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Abstract
Background: Genomic studies in non-domestic avian models, such as the California condor and
white-throated sparrow, can lead to more comprehensive conservation plans and provide clues for
understanding mechanisms affecting genetic variation, adaptation and evolution.

Developing genomic tools and resources including genomic libraries and a genetic map of the
California condor is a prerequisite for identification of candidate loci for a heritable embryonic
lethal condition. The white-throated sparrow exhibits a stable genetic polymorphism (i.e.
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chromosomal rearrangements) associated with variation in morphology, physiology, and behavior
(e.g., aggression, social behavior, sexual behavior, parental care).

In this paper we outline the utility of these species as well as report on recent advances in the study
of their genomes.

Results: Genotyping of the condor resource population at 17 microsatellite loci provided a better
assessment of the current population's genetic variation. Specific New World vulture repeats were
found in the condor genome. Using condor BAC library and clones, chicken-condor comparative
maps were generated. A condor fibroblast cell line transcriptome was characterized using the 454
sequencing technology.

Our karyotypic analyses of the sparrow in combination with other studies indicate that the
rearrangements in both chromosomes 2m and 3a are complex and likely involve multiple inversions,
interchromosomal linkage, and pleiotropy. At least a portion of the rearrangement in chromosome
2m existed in the common ancestor of the four North American species of Zonotrichia, but not in
the one South American species, and that the 2m form, originally thought to be the derived
condition, might actually be the ancestral one.

Conclusion: Mining and characterization of candidate loci in the California condor using molecular
genetic and genomic techniques as well as linkage and comparative genomic mapping will eventually
enable the identification of carriers of the chondrodystrophy allele, resulting in improved genetic
management of this disease.

In the white-throated sparrow, genomic studies, combined with ecological data, will help elucidate 
the basis of genic selection in a natural population. Morphs of the sparrow provide us with a unique 
opportunity to study intraspecific genomic differences, which have resulted from two separate yet 
linked evolutionary trajectories. Such results can transform our understanding of evolutionary and 
conservation biology.

Background
Introduction
Genomic studies in a variety of mammalian taxa have
contributed to the development of more comprehensive
plans for their conservation, as well as to our understand-
ing of the generation and maintenance of genetic diversity
in general (e.g., [1-3]). With the advances of genomic
resources for other species, it is now feasible to expand
investigation to additional taxonomic realms.

Non-domesticated species of birds are emerging as new
animal models with great potential to advance compara-
tive avian genomics and contribute to conservation efforts
for threatened species. Birds show incredible diversity in
morphology, physiology, and behavior – all of which are
analogous to phenotypic variation encountered in other
species. With the completion of the chicken genome, as
well as significant advances in turkey and zebra finch
genomic resources, it is now possible to examine the
genetic bases of complex traits using "tools" borrowed
from these species. There is a special need for genomic
studies in endangered birds to secure their recovery in nat-
ural habitats and to increase their resistance to potential
threats (e.g., disease, anthropogenic effects). In addition,
because many avian species are relatively easy to observe
in the wild, they have been intensely studied for decades

and, as a result, several long-term studies of their behav-
ior, ecology, and evolution now exist (e.g., the pied fly-
catcher, Ficedula hypoleuca, the great tit, Parus major, and
the blue tit, Parus caeruleus; see for review [4,5]), making
it possible to examine adaptive genetic variation. Finally,
many avian species are the proverbial "canary in the coal
mine", providing us with indicators of the health of an
ecosystem and sentinels for the impacts of environmental
changes.

In this paper, we review the recent genomics advances in
two model avian species, the California condor (Gymnog-
yps californianus) and the white-throated sparrow (Zonot-
richia albicollis). The critically endangered condor has been
affected by habitat destruction and an extreme bottleneck.
The white-throated sparrow is an indicator species for the
Northern Boreal forest, an essential habitat for avian bio-
diversity and a key carbon sink [6]. Through studies of
their genomes, we will develop a deeper understanding of
the genetic mechanisms affecting variation, adaptation,
evolution, and behavior in these species, thereby obtain-
ing new information relevant to conservation manage-
ment of wild populations.
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California condor
The management of wild avian species, including those
that are critically threatened and/or endangered, has
greatly benefited from the recent advances in genetics and
genomics. Among the most striking examples of genetic
application to conservation of an endangered species is
the California condor (Gymnogyps californianus). The con-
dor is an avian icon of California that belongs to the New
World vulture family (Cathartidae). Over the last two cen-
turies, there has been a rapid decline in the condor popu-
lation as their natural habitat dramatically shrank. In the
1950s, wild condors were thought to be restricted to Los
Padres National Forest in central California. By the early
1980's, a California condor rescue and restoration pro-
gram was set in motion. Captive propagation was quite
successful, and condors have been reintroduced to central
and northern California (including Los Padres National
Forest and Monterey County), the Grand Canyon area in
Arizona, and Baja California del Norte, Mexico [7].

Captive breeding necessitated the initiation of genetic
studies to assess the diversity of the remaining popula-
tion. Early genetic studies of the condor were done at the
San Diego Zoo's Institute for Conservation Research, and
included the genotyping of the original population with

RFLPs [8] and mtDNA [9] analyses (Figure 1). Within the
founder population, three unrelated groups (clans) of
closely related individuals were identified based on the
analysis of multi-locus RFLP fingerprinting [8]. Using
mtDNA markers, four distinct maternal lineages were
then identified [9]. Finally, karyotype and molecular tech-
niques were developed for sexing condors, involving first
an RFLP approach and later utilizing conserved avian sex
chromosome sequences for PCR primers [9]. Together,
these findings were used to recreate the hypothetical
founding generation of California condors, an essential
step in developing an effective population management
strategy [10].

Genetically small populations are at increased risk of
impacts of deleterious mutations as a result of founder
effect and genetic drift. A lethal mutation was identified in
the expanding pedigree of California condors that nega-
tively affected limb development [11]. The mutant pheno-
type, called chondrodystrophy, is similar to genetic
disorders observed in the chicken (nanomelia) [12], tur-
key [13], Japanese quail [14], mouse [15,16], and human
[17]. Ralls et al. [11] found that the embryonic lethal con-
dition of chondrodystrophy segregates in the affected ped-

California condor pedigree of 69 individuals used for genetic studiesFigure 1
California condor pedigree of 69 individuals used for genetic studies. A pedigree includes founders and early genera-
tion offspring used for the DNA fingerprint [8], mtDNA [9] and microsatellite (msat; current study) analyses. All individuals are 
designated using their studbook numbers.
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igree as a Mendelian character in a manner consistent with
an autosomal recessive mode of inheritance.

