
Machine Learning Analysis of the Cultural and
Cross-Cultural Aspects of Beauty in Music

Claire Q

17/05/13



Contents

1 Introduction 1

2 Machine Learning 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . 9
2.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . 11
2.2.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Semi-supervised Learning . . . . . . . . . . . . . . . . 13
2.2.5 Reinforcement Learning . . . . . . . . . . . . . . . . . 14

2.3 Learning Algorithms of Interest . . . . . . . . . . . . . . . . . 15
2.3.1 Bayesian Reasoning . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Artificial Neural Networks . . . . . . . . . . . . . . . . 17
2.3.4 Support Vector Machines . . . . . . . . . . . . . . . . . 19
2.3.5 Inductive Logic Programming . . . . . . . . . . . . . . 20
2.3.6 k-Nearest-Neighbour algorithms . . . . . . . . . . . . . 21

2.4 Machine Learning Tools . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Example ARFF file . . . . . . . . . . . . . . . . . . . . 24

3 Machine Learning, Aesthetics and Musical Aesthetics 27
3.1 Machine Learning and Aesthetics . . . . . . . . . . . . . . . . 27
3.2 Musical Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Machine Learning and Music . . . . . . . . . . . . . . . . . . . 34

3.3.1 Source Material and Representations . . . . . . . . . . 40
3.3.2 Audio Feature Extraction Tools . . . . . . . . . . . . . 48
3.3.3 Areas of Interest for Classification . . . . . . . . . . . . 49

1



3.3.4 Geospatial Analysis . . . . . . . . . . . . . . . . . . . . 66

4 Beauty Experiments 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Facebook Survey . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Learning Algorithm Experiments . . . . . . . . . . . . . . . . 75

4.4.1 Experiment Environment . . . . . . . . . . . . . . . . . 75
4.4.2 Richard Thompson Detector . . . . . . . . . . . . . . . 76
4.4.3 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Last.fm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Result and Discussion . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Geographical Experiments 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Geographical Ethnomusicology . . . . . . . . . . . . . . . . . . 88
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Music Collection . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Audio Features . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Geographic Representation . . . . . . . . . . . . . . . . 94
5.3.4 Spherical k-Nearest-Neighbour Prediction Method . . . 95
5.3.5 Utilising a priori Background Knowledge . . . . . . . . 97

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 k-Nearest-Neighbour Performance . . . . . . . . . . . . 100
5.4.2 kNN with Population Distribution . . . . . . . . . . . . 101
5.4.3 Statistical Significance . . . . . . . . . . . . . . . . . . 104
5.4.4 Performance by Country . . . . . . . . . . . . . . . . . 105

5.5 Discussion and Future Work . . . . . . . . . . . . . . . . . . . 107
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Beauty in World Music 113
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Music Used . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Listening Conditions . . . . . . . . . . . . . . . . . . . 115

2



6.2.3 Participation . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.4 Grouping of Listeners and Pairs . . . . . . . . . . . . . 118

6.3 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 User Demographics . . . . . . . . . . . . . . . . . . . . 119

6.4 Learning Beauty . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Beauty and Geography 128
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1.1 Statistical Dependence on Geography . . . . . . . . . . 129
7.1.2 Distance from Singapore as a Predictor of Beauty Rating130
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Experiment 2: Location and Audio . . . . . . . . . . . . . . . 134
7.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusion 137
8.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3 Geographic Prediction . . . . . . . . . . . . . . . . . . . . . . 139
8.4 Singapore Survey . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.5 Geographical Influence on Ratings . . . . . . . . . . . . . . . . 140
8.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A Full Results from Singapore Survey 144

B User Demographic Data for the Singapore Survey 152

3



Abstract

Can machine learning algorithms be trained to recognise beauty in music?
To what extent is human recognition of beauty in music cultural, or cross-
cultural?

Music is prevalent in all human cultures. Music information retrieval is a
growing field in which computational techniques have been applied to many
musical problems such as genre recognition and measuring musical simi-
larity. Computational ethnomusicology is rarer because the acquisition of
non-Western music is difficult. Beauty in music has been little investigated
with scientific methods, though there are some examples on which this thesis
builds.

The effect of timbral and 12-step chroma audio features, and a wide variety
of different machine learning algorithms techniques were tested, with the
combination of all the MARSYAS features and Support Vector Machines
performing well.

Predicting beauty was first investigated with a small Last.fm set and later
with a larger world music survey with Singaporean participants. Beauty was
predicted based on a small selection of Last.fm tags with good accuracy.
Beauty ratings from the survey, conducted in Singapore, were predictable by
machine learning using similar methods.

Predicting the geographical origin of world music from audio features was at-
tempted. Some promising results emerged, and novel methods for predicting
points on the surface of the Earth were developed.

An investigation into the link between beauty ratings and location was con-
ducted. The Singaporean beauty ratings were predicted from audio content,
geographic content and a combination of both, showing strong correlations
between longitude, distance, and timbral features with the beauty ratings,
which were statistically very closely linked with distance from Singapore.
From this beauty in music is concluded to be culturally related and timbre
is shown to be a good pointer to cultural differences.
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Chapter 1

Introduction

Music has been part of the human experience for tens of thousands of years

[McDermott and Hauser, 2005]. Musical composition, performance, dancing,

singing and listening permeate all cultures and all generations. Beautiful

music is appreciated by any listener, not just experts of musicology. With

the recent progress in machine learning and in music information retrieval

comes an opportunity to investigate beauty in music more scientifically than

ever before, to shed light on the nature of beautiful music and to discover

how appreciation of music is intertwined with physics, psychology, culture

and geography.

Music can be concordant or discordant; this is known from the physics of wave

propagation, and the note systems which have emerged across the world re-

flect this. Very discordant sounds are perceived negatively by any human

1



and, indeed, by some other primates [Sugimoto et al., 2010]. Expert knowl-

edge can say only so much since expertise tends to be for a particular genre

of music, or for Western music theory, much of which does not apply to mu-

sic from other parts of the world. The scales we use are a compromise for

keyboard instruments and the restriction does not hold elsewhere.

Beauty is the subject of many essays and arguments, yet few scientific in-

vestigations. Some analysis has been done on visual art which shows, for

example, that symmetry plays a part in the beauty of human faces as judged

by others. It is possible to computationally separate a Jackson Pollock (very

abstract art) from an imitation. Aesthetics in many art forms, including

music, has been posited to align with power laws in the use of particular ele-

ments, such as the use of notes and rhythms in music or colours in paintings.

Fractals have been used to generate art in many forms, never yet surpassing

human creations and indeed involving a great deal of human intervention or

’tuning’. Clearly we have a way to go before the first computer-generated

top-ten hit.

Music information retrieval is a growing field with focus on automatically

extracting information from musical sources for analysis. The musical source

comes in many formats including written score as well as audio. A variety

of machine learning and statistical analysis techniques are applied. Work in

the field of music information retrieval has discovered features for predicting

genre, determining key and tempo of music, distinguishing instruments (still
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difficult for orchestral music), analysing the similarity of music, transcribing

to score from audio and eliciting musical information from written scores.

Yet, much of this work has focussed on Western music alone. Investiga-

tions have begun into how applicable current techniques are to non-Western

sources.

Non-Western music often has a different tuning, sometimes is not strictly

tied to a particular tuning, often scales are chosen from a set of possible

notes greater than Western music allows (twice in the case of Arabic music),

the instruments used are often unfamiliar to the Western listener. Aside

from inherent musical differences the production quality of much world mu-

sic available is not good, and it can be difficult to find large corpuses of

non-Western music for analysis. The metadata available about non-Western

music is often much sparser than for Western music. These factors probably

influence the lack of machine learning analysis on world and ethnic music

until fairly recently.

With this in mind the overarching hypothesis is that beauty in music is

measurable and is not entirely dependent on cultural and individual factors,

but has some root in the commonalities of how the human ear and brain

process sound. If the measure is to be objective one way to achieve this is

using machine learning. Others have successfully applied machine learning

to various music information retrieval problems, and so it is in their footsteps

we follow.
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This thesis is arranged as follows:

• Chapter 2: A review of the field of machine learning. Supervised, unsu-

pervised and semi-supervised learning are described, including several

specific algorithms such as Support Vector Machines (SVMs) and k-

Nearest-Neighbour algorithms.

• Chapter 3: A review of Music Information Retrieval (MIR) literature.

Common applications and areas of interest in MIR are described, useful

features and recent developments are considered. Associated computa-

tional aesthetics and non-computational beauty literature is discussed.

• Chapter 4: A survey conducted on Facebook to determine the feasi-

bility of humans agreeing about beauty in music. Participants choose

which of two classical extracts is most beautiful. Genre benchmark

testing experiments comparing different machine learning algorithms

on a known task and dataset, and related investigations. Learning

beauty from online user tags in Last.fm.

• Chapter 5: An investigation into the prediction of world music origin

using machine learning. kNN regression is applied to world music audio

features in order to predict the location of origin as a point on a globe.

A land mask is added to improve the prediction, and a population

overlay. Predictions are of spherical distance, which is novel for this

area.
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• Chapter 6: A survey conducted in Singapore on the beauty of the world

music of Chapter 5 as rated by participants. Audio features from this

music are used to predict the beauty ratings with SVM.

• Chapter 7: An investigation of the degree to which the ratings from Sin-

gapore were affected by the location of origin of the music. The ability

to predict the ratings from geographic information alone is trialled.

• Chapter 8: A summing-up of all the experiments, results, and any in-

sights that can be drawn. An evaluation of the work achieved and

a suggestion of some next steps for further work, including expand-

ing beauty experiments and gathering more world music and different

participants.
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Chapter 2

Machine Learning

2.1 Introduction

Machine learning is a broad field, covering many kinds of learning problems

and learning methods, with several aims including classification and pre-

diction, problem solving, data mining, natural language processing, speech

recognition, and visual interpretation [Mitchell, 1997]. The applications of

machine learning are many and varied, from creating realistic opponents or

allies in video games to making robots for space missions that can auto-

matically plan and execute their actions with little intervention from their

creators, to music recommender systems for online listeners. Machine learn-

ing can be considered a subset of artificial intelligence research, though the

goals of both AI and ML have changed from making a generally intelligent
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machine to creating useful algorithms with just the right kind of intelligence

for the intended application. Artificial intelligence also encompasses planning

algorithms, machine perception and robotics.

This part of the literature review comprises a general look at the machine

learning field, later focusing on those techniques which are most appropriate

and which became most useful in the experiments conducted.

“A computer program is said to learn from experience

E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T as measured

by P improves with experience E.” [Mitchell, 1997]

2.2 Training

The strength of a machine learning agent is strongly dependent on the quality

of the data on which it is trained. Noisy examples inevitably lower perfor-

mance [Nettleton et al., 2010, Angluin and Laird, 1988]. Direct or indirect

examples may be given. Direct examples would be explicit at each stage the

machine needed to make a choice. With indirect examples the agent or al-

gorithm must additionally determine the value of any given decision, rather

than it being pre-assigned. The program is (for instance) given a final goal,

yet the value of particular intermediate decisions is not provided. Indirect

examples make the work of the machine more complicated as it must de-
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termine which of the intermediary decisions it made were most responsible

for the failure or success of the trial. This is known as credit assignment.

In general, all the examples available are presented to the algorithm in an

order chosen by the creator/teacher, or a random order, but in some types

of learning the program itself can ask for examples with specific characteris-

tics missing from its current understanding to help it build a model. Active

learning, described in Section 2.2.3, is an example of this. Other algorithms,

for certain applications, can act entirely without provided examples either

by generating such examples itself (as in learning to play a board game by

playing against itself) or by collecting its own examples from the environ-

ment, as might be the case with a robot learning to walk or drive in varied

terrain.

As with any sample, the training examples will be more useful if they ade-

quately represent the real population. Indeed, several methods exist for de-

termining the appropriate sample sizes for particular types of classifier [Fuku-

naga and Hayes, 1989, Kalayeh and Landgrebe, 1983]. Ideally a sample set

should have a similar central tendency (e.g. the same mean) and a similar

spread of data (e.g. the same variance or standard deviation) as the whole

population. Special care should be taken if the machine is providing its own

examples as this could be a very narrow selection without the same cover-

age as the true data. A parallel from the discipline of computer security is

“Schneier’s Law”:
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“Anyone, from the most clueless amateur to the best

cryptographer, can create an algorithm that he himself

can’t break.” - Bruce Schneier [Schneier, 2011].

In analogy, for an example chess-playing machine: “Any machine that can

play chess can do so well enough that it always draws with itself.” Finding

appropriate training examples can be challenging depending upon the area

of interest. Often in practice the distribution of the training set differs from

the test set or the real-world situation.

2.2.1 Supervised Learning

In supervised learning, training data with inputs and outputs are pre-

sented, and the algorithm is required to return a function fitting the inputs

and outputs it has seen. ML shares many similarities with statistics re-

search, although the latter often uses a different nomenclature. In statistical

terminology inputs and outputs are known as predictors and responses,

or independent and dependent variables [Hastie et al., 2001]. Given a

training set of pairs (xi, yi) a mapping from x to y is to be learnt, where

y contains a label yi for each xi. The mapping is evaluated based upon how

well it predicts the label y for particular examples [Chapelle et al., 2006]. The

outputs might be a class for the classification task (discrete, non-ordered

answers) or by regression provide a continuous answer sometimes following

a linear function Y = mx + c, where Y ∈ R). The discovered function is
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then either validated against a separate test set of known examples or is

cross-validated: all known examples are split into n sets, n − 1 sets form

the training set, and one set is used as the test set. This is repeated n times

with each set in turn performing the role of test set. Leave-one-out cross-

validation is a specific type of cross-validation which uses all-but-one of the

examples as the training set and one example to be predicted as the test

set, a process then repeated such that each example takes the role of test set

exactly once. Good performance achieved via cross-validation is seen as evi-

dence against overfitting on the training data. An overfitted model is one

which performs well on training examples, but has become too specialised to

those specific examples and as such performs much worse when given unseen

examples from a more general distribution.

Supervised learning is appropriate when many labelled (classified) examples

are available [Kotsiantis et al., 2006]. There are two families of supervised

learning methods: generative, and discriminative. A generative method

models the distribution such that new examples can be generated, whereas

a discriminative model merely performs classification and regression based

upon labelled examples with no scope for generating new examples. Discrim-

inative models do not translate easily to unsupervised learning, whereas

generative models may. Examples of discriminative models include Support

Vector Machines, linear regression, and Neural Networks. Examples

of generative models include Gaussian (and other) mixture models and

Naive Bayes [Vapnik, 1998].
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2.2.2 Unsupervised Learning

In unsupervised learning, unlike in supervised learning, the learning algo-

rithm is given only unlabelled examples. This removes the problem of hav-

ing to pre-define the classes of examples, with the corollary that the output

function is not labelled, but can only show the organisation of examples in

the sense that groupings of examples have similarity. X = (x1...xn) is a

set of n examples from a distribution X, with the assumption that the set

of examples is independent and identically distributed with respect to X.

The assumption of independence means that the values of the examples are

not influenced by the values of any other examples, i.e. no examples are

interdependent. Identically distributed means the samples are drawn from

the same distribution, but moreover the sample set has the same mean and

variance as X. Some methods can provide more explicit descriptions of what

is similar about particular sets of data. Clustering algorithms and dimen-

sional reduction such as principle components analysis or manifold learning

are examples of unsupervised learning methods.

Principal Components Analysis (PCA) is a linear dimensionality reduction

which represents a dataset with a number of vectors that is smaller than the

number of dimensions. The vectors are the eigenvectors (inherently orthog-

onal) generated from the covariance matrix of the data. They are ordered

such that the first ‘principal component’ is the vector which accounts for the

most variance in the distribution, the second accounts for the next greatest

11



proportion, and so on, minimising the least squares error [Pearson, 1901].

Manifold learning makes the assumption that high-dimensional data lies on

a lower-dimensional non-linear manifold within the high-dimensional space,

and attempts to ’unfold’ the data to that lower dimensional environment,

like flattening out a map on a globe (or part thereof) to reduce it to two

dimensions rather than three. This makes further data interpretation much

simpler. Sammon mappings [Sammon, 1969] and Kohonen maps [Kohonen,

1982] are examples of manifold learning algorithms.

2.2.3 Active Learning

As mentioned in Section 2.2, some methods are able to work from a small

set of labelled examples with a larger pool of unlabelled examples to request

the most useful examples from the unlabelled pool to be given labels and

returned as further input for the machine to analyse. The theory behind this

idea is that the learner can consequently achieve greater accuracy with fewer

examples. The requests it makes are termed queries, and the trainer or other

information source providing the labelled examples is known as an oracle

[Settles, 2009]. The provision of labelled examples is expensive in terms of

oracle time, if a human expert, and in monetary cost or in computing cost

in many cases. If the machine itself can determine the most useful examples,

the costs of training can be reduced without reducing the performance of the

machine.
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2.2.4 Semi-supervised Learning

Semi-supervised learning exists in the space between supervised and un-

supervised learning [Chapelle et al., 2006]. Similarly to active learning,

semi-supervised learning operates on some labelled examples and many un-

labelled: XL := (x1, ..., xL) for which Y1 := (y1, ..., yL) are provided, and

XU := (xL+1, ..., xn) without labels. Often this technique is used because of

a high cost in obtaining labelled examples. Most approaches to this type

of learning present the problem as unsupervised learning with additional in-

formation about the examples. A few approaches view it as unsupervised

learning guided by constraints. In the case where some labels are never

known, the latter perspective is more appropriate. There is no mechanism

for the learner to request further labelled examples from the unlabelled pool,

as there is in active learning.

Semi-supervised learning can be separated into transductive and induc-

tive learning. Inductive learning outputs an overall prediction function for

the entire space of X, whereas transductive is focused on specific test points

for prediction without the overarching function. Transductive learning can

be thought of as Xu being the test set and Xl being the training set [Arnold

et al., 2007]. The applicability of semi-supervised learning depends on the

ability of the unsupervised examples to add information that is relevant to

the classes or regression function as found in the supervised examples. One

such assumption is that if x1 and x2 are close, y1 and y2 are also close.
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Without the assumption that close parameters in feature space imply close

outputs, it would be as impossible to generalise from the data. Necessary as-

sumptions such as this are known as inductive bias [Mitchell, 1997]. More

generally, the inductive bias of any learning system consists of the assump-

tions it uses to generalise from the input data to unseen examples. Every

learning system has an inductive bias. Two common sources of bias in ex-

isting learning systems are (1) the generalization language is not capable of

expressing all possible classes of instances, and (2) the generalization proce-

dure that searches through the space of expressible generalizations is itself

biased [Mitchell, 1980].

2.2.5 Reinforcement Learning

Autonomous agents use reinforcement learning to improve their responses to

the environment. This is achieved by a reward/punishment system for ap-

propriate or inappropriate actions. This can be inherent in the environment

or administered by a trainer. For example, a robot might determine that it

gets rewarded when it moves closer to, or perhaps simply reaches, a certain

position, and punished when it makes contact with obstacles, and from this

derive an obstacle-avoidance path-planning algorithm. Reinforcement learn-

ing is achieved by maximising the reward and minimising the punishment.

The rewards and punishments can be direct or indirect: rewarding forward

motion would be direct; rewarding the final state of having reached the goal
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would be indirect since the intermediate states must be interpolated by the

algorithm [Mitchell, 1997].

2.3 Learning Algorithms of Interest

2.3.1 Bayesian Reasoning

Arguably the basis for all rational learning, Bayesian reasoning is probabilis-

tic inference: it allows calculation of the probability of a hypothesis being

true given previous knowledge and new evidence. Thus, the probability of a

particular hypothesis being true may be constantly updated as new informa-

tion is encountered.

Bayes theorem:

P (b|a) =
P (a|b)P (b)

P (a)

To determine the probability of an event b given that event a has occurred,

multiply the a priori (beforehand or initial) probability of event b by the

probability of event a given that b has occurred, then divide by the a priori

probability of a. The result is known as the a posteriori (after accounting

for priors and performing computation) probability of b.

A Bayesian classifier returns the set of all hypotheses with its degree of be-

lief in each one (the probability). A true Bayesian classifier is perceived
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as the ‘gold standard’ by which other classifiers are judged, since it always

outputs the ‘right’ answer (as a probability) for the inputs it is given. The

main problem encountered is with encoding the prior knowledge accurately

– most factors and probabilities of the real world are not known or at least

are not precisely known. Bayesian classifiers are also computationally expen-

sive. More often simplified versions are used for practical applications, such

as the naive Bayes classifier, which assumes the conditional independence of

all effect variables (conditional on the cause variable). The size of the repre-

sentation of Naive Bayes models grow at O(n) (linearly) with the number of

effects, rather than the O(n2) of true Bayesian classifiers. Naive Bayes classi-

fiers therefore can operate at scale, and perform surprisingly well even when

the conditional independence assumption (that the probabilities of all effects

are independent from one another) is wrong. Bayesian Networks are a differ-

ent way to reduce the computational complexity by representing conditional

independence in (directed acyclic) graph form [Pearl, 1985]. In a Bayesian

Network each node is annotated with quantitative probability information

and arranged such that the parents of nodes are those variables which have

direct effect on the children. This effect is expressed as the conditional prob-

ability P (Xi|Parents(Xi)). Thus, the topology of the network defines the

conditionality of the probabilities, and the values at each node give a condi-

tional probability table. This graph could be created by a domain expert or,

more usually for complex examples, generated from the data.
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2.3.2 Decision Trees

For decision trees, inputs are described by attributes, which could be discrete

or continuous. Each node in the tree is a decision based upon the value of a

particular attribute, with possible values (or ranges) labelling the branches

from that node. The “leaves” (from which there are no further decisions or

“branches”) give a final classification or regression answer. The attributes

are usually prioritised by which attribute’s value would give the greatest gain

in knowledge, such that the root node is the attribute which has most effect

on the outcome [Navada et al., 2011]. Decision trees are popular inductive

inference algorithms. Their inductive bias is a preference for small trees over

large trees [Mitchell, 1997]. This means that where all else is equal, the

simplest solution is chosen, that is, the tree with fewest nodes.

2.3.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are a non-symbolic approach to learning,

inspired by the current understanding of how real biological neurones oper-

ate. Networks of artificial neurons ‘fire’ (transfer a signal to a forward node)

given summed input values above a threshold from the neurons behind them.

Each neuron holds a weighted sum of its inputs determined from the weights

associated with each link, which may be positive (increase the sum in the

receiving node) or negative (decrease it). There are several problems with
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neural networks. One is the amount of space and memory they take up com-

putationally, which has in the past been problematic. The other problem is

insurmountable for certain applications: that a neural network is essentially

a black box. No rules about how it has come to its conclusion can be discov-

ered, at least, not simply [Benitez et al., 1997]. The first ANN was a single

layer perceptron, the simplest possible ANN with all the inputs connected

directly to the outputs. Since for a threshold perception the weighted sum of

the inputs is equal to
n∑

j=0

Wjxj > 0, this defines a hyperplane in hypothesis

space. The threshold perceptron can be termed a linear separator. A linear

separator can represent Boolean AND, OR, NOT, and further more complex

functions like ’more 0s than 1s’ very compactly, but it cannot separate func-

tions like XOR because there is no single straight line that can be drawn

between the two classes. Adding a hidden layer between input and output

overcomes this problem by allowing functions other than straight lines, flat

planes and hyperplanes to be defined. Hidden units can be combined to create

the desired function, though it is by no means trivial to determine how many

hidden units are needed for a given problem. Multiple layers (i.e. at least

one hidden layer) are almost universally used now when a neural network

is applied. This extends to the newer development of deep belief networks,

which are probabilistic generative models comprising several simpler learning

modules, each of which is a two-layered Boltzmann machine with one layer

for representing data and one for learning higher-order correlations [Hinton

et al., 2006,Hinton, 2009].
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2.3.4 Support Vector Machines

One of the more recent and popular developments is that of the Support

Vector Machine (SVM).

The basic mechanism of an SVM is to describe a hyperplane (in the two-

dimensional case, this is simply a line, but planes or hyperplanes are required

for operation in higher dimensions) which divides two sets of data in mul-

tidimensional space, by finding the hyperplane that is furthest away from

both classes, a maximum-margin hyperplane. The support vectors are those

samples on the margin delineating each class from the others [Cortes and

Vapnik, 1995]. Although the original SVM is a linear classifier (a linear sep-

arator like the single-layer perceptron), by translating a non-linear problem

(such as the XOR example given in Section 2.3.3) into a higher dimension

using some kernel, solving with linear SVM, and then translating back down

again, the linear SVM can be used to solve non-linear problems. This is

known as the “kernel trick”, a technique which has been applied to several

different linear classifiers. The idea behind a kernel function is to embed the

data in a space where the resulting pattern can be described linearly. A sim-

ple example might find the straight line y = mx+c of best fit given data that

has been translated into a feature space such that the examples appear in a

pattern which is easily separated by a straight line. The resulting function

can be transposed back into the original feature space [Shawe-Taylor and

Cristianini, 2004].
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Support Vector Machines have been shown to perform very well in classifica-

tion tasks such as genre identification, and are often applied in combination

with other types of classifier giving increased rates of success [Li and Ogi-

hara, 2003,Eisenthal et al., 2006]. See Chapter 3 for applications of SVM to

music classification.

2.3.5 Inductive Logic Programming

Inductive Logic is a meeting of machine learning and logic programming.

It operates on the premise that the combination of background knowledge

and hypotheses entail (lead to) the examples. Examples, background knowl-

edge, hypotheses and classifications are all stored as predicate logic. It is

usually applied to domains such as natural language processing and bioinfor-

matics because of its expressive power and its ability to utilise background

knowledge [Muggleton and de Raedt, 1994]. It has also been applied to other

domains such as engineering and market research. More recently attempts to

combine logic, learning, and probability theory have resulted in the new sub-

field of Probabilistic Inductive Logic Programming, also known as Statistical

Relational Learning.
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2.3.6 k-Nearest-Neighbour algorithms

The k-Nearest-Neighbour is one of the simplest machine learning algorithms.

In a k-Nearest-Neighbour or kNN, test examples are classified based upon

the classes of k (a number chosen by the user) labelled examples which are

closest to the test example in feature space (an imaginary region in which each

feature represents a dimension). The value of k generally needs to be higher

the more noise there is in the dataset – more example neighbours are needed

to give the right classification when those examples are noisy. Determining an

appropriate value of k is important for getting the best learning performance.

Often the feature space and distance measure is considered to be Euclidian,

but not always. Inputs must be numeric and so for categorical data a suitable

translation must be performed or alternatively a non-continuous distance

metric is used such as Hamming distance (the number of features which have

a different value). The algorithm is:

• Given a query example e, find the k examples which are closest in

featurespace to e

– EITHER: Using a majority vote, assign e the value most repre-

sented by the y (output) values in the k examples. (this means k

should usually be odd-numbered)

– OR: for regression, take the average of the y value for all k exam-

ples.
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Figure 2.1: kNN diagram. In this case, k = 5, and the classification is blue
(diamond) at a 3 to 2 vote.

Some kNN algorithms use weighting. The simplest of these inversely weights

the influence of each labelled example with the distance of the example from

e [Dudani, 1976]. This is especially helpful when a large proportion of the

examples have a particular value so as to reduce this bias in the result.

2.4 Machine Learning Tools

Weka is a popular data mining suite written in Java which offers many dif-

ferent machine learning algorithms and parameter options. It is open source,

freely available and has an accompanying book Data Mining: Practical Ma-

chine Learning Tools and Techniques [Hall et al., 2009] [Witten and Frank,

2005]. Being written in Java means that it is platform independent and
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fairly simple for a developer to extend with new algorithms. It also provides

several helpful interfaces to running and analysing experiments as well as

visually exploring data for patterns. The usual data format for Weka is the

Attribute Relationship File Format (ARFF) file, though Comma Separated

Value (CSV) files may also be used for input. An example file has two parts:

a description of each attribute (or feature) and the data itself as rows.
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2.4.1 Example ARFF file

% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
% (b) Donor: Michael Marshall (MARSHALL@PLU@io.arc.nasa.gov)
% (c) Date: July, 1988
%
@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
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Weka’s available learning algorithms fall into various different categories,

which are:

• bayes: includes BayesNet, Bayesian Logistic Regression, NaiveBayes

• functions: includes Logistic, Multilayer Perceptron, Sequential Minimal

Optimisation of SVM

• lazy: includes IB1, IBk, KStar

• meta: includes Ensemble of Nested Dichotomies, Bagging, Random

Committee

• mi: includes multi-instance classifiers

• rules: includes ZeroR, OneR, decision table

• trees: including J48, RandomForest, REPTree

• misc: anything that doesn’t fit into other categories e.g. HyperPipes

This is not an attempt to provide an exhaustive list as this changes with

each new version of Weka available. It is unnecessary to go into depth about

each specific classifier, but those which prove successful will be more closely

examined. Some algorithms naturally operate only on certain types of data

and can be immediately discounted from experiments where they are not

applicable. Indeed, Weka itself highlights those algorithms which are feasible

for the task using the ARFF file information. This does not necessarily mean

they will perform well, but simply that the data format is appropriate for
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the algorithm in question.

Other examples of machine learning suites include RapidMiner [Mierswa

et al., 2006] which is a framework fully integrating Weka, and ELKI [Achtert

et al., 2008] which focuses on unsupervised learning methods.

26



Chapter 3

Machine Learning, Aesthetics

and Musical Aesthetics

3.1 Machine Learning and Aesthetics

Machine learning techniques have been applied to the aesthetics of other

forms of art and to natural aesthetics with success. Eisenthal et al. looked

at facial attractiveness in 2006 [Eisenthal et al., 2006]. An aspect that was

once believed to be subjective (in the eye of the beholder), it has been shown

that people generally agree on what is an attractive face, irrespective of

ethnicity, social class, age and sex. Eisenthal set out to train a machine

learning algorithm (in this case, k-nearest-neighbours and Support Vector

Machines) to distinguish between attractive and unattractive faces. Human
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participants first rated a set of images of people’s faces. The middle 50%

of faces as rated by human participants was removed from the sample such

that only the bottom 25% and top 25% remained. The kNN algorithm per-

formed best achieving 77% correct on the second data set tested. Since kNN

by its nature could not provide any insight into the rules behind the rat-

ings, a decision tree was employed to determine the most important features.

The best were: size of the lower part of the face (jaw length, chin length),

smoothness of skin, lip fullness, and eye size, all of which were found con-

sistent with previous psychophysics studies. Averageness and symmetry are

key parts of facial attractiveness across cultures [Rhodes et al., 2001]. How-

ever, there is more to facial attractiveness than these aspects alone [DeBruine

et al., 2007]. DeBruine found that there are specific nonaverage characteris-

tics that are particularly attractive, by using manipulated images on a scale.

The most average face in each set was not rated as highly as some nonaverage

faces with exaggerated features such as thinner eyebrows, bigger eyes, smaller

chin. When these features were so exaggerated that they fell outside normal

bounds, however, they were rated less well, suggesting that averageness is an

important component but not the only one.

One might be tempted to suggest that this sort of analysis is only success-

ful because facial attractiveness is such a close biological and evolutionary

imperative in humans, or perhaps that natural feature aesthetics are a differ-

ent problem from created art aesthetics. However, this appreciation extends

to birds, fish and automobiles [Halberstadt and Rhodes, 2003]. Halberstadt

28



and Rhodes manipulated images of birds, fish and automobiles for avera-

geness. Both manipulated averageness and rated averageness were strongly

correlated with attractiveness for all three categories. However, when the

effect of subjective familiarity was partialled out of the test only the bird

and fish categories retained significance. This suggests that our perception

of beauty in living things is indeed different from how we perceive inanimate

objects.

Beyond living beings and inanimate objects, there are more general appli-

cations of aesthetic prediction. Datta et. al. used general photographs as

a basis for aesthetic analysis [Datta et al., 2006]. In the study 56 low-level

features for the 3581 images were chosen based upon known aspects rele-

vant to photography. Using information about lightness, colourfulness, hue,

saturation, the ‘rule of thirds’ from photography theory and various other

features for each photo, they applied SVM and CART algorithms to classify

photos into the high or low category as well as using linear regression to

produce a point on a scale. The best results for binary classification were

68.08% accuracy for predicting high aesthetics, and 72.31% for predicting

low aesthetics when applying 5-fold cross-validation and using SVM. For the

regression task the residual sum-of-squares R2
res = 0.5020, a 28% reduction

from the variance σ2 = 0.69. The generated decision tree produced interest-

ing paths, one notably that a picture is highly rated when it is closely fo-

cused on a central object of interest. The human ratings for the photographs

were obtained from Photo.net, a social networking photo upload site, where
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users upload photographs they have taken and rate other photographs on a

scale [Photo.net, 2013]. Ideally the authors suggest a controlled study for

a more balanced demographic, but stated a lack of time as justification for

using the abundant and freely available information on Photo.net.

In general, some progress has been made in tackling the problem of aesthetics

in imagery in the last decade [Joshi et al., 2011].

It is clear from the above studies that different kinds of visual aesthetics can

be modelled to some extent with machine learning techniques, despite their

apparent subjectivity.

3.2 Musical Aesthetics

Eduard Hanslick, writing in the Romantic era, fought against contemporary

ideas that music was for stirring the emotions [Hanslick, 1891]. He tried

to establish that the aesthetic value of music could be understood purely

intellectually. He insisted there were means by which to judge music that

were not purely subjective and whose basis did not lie in how the music made

people feel. Nearly 200 years later there is still debate over what is important

in the judgement of music. Despite (or perhaps because of) this, work has

been conducted into measuring the aesthetic value of music, with the idea

that aesthetics are valuable in music, and some agreement can be formed

on their nature, just as in other forms of art (e.g. paintings), despite the
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difference in medium. Roger Sessions writing in 1970 came to very similar

conclusions to Hanslick regarding the criteria by which to judge music being

inherent in the music, and not relating to emotions or celebrity, or the process

by which the music was created [Sessions, 1970].

In 2003 Manaris et al. conducted a study using a statistical approach to

aesthetics [Manaris et al., 2003]. As explained in Manaris’s work, Zipf pre-

viously analysed celebrated works of literature for their word usage distri-

bution, and found that the frequency plotted against the logarithm of their

statistical rank produces a line with gradient close to -1. Put another way,

the frequency of the nth ranked word is 1/na where a is close to 1. Benoit

Mandelbrot extended this law to account for a wider range of phenomena,

where the slope of the lines range between 0 (random) and negative infinity

(monotonous).

The study by Manaris postulates that music that is aesthetically pleasing

should follow a Zipf-Mandelbrot law, which is a type of power law. They

tested several different aspects of music against this law, using MIDI (Musical

Instrument Digital Interface) examples of music so that calculations could be

easily automated. The aspects covered pitch, duration, melody and harmony

in various ways, including a pitch mod-12 aspect which would likely only

apply to Western music because of the strict implication of a Western scale

here.

Celebrated classical musical works were compared with 12-tone, pop music,
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jazz, white noise, pink noise and music generated from DNA. The Zipf law

was in general present in musical works and not present in non-musical noises.

A neural network was applied to distinguish between 100 pieces by Bach and

32 pieces by Beethoven using these Zipf metrics as features. 95% accuracy

was achieved on unseen data (unfortunately, the authors did not report the

proportions of training and test data). The research concluded that although

a Zipf-like distribution is a good start to a musical piece it does not on its

own guarantee it to be aesthetically pleasing. What can be said is that if a

sound has a distribution far from Zipf in several dimensions, it is either not

music, or not aesthetically pleasing music.

The use of MIDI also leaves a lot of information out of the calculations,

but reduces the complexity of the task significantly. MIDI encoding is very

capable of representing polyphonic electronic music, but vocals cannot be

encoded, nor can some aspects of musical expression such as gradual changes

in timbre. Timbre is the quality of the sound which is additional to the pitch

(frequency) and loudness (amplitude). Timbre is what creates the difference

between playing middle C (440Hz) on a piano and on a violin at the same

volume. Overtones and harmonics contribute to timbre. Actually, MIDI

contains no information about how the music sounds in terms of timbre - only

information about the note pitch, length, and suggested instrument (and a

few other things too such as volume and pitch bend), which a soundcard can

interpret to produce ‘music’.
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In 2001 Music Cognition, Culture, and Evolution by Ian Cross was pub-

lished [Cross, 2001]. At first music seems irrevocably cultural and thus a

scientific generalisation is useless. However, all music has this in common:

temporal organisation which is regular and periodic. In fact several aspects of

music appear to be cultural universals. Dowling and Harwood in “Music Cog-

nition” [Dowling and Harwood, 1986] identified the following cross-cultural

universals:

• use of octaves

• a logarithmic and discrete pitch scale, with 5 to 7 pitches per octave

• hierarchical structure

• melodic contour (seen as a series of curves in written music)

• timbre changes

• the existence of a beat framework

• rhythmic contours

• every culture has people who can sing

The above list indicates that whilst some aspects of music comprehension

may be understood only from within the culture in which the music was

created, many other aspects appear to be universal to humanity at large.

Levitin writing in 2006, a neuroscientist who previously worked in a recording

studio, has discovered many of the same universals [Levitin, 2006]. This is
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encouraging for the planned cross-cultural nature of this thesis.

3.3 Machine Learning and Music

The work that encompasses music and machine learning invokes both “sound

to sense” (interpreting music), and “sense to sound” (creating music) paradigms,

as well as including associated analysis and translation tools. These terms

come from the sound and music computing network, http://smcnetwork.

org. This part of the literature review concentrates on those advances in

“sound to sense”, since we are interested in the interpretation, rather than

creation, of music by computers. Despite the quiet growth of the field of

sound and music computing, and despite the lucrative potential of such en-

deavors, academic support for such work is not yet mature [Consortium,

2007]. The S2S2 roadmap, a projection of the direction of music informa-

tion retrieval research and identification of stumbling blocks and useful new

research that should be conducted, expresses the need for music perception

models, since “bottom-up” modelling (that which deals with the raw sound

features and does not extend to modelling or mimicking human responses)

has reached its limitations.

A large amount of research has been recently done on the development

of audio features (attributes) for the computational analysis of music, e.g.

[Grachten et al., 2009]. These attributes have typically been used to perform
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automatic classification and clustering to identify similar pieces of music (for

recommendation systems), e.g. to identify mood, genre, emotive content,

and various other purposes for which it would be impossible to provide an

exhaustive list [Laurier et al., 2008]. In addition to audio attributes other

meta-data have been utilised via, for example, web searches and social tags,

but also MIDI, score reading and lyric mining [Widmer et al., 2005, Turn-

bull et al., 2009b, Knees et al., 2007, Mckay and Fujinaga, 2004]. Features

extracted from music are discussed in Section 3.3.1.

Various machine learning methods have been applied to such audio features.

Support Vector Machines, k-Nearest-Neigbour, and Neural Networks have all

been used with good success for certain applications. The MIREX (Music

Information Retrieval Value Exchange) 2012 competition winners for classi-

cal composer identification used a SVM ranking algorithm which achieved an

overall classification accuracy of 69.7% on 11 classical composers. The mood

classification task was also won by a team using SVM extensively, though

their winning algorithm also used Support Vector Regression and hierarchical

clustering. The genre recognition task was also won by a team using SVM,

whose algorithm achieved 76.1% overall accuracy discriminating 10 genres.

Though other algorithms are in use and do well, SVM is clearly the go-to ma-

chine learning algorithm for state of the art music classification. Hamel and

Eck used Deep Belief Networks (DBN), a newer form of neural network, to

generate features which were then used as inputs to an SVM classifier [Hamel

and Eck, 2010]. The results compared favourably with the state of the art
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for both genre classification and tagging tasks. k-Nearest-Neighbour algo-

rithms are more often used for symbolic tasks [Rebelo et al., 2010]. Rebelo

et al compared Hidden Markov Models (HMMs), k-Nearest-Neighbour, Neu-

ral Networks and SVMs in several symbolic recognition tasks on handwritten

and printed music. The simple kNN performed better than either HMM or

NN, beaten only by the SVM. Accuracy ratings varied significantly depend-

ing on the symbol being recognised, for example the handwritten open note

was extremely difficult to classify, with even the SVM getting accuracy re-

sults in the 40% region, to sharps and naturals for which all the algorithms

performed in the 80-100% region whether handwritten or printed.

Despite these advances little work has been done on ‘Computational Ethno-

musicology’.

Tzanetakis’ work [Tzanetakis et al., 2007] seeks to illustrate the usefulness

of ‘Computational Ethnomusicology’, which means the application of music

information retrieval (MIR) techniques to ethnomusicology; that is, to mu-

sicology not exclusively focused on Western (and usually classical) music.

Historically most music analysis work has been on Western music. MIR al-

lows the analysis of large corpuses of music to obtain automatically features

that would take copious time to transcribe by hand. Though the features

are from signal processing they relate closely to how humans perceive music.

One example is the spectral centroid, which is mathematically simple (it is

the weighted mean of the frequencies in the signal) and yet is strongly cor-
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related with human perception of ‘brightness’ in sound [Lichte, 1941, Grey,

1977].

Few examples have been offered, such as Liu et al. which demonstrated the

applicability of music analysis techniques to non-Western music [Liu et al.,

2009]. They took 1300 tracks matching 6 different cultural styles: Western

classical, Chinese traditional, Japanese traditional, Indian classical, Arabic

folk and African folk music. SVM, kNN and decision trees were trained on

mainly low-level features of the sound. The features monitored were several

timbral, rhythmic, wavelet and some higher-level musicology features (these

last including chroma features which represent the distribution of the 12

pitches in the Western scale). Of these, the timbral features, important for

distinguishing intruments, were found most useful, performing with 84.05%

accuracy alone. One might question the applicability of Western features to

the non-Western styles, since the notes of some cultures would not line up

with the pre-defined Western pitches. However, the musicology features did

increase performance, albeit by 1-2 %. The rhythm and wavelet features did

not improve performance for this task. This may be, as posited, because these

aspects do not contain information relating to cultural style, but it could be

that the features were not detailed enough to pick u on such differences,

too. Some classes were better classified than others, ranging from 97.33% for

Western classical down to 68.57% for African folk. As the authors suggest,

this is probably due to greater diversity in style within Indian, Arabic and

African music.
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Gomez et al. have applied these techniques to classifying music as Western

or non-Western with success, and also found some important features relat-

ing to the latitude and longitude of origin of a piece [Gomez and Herrera,

2008, Gomez et al., 2009]. In their 2008 paper they attempt to distinguish

Western music from non-Western music, with 1000 and 500 examples re-

spectively. Assuming that the first 30 seconds of each track is enough based

upon previous work with key estimation, they extract several tonal features

including deviation from western tuning frequency (440Hz), high resolution

pitch class distributions at 10 values per semitone, much more finely grained

than the 12 per octave used by Liu et al., a transposed version of the same

which is invariant with absolute pitch, and a measure of roughness (close

frequencies played together). Several machine learning techniques were ap-

plied and tested using 10-fold cross-validation. Their decision tree and SVM

learning choices are described, but all their tested algorithms performed at

above 80% accuracy, with the best-performing being SVM at 86.51%. Clus-

ter analysis using k-means set to find 2 clusters showed a close correlation

with the found clusters and the actual categories. This work demonstrates

the applicability of tonal features to the task of distinguishing Western and

non-Western music.

In Gomez et al.’s 2009 paper the aim was to firstly distinguish Western and

non-Western music for a larger dataset than the previous paper, and secondly

identify those audio features which distinguish music geographically. For this

tonal, rhythmic and timbral features were selected. The tonal features are
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as in the 2008 paper, timbral features are a standard set including spectral

flux and roughness, and rhythmic features include global tempo and onset

rate, which was also broken down to drum-kit events such as onsets of bass

drum/hi-hat (whether the real instrument playing the detected sound was

actually this type of drum or not). An SVM was trained on these features

to classify tracks based on the features from the first 30 seconds of each.

The classifier reached its highest accuracy – 88.53% – with timbral features

alone. As before, rhythmic features performed badly, as did the drum-based

features. They then computed the Pearson correlation coefficient for lati-

tude and longitude. Latitude was correlated with mostly tonal features, and

longitude more with rhythmic features. There are some problems with this

approach, however. One is that the zero line for longitude is arbitrary and so

predicting on a differently centred longitude line might give different results.

In flattening the map such that -180 degrees is as far as possible from +180

degrees when on a globe they are along the same line fails to account for true

distances between locations on Earth. The combinational contribution to

latitude and longitude is not addressed, they are treated as orthogonal and

independent, when cultures that are close are likely to be close both in lati-

tude and longitude. It is these potential areas for expansion which inspired

the work of Chapter 5.
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3.3.1 Source Material and Representations

Signal and Audio

Source material for interpretation takes many forms. One obvious source is

the music itself. There are good arguments for using data closest to its raw

form as possible, but any kind of music must necessarily be digitally con-

verted for a machine to interpret it, which means the interpretation deviates

from human perception. The difference between being at a live concert and

listening to a CD is obvious, but so far we can only really provide the au-

ditory information, possibly with some data-mined context in textual form,

and recently, the actual motions of the performer have been encoded and

included to help with interpretation. The format of the music has generally

been whatever is readily or freely available, such that most recent work is

applied to MP3 files.

Earlier work was mostly conducted on MIDI files, which have already encoded

structural aspects of the music, and by no means represent the entire auditory

content. These were used because the representation was to an extent already

there, and because the amount of data was very small in comparison to

an entire track of auditory data. More recent developments in processing

power and storage capability have led researchers to use audio data as far

as possible. However, MP3s are optimised for human ears, and as such the

loss of data might have somewhat less effect on the ability of the computer
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algorithm to emulate human listening capabilities, particularly when they

are currently behind humans at the most complex recognition tasks.

Many of the low-level audio features are based on the Short-Time Fourier

Transform (STFT). Fourier transformations are a way of expressing a signal

that is expressed as a function of time into a frequency spectrum. The nature

of digital signals requires such transforms to be Discrete Fourier Transforms

(DFTs). Music signals change over time. To incorporate this, rather than

taking a DFT of the whole track, one may take STFTs of shorter overlapping

windows and take the DFT of each of these. The size of the window affects

the accuracy of both frequency estimation and time resolution, such that

a larger window gives better high-frequency resolution, but a smaller one

gives better time accuracy. This trade-off is fundamental to time-frequency

analysis.

Filterbanks are systems which separate input into several sub-bands. In a

sense, even an STFT can be considered a filterbank, along with wavelets and

other signal decompositions. The Mel filterbank is based upon the Mel scale,

which approximates the way human ears perceive the loudness of different

frequencies.

The dominant feature that is extracted by MIR specialists from raw au-

dio data files is the Mel-Frequency Cepstral Coefficient (MFCC). This is a

means of summarising Fourier transforms over a window of time, such that

they follow a logarithmic scale that mimics the way in which the human ear
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perceives sound. The scale which mimics human perception is called the Mel-

Frequency scale. MFCCs have been shown to perform well with not only raw

audio data, but also MP3 files, so long as the bitrate (data density or data

quality, essentially, as measured by the number of bits per second recorded)

is at least 128kbits/s [Sigurdsson et al., 2006]. Timbral features like the

MFCC have been the most widely used and the best-performing features in

isolation.

Another common type of timbral feature are spectral features. These are

summaries of the general distribution of energy across the frequency spec-

trum. Spectral centroid – a measure of ‘brightness’ in sound, and spectral

rolloff is defined as the frequency below which 85% of the energy distribution

of of the spectrum is concentrated.

Other timbral features include zero-crossing rate, spectral bandwidth, octave

based spectral contrast, spectral flatness measure, and spectral crest factor.

Timbral features can be thought of as summaries of the frequency informa-

tion. Temporal summation of timbral features is often useful for giving a

single feature vector per song or track.

Rhythm features include representing the tempo or, with more difficulty,

the beat (which may have nuances like strong/weak and syncopation) of the

music. Usually audio onset detection is used to translate the audio represen-

tation into a symbolic one, and then applying symbolic algorithms.

Pitch or harmony features extract the notes and chords from audio. A com-
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mon way to extract pitch or the ‘note’ is the Pitch Class Profile, which folds

the pitches extracted into one octave representation. One approach to this

computation is known as the chroma or chromagram. Each Fast-Fourier

Transform (FFT) bin is mapped to its closest note, usually on a Western

scale of 12 notes, segmenting the spectrum into note regions. The result is

a vector of size 12 with each value corresponding to the magnitude of that

group of frequencies.

Many of these features have a short explanation in Table 5.1.

Written and Symbolic

A second source often used is a written, rather than auditory, logical repre-

sentation of the music, such as a musical score. This is known as ‘symbolic

data mining in musicology’. Score analysis is mostly used on classical West-

ern music, since non-Western music is often not written in the same way or

even at all, and non-classical music tends to have just the chords and basic

riffs without the entire music being represented. A recent useful applica-

tion of score analysis was to determine the difficulty of pieces such that they

could be sorted by ease of playing for students [Sébastien et al., 2012]. The

music score in this case was in MusicXML format. The proposed criteria

to represent difficulty were playing speed (using tempo and the length of

the shortest note), fingering (how awkward the hand positions are, apply-

ing a cost function to the notated positions), hand displacement (how far
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apart the hands are, adapated per instrument), polyphony (number of notes

played simultaneously), harmony (number of accidentals [notes outside the

expected scale often introduced for interest or flair), rhythm (synchronising

rhythms of difficult ratios such as 3 against 2), and length (the total length

of the score). They were able to extract most of these criteria (not fingering

as their work to extract this is not yet complete) as features from 50 piano

pieces ranging in difficulty from beginner to virtuoso with the bulk in the

intermediate to advanced range. They used k-means clustering on these fea-

tures and compared their results with PCA and with expert ratings (from

music teachers). There was a better correspondence with the human ratings

than with the ‘objective’ PCA comparison, reinforcing the validity of the

chosen criteria.

In 2008, Inductive Logic Programming was applied to musical harmony by

Amelie Anglade [Anglade and Dixon, 2008]. The chord data was manually

annotated in Resource Description Framework (RDF) format, rather than

automatically extracted. The chord, degree of the scale, and intervals be-

tween chords were recorded. Over twelve thousand underlying harmony rules

were extracted, the most useful of which could distinguish between and give

the characteristics of a set of music by The Beatles, and jazz music. Known

musical harmony rules were amongst those discovered by the algorithm.

Niedermayer and Widmer analysed the influence of having real audio vs. ba-

sic synthesis from MIDI or better synthesis from a more expensive program
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(the real instrument, a Boesendorfer SE290 piano, was computer controlled).

Real performances of 13 Mozart Sonatas were performed on the SE290, and

the result was matched note for note with a written score. Algorithms known

to perform well from e.g. MIREX competitions were selected for the tasks.

For onset detection (finding the onset of a particular note) the quality syn-

thesiser performed best with mean f-measure 98.18, performing better than

the ostensibly simpler basic synthesiser (94.00). This was surmised to be due

to the influence of higher frequencies in the basic synth. For audio alignment

(the task of matching audio to score) the real piano produced the best result

of f-measure 86.85. Lastly they investigated the influence of expressivity on

these two tasks by ‘cleaning’ the MIDI to set it to standard timings rather

than those actually played. They found that contrary to their expectations,

onset detection was not helped significantly by aligning the notes to their

score positions, but audio alignment was made easier by having the expres-

sivity removed. The conclusion was that whilst synthesised music can be

useful for mining musical information it can also be prone to risks of overfit-

ting.

Metadata and Tags

A third kind of source material is semantic data from the social context,

almost always from the web. Types of data mined include song lyrics [Knees

et al., 2005] [Geleijnse and Korst, 2006], country of origin [Govaerts and
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Duval, 2009], band members and the instruments each plays [Schedl et al.,

2007], and tags for genre, mood and other aspects [Bertin-Mahieux et al.,

2008]. These are found on web pages about the artists or tracks, lyrics sites,

and tagging systems such as Last.fm. Access methods are scraping web

pages, interacting with APIs such as that of Last.fm, eliciting participants

to play tagging games [Mandel and Ellis, 2008] or manual searching.

Recent work has attempted to combine different kinds of features with im-

proved results than either of the groups could achieve alone [Turnbull et al.,

2009a] Turnbull et al.. They considered two types of audio feature: MFCCs

for timbre and chroma for harmonic content. Two social sources were used:

social tags, and web documents.

The first 13 MFCCs are computed per time interval and the first and sec-

ond instantaneous derivatives (deltas). Instead of summarising the entire

song or a segment of it with MFCCs for the whole, these time intervals are

about 23 milliseconds, resulting in 5000 39-dimensional features for 30 sec-

onds of track. The full tracks were modelled using this with an 8 component

GMM. Supervised labelling was applied to automatically allocate tags to the

tracks, and these tags were similarly modelled for audio content using a 16

component GMM.

The social features were firstly tags from Last.fm, with a song having a

relevance score for each tag based on a) whether the specific song is tagged

with it, b) whether the artist is tagged with it, c) whether either is tagged
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with any synonyms of the tag. Secondly web documents returned from a

Google search of specific sites were used, with relevance weights for each

document to the searched tag, and since each document was returned from a

search querying a specific song, artist or album, a weighting for each song-tag

combination is determined.

The goal of combining these measures is to create a ranked order of songs

relevant to each tag. Calibrated score averaging which optimises the weight

given to each ranking, RankBoost (similar to AdaBoost but designed for

ranked data), and kernel combination with SVM (combining at an earlier

stage to produce one ranking output) were each applied to combine the fea-

tures. The performance of these combinatorial approaches was compared

with performance on the separate feature groups and with a Single Source

Oracle (SSO), designed to pick the single best source of a group based upon

a test set. All the combinatorial approaches were better than all the single

source ones at a 5% level of significance, but there was no statistical difference

amongst the combinatorial approaches (including SSO).

They also calculated the number of tags for which each source was the best

predictor. With direct ranking the MFCC best predicted 51 tags by direct

ranking, web-mined tags 12, social tags 9, and chroma 0. For the SVM

approach this was slightly more spread out at 42, 9, 21 and 0 respectively.

It is notable that the chroma features, though perhaps contributing some

information, were the most useful feature for precisely no tag, suggesting
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these are at best an auxilliary predictor when it comes to music tagging.

McKay and Bainbridge created an expansion to the Greenstone open source

library software package which extracts audio features and metadata from

the stored tracks and keeps them in the repository to facilitate later mining

by other researchers [McKay and Bainbridge, 2011]. This should make such

research easier to conduct and thus more common in the future.

3.3.2 Audio Feature Extraction Tools

There are many available tools for extraction, including sox (a command

line tool for audio manipulation found at http://sox.sourceforge.net),

Audacity (a GUI-based visual tool for manipulating audio files found at

http://audacity.sourceforge.net), JAudio (A Java suite for feature ex-

traction) [McEnnis et al., 2005], LibXtract (a lightweight portable library of

audio feature extraction functions) [Bullock, 2007], and MARSYAS [Tzane-

takis and Cook, 2000]. MARSYAS was chosen for feature extraction as it is

prominent in the MIR field and so gives the ability to compare our results

easily. It also outputs in ARFF: a format suitable for Weka, though JAudio

also does this. Many features are timbral in nature. The power spectrum is

also commonly referred to - this is like the frequency spectrum except the

amplitude is squared, so all values are positive.
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MARSYAS Features

The MARSYAS features available are summarised in table 5.1.

3.3.3 Areas of Interest for Classification

Genre

The research question posed in most examples of genre research is “can the

machine accurately predict the genre of given music after training with known

examples?” Performance is at an acceptable level for most consumer pur-

poses but is by no means perfect. In 2006 McKay published a paper in

the proceedings of ISMIR 2006 that attempted to justify further work in the

area despite the limitations and slowing improvements [McKay and Fujinaga,

2006]. Despite the difficulties associated with getting agreement about genre

definitions, which change with time, the different words used by different

cultures and countries, and the lack of objective ground truth, McKay and

Fujinaga emphasise the difference between learning human-defined genres

and learning musical similarity. Users are familiar with the notion of genre

and expect to be able to specify it when searching for music. There are also

relationships between genre and culture, especially for certain music genres

such as rap or death metal. Social tags are used for recommendation exten-

sively by online communities, and thus work is being done on the automatic

generation of such tags [Bertin-Mahieux et al., 2008].
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Feature Explanation Grouping
Time Zero-crossings The number of times a signal

changes sign, i.e. how often it
crosses the horizontal zero line.

Default timbral
features

Spectral Centroid A measure of the “centre of mass”
of the power spectrum.

Default timbral
features

Spectral Rolloff Describes the amount of skew in
the power spectrum.

Default timbral
features

Spectral Flux Is an indicator of the amount of
spectral variance based upon dif-
ferences between adjacent spec-
tral windows.

Default timbral
features

Mel-Frequency Cep-
stral Coefficients

coefficients for a mel-frequency
(tailored to human auditory re-
sponse) power cepstrum - rep-
resenting the short-term power
spectrum.

Default timbral
features

chroma Detects frequency matches for
each musical note of the Western
scale (and its octaves)

Chromatic
feature

Spectral Flatness
Measure

Quantifies how tone-like, as op-
posed to noise-like, a sound is.

Non-default tim-
bral feature

Spectral Crest Factor Peak to average ratio of ampli-
tude. Variance in loudness across
frequency.

Non-default tim-
bral feature

Line Spectral Pair Describes the two resonance fre-
quencies of the vocal tract when
open or closed.

Non-default
misc feature

Linear Prediction
Cepstral Coefficients

As MFCC, but linear rather than
Mel-scale

Non-default tim-
bral feature

Table 3.1: MARSYAS features
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The best feature for genre recognition is inarguably the MFCC [Fu et al.,

2011]. Other low-level features are often combined to improve performance.

Mid-level features like beat and pitch usually perform badly alone but can

improve performance in combination with low-level features [Tzanetakis and

Cook, 2002, Craft et al., 2007]. Craft et al. question the lack of research

into industry and user classification of genre which is not the unquestionable

ground truth that most approaches to genre recognition treat it as. They

propose new evaluation criteria which takes into account the uncertainty in

the result. It is their view that, in genre recognition, “ground truth is an

artefact of an individuals response to music, not an artefact of the audio

itself.”. Still, genre is a long-studied topic in MIR and in general research

is spreading to other areas of music information retrieval (MIR) [Grachten

et al., 2009].

The introduction to the special issue of the Journal of New Music Research

- “From Genres to Tags: Music Information Retrieval in the Age of Social

Tagging” discusses the progress of the field in the light of new uses of mu-

sical metadata [Jean-Julien Aucouturier, 2008]. Indications are that users

are more interested in similarity than in absolute definitions for a particular

track, and when such definitions are desired they are prevalent in a tag-cloud

architecture such that a track many have many tags of varying types includ-

ing genre, mood, style, instrumentation, and cultural associations such as

films in which the song forms part of the soundtrack. Despite this user pref-

erence, a more rigid taxonomy may be of more use in determining underlying
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rules for music.

Similarity

Similarity is a very popular topic within Music Information Retrieval, not

least because of the commercial implications. Recommender systems, whether

for music or for other applications, are legion. They operate in several differ-

ent ways, often ignoring any musical information in favour of using a buying

habits similarity measure such as that of Amazon’s ‘People who bought this

also bought’ system. Such systems are known as ’collaborative filtering’ (CF).

Systems which make use of content analysis are termed ’content-based filter-

ing’ (CB) [Park et al., 2012]. Park et al. categorised 210 papers from 2001

to 2010 into the data mining technique used and the application area. The

keywords searched were ‘Recommender system’, ‘Recommendation system’,

‘Personalization system’, ‘Collaborative filtering’, and ‘Contents filtering’.

Of these, only 9 were applied to music, although they did not include confer-

ence papers because these were assumed not to be peer-reviewed. Actually

for many computer science conferences submitted papers are rigorously peer

reviewed, so it is unclear why they were not interested in these specific confer-

ences. Another reason music recommendation may appear under-represented

is the concentration on computer science journals rather than more diverse

research areas. The application fields considered included books, movies,

documents, TV programs, music and images, though the largest represented
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group was the ‘other’ category. Publications relating to music recommenda-

tion do not appear in the dataset until 2007.

The 8 data mining groupings were:

• association rule

• clustering

• decision tree

• k-nearest neighbor

• link analysis

• neural network

• regression

• other heuristic methods.

In general, heuristic and kNN approaches were most popular. For music,

clustering approaches were more prevalent, with 4 of the 9 papers using some

clustering method for at least one experiment. With such a small dataset for

music it would be unwise to conclude too much from this.

Interest in content-based similarity measures for music recommendation has

increased in the last 10 years in MIR. Data is sparse in CF systems, and

user bias, non-association, and cold start problems are aspects of working

with sparse recommender datasets which can be alleviated by content-based

retrieval. User bias is evident when preferred genres are taken into account
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and this should be used in combination with the information about individual

tracks. Tracks of the same genre could therefore be recommended before

similiar users have heard them. In a sparse dataset two items may never

have been rated or wanted by the same user which tells us nothing about

their relationship. With content information a relationship can nevertheless

be inferred. The cold start problem refers to the need for a critical mass of

ratings or likes before the system can function correctly. Content analysis

can boost the number of ratings in the system allowing recommendation of

new songs before any ratings are available. Li et al found that the addition

of content information and genre information improved recommendations for

a dataset with 760 16-bit MP3s [Li et al., 2007]. This is not good quality

compression, so it is encouraging that despite the findings of Sigurdsson some

useful information remains in lower bitrate MP3 encodings.

The use of timbre to determine the similarity of music has been said to have

an upper limit [Pachet and Aucouturier, 2004]. Aucouturier and Pachet ran

extensive tests on combinations of timbral features and learning algorithms

but found that timbre features alone (including but not limited to MFCCs)

with various learning algorithms being tuned as far as possible tends to-

wards a limit 65% R-precision (a measure from text retrieval). They did not

try other low-level features or SVMs, but suggested this for further work.

They emphasised the need for new approaches rather than simply tweaking

parameters and interchanging slightly different featuresets.
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Magno in 2008 suggests humans are still slightly better at similarity than

any other mechanism, but signal-based algorithms do nearly as well as ser-

vices such as Pandora (human musicological analysis followed by automatic

similarity algorithm) and Last.fm (collaborative filtering – if most of a user’s

library intersects that of another user, the disjunction what-one-has-but-the-

other-does-not should be liked by both users), suggesting that signal analy-

sis is a useful tool for creating recommendation systems [Magno and Sable,

2008].

In 2007 methodological considerations were considered by Allan et al. in

2007. Music similarity can be in acoustic properties, or in cultural aspects.

The relative importance of these aspects changes by listener and by context.

In this study the focus was to represent user-expressed similarity. Users

selected the 2 most similar pieces of three given. The algorithm is tasked to

find further examples that are similar in the same way. Feedback training

was used to further improve the results [Allan et al., 2007].

Popularity

There is some debate in this area over whether anything has been achieved in

popularity studies, because there are so many confounding factors inherent

in what sells well. The area is relatively new with surprisingly little atten-

tion from music psychology [Schellenberg et al., 2008]. Schellenberg et al.

explored the effect of exposure to music on how much it was liked, and found
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that – as one might expect – familiarity at first increases the liking of particu-

lar pieces and later, after too many listenings, decreases it. This ’inverted-U’

shape was previously observed in a separate experiment by Szpunar, Schel-

lenberg and Pliner [Szpunar et al., 2004]. Other studies, such as that of

Witvliet and Vrana, show a different pattern of reinforcing and increasing

initial responses [Witvliet and Vrana, 2007]. Witvliet also measures physio-

logical responses and these reactions were correlated with reported ratings.

It is clear that exposure affects ratings and experiential effects, but the pre-

cise way in which this occurs, especially across cultures, is not yet known.

Since popularity affects exposure (a popular song gets more radio airplay, for

example) and exposure affects popularity, disentangling this influence is no

easy task. Salganik et al. studied social influence in preference. Two groups

were created, one in which participants rated unknown songs independently

and one in which they had access to other users ratings. The independent

ratings were not uniformly distributed, suggesting that there is something

about audio which affects whether people will like it. The ratings for the

other group were more polarised than the independent ones, but also more

unpredictable. The best songs rarely did poorly, and the worst rarely did

well, but any other result was possible.

Dhanaraj and Logan [Dhanaraj and Logan, 2006] applied SVMs and boost-

ing classifiers to lyric content and audio content to predict hit songs. They

used probabilistic latent semantic analysis [Hofmann, 1999] to select topics

for the lyrical content. An MFCC summary for each song was produced using
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20-dimensional MFCCs and k-means clustering. One experiment achieved a

success rate of 68% based upon lyric analysis alone, where the audio features

acheved 66% accuracy. The found it difficult to improve further on these

results, however. Whilst certainly better than random many aspects of the

problem are difficult to take into account, such as those mentioned above.

Pachet et al. [Pachet and Roy, 2008] contradicted this finding with a much

more extensive study. They showed that the predictive power of audio and

other features could be broken down to predicting subjective human labels

affecting popularity, rather than popularity itself. 2 different acoustic fea-

turesets and one of human-generated labels were used. The improvement

over random classifiers in learning the popularity category was not signif-

icant, yet on other subjective categories such as mood it was significantly

improved. Finally the first letter of the song was taken as a feature and

classification improved by 5%, suggested by the authors to be an indication

of noise (unless – which is possible – the letter with which a song title begins

affects its popularity).

It is clearly an area in which work could be useful commercially, but it remains

to be seen how plausible such work is given current and expected future

technology. It is also questionable whether popularity can really be seen as

a feature of a song, rather than its circumstances, at all.

57



Emotion and Mood

Emotion is considered to be how a piece makes one feel, and as such is often

described as an ‘affective’ measure. The locus of ‘mood’ is more contained

within the music itself than in the reaction of the listener - a piece can be

said to have an ‘upbeat mood’ without the necessity of an upbeat listener.

However, there is overlap between the two concepts and the ways in which

they are studied for music. In a 2003 paper the detection of emotion with

MARSYAS and SVM had a low success rate [Li and Ogihara, 2003]. This is

in contrast to the same setup performing well on genre discrimination in the

author’s Masters dissertation [Q, 2008]. The work did give the encouraging

suggestion that within a similar cultural background, similar labels are cho-

sen by humans. The low success indicates that old techniques may not apply

to newer, vaguer areas such as emotion. However, some success with mood,

rather than emotion, was achieved by discriminant analysis by Peeters, sug-

gesting that either discriminant analysis is a better tool, or an externalised

descriptor that is a property of the music rather than the person is an easier

function by which to classify and generalise [G.Peeters, 2008].

Automatic mood estimation was considered by Skorownek in 2007 [Skowronek

et al., 2007]. This is an area where personal taste is a factor, and yet ground

truth was established, and cautious optimism was expressed about automatic

mood estimation being achievable. Mood classes were defined where users

mostly agreed on the moods which fitted the pieces. The example music was
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chosen as the most easily classified music from a pool. Twelve final categories

were created, on 1059 excerpts of music. The categories were not considered

mutually exclusive, but ambiguous excerpts where most people could not

clearly state definite belonging to a class or definite exclusion from a class

were removed. This removed most of the excerpts leaving only the most

unambiguous ones. Each piece was rated by 6 of 12 participants. Features

used were:

• low level signal features

• tempo/rhythm

• chroma and key information

• percussive sounds

Quadratic discriminant analysis was used to distinguish between moods.

They concluded that mood classification was possible when the ground-truth

is strong and unambiguous.

In the Psychology of Music journal the topic of emotion and music appears

with regularity. Konecni’s paper on music effects on emotional state vs.

recalled life events’ effect on the same, the pattern of results and complex

methodological issues cast considerable doubt on the idea of a direct causal

link between music and emotion [Konecni et al., 2008]. It was also proposed

that the notion of “musical emotions” be replaced by the concepts of “being

moved” and “aesthetic awe”. Music here did generate weak emotions but
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it is hard to separate this from potential associations or conditioning. Mea-

surements were ratings of emotional feeling. The previous year, Thompson

conducted a study on concert-goers who were attending performances of clas-

sical music [Thompson, 2007]. The survey found, among other things, that

emotion predicts enjoyment much more than it predicts quality. From the

above work and that on aesthetics it is apparent that emotional responses

and aesthetic appreciation are very different properties, and as such it seems

emotions cannot be appropriated as an indirect measure of beauty.

In Western culture major chords and scales are considered ‘happy’ whilst

minor chords and scales are considered ‘sad’. It is clear that this is cul-

tural, since these particular chords and scales do not appear universally. In

medieval music the scale is different and to a modern ear sounds perhaps bit-

tersweet, but it would have had no strong valence to those who first heard it.

Little music research actually covers non-Western (or non-modern) cultures

so making comparisons is difficult.

One common way to represent this is the valence/arousal diagram seen in

Figure 3.1.

Arousal refers to ‘excitement’ and valence, like in electronics or chemistry,

means ‘positive or negative’. The general perception is that fast music is high

arousal, slow is low arousal, major key is happy, minor key is sad. This only

works so well within Western culture, which is of course influential across

the world. The arousal scale is perhaps more transferrable than the valence
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Figure 3.1: Valence-Arousal diagram from Youngmoo paper [Kim et al.,
2010].
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scale in terms of applying regardless of culture.

Chords and Rhythms

Burgoyne et al. compared various ways of automatically recognising chords,

but found that none were completely satisfactory [Burgoyne et al., 2007]. The

authors favoured Pitch Class Profiles (PCPs) which are vectors based on a

12-chroma scale - all values are non-negative and sum to 1. Dirichlets are a

common multinomial distribution which behave similarly to PCPs and with

similar constraints, so these were also tried. Hidden Markov Models were

considered. Conditional Random Fields performed well, but training takes

more time. CRFs with Dirichlet distributions performed impressively. Work

is also being done on rhythm recognition [Paiement et al., 2008]. Tempo

recognition is mostly solved, but true rhythm recognition, with strong and

weak beats and long-term dependencies, cannot be solved by current sta-

tistical methods alone. Paiement presents a novel generative model which

represents the structure as dyads (pairs), dyads of dyads, and so on. It ap-

pears to function even when given music with non-powers of 2 as the number

of beats, because at higher and lower levels dyads are still prevalent. It

out-performs Hidden Markov Models (HMMs) on the same task.

One obvious problem with chord recognition is that it implicitly presumes a

Western-type scale and associated rules. A chord of C major means nothing

in the contexts of, for example, Inuit throat singing, or Australian aborigi-
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nal music. Much “world music” has very different rules and conventions to

Western music. The same can be applied to some descriptions of rhythm; in-

deed, it has been shown that Western listeners can interpret unfamiliar music

differently in rhythm to the performer’s intention or interpretation [Cross,

2001]. The work of Fujunaga and others is therefore strongly grounded in

certain types of music and cannot be easily applied elsewhere.

Establishing Ground Truth

Up until recently most ground truth for machine learning of musical aspects

was done by a survey of volunteers or paid participants who would listen to

music and provide whatever information was being investigated, e.g. genre,

or mood, or which pieces are most similar. Recently the growth of online

communities with a wealth of user-provided metadata has led many investiga-

tors to take information already existing rather than spending time eliciting

responses from participants.

One paper in the Journal of New Music Research’s special issue “From Genres

to Tags: Music Information Retrieval in the Age of Social Tagging” looked

at using machine learning to generate social tags from MP3 files [Bertin-

Mahieux et al., 2008]. The tags were obtained from social network Last.fm.

Boosted weak classifiers were used for the categorisation. Boosting is an

example of an ensemble method – a process by which several classification

algorithms can be combined to create a system which performs better than
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any individual classifier. It is usual for ensembles such as this to combine

weak classifiers, that is, classifiers which perform a little better than random

guessing. Tags were considered more versatile than any single other descrip-

tor, since tags can be of genre, mood, opinion, style, or context-based – such

as the film in which the song was featured, or the person the song was written

about. Badly tagged songs could be automatically fixed by such a system if

successful. It would also provide a means to bootstrap any new site which

in the beginning would have very few tags and the tagging system would be

virtually useless until a critical mass of users is reached. A system such as

this could put in a certain amount of data to start with and leave humans

to add and correct tags as necessary.

Features were taken over 100ms excerpts and then aggregated as distributions

such that there were 12 features per song, covering a 1 minute extract. The

weighting attributed to each tag was relative to other tags applied to the same

song, rather than absolute values, because of the disparity in the number of

tags per song. AdaBoost [Freund and Schapire, 1997] was used on decision

stump weak classifiers. Decision stumps are very simple decision trees, with

only one test determining the result rather than several. AdaBoost improves

the performance by combining these weak classifiers together. The final tag

evaluation, e.g. ‘rockness’, of a song was determined as the number of ratings

in the high range, minus the number of ratings in the low range. The middle

range was therefore ignored. The performance was judged against listener

correlation on the same songs. The result was not as good as real social
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tagging, but using both real and computer tags give better predictions than

either alone. One problem with this is the popular Western music bias of the

source data.

However, it is a current and past problem in MIR that non-Western MIR

research is under-represented [Proutskova, 2007]. Proutskova hypothesises

this is because non-Western music is hard for MIR people to find, even though

archives do exist. These archives are in varied formats and may be in bad

condition or of poor quality. Helpfully, social context is usually preserved

alongside the recordings. Unfortunately digitization of these archives ranges

from 1% - 50%, and not all is freely available online to researchers. There

are additional difficulties relating to search criteria assumptions. Western

music is categorised by composer, artist and album, whereas non-Western

music recordings may have never appeared on an album, and the composer,

artist, or both, may be unknown. This makes non-Western music difficult to

search for. More usual criteria for this sort of music is a search by culture,

place, language, or purpose (e.g. dance accompaniment, or sacred music).

Some collectors and some countries or states restrict access to archives they

hold.

Another new source of data is the web-based game. A game called Ma-

jorMiner was designed by Mande and Ellis, for obtaining objective and spe-

cific decriptions of songs. Participants listen to 10 second excerpts and get

points for descriptions that match those of other participants, unless they
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have been made so many times that the observation is not useful. This en-

courages some originality. Points were awarded when other players agree with

what a participant has said, as well as the reverse. The results were found

to be better at classification by a modest amount than were pre-existing

tags [Mandel and Ellis, 2008].

3.3.4 Geospatial Analysis

This section addresses techniques in representing topological data from the

surface of the Earth. Spatial statistics are relevant to Chapter 5 where mu-

sical track’s locations of origin are predicted.

The term spatial statistics refers to the application of statistical concepts and

methods to data that has an explicit spatial structure which is important to

understanding those data [Ripley, 2005]. Typically, spatial data samples are

not independent, unusually for traditional statistical methods [Beguin and

Thisse, 1979]. Uncertainty in spatial data is common, either from limited

instrument capabilities, vagueness of terms, or missing data.

The most common applications are in statistical geography but its use in

epidemiology is also well-known. One common example in statistics text-

books is the early work of John Snow who in 1855 proved that cholera was

waterborne via statistical means and a geographical dot map showing the

occurrences of cholera were clustered around a particular water pump. On
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a larger scale, geographic information systems including global positioning

systems in recent years have created the discipline geospatial information

studies wherein large databases of geographic information are analysed using

geospatial relationships such as adjacency, containment and distance.

With the growth of the internet more and more spatial resources have become

available to the wider world at low or zero cost. Recently and in particular,

the Google Maps API (Application Programmer Interface) created the ability

for anyone with access to annotate maps of anywhere in the world at will.

NASA (National Aeronautics and Space Administration), an agency of the

US government, has been a useful resource for open geographical data for

much longer. The founding legislation of NASA written in 1958 includes

the phrase ‘provide for the widest practicable and appropriate dissemination

of information’. One dataset made available by NASA is the land mask,

which gives each square of a gridded representation, at various resolutions

and thresholds, a value representing whether that square is land, sea, or

coast. This is used in Chapter 5.

Traditional statistical techniques are now being complemented by the appli-

cation of machine learning techniques to spatial data, but often the spatial

information is not used [Gahegan, 2000]. Instead datapoints are sometimes

treated like any other numeric values, ignoring the distance information in-

herent. Gahegan emphasises that spatial information should be used where

possible. Neighbourhood classifiers can offer considerable benefits when ap-
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plied to data with such structure [Jeon and Landgrebe, 1992]. The way

that the space is represented is important – representing each dimension

separately makes it more difficult for the algorithm to learn the underly-

ing structure. kNN, Neural Networks, Support Vector Machines, and Self-

Organising Maps have all been applied to geospatial data [Kanevski et al.,

2008]. Kanevski et al. used the Minkowski distance for their learning algo-

rithms, which is a generalisation of both Euclidian distance and Manhattan

distance [Kruskal, 1964]. Euclidian distance is what is measured with a ruler

on a flat surface, whereas Manhattan is that with you get if you may only

move in one of two orthogonal directions to reach a destination.

Work in Self-Organising Maps (Kohonen nets) refers to the formation of

geospatial shapes to avoid the edge problem: the way in which a flat map of

a sphere makes the extreme left appear to be very far away from the extreme

right, whereas in reality they are very close in the sphere itself. It is especially

important, therefore, that any representation is able to “wrap around” such

that the largest possible distance is only halfway around the world. One ex-

ample program which accommodates for spherical shape is GeoSOM [Wu and

Takatsuka, 2005]. Since longitude’s zero meridian is arbitrary it is important

to remove the influence of its position in this way.
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Chapter 4

Beauty Experiments

4.1 Introduction

This chapter addresses the measurability of musical beauty and the extent to

which other aspects of music can be predicted with various machine learning

techniques. The bulk of the chapter is a bank of tests of basic learning

algorithms on various music classification tasks, including a benchmark test

used by experts in the field of Music Information Retrieval. Those techniques

which fared well in genre tests–a vague and human-defined measure–may be

more useful for the automatic prediction of musical beauty than those which

did not.
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4.2 Facebook Survey

A survey to find out what people think about musical beauty, with specific

musical examples to rate, was designed. The main point was to determine

if people can agree about musical beauty at all–if this is not possible no

further work can be done to predict beauty as humans perceive it. This

was implemented on the Facebook platform (http://www.facebook.com)

because the social nature of Facebook might cause the survey to spread from

friend to friend so that more participants were found. To this end some

advertising was purchased to encourage Facebook users to help. Tracks were

paired for comparison, and users achieved different virtual trophies depending

on how many pairs they had rated, hopefully encouraging some competition

and a feeling of achievement. Later a web survey with identical content was

created to allow those who were not members of Facebook to participate.

The surveys take some demographic information from the volunteer and then

proceed to ask them about paired extracts of music. They are asked to say

which extract is more beautiful. 146 extracts of various pieces by Bach,

Beethoven, Brahms, Handel and Mozart were hand-cut from MP3 originals

(the sound quality was not good as some of these were from archived wax

cylinder recordings, so it is unlikely any further problems were introduced

by MP3 compression!) The result was 3 extracts per piece taken from the

beginning of each piece, each extract being about a minute long but having

a “sensible” beginning and end, as judged by the author. All the music
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used is out of copyright because it was not only written over 75 years ago

(by some margin) but performed over 50 years ago. This was to ensure no

copyright law prevented the pieces being distributed over the internet. It

has since been understood that short extracts for the purposes of research

are an exception to copyright law. The music was unfamiliar at least to

the author, and probably unfamiliar to anyone who is not a classical music

lover. Still, some people will no doubt have known some of the music, which

is a confounding factor. The Facebook survey pairings for the extracts were

randomised in both what pairings were made, and which order they appeared

to the user each time, to avoid bias in the user picking e.g. the first example

presented by preference. The randomisation of the pairings was done as a

simple means to avoid the inherent dependence in the order of the extracts

filenames to which piece they came from. 73 independent pairs were created.

After any pair reached 40 responses, it was retired, to avoid wasted effort –

40 responses are enough to test for statistical significance. All retired pairs

were checked for statistical significance using the one-tail binomial test [Siegel

and Castellan, 1988], including the Bonferroni correction [Miller, 1966] since

there are several simultaneous tests. Bonferroni adjustment accounts for

the chance that with enough pairs rated eventually one of the pairs would

appear significant owing to the random distribution of raters. As can be seen

in Figure 4.1, there was no option to say that the beauty was equal. This

was to discourage lazy behaviour on the part of participants - they should

try to find a difference in beauty between the two tracks if possible. The
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number of participants choosing randomly was expected to be too small to

achieve significance in combination with choice ordering, unlike the effect

from music ordering which applies to all raters of a pair. In any case, a

random significant result would only introduce noise, making classification

harder, rather than overestimating performance.

Figure 4.1: Facebook App for comparing musical beauty
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4.3 Results

Before running the experiment the proportion of statistically significant re-

sults was estimated using some simple assumptions: 1, that the distribution

of beauty in music fits a normal distribution, and 2, that people’s ability to

rate music for beauty was also distributed normally. Combining these distri-

butions with values for the number of pairs and the anticipated number of

raters leads to the estimate of 25% statistically significant pairs, that is, those

pairs which are both different enough in beauty and were rated by people who

were good enough to distinguish that. The assumptions are extremely broad

in the estimate and it was done to give a rought idea of how many raters and

songs should be used to get enough rated pairs. With 146 extracts – 73 pairs

– 25% would give us 36 useable tracks for analysis. Unfortunately, the results

of this survey came much more slowly than had been anticipated. Most par-

ticipants rated only 10 pairs, and only 12 pairs had result sets full enough for

statistical analysis after 10 months uptime. Paid volunteers were considered

for a future survey. Something else learnt from the Facebook application was

the attention span of listeners – many complained that 1 minute was a very

long time to have to listen, and claimed that their decision was made before

the end of the excerpt. With this in mind it may be a good idea to represent

this fall in attention in the machine learning, such that information from the

start of the track is treated as more important than subsequent information,

or perhaps discarding most of the track information.
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ID A wins B wins N 1-tail test
5 32 38 70 0.2752
10 31 12 43 0.0027
19 20 47 67 0.0007
32 16 37 53 0.0027
49 20 26 46 0.2307
63 27 14 41 0.0298
64 13 31 44 0.0048
65 17 26 43 0.111
66 16 22 38 0.3679
67 15 17 32 0.43
68 30 9 39 0.0005
69 22 13 35 0.0877
70 11 14 25 0.345
71 14 8 22 0.1431
72 7 14 21 0.0946
73 1 18 19 0.00004

Table 4.1: Pairs rated and significance tests

The “A wins” column contains the number of votes for one track of each

pair, and the “B wins” column contains the number of votes for the other

track. This is, of course, the same track A and the same track B each time,

though the tracks were randomised for the participant. Values in the 1-tail

binomial column below 0.00625 indicate a statistically significant result at

the 10% significance level with the bonferroni adjustment applied. Roughly

a third are significant, which is a greater proportion than predicted in the

original analysis, but is still not enough examples to train a machine learn-

ing algorithm to any credible level for representing beauty. Emboldened in

the beauty columns indicates the perceived winner of such examples. One

result of particular note is the pair with ID 73. 18 votes to 1 go against
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Haydn’s Toy Symphony (ID 73), which is something of a cacophony as it

contains many parts played on children’s toys including rattles etc. It makes

sense, therefore, that the other example – a piano concerto by Mozart – was

defined more beautiful by an overwhelming majority, perhaps simply for its

lack of dissonant and sometimes grating noises. Another section of the Toy

symphony was found in pair ID 64, which also lost convincingly against a

different Mozart excerpt.

4.4 Learning Algorithm Experiments

4.4.1 Experiment Environment

The environment for conducting experiments incorporates code from others

in the field with my own scripts for automation. The experiments were con-

ducted through Tacet, MARSYAS, and Weka. Tacet is a scripted program

the author wrote previous to the PhD, but it has undergone minor changes

since to cope with the difference in data and newer versions of MARSYAS.

It automates the overall experiment process from beginning to end. First

any MP3, FLAC etc. compressed files are converted into PCM wave files

suitable for audio feature extraction. Such extraction is then performed by

the MARSYAS program bextract, which has several options for features.

For these experiments MP3s were used, in contrast with the subsequent ge-

ographic dataset. This is justified by the successful application of machine
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learning to genre recognition in MP3s as mentioned in Chapter 3, and the

use of MP3s for the benchmark dataset.

Following the feature extraction, which produces an ARFF file suitable for

Weka analysis, the chosen machine learning algorithms are run, usually with

some cross-validation to achieve training and test sets that are robust to

variation. The output of these can then be analysed either within Weka or

separately.

4.4.2 Richard Thompson Detector

The next experiment was on a larger dataset but a choice of only 2 classes:

‘Richard Thompson’ or ‘not Richard Thompson’. Richard Thompson is a

prolific songwriter, and most of these examples have him on the vocals, but

not all. There were 611 examples of which 99 were Richard Thomson tracks

were presented to many different machine learning algorithms. The purpose

of this experiment was to determine which algorithm would likely perform

well with the final data. The default settings for each algorithm as found in

Weka were used. As the top algorithms performed so well and so similarly

that it was statistically impossible to distinguish between them, a harder

problem was set where there were 99 Richard Thompson tracks and 99 other

tracks. This experiment still failed to show the difference at the level that

was required, so this dataset was no longer used.
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Algorithm n=611 n=198
Bagging REP Tree 91.16% 79.59%
Decorate J48 91.16% 81.63%
Functional Tree 91.16% 81.12%
Multilayer Perceptron 92.31% 81.12%
Rotation Forest 91.33% 82.65%
Simple Logistic 91.82% 81.63%
SMO SVM 91.98% 82.14%

Table 4.2: Results of Richard Thompson Detector - best performing algo-
rithms

Table 4.4.2 shows the results of these trials. Bagging [Breiman and Breiman,

1996] is an ensemble classifier in this case applied to reduced-error-pruning

(REP) decision tree weak classifiers. In this instance no pruning was done.

Decorate is a meta-learner for building diverse ensembles of classifiers using

specially constructed training examples [Melville and Mooney, 2004]. J48 is

a type of decision tree which can handle continuous and missing data, based

upon the C4.5 tree. Functional trees are classification functions which can

have logistic regression functions at the nodes [Gama, 2004]. The Multilayer

Perceptron is a feed-forward ANN as described in Chapter 2. The Rotation

Forest is an algorithm that creates a diverse and accurate ensemble of decision

trees [Rodriguez et al., 2006]. Simple Logistic builds linear logistic regression

models [Landwehr et al., 2005]. The Sequential Minimal Optimisation (SMO)

SVM is an efficient SVM implementation, here the polynomial kernel was

used. Other parameter options were not tried, but this would be a useful

addition to the work.
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4.4.3 Benchmarking

Each year in the Music Information Retrieval Evaluation eXchange (MIREX)

competition researchers test their algorithms against this benchmark for the

MIREX prize. The MIREX exercise is attached to the annual ISMIR confer-

ence. The competition has several different categories, one of which is genre

recognition. A benchmark training set is provided online for pre-competition

comparison. The 2004 dataset was chosen as it has been widely used in MIR

publications since the exercise, even though the competition itself has moved

on to larger datasets. The benchmark training set of 729 examples from the

2004 MIREX competition is used here to investigate firstly which machine

learning algorithms perform well at genre recognition, and secondly which

feature representations are most attuned to such a task. The results of these

experiments give the learning algorithms and feature representations most

useful for the beauty recognition task.

4.4.4 Design

The genre of each of the benchmark tracks was predicted via leave-one-

out cross-validation, using the default MARSYAS set of features and try-

ing various machine learning algorithms. The best performing algorithms

were retried with a larger set of features from MARSYAS (all possible fea-

tures). The algorithms were chosen to represent a wide variety of classifica-
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tion paradigms.
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The feature representation here is the default set from MARSYAS: MFCCs,

zero-crossings, and spectral centroid, flux, and rolloff. All percentages are

the percentage of correct classifications achieved from leave-one-out cross-

validation testing. The genres ‘metalpunk’ and ‘poprock’ are combinations

of other genres: respectively, metal and punk music, and pop and rock music.

The first row shows the values for a perfect score. Those in the genre columns

are the number of correctly classified entities. These results, presented in Ta-

ble 4.3 have been normalised in line with the real measure used in the MIREX

competition in 2004. The normalisation accounts for the difference in class

representation: for example, there are 320 examples of classical music but

merely 26 of jazz/blues. The top value, 74%, is not far off the 79% achieved

by the winning team in 2004, and here merely default representation choices,

and default settings on the machine learning algorithms within Weka, are

used. It is notable that logical functions (here SMO is a Support Vector

Machine (SVM) with Sequential Minimal Optimisation) and meta-classifiers

(those that combine the results of several classifiers in some way) have per-

formed well on the task, whereas e.g. lazy classifiers (which store all of the

training samples and do not build a classifier until a new sample needs to

be classified) have performed less well. It is possible that using information

only from nearby instances in featurespace is too simple to represent these

classes. This informs the future algorithm focus of the work.
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The best performing algorithms were tested against the previous results using

an extended MARSYAS featureset that combines all the features MARSYAS

provides. One notable absence in the algorithms is the Multilayer Perceptron.

There were technical difficulties with Weka for this particular algorithm as

the computational power needed exceeded the capabilities of the computer

hardware. The additional features are chroma: a measure of fitness to a

particular chord, Spectral Flatness Measure: a measure of dullness in sound,

Spectral Crest factor – a measure of brightness in sound, Line spectral pairs

– a way of representing LPCCs differently, and LPCC or linear prediction

cepstral coefficients, the linear analogue to the MFCCs which are calculated

against the Mel scale of loudness.

The MARSYAS columns are the percentages with all the features used, the

Timbral columns are the results from the previous experiment for comparison

(the default features MARSYAS extracts being timbral in nature). The nor-

malised results in columns 6 and 7 clearly indicate an improvement for most

algorithms when using the extra features. The algorithms which performed

worse when given this extra data are likely unable to ignore or de-prioritize

some information in favour of other more pertinent information, and this

leads to worsened performance.

Indications here are that despite the change in representation it is still the

logical functions and meta-classifiers that are best suited to this task, rein-

forcing the evidence from the previous experiment. None of these yet beat
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the result achieved by the winning team in 2004, but with suitable tinkering

it should be possible. It is hopefully reasonable to assume that an algorithm

performing well on this task would do so in beauty recognition, since both

are human-applied labels to audio sounds that have some influencing aspects

within, and some outside of, the audio content itself.

4.5 Last.fm

Last.fm [Last.fm, 2013b] is a social music radio site where users can specify

a genre or artist and their personal radio station will provide music that

matches their selection. This is facilitated mostly through tagging. Users

attach categories to music tracks such as “rock”, “smooth”, “female singer”

and thousands more. Being entirely user generated there is a fair amount of

noise in this set of tags but the most useful tags (genre, mood-related) are

happily also the most used tags [Last.fm, 2013a]. One tag used extensively

is the tag “beautiful”. The idea behind this experiment is to use this tag to

build a small corpus of beautiful music as judged by a crowdsourced audience

from last.fm, and then test if it can be recognised by computer.

4.5.1 Method

The 40 tracks which top the ‘beautiful’ tag were downloaded to represent

the beauty class. These have been most often tagged beautiful by listeners
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compared with all the music on last.fm. 40 tracks selected from those rated

highly as ‘awful’, ‘terrible’, ‘horrible’, or ‘shit’ in tagging were downloaded

to represent the ‘ugly’ class. This two-class classification problem was then

processed by MARSYAS with default features and using the SVM in Weka

via leave-one-out cross-validation.

4.5.2 Result and Discussion

With the experiment set up as described, the result was 87% accuracy. This

was encouraging as it means beauty can be measured to some extent by

computer algorithms. The example data was certainly very polarised and the

dataset was small, both factors which make classification easier. It is possible

that the algorithm was picking up on noise factors in production over beauty

factors, since very noisy music (whether deliberate or accidental) is likely

to be rated badly and music rated beautiful by thousands of people seems

unlikely to contain too much noise. Further investigation would be required

to determine the difference between detecting beautiful music and detecting

badly recorded or produced music. This would be a good opportunity for

further work.
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4.6 Conclusion

Methods for obtaining ground truth from raters and from benchmark datasets

were tested and found to be feasible, though surveys may require more incen-

tives for participation. Machine learning algorithms were compared on the

benchmark data set and SVMs were amongst the best-performing. Beauty

has been predicted on a small selection of Last.fm tags. Two different feature

sets from MARSYAS were compared and the larger was found to improve

the results when more complex learning algorithms were used. This set of ex-

periments has provided insights into the most useful feature representation,

machine learning algorithms, survey techniques and the possibility of detect-

ing beauty by machine. The Last.fm work leads onto the work in chapter 6

and the other experiments provide a basis for representation and machine

learning used throughout. Further work not covered in this thesis could in-

clude an expansion of the Last.fm experiment to use a much larger dataset,

individual consideration of the contribution of each MARSYAS feature, more

consideration of parameter settings for the machine learning algorithms, and

consideration of class-balancing approaches.
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Chapter 5

Geographical Experiments

5.1 Introduction

This chapter considers the factors within music which most distinguish cul-

tures. It is a confounding factor in determining beauty that what is beautiful

in one culture may not be to another because of different familiarity with dif-

ferent sounds. Underneath this are the physics, psychology and mathematics

of music which remain unchanged no matter the culture. The aspects within

the music which cue people to determining the origin of music, are addressed,

in particular non-Western music. The final research chapter, 7, is an investi-

gation of the commonalities between geographical discrimination and beauty

discrimination. In theory these should be diametrically opposed if beauty

can be considered a universal underlying trait. If they are not, then there is
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an aspect of beauty that is not independent of culture. Either way something

about the nature of musical beauty and ethnomusicology can be learnt.

The work from this chapter was accepted to the ECML-PKDD workshop

‘New Frontiers in Mining Complex Patterns’, held in Bristol in September

2012. This paper was later expanded to a paper in Springer LNAI [Q and

King, 2013].

5.2 Geographical Ethnomusicology

The world contains a vast variety of types of music. This music arose as

the result of complex geographical, historical, and prehistorical processes.

One way to better understand these processes is to analyse the current ge-

ographical distribution of music. The study of this distribution is termed

Geographical Ethnomusicology. The problem of determining the geographi-

cal origin of a piece of music is complicated. Musical forms are rarely pure.

Over time they have influenced each other, and many forms of music have

travelled far from their point of origin. In particular the influence of western

music is nearly ubiquitous. The influence of other forms of music are also

widely distributed, for example: Arabic musical influence spread all around

the Indian Ocean, across North Africa, to Spain, to central Asia, etc.; more

recently reggae has spread from Jamaica, to the UK, Brazil, Mauritius, etc.

The question is: given these complications, how well can a computer predict
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the geographical origin of a piece of music?

It could be argued that unsupervised spatial clustering methods such as

Kohonen nets [Duda and Hart, 1973] would be best suited to such a task.

However, the problem with such clustering methods is that there is generally

no objective measure of success. Such methods could find groups of similar

music in terms of their audio descriptors, but they would not necessarily

extract those features most suited to predicting a location. This contrasts

with supervised methods, where the labels on known examples (classes or

numbers) enable the objective measuring of whether a method is working or

not - does it predict well or badly? As the geographical location of origin of

the music is known (to some degree) in the corpus, this information should

be exploited. The problem is therefore cast as that of training a machine

learning program to be able to predict the geographical origin of pieces of

music, i.e. the computer learns a functional relationship between the audio

content and its geographic origin on the globe. This predictive task is possible

to some extent by human musicologists.
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5.3 Method

5.3.1 Music Collection

The corpus was built from the personal collection belonging to Professor

Ross King, consisting of 1,142 tracks covering 73 countries.1 The music

used is traditional, ethnic or ‘world’ only, as classified by the publishers

of the product on which it appears. No Western music was included as it is

naturally hard to place since its influence is global – what is sought are aspects

of music that most influence location. Thus, being able to specify a location

with strong influence to the music is paramount. This will form the target

function for the learning algorithm. To determine the geographical location

of origin we manually collected the information from the CD sleeve notes, and

when this information was inadequate we searched other information sources.

There are most certainly other options as demonstrated by Govaerts et. al.

but these have varying levels of accuracy and indeed their ground truth for the

experiment was ‘personal knowledge’ or ‘by looking up the origin’ [Govaerts

and Duval, 2009]. We did not wish to confound the ability of the predictor

with incorrect location information. The location data is limited in precision

to the country of origin - we did not have time to try to find out more

about each track. In many cases the level of detailed precision possible for

1The music used is subject to copyright, but the processed data is not. Code and data
is available at http://bitbucket.org/Eskoala/python-geolocation/ as a git clone, or email
eskoala@gmail.com.
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ascertaining musical origin is arguably not much smaller than perhaps the

region of a country, except in certain cases where a community has been

extremely isolated.

The country of origin was determined by the artist’s or artists’ main country

of residence. Of course, many artists live in different places throughout their

lives, but our aim was to determine the major influence. For example, if

a Malian writing Mali music lives in retirement in Paris, we consider the

music Malian. We recognise that some music is less linked to countries than

cultures, but countries at least have true geographical locations that are

measurable - by virtue of having defined borders - allowing our machine

learning approach to give objective output. We have taken the position of

each country’s capital city by latitude and longitude as the absolute point

of origin in the beginning. The assumption here is that the political capital

is also the cultural capital of the country. This assumption also utilises

coarse a priori knowledge about population - most, but not all, countries

have a highly populous capital city. Using the capital takes into account

country-level population distribution in a simple way without resorting to

time-consuming investigations into the exact place each artist spent most

time. In the population distribution task we altered this point of origin to the

centre of population, or population centroid, of each country, which is a fairer

measure that takes into account skewed population distribution and capitals

with low populations. Countries are linked to artists, not tracks.
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It is clear that the country of production may have no bearing on the origin,

since many world music CDs are made in Germany or the US despite the

music coming from, for example, Kenya. The artist in question is usually the

composer where known, or else the performer where the music is traditional

to their home country. If several artists have made a contribution to the

music, all substantial (not merely ‘featuring’) contributions are taken into

account when deciding if it should be included. Any track that had ambigu-

ous origin – whether because the artist’s own origin was ambiguous, or many

artists from different countries collaborated, or the track is a deliberate fusion

of styles – was removed from the dataset. There are no “right answers” in

such cases. For example, Bhangra music is a fusion of Indian Punjab culture,

UK culture and hip-hop. Therefore to try to determine a single geographical

location for a Bhangra track would be nonsensical as it has multiple sites

of influence. One could suggest that the geographical midpoint of all the

influences is the right answer, but this does not fully encapsulate the data

and would result in a position for Bhangra music near Volgagrad!

Figure 5.1 shows the distribution of tracks per country, for the 20 best

represented countries. It can be seen that some countries are much better

represented than others, which will affect the performance: for a given coun-

try, the more examples there are in the dataset, the more information about

that country’s music is known, which will lead to better predictions.
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Figure 5.1: Partial sample of music distribution by country

5.3.2 Audio Features

The program MARSYAS [Tzanetakis and Cook, 2000] was used to extract

audio descriptors from the wave files. We first used the default MARSYAS

settings in single vector format (68 features/attributes) to estimate the per-

formance with basic timbral information covering the entire length of each

track. The different approach, using all of the track in this case, is because

there is no reason not to use the whole track when human listeners are not

involved. The information is there, it might as well be included. In later

experiments such as in Chapter 7 only the portion of the track listened to by

participants is available to the machine learning algorithm.
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MARSYAS Features

The MARSYAS features available are summarised in Table 5.1.

Each of the default features is an indicator of timbre, which is one of the

main ways (another being attack-decay-sustain-release models) [Lichte, 1941]

to distinguish musical instruments. Since instrumentation is also a major

difference between cultural music traditions, these features are appropriate

to the task. No feature weighting or pre-filtering was applied. All features

were transformed to have a mean of 0 and a standard deviation of 1. We also

investigated the utility of adding chromatic attributes. These describe the

notes of the scale being used. This is especially important as a distinguishing

feature in geographical ethnomusicology – unlike in Western music which

largely conforms to one tuning system. The chromatic features provided by

MARSYAS are 12 per octave – Western tuning, but it may be possible to

tell something from how similar to or different the music is from Western

tuning.

5.3.3 Geographic Representation

The problem of predicting a point on the surface of a sphere is made more

complicated as the standard coordinate system of latitudes and longitudes,

which are the natural targets for regression, have a complicated relationship

to surface area - where the predicted point will be. This is illustrated in
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the standard Mercator projection of the globe where countries near the poles

are unnaturally large. Area is not preserved equally on such projections. In

general there is no perfect flat projection – a compromise is made one way

or another in favour of a particular desired quality, perhaps straight lines of

latitude and longitude, perhaps equal area, even such complicated solutions

as the butterfly map by Cahill later re-imagined by Waterman. None of these

addresses the true mathematical problem fully – the Earth is not flat, and

should therefore ideally be treated as close as possible to its true topology. In

considering the sparsity of our data, we choose a sphere as an approximate

representation for the globe, though with more precision still it is an oblate

spheroid with certain peaks and troughs across the surface.

5.3.4 Spherical k-Nearest-Neighbour Prediction Method

We decided to cast the problem as a regression problem (predicting a point)

rather than a classification problem (predicting a country) because the large

number of countries, and low number of examples per country, would compli-

cate classification. Most regression methods assume either that only one real

number is to be predicted, or if multiple real numbers are to be predicted that

they are independent. Perhaps the simplest approach to running regression

with spherical coordinates is to side-step this difficulty and use a k-Nearest-

Neighbour method to predict points [Duda and Hart, 1973]. A Euclidean (in

attribute space) kNN algorithm was run using the musical features as axes.
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For each track the nearest k neighbours were found, the geodesic mean of

their locations was taken, and the result compared to the true origin. To

adopt this method to predict geographical location we used spherical geom-

etry and took the average positions on an idealised sphere of Earth radius,

using standard geodesic distance calculations. The results can be measured

in terms of their great-circle distance from the true location (capital city) of

the piece under consideration.

Finding the geodesic midpoint of the k nearest neighbours: with λ as latitude

and φ as longitude (both in radians), convert to cartesian coordinates on a

unit sphere:2

x = cos(λ)cos(φ) (5.1)

y = cos(λ)sin(φ) (5.2)

z = sin(λ) (5.3)

Take means of the nearest neighbour points per dimension x̄,ȳ,z̄. Find the

longitude φ̄ of the midpoint:

φ̄ = arctan(
ȳ

x̄
) (5.4)

2In practice a four-quadrant inverse tangent function is necessary for Equations 5.4-5.5
to cover all cases. The function we used is known as atan2 or arctan2 in most programming
languages.
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Find the latitude λ̄ of the midpoint

λ̄ = arctan(
z̄√

x̄2 + ȳ2
) (5.5)

5.3.5 Utilising a priori Background Knowledge

We investigated the utility of using a priori knowledge to improve the pre-

dictions.

Land and Sea

The first piece of knowledge used is that music is produced on land. To utilise

this we applied the NASA LandMask projected onto the idealised sphere of

the Earth. This gives the terrain type for each square degree latitude by

longitude. This varies in true size from about 110km wide to exactly 0 at

each pole for longitude, whereas the latitude separation at 1 degree remains

roughly 69km apart, excepting differences for the oblate spheroidal shape

of the Earth. Because the mask is given in latitude-longitude squares, a

line-drawing algorithm must be employed to traverse a spherical distance

across the Earth, ensuring that the great-circle calculation is performed be-

tween each step, so that the correct next square is chosen. The total land

contained in the path of error is weighted against the total water coverage.
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Different weightings were investigated but the simplest option was chosen:

land 1:0 water such that only the land part counts. The reasoning behind

this is that though human migration is slow across land, it is comparatively

very fast across water. For example, Brazilian music is close musically to

Portuguese music because of migration patterns despite the size of the At-

lantic Ocean. Different weightings will be tested in future.

Population Centroids and Population Density

The first change is to recenter each country to its population centroid. The

centroids were collated from the GPWv3 per administrative area data [SEDAC

and CIAT, 2012] scaled up to per country via the method detailed by Greg

Hamerly (http://cs.ecs.baylor.edu/~hamerly/). The same dataset also

provides population density grids at several resolutions. The coarsest avail-

able – per square degree – was used since it matches what we have for the land

mask and is thus more easily comparable. Population density (as opposed to

count) is chosen because it avoids the problem of varying size of square degree

on the earth’s surface owing to the diminishing distance between longitudinal

degrees as either pole is approached, as explained above.

The algorithm for applying this mask is as follows:

1. The k nearest neighbours are determined based upon musical features.
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2. For the group of nearest neighbours, the geodesic midpoint is found.

3. The geodesic distance to the furthest neighbour from that midpoint

gives a radius of a geodesic circle which contains all the neighbours.

4. We calculate a new midpoint for this circle which is weighted by the

population density in each of the points, at a resolution of one square

degree.

The weighted midpoint is found as in Equations 5.1-5.5 but each dimensional

mean is calculated from weighted coordinates such that

x̄ =
∑ xiρ

k
(5.6)

ȳ =
∑ yiρ

k
(5.7)

z̄ =
∑ ziρ

k
(5.8)

where ρ is the population density for the square degree at the point (λ, φ)

and k is the number of neighbours.
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5.4 Results

5.4.1 k-Nearest-Neighbour Performance

Using the default MARSYAS features the best predictive performance we

achieved was a 2,827km median distance, and a 2,125km median land dis-

tance from the true position. This was achieved with k=10.

This result (like all above results presented) is significant at p-value < 0.001

(see below). We chose the median as our main statistic, rather than the

mean, as it is more robust to outliers. The results for the means were also

each time significant at p-value < 0.001.

Table 5.2 shows the breakdown of results. The meaning of the columns is as

follows: k is the number of neighbours used. The feature set is default (68

features) or default with chromatic (116 features. The mapping is whether

the land measure is used to find the closest landmass. Spherical signifies

a pure distance measure using spherical geometry. Population signifies the

same as spherical but weighted by population. The median is the median

distance from the true answer for each combination. The ks shown are a

selection but all values from 2-10 were tried, the results of which can be seen

in Figures 5.2-5.5.

Whilst demonstrably better than random this result could be improved upon.

What is shown here is that even with one of the simplest possible algorithms
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the information contained in the features is enough to indicate some geo-

graphic information. The land proportion is, of course, always smaller than

the total distance, but it was argued that this is a fairer measure of error.

This indicates that some measure of population distribution would be useful

a priori.

It is interesting that for land measurements the k = 2 method performed

best before addition of chromatic features, but the k = 10 version performed

best with the extra features. One hypothesis is that for very similar music

the chromatic features do not aid the similarity measure already gained by

timbral features, yet when more dissimilar music is encountered, chromatic

features come into their own as a coarser measure of similarity. Since some

countries were underrepresented to the point of having fewer than k member

tracks, this follows. However, the simple spherical method medians show no

such inversion.

5.4.2 kNN with Population Distribution

Figures 5.2-5.3 compare the simple spherical approach against the popula-

tion method by median distance error. Figures 5.4-5.5 do the same for the

means.

Looking at median, which is fairest for a skewed distribution such as this, for

lower k values the use of population distribution leads to an improvement
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Figure 5.2: Default features performance as median for all k, standard (spher-
ical) measure and population measure.
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Figure 5.3: Default + chromatic features performance as median for all k,
standard (spherical) measure and population measure.
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Figure 5.5: Default + chromatic features performance as mean for all k,
standard (spherical) measure and population measure.
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to results. However, once k is greater than 3 the population method me-

dian degrades, and once it is greater than 4 the mean is similarly worsened.

Experiments with higher k have noisier data since the additional neighbours

are more likely to be from a different country. When more dissimilar music

is encountered it is likely that instead of improving a result within a country

the method selects more densely populated countries instead.

5.4.3 Statistical Significance

The determination of whether a music geographical prediction method is

performing better than random is difficult using traditional statistical meth-

ods, because of the complicated geographical distribution of the music and

countries. Therefore, we used a computationally-intensive statistical method

based on resampling, programming 1,000 random trials for each k and method

combination, and measuring our distance means against the distribution of

random means to ensure the statistical significance of our results. The ran-

dom distribution results ranged from 5000km–5500km mean distance error.

Our means were all so far left of the distribution that they were significant

at p < 0.001.
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Figure 5.6: Greek music – predictions of location.

5.4.4 Performance by Country

The algorithm performed much better on some countries than others – even

with the same number of tracks available, suggesting that some countries are

more musically diverse than others. An additional problem is the relative

size of countries affecting the level of precision required, for example, Russian

music is much more geographically diverse than that of Croatia.

Figure 5.6 (courtesy of Google Maps) shows half of the estimates (for clarity
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Figure 5.7: Taiwanese music – predictions of location.
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and to avoid overloading of positions) for Greek music, taken evenly from the

distribution for Greece. From this it is clear that the prediction range for a

country can be quite tightly distributed – the furthest estimate is 3,652km

but there is a close cluster central to the image that reflects the more general

skew in the distribution of estimates for all countries. Figure 5.7 (also cour-

tesy of Google Maps) shows all Taiwanese music, though the correct position

is overloaded with 16 predictions. Taiwanese music was found to be partic-

ularly recognisable. it is not certain whether this is down to a uniqueness

in Taiwanese music or simply a lack of diversity in our Taiwanese examples,

however.

5.5 Discussion and Future Work

We have introduced the problem of predicting the geographical origin of mu-

sic. There is great scope for further research and improvement in prediction

performance.

With a larger corpus, with both more tracks from each country and more

countries represented, the prediction results will inevitably improve. If one

is only interested in predicting location (as opposed to understanding the

historical/pre-historical reasons for musical distribution) the problem is in

many ways similar to statistical analysis of text, where organisations such

as Google have now indexed so many pieces of text that they can solve
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many problems that were once thought to require solving deep problems in

computational linguistics.

More geographical information could be utilised. It would be better to have

access to the exact location of the origin of the music, rather than just the

capital or population centroid, as most countries have strong regional vari-

ations in style. Some cultures change drastically over small areas, some are

unchanged over large expanses, and this needs to be learnt by the prediction

method.

Better representations: the music could be better represented for computa-

tional analysis. It is a truism within machine learning that the hard part is

getting the features correct, and with the correct features almost any learning

algorithm will work. For example, extra features such as the fine chromatic

feature used by Gomez et al. could be applied [Gomez and Herrera, 2008].

It would also be useful to explore the possibility of filtering and pre-selection

of descriptors.

It would be interesting to compare the work with a clustering approach to

the problem. Since we only have the location to the level of a particular

country, classification could be used, though classification with this many

classes might prove problematic.

Many other forms of machine learning could be applied: neural-networks,

support vector machines, decision trees, etc. It is also generally possible to

improve the performance of individual methods by combining them together

108



to form consensus predictions [Duda and Hart, 1973].

It is difficult to know how good our prediction results are as there are no

previously published related comparisons. It would therefore be very inter-

esting to compare the results of the machine learning programs with that of

human performance in predicting musical origin.

The motivation for this work is to better understand the diversity of world

music. To do this we have to go beyond just the prediction of location, but

to analyse what features of the music are responsible for these predictions.

This is now the main focus of research. Once these are known, it would

be very interesting to attempt to generate music appropriate to a particular

region.

5.6 Summary

Traditional research into the arts has generally been based around the sub-

jective judgment of human critics. We propose an alternative approach based

on the use of objective machine learning programs. To illustrate this method-

ology we investigated the distribution of music from around the world: ge-

ographical ethnomusicology. To ensure that the knowledge obtained about

geographical ethnomusicology is objective and operational we cast the prob-

lem as a machine learning one: predicting the geographical origin of pieces of

music. 1,142 pieces of music from 73 countries were collected and described
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them using 2 sets of standard audio descriptors using MARSYAS. To pre-

dict the location of origin of the music a method was developed which was

designed to deal with the spherical surface topology, based upon a modified

k-Nearest-Neighbour. The utility of a priori geographical knowledge in the

predictions: a land and sea mask, and a population distribution overlay, was

also investigated. The best-performing prediction method achieved a median

land distance error of 1,506km, with comparable random trials having mean

of medians 3,190km –this is significant at p < 0.001.
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Feature Explanation Grouping
Time Zero-
crossings

The number of times a sig-
nal changes sign, i.e. how
often it crosses the horzon-
tal zero line.

Default timbral

Spectral Cen-
troid

A measure of the “centre
of mass” of the power spec-
trum.

Default timbral

Spectral Rolloff Describes the amount of
skew in the power spectrum.

Default timbral

Spectral Flux Is an indicator of the
amount of spectral vari-
ance based upon differences
between adjacent spectral
windows.

Default timbral

Mel-Frequency
Cepstral Coeffi-
cients

coefficients for a mel-
frequency (tailored to
human auditory response)
power cepstrum - represent-
ing the short-term power
spectrum.

Default timbral

chroma detects frequency matches
for each musical note of the
Western scale (and its oc-
taves)

Chromatic
feature

Spectral Flat-
ness Measure

quantifies how tone-like, as
opposed to noise-like, a
sound is.

Non-default tim-
bral

Spectral Crest
Factor

Peak to average ratio of am-
plitude. Variance in loud-
ness across frequency.

Non-default tim-
bral

Line Spectral
Pair

Describe the two resonance
frequencies of the vocal
tract when open or closed.

Non-default
misc

Linear Predic-
tion Cepstral
Coefficients

as MFCC, but linear rather
than Mel-scale

Non-default tim-
bral

Table 5.1: MARSYAS features
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Table 5.2: Median and mean distance from true location per k, featureset
and algorithm

k Features Mapping Median (km) Mean
10 default spherical 2869 3776
5 default spherical 2913 3717
3 default spherical 2975 3820
2 default spherical 2980 3849
10 def+chrom spherical 3013 3774
5 def+chrom spherical 2999 3715
3 def+chrom spherical 3012 3772
2 def+chrom spherical 3269 3902
10 default population 3591 4251
5 default population 3042 3803
3 default population 2987 3825
2 default population 2933 3830
10 def+chrom population 3572 4249
5 def+chrom population 3140 3855
3 def+chrom population 2997 3721
2 def+chrom population 3107 3853
10 default land 2125 2675
5 default land 2024 2610
3 default land 1966 2665
2 default land 1850 2583
10 def+chrom land 1506 2694
5 def+chrom land 1550 2613
3 def+chrom land 2087 2639
2 def+chrom land 1996 2627
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Chapter 6

Beauty in World Music

6.1 Introduction

Having considered non-Western music in Chapter 5, it seemed prudent to

use non-Western listeners to further remove bias from the system. With this

in mind a survey was prepared to determine how a specific group of non-

Westerners rate diverse non-Western music for beauty. This chapter shows a

development of the method conducted for the Facebook survey. The ratings

go on to be used in a learning experiment to see if the ratings can be predicted

by machine.
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6.2 Design

6.2.1 Music Used

Music from 93 different countries was presented to participants in a random

order, different per participant, in discrete pairs. The extracts (from PCM

wave files) are each 20 seconds long and taken from a point 30 seconds into

the track. The beginning of music tracks is often quiet and often not repre-

sentative of the overall feel. 20 seconds is enough time to form an opinion as

was reported by participants in the Facebook survey (see section 4.2) and it

is important to make the most of participants’ time. The tracks were selected

from the same set used for the geographic experiments, paired such that they

were the furthest distance apart. The aim of this was to compare music of

different cultures and see if any underlying influence of beauty in the music

could override cultural preferences. The algorithm for selecting tracks is as

follows:

1. Create a list of all possible pairs

2. Determine the distance for each pair (cosine rule distance from known

location of each track)

3. Order the pairs by distance, greatest distance first

4. Select the first pair, maintaining a list of selected pairs

5. While more pairs are required
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(a) Find the next pair that has no tracks in common with all previ-

ously selected pairs

(b) Select that pair, adding to the list of selected pairs

This is not the optimal solution for this problem, however a full set of non-

overlapping pairs was not required, but only a subset of 300 pairs. This

method was a good heuristic in terms of both computing time and pro-

grammer time. The general solution to this problem may be NP-hard as it

combines the knapsack problem [Matthews, 1896] with an extra condition of

independence making many combinations mutually exclusive.

6.2.2 Listening Conditions

Twenty PCs with headphones, internet connection and web browser pointed

at the survey are provided in a quiet room.

Participants were not told the overall purpose of the study as this might

have skewed their responses. The question about happiness is there partly

to disguise the specific purpose of the survey and partly to encourage partic-

ipants to think about the difference between the music being beautiful and

’liking’ or ’enjoying’ the music. The results are not analysed separately but

are useful for some comparisons.
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6.2.3 Participation

Students in Singapore will be asked to participate in the survey. They were

given a login ID and password. The first page asks for some demographic

information. An example (fictional) response is shown in Table 6.1. This

part was based upon previous marketing studies conducted by our colleagues

in Singapore.

Age in years 25
Gender Male

Race Chinese
Housing HDB 3-4 rooms

Nationality Singaporean
First Language Mandarin

Second Language English

Table 6.1: Example demographic information

Following the demographic part of the survey the pair listening test was pre-

sented. In this they were asked to rate the tracks against one another in

terms of beauty and whether it made them feel happy. Two music play-

ers, one per extract, were presented with associated play, pause, and stop

controls. There was no mechanism to prevent listening to both tracks simul-

taneously but this behaviour was not expected as it would be unlikely to help

or be pleasant for the listener. See Figure 6.1 for an image of the listening

experiment webpage.
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Figure 6.1: Part of the listening page, happy scales are off the bottom of the
image.
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6.2.4 Grouping of Listeners and Pairs

Each pair is listened to by 20 participants. Each participant is asked to

spend 20 minutes on task, resulting in each participant rating about 15 pairs

(30 tracks). This is based on 40 seconds listening and 40 seconds answering

questions. The overall result will be 150 pairs rated (300 tracks), each rated

by 20 participants. This gives about 3 tracks per country. Each participant

was part of a group that heard the same 15 pairs but each heard the pairs in

a random order. Not only was the order of the 15 pairs randomised, but the

order of appearance of the two tracks within each pair to avoid the chance

that a preference for always picking the first, or always picking the second,

were exhibited. They were each paid $10 (SGD) for their time once they

have completed the task, irrespective of their particular responses.

6.3 Survey Results

The ratings used are the paired ratings for beauty, as agreement is easier

to measure for these. All ratings are assessed for the statistical significance

of the agreement of raters using a two-tailed binomial test. Agreement was

found to p < 0.05 for 91 pairs (182 tracks) of the 150 pairs. However, this

does not incorporate the Bonferroni correction. When this is applied only

34 pairs (68 tracks) can be considered significant. This does not mean that

the information in the remaining pairs has no value to any machine learning
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algorithm - though of course the more agreement between raters the more

reliable and therefore useful the result will be. The results are taken as 4

possible groups for input in to the machine learning algorithm: significant at

5% with Bonferroni correction (68 tracks), significant at 10% with Bonferroni

correction (80 tracks), significant at 5% ignoring Bonferroni considerations

(182 tracks), and all rated groups with an overall majority vote (all but

one pairs) The significance and the paired percentages for beauty and for

happiness can be seen in Appendix A. The scale ratings could be used in a

future study. From this it appears that the ratings are tied to the familiarity

or closeness of the country they are from. This is unexpected, but it gives

scope to test this idea to find the extent of the effect. This forms the basis

of Chapter 7. Further work might include looking at these ratings on a

per-country basis rather than by distance.

6.3.1 User Demographics

The demographics of the respondents were not as diverse as was hoped.

The modal demographic combination of nationality, race, first and second

language was Singaporean nationals of Chinese descent with first language

English and Second language Mandarin, of whom there were 107 out of a to-

tal 189. The full demographic description of each participant can be seen in

Appendix B. The gender breakdown was fairly even, being 92 female and 97

male from 189 participants. Figure 6.2 shows the nationality breakdown. It
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can be observed that the vast majority of those surveyed were Singaporean,

with the next most represented group being Malaysians, of whom there were

only 18. In terms of race, people of Chinese origin were most strongly rep-

resented (see Figure 6.3). The most common first language was English, the

most common second-language Mandarin, both accounting for over half the

participants (which could be determined from the modal grouping as well).

The first and second language distributions can be seen in Figures 6.4 and 6.5.

The participants were all students and age ranged from 19 to 28 in a nor-

mal distribution (Figure 6.6). The housing situation was part of a standard

form our colleagues in Singapore use, which is a proxy for standard of living.

There was a fairly even spread with a mode of 77 for HDB34 which is a 3 to 4

room flat from the Housing and Development Board in Singapore, and very

few participants in an HDB12 (a 1 to 2 room flat). It seems that the dataset

has no particular bias for this but a comparison with averages across the

university, and Singapore in general, would be needed to confirm. Figure 6.7

displays this information.
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Figure 6.2: Distribution of the self-identified nationalities of the participants.

Figure 6.3: Distribution of self-identified race of participants.
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Figure 6.4: Distribution of first language of participants.

Figure 6.5: Distribution of second language of participants.
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Figure 6.6: Distribution of age (years) of participants.
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Figure 6.7: Distribution of housing type of participants.

6.4 Learning Beauty

6.4.1 Introduction

Having obtained ratings for 300 tracks, each by roughly 20 participants, the

next step is to learn to predict beauty levels from audio accurately.

6.4.2 Method

For each grouping of examples, increasing in number but decreasing in the

quality (agreement) of responses, three different feature sets were compared

for their ability to classify into one of two categories - beautiful or ugly.

The mode of the respondents (the mode is the track more people had rated
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beautiful) was considered to be the ground truth or correct answer. The

SMO SVM from Weka (see Section 2.4) was used for the machine learning

with a polynomial kernel. Leave-one-out cross-validation (see chapter 2) was

performed, such that each track was classified based upon information from

all the other tracks combined, and the results are given here as the percentage

which were correctly classified.

6.4.3 Results

The feature sets are the default MARSYAS set represented by “def”, the

default set with chromatic features added: “defchrom”, and lastly all the

MARSYAS features. The groupings are: those pairs which were significant

at p < 0.05 inclusive of the Bonferroni correction (5b), those pairs which were

significant at p < 0.10(10b) inclusive of the Bonferroni correction, those pairs

which were significant at a simple p < 0.05 test (5pc), and finally all the pairs

which had a non-tied outcome (all).

all (298) 5pc (182) 10b (80) 5b (68)
all 67.91% 73.89% 70.51% 74.24%
def 71.96% 78.89% 70.51% 65.15%

defchrom 71.96% 78.89% 70.51% 65.15%

Table 6.2: Performance of different featuresets on different portions of the
data, grouped by level of agreement
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6.4.4 Discussion

For the two smaller feature sets the best performing grouping is the 5 percent

group with 78.89% correct. Having all the examples certainly reduces perfor-

mance from having the 5% significant ones; this can be seen in every feature

row. It is probable that ratings with less significance than this become less

and less useful following a law of diminishing returns. The reason for the

best performance with the most features being the smallest set of examples

is not clear. It could be that more information leads to better classification

for a smaller set of examples. It is possible to look at this another way and

see that more examples are confounding to a classifier using all the features

at its disposal, because as the number of examples increases the distribu-

tion becomes more diverse. Perhaps the features are overfitted in the small

sample. In each case, however, some predictive power is seen.

6.5 Conclusion

In this chapter a paid survey was conducted spanning 300 extracts of music

from around the world and 198 participants. The participants were not

particularly diverse but were at least different from what would be readily

found here in the UK. Indications are that their ranking of beauty is coloured

by their cultural preferences. Learning was performed using their ratings,

sectioned into groups by the level of agreement.
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The best performing experiment used only default (timbral) features (option-

ally with chromatic features that did not affect the outcome) from MARSYAS

and the 5% set of pairs, which appears to be a sweet-spot in terms of the

value of the ratings. Both these combinations achieved 78.89% accuracy. It

is interesting that the chromatic features made no difference to the outcome

in any of the cases. One reason for this could be that they are tuned to

Western scales, and perhaps none of the music, or too little of it, matched

up with these tones for them to be informative in classification.

Future work should involve conducting this survey in other countries includ-

ing in Western countries, to see if the level of agreement varies. The same

study with more music would be a valuable expansion, as would different

pairings, perhaps from the same country, to see if assessing beauty is easier

when comparing music from the same country, and to find out if the same

audio features are as useful for predicting ratings. Analysis of the individual

track rankings and the “happy” results would also be interesting.
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Chapter 7

Beauty and Geography

7.1 Introduction

This chapter tests the hypothesis that the beauty ratings from Singapore were

influenced by geographical location of the tracks concerned. First a simple

statistical test is run, then a more in-depth attempt to use geographical infor-

mation to predict beauty ratings, and finally a combination of both audio and

geographical features are used for the same prediction task. The responses

from the Singapore survey appear to show a preference towards music from

around the Singapore region. To test the level of influence of country of origin

on the judgements of our raters, first statistical tests were conducted, and

then several prediction-by-location experiments were designed which make

use of both the absolute position and the relative closeness to Singapore to
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predict beauty ratings.

7.1.1 Statistical Dependence on Geography

The standard test for dependence is the chi-squared test. The results must

be set into a table such that each combination of beauty, ugly, near and far

is represented. For each pair, the track rated more beautiful is considered

the beautiful one, and the other is considered ‘ugly’. For each pair, the track

nearest to Singapore is considered ‘near’ and the track which is furthest away

is considered ‘far’.

A paired Pearson’s chi-squared test was performed on the results at the 5%

level (see Table 7.1 and for the “all” group (actually all pairs with a modal

result, which happens to be n-1 because only one pair had a completely even

set of ratings), found in Table 7.2.

Near Far
Beauty 78 13

Far 13 78

Table 7.1: 5% results of χ2 significance test

Near Far
Beauty 107 42

Far 42 107

Table 7.2: 5% results of χ2 significance test

The Pearson’s chi test statistic is defined in equation (7.1). χ2 is the test

statistic, Oi is the observed frequency, Ei is the expected frequency - in this
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case 1
4

of the total tracks, and n is the number of cells, in this case: 4. The

null hypothesis H0 would be that being nearer has no effect on whether the

track is selected as more beautiful by raters.

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(7.1)

Its value for the “5%” group is 92.86, which when compared the the chi

squared distribution is greater than the critical value for p < 0.001 at 1

degree of freedom so it is significant at the 0.1% level. (the critical value for

this is 10.83). The value for the “all” group is 130, also significant at the

0.1% level.

7.1.2 Distance from Singapore as a Predictor of Beauty

Rating

The closer a track’s home country is to Singapore, the more likely our par-

ticipants are to have rated it ‘beautiful’.

For each track the great-circle distance from Singapore was calculated. This

distance, latitude, and longitude are the features of the data. The same

SVM algorithm which predicted beauty correctly 79% of the time for the

best group is used. The machine task was to predict: for each track, if it was

the winner or loser for beauty, in terms of the majority vote of choices made

130



by participants. Performance was assessed by leave-one-out cross-validation

for several different groupings of tracks:

• the 68 tracks significant at the 5% level with the bonferroni correction,

• the 80 tracks inclusive of the above which were significant at the 10%

level with the bonferroni correction,

• the 182 tracks inclusive of the above which were significant at the raw

5% level,

• the 298 (all) tracks.

This result can be compared to those achieved with audio content, which was

done in a similar fashion. A t-test will determine the statistical significance

of any difference.

The tracks were separated into the classes beauty and ugly. The features

used were latitude (to 2 d.p.), longitude (to 2 d.p.) and distance from Sin-

gapore (to nearest km), firstly all as one vector and then individually. The

distance was calculated as a great-circle distance using the spherical law of

cosines. It can be seen in (7.2) and (7.3) with φ representing latitude and

λ representing longitude, d representing distance, r the radius of Earth, and

a and b are points. Each of these was based upon the capital city of the

track’s originating country. These were normalised and passed through the

SMO SVM provided in Weka 3.6.8. It implements John Platt’s sequential

minimal optimisation (SMO) algorithm for training a support vector classi-
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fier (or support vector machine, SVM). This was using a polynomial kernel.

Leave-one-out cross-validation was performed in all cases.

∆ρ̂ = arccos(sin(φa)sin(φb) + cos(φa)cos(φb)∆λ) (7.2)

and then the distance d is:

d = r∆ρ̂ (7.3)

7.1.3 Results

Table 7.3 shows the results of the geographical-only study. The four track

groups decrease in quality (rater agreement) as they increase in size. The

columns show the performance of the SVM with leave-one-out cross-validation

using all three geographical features and then each one in turn.The best per-

formance was achieved with the group of 182 tracks using anything except

latitude alone.

track group size all three just latitude just longitude just distance
68 82.35 61.76 82.35 82.35
80 85.00 57.50 85.00 85.00
182 85.71% 53.8% 85.71% 85.71%
298 71.81 52.68 71.81 72.15

Table 7.3: Combinations of geographical features and the SVM performance
predicting beauty ratings
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As with the beauty prediction with audio features from chapter 6, the 5-

percent level has performed best, suggesting again that this is a good balance

point compared with other groupings tried of having enough examples of good

enough quality to learn something. However, the general performance that is

over and above that of audio alone suggests a strong bias in the listeners. This

counters the idea that beauty has a strong influence outside of cultural norms.

It is possible that all these pieces are too similar in underlying beauty and so

other cues were sought by the listeners. Nevertheless it is a disappointment

from the perspective of trying to unearth musical beauty from under the

heavy influences of personal preference, social influences and wider cultural

influences. Distance alone was the best overall measure since it uses the least

information and performs equally for the smaller datasets with longitude

and with all three geographic pieces of information, whilst for the largest

dataset it actually performed better than these. Latitude is clearly the worst

indicator, which makes some sense: the tracks were chosen to be as far apart

as possible in their pairs, and tracks on opposite sides of the globe could be

180◦ apart, whilst considering the way the Earth is populated (more people

nearer to the equator) they would be unlikely to be further apart in latitude

than perhaps 90◦, particularly considering that they need to be on land and

opposite or nearly opposite another land mass.
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7.2 Experiment 2: Location and Audio

7.2.1 Method

Similarly to Experiment 1, a single vector, multi-feature input combining

distance information with each of the three sets of audio features is used for

the beauty prediction task.

7.2.2 Results

Table 7.4 shows the combination of audio and geographical features. The

rows are as in Table 7.3, and the columns are the three audio featuresets

already used but each is now combined with the geographic features.

n def+geo defchrom+geo all+geo
68 72.73% 72.73% 75.76%
80 78.21% 78.21% 75.64%
182 82.78% 82.78% 79.44%
298 72.97 72.97% 73.65%

Table 7.4: Combinations of audio and geographical features and their per-
formance at predicting beauty

Clearly yet again the 5 percent row yields the best results. Despite this, the

capabilities of the algorithms are somehow poorer for the combination, per-

haps indicating a limitation in the way SVMs are able to prioritise features.

It seems that using all the audio features is also still a confounding factor for

all tasks but the largest set. Again, the addition of chromatic features leave
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the performance unchanged. This is interesting in the light of the findings

of Gomez et al. who discovered latitude to be correlated with tonal, par-

ticularly chromatic, features, whereas longitude was correlated with timbral

features [Gomez et al., 2009]. It is possible our dataset is simply not in-

terestingly distributed for latitude. Longitude being correlated with timbral

features could be a function of the different instrumentation being detected

by these. Instruments vary with longitude simply because instruments vary

with distance. These results in combination with Section 7.1.2 and Chap-

ter 6 seems to have confirmed their findings since longitude was important

and timbral features were important in predicting beauty, and latitude and

chroma have separately proved to add little value in predicting beauty, which

in Section 7.1.1 statistically proven to be strongly linked to geographic loca-

tion.

7.3 Conclusion

Several different tests including statistical tests and learning tasks were con-

ducted to assess the correlation between the closeness of a track to Singapore

and it being rated more beautiful. In all tests the correlation was shown to

be present. It is evident that the Singapore participants were swayed by

some geographically related influence, which after conducting these tests is

only more clear. In doing so a clear method for comparing the influences

of different feature sets has been developed which gives more insight than a
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simpler statistical test. It has also been shown that, for this dataset at least,

statistical agreement at the 5% level is a good basis for learning. The best

performance combining both audio and geographical information was with

the default or default and chromatic features, attaining 82.78% accuracy.

The best performing result using geographic information alone was achieved

with any of longitude, distance from Singapore, or latitude, longitude and

distance from Singapore in combination, showing only latitude to be almost

worthless in predicting beauty. The correlation between being the nearest

track and being rated most beautiful was significant at the 0.1% level for the

5% group. Latitude correlation with chromatic factors and longitude being

correlated with timbral factors is supported by these results. Further work

would entail surveying several different populations with the same music to

see what the differences are in perception and how strongly they are related

to location, rather than audio features, in different places. It would be in-

teresting to investigate this variance. It would also be useful to repeat the

experiment with tracks that are instead both from the same country in each

pair to see if this makes the task easier or harder. Other machine learning

algorithms such as those reviewed in Chapter2 could be tried to validate the

results of this study.
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Chapter 8

Conclusion

8.1 Summary of Work

The purpose of this work was to investigate what is meant by ’beauty’ in

music, if it relates to audio features and what other factors come into play.

The use of non-Western music and the influence of geography in the percep-

tion of beauty were important aspects considered. There has been a lot of

previous work in analysing Western music with computational approaches

on audio features, but little covering beauty or non-Western music.

Different representations for audio features and different machine learning

algorithms for learning on audio features were tested, with MARSYAS all

features and Support Vector Machines performing well. Predicting beauty

was first investigated with a small Last.fm dataset and later with a larger
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world music survey with Singaporean participants. Predicting the geograph-

ical location of world music was attempted, producing some promising re-

sults and the development of interesting methods for accommodating the

surface of Earth in doing so. The Singaporean beauty ratings were predicted

from audio content, geographic content and a combination of both, showing

strong correlations between longitude, distance, and timbral features with

the beauty ratings, which were statistically very closely linked with distance

from Singapore. Beauty in music as rated by our participants was culturally

related and timbre is a good pointer to cultural differences.

The work is a valuable addition to the field of Computational Musicology.

We have gained new insights into the possibility of detecting beauty in audio

signals. Predicting the geographical location of world music was shown to

be possible albeit at an early stage, and some of the findings of Gomez

et al. regarding important audio features for geographic prediction were

confirmed [Gomez et al., 2009]. Cultural influence on the rating of music was

shown to affect the concept of beauty in music, at least as understood by our

survey participants. It was also demonstrated that these ratings were more

easily predicted by geographical information than by audio features.
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8.2 Initial Experiments

Methods for obtaining ground truth from raters and from benchmark datasets

were tested and found to be feasible. Machine learning algorithms were

compared on the benchmark data set and SVMs were amongst the best-

performing. Beauty was predicted on a small selection of Last.fm tags with

good accuracy. Two different feature sets from MARSYAS were compared

and the larger was found to improve the results when more complex learn-

ing algorithms were used (such as the SVM). This set of experiments pro-

vided insights into the most useful feature representation, machine learning

algorithms, survey techniques and possibility of detecting beauty by ma-

chine.

8.3 Geographic Prediction

The distribution of music from around the world was investigated. The

problem was cast as training a machine learning program to predict the geo-

graphical origin of pieces of music. World music was described using different

sets of standard audio descriptors from MARSYAS. To predict the location of

origin of the music several methods were developed, designed to deal with the

spherical surface topology based upon a modified k-Nearest-Neighbour algo-

rithm. The utility of a priori geographical knowledge in the predictions was

investigated in the form of a land and sea mask, and a population distribu-
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tion overlay. Results were statistically significant and encouraging but with

room for improvement. This was a contribution to the field of geographical

ethnomusicology.

8.4 Singapore Survey

In this chapter a paid survey was conducted with Singaporean participants

on world music. Statistical analysis indicated that their ranking of beauty

was coloured by their cultural preferences. Learning was performed using

their ratings, sectioned into groups by the level of agreement. It was proven

that beauty ratings can be predicted from audio features. The quality of

ratings required for best prediction was discovered. Chromatic features were

seen to make no difference in prediction.

8.5 Geographical Influence on Ratings

Several different tests including statistical tests and learning tasks were con-

ducted to assess the correlation between the closeness of a track to Singapore

and it being rated more beautiful. In all tests the correlation was shown to

be present. It is evident that the Singapore participants were swayed by

some geographically related influence, which after conducting these tests is

only more clear. In doing so a clear method for comparing the influences
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of different feature sets has been developed which gives more insight than a

simpler statistical test. It has also been shown that, for this dataset at least,

statistical agreement at the 5% level is a good basis for learning. Using au-

dio and geographic information performed worse than using just geographic

information. Longitude being correlated with timbral factors is supported

by these results, which gives weight to similar results found by others on the

field. This may be as a result of instrumentation detection.

8.6 Future Work

An expansion of the Last.fm to a much larger dataset would be useful to see

how those example which are less agreed-upon as being beautiful confound

or contribute to prediction. An individual consideration of the contribution

of each MARSYAS feature would be helpful to determine with more fine-

graining what representation is best for beauty and for geography. Extra

features would also be of interest, such as the fine chromatic feature used by

Gomez et al. [Gomez and Herrera, 2008]. A larger world music corpus with

both more tracks from each country, and more countries represented, would

improve prediction results and enrich any future surveys. It would be better

to have access to the exact location of origin of the music, rather than just

the capital or population centroid, as most countries have strong regional

variations in style. Some cultures change drastically over small areas, some

are unchanged over large expanses, and this could also be learnt.
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It would also be useful to explore the possibility of filtering and pre-selection

of descriptors for both beauty and geographic experiments. Many other

forms of machine learning could be applied: neural-networks, support vector

machines, decision trees, etc. Here there was only time to apply the most

promising technique to all the different datasets. Conducting world music

surveys in other countries including in Western countries, would be useful

to see if the level of agreement varies. The same study with more music

would be a valuable expansion, as would different pairings, perhaps from the

same country, to see if assessing beauty is easier when comparing music from

the same country, and to find out if the same audio features are as useful

for predicting ratings. Analysis of the individual track rankings and the

“happy” results would also be interesting for comparison. It would be worth

investigating to see what the differences are in perception and how strongly

they are related to location, rather than audio features, in different places.

It would also be useful to repeat the experiment with tracks in different

pairings.

8.7 Remarks

Computational Musicology is a new field and this thesis contributes to com-

putational understanding of beauty in music, geographical influences in mu-

sic, geographical influences in appreciation of music, and techniques for rep-

resenting music across the globe. There are many threads of interest to be
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followed up from the work and it is hoped that others will do so. Music

Information Retrieval is growing in popularity and in commercial value. It

has ties with speech recognition techniques and other applications that be-

gin with entertainment recommendations and end with deep investigations

of what makes us like music in the first place, and so, in part, what makes

us human.
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Appendix A

Full Results from Singapore
Survey

The table headings “beauty” and “happy” refer to the percentage agreement
between raters. Column “n” is the number of raters, as this varied slightly
and affects the statistical calculation. p(h0)b and p(h0)h are the respective
probabilities of the null hypothesis, that is that there is no difference in the
beauty or happiness ratings on a particular pair. “winner” and “loser” are
the winning and losing tracks in each pair, that is, the winner is the one rated
most beautiful. The beginning of each track name is the 2-letter ISO-3166-1
country code for that track, so the countries of origin can be fairly easily
observed.
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Appendix B

User Demographic Data for the
Singapore Survey
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