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Chapter 1

Introduction

The aim of this Thesis is the construction, by reasoned argument and investigation,

of a Smoothed Particle (SP) algorithm and model suitable for the stable, accurate

simulation of Solar Coronal phenomena. Before discussing any details, consider the

physical and numerical scienti�c background.

1.1 Solar Corona

Our star, the Sun, is a massive body of ionised gas (plasma) that radiates vast

amounts of energy. So massive, and so energetic, is the Sun that the warring forces

that govern it give rise to numerous layers of material, each with their own phys-

ically distinct characteristics. Referring for context to Figure 1.1, at the centre of

the Sun is the Core. A region of such extremes of temperature and pressure that the

matter undergoes fusion. Surrounding the Core is the corotating Radiative Zone, so

named because the energy is transported by radiating through the opaque medium.

As the opacity of the Radiative Zone increases (radially) the thermal energy builds,

until it is more e�cient for the energy to be transported by convection. In this way

the Radiative Zone gives way to the Convective Zone. Sitting atop the Convection

Zone is the only visible layer of plasma, and upper surface of the body of the Sun,

the Photosphere. From this point on, the layers are referred to as part of the Solar

Atmosphere. The physical properties also begin to act strangely. From the Core to

the Photosphere the temperature of each layer has been reducing proportionally, de-

pending on its distance from the fusion, until the Photosphere sits at approximately

5.5× 103 K. The Chromosphere, the �rst layer of atmosphere sitting directly above

the Photosphere, is at approximately 7 × 103 K. The �nal, outermost layer of the

Sun before the solar plasma gives way to interplanetary space is the Solar Corona

at approximately 2× 106 K.

It is this outermost layer that is the focus of this work. The Corona is a very

hot and di�use (∼ 1012 kgm−3) fully ionised plasma. It is also highly variable.

Suspended within it by powerful and complex magnetic �eld structures are pockets of

cooler, dense plasma. As the magnetic �elds evolve, they store an increasing amount

of energy with potentially dramatic consequences, from solar �ares to prominences to
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Figure 1.1: A cut-away diagram showing the basic layers of the Sun. Moving
out from the centre, the layers are the Core, the Radiative and Convective
Zones, the Photosphere, the Chromosphere and the Corona. The �nal two
layers are di�use, shown here as the opaque peach layer and striated region,
respectively.
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coronal mass ejections (CMEs). These explosive phenomena accelerate vast amounts

of material into interplanetary space, with the potential for striking the planets

including Earth. This accounts for the majority of Space Weather. During the

active phase of the ∼ 11-year solar cycle, the atmosphere can become so distorted

by eruptions that there is no stable Corona. Given this dynamic behaviour, the

Corona is a focus of much research. However, this work is challenging, and physicists

must rely on numerical experiments to overcome, or at least reduce, some of the

di�culties.

1.2 Smoothed Particle Hydrodynamics

The smoothed particle (SP) method is a technique that can approximate the be-

haviour of complex media as numerical algorithms. Presented here is a brief sum-

mary of the background and concepts underlying the SP method. A detailed pre-

sentation of the technique is presented in the subsequent chapters.

Conceptually, the SP method divides a material into a number of �nite elements.

These elements are then free to interact as instructed by the macroscopic physics

of the original media. This it does with relative ease which has led, in the 45 years

since its original presentation by Lucy (1977) and Gingold and Monaghan (1977),

to the technique spreading far beyond the bounds of its astrophysical childhood,

and into a wide range of disciplines within the academic, industrial and service sec-

tors. It has been applied to; binary �ssion and instabilities (Gingold and Monaghan,

1978; Monaghan, 2005), variable smoothing lengths (Nelson, 1994; Price and Mon-

aghan, 2004b; Buchlin, 2007), relativistic dynamics (Chow and Monaghan, 1997),

compressible turbulence (Monaghan, 2002), elastic materials (Gray et al., 2001) and,

most relevantly, large scale (Rosswog and Price, 2007) and small scale (Monaghan

and Price, 2004, 2006) MHD applications. The latter distinction, between the scale

of MHD problems attempted, is made because the intermediate scale (smaller than

stars collisions but greater than tokamak based simulations, such as coronal loops)

remains, as yet, unexplored. It is this length scale, ∼ O(Mm), in the solar corona

which is the focus for the work herein

1.3 Thesis

This thesis is divided into two parts. Chapters 2 and 3 present the established SP

method as described by the surrounding literature. The method is divided between

the chapters into the rigorous physical components and the numerical/arti�cial com-

ponents, respectively. The remaining Chapters (4, 5 and 6) present the original
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research portion of this document.

That research is focused on the construction of an SP algorithm and domain built

to simulate the transient phenomena located in the Solar Corona. Without being too

speci�c as to the phenomena, certain conclusions can still be drawn about the general

conditions faced by the model by, for example, looking at other successful numerical

approaches (Chen et al., 2002). For instance, the model must be stable in a regime

of high temperatures, low densities, negative pressures, steep gradients, high rate of

deformation, and rapidly varying time and length scales. As a �nite-element method,

SP theory can automatically handle, for example, the high rate of deformation.

However, negative stresses and steep gradients could present something of a problem.

In addition, the geometry of the solar corona and the �ne-grained nature of the

phenomena could present a problem for the domain and element parameters.

It is these problems that are addressed though reasoned argument, in the case

of the negative pressures (Chapter 3), and investigation, as with the steep gradients

(Chapter 5).

Subsequent to a thorough discussion of general SP theory and implementation,

this document initially presents original research investigating the nature of the

techniques de�ning variable spatial resolution (variable smoothing length), and dis-

covers a numerical artefact that in the presence of large variations in smoothing

length drastically e�ects the stability of the algorithm (Chapter 4). In order to bet-

ter understand this artefact, the subsequent research focuses on the quanti�cation of

errors in SP algorithms (Chapter 5) leading to the cumbersome, but more accurate

Corrected SP (CSP) method. Following an investigation into the behaviour of that

algorithm, another is presented that conforms to the high accuracy generated by

the CSP method, but strips away that which makes it so computationally weighty.

Entitled the CSP-∆h method, it avoids some of the complications of the former

method by justi�ably dropping those terms that are a function of the gradients of

spatial resolution (that is the spatial gradients of the smoothing length). Finally,

in Chapter 6, the work de�nes a novel domain geometry in order to capture the

required dynamics with as little wasted computation as possible. Two new bound-

aries have been established, the �rst a speci�cation of the periodic boundary and

the second a novel boundary that attempts to let information about the internal

dynamics out of the domain while ensuring the model evolution remains stable.
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2.1 Introduction

This chapter concerns the derivation of smoothed particle (SP) theory and the cre-

ation of the basic SPMHD algorithm. Note that the components presented here are

only those that stem from physical or mathematical argument. The arti�cial and

numerical components of the model are addressed is Chapter 3.

The derivation, in one form or another, is presented in almost every paper con-

cerning SP methods. Many of the points raised in the sections that follow are

common to all of them. However, certain papers are particularly illuminating. Most

notably Hernquist and Katz (1989); Monaghan (2005); Price (2012), and the series

of papers Price and Monaghan (2004a,b, 2005); Price (2010).

2.2 Integral Basis

SP algorithms can be created from two bases. The most recent review paper (Price,

2012) for instance, presented the derivation from density estimate basis. However,

for reasons discussed in Section 2.3, presented in detail herein is the more common

derivation from the integral basis.

2.2.1 Fundamental Proposition

The aim of any SP algorithm is the simulation of some physical medium or conglom-

erate of related mediums. To create a model, a conceptual space must be de�ned (as

the simulation domain, Ω) with some number of dimensions, ν, and bound by a sur-

face, S(Ω), within which the appropriate equations can be solved. In SP theory the

assumption is made that any information exists as macroscopic properties or �eld

variables. Thus, for example, any velocities quoted would refer exclusively to the

motion of portions of the bulk medium rather than individual physical units (atoms,

molecules, etc.) that make up those portions. A list of macroscopic properties would

include; velocity, magnetic �eld, density, mass, thermal energy, pressure, etc. How-

ever, colour charge or spin would be examples of non-macroscopic properties as they

are clearly isolated to individual particles and are, as such, discontinuous through-

out a domain. This assumption clearly restricts the media (or, more speci�cally, the

systems of equations) that can be simulated by an SP algorithm.
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Theorem 2.1 If λ is a scalar macroscopic property that exists throughout

the domain, λ(r) may be expressed in the form

λ(r) =
∫

Ω
λ(r′)δ(r− r′)dr′ (2.1)

where δ is the Dirac delta function.

There can be some confusion regarding the speci�c form of the delta function,

either Dirac or Kronecker, as both can be described in the context of an integral

as a function equal to zero for any input excluding for a single value, at which the

function is equal to one. To clarify, the Kronecker delta acts on discrete, usually

integer, variables

δij =

{
1 if i = j

0 otherwise
(2.2)

whereas the Dirac delta function (see Figure 2.1) is, more accurately, a continuum

of zero with an in�nite pulse centered at zero. For instance,

δ(x) = lim
a→0

[
1

a
√
π
e−

x2

a2

]
(2.3)

such that, conceptually,

δ(x) =

{
∞ if x = 0
0 otherwise

(2.4)

additionally constrained by ∫ ∞
−∞

δ(x)dx = 1 (2.5)

In a similar manner that may account for the confusion surrounding delta functions,

an integral of the Kronecker delta over all possible input values (all integers, hence

the integral is replaced by a summation) conforms to

∞∑
j=−∞

δij = 1 for i ∈ Z (2.6)

Though the practical distinction here appears insigni�cant, the implications re-

garding the theoretical concepts are not. Consider that the integral (2.1) and the

Dirac delta function operate on the entire continuum of the domain. Any speci�c

λ, therefore, must be continuous. Thus, the fundamental proposition validates the

assumption that λ must be some macroscopic variable.
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Figure 2.1: A plot showing, over a 1-Dimensional domain −1 ≤ r − x ≤ 1,
the Dirac delta function and some continuous property λ as a blue and red
line, respectively. Using equation (2.1), with the point of interest at x, λ(x) is
shown as a black circle.

Theorem 2.1 is the proposition upon which the rest of SP theory is constructed.

However, this construction requires numerous steps. First among them is the

smoothing approximation.

2.2.2 Smoothing Approximation

The smoothing approximation is one of two unavoidable approximations made in

the creation of any SP algorithm. It is essential to the discretisation process required

for computation.

Consider some hypothetical discretisation of the domain (Ω) and the informa-

tion within it. The integral over all points in Ω of equation (2.1) would become a

summation over the �nite number of locations at which information exists. Given

the intended Lagrangian frame of reference, equation (2.1) could be calculated at

any one of the in�nite number of points contained within Ω, therefore it is unlikely
that the unit pulse of the delta function occurs where the information exists, and

the only result from the equation would be zero. If, however, the Dirac delta func-

tion were smoothed out over some small distance, de�ned relative to the scale of the

discretisation, non-zero outputs from the equation would become possible.
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Theorem 2.2 In order to approximate equation (2.1), the Dirac δ must be

replaced by some smoothing function, W .

λ(r) ≈ [λ(r)]sm =
∫

Ω
λ(r′)W

(
r− r′, h

)
dr′ (2.7)

where h is the smoothing length. This is the smoothing approximation.

This expression (2.7) places a number of constraints on the nature of the smooth-

ing function.

2.2.3 Constraints on the Smoothing Function

The smoothing function, often referred to as the kernel (Monaghan, 2005), can take

a number of forms (Fulk and Quinn, 1996). However, its behaviour must conform

to particular bounds. Initially, as a direct result of Theorem 2.2, as the smoothing

length collapses to zero (and the resolution increases),

lim
h→0

W
(
r− r′, h

)
= δ(r− r′) (2.8)

This constraint in fact breaks down to form a number of other constraints. Simplest

of all, that the function should be normalised by∫
Ω
Wdr′ ≡ 1 (2.9)

such that

lim
h→0

[λ(r)]sm = λ(r) (2.10)

Also, since δ ≥ 0,
W ≥ 0 over Ω (2.11)

Further to equation (2.11), for the purpose of the SP method (i.e. from a numer-

ical perspective), the smoothing function should have some form of compact support

such that the calculations for some arbitrary point require only information stored

in the surrounding region, rather than information from the entire domain. That is,

W
(
|r− r′|, h

)
= 0 for

∣∣r− r′
∣∣ > Ch (2.12)

where C > 0 is some constant. Typically C = 2 as the cubic spline is most

commonly employed as the smoothing function (see Section 2.2.4). In this way, the

smoothing length h must be proportional to the spatial resolution of the simulation.
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The compact support can be represented as a spherical domain which is a function

of h, ω(h), about r such that

[λ(r)]sm =
∫

Ω
λ(r′)Wdr′ =

∫
ω(h)

λ(r′)Wdr′ (2.13)

Though not implicit in the mathematics, the smoothing function should also be

even, that is

W
(
r− r′, h

)
≡W

(
|r− r′|, h

)
(2.14)

Given that the application of the smoothing approximation is intended for phys-

ical mediums, the integral must conform to physical laws, in particular physical

consistency. Consider, using an asymmetric smoothing function in disagreement

with equation (2.14) and assuming some variable �eld λ, the calculation of equation

(2.7) would give some answer. Now, reconsider the calculation having altered only

the orientation of the coordinate system. The answer must have changed, which

is inconsistent with the laws of physics as they should be the same regardless of

coordinate system. However, repeating the procedure, assuming a symmetric (and

therefore even) smoothing function, the answers will be identical regardless of coor-

dinate system.

There are additional constraints placed on the spatial derivative of the smooth-

ing function. From a numerical perspective, the derivative should be �nite and

continuous. Also note as a comment on the behaviour, that

∇jW
(
|r− r′|, h

)
=
∂W (|r− r′|, h)

∂rj
(2.15)

where j denotes the dimensional components of the coordinate system. By conven-

tion here 1 ≤ j ≤ ν and j ∈ Z, however any consistent discrete value system will

su�ce. Repeated application of the chain rule of di�erentiation yields

∇jW
(
|r− r′|, h

)
=
∂r− r′

∂rj

∂|r− r′|
∂r− r′

∂W (|r− r′|, h)
∂|r− r′|

(2.16)

so that

∇jW
(
|r− r′|, h

)
=
rj − r′j
|r− r′|

∂W (|r− r′|, h)
∂|r− r′|

(2.17)

and therefore the gradient as calculated looking from r to r′ must be equal and

opposite to the gradient as calculated looking from r′ to r, i.e.

∇W
(
|r− r′|, h

)
= −∇′W

(
|r′ − r|, h

)
(2.18)
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Figure 2.2: A graph showing examples of the four smoothing function cat-
egories; bell-, hyperbolic-, parabolic-, and double-humped-shaped. See Table
2.1 for speci�c examples.

2.2.4 General Smoothing Function Forms

Smoothing functions can be categorised into four main forms; Bell, Hyperbolic,

Parabolic and Double-Hump. Speci�c examples are shown in Table 2.1 and Figure

2.2. However, more generally, most have the form

W
(
|r− r′|, h

)
=
σν
hν
F (q) (2.19)

where q = |r − r′|/h is the relative spatial distance, and σν is the normalisation

constant responsible for ensuring equation (2.9). The function F de�nes the shape

of the smoothing function as a function of relative distance.

More information concerning the smoothing function de�nitions in Table 2.1

and many additional de�nitions, and an extensive discussion of possible methods of

determining a speci�c functions suitability to act as a smoothing function can be

found in Fulk and Quinn (1996).