With the advent of the genomic era, a detailed compara-
tive molecular cytogenetic analysis of condor chromo-
somes (GCA) was carried out using chicken
macrochromosome (GGA1-GGA9, GGAZ, and GGAW)
paints, revealing that the condor has 80 chromosomes
[18], comparable to the chicken and turkey karyotypes.
This study showed a great homology of chicken and con-
dor macrochromosomes, except for GGA4 that corre-
sponds to GCA4 and GCA9, and suggested an incomplete
differentiation of the condor sex chromosomes in the evo-
lution [18].

These studies laid the groundwork for application of
genomic technologies in support of California condor
conservation efforts. Construction of a genetic map of the
California condor and identification of linked markers for
the chondrodystrophy mutation were primary goals. The
availability of the chicken genome sequence [19] and a
large-insert BAC library that was generated at the BACPAC
Resources Center, Children's Hospital Oakland Research
Institute (CHORI) [20] were crucial components of these
efforts. The BAC library consists of 89,665 clones and pro-
vides approximately 14-fold coverage of the condor
genome. Based upon 172 probes, mostly available from
the chicken genome project, we screened the library and
produced a first-generation BAC-based chicken-condor
comparative map that contained 93 loci.

Among the genes identified in the condor BAC library,
several are candidates for chondrodystrophy because they
are involved in bone and tissue formation. One such can-
didate is aggrecan (ACAN), which is an integral part of the
extracellular matrix [21]. The aggrecan molecule consists
of three globular domains, two chondroitin sulfate
domains, and one keratin region. Aggrecan molecules
attach to a long hyaluronan molecule and form aggre-
gates. Moreover, this functional candidate gene was found
to cause skeletal dysplasia in model organisms [12,13,15-
17]. We detected two BAC clones positive for the condor
ACAN gene, one of which was sequenced. As expected, the
condor gene sequence showed a great similarity to the
chicken homolog [20]. Building on these data, we have
continued to investigate the genetic basis of disease in this
species. The development and application of practical
approaches for management of deleterious genes identi-
fied in small populations, including diagnosis of risk fac-
tors, identification of unaffected carriers, and breeding
strategies to retain genetic variation in such populations
with segregating lethal mutations will find precedent in
these initial studies.

White-throated sparrow
The white-throated sparrow (Zonotrichia albicollis; Family
Emberizidae) is a socially monogamous passerine that
breeds almost exclusively (>85% of the breeding popula-
tion) in the North American boreal forest. With large
declines in species abundances, increasing evidence for
global warming and acid rain, and with the realization
that the amount of boreal forest currently protected will
not sustain migratory bird populations [6], conservation
efforts have begun to focus on such key areas before it is
too late. An essential component of a valid conservation
plan will include the study of the genomes of boreal spe-
cies, such as the white-throated sparrow, for the amount
and kind of adaptive genetic variation they actually pos-
sess, and its distribution across varying habitats.

The white-throated sparrow has several important charac-
teristics that make it an ideal model for the study of con-
servation genomics. The species is polymorphic, and both
sexes occur as either tan (T) or white (W) morphs based
on the color of their crown stripes (Figure 2). In addition
to morphology, behavioral and life-history characteristics
differ between the morphs as well [22-25] (Table 1). In
general, white birds are more aggressive than tan birds, yet
white are not dominant to tan. Males of the two morphs
employ alternative reproductive strategies based on the
tradeoffs between current and future reproduction. White
males invest heavily in securing matings through song,
territorial intrusion, bigamy, and the pursuit of promiscu-
ity (i.e. extra-pair copulations) at the expense of mate-
guarding and paternal care [22,23,26-28]. White males
have higher levels of circulating testosterone than tan
males early in the breeding season [29], most likely
because they tend to establish territories in areas of high

Morphs of the white-throated sparrowFigure 2
Morphs of the white-throated sparrow. Photographs of 
the morphs of the white-throated sparrow; A) white morphs 
are heterozygous for a chromosomal rearrangement on 
autosome 2, while B) tan morphs are homozygous for the 
non-inverted form of autosome 2.

B) A) 
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density where encounters with conspecifics are frequent
[24]. By contrast, tan males invest in monogamy and high
levels of parental care, and tend to establish territories in
more isolated areas. White and tan females seem to
exhibit similar trade-offs between investment in parental
effort and investment in reproductive effort.

Interestingly, morph was absolutely correlated with a
chromosomal polymorphism resulting from what was
believed to be a pericentric inversion of the 2nd largest
autosome [30,31]. White birds are heterozygous for the
rearrangement (i.e. 2m/2, where 2m represents the inverted
chromosome 2), and tan birds are homozygous non-car-
riers (i.e. 2/2). The autosomal inversion segregates in a
Mendelian fashion [31]. White-throated sparrows mate
disassortatively with respect to the polymorphism
[22,23,31], which maintains both morphs in the popula-
tion [31] and results in parental "phenotypes" that differ
in the amount and type of care provided. These parental
types respond differently to environmental conditions
(e.g., predation, disease, and long-term climatic factors)
by altering the condition, sex, and morph of their own off-
spring through mechanisms that persist across genera-
tions.

Results gathered from detailed cytogenetic and molecular
analyses in the white-throated sparrow can be combined
with long-term data on behavior, physiology, and ecology
to reveal the bases of adaptive variation in a natural pop-
ulation. Morphs of the sparrow are somewhat analogous
to natural "inbred" lines, where selective factors affecting

fitness can be linked to specific genes. In this species, we
have the unique opportunity to transcend from genotype
to ecosystem. Such results can transform our understand-
ing of evolutionary and conservation biology. In addition,
results can be generalized to endangered and at-risk spe-
cies, providing conservation biologists with a strong foun-
dation with which to build their captive and
reintroduction plans.

Methods
DNA samples
A condor female named Molloko, studbook (SB) #45, the
first ever condor chick hatched in captivity, was selected as
the DNA source for constructing the condor microsatellite
and BAC libraries. Sequences of microsatellite and BAC
clones from Molloko have been deposited in the GenBank
and Trace Archive.

For genetic diversity and linkage studies, a set of 121 con-
dor DNA samples including that of Molloko was chosen.
These samples were previously isolated for fingerprinting
studies and/or gender determination and represent a ped-
igree of related individuals from four generations and
seven families (Additional file 1, created using a computer
program Pedigraph, Version 2.4  [32]). This pedigree
serves as a condor resource population for further micros-
atellite and linkage analyses, and also involves three chon-
drodystrophic individuals, SB #60 and eggs #1405 and
#2537.

Table 1: Characteristics of morph/sex classes in the white-throated sparrow. Characteristics of morph/sex classes; all data from [22-
24] except where noted: (1), [76-80]; (2), [26-28,81]; (3), [22,82]. "?" indicates where current knowledge is lacking.

Male comparison Behavioral traits Female comparison

White males > Tan males song rate White females > Tan females

> aggression (1) >

> intrusion behavior ?

< mate-guarding N/A

N/A solicitation rate >

> pursuit of promiscuity ?

