large areas of shading or bright patches.
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Figure 4.2: Photos of 10 plant species taken at the same time each month
from April through until November.

4.3.2 Spectral differences of species

Between species spectral reflectance

Differences in the mean spectral reflectance curves between species may be observed in

plots of wavelength versus reflectance (Figure 4.3).

Calluna vulgaris has low green reflectance values throughout the year despite being

an evergreen shrub Calluna vulgaris as it contains a large amount of dead material

throughout the year. There is a noticeable rise in reflectance in the red edge region in
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September which is reflected in the photography (Figure 4.2) where the plant is flowering.

These observations can also be made in the WV2 reflectance graphs (Figure 4.4). There

is also a slight increase in September in the blue region.

Five species with complete dead material/senescent material coverage in April, Eriopho-

rum angustifolium, Eriophorum, vaginatum, Molinia caerulea, Phragmites australis and

Pteridium aquilinum showed a distinctive spectral graph which is typical of dead vege-

tation. These species become active after the winter months over different time periods

and this is reflected within the spectral graphs. Species such as Pteridium aquilinum and

Molinia caerulea are the slowest to green up. This is shown in the reflectance graphs

were Molinia caerulea starts to green in June as seen in the June spectral graph where

the dead material slope is starting to decrease with a decrease in reflectance of the red

edge region. Pteridium aquilinum does not show a typical green vegetation spectrum

until July.

Eriophorum angustifolium has a large amount of dead senescent material present through-

out the year with very little green vegetation present in the peak growing period, possibly

due to it having very thin upright leaves (synonymous with its latin name angustifolium

meaning ’narrow leaves’) which from above are not so obvious amongst the dead ma-

terial when upright. However, when dead and collapsed the leaves lie horizontal. The

reflectance spectrum shows the green reflectance is low and does not indicate a signif-

icant peak in green wavelength (Figure 4.4). This corroborates the lack of a flush of

green material at the peak time as with other graminoids. There is a distinct red hue to

its autumnal senescence in November (Figure 4.2) although this does not appear to be

reflected in the November spectrum.

As an observer on the ground June and July flowering/seed head periods of Eriophorum

vaginatum shows as large clouds of white fluffy seed-heads. However, from above, and

as shown in the photo (Figure 4.2) seed heads are not visually predominant. There are

also no visible changes in the spectrum for the period where they are present.
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Figure 4.4: Mean spectral reflectance of each species for each month trans-
lated to WV2 bands.

Both Molinia caerulea and Pteridium aquilinum have very distinct periods of dead litter/

senescent material and very lush green growth. There appears to be only 4 months

(July - October) of this lush green growth and for the rest of the year they are large
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mats of impenetrable dead litter. Differences in growth in these seasonal periods is

clearly seen in spectral data (Figures 4.3 & 4.4). Spectral reflectance graphs show a

large increase in reflectance in the NIR region for Pteridium aquilinum in August and

September. Measurements of stacks of leaves, which increases total optical thickness,

show increases in near infrared reflectance (Blackburn, 1999).

Compared with other species Myrica gale has higher reflectance in the coastal band

region. Myrica gale shows distinct orange flowering in May (Figure 4.2) although this is

not distinguishable in the spectral data (Figures 4.3 & 4.4).

Throughout the year both Sphagnum species show a very distinct difference on the

shape of their spectral reflectance graphs with a very pronounced dip in the NIR region

of the spectrum compared to other species. Sphagnum cuspidatum has a reflectance

value peak in the green wavelength region throughout the year. Sphagnum pulchrum

appears unchanged all year but it was noticed however that although there was no

apparent senescence the areas of Sphagnum cuspidatum were much tighter and more

compact with less shading in summer months than in senescent periods (autumn and

spring). April and November photos showed looser less compact habit. One of the

most noticeable differences between Sphagnum cuspidatum and Sphagnum pulchrum is

the orange colouration of Sphagnum pulchrum compared with the almost lime green

of Sphagnum cuspidatum. These differences in colouration remain throughout the year

with slight greening of Sphagnum pulchrum occurring in the summer months. These year

round differences are visible in the green reflectance region with Sphagnum cuspidatum

showing very high reflectance values in the green wavelength compared to Sphagnum

pulchrum. Sphagnum has very large cell size compared to other plant species and the

dip in the NIR region could be as a result of this structural difference. Both Sphagnum

species have low reflectance in the SWIR region possibly due to having a large water

content and also the effects of growing in water-filled pools or ditches (therefore some

backgound effects from water also).
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Within species spectral reflectance

The spectral curves of 20 samples of each species were compared within each species.

Selected months for visual comparison were to typify the pre, peak and post growing

seasons so April, July and November field spectroradiometer readings were used.

Variation in spectral reflectance curves throughout all months is low up to 0.6/0.7nm(Figure 4.5.

4.6, 4.7 & 4.8). For wavelengths >0.7nm the variation increases and is more pronounced

in the NIR and SWIR regions. In comparison with other months April shows a more not-

icable increase in variation of spectral curves within species for all species (Figure 4.5.

4.6, 4.7 & 4.8). In July the spectral curve of the 20 within species samples for most

species is visibly less varied. Spectral curves within species generally shows less variation

in November (Figure 4.5. 4.6, 4.7 & 4.8). Species such as Eriophorum vaginatum (Fig-

ure 4.5), Pteridium aquilinum (Figure 4.7) and the Sphagnums (Figure 4.7 & 4.8) show

least variation in November whilst other species such as Phragmites australis (Figure 4.7)

are shown to have more variation within species spectral curves in November.

This spectral information shows that discrimination of one species from another may

also be dependant not only upon between species differences but also within species

similarities.
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4. Species discrimination using field spectroradiometer data

4.3.3 Spectral angle analysis

Between species spectral reflectance

For the full recorded spectrum where the total number of species comparisons with scores

for 0.00 in the spectral angle analysis, April is shown to be one of the best months for

species separability with an overall total of 52 equal to 0.00 scores (Table 4.2). November

and June also gave higher scores of 46 and 44 (Table 4.2). The month with the least

separability was August with 30 equal to 0.00. These results can also be seen using the

variance of spectral angle values for between species analysis (Figure 4.9) showing this

to be greatest in April for most species.

For the spectrum range between 300 and 1000nm range using the total number of scores

of 0.00, again April is one of the best months for species separability with an overall

total of 18 (Table 4.3). Again June and November months were better at providing

reflectance data with better discrimination of species with 16 0.00 scores.The month

with the least separability was September as there were no 0.00 scores.

For the spectrum converted to WV2 bands only, using the total number of scores of

0.00 April was again shown to be one of the best months for species separability with an

overall total of 17 equal to 0.00 scores (Table 4.4). Months from July until October gave

no equal to 0.00 scores at all proving to be months that provide the least separability if

using the WV2 bands.

Despite the decrease in spectral angle scores of 0.0 as the number of wavelengths are

reduced these results still show the same outcome with April being the best across all

the scales of wavelengths.
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Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Total

April 6 4 2 4 5 6 5 4 8 8 52

May 4 2 2 3 5 4 3 3 7 8 41

June 2 2 2 4 5 4 4 5 8 8 44

July 2 5 5 3 3 4 2 4 8 6 42

August 2 4 3 1 1 2 1 3 8 3 28

September 3 4 4 5 3 4 2 5 7 5 42

October 1 4 1 4 1 3 3 3 9 3 32

November 3 3 3 3 3 6 3 5 9 8 46

Total 23 28 22 27 26 33 23 32 64 49

Table 4.2: Table showing number of spectral angle scores with values of
0.00. using reflectance values for full spectrum available from field spec-
troradiometer of range 300um to 2500um i.e. the number of occasions (out
of a total of 90 possibles for each month) were there is a highly significant
separability score.

Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Total

April 2 1 0 2 4 0 2 1 5 1 18

May 2 0 0 1 5 1 1 0 1 1 12

June 1 1 1 2 4 1 0 1 5 0 16

July 0 0 0 0 0 0 0 0 0 0 0

August 0 0 0 1 0 0 0 0 1 0 2

September 0 0 0 0 0 0 0 0 0 0 0

October 0 0 0 1 0 0 1 0 3 0 5

November 1 1 1 1 1 1 1 1 8 0 16

Total 6 3 2 8 14 3 5 3 23 2

Table 4.3: Table showing number of spectral angle scores with values of
0.00. using reflectance values for the spectrum of range 300um to 1000um
to reflect WV2 range i.e. the number of occasions (out of a total of 90
possibles for each month) were there is a highly significant separability score.

Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Total

April 4 1 1 2 5 1 3 0 2 1 20

May 3 1 0 2 5 1 2 0 1 1 16

June 1 0 0 0 6 1 1 1 2 1 13

July 0 0 0 0 0 0 0 0 0 0 0

August 0 0 0 0 0 0 0 0 0 0 0

September 0 0 0 0 0 0 0 0 0 0 0

October 0 0 0 0 0 0 0 0 0 0 0

November 0 1 0 1 1 1 1 1 6 0 12

Total 5 3 0 5 15 3 6 3 14 3

Table 4.4: Table showing number of spectral angle scores with values of
0.00 using reflectance values significant to the 8 WV2 bands, 429, 480,
548, 608, 659, 723, 825, 915 nanometers i.e. the number of occasions (out
of a total of 90 possibles for each month) were there is a highly significant
separability score .
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The results of the spectral analysis shows that differences between mean reflectance

spectra of vegetation types are statistically significant for different vegetation types.

April is the best period for discrimination of species based on the spectral angle analysis

of the mean spectral reflectance values.

Sphagnum mosses are more highly separable from all other species throughout most

of the year. Sphagnum reflectance values for the full 300 to 2500nm range gave the

best separability. However, this decreased more for Sphagnum pulchrum when less of

the spectrum was used. There are, as previously described, significant dips in the NIR

region for Sphagnum. This dip occurs at a slightly higher wavelength for Sphagnum

pulchrum so that reflectance measured below 1000nm misses this significant feature.

Anomalies like this are useful for species seperation. However, this anomaly is unfortu-

nately not recognised with WV2 reflectance values. It may be however that another very

high resolution sensor (e.g.hyperspectral imagery) (Harris et al., 2015) which focuses on

the relevant wavelength range, would be better to use if this species was of particular

focus.

Eriophorum vaginatum gave the lowest scores for separability for all 3 reflectance testing

regions with expected decreases in separability as less of the spectrum is used. Where

only WV2 bands were used Molinia caerulea and Sphagnum cuspidatum had the best

separability scores (Table 4.4).
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Figure 4.9: Variance of spectral angle values between species for each
month from April to November.

Within species spectral reflectance

It is shown and acknowledged from previous spectral curve data (Figure 4.5. 4.6, 4.7 &

4.8) in the previous section that within species spectral differences could be significant

at different times of year and these variations within the species may have an influence

on the between species discrimination. To investigate this visual appearance the variance

of spectral angle values from within species spectral angle analysis was calculated.
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Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Total

April 10 4 2 0 18 0 5 15 7 13 74

May 13 9 8 0 19 5 13 16 6 10 99

June 11 17 14 14 6 13 3 19 18 17 132

July 2 17 4 0 1 0 1 0 0 0 25

August 20 5 13 4 20 12 11 20 20 20 145

September 20 20 19 16 20 17 11 19 20 19 181

October 20 20 20 1 20 20 14 18 20 20 173

November 20 19 20 20 20 20 0 15 19 20 173

Total 116 111 100 55 124 87 58 122 110 119

Table 4.5: Table showing number of spectral angle scores with values above
0.95 using reflectance values significant to the 8 WV2 bands, 429, 480,
548, 608, 659, 723, 825, 915 nm i.e. the number of occasions (out of a
total of 200 possibles for each month) were the separability score is 0.95
and above demonstrating the greater similarity of spectral data within a
species (opposite way round to the between data to illustrate best times for
acquisition being when within species are most similar).

The number of occasions where the spectral angle was ≥ 0.95 was highest in September

to November, much lower in April and the lowest being July (Table 4.5). This shows that

spectral variation within species was less in November and greatest in July with April also

being a month of greater variation in spectral data within species. The data here also

shows that species such as Juncus effusus, Myrica gale, and Phragmites australis have

more variability in their spectral data. Using Table 4.5 it can be seen that the month

where species have less variation in their spectral values is in September with the most

variation in July. This is not necessarily the best month for species taken individually

but the best for looking at the species if there were only one period available for species

discrimination.

It can be seen in (Figure 4.10) that the variance of the spectral angle values is generally

greater in April for within species comparisons. This variance is greatly reduced for most

species in the July and August months (Figure 4.10). Species such as Molinia caerulea

and Phragmites australis have an increase in October and November when they have

died back and remain as dead litter (Figure 4.10). All other species show far less spectral

angle variance for the autumnal October and November periods (Figure 4.10).
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Figure 4.10: Variance of spectral angle values within each species for each
month from April to November.

4.3.4 Species discrimination using spectral indices

Visual Differences

Flowering of Calluna vulgaris is reflected in the NDVI curves with a dip in the September

flowering period (Figure 4.11). Molinia caerulea has a very steep increase in NDVI

compared with many other species in peak growth periods (Figure 4.11). Phenological

occurrences like these have the potential within a site to be used to help discriminate

from other species. BG indices also showed significant changes in this flowering period

(Figure 4.12). Sphagnum pulchrum has a relatively constant NDVI throughout the year
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whilst Sphagnum cuspidatum gave much lower BG and NIR diff values compared to

other species throughout the year (Figure 4.12). The August and September period

show a much higher FDI value for Pteridium aquilinum than for other species.

Figure 4.11: NDVI seasonal Curve for four selected species.

Species Separation Analysis

ANOVA analysis using separation values gave high F-ratio (separation) values for a

number of indices. The F-ratio values were very variable with a large scale from 85888.25

down to 90.09 (Table 4.6). These values indicated that the species were highly separable.

The best separation was achieved using the September BG followed by September PSRI

and September NDVI. The period giving least separation are the majority of April indices

which give the lowest separation was April, with all indices (and particularly the FDI)

performing poorly.
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Figure 4.12: Monthly indices of species based on mean data.

The best 5 indices were September BG, September PSRI, September NDVI, October,

PSRI, and November NIR diff. These indices give the best separation as they have the

lowest within specie variance and the highest between species variance. Once the best 5

indices were selected a pair plot (Figure 4.13) demonstrated the separability of species

using these.
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A pair plot of five of the least useful indices for separating species were compared with

the best/most effective indices to demonstrate the methods’ success (Figure 4.14). The

pair plots of the least effective indices showed a greater spread of points with some

species merging with others thereby proving. This is due to there being a greater within

species variance in April. These plots showed that the selection process for best indices

for species separation worked. Table 4.6 shows how the variance within each species

generally increases from best to least effective indices for discrimination. The order of

variance increase is not necessarily the same when species are sampled individually as a

group (Table 4.7).

As an example, in the pair plots it is apparent that Calluna vulgaris is easily separable

using the September BG index (Figure 4.13). This result is shown in the BG index

where a peak for Calluna vulgaris in the flowering period is visible (Figure 4.12). This

peak shows the BG value to be much higher than that of the other species giving it a

distinction from these.

Species Sept BG Sept PSRI Sept NDVI Oct PSRI Nov NIR diff April PSRI April BR April BG April WBI April FDI

Cal vul 0.00036 0.00081 0.00034 0.00221 0.00193 0.01035 0.00906 0.05690 0.04270 0.10577

Eri ang 0.00114 0.00048 0.00127 0.00401 0.00248 0.20774 0.28439 0.04492 0.08674 0.05989

Eri vag 0.00042 0.00005 0.00010 0.00206 0.00051 0.09258 0.07206 0.01184 0.04692 0.03293

Jun eff 0.00032 0.00527 0.00251 0.03149 0.00068 0.06182 0.08430 0.13979 0.11391 0.29616

Mol cae 0.00916 0.00075 0.00328 0.00266 0.00116 0.14497 0.14474 0.00224 0.00417 0.00419

Myr gal 0.00101 0.00443 0.01033 0.00304 0.00313 0.33950 0.57047 1.12027 1.52171 1.35365

Phr aus 0.00311 0.00684 0.01571 0.01978 0.06419 0.13679 0.10800 0.02718 0.05383 0.02016

Pte aqu 0.00121 0.00709 0.01177 0.01057 0.00336 0.04965 0.09944 0.00982 0.01691 0.02225

Sph cus 0.00094 0.00039 0.00238 0.00038 0.00036 0.04787 0.11955 0.08963 0.01078 0.04701

Sph pul 0.00802 0.01016 0.00718 0.00041 0.00188 0.02589 0.04958 0.05207 0.00447 0.04632

Best ⇒ Least

Table 4.7: Variance for each species of indices used for best and least
discrimination of species.

The pair plots (Figure 4.13) show September BG and November NIR Diff indices are

effective at discriminating Sphagnum cuspidatum from other species as also indicated

by the BG and NIR Diff indices graphs (Figure 4.12). Phragmites australis shows more

variability within the species in the best indices pair plot (more scattered points) (Fig-

ure 4.13).
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Variable Vw Vb F-ratio

Sept BG 0.00 22.06 8588.25
Sept PSRI 0.00 22.03 6075.12
Sept NDVI 0.01 22.00 4008.26
Oct PSRI 0.01 21.95 2865.30
Nov NIR diff 0.01 21.94 2753.24
Nov PSRI 0.01 21.94 2719.24
July BR 0.01 21.92 2410.47
Nov BG 0.01 21.92 2388.27
Sept BR 0.01 21.91 2325.28
Oct NIR diff 0.01 21.91 2280.66
Sept WBI 0.01 21.91 2261.39
Nov NDVI 0.01 21.91 2247.40
June BG 0.01 21.88 1996.44
Aug NIR diff 0.01 21.88 1994.23
Aug BR 0.01 21.87 1925.49
Nov REP 0.01 21.85 1757.42
June NIR diff 0.01 21.82 1585.00
Aug Woody 0.01 21.82 1581.93
Oct BG 0.01 21.82 1575.03
Sept NIR diff 0.01 21.81 1509.37
Sept Woody 0.01 21.80 1503.03
May WBI 0.02 21.78 1398.69
June WBI 0.02 21.75 1255.68
April REP 0.02 21.72 1172.77
Oct REP 0.02 21.71 1138.92
May NDVI 0.02 21.70 1112.50
July Woody 0.02 21.69 1092.11
July PSRI 0.02 21.69 1085.19
Nov Woody 0.02 21.69 1078.59
Oct NDVI 0.02 21.66 1010.19
June NDVI 0.02 21.66 1006.12
June Woody 0.02 21.65 989.75
Aug PSRI 0.02 21.65 987.94
Aug NDVI 0.02 21.63 943.69
Nov FDI 0.02 21.62 925.66
June FDI 0.02 21.62 925.65

Variable Vw Vb F-ratio

June REP 0.02 21.60 893.06
Sept REP 0.02 21.59 871.46
Sept FDI 0.03 21.57 839.39
July NIR diff 0.03 21.54 802.33
Nov WBI 0.03 21.54 790.78
Oct Woody 0.03 21.53 786.37
June PSRI 0.03 21.53 777.18
Oct BR 0.03 21.51 756.89
Nov BR 0.03 21.46 690.58
July NDVI 0.03 21.44 677.75
Aug REP 0.03 21.42 650.79
May REP 0.03 21.41 645.36
Oct FDI 0.03 21.41 641.57
May BG 0.03 21.40 634.70
July REP 0.04 21.31 565.02
Aug FDI 0.04 21.29 550.68
April NIR diff 0.04 21.29 549.27
May FDI 0.04 21.21 498.30
May PSRI 0.05 21.15 463.20
April Woody 0.05 21.10 440.38
April NDVI 0.05 21.05 420.59
July FDI 0.05 20.99 395.75
July WBI 0.05 20.98 390.54
June BR 0.06 20.93 375.43
Aug WBI 0.06 20.93 374.17
July BG 0.06 20.80 333.76
Aug BG 0.07 20.73 316.67
May Woody 0.07 20.63 294.43
May NIR diff 0.07 20.58 284.49
Oct WBI 0.09 20.24 227.84
May BR 0.09 20.17 219.77
April PSRI 0.10 20.05 205.27
April BR 0.15 18.86 122.32
April BG 0.16 18.83 121.11
April WBI 0.19 18.10 95.13
April FDI 0.20 17.91 90.09

Table 4.6: Separations between species. Larger F-ratio values indicating
better separation of all species using the specified indices for all months.Vw=
Variance within species, Vb= Variance between species
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4.3.5 Species discrimination from multiple dates

Combining between and within species variance of spectral angle scores an F-ratio for

each month and species was calculated. The results of this analysis shows that the best

time for discrimination of each species is dependant upon which species is to be discrimi-

nated. When trying to discriminate a larger number of species (in this case 10) multidate

imagery would be advantageous providing more accurate species discrimination. In an

ideal world an image for each suitable period for each species would be selected. If costs

were excessive a smaller selection would be appropriate. Using the F-ratio of the spectral

angles (Table 4.8) the obvious selection would be September and November with June,

August and October showing equal potential for the third choice. When using results

from the indices F-ratios (Table 4.6) it can be seen that these results are in agreement.

The first five best indices selected using the F-ratio method were from the September,

October and November periods. These results, however, do not take into account the

usefulness of differences in growth between pre and peak periods that can also be used

to improve species discrimination. For this reason it may also be useful to use a pre and

peak period image.

April May June July August September October November

cal vul 55.23 283.75 84.37 72.08 444.80 3693.01 242.54 2203.48

eri ang 125.76 170.37 296.52 196.40 54.04 1343.10 362.21 403.97

eri vag 47.59 354.76 130.62 56.01 48.71 564.07 1665.39 3150.17

jun eff 4.80 9.14 52.22 91.89 54.55 24.31 10.49 415.01

mol cae 633.18 384.69 67.58 22.69 2782.13 397.51 469.39 1149.37

myr gal 8.41 39.24 124.29 141.91 120.76 290.98 574.05 1147.47

phr aus 27.87 89.69 54.95 84.32 42.95 158.06 155.97 35.78

pte aqu 106.63 226.84 1620.26 85.32 943.87 538.59 213.41 39.56

sph cus 66.30 30.61 527.81 54.15 972.78 253.50 2681.54 464.21

sph pul 219.28 124.68 206.07 23.17 388.20 84.17 1343.80 3106.84

Table 4.8: F-ratio values for the variance of between and within species
spectral angle values for 8 WV2 bands.High values as indicated by values
in blue show best separability due to low within species variance and high
between species variance. Low values as indicated by values in red show high
within species variance as well as low between species variance.
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These results (Table 4.8) show that the best month for discrimination using the WV2

spectral data for the species are as follows with decreasing discrimination shown from

F-ratio values:

Species Month F-ratio

Pte aqu June 1620.26

Mol cae August 2782.13

Cal vul September 3693.01

Eri ang September 1343.10

Phr aus September 158.06

Sph cus October 2681.54

Eri vag November 3150.17

Jun eff November 415.01

Myr gal November 1147.47

Sph pul November 3106.84

Table 4.9: Best months for discrimination of each species.

These data (Table 4.9) also show that although a particular month was selected as best

for a species F-ratio values of the spectral analysis variance were low for some such

as Phragmites australis and Juncus effusus. For these species, data acquired from two

dates may be better for discrimination as their phenology could be used to benefit this.

For example Phragmites australis is very lush growth in summer and has expanses of

dead litter in winter. Juncus effusus is a darker shade of green in the summer and is still

quite green in the winter with no large expanses of flattened dead litter. Species such as

Pteridium aquilinum and Molinia caerulea have very lush green growth in the summer

months are also better discriminated in those months (June and August). This indicates

that although September and November are overall the best months for discrimination

of most species a summer month may also be useful for better discrimination of all these

species.
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4.4 Discussion

4.4.1 Seasonal separability

Using spectral analysis the vegetation spectrum shows the best separation using the

whole spectrum is in April. This result is reproduced with all 3 selected sections of

the spectrum. Reducing the wavelengths for analysis, as one would expect, lessens the

separability, however these results show that discrimination of species still occurs when

WV2 wavelengths are used proving that it may be possible with the correct acquisition

timings to separate some species. These results used the mean spectral values for

each species and although this between species spectral analysis suggests that April is

the best month to provide data for the best species discrimination the within species

analysis (using a sample of 20 per species) show April as being the month where there

is most variation in spectral data within species. F-ratio analysis of the spectral angle

data which takes into consideration both the between and within species variance show

(Table 4.8) that April is not the best month for species discrimination.

Results have shown that species discrimination is somewhat dependant upon what species

or how many are to be isolated. For example if only Calluna vulgaris was to be separated

from others using WV2 spectral data the results (Table 4.4) indicate that April and May

gave the best separation for this species and therefore were the best month to have an

image acquired. Results show that choosing the dates for satellite acquisition that are

preferable for species discrimination is very dependant upon which satellite data is being

used. A satellite using the SWIR region also may have more separability in the month

of April than the WV2 image (Figure 4.3).

It was more difficult to take readings in constant light conditions with fluctuations in

intensity in November. It may be best to use November readings for an indication of

(spectral graph shape changes) increases or decreases of reflectance at wavelengths but
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species discrimination, particularly using indices that use the red edge and NIR regions

of the spectrum, in this month may be partly due to this so should perhaps be viewed

with caution. The photographic representations corroborate this (Figure 4.2).

As not all species are easily separable with a limited number of wavelengths available

for analysis, other methods such as phenological comparisons and vegetation indices can

be employed to increase their separability. The pair plots (Figure 4.13) show that using

indices at a particular period in time can discriminate species. Using these results along

with phenological information (e.g. flowering periods or senescence versus lush growth)

(Figures 4.12 and 4.11) improve this discrimination further.

Using the spectral analysis results (Tables 4.3, 4.4 and 4.6) it can be seen that there

are months that are more useful for the separability of a group of species (Figures 4.11

and 4.15). It would be useful to use an image that is suitable for discrimination of

each species. However, due to cost and weather conditions, this is not a possibility

so it is important to investigate the periods that are showing the largest differences

in species separability. From both the spectral angle analysis of reflectance values and

the F-ratio analysis of the indices values it can be seen that there are at least 3 main

periods that are most effective for species separation. These can be divided into peak-

flush (June to August), September and post-flush (October, November; as shown in

Figure 4.11). Using only between species mean spectral data the pre-flush (April) period

was the most effective at discrimination so may also despite the increase in within

species variation be a month worth considering for species discrimination. If a species

such as Phragmites australis which is not so easily discriminated but has better far

better discrimination from all species using only between analysis in April then it may be

worth using a pre-flush image to assist with the discrimination. This may provide a more

definite discrimination for the species data that is most similar to the mean and leave

out other areas of Phragmites australis that are not so similar. However, this provide

a more accurate representation of definite Phragmites australis but of course will have
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missed other areas. It was also shown that one of the periods with least variation within

species was the July and August period (Figure 4.10). This is also worth noting when

selecting months for species discrimination. Results would therefore suggest a pre-flush,

peak-flush, September and a post-flush period are best for discrimination of the selected

species.

Hill et al. (2010) also found similar periods most effective for discrimination of tree

species. They tested images that provided green-up, full-leaf phase and an autumnal

senescence period equating to the Pre, Peak and Post periods with the most effective

months for his classification being, March, July and October. Lucas et al. (2011a) also

used phenological data from spring and summer to improve classification of habitat.

Where species such as Pteridium aquilinum or Calluna vulgaris were classified, a spring

and summer photosynthetic vegetation (PV) difference was used. However this was on

larger scales and dates and indices were chosen using ecological knowledge rather than

statistical analysis.

4.4.2 Species separability

Jones and Vaughan (2010) has shown that differences in pigment composition can be

used as a tool for species discrimination on the basis of leaf or flower colour and has

been demonstrated here in indices graphs (Figure 4.12).This was demonstrated with

flowering in Calluna vulgaris where pink flowers contain pigments such as anthocyanin.

This showed on the spectral graphs as an increase in the red and decrease in the green

wavelengths in September (Figure 4.3). For vegetation that moves dramatically from

dead to lush green growth in a short periods (e.g. Molinia caerulea), the increase in

chlorophyll content is very apparent and can be clearly seen in the change of spectral

shape for the peak growth periods (Figure 4.15).

The spectral angle analysis of between species for the full spectrum showed a large
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4. Species discrimination using field spectroradiometer data

proportion of spectral angle values of zero (Table 4.2) showing there to be a reasonable

separation of species, however this separation lessened as the spectral data was reduced

(Tables 4.3). Using only WV2 wavelengths separation was far less successful (Figure 4.4).

Using indices appears to improve this as shown by the high F-ratio values (Table 4.6).

Scatter/pair plots also indicate the distinct separation of all species using the specific best

(highest F-ratio values) to do so and in particular in the September, October, November

period (senescent periods). There appeared to be far more variation within species which

gave indices in this period a low F-ratio in the April periods which was visible in scatter

plots. Spectral angle analysis also indicates that a summer period would be useful for

discrimination of species such Molinia caerulea and Pteridium aquilinum.

Hill et al. (2010); Wolter et al. (1995); Lucas and Centeno (2008) have all acknowledged

that spectral variation within species is typically greater than between them making it

difficult to discriminate. The results here show that the spectral variation within a species

can be taken into account when selecting the best months to acquire imagery. Using

differences in spectral data between Pre, Peak and Post periods could also be very useful

in separation of species with very different seasonal growth habits. The differences in

growth habits between species such as Sphagnum pulchrum and Molinia caerulea are

significant enough to help with separation (Figure 4.15), however their indices differences

at times such as June and October are not so different (Figure 4.11). This shows the

importance of using both knowledge of the ecology of a species as well as the appropriate

seasonal indices to help with separation of species.

Asner (1998) found that variability in surface reflectance was dominated by presence

of standing litter in the canopy. This was recognised as correlating with standing litter

within imagery (Breyer, 2010) and could be the same source of variability being found

within the field spectrometer species data for the senescent periods. Dead litter can vary

according to moisture, decay, temperature, etc. and are perhaps more likely to show

greater variation within a species than live material.
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4. Species discrimination using field spectroradiometer data

This could explain why April was one of the months that showed much more variation

within species. Areas of primary bog have larger quantities of dead material present all

year round due to the nature of the habitat. The possible influence of this could in part

cause difficulties in separation of spectral data giving greater variation within a species.

Other variables such as shading (e.g. low sun-angles) will also influence the spectral

variability within-species with some species such as Myrica gale having more issues with

this than other species (e.g. Sphagnum spp.) (Figure 4.2). Hill et al. (2010) and

Jackson and Huete (1991) found that factors influencing and increasing within-species

spectral variation in a remotely sensed optical image included all aspects that can be

affected by seasonal conditions; these include illumination and view angle differences,

natural variability in canopy structure and openness and shadowing effects. All of these

effects may become more pronounced when focusing sample sizes on a larger scale (e.g.

using imagery such as WV2 with 2x2m pixel size).

4.4.3 Methodology

The spectral angle analysis for between species gave opposing results to the F-ratio of

indices initially but once within species spectral angle analysis was included in analy-

sis results gave very similar results to the indices ANOVA F-ratio separation results.

This shows that the ANOVA F-ratio separation analysis which used all the data and

calculated the separation values using both the variance within the species group and

between species groups is a suitable method for selecting the best indices to discriminate

species.

Although many hyperspectral or multispectral separations use linear discriminant analysis

(LDA) (Lucas and Bunting, 2006) or further use of ANOVA analysis methods (Petropou-

los et al., 2010) this F-ratio method has been used due to its ease and success in results.

F-ratio has been used in other areas such as in the wine industry to find chemical

components that separate grape varieties (Coghlan, 2014) and for medical methods of
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4. Species discrimination using field spectroradiometer data

analysis, for example separation of speech elements (Nicholson et al., 1997). This F-

ratio otherwise called a separation index provides a simple method for an analysis of the

effectiveness of indices for comparison with each other.

4.5 Summary conclusions

1. UK flora has huge variations in seasonal attributes with massive variations both be-

tween years and seasons. These variations can affect any data that a satellite image may

record and therefore timing of the acquisition of imagery is vitally important to its iden-

tification and recorded condition. An understanding of just how these vary throughout

the year is therefore critical.

2. Using a protected site with areas of natural vegetation as well as areas of degradation

a suite of 10 species common to each of these zones was compiled. These were limited

to the species that would be most likely to be identified within satellite imagery by their

coverage and dominance.

3. Field spectroradiometer readings as well as corresponding photography were com-

piled for each species on a monthly basis to record seasonal changes. Spectral data was

analysed to assess between and within species seasonal separability using spectral angle

analysis. Indices relevant to WV2 satellite acquisition data were analysed using a multi-

variate analysis of variance to asses both seasonal species separation and the suitability

of indices.These two methods gave almost identical results in terms of best seasonal

timings for discrimination of species.

4. Using spectral angle analysis it was found that some species were far easier to

separate than others and that the timing of satellite acquisition should be dependent

upon what species are present. Using spectral angle analysis it was shown that within

species variation had an effect on species discrimination with the greatest variation within
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species being in April.

5. An ANOVA method giving F-ratios was used effectively to select the indices most likely

to be successful at discriminating species and this information also provided information

on the best periods for satellite acquisition.

6. Phenological occurrences such as the flowering of Calluna vulgaris in September have

the potential within a site to be used to help discriminate from other species. However,

to be discriminated from other species an image from the flowering period and a pre

flowering period would be required to establish this difference.

7. This data shows that the best 2 periods for discrimination of species is September

and November but a summer month to include some of the lush competitive species

would improve discrimination for all species. To improve the separability of a number

of phenologically differing species the optimum timings for acquiring satellite imagery

corresponds with both a Pre flush period (when deciduous vegetation is senescent), a

Peak flush period (when all vegetation is usually at its most productive) and a Post flush

period (autumnal senescence).

8. These results also show that for separation of species the best months to get the

most significant separation are dependant on a number of variables. These being:

a) what satellites are used,

b) what species are to be separated or selected,

c)both between and within variation must be considered in analysis.

This study highlights two important phenomena; i)within-species spectral variability af-

fects the discrimination of species and ii)the within species variability is possibly due

to seasonal effects. This study further highlights the importance of selecting satellite

imagery to suit the species present or those to be investigated.
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Chapter 5

Vegetation classification

5.1 Introduction

Peatlands or acid bogs are one of the most difficult ecosystems to classify with remote

sensing data (Ozesmi and Bauer, 2002). Lowland raised bogs contain very special-

ized and highly distinctive assemblages of plant species (Moore (2002), Anderson et al.

(2011)). Many of these species present at Cors Fochno, as outlined in chapter 4, can

also be highly distinctive when it comes to spectral signatures. Dominance of particu-

lar plant species and their patterns of growth can also reflect the ecological gradients

present. This chapter focuses on the classification of species likely to form larger patches

and that are indicative of the ecological gradients present in this habitat. Now with the

advent of satellites such as WV2 providing high resolution imagery it is becoming easier

to classify small patches (pixel size) of dominant species.

A system for selecting suitable indices for separation of the species spectral and indices

data was developed within chapter 4; however, until it is used within the classification

of an area its practical use and accuracy is unknown. This chapter applies the methods

developed in chapter 4 to a modified EODHaM system (Lucas et al., 2015) classification

of Cors Fochno SSSI and surrounding landscape. The system was then adapted and

modified within this chapter where necessary. The EODHaM system incorporates levels

1 to 3 of the Food and Agriculture Organisation (FAO) Land Cover Classification System

(LCCS) (Di Gregorio and Jansen, 2000). The LCCS is a hierarchical system involving
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5. Vegetation classification

several levels which are utilised throughout the classification process (Figure 2.4). This

method allows the combination of LiDAR and spectral data to provide information for

classification.

The success of using spectral data from high resolution imagery for peatland classifi-

cation has been demonstrated by others (Middleton et al., 2012; Harris et al., 2015).

Hyperspectral data has been largely employed for peatland classification due to the of-

ten heterogeneous nature of these habitats (Harris et al., 2015), however, hyperspectral

data can be both difficult and costly to obtain and process. VHR multispectral datasets

often lack a short-wave infrared band (Nagendra et al., 2013) which can present chal-

lenges for classification. Many that have used other very high resolution multispectral

imagery have used a fusion of a single multispectral image and LiDAR (Anderson et al.,

2010; Borka and Sub, 2007). Combining vegetation height and spectral data is known

to improve vegetation classifications (Lucas et al., 2012b; Mucher et al., 2010), using

regression analysis between field measurements and LiDAR, concluded that LiDAR could

provide accurate height measurements on shrubs and trees even when no leaves were

present although this was not found to be possible for the whole range of plant life

forms. A number of studies (Adam et al., 2010; Klemas, 2013) have demonstrated that

a combination of LiDAR, plant classification, and vegetation index data can improve

species-level classifications and estimation of biophysical variables. Combining struc-

tural data from LiDAR with multispectral data has been shown to improve accuracy of

classification (Gilmore et al., 2008; Hill and Thomson, 2005) and has specifically been

shown to improve the distinction of peatland types within a habitat (Anderson et al.,

2010).

In addition to this, many studies (Cole et al., 2014; Gilmore et al., 2008; Jabloun et al.,

2009; Cho et al., 2008) have found the use of spectral indices can improve separability

and considerably reduce the data volumes for processing and analysis. The limitations

of using an optical remote sensing approach with purely spectral-based index classifiers
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5. Vegetation classification

are evident in studies of wetland species classification (Milton et al., 2005). However,

using more than one image to provide seasonal information to improve vegetation dis-

crimination has not been used for peatland classifications other than with the EODHaM

system (Lucas et al., 2015) and is more usually employed in woodland/forestry tree clas-

sifications (Hill et al., 2010). The EODHaM system incorporates two or more images

to provide seasonal information along with LiDAR and a number of thematic layers (ur-

ban & cadastral), and found these extra layers improved the classification including for

life-form and species classifications.

In addition to these emerging practises of improving classifications with additional height

and seasonal data, this chapter draws on the field information (chapter 4) by using it to

identify the most appropriate imagery acquisition periods to provide the best seasonal

data to assist with species discrimination. The method used in chapter 4 were again

used for indices selection and threshold identification. In addition to this, ecological

information gathered from the field work and expert knowledge is used and implemented

in the seasonal aspects of the classification, in the hierarchical rule based classification

system. Unlike the previous EODHaM system study (Lucas et al., 2015), imagery was

atmospherically corrected to provide data that should be comparable with the field spec-

troradiometer data.

Aims:

This study aims to assess the use of methods and ecological information developed

in Chapter 4 for use with WV2 data acquired over 3 time periods (March, July and

November) and to produce a multiscale classification of Cors Fochno SSSI and it’s

surrounding landscape suitable for use within a monitoring system.

Objectives:

1. Assess the correspondence of atmospherically corrected WV2 data and field spectro-

radiometer data.
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2. Use the methods developed in Chapter 4 to select the best indices for dominant

species discrimination from the 3 WV2 data sets.

3. Develop a classification process adapting the EODHaM system methods in order to

integrate both the results of the indices selection process in objective 2 and ecological

information gathered in field work, as well as expert knowledge.

4. Classify the protected site and surrounding landscape to Level 2 of the Landcover

Classification System (LCCS) and the dominant species present within the Cors Fochno

protected site.

5. Assess the accuracy of the process using field data and UAV data and demonstrate

the effectiveness of the process developed for monitoring purposes.

Hypothesis:

Classification of varying scales, from landscape to species level, can be carried out ef-

fectively with good accuracy results within one classification process, using an F-ratio

method for best indices and image time selection, and ecological information gathered

in field surveys to produce a system that is repeatable for improved monitoring pur-

poses.

5.2 Methods

5.2.1 Classification process utilising the EODHaM system

For Cors Fochno, WV2 imagery were acquired during the pre (24/3/12), peak (27/7/11

and post (15/11/11) flush periods with this selection confirmed through reference to

the spectral reflectance data in chapter 4 acquired for the main species groups. These

were classified using an adaptation of the Earth Observation Dynamic Habitat Mapping

(EODHAM) system (Figure 5.1). The EODHaM system is based on the Food and

Agricultural Organisation (FAO) Land Cover Classification System (LCCS) (Figure 2.4)
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and is divided into corresponding stages.