In the originator paper (Gingold and Monaghan, 1977), three examples of
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Catagory Name F(q)

Bell
Cosine (1− 0.25q2)(1 + cos(0.5πq))

L Gaussian (2− q)e−q
2

Quartic-1 (2 + 3q)(2− q)3

Hyperbolic
κ−2 Exponential e−2.25q2 − e−9

`1/X, 2' (2 + q)−1 + 0.0625(q − 6)
`-X2' 0.5(q − 2)2

Parabolic
`-X-exp(-X)' 2− q − e−q + e−2

`4-X2' 4− q2

`8-X3' 8− q3

Double-Humped
Double Q Gauss 0.25q2(4− q2)e−q

2

Double T Gauss q2(e−q
2
− e−4)

Double Q-1 q2(2 + 3q)(2− q)3

Table 2.1: A small selection of the smoothing functions found in the sur-
rounding literature (Fulk and Quinn, 1996).

smoothing functions were presented. The predominant form for the smoothing func-

tion was de�ned by a Gaussian curve. That is

F (q) = e−q
2

(2.20)

Herein, the smoothing function is de�ned using bell shaped curve, the cubic

spline (also referred to as the M4-Spline or the W4 B-Spline Kernel (Monaghan,

2005)), which achieved good scores in the assessment formulae described in Fulk and

Quinn (1996) and is the most commonly implemented form given in surrounding

literature. Explicitly,

W
(
|r− r′|, h

)
=
σν
hν

M4(q) (2.21)

where

M4(q) =


1− 3

2q
2 + 3

4q
3 if 0 ≤ q < 1

1
4(2− q)3 if 1 ≤ q < 2
0 if q ≥ 2

(2.22)

and the normalisation constants are

σν =


2/3 if ν = 1
10/7π if ν = 2
1/π if ν = 3

(2.23)

From equation (2.17), the corresponding smoothing function derivative is given
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by

∇W
(
|r− r′|, h

)
=
rj − r′j
|r− r′|

σν
hν+1


9
4q

2 − 3q if 0 ≤ q < 1
3q − 3

4q
2 − 3 if 1 ≤ q < 2

0 if q ≥ 2

(2.24)

Alternatively, the derivative could be generalised by substituting the general

form of smoothing function, equation (2.19), into the expanded derivative given by

equation (2.17).

∇jW
(
|r− r′|, h

)
=
rj − r′j
|r− r′|

∂ (σνh−νF (q))
∂|r− r′|

=
rj − r′j
|r− r′|

σν
hν

∂q

∂|r− r′|
∂F (q)
∂q

=
rj − r′j
|r− r′|

σν
hν+1

∂F (q)
∂q

(2.25)

2.2.5 Error in the Smoothing Approximation

By analysing the smoothing approximation (Theorem 2.2), the error implicit in

its de�nition may be expressed. That de�nition also serves to prove that such an

approximation can be made. Consider the Taylor series expansion of λ(r′) about

r′ = r, in equation (2.7),

[λ(r)]sm =
∫

Ω

{ ∞∑
n=0

(r′ − r)n

n!

[
dnλ(r′)

dxn

]
r′=r

}
Wdr′ (2.26)

Recalling that W is an even function,

[λ(r)]sm =
∫

Ω


∞∑
n=0
n6=odd

(r′ − r)n

n!

[
dnλ(r′)

dxn

]
r′=r

Wdr′ (2.27)

and expansion gives

[λ(r)]sm = λ(r)
∫

Ω
Wdr′ +

∫
Ω


∞∑
n=2
n6=odd

(r′ − r)n

n!

[
dnλ(r′)

dxn

]
r′=r

Wdr′ (2.28)

Given the normalisation constraint, equation (2.9), the expression above col-
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a representation of the error on the approximation (see Section 2.2.5).

lapses to give

[λ(r)]sm = λ(r) +O
(
h2
)

(2.29)

Thus the error may now be formalised,

Theorem 2.3 By de�ning that some approximation, [X]approx, is the sum

of the true value, X, and the error in that estimation, i.e.

[X]approx = X + εapprox (2.30)

the error induced by the smoothing approximation (Theorem 2.2) is given

by

εsm = O
(
h2
)

(2.31)

where [λ(r)]sm = λ(r) + εsm. This error is demonstrated in Figure 2.3
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2.2.6 Smoothing Approximation of Spatial Derivatives

Given the eventual application of the SP method to equations governed by gradients,

the behaviour of the smoothing approximation of derivatives is of particular interest.

Theorem 2.4 For some macroscopic, vector property at r, A(r), the

smoothing approximation of the divergence is

[∇ ·A(r)]sm =
∫

Ω
A(r′) · ∇W

(
|r− r′|, h

)
dr′ (2.32)

Similar forms exist as, for instance, the Grad, Curl and Tensor Prod-

uct Smoothing Approximations. These are the Zeroth-Order Derivative

Smoothing Approximations.

There are two possible arguments that justify Theorem 2.4. The �rst, and least

evidenced, begins by assuming

[∇ ·A(r)]sm = ∇ · [A(r)]sm = ∇ ·
(∫

Ω
A(r′)Wdr′

)
=
∫

Ω
∇ ·
(
A(r′)W

)
dr′ (2.33)

The assumption is made that the vector information � where it exists � exists only

as statistical sample data and does not form part of a continuum. As such, A(r′)
are constant and therefore,

[∇ ·A(r)]sm =
∫

Ω
W∇ ·A(r′) + A(r′) · ∇Wdr′ =

∫
Ω

A(r′) · ∇Wdr′ (2.34)

However, this argument makes many assumptions and fails to identify the issues

that occur at the edge of the simulation domain (discussed by several authors (Vi-

gnjevic, 2004; Song and Dong, 2010; Price, 2012)).

Alternatively, without these assumptions, let λ(r) = ∇·A(r) be substituted into
equation (2.7) such that

∇ ·A(r) ≈ [∇ ·A(r)]sm =
∫

Ω
∇′ ·A(r′)Wdr′ (2.35)

Recalling the surface of the simulation domain, S(Ω), this expression can be inte-

grated by parts to give

[∇ ·A(r)]sm =
∮
S(Ω)

WA(r′)n · dS′ −
∫

Ω
A(r′) · ∇′Wdr′ (2.36)

The surface integral in equation (2.36) reduces to zero if the surface of subdo-

main created by the compact support of the smoothing function, S (ω(r)), does not
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intersect the surface of the simulation domain. The assumption is made that all

points at which the smoothing approximation is calculated are within the domain

by a minimum distance no less than Ch. This assumption explicitly de�nes the SP

method's inability to model domain edges without modi�cation. Also recalling the

behaviour given by equation (2.18),

[∇ ·A(r)]sm = −
∫

Ω
A(r′) · ∇′Wdr′ =

∫
Ω

A(r′) · ∇Wdr′ (2.37)

Theorem 2.5 Substitution: Consider some set G that is variable as a

function of position and contains all the N ≡ |G(r)| ≡ |G(r′)| properties of
the system such that Gk(r) is the kth property, qk, of the system at r, and

let
∂Gk(r)
∂qk

= fk (r, G) (2.38)

So that
∂Gk(r)
∂qk

≈
[
∂Gk(r)
∂qk

]
sm

=
∫

Ω

∂Gk(r′)
∂qk

Wdr′ (2.39)

Thus by substitution, and Theorem 2.2,[
∂Gk(r)
∂qk

]
sm

=
∫

Ω
fk(r′, G)Wdr′ = [fk(r, G)]sm (2.40)

Therefore it is possible to substitute for the derivative terms in some fk,

the derivative smoothing approximations (Theorem 2.4) while leaving the

non-derivative G terms in place.

However, note that [∇ ·A]sm can be made more accurate if A is rede�ned by

A(r) =
Ψ(r)A(r)

Ψ(r)
(2.41)

where Ψ is some scalar function. So that, by the quotient rule,

∇ ·A(r) = ∇ ·
[

Ψ(r)A(r)
Ψ(r)

]
=

1
Ψ(r)

∇ · [Ψ(r)A(r)]− A(r)
Ψ(r)

· ∇Ψ(r) (2.42)

Thus, substitution of the zeroth-order derivative smoothing approximations (The-

orem 2.4) gives equation (2.44). Alternatively by application of the smoothing

approximation and substitution theorem (Theorems 2.2),

∇ ·A(r) ≈ [∇ ·A(r)]sm =
1
Ψ

∫
Ω
∇′ ·

(
Ψ′A′

)
Wdr′ − A

Ψ
·
∫

Ω
∇′Ψ′Wdr′ (2.43)
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where, for instance, λ′ ≡ λ(r′). Integrating by parts and recalling equation (2.18)

(or via the sample points argument) yields,

[∇ ·A(r)]sm =
1
Ψ

∫
Ω

Ψ′A′ · ∇Wdr′ − A
Ψ
·
∫

Ω
Ψ′∇Wdr′ (2.44)

Theorem 2.6 For A(r), the smoothing approximation of the divergence

can be rede�ned as

[∇ ·A(r)]sm =
1

Ψ(r)

∫
Ω

Ψ(r′)
[
A(r′)−A(r)

]
· ∇W

(
|r− r′|, h

)
dr′ (2.45)

Again, similar forms can be de�ned for other derivatives. Collectively, these

are the First-Order Smoothing Approximations.

As a conceptual alternative, Price (2012) make the argument put forth in The-

orem 2.6 by taking a Taylor series expansion of the zeroth-order smoothing approx-

imation and subtract the �rst-order term from the original form. The former is

favourable as di�ering SP equations are found by using di�erent de�nitions of Ψ.

Using the latter, the gradients within the true dynamics equations need expanding.

For example, the divergence of velocity (required by the Continuity and Induction

equations (2.99) and (2.101), respectively) is usually expanded by

∇ · v = ∇ · v − v∇1 (2.46)

or

∇ · v =
1
ρ
∇ · (ρv)− v

ρ
∇ρ (2.47)

The equivalent in the former scheme is Ψ = 1 and Ψ = ρ, respectively. Using either

argument,

Theorem 2.7 The smoothing approximation, substitution theorem and the

�rst-order derivative smoothing approximation (Theorems 2.2, 2.5 and 2.6)

can be used to replace the components in some dynamic equations until they

are expressed in terms of the smoothing function, W , its derivative, ∇W ,

and the elements of the set G(r) only.

2.2.7 Discretisation Approximation

The descretisation approximation is the second of the two unavoidable approxima-

tions made in the creation of any SP algorithm. It is fundamental to their eventual

application within a computational framework. At its simplest, in order to simulate
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the medium, it must be divided into a number of constituent parts, Np. These are

typically termed the smoothed particles, centoids, interpolation points, pseudopar-

ticles or, simply, particles. Paraphrasing Monaghan (2005), the psuedoparticles may

be interpreted by mathematicians as interpolation points, or by physicists as ma-

terial particles. These pseudoparticles are where information about the medium

exists. The integral approximations (Theorems 2.2 and 2.6) must, therefore, be

further approximated by a summation in order to be calculable.

Theorem 2.8 Recognising that a mass element is de�ned by m = ρdr,

by substitution the direct transformation of the smoothing approximation,

equation (2.7), at ra yeilds

λ(ra) ≈ [λ(ra)]SP =
Np∑
b=1

m(rb)
ρ(rb)

λ(rb)W (|ra − rb|, h) (2.48)

where a and b are indices identifying speci�c pseudoparticles. Equation

(2.48) is typically termed the Summation Approximation. A similar

transformation of, for instance, the divergence smoothing approximation,

equation (2.45), gives ∇ ·A(ra) ≈ [∇ ·A(ra)]SP where

[∇ ·A(ra)]SP =
1

Ψ(ra)

Np∑
b=1

m(rb)Ψ(rb)
ρ(rb)

[A(rb)−A(ra)] · ∇aW (|ra − rb|, h)

(2.49)

and ∇a =
[
∂

∂rja

]
j=1..ν

, where j denotes the dimensional components of the

coordinate system. Note that ∇a is the del operator, ∇, as computed in this

discrete space (at ra).

The approximated value at some point ra is the amalgom of the appropriate

information held at points rb (where b = 1..Np) throughout the domain, Ω. However,
the compact support of the smoothing function limits number of points that have

in�uence over the value to those within the subdomain ω(h), see Figure 2.4. This
represents a signi�cant reduction in the number of interactions (and, therefore,

calculations) required by the algorithm. It is useful, therefore, to express this within

the SP equations.
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Theorem 2.9 Herein, de�ne ξ as a set of all unique pseudoparticle indices,

ξ = {a |1 ≤ a ≤ Np } (2.50)

Also, let ξa be a subset of ξ (ξa ⊂ ξ) de�ned by

ξa = {b |b ∈ ξ ∧ |ra − rb| < Ch} (2.51)

That is, ξa is a set of all the pseudoparticles within the subdomain ω(h)
centred on the ra. In addition, let ξja ⊆ ξa ⊂ ξ where

ξja =
{
b
∣∣∣b ∈ ξa ∧ (rja − rjb) 6= 0

}
(2.52)

These sets allow the approximations to be rewritten so that they re�ect this

reduction,
Np∑
b=1

→
∑
b∈ξa

(2.53)

For the derivative approximations, given equation (2.17), the contribution of the

ath pseudoparticle to itself is always zero. Therefore, for derivative approximations

only,
Np∑
b=1

→
∑
b∈ξa
b 6=a

(2.54)

2.2.8 Notes on Notation

There is a measure of standardisation in SP notation.

The lower case characters a, b, c, i, j, k, n, p, and q are always indices. The

indices a, b, and c refer exclusively to pseudoparticle indices; i, j and k usually

refer to dimensional components of vectors; and n refers only to the time-step.

The indices p and q are used as indices generalising the others where appropriate.

Indices occurring in superscript surrounded by chevrons imply an iterative process.

As an example, (Xi
a)
<n> refers to the value of X in the ith dimension, of the

ath pseudoparticle at the nth time-step. Other symbols and characters also have

standardised meaning, and they will be introduced as required.

Equations are usually given in a reduced (collapsed) notation. At the simplest,
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Figure 2.4: Visualisation, for some 2-Dimensional distribution of points, of
just two of the pseudoparticles with their subdomains, ω. The purple lines
are the surfaces of the subdomains, S(ω), which are de�ned by the compact
support (Ch) of the smoothing functions, W . The purple haze indicates the
relative value of the smoothing function for the two points. The greater the
density of colour, the greater the value of the bell-shaped smoothing function.

for all pseudoparticle properties excluding position,

Aa = A(ra) (2.55)

There are also signi�cant shorthands,

Aab = Aa −Ab (2.56)

Unless A = W , in which case,

Wab = W (|rab|, h) (2.57)

such that

∇jaWab =
∂

∂rja
[W (|rab|, h)] =

rjab
|rab|

∂

∂|rab|
[W (|rab|, h)] (2.58)
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Note the use of equation (2.56) to compress the distance measure. In addition, the

average of values of a property from two di�erent pseudoparticles is given by

Aab =
Aa +Ab

2
(2.59)

Summations, excluding those that result from the discretisation of the integrals

in the smoothing approximations, are given in implicit form consistent with index

notation. That is, any index that only occurs on one side of an equation implies that

there is a summation over all valid values of that index. For instance, the divergence

could be given by

∇ ·Aa ≡
∑
j

∇jAja ≡ ∇jAj
a (2.60)

Note there is no summation over the a indices as they occur on both sides of the

equal sign.

Bringing together all of the above reductive notation, the divergence approxi-

mation, equation (2.49), may be written in the equivalent form,

∇ ·Aa ≈
[
∇jAja

]
SP

=
1

Ψa

∑
b∈ξja
b 6=a

mbΨb

ρb
Ajba∇

j
aWab (2.61)

2.2.9 SP Identities

Given the SP reduced notation, and the completion of the approximations necessary

for implementation of functions within a computational framework, listed herein are

the �ve standard SP approximation identities.