> risk of extra-pair paternity <

< risk of brood parasitism >

< parental care (2) <

< mate preference (3) >
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White-throated sparrow blood samples were collected
from individuals that were either part of the long-term
study population at the Cranberry Lake Biological Station,
New York, or from a captive population housed in
research aviaries at Indiana State University. Additional
blood samples were also collected from junco (Junco hye-
malis hyemalis), white-crowned sparrow (Zonotrichia leuco-
phrys), song sparrow (Melospiza melodia), swamp sparrow
(M. georgiana), and purple finch (Carpodacus purpureus).
All blood was separated via centrifugation, and the red
blood cells were stored in a lysis buffer at 4°C until
needed for further analyses.

Tissue samples from the golden-crowned sparrow (Z. atri-
capilla), Harris's sparrow (Z. querula), as well as the major-
ity of white-crowned sparrows (Z. leucophrys) and juncos
(J. h. oreganus, J. h. caniceps), were provided by the
Museum of Vertebrate Zoology (University of California,
Berkeley) and the University of Alaska Museum of the
North. Finally, blood samples from the rufous-collared
sparrow (Z. capensis) were kindly provided by Ignacio T.
Moore, Department of Biological Sciences, Virginia Poly-
technic Institute and State University.

Microsatellite-based analyses
A California condor microsatellite-enriched library was
created at Genetic Identification Services, following the
company's protocol, and includes eight sublibraries, A to
H, with enrichments for repeat motifs CA, ATG, TACA,
TAGA, AAG, AAT, AAAT, and CATC, respectively. For

marker design, approximately 180 random clones were
sequenced. Dye-labeled primers for a set of 17 informa-
tive microsatellite markers identified by Genetic Identifi-
cation Services (Table 2) were used to amplify condor
DNA. These included 13 tetra-, two tri- and two dinucle-
otide repeat loci. Three more avian microsatellite markers,
FhU2, HrU2, and HrU6 (Accession Numbers X84361,
X84087, and X84091) [33,34], were tested using
Schuelke's [35] procedure for the fluorescent labeling of
PCR fragments with the M13(-21) universal primer.

The PCR products were run on an ABI 3100, ABI 3130 or
ABI 3730 Genetic Analyzer instruments (Applied Biosys-
tems), the fragments or alleles generated were verified
(Figure 3), and the data analyzed for population genetic
parameters and linkage relationships. The following com-
puter programs were used for estimating population
genetic statistics: Microsatellite Tools for Excel, Version
3.1 [36], and POPGENE, Version 1.31 [37]. A preliminary
linkage analysis was done using Locusmap, Version 1.1
[38].

Additionally, over 1,900 random clones from the same
microsatellite-enriched library were bi-directionally
sequenced at High-Throughput Sequencing Solutions
(University of Washington, Seattle). These were then used
to develop additional polymorphic microsatellite markers
using the Primer3 online program [39] for primer design.
All sequences have been deposited in the GenBank (Acces-
sion Numbers DQ471953, DQ483109 – DQ484036,

Table 2: Summary of genetic population statistics for 17 condor microsatellite loci.

Locus* na ne I Ho He FIS PIC Test for HWE

Chi-square P

A8 5 3.025 1.2865 0.8091 0.6725 -0.2086 0.6150 35.6162 0.0001
A20 2 1.9468 0.6794 0.5868 0.4884 -0.2065 0.3681 4.9577 0.0260
B7 2 1.3006 0.3927 0.2500 0.2321 -0.0817 0.2044 0.7361 0.3909
C5 (EF108178) 3 2.0958 0.7928 0.7179 0.5251 -0.3731 0.4104 20.5154 0.0001
D6 3 2.1513 0.8749 0.5470 0.5375 -0.0221 0.4526 1.4111 0.7029
D9 (EF108179) 3 2.4596 0.9961 0.7500 0.5959 -0.2638 0.5274 15.3954 0.0015
D10 3 2.152 0.8771 0.5500 0.5376 -0.0274 0.4537 1.2557 0.7397
D24 2 1.9692 0.6853 0.4583 0.4942 0.0688 0.3711 0.6391 0.4240
D126 2 1.3318 0.4154 0.1583 0.2502 0.3645 0.2181 16.5900 0.0000
G8 2 1.9687 0.6852 0.3529 0.4941 0.2827 0.3710 9.8007 0.0017
H3 2 1.894 0.6649 0.3118 0.4746 0.3394 0.3606 11.0699 0.0009
H6 2 1.9799 0.6881 0.6134 0.4970 -0.2395 0.3724 6.5885 0.0103
H106 2 1.9760 0.6871 0.5679 0.4960 -0.1495 0.3719 2.4915 0.1145
H115 (EF108180) 2 1.2236 0.3288 0.2034 0.1835 -0.1132 0.1660 1.4438 0.2295
H127 2 1.1918 0.2984 0.1765 0.1616 -0.0968 0.1480 1.0573 0.3038
H238 2 1.3034 0.3948 0.2521 0.2337 -0.0831 0.2057 0.7558 0.3846
H269 (EF108181) 2 1.4449 0.4863 0.3306 0.3092 -0.0736 0.2605 0.5906 0.4422

Abbreviations: na, observed number of alleles; ne, effective number of alleles; I, Shannon's information index; Ho, observed heterozygosity; H, gene 
diversity ; FIS, Wright's  fixation index (as a measure of heterozygote deficiency or excess); PIC, polymorphism information content; HWE, Hardy-
Weinberg equilibrium (deviations are given in bold); P, probability.
* GenBank Accession Number is given in the parentheses, if available.
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EF108178 – EF108181, EF116886 – EF116903) and ana-
lyzed for the presence of repetitive elements using a pack-
age of NCBI BLAST programs [40] and RepeatMasker
http://www.repeatmasker.org/[41].

BAC library screen
A second library screening was carried out using the
CHORI protocol http://bacpac.chori.org/overgohyb.htm
and a four-dimensional filter hybridization procedure
[42], with modifications [20]. The latter, in brief, included
the simultaneous 32P-labeling of 216 overgo probes
(Additional file 2) and their hybridization to BAC filters,
with variable 36 overgo pools per filter per dimension.
This strategy allowed the completion of a total of 24
hybridizations in a relatively short amount of time. The
overgo probes were available from the previous chicken
and zebra finch genome projects [43,44] or newly
designed on the basis of available condor and chicken
sequences (Additional file 2). Other screening procedure
details and overgo sequences can be provided by the
authors upon request.

Thirteen condor BAC clones were subsequently sequenced
at NIH Intramural Sequencing Center (NISC) following
protocols described in [45], and their sequences are pub-

licly available from GenBank (Accession Numbers
AC171379, AC171743, AC172166, AC183448 –
AC183451, AC183845, AC183846, AC188502 –
AC188504, and AC191192).

Cytogenetic techniques
Avian fibroblast cell lines from feather pulp were estab-
lished at the San Diego Zoo's Institute for Conservation
Research as described in [46]; these cell lines were used for
karyotyping and fluorescence in situ hybridization (FISH).

Metaphase chromosomes were obtained by arresting cell
division with colcemid (Gibco BRL), hypotonic treatment
with 0.075 M KCl, and fixation in 3:1 methanol:acetic
acid. To assess chromosome number, we stained chromo-
some preparations with 5% Giemsa (Sigma) in 0.07 M
phosphate buffer (pH 6.8). To examine banding patterns,
some slide preparations were trypsin G-banded following
[47].

BAC DNA was used as FISH probes and extracted follow-
ing standard procedures. After extraction from a BAC
clone, DNA was purified and labeled with a fluorochrome
according to the manufacturer's guidelines (Vysis, Abbott
Laboratories).

An example of microsatellite genotyping profile at the loci C5 and D6Figure 3
An example of microsatellite genotyping profile at the loci C5 and D6. The DNA from a condor male (SB #162) was 
amplified with the C5 and D5 primers labeled with two different fluorescent dyes. The bird is heterozygous for C5 (green alle-
les, 179 and 191 bp) and homozygous for D5 (blue alleles, 256 bp both). Red peaks are size standards. Values along the y-axis 
represent the intensity of fluorescence (a.u.), values along the x-axis mark the size of the DNA fragments (a function of time).
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Fragment and sequence analysis
Fragments from coding regions of the ACAN candidate
gene were PCR amplified and sequenced using an ABI
3100 or ABI 3130 Genetic Analyzer. Sequencher (Gene
Codes) was employed for post-sequencing analysis.

A condor fibroblast cell line was utilized for mRNA extrac-
tion and consequent generation of cDNA sequences at
Washington University Genome Sequencing Center using
the 454 sequencing technology [48]. The total RNA was
used to prepare a polyT-primed cDNA library by an in-
house version of the Clontech SMART protocol without
normalization [49]. The 454 sequence data set has been
deposited in Trace Archive.

For analyses of the white-throated sparrow morph, we
modified the Michopoulos et al. [50] protocol to amplify
a portion of the vasoactive intestinal peptide (VIP) gene
located on chromosome 2 that either has a DraI restriction
site (the "2m" state) or lacks it (the "2" state). Our modifi-
cations included fluorescently labeling both the forward
and reverse primers so that all products could be visual-
ized on an ABI PRISM 310 Genetic Analyzer, and reducing
PCR reactions to a final volume of 10 μl. Figure 4 shows
the genetic analyzer output for white and tan morphs. To
examine evolutionary history, we used this same "morph"
assay on DNA samples collected from several related pas-
serine species.

Results
California condor studies
Genetic diversity and linkage analysis
For genetic diversity assessment, linkage analysis and con-
struction of the condor genetic map, we chose 121 related
individuals that formed a condor resource population.
Their genotyping at 17 microsatellite loci resulted in the
estimates of within-population genetic variation shown in
the Table 2. The average number of alleles was 2.41 ± 0.80
per locus, the effective number of alleles 1.85 ± 0.50, and
the Shannon's information index 0.66 ± 0.26. The average
heterozygosity for all loci was 0.45 ± 0.01, and the genetic
diversity 0.42 ± 0.04. For eight of the 17 loci, there were
deviations from Hardy-Weinberg equilibrium.

A preliminary linkage analysis suggested that among the
17 microsatellite loci we may expect a linkage between
loci D10 and D6 (LOD score = 21.67), as well as between
A20 and D9 (LOD score = 5.12) and between B7 and
H238 (LOD score = 5.12).

To expand the microsatellite mapping subproject, we
tested three more avian microsatellite markers, FhU2,
HrU2, and HrU6 [34,35] that previously showed satisfac-
tory amplification results in a wide range of other birds,
including some New World vultures. We were able to

amplify the condor FhU2 and HrU2 PCR fragments, while
HrU6 did not work on condor DNA in our hands.

Additionally, we obtained over 900 clone sequences from
the microsatellite-enriched library and derived from them
around 300 new markers for genotyping the resource pop-
ulation at the next project stage.

In silico mapping
In total, we obtained approximately 1000 short genomic
sequences from the microsatellite-enriched library. In the
course of in silico mapping, we found that 30% of these are
homologous to chicken sequences across almost all
chicken chromosomes (GGA1-GGA15, GGA17, GGA19-
GGA21, GGA23, GGA24, GGA26-GGA28, GGAZ, and
UN) and some other avian sequences. Many of these
sequences contain microsatellites and other repetitive ele-

Molecular assay for morph determinationFigure 4
Molecular assay for morph determination. Molecular 
assay for morph determination in the white-throated spar-
row, modified in the Tuttle laboratory for use on automated 
sequencers from primers described in [50]. Panel A shows a 
tan morph with a single peak at 284 bp amplified from chro-
mosome 2. Panel B shows a white morph with a band for 
chromosome 2 (at 284 bp) and two additional bands at 88 bp 
and 189 bp, which occur when PCR product amplified from 
chromosome 2m is digested with restriction endonuclease 
DraI. If they occur in nature, we assume that birds 
homozygous for 2m ("super whites") would produce a pat-
tern showing only the 88 bp and 189 bp bands. This tech-
nique has been verified in adults of known plumage. Values 
along the y-axis represent the intensity of fluorescence (a.u.), 
values along the x-axis mark the size of the DNA fragments 
(a function of time).

A) 

B) 
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ments (LINEs, retroviral LTRs, and satellites) known in
chicken. We also found satellite sequences previously
detected by Keyser et al. [51] that only occur in New
World vultures.

BAC library screening
The second screen of a 2.8× subset of the condor BAC
library was done using 216 overgo probes. The latter were
mostly available from the zebra finch and chicken
genome projects [20] or derived from the condor micros-
atellite library clone sequences (Additional file 2). As a
result, we added 100 more loci onto the BAC-based
chicken-condor comparative map, and it currently con-
tains 199 loci (Additional file 3). At present, the total
number of condor BAC-gene or other sequence assign-
ments is almost 670 (Additional file 4).

FISH mapping
To verify the efficiency of cross-species hybridization of
the condor BAC library and to build the condor cytoge-
netic map, we performed FISH using more than 50 condor
BAC clones that were positive for targeted condor genes
(Figure 5). Most BACs were found to be orthologous to
the appropriate chicken genes and chromosomes (Addi-
tional file 5). We identified one intrachromosomal rear-
rangement on chromosome 4 (the FGF2 locus), with
more intrachromosomal rearrangements on the Z chro-
mosome.

Candidate gene hunting
Among the positive clones for almost 200 genes identified
in the condor BAC library, we selected and sequenced one
that harbors the ACAN gene (CH262-21P20, Acc. No.
AC171743). Based on the sequence information, we
designed PCR primers to re-sequence the entire gene in
affected chicks, their parents, as well as unaffected non-
relatives. After sequencing coding regions of the gene, we
have yet to detect SNPs that could be associated with the
chondrodystrophy.

Comparative human-condor mapping
To date, NISC has generated sequence of 13 condor BACs,
each 100–200 kb in size. These sequences are orthologous
to human chromosome 7 and six chicken chromosomes.
Based on the sequences, a condor-human comparative
physical map for a region on HSA7 was designed and is
available online through the NISC web site (Additional
file 6). After comparing against the chicken whole genome
sequence using BLAST, the 13 sequenced BACs were also
added onto the BAC-based chicken-condor comparative
map (Additional file 3).

454 sequencing
At the Washington University Genome Sequencing
Center, almost 440,000 cDNA sequences were generated

from a fibroblast cell line using the 454 technology. The
total length of these short transcripts (about 100 bp each)
is 43,379,069 bp. We found that 78% transcripts were
homologous to chicken genes, while being distributed
across almost all chicken chromosomes (Figure 6). After
assembly and clustering, we were left with around 15,000
contigs that contained about 190,000 reads.

Surprisingly, for a number of genes expressed in this cell
line, we had unusually high numbers of reads, with the
most extreme transcript having over 55,000 reads (Addi-
tional file 7). Amongst the most abundant transcripts
(Additional file 8), there were several proteins that are
expected to be expressed in fibroblast cell lines, like prote-
oglycans, a keratin associated protein, fibroblast growth
factor receptor 1 and alpha-actin, and other housekeeping
proteins. However, one protein, the mitotic arrest defi-
cient-like 1 (MAD1L1), had especially higher levels of
expression in this cell line.

White-throated sparrow studies
Chromosomal studies
To confirm previous studies and as a necessary first step in
genomic studies, we established eight white-throated

California condor FISH mappingFigure 5
California condor FISH mapping. An example of FISH 
using metaphase chromosomes of the California condor and 
a biotinylated BAC clone containing the ACVR2B gene located 
on GCA2.
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sparrow cell lines (six white, and two tan; KB15792 –
KB15799) accessioned in the Frozen Zoo® at the Zoologi-
cal Society of San Diego. Using standard Giemsa staining,
we confirmed that there is a total diploid chromosome
number of 82, including the Z and W sex chromosomes
(Figure 7). G-banding comparisons indicate that the rear-
rangements distinguishing 2m from 2 and 3a from 3 are
complex. The banding differences in each pair involve the
centromere and cannot be resolved by inverting only one
segment of the chromosome and thus are likely the result
of more than one inversion on each chromosome (Figure
8).

Karyotypic analyses of 46 randomly selected white-
throated sparrows (Table 3) indicate that with regards to
chromosome 2 and 3, the most common genotypes are 2/
2 3a/3a (tan; type C) and 2m/2 3a/3a (white; type F).
Homozygous genotypes 2m/2m and 3/3 are rare [31] or
nonexistent (this study). Most of the chicks from tan male
– white female pairs (T × W) were the type F genotype (2m/
2 3a/3a); few of their chicks (approximately 15%) were
heterozygous for chromosome 3 (3a/3). By contrast, off-
spring from white male – tan female pairs (W × T) were
fairly evenly split between types B (2/2 3a/3), C (2/2 3a/

3a), and F (2m/2 3a/3a); and, over 33% of their chicks were
3a/3 heterozygotes.

Comparative analyses
The VIP assay for morph is based on the fact that there is
a SNP on chromosome 2m that forms a restriction site for
DraI, whereas the VIP fragment on chromosome 2 does
not contain that site [50]. In an assay of 546 white-
throated sparrows (Table 4), 50.9% were 2m/2 (white)
and 49.1% were tan (2/2); no individuals were 2m/2m

("superwhites"). When we examined this site in the four
other species of Zonotrichia (Z. atricapilla, Z. querula, Z. leu-
cophrys, Z. capensis), only the North American species of
Zonotrichia show polymorphism for the VIP fragment sug-
gesting that the common ancestor of all four had the pol-
ymorphism (Table 4; Figure 9). All 10 rufous-collared
sparrows (Z. capensis) tested were monomorphic for the
DraI restriction site. In addition, other passerine birds
tested (three subspecies of junco, including Junco hyemalis
hyemalis, J. h. oreganos, and J. h. caniceps, swamp sparrow
(Melospiza georgiana), song sparrow (M. melodia), and pur-
ple finch (Carpodacus purpureus)) were also monomorphic
for the DraI restriction site (Table 4). Preliminary
sequence analysis of the VIP intron indicates that in the

Distribution of the condor 454 transcripts across the chicken chromosomesFigure 6
Distribution of the condor 454 transcripts across the chicken chromosomes. The distribution of the condor tran-
scripts based on their orthology to the chicken chromosomes.
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rufous-collared sparrow, the junco, the song sparrow, and
the swamp sparrow, the SNP is the same as that found in
chromosome 2m of the white-throated sparrow (Figure
10).

Discussion
California condor genetics and genomics
Genetic management of California condors aims to maxi-
mize the retention of genetic diversity by minimizing
mean kinship within the population. We used a series of
mostly tetranucleotide repeat markers to evaluate genetic
diversity among individuals obtained from the wild and
ascertain linkage relationships between microsatellite
loci. The observed level of heterozygosity (0.45) found in
the resource population could be considered as a good
sign of a successful captive propagation program and pop-
ulation recovery. On the other hand, observation of
Hardy-Weinberg equilibrium deviations at eight out of 17
loci might suggest that the current condor population is
impacted by inbreeding. These results can be used for val-
idating genetic management recommendations currently
used for this endangered species.

Taking advantage of recent progress in genome studies of
the domestic chicken, we are developing a genetic map for
the California condor. Among the 17 microsatellite loci
already used, there are three potential linkages estab-
lished. Approximately 300 more markers have been
designed and, after validation, will be used for genotyping
the resource population. This would be the first attempt to
make a genetic linkage map for condors, which will be
later supplemented with SNP markers to locate and char-
acterize candidate loci for the chondrodystrophy muta-
tion, to identify carriers of the chondrodystrophy allele
and to improve genetic management of this and other her-
itable disease risk-factor loci.

The conventional re-sequencing of ACAN, a likely chon-
drodystrophy candidate gene, was complicated by the
compound structure of this gene, including the large
number of exons (18 in the chicken) and a complex repet-
itive structure of its longest exon that encodes for chon-
droitin sulfate attachment domain. The latter contains in
the chicken a variable repeat region that includes 19
repeats, each of 60 nucleotides, with the reported
nanomelic stop codon [12]. Although we have not yet
been able to identify a causative SNP in coding regions of
the condor ACAN gene, we continue this investigation in
both exonic and intronic sequences as well as other regu-
latory regions that could also be associated with changes
in the ACAN regulation. We plan to use a high throughput
454 sequencing technology that may identify or eliminate
this locus as the locus of the chondrodystrophy mutation.
Construction of the condor linkage map will bring us
closer to the mapping of the chondrodystrophy locus and
it will enable confirmation of a role for the ACAN gene or
other (marker) loci linked to the disease. In either sce-
nario, we will be able to develop a molecular assay for het-
erozygous carriers of the chondrodystrophy mutation.

The 454 cDNA sequence data reported here provides a
first insight into the condor transcriptome. Interestingly,
ACAN was found to be expressed in this cell line. We
expect that establishment of fibroblast cell lines for nor-
mal and affected chicks will enable direct comparison of
full-length cDNA sequences to significantly assist in the
identification of the potential chondrodystrophy muta-
tion in ACAN or other candidate genes. Such data will
provide one more functional genomics approach to pin-
point the disorder mutation.

MAD1L1 was shown to be highly overexpressed in the
condor fibroblast cell line analyzed. MAD1L1 is a compo-
nent of the mitotic spindle-assembly checkpoint, and its
mutations are suggested to play a role in the pathogenesis
of various types of human cancer (e.g., [52]). Abnormal
overexpression of MAL1L1 gene may be linked to a partic-
ular phenotype observed in this condor cell line. The cell

G-banded chromosomes 1–9 and Z from the sparrowFigure 8
G-banded chromosomes 1–9 and Z from the spar-
row. G-banded chromosomes 1–9 and Z from a 2m/2 3a/3 
white-throated sparrow (KB15794; San Diego Zoo's Institute 
for Conservation Research, Zoological Society of San Diego).

 

Complete karyotype of white femaleFigure 7
Complete karyotype of white female. Complete karyo-
type of white (2m/2) female (Z/W) KB15793, showing 82 
macro- and microchromosomes, including 40 autosome pairs 
and two sex chromosomes (Z and W); data generated at the 
San Diego Zoo's Institute for Conservation Research, Zoo-
logical Society of San Diego. In addition to the rearrangement 
of 2, chromosome 3 also sometimes exhibits an alternate 
form (3a; as seen here).
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line has a continuous long-term proliferation and hetero-
ploid features, an indication that the line is transformed
possibly due to a mutation affecting MAD1L1 expression.
As MAD1L1 is known to be involved in neoplasia, further
investigation of this cell line can provide a source of com-
parative studies and shed light on de-regulation of cell
proliferation in avian species.

We were able to obtain dense coverage of the Z chromo-
some (Additional file 3) with the second BAC library
screen. We chose to cytogenetically assign the Z-linked
BACs to condor chromosomes using FISH because pre-
liminary indications suggested that there could be intra-
and interchromosomal rearrangements in the condor rel-
ative to the chicken Z chromosomes. Furthermore, we
consider it useful for the future studies to compare Z-
linked gene expression in condor males and females to see
if there is any difference or if we have a dosage compensa-
tion effect similar to what was shown for the zebra finch
and chicken [53,54].

Overall, we detected a few changes in gene location and
order between chicken and condor chromosomes, indi-
cating a high degree of conserved synteny. Our data sup-
port a higher similarity of the cathartid genome to the
avian ancestral karyotype and a more basal position of
Cathartidae as compared to Accipitridae and Falconidae
[55], as well as the general stability of avian genomes over
the course of evolution [56]. Another piece of evidence in
support of those ideas comes from the fact that the
chicken and condor genomes demonstrate a high degree
of sequence homology and share many common avian
repetitive elements including LINEs, retroviral LTRs, and
satellites. However, the presence of satellite sequences
specific to New World vultures [51] suggests that some
distinctive genomic features have emerged in the cathar-
tids over almost the 100-million years of evolution in this
avian lineage. We hypothesize that the specific satellite
sequences inherent to the Cathartidae may represent
unique genomic signatures that could help resolve the
long disputed taxonomic position of this avian family
(e.g., [55,57,58]).

The 454 cDNA sequence data, as well as condor microsat-
ellite library clone sequences, have been added to a new
avian genomic database Gallus GBrowse that includes the
whole genome sequence of the chicken as a reference
http://birdbase.net/cgi-bin/gbrowse/gallus08/[59]. Along
with sequence information for turkey and zebra finch, this
database serves as a new powerful tool for avian compar-
ative genomics. All the sequence information available for
the condors is also being deposited in GenBank and Trace
Archive, adding the condor to the ever-expanding list of
avian genomes (Table 5). Finally, there is a web site we
have developed for the condor genomics project: https://
msu.edu/~romanoff/index2.htm.

White-throated sparrow as a behavioral model
Advances in white-throated sparrow genomics have
begun at an obvious point – the characterization of the
chromosomal rearrangement affecting morphic differ-
ences. Thorneycroft [30,31] first karyotyped the species,
reporting a diploid chromosome number of 82 or 84, and
based on centromere position, presumed pericentric
inversions in both chromosome 2 and 3. Here, our karyo-
typic analyses confirm a diploid number of 82, with the
typical avian pattern of approximately 30 pairs of micro-
chromosomes (Figure 7; see [60,61] for reviews of avian
microchromosomes). G-banding analyses suggest that the
rearrangements in chromosomes 2 and 3 are not simple,
but instead consist of multiple inversions involving the
centromere. These results are consistent with those
reported in Thomas et al. [62], who used comparative
cytogenetic mapping to show that 2m and 2 differ by a pair
of pericentric inversions spanning at least 98 Mb or
greater than 86% of the chromosome. Chromosomal
inversions are often adaptive because they can result in co-
adapted gene complexes [63], therefore further investiga-
tion of gene structure in this species is warranted. How-
ever, to be valuable to evolutionary and conservation
biology, such studies must be done within the context of
the ecological and social environments that selected for
the maintenance of polymorphism.

Table 3: The percentage of white-throated sparrows sampled having various arrangements of chromosomes 2 and 3. Table adapted 
from [31]. Types A-C are all tan, whereas types D-G are all white.

Studies Tan White
Type A

2233
Type B
2233a

Type C
223a3a

Type D
22m33

Type E
22m33a

Type F
22m3a3a

Type G
2m2m3a3a

Thorneycroft [31], males (N = 260) 0.45 4.00 32.00 0.45 13.00 50.00 -
This study, males (N = 24) - 12.50 37.50 - 12.50 37.50 -

Thorneycroft [31], females (N = 137) 1.00 9.00 50.00 - 4.00 34.00 1.00
This study, females (N = 22) - 9.09 22.70 - 9.09 59.09 -

This study, T × W parents (N = 26) - 7.7 26.9 - 7.7 57.7 -
This study, W × T parents (N = 12) - 25.0 33.3 - 8.3 33.3 -
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In the white-throated sparrow, recombination is sup-
pressed in heterozygotes for chromosome 2m. Thorney-
croft [31] found that chiasma did form between the p-arm
of chromosome 2 and one arm of chromosome 2m, but
they did not form between the q-arm of chromosome 2
and chromosome 2 m. In addition, chiasma formed
between the p-arm of chromosome 3 and the p-arm of
chromosome 3a, but not between the q-arms of these
chromosomes. Using nine loci within the 2m rearrange-
ment, Thomas et al. [62] confirmed that recombination
only occurred in the telomere area between the p-arm of
chromosome 2 and chromosome 2m, thus restricting gene

flow between the two. In addition, they found that chro-
mosome 2 had five times the nucleotide diversity of chro-
mosome 2m. Based on these results, Thorneycroft's [31]
meiotic data, and our data on population genotype fre-
quencies (Table 3), we predict that chromosome 3a has
also evolved under limited recombination and reduced
gene flow.

Chromosomal inversions may be disadvantageous if they
foster the accumulation of suites of deleterious alleles
within the area of low recombination. Since the inversion
in the white-throated sparrow is relatively large and covers

Table 4: Results of the white-throated sparrow "morph" assay using the DraI restriction site located in the VIP gene [50]. Species 
heterozygous for the DraI restriction site show 3 fragments (F1-F3); species homozygous for the DraI restriction site show 2 bands, 
one smaller band at approximately 72–89 bp and one larger band at 185–190 bp (F1 and F2); finally, homozygotes that do not carry the 
DraI restriction site show only a single band at 284 bp (F3).

Species Subspecies Genotype VIP F1
(bp)

VIP F2
(bp)

VIP F3
(bp)

# %

White-throated sparrow
(Zonotrichia albicollis)

2m/2m

Homozygous – DraI site
88 189 - 0 0

2m/2 (White Morph)
Heterozygous

88 189 284 278 50.9

2/2 (Tan Morph)
Homozygous – No site

- - 284 268 49.1

White-crowned sparrow
(Z. leucophyrs)

Homozygous – DraI site 80 190 - 2 16.7

Heterozygous 80 190 284 4 33.3
Homozygous – No site - - 284 6 50.0

Golden-crowned sparrow
(Z. atricapilla)

Homozygous – DraI site 83 190 - 0 0

Heterozygous 83 190 284 3 100
Homozygous – No site - - 284 0 0

Harris's sparrow
(Z. querula)

Homozygous – DraI site 72/73 88/91 - 1 25.0

Heterozygous 72 or 73 88 or 91 284 0 0
Homozygous – No site - - 284 3 75.0

Rufous-collared sparrow
(Z. capensis)

Homozygous – DraI site 89 191 - 10 100

Dark-eyed junco
(Junco hyemalis)

Slate-colored
hyemalis

Homozygous – DraI site 89 189 - 4 100

Oregon
oreganus

Homozygous – DraI site 89 189 - 3 100

Gray-headed
caniceps

Homozygous – DraI site 89 189 - 1 100

Song sparrow
(Melospiza melodia)

Homozygous – DraI site 89 185 - 5 100

Swamp sparrow
(M. georgiana)

Homozygous – DraI site 89 186/189 - 5 100

Purple finch
(Carpodacus purpureus)

Homozygous – DraI site 89 193 - 1 100
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at least 86% of chromosome 2m, it is likely that some neg-
ative fitness affects are associated with homozygosity; the
same is likely true for chromosome 3a. We did not find
2m/2m or 3a/3a individuals in our karyotypic analyses, nor
did we find any 2m/2m birds in over 546 individuals sam-

pled in the VIP assay. Thorneycroft [31] found that par-
ents with a single 2m chromosome passed this on to half
of their offspring however, parents with a single chromo-
some 3 passed this on to only a quarter of their offspring.
Given his results, we would expect that white birds (2m/2)
pairing with other white birds (2m/2) would result in up
to 25% lethal or semi-lethal homozygotes. It is surprising
then that in our study, the frequencies of particular geno-
types differed in the sexes and between the two disassorta-
tive pair types (Table 3). Certain combinations of
chromosomes 2 and 3 also appeared more viable than
others. Together, these factors suggest non-Mendelian
transmission, interchromosomal linkage and pleiotropy,
and a strong interaction between autosomal genotype and
sex. Our laboratory is continuing to investigate the rela-
tionship between chromosomes 2 and 3 using a combina-
tion of genomics techniques and population data.

Comparative analyses between the white-throated spar-
row and its relatives can be quite revealing about genomic
evolution. In the rufous-collared sparrow (Zonotrichia cap-
ensis), Rocha et al. [64] reported polymorphisms in chro-
mosomes 3 and 5 – also presumably due to pericentric
inversions. The closely related junco exhibits polymor-
phisms for pericentric inversions in chromosomes 2 and
5 [65] and the white-crowned sparrow (Z. leucophrys) has
centric rearrangements in chromosomes 3, 5, and 12 [66].
Thus, chromosomal inversions in Zonotrichia and its con-
geners seem to be relatively common [65,66]. Our com-
parative analysis of the VIP intron [50] revealed that the
DraI polymorphism likely existed in the common ances-
tor of all four North American species of Zonotrichia, but
not in the South American species, Z. capensis. In accord-
ance with these results, sequence data from VIP (Figures 9
and 10) and other areas of chromosome 2m suggest that

VIP sequence for several passerine speciesFigure 10
VIP sequence for several passerine species. Sequence alignment for an intron of the vasoactive intestinal peptide (VIP) 
gene (primers described in [50]). Bases highlighted in gray show differences between the white-throated sparrow (Zonotrichia 
albicollis; WTSP of both morphs), Harris's sparrow (Z. querula; HASP), the white-crowned sparrow (Z. leucophrys, WCSP), the 
rufous-collared sparrow (Z. capensis, RUFS), the dark-eyed junco (Junco hyemalis; DEJU), the song sparrow (Melospiza melodia; 
SOSP), and the swamp sparrow (M. georgiana; SWSP). Yellow highlighting indicates the DraI restriction site, which is found in 
dark-eyed juncos and song sparrows, as well as white morphs (W) white-throated sparrows; green highlighting shows the lack 
of a DraI restriction site found in tan (T) morph white-throated sparrows.

       VIP Sequence 
 
HASP  CTCTGTTTGTATATTCACTCAGACAACTGCTTTT AAGTATCATGTCTCTGTATTCACTAAACATG 
WCSP  CTCTGTTTGTATATTCACTCAGACAACTGCTTTT AAGTATCATGTCTCTGTATTCACTAAACATG 
WTSP-TM CTCTGTTTGTATATTCACTCAGACAACTGCTTTT AAGTATCATGTCTCTGTATTCACTAAACATG 
WTSP-WF CTCTGTTTGTATATTCACTCAGACAACTGCTTTT AAATATCATGTCTCTGTATTCACTAAACATG 
RUFS  CTCTGTTTGTATATTCACTCAGACAACTGCTTTT AAATATCATGTCTCTGTATTCACTAAACATG 
DEJU  CTCTGTTTGTATATTCACTCAGACAACTACTTTT AAATATCATGTCTCTGTATTCACTAAACATG 
SOSP  CTCTGT- - - - ATATTCACTCAGACAACTGCTTTT AAATATCATGTCTCTGTATTCAT TAAACATG 
SWSP  CTCTGT- - - - ATATACACTCACACAAATGCCTTCATTTAAAAAGTCTGTCTCTTCAT TAAACAAG 

VIP restriction site mapped on Zonotrichia treeFigure 9
VIP restriction site mapped on Zonotrichia tree. Phylo-
genetic tree for Zonotrichia from [75] showing branch lengths 
(% nucleotide differentiation). Mapped on the tree are pres-
ence (+), absence (-), or both presence and absence (+/-) of 
the DraI restriction site in the VIP fragment. Data for the 
restriction site were derived from Table 1. Only the four 
North American Zonotrichia species show polymorphism for 
the VIP fragment, suggesting that the polymorphism arose in 
the common ancestor of those four species.
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the first inversion predated the divergence of white-
throated sparrow from both white-crowned sparrow and
Harris's sparrow, originating approximately 2.2 ± 0.3 MYA
[62]. Surprisingly, our comparative data on the VIP intron
suggests that, contrary to Thorneycroft's [31] expectations,
chromosome 2m (or at least a portion of it) might actually
be "ancestral". We are undertaking further comparative
mapping to resolve these alternatives.

In the past few years, genomic resources for avian species
have advanced by leaps and bounds, making it now pos-
sible to use comparative genomics to determine the genes
responsible for differences in white and tan morphology,
behavior, and physiology. Chicken chromosome paints
revealed that white-throated sparrow chromosome 2 was
analogous to chicken chromosome 3 [62], now allowing
us to pinpoint candidate genes associated with pheno-
typic differences. In addition, major advances in the zebra
finch genome [67] as well as a white-throated sparrow
BAC library (CHORI-264; http://bacpac.chori.org/
library.php?id=469), mean that detailed mapping is now
possible. Over 1000 microsatellite markers, developed for
parentage and population genetics analyses in songbirds
[68,69], have been used to construct a predicted passerine
genome map based on sequence similarity to the chicken
genome. Using microsatellite markers that cross-amplify
in the Zonotrichia with the detailed pedigrees of over 350
families (data not shown) we will be able to generate link-
age maps for this species. Finally, in order to advance con-
servation and evolutionary genomics in this species, it will
be important to identify adaptive genetic variation and

the role that the environment has had in selecting for the
evolution of alternative genotypes. We have also estab-
lished a website for the sparrow project: http://
www.whitethroatedsparrow.org.

Conclusion
The retention and capacity for generation of novel adap-
tive genetic variation in a population is key to conserva-
tion efforts. Without maintaining this diversity, given the
increased anthropogenic impacts of populations and their
habitats, many species will face increased vulnerability to
extinction in the near future [70,71]. Conservation genet-
ics has traditionally relied on assays of neutral genetic var-
iation, assuming that it accurately reflects adaptive
variation [72]. However, the correlation between varia-
tion in adaptive and non-adaptive genetic elements can
sometimes be low [72-74], and so a true understanding of
the interplay between genes and biodiversity will benefit
from the additional data that a broader genomics
approach can provide. Here we show the utility of apply-
ing such a "genomics approach" to study of two key avian
species.

Conservation efforts in the endangered California condor
will benefit from the characterization and deeper under-
standing of the segregating lethal chondrodystrophy
mutation. Management of the species' genetic diversity
under circumstances of maintaining a viable, self-sustain-
ing, managed population that provides birds for reintro-
duction, and genetic and demographic augmentation of
newly established wild California condor populations in

Table 5: Representation of avian species in the NCBI databases (as of June 8, 2009).

Species/Order Nucleotide/Protein Trace records PubMed

Chicken (Gallus gallus)/Galliformes 927,747/35,072 18,186,087 90,868
Zebra finch (Taeniopygia guttata)/Passeriformes 288,655 / 17,308 15,499,360 359
Turkey (Meleagris gallopavo)/Galliformes 57,934 / 560 77,154 321
Duck (Anas platyrhynchos)/Anseriformes 4,888 / 474 --- 979
White-throated sparrow (Zonotrichia albicollis)/Passeriformes 3,955 / 124 268,938 41
Domestic pigeon (Columba livia)/Columbiformes 2,371 / 244 --- 9,669
Red-backed fairy wren (Malarus melanocephalus)/Passeriformes 2,026 / 394 --- 1
Lazuli bunting (Passerina amoena)/Passeriformes 1,791 / 590 --- 6
Hwamei (Garrulax canorus)/Passeriformes 1,572 / 1,340 --- 1
Indigo bunting (Passerina cyanea)/Passeriformes 1,572 / 568 --- 16
Gadwall (Anas strepera)/Anseriformes 1,233 / 514 --- 16
California condor (Gymnogyps californianus)/Ciconiiformes* 976/4 452,496** 13
Yellow wagtail (Motacilla flava)/Passeriformes 890/91 --- 5
Collared flycatcher (Ficedula albicollis)/Passeriformes 770/287 --- 56
Adelie penguin (Pygoscelis adeliae)/Sphenisciformes 671/17 --- 69
European pied flycatcher (Ficedula hypoleuca)/Passeriformes 667 / 295 --- 86
White-winged fairy-wren (Malurus leucopterus)/Passeriformes 639 / 190 --- 1
Japanese quail (Coturnix japonica)/Galliformes 634 / 487 --- 4,435

*According to [55,57,58] and contrary to NCBI Taxonomy database, the New World vultures are not related to storks (Ciconiiformes).

** Includes 419,240 sequences generated with 454 technology and 33,256 entries obtained with shotgun sequencing.
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the United States and Mexico is a conservation paradigm
that merits the fullest support of scientific prowess in
genomics, the health sciences, and behavioral ecology, as
well as through public policy, public education and law
enforcement. Results gathered from the condor studies
will help identify recovery options for other at-risk species
as their populations continue to decline and experience
genetic bottlenecks.

Genomic studies in the white-throated sparrow are still in
their infancy although the potential benefits of this ave-
nue of study are great. Morphs of the white-throated spar-
row provide a novel intraspecific comparison of selective
pressures, where factors affecting fitness can be linked to
specific genes – in other words, we have the opportunity
to directly assess adaptive variation. In addition, genomic
studies in the sparrow will contribute to our understand-
ing of chromosomal inversions, where suites of genes are
often inherited as co-adapted gene complexes and the
"success" of a phenotype is highly dependent on orches-
trated gene cascades and environmental effects.

Birds are highly influential model organisms in conserva-
tion and evolutionary research, and the foundation of
work on many avian species is already strong. With the
advances of genomic resources for chicken, turkey, zebra
finch, and now, the California condor and white-throated
sparrow, it is now feasible to expand genomics studies to
other avian groups.
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