The classifications were carried out using atmospherically corrected imagery. Two sep-

arate classifications were carried out; a landscape classification to map the landscape

surrounding the SSSI study site and a second classification to map the smaller scale site

level of the SSSI. LiDAR data was also downloaded from Geomatics to create a Canopy

Height Model for integration into the system.

The classification process comprised of:

(a) preparation and pre-processing (orthorectification, radiometric, atmospheric and/or

topographic correction),

(b) segmentation in eCognition,

(c) extraction and analysis of indices for input into the classification

(d) classification to LCCS Level 2 (EODHaM 1st stage) and

(e) classification to species (adaptation of EODHaM 2nd stage), with this involving ex-

pert knowledge and index threshold values derived from statistical analysis of extracted

imagery data.

(f) Accuracy assessment

For steps (c) and (f) ground, aerial and UAV data was required to collate training and

accuracy data. This was used to compare the WV2 data with the field spectroradiome-

ter data and to create thresholds for classification input and for use in an accuracy

assessment.

The classification was processed using the Remote Sensing and GIS Library (RSGISLib)

software (Bunting et al., 2014), the Geospatial Data Abstraction Library (GDAL), with

XML and PYTHON scripting. The classification system also made use of the KEA image

file format (Bunting and Gillingham, 2013), which allowed for processing within a raster

attribute table (RAT).
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5. Vegetation classification

Figure 5.1: Classification process using an adaptation of the EODHaM
system incorporating a threshold selection method developed in chapter 4.

Within the RAT, which has been developed such that large datasets can be efficiently

analyzed (Clewley et al., 2014), for the object segmentation all pixels of the same object

shared the same ID. This table was first populated with image data and derived products

(e.g., vegetation indices) and class codes and species names were added progressively as
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the classification proceeded, with the final attribution being the LCCS code, and species

names. All RAT attributes from training pixels were imported into R (Team, 2012) and

used in analysis for assessment of indices and category suitability. This data was then

used for development of thresholds for input in the classification system.

5.2.2 Collation of field and vegetation data

Two levels of classification were used, one to classify the landscape surrounding the

SSSI site and the other to classify in more detail the Cors Fochno SSSI protected site.

Two sampling methods were therefore employed to take into account differences in

scale.

Sampling land-cover in the wider landscape.

To provide sample data for LCCS level 2 categories in the wider landscape aerial pho-

tography was used to distinguish areas up to LCCS Level 2. The classes for LCCS level

2 were Aquatic Non Vegetated (ANV), Aquatic Vegetated (AV), Terrestrial Non, Veg-

etated (TNV) and Terrestrial Vegetated (TV) (Table 5.1). It was decided a tree class

would be added for additional information (Table 5.1).

Class Samples for Samples for
threshold accuracy

1 Aquatic Non Vegetated (ANV) 25 50
2 Aquatic Vegetated (AV) 25 50
3 Terrestrial Non Vegetated (TNV) 25 50
4 Terrestrial Vegetated (TV) 25 50
5 Trees (T) 25 50

Total 125 250

Table 5.1: Classes sampled for use in landscape classification and accuracy
testing.

A total of 75 data points were selected for each of the above LCCS categories giving a

total of 375 data points. These were spread as evenly as possible across the whole of
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the 10×10km area. The sample points were randomly split into two groups for training

and accuracy testing. 25 points per class were allocated to training by using them to

identify thresholds and 50 points were used for accuracy testing (Table 5.1).

Sampling the SSSI

The same selection of plant species were used for classification (Table 5.2) as were used

in chapter 4. Previous field sample points used for the field spectroradiometer data

collation in chapter 4 were utilised. In chapter 4 there were 20 dominant patches for

each of the 10 species with a differential Global Positioning System (dGPS) used to

record the exact positions for each.

Species (Dominant) Samples for Samples for Samples for
threshold accuracy (Ground) accuracy (UAV)

1 Calluna vulgaris 25 26 50
2 Eriophorum angustifolium 25 16 50
3 Eriophorum vaginatum 25 11 50
4 Juncus effusus 25 12 50
5 Molinia caerulea 25 31 50
6 Myrica gale 25 19 50
7 Phragmites australis 25 18 50
8 Pteridium aquilinum 25 11 50
9 Sphagnum cuspidatum 25 7 50

10 Sphagnum pulchrum 25 18 50
Other areas
(mixed species, water & bare ground)

1 Aquatic Non Vegetated (ANV) 25 23 50
2 Aquatic Vegetated (AV) 25 12 50
3 Terrestrial Non Vegetated (TNV) 25 25 50
4 Terrestrial Vegetated (TV) 25 9 50
5 Trees (T) 25 22 50

Total 375 260 750

Table 5.2: Species sampled for use in SSSI classification and accuracy
testing. Other areas are areas that are either mixed, water or trees.

In addition to this over 300 point quadrats and areal quadrats of 2×2m were sampled

in 2011-13 (Figure 5.2). Areas of primary active bog, degenerated (secondary) bog

as well as surrounding habitats were selected for field sampling with the main focus

being areas where particular species dominated. In central active bog areas with typical
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hummock and hollow stucture, vegetations in each were sampled to distinguish between

them. Areas with dominant species (or as dominant as possible) were selected to aid

classification of species in images. As well as recording the dominant species, areas

representative of homogeneous patches within the range of habitats were selected and

sampled in the same way. Quadrats were placed within the selected areas avoiding the

edge. A differential Global Positioning System (dGPS) was used to record their exact

position. A detailed assessment of species composition within each of these quadrats

based on percentage cover from an areal viewpoint (100%) were recorded. Each quadrat

was photographed to record a visual coverage for reference.

Figure 5.2: The SSSI sample points which include both threshold and
accuracy sample points..

The EODHaM system also provides the ability to translate a classification from the

LCCS to the General Habitat Category (GHC). This is known to cause issues regarding
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translation to multiple GHC categories from a single LCCS category or even from species

to GHC (Adamo et al., 2014). For example on the bog Myrica gale in particular grows

to different heights according to the conditions so is very short (≤50cm) within the

wetter, more acidic, very low nutrients regions but is much taller (>50cm, <200cm) in

the outer regions of the bog where more nutrients are available. Classification of Myrica

gale using GHC categories could on translation create at least three options (Shrubby

Chaemophytes (SCH), Low Phanerophytes (LPH), Mid Phanerophytes (MPH). Non

shrub plants for example graminoids are all classified as Caespitose Hemicriptophytes

(CHE) despite height differences, e.g. Molinia caerulea which can be >100cm tall or

more and some Carex spp. present on the verges of the bog which can be as low as

10cm.

Lifeforms within the LCCS system (Table 5.3) were translated from the field data as an

additional layer which can be included in the 2nd stage of the EODHaM system.

No. Lifeform category Lifeform
1 Woody Trees
2 Woody Shrubs
3 Herbaceous Forbs
4 Herbaceous Graminoids
5 Lichen/Moss Lichen
6 Lichen/Moss Moss

Table 5.3: LCCS Lifeform categories.

Sample points were split into two groups, one for training and one for accuracy testing

(Table 5.2). 25 points per dominant species were used for threshold identification. The

remainder of field sample points were used for accuracy assessment. In total there

were 260 points remaining. Due to the heterogeneous nature of the habitats present

all quadrats with a species composition where one species accounts for 70% or above

were used as a dominant species point. Those quadrats with very mixed vegetation were

noted instead as categories of LCCS level 2 and were used for accuracy assessment. Any

quadrats with trees were used for accuracy assessment of tree classification. There was

132



5. Vegetation classification

not an equal number of each category or species due to the difficulty in finding patches

of dominant species large enough and due to difficulty in traversing the site.

Two high resolution (3cm) UAV images made available were used to provide data for

further accuracy assessment using only the UAV sample points. These were flown in

March 2012 and September 2012. The UAV imagery from the two time periods was

sufficient to ascertain patches of relevant dominant species. For each species 50 points

were selected within this imagery as well as a further 50 for each LCCS category and 50

for areas of trees. A total of 750 points where selected.

5.2.3 Preparation and pre-processing of remote sensing data

By assessing the data collated and analysed in the field spectroradiometer studies in the

previous chapter 4, three image periods were selected. The periods selected were from

the Pre, Peak and Post time periods. These were found to be the periods providing

the most information for separation of species with the least number of images. Exact

times could not be selected due to the use of either previous acquisitions or due to cloud

cover and conditions being unsuitable, therefore, dates of imagery used were in the end

(March 2012, July 2011 and November 2011), as close as possible to the suggested Pre,

Peak and Post periods.

World View 2

The relevant months of WV2 satellite imagery were selected from pre requisitioned

images. The best months to provide suitable data for input into the classification system

were selected using field spectroradiometer data (see below). The three Worldview 2

images acquired for this classification work were 24th March 2012, 27th July 2011 and

15th November 2011. Each image covered the same window area of 10×10km.

All imagery required orthorectification and the ERDAS program was used for this. The
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method of orthorectification used within ERDAS requires both the image and the Ratio-

nal Polynomial Coefficient (RPC) files which are provided with this. RPCs are simple em-

pirical mathematical models relating image space (line and column position) to latitude,

longitude, and surface elevation. A Digital Elevation Model (DEM) was also required

in order to orthorectify WV2 satellite images. The relevant area was selected and the

latest 1m Digital Terrain Model (DTM) (in this case 2013) was ordered from Geomat-

ics. Finally synchronisation was carried out within ERDAS by selecting tie-points (83

selected) across the whole image. Once these were selected the images were re-sampled

to a common projection, co-ordinate system and pixel grid.

Once orthorectified, the images required atmospheric correction. Atmospheric correction

was necessary to provide surface reflectance data that could be compared with the

field spectroradiometer data in the previous chapter. It is also known that atmospheric

correction has been shown to significantly improve the accuracy of image classification.

When using vegetation indices the effects of atmosphere can lead to major discrepancies

and atmospheric correction is especially important in cases where multi-temporal images

are used and analyzed (Hadjimitsis et al., 2010).

Images were first converted from Digital Number (DN) to radiance (Wm-2 sr-1Âţm

-1) and then to surface reflectance (unit of reflectance being a value from 0 to 100

signifying % of reflectivity) using Atmospheric and Radiometric Correction of Satellite

Imagery (ARCSI) software which is built on the 6s atmospheric model. ARCSI software

provides a tool for the correction of satellite imagery (Bunting and Lucas, 2014). ARCSI

retrieves the atmospheric correction parameters from the image data and uses them for

input into the 6s model. ARCSI multiples the output pixels by 1000 and integerises the

values to provide reflectance as a percentage to 1 decimal place.
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Canopy Height Model

LiDAR data for the Cors Fochno and surrounding area was downloaded in the form of

a Digital Terrain Model (DTM) and Digital Surface Model (DSM) from the Geomatics

Group of the Environment Agency at 1m resolution. This data was flown in January

2013. Both the DTM and DSM which provided mean height values per cell were clipped

to the 10×10km area. To obtain a Canopy Height Model (CHM) an image was created

by subtracting the DTM from the DSM using a RSGISlib script. This CHM image was

to be used within the classifications to provide vegetation height data. The DTM was

also used to investigate the position of the raised bog central dome with a view to this

being used to assist in assessing the condition of this area.

UAV

High resolution (3cm), low cost, aerial imagery (using UAV) was used in the development

of thresholds for the classification of satellite imagery. Two images had been acquired

for two periods, March 2012 and September 2012. The UAV imagery was used to

identify dominant stands of vegetation (Figure 5.3) for extracting satellite spectral data

for species indices and threshold selection data. It was also used to provide data for the

final accuracy assessment.
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Figure 5.3: March 2012 UAV image of CorsFochno SSSI showing species
identified within the imagery.

Preparing corrected WV2 imagery for 2 scales of classification input

Once imagery was rectified and corrected two scales of classification imagery were cre-

ated. The full 10×10km was used for the landscape classification to Level 2 LCCS. To

carry out a landscape classification to level 2 of the whole 10×10km image an object

based segmentation was required for input. This was performed within eCognition using

a multi-spectral difference segmentation with the spectral difference set at 3 with all 8

bands used to calculate the difference.
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For the species classification of the SSSI area each 10×10km image was clipped to the

SSSI recorded shape-file. For use within the classification it was more useful to use the

smallest segmentation possible (2×2m) due to the small size of patches of species. The

clipped SSSI area was segmented to a one pixel resolution (2×2m) chessboard within

eCognition.

5.2.4 Segmentation

The 10×10km landscape was classified to LCCS level 2 using the EODHaM stage 1

process using an object based segmentation whilst the SSSI site was classified to species

using a pixel based segmentation for input into the EODHaM stage 1 and a stage 2

adaptation. A pixel based segmentation of the SSSI was used due to the small size of

patches of dominant species. This was carried out in eCognition using a chessboard

segmentation. The object size that defined the size of the square grid in pixels was

that of the pixel size of the image e.g. 2×2m. This was used to create square image

objects which could be used within the EODHaM system classification. An object based

segmentation was carried out for the 10×10km landscape area. This was done using a

spectral difference segmentation which was created within eCognition. Within the spec-

tral difference segmentation, neighbouring pixels were merged if the difference between

their mean spectral values were below a value of 3. All 8 bands were used and evenly

weighted.

5.2.5 Extraction and analysis of indices for input into the clas-

sification

In order to classify categories or species within the EODHaM system thresholds are

applied to selected index for each. This uses ecological knowledge and personal input

for indices threshold values however, unless very experienced this is open to errors or a
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lengthy process of trial and error. In order to try and overcome these issues the following

process of index threshold calculations was used after investigation in chapter 4 found

this method to be effective. Indices (Figure 5.4) to select Level 2 LCCS categories,

Lifeform and species were assessed.

Table 5.4: Indices used showing which bands are used for calculations.
These indices were used due to their input into the original EODHaM clas-
sifications within the BIOSOS project. Thresholds and indices were selected
for this using ecological knowledge and through trial.

As part of the EODHaM system indices layers are created in the initial steps of the

classification from the image spectral data. Once the imagery had been corrected and

rectified and clipped, the initial steps in the classification were processed to produce

these pixel based index layers. Using the shape-files of LCCS points and species points

developed from the ground data previously mentioned, 25 samples of each classification

category were used in analysis (Table 5.2). The index value for each LCCS category

sample point and each species sample point to be used for threshold creation was then

extracted from these layers to form a set of data for use in the following analysis. Focus

was placed on using the same indices which were used in chapter 4 and which were used

138



5. Vegetation classification

previously within the EODHaM system for vegetation discrimination by the BIOSOS

project. (Table 5.4). These indices were selected using ecological knowledge and trial

and error to discriminate surfaces within the LCCS categories of classification (further

explanation in Chapter 4).

Comparison of field spectroradiometer and satellite data

A comparison of field spectroradiometer indices values and WV2 indices values was car-

ried out to assess whether the field data could be used to select suitable indices and

to create thresholds for input into the EODHaM system. July field spectroradiometer

spectral measurements were re-sampled to the WV2 response function for each wave-

length. These were compared with the July acquired satellite spectral data indices to

check correspondence. A linear regression was carried out to assess whether field spec-

troradiometer data would be sufficient to be used to calculate thresholds for classification

input.

Spectral discrimination of LCCS categories and species

As with chapter 4 a spectral angle analysis (within ENVI) was performed using the

spectral data extracted for the species from the WV2 satellite data. This was used

to establish whether the spectral reflectance for each species was significantly different

enough to differentiate between them. As before the Spectral Angle Mapper (SAM)

algorithm was used in the Spectral Analyst within the program ENVI to compute the

’spectral angle’ between the species spectrum. Pre, peak and post images were used for

this. Results greater than or equal to the maximum of 0.25 radians receives a score of 0.

To summarise, a score of 1 indicates that the spectra are a perfect match and the two

spectra being compared are the same species. A score of 0 indicates that the spectra

are completely separable and that species are different and highly distinguishable.
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Discrimination of species and LCCS classes

Species and LCCS classes were classified using thresholds on derived indices.. To select

thresholds for use in the classification a number of methods were used:

1) Use the top indices from the ANOVA analysis (i.e. those with the highest F-ratio

values).

2) Assess indices with pair plots to a) assure indices not selected as a best index is not

better for an individual species, and b) to assess best combinations of indices.

3) Produce box-plots to illustrate separations.

4) Test indices within TuiView to check index and threshold selections.

Indices with the greatest F-ratio scores for each level of classification were used to

calculate threshold values for input into the classification. Maximum and minimum

values were calculated from the 25 field samples of each category and species. Box plots

were used to illustrate LCCS categories and species separability using specific indices.

These boxplots gave further indications of the best indices to use from the selected

indices for individual species discrimination. Using the maximum and minimum values

of an index for a species or class the values were entered into a query within TuiView to

test representation of areas. Small adjustments to these thresholds were made to improve

the performance of the classification according to areas visible in a high resolution UAV

image.

1) ANOVA analysis for selection of best indices

All indices data was standardised first before a multivariate analysis was carried out in

R to calculate variables (indices) with the greatest separations between the LCCS level

2, life-form and plant species.

A method of ANOVA was used creating separation values from analysis of variance for

between-group and analysis of variance for within-group otherwise known as the ANOVA
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coefficient (F). This is known as an index of separation or F-ratio (F) and is based on

the ratio of between and within-group variance (Weinberg and Abramowitz, 2008). To

calculate the separation achieved by each index variable the between-group variance was

divided by it’s within-group variance thus giving a separation value which indicates greater

or lesser separation when compared with other variable separation values. Larger F-ratio

values are due to a larger between-group variance and smaller within-group variances

and signify indices that are better for separation of the vegetation groups.

2) Pair plots

Pair plots (Figure 5.10) were used to illustrate the effectiveness of separation F-ratio

scores and give a visual representation to guide the selection of pairs of indices combi-

nations. The combination of pairs of individual variables gave a greater separation of

LCCS level 2, life-form or species in some cases than using an individual variable. Further

discrimination with pairs of best indices shown by pair plots were used to select suitable

indices combinations. Pair plots of the best selected indices were used to showing the

best combination of indices for discrimination of a species or class. Pairs of indices

selected for each class or species were derived from best visible separations in these pair

plots.

3) Box-plots

Box plots (Figure 5.17) were used purely as a visual aid to assess separation of classes

and species and also as with pair plots to indicate whether one or a combination of index

thresholds were required for separation.

4) TuiView

TuiView is an open source freely available remote sensing image viewer. Threshold values

were inputted to test classification. This was done with each class and species with

occasional small adjustments made to the thresholds. Using ecological knowledge with

the threshold values within TuiView determined the order of classification and assisted

in the non-threshold rule set (e.g. classifying trees first to remove taller vegetation from
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classification of shrub species).

5.2.6 Classification to LCCS Level 2 (EODHaM 1st stage)

The EODHaM 1st stage involved classification at the pixel and small object level. This

utilized a sequence of decision rules (Figure 5.4), with these minimised to include only a

narrow range of spectral indices that allowed discrimination of LCCS Level 1 and Level

2 categories (i.e. vegetated and not vegetated terrestrial and aquatic). The thresholds

applied to the sequence of rules and data layers were derived in the previously mentioned

statistical analysis process. At the pixel level, simple binary masks representing, for

example, the extent of vegetation cover are generated ((Clewley et al., 2014)). However,

at the small object level, the raster attribute table (RAT) associated with the KEA

format is accessed for classification (Bunting and Gillingham, 2013). Within the RAT,

each small object has a unique ID with all pixels associated with each object having the

same characteristics. Each object within the RAT was then progressively attributed with

the means of reflectance data and derived indices calculated from the pixels contained,

binary mask information (e.g., water, not water) and ultimately the class assigned (e.g.,

vegetated, non-vegetated).

Classification at the pixel level was undertaken to generate binary masks of the extent

of different vegetative states (terrestrial vegetated and aquatic vegetated), open water

and bare ground using the indices (Table 5.4) calculated. Thresholds from 3 indices only

were selected using the analysis previously described to discriminate these. Initially all

vegetated states were merged into a vegetated category and remaining pixels associated

with a non-vegetated category.

At the small object level, non-vegetated areas were associated with open water and urban

infrastructure, classified using the selected indices. A second component then identified

aquatic surfaces, with these including the open water areas used for the classification of
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non-vegetation but also submerged and non-submerged aquatic vegetation.

Figure 5.4: 1st stage landscape classification rules which incorporate the
1st stage of the EODHaM system.

Once defined as aquatic, all remaining objects are assigned as terrestrial using an inverse

rule. The classification at LCCS Level 2 (i.e., vegetated or non-vegetated terrestrial

or aquatic) is then achieved through cross tabulation of the areas of vegetation and

non-vegetation with those that are aquatic and terrestrial.

5.2.7 Classification to species level (adaptation of EODHaM 2nd

stage)

The EODHaM 2nd stage has two main components focusing on classification to LCCS

Level 3 and, subsequently, Level 4, however, as this stage was only being performed on

a non-cultivated SSSI there was little reason to classify to Level 3. Analysis of life-form

data suggested discrimination of life-forms were not possible (Figures 5.12) so further

progression from the LCCS first stage EODHaM system through the LCCS classification
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system to the second stage was not carried out.

Figure 5.5: 2nd stage species classification rules which incorporate an adap-
tation of the EODHaM system. � = Pre image, � = Peak image, � = Pre
peak image difference, � = Pixel thresholds.

As the system is a hierarchical classification each stage carries an inaccuracy which can

increase the possibility of inaccuracy in the following stages. If accuracies are not good

for each layer the final outcome will be very poor. The life-form category was left out

and classification progressed straight from first stage EODHaM classification to a species

classification. The species classification again utilized user-defined thresholds as calcu-

lated through previous selection and threshold analysis of derived indices. A Canopy
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Height Model derived from a DTM and DSM was integrated into the RAT.

Classification of Trees

For the classification of trees the CHM layer was used. A threshold value of >1m was

used for this. All areas that were not classified as vegetated within the EODHaM stage 1

were excluded so avoiding the classification of tall objects such as buildings and caravans

as trees.

Classification of Species

For a species classification just the SSSI area was used. First the EODHaM system 1st

stage was run with the same script with the same indices and threshold values as for

the landscape classification. Species classification followed this using a rule set devel-

oped through the above methods (Figure 5.5) with the specified selection of terrestrial

vegetated (TV), aquatic vegetated (AV) and the exclusion of areas already classified

as aquatic non vegetated (ANV), terrestrial non vegetated (TNV) and tree (T) layers

to decrease further confusion and improve accuracy. Subsequent species classification

divided species into areas where they were expected to be found (e.g. in AV or TV or

both) and used the threshold values as selected through analysis as input.

The order in which the rules are applied to the image for classification is a key parameter

for the classification. In this case species that were ’easier’ to classify or known to prefer

drier environments were classified first. Species such as Pteridium aquilinum which prefer

drier ground were only classified within the terrestrial vegetated category but excluding

the Tree category in order to narrow areas for its classification (Figure 5.5). This allows

for the input of ecological knowledge to improve the spectral indices classification.

Areas with no species classification but classified as Aquatic Vegetated can be assumed

to be highly mosaicked vegetation as these areas do not fall within the species categories

defined in this classification. Most dominant species that will give large enough patches
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of a species dense enough to be classified using the WV2 imagery were recorded within

this SSSI area for classification.

5.2.8 Accuracy assessment

Accuracy assessment based on a standard confusion matrix was carried out on the two

scales. For the landscape classification an assessment of the Level 2 categories was

carried out using aerial photography as described in section 5.3.2. For the SSSI accu-

racy assessment of species classification two assessments were used; one using the UAV

collated data and the other using the ground collated data. A producer’s, user’s and

overall accuracy was calculated for all (Congalton and Green, 1999). The ’users’ accu-

racy refers to the probability that a pixel labelled as a certain class on the map is actually

that class on the ground (or in the UAV image). The ’producers’ accuracy refers to the

probability that a land cover or species on the ground is classified as such on the map.

Each assessment utilised the available ground or UAV based data. By calculating the

kappa coefficient (Equation 5.2.8), the effect of random distributions was removed and

determined whether the results in the error matrix were significantly better than random

or chance classification. Landis and Koch (1977) characterised the kappa values into

three agreement categories: >0.8 - strong agreement, 0.4-0.8 - moderate agreement,

<0.4 - poor agreement.
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KappaCoefficient =
N
∑r

c=1 xcc −
∑r

c=1 xc+x+c
N2 −

∑r
c=1 xc+x+c

where:

r = number of rows in the error matrix

cc = number of observations in row c column c (i.e. diagonal line)

c+ = total of observations in row c (shown as marginal total on the right)

+c = total of observations in the column c (shown as marginal total at bottom of ma-

trix)

N = total number of observations in the matrix

5.2.9 Potential for further use of the classification system

The central dome area is a natural feature of raised bogs (Figure 3.3). The preservation

and morphology of this central dome area dictates the type and condition of vegetation

growing there. An important consideration for indicating the health of the delicately bal-

anced hydrology of the bog is to monitor and map the Sphagna within the central dome

area. A number of attributes are used to quantify the condition of active raised bog.

One method is to assess coverage of pool forming Sphagna e.g.Sphagnum pulchrum and

Sphagnum cuspidatum (Robinson, 2010). A coverage of >20% of Sphagnum pulchrum

and Sphagnum cuspidatum denotes active bog in good condition, <20% indicates active

bog in poor condition. A DTM was used to map the terrain of the SSSI and surrounding

area. The central dome area was located and a 5m contour created to delineate an area

of active bog in the central dome area. This area was then used to select a set area to

analyse percentage coverage of Sphagnum pulchrum and Sphagnum cuspidatum high-
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lighted using the species classification. Using the set contour level denoting the central

dome area ensured that the same area can be measured again in time to assess the con-

dition of the bog and to give an indication of whether there is any drying out occurring.

Once the area of Sphagna was clipped within ArcMap to this area the percentage cover-

age was calculated by total using counting the number of pixels of Sphagnum pulchrum

and the number of Sphagnum cuspidatum number coverage. This was then divided by

the total number of pixels within the 5m contour area and multiplied by 100 to give a

percentage coverage.

5.3 Results

5.3.1 Relationship of field spectrometer readings to WV2 im-

agery

Linear regression of WV2 Peak (July) indices and field spectroradiometer July indices

showed poor linear relationships for most of the indices to be used in the classification

(Figure 5.6 and 5.7). The REP (r2= 0.804) and BR (r2= 0.740) indices for this period

show the best correspondence. The Woody (r2= 0.136) and BG (r2= 0.116) indices had

a group of points that appeared to be the reason for low r2 values. When investigated

these points were from Sphagnum cuspidatum readings.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Linear regression of indices derived from field spectroradiometer
(FS) and WV2 derived indices
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(a) (b)

(c)

Figure 5.7: Linear regression of indices derived from field spectroradiometer
(FS) and WV2 derived indices

Using a graphical comparison of spectral curve data for atmospheric corrected and field

data (Figure 5.9a) it could be seen that for Sphagnum cuspidatum the green band (λ

0.548µm) has poor correspondence with the field spectroradiometer. For field spectro-

radiometer readings the green band was much greater than for the WV2 green band

readings. Both of these indices Woody and BG use the green band for calculations.

Other species such as Calluna vulgaris and Phragmites australis gave much better corre-

spondence between field spectroradiometer and WV2 spectral curves (Figures 5.9b and

c).
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(a)

(b)

Figure 5.8: Spectral graphs for species a) Sphagnum cuspidatum and b)
Calluna vulgaris in July showing the Top of Atmosphere reflectance versus
the Atmospherically corrected and the field spectroradiometer data.
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(a)

Figure 5.9: Spectral graph for species Phragmites australis in July showing
the Top of Atmosphere reflectance versus the Atmospherically corrected and
the field spectroradiometer data.

5.3.2 Spectral discrimination of species with extracted WV2

data

Field spectrometer data in chapter 4 was assessed according to the number of scores

of 0, however, in this chapter as the WV2 data only contains 8 wavelength values the

spectral separation is not as pronounced so spectral angle scores that were less than

0.5 were counted instead. Although species spectral data are showing some separa-

bility (Table 5.8), results showed separation was not as statistically significant as the

comparable field spectroradiometer data using only the WV2 related spectral bands (Ta-

ble 4.4).

The results of the spectral analysis shows that differences between reflectance spectra
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of vegetation types are statistically significant for different vegetation types.

According to the < 0.5 results (Table 5.8), Juncus effusus is more separable from all

other species with this more pronounced in the pre and post periods (Tables 5.5,

5.7). Table 5.8 suggests that all 3 acquisitions are of equal importance for spectral

discrimination.

Eriophorum angustifolium and Sphagnum cuspidatum gave the lowest scores for sepa-

rability (Table 5.8).

Pre Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Cal vul 1.000 0.609 0.791 0.458 0.344 0.880 0.463 0.578 0.652 0.895

Eri ang 0.609 1.000 0.769 0.108 0.729 0.659 0.793 0.891 0.914 0.629

Eri vag 0.791 0.769 1.000 0.336 0.506 0.876 0.577 0.721 0.825 0.848

Jun eff 0.458 0.108 0.336 1.000 0.000 0.437 0.000 0.083 0.165 0.470

Mol cae 0.344 0.729 0.506 0.000 1.000 0.394 0.804 0.705 0.676 0.364

Myr gal 0.880 0.659 0.876 0.437 0.394 1.000 0.482 0.623 0.713 0.961

Phr aus 0.463 0.793 0.577 0.000 0.804 0.482 1.000 0.786 0.724 0.455

Pte aqu 0.578 0.891 0.721 0.083 0.705 0.623 0.786 1.000 0.818 0.590

Sph cus 0.652 0.914 0.825 0.165 0.676 0.713 0.724 0.818 1.000 0.684

Sph pul 0.895 0.629 0.848 0.470 0.364 0.961 0.455 0.590 0.684 1.000

Table 5.5: Table showing spectral angle scores using Pre WV2 spectral
data. Mean spectral values for each species were used.

Peak Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Cal vul 1.000 0.910 0.766 0.559 0.556 0.440 0.680 0.318 0.892 0.765

Eri ang 0.910 1.000 0.803 0.610 0.563 0.446 0.687 0.318 0.934 0.795

Eri vag 0.766 0.803 1.000 0.442 0.392 0.274 0.513 0.156 0.818 0.902

Jun eff 0.559 0.610 0.442 1.000 0.931 0.823 0.903 0.688 0.615 0.411

Mol cae 0.556 0.563 0.392 0.931 1.000 0.876 0.862 0.748 0.569 0.362

Myr gal 0.440 0.446 0.274 0.823 0.876 1.000 0.746 0.840 0.449 0.247

Phr aus 0.680 0.687 0.513 0.903 0.862 0.746 1.000 0.615 0.689 0.485

Pte aqu 0.318 0.318 0.156 0.688 0.748 0.840 0.615 1.000 0.331 0.121

Sph cus 0.892 0.934 0.818 0.615 0.569 0.449 0.689 0.331 1.000 0.781

Sph pul 0.765 0.795 0.902 0.411 0.362 0.247 0.485 0.121 0.781 1.000

Table 5.6: Table showing spectral angle scores using Peak WV2 spectral
data. Mean spectral values for each species were used.
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Post Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Cal vul 1.000 0.656 0.888 0.602 0.369 0.777 0.230 0.543 0.642 0.785

Eri ang 0.656 1.000 0.685 0.290 0.697 0.569 0.521 0.719 0.922 0.805

Eri vag 0.888 0.685 1.000 0.588 0.395 0.752 0.243 0.552 0.683 0.820

Jun eff 0.602 0.290 0.588 1.000 0.000 0.656 0.000 0.265 0.279 0.415

Mol cae 0.369 0.697 0.395 0.000 1.000 0.275 0.748 0.552 0.703 0.549

Myr gal 0.777 0.569 0.752 0.656 0.275 1.000 0.112 0.599 0.538 0.617

Phr aus 0.230 0.521 0.243 0.000 0.748 0.112 1.000 0.359 0.514 0.411

Pte aqu 0.543 0.719 0.552 0.265 0.552 0.599 0.359 1.000 0.670 0.576

Sph cus 0.642 0.922 0.683 0.279 0.703 0.538 0.514 0.670 1.000 0.818

Sph pul 0.785 0.805 0.820 0.415 0.549 0.617 0.411 0.576 0.818 1.000

Table 5.7: Table showing spectral angle scores using Post WV2 spectral
data. Mean spectral values for each species were used.

<0.5 Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Total

Pre 3 1 1 9 4 3 4 1 1 3 30

Peak 2 2 4 2 2 5 0 5 2 5 29

Post 2 1 2 6 4 2 6 2 1 2 28

Total 7 4 7 17 10 10 10 8 4 10

Table 5.8: Table showing number of spectral angle scores with values less
than 0.5 using reflectance values for WV2 spectral data.

5.3.3 Selection of best spectral indices for discrimination of species

and LCCS categories

Analysis of indices was performed for all scales, LCCS level 2, Life-form and species.

Separation using this method performed better for some categories than others with

the scale and hierarchical level being of influence on the effectiveness of these methods.

The combination of pairs of individual variables gave a greater separation of LCCS

level 2, Life-form or species in some cases than using an individual variable. Further

discrimination with pairs of best indices shown by pair plots were used to show suitable

index combinations.
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Landscape - LCCS Level 2

Analysis of LCCS level 2 categories using separation values gave high F-ratio (separation)

values particularly for peak FDI and peak BG. The F-ratio values varied from 106.79 to

5.16 (Table 5.9). These values indicated that the best indices for LCCS Level 2 category

separation were peak FDI and peak BG. Post NIR and NDVIDiffPrePeak indices were

the poorest indices at LCCS Level 2 category separation.

Pair plots (Figures 5.10 and 5.11) help to illustrate the effectiveness of selection of best

indices using F-ratios. It can be seen in Figure 5.11 that indices with the smallest F-

ratios (Table 5.9) provide the least separation. Care needs to be taken as all indices

with low F-ratios are not necessarily the worst separators for individual categories. This

can be seen in Figure 5.11 were the ANV category (water) appears to be relatively well

separated from other categories as would be expected of this index.

SSSI - Lifeform

Categories used in the indices selection process were forb, graminoid, moss and woody.

The woody could not be subdivided into woody shrubs and woody trees without using a

CHM so for the indices selection process they were treated as one category - woody (see

Figure 5.3). Lichens were present on the site but were present in patches that were not

large enough to dominate a pixel and were often under a canopy (e.g. beneath Calluna)

so these were omitted.

Both F-ratio results (Table 5.10) and the pair plots (Figures 5.12 & 5.13) showed that

separations of life-form was not effective for this particular habitat (Cors Fochno SSSI).

Variance within life-form categories was high and there was too much overlap of life-form

categories using these indices (Figures 5.12 & 5.13). For this reason the 2nd stage of

the EODHaM system classification was not performed due to the likely introduction of

inaccuracies at this stage causing further inaccuracies at species level classification.
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Variable Vw Vb F-ratio

Peak FDI 0.21 22.14 106.79
Peak BG 0.24 21.20 87.50
Post FDI 0.30 19.70 65.90
NDVI Diff PeakPost 0.31 19.52 63.85
Post BG 0.32 19.18 60.31
Peak REP 0.32 19.08 59.24
Post NDVI 0.33 18.96 58.12
Pre NDVI 0.38 17.56 46.34
Pre FDI 0.39 17.20 43.81
Pre PSRI 0.41 16.62 40.11
Post REP 0.43 16.07 36.94
Pre WBI 0.44 15.82 35.59
Pre REP 0.46 15.51 34.05
Post PSRI 0.48 14.94 31.29
Post WBI 0.51 14.07 27.58
Peak Woody 0.51 14.06 27.55
Pre BG 0.54 13.32 24.75
Peak PSRI 0.55 13.04 23.76
Peak NDVI 0.57 12.53 22.08
Pre NIR diff 0.57 12.48 21.90
Peak BR 0.68 9.63 14.25
Pre Woody 0.68 9.44 13.82
Pre BR 0.76 7.47 9.86
Peak WBI 0.76 7.42 9.78
Post Woody 0.77 7.01 9.06
Peak NIR diff 0.83 5.68 6.89
Post BR 0.83 5.44 6.53
NDVI Diff PeakPre 0.87 4.52 5.21
Post NIR diff 0.87 4.49 5.16

Table 5.9: Separations between Level 2 of LCCS (WV2). Larger F-ratio
values indicating better separation of all lifeforms using the specified indices.
Vw = Variance within Level 2, Vb = Variance between Level 2
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Variable Vw Vb F-ratio

Peak NIR diff 0.32 11.50 36.44
Peak FDI 0.40 10.14 25.14
Peak REP 0.47 9.08 19.20
Peak BG 0.51 8.55 16.83
Peak Woody 0.56 7.70 13.67
Peak NDVI 0.58 7.47 12.93
Peak BR 0.59 7.35 12.55
Peak PSRI 0.59 7.34 12.50
Post Woody 0.62 6.87 11.12
Peak WBI 0.64 6.45 10.00
Pre BG 0.70 5.66 8.14
Post NIR diff 0.70 5.60 8.00
NDVI Diff PeakPre 0.70 5.59 7.97
Post PSRI 0.72 5.29 7.34
Post BG 0.75 4.82 6.42
NDVI Diff PeakPost 0.76 4.68 6.15
Pre Woody 0.79 4.15 5.22
Post BR 0.81 3.92 4.84
Pre PSRI 0.82 3.72 4.53
Post NDVI 0.89 2.74 3.09
Pre BR 0.89 2.66 2.99
Pre NIR diff 0.90 2.61 2.91
Pre NDVI 0.91 2.34 2.57
Post REP 0.92 2.26 2.47
Pre WBI 0.98 1.26 1.28
Pre REP 1.03 0.58 0.56
Post WBI 1.03 0.53 0.51
Pre FDI 1.04 0.43 0.42
Post FDI 1.06 0.07 0.06

Table 5.10: Separations between life-form (WV2). Larger F-ratio values
indicating better separation of all life-forms using the specified indices.Vw=
Variance within life-form, Vb= Variance between life-form
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5. Vegetation classification

SSSI - Species

F-ratio results for dominant species (Table 5.11) and as illustrated by pair-plots (Fig-

ures 5.14 and 5.15) where much better than for life-form. These results however, were

not as high as the results obtained with field spectroradiometer data (Table 4.6) in chap-

ter 4. This demonstrates that actual satellite imagery dominant species patches are more

difficult to separate than the dominant patches sampled in the field spectroradiometer

data. Pair plots (Figure 5.14) of indices with the highest F-ratios show that those with

highest values were better at separating species and that a combination of two of these

best indices provided better separation than one index. The best indices were from the

peak (July) image. PeakBR, peakPSRI, peakREP, peakFDI and peakNDVI along with

the seasonal difference indices NDVIDiffpeakpre (Figure 5.14) were the best indices for

species separation. Whilst postWBI, postFDI, postNIRdiff and postBG indices gave the

least discrimination.
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5. Vegetation classification

Variable Vw Vb F-ratio

Peak BR 0.06 5.18 87.06
Peak PSRI 0.07 5.14 75.96
Peak REP 0.10 5.00 50.52
Peak FDI 0.10 4.98 47.68
Peak NDVI 0.11 4.96 45.81
NDVI Diff PeakPre 0.12 4.92 41.26
Pre NDVI 0.13 4.89 38.81
Peak Woody 0.15 4.78 32.23
NDVI Diff PeakPost 0.16 4.75 30.42
Pre REP 0.16 4.72 29.00
Pre FDI 0.18 4.64 25.46
Post PSRI 0.21 4.51 21.57
Post NDVI 0.23 4.43 19.34
Pre PSRI 0.23 4.40 18.76
Peak BG 0.24 4.40 18.67
Peak WBI 0.24 4.39 18.52
Pre WBI 0.24 4.37 18.18
Post REP 0.27 4.25 15.77
Post Woody 0.27 4.22 15.39
Pre BR 0.30 4.12 13.83
Pre Woody 0.30 4.09 13.43
Peak NIR diff 0.31 4.08 13.30
Post BR 0.31 4.06 13.04
Pre BG 0.42 3.58 8.56
Pre NIR diff 0.46 3.42 7.51
Post WBI 0.51 3.19 6.29
Post FDI 0.52 3.11 5.94
Post NIR diff 0.55 3.01 5.51
Post BG 0.55 3.00 5.47

Table 5.11: Separations between species (WV2). Larger F-ratio values
indicating better separation of all species using the specified indices.Vw=
Variance within species, Vb= Variance between species
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5. Vegetation classification

Canopy Height Model

Canopy height was to be used as part of LCCS classification for use with determining

shrub and tree heights. However, the canopy height model (CHM) heights did not

correspond well with actual quadrat recorded vegetation heights with an r2 value of 0.307

(Figure 5.16). For this reason the CHM was not used in the classification process. This

reduced the LCCS categories classified (e.g. Woody shrub, Woody trees, shrub heights).

However, areas of trees could be successfully classified by using >1m as a threshold

value of the CHM. This value was selected through trial and error using Tuiview and the

attributes table produced from the pixel layers of the EODHaM system, one of which

was a CHM layer with values to correspond to each 2×2m pixel for each pixel. Field

hedgerows and wooded areas were classified using this method. Poor correspondence

of low vegetation height (e.g.<1m) (r2 = 0.307) meant it was not suitable for use in

anything lower than 1m (Figure 5.16).

Figure 5.16: Linear regression of field height data and the CHM height
data for the vegetation shorter than 1m
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5. Vegetation classification

5.3.4 Landscape classification

The landscape scale classification within the EODHaM system focused on the four classes

with an extra layer to show trees . This area had coastal, river, ditches and ponds/s-

mall lake water features all classed as aquatic non vegetated (ANV). Areas of terrestrial

non vegetated (TNV) were urban areas, buildings, roads and bare ground. Aquatic

vegetated (AV) areas consisted of areas of saltmarsh and raised bog habitats. The ter-

restrial vegetated (TV) class consisted of all areas that were vegetated but not regularly

waterlogged.

Thresholds were developed from only a small number of selected spectral indices (Fig-

ure 5.17) for LCCS level 2 classification. For LCCS level 2 category classification (4

categories, ANV, TNV, AV and TV) only three indices were used for threshold input

with only one image required for this from the Peak period (July). The two indices

with the highest F-ratios peakFDI and peakBG were selected for threshold calculations.

However on examination of the pair plots (Figure 5.11) it could be seen that peakWBI

was a good separator of ANV (water) from all other categories (Figure 5.17) so was

incorporated in the threshold input.
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5. Vegetation classification

(a) (b)

(c)

Figure 5.17: Boxplots showing peak FDI, peak BG and peak WBI indices
(best selected) range of values for each LCCS level 2 class. These also
illustate how thresholds using the maxium and minimum values can be used
to separate these classes.

This was also an index used within EODHaM for classification of water (Lucas et al.,

2011b). Each category used more than one index threshold (Figure 5.4). Minimum

and maximum values were selected for each category. These were entered into the

classification Python script. Assessment within TuiView decided whether to use both

greater than and less than values for input or a singular greater or less than value

(Figure 5.4).

Accuracy for the landscape scale classification of LCCS Level 2 categories and Trees
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5. Vegetation classification

using a standard confusion matrix (Table 5.12) provided an overall accuracy of 84.4%

with a kappa value of 0.805. Aquatic non vegetated (ANV) (water) gave the best results

with user accuracies between 72 and 78%. These categories brought the overall accuracy

down and the poor CHM is partly responsible for the lower 78% user accuracy.

Reference (UAV) User’s
Classified data

ANV AV T TNV TV Sum Accuracy (%)

ANV 49 0 0 1 0 50 98

AV 0 36 0 6 8 50 72

T 1 2 39 5 3 50 78

TNV 8 2 0 39 1 50 78

TV 0 2 0 0 48 50 96

Sum 58 42 39 51 60 250

Producer’s Accuracy (%) 84.5 85.7 100.0 76.5 80.0

Table 5.12: Confusion matrix for the landscape scale classification of LCCS
level 2 and Trees. Overall accuracy = 84.4%, Kappa value = 0.805

There was some confusion in areas between the terrestrial non vegetated (TNV) category

and the aquatic non vegetated (ANV) (Figure 5.18). Threshold values can be seen to

overlap between these classes (Figure 5.18) for all indices used. When investigated it

appeared that incorrect classification seemed mostly to be on roads or roofs (Figure 5.18)

and it can be seen that cars parked on a sandy beach were classified as aquatic vegetated

(Figure 5.18). Despite these issues TNV was classified to an accuracy of 78% and ANV

to an accuracy of 98% (Table 5.12).

In addition to the 4 LCCS level 2 classes a further Tree layer was added using the

CHM (Figure 5.20). This was successful at classifying trees to an accuracy of 78%

(Table 5.12) especially those that were coniferous and hedgerows that appeared to be

>1m especially those that were coniferous and hedgerows that appeared to be > 1m.

(Figures 5.19).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Images showing classification of LCCS level 2 with the cor-
responding section in WV2 imagery. a)&b) boat yard near the estuary,
c)&d)caravan park, e)&f) Ynyslas visitor centre with cars parked on the
beach. � = AV, � = ANV, � = TV, � = TNV, � = Trees(>1m)
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5. Vegetation classification

(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Images showing classification of LCCS level 2 with the cor-
responding section in WV2 imagery. a)&b) saltmarsh, c)&d) ditched and
small raised stoney island within SSSI, and e)&f) hedge line and coniferous
woodland in landscape. � = AV, � = ANV, � = TV, � = TNV, � =
Trees(>1m)
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5. Vegetation classification

Figure 5.20: Classification to LCCS Level 2 & trees of whole landscape
with overall accuracy of 84.4%.
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5.3.5 SSSI classification

It was found that species classification worked most reliably using 9 indices which were

identified as the top indices for separation along with an index that shows seasonal

changes (Figure 5.14). In the end no Post indices were used as the majority of these

gave low-F-ratio values (Figure 5.11).

All indices selected for discrimination of species were selected using methods described,

however the reasoning here explains why they work well and supports the methods

accuracy. Trees are found in both aquatic vegetated and terrestrial vegetated areas.

Most vegetation over 1m in height for this region are trees. Pteridium aquilinum is

found only in drier areas bounding the bog. Vegetation is rarely over 1m in height

in these areas and so the tree classification layer is removed from this classification in

order to avoid any potential confusion with trees growing in and around the Pteridium

aquilinum. ndviPeakPreDiff layer works well due to Pteridium aquilinum having very

lush growth in summer (Peak) but a monoculture of dead litter in the winter providing

a large value for ndviPeakPreDiff compared with other species. Juncus effusus is found

mostly in fields or areas of degraded SSSI surrounding the wetter bog (i.e. drier less

waterlogged) and does not die back like Pteridium aquilinum, although it does senesce a

little. A small value in the ndviPeakPreDiff can therefore be used to differentiate Juncus

effusus from species such as Pteridium aquilinum. Calluna vulgaris is found in drier

peaty areas such as heaths but also in hummock areas of the bog so both terrestrial

vegetated and aquatic vegetated were selected. Due to its woody branches all pixels

associated with trees were excluded from classification. woodyPeak index is specifically

for discriminating woody shrubs etc. ndviPeakPreDiff values are small compared with

other non-evergreen species.
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5. Vegetation classification

(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Boxplots showing the range of values for species of the indices
identified as the top indices for separation of species, a) peak Woody, b)
NDVIDiffpeakpre (seasonal difference in NDVI), c) peak PSRI, d) peak BR,
e) peak FDI and f) peak NDVI. Life-form categories are highlighted in colours
to highlight difficulty in separation. � = forb, � = graminoid, � = moss,
� = woody
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5. Vegetation classification

(a) (b)

Figure 5.22: Boxplots showing the range of values for species of the in-
dices identified as the top indices for separation, a) pre NDVI and b) peak
REP. Life-form categories are highlighted in colours to highlight difficulty in
separation. � = forb, � = graminoid, � = moss, � = woody

Although Calluna vulgaris is evergreen there does appear to be significant die back in the

winter. Myrica gale is found in both bog and surrounding drier areas so both terrestrial

and aquatic vegetated areas were selected. As this species is a woody shrub to help

with discriminating this species and reduce confusion with Tree species the Tree clas-

sified pixels were excluded from classification. Woody Peak is used for discrimination

of woody shrubs. Eriophorum vaginatum, Sphagnum pulchrum, Eriophorum angusti-

folium, Sphagnum cuspidatum and Phragmites australis are only found in the wet bog

areas and so only the aquatic vegetated layer is used for classification. woodyPeak index

is used to help distinguish Eriophorum vaginatum, Eriophorum angustifolium from the

woody shrubs which grow in the same areas. The values for these non-woody plants are

much lower. Sphagnum pulchrum used ndviPeakPreDiff as there was very little change

in colouration or structure between summer and winter months with it remaining an

orange colour throughout the year. The brpeak shows the difference between the blue

and red wavelength which may be useful in discriminating vegetation such as this with

an orange hue. Eriophorum angustifolium has a lot of dead litter surrounding its green

photosynthetic leaves and therefore has a higher psriPeak value in summer than other
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5. Vegetation classification

species within the aquatic vegetated areas. It was initially difficult in some areas to

separate Phragmites australis from Molinia caearulea as they are both lush growth in

summer and an expanse of dead litter in the winter and tend to both occupy the degen-

erated outer fringes of the bog. Expanses of Phragmites australis were classified first

as this was restricted to only the aquatic vegetated layer. This species is found usually

in wet ditches or very wet regions of the outer bog. ndviPre was used for both species

as they create a blanket of dead litter in the winter which is a distinct feature of these

species in the winter months. Once Phragmites australis was succesfully discriminated

and classified the remainding deadlitter in the aquatic and terrestrial vegetated areas

was most likely to be Molinia caerulea so classification of this was carried out on pixels

excluding the Phragmites australis classified pixels.

Reference (UAV) User’s

Classified data
AV ANV TV TNV T Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Sum Accuracy (%)

AV 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 100

ANV 0 47 0 3 0 0 0 0 0 0 0 0 0 0 0 50 94

TV 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 50 100

TNV 0 4 0 46 0 0 0 0 0 0 0 0 0 0 0 50 92

T 3 0 1 0 46 0 0 0 0 0 0 0 0 0 0 50 92

Cal vul 5 0 0 0 0 42 0 0 0 3 0 0 0 0 0 50 84

Eri ang 2 0 0 0 0 0 33 2 0 13 0 0 0 0 0 50 66

Eri vag 1 0 0 0 0 1 2 43 0 3 0 0 0 0 0 50 86

Jun eff 0 0 8 0 1 0 0 0 40 1 0 0 0 0 0 50 80

Mol cae 0 0 0 0 0 0 0 0 0 45 0 5 0 0 0 50 90

Myr gal 12 0 6 0 4 0 0 0 0 0 28 0 0 0 0 50 56

Phr aus 0 0 0 0 0 0 0 0 0 10 0 40 0 0 0 50 80

Pte aqu 0 0 0 0 0 0 0 0 0 0 0 3 47 0 0 50 94

Sph cus 16 0 0 0 0 0 0 0 0 0 0 0 0 34 0 50 68

Sph pul 12 0 0 0 0 0 0 0 0 0 0 0 0 0 38 50 76

Sum 101 51 65 49 51 43 35 45 40 75 28 48 47 34 38 750

Producer’s Accuracy (%) 49.5 92.2 76.9 93.9 90.2 97.7 94.3 95.6 100 60 100 83.3 100 100 100

Table 5.13: Confusion matrix for the SSSI scale classification of LCCS level
2, trees and species using UAV data. Overall accuracy = 83.9%, Kappa value
= 0.827

176



5. Vegetation classification

Reference (Ground plots) User’s

Classified data
AV ANV TV TNV T Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul Sum Accuracy (%)

AV 18 1 1 0 0 0 3 0 0 0 0 0 0 0 0 23 78.3

ANV 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 100

TV 0 0 22 0 0 0 0 0 0 3 0 0 0 0 0 25 88

TNV 0 0 3 6 0 0 0 0 0 0 0 0 0 0 0 9 66.7

Trees 0 0 4 0 18 0 0 0 0 0 0 0 0 0 0 22 81.8

Cal vul 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 26 100

Eri ang 2 0 0 0 0 0 8 2 0 4 0 0 0 0 0 16 50

Eri vag 0 0 0 0 0 0 2 8 0 1 0 0 0 0 0 11 72.7

Jun eff 0 0 4 0 0 0 0 0 8 0 0 0 0 0 0 12 66.7

Mol cae 2 0 1 0 0 0 0 0 0 28 0 0 0 0 0 31 90.3

Myr gal 3 0 4 0 0 0 0 0 0 0 12 0 0 0 0 19 63.2

Phr aus 2 0 0 0 0 0 0 0 0 0 0 16 0 0 0 18 88.9

Pte aqu 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 11 100

Sph cus 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 100

Sph pul 1 0 0 0 2 0 0 0 0 0 0 0 0 3 12 18 66.7

Sum 28 13 39 6 20 26 13 10 8 36 12 16 11 10 12 260

Producer’s Accuracy (%) 64.3 92.3 56.4 100 90 100 100 80 100 77.8 100 100 100 70 100

Table 5.14: Confusion matrix for the SSSI scale classification of LCCS level
2, trees and species using ground data. Overall accuracy = 81.5%, Kappa
value = 0.799

Accuracy of the SSSI classification was high for both assessment methods. Overall

accuracy of the SSSI classification using UAV imagery for accuracy assessment was

83% with a Kappa value of 0.827, whilst the accuracy test using ground plots gave

81.5% (Kapp = 0.799). LCCS level 2 categories had higher user accuracy when smaller

(SSSI as opposed to landscape) areas were classified. As with the landscape aquatic

non vegetated (ANV) and terrestrial vegetated were more accurately classified with user

accuracies between 88 and 100%. Both terrestrial vegetated (TV) and aquatic vegetated

(AV) both had a user accuracy of 100%. This was an improvement on the accuracy for

the wider landscape due to it being done on a smaller area. As the accuracy was so high

the subsequent classification of species which used these two LCCS level2 classes in its

rule set was not affected by the hierarchical system of LCCS classification and EODHaM

system.

Myrica gale proved to be harder to classify correctly with user accuracies (UAV derived)

of 56% and 63.2% (Tables 5.13 and 5.14). Myrica gale was similarly the species most dif-
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ficult to discriminate using field spectrometer data (Chapter 4). Sphagnum cuspidatum

also had a low user accuracy (UAV derived) of 68%.

Active raised bogs have characteristic ’microtopes’ within the central dome area which

consist of hummocks and hollows (Lindsay, 1995). Calluna vulgaris usually dominates

hummocks and in the case of Cors Fochno Sphagnum pulchrum or Sphagnum cuspidatum

dominates the hollows. These hummocks and hollows tend to be larger than the pixel size

(2×2m)(Figure 5.24). Both of these species have been discriminated with accuracies of

76 and 84% . Species such as Juncus effusus which proved to be difficult to distinguish

in the EODHaM project (Lucas et al., 2011b) proved to be successfully identified using

this method (Figure 5.25).

Figure 5.23: Dominant species classification of Cors Fochno SSSI with
underlying LCCS level 2 classification.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24: Species classification with corresponding UAV imagery for a
section of the central dome area, a) and b) Calluna vulgaris hummock, c) and
d) Sphagnum pulchrum hollow, e) and f) hummock and hollow ’microtope’.
� = AV, � = Calluna vulgaris, � = Sphagnum pulchrum
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(a) (b)

(c) (d)

Figure 5.25: Species classification with corresponding UAV imagery show-
ing Juncus effusus classification, a) and b) close up, c) and d) same field
with obvious stripes of Juncus effusus most likely following the ploughing
pattern from some time before. � = AV, � = ANV, � = TV, � = TNV,
� = Trees(>1m), � = Calluna vulgaris, � = Eriophorum angustifolium, �
= Eriophorum vaginatum, � = Juncus effusus, � = Molinia caerulea, � =
Myrica gale, � = Phragmites australis, � = Sphagnum cuspidatum, � =
Sphagnum pulchrum, � = Unclassified.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: a) and b) northern section, c) and d) south west section, e) and
f) north east section of Cors Fochno SSSI showing classification of species
with corresponding Vexel imagery. � = AV, � = ANV, � = TV, � = TNV,
� = Trees(>1m), � = Calluna vulgaris, � = Eriophorum angustifolium, �
= Eriophorum vaginatum, � = Juncus effusus, � = Molinia caerulea, � =
Myrica gale, � = Phragmites australis, � = Sphagnum cuspidatum, � =
Sphagnum pulchrum, � = Unclassified.
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5. Vegetation classification

The two classifications were merged by overlaying the SSSI species classification on the

landscape LCCS level 2 classification (Figure 5.27).

Figure 5.27: The landscape LCCS level 2 classification with the SSSI species
classification overlaid.
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5.3.6 Uses of the classification system

Using the vegetation classification produced and combining with the DTM of the central

dome area condition statistics for the central bog and active bog area were calculated.

An area shown to be 5m and above in the central dome was used (Figure 5.28) and the

percentage coverage for these calculated within ArcMap was shown to be 10.36%, half

the recommended coverage for a healthy raised bog.

At Cors Fochno the central dome is still well preserved and can be clearly shown by using

the DTM from LiDAR data to show the convex shape (Figure 5.29).

Figure 5.28: Sphagnum pools in the central dome area. The contour line is
5m above sea level. Sph cus = Sphagnum cuspidatum, Sph pul = Sphagnum
pulchrum.
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5. Vegetation classification

5.4 Discussion

5.4.1 Correction of imagery

Remote sensing data is severely influenced by the atmosphere and atmospheric correction

of optical remote sensing data has been shown by others to be a challenging task (Ben-

Dor et al., 2005). Results here show that although atmospheric correction improved

greatly the similarity of field collated species spectral reflectance data with satellite

spectral reflectance data (Figure 5.9), there was a poor linear relationship between the

ground data and the satellite data for spectral indices (Figures 5.6 and 5.7). Field

spectroradiometer data thresholds and indices selections could not be used as input

into the classification of species. It may also be that bogs are particularly susceptible

to inaccuracies of atmospheric correction due to their physical state. They are sites

which hold and soak up vast quantities of water but they also heat up and release

moisture into the air much more so than many other habitats (Lindsay, 1995). This and

the coastal sea evaporation would most likely affect the atmospheric moisture content.

Damaged and drained bogs are also known to release gases such as methane (CH4)

carbon dioxide (CO2) and nitrous oxide (N2O) (Couwenburg, 2009). The use of a general

atmospheric correction for coastal and wetland habitats may introduce some inaccuracies

if this consideration is not being taken into account. Using field spectrometer data from

the same day as the image acquisition may have given far better results and provided

correspondence of field collated spectral data and satellite spectral data.

5.4.2 Indices selection

Multivariate techniques, such as Canonical Correspondence Analysis (CCA) or redun-

dancy analysis (RDA) and ANOVA analysis that test relationships between for example

species composition and spectral information have previously been used (?, Brook and
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Kenkel (2002)). Although ANOVA techniques are well known methods of analysing

hyperspectral data, the use of the F-ratio to select suitable indices for species sepa-

ration has not previously been employed to choose the best indices to separate plant

species. Previous usage of this method has involved speech recognition where it was

used to analyse similarities/dissimilarities of the sound spectrum of letters in the En-

glish language (Nicholson et al., 1997). Other uses have been to show differences in

chemical composition of wines with varying grape variety in the wine industry (Coghlan,

2014).

Although statistical analysis (F-ratio) showed and resulted in pre and peak only indices

being used, it can be seen from the spectral analysis that some species would be better

separated using images from different seasonal periods, e.g. Juncus effusus in the Pre

period (Table 5.8). The spectral analysis, however, only accounted for the periods of

acquisition (pre, peak and post) and it was not possible to use this to select indices but

to highlight the best periods for a species discrimination using all 8 spectral bands. For

this reason the F-ratio method of index selection performed better by not only providing

the best indices but also the best period for the use of the particular indices. It could be

seen that the species (e.g. Juncus effusus) where discrimination was best in pre or post

periods using the spectral analysis were actually better discriminated using a pre and

peak indices difference (ndviPeakPreDiff) as thresholds (Figure 5.5). This means the

spectral analysis and indices selection methods both gave the same results for acquisition

periods for each species. These results demonstrate how important seasonal imagery is

for the discrimination of species.

Post imagery indices were not used as these were shown to give small F-ratios. This

seemed likely to be due to high within species variation due to varying degrees of senes-

cence within a species in their autumnal die back. There is also a reduction in the

between species variance possibly due to similarities between certain species (e.g. Erio-

phorum, Molinia) however, this was not found to be the case with FS data.
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Milton et al. (2005) chose an autumnal acquisition for a similar but upland raised bog

(Cors Caron) classification. This used CASI imagery which had 288 spectral bands,

providing more information than the WV2 8 band imagery, to highlight regions that

capture autumnal senescence which may have less within species variance and indeed

more between species variance. The downside with this though is that airborne scanner

data can contain more geometric distortions and is more difficult to acquire than satellite

based measurements (Milton et al., 2005).

5.4.3 Species discrimination

The ability to discriminate species spectral data using satellite data was greatly reduced

when compared with field spectroradiometer data. Again this may be partly due to

atmospheric influence despite the corrections but there are also other anomalies such as

shade and pixel noise which can effect this as well.

Spectral mixing may be occurring within what is thought to be a patch in which a species

is dominant due to pixels containing several species when thought to contain only one.

Not all edges of patches or distinct lines fit within pixel areas, so smaller patches of

species become problematic and those that are selected for data extraction and analysis

unless the centre of a large patch may sometimes contain noise from other species.

The type of species creating the noise may have bearing on the amount of influence a

neighbouring species may be creating, e.g. a tall shrub next to a Sphagnum patch may

create shade as well as its own spectral signature influence.

Species which are usually found in large dominant patches such as Pteridium aquilinum

and Molinia caerulea were easy to pick out with this system as it was less likely to be

mixed and usually in large dominant patches. Extraction of the spectral data for analysis

was therefore very accurate. Definition of the thresholds and indices used required no

alteration when using TuiView to test their application. For this reason these areas

187



5. Vegetation classification

carried the highest accuracies (Tables 5.13 and 5.14).

For the converse of this where a species tends to be found in smaller patches and is

surrounded by other species (e.g. Sphagnums) there may be underestimation of the

species due to the patch edges falling within and not bounded by pixels or as spectral

mixing is occurring due to other species being within a pixel. Sphagnum cuspidatum

showed different green band readings for field spectroradiometer and WV2 (Figure 5.9).

This species was found mostly in deep water logged ditches or pools that were not

much more than 2 metres wide. Vegetation found on the edges of these ditches may be

causing pixel contamination as well as noise from the water filled ditches surrounding

the Sphagnum.

Eriophorum vaginatum is very similar to Schoenus nigricans in leaf structure, plant

structure and senescence (Figure 5.30). As a result the area in the south west of the

SSSI where Schoenus nigricans is present has been classified as Eriophorum vaginatum.

Schoenus nigricans has not been recorded for this classification as it is only present within

this south west region of the SSSI. This highlights some issues that unknown presence

of species could cause to the accuracy of the classification. The mis-classification was

realised when maps generated by NRW were used to perform a check on the suspicions

that this was a very large and therefore unlikely patch. Further work to separate these

could involve recording the spectral signature using a field spectroradiometer and also

using any differences in flowering/ seed heads produced to seek differences in the spectral

data. The other point worth bearing in mind though is that this plant is not expected to

be in most of this SSSI. It is present due to conditions that favour it. These conditions

have been caused by both the presence of peat cuttings and recent incursion of salt

water, not usual in other areas of the SSSI.
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(a) Eriophorum vaginatum. (b) Schoenus nigricans.

Figure 5.30: Two species providing some inaccuracies in classification.

For some species it was difficult to get a good classification, for example Myrica gale.

There was some overlap in the spectral signatures of Myrica and that of many tree

species. This discrimination between tree and Myrica may have been improved with

a better canopy height model, however, Myrica is present in a more mixed habitat

in areas where Calluna also tends to dominate and taller plants in areas of trees. Its

representation within this classification is merely of dominant patches of 2×2m stands or

more. There were not many patches of this size or greater. Ecological gradients were still

recognised from those species that were accurately classified (i.e. Sphagnum pulchrum,

Calluna vulgaris, Molinia caerulea). It may have been useful to classify this site using

methods such as fuzzy classifications (Stankiewicz et al., 2002), linear spectral unmixing

(Shanmugam et al., 2006), and direct subpixel techniques (Ozesmi and Bauer, 2002) in

order to provide information such as a Myrica gale probability or percentage classification

that may be important for identifying suitable habitat for rare species such as the Rosy

Marsh moth (Coenophila subrosea) that feed on Myrica gale. Spectral unmixing was

not actually possible for species level due to the total number of species present within

many of the pixels amounting to many more than there were bands available for analysis.

Cors Fochno had many more species present than those classified. For this method to

work an alternative imagery, e.g. hyperspectral, may be required as illustrated by Harris

et al. (2015).
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5.4.4 Spectral

The multispectral imagery of the WV2 satellite is of particular interest for wetland

mapping because, in addition to the typical spectral bands (i.e., visible blue, green, red,

and near-infrared), WV2 also provides four extra spectral bands (coastal, yellow, red-

edge, and near-infrared 2) from parts of the spectrum not typically covered by satellite

sensors. These bands have been designed to better discriminate vegetation properties

and penetrate water features (Globe, 2012) although have not yet been used extensively

for this. The usefulness of having eight spectral bands in this work was demonstrated.

Of the eight spectral bands five were used in the initial landscape classification. Seven

bands (excluding Yellow) where deployed in the species classification.Others have shown

that the accuracy associated with certain classes increased markedly with the increase

in the number of spectral bands (Lane et al., 2014).

Using indices of the spectral data helped to provide metrics that can relate to some

of the species structure and phenology and it was of particular interest to see that the

selection method carried out separately to any ecological knowledge corresponded in the

final rule set to suitable ecological assessment of this. It was discovered through Chapter

4 that both Sphagnum species had a very significant dip in reflectance in the NIR region

however, this did not translate to the WV2 data and this significant phenomenon was

not able to be made use of with WV2 data. Hyperspectral imagery would be better

employed to do this (Harris et al., 2015). Overall species spectral differences were less

pronounced with satellite acquired data than with ground based field spectroradiometer

data.

5.4.5 Phenology

The phenology of species has also been helpful in identifying vegetation species in re-

motely sensed imagery even with relatively spatially coarse MODIS data (Zhou et al.,
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2013). Imagery providing phenological data (i.e. 2 from different seasons) improves

species discrimination (Hill et al., 2010; Somers and Asner, 2012). Whilst it is not nec-

essarily novel to use phenology to help map species it was found to be particularly useful

using multi-temporal images to separate areas that had significant degradation due to

competitive species presence (e.g. Molinia caerulea) having large differences in indices

such as NDVI. Multi-temporal images, however, showed little change in NDVI through-

out seasons for the central dome area. The result, while not unexpected, occurred due

to the mix of dead and green material and the evergreen Calluna vulgaris within this

area.

5.4.6 Indices

Amongst spectral indices used the normalized difference vegetation index (NDVI) has

become a standard remote sensing product for ecological applications (Pettorelli et al.,

2005) and it has been widely applied for discriminating and interpreting mapped vege-

tation units (Rahman and Gamon, 2004). Studies using coarser multispectral satellite

data Lucas et al. (2010) or hyperspectral imagery (Pu et al., 2015; Cho et al., 2008)

incorporated other spectral indices for vegetation mapping but few have used with a

view to further using these for fauna monitoring.

5.4.7 Mapping at different classification levels and scales

Classifications are often completed all to one scale. This method provides a simple way

to combine both landcape and species level scales. On a larger scale it would be more

difficult to carry out species mapping due to the fact that a larger area inevitably contains

more species and overlaps in spectral and indices threshold values would be increasingly

likely. Restricting to a smaller SSSI site from the landscape followed by the classification

within terrestrial or aquatic vegetated areas and then removal of definite dominant areas
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helps to decrease the size of the area to classify. This helps to lessen the effect of the

threshold overlap thereby improving the overall accuracy.

The practical benefits of standardised classifications for survey and conservation as-

sessments are considerable but one needs to be aware that the characteristics of plant

assemblages vary as do the opinions of their classifiers (JNCC, Joint Nature Conserva-

tion Committee, Version February 2004). The characteristics of an assemblage can vary

within site and between sites. It is therefore perhaps more appropriate on occasions to

classify relevant species. Systems that can be followed and adapted such as the LCCS

and its implementation within the EODHaM system give flexibility to adjust a known

system to specific sites.

The EODHaM system can be altered and developed to meet these scale considerations.

Previous complications where more than one species had similar indices values were

improved by:

1) reducing the area classified (sub-setting to SSSI)

2) selecting indices that are best for separation of species as a whole rather than selecting

as the best for an individual species

3) using the classification script to further reduce the area classified by the threshold

rule.

5.4.8 Pixel and object based classification

The general consensus is that object based classifications prove more effective than

pixel based (Petrou et al., 2015). This may be due largely to spectral variability within

habitats (Zohmann et al., 2013; Kobler et al., 2006). Larger areas (e.g. water bodies

and buildings etc. with a greater spectral variability) are better classified using object

based methods. However, with sites such as Cors Fochno patches of species occur in

quantities and sizes that befit WV2 pixel size and not object classifications. A pixel

192



5. Vegetation classification

classification was used due to the size of the patches of single species generally being

less than 10m2.

Very few studies exist where one can classify an image using both pixel and object

classifications to produce one classification in the same process with the same imagery.

The landscape classification is required to provide context of what is happening to the

landscape surrounding the protected site that may have an external influence, however,

this is not necessary to species level, whereas the protected site management usually

requires species level information. This method uses both pixel and object in order

to compile a map of the whole protected site along with the surrounding landscape

at differing scales but at scales which are of use to conservation management of the

protected site.

Combining pixel and object classification has also been shown to increase mapping ac-

curacies (Rapinel et al., 2014). Rapinel et al. (2014) also compared the hybrid approach

against stand alone pixel-based methods and found that difficulties spectrally separating

natural vs. non-natural vegetation classes was reduced in the object-based approach.

Object based classification of the LCCS level 2 showed this to be the case and the use of

this in the hierarchical system of classification made use of this. Often pixel based meth-

ods can be computationally demanding (Lui and Coomes, 2015), however, this method

for relatively large areas was carried out often within seconds. This method therefore

has even more potential as satellite resolution increases or on UAV data with very high

resolutions.

5.4.9 Rule based

The use of a rule base system also gives flexibility. Contextual knowledge (e.g. Pteridium

aquilinum found on higher drier land around the bog and not within) can be incorpo-

rated to separate from any similar spectral thresholds for different species. It allows for
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the combination of the knowledge of landscape ecology, plant species and vegetation

reflectance.

5.4.10 Supervised

Supervised classification, using pre-selected reference areas as spectral training sites,

has long been used in studies seeking to discriminate vegetation types (Lewis, 1998;

Nagendra and Gadgil, 1999; Sesnie et al., 2010). These image analyses lend themselves

well to homogeneous vegetation stands, although they perform less well in classifying

mixed vegetation stands (Teillet et al., 1997). Dominant species that are relevant to the

conditions of an ecological gradient and large enough (over 2m+) to be contained within

a pixel were selected with gps readings made within the centreof a homogenous patch.

Reinke and Jones (2006) highlight the importance of plot location within homogenous

patches to avoid the effect of mixed pixels.

5.4.11 Sub-pixel classifcation

Where there are heterogeneous patches techniques such as fuzzy classification and spec-

tral unmixing have been recognized as a suitable tools to map (semi-) natural vegetation

units because they allow a soft overlap of several hard classes (Foody et al., 1992). In

order to provide a species classification these methods would require a complete set of

species for the whole of the protected site. However, the bog and particularly the more

intact and less degraded areas have too many species to analyse using spectral unmix-

ing due to only 8 bands being available. This would also be too complex for a fuzzy

classification given the number of species in total.
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5.4.12 Data fusion

Fusion of imagery and LiDAR improved species discrimination further, however, a better

vertical discrimination is required. Using a combination of multi-temporal data and

the classification system developed has improved the accuracy. Also of importance

to the accuracy of the classification of species is the input of ecological knowledge,

that ecological knowledge being specific to each site or habitats. The indices threshold

selection process did not on its own give the best classification and required the input

of ecological knowledge and UAV imagery to improve its accuracy. Combining both the

ecological knowledge and statistical methodology improved classification accuracy. In

this case the systematic reduction of areas using the rule set to classify in a hierarchical

method has helped to increase overall accuracy by reducing the size of the area to be

classified.A zooming in approach and the ability within the scripting system to reduce

the area in which to discriminate a species increased accuracy. The use of the LCCS

within this provides a globally recognised land cover classification whereby the 1st stage

can be used to narrow the areas where species are discriminated. This helps improve

accuracy.

5.4.13 Peatlands and wetlands

Despite the heterogeneous nature of lowland raised bog systems such as Cors Fochno

high resolution imagery such as WV2 provides a sufficient resolution to identify the

main patches of species that can be identified as ecological indicators of the gradients

of moisture and degradation. Lowland bogs and other wetland systems are the most

difficult systems to inventory (Lane et al., 2014) and in the situations present at Cors

Fochno remote sensing data has helped to provide an informative baseline which would

not otherwise have been possible. The species selected are those that over time could

be informative to the overall condition of the bog and inform sustainable management
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of this important ecological system. Any changes or shifts in the coverage of these

particular species could provide significant information to drive management and inform

on other flora and fauna species conditions.

So far few have used WV2 to study freshwater wetlands and aquatic habitats. Lantz

and Wang (2013) used it with success in their research of the distribution of the species

Phragmites australis, however the lack of globally consistent mapping of peatlands is a

major source of uncertainty in assessing their current role in the global carbon and water

cycle and projecting their future change (Frey and Smith, 2007; Beilmann et al., 2008).

Mansour et al. (2012) suggested that more research is required to improve accuracy

of the classification of species indicating ecological gradients in particular using WV2

to investigate biophysical parameters. Using the methods presented in this research

and the selection of species for mapping of dominant species as indicators of ecological

gradients this was successful and provided useful information on the condition end extent

of the health of the lowland raised bog, in particular by showing ranges of the dominant

patches and by providing a more accurate method to assess Sphagnum % coverage.

In particular temporal mapping of these indicator species for identifying degradation or

ecological gradients would be specifically useful for monitoring degradation or restoration

of wetland/bog sites. Classification of protected conservation sites often focuses on

habitat or species classification. Few studies have looked at classifying specifically the

species that can provide information on the ecological gradients of an entire site. These

are particularly important to assess for change over time to feed valuable information to

site management.

5.4.14 Accuracy

When comparing overall accuracy and Kappa values it can be seen that 1st stage EOD-

HaM classification accuracy did not affect the smaller SSSI area species classification

produced in this hierarchical method. It could be assumed that accuracy at the first
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level could affect the next layer of classification, however, the 1st stage accuracy was

high and did not seem to affect the species classification but actually helped to narrow

areas down for subsequent classification.

Accuracy results can be affected according to what source of data is used for assessment.

A comparison of the ground data accuracy assessment and the UAV accuracy assessment

showed there are some issues of testing accuracy especially with ground data. This is

possibly due to the registration of GPS points on the ground with image pixels. This

may have be avoided with an object segmentation but only if the vegetation patches had

been larger. Other possibilities for differences are the differences in sample times versus

imagery data (Congalton and Green, 2009).

Another reason for differences in accuracy assessment results between the UAV data and

ground data could be accounted for by two reasons. a) The GPS readings from the

ground plots may have been subject to some inaccuracies and may not have mapped

exactly to the WV2 imagery and subsequently classification and b) there were equal

numbers of test points for each species using the UAV data but not for the ground data

due to difficulties in accessing an equal number on the ground for each species.

Noticeably those species (e.g. Myrica gale and Sphagnum cuspidatum) which had poor

accuracies in the UAV confusion matrix had much better accuracy using the ground data

confusion matrix. This may have been due to the low number of samples used in the

ground data for these particular species.

5.4.15 Outcomes for the classification method used for raised

bog condition analysis.

This method was used to classify areas of Sphagnum in the central dome area which

when combined with the DTM to locate the central dome area was employed to calculate

the % coverage of Sphagnum for the central dome area. This is a measure calculated
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by eye usually due to the difficulty of the spatial mapping and calculation of % coverage

from in this case the boardwalk area in order to assess the condition of the raised bog.

This is a method that could be repeatable and provide far more accurate and valuable

data on any changes (increase and decrease in Sphagnum) that could indicate changes

in hydrology than are currently in use

5.4.16 Further investigations

Further work could be done using this method to assess a whole suite of indices more

recently derived for WV2 (Pu and Landry (2012) & DigitalGlobe (2009)). This method

could also be tested on other similar peatland sites with the same species present. It

would be useful to see how indices and thresholds selected may differ for the same

species on a different site or indeed differ with imagery from different satellite types.

The application of this method to other very different habitats would also be useful to

assess its application for use within a protected sites monitoring system.

5.4.17 Further uses

1. As has been demonstrated in this chapter the health of raised bog can be par-

tially assessed by focusing on the central dome and assessing the percentage coverage

of sphagnum (as demonstrated in this chapter). This method could also be used on

subsequent imagery to assess any change over time and is a far more accurate method

than ground based estimations.

2. A more detailed assessment of ground data to show ecological gradients would be

useful to have more cohesion with the species mapping as indicators of gradients of

moisture and degradation.

3. The indices layers and maps produced can provide valuable spatial data for input

into the next chapter 6. They can be assessed for their use as invertebrate biodiversity

198



5. Vegetation classification

indicators and as well as other faunal biodiversity indicators.

4. These same layers can also be used to create habitat suitability models.

5. As the indices threshold method provides better accuracy for species likely to occupy

larger areas in a monoculture, this method would be particularly suitable for monitoring

invasive species. This could then be developed to provide assessment of change for

invasive species.

5.5 Conclusions

1. Correspondence of atmospherically corrected WV2 data and field spectroradiometer

data was not sufficient to use the field spectrometer data as input for indices and thresh-

old selection. Data for input into the classification had to be collated from the actual

WV2 imagery.

2. The F-ratio method was successful at selecting the best indices for overall species

discrimination from all three images used giving results which showed the two best time

periods (July and March) for use in the classification. This provides a much simpler and

more user friendly statistical method for conservation managers than other more lengthy

methods such as CCA and RDA.

3. Both a landscape and a species classification using both pixel and object classifica-

tion methods were performed and combined to produce a single multi-scale classification

output. The hierarchical system using LCCS was important for achieving this combina-

tion.

4. Classifying dominant species has provided valuable information on the ecological

gradients and condition of the raised bog, which have provided valuable information on

the condition of the site which relate in particular to its hydrology and degradation. With

further temporal analysis this system would provide a valuable management tool.
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5. Accuracies of this method where high overall (>81%) and showed the importance of

taking GPS readings within the centre of a homogeneous patch larger than 2m.

6. The final outcome of this research has produced a classification process that can

carry out classification of varying scales from landscape to species level as one overall

classification in a system that captures the ecological gradients to provide information

on condition and hydrology and is repeatable for monitoring purposes.

7. This method is designed so that with further scripting work an additional input and

scripting layer for fauna suitability and distribution modeling could be added to provide

a complete monitoring package for the reserve manager.

200



Chapter 6

Evaluation of remotely sensed attributes

of habitat as indicators of invertebrate

biodiversity.

6.1 Introduction

Although invertebrates comprise of at least 80% (Collen et al., 2012) of the world’s

known species, they are a hugely understudied component of the worlds’ ecosystems.

Many vertebrates depend on invertebrates for food and many are instrumental in the

reproduction of plant life. Any changes in numbers, distribution or losses of these

can cause a large impact in functional diversity and provision of ecosystem services

(Cardoso et al., 2011). Their distribution and density is therefore of vital importance to

conservation and can contribute to the understanding of the overall health of protected

sites.

Whilst plant mapping and associations can be produced through direct methods, fau-

nal data requires approaches based on proxies or surrogates (Leyequien et al., 2007b).

Improving methods used in biodiversity assessment by improved sampling and analytical

methods to give better information is an important priority for insect conservation and

diversity (Didham et al., 2010). The use of remote sensing data can help in providing

better spatial information and assist in providing a better understanding of ecosystem
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functioning (Cabello et al., 2012). There are numerous studies where remote sensing

variables have been tested and used in species distribution modelling (Hill and Hinsley,

2015; Pettorelli et al., 2011; Wilson et al., 2013; Cord and Raudder, 2011) however,

the use of remote sensing in the mapping and prediction of occurrence of invertebrate

species is poorly investigated (Leyequien et al., 2007a). The main emphasis of studies

has generally concentrated on those that are considered to be pests and focus on crop

or forest infestations (Huang et al., 2008; Thomas et al., 2013; Eklundh et al., 2009).

This chapter therefore investigates the use of remote sensing derived attributes as in-

dicators of invertebrate species and community associations and distributions. It will

draw on the data and mapping produced in the previous 2 chapters using the species

classification (Figure 5.23) and the indices layers produced using the EODHaM system

classification.

The invertebrates selected for analysis of attribute associations were Araneae, Coleoptera

and Diptera. Vegetation type, structure and diversity is of major importance to many

invertebrates (Harvey et al., 2002). Cole et al. (2005) discovered a relationship between

dominant vegetation type and invertebrates across upland sites. Spider communities,

however, are highly sensitive to habitat structure (Marc et al., 1999) and the architec-

ture of component plant species dictates which species are present according to their web

building techniques (Robinson, 1981). The most important factors affecting Carabidae

(Coleoptera), ground beetles, and many other Coleoptera species are moisture gradients

separating dry habitats from wet habitats (Eyre et al., 1996; Uvei, 1996), as well as veg-

etation, both dead and living (Halme and Nielme, 1993). Diptera are known to frequent

a large number of ecological niches of which many can be defined using remote sensing

data. Some of these specific habitats consist of soil, decaying vegetation (deadlitter),

mosses and other live vegetation (Smith, 1989).

Many dominant species can reflect ecosystem gradients. Transient or subordinate species

can drive ecosystem functioning by influencing recruitment of these dominant species
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(Grime, 1998). Therefore vegetation classifications such as that produced in chapter 5

can provide a map of dominant species which can inform on the ecological gradients and

subsequently inform on the ecosystem functioning of habitats present. The dominant

species on Cors Fochno represent a gradient of disturbance, moisture and nutrients. The

dominant species recorded that represent the ecosystem gradients exhibit a continuum

of functional traits in response to these gradients. Plant functional traits particularly

those that respond to disturbance and fertility can determine invertebrate distributions

(Lovering, 2008; Storkey et al., 2013) Dominant vegetation types can, as illustrated

in the previous chapter, be identified in the raised bog habitat of Cors Fochno. A

selected number of vegetation types present and classified relate to conditions present.

For example areas with high Sphagnum pulchrum coverage indicate wetter areas, whilst

more heather can indicate drier conditions. The change from Sphagnum-dominated

to Calluna-dominated to Molinia-dominated areas can be considered to follow a soil

moisture gradient. Areas with Calluna or Molinia provide different structures for web

building. Although all areas have dead litter present, Molinia caerulea is indicative of

large expanses of dead and rotting litter.

Although image spectral values and vegetation indices derived from remote sensing data

have seldom been used as predictor variables for invertebrate distribution models (Miller

and Rogan, 2007), many other studies have used indices of vegetation (Pettorelli et al.,

2011; Lafage et al., 2013) for other taxa. This has provided a greater range of con-

tinuous data than vegetation classifications alone and it is believed this approach could

lead to improved models of species distributions. (Bradley and Fleishman, 2008b). Re-

mote sensing indices which correlate with greenness/plant productivity, senescence and

wetness of vegetation cover are easily derived from the WV2 satellite data and indices

can be essential as key indicators for the assessment of ecosystem function. Senescent

vegetation can be recognized as litter, dead leaves, dead branches etc., whilst greenness

is shown by the visibly green photosynthetic vegetation and can be used as an indication

of plant productivity. These RS indices can be used as indicators for a number of ecosys-
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tem functions which are known to effect invertebrate distributions. Spatial heterogeneity

of plant productivity has been shown to influence faunal species distributions (Leyequien

et al., 2007a). Typical measures of spectral heterogeneity focus on indices such as the

NDVI, with the simplest measures being the standard deviation or coefficient of variance

of pixels within a sampling region (Rocchini et al., 2010). Vegetation phenology has also

been used as a predictor in animal habitat suitability (Osborne et al., 2001; Pettorelli

et al., 2011) Seasonal attributes of vegetation are also important in invertebrate life

cycles, and vegetation phenology has been shown to be correlated with mosquito life

cycles and outbreaks of malaria (Rogers, 2002).

Changes over time in these properties of ground cover could indicate biodiversity and

productivity loss. This provides a valuable tool to quantify the effects of drivers of

change and provides insight into management and planning actions for areas vulnerable

to change. In order to turn any valuable information on associations between species

and environment/vegetation variables into useful conservation management tools, maps

of the probability of occurance generated by species distribution models (SDMs) and

habitat suitability models (HSMs) can be created using the remote sensing data. One of

the most useful estimates of faunal distributions can be made using remote sensing data

to identify and map animal habitat suitability (Leyequien et al., 2007a) which can be

used for planning and management of habitat. These models can also be seen as a way of

reducing bias from the availability of only a few scattered points (Diniz-Filho et al., 2010)

and can be used to help predict the effect of scenarios of change on those species. Further

interpretation of habitat suitability can be used to improve species density estimates and

provide species survival estimates. One of the most popular methods in creating SDMs

is to model distributions of individual species. This does not take into account the fact

that species do not respond solely to environmental interactions and also interact and

respond to other taxa. The distribution of a species is defined by both its environment

and its interaction with other species (Hutchinson, 1957). Community-level modelling

may be more beneficial, especially at finer scales and where a large number of species
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are rare within these areas (Bonthoux et al., 2013).

Aims:

This study aims to use WV2 satellite derived parameters that relate to environmental

variables relevant to invertebrate habitat suitability and invertebrate plant food sources

(vegetation species composition maps and the indices data relating to abiotic factors

and structural heterogeneity produced in Chapter 5) to assess their associations with

selected invertebrate species and assemblages.

Objectives:

1. Identify the most suitable satellite derived parameters (e.g. plant species, abiotic

factors and structural heterogeneity) for use as ecosystem indicators, which also relate

to both invertebrate microhabitats and invertebrate plant food sources.

2. Using Araneae assemblages, Coleoptera assemblages and Diptera suborders, analyse

associations with WV2 derived environmental variables as identified in objective 1.

3. Evaluate associations between a rare Coleoptera species (Agonum ericeti) and WV2

derived environmental variables as identified in objective 1 and create a habitat suitabil-

ity model suitable for a reserve manager to extract further information about this rare

species in order to improve monitoring techniques.

Hypothesis:

WV2 satellite derived spectral indices and WV2 satellite derived dominant plant species

can be used together as invertebrate diversity and distribution indicators.
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6.2 Methods

This section describes the selection of the sampling areas as well as the methods in-

volved to compile both the field data and satellite data required for analysis. Field data

collected include, vegetation data and invertebrate data. Satellite data prepared in the

classification process within chapter 5 was used as input into the associations analysed

and models produced. A number of statistical analysis methods used on the data are

described.

6.2.1 Description of sampling areas

The sampling areas were selected from a gradient of habitat condition ranging from intact

primary lowland raised bog through to degraded secondary lowland raised bog. These

areas also represent moisture gradients, with intact primary lowland raised bog being the

wetter habitat and degraded secondary lowland raised bog the drier habitat. The priority

for sampling was to select environmental gradients across these characteristic features,

as well as providing data useful for management that could quantify and estimate the

influence of changes on the biodiversity of this ecosystem.

The transects traversed areas of intact primary lowland raised bog with little anthro-

pogenic activity and into areas where anthropogenic activity had degraded the bog after

historic drainage and removal of peat layers from peat cuttings. Much of the anthro-

pogenic activity has not been recent and stopped in the early 20th century. Sampling

across these gradients provides material to quantify and predict biodiversity losses and

gains with future work. Changes resulting from these activities can be seen in the

vegetation especially around the peripheries of the bog area (Figure 6.1,6.2).
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(a) Cors Fochno 1948

(b) Cors Fochno 2012

Figure 6.1: RAF reconnaissance aerial photo (a) and WV2 satellite image
(b) of Cors Fochno showing changes in vegetation and use over 64 years

The central dome is an area of intact primary raised bog with classic hummock and

hollow vegetation of Sphagnum and Calluna. Although fire accidently swept across a
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section of this in 1987 the affected area has more or less returned to its original state

and the biodiversity of the central bog remains unchanged.

Areas of peat cutting, especially Llancynfelin area (Figure 6.2), have changed dramati-

cally. These areas changed after the top layer of peat was removed and the remaining

peat layers later dried out and shrank. This in turn caused vegetation to alter from

open raised bog vegetation (e.g. M18) towards a greater dominance of graminoid and

shrub/tree species characteristic of degraded and drained bog. There are also other

changes around marginal areas of the bog with Molinia, Phragmites, shrub and tree

encroachment.

Figure 6.2: Llancynfelin 1948 and 2012 showing the encroachment of tree
species and Molinia during this period.

6.2.2 Habitat and plant species within sample area

Often the same vegetation species exist in degraded secondary lowland raised bog (where

removal of the surface layer and drainage has occurred) as in intact primary bog but

the composition and heterogeneity of vegetation can vary greatly. There were four main

areas of significance in terms of recognising areas with differing vegetation synonymous
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with gradings from wet to dry and healthy to degraded within the raised bog system

(Figure 6.3). These areas of change reflected Annex 1 habitats (Figure 6.3) and were

used as a focus of this study in order to provide information that could be used to further

quantify and estimate the influence of these changes on the biodiversity of this ecosystem.

These areas (reflecting Annex1 habitats) were:

• A - the wet central dome area of active primary bog.

• B the drier edge of the central dome area of active primary bog

• C an area where transition species (Molinia caerulea) are encroaching into active

secondary bog areas.

• D areas of Molinia caerulea dominant swards/tussocks - degraded inactive sec-

ondary bog (where peat formation is unlikely due to absence of peat forming

Sphagnums).

Only 6 species which dominate within the areas that span from inactive degraded sec-

ondary bog through to areas of active primary bog were recorded and are as follows in

table 6.1:

No. Species Found in Area*
1 Calluna vulgaris A, B, C
2 Eriophorum angustifolium A, B, C
3 Molinia caerulea C, D
4 Phragmites australis D
5 Sphagnum cuspidatum A, B, C
6 Sphagnum pulchrum A

Table 6.1: Species recorded as dominant patches within sampling areas. *
Areas in bold are where the species are most dominant.
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Figure 6.3: Cors Fochno areas for selected for faunal sampling (adapted
from CCW,2010)

An initial ground survey across similar transects for a previous project, for July and

August of 2012, and using satellite imagery
(WV2 and Landsat7) showed there to be significant differences in vegetation (Figure 6.4)

and invertebrate diversity across transition area ecotones around the edge of Cors Fochno

bog (Undertaken with support from postgraduate students, 2012). From this correlations

were observed between satellite derived indices as indicators (Figure 6.5) and traditional

indicators of change such as Ellenberg and CSR (Figure 6.4).
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Figure 6.4: Transect with 9 quadrats across a transition area of Cors Fochno
in 2012. a)% cover of main species along transect, b)traditional methods of
condition evaluation (CSR and ellenberg).

Figure 6.5: WorldView II band indices for transect across transition area of
Cors Fochno (2012)
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6.2.3 Sampling method

For Cors Fochno there are a number of issues that create constraints on typical methods

used for creating species distribution models. To accurately calibrate a species distribu-

tion model the ideal scenario would be to ensure no major extrapolation in the model by

using a gridded system of evenly spread sample points (Franklin, 2008a). However, acc-

cess on foot to the majority of Cors Fochno remains difficult if not impossible in places

due to the highly sensitive nature of the habitat and the fact that consistent trampling of

areas is strictly prohibited. The main access to the most sensitive areas is via a wooden

boardwalk that traverses the central dome area. Regular access on foot beyond this

boardwalk is not permitted; therefore a sampling design based on easy access, causing

least direct damage is essential in this protected landscape.

In areas where systematic sampling is required to investigate differences between habi-

tat/vegetation types it is recognised that transects are a suitable method to use. Oline

and Grant (2002) proved that transects were the best method for exploring differences in

process and pattern over multiple scales. Many biodiversity monitoring protocols suggest

transect sampling for multiple species sampling. Bennie et al. (2010) used it to mea-

sure biodiversity across spatial scales on a raised bog although this was only vegetation

based surveying. Gadjo and Toft (2000) used transects to look at changes in spider

fauna along a heathland-marsh transect. The BTO and butterfly conservation groups

recommend transect methods for monitoring birds and butterflies. A similar method of

a randomly placed fixed transect (40 traps) over a site with arbitrarily placed traps (60-

116 traps) in two other sites was employed by Wells et al. (2007), who investigated the

effect of anthropogenic activity on species richness and species assemblage composition

of mammals.

For this study, transects (Figure 6.6) were placed across the selected sample areas (Fig-

ure 6.3). Two transects per area were positioned so that although constrained by the
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previously described restrictions would cover an area extensively enough to include hetero-

geneity that may occur in certain conditions/habitat areas (e.g the hummock and hollow

type habitat of the central dome area). Each transect was 200m long and quadrats were

used to sample along this. For each transect 5 quadrats each 10×10m were selected

randomly for sampling (Figure 6.6). Each area therefore had a total of 10 sampling

quadrats. The 10×10m quadrat area was deamed to correspond with recommenda-

tions of a reasonable area of sample for invertebrates such as surface active carabids

(Greenslade, 1964).

The central primary bog was selected as area A (Figure 6.3). This is the area of the site

that is closer to the original state of the protected habitat and with no Molinia present.

In this central area of primary bog two transects (Figure 6.3) were placed across the bog

pool and hummock system (dryer and wetter areas) to encompass the heterogeneous

nature of this area. The second sampling area, area B (Figure 6.3) was placed on the

drier edge of the central dome area of active primary bog. Again the transects had to be

placed a short distance from the boardwalk which created a slight overlap of transects,

although this did not cause an overlap in randomly selected sample quadrats. The third

area C (Figure 6.3) to sample was an area where Molinia has started to encroach but was

not the dominant species present. The area selected was classed as secondary bog where

peat cutting had removed the surface layer of peat causing a system of wet troughs and

drier ridges within the habitat. The areas sampled in Area C were on the drier ridges

due to the difficulty of placing traps and access to the trough/ditch areas. However,

the troughs/ditches are of very close proximity so traps are in the near vicinity of both

areas of vegetation. The fourth area D was an area D (Figure 6.3) degraded area where

invasive vegetation has encroached and is now almost completely dominated by Molinia

caerulea and Phragmites australis.

For areas such as the central dome with hummocks and hollows the transects were large

enough to span the heterogeneous nature of this area. This ensured that no bias was
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Figure 6.6: Diagram showing method for laying-out 200m transect at Cors
Fochno

given towards very wet (pools/hollows) and the slightly drier raised (hummocks) areas

of the habitat in this area. The GPS reading was recorded for each sample site and was

taken at the centre of each sample quadrat.

Within each selected quadrat a vegetation survey and an insect survey were carried out

(Figure 6.6). Plots were numbered 1 to 40 with 1 to 10 being in area A, 11 to 20 in

area B, 21 to 30 in area C and 31 to 40 in area D.

For each sampling quadrat the following field data were recorded:

1)vegetation survey - a)composition and b)height

2)invertebrate survey - a)pitfall traps for surface active Araneae and Coleoptera and
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b)aerial sticky traps for Diptera (Figures 6.7,6.8)

Figure 6.7: Sticky traps in situ in area A, central dome.

Figure 6.8: Sticky traps in situ in area D, Molinia dominated.

6.2.4 Vegetation Survey

For each selected quadrat a photographic record of the 2x2m quadrat area was made

monthly to provide a visual record of seasonal changes in cover (Figure 6.17). Species
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composition within a 2×2m area within each 10×10m quadrat was recorded in July.

An area of 2×2m was selected and not the full 10×10m due to restrictions placed by

reserve management to prevent trampling of protected vegetation areas. The height of

vegetation was recorded to provide information on vegetation structure. The % cover

of dead plant litter was also recorded for correlation with satellite data and providing

information that could be valuable to determining invertebrate diversity.

6.2.5 Invertebrates surveys

Data previously recorded from a single year (Figure 6.9) was used to assess best times

for sampling invertebrates. Using this information as a guide invertebrate surveys were

carried out from the end of March until November within the centre of the same randomly

selected quadrats mentioned in the vegetation survey section.

Figure 6.9: Seasonal pitfall data from 2009.(Source:data provided by NRW)
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Surface active invertebrates - Pitfall traps

Surface active invertebrates were sampled by placing one pitfall trap (Figure 6.10) in

the centre of each selected 10x10m quadrat along each transect giving a total of 10 per

sample area (Cole et al., 2005).

Each pitfall trap consisted of a plastic pot (depth 22cm, diameter 8cm) filled to a

depth of ca. 5cm with a mixture of 70% ethylene glycol, 30% water and a small drop

of detergent to lower viscosity. In order to prevent rain from entering and causing

overflowing an upturned pot tray was placed on short canes approximately 10cm above

the pitfall trap. The contents of each trap were collected on a monthly basis (Antonovic

et al., 2012) from March 2013 until November 2013. The contents were counted and

identified to species level for Coleoptera and Araneae.

Figure 6.10: Pitfall trap design and set up.
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All captured invertebrates were seperated into their respective orders. Coleoptera were

preserved in 85% alcohol whilst Araneae were preserved in 70% until identification (Luff

and Woiwod, 1995). From each pitfall trap a count of all Araneae and Coleoptera species

were recorded over an 8 month period from April to November. There were a total of

320 traps recorded for the whole period across all areas with each divided into Araneae

and Coleoptera making a total of 640 identification units.

Aerial invertebrates - sticky traps

Aerial invertebrates were sampled using double sided sticky traps (10cm×25cm) which

were secured on bamboo canes (Figure 6.11).

Figure 6.11: Sticky trap method.
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The sticky trap canes were placed at the centre of the selected quadrat at the same

time as the pitfall traps. Sticky traps were placed on these canes at several fixed heights

(0.2m, 0.5m, 1.0m and 1.5m) in order to collect insects that use different zones of

vegetation structure (Figure 6.11).The heights that traps were placed correspond with

LCCS classification heights. As wind direction is known to influence the effectiveness

of traps (i.e. the windward side may not catch any (p.c. Laidlaw)) double-sided traps

were used. As some species are less active at certain periods of the year or have life

cycles dictated by seasons, these traps were set on 3 equidistant occasions over a year

in April, July and October. To ensure they all trapped equally they were all facing in

one direction only (south/north). After 48hrs these traps were removed. Once collected

the traps were then stored wrapped in cling film in a cool dry place until identification

(Eglington et al., 2010)(Figure 6.12). There were a total of 480 collated sticky traps

over 3 collection periods and all areas. The number used for recording purposes were

reduced to 192 by subsampling.

Figure 6.12: Sample sticky trap with Diptera from Area A.

Identification and recording of invertebrates

All invertebrate recording was carried out specifically for this project with focus on certain

orders, Araneae, Coleoptera and Diptera. For Araneae and Coleoptera identification was

contracted to qualified experts.
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Araneae

These were identified to species level by the reserve manager who is experienced in

Araneae identification. Juveniles were not recorded due to the difficulty in accurate

identification at this stage in their life cycle. Rarer species (Notably Scarce) were sent

to the British Arachnological Society for confirmation of identification and for their

records.

Coleoptera

Coleoptera were identified to species level by a specialist entomologist used by Natural

Resources Wales. Since identification of larval stages was difficult only data for adult

beetles was used to avoid any inaccuracies in identification.

Diptera

Diptera were identified to sub-order level of Brachycera, Cyclorrhapha, Nematocera using

Chinery (1997). (Figure 6.13).

Figure 6.13: Antenna of Diptera used for identification of Diptera sub-
orders, a)Brachycera, b)Cyclorrhapha, and c)Nematocera. (adapted from
Chinery (1997)).

One species in particular was identified due to it’s large numbers associated with area A

at a specific trapping period, to help explain possible data skews and association reasons.

There were a total of 480 double sided sticky traps collected over the 3 sampling periods.

Due to the number of samples to record per trap a subset of samples were selected from

this for a detailed sub-order identification. The subset was selected randomly so that 4

out of the 10 plots per area were selected with 2 from each transect. For each subset

sample sticky trap a count of Diptera sub-order and Diptera sub-order body length was
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recorded for each trapping height (Table 6.2).

Diptera sub-order Trap height (cm) Abbreviation

Brachycera 20 Bra20

Brachycera 50 Bra50

Brachycera 100 Bra100

Brachycera 150 Bra150

Cyclorrhapha 20 Cyc20

Cyclorrhapha 50 Cyc50

Cyclorrhapha 100 Cyc100

Cyclorrhapha 150 Cyc150

Nematocera 20 Nem20

Nematocera 50 Nem50

Nematocera 100 Nem100

Nematocera 150 Nem150

Table 6.2: Diptera height categories recorded.

Body lengths were divided into sizes present for each sub-order (Table 6.3).
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Diptera sub-order Size range (mm) Abbreviation

Brachycera 1 to 2 Bra1.2

Brachycera 3 to 4 Bra3.4

Brachycera 5 to 6 Bra5.6

Cyclorrhapha 2 to 3 Cyc2.3

Cyclorrhapha 5 to 6 Cyc5.6

Cyclorrhapha 7 to 8 Cyc7.8

Cyclorrhapha 8 to 10 Cyc8.10

Cyclorrhapha 11 to 13 Cyc11.13

Cyclorrhapha 15 to 17 Cyc15.17

Nematocera 1 to 2 Nem1.2

Nematocera 3 Nem3

Nematocera 4 to 5 Nem4.5

Table 6.3: Diptera size categories recorded.

6.2.6 Further invertebrate data calculations

From all the invertebrate data the following were calculated:

1) Biomass for Diptera sub-orders

2) Diversity indices for Araneae and Coleoptera species

a) Simpson’s index of diversity

b) Shannon-Wiener index

c) Pielou’s evenness index
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Biomass calculations

Body length records were used to calculate an estimated typical biomass for each Diptera

length using the best model developed by Ganihar (1997). He tested 4 models on a

variety of terrestrial arthropods and for Diptera he found that a power function model

(equ. 6.1) was the best predictor of Diptera biomass.

weight = b0 + (length)b1 (6.1)

w

(b0 = e(−3.42940.01994) , b1 = 2.5943 ś 0.0334)

b0 and b1 being parameters of the model.

Diversity indices

Simpson’s index of diversity, Shannon-Wiener diversity index and a Pielou’s evenness

index were calculated for both Araneae and Coleoptera. An indication of the diversity of

the areas was useful to provide a comparison of the areas. As Cors Fochno is home to a

large number of endemic and rare species, more than one index was used for comparisons.

Simpson’s index gives more weight to common or dominant species whilst the Shannon-

Wiener index is equally sensitive to rare and abundant species (Morris et al., 2014).

Pileou’s evenness gives a measure of the similarity in species relative abundance in a

community (Heip et al., 1998)

Simpson’s Index of Diversity (Jost, 2006)

D = 1− (

∑
n(n− 1)

N(N − 1)
) (6.2)

n = the total number of organisms of a particular species
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N = the total number of organisms of all species

This index ranges from 0 to 1 and has been manipulated to give a more logical system

of a larger value for greater sampling diversity. In this case, the index represents the

probability that two individuals randomly selected from a sample will belong to different

species.

Shannon Wiener Diversity Index(H) (Hurlbert, 1971)

This is a diversity index otherwise known as the Shannon-Weaver index and is the

measure of species diversity in a given community. It is different from species richness

in that unlike richness it also shows community composition and takes into account the

relative abundance of species that are present in the community (Hurlbert, 1971).

H = −
∑

(Pi ∗ lnPi) (6.3)

i=1

where,

H = the Shannon diversity index

Pi = fraction of the entire population made up of species i (proportion of a species i

relative to TOTAL number of species present, not encountered)

S = numbers of species encountered

Pielou’s evenness (Pielou, 1975)

Pielou’s or Species evenness refers to how close in numbers each species in an environ-

ment are. The closer the number gets to 1, the more even the quantities of the different

species are,

J = H/ln(S) (6.4)

H = Shannon Wiener index value, S = species number
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6.2.7 Satellite derived data

Satellite data was used to create a spatial data set of suitable biophysical attributes and

species data with which to assess associations for invertebrate data collated across the

sample areas. Data was then used with these associations to improve spatial coverage

of the SSSI.

Creation of raster layers

Raster layers were created using the classification method in Chapter 5. These layers were

then used in order to extract values for use as environmental variables within analysis

and model creation and prediction.

For each sampling area data was extracted for each 10x10m area from:

1) Species data - WV2 derived classification layers of dominant plant species.

2) Indices data - WV2 derived indices layers created during the EODHaM classifcication

process.

Vegetation species data

Species maps and layers were from the analysis undertaken in Chapter 5. Separate raster

layers were created for each vegetation species, representing the percentage cover. The

% of pixels containing a selected vegetation species was created from a box of 5×5

pixels to denote a 10×10m buffer region around a central pixel which was given this

value (Figure 6.14). The 10×10m buffer was selected to equate to the 10×10m quadrat

in the transect sample areas.
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Figure 6.14: Diagram showing method for: 10x10m buffer for extraction
of pixel values at Cors Fochno. See equation 6.6 also.

The raster layer for each vegetation species had the same treatment. For each layer

each pixel (2×2m) was given a value which was the percentage coverage classed as

the dominant vegetation species in a 10×10m region surrounding it. With pixels being

2×2m this was straight forward as a box of 5×5 pixels (10×10m) surrounding the central

pixel. A count of the number of pixels that were classified as the vegetation species was

then divided by the total number of pixels in the sample area (25 pixels) and multiplied

by 100 to get % coverage. This process then changed the categorical vegetation species

data into conditional data.
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x =

(
Ps
PT

)
× 100 (6.5)

Ps = count of pixels in 10x10m area with dominant species.

PT = Total number of pixels in 10x10m area.

Satellite indices data

Suitable indices variables were divided into those that represent variables known to influ-

ence invertebrate species distributions (Williams et al., 2014; Galle et al., 2011). To cross

seasonality and make use of the best choice of indices investigated in previous chapters

both Pre and Peak indices were used. Unless there was good reason, the peak indices

were selected for all, as Chapter 5 showed this period to give the best performance in

terms of separation of vegetations types.

The variables that characterise environmental conditions were chosen to represent ecosys-

tem functioning but are also known to influence invertebrate orders. Moisture is an

important factor to consider when investigating invertebrate distributions. Fo mnay or-

ders such as Diptera and Coleoptera vegetation productivity and availability of dead

litter can be important habitat factors (Williams et al., 2014; Frouz, 1999). Plant phe-

nology is an important factor in insect lifecycles particularly phytophages (Southwood

et al., 2004).For Araneae plant structure and its heterogeneity are important (Robin-

son, 1981). Araneae are also known to prefer habitats with heterogeneous vegetation

(Robinson, 1981) and some also require this variation due to their requirement for dif-

ferent vegetation in different stages of their lifecycle (Sheppard, 2009).

Variables characterising environmental conditions are as follows:
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Moisture (vegetative and ground)

During the classification process in Chapter 4 the Water Band Index (WBI) was used to

detect water and is also used to detect canopy moisture as was done in Chapter 4 for

Sphagnum classification. From Pre and Peak WBI the Peak WBI was chosen as the Pre

WBI would give results that may be more related to the increase in the layer of dead

vegetation in the winter months.

Photosynthesis (productivity and dead litter)

This index is used to indicate photosynthetic vegetation or productivity in vegetation.

High NDVI values indicate higher productivity or greenness (Rouse et al., 1973). Low

values of NDVI could indicate dead vegetation or dead litter. High values of PSRI are also

used to indicate deadlitter (Merzlyak et al., 1999) so Peak PSRI was also selected.

Phenology

For seasonal data, such as to denote evergreen or deciduous or to indicate highly com-

petitive vegetation which is very productive in summer and has complete coverage with

dead litter in winter peakpreNDVIDiff was selected to provide this information.

Plant structure (e.g. shrubby etc.)

Pre Woody index was used to determine shrubby branched vegetation (Lucas et al.,

2011b). The use of the pre index provides data not confounded by overgrowing vegeta-

tion that could mask woody branches.

Heterogeneity

Standard deviation of NDVI has been used previously to indicate vegetation hetero-

geneity often with respect to areas of vegetation versus dead vegetation or bare ground

(ref). Variation (larger standard deviations) in NDVI in the 10×10m areas could indicate

different vegetation species present or greater vegetation heterogeneity.

Height

LiDAR data was used to create a Canopy Height Model (CHM) for the classification
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process in Chapter 5. However, as the LiDAR gathered by the Geomatics Group of the

Environment Agency had been acquired in winter ’leaves off’ conditions for flood plain

modelling, the short vegetation height over the bog area introduced inaccuracies to the

CHM. In the event it was decided not to select this as a variable.

As with the species data for each index layer each pixel (2×2m) was given a value which

was the average indicex value for a 10×10m region surrounding it. The heterogeneity

layer used the same process but instead of average calculated the standard deviation of

the indices. Each index then had its own raster layer created for model and prediction

value input. For each raster layer of species and index data the value of the pixel (2×2m)

that each GPS point was recorded for was extracted and used in analysis.

Variable name Description Representation of variable Calculation

Response

Aran Araneae species Araneae community data Mean count over 8 month period (Total count/8)

Cole Coleoptera species Coleoptera community data Mean count over 8 month period (Total count/8)

Dipt Diptera orders Diptera community data Mean count and biomass over 3 trappings (Total/3),

body size and trapping height data.

Ago.eri Agonum ericiceti, species of Coleoptera Species endemic to sphagnum bogs Mean count and presence absence data

Continuous Predictor

Vegetation Species

Cal vul* Calluna vulgaris Estimation of Cal vul present % pixels (2x2m) classified as Cal vul in buffered 10x10m area

Eri ang* Eriophorum angustifolium Estimation of Eri ang present % pixels (2x2m) classified as Eri ang in buffered 10x10m area

Mol cae* Molinea caerulea Estimation of Mol cae present % pixels (2x2m) classified as Mol cae in buffered 10x10m area

Phr aus Phragmites australis Estimation of Phr aus present % pixels (2x2m) classified as Phr aus in buffered 10x10m area

Sph cus* Sphagnum cuspidatum Estimation of Sph cus present % pixels (2x2m) classified as Sph cus in buffered 10x10m area

Sph pul* Sphagnum pulchrum Estimation of Sph pul present % pixels (2x2m) classified as Sph pul in buffered 10x10m area

Indices

peakNDVI* Normalised Difference Vegetation Index - March WV2 Vegetation productivity Mean NDVI of pixels in a 10x10m area.

peakNDVIStd* Normalised Difference Vegetation Index - July WV2 Vegetation heterogeneity Standard deviation of NDVI of pixels in a 10x10m area.

peakpreDiffNDVI* Normalised Difference Vegetation Index - March and July WV2 Phenology Mean of (preNDVI-peakNDVI) for pixels in a 10x10m area.

peakPSRI Normalised Difference Vegetation Index - March WV2 Dead litter Mean NDVI of pixels in a 10x10m area.

peakWBI WaterBand Index - July image Moisture Mean WBI of pixels in a 10x10m area.

preWoody Woody - March WV2 image Structure (woody, branched) Mean Woody index of pixels in a 10x10m area.

CHM Canopy Height Model derived from LiDAR (2013? Winter?) Vegetation height Mean of DTM - DSM for pixels in a 10x10m area

Table 6.4: List of Variables used in analysis (Note: All predictor variable
sources were produced within the EODHaM classification method.* repre-
sents final variables selected for analysis

229



6. Evaluation of remotely sensed attributes of habitat as indicators of invertebrate
biodiversity.

6.2.8 Treatment of data used in analysis

Vegetation species percentage data was standardised using the Arcsine transformation in

R. As the indices data were generated from ratios and fractions of spectral band values

there was no need to standardise/transform this data. Invertebrate species count data

were standardised using log +1 method in R.

6.2.9 Analysis of vegetation data

In order to ascertain if the areas selected were really distinct in terms of vegetation

species present, a cluster analysis was performed on the vegetation ground data using

the % species compositions recorded in the 2×2m areas.

The EODHaM method of classification was also carried out to try and classify the Annex

1 regions using the same method as that used in chapter 5. The 4 areas selected for

sampling were identified as a class: Area A, Area B, Area C and Area D, corresponding

with Annex 1 regions (Figure 6.3). Indices and thresholds were selected as in Chapter

5 using sample data extracted from known classes. These two methods were employed

to demonstrate that areas were distinct both on the ground and with the use of satellite

derived data.

6.2.10 Environmental Variable reduction

A Principal Components Analysis (PCA) was carried out in R on all selected environ-

mental variables to assess their suitability and strength of relationship to areas. The

PCA at this point was used specifically to identify patterns in the data and assess the

associations of sites and satellite derived variables and not for the usual method of data

compression.
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All variables were also tested for co-linearity in order to minimise multiple co-linearity

using a Pearson’s correlation matrix in R. Pearson’s correlation coefficient r ranges from

-1 to 1. An r value of -1 can indicate a perfect negative linear relationship between

variables whereas an r value of 1 indicates a perfect positive linear relationship. An r

value of 0 shows no linear relationship. It has been suggested that the threshold of this

correlation coefficient at which a predictor variable’s co-linearity can cause distortion in

models is r≥ ±0.7 (Dormann et al., 2013). All variables with an r value of > ±0.5 were

selected for rejection but their association with sites and these relationship strengths

in the PCA were considered first as although co-linear they may still show important

associations in further analysis. Some co-linearity may be due to functional relationships

of variables.

6.2.11 Relationships between environmental variables and in-

vertebrate species assemblages, suborder and individual

species

A direct gradient analysis of Araneae and Coleoptera assemblage count data with the

selected environmental variables (Figure 6.4) was carried out using Canonical Correspon-

dence Analysis (CCA). Both ground data and satellite data were used in the analysis.

The ground data analysis was used as an approximate comparison due the unavoidable

differences in collation methods. Generalised Linear Modeling (GLM) was used to anal-

yse the Diptera suborders count data. ANOVA was used to show whether differences

existed in the Diptera count and Diptera biomass data within each sample area. Bayesian

Generalised Linear Modeling (bayesGLM) was used to analyse an individual species. This

was done in order to consider differences or similarities between invertebrate assemblage

analysis and individual species analysis and to investigate its use in reserve manage-

ment potential. Both count data and this translated to presence /absence data were
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used.

Araneae and Coleoptera species assemblages

A CCA analysis was selected for analysis of invertebrate and environmental variable

associations. CCA in R was used in order to investigate community assemblages that

are explained by their environment (ter Braak and Verdonschot, 1995). Simulation

studies show that CCA is a robust analysis method which is not significantly affected by

skew or outliers (Palmer, 1993). The proportion of the total inertia in the species data

that is explained by each canonical axis was computed. Eigen values and % variance of

species were calculated for each axis and used to indicate the degree of separation of

species along this axis and serve as a measure of the importance of the axis (Smilauer

and Leps, 2007; ter Braak, 1995)).

Monte Carlo permutation tests were used to calculate the statistical significance of all

the axes as a whole and also to test individually the significance of each axis in the

analysis. The intraset correlations, otherwise known as the environmental axes weighted

correlations, were used to provide information on the correlation between each axis and

the environmental variables (ter Braak and Verdonschot, 1995). Species scores were

used to interpret a species’ relationship to an axis or variable associated with the axis.

Dispersion of the values can be used to show how a variable explains species data

(ter Braak, 1995) Biplots were produced which gave a visual interpretation of multiple

associations by plotting the species and environmental variables.

Diptera suborder

An ANOVA was carried out initially to assess if there were any significant differences

between areas of Diptera count and biomass. Once this was assessed a GLM of the

suborders was carried out to investigate if these differences were due to significant as-
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Figure 6.15: Agonum ericeti(6.5-8.5mm).

sociations between suborders and satellite derived data. The Diptera count and Diptera

biomass data was of poisson distribution so a GLM poisson regression in R was used.

Three GLM models were performed one for each suborder.

Agonum ericeti - single species

The distribution of both the response data (Agonum ericeti) and the predictor data

(satellite variables) was taken into consideration before analysis of relationships between

individual species and satellite derived variables. The relationship with a habitat will be

most pronounced for species with a low dispersal ability, i.e. flight-less species. One of

these such species present in the trappings and endemic to bog habitat was Agonum

ericeti (Sushko, 2014). This is a stenotopic carabid species and a specialist of primary

peat bog found in Europe (Drees et al., 2007). It does not fly and rarely bridges distances

that exceed 200m so is an ideal candidate to use in investigating variable associations.

It has seen considerable research investigating the survival of populations in relation to

small or fragmented populations (Drees et al., 2007).

Poisson regression models provide a standard framework for the analysis of count data.

In practice, however, count data are often overdispersed relative to the Poisson distri-

bution. One frequent manifestation of overdispersion is the incidence of zero counts

(Ridout, 1998). Count data, however, can be over-dispersed relative to the Poisson
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distribution. One of the main causes being a preponderance of zeros (Ridout, 1998).

This is particularly important to acknowledge for an area like Cors Fochno where there

are many rare species and species that are endemic to particular habitats/areas. In this

case Agonum ericeti is endemic to area A in our trapping data. This response data has

a large number of zeros and is of Poisson distribution but heavily zero weighted. Not all

predictor variables show linear relationships with the response variable so it is therefore

better to use a method that will take both of these factors into account. A Poisson GLM

is not necessarily suitable due to the preponderance of zeros leading to over-dispersion

within the model and zero-weighted regression is less effective with small samples (Rid-

out, 1998). Issues can also occur where a predictor variable perfectly separates zeroes

and ones in response variables. Bayesian GLM (Gelman et al., 2008) is an alternative

which helps to default this seperation phenomenon. Problems with co-linearity can also

be minimised using Bayesian methods (Dormann et al., 2013).

Four Bayesian generalized linear models were performed and tested (Table 6.5). Three

of these used satellite derived data and one model used ground data only to provide

comparison for discussion. Model 1 was carried out using a quasipoisson bayesGLM and

Models 2 to 4 used binomial bayesGLM models. Model 1 used Agonum ericeti count

data from pitfall trapping as a response variable. For predictor variables satellite de-

rived vegetation species data and satellite derived indices data were used, as previously

with Coleoptera and other previous CCA analysis. Model 2 used Agonum ericeti pres-

ence/absence data derived from the count data as the response variable and as before

both satelite derived species data and satellite derived indices data as predictor variables.

Model 3 used Agonum ericeti presence absence data as the response variable and satel-

lite derived species data only as predictor variables and model 4 used Agonum ericeti

presence absence data as a response variable and species recorded ground data as predic-

tor variables. Once models were formed, predictions were mapped using corresponding

satellite derived layers. No prior parameters were set and the default values supplied for

Poisson (link=’logit’) and Binomial (link=’log’) models in R were used.
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Model BayesGLM Model family Ago eri species data Satellite data Ground data

1 quasipoissson count Cal vul -

Eri ang -

Mol cae -

Sph cus -

Sph pul -

peakpreDiffNDVI -

peakNDVIStd -

peakNDVI -

2 binomial presence/absence Cal vul -

Eri ang -

Mol cae -

Sph cus -

Sph pul -

peakpreDiffNDVI -

peakNDVIStd -

peakNDVI -

3 binomial presence/absence Cal vul -

Eri ang -

Mol cae -

Sph cus -

Sph pul -

4 binomial presence/absence - Cal vul

- Eri ang

- Mol cae

- Sph cus

- Sph pul

Table 6.5: Bayesian Generalized Linear Models (BayesGLM) used to model
Agonum ericeti (Ago eri) species habitat suitability.

The Akaike Information Criterion (AIC) and Leave One Out Cross Validation (LOOCV)

methods of model comparison were used to compare the GLM models. The use of AIC is

a common method for assessing the quality of models however, this value is not in itself

meaningful. However, when used to compare models it provides a method for assessing

the quality of the model through comparison of related models (Johnson and Wichern,

2007). The model with the smallest AIC value should be the best. A comparison of AIC
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cannot be used for the quasipoisson method as this model method does not provide an

AIC value. K-fold cross validation prediction error for generalized linear models can be

used as an alternative for testing model efficiency (Davison and Hinkley, 1997). If k-fold

is set to the number of cases (rows), then a complete Leave One Out Cross Validation

(LOOCV) is done. For this method one case is left out as the testing set and the rest of

the data is used as the training set. This process is then repeated so that each response

variable case is rotated to become the testing case.

A prediction method in R using the bayesGLM results was used to produce a map of

habitat suitability for Agonum ericeti. This method used the raster layers (predictor

layers) already produced along with the coefficients of the bayes GLM to produce maps

of probabilities of Agonum ericeti presence.

6.3 Results

6.3.1 Ground vegetation in sample areas

This section describes the vegetation of sampled areas and shows the significance of

the selection of the subdivisions used in terms of distinctiveness and conditional gradi-

ents.

Both ground based photographic records (digital SLR) and species composition surveys

showed selected sampling areas to be distinct (Figure 6.16). Although similar vegetation

species may be present in more than one area they have varying compositions (Fig-

ure 6.16). Vegetation composition surveys showed certain species to be more dominant

in certain areas. This dominance however was not necessarily what stood out in photo-

graphic imagery. For example the central bog area has visually distinct areas of orange

tinged Sphagnum pulchrum (Figures 6.17,6.16).
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Figure 6.16: Areas selected for invertebrate sampling with typical scenery
and vegetation plots found in each area. Each point on the aerial image is an
invertebrate sampling point. The graphs show average % of species present
recorded from each 2×2m quadrat from each sampling point

The species composition data shows that Calluna vulgaris and Rhyncospora alba have a

greater % coverage (Figure 6.16), however these are very mixed within the sample area so

are not easily separated using satellite or photographic imagery. This phenomenon is not

so apparent for other areas where the ground survey does correspond with the satellite

classification of dominant species. Overall relationships between vegetation dominant

in imagery and the previous Chapter 5 classification (Figure 5.23) could be explained

by their preferential niches. Sphagnum species which require greater soil/peat moisture

levels such as Sphagnum pulchrum were present in the central dome of the acid bog

(Figure 6.21). The edge of the dome which is drier with fewer wet hollows had a greater

coverage of Calluna vulgaris (Figure 6.21) which has a preference for drier conditions.

The degraded bog area D had an almost monoculture of Molinia caerulea with some

Phragmites australis (Figure 6.21), both of which are well known to invade areas of bog

degradation.
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A cluster analysis of species for each sample quadrat showed distinct groupings of veg-

etation types into their respective Annex 1 areas (Figure 6.18). The use of the same

EODHaM method used in Chapter 5 for separating areas also showed (Figure 6.19)

that indices can be used to seperate these distinct Annex 1 areas. Indices used in this

classification were NDVI (productivity), PSRI (dead litter) and prepeakDiffNDVI (phe-

nology). Using the methods developed in Chapter 5 these were the best indices selected

for distinguishing these areas in a pixel based classification.
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Figure 6.18: Cluster diagram showing Area separation in terms of species
composition derived from field data. Numbers correspond with sampled
quadrat numbers. (1 to 10 = Area A, 11 to 20 = Area B, 21 to 30 = Area
C, 31 to 40 = Area D.)

From these data it could be seen that visible species dominance seemed to be related

to degradation and moisture gradients. Photographic records (Figure 6.17) showed

agreement with chapter 4 field spectroradiometer results by showing the Peak period

of growth to be July to September with a Pre growth period as expected in the winter

period. There is also visibly less change in overall greenness/deadlitter in area A and B

than in area D (Figure 6.19).
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6.3.2 Raster layers used in analysis

Raster layers for input into the analysis were produced (Figures 6.21 and 6.20).The

classification map produced in chapter 5 was by this method changed from categorical

data to continuous data which was for each species the percentage of pixels in a 10×10m

area that was classified as that dominant species. As indices data is also continuous this

allowed the species data and the indices data to be treated the same in analysis.

(a) (b)

(c)

Figure 6.20: Selected Variables - indices layers created as part of the vege-
tation classification process and a standard deviation created from these for
an area 10mx10m.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: From classification - percentage dominant species coverage
(percentage of pixels in an area classified as dominant for that species) for
10mx10m area.

242



6. Evaluation of remotely sensed attributes of habitat as indicators of invertebrate
biodiversity.

6.3.3 Selecting satellite variables for analysis

This section describes the selection process for the use of satellite variables in invertebrate

association analysis. As was previously mentioned in Chapter 5, CHM values were not

suitable for use as a vegetation height variable in classification. For areas A to C values

were mostly 0 which, as can be seen from the ground data, (Figure ??) are not true. The

vegetation in these areas is low and it is known that it is difficult to use LiDAR data for

this purpose where vegetation is lower than 1m in height (Zhuang and Mountrakis, 2014).

Also the LiDAR data used was 1m resolution flown in winter months when vegetation

has died back. For these reasons it was decided not to use the CHM data.

Cumulative % variance of variables in the PCA analysis was 58.6% in the first axis

and 86% in the first 3 axes. This demonstrates the variables selected have a strong

relationship with the specified areas sampled. To refine variables for analysis in order to

avoid co-linearity those variables which displayed co-linearity in a Pearson’s correlation

matrix were identified (Table 6.7).

PCA1 PCA2 PCA3

Importance of components Standard deviation 2.652131 1.4074203 1.1664950
Cumulative % variance of variables 0.586150 0.7512193 0.8646119

Cal vul -0.118 -0.388 0.588
Eri ang -0.201 -0.414 -0.28
Mol cae 0.351
Phr aus 0.336
Sph cus -0.153 0.143 -0.637
Sph pul -0.162 0.547
peakpreDiffNDVI -0.373
peakNDVIStd -0.506 -0.382
peakNDVI 0.372
peakPSRI -0.334 0.28
peakWBI -0.367
preWoody -0.368 -0.104

Table 6.6: PCA of variables showing strength of relationship of environ-
mental variables with all areas sampled.
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Figure 6.22: PCA of variables to test strength of relationship to sites. (1
to 10 = Area A, 11 to 20 = Area B, 21 to 30 = Area C, 31 to 40 = Area
D.)

Pearson’s correlation analyses of the predictor variables showed many correlations al-

though mainly between the indices used. From these co-linear variables only one predictor

each was used in the same analysis.
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Cal vul Eri ang Mol cae Phr aus Sph cus Sph pul peakpreDiffNDVI peakNDVIStd peakNDVI peakPSRI peakWBI preWoody

Cal vul 1 0.22 -0.33 -0.31 -0.35 -0.23 0.37 0.08 -0.26 0.02 0.35 0.45

Eri ang 0.22 1 -0.51 -0.48 0.25 -0.16 0.47 0.46 -0.46 0.27 0.52 0.54

Mol.cae -0.33 -0.51 1 0.75 -0.4 -0.29 -0.91 -0.11 0.91 -0.76 -0.92 -0.94

Phr aus -0.31 -0.48 0.75 1 -0.38 -0.27 -0.87 0.03 0.86 -0.73 -0.86 -0.89

Sph cus -0.35 0.25 -0.4 -0.38 1 0.19 0.3 0.07 -0.38 0.39 0.34 0.3

Sph pul -0.23 -0.16 -0.29 -0.27 0.19 1 0.48 -0.39 -0.46 0.73 0.32 0.29

peakpreDiffNDVI 0.37 0.47 -0.91 -0.87 0.3 0.48 1 -0.03 -0.98 0.9 0.96 0.97

peakNDVIStd 0.08 0.46 -0.11 0.03 0.07 -0.39 -0.03 1 0.03 -0.18 0.03 0.08

peakNDVI -0.26 -0.46 0.91 0.86 -0.38 -0.46 -0.98 0.03 1 -0.91 -0.98 -0.95

peakPSRI 0.02 0.27 -0.76 -0.73 0.39 0.73 0.9 -0.18 -0.91 1 0.82 0.79

peakWBI 0.35 0.52 -0.92 -0.86 0.34 0.32 0.96 0.03 -0.98 0.82 1 0.97

preWoody 0.45 0.54 -0.94 -0.89 0.3 0.29 0.97 0.08 -0.95 0.79 0.97 1

Table 6.7: Pearson’s correlation matrix of variables to highlight colinearity.

Two of the species Molinia caerulea and Phragmites australis showed high co-linearity

with each other with a Pearson’s correlation r of 0.75. The Molinia caerulea coefficient

value within the PCA, as demonstrated by the length of the arrow in the PCA axes

diagram (Figure 6.22), showed a slightly stronger relationship with selected sites with a

coefficient loading of 0.351 (Table 6.6). Molinia caerulea is the most dominant species

around the drier degraded verges of the bog, so this combined with the coefficient loading

ensured its selection over Phragmites australis.

For the index variables peakNDVIStd is the only one which does not show co-linearity. In

the PCA, NDVI has the strongest relationship with site with a coefficient score of 0.372

whilst peakpreDiffNDVI gave an almost 100% negative correlation of -0.98. Using the

negatively correlated peakpreDiffNDVI within a canonical correspondence analysis could

however provide useful information so this variable was kept in any further analysis of

relationships with invertebrates.

Every one of the indices selected correlated with Molinia caerulea and Phragmites aus-

tralis however the peakNDVI and peakpreDiffNDVI indices were still used due to them

giving information on important areas that did not contain Molinia caerulea or Phrag-

mites australis but may have had dead litter present or vegetation identifiable as ever-

green or non senescent (e.g. Calluna vulgaris or Sphagnum spp.).
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All other indices correlated and were therefore discarded in any further analysis. Variables

selected following the co-linearity test and PCA were Calluna vulgaris, Eriophorum an-

gustifolium, Molinia caerulea, Sphagnum cuspidatum, Sphagnum pulchrum, peakNDVI,

peakNDVIStd, and peakpreDiffNDVI. NDVI has been used as an indicator of faunal

species distributions in a number of studies as indicators of their distributions (Pettorelli

et al., 2011). Although most invertebrate studies focus mainly on it’s use to provide

information on pest species and provide information on areas of foliage stripping or likely

areas of pestilence.

6.3.4 Invertebrate associations

This section discusses the distributions of the invertebrate assemblage and the results

from the analysis of their relationships/associations with satellite derived environment

variables and habitat subdivisions.

Araneae species assemblage associations

In total there were 64 Araneae species collected in pitfall traps across all areas sampled.

Of the 4 areas sampled area B, the drier edge of the central primary bog area had

the largest number of individuals caught (Table 6.8) as well as the largest number of

species. This is an area with high percentage coverage of Calluna vulgaris and more

shrubby structure which would be more suitable to certain web constructions. A small

number of individuals and species were found in the mostly homogeneous area D with a

low Shannon-Weaver and Simpson’s diversity index score.

Values for Pielou’s evenness for each area are all ≥0.95 and show that there are very

similar numbers of the same species found within each sample area (Table 6.8).

Rare species or low numbers (e.g.less than 5) of a particular species are often left out

of analysis investigating environment-species relationships so as not to skew results.
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However, in this case there are only 24 species that account for those where there are

5 or more recorded species for the whole recording period. This meant that if following

the procedure of removal of rare (infrequent) species, 40 species would be thrown out of

the analysis. Cors Fochno is a unique habitat which has many endemic and rare species.

As the Araneae community of species is made up of a majority of rarer or less frequent

species all 64 species of Araneae (Table 6.8) were included in analysis. There are a also

a number of aerial disperser species of Araneae such as Dicymbium nigrum and Pardosa

pillata which may confound the results so this too must be accounted for. Care needs

to be taken with these.

A Monte Carlo permutation test of the overall CCA results gave a significance of P

< 0.001 (Table 6.9) indicating that the observed relationship between satellite derived

environmental variables and ecological distance is not due to chance. For the ’environ-

mental variables’ CCA of the Araneae species assemblage, a Monte Carlo permutation

test of the relationships found that the first four CCA axes (P<0.001) were highly signif-

icant (Table 6.9), indicating that the axes of CCA significantly explain Araneae species

assemblages. The total variation in the Araneae species assemblages (total inertia) is

3.435 (Table 6.9). The first four CCA axes accounted respectively for a total of 30.1%

of the extracted variance in the species-environment relationship.

247



6. Evaluation of remotely sensed attributes of habitat as indicators of invertebrate
biodiversity.

Scientific name Family Code Total N Area A Area B Area C Area D
Agraecina striata Liocranidae Agr str 81 9.9 70.4 19.8 0
Agroeca proxima Liocranidae Agr pro 45 11.1 75.6 13.3 0
Agyneta ramosa Linyphiidae Agy ram 2 0 0 100 0
Agyneta subtilis Linyphiidae Agy sub 2 0 100 0 0
Antistea elegans Hahniidae Ant ele 2 0 50 0 50
Centromerus arcanus Linyphiidae Cen arc 94 26.6 44.7 28.7 0
Ceratinella brevis Linyphiidae Cer bre 7 0 57.1 42.9 0
Clubiona trivialis Clubionidae Clu tri 3 66.7 0 33.3 0
Dicymbium nigrum Linyphiidae Dic nig 1 0 100 0 0
Dipoena prona* Theridiidae Dip pro 1 0 100 0 0
Drassodes cupreus Gnaphosidae Dra cup 12 50 50 0 0
Drassyllus lutetiana Gnaphosidae Dra lut 4 50 25 25 0
Episinus angulatus Theridiidae Epi ang 1 0 100 0 0
Erigone atra Linyphiidae Eri atr 1 100 0 0 0
Euophrys frontalis Salticidae Euo fron 8 87.5 0 12.5 0
Euryopus flavomaculatus Theridiidae Eur fla 32 93.8 6.2 0 0
Gongylidiellum vivum Linyphiidae Gon viv 4 50 50 0 0
Hahnia helveola Hahniidae Hah hel 1 0 100 0 0
Hahnia montana Hahniidae Hah mon 1 0 100 0 0
Hyposinga albovittata Araneidae Hyp alb 2 50 50 0 0
Jacksonella falconeri* Linyphiidae Jac fal 2 0 50 50 0
Lepthyphantes ericaeus Linyphiidae Lep eri 4 0 0 75 25
Lepthyphantes mengei Linyphiidae Lep men 2 0 0 100 0
Lepthyphantes pallidus Linyphiidae Lep pal 3 0 0 0 100
Lepthyphantes tenuis Linyphiidae Lep ten 18 0 27.8 38.9 33.3
Lepthyphantes zimmermanni Linyphiidae Lep zim 5 0 0 40 60
Linyphia triangularis Linyphiidae Lin tri 6 16.7 50 33.3 0
Lophomma punctatum Linyphiidae Lop pun 9 0 0 22.2 77.8
Marpissa nivoyi Salticidae Mar niv 1 0 0 100 0
Maso gallicus Linyphiidae Mas gal 1 100 0 0 0
Maso sundevalli Linyphiidae Mas sun 2 0 100 0 0
Metellina segmentata Tetragnathidae Met seg 1 0 0 100 0
Metopobactrus prominulus Linyphiidae Met pro 1 100 0 0 0
Micrargus herbigradus Linyphiidae Mic her 2 0 50 50 0
Neon reticulatus Salticidae Neo ret 21 76.2 23.8 0 0
Neottiura bimaculata Theridiidae Neo bim 2 0 100 0 0
Oedothorax gibbosus Linyphiidae Oed gib 28 0 7.1 67.9 25
Ozyptila trux 1 amb Thomisidae Ozy tru 37 24.3 73 2.7 0
Pachygnatha clercki Tetragnathidae Pac cle 15 0 0 6.7 93.3
Pachygnatha degeeri Tetragnathidae Pac deg 2 50 0 0 50
Pardosa nigriceps Lycosidae Par nig 19 0 89.5 10.5 0
Pardosa pullata Lycosidae Par pul 148 36.4 62.2 1.4 0
Pirata hygrophilus Lycosidae Pir hyg 426 29.8 36.4 33.1 0.7
Pirata latitans Lycosidae Pir lat 1 0 0 100 0
Pirata piraticus Lycosidae Pir pir 4 50 25 25 0
Pirata piscatorius Lycosidae Pir pis 16 0 0 100 0
Pirata uliginosus Lycosidae Pir ulg 140 17.1 73.9 9 0
Pocadicnemis pumilla Linyphiidae Poc pum 172 20.9 61.6 16.9 0.6
Robertus arundineti Theridiidae Rob aru 4 100 0 0 0
Robertus lividus Theridiidae Rob liv 7 14.2 42.9 42.9 0
Saaristoa abnormis Linyphiidae Saa abn 2 0 0 0 100
Scotina gracilipes Liocranidae Sco gra 1 100 0 0 0
Taranucnus setosus Linyphiidae Tar set 6 16.7 0 16.7 66.6
Theonoe minutissima Theridiidae The min 5 0 0 100 0
Trichopterna thorelli Linyphiidae Tri tho 8 100 0 0 0
Trochosa terricola Lycosidae Tro ter 199 36.1 54.3 9.6 0
Walckenaeria acuminata Linyphiidae Wal acu 3 0 33.3 0 66.7
Walckenaeria alticeps Linyphiidae Wal alt 72 29.2 41.6 29.2 0
Walckenaeria atrotibialis Linyphiidae Wal atr 35 11.4 62.9 25.7 0
Walckenaeria nudipalpis Linyphiidae Wal nud 12 33.3 50 16.7 0
Walckenaeria unicornis Linyphiidae Wal uni 1 0 0 100 0
Walckenaeria vigilax Linyphiidae Wal vig 2 50 0 50 0
Zelotes latreillei Gnaphosidae Zel lat 36 30.6 36.1 33.3 0
Zora spinimana Zoridae Zor spi 4 25 75 0 0
Mean N 49 86.7 37.9 5.5
Mean S 14.6 16.7 12.4 3.9
Simpson diversity 0.91 0.92 0.89 0.67
Shannon-Weaver 2.55 2.66 2.35 1.23
Pielou’s evenness 0.96 0.95 0.95 0.99

Table 6.8: Numbers of Araneae individuals (N) and their distribution by
percentage across the 4 habitat areas. Mean number of individuals (Mean
N) and species (Mean S) per pitfall trap, respectively, and Simpson diversity
for each habitat zone are additionally included at the bottom.
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Canonical Correspondance Analysis - Araneae count data
Model
cca(formula = Araneae ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
peakpreDiffNDVIAvg + peakNDVIStd + peakNDVIAvg, data =AranVariables)
Mean squared contingency coefficient Inertia Proportion

Total 3.435 1.000
Constrained 1 0.349

Unconstrained 2.236 0.6507
Significance of all canonical axis

F-ratio 2.080
P value 0.001

Axis 1 Axis 2 Axis 3 Axis 4
Significance of each canonical axis

F-ratio 8.4408 2.4921 1.8359 1.5719
P value 0.001 0.001 0.001 0.001

Eigenvalues 0.609 0.180 0.132 0.113
Cumulative % variance of species 17.7 22.9 26.8 30.1
Speciesenvironmental correlations 0.959 0.911 0.865 0.864

Environmental axes weighted correlations
Cal vul 0.237 0.014 0.843 0.243
Eri ang 0.241 -0.255 0.205 0.321
Mol cae -0.947 0.270 0.084 0.143
Sph cus 0.047 -0.334 -0.767 -0.062
Sph pul 0.198 0.600 -0.405 -0.627
peakpreDiffNDVIAvg 0.927 0.360 -0.055 -0.090
peakNDVIStd -0.007 -0.288 0.101 0.220
peakNDVIAvg -0.873 -0.276 0.294 0.080

Species scores (Codes & Area (≥50% occurance)) Axis 1 Axis 2 Axis 3 Axis 4
Eri atr A 0.700 1.014 -0.787 1.560
Sco gra A 0.700 1.014 -0.787 -0.291
Tri tho A 0.441 0.932 -0.703 -0.170
Mas gal A 0.433 1.547 -0.800 -0.454
Rob aru A 0.429 1.170 -0.668 0.958
Eur fla A 0.403 1.007 -0.522 0.027
Clu tri A 0.385 0.422 -0.839 0.241
Neo ret A 0.384 0.817 -0.403 -0.761
Par pul B 0.318 0.343 0.208 1.267
Ozy tru B 0.295 0.197 0.389 -3.054
Epi ang B 0.294 -0.050 0.922 -1.309
Hah hel B 0.294 -0.050 0.922 -0.504
Lin tri B 0.274 -0.174 -0.315 -0.434
Pir ulg B 0.267 -0.002 0.384 -0.210
Dic nig B 0.265 0.202 0.261 0.854
Tro ter B 0.264 0.253 -0.003 -0.438
Wal nun B 0.245 0.066 0.277 -0.668
Dip pro B 0.217 -0.324 0.903 2.115
Agy sub B 0.215 -0.239 1.018 2.115
Hah mon B 0.213 -0.153 1.133 0.172
Mas sun B 0.213 -0.153 1.133 -0.090
Par nig B 0.206 -0.263 0.765 -0.022
Agr pro B 0.200 -0.198 0.520 0.195
Agr str B 0.187 -0.233 0.283 0.113
Poc pum B 0.166 -0.030 0.126 0.048
Neo bim B 0.145 -0.491 0.902 0.211
Pir lat C -0.056 -1.183 -1.037 -0.591
The min C -0.087 -1.276 -1.186 0.238
Lep men C -0.098 -1.282 -1.098 0.313
Pir pis C -0.185 -1.408 -1.064 -0.442
Agy ram C -0.252 -1.472 -1.096 -0.039
Mar niv C -0.261 -1.624 -0.768 0.094
Wal uni C -0.448 -1.761 -1.154 0.289
Lep zim D -2.802 -0.036 -0.198 -2.340
Wal acu D -2.968 -0.405 1.037 -0.057
Tar set D -3.347 1.758 -0.585 -0.992
Lop pun D -3.657 -0.491 0.380 1.629
Pac cle D -4.312 0.577 0.346 -1.082
Saa abn D -4.570 -1.158 1.342 0.228
Lep pal D -4.677 2.162 -0.182 -0.180

Table 6.9: CCA table of results for Aranaea
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The first axis (CCA1) accounting for 17.7% (eigenvalue = 0.609) of Araneae variation

of species assemblages was positively correlated with peakpreDiffNDVI and negatively

correlated with Molinia caerulea. This negative and positive correlation combination is

not surprising as Molinia caerulea, although very green and lush with very high NDVI

figures in summer, will have complete coverage of dead litter when it dies back in winter

thereby giving a very significant peakpreDiffNDVI reading for dead litter. The correlations

are synonymous with the low individual numbers caught (mean=5.5, (Table 6.8)) and low

numbers of species caught (mean=3.9, (Table 6.8)) in Molinia caerulea in comparison to

the other 3 areas. The species scores show very low negative values for axis 1 for species

which have been recorded within the Molinia dominated areas (area D). Species with

high scores where there is a correlation with peakpreDiffNDVI were Scotina gracilipes,

Maso gallicus and Europys flavomaculata which are associated with raised bog, mosses

and low vegetation (Harvey et al., 2002).

Also the species with the highest species scores (Table 6.9) and therefore the least

correlation with the Molinia area are those species which are found only in the central

dome area that does not contain any Molinia. The second axis explains 5.2% (eigenvalue

= 0.180) of Araneae variation of species assemblages. This axes was positively correlated

with Sphagnum pulchrum which is mostly found in the central dome area, area A.

Species scores are high for species (e.g. Scotina gracilipes) found in area A which are

more commonly associated with bog habitats, low vegetation and mosses (Harvey et al.,

2002). The third axis (eigenvalue =0.132) accounts for 3.9% of variation in species

assemblages of Araneae. Erigone atra has a very high species scores that correlates

with the variables associated with area A. This axes shows a positive correlation with

Calluna vulgaris. Species such as Pardosa nigriceps and Agroeca proxima were amongst

the highest positive species scores in this axes. These species are common on wet

heathland and moorland (areas where Calluna commonly grows) with preference for drier

low vegetation. These species were, as the analysis indicates found, mostly in area B

which is an area with the highest percentage of Calluna vulgaris coverage (Figure 6.23).
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Calluna tends to grow in drier areas either on raised hummocks in the central dome of

the acid bog or towards the edge of the dome where the surface is drier. This is also

the area with the highest mean individuals number (Mean N = 86.7) and mean species

diversity (Shannon-Weaver diversity=2.66) (Table 6.8).

The fourth axis (eigenvalue = 0.113) only explains about 3.3% of the Aranea species

composition and is less significant although this shows an inverse correlation with Sphag-

num pulchrum.

The species scores show the direction of higher abundance of a particular species. Segre-

gation/sorting of species scores from high to low scores in the first axes has produced a

grouping of species into their respective suitable habitat areas (Table 6.9) showing that

these species are mainly specific to certain areas and relationships with vegetation and

biophysical parameters in the form of indices are present, with the exception of a few

species found in equal numbers throughout more than one area.
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(a)

(b)

Figure 6.23: Araneae CCA plot 1 and 2. Ordination biplots depicting a)
the first two axes of the environmental Canonical Correspondence Analysis
of the species assemblages and b) the third and fourth axes. Environmental
variables are represented by lines and their acronyms, and species locations
by their code, as indicated in Table 6.8.
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The species environment biplots illustrate some distinct differences in the distribution of

species (Figure 6.23). Taranucnus setosus typically associated with lowland bogs and

known to exploit areas with Phragmites australis and Lepthyphantes pallidus which is

common to grassland and known to frequent litter were found mainly in area D (an

area where Molinia and Phragmites dominate). The direction of ordination arrows and

their repective length indicate that variables Mol.cae (Molinia caerulea) and peakNDVI

(high summer productivity) are closely correlated with these particular species. The

species found mostly within the sphagnum central dome area (e.g. Maso gallicus (Na-

tionally scarce) and Robertus arundinetti) are as indicated within the ordination strongly

associated with variables of Sphagnum pulchrum (Figure 6.23).

Variable F Pr(>F)

Cal vul 1.526 0.001 ***
Eri ang 0.793 0.076 .
Mol cae 4.231 0.001 ***
Sph cus 0.739 0.141
Sph pul 1.521 0.002 **
peakpreDiffNDVIAvg 2.065 0.001 ***
peakNDVIStd 0.629 0.421
peakNDVIAvg 0.394 0.978

Table 6.10: Monte Carlo permutation test of variables in the Araneae CCA
analyis. Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (1000
permutations).

The Monte Carlo test of significance confirmed that there were significant associations

between the environmental variables Calluna vulgaris, Eriophorum angustifolium, Molinia

caerulea, Sphagnum pulchrum and peakpreDiffNDVI and the response variables (Araneae

species) (Table 6.10).

Coleoptera species assemblage associations

In total there were 49 Coleoptera species collected in pitfall traps across all areas sampled.

Of the 4 areas sampled area A, the central primary bog area, had the largest number of
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individuals caught (Table 6.11). Area A and area B had the greatest number of species

(mean = 5.5) with the same average number of species present (Table 6.11). Area C

had the lowest number of species possibly because of the lack of suitable pupation and

larvae conditions (very dry ridges with water filled ditches at the side).

Pielou’s evenness index values for Coleoptera in areas A and D were ≤0.71 indicating

that there were some dissimilarities in species numbers and types, however, Pielou’s

values for areas B and C show that traps sampled in each area had very similar numbers

of the same species (Table 6.11).

As with the Araneae, rare species or low numbers (e.g.less than = 5) of a particular

species were used within the analysis. There are only 13 species that account for those

where there are 5 or more recorded for the whole recording period. This leaves 36 species

that would be thrown out of the analysis if this procedure was used therefore this was not

practical. The Coleoptera community captured on Cors Fochno for this period consisted

mostly of species that were rarer or less frequent species.

A Monte Carlo permutation test of the overall CCA results gave a significance of P<0.001

(Table 6.12) indicating that for Coleoptera data the observed relationship between satel-

lite derived environmental variables and ecological distance is not due to chance. For

the ’environmental variables’ CCA of the Coleoptera species assemblage, a Monte Carlo

permutation test of the relationships found that the first three CCA axes (P<0.001)

were highly significant (Table 6.12), indicating that the axes of CCA significantly ex-

plain Coleoptera species assemblages. The total variation in the Coleoptera species

assemblages (total inertia) is 6.680 (Table 6.12). The first three CCA axes accounted

collectively for a total of 21.1% of the extracted variance in the species-environment

relationship.
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Scientific name Family Code Total N Area A Area B Area C Area D

Agathidium atrum Leiodidae Aga atr 5 40 40 20 0
Agabus bipustulatus Dytiscidae Aga bip 2 0 50 50 0
Agonum ericeti Carabidae Ago eri 54 100 0 0 0
Agonum fuliginosum Carabidae Ago ful 10 0 0 0 100
Agonum thoreyi Carabidae Ago tho 1 0 0 0 100
Anacaena globulus Hydrophilidae Ana glo 2 0 0 0 100
Anotylus rugosus Staphylinidae Ano rug 1 0 0 0 100
Atheta hypnorum Staphylinidae Ath hyp 1 0 0 0 100
Bolitobius castaneus Staphylinidae Bol cas 2 0 100 0 0
Bolitobius cingulatus Staphylinidae Bol cin 5 0 60 40 0
Brachygluta fossulata Staphylinidae Bra fos 1 0 0 100 0
Bradycellus ruficollis Carabidae Bra ruf 1 0 0 0 100
Carabus granulatus Carabidae Car gra 53 81.1 15 1.9 1.9
Carabus violaceus Carabidae Car vio 2 50 50 0 0
Catops morio Leiodidae Cat mor 3 0 33.3 33.3 33.3
Choleva lederiana Leiodidae Cho led 2 0 0 0 100
Cychrus caraboides Carabidae Cyc car 2 0 100 0 0
Cyphon hilaris Scirtidae Cyp hil 4 25 25 50 0
Cyphon kongsbergensis Scirtidae Cyp kon 226 99.1 0.9 0 0
Erichsonius cinerascens Staphylinidae Eri cin 1 0 100 0 0
Euconnus hirticollis Scydmaenidae Euc hir 1 100 0 0 0
Hydroporus melanarius Dytiscidae Hyd mel 3 0 33.3 33.3 33.3
Ischnosoma splendidum Staphylinidae Isc spl 3 33.3 66.7 0 0
Lesteva sicula Staphylinidae Les sic 14 0 0 0 100
Lochmaea suturalis Chrysomelidae Loc sut 5 0 40 60 0
Megasternum concinnum Hydrophilidae Meg con 1 100 0 0 0
Nicrophorus vespilloides Silphidae Nic ves 6 16.7 33.3 50 0
Ocypus brunnipes Staphylinidae Ocy bru 1 0 0 100 0
Olophrum fuscum Staphylinidae Olo fus 2 0 0 100 0
Olophrum piceum Staphylinidae Olo pic 153 2 20.3 9.2 68.6
Othius punctulatus Staphylinidae Oth pun 1 0 0 0 100
Othius subuliformis Staphylinidae Oth sub 2 0 0 50 50
Oxypoda procerula Staphylinidae Oxy pro 1 0 100 0 0
Philonthus laminatus Staphylinidae Phi lam 1 0 0 0 100
Platydracus stercorarius Staphylinidae Pla ste 15 0 100 0 0
Pselaphus heisei Staphylinidae Pse hei 1 0 0 100 0
Pterostichus diligens Carabidae Pte dil 20 85 0 15 0
Pterostichus rhaeticus Carabidae Pte rha 84 98.8 1.2 0 0
Quedius fuliginosus Staphylinidae Que ful 2 0 0 0 100
Quedius fumatus Staphylinidae Que fum 1 0 100 0 0
Quedius maurorufus Staphylinidae Que mau 10 0 0 0 100
Quedius molochinus Staphylinidae Que mol 1 0 0 0 100
Silpha atrata Silphidae Sil atr 15 0 26.7 53.3 20
Stenus geniculatus Staphylinidae Ste gen 2 0 100 0 0
Stenus impressus Staphylinidae Ste imp 2 0 0 0 100
Stenus lustrator Staphylinidae Ste lus 6 16.7 33.3 33.3 16.7
Stenus providus Staphylinidae Ste pro 1 0 0 0 100
Tachyporus dispar Staphylinidae Tac dis 2 0 50 50 0
Tachinus signatus Staphylinidae Tac sig 1 0 0 0 100

Mean N of individuals 43.3 8.9 4.9 16.4

Mean number of species 5.5 5.5 3.5 4.6

Simpson diversity 0.59 0.72 0.53 0.44

Shannon-Weaver 1.22 1.51 1.0 0.89

Pielou’s evenness 0.71 0.90 0.94 0.69

Table 6.11: Numbers of Coleoptera individuals (N) and their distribution
by percentage across the 4 habitat areas. Mean number of individuals (Mean
N) and species (Mean S) per pitfall trap, respectively, and Simpson diversity
for each habitat zone are additionally included at the bottom.
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Canonical Correspondance Analysis - Coleoptera count data
Model
cca(formula = Coleoptera ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
peakpreDiffNDVIAvg + peakNDVIStd + peakNDVIAvg, data =ColeVariables)
Mean squared contingency coefficient Inertia Proportion

Total 6.680 1.000
Constrained 1.951 0.292

Unconstrained 4.729 0.708
Significance of all canonical axis

F-ratio 1.599
P value 0.001

Axis 1 Axis 2 Axis 3
Significance of each canonical axis

F-ratio 5.198 2.444 1.602
P value 0.001 0.001 0.006

Eigenvalues 0.793 0.373 0.244
Cumulative % variance of species 11.9 17.5 21.1
Speciesenvironmental correlations 0.959 0.911 0.865
Environmental axes weighted correlations
Cal vul 0.007 -0.565 0.676
Eri ang -0.268 -0.639 -0.190
Mol cae 0.775 0.574 -0.012
Sph cus -0.459 -0.092 -0.406
Sph pul -0.889 0.409 -0.078
peakpreDiffNDVIAvg -0.912 -0.403 0.115
peakNDVIStd 0.262 -0.384 0.104
peakNDVIAvg 0.918 0.388 -0.036
Species scores (Codes & Area (≥50% occurance)) Axis 1 Axis 2 Axis 3
Bra.ruf D 1.665 0.960 -1.077
Cho.led D 1.616 0.957 -0.703
Ago.tho D 1.566 0.954 -0.329
Tac.sig D 1.566 0.954 -0.329
Ath.hyp D 1.556 1.053 -0.255
Phi.lam D 1.545 0.698 -0.353
Ste.pro D 1.545 0.698 -0.353
Ago.ful D 1.538 0.920 -0.638
Ana.glo D 1.499 0.761 -0.232
Que.mau D 1.463 0.820 -0.206
Ano.rug D 1.452 0.823 -0.112
Que.ful D 1.452 0.823 -0.112
Que.mol D 1.452 0.823 -0.112
Les.sic D 1.304 0.925 0.168
Oth.pun D 1.082 0.883 0.098
Olo.pic D 0.938 0.111 0.158
Sil.atr C 0.556 -1.044 -0.435
Que.fum B 0.431 -1.097 3.161
Bra.fos C 0.392 -1.599 -2.323
Olo.fus C 0.392 -1.599 -2.323
Pse.hei C 0.392 -1.599 -2.323
Oxy.pro B 0.373 -0.960 2.634
Ocy.bru C 0.369 -1.559 -1.820
Cyc.car B 0.365 -1.095 1.694
Eri.cin B 0.358 -1.718 -1.968
Ste.imp D 0.320 -0.818 -0.321
Pla.ste B 0.312 -1.343 0.967
Bol.cing B 0.308 -1.347 -0.099
Bol.cas B 0.279 -1.159 2.022
Ste.gen B 0.274 -1.334 1.045
Loc.sut C 0.234 -1.550 -1.004
Nic.ves C 0.111 -0.947 -0.136
Euc.hir A -0.079 -1.555 0.305
Isc.spl B -0.118 -0.591 1.280
Cyp.hil C -0.149 -0.890 -0.967
Car.gra A -0.642 0.024 0.143
Cyp.kon A -0.786 -0.042 -0.100
Pte.dil A -0.816 0.281 -0.136
Ago.eri A -0.989 0.389 -0.056
Pte.rha A -1.008 0.461 0.026
Meg.con A -1.334 1.009 -0.269

Table 6.12: Coleoptera CCA Results
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The first axis (CCA1) accounting for 11.9% (eigenvalue = 0.793)(Table 6.12) of Coleoptera

variation of species assemblages was positively correlated with peakNDVI and Molinia

caerulea and negatively correlated with peakpreDiffNDVI and Sphagnum pulchrum. As

with the Araneae distributions there is again separation of species into areas by sorting

species scores in the first axis from high to low scores (Table 6.12). This indicates that

many of the species in table 6.11 are more specific to certain areas. Species scores for

species such as Agonum ericeti in the first axis shows an association with Sphagnum

pulchrum. Species such as Lesteva sicicula known to frequent damp areas in reeds were

associated with Area D only and had high positive species scores in this axes.

The second axis explains 5.6% (eigenvalue = 0.373)(Table 6.12) of Coleoptera variation

of species assemblages. This axes was also positively correlated with Molinia caerulea

but negatively correlated with Eriophorum angustifolium. Those species collected from

area D also showed the larger positive species scores in this axis and had a propensity

to be associated with drier conditions (Bradycellus rificollis), or wet soil in dense vege-

tation (Agonum thereyi), or deep litter (Lesteva sicula). Those with the smallest values

(negative scores) were therefore correlating positively with the presence of Eriophorum

angustifolium. These species are mainly from areas B and C where Eriophorum angus-

tifolium is found in abundance in areas B and C with less in area A and none present in

area D.

The third axis (eigenvalue =0.244) accounts for 3.6% of variation in species assemblages

of Coleoptera (Table 6.12). This axis shows a positive correlation with Calluna vulgaris.

The highest percentage coverage of Calluna vulgaris is found in area B (Table 6.12)

which is the drier edge of the central dome. The species with the higher species scores

in the third axis such as Cychrus caraboides and Bolitobius castaneus are found within

area B which has the largest concentration of Calluna vulgaris both preferring drier more

heath like conditions (Harvey et al., 2002).
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(a)

(b)

Figure 6.24: Coleoptera CCA plot 1 and 2. Ordination biplots depicting a)
the first two axes of the ’environmental’ Canonical Correspondence Analysis
of the species assemblages and b) the third and fourth axes. Environmental
variables are represented by lines and their acronyms, and species locations
by their code, as indicated in Table 6.11
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The species-environment biplots (Figure 6.24) show distributions of species and environ-

mental variables, indicating continuous changes in and along ecological gradients. These

plots illustrated distinct differences in the distribution of species. Strong associations can

be seen with Lesteva sicula and Agonum fuliginosum (Figure 6.24) being found mainly in

areas of Molinia for which the direction of ordination arrows, and their respective length,

indicate variables Mol.cae (Molinia caerulea) and peakNDVI (high summer productivity)

are closely correlated with those species. Other visible strong associations can be seen

with species such as Agonum ericeti (a species of primary bog and particular to areas of

Sphagnum) and the Sphagnum pulchrum (Figure 6.24).

Interestingly Sphagnum cuspidatum and prepeakDiffNDVI are pointing in the same di-

rection. This is to be expected as the prepeakDfffNDVI is indicating little change in

vegetation productivity or greenness between winter and summer. This can be seen with

the seasonal growth patterns of Sphagnum cuspidatum which shows very little difference

in greenness between summer and winter periods (Figure 4.2)

Variable F Pr(>F)

Cal vul 1.617 0.033 *
Eri ang 1.757 0.029 *
Mol cae 3.547 0.001 ***
Sph cus 0.479 0.977
Sph pul 2.648 0.002 **
peakpreDiffNDVIAvg 0.926 0.501
peakNDVIStd 1.127 0.281
peakNDVIAvg 0.686 0.890

Table 6.13: Monte Carlo permutation test of variables in the Coleoptera
CCA analyis. Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(1000 permutations).

Monte Carlo test of significance confirmed that there were significant associations be-

tween the environmental variables Calluna vulgaris, Molinia caerulea, Sphagnum pul-

chrum and peakpreDiffNDVI and Coleoptera communities as the response variable (Ta-

ble 6.13).
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Comparison of satellite and ground data for Araneae and Coleoptera data.

Canonical Correspondance Analysis - Count data

Model
cca(formula = CountData ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
peakpreDiffNDVIAvg + peakNDVIStd + peakNDVIAvg, data =CountVariables)
Araneae Satellite derived data Ground data
Mean squared contingency coefficient Inertia Proportion Inertia Proportion

Total 3.435 1.000 3.435 1.000
Constrained 1.086 0.316 0.994 0.289

Unconstrained 2.349 0.684 2.441 0.711
Significance of all canonical axis

F-ratio 3.145 2.769
P value 0.001 0.001

Axis 1 Axis 2 Axis 1 Axis 2
Significance of each canonical axis

F-ratio 8.974 2.357 8.015 2.424
P value 0.001 0.001 0.001 0.001

Eigenvalues 0.620 0.163 0.576 0.174
Cumulative % variance of species 18.1 22.8 16.8 21.8
Speciesenvironmental correlations 0.965 0.833 0.932 0.866

Environmental axes weighted correlations
Cal vul 0.223 -0.385 -0.515 0.183
Eri ang 0.239 -0.123 -0.430 0.474
Mol cae -0.937 0.219 0.818 0.538
Phr aus -0.950 -0.323 0.893 -0.390
Sph pul 0.1840 0.109 -0.188 -0.063
Coleoptera Satellite derived data Ground data
Mean squared contingency coefficient Inertia Proportion Inertia Proportion

Total 6.680 1.000 6.680 1.000
Constrained 1.603 0.240 1.393 0.209

Unconstrained 5.077 0.769 5.287 0.791
Significance of all canonical axis

F-ratio 2.147 1.792
P value 0.001 0.001

Axis 1 Axis 2 Axis 1 Axis 2
Significance of each canonical axis

F-ratio 5.177 2.651 4.75 1.913
P value 0.001 0.001 0.001 0.001

Eigenvalues 0.773 0.396 0.739 0.297
Cumulative % variance of species 11.6 17.5 11.1 15.5
Speciesenvironmental correlations 0.956 0.880 0.942 0.804

Environmental axes weighted correlations
Cal vul 0.003 -0.554 -0.470 -0.822
Eri ang -0.280 -0.592 -0.756 -0.321
Mol cae 0.795 0.530 0.918 0.358
Phr aus 0.794 0.538 0.808 0.491
Sph pul -0.896 0.4211 -0.789 0.491

Table 6.14: Satellite Ground comparisons CCA Results using only main
dominant species within area sampled. (Note: Satellite sampling covers a
10x10m area and the ground data is only 2×2m which will account for some
differences).
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6.3.5 Comparion of analysis with satellite data and analysis with

ground data

(a)

(b)

Figure 6.25: Comparison of CCA of using just dominant species used as
variables and the CCA of species recorded from ground data. a) Aranae, b)
Coleoptera (Note some differences may be due to area recorded- Sat covers a
10×10m and the ground data is 2×2m). *note there is also more separation
of species in satellite data CCA
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Satellite data Ground data
Araneae
Variable F Pr(>F) F Pr(>F)
Cal vul 2.2122 0.001 *** 3.3126 0.001 ***
Eri ang 1.2962 0.008 ** 2.1510 0.003 **
Mol cae 7.2814 0.001 *** 4.8612 0.001 ***
Phr aus 2.8822 0.001 *** 2.4522 0.002 **
Sph pul 2.0512 0.002 ** 1.0666 0.063 .
Coleoptera
Variable F Pr(>F) F Pr(>F)
Cal vul 1.6525 0.045 * 2.3707 0.007 **
Eri ang 1.7947 0.028 * 2.2103 0.009 **
Mol cae 3.6240 0.001 *** 2.4681 0.004 **
Phr aus 1.1209 0.338 0.6515 0.865
Sph pul 2.5447 0.002 ** 1.2590 0.137

Table 6.15: Monte Carlo permutation test of variables in the Satellite and
Ground data CCA comparison analyses. Signif. codes: 0 ’***’ 0.001 ’**’
0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (1000 permutations).

For each order both the satellite and ground data show very similar results in the first

axis (Figure 6.25). Comparisons of the Monte Carlo permutation tests (Table 6.15)

show that ground and satellite variables produce slightly different results, with certain

species being more significant in one method than the other. Some of this variation may

possibly be due to the fact that this is a comparison of 2×2m ground sampling area

with 10×10m satellite derived data sampling area. This can therefore only be used as a

rough indication of similarity. Ground sampling larger areas that are the same coverage

as the 10×10m areas sampled from satellite data would be ideal but initial testing with

quadrats of this size threw up two issues;

1) Trampling sensitive vegetation areas was forbidden on the central dome areas by the

Reserve Manager

2) When an individual records a percentage cover of vegetation for a larger area it is

more difficult to be accurate with % coverage estimates. Had the same size quadrats

been sampled on the ground as those used to produce the satellite species data (i.e. both

10×10m) then the Monte Carlo permutation test could have been used to signify an over

or under representation of a species in satellite classification data. For example these

results (Table 6.15) could suggest an over estimation of Sphagnum pulchrum.
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Diptera sub-order associations

Three Diptera suborders were recorded from the four areas, Brachycera, Cyclorrhapha

and Nematocera. Of the four areas, area D had the largest number and biomass of

diptera species (Table 6.16). The average trap catch for area D was nearly twice the

biomass of area A (Table 6.16). This was demonstrated to be of significance (P=0.0349).

The larger numbers and biomass being in the orders Cyclorrhapha and Nematocera whilst

Area A contains the largest number and biomass of Brachycera (Table 6.16). Both

biomass and numbers of sub-orders gave similar percentage distribution information

across the 4 habitat areas (Table 6.16).

Order
Trap
height (cm)

Code Total N
Total
Biomass (mg)

Area A Area B Area C Area D

Nematocera 20 Nem 20 1274 7620.96 32.4 (36.6) 35.5 (31.0) 29.0 (26.6) 3.1 (5.8)
50 Nem 50 1087 8164.92 22.2 (22.5) 21.6 (21.7) 23.7 (23.6) 32.59 (32.1)

100 Nem 100 963 7651.72 13.5 (16.1) 16.6 (19.5) 16.9 (20.8) 53.0 (43.5)
150 Nem 150 723 5697.43 14.7 (18.1) 14.5 (16.4) 23.0 (27.7) 47.7 (37.8)

Total
Nematocera

Total Nem Total 4047 29135.03 22.0 (23.7) 23.5 (22.5) 23.6 (24.5) 30.8 (29.3)

Cyclorrhapha 20 Cyc 20 135 27996.95 20.5 (22.8) 35.3 (32.9) 30.6 (42.0) 13.6 (2.3)
50 Cyc 50 158 28457.06 13.9 (15.7) 24.5 (22.6) 33.3 (34.5) 28.3 (27.3)

100 Cyc 100 144 27443.04 7.9 (9.4) 10.9 (12.9) 22.6 (19.0) 58.7 (58.7)
150 Cyc 150 131 19104.63 7.1 (3.8) 8.4 (5.7) 21.1 (24.0) 63.4 (66.5)

Total
Cyclorrhapha

Total Cyc Total 568 103001.68 12.4 (13.8) 19.9 (19.7) 27.2 (30.5) 40.6 (36.1)

Brachycera 20 Bra 20 72 4932.97 96.3 (96.7) 3.2 (3.2) 0.5 (0.0) 0.0 (0.0)
50 Bra 50 4 195.46 61.5 (93.4) 0.0 (0.0) 0.0 (0.0) 38.5 (6.6)

100 Bra 100 4 55.73 0.0 (0.0) 0.0 (0.0) 25.0 (37.2) 75.0 (62.8)
150 Bra 150 2 26.63 0.0 (0.0) 0.0 (0.0) 14.3 (25.9) 85.7 (74.1)

Total
Brachycera

Total Bra Total 83 5210.78 87.1 (95.1) 2.8 (3.1) 2.0 (0.6) 8.0 (1.3)

Diptera 20 Dipt 20 1481 40551 34 (34.4) 33.9 (28.9) 28 (34.0) 3.9 (2.7)
50 Dipt 50 1249 36817 21 (17.6) 21.9 (22.3) 25 (31.9) 32.0 (28.2)

100 Dipt 100 1111 35150 13 (10.9) 15.8 (14.3) 18 (19.4) 53.9 (55.4)
150 Dipt 150 857 24829 14 (7.1) 13.5 (8.2) 23 (24.9) 50.2 (59.9)

Total
Diptera

Total Dipt Total 4698 137347.50 22.0 (18.9) 22.7 (19.6) 23.7 (28.0) 31.6 (33.4)

Mean N
of individuals

258 267 278 371

Mean
Biomass (mg)

6489.67 6730.03 9614.32 11468.52

Table 6.16: Total number of Diptera individuals (N) and their distribution
by percentage across the 4 habitat areas averaged from 3 sampling periods.
Figures in brackets() are biomass distribution by percentage. Mean number
of individuals (Mean N) and biomass (Mean Biomass) are per complete aerial
trap, respectively.
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Percentage distribution varied according to trap height and showed that most diptera

were trapped at the height that the vegetation was as opposed to being trapped at a

height above the vegetation (Table 6.16). It could be assumed they were using the area

immediate to the surface of the vegetation to fly in. This is useful in interpreting the

data as this could indicate that everything found at the height of the vegetation in the

lower vegetation areas such as the central dome was more or less endemic to that area

and not an individual that may have blown across the habitats from elsewhere.

An ANOVA of overall Diptera count (Table 6.17) showed that there were significant

differences between areas and Figure 6.26 showed the main difference to be larger num-

bers of Diptera being trapped in area D. Graphs (Figure 6.26) also showed suborders

Cyclorrhapha and Brachycera to have the largest variation between areas.

Figure 6.26: Mean Diptera count and Diptera sub-order count

A Generalised Linear Model (GLM) of each suborder showed only the Brachycera sub-

order to have any significant correlations with satellite derived data. A glm showed

a significant positive correlation with Molinia caerulea (P=0.000491) and a significant

very high inverse correlation with the peakpreNDVI indices (P=0.000213). The other

suborders Cyclorrhapha and Nematocera did not show any significant correlations with
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the derived satellite data.

Measure df SS MS F p

Count 3 33012 11004 8.51 0.00267 **
Biomass 3 68116204 22705401 3.987 0.0349 *

Table 6.17: An ANOVA of Diptera count and Diptera biomass of each trap
for Areas A, B, C and D. Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’
0.1 ’ ’ 1 (1000 permutations).

6.3.6 Single species Agonum ericeti association

This section investigates the relationships between Agonum ericeti and the satellite

derived variables. This species has known associations in ecological literature. This

information is therefore useful along with the ground data model produced in this chapter

as confirmation of the satellite derived variable associations.

All 4 models showed a positive correlation with Sphagnum pulchrum and gave the most

significant result with Model 3 (P=0.0002) using only satellite derived species coverage.

Model 4 used only species ground data and showed a significant positive correlation

to Sphagnum pulchrum (P=0.0056) and a negative correlation with Molinia caerulea

(P=0.0431). In concurrence with these results, Drees et al. (2007) studied the rela-

tionship of the abundance of this species on peat bogs in north-west Germany in order

to investigate the relationship of Agonum ericeti abundance with habitat quality. Their

analysis revealed that the cover of sphagnum species was positively related to trapping

numbers of Agonum ericeti, whilst an increasing cover of grass led to a decrease in

their numbers. As mentioned previously comparisons of ground data models should be

regarded with care due to different size sampling areas.
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a) Brachycera count data + satellite data
Model 1
glm(formula = Brachycera count ∼ Cal.vul + Eri.ang + Mol.cae + Sph.cus +
Sph.pul + peakpreDiffNDVI + peakNDVIStd + peakNDVI,
family = poisson, data = Diptera)
Variable Estimate Std. Error t value Pr(> |z|)
(Intercept) -25.3556 12.3135 -2.059 0.039478 *
Cal vul -5.0534 1.8126 -2.788 0.005304 **
Eri ang -0.4594 1.8507 -0.248 0.803972
Mol cae 9.1664 2.6296 3.486 0.000491 ***
Sph cus 1.9039 1.5250 1.249 0.211845
Sph pul 1.6611 1.5066 1.102 0.270250
peakNDVI 58.5138 24.0346 2.435 0.014910 *
peakNDVIStd -49.9219 81.1665 -0.615 0.538518
peakpreDiffNDVI -55.2348 14.9172 -3.703 0.000213 ***

b) Cyclorrhapha count data + satellite data
Model 2
glm(formula = Cyclorrhapha count ∼ Cal.vul + Eri.ang + Mol.cae + Sph.cus +
Sph.pul + peakpreDiffNDVI + peakNDVIStd + peakNDVI,
family = poisson, data = Diptera)
Variable Estimate Std. Error z value Pr(> |z|)
(Intercept) 3.55608 2.65804 1.338 0.1809
Cal vul 0.08783 0.57863 0.152 0.8793
Eri ang -0.39604 0.40731 -0.972 0.3309
Mol cae 0.40043 0.47739 0.839 0.4016
Sph cus 0.60752 0.39999 1.519 0.1288
Sph pul -0.79123 0.42502 -1.862 0.0627 .
peakNDVI -0.87394 5.32553 -0.164 0.8696
peakNDVIStd 11.24729 9.50126 1.184 0.2365
peakpreDiffNDVI 1.32294 3.53151 0.375 0.7080

c) Nematocera sub-order count data + satellite data
Model 3 - reduced
glm(formula = Nematocera count ∼ Cal.vul + Eri.ang + Mol.cae + Sph.cus +
Sph.pul + peakpreDiffNDVI + peakNDVIStd + peakNDVI,
family = poisson, data = Diptera)
Variable Estimate Std. Error z value Pr(> |z|)
(Intercept) 5.900261 1.007668 5.855 4.76e-09 ***
Cal vul -0.008409 0.188762 -0.045 0.9645
Eri ang -0.143472 0.146018 -0.983 0.3258
Mol cae -0.213489 0.194426 -1.098 0.2722
Sph cus -0.260489 0.142866 -1.823 0.0683 .
Sph pul 0.082954 0.146258 0.567 0.5706
peakNDVI -1.205461 1.975814 -0.610 0.5418
peakNDVIStd 3.902202 3.425632 1.139 0.2547
peakpreDiffNDVI 1.815639 1.254949 1.447 0.1480

Table 6.18: Generalized Linear Model results for Diptera suborders a)
Brachycera, b) Cyclorrhapha, c) Nematocera. (Signif. codes: 0 ’***’ 0.001
’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1)
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a) Species count data + satellite data
Model 1
bayesglm(formula = Ago.eriCount ∼ Cal.vul + Eri.ang + Mol.cae + Sph.cus + Sph.pul +
peakpreDiffNDVI + peakNDVIStd + peakNDVI, family = quasipoisson, data = GLM)
Variable Estimate Std. Error t value Pr(> |t|)
(Intercept) -0.88435 1.33335 -0.663 0.51207
Cal vul -0.18131 0.77924 -0.233 0.81754
Eri ang -0.01495 0.73392 -0.020 0.98388
Mol cae -0.17008 0.42325 -0.402 0.69057
Sph cus 0.84115 0.82916 1.014 0.31821
Sph pul 1.97091 0.56145 3.510 0.00139 **
peakpreDiffNDVI -1.32029 1.12182 -1.177 0.24819
peakNDVIStd -3.66140 25.73079 -0.142 0.88777
peakNDVI -2.33994 2.05798 -1.137 0.26425
b) Species presence/absence data + satellite data
Model 2
bayesglm(formula = Ago.eriPA ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
peakpreDiffNDVI + peakNDVIStd + peakNDVI, family = binomial, data = GLM)
Variable Estimate Std. Error z value Pr(> |z|)
(Intercept) 3.33261 7.78998 0.428 0.669
Cal vul -1.59338 3.67786 -0.433 0.665
Eri ang -0.34138 3.87276 -0.088 0.930
Mol cae -0.23475 2.58434 -0.091 0.928
Sph cus 0.06657 4.04160 0.016 0.987
Sph pul 8.87986 3.16364 2.807 0.005 **
peakpreDiffNDVI -4.37454 6.84547 -0.639 0.523
peakNDVIStd -54.43953 139.60775 -0.390 0.697
peakNDVI -7.20489 12.49943 -0.576 0.564
c) Species presence/absence data + satellite data
Model 3 - reduced
bayesglm(formula = Ago.eriPA ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
, family = binomial, data = GLM)
Variable Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.93556 1.58946 -1.847 0.064763 .
Cal vul -1.11311 3.57261 -0.312 0.755369
Eri ang -0.18674 3.39696 -0.055 0.956161
Mol cae -1.19836 2.12329 -0.564 0.572489
Sph cus 0.09431 3.87557 0.024 0.980585
Sph pul 10.42923 2.85756 3.650 0.000263 ***
d) Species presence/absence data + ground data
Model 4
bayesglm(formula = Ago.eriPA ∼ Cal.vul + Eri.ang +Mol.cae+ Sph.cus+ Sph.pul+
, family = binomial, data = GLM)
Variable Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.6744 2.2642 -0.298 0.7658
Cal vul -2.3696 3.7341 -0.635 0.5257
Eri ang -4.6057 12.0743 -0.381 0.7029
Mol cae -4.0992 2.0268 -2.023 0.0431 *
Sph cus -7.1258 19.7879 -0.360 0.7188
Sph pul 11.2425 4.0581 2.770 0.0056 **

Table 6.19: Bayesian Generalized Linear Model results for Agonum ericeti
using a) species count as the response variable and satellites derived data
which includes species and indices data, b) species presence/absence data
as the response variable and satellites derived data which includes species
and indices data, c) species presence/absence data as the response variable
and satellites derived data which contains species data only, d) species pres-
ence/absence data as the response variable and ground data which contains
species data only. (Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’
1 )
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Evaluation of models

Model type Response variable df AIC Fischer Dispersion Residual Raw Adjusted cv estimate
type score deviance cv estimate cv estimate difference

Satellite data with indices
(1) bayesglm (Quasipoisson) Count 31 NA 28 0.2434 7.8889 0.0645 0.0641 0.0004
(2) bayesglm (Binomial) Presence Absence 31 21.607 8 1 3.607 0.0000 0.0000 0.0000

Satellite data without indices
(3) bayesglm (Binomial) Presence Absence 34 16.261 7 1 4.261 0.0250 0.0125 0.0125

Ground data
(4) bayesglm (Binomial) Presence Absence 34 23.171 7 1 11.171 0.1000 0.0938 0.0063

Table 6.20: Evaluation of all models showing AIC and K-fold cross valida-
tion values.

The results of the cross validation estimates for this method show slightly different results

in terms of model efficiency (Table 6.20). However, if one cannot compare AIC values

for all models, then it may be best to use these. Cross-validation was carried out with

a ’leave one out cross validation’(LO) method. The best outcome here was Model 2

which gave delta values of 0.00 for the raw cross-validation estimate of prediction error

and 0.00 for the adjusted cross-validation estimate (Table 6.20).

These results show the best model to be Model 2. This model is that which includes not

only the satellite derived species variables, but also the indices relating to the vegetation

productivity, seasonality and heterogeneity. However, the indices in this model do not

show any significant correlations with the distribution of Agonum ericeti (Table 6.19). In

Model 2 vegetation species and peakNDVIStd (surrogate for species diversity) influence

Agonum ericitum positively, while peak NDVI and prepeakDiffNDVI have a negative

effect. The coefficient of Sphagnum pulchrum is highly significant (p<0.001), while the

coefficients of the other variables are not significant (p>0.05) (Table 6.19)

Habitat Suitability Maps were produced for each of the 3 binomial models produced

(Figure 6.27). These illustrate the differences in models produced using satellite data

for the original bayesGLM analysis or ground data for the original analysis.
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a)

b)

c)

Figure 6.27: Habitat Suitability Model for Agonum ericeti using bayesglm
binomial model with presence absence data. (Probability 0 to 1) a) using
satellite data with indices, b) using satellite data without indices, c) using
ground data.
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All models show similar results with the highest probabilities being were Sphagnum

pulchrum is mapped. The main difference between the species only satellite HSM (Fig-

ure 6.27) and the species only ground data HSM (Figure 6.27) is the scale of the

probability. The HSM using the indices as well as derived species satellite data, however,

shows areas with a greater probability of occurance than with the other models. Areas

highlighted with a greater probability of occurance in this model (Figure 6.27) are also

areas with higher moisture levels. It is entirely possible that soil moisture is really what

is preferred habitat for this species, especially for pupation (Drees et al., 2007; De Vries

and Den Boer, 1990). Sphagnum may merely be an indicator of those conditions.

6.4 Discussion

This study has used both the satellite classification of the relevant dominant plant species

that demonstrate ecological gradients and satellite derived indices to attain variables that

can be used as indicators of some invertebrate distributions. Results for Araneae and

Coleoptera showed associations that correlate well with their ecological knowledge. The

results show that the derived satellite data has the required level of detail that could

prove useful as a tool to assess changes that demonstrate losses or gains in certain

invertebrate species distributions.

Associations were made between invertebrate species and dominant plant species as well

as the satellite derived indices that reflected the habitat and ecological gradients present.

Dominant species and the selection of indices proved suitable for reflecting the gradients

that define invertebrate associations either by the plants present or the environmental

factors/conditions that may effect invertebrate distributions.
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6.4.1 Representation of ecological gradients

Environmental factors influence the flora and fauna of a habitat. The relationship be-

tween plant species distribution and environmental factors has been studied by many

(Pellerin et al., 2009; Kleinebecker et al., 2007). Furthermore these very same environ-

mental factors can influence invertebrate distributions by affecting aspects such as egg

hatching, larval activity, pupation and food availability (Davies, 1988). Typical raised

bog habitats can be divided into areas that are descriptive of their environmental gradi-

ents (Wheeler and Proctor, 2000). This study has shown that satellite data can be used

to help determine these gradients and suitable species and biophysical properties derived

from the satellite data can be used to define them. The wettest regions form a system of

hummocks and hollows with Sphagnum pulchrum and Sphagnum cuspidatum found in

the floating or hollow areas (Figures 6.19 & 5.23, Area A). The hummock areas are the

drier patches within this wet area created by the the process of growth of Calluna, and

tussock forming plants such as Eriophorum. Where the water levels have sunk and the

bog is drier these small patches become a more continuous carpet of these hummock

communities (Figures 6.19 & 5.23, Area B) (Masing, 2013). As a result of damage

from peat cuttings, these peat layers can dry out and the wet peatland becomes almost

completely dominated by Molinia (Figures 6.19 & 5.23, Area D) (JNCC, 2011). Ground

data in this project shows that vegetation height changes from area A to area D, with

taller vegetation found in the drier or more degraded areas. The height and size of veg-

etation present depends on its specific relationship with both water and nutrient supply

(Bragazza et al., 2005). Increases in heights of the same species may be explained by an

increase in nutrient availability (Bragazza et al., 2005). Areas/subdivisions selected in

this chapter can therefore be recognised as gradients of moisture, gradients of degrada-

tion and eutrophic gradients from oligotrophic to mesotrophic conditions. Results from

mapping of dominant species and indices confirmed these ecological subdivisions previ-

ously recognised on Cors Fochno (Figure 6.3) as Annex1 areas. These plant species and
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subdivisions in this case show some associations with particular invertebrate distribution

and abundance.

Photographic records were useful to show seasonal differences in vegetation in subdi-

vision (Figure 6.17). A cluster analysis of ground data showed that these species, or

increases in the dominance of these species, were particular to the selected subdivisions.

A subdivision classification using indices also demonstrated that it was possible to seg-

regate the subdivisions by using indices, such as NDVI. The classification map of Annex

1 areas (Areas A to D) shows that some of the indices that were useful in creating

the classification were found to be useful as environmental variables (e.g. peakNDVI

(productivity) and PrePeakDiffNDVI (phenology)) in the invertebrate analysis. Indices

best for use in associations with invertebrate analysis may be the same as those used to

the discriminate plant species or habitat areas that the invertebrate species is associated

with.

It was important to use the PCA in selection of variables. Using a PCA to show rela-

tionships of variables and sample sites helped in the removal of many highly correlated

variables, and gave information that was useful in assuring that a reasonable balance of

variables showed associations with each subdivision/area. It also showed that the indices

were able to add a few extra indicator dimensions. Futher advantages of using indices

are that more subtle differences in the vegetation characteristics can be analysed; these

are useful in producing more accurate predictive maps with better spatial and temporal

capacity (Sillero et al., 2012; Lucas et al., 2012a; Turner et al., 2003c; Kerr and Ostro-

vsky, 2003a). However, due to their high co-linearity a large number of the indices were

discarded.
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6.4.2 Invertebrate species associations with satellite derived vari-

ables

The selection of suitable plant species for use as input as environmental variables in

analysis was effective. Results demonstrated that Araneae and Coleoptera assemblages

showed distribution subdivisions that mirrored the environmental subdivisions. These

appeared to be influenced by their environmental gradients.

Most invertebrate species with high species scores and showing positive associations

with Sphagnum pulchrum were known to be commonly associated with bog habitats

for both Coleoptera and Araneae. Araneae and Coleoptera species that are typical of

active primary bog and have previously been noted as ecological indicators of the health

of active bogs (Koivula, 2011; Rainio and Niemela, 2003; Allred, 1975). In the analysis

of associations these were shown to be associated with Sphagnum pulchrum the plant

indicator species for the central dome area A.

Aranea species associations

Araneae distribution depends on biotic and abiotic environmental factors reflected by

habitat type (Haase and Balkenhol, 2014). The Araneae results show that there are

at least four main dominant factors (peakpreDiffNDVI, Molinia caerulea, Sphagnum

pulchrum and Calluna vulgaris) which show relationships or influence on Araneae species

distributions. They also show that there is potential for their use in extrapolating Araneae

communities and diversity to the full extent of habitat present within a protected site

(Table 6.10).

Araneae species distributions appeared to show some distinct groupings on Cors Fochno.

Species that prefer low vegetation were predominantly associated with the more central

areas A and B, and the litter frequenting species were shown to be associated with area

273



6. Evaluation of remotely sensed attributes of habitat as indicators of invertebrate
biodiversity.

D. These are similar to results obtained by Haase and Balkenhol (2014) who investigated

Araneae distributions on peat bog areas using ground data.

Interestingly many of those species (Pirata latitans, Pirata piscatoria) showing larger

distributions within area C (Figure 6.23) are often found in wetlands, bogs, fens and

alongside the edges of open water. Area C is an area of peat cuttings with sphagnum

covered open ditches.

Species such as Pardosa nigriceps and Agroeca proxima which showed a positive corre-

lation with Calluna vulgaris are common on wet heathland and moorland (areas where

Calluna commonly grows) with preference for drier low vegetation (Harvey et al., 2002).

These species were, as the analysis indicates found, mostly in area B which is an area

with the highest percentage of Calluna vulgaris coverage (Figure 6.23). Calluna tends

to grow in drier areas either on raised hummocks in the central dome of the acid bog or

towards the edge of the dome where the surface is drier

Although radiation and water balance are often named in the literature as some of the

most important environmental factors for spiders (Entling et al., 2007; Ehmann, 1994),

so too is vegetation structure (Dennis et al., 2015; Robinson, 1981). This structural

information could have been sourced from a better LiDAR data souce and could have

been used to provide more accurate CHM data. Vierling et al. (2011) used LiDAR

variables such as the penetration rate and laser echo which gave a metric reflecting

microclimate conditions. This was found to have significant associations with spider

species occurrence. Although not sufficiently researched this could be a useful parameter

for determining other orders such as Coleoptera distribution.

The NDVI index and associated index (peakpreNDVIdiff) were the most useful indices

with a strong association with the Aranea and Coleoptera species assemblages. Lassau

et al. (2005) investigated the use of multispectral data and found there to be strong

associations of ant species assemblages with NDVI. This was however, in areas of forest

habitats. The NDVI in Lassau’s research was positively correlated to habitat complexity
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whereas on Cors Fochno high NDVI (Peak times) indicated areas of Molinia caerulea

which were very homogeneous and with less habitat complexity present than the other

regions of the bog.

Coleoptera species associations

Results for Coleoptera did not show associations with variables to be as strong as that for

Araneae. Some of this may be explained by Coleoptera movement and the movement

of flying Coleoptera in and out of trapping areas. There were two main significant

factors, Sphagnum pulchrum, and Molinia caerulea (Table 6.13). These variables showed

significant separation of typical species found in bog and those that prefer drier conditions

or deep litter.

Species such as Lephyphantes pallidus and Saarista abnormis which were recorded in

Area D are species that are often found in wetland habitats amongst dead litter (Harvey

et al., 2002) which Molinia produces in large quantities. Many of the species showing

higher association with area D are species that frequent leaf litter (Saarista abnormis

and Lepthyphantes pallidus), inhabit grass clumps (Lepthyphantes zimmermani) or are

known to exploit reed beds (Taranucnus setosus) as shown in axis 1 (Table 6.12) by

their very low negative species scores, associated with Molinia.

Variables such as Calluna vulgaris which grows more profusely in drier areas proved to

be a useful indicator of drier heath type areas. Coleoptera species Cychrus caraboides

and Bolitobius castaneus prefer drier more heath like conditions (Harvey et al., 2002)

and these were associated with Calluna vulgaris in the analysis.

In the case of species such as Agonum ericeti and Pterostichus rhaeticus, which are

endemic to Area A (Table 6.11) in the sampling, these separations are very distinct.

Notably these two species are used in conservation as indicators of peatlands (Brigic

et al., 2014; Drees et al., 2007). Agonum ericeti (Figure 6.15), a species which is scarce
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in Britain, is known to only be found on oligotrophic mires with active Sphagnum growth

(Fowles, 1997). Using the bayesGLM analysis on the satellite variables, it could be seen

that the one main variable showing a significant association with Agonum ericeti was

Sphagnum pulchrum (Table 6.19). This relationship has been shown in previous studies

(Drees et al., 2007; De Vries and Den Boer, 1990) and it has been found that an

increasing amount of grass in peat bogs is seen to be linked with a deterioration and

reduction of suitable habitat for this species (Drees et al., 2007).

6.4.3 Diptera suborder associations

The Diptera results showed differences in areas but few significant correlations with the

satellite derived data. This may have been due to using less refined (e.g. no species)

data as well as less sample quadrats due to sub-sampling. There was little difference in

results with the use of count or biomass. Results were only significant for Brachycera

due to the preponderance of the numbers of a single species present in traps in area

A.

It is entirely possible that aside from other variables, wind speeds could be a variable af-

fecting the distribution of Diptera orders (Batista-da Silva, 2014). It was noted that there

was a significantly greater number of Brachycera in Area A (Table 6.26). Brachycera

species are known to be swifter and strong fliers whereas Nematocera and Cyclorrhapha

are slow fliers. The stronger swifter flier (Brachycera) would be better adapted for the

less sheltered central areas of bog.

These results show that although area D is degraded bog, it is not providing a valuable

habitat for many of the species endemic to primary active bog. However area D does

have a larger number of Diptera according to the trapping results. The reasons for

this may be as discussed before, due to areas of Molinia caerulea being surrounded by

trees and shrubs (species that grow and develop in regions that are damaged, draining
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and drying out - all part of the process of encroachment). These provide shelter and

therefore provide a more suitable habitat for some of these flying invertebrates. This

means that this outer verge area (area D) of the bog is actually a valuable part of the

protected site in that it provides a valuable food source for other species further up the

food chain, e.g. birds and bats. When considering the food chain and processes such as

food availability it is also surprising that there are not more Araneae individuals present

in area D; here their supply of Diptera food would be more plentiful than Area B, where

Aranea were more prevalent. Smaller numbers of individuals, though not necessarily

smaller numbers of species of Araneae recorded within area D are most likely due to

the method of trapping. Many species found in this area D may be found higher in the

canopy and do not venture into the dead litter section partly due to their food being

present higher up (as indicated by the trapping of diptera); the deadlitter section below

the lush growth is also quite impenetrable. For future studies it may be better to employ

an alternative method for Araneae trapping, for example a vacuum sampling or sweep

nets (Spafford and Lortie, 2013; Buffington and Redak, 1998).

6.4.4 Methodology issues

It is recognised that the 2x2m pixels of the WV2 data would not have lined up exactly with

the ground 2x2m plots. Comparing both 2x2m plots on the ground with 2x2m satellite

data could be partly responsible for any differences in associations when comparing the

ground data and satellite data analysis (Table 6.25 & 6.15). The subsequent comparison

of 10x10m satellite data with the 2x2m ground data would also provide inaccurate

comparisons. Ideally a ground survey of a 10x10m area would have been better as a

comparison as it would have given a clearer idea of vegetation coverage for an area that

invertebrates (Coleoptera and Arachnidae) move about in, however, this was not possible

due to the nature of the site and consequential trampling and damage of protected

species.
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Care should be taken in the interpretation of all trapping data. Temperature differences

can play a part in annual turnover and species dominance (Saska et al., 2013). The

effect of temperature on pitfall catches is important when interpreting the results. High

variation in species composition and abundance can occur in peat bogs from year to

year (Fowles, 1997). Changes in yearly temperatures may explain differences in annual

turnover and any dominance-changes in invertebrate species. This should be a consid-

eration when considering models, their apparent associations and when using habitat

suitability models.

There are also issues regarding the varying effectiveness of trap colour and height posi-

tions within vegetation (Rodriguez-Saona et al., 2012). Using the same methods within

each area should ensure a comparison is valid but it should not be assumed. Any overall

influence must be taken into account when considering community distributions. Other

issues to account for in trap colour included a request from reserve managers that they

needed to be as discrete as possible. The blue sticky traps were the best option in this

scenario so these were used instead of the more standard bright yellow (better trap-

ping efficiency). Sticky trap data for Diptera also demonstrates that trapping methods

could be altered to provide an easier, and less time consuming, method of sampling.

Traps placed just at the height of the tallest vegetation present may be more efficient

and be sufficient to provide a comprehensive data set. An important factor for provid-

ing information for food chains and also worth noting when formulating management

plans.

Sampling from the same locations over time can also cause a decrease in species numbers

for each subsequent trapping (Ausden and Drake, 2006), however, the effect of this

should be lessened by averaging the seasonal catch. Issues can also arise from the

trapping of species that may not usually be found in areas. Many beetles have the

ability to fly and may have come into a region they do not usually frequent and have

ended up being trapped. Some Araneae species are aerial disperser species and may have
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been blown into the site, explaining their unexpected appearance within certain areas. All

these factors need to be considered when drawing conclusions from the analysis.

6.4.5 Further interpretation from species associations

Associations of variables that represent dominant species and ecological gradients with

some invertebrate species can be used to produce habitat suitability models. The way

in which the species are trapped or indeed their habits that effect their trapping can

influence these models so care needs to be taken. It was important therefore to focus on

a species whose habits were unlikely to effect the trapping data and the best trapping

method was employed for this species.

Agonum ericeti is a flightless species bound to the bog and so has no external influences

to the count data (e.g visitors, blown off course etc.). This species is also designated as

’Nationally Scarce’ which means this species only occurs in 16-100 hectads (10×10km)

in Great Britain. Cors Fochno is one of only five sites in Great Britain where it is

found.

The single species bayesGLM model providing the most significant result was using

satellite variables with no index variables included (Table 6.19). However, according

to K-fold cross validation methods the model using satellite derived species and index

variables was marginally better (Table 6.20), possibly an anomaly of the cross validation

method or a difference due to the more continuous spatial data supplied by the indices

data.

Ground data models were not wholly satisfactory in this case as the grain size of the

vegetation data was too small at 2×2m. This was not large enough to encompass the

area traversed daily by this species, and did not illustrate the full extent of the vegetation

area that it may use. It is important to consider too that models which quantify habitat

quality, and do not identify habitat and non-habitat, provide better data for linking
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population viability to environmental conditions (Larson et al., 2004).

The relationship between stenotopic species such as Agonum ericeti and their habitats

combined with the spatial data provided by satellite derived models can be used to

assess extinction rates and prediction possibilities and from this the survival time of small

isolated populations may be more accurately calculated to assess their viability dependant

upon management actions. Habitat suitability maps could be combined with density data

and a relationship between the two investigated (Torres et al., 2012). These both have

broad implications for conservation management (VanDerWal et al., 2009).

6.4.6 Nationally Scarce species rediscovered

Two species of Araneae, Dipoena prona and Jacksonella falconeri, discovered during the

monitoring process had not been recorded on site or indeed anywhere in Britain, in recent

years. These species were sent off to have their identification authenticated and reported

on the British Arachnological Society records. Both were found in Area B and have a

preference for drier heathland areas. Both had high species scores in the CCA analysis

which were positively correlated with axis 3, highly correlated with Calluna vulgaris

(Table 6.9). Again care needs to be taken of these results as the high score is due to

only one individual of each being found for the whole survey. Species such as Jacksonella

falconeri are small and may be missed easily in trapping. Although the reason for the

lack of species in the past years could be partly due to a decrease in trapping effort, it

may also be possible that species samples are going unmissed in trapping samples due

to is size. A habitat suitability map produced with similar methods as were employed for

the Coleoptera species Agonum ericeti, could provide a more focused area of sampling,

something that would be possible for monitoring many rarer or illusive species.
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6.4.7 Potential for further work

1) Habitat suitability models need validating with further field data.

2) Methods can be applied to historic remote sensing data to assess change and its

impacts on Araneae and Coleoptera diversity.

3) Diptera species need identifying to species level for further analysis.

4) Investigate more indices - to find more indices that provide further biophysical proper-

ties yet are not collinear with one another. Using alternative methods such as a stepwise

linear regression with a larger number of indices may provide valuable information re-

garding associations despite the possible high collinearity of indices (Thenkabail et al.,

2011)

5) Investigate more classification methods - maybe not threshold based.

6) Use plant species Shannons diversity index as as heterogeneity measure?

7) Investigate possibilities of using the HSM in estimating the population viabilty for

Agonum ericeti potential for SDMs and HSMs - layered community layers and single

species maps.

8) LiDAR data is required that can provide more data as demonstrated by Lassau et al.

(2005). Leaf on and leaf off would be useful too.

9) Need to assess other possible heterogeneity variables (e.g LiDAR data), other index

measures or classification data.

6.5 Summary conclusions

1. Ecological subdivisions of a raised bog system that signify environmental gradients

can be identified by the coverage of dominant species that are particular to those con-

ditions.
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2. The dominant vegetation species that were selected to represent their respective

sub-divisions gave the best results for all analyses when assessing species/environment

relationships.

3. Satellite derived indices (continuous data) were more useful when assessing associ-

ations of communities/assemblages than with an individual species (although this may

be dependant upon the individual species used).

4. The use of larger categories such as Diptera sub-orders did provide some useful

information but it is evident that identification to species level is necessary to provide

any accurate information. Sub-order data is not nearly sufficient but did provide valuable

information on which area provided the largest number and biomass.

5. Extra care needs to be taken when assessing or choosing models to analyse associa-

tions when in a habitat that contains a large proportion of rare or endemic species.
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Chapter 7

Discussion and Conclusions

This concluding discussion focuses on the aspects of the research which have contributed

to an improvement of existing monitoring systems and the implications and recommen-

dations these results carry. This discussion also outlines how these techniques can be

applied to other sites at specific geographical locations as well as their application to

climate and anthropogenic change and predictions. A final section on how these results

and their further application can feed into national and international policy, and enable

Wales to meet the European Biodiversity strategy 2020, is included.

7.1 Main outcomes

Monitoring protected sites has usually revolved around the collation of field data and

remote sensing data for this purpose has been under utilized (Nagendra et al., 2013).

This research has utilised remote sensing data and field data developing a synergy of

the two to create a method for a baseline for use in monitoring. The method was

developed with a view to using this to identify change and trends in the condition of

habitats and provides information on the state of biodiversity. The methods have the

potential to produce predictions on the consequences of anthropogenic or climate change

scenarios.

This research has established the use of remote sensing data for retrieving key biophysical

properties of vegetation and with methods which allow for further investigation of these.

Many previous studies have used satellite derived biophysical properties to map flora
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(Lucas et al., 2011a; Xie et al., 2008) with less for mapping fauna distributions (Vierling

et al., 2011; Lafage et al., 2013). However, few have investigated exactly how these

properties change through the year and whether the biophysical attributes, plant species

and their seasonality can be exploited and used to improve invertebrate associations

models.

This research has shown that there are useful relationships that can be derived from

satellite data (i.e. the biophysical properties, classifications) that relates to invertebrate

diversity. The associations found were used to develop and validate spatial models that

predict distribution of species and communities.

Others have found ground derived vegetation types and biophysical properties of vegeta-

tion to be effective in species distribution modelling (Davies and Melbourne, 1999) and

species associations (Drees et al., 2007). However, these models rarely use satellite or

other remote sensing data for this purpose. Remote sensing data in invertebrate distri-

bution modelling has more often been used for monitoring distributions of pest species

(Robinson et al., 1997; Dale et al., 1998; Wang et al., 2010b) usually of an individual

species and not of species assemblages. Developing habitat suitability models for in-

vertebrates from these associations with satellite derived data is of major importance

to biodiversity assessment and can be recognised as a proxy for species occurrence and

richness (Kuenzera et al., 2014).

The amalgamation of methods demonstrated with chapters 4, 5 and 6 contribute to

the development of an observation/monitoring system within Wales with recommended

methods and routes. The main outcomes were split into flora and fauna associations and

distributions. For flora the appropriateness of seasonal acquisition and indices was as-

sessed using field spectrometer data and WV2 data. Results showed a Pre (winter), Peak

(summer) and Post (autumn) period to be most effective. This period for acquisition

may vary for different sensors. More recently Feret et al. (2015) used field spectrora-

diometer to assess best periods for seasonal acquisitions in terms of using it to identify
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habitats. They found that Sentinal 2 gave the best performance during spring and begin-

ning of summer (from April to July), while WorldView 2 performed better during winter,

end of summer, and autumn reflecting similar periods to this research.

The layers of biophysical properties created using indices using the EODHaM system were

successfully used in classifications and as input into HSMs. Vegetation and dominant

species maps were generated to cover the whole site and surrounding landscape. Methods

of zooming in or multilevel masking used in this hierarchical mapping system helped

to improve threshold extraction and accuracy. Others have used methods of multi-

level classification systems for mapping tree species and demonstrated this to increase

accuracy (Townsend and Walsh, 2001; Xiao et al., 2004). Pu and Landry (2012) used

indices in a similar way to create three masking levels which included a vegetated,

non-vegetated level at the beginning. Their study confirmed the effectiveness of this

approach.

This system allows for the input of any spatial data (thematic or satellite etc.) and

through the running of the system produces all the components such as biophysical

properties of vegetation in the form of indices layers and vegetation classifications (Lucas

et al., 2015) for input into further invertebrate association modelling. This ensures a

continuous flow from input of data to the output of the required variables for fauna

association analysis.

For fauna relationships between the remote sensing derived data (biophysical properties,

dominant species classified) and invertebrate communities and individuals were made.

Few studies have looked at invertebrate species assemblages until recently (Vierling et al.,

2011; Lafage et al., 2013) and some have found plant species or NDVI to be effective

at discerning associations (Lassau et al., 2005). Due to the invertebrate orders chosen

in this study and their use as ecological indicators there should indeed be associations

with the plant species or biophysical properties present. Using suitable suites that indi-

cate ecological gradients and combining these with biophysical attributes such as NDVI
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have proved to be successful in showing expected associations. This meant that suitable

variables derived from satellite data could be used to provide spatial coverage previously

unattainable without remote sensing data. Assessments of the most suitable layers for

input into HSMs were made with the most effective in this case being dominant plant

species. Many studies have used remote sensing derived variables such as these (vegeta-

tion classification or vegetation indices) to predict a spatial distribution of mammals or

birds (Pettorelli et al., 2011; Cherlet, 2011; Swatantran et al., 2012; Coops and Catling,

2002). However, very few have done so for invertebrate species and least of all inverte-

brate species assemblages (Lassau et al., 2005; Lassau and Hochuli, 2007b). The HSMs

for the individual species Agonum ericeti created will require further validation by reserve

managers in order to validate them as SDMs. The same methods can be used to create

further species habitat suitability models and these can be combined to create species

assemblages maps (Guisan and Rahbek, 2011).

The aims of this research have been met and a monitoring strategy recommended and

demonstrated. Links were made between ground based surveys and remote sensing data

that contribute towards the formation of a remote sensing monitoring system. Some

of the methods formed from biophysical variables, remote sensing data and vegetation

indices etc. can be used to advise on the impacts of past, present and proposed man-

agement. This study leads to a better understanding of the dynamics of Cors Fochno

ecosystem and the application of these methods to other sites is now possible, with

further use, to show implications of natural, anthropogenic and climate change upon

them. Franklin (2008b) states that a comprehensive framework for the effective use of

remote sensing data in biodiversity mapping - one that matches the spatial, spectral

and temporal characteristics of the sensor to specific biodiversity mapping goals is still

lacking. This research has made a strong contribution to improving this situation.
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7.2 The importance of field data, vegetation ecology,

phenology and data fusion for successful classifi-

cation

Having a good knowledge of the site to be classified is of major importance. The process

of carrying out this classification has shown how important it is to have ground data

(Leyequien et al., 2007a). Very few classifications can be successfully completed without

visiting a site and collating data on the vegetation. It is imperative that the individual

creating a classification has a good grasp of the main species and conditions present, for

a successful classification. The ground data (vegetation composition, photography and

field spectroradiometer data) provided further information on the ecology of the site,

ecological gradients present and seasonal aspects of the vegetation. All these aspects of

the classification process have helped to contribute to the selection of a suite of species to

classify, an assessment of their discrimination, selection of timings of image acquisitions,

and the input of the ecological knowledge into the adjusted EODHaM system developed

in this research.

A number of classifications (Hill et al., 2010; Lucas et al., 2007, 2010) have used meth-

ods which employ phenological data to improve species discrimination although these

have tended to be mostly for woodland/forest species. This seasonal approach however,

has not been pursued for peatlands where plant species of degraded and intact bog have

seasonally distinct characteristics (apart from BIOSOS). For example invasive mono-

culture species are likely to occupy degraded areas of bog (e.g. Molinia caerulea); for

Cors Fochno this method appears to be extremely effective at picking out the degraded

vegetation areas (Figure 7.1).
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Figure 7.1: Images of seasonal NDVI showing differences between peak (op-
timum growing season) and pre or post (little or no growth) images. Very
light areas in the difference NDVI images correlate with areas of Molinia
caerulea and Phragmites australis, areas of high seasonal productivity/-
growth.

The vegetation in degraded areas is very lush with substantial green growth in the

summer, in winter masses of dead litter smothers anything else that tries to grow. In

contrast areas of intact primary bog which contain species typical to healthy raised bog
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do not show such dramatic differences. These areas are fairly mixed in terms of species,

but include species such as Sphagnum pulchrum - an indicator of healthy bog which

changes very little throughout the season (Figure 4.15). It is also noticeable that the

healthy central bog area does not have the lush growth of the outer degraded bog due to

the species there and the environmental conditions (lack of nitrogen, acidity etc.). The

use of two seasonal images provided data to make use of these facts and significantly

improved species discrimination.

In order to improve discrimination further, fusions of data were very effective. Combining

LiDAR in this case helped with some discrimination. However, had summer flown Li-

DAR with a better resolution been available, discrimination may have been even better.

Classification of some BIOSOS sites also had thematic layers added to the classification

system that added to a better discrimination and classification of categories. This could

be added to this classification to improve road and urban area classification.

The flexibility of the EODHaM system to data fusion is further improved by a ’zooming

in process’ (Figure 7.2). This zooming in process involved clipping the SSSI area (ef-

fectively masking all surrounding landscape) and focusing on only classifying the SSSI

area to species level. Further masking of areas by classifying those species which were

ecologically distinctive (i.e. not found in wet areas), helped to narrow down the final area

classified. The use of the LCCS system helped in particular by allowing focus on aquatic

vegetated areas such that dominant species within this area could be classified.
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7.3 Vegetation mapping of Cors Fochno

Current assessments of protected sites such as Cors Fochno and other protected habitats

in Wales are carried out using field-derived quadrat data and mapping based on GIS and

aerial photography. However, Cors Fochno in particular, is difficult to traverse and

hence detailed mapping has not been undertaken. These methods have provided maps

and detailed ground data, however there remained an area of the central primary bog

with limited mapping detail and most of the detailed quadrat results which inform on the

type of species present are mostly along the board-walk area. These quadrat positions

are mapped but no classification is developed from them. There is also no detailed

mapping of the water-bodies and ditching present. The same is the case for fauna data

as shown in chapter 3 (Figure 3.8) with little data recorded or mapped in central areas.

All detailed data is recorded around the readily accessible bog peripheries and along the

board-walk.

The methods used in this project have improved both the spatial coverage and the

detail of mapping using the classification method developed here. Figure 7.3 shows the

central areas of Cors Fochno SSSI to have little mapped detail (Figure 7.3a, b and c)

using the traditional GIS method. However, the classification developed in this research

(Figure 7.3d) shows a far more detailed map of dominant species within the central areas

in particular. All water bodies and ditching are mapped and the detailed quadrat data

is present for both methods of map making.

All mapping of Cors Fochno Phase 1 and NVC (Figure 7.3a, b, c) does not include

any detailed information on the central areas of the bog. The classification produced

using the WV2 imagery on the other hand provides detailed species data for the whole

of the active bog area (Figure 7.3d) including more detail in the more degraded areas

(Figure 7.4). Additional to this, a landscape map of the surrounding landscape which is

provided further classification with a little more work on anthropogenic practices agri-
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culture, forestry, etc. Changes in this surrounding area, may have an effect on habitats

or species, whether transient or endemic for the Cors Fochno SSSI.

Figure 7.3: Comparison of traditional GIS methods with the EODHaM
system adaptation classification. a) Annex 1 Cors Fochno 2008, b) NVC
Cors Fochno 2008, c) Phase 1 Cors Fochno 2008, d) WV2 created Cors
Fochno 2012/13.

Dominant species such as Molinia caerulea play a large role in ecological function and

the very existence of some ecosystems depends on these species to create or be modified

to a significant level. When looking at change and the reasons for, it is important
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to acknowledge that dominant species have a large significant impact on ecosystem

function (Chapin et al., 2002) and are important in determining resistance to invasion and

degradation (Smith and Knapp, 2003; Smith et al., 2004). These species are known as an

engineer of that system (Clive G. Jones, 1994). Equally, organisms with small individual

impacts can also have huge ecological effects (Clive G. Jones, 1994). Bog-forming

Sphagnum mosses are good examples of this (Tansey, 1965). Recording these major

engineers is of as much importance as recording overall diversity and heterogeneity.

Figure 7.4: Improvements in mapped detail and resolution a)NVC mapped
vegetation 2008/2009. (Source:data provided by NRW) and b)WV2 species
classification completed for this PhD 2011/2012 (note large newly ploughed
field recorded as bare ground).

Having a more detailed dominant species map and data set for the whole of Cors Fochno

helps to show ecological gradients present providing a more cohesive data set for further

monitoring. Other research (Smith and Knapp, 2003) suggested that dominant species
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can strongly influence diversity. Observations in the differences in their abundance can

provide information on the variation in community attributes and ecosystem processes in

space and time. These theories were observed and used in chapter 6 when investigating

invertebrate relationships with the dominant species present as well as other biophysical

attributes.

7.4 Beyond a classification.

It is important to recognise the many other uses that a remote sensing classification

could provide. It can be used to provide much more than just a map of the vegetation

position and extent. For example the central dome was mapped with a DTM for the first

time, and combining this with the classification of Sphagnum coverage the condition of

the SSSI could be assessed. This has not been done for raised bogs before, and provided

a solid reproducible method of keeping a check on the hydrological condition of the bog.

Any significant changes in this would most likely be due to drying out or conversely

improvement in prevention of drainage. This method therefore provides an effective way

to assess these indicators of raised bog condition.

More recently acquired WV2 or even historical WV2 data could be used in the same way

with these methods. Past and more recent mapping in particular of areas of Molinia

caerulea could be compared against the baseline produced in Chapter 5 to assess any

advancement in the encroaching Molinia caerulea species into the outer central bog

areas. In addition to this a measure of Sphagnum within the central dome (as produced

in chapter 5) could also be made for comparison. This could provide information on any

changes in condition of the hydrology of the bog. A decrease in Sphagnum species in the

central dome area would indicate a drying out of the bog. A factor of major importance

to the management of the protection or restoration of the bog.

Also of great importance is the use of remote sensing in the further assessment of fauna
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present. This work has shown that the classification can be used to give a habitat

suitability model (HSM) for selected species, in this case those endemic to the raised

bog (e.g. Agonum ericeti). Further work using the HSM produced could provide valuable

species viability information (Chauvenet et al., 2012) and thereby provide evidence of

the urgency of habitat restoration or improvement. This could inform on how to channel

funds to the most necessary protected sites. It is important to consider too that the use

of the term ’habitat suitability model’ rather than ’species distribution model’ needs to be

used to reduce confusion over the validity of these models (Bradley et al., 2012).

A substantial survey of invertebrates was previously carried out on Cors Fochno as part

of the ’Welsh peatland invertebrate survey’. This was carried out for a 3 year period from

1986-1989 (Figure 7.5a). Surveys were also carried out from 2009 to 2011. However,

these surveys traversed the central dome area where the main sample areas were primary

bog and did not include areas that were more degenerated with mono-cultures such as

the Molinia areas. There was therefore no information with which to infer any losses

and gains of assemblages and species if trends indicated increases or even decreases in

the area of degenerated bog and Molinia encroachment. Nor did it give a comparison

to provide evidence to show the importance of the primary and secondary bog over

this. This data could however be used as a tool to show whether data collated within

the similar area was unnoticeably different or to illustrate that there may be natural

fluctuations within populations that are not necessarily a result of habitat conditions

changing. In this study research sampling was carried out across ecological gradients

(Figure 7.5b) to provide information that can be used to assess and predict losses and

gains to the invertebrate assemblage of the SSSI site. It was also important to sample

across the ecological gradients in order to obtain enough information/data that could be

used to compile a HSM (Figure 7.5b) to assess any fauna species and fauna assemblage

associations with flora species and satellite derived indices/biophysical variables.
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Figure 7.5: Comparison of previous invertebrate survey a) Welsh Peatland
Invertebrate Survey 1986-1989, � = Agonum ericeti presence, � = Agonum
ericeti absence (Source: NBN Gateway data (WPIS)) and the current re-
search invertebrate survey results b) using the methods to provide spatial
data in a habitat suitability model showing the probability of the presence of
Agonum ericeti.

The research finding presented here also show the importance of these ecological gra-

dients to the overall gamma diversity of species present. Without the heterogeneous

nature of the combination of several habitats within the site, including the degraded

areas, the overall diversity of species present at the site would be less (Souza et al.,
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2015). There are also protected species (e.g. adders) that inhabit the Molinia areas.

Degraded areas are therefore also of equal importance as the central raised bog areas for

preservation and conservation in the future. The largest biomass of flying invertebrates

was collated from the Molinia area showing this to be a valuable area for food supply

for birds, bats and any other insectivores. This does not however, mean that further

encroachment of the raised bog is necessarily acceptable as this would cause great stress

on populations endemic to this region. It means that one should acknowledge the worth

of the degraded areas when applying management to this habitat with due cognisance

paid to the value of degraded and raised bog areas.

The prevention of the destruction and degradation of peatland or bog should be of

paramount importance to humans. Its destruction and degradation can lead to it chang-

ing from a valuable carbon sink to a carbon source (Lenart, 2010). Aside from possible

anthropogenic effects that may have caused this, of equal importance, are effects or

predictions of climate change scenarios. The methods developed here can easily be used

to look at change over time and can also be adapted to create prediction models. Cli-

mate warming has been shown to promote vascular plant growth in peatlands, especially

ericaceous shrubs (Bragazza et al., 2013). Classifying species such as Sphagnum spp.

and Calluna on a temporal basis could provide evidence of these processes. Field spec-

troradiometer and photo records could be useful in tracking any seasonal shifts that may

occur either due to yearly differences in climate or indeed due to climate change. Any

seasonal shifts or species changes could have large effects on invertebrate distribution

and diversity and consequently complete ecosystem food chains. Regular monitoring us-

ing the methods developed of landscapes, vegetation, habitats, and species both fauna

and flora on a 5 to 10 year basis could provide valuable information on effects of an-

thropogenic and climate change within and surrounding sites. The methods employed in

this research have shown to support multi-temporal data. Using corresponding seasonal

imagery from different years would provide information on any changes that may have

occurred over that time period for both habitats and species.
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This work moves beyond the use of species richness as an indicator of biodiversity. It

includes other levels of analysis such as communities, populations (e.g. HSM - Agonum

ericeti) and landscapes (e.g. LCCS landscape classification). Management of sites

rarely looks at species communities and their mapping. Monitoring of protected sites

rarely includes landscape mapping (Souza et al., 2015). However, recent reviews have

suggested when monitoring sites there is a need to accommodate landscape effects into

the analysis (Curran et al., 2011; Koellner and Geyer, 2013).

7.5 General applicability of the methods

Many widespread and abundant species associated with peatlands are very similar to

that of the Cors Fochno site and these same species could be classified for other sites in

Wales. Such species would give an indication of plant species associated with ecological

gradients present (Grime, 1998). Combining this with a fusion of other data (e.g.

vegetation heights, slope and elevation) and thematic information could prove to be a

powerful tool to assess floral and faunal biodiversity. Many of these habitats have similar

issues such as encroachment of Molinia caerulea and many other species such as Calluna

vulgaris, and Eriophorums being present on blanket bogs and other raised bogs. Areas

of peat habitats are now of great significance where trends in the uplands have led to

a failure to achieve early BAP and government biodiversity targets. There is a need

to develop large-scale initiatives to target particular areas for appropriate conservation

management, to restore upland woodland and scrub and the natural altitudinal succession

of vegetation, extend priority habitats and restore degraded stands (Blackstock et al.,

2012).

For other sites a set of plant species associated with relevant ecological gradients could

be compiled that can be identified from satellite imagery using the same process. Grazed

versus ungrazed areas would also be highlighted and it is also possible to focus on a man-
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agement practise rather than a dominant species. For example, farming practises and

crops grown in fields could be classified using the same system (Lucas et al., 2015).

Habitats could be distinguishable although it may be found that some very heteroge-

neous habitats or those that are very similar in species composition but named differently

may be difficult to classify. For each of these classifications and biophysical parameters

derived from this, associations with fauna and flora species could be assessed and habi-

tat suitability or species distribution models made for assemblages or individual species

(Guisan and Rahbek, 2011).

Recent research has developed methods for compiling layered species distribution models

(Guisan and Rahbek, 2011) to provide information on community interactions important

to ecosystem functioning (Kirwan et al., 2009). This research was produced with the

aim that a multi-layered species distribution (Figure 7.6) could be compiled using the

associations found in the analysis. While significant progress towards this goal has been

made, more research needs be done with other sites both similar and very different to

test this process.
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7.6 Application to policy: Welsh, European and In-

ternational

The EU signed up to a set of new global biodiversity targets under the auspices of the

UN Convention on Biological Diversity (CBD), at its meeting in October 2010. Parties

to the CBD are required to develop or update national biodiversity strategies/action

plans with a view to implementing CBD commitments.

Cors Fochno SSSI is also a Natura 2000 site. Natura 2000 is the centrepiece of EU nature

& biodiversity policy and was established under the 1992 Habitats Directive. European

and Welsh strategy plans have targeted measures that need to be met to ensure the

survival of many species and habitats that are already under threat. Natura 2000 aims

to assure the long-term survival of Europe’s most vulnerable species and habitats.

A 2010 EU biodiversity document produced information about the current status of bio-

diversity in the EU and Wales (Brown, 2010). However, a lack of a clear baseline against

which to measure progress was a key shortcoming of the EU biodiversity strategy 2010

reports (Brown, 2010). In Wales this baseline information produced valuable scientific

data on the status of biodiversity. However it was noted that the conservation status

of 18% of habitats and 31% of species are still unknown in Europe (European Euro-

pean (2011). Habitats and species in Wales have been assessed ready for the 2010 EU

biodiversity baseline and it was found that 60% of Welsh habitats were in unfavourable

condition and only 25% in a favourable condition (Figure 7.5a). This negative outlook

is similar for priority Welsh BAP habitats with more than 50% declining and a significant

number with no clear trend (Figure 7.5c). This therefore represents a situation where

those habitats that are recovering or indeed declining need baseline information to track

possible improvements or further decline where to occur between 2010 and 2020. Those

that are unfavourable, stable or show no clear trend will require monitoring to ensure
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management practices are helping to improve the habitat. With limited resources it is

imperative to know these efforts are not wasted and if present management regimes

are adequate, or whether a change is required. For species in Wales, 45% are in a

favourable state and 54% unfavourable. For priority species 34% are stable or increas-

ing 16% declining, 5% lost and insufficient information for 35% (Figure 7.7d) (Brown,

2010).

(a) (b)

(c) (d)

Figure 7.7: a)Percentage of habitats in favourable, recovering or un-
favourable condition in Wales, 2000 to 2008, b)Percentage of species in
favourable, recovering or unfavourable condition in Wales, 2000 to 2008, c)
Wales trend for priority BAP habitats, using 2008 reporting trend estimates,
d)Wales trend for priority BAP species, using 2008 reporting trend estimates.
(Brown, 2010).

In light of these figures, it is of great importance that evidence is acquired to fulfil the

EU biodiversity strategy targets for 2020. For this, a species’ known habitats, habitat

suitability (often unknown existence in these) and their current, past and predicted

distributions need to be mapped and modelled. These methods are important for use

to find and ensure protection of suitable habitats. The Lawton et al. (2010) report

produced for Department for Environment, Food and Rural Affairs in 2010 suggests
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that ecological networks are of vital importance to ensure connectivity and support

sustainable populations. These methods could be employed for mapping habitats suitable

for vulnerable species that require protection.

Habitat condition - current, past and predicted - could use this method to help produce

models and associations which provide evidence of trends of species and habitats. This

research could fulfil most of the CBD requirements and could be exercised with additional

expert help from wardens and those with knowledge of the habitats and species.

To gather this evidence and improve the statistics recorded, the EU biodiversity strategy

has set out targets that follow the international CBD Aichi targets. Welsh Government

is responsible for the delivery of the CBD and EU targets in Wales but it has also set

its own targets relating to biodiversity at a national level (Brown, 2010). Wales aims to

improve the integration of habitat and species-based work using an integrated ecosystem

approach (Brown, 2010). This project contributes towards the Welsh biodiversity plans,

EU biodiversity strategy 2020 targets as well as the global CBD Aichi Biodiversity Targets

and provides a system and methods towards achieving these targets.

In Wales methods are required to help provide spatial and temporal information on species

and habitats so that data can be provided on positive outcomes for the Welsh Biodiversity

strategy (JNCC, 2012c). Outcomes 19 and 20 (Brown, 2010) can be met by evidence

that this research can provide. As an example of its use in the Welsh biodiversity strategy,

and very topical (however, not noted as priority species), are pollinator distribution data.

It must be noted that there is a current Wales action plan for pollinators. Pollinators are

however, not represented by just bees. It is apparent that not only bees and butterflies

are valuable as pollinators, but flies too, and recent research has now found that on

farmland flies made up 67% of the total abundance of pollinators with 84% of pollen

carried by non-hover flies (Orford et al., 2014). Research in this thesis demonstrates the

importance of protected sites for providing suitable habitats and connectivity to provide

an abundance of Diptera species/ potential pollinators. It also demonstrates methods
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that could also be employed in areas outside of protected areas, including road verges

and farmland, and methods (employed in this research) for assessing connectivity and

relationships between habitats tested. Using these methods the frequency/population of

pollinators could provide information to drive policy.

The CBD has a number of Aichi Biodiversity Targets that this research could help to

provide information/evidence for. CBD Target 1 requires knowledge in the trends of

extent, condition and vulnerability of ecosystems, biomes and habitats (Leadley et al.,

2014). Mapping species that indicate ecological gradients can provide information on the

condition and vulnerability of a habitat or ecosystem (Grime et al., 2007). This method

also provides data on species distribution and abundance for both flora and fauna. As

with the invertebrate associations methods, other more scarce or smaller patches of flora

species can be associated with the more dominant patches or indices which are indicative

of the ecological gradients (Beck et al., 2008); e.g. Sphagnum pulchrum being present

can show that an area is more likely to have species such as Drosera present. All that is

required is a habitat suitability map which can be assessed with some further field work

to give an accuracy estimate. Compiling a habitat suitability model would cut down on

a significant workload for assessing this.

These methods also fulfil CBD target 2 by providing a method to assess trends in abun-

dance, distribution and also using the habitat suitability modelling can provide informa-

tion on viability or extinction risk for a species. External pressures can be monitored

by using the landscape classification method demonstrated here to record and assess

any external pressures that agriculture and forestry may incur. Although in this re-

search this method is providing a baseline, it could be used with temporal data to reflect

changes/trends in habitat condition (Lucas et al., 2015).
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7.7 Summary with recommendations of suitable vari-

ables to measure biodiversity

A recent publication from GEOBON members concerned at the lack of agreement on

biodiversity variables to monitor biodiversity using satellites, proposed a set of variables

for monitoring progress towards the CBD Aichi Biodiversity targets (Skidmore et al.,

2015). These include continuous and biophysical variables, and threshold-based mea-

sures such as those employed in this research. Of the ten variables suggested by the

’intergovernmental GEO’, all could be monitored using this process with eight of the

proposed variables employed within this research. These are highlighted in bold in the

following text.

A baseline map of species populations were created for the dominant flora species

and selected invertebrate species. Associations were made with species assemblages and

the ecological gradients, flora species and biophysical parameters derived from satellite

data. These associations could be developed further into layered habitat suitability maps

useful for assessing community interaction, an important part of ecosystem function

(Guisan et al. (2013), Schimming et al. (2010). Classification maps and habitat suitabil-

ity, as well as associations recognised provided information on the invertebrate species

occurrence. Further work looking at other fauna and invertebrate associations would

provide evidence of which species are more likely to show associations with biodiversity

variables. Invertebrate surveys ideally should be undertaken for more than one year in

order to avoid associations that may be reflecting other unidentified variables (e.g freak

weather event or an unusual weather year) (Drake et al., 2007). To improve the system

and assess the methods, an accuracy assessment of the habitat suitability model pre-

sented needs to be carried out. This can then be approved as the ’species probability

distribution’ if accuracy is found to be good.
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Indices such as NDVI were used with seasonal imagery to provide information on species

traits (e.g. large expanses of dead vegetation in winter and very lush green vegetation

in the summer may indicate competitive/monoculture species). This helped to classify

some species and associations that indicated Araneae, Coleoptera and Diptera species

diversity and assemblages. Ecosystem structure comprises the components that make

up an ecosystem (Schimming et al., 2010). Habitat and species distributions, the flo-

ral and faunal heterogeneity of a habitat, land cover, habitat, vegetation species and

vegetation height were calculated for the SSSI site and surrounding landscape. Unfor-

tunately vegetation height was not very accurate showing that better LiDAR coverage

was required. Heterogeneity of the vegetation was indicated by the standard deviation

of the NDVI in a buffered zone. On a small scale, this was difficult and would have been

easier with definite habitat classifications. More work needs to be done to investigate

heterogeneity measures.

As part of ecosystem function, vegetation phenology and primary productivity were

used. Vegetation phenology helped to provide useful information also for timing of

satellite acquisition. Spatial and temporal variation in primary productivity (NDVI)

helped to define the ecological gradients present and assisted in defining flora species

and fauna associations. Of all the satellite derived indices used, the NDVI and seasonal

NDVI difference provided the best overall biophysical variables for association with distri-

bution. It may be useful to find and develop better heterogeneity measures using LiDAR

(Mucher et al., 2010) and multi-spectral texture measures (St-Louis et al., 2014), and

to investigate other indices specific to the satellite used.

It has been recognised that strong evidence is required for possible climate change im-

pacts (Brown et al., 2012). Any changes in the distributions, phenology data, community

compositions and habitat condition (ecological gradients) that were compiled in this re-

search are all of great importance to providing evidence of and information to help

manage the effects of climate change (Pearce-Higgins et al., 2015). The research has
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been compiled here into a process that can be adapted for monitoring sites. It can

be applied to any site and at all scales that span from individual species to landscapes

surrounding the site (Figure 7.8). Surrounding landscape maps are also important to

show connectivity so that a complete assessment of a species vulnerability can be as-

sessed (Lawton et al., 2010). This process applied to habitats, sites and surrounding

landscapes will help to provide a way to satisfy CBD, EU Biodiversity strategy and Welsh

Biodiversity strategy targets.
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7.8 Recommendations for monitoring Welsh habitats.

On the basis of this project the following are recommended for assessing and monitoring

protected sites in Wales:

Acquisition of data

1. Acquisition of higher resolution airborne leaves-on LiDAR to both assist with geo-

metric correction and provide valuable vegetation height data.

2. Multi-temporal acquisitions to capture the seasonal variation (in relation to phenol-

ogy). Pre (Jan-March) and Peak (June-Sept) times preferable.

3. Ensure acquisition is at a spatial resolution that is appropriate to the size of targets.

4. Ensure robust atmospheric correction of data.

5. Ensure accurate geometric correction.

6. Monthly collection of ground reflectance spectra from specific targets (also bright,

dark and intermediate for atmospheric correction improvements) to assess vegetation for

seasonal attributes. (Can also be used in possible climatic studies).

7. Collection of sufficient ground data with GPS points from the centre of suitably

large areas of dominant species , surface materials or any other to use for satellite data

extraction. High quality in-situ and timely ground data is required or the quality of the

RS products may be severely limited (Gillespie et al., 2008; Xie et al., 2008).

8. Inclusion of UAV data at very high resolution to allow interpretation of multi-spectral

images and validation of output products.

Process

1. Extract all suitable data, biophysical attributes, vegetation heights, and heterogeneity

measures for analysis using a suitable percentage of the pre-recorded ground points.

2. Assess other methods of index selection.
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3. Assess other indices specific to a satellite for their suitability with certain species and

habitats.

4. Develop better heterogeneity measures, possibly using LiDAR or multi-spectral tex-

ture analysis.

5. Develop further script for simple classification running which will extract data from

given GPS points, create the statistical analysis and provide the threshold data all in one

contained system.

Long-term monitoring

1. Repeat process every 5 years at least to assess any changes etc. ground field spec

and photography to record seasonal differences and match with climate.

2. Apply methods to other sites to test method:

Recent research assessing bird species in England at risk as a result of climate change

have suggested that nearly all species associated with upland heath and blanket bog are

at high risk due to climate change (Pearce-Higgins et al., 2015). As Wales contains a

high percentage of the UK’s upland heath and blanket bog, with 80,000 ha of upland

heath in Wales and 70,000 ha of upland bog it is of major importance to monitor these

areas as much as is possible. These areas have a very similar suite of species present as

in the Cors Fochno SSSI site and for this reason would recommend that these methods

could be applied to these first. There are however, a number of additional considerations

when producing classifications and species associations. Unlike Cors Fochno the terrain

is not flat and its slope differences could influence some of the work. Also present in

these regions are areas that are grazed and areas that are not, so adding to the confusion.

Despite the flexibility of this system, care does need to be taken and good knowledge of

that habitat/s is required before embarking on the process.
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7.9 Conclusions

1. Investigation of the phenology of vegetation spectral data has enabled the accurate

selection of the timing of satellite imagery acquisitions of seasonal imagery. This work

shows that for each species between species and within species variation can effect the

time that is best for species discrimination. In the case of raised bog vegetation this

provided valuable information for best times to discriminate a group of dominant species

with the ability to select best periods for individual species discrimination.

2. The multivariate analysis method of selection (F-ratio) can be successfully applied

to WV2 data and provides useful information on the best indices and images (where

multi images are used) to use for input into an adjusted Earth Observation Data Habitat

Mapping system (EODHaM) in particular for classification of dominant species relating

to ecological gradients of a protected lowland-raised bog. It was shown that the cor-

respondance between the field spectro-radiometer and satellite data was not sufficient

to use the field spectroradiometer data for index selection and so the selection process

(F-ratio) was used on the satellite data for classification purposes.

3. The EODHaM system is a flexible system which provides a suitable frame on which

to develop scripts (relating to classification rules) and classification subjects that are

applicable to a conservation question or a site. Data fusion (multi dates) which is easily

carried out within this system has helped to contribute to the improved discrimination

and classification of species.

4. This study establishes that Land Cover Classification System (LCCS) categories

can be mapped to level 2 using WorldView 2, with discrimination achieved using rela-

tionships with biophysical attributes extrapolated from indices based on spectral bands

and seasonal imagery. The spectral indices, which relate primarily to plant productivity,

the amount of dead/senescent material and moisture content and structural informa-

tion. The LCCS provides a map of the broad vegetation types occurring together with
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information on their biophysical characteristics (e.g., moisture, productivity etc.) which

can be combined easily with dominant plant species maps to provide a single map of

varying classification scales.

5. It was shown that associations can be made between invertebrate data and the

satellite derived data (dominant plant species showing ecological gradients and indices

indicating biophysical attributes). The classification maps along with other relevant ex-

tracted information regarding the biophysical properties, vegetation condition, structure

and heterogeneity were used effectively as important ecological input into invertebrate

species distribution models.

6. This work demonstrates that spectral indices and derived dominant plant species

classifications can be used as biodiversity indicators of the composition, structure

and functional diversity of the protected site. The study has established that VHR

datasets, and particularly if optical and UAV data are combined, can be used as a basis

for establishing baselines of habitat extent, state and condition from which biodiversity

distributions can be broadly inferred. Such baselines can support monitoring of habitats

and associated flora and fauna species using data acquired in subsequent years.

7. The overall aim to use VHR optical imagery (in this case WV2 data) parame-

ters as indicators of condition for flora and invertebrates present on lowland raised

bog was achieved with further implications of use for creating baseline distributions of

other fauna types.
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Appendix A

Chapter 4

A.1 SAM results

A.1.1 Between species

April cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.000 0.277 0.633 0.000 0.600 0.000 0.000 0.000 0.000

eri ang 0.000 1.000 0.646 0.112 0.495 0.000 0.840 0.716 0.000 0.000

eri vag 0.277 0.646 1.000 0.378 0.198 0.259 0.567 0.450 0.000 0.000

jun eff 0.633 0.112 0.378 1.000 0.000 0.548 0.000 0.022 0.000 0.000

mol cae 0.000 0.495 0.198 0.000 1.000 0.000 0.613 0.445 0.000 0.000

myr gal 0.600 0.000 0.259 0.548 0.000 1.000 0.000 0.000 0.000 0.000

phr aus 0.000 0.840 0.567 0.000 0.613 0.000 1.000 0.660 0.000 0.000

pte aqu 0.000 0.716 0.450 0.022 0.445 0.000 0.660 1.000 0.000 0.000

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.194

sph pul 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.194 1.000

Table A.1: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in April. These calculations
were made from reflectance values that were recorded between wavelengths
300 and 2500 nanometers at 1 nanaometer intervals.
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May cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.143 0.242 0.641 0.000 0.558 0.074 0.000 0.000 0.000

eri ang 0.143 1.000 0.869 0.308 0.480 0.057 0.872 0.570 0.000 0.000

eri vag 0.242 0.869 1.000 0.384 0.383 0.156 0.796 0.506 0.000 0.000

jun eff 0.641 0.308 0.384 1.000 0.000 0.350 0.242 0.208 0.000 0.000

mol cae 0.000 0.480 0.383 0.000 1.000 0.000 0.559 0.452 0.000 0.000

myr gal 0.558 0.057 0.156 0.350 0.000 1.000 0.000 0.000 0.072 0.000

phr aus 0.074 0.872 0.796 0.242 0.559 0.000 1.000 0.602 0.000 0.000

pte aqu 0.000 0.570 0.506 0.208 0.452 0.000 0.602 1.000 0.000 0.000

sph cus 0.000 0.000 0.000 0.000 0.000 0.072 0.000 0.000 1.000 0.177

sph pul 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.177 1.000

June cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.486 0.664 0.508 0.172 0.459 0.454 0.251 0.000 0.000

eri ang 0.486 1.000 0.669 0.113 0.653 0.070 0.099 0.614 0.000 0.000

eri vag 0.664 0.669 1.000 0.374 0.403 0.359 0.400 0.338 0.000 0.000

jun eff 0.508 0.113 0.374 1.000 0.000 0.739 0.713 0.000 0.000 0.000

mol cae 0.172 0.653 0.403 0.000 1.000 0.000 0.000 0.526 0.000 0.000

myr gal 0.459 0.070 0.359 0.739 0.000 1.000 0.872 0.000 0.000 0.000

phr aus 0.454 0.099 0.400 0.713 0.000 0.872 1.000 0.000 0.000 0.000

pte aqu 0.251 0.614 0.338 0.000 0.526 0.000 0.000 1.000 0.000 0.000

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.126

sph pul 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.126 1.000

July cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.551 0.640 0.860 0.799 0.054 0.548 0.240 0.000 0.000

eri ang 0.551 1.000 0.862 0.000 0.597 0.000 0.164 0.000 0.000 0.000

eri vag 0.640 0.862 1.000 0.000 0.686 0.000 0.252 0.000 0.000 0.000

jun eff 0.860 0.000 0.000 1.000 0.023 0.689 0.474 0.586 0.000 0.063

mol cae 0.799 0.597 0.686 0.023 1.000 0.000 0.508 0.186 0.000 0.000

myr gal 0.054 0.000 0.000 0.689 0.000 1.000 0.477 0.769 0.000 0.122

phr aus 0.548 0.164 0.252 0.474 0.508 0.477 1.000 0.649 0.000 0.000

pte aqu 0.240 0.000 0.000 0.586 0.186 0.769 0.649 1.000 0.000 0.000

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.005

sph pul 0.000 0.000 0.000 0.063 0.000 0.122 0.000 0.000 0.005 1.000

Table A.2: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in May, June and July.
These calculations were made from reflectance values that were recorded
between wavelengths 300 and 2500 nanometers at 1 nanaometer intervals.
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August cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.497 0.727 0.691 0.709 0.316 0.686 0.111 0.000 0.000

eri ang 0.497 1.000 0.658 0.393 0.317 0.000 0.266 0.000 0.000 0.000

eri vag 0.727 0.658 1.000 0.541 0.540 0.124 0.504 0.000 0.000 0.000

jun eff 0.691 0.393 0.541 1.000 0.603 0.319 0.656 0.091 0.000 0.007

mol cae 0.709 0.317 0.540 0.603 1.000 0.508 0.806 0.298 0.000 0.036

myr gal 0.316 0.000 0.124 0.319 0.508 1.000 0.562 0.691 0.000 0.361

phr aus 0.686 0.266 0.504 0.656 0.806 0.562 1.000 0.330 0.000 0.109

pte aqu 0.111 0.000 0.000 0.091 0.298 0.691 0.330 1.000 0.000 0.494

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.163

sph pul 0.000 0.000 0.000 0.007 0.036 0.361 0.109 0.494 0.163 1.000

September cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.736 0.757 0.390 0.672 0.109 0.395 0.000 0.000 0.000

eri ang 0.736 1.000 0.821 0.582 0.567 0.000 0.259 0.000 0.000 0.000

eri vag 0.757 0.821 1.000 0.503 0.601 0.000 0.255 0.000 0.000 0.000

jun eff 0.390 0.582 0.503 1.000 0.189 0.000 0.000 0.000 0.000 0.000

mol cae 0.672 0.567 0.601 0.189 1.000 0.323 0.586 0.000 0.000 0.000

myr gal 0.109 0.000 0.000 0.000 0.323 1.000 0.618 0.567 0.000 0.386

phr aus 0.395 0.259 0.255 0.000 0.586 0.618 1.000 0.221 0.000 0.168

pte aqu 0.000 0.000 0.000 0.000 0.000 0.567 0.221 1.000 0.241 0.544

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.241 1.000 0.307

sph pul 0.000 0.000 0.000 0.000 0.000 0.386 0.168 0.544 0.307 1.000

October cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.568 0.703 0.359 0.778 0.248 0.712 0.169 0.000 0.147

eri ang 0.568 1.000 0.505 0.736 0.636 0.000 0.404 0.000 0.000 0.000

eri vag 0.703 0.505 1.000 0.279 0.652 0.294 0.640 0.240 0.000 0.234

jun eff 0.359 0.736 0.279 1.000 0.402 0.000 0.179 0.000 0.000 0.000

mol cae 0.778 0.636 0.652 0.402 1.000 0.188 0.729 0.115 0.000 0.056

myr gal 0.248 0.000 0.294 0.000 0.188 1.000 0.409 0.860 0.000 0.420

phr aus 0.712 0.404 0.640 0.179 0.729 0.409 1.000 0.325 0.000 0.192

pte aqu 0.169 0.000 0.240 0.000 0.115 0.860 0.325 1.000 0.000 0.492

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

sph pul 0.147 0.000 0.234 0.000 0.056 0.420 0.192 0.492 0.000 1.000

Table A.3: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in August, September and
October. These calculations were made from reflectance values that were
recorded between wavelengths 300 and 2500 nanometers at 1 nanaometer
intervals.
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November cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.414 0.673 0.571 0.474 0.270 0.249 0.000 0.000 0.000

eri ang 0.414 1.000 0.279 0.726 0.711 0.000 0.757 0.461 0.000 0.000

eri vag 0.673 0.279 1.000 0.492 0.420 0.378 0.143 0.000 0.000 0.000

jun eff 0.571 0.726 0.492 1.000 0.751 0.000 0.615 0.251 0.000 0.000

mol cae 0.474 0.711 0.420 0.751 1.000 0.000 0.586 0.312 0.000 0.000

myr gal 0.270 0.000 0.378 0.000 0.000 1.000 0.000 0.000 0.000 0.057

phr aus 0.249 0.757 0.143 0.615 0.586 0.000 1.000 0.537 0.000 0.000

pte aqu 0.000 0.461 0.000 0.251 0.312 0.000 0.537 1.000 0.000 0.000

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

sph pul 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 1.000

Table A.4: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in November. These cal-
culations were made from reflectance values that were recorded between
wavelengths 300 and 2500 nanometers at 1 nanaometer intervals.
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300-1000nm section of Spectrum -spectral analysis

April cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.177 0.199 0.641 0.000 0.519 0.000 0.205 0.170 0.575

eri ang 0.177 1.000 0.919 0.317 0.425 0.492 0.719 0.726 0.000 0.393

eri vag 0.199 0.919 1.000 0.320 0.434 0.516 0.734 0.680 0.003 0.409

jun eff 0.641 0.317 0.320 1.000 0.000 0.494 0.061 0.432 0.000 0.575

mol cae 0.000 0.425 0.434 0.000 1.000 0.020 0.688 0.212 0.000 0.000

myr gal 0.519 0.492 0.516 0.494 0.020 1.000 0.310 0.437 0.174 0.607

phr aus 0.000 0.719 0.734 0.061 0.688 0.310 1.000 0.493 0.000 0.173

pte aqu 0.205 0.726 0.680 0.432 0.212 0.437 0.493 1.000 0.000 0.355

sph cus 0.170 0.000 0.003 0.000 0.000 0.174 0.000 0.000 1.000 0.283

sph pul 0.575 0.393 0.409 0.575 0.000 0.607 0.173 0.355 0.283 1.000

May cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.101 0.158 0.536 0.000 0.613 0.000 0.192 0.256 0.439

eri ang 0.101 1.000 0.917 0.252 0.450 0.425 0.815 0.641 0.201 0.253

eri vag 0.158 0.917 1.000 0.311 0.396 0.473 0.778 0.677 0.214 0.278

jun eff 0.536 0.252 0.311 1.000 0.000 0.521 0.109 0.492 0.032 0.278

mol cae 0.000 0.450 0.396 0.000 1.000 0.000 0.587 0.173 0.000 0.000

myr gal 0.613 0.425 0.473 0.521 0.000 1.000 0.287 0.428 0.434 0.610

phr aus 0.000 0.815 0.778 0.109 0.587 0.287 1.000 0.513 0.134 0.134

pte aqu 0.192 0.641 0.677 0.492 0.173 0.428 0.513 1.000 0.008 0.167

sph cus 0.256 0.201 0.214 0.032 0.000 0.434 0.134 0.008 1.000 0.670

sph pul 0.439 0.253 0.278 0.278 0.000 0.610 0.134 0.167 0.670 1.000

June cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.405 0.418 0.736 0.000 0.892 0.744 0.280 0.086 0.452

eri ang 0.405 1.000 0.904 0.396 0.492 0.428 0.521 0.696 0.000 0.394

eri vag 0.418 0.904 1.000 0.388 0.519 0.450 0.556 0.618 0.000 0.433

jun eff 0.736 0.396 0.388 1.000 0.000 0.729 0.691 0.340 0.000 0.355

mol cae 0.000 0.492 0.519 0.000 1.000 0.000 0.118 0.332 0.000 0.125

myr gal 0.892 0.428 0.450 0.729 0.000 1.000 0.812 0.273 0.165 0.539

phr aus 0.744 0.521 0.556 0.691 0.118 0.812 1.000 0.343 0.150 0.544

pte aqu 0.280 0.696 0.618 0.340 0.332 0.273 0.343 1.000 0.000 0.145

sph cus 0.086 0.000 0.000 0.000 0.000 0.165 0.150 0.000 1.000 0.438

sph pul 0.452 0.394 0.433 0.355 0.125 0.539 0.544 0.145 0.438 1.000

Table A.5: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in April, May and June.
These calculations were made from reflectance values that were recorded
between wavelengths 300 and 1000 nanometers at 1 nanaometer intervals.
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July cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.628 0.656 0.503 0.765 0.576 0.721 0.659 0.306 0.537

eri ang 0.628 1.000 0.858 0.341 0.582 0.307 0.510 0.350 0.105 0.477

eri vag 0.656 0.858 1.000 0.309 0.597 0.323 0.529 0.390 0.193 0.507

jun eff 0.503 0.341 0.309 1.000 0.660 0.736 0.694 0.607 0.089 0.310

mol cae 0.765 0.582 0.597 0.660 1.000 0.710 0.901 0.723 0.247 0.457

myr gal 0.576 0.307 0.323 0.736 0.710 1.000 0.768 0.833 0.267 0.353

phr aus 0.721 0.510 0.529 0.694 0.901 0.768 1.000 0.776 0.268 0.444

pte aqu 0.659 0.350 0.390 0.607 0.723 0.833 0.776 1.000 0.378 0.420

sph cus 0.306 0.105 0.193 0.089 0.247 0.267 0.268 0.378 1.000 0.506

sph pul 0.537 0.477 0.507 0.310 0.457 0.353 0.444 0.420 0.506 1.000

Aug cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.776 0.735 0.678 0.645 0.568 0.706 0.518 0.228 0.648

eri ang 0.776 1.000 0.762 0.785 0.516 0.423 0.621 0.351 0.101 0.581

eri vag 0.735 0.762 1.000 0.589 0.447 0.366 0.534 0.335 0.241 0.594

jun eff 0.678 0.785 0.589 1.000 0.570 0.485 0.651 0.361 0.000 0.516

mol cae 0.645 0.516 0.447 0.570 1.000 0.853 0.789 0.722 0.095 0.453

myr gal 0.568 0.423 0.366 0.485 0.853 1.000 0.735 0.833 0.123 0.424

phr aus 0.706 0.621 0.534 0.651 0.789 0.735 1.000 0.647 0.108 0.500

pte aqu 0.518 0.351 0.335 0.361 0.722 0.833 0.647 1.000 0.240 0.439

sph cus 0.228 0.101 0.241 0.000 0.095 0.123 0.108 0.240 1.000 0.425

sph pul 0.648 0.581 0.594 0.516 0.453 0.424 0.500 0.439 0.425 1.000

September cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.734 0.777 0.617 0.587 0.421 0.490 0.301 0.329 0.611

eri ang 0.734 1.000 0.748 0.830 0.596 42.000 0.622 0.308 0.186 0.603

eri vag 0.777 0.748 1.000 0.669 0.568 0.385 0.474 0.266 0.315 0.580

jun eff 0.617 0.830 0.669 1.000 0.479 0.303 0.528 0.207 0.064 0.510

mol cae 0.587 0.596 0.568 0.479 1.000 0.786 0.745 0.657 0.358 0.612

myr gal 0.421 0.420 0.385 0.303 0.786 1.000 0.681 0.836 0.348 0.510

phr aus 0.490 0.622 0.474 0.528 0.745 0.681 1.000 0.593 0.178 0.553

pte aqu 0.301 0.308 0.266 0.207 0.657 0.836 0.593 1.000 0.314 0.458

sph cus 0.329 0.186 0.315 0.064 0.358 0.348 0.178 0.314 1.000 0.460

sph pul 0.611 0.603 0.580 0.510 0.612 0.510 0.553 0.458 0.460 1.000

Table A.6: Spectral angle mapping scores for spectral angles set at
0.25 from field spectrometer reflectance data recorded in July, August and
September. These calculations were made from reflectance values that were
recorded between wavelengths 300 and 1000 nanometers at 1 nanaometer
intervals.
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October cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.788 0.759 0.607 0.736 0.627 0.658 0.637 0.152 0.646

eri ang 0.788 1.000 0.717 0.792 0.712 0.513 0.679 0.527 0.000 0.636

eri vag 0.759 0.717 1.000 0.641 0.578 0.493 0.538 0.512 0.201 0.643

jun eff 0.607 0.792 0.641 1.000 0.529 0.338 0.527 0.352 0.000 0.563

mol cae 0.736 0.712 0.578 0.529 1.000 0.729 0.830 0.742 0.030 0.517

myr gal 0.627 0.513 0.493 0.338 0.729 1.000 0.694 0.944 0.175 0.451

phr aus 0.658 0.679 0.538 0.527 0.830 0.694 1.000 0.697 0.000 0.463

pte aqu 0.637 0.527 0.512 0.352 0.742 0.944 0.697 1.000 0.192 0.476

sph cus 0.152 0.000 0.201 0.000 0.030 0.175 0.000 0.192 1.000 0.220

sph pul 0.646 0.636 0.643 0.563 0.517 0.451 0.463 0.476 0.220 1.000

November cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.593 0.663 0.568 0.365 0.711 0.504 0.213 0.000 0.448

eri ang 0.593 1.000 0.628 0.735 0.581 0.527 0.737 0.506 0.000 0.396

eri vag 0.663 0.628 1.000 0.782 0.635 0.501 0.660 0.312 0.000 0.565

jun eff 0.568 0.735 0.782 1.000 0.709 0.477 0.822 0.486 0.000 0.433

mol cae 0.365 0.581 0.635 0.709 1.000 0.222 0.679 0.489 0.000 0.399

myr gal 0.711 0.527 0.501 0.477 0.222 1.000 0.419 0.142 0.000 0.329

phr aus 0.504 0.737 0.660 0.822 0.679 0.419 1.000 0.614 0.000 0.323

pte aqu 0.213 0.506 0.312 0.486 0.489 0.142 0.614 1.000 0.000 0.008

sph cus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.092

sph pul 0.448 0.396 0.565 0.433 0.399 0.329 0.323 0.008 0.092 1.000

Table A.7: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in October and November.
These calculations were made from reflectance values that were recorded
between wavelengths 300 and 1000 nanometers at 1 nanaometer intervals.
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Conversion of field spec to WV2 - spectral analysis

April cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.000 0.000 0.004 0.000 0.47 0.000 0.8 0.674 0.633

eri ang 0.000 1.000 0.92 0.151 0.347 0.43 0.672 0.767 0.106 0.322

eri vag 0.000 0.92 1.000 0.149 0.352 0.46 0.688 0.73 0.139 0.326

jun eff 0.004 0.151 0.149 1.000 0.000 0.473 0.000 0.314 0.163 0.674

mol cae 0.000 0.347 0.352 0.000 1.000 0.000 0.66 0.155 0.000 0.000

myr gal 0.47 0.43 0.46 0.473 0.000 1.000 0.174 0.471 0.405 0.65

phr aus 0 0.672 0.688 0 0.66 0.174 1.000 0.473 0.000 0.022

pte aqu 0.8 0.767 0.73 0.314 0.155 0.471 0.473 1.000 0.054 0.412

sph cus 0.674 0.106 0.139 0.163 0.000 0.405 0 0.054 1.000 0.441

sph pul 0.633 0.322 0.326 0.674 0.000 0.65 0.022 0.412 0.441 1.000

May cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.000 0.031 0.481 0.000 0.659 0.000 0.108 0.502 0.694

eri ang 0.000 1.000 0.938 0.112 0.363 0.279 0.787 0.683 0.256 0.212

eri vag 0.031 0.938 1.000 0.164 0.308 0.332 0.748 0.713 0.305 0.267

jun eff 0.481 0.112 0.164 1.000 0.000 0.498 0.000 0.369 0.231 0.497

mol cae 0.000 0.363 0.308 0.000 1.000 0.000 0.536 0.095 0.000 0.000

myr gal 0.659 0.279 0.332 0.498 0.000 1.000 0.105 0.375 0.666 0.849

phr aus 0.000 0.787 0.748 0.000 0.536 0.105 1.000 0.502 0.137 0.047

pte aqu 0.108 0.683 0.713 0.369 0.095 0.375 0.502 1.000 0.226 0.301

sph cus 0.502 0.256 0.305 0.231 0.000 0.666 0.137 0.226 1.000 0.694

sph pul 0.694 0.212 0.267 0.497 0.000 0.849 0.047 0.301 0.694 1.000

June cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.258 0.266 0.656 0.000 0.913 0.686 0.175 0.419 0.598

eri ang 0.258 1.000 0.927 0.237 0.422 0.297 0.460 0.758 0.064 0.484

eri vag 0.266 0.927 1.000 0.228 0.439 0.307 0.473 0.707 0.101 0.499

jun eff 0.656 0.237 0.228 1.000 0.000 0.687 0.691 0.231 0.157 0.435

mol cae 0.000 0.422 0.439 0.000 1.000 0.000 0.000 0.343 0.000 0.000

myr gal 0.913 0.297 0.307 0.687 0.000 1.000 0.751 0.207 0.440 0.644

phr aus 0.686 0.460 0.473 0.691 0.000 0.751 1.000 0.387 0.321 0.637

pte aqu 0.175 0.758 0.707 0.231 0.343 0.207 0.387 1.000 0.000 0.307

sph cus 0.419 0.064 0.101 0.157 0.000 0.440 0.321 0.000 1.000 0.528

sph pul 0.598 0.484 0.499 0.435 0.000 0.644 0.637 0.307 0.528 1.000

Table A.8: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in April, May and June.
These calculations were made from reflectance values that were recorded for
mean bandwidths recorded by the WV2 sensor (8 WV2 bands = 429, 480,
548, 608, 659, 723, 825, 915 nanometers).
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July cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.554 0.548 0.215 0.616 0.441 0.569 0.659 0.666 0.733

eri ang 0.554 1.000 0.838 0.118 0.540 0.225 0.451 0.326 0.372 0.710

eri vag 0.548 0.838 1.000 0.025 0.485 0.168 0.407 0.313 0.445 0.653

jun eff 0.215 0.118 0.025 1.000 0.514 0.693 0.556 0.416 0.020 0.225

mol cae 0.616 0.540 0.485 0.514 1.000 0.670 0.895 0.673 0.420 0.610

myr gal 0.441 0.225 0.168 0.693 0.670 1.000 0.728 0.703 0.286 0.371

phr aus 0.569 0.451 0.407 0.556 0.895 0.728 1.000 0.706 0.393 0.528

pte aqu 0.659 0.326 0.313 0.416 0.673 0.703 0.706 1.000 0.553 0.500

sph cus 0.666 0.372 0.445 0.020 0.420 0.286 0.393 0.553 1.000 0.533

sph pul 0.733 0.710 0.653 0.225 0.610 0.371 0.528 0.500 0.533 1.000

August cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.760 0.670 0.652 0.547 0.452 0.613 0.478 0.504 0.850

eri ang 0.760 1.000 0.746 0.753 0.434 0.336 0.548 0.334 0.378 0.772

eri vag 0.670 0.746 1.000 0.528 0.277 0.178 0.384 0.202 0.536 0.720

jun eff 0.652 0.753 0.528 1.000 0.574 0.478 0.690 0.441 0.201 0.639

mol cae 0.547 0.434 0.277 0.574 1.000 0.886 0.835 0.846 0.179 0.487

myr gal 0.452 0.336 0.178 0.478 0.886 1.000 0.746 0.894 0.112 0.395

phr aus 0.613 0.548 0.384 0.690 0.835 0.746 1.000 0.718 0.211 0.549

pte aqu 0.478 0.334 0.202 0.441 0.846 0.894 0.718 1.000 0.185 0.419

sph cus 0.504 0.378 0.536 0.201 0.179 0.112 0.211 0.185 1.000 0.541

sph pul 0.850 0.772 0.720 0.639 0.487 0.395 0.549 0.419 0.541 1.000

September cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.735 0.741 0.610 0.495 0.287 0.345 0.129 0.506 0.657

eri ang 0.735 1.000 0.738 0.835 0.583 0.384 0.512 0.246 0.408 0.736

eri vag 0.741 0.738 1.000 0.668 0.455 0.234 0.312 0.082 0.511 0.618

jun eff 0.610 0.835 0.668 1.000 0.454 0.274 0.433 0.156 0.275 0.614

mol cae 0.495 0.583 0.455 0.454 1.000 0.767 0.742 0.603 0.520 0.756

myr gal 0.287 0.384 0.234 0.274 0.767 1.000 0.765 0.828 0.351 0.546

phr aus 0.345 0.512 0.312 0.433 0.742 0.765 1.000 0.688 0.268 0.589

pte aqu 0.129 0.246 0.082 0.156 0.603 0.828 0.688 1.000 0.199 0.400

sph cus 0.506 0.408 0.511 0.275 0.520 0.351 0.268 0.199 1.000 0.562

sph pul 0.657 0.736 0.618 0.614 0.756 0.546 0.589 0.400 0.562 1.000

Table A.9: Spectral angle mapping scores for spectral angles set at
0.25 from field spectrometer reflectance data recorded in July, August and
September. These calculations were made from reflectance values that were
recorded for mean bandwidths recorded by the WV2 sensor (8 WV2 bands
= 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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October cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.789 0.699 0.546 0.658 0.575 0.563 0.596 0.416 0.810

eri ang 0.789 1.000 0.700 0.735 0.660 0.531 0.617 0.553 0.261 0.845

eri vag 0.699 0.700 1.000 0.626 0.454 0.367 0.400 0.397 0.467 0.761

jun eff 0.546 0.735 0.626 1.000 0.431 0.304 0.431 0.324 0.109 0.687

mol cae 0.658 0.660 0.454 0.431 1.000 0.818 0.847 0.847 0.203 0.582

myr gal 0.575 0.531 0.367 0.304 0.818 1.000 0.775 0.948 0.211 0.475

phr aus 0.563 0.617 0.400 0.431 0.847 0.775 1.000 0.785 0.104 0.508

pte aqu 0.596 0.553 0.397 0.324 0.847 0.948 0.785 1.000 0.236 0.498

sph cus 0.416 0.261 0.467 0.109 0.203 0.211 0.104 0.236 1.000 0.360

sph pul 0.810 0.845 0.761 0.687 0.582 0.475 0.508 0.498 0.360 1.000

November cal vul eri ang eri vag jun eff mol cae myr gal phr aus pte aqu sph cus sph pul

cal vul 1.000 0.568 0.573 0.440 0.239 0.656 0.447 0.214 0.187 0.587

eri ang 0.568 1.000 0.609 0.710 0.483 0.503 0.705 0.580 0.000 0.52

eri vag 0.573 0.609 1.000 0.744 0.612 0.375 0.723 0.422 0.204 0.767

jun eff 0.440 0.710 0.744 1.000 0.680 0.350 0.917 0.638 0.000 0.56

mol cae 0.239 0.483 0.612 0.680 1.000 0.063 0.663 0.569 0.000 0.514

myr gal 0.656 0.503 0.375 0.350 0.063 1.000 0.349 0.155 0.000 0.321

phr aus 0.447 0.705 0.723 0.917 0.663 0.349 1.000 0.674 0.000 0.532

pte aqu 0.214 0.580 0.422 0.638 0.569 0.155 0.674 1.000 0.000 0.272

sph cus 0.187 0.000 0.204 0.000 0.000 0.000 0.000 0.000 1.000 0.331

sph pul 0.587 0.52 0.767 0.56 0.514 0.321 0.532 0.272 0.331 1.000

Table A.10: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in October and November.
These calculations were made from reflectance values that were recorded for
mean bandwidths recorded by the WV2 sensor (8 WV2 bands = 429, 480,
548, 608, 659, 723, 825, 915 nanometers).
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A.1.2 Within species

April Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.984 0.97 0.966 0.943 0.991 0.843 0.975 0.981 0.98 0.997

2 0.981 0.957 0.955 0.926 0.992 0.872 0.974 0.992 0.98 0.987

3 0.965 0.907 0.946 0.948 0.985 0.907 0.979 0.98 0.982 0.978

4 0.966 0.947 0.938 0.862 0.979 0.761 0.979 0.988 0.95 0.963

5 0.962 0.951 0.947 0.939 0.976 0.762 0.959 0.977 0.941 0.973

6 0.96 0.948 0.941 0.872 0.972 0.797 0.946 0.976 0.964 0.97

7 0.935 0.951 0.937 0.845 0.987 0.763 0.949 0.985 0.954 0.972

8 0.933 0.948 0.919 0.884 0.974 0.72 0.908 0.915 0.94 0.968

9 0.955 0.933 0.949 0.81 0.978 0.757 0.918 0.984 0.935 0.953

10 0.955 0.926 0.934 0.827 0.978 0.679 0.878 0.965 0.914 0.972

11 0.952 0.937 0.919 0.908 0.974 0.679 0.868 0.973 0.92 0.969

12 0.924 0.927 0.927 0.806 0.97 0.721 0.913 0.976 0.92 0.947

13 0.932 0.948 0.878 0.807 0.971 0.721 0.913 0.972 0.959 0.951

14 0.952 0.934 0.873 0.798 0.966 0.723 0.862 0.96 0.912 0.928

15 0.931 0.896 0.871 0.671 0.97 0.712 0.893 0.939 0.884 0.948

16 0.843 0.882 0.874 0.696 0.974 0.732 0.858 0.911 0.897 0.947

17 0.852 0.882 0.874 0.603 0.972 0.556 0.858 0.903 0.889 0.952

18 0.89 0.882 0.831 0.497 0.953 0.762 0.721 0.95 0.87 0.949

19 0.837 0.912 0.827 0.414 0.946 0.797 0.848 0.911 0.841 0.946

20 0.801 0.896 0.814 0.865 0.946 0.763 0.771 0.966 0.935 0.917

Table A.11: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in April measuring spectral
difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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May Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.993 0.944 0.961 0.93 0.992 0.981 0.992 0.978 0.991 0.991

2 0.99 0.986 0.967 0.94 0.999 0.969 0.989 0.99 0.988 0.972

3 0.983 0.977 0.967 0.949 0.991 0.958 0.991 0.985 0.998 0.973

4 0.977 0.961 0.967 0.915 0.9987 0.961 0.99 0.988 0.979 0.987

5 0.973 0.967 0.962 0.951 0.983 0.945 0.991 0.988 0.961 0.974

6 0.964 0.98 0.944 0.928 0.986 0.951 0.978 0.968 0.934 0.976

7 0.951 0.963 0.953 0.914 0.979 0.922 0.974 0.974 0.93 0.971

8 0.959 0.943 0.953 0.926 0.978 0.924 0.967 0.964 0.962 0.964

9 0.964 0.949 0.949 0.895 0.977 0.919 0.963 0.955 0.944 0.947

10 0.954 0.934 0.97 0.859 0.977 0.902 0.961 0.978 0.908 0.958

11 0.959 0.967 0.929 0.903 0.978 0.918 0.961 0.962 0.909 0.965

12 0.953 0.977 0.935 0.9 0.967 0.858 0.965 0.948 0.894 0.944

13 0.953 0.959 0.937 0.856 0.976 0.845 0.942 0.976 0.918 0.934

14 0.937 0.94 0.94 0.843 0.961 0.854 0.937 0.97 0.866 0.93

15 0.948 0.921 0.928 0.833 0.954 0.916 0.939 0.977 0.92 0.932

16 0.932 0.925 0.929 0.773 0.955 0.859 0.95 0.946 0.889 0.917

17 0.929 0.939 0.934 0.667 0.956 0.819 0.922 0.972 0.85 0.918

18 0.939 0.935 0.937 0.723 0.952 0.857 0.892 0.95 0.835 0.939

19 0.934 0.915 0.942 0.699 0.959 0.87 0.878 0.929 0.825 0.905

20 0.926 0.883 0.943 0.648 0.944 0.87 0.856 0.93 0.846 0.88

Table A.12: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in May measuring spectral
difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

June Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.994 0.996 0.977 0.995 0.994 0.989 0.97 0.993 0.996 0.987

2 0.979 0.995 0.987 0.992 0.981 0.984 0.966 0.994 0.994 0.99

3 0.98 0.977 0.98 0.992 0.977 0.988 0.952 0.987 0.986 0.986

4 0.877 0.997 0.974 0.979 0.928 0.878 0.943 0.99 0.982 0.991

5 0.97 0.965 0.977 0.974 0.968 0.99 0.903 0.979 0.991 0.977

6 0.965 0.993 0.976 0.958 0.914 0.919 0.915 0.985 0.978 0.99

7 0.966 0.989 0.965 0.977 0.914 0.988 0.917 0.985 0.972 0.974

8 0.964 0.993 0.981 0.986 0.909 0.975 0.929 0.982 0.979 0.981

9 0.959 0.991 0.963 0.972 0.97 0.978 0.935 0.989 0.987 0.965

10 0.963 0.944 0.978 0.978 0.962 0.973 0.941 0.986 0.976 0.958

11 0.961 0.988 0.976 0.948 0.946 0.967 0.941 0.983 0.987 0.956

12 0.951 0.99 0.96 0.951 0.927 0.957 0.878 0.981 0.976 0.954

13 0.862 0.94 0.956 0.928 0.906 0.968 0.933 0.984 0.983 0.953

14 0.947 0.99 0.949 0.929 0.916 0.95 0.929 0.984 0.975 0.951

15 0.944 0.988 0.953 0.956 0.885 0.962 0.915 0.976 0.976 0.972

16 0.928 0.988 0.947 0.916 0.905 0.949 0.878 0.987 0.965 0.965

17 0.915 0.985 0.939 0.85 0.887 0.936 0.852 0.968 0.969 0.957

18 0.918 0.965 0.916 0.841 0.894 0.94 0.875 0.979 0.978 0.947

19 0.916 0.948 0.937 0.988 0.868 0.94 0.928 0.976 0.946 0.946

20 0.918 0.982 0.885 0.965 0.994 0.934 0.864 0.969 0.949 0.939

Table A.13: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in June measuring spectral
difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

July Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.966 0.97 0.954 0.919 0.95 0.924 0.927 0.916 0.843 0.836

2 0.957 0.987 0.957 0.915 0.944 0.923 0.924 0.922 0.841 0.827

3 0.94 0.974 0.951 0.927 0.941 0.914 0.93 0.924 0.839 0.809

4 0.931 0.976 0.951 0.916 0.94 0.932 0.927 0.909 0.861 0.81

5 0.947 0.972 0.949 0.912 0.941 0.909 0.925 0.919 0.846 0.805

6 0.947 0.957 0.923 0.91 0.935 0.903 0.91 0.918 0.839 0.824

7 0.927 0.92 0.928 0.91 0.932 0.934 0.911 0.916 0.836 0.847

8 0.948 0.967 0.931 0.909 0.944 0.928 0.908 0.915 0.844 0.787

9 0.924 0.968 0.932 0.906 0.926 0.928 0.916 0.924 0.844 0.843

10 0.934 0.964 0.91 0.906 0.909 0.898 0.907 0.911 0.84 0.832

11 0.93 0.964 0.901 0.898 0.915 0.926 0.935 0.92 0.842 0.855

12 0.943 0.967 0.924 0.891 0.903 0.893 0.933 0.904 0.842 0.824

13 0.938 0.964 0.904 0.881 0.902 0.926 0.899 0.911 0.841 0.866

14 0.927 0.966 0.887 0.859 0.885 0.917 0.908 0.917 0.84 0.829

15 0.937 0.962 0.872 0.853 0.887 0.916 0.921 0.914 0.844 0.859

16 0.932 0.918 0.864 0.829 0.858 0.92 0.905 0.912 0.851 0.817

17 0.922 0.932 0.86 0.915 0.854 0.911 0.91 0.903 0.859 0.827

18 0.9 0.978 0.906 0.921 0.832 0.917 0.898 0.897 0.864 0.797

19 0.877 0.972 0.888 0.916 0.928 0.906 0.891 0.883 0.839 0.798

20 0.934 0.975 0.837 0.91 0.925 0.884 0.935 0.883 0.846 0.798

Table A.14: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in July measuring spectral
difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

August Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.992 0.975 0.989 0.976 0.992 0.991 0.993 0.992 0.994 0.991

2 0.99 0.975 0.998 0.95 0.989 0.982 0.989 0.99 0.995 0.983

3 0.99 0.97 0.988 0.954 0.99 0.969 0.98 0.992 0.991 0.985

4 0.988 0.97 0.994 0.94 0.994 0.967 0.983 0.991 0.99 0.968

5 0.991 0.974 0.986 0.912 0.986 0.968 0.972 0.985 0.983 0.97

6 0.99 0.946 0.978 0.91 0.991 0.96 0.975 0.99 0.991 0.967

7 0.986 0.949 0.873 0.96 0.985 0.973 0.971 0.987 0.991 0.974

8 0.992 0.948 0.975 0.905 0.986 0.973 0.966 0.983 0.984 0.972

9 0.989 0.928 0.979 0.901 0.983 0.964 0.958 0.987 0.99 0.981

10 0.985 0.921 0.975 0.918 0.989 0.951 0.957 0.978 0.983 0.977

11 0.99 0.906 0.961 0.916 0.99 0.953 0.959 0.979 0.982 0.967

12 0.989 0.912 0.958 0.91 0.982 0.965 0.948 0.976 0.983 0.967

13 0.982 0.92 0.948 0.907 0.979 0.945 0.938 0.981 0.979 0.969

14 0.983 0.905 0.956 0.907 0.983 0.933 0.936 0.975 0.974 0.973

15 0.981 0.928 0.96 0.927 0.982 0.926 0.934 0.98 0.975 0.96

16 0.977 0.901 0.938 0.919 0.98 0.915 0.932 0.974 0.975 0.969

17 0.98 0.903 0.939 0.909 0.985 0.923 0.93 0.97 0.978 0.972

18 0.975 0.905 0.935 0.923 0.981 0.902 0.91 0.973 0.976 0.975

19 0.964 0.909 0.923 0.901 0.986 0.893 0.913 0.962 0.971 0.957

20 0.97 0.899 0.855 0.881 0.982 0.935 0.853 0.967 0.968 0.969

Table A.15: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in August measuring spec-
tral difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

September Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.997 0.997 0.997 0.995 0.995 0.992 0.969 0.993 0.994 0.992

2 0.993 0.992 0.997 0.992 0.988 0.985 0.975 0.993 0.995 0.991

3 0.992 0.992 0.996 0.991 0.985 0.983 0.966 0.979 0.989 0.992

4 0.99 0.993 0.995 0.992 0.983 0.974 0.96 0.978 0.988 0.984

5 0.989 0.989 0.994 0.99 0.986 0.97 0.96 0.971 0.985 0.985

6 0.993 0.989 0.996 0.988 0.982 0.965 0.967 0.971 0.982 0.979

7 0.992 0.995 0.993 0.984 0.985 0.964 0.956 0.968 0.978 0.978

8 0.988 0.987 0.944 0.987 0.983 0.966 0.955 0.969 0.98 0.974

9 0.988 0.992 0.993 0.78 0.983 0.964 0.953 0.966 0.974 0.963

10 0.992 0.991 0.992 0.976 0.987 0.967 0.961 0.964 0.972 0.961

11 0.988 0.988 0.992 0.984 0.978 0.96 0.943 0.963 0.968 0.958

12 0.988 0.99 0.995 0.985 0.983 0.961 0.936 0.962 0.967 0.958

13 0.992 0.989 0.993 0.979 0.978 0.96 0.947 0.961 0.968 0.957

14 0.986 0.988 0.992 0.981 0.981 0.958 0.933 0.963 0.964 0.955

15 0.983 0.985 0.993 0.882 0.976 0.958 0.941 0.961 0.963 0.953

16 0.984 0.985 0.989 0.894 0.976 0.96 0.951 0.961 0.961 0.954

17 0.988 0.983 0.992 0.976 0.975 0.956 0.949 0.96 0.954 0.957

18 0.993 0.977 0.983 0.901 0.973 0.948 0.935 0.958 0.959 0.951

19 0.984 0.979 0.982 0.973 0.974 0.946 0.937 0.955 0.959 0.953

20 0.99 0.974 0.983 0.963 0.956 0.926 0.909 0.939 0.951 0.938

Table A.16: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in September measuring
spectral difference of mean species data compared with the sample of 20
records of the same species. These calculations were made from reflectance
values that were recorded for the bandwidths recorded by the WV2 sensor
(8 WV2 bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

October Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.992 0.991 0.989 0.963 0.998 0.992 0.985 0.981 0.999 0.998

2 0.992 0.974 0.989 0.58 0.995 0.979 0.987 0.984 0.998 0.994

3 0.992 0.97 0.988 0.943 0.995 0.974 0.98 0.98 0.995 0.993

4 0.979 0.969 0.99 0.931 0.993 0.981 0.98 0.969 0.991 0.992

5 0.977 0.97 0.991 0.916 0.99 0.973 0.982 0.97 0.991 0.992

6 0.984 0.977 0.99 0.904 0.99 0.972 0.979 0.976 0.99 0.993

7 0.983 0.965 0.9989 0.9 0.985 0.971 0.982 0.972 0.993 0.993

8 0.973 0.969 0.988 0.9 0.992 0.97 0.981 0.969 0.991 0.997

9 0.976 0.971 0.986 0.899 0.987 0.97 0.972 0.965 0.993 0.994

10 0.977 0.974 0.99 0.896 0.986 0.968 0.965 0.973 0.991 0.994

11 0.964 0.971 0.988 0.87 0.984 0.966 0.975 0.972 0.992 0.99

12 0.98 0.972 0.987 0.894 0.977 0.966 0.97 0.965 0.991 0.988

13 0.972 0.973 0.986 0.876 0.979 0.965 0.97 0.961 0.989 0.985

14 0.97 0.968 0.985 0.864 0.972 0.961 0.946 0.961 0.986 0.992

15 0.972 0.961 0.981 0.866 0.978 0.963 0.955 0.953 0.987 0.994

16 0.97 0.965 0.987 0.877 0.973 0.959 0.939 0.96 0.983 0.989

17 0.967 0.97 0.984 0.877 0.973 0.956 0.943 0.908 0.989 0.981

18 0.968 0.962 0.98 0.877 0.973 0.959 0.94 0.942 0.987 0.986

19 0.965 0.955 0.983 0.855 0.958 0.958 0.925 0.95 0.984 0.979

20 0.959 0.951 0.981 0.931 0.968 0.955 0.932 0.962 0.98 0.983

Table A.17: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in October measuring spec-
tral difference of mean species data compared with the sample of 20 records
of the same species. These calculations were made from reflectance values
that were recorded for the bandwidths recorded by the WV2 sensor (8 WV2
bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).
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A. Chapter 4

November Cal vul Eri ang Eri vag Jun eff Mol cae Myr gal Phr aus Pte aqu Sph cus Sph pul

Mean 1 1 1 1 1 1 1 1 1 1

1 0.994 0.944 0.996 0.994 0.994 0.981 0.83 0.997 0.993 0.997

2 0.995 0.99 0.995 0.993 0.987 0.985 0.91 0.992 0.987 0.99

3 0.982 0.991 0.997 0.989 0.994 0.976 0.842 0.995 0.99 0.994

4 0.979 0.992 0.996 0.984 0.989 0.98 0.909 0.988 0.991 0.996

5 0.991 0.981 0.997 0.979 0.992 0.978 0.849 0.987 0.989 0.99

6 0.989 0.984 0.996 0.981 0.994 0.975 0.864 0.991 0.986 0.99

7 0.991 0.981 0.994 0.98 0.994 0.979 0.89 0.985 0.985 0.989

8 0.992 0.991 0.994 0.978 0.99 0.977 0.831 0.988 0.983 0.992

9 0.989 0.992 0.996 0.974 0.986 0.975 0.945 0.984 0.983 0.992

10 0.988 0.989 0.994 0.975 0.985 0.979 0.949 0.977 0.979 0.992

11 0.985 0.982 0.993 0.975 0.991 0.972 0.936 0.973 0.99 0.991

12 0.988 0.989 0.991 0.971 0.987 0.969 0.939 0.981 0.985 0.992

13 0.982 0.99 0.99 0.974 0.981 0.972 0.876 0.972 0.988 0.989

14 0.986 0.99 0.995 0.974 0.992 0.973 0.922 0.96 0.979 0.99

15 0.989 0.981 0.995 0.962 0.981 0.972 0.924 0.939 0.975 0.989

16 0.987 0.976 0.992 0.957 0.978 0.963 0.868 0.911 0.97 0.984

17 0.984 0.98 0.984 0.955 0.976 0.968 0.83 0.886 0.957 0.984

18 0.99 0.971 0.993 0.955 0.981 0.956 0.842 0.861 0.958 0.991

19 0.979 0.965 0.991 0.951 0.973 0.971 0.909 0.834 0.952 0.985

20 0.984 0.967 0.983 0.997 0.961 0.969 0.849 0.966 0.946 0.989

Table A.18: Spectral angle mapping scores for spectral angles set at 0.25
from field spectrometer reflectance data recorded in November measuring
spectral difference of mean species data compared with the sample of 20
records of the same species. These calculations were made from reflectance
values that were recorded for the bandwidths recorded by the WV2 sensor
(8 WV2 bands = 429, 480, 548, 608, 659, 723, 825, 915 nanometers).

360



A. Chapter 4

361