Summation Approximation

λ≈ [λa]SP =
∑
b∈ξa

mb

ρb
λbWab (2.62)

Gradient Approximation

[∇λa]SP =
1

Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
λba∇aWab (2.63)
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where the jth component is

[
∇jλa

]
SP

=
1

Ψa

∑
b∈ξja
b6=a

mbΨb

ρb
λba∇jaWab (2.64)

Divergence Approximation

Also called the inner product approximation,

[∇ ·Aa]SP =
1

Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
Aba · ∇aWab (2.65)

where the jth element of the summation is

[
∇jAja

]
SP

=
1

Ψa

∑
b∈ξja
b6=a

mbΨb

ρb
Ajba∇

j
aWab (2.66)

Tensor Derivative Approximation

Alternatively referred to as the outer product approximation,

[∇⊗Aa]SP =
1

Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
Aba ⊗∇aWab (2.67)

where each element is given by

[
∇jAia

]
SP

=
1

Ψa

∑
b∈ξja
b6=a

mbΨb

ρb
Aiba∇jaWab (2.68)

Curl Approximation

The kth component of ∇×A is given by[
(∇×Aa)

k
]

SP
= εkji

[
∇jAia

]
SP

(2.69)

where

εmpq =
(m− p)(p− q)(q −m)

2
=


+1 even permutations of mpq

−1 odd permutations of mpq

0 if any m, p, or q are equal

(2.70)
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is the Levi-Civita symbol (also referred to as the permutation, antisymmetric or

alternating symbol).

These identities can be substituted into a set of ideal dynamics partial di�eren-

tial equations (PDEs) (e.g. dispersionless Navier-Stokes or Magnetohydrodynamics

equations). Care should be taken, however, to ensure that the resulting system of

equations is consistent with the Lagrangian and Hamiltonian (see Sections 2.5.3 and

2.5.4). If implemented in this way, the resulting algorithm will conserve linear and

angular momentum (Section 2.5.3).

2.3 Density Approximation Basis

Rather than beginning with the integral basis (Section 2.2), the SP algorithm can

be derived entirely from the de�nition of density estimate. There are many bene�ts

to this approach. Primary among them is the clarity of the limited but necessary

physical assumptions, quoting Price (2012);

i) That the time integrals and thus the time derivatives, d
dt , are computed exactly

(though this assumption can in principle be relaxed);

ii) That the Lagrangian, and by implication the density and thermal energies are

di�erentiable;

iii) That there is no change in entropy, such that the �rst law of thermodynamics

du = PdV is satis�ed, and that the change in particle volume is given by

dV = −m
ρ2 dρ.

However, that in order to analyse the resulting algorithm, either;

(a) The summations must revert to integrals by assuming a signi�cantly high num-

ber density for the pseudoparticles and m = ρdr; or

(b) Make additional assumptions pertaining to the behaviour of the smoothing func-

tion and other numerical factors.

These is not required by the integral basis as (a) and most (though not all) of the

behaviour referenced in (b) is implicit � the assumed behaviour is explicit in Section

2.2.3.

A summary of the density basis for SP theory is presented herein. For a detailed

and eloquent description see the most recent review of SP Hydrodynamics (SPH)

and Magnetohydrodynamics (SPMHD), Price (2012).



24 Chapter 2. Smoothed Particle Theory

2.3.1 Method Extrapolation

The foundation of the standard SP algorithm under this basis is the following ques-

tion; Given some scattered point masses, how is the density calculated? Conceptu-

ally, the simplest method is to lay a grid over the domain inhabited by the points

and by dividing the mass in each cell by the volume, de�ne the density (Figure

2.5a). More complex methods are formed on this fundamental measure, for example

the hybrid particle-cell methods Particle-In-Cell and Cloud-In-Cell, of Tskhakaya

(2008) and Birdsall and Fuss (1968), respectively. However, these methods are li-

able to su�er, over simulated time, for the interpolation of properties between the

cells and particles.

Alternatively, the grid can be removed by summing the masses within some

sphere over the volume of that sphere, such that the density at the centre of the

sphere can be calculated. At its simplest

ρ(r) =
Γ
(
ν
2 + 1

)
M

π
ν
2Rν

(2.71)

where Γ(x) is the gamma function, M is the mass within the sphere, and R is the

radius of the ν-Dimensional sphere about r. See Figure 2.5b. Both of these methods,

particularly the second, can induce signi�cant �uctuations as the relatively distant

points move in and out of the individual cell/sphere subdomains.

In order to remove this e�ect and de�ne the SP density estimation (the third

approach), consider that conceptually the sphere of in�uence continues to exist but

the contribution from each individual mass is modi�ed by a weighting function (the

smoothing function W ). The modi�cation ensures that the further the point mass

is from the point of interest, ra, the less of an in�uence it has over the computation

of density. Recalling SP notation (Section 2.2.8),

ρa =
∑
b∈ξa

mbWab (2.72)

This expression can also be found by settingA = ρ in the summation approximation,

equation (2.48), and is shown in Figure 2.5.

Consider Figure 2.6. Using the estimation methods, and assuming equal mass

per point, the densities have been calculated at each point. Subsequently, the ratio

of each density to the average density of the domain
(

Total Mass

Domain Volume

)
is interpolated

(by the same method, at the same resolution) over the domain. The resulting

images show some of the disparities between the methods. The gridded method,

Figure 2.6a, respectively over and under samples regions of the domain, spreading
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Figure 2.5: Representation of the three methods, presented herein, for esti-
mating density from scattered point mass sources. The panels (top to bottom)
show the gridded method, the sphere of in�uence method and the SP approach.
Note that these visualisations must change if the smoothing length, h(∝ R),
were allowed to vary from point mass to point mass (see Chapter 4).
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Figure 2.6: Plots showing how each of the estimation methods referenced
in Figure 2.5 behave given some example distribution of point masses. Note
that the distribution is the same as that in said �gure. The density values are
calculated, using the appropriate method, and then interpolated to produce the
imaged density �eld via identical interpolation method. The order of the panels
re�ect the order in Figure 2.5 The upper two panels show signi�cant errors. The
�rst signi�cantly over estimates the density in the lower left quadrant of the
domain, and the second smooths out the in�uence of each individual point mass
so that regions without signi�cant clustering have the largest densities. The
density �eld in the �nal (bottom) panel correlates well (by eye) to the point
mass distribution.
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the very high density over the lower left quadrant. The sphere sampling method

overly smooths out the in�uence of each mass and the resulting densities deviate

very little from the average. In addition, the minimum/maximum densities fail to

correspond (by eye) to the highly clustered or sparse points, respectively. Finally,

the densities produced by the SP estimation are much more suitable. The high/low

points appear to correlate to the degree of clustering. The range in density ratio also

appears to re�ect the clustering in certain regions, particularly the highest density

ratio (∼ 2.4) relative to the high number density about its position.

2.3.2 Density Spatial Derivative

Given the de�nition of the density estimate, it is possible to de�ne its derivative in

space. Using the SP density estimate, equation (2.72),

∂ρb

∂rja
=
∑
c∈ξb

mc
∂Wbc

∂rja
=
∑
c∈ξb

mc

(
δab − δac

) rjbc
|rbc|

∂Wab

∂r
(2.73)

where r = |rab|. De�ning equation (2.73) allows for the de�nition of

δρb =
∑
c∈ξb

mc

(
δab − δac

)
δrja

rjbc
|rbc|

∂Wab

∂r
(2.74)

by variational principles (which are discussed in greater detail in Section 2.5.3.

The subsequent application of the de�nition of density and the variation in den-

sity (equations (2.72) and (2.74), respectively), with the assumptions prefacing this

Section (2.3), to the Lagrangian de�nes the equation of motion (SP acceleration

equation). If there are remaining dynamics equations that require SP approxima-

tion, the appropriate forms can be found by �rst writing them in Lagrangian (con-

servative) form, and factoring in the aforementioned assumptions and de�nitions of

density and density variation.

2.4 Higher-Order Spatial Derivatives

Higher-order derivatives present something of a problem for the usual SP theory,

which is based around a bell-shaped, compact smoothing function.

Consider that the most direct approach is to de�ne
[
∇2λa

]
SP

analytically by

taking the derivative of the summation approximation, and subtracting the second
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term of the Taylor series expansion, such that

[
∇2λa

]
SP

=
∑
b∈ξa

mb

ρb
λba∇2

aWab (2.75)

However, for ∂<n>

∂rja
<n> , consider that as n increases the gradients increase (gener-

ally) and, more importantly, �uctuate between positive and negative values more

often. As a result, in order to stabilise the resulting approximation, there needs

to be a su�cient sampling density about the smoothing function. That is not to

say that h should increase such that a greater number of pseudoparticles sit within

the subdomain, ω. Instead, the subdomain should encompass a greater extent of

the pseudoparticles through the smoothing functions rede�nition, at all levels, to a

much higher-order approximation of the Gaussian, as the compact support extends

further for high-order smoothing functions. So that, at the maximum order possible,

the Gaussian smoothing function encompasses the entire domain to in�nity.

Rede�nition of the smoothing function requires a signi�cant computational cost,

as the set ξa expands greatly for each pseudoparticle. For instance, assuming a

periodic hexagonal lattice of pseudoparticles and h set to 4
5 of the pseudoparticle

spacing, the lowest possible increase in smoothing function order (from M4 cubic to

M5 quartic) causes the number of pseudoparticles in each set (the degree of the set)

to increase from |ξa| = 7 to |ξa| = 19. Instead, W is often replaced (for higher-order

derivatives only) by a new smoothing function Y (Brookshaw, 1985; Monaghan,

2005; Price and Monaghan, 2004a; Price, 2012), such that

∇2
aWab → ∇2

aYab ≡ −
2
r

∂Wab

∂r
(2.76)

where r ≡ |rab| and ∂Wab
∂r is the scalar part of ∇jaWab. The general second-order

derivative is, therefore,

[
∇2λa

]
SP
≈ 2

∑
b∈ξa

mb

ρb

λab
|rab|

∂Wab

∂|rab|
(2.77)

Additionally, more advanced expressions have been formulated in order to ap-

proximate ∇ · (κ∇λ), such as

[∇ · (κa∇λa)]SP ≈ 2
∑
b∈ξa

mb

ρb

κabλab
|rab|

∂Wab

∂|rab|
(2.78)

or, alternatively, in order to produce smooth derivatives regardless of discontinuities
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in κ,

[∇ · (κa∇λa)]SP ≈ 2
∑
b∈ξa

mb

ρb

κaκb
κab

λab
|rab|

∂Wab

∂|rab|
(2.79)

was proposed by Cleary and Monaghan (1999), and forms the basis of a number of

dissipative terms.

2.5 SP Magnetohydrodynamics

It is not the purpose of this document to prove, or expand, magnetohydrodynamic

(MHD) theory. Hence, presented herein is a discussion of MHD as it pertains to SP

applications only. For further detail relating to MHD, refer to the works by E. R.

Priest.

Magnetohydrodynamics (MHD) is a blending of the �uid equations from hydro-

dynamics (Navier-Stokes Equations) and Maxwell's equations from electromagnetic

theory. The standard set of MHD equations consists of the following components;

The Mass Continuity Equation

∂ρ

∂t
+∇ · (ρv) = 0 (2.80)

which ensures conservation of mass.

The Momentum Equation

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇P + J×B + ρηv∇2v − ρg + F (2.81)

where ηv is the kinematic viscosity coe�cient and F represent any additional

external forces.

Ampère's Law

J =
1
µ0
∇×B (2.82)

where µ0 is the magnetic permeability in a vacuum.

Faraday's Law
∂B
∂t

= −∇×E (2.83)
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Ohm's Law

E + v ×B = χ =


0 Ideal MHD

ηBJ Resistive MHD
1
neJ×B Hall MHD

· · · More general forms

(2.84)

where ηB is the resistivity, n is the charge-carrier density and e is the unit

charge. χ varies as a function of the particular interpretation of the MHD

equations.

The Solenoidal Condition

∇ ·B = 0 (2.85)

which negates monopoles in the magnetic �eld.

Typically perceived as the standard or basic form, the resistive MHD equations

de�ne χ = ηBJ (in Ohm's Law), such that substitution of Ohm's and Ampère's

Laws into Faraday's Law, and subsequent simpli�cation de�nes;

The Induction Equation (Resistive MHD)

∂B
∂t

= ∇× (v ×B) +
ηB
µ0
∇2B (2.86)

2.5.1 Ideal MHD Equations

The MHD equations can be reduced in complexity to form the much simpler set

of equations; the ideal (dissipationless) MHD equations � abbreviated here to the

iMHD Equations.

Consider �rst the momentum equation (2.81). By assuming that viscous motion

and external forces (including the gravitational e�ects) are negligible, the terms

ρηv∇2v, F and −ρg drop out. Writing the acceleration as a total derivative and

substituting in the de�nition of current, the momentum equation reduces to

ρ
Dv
Dt

= −∇P +
1
µ0

(∇×B)×B (2.87)

By expanding the magnetic �eld term, the iMHD equation of motion is given by

ρ
Dv
Dt

= −∇P −
∇
(
B2
)

2µ0
+

1
µ0

(B · ∇) B = ∇S (2.88)

such that S is the stress tensor de�ned by Sij = −Pδij − 1
2µ0

B2δij + 1
µ0
BiBj .
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The �rst three spatial gradient terms in equation (2.88) (ie. not ∇S) have clear

physical interpretations.

i) −∇P acts to smooth out �uid pressure gradients,

ii) Similarly, −∇(B2)
2µ0

acts to smooth out magnetic pressure gradients, and

iii) 1
µ0

(B · ∇) B acts to straighten magnetic �eld lines.

The induction equation (2.86) can also be simpli�ed. Initially, by assuming

that magnetic di�usion e�ects are negligible, the term ηB
µ0
∇2B is dropped and the

remaining term ∇× (v ×B) can be expanded to give

∂B
∂t

= (B · ∇) v − (v · ∇) B + v (∇ ·B)−B (∇ · v) (2.89)

Alternatively, this expression can be found by �xing χ = 0 in Ohm's Law and

reconstructing the induction equation (with the latter expansion of the vector triple

product).

By recalling the solenoidal condition (2.85), rearrangement to form a total deriva-

tive gives the iMHD induction equation as

∂B
∂t

+ (v · ∇) B =
DB
Dt

= (B · ∇) v −B (∇ · v) (2.90)

Once again, the remaining spatial gradient terms can be interpreted physically,

though the process is somewhat more involved.

i) Consider (B · ∇)v. Let Bx 6= 0, vx = v(t) and By = Bz = vy = vz = 0 such

that
DBx
Dt
∝ Bx

dvx
dx

(2.91)

Thus, if dvx
dx > 0 then DBx

Dt > 0 (and vice versa). Thus, if some volume of

�uid is compressed or decompressed parallel to the magnetic �eld lines, due

to acceleration of the �uid, then (B · ∇)v acts to enhance or weaken the B‖,

respectively.

ii) However, referring to (B · ∇)v again, if the �ow is accelerated perpendicular

to the �eld, (B · ∇)v would cause an increase in the �eld strength of B⊥. Let

vx = constant, Bx 6= 0, vy = v(t) and By = Bz = vz = 0, such that

DBx
Dt
∝ Bx

dvx
dx

(2.92)
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remains, but since dvx
dx = 0, DBx

Dt = 0 as well. However,

DBy
Dt
∝ Bx

dvy
dx

(2.93)

and if
dvy
dx > 0 then

DBy
Dt > 0 (and vice versa).

iii) −B(∇ · v) acts to enhance or weaken the magnetic �eld if the �uid converges

or diverges, respectively. Thus acting to increase the pressure exerted by the

magnetic �eld such that the momentum equation can force the �uid to diverge,

hence smoothing the pressure gradient. This term is analogous to the spatial

derivative in continuity equation (2.80), which similarly acts to increase or

decrease the density to force the �uid (through the momentum equation) to

converge or diverge, respectively, in order to smooth out the �uid pressure.

Alternatively, several authors (Price and Monaghan, 2004a; Price, 2012) recom-

mend constructing algorithms via the Lagrangian (conservative) formulation of the

induction equation,
d
dt

(
B
ρ

)
=
(

B
ρ
· ∇
)

v (2.94)

In particular, this form is used in conjunction with algorithms derived via the

density approximation basis.

Additional equations can be speci�ed given the ideal (dispersionless) nature of

the equation set. Speci�cally, the �uid pressure can be de�ned as the ideal equation

of state,

P = (γ − 1)ρu (2.95)

where γ is the ratio of speci�c heats, and u is the speci�c internal energy per unit

mass. Or

P = K(s)ργ (2.96)

where s is the entropy. Thus the iMHD energy equation can be de�ned by

∂P

∂t
+ v · ∇P + γP∇ · v = 0 (2.97)

Also note that, still using the ideal equation of state, for standard (resistive) MHD

is given by
∂P

∂t
+ v · ∇P + γP∇ · v = (γ − 1)ηB|J|2 (2.98)

Alternatively, the model could evolve either the internal energy per unit mass

(speci�c internal energy), u, or the variable K de�ned by the alternative form of

the ideal equation of state.
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In summary, the iMHD equations, in a form that is useful for the derivation of

SP theory, are;

The Mass Continuity Equation

Dρ
Dt

= −ρ∇ · v (2.99)

The Momentum Equation

ρ
Dv
Dt

= ∇S
[
= −∇P −∇

(
B2

2µ0

)
+

1
µ0

(B · ∇) B
]

(2.100)

The Induction Equation

DB
Dt

= (B · ∇) v −B (∇ · v) (2.101)

or
d
dt

(
B
ρ

)
=
(

B
ρ
· ∇
)

v (2.102)

The Solenoidal Condition

∇ ·B = 0 (2.103)

Equation of State

P = (γ − 1)ρu = K(s)ργ (2.104)

The Energy Equation For example,

∂P

∂t
+ v · ∇P + γP∇ · v = 0 (2.105)

2.5.2 SP Application

A speci�c SP algorithm can be formulated by simple application of the SP identities

(listed in Section 2.2.9) to the dynamics equations such that the system properties,

tied to each pseudoparticle, can be evolved. The density can be evolved in a number

of ways. The simplest is via the summation approximation (2.72), i.e. recalculating

the density whenever required with

ρa =
∑
b∈ξa

mbWab (2.106)

This form is consistent with both SP derivation bases, however if the domain utilises

free surface boundaries (see Section 3.3) then the calculated density will fall o� as
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it approaches the boundary. In order to avoid this artefact, the density should be

evolved by de�ning the SP continuity equation. By substitution into equation (2.99)

of the divergence approximation,

∂ρa
∂t
≈
[
∂ρa
∂t

]
SP

= −ρa [∇ · va]SP (2.107)

and thus,
dρa
dt

=
ρa
Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab (2.108)

Note the extension of SP notation, whereby all SP temporal derivatives are pre-

sented with using d
dt regardless of the continuous form (partial, total, etc.). Thus

dρa
dt ≡

[
Dρa
Dt

]
SP
.

By de�ning Ψ = ρ, the continuity equation may be rewritten as

dρa
dt

=
∑
b∈ξa
b6=a

mbv
j
ab∇

j
aWab (2.109)

which is identical to the form found by taking the derivative with respect to time

of the summation approximation of density, equation (2.106). That is

dρa
dt

=
d
dt

∑
b∈ξa

mbWab

 =
∑
b∈ξa

mb
dWab

dt
(2.110)

as dma
dt = 0 and since

dWab

dt
=

d|rab|
dt

dWab

d|rab|

= vjab
rjab
|rab|

∂Wab

∂|rab|
= vjab∇

j
aWab (2.111)

by substitution, the rate of change of density is given by equation (2.109).

However, if Ψ = 1 and therefore

dρa
dt

= ρa
∑
b∈ξa
b 6=a

mb

ρb
vjab∇

j
aWab (2.112)

Colagrossi (2004a) showed that the estimation of density is more stable in situations
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with large density ratios. Given his argument, the algorithm herein uses Ψ = 1.

Equation (2.112) (and density evolution via the continuity equation in general)

has further advantages. In terms of implementation, using the summation approx-

imation (2.106) would require two loops over the particles � the �rst to calculate

the rates of change determining a change in position, and the second to recalculate

the density. The continuity equation is itself a rate of change calculation and can,

therefore, be computed in tandem with the others, hence reducing the computational

cost. In addition, assuming the continuity equation is implemented, the user need

not consider again the calculation of density when applying the code to alternate

domains and initial conditions. Care must be taken, however, when implementing

thermal conductivity (dissipation) � see Section 3.6.2 for details.

Consider now, the evolution of B. Further direct substitution into the induction

equation (2.101) yields

DBa

Dt
≈
[

DBa

Dt

]
SP

= [(Ba · ∇) va]SP −Ba [∇ · va]SP (2.113)

where the divergence of velocity is approximated in the same manner as the con-

tinuity equation. The �rst term appears more complex. Writing it using index

notation, however, simpli�es the required substitution, i.e.[
DBi

a

Dt

]
SP

=
[
Bj
a∇jvia

]
SP
−Bi

a

[
∇jvja

]
SP

= Bj
a

[
∇jvia

]
SP
−Bi

a

[
∇jvja

]
SP

(2.114)

Observing that each of the SP approximations is an element of the tensor (outer)

product approximation, by rearrangement, the SP induction equation is

dBi
a

dt
=

1
Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb

(
Bi
av
j
ab −B

j
av
i
ab

)
∇jaWab (2.115)

The conservative induction equation (2.102) can also be simpli�ed by index

notation,

d
dt

(
Bi
a

ρa

)
≈
[

d
dt

(
Bi
a

ρa

)]
SP

=

[
Bj
a

ρa
∇jvia

]
SP

=
Bi
a

ρa

[
∇jvia

]
SP

(2.116)

and therefore
d
dt

(
Bi
a

ρa

)
=

Bj
a

ρaΨa

∑
b∈ξa
b 6=a

mbΨb

ρb
viba∇jaWab (2.117)
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Note that the de�nition of Ψ should be consistent with the form taken de�ning

it elsewhere, hence herein the SP induction equation is given by

dBj
a

dt
=
∑
b∈ξa
b 6=a

mb

ρb

(
Bi
av
j
ab −B

j
av
i
ab

)
∇jaWab (2.118)

The remaining iMHD equations could also be de�ned by direct substitution of

the identities. Given the SP equation of state,

Pa = (γ − 1) ρaua (2.119)

the equation of motion could be de�ned as

dvia
dt

=
1

ρaΨa

∑
b∈ξa
b6=a

mbΨb

ρb
Sijba∇

j
aWab (2.120)

where Sija = −Paδij − B2
a

2µ0
δij + 1

µ0
Bi
aB

j
a.

However, this form fails to conserve, for instance, angular momentum and is

inconsistent with the Lagrangian. The same is true of the total energy equation

with respect to the Hamiltonian. It follows, therefore, that these SP equations

should be treated separately.

2.5.3 SP Equation of Motion

In order to construct the SP equation of motion, also termed SP acceleration equa-

tion, �rst consider the systems Lagrangian,

L = ET − EV =
∫ (

1
2
ρv2 − ρu− B2

2µ0

)
dr (2.121)

Through the discretisation approximation (Theorem 2.8) the Lagrangian can be

expressed in SP form, i.e.

L ≈ [L]SP =
∑
b

mb

[
1
2
v2
b − ub(ρb, sb)−

1
2µ0

B2
b

ρb

]
(2.122)
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2.5.3.1 Usual Derivation

At this point, most authors (Bonet and Lok, 1999; Monaghan and Price, 2001; Price

and Monaghan, 2004b) make the following argument, minimising the action

S =
∫

[L]SP dt (2.123)

In this way, for small perturbation δr,

δS =
∫

[δL]SP dt =
∫ (

∂ [L]SP

∂v
· δv +

∂ [L]SP

∂r
· δr
)

dt = 0 (2.124)

Given δr ≡ ∂δr
∂t + (v · ∇) δr, expansion by integration by parts leads to

δS =
∫ {[

− d
dt

(
∂ [L]SP

∂v

)
+
∂ [L]SP

∂r

]
· δr
}

dt+
[
∂ [L]SP

∂v
· δr
]t
t0

= 0 (2.125)

Thus, assuming [δL(t0)]SP = [δL(t)]SP = 0, in order for equation (2.125) to hold

true,
d
dt

(
∂ [L]SP

∂va

)
−
∂ [L]SP

∂ra
= 0 (2.126)

That is, the equation of motion must be formed solving the Euler-Lagrange equa-

tion. Price (2012) emphasised this argument claiming it made clear the assumptions

that must be made in order to formulated the equation of motion. That is, the

Lagrangian is di�erentiable � hence without discontinuous solutions � and that ref-

erences to exact conservation of momentum and energy in fact mean that the errors

result solely from numerical time integration, rather than the SP technique. How-

ever, the former is implicit in the process of deriving the equation of motion from

the Euler-Lagrange equation (2.131), which is a recognised approach to dynamic

systems analysis (Lanczos, 1986), and the latter is unnecessary, as any discretised

continuous operation introduces errors and it remains, therefore, the responsibility

of the author to show a component to be exact, rather than to show that it is not.

In addition, there is a further, more troubling phenomena associated with this ar-

gument. In order to include the partial derivatives in equation (2.124), for some

arbitrary variable X(z),
∂X

∂z
=
δX

δz
(2.127)

However, consider

X(z + δz) = X(z) + δz
∂X(z)
∂z

+O(δz) (2.128)
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which rearranges to give

∂X(z)
∂z

= lim
δz→0

X(z + δz)−X(z)
δz

+O(δz) = lim
δz→0

δX(z)
δz

+O(δz) (2.129)

Therefore equation (2.124) should be rewritten as

0 = δS =
∫ [(

∂ [L]SP

∂v
+O(δv)

)
· δv +

(
∂ [L]SP

∂r
+O(δr)

)
· δr
]

dt

≈
∫

[δL]SP dt =
∫ (

∂ [L]SP

∂v
· δv +

∂ [L]SP

∂r
· δr
)

dt (2.130)

Which, inaccurately (see the discussion of conservation later), implicates the SP

equation of motion as an additional source of error in the system. In addition,

it suggests that the non-existent error is compounded by the numerical temporal

integration. This artefact leads to the argument presented herein.

2.5.3.2 Derivation

Begin with the assumption that the Lagrangian is di�erentiable (shockless), which

is consistent with the application of iMHD equations, and present the general Euler-

Lagrange equation
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0 (2.131)

where qk is the kth generalised coordinate of the system. For a smoothed particle

system, the generalised coordinates are ra (for each pseudoparticle a). Thus the

equation of motion (singular, as indicated by the number of generalised coordinates)

may be found by solving

∂ [L]SP

∂ra
− d

dt

(
∂ [L]SP

∂va

)
= 0 (2.132)

This task is be rather involved, and is presented explicitly in Appendix A. To

summarise, the derivatives in the Euler-Lagrange equation (2.132) simplify to give

− d
dt

(
∂ [L]SP

∂va

)
= −1

2

∑
b

mb
d
dt

(
∂v2

b

∂va

)
= −ma

dva
dt

(2.133)

and
∂ [L]SP

∂ra
= −

∑
b

mb

[
∂ub
∂ra

+
1

2µ0

∂

∂ra

(
B2
b

ρb

)]
(2.134)

The second requires further simpli�cation. The �rst term of the summation can
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be expanded by
∂ub
∂ra

=
∂ub
∂ρb

∣∣∣∣
s

∂ρb
∂ra

(2.135)

at constant entropy, s. The �rst law of thermodynamics dictates

dU = mdu = dQ− dW (2.136)

where dQ = Tds = 0 is the heat added to the �uid body (zero as the entropy

is constant), and dW = PdV is the work done as the �uid diverges (or undergoes

compression). Given that V = m
ρ ,

dV
dρ = −m

ρ2 such that by substitution equation

(2.136) can be rewritten as

du|s = − P
ρ2

dρ (2.137)

and thus equation (2.135) becomes,

∂ub
∂ra

=
Pb
ρ2
b

∂ρb
∂ra

(2.138)

where the ∂ρb
∂ra

can be found analytically from the density summation, or via the

continuity equation (2.112). The �nal term of the summation is rather more compli-

cated, and its manipulation depends on the speci�c SP induction equation employed

� once again, speci�cs can be found in Appendix A. Note however, that regardless of

the form of SP induction equation the eventual SP equation of motion is identical.

After substitution back into the Euler-Lagrange equation (2.132), and signi�cant

rearrangement,

dvia
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Ψb

Ψa
Sija +

Ψa

Ψb
Sijb

)
∇jaWab (2.139)

For the previously discussed de�nitions of Ψ,

dvia
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Sija + Sijb

)
∇jaWab (2.140)

and
dvia
dt

=
∑
b∈ξa
b 6=a

mb

(
Sija
ρ2
a

+
Sijb
ρ2
b

)
∇jaWab (2.141)

where Ψ = 1 and Ψ = ρ, respectively. Note that there are a number of alternative

forms presented by various authors, see Price (2012) for a list, described by addi-
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tional de�nitions of Ψ. For example, Hernquist and Katz (1989) suggested Ψ =
√
P
ρ

for the hydrodynamic case, such that

dvia
dt

= −2
∑
b∈ξa
b 6=a

mb

√
PaPb
ρaρb

∇iaWab (2.142)

The velocities, and therefore positions, of the pseudoparticles can be evolved.

The reader should note, however, that transformation back in to continuous form

shows that

ρa
Dva
Dt

= −∇P +
1
µ0

(∇×Ba)×Ba +
1
µ0

Ba∇ ·Ba (2.143)

rather than the correct form, given by equation (2.87), which does not include

the �nal term. In the continuum limit, ∇ · B = 0 and therefore equation (2.143)

collapses to give the accurate form. However, this is not the case for a �nite,

discretised system. This issue returned to in Section 3.6.1.

2.5.3.3 Conservation of Momentum

The momentum conservation properties are simply proved. Given the re�ective

constraint (2.18) on the smoothing function, ∇W = −∇′W , the linear momentum

can be shown to be conserved by

d
dt

(∑
a

mava

)
=
∑
a

ma
dva
dt

=
∑
a

ma

ρa

∑
b∈ξa
b6=a

ma

ρb

(
Sija + Sijb

)
∇aWab = 0 (2.144)

In addition, the angular momentum is also conserved since

d
dt

(∑
a

ra ×mava

)
=
∑
a

ma

(
ra ×

dva
dt

)
=
∑
a

ma

ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Sija + Sijb

)
ra ×∇aWab = 0

(2.145)

Note that this behaviour further cements the re�ective constraint as essential be-

haviour of SP algorithms.

2.5.4 SP Energy Equations

Discussed here are the two questions relating to an SP algorithm ability to model

the �ow of energy in a system. Namely,
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• How is are the energy states evolved? and,

• Does the model conserve energy?

2.5.4.1 Energy Evolution

The objective of the SP energy equation is to determine the evolution of the thermal

(internal) energy distribution such that the �uid pressure can be computed for the

SP equation of motion (acceleration equation). There are three possible approaches.

i) The �rst, and simplest, is to evolve the speci�c internal energy (internal energy

per unit mass), u, directly. It has already been established, for the SP equation

of motion, that
∂u

∂ρ

∣∣∣∣
s

= − P
ρ2

(2.146)

and therefore

dua
dt

=
∂ua
∂ρa

∣∣∣∣
s

∂ρa
∂t

=
Pa
ρa

[∇ · va]SP =
Pa
ρaΨa

∑
b∈ξa
b6=a

mbΨb

ρb
vba∇aWab (2.147)

However, assuming that the continuity equation (2.112) is implemented rather

than the density summation, equation (2.72), then the rate of change of speci�c

internal energy can be found must more e�ciently by

dua
dt

= −Pa
ρ2
a

[
∂ρa
∂t

]
SP

≡ −Pa
ρ2
a

dρa
dt

(2.148)

By either method, the speci�c internal energy can be evolved and the �uid

pressure be calculated by an appropriate equation of state. Most commonly,

Pa = (γ − 1) ρaua (2.149)

ii) The most common approach is to evolve the total energy per unit mass, e, such

that the speci�c internal energy can be determined by rearranging

e =
v2

2
+ u+

B2

2µ0ρ
(2.150)

Formulated as the sum of the kinetic, internal and magnetic energy per unit

mass. This is a useful derivation, regardless of its implementations, as its de�-
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nition allows for the con�rmation of energy conservation within SP algorithms.

Note that this approach also holds in hydrodynamic models, but that the mag-

netic �eld terms are dropped. An explicit derivation is included in Appendix

A.

Consider that the total energy of the system is de�ned by the Hamiltonian,

[E]SP = [H]SP =
∑
a

va ·
∂ [L]SP

∂va
− [L]SP (2.151)

as a funnction of the SP Langrangian (2.122). After simple, but lengthy,

manipulation the total energy can be expressed as

[E]SP =
∑
a

ma

(
v2
a

2
+ ua +

B2
a

2µ0ρa

)
(2.152)

which, as expected, is the sum of all the energy stored at each pseudoparticle.

The rate of change in total energy, E, can be found by taking the comoving

time derivative of equation (2.152), hence

d [E]SP

dt
=
∑
a

ma

[
1
2

dv2
a

dt
+

dua
dt

+
1

2µ0

d
dt

(
B2
a

ρa

)]
(2.153)

By expanding the derivatives

d [E]SP

dt
=
∑
a

ma

[
1
2

dv2
a

dva

dva
dt

+
dua
dt

+
1

2µ0ρa

dB2
a

dBa

dBa

dt
+
B2
a

2µ0

dρ−1
a

dρa
dρa
dt

]
(2.154)

Thus, by substitution of the SP equation of motion (2.140), the SP speci�c

internal energy equation (2.148), the SP induction equation (2.118) and the SP

continuity equation (2.112), and after signi�cant rearrangement, it is possible

to de�ne the rate of change of total energy per unit mass of each pseudoparticle

as
dea
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Ψb

Ψa
Sija v

i
b +

Ψa

Ψb
Sijb v

i
a

)
∇jaWab (2.155)

such that
d [E]SP

dt
=
∑
a

dEa
dt

=
∑
a

ma
dea
dt

(2.156)

Note that the expansion above, equation (2.154), is required explicitly only for

algorithms utilising the non-conservative induction equation (2.101). For the

conservative induction equation (2.102), the required expansion would look a
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little di�erent. However the expressions for the rate of change resulting from

the manipulations are identical.

From the SP total energy equation (2.155), the energy per unit mass, ea, can

be evolved and hence the speci�c internal energy, ua, determined such that the

pressure can be recalculated by the equation of state (2.149).

iii) As a �nal alternative, the entropy-conserving SP energy equation (Springel and

Hernquist, 2002). This form proposes that, assuming an alternate equation of

state,

Pa = K(s)ργ (2.157)

the variable K may be evolved. Refering to Price (2012), its evolution is

determined by

dKa

dt
=
γ − 1

ργ−1
a

(
dua
dt
− Pa
ρ2
a

dρa
dt

)
=
γ − 1

ργ−1
a

[
dua
dt

]
diss

(2.158)

where
[

dua
dt

]
diss

refers to the dissipative component of the speci�c internal

energy evolution. Hence, for the ideal case, dKa
dt ≡ 0.

For monitoring purposes, the speci�c internal energy can be determined by

ua =
Kaρ

γ−1
a

γ − 1
(2.159)

and subsequently the total energy found by equation (2.150).

Price (2012) comments that, referring to this method as the entopy-conserving

SP energy equation inaccurately implies that the other forms are not entropy

conserving. In fact, assuming a consistent formulation of the energy equation

utilised (ie. by one of the methods just described) and that the e�ects of a

potentially variable smoothing length are properly included (see Chapter 4), all

the energy equations conserve entropy.

It should also be noted that this form does not perform particularly well in

non-ideal models, that is where [
dua
dt

]
diss

6= 0 (2.160)

as any de�nition of the heat conduction will not be strictly physical, and will

introduce errors into the system.
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2.5.4.2 Conservation of Energy

As with the conservation of momentum, the re�ective constraint on the smoothing

function ensures that energy is conserved. Consider, again, equation (2.156). By

substitution of the SP total energy equation (2.155),

d [E]SP

dt
=
∑
a

ma

ρa

∑
b

mb

ρb

(
Ψb

Ψa
Sija v

i
b +

Ψa

Ψb
Sijb v

i
a

)
∇jaWab (2.161)

and given the antisymmetry in the smoothing function derivative (the re�ective

constraint),
d [E]SP

dt
= 0 (2.162)

Thus energy is conserved.

2.6 Conclusion

To summarise, the SP theory has been constructed in full from the integral basis

making two distinct approximations along the way; the smoothing approximation

and the discretisation approximation. Note, however, that only the error due to

smoothing, εsm, has been estimated, and in that the noise in the system has also

been established.

The fundamental components of the SPMHD algorithm have also been de�ned.

Speci�cally the continuity equation (2.112), induction equation (2.118), SP equation

of motion (2.140) and a range of possible SP energy equations (2.148), (2.155) and

(2.158). Estimates have been formulated for the density (2.72) and higher order

spatial derivatives.

However, there has been no discussion of the implementation of the algorithm.

This is the subject of the following Chapter.
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3.1 Introduction

Discussed in this Chapter are various facets of the implementation of the SPMHD al-

gorithm as described in the previous Chapter (2). In addition the numerical (rather

than strictly physical) modi�cations to the algorithm are also discussed. The Chap-

ter's structure is intended to re�ect the structure of the programs themselves. Very

generally, the program is split into two phases � the Initialisation Phase that is re-

sponsible for preparing the domain and simulated plasma, and the Simulation Phase

which is responsible for the modelled evolution of the plasma. Sections 3.2 and 3.3

discuss elements of the Initialisation Phase, the unitisation procedure and bound-

aries, respectively. The two subsequent Sections (3.4 and 3.5) concern the accuracy

and pace of the modelled evolution by discussing respectively the numerical tem-

poral integration and the optimisation of SP approximation calculations. The �nal

Section 3.6 focuses on the speci�c numerical modi�cations of the SPMHD algorithm

required to re�ne the simulation. Speci�cally discussed are the procedures stabil-

ising the system when subjected to strong negative stress, ensuring the solenoidal

constraint and that the model is able to capture MHD shocks.

First, consider the parameters that constrain the implementation. The program

is written as a serial code in Fortran 90/95, with various imaging and analysis rou-

tines including the PGPLOT library, written in Fortran 77, Gnuplot, Java and bash

script. Initially conceived as an extension of an incompressible �uid SPH (serial)

code constructed for Knight (2008), it quickly became evident that the program as

written required signi�cant modi�cation in order to run in a practical period of time.

This lead to a refactorisation of the code, which was streamlined and ran in a much

more reasonable period of time. However, in order to achieve this increased pace

in a serial framework, the code was restricted to test-bed problems only. The code

performs this task well, but has by necessity restricted the possible applications and

therefore investigations conducted. Conversely, this arrangement has made possible

investigations of the nature of the SP approximations � investigations that would

have been infeasible in the a restricted time frame (particularly the research in

Chapter 5) if implementation were attempted in a parallel context.

3.1.1 Generalised Code Structure Diagrams

In order to provide some wider context for some of the implemented (or imple-

mentable) components discussed in this and later sections, presented here are gen-

eral code structure diagrams. These are �ow charts, depicting the interplay between

the di�erent sections/components/tasks within the SPMHD program, without the

need for pseudocode or quoted code. As a primary example, and to provide the
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Initialisation Phase

Simulation Phase

Start

Initialise Plasma
Variables

Initialise Domain
(Sections 3.3 and 3.5)

Evolve Model
(Figure 3.2)

t<n> ≥ tmax?

Stop

yes

add 1
to n no

Figure 3.1: A generalised code structure diagram showing the global be-
haviour of the SPMHD programs.

global context for the program as previously described, see Figure 3.1.

Each diagram will conform to a set pattern. Above and below the main body

are the source and sink of the information �ow (i.e. where the data comes from,

and where the manipulated data goes to). Within the main body of the image,

the speci�c component nodes are given within frames that give some more general

context. For instance, in Figure 3.1, the speci�c node Initialise Domain is framed

within the Initialisation Phase of the program.

As a further example, consider Figure 3.2. Here, the node Evolve Model, within

the Simulation Phase of Figure 3.1, is shown in more detail. The node is bro-

ken down into constituent parts. In this case, simply separating the calculation of
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Evolve Model

Initialisation Phase

Calculate SP
derivatives
(Sections

3.5 and 3.6)

Update
Variables

(Section 3.4)

Output to
File/Imager

Test t<n>

Figure 3.2: A generalised code structure diagram showing the basics that
de�ne how the model is evolved from one time step to the next.

SP derivatives, the evolution of variables and the output of data. More advanced

examples of the same node can be found in Section 3.4.

3.2 Unitisation

It can be useful, especially in simulations where the values of the properties are

particularly disparate, to unitise (that is, make dimensionless) the code. This en-

sures that the properties are of O(1), and therefore mitigate the e�ects of truncation
error. As a by-product, the equations are also slightly simpli�ed. Consider that a

macroscopic variable A can be decomposed so that

A = A0Â (3.1)

where Â is the unit value of A, and A0 is a constant conversion factor.

There are three fundamental conversion factors of which every other conversion

factor is a function. They extend from the three fundamental scales: length, time,
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and mass. The conversions are

t = t0t̂ (3.2)

m = m0m̂ (3.3)

r = l0r̂ (3.4)

Given these factors, calculus operators can also be decomposed into a conversion

factor (which will be some function of l0, t0 and/or m0) and an operator applicable

to the unit variables. So, given these new identities

∇ =
1
l0
∇̂ (3.5)

∫
dr =

1
lν0

∫
dr̂ (3.6)

d
dt

=
1
t0

d
dt̂

(3.7)

the conversion factors of the non-fundamental properties can be found, and the

iMHD equations rewritten to function with the unit variables. For example, con-

version factors would include

v0 =
l0
t0

(3.8)

ρ0 =
m0

lν0
(3.9)

u0 =
(
l0
t0

)2

(3.10)

P0 =
m0

l
(ν−2)
0 t20

(3.11)

B0 =
√

µ0m0

l
(ν−2)
0 t20

(3.12)

where ν remains the number of dimensions. Note the unavoidable inclusion of µ0 in

B0, and the consequential elimination of the constant from the dynamics equations.

For example, Ampère's law can be rewritten as

Ĵ = ∇̂ × B̂ (3.13)



50 Chapter 3. Smoothed Particle Implementation

and the induction equation (2.101) becomes

DB̂
Dt̂

= (B̂ · ∇̂)v̂ − B̂(∇̂ · v̂) (3.14)

Clearly, this simpli�cation is transmitted through the derivations in the previous

Chapter (2), and therefore simpli�es the SP equations that form the algorithms.

3.3 Boundaries

There are various boundaries, both within and de�ning the domain, Ω, that could
form part of an SP algorithms implementation.

3.3.1 Internal Boundaries

The following three concern the simpler boundaries that require little to no alteration

of the standard implementation, thus occurring within the domain Ω as de�ned by

the amalgam of all the pseudoparticle subdomains, ωa. All three are implemented

(where required) herein.

3.3.1.1 Free Surface Boundaries

Assuming an implementation that has not taken any boundaries into account, and

that the continuity equation (2.112) has been implemented, then free surface bound-

aries have been implicitly included. This is one of the key bene�ts of the SP tech-

nique over meshed methods that typically require additional, complex routines in

order to discretise and evolve a free surface boundary.

3.3.1.2 Discontinuities

Discontinuities in the initial conditions can also be included without altering the

algorithm implementation. However, discontinuities must be smoothed out in or-

der to conform to the smoothing and discretisation approximation. Assuming the

discontinuity exists in the jth dimension, between some left and right regions, the

property A is initialised using the function

Aa =
Aleft +Arighte

„
r
j
a−r0

∆

«

1 + e

„
r
j
a−r0

∆

« (3.15)

where r0 is the position of the discontinuity, and ∆ is the pseudoparticle spacing.
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However, in order to accurately capture the evolution of the shock, the imple-

mentation should include the dissipation terms discussed in Section 3.6.2.

3.3.1.3 Periodic Boundaries

Fundamentally, periodic boundaries constrain the pseudoparticle positions within

the box of the domain. They occur in opposing pairs such that, assuming the

boundaries are applied in the jth dimension, the positions conform to rjL ≤ r
j
a ≤ rjU,

where rjL and rjU are the position of the lower and upper boundaries, respectively.

These boundaries are the �nal form that do not require any ghost/boundary par-

ticles. They do, however, require slight modi�cation of the implementation in two

key places.

i) Subsequent to the numerical integration modi�cation of position (see Section

3.4.1), the positions must be forced to remain within the upper and lower

bounds. That is

(
rja
)

new
=


(
rja
)

old
−
(
rjU − x

j
L

)
if
(
rja
)

old
> rjU(

rja
)

old
+
(
rjU − x

j
L

)
if
(
rja
)

old
< rjL(

rja
)

old
otherwise

(3.16)

This, however, is not the constraint as implemented. Instead, to optimise the

procedure so that no conditional statements are required, the domain bound-

aries and other positions are centred about zero. As a result, the boundary may

be enforced by (
rja
)

new
=
(
rja
)

old
− 2DjI


(
rja
)

old

Dj

 (3.17)

whereDj is the distance from the centre of the domain to the positive boundary

edge (which is identical to the position of that boundary), and I(x) is a function
that truncates x, leaving only the integer component remaining.

ii) When calculated, the distance between two pseudoparticles rjab must be checked

to see that rjab < Dj . If it fails this test then it should be reset such that(
rjab

)
new

= 2Dj −
(
rjab

)
old

(3.18)

Note that once the optimisations discussed in Section 3.5 are implemented, this

second modi�cation becomes super�uous.
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3.3.2 Domain Edge Boundaries

These boundaries are altogether more complex and add error to the system.

Recall the derivation of the SP approximations. For both the summation and

derivative approximations the domain boundary e�ects were ignored. This occurred

implicitly for the summation approximation in the form of the smoothing function

constraints. Those de�nitions only hold within the domain. For instance, recall the

speci�c equation (2.9), the normalisation constraint∫
Ω
Wdr′ ≡ 1 (3.19)

Consider that, if the extent of the smoothing function intersects the surface of the

domain, S(Ω), then the normalisation constraint does not hold. In fact it would

calculate an ever decreasing �gure as the centre of the smoothing function moves

closer to the surface and an ever increasing proportion of the smoothing function

domain, ω(h), exists beyond S(Ω). This is what causes the drop o� in the density

estimate (2.72) previously described as the reason for implementing the continuity

equation (2.112) as a preferred method for density evolution. The e�ect is explicit in

the integral basis derivation of smoothed derivative approximations (Section 2.2.6),

as the dropping of the surface integral from equation (2.36).

Considerable research has been done on the subject of correcting for these forgot-

ten components leading to, among many other techniques, the Normalised Corrected

SPH algorithm (Vila, 1999; Vignjevic, 2004).

Presented here are the types of edge boundary rather than the numerous tech-

niques for implementing them. They are constructed in a simple fashion using extra

sets of particles that behave in various di�erent ways in order to constrain the sim-

ulations.

The following boundaries all require the addition of signi�cant memory to store

the properties of ghost (or boundary) particles. These are created simultaneously

with the initial plasma conditions and factored into the algorithm at the same time.

The ghost particle positions de�ne the extent of the domain, Ω, by creating a barrier
(or barriers) that hold the pseudoparticles.

3.3.2.1 Solid Boundaries

A solid boundary, non-physical in the context of the Solar Corona, is formed using

an in�nite potential generated by the ghost particles. The pseudoparticles are bound
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within the domain by adapting the SP equation of motion such that

dva
dt

=
[

dva
dt

]
fluid

+
Ng∑
g=1

Γi(rag) (3.20)

where Γi(rag) is a boundary function that repels any approaching pseudoparticles,

in the ith dimension, and Ng is the number of ghost particles. As a pseudoparticle

approaches the ghost particle, the repulsive force steadily increases until Γ(0) ≈ ∞
There are several di�erent versions of this form of boundary, discussed in most SP

Hydrodynamics papers pertaining to incompressible �uids, as the simulated medium

(typically water) must be retained within some walled structure. Further discussion

can be found in Knight (2008).

3.3.2.2 Background Boundaries

This form of boundary creates a set of ghost particles initialised identically to the

regular pseudoparticles. However, their properties (including position) are not al-

lowed to evolve as a function of the SP derivatives, but are included as part of the

sets ξa. As long as the ghost particles are not required to evolve (i.e. no information

is past to them) these boundaries perform well.

An adapted form of this boundary is presented in Chapter 6. This is also the

only domain edge boundary implemented herein.

3.3.2.3 Data Boundaries

This �nal form is somewhat esoteric. Notionally, a barrier of ghost particles is cre-

ated but the properties (other than position) are evolved according to some external

numerical or real world data input. In this way, an external driver can be factored

into the model.

In the context of a model of the Solar Corona, real world remotely sensed data

about the Photosphere and/or Chromosphere can be factored into model geometry

as a lower boundary driving the simulated dynamics above.

3.4 Time-stepping

The following sections answer the questions:

• How are the pseudoparticles (plasma) properties evolved over simulated time?

• How can the procedure be optimised, such that an acceptable compromise is

found between real world run-time and the accuracy of the results?
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3.4.1 Numerical Integration

Numerical integration, in this context, is the procedure by which the required prop-

erties of the system are evolved. That is, the modi�cation of variables (lacking

analytical expressions describing there relationship to others in the system), A, over

simulated time. A is given by the set

A = {r,v,B, ρ, E,D} (3.21)

where D represents a possible evolved dissipation parameter, and E should be

supplemented by either e, u or K, depending on the implemented energy equation.

Herein, therefore, E = u. Also note that, should the smoothing length be allowed to

vary by some method whereby an analytical or approximate value of dh
dt is known,

it should be included as well (see Chapter 4).

In order to understand the fundamental nature of numerical integration, consider

the simplest, �rst-order procedure,

A<n+1> = A<n> + δt
dA<n>

dt
(3.22)

where δt is the time step, and A
<n> refers to the value of A at the nth iteration

of the routine. In this way, the variables may be evolved, with an error O(δt) and
therefore

lim
δt→0

[
A<n>a

]
SP

= Aa(t) (3.23)

where t = t<0> + nδt.

As previously described (Sections 2.5.3 and 2.5.4), and in the literature sur-

rounding the SP theory (Monaghan, 2005; Price, 2012) the exact conservation of

energy and momentum by SP approximations are only as exact as the temporal

numerical integration will allow. Thus δt should be kept small. However, consider

that the only way to remove the error is to set δt = 0. It is impossible, therefore,

to evolve the system without error. In addition, in order to create a usable amount

of data (ie. over a large enough range of simulated time) in a reasonable period of

(real) time δt must be of a reasonable magnitude. Thus, a higher-order procedure

should be employed to reduce the error without reducing the time step.

Listed below are several second-order methods (therefore with error O(δ2
t )) com-

monly employed in SP algorithms.
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i) The modi�ed Euler method, also referred to as the midpoint method,

A<∗> = A<n> +
δt
2

dA<n>

dt
(3.24)

A<n+1> = A<n> + δt
dA<∗>

dt
(3.25)

where A<∗> is a pseudo-half-step. This method requires memory proportional

to Np (|A|+ 2Nv), where Nv is the number of properties stored at each pseu-

doparticle and |A| is the degree (size) of set A. It also requires the computation
of the SP derivatives expressions twice (sequentially).

ii) The leapfrog method,

A<n+1> = A<n−1> + 2δt
dA<n>

dt
(3.26)

Unlike the modi�ed Euler method, this requires only a single computation of

the SP derivatives. However, it also requires a greater amount of memory, in

the form of an extra stored time-step, Np (|A|+ 3Nv) � or alternatively extra

computation and a more complex implementation, that will not allow for simple

modi�cation to alternate methods.

iii) The predictor-corrector method, also referred to as the improved Euler, Heun,

or Crank-Nicolson (trapezoidal) method,

A<∗> = A<n> + δt
dA<n>

dt
(3.27)

A<n+1> = A<n> +
δt
2

(
dA<n>

dt
+

dA<∗>

dt

)
(3.28)

This form requires equivalent computation as the modi�ed Euler method (twice

calculated SP derivatives), but greater storage. The results of both SP deriva-

tive calculations must be simultaneously recorded, hence 2Np (|A|+Nv). It is
possible, depending upon the speci�c SP routines employed, that this memory

increase can be avoided. However, this will once again constrain the adaptabil-

ity of the algorithm.

Higher-order Runge-Kutta methods could also be applied. However, given the

signi�cant computational cost of SP approximations, it is necessary to strike a bal-

ance between the accuracy of the results and the time taken to create them. If

the implementation requires any measure of adaptability, the possible procedure

is further constrained. Consider that in the development phase of an algorithm,

any modi�cation may signi�cantly increase memory and time requirements prior to
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optimisation and the numerical integration with multiple steps will contribute to

that pressure. Finally, owing to the serial limitations discussed in Section 3.1, low

memory is also a signi�cant consideration. Hence, within the SPMHD algorithm,

the modi�ed Euler (or midpoint) method is employed.

Consider that, assuming the properties are written out as often as is necessary,

the implementation only requires the properties of each pseudoparticle in two states;

at half- and full-step. Labelling these states 1 and 2 respectively, oscillating between

the two values allows a single equation to express both equation (3.24) and equation

(3.25). That is,

A<s> = A<2> +
δt

3− s
dA<3−s>

dt
(3.29)

where s = 1..2. This form facilitates the implementation as depicted in Figure 3.3.

3.4.2 Variable Time-step

In order to optimise the performance of the model, it is logical to leap in simulated

time as far ahead as possible without letting the numerical dominate the physical.

Notionally, the time step should be recalculated (as often as necessary) such that

the fastest possible physical transfer of information in the system is captured over

the resolution.

In practice, the fastest possible physical transfer of information is a fast MHD

wave with magnitude

|wave| = 1
2

√
c2 +

B2

µ0ρ
+

2cBx

√
µ0ρ

+
1
2

√
c2 +

B2

µ0ρ
− 2cBx

√
µ0ρ

(3.30)

assuming the wave traverses the x-axis in a static medium, and where c is the sound

speed de�ned by

c2 =
∂P

∂ρ
=
P

ρ
(3.31)

As such, the maximum signal velocity between two pseudoparticles a and b (i.e.

the speed fastest possible transfer of information along the line-of-sight between the

pseudoparticles) is given by

vsig,t,ab = ṽa + ṽb + β

∣∣∣∣vab · rab
|rab|

∣∣∣∣ (3.32)

where β is a numerical parameter, usually de�ned such that β ≈ 1 (in the case of
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Evolve Model

Half-Step

Initialisation Phase

s = 1

Compute
dA<3−s>

a
dt

Calculate
A<s>a = A<2>

a + δt
3−s

dA<3−s>
a
dt

Compute
Analytically
De�ned
Variables

s = 2?

Test t<n>

yes

s = 2

no
Output to
File/Imageryes

Figure 3.3: A generalised code structure diagram showing the basics that
de�ne how the model is evolved from one time step to the next using the
modi�ed Euler method.
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certain shock capture schemes β = 2), and ṽa is given by

ṽa =
1
2

√
c2
a +

B2
a

µ0ρa
+

2ca√
µ0ρa

Ba ·
rab
|rab|

+
1
2

√
c2
a +

B2
a

µ0ρa
− 2ca√

µ0ρa
Ba ·

rab
|rab|

(3.33)

The subscript t in the notation de�ning the signal velocity communicates that this

is the signal velocity as required by the calculation of the time-step. Also note that

µ0 is dropped once the variables become unitised (see Section 3.2).

Given this, and the limit imposed by the forces the pseudoparticles are subjected

to, the time step can be de�ned such that

δt = min (δt,c, δt,f ) (3.34)

constructed as a function of the Courant-Friedrichs-Lewy (CFL) condition and the

forces limited time step, equations (3.35) and (3.36) respectively.

δt.c = CCFL min
a=1..(Np−1)
b=(a+1)..Np

(
hab

vsig,t,ab

)
(3.35)

where CCFL ≈ 4
5 .

δt,f =

√
min

a=1..Np

(
ha
|aa|

)
(3.36)

where aa = dva
dt .

Equation (3.35) must be computed over all unique, non-zero particle interac-

tions and in terms of implementation, therefore, requires the same loops over the

pseudoparticles. However, it need only be calculated once, as a function of the

pseudoparticle properties at the nth time step (rather than requiring the pseudo-

half-step properties as well). Thus it may be implemented in simultaneously with

the SP derivative calculations, see Figure 3.4

3.5 Reducing the Computational Weight of SP Approx-

imations

This section presents schemes implementing the SP derivative approximations. The

algorithm is assumed to be composed of the SP continuity equation (2.112), the

SP equation of motion (2.140), the SP induction equation (2.118), and the speci�c

internal energy equation (2.148). The general context for these schemes are given

by Figures 3.1, 3.3 and 3.4, where the speci�c node under discussion is labelled
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s = 2
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Figure 3.4: A generalised code structure diagram showing the basics that
de�ne how the model is evolved from one time step to the next using the
modi�ed Euler method and factoring in an automatically recalculated time
step, δt.
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Compute dA<3−s>

dt and is held recursively within the nodes Simulation Phase →
Evolve Model → Half-Step.

The simplest scheme is to sweep over the pseudoparticles, a = 1..Np, and com-

pute the contribution of each pseudoparticle, b = 1..Np, to each equation, resulting

in a scheme of O(N2
p ). However, this fails to take into account a number of the

numerical factors de�ning the equations. For instance, if |rab| ≥ Ch then there is no

contribution from b to a. In addition the symmetry in the system ensures that there

is no contribution of a to b. Extending these principles over the entire calculation,

and the scheme presented in Figure 3.5 can be constructed.

Essentially, of the original Np × Np matrix of interactions the simplest scheme

encounters, only the upper triangular components are investigated. That is the

nested loops are governed by a = 1..(Np − 1); b = (a + 1)..Np. Within that, only

the pseudoparticle pairs that satisfy |rab| < Ch are allowed to interact. Then, for

each interacting pair, the bth contribution to the ath derivative is computed, ie.[
dA<3−s>

a

dt

]
new

=
[

dA<3−s>
a

dt

]
old

+
[

dA<3−s>
a

dt

]
b

(3.37)

where A = {ρ,v,B, u}, and the ath contribution to the bth derivative is computed

by [
dA<3−s>

b

dt

]
new

=

[
dA<3−s>

b

dt

]
old

+

[
dA<3−s>

b

dt

]
a

(3.38)

simultaneously.

There are, however, further reductions possible from the SP equations. Consider

that the rate of change of speci�c internal energy (assuming constant entropy) is a

function of the rate of change of density,

dua
dt

= −Pa
ρ2
a

dρa
dt

(3.39)

Hence, rather than computing both, only the rate of change of density need by

factored into the nested scheme such that A = {ρ,v,B}.
Also consider the sets that govern the particle interactions, ξa. These could be

directly interpreted as neighbour lists, and are relatively easily implemented within

the algorithm. However, in order that the lists not need to be updated every cycle

of the model, the sets would have to be expanded to incorporate the pseudoparticles

from outside the subdomains ωa � the lists would become quite large, and drain

resources. Also, for simple implementations, measures determining that the lists

require updating must be overly sensitive in order to avoid the risk of omitting

neighbours as the simulation evolves, inducing extra computation. That is not to
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Figure 3.5: A generalised code structure diagram showing the basic structure
of the SP derivative calculations.
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discount explicit neighbour lists. For a number of implementations, particularly

parallel codes, neighbour lists are a natural extension of the existing framework

and these concerns, therefore, do not apply (Hernquist and Katz, 1989; Price, 2012;

Springel, 2005). However, given the relative cost of maintaining the lists in a serial

framework, herein a simpler Bucket Sort method is employed.

3.5.1 Bucket Sort

The bucket sort approach has a number of advantages. The algorithm follows these

basic steps

1. An imaginary mesh is superimposed over the domain Ω, dividing it into a

number of cells (buckets), Nc. Herein the mesh is cubic with equal sized cells

and equal widths, lengths and heights.

2. The pseudoparticles are assigned to particular cells by creating a new pseu-

doparticle property, wa, that records the unique identi�er of the cell.

3. Pseudoparticle interactions are then limited to pairs that exist in neighbouring

cells.

4. As the positions evolve, wa is periodically reassessed as required.

Though the mesh only exists conceptually, three properties are explicitly re-

quired; the position of the cell centres rc; a constant, δc, equal to half the width of a

cell; and cell neighbour lists, pqc (the qth neighbour of the cthcell). All of these can be
de�ned in the initialisation phase of the program (see Figure 3.7). The neighbour

lists do not su�er from the same issues as the sets ξa as the cells are motionless

(relative to the Ω and each other). Thus p is �xed for the length of a simulation.

In order to de�ne p, �rst it is necessary to de�ne the dimensions of the cells. For

the implementation, δc should be limited such that

h < δc <
1
3

min
i=1..ν

(
riU
)

(3.40)

assuming that Ω is centred on zero, where riU is the position of the upper boundary

along the ith axis. The upper limit exists to ensure that the automated cell genera-

tion routines are always applicable, whereas the lower limit constrains the number

of neighbouring cells, Nq, to a constant,

Nq = 3ν − 1 (3.41)
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Figure 3.6: A graphical representation of the de�nition of pc for the c
th cell

of the bucket sort of a 2-Dimensional domain. Nj is the number of cells in the
jth dimension of the domain.

These are the Nq cells that are adjacent to either a face, edge or corner of some

speci�c cell, such that for the cth cell in a 2-Dimensional domain the array pc is

de�ned in the manner described by Figure 3.6.

Once the cell properties are de�ned, it is necessary to sort the pseudoparticles.

Having assigned cell identifying indices to wa, a vector φa is then created that holds

each index identifying speci�c pseudoparticles, i.e.

φa = a (3.42)

Subsequently, φ is sorted relative to w such that the indices of all the pseudoparticles

in cell 1 are follow by the indices in cell 2, then cell 3, and so on up to the indices of

all the pseudoparticles in cell Nq. The indices within each cell subsection are also
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Con�gure First/Last Array

Set ∆r = 0

Simulation Phase

Figure 3.7: A generalised code structure diagram showing the implementation
of the Bucket Sort algorithm.
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sorted into ascending order (smallest to largest). That is

φ =



{a|wa = 1}
{a|wa = 2}
{a|wa = 3}

...

{a|wa = Nq − 1}
{a|wa = Nq}


(3.43)

where 1 ≤ a ≤ Np, and {a|wa = c} is the set of indices of the pseudoparticles

assigned to the cth cell, and the sets are sorted such that

ai+1 > ai (3.44)

is always true, assuming the elements are ordered such that {· · · , ai−1, ai, ai+1, · · · }.
Note that this indicates that the indices assigned to the cth cell are ordered

[· · · ai−1 ai ai+1 · · · ]T within φ. Now, vectors fc and lc can also be de�ned

as

fc =

{
1 +

∑c−1
k=1 |{a|wa = k}| if |{a|wa = c}| 6= 0

0 otherwise
(3.45)

lc =

{ ∑c
k=1 |{a|wa = k}| = fc + |{a|wa = c}| − 1 if |{a|wa = c}| 6= 0

0 otherwise
(3.46)

where |{a|wa = k}| is the degree of (the number of elements within) the kth set.

Hence, f and l stores the positions within φ of the lowest and highest pseudoparticle

index assigned to each cell, respectively.

As a simple example consider the distribution of pseudoparticles and a 2×2 grid

of cells described by Figure 3.8. In this case, the arrays are given by

φ =
[

3 4 10 11 1 5 6 7 12 13 2 8 9 14 15
]T

f =
[

1 0 5 11
]T

l =
[

4 0 10 15
]T

(3.47)

Note that f2 = l2 = 0 indicating that there are no pseudoparticles in cell 2.

The process of assigning values to wa, de�ning and sorting φa and eventually

creating fc and lc is collectively referred to as the Bucket Sort in the Figures 3.7

and 3.9.
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Figure 3.8: A simple example distribution of pseudoparticles with a 2 × 2
grid (shown in black). The pseudoparticle positions and indices are shown in
red and the grid cell indices are shown in blue.

Finally, in order to automatically trigger a recon�guration of w (and therefore

φ, f and l), de�ne a pseudoparticle variable ∆ra that records the total displacement

(in each dimension) since the last recon�guration of the ath pseudoparticle. This

concept is illustrated in Figure 3.9.

Given these new variables, the sweep over the upper triangular portion of the

interaction matrix can be rewritten. Conceptually, while the pseudoparticle pair

interaction order remains the same, the sequence appears to jump over many of the

potential interactions as the pairs are implicitly too far apart to interact. Speci�cally
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s = 2?
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Figure 3.9: A generalised code structure diagram showing the periodic re-
con�guration of the Bucket Sort algorithm. The Test ∆ri component checks to
see that none of the pseudoparticles have travelled further than half the width
of the cells in the simulated time elapsed since the previous recon�guration, ie.
∆ri + 2h > δc.
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the nested structure is shown in Figure 3.10, and are governed by

for a = 1→ (Np − 1); do

for b = lwa → fwa ; −1; do

if φb = a; exit

if |raφb | ≥ Ch; cycle[
dA<3−s>

a

dt

]
new

=
[

dA<3−s>
a

dt

]
old

+
[

dA<3−s>
a

dt

]
φb[

dA<3−s>
φb

dt

]
new

=

[
dA<3−s>

φb

dt

]
old

+

[
dA<3−s>

φb

dt

]
a

for q = 1→ (3ν − 1); do

for b = lpqwa → fpqwa , −1; do

if φb < a; exit

if |raφb | ≥ Ch; cycle[
dA<3−s>

a

dt

]
new

=
[

dA<3−s>
a

dt

]
old

+
[

dA<3−s>
a

dt

]
φb[

dA<3−s>
φb

dt

]
new

=

[
dA<3−s>

φb

dt

]
old

+

[
dA<3−s>

φb

dt

]
a

3.6 Numerical Modi�cation of the SP Magnetohydrody-

namics Algorithm

The following sections present the schemes by which the ideal SPMHD algorithms

may be extended to correct errors and better capture non-linear behaviour.

3.6.1 Complications Under Negative Stress

As presented in Section 2.5.3, the SP equation of motion equates to an approxima-

tion of
dva
dt

=
1
ρa

{
−∇P +

1
µ0

[(∇×Ba)×Ba + Ba (∇ ·Ba)]
}

(3.48)

rather than, as it should, equation (2.87)

dva
dt

=
1
ρa

[
−∇P +

1
µ0

(∇×Ba)×Ba

]
(3.49)
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Figure 3.10: A generalised code structure diagram showing the rewritten

Compute
dA<3−s>

a
dt

component, optimised to use the Bucket Sort algorithm.
The χ node refers to computing the equations [Xa]new = [Xa]old + [Xa]φb

, and

[Xφb ]new = [Xφb ]old + [Xφb ]a, where Xy =
dA<3−s>

y

dt
. The functions are de�ned

in Section 3.5.
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At the continuum limit [∇ ·Ba]SP = 0, however for �nite, discrete (numerical)
systems (ie. not exclusively SP methods) ∇·B 6= 0. In the model this is interpreted

as the widely discussed tensile instability (Hernquist and Katz, 1989; Vignjevic,

2004; Monaghan, 2005; Price, 2012). Essentially, the system becomes unstable where

the stress becomes negative as the pseudoparticles begin to strongly attract one

another. Given the inclusion of magnetic �eld e�ects, this instability generally

manifests itself when the perpendicular component of magnetic stress swamps the

combined �uid and magnetic pressure, ie. in 1D Pmagnetic > P (Price, 2012). See

Børve et al. (2004) for a detailed, multidimensional stability analysis. It was noted

by Vignjevic (2004) that, though labelled a tensile instability, the cause of the

instability in fact occurs in compression as well. However, with accurately speci�ed

smoothing length and positive stress the compression instability never manifests in

simulations.

In this context, consider the Solar Corona and speci�cally the plasma parameter

β, which is the ratio of the �uid and magnetic pressures, i.e. β = P/Pmagnetic =
2µ0P
B2 . In the solar corona, the magnetic pressure, B2

2µ0
where 10−3T ≥ |B| ≥ 10−2T,

massively outweighs the �uid pressure, P = (γ − 1)ρu = (1 − Cv)CpρT where

10−13kg.m−3 ≥ ρ ≥ 10−11kg.m−3 and T ≈ 106. More speci�cally, the plasma β

ranges from approximately 10−3 to 10−2 for coronal holes and active regions, re-

spectively. Not only is this within the region of the instability, but drastically so.

Hence, SP simulations of the corona must be highly susceptible to the aforemen-

tioned instability, and some measure of correction is required.

A solution removing the instability must physically conform to ∇ · B = 0 and

numerically ensure that the approximation of ∇·B within the SP equation of motion

equals zero (Tóth, 2000). (Price, 2012), interpreting the conclusions drawn by (Tóth,

2000, 2002), stated �In SPMHD [such a solution] is equivalent to requiring both exact

derivatives and exact conservation which...does not appear to be possible�. As such,

an approximate numerical solution must be found.

In the context of the limitations of the model, there are four general possible

approaches to creating a solution.

i) Create a sphere of exclusion about each pseudoparticle that no other can breach,

thus stopping the pseudoparticles from clumping together. This counters only

the most obvious detrimental e�ect of the instability and does not attempt to

correct for, or avoid, the problem.

ii) Arti�cially introduce additional stress to the system so that the total stress at

any point is always positive, thereby avoiding but not eliminating the instability.
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iii) Ere on the physical, and introduce a more accurate formulation that better

approximates ∇ ·B = 0.

iv) Ere on the numerical, that is the Lagrangian formulation basis, and correct for

the inaccurate ∇ ·B as it appears in the SP equation of motion.

Note that iii) and iv) are both the logical outcomes of the line of reasoning that

concludes; holding to at least one of the critera of stability is better than none at

all.

Approach i) was proposed by Monaghan (2000) was quickly shown to be problem-

atic in high compression simulations and leads to errors in the calculation of sound

speed (and therefore time-stepping � see Section 3.4.1). In addition, determining

the extent of the exclusion sphere presents a particular problem as a non-physical

parameter, particularly for variable smoothing length algorithms.

The remaining propositions are more applicable, but each have advantages and

disadvantages. Taking each in turn;

ii) Proposed by Phillips and Monaghan (1985), after identifying the instability

itself, this is the simplest �x. Rather than parametrising the additional stress,

which would be problematic, the algorithm requires an additional loop over the

pseudoparticles in order to determine the maximum stress, Sijmax. The resulting

stress as implemented within the algorithm,
(
Sij − Sijmax

)
is therefore positive

de�nite but the minimum stress is restricted to zero. Thus stressing the system

as little as possible. The resulting modi�ed SP equation of motion is therefore,

dvia
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

[
Ψb

Ψa

(
Sija − Sijmax

)
+

Ψa

Ψb

(
Sijb − S

ij
max

)]
∇jaWab (3.50)

This is equivalent to the modi�cation[
dvia
dt

]
new

=
[

dvia
dt

]
old

− 2Sijmax

ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Ψb

Ψa
+

Ψa

Ψb

)
∇jaWab (3.51)

Consider the advantages and disadvantages of this modi�cation;

Advantages

• Simple implementation

• Keeps conservation of momentum

• Removes instability from simulation
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• Ideal for external stresses, particularly an imposed magnetic �eld, that can

stabilise the simulation

Disadvantages

• Drops conservation of energy

• Relatively high computational cost of �nding Sijmax, which gets worse for

multidimensional simulations

• Assuming Sijmax is large, induces non-physical e�ects

iii) The isotropic components of the SP equation of motion, as derived from the

Euler-Lagrange equation (2.131), is retained as[
dvia
dt

]
SP
iso.

consv

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Ψb

Ψa
Siia +

Ψa

Ψb
Siib

)
∇iaWab (3.52)

preserving with it the conservative properties isolated to the isotropic compo-

nents. The anisotropic components are replaced by the anisotropic components

as determined by direct application of the SP identities (Section 2.2.9), i.e.[
dvia
dt

]j
SP

aniso.
linear

=
1

µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb

(
Bi
bB

j
b −B

i
aB

j
a

)
∇jaWab (3.53)

Thus in combination,

dvia
dt

=
[

dvia
dt

]j
SP
iso.

consv

+
[

dvia
dt

]j
SP

aniso.
linear

(3.54)

such that, by rearrangement,

dvia
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa

(
Sija δ

ij +
Bi
bB

j
b −B

i
aB

j
a

µ0

)
+

Ψa

Ψb
Sijb δ

ij

]
∇jaWab (3.55)

Note the advantages and and disadvantages of this compromise approach (Mor-

ris, 1996);

Advantages

• Captures, with relatively small errors, MHD shocks

• Conservation within isotropic component, enabling remeshing of pseu-

doparticle con�gurations (until errors accumulate, and symmetry is lost)
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Disadvantages

• No conservation of energy or momentum

• Non-trivial conversion moving from constant to variable smoothing length

• Only vanishes if Bi
aB

j
a = Bi

bB
j
b , and cannot be turned o�

• For long running simulations can build up signi�cant, cumulative error

iv) Proposed by Børve et al. (2001) and deeply analysed by Børve et al. (2004,

2006), is the explicit subtraction of the solenoidal constraint term as it appears

in the SP equation of motion. That is

B̃a

ρa

∑
b∈ξa
b 6=a

mb

ρb

(
Ψb

Ψa
Ba +

Ψa

Ψb
Bb

)
· ∇aWab (3.56)

Note that B̃a 6= Ba. In fact, Børve et al. (2006) showed that, though B̃a must

be parallel to Ba, the magnitude can be scaled such that |B̃a| < |Ba|. In order

to analyse the stable regime, they created a measure ε = B̃a·Ba
B2
a

. εmin is the

smallest possible value at which the resulting algorithm is stable. Analysing

εmin as a function of plasma β, it was established that

lim
β→0

εmin =
1
2

(3.57)

and hence B̃ is usually de�ned such that B̃a = Ba
2 . The resulting modi�cation

takes the form,

dvia
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

[
Ψb

Ψa

(
Sija − B̃i

aB
j
a

)
+

Ψa

Ψb

(
Sijb − B̃

i
aB

j
b

)]
∇jaWab (3.58)

where the advantages and disadvantages are;

Advantages

• Can be switched on/o� as a function of the instability existence

• Correction term identical to the component of the SP equation of motion

that is in error

Disadvantages

• While on no conservation of energy or momentum

• Can be reduced in scale (via the εmin argument) but sill ensure stability
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Given the constraints of the Solar Corona, a correction that can be switched o� is

not a requirement. However, the relative strength of the magnetic �eld dictates that

a stable solution is most important. Therefore, the �nal proposition is implemented.

3.6.2 Capturing MHD Shocks

Simulating the evolution of discontinuities presents something of a challenge for

numerical models. Quoting Price (2008) �The treatment of �ow discontinuities...has

been the subject of a vast body of research over the last 50 years�. In the context of

SPMHD, two factors e�ect the algorithms ability to model shocks,

• The previously discussed (Sections 2.2.6 and 3.3.2) assumption the the pseu-

doparticles do not approach the surface of the domain, S(Ω)

• The fundamental assumption that the solutions the SP derivative approxima-

tions are looking to �nd are continuous.

Lengthy discussions can be found in a number of papers (Monaghan, 1997; Price

and Monaghan, 2004c,a; Price, 2008) and here the issue is presented in brief.

In order to accurately simulate shocks in SP algorithms, a number of dissipa-

tion terms must be included. These spread the e�ects of the discontinuity (also

referred to as di�usion) so that the SP approximations see it as a continuous slope,

admittedly very steep, spread out over a few ∆p. Most authors, at this point, quote

the widely implemented (but entirely numerical) arti�cial viscosity term Πab (Mon-

aghan, 1992), and then express the advances since (Bonet and Rodríguez-Paz, 2005;

Price, 2008), leading to the general formulation presented by Monaghan (1997).

This general formulation, for some property λ, is given by[
dλa
dt

]
diss

=
∑
b∈ξa
b 6=a

mbαλ,avsig,λ,ab

ρab
λab

rab
|rab|

· ∇aWab (3.59)

where αλ,a is a variable de�ning the amount of di�usion (discussed later), and

vsig,λ,ab is the signal velocity as required by λ (details to follow). For context, the

revised derivative approximations take the form,[
dλa
dt

]
new

=
[

dλa
dt

]
old

+
[

dλa
dt

]
diss

(3.60)
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Comparing equation (3.59) with the higher order SP derivatives (Section 2.4),

and assuming that the dissipation term represents[
dλa
dt

]
diss

= ηλ
[
∇2λa

]
SP

(3.61)

the parameter ηλ is shown to be particular to the individual pseudoparticle inter-

actions, ie. ηλ = ηλ,ab, and that

ηλ,ab ∝ αλ,avsig,λ,ab|rab| (3.62)

Given equation (3.59), it is possible to de�ne the SP viscosity and SP total

energy dissipation terms as[
dva
dt

]
diss

=
∑
b∈ξa
b 6=a

mb

ρab
αv,avsig,v,ab

(
vab ·

rab
|rab|

)
∇aWab (3.63)

and [
dea
dt

]
diss

=
∑
b∈ξa
b6=a

mb

ρab
(ẽa − ẽb)

∂Wab

∂|rab|
(3.64)

respectively, where

ẽa =
1
2
αv,avsig,v,ab

(
va ·

rab
|rab|

)2

+ αu,avsig,u,abua + αB,avsig,B,ab
B2
a

2µ0ρab
(3.65)

Note also that

vsig,v,ab =

{
ṽa + ṽb − βχ if χ ≤ 0
0 if χ > 0

(3.66)

where χ = vab · rab
|rab| and

ṽa =
1
2

√
c2
a +

B2
a

µ0ρa
+

2ca√
µ0ρa

Ba ·
rab
|rab|

+
1
2

√
c2
a +

B2
a

µ0ρa
− 2ca√

µ0ρa
Ba ·

rab
|rab|

(3.67)

Also, that the thermal signal velocity does not have to equal the true signal

velocity, vsig,u,ab 6= vsig,v,ab. Price (2008, 2012), for instance, recommend setting

vsig,u,ab =
√

Pab
ρab

.

The second law of thermodynamics constrains the forms of the remaining dissi-

pation terms (Price, 2012). Each must be derived such that the contribution to the



76 Chapter 3. Smoothed Particle Implementation

entropy, via the total energy equation (2.155), must be positive de�nite. Thus the

speci�c internal energy dissipation (thermal conduction) term is given by[
du
dt

]
diss

= −
∑
b∈ξa
b6=a

mb

ρab

[
αv,avsig,v,ab

v2
ab

2
+ αu,avsig,u,abuab

+αB,avsig,B,ab
Bab

2µ0ρab

]
∂Wab

∂|rab|

(3.68)

Using equations (3.64) and (3.68), it is possible to rearrange and de�ne the

dissipation (resistivity) term within the induction equation. Namely,[
dBa

dt

]
diss

= ρa
∑
b∈ξa
b 6=a

mb

ρab
2αB,avsig,B,abBab

∂Wab

∂t
(3.69)

where

vsig,B,ab =
1
2

√(
B2
a

µ0ρa

)2

+
(
B2
b

µ0ρb

)2

(3.70)

(Price and Monaghan, 2004c). Note that vA = B2/µ0ρ is the Alfvén speed.

In order that these dissipation terms have su�cient weight to di�use the shock,

but e�ectively vanish away from the discontinuity, the variable αλ,a must be evolved

according to
dαλ,a

dt
= Sλ,a + (αλ,a − σ1)

σ2ca
h

(3.71)

(Morris and Monaghan, 1997) where Sλ is some source term, σ1 and σ2 are param-

eters. Note that h
σ2ca

is the decay time, and σ1 ≈ σ2 ≈ 0.1. The source terms are
given by

Sv,a = max (0,− [∇ · va]SP) (3.72)

Su,a = σ2h
[
∇2ua

]
SP

(3.73)

and

SB,a = (µ0ρa)
− 1

2 max (|[∇×Ba]SP| , |[∇ ·Ba]SP|) (3.74)

for the viscosity (Morris and Monaghan, 1997), conductivity and resistivity (Price

and Monaghan, 2005), respectively.
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3.6.3 Ensuring the Solenoidal Constraint

For a text describing a numerical approach to the MHD equations, very little has

been written herein concerning the solenoidal constraint (∇ ·Ba = 0), save to sim-

plify the iMHD equation (Section 2.5.1) and in response to the tensile instability

(Section 3.6.1). This should not be taken as a sign that the constraint has been

ignored. Nor that the constraint is, in any way, unimportant. Indeed, it is the only

component of the MHD theory that remains unchanged (version to version) and

unalterable. Under no conditions are monopoles allowed in the MHD view of the

physical universe.

In SP theory, however, there are no techniques for imposing ∇ ·B = 0. Instead,
the algorithm must be built to either restrict ∇ ·B to some small value (prevent),

or to allow the system to evolve without constraint then perform a subsequent

sweep over the pseudoparticles cleaning the ∇ ·B values. A third option exists; to

numerically ignore the e�ect of ∇ ·B, trusting the algorithm to keep the value low,

and monitor its value. However, this risks producing (at expense) corrupted results

and inducing a rewrite of the algorithm to include one of the previous approaches

regardless. The emphasised text here (e.g. prevent) refer to the labels given in Price

(2012). In that same paper, numerous speci�c methods are described for handling

the solenoidal constraint, including the procedure for monitoring the value of ∇·B.

Referring to Powell et al. (1999) (the technique presented in Section 10.1 of Price

(2012)), recall the iMHD induction equation (2.101),

dB
dt

= (B · ∇) v −B (∇ · v) (3.75)

If follows that the divergence of equation (2.101) is

∂

∂t
(∇ ·B) +∇ · (v∇ ·B) = 0 (3.76)

and, writing φ = ∇·B
ρ

∂ρφ

∂t
+ ρψ∇ · v =

Dρφ
Dt

= 0 (3.77)

Hence φ is a conserved quantity. Thus if the initial, and boundary conditions,

are consistent with the solenoidal constraint conservation will be exact in the same

sense as the conservation of momentum and energy (i.e. as exact as the numerical

temporal integration will allow). Powell et al. (1999) therefore introduced the 8-wave

formulation whereby
dva
dt

=
1
ρ

[∇S−B (∇ ·B)] (3.78)



78 Chapter 3. Smoothed Particle Implementation

and
de
dt

=
1
ρ

[v∇S− vB (∇ ·B)] (3.79)

are the equation of motion and the energy equation, respectively, and the induction

equation is given by equation (2.101).

Note that this scheme has been implicitly implemented already, and this is the

reason for addressing the solenoidal constraint at this late stage � i.e. that no

new correction are required. By utilising the SP induction equation (2.118), and

implementing the third of the tensile instability correction techniques, this algorithm

is in e�ect the 8-wave formulation. The implementation herein di�ers in two places.

Firstly, that the magnetic �eld variable ahead of the divergence in equation (3.78) is

replaced by the scaled vector B̃ (see Section 3.6.1), which has already been shown to

be stable. Secondly, that the speci�c internal energy, rather than the total energy is

evolved. This serves to reduce the number of modi�cations required, as the magnetic

�eld does not directly e�ect dua
dt as derived.

3.7 Conclusion

At this stage, the fundamentals exist to construct a functioning algorithm. The

resulting model is not only optimised in the sense of programmed e�ciency but,

more importantly, in the sense that the equations that the algorithm is composed

of are the least expensive con�guration allowable that ensure the highest accuracy

simulations. There are, however, outstanding issues. For example, there is no

quanti�able measure of the SP error. Nor is there specialisation of the code to more

e�ciently simulate solar phenomena. This current SP algorithm could get the job

done, but at vast and unnecessary computational cost.

In order to reduce the computational weight of the algorithm, the following

Chapter (the �rst of the three chapters to present original research) considers ex-

tending the algorithm to include variable spatial resolution in the form of variable

smoothing length.
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4.1 Introduction

Conceptually, variable soothing length, h, is one of the simplest aspects of SP theory.

The previously constant h is exchanged for a set of values ha that are allowed to

evolve over simulated time, such that simulations may consist of di�erent sized

pseudoparticles. In this way, variable h enables variable resolution.

The notion of variable spatial resolution is potentially useful to the solar model,

however �rst consider the standardised bene�ts of an SP algorithm built with vari-

able smoothing length. Monaghan (2005) and Bonet and Rodríguez-Paz (2005)

showed that, due to an increase in model stability under variable h, there is a

corresponding increase in the accuracy of data output. In addition, from an im-

plementation perspective, the inclusion of variable h should enable the programs

to concentrate their resources on the most dynamic/energetic/complex regions of

a domain � thereby reducing either/both memory requirement and run time. It

has been shown by numerous authors (Monaghan, 1992; Vila, 1999; Price, 2008)

that varying h stabilises (at least in part) rarefaction waves, and waves in general.

This is of particular interest in a solar context as the possible phenomena under

investigation induce numerous waves (Yokoyama et al., 2001; Delannée et al., 2008).

The method requires some measure of investigation for, once variable smoothing

length has been chosen over constant, what is the best method for implementing the

variability? There are numerous di�erent interpretations of variable ha (discussed

Section 4.3), and many di�erent measures of best. The best could be de�ned, for

instance, as the method with the simplest rational, or the simplest implementation,

or greatest consistency, or greatest accuracy, or some balance of those. In addition,

there are questions as to the consistency of ha (Vila, 1999), and discrepancies in my

own data that require further investigation (Section 4.4).

In brief, the research in this chapter addresses; the question of consistency (Sec-

tion 4.3.3), leading to a new formalism for the de�nition of the smoothing function

derivative (Section 4.3.4); and an investigation into a numerical artefact, including

possible correction procedures, identi�ed in Section 4.4.
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4.2 Dynamic Variation of Smoothing Length in Space

and Time

The numerous SP algorithms modi�ed to include variable smoothing length follow

a similar template. Subsequent to the derivation of standard SP theory (Chapter

2), an individual smoothing length, ha, is created for each pseudoparticle to allow

variability throughout the domain, Ω. The smoothing lengths are set proportional

to a function of some dynamic property of the system, enabling them to evolve over

simulated time. Usually

ha ∝ ρ−
1
ν (4.1)

as with Bonet and Rodríguez-Paz (2005); Monaghan (2005); Price (2008). Occa-

sionally the smoothing lengths will be set relative to some numerical (rather than

physical) property, for instance ha ∝ n
− 1
ν

a , where na is the pseudoparticle number

density (Hernquist and Katz, 1989), not to be confused with Na, the set of interact-

ing neighbours. This alteration introduces two new properties of the system that

must be accounted for within the algorithm. Namely,

dha
dt
6= 0 (4.2)

and
dha
dra
6= 0 (4.3)

The general e�ects of these new properties are discussed in Sections 4.2.3 and

4.2.4. First, what justi�cation can there be for the inclusion of variable smoothing

lengths, and what is the correct de�nition of ha?

4.2.1 Rational

Primarily, there are three rationales given in the literature for the modi�cation of an

SP algorithm to include variable smoothing length. In order of ascending individual

validity, they are experimental, numerical and physical in nature. Each rational is

important as they inform the particular de�nition of smoothing length employed

within an algorithm.

4.2.1.1 Accuracy

The simplest, and least restrictive, rational for variable smoothing length results

from numerical experiments. Namely that, given data from test cases produced by
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models built with and without variable smoothing length, its inclusion is justi�ed

if the errors in the former are lower than in the latter. This spurious argument

relies on the assumption that the physical regimes of the test cases encompass all

the subsequent applications of the algorithm. This is invalid as a test case must be

simple enough that the problem must be solvable analytically. An overly simple ex-

ample would be if the test cases were all 1-Dimensional but the research applications

required multidimensional domains. Or, more pertinently, if the test cases rely on

an assumption of some large dominance of gas pressure over magnetic pressure (or

vice versa), and the subsequent application included simulation of a phenomenon of

relatively high gas pressure bound by high magnetic pressure, as with solar �laments.

As the least rigorous, this rational only restricts the de�nition of the smoothing

length to forms that decrease the error in results from simulations. These are,

clearly, numerous. More signi�cantly, it places no constraints on the form, or the

consistency of the form, of the rate of change of the smoothing length over time or

space. Note, however, that this accuracy argument usually occurs in tandem with

one of the other rationales, usually to justify a speci�c de�nition of ha.

4.2.1.2 Divergent Material

Consider an argument from a numerical perspective. Gaseous material can diverge

greatly and plasmas even more so, given the B-�eld dependence. Within standard

SP theory, the smoothing length, h, is constant and equal throughout the simulation

domain, Ω. It is possible under divergent conditions, therefore, that the pseudopar-
ticles will separate to the point that the distance between them, |rab|, is greater than
the compact support of the smoothing function (which is related to the smoothing

length by κ = Ch, see Section 2.2.3). That is, the subdomain of each pseudoparti-

cle, ωa and ωb, will not intersect. Thus, the pseudoparticles cease interacting with

their neighbours leading to signi�cant errors in the interpolation of variables. Even

where the divergence is relatively small, the increased separation constitutes a drop

in spacial resolution. In order to avoid these problems, the smoothing length (and

thus the subdomains), must be allowed to vary such that the number of interactions

between pseudoparticles remains roughly constant over time. Or, to reiterate, the

smoothing length must be a function of the number density of each pseudoparticle.

h<n>a ∝ 1
n<n>a

(4.4)

where na is the number density of pseudoparticle a.

The numerical argument can be extended. Consider some extended, complex

phenomena that is not bound to any single axis but curves as it interacts with the
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surrounding, smoothly varying, background, for instance a solar �lament. If all of

the pseudoparticles have the same smoothing length, high enough to capture the

complex phenomena, then a great deal of unnecessary computation occurs modelling

the background medium. If instead the smoothing length were increased for pseu-

doparticles in the 'background' portions of the domain, hence reducing the number

of particles required, the volume of computation would be reduced. Thus justifying

the inclusion of variable smoothing lengths.

Constant Neighbourhood There are two ways of enforcing a constant neigh-

bourhood, or number density. Given some limiting parameter, such as some ideal

number density, and optimising using the neighbour lists (if included as part of the

implementation), rede�ne each smoothing length at each time-step, h<n>a , such that

n<n>a ≈ n<n−1>
a . Alternatively, h could be evolved relative to the number of neigh-

bours. For example, the scheme presented by Hernquist and Katz (1989) whereby

the smoothing length is determined by

h<n>a = h<n−1>
a

(
N

|ξa|<n−1>

) 1
ν

(4.5)

where N is some parameter. Or, as the average between h<n>a and h<n−1>
a ,

h<n>a =
h<n−1>
a

2

[
1 +

(
N

|ξa|<n−1>

) 1
ν

]
(4.6)

and |ξa|<n>, the degree of the set ξa at the nth iteration, is found using the predicted

value of h<n>a . The variation in h<n>a is constrained such that |ξa|<n> only di�ers

from N by some prescribed tolerance (a few percent).

In this way, the rates of change over time or space have no consistent form.

4.2.1.3 Physical Argument

Finally, if one assumes that the pseudoparticles represent moving packets of material,

it follows that since volume is de�ned by

V =
m

ρ
(4.7)

and the mass of each pseudoparticle is held constant, as the density of each varies

so too must the volume. This rational asserts that the smoothing length is a proxy

for the volume of each pseudoparticle, and must therefore, be variable. This is the

natural consequence of the assumption that the sphere of in�uence of pseudoparticle
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a, the subdomain ωa, is representative of the volume of the material packet. The

extent of ωa is de�ned by the compact support, κ, of the smoothing function and,

given κ = Ch (see Section 2.2.3), the smoothing length is thus restricted by

h ∝ ρ−
1
ν (4.8)

where ν is the number of dimensions.

A logical extension of this rational, that assumes nothing about the masses of

the particles, must conclude that

h ∝ V
1
ν (4.9)

This form has several advantages over equation (4.8), as the masses can be modi�ed

during the initialisation phase to produce a set of pseudoparticles with a smaller

range of smoothing lengths (and therefore volumes) which reduces some of the errors

discussed later in this chapter (Section 4.4).

4.2.2 Smoothing Length De�nition

Given the rigour of the physical rational for the inclusion of variable smoothing

length, and the control allowed by de�ning h such that equation (4.9) is satis�ed,

the smoothing length herein is de�ned by

ha = β

(
ma

ρa

) 1
ν

(4.10)

where β is some scaling constant. There are two important factors of this de�nition

that require some discussion.

4.2.2.1 Limits

It has been shown quantitatively by Vila (1999), and discussed qualitatively by

Monaghan (2005) that the variation in ha must have some upper and lower limit,

i.e.

C1 <
h<n>a

h<0>
a

< C2 (4.11)

where C1 and C2 are some positive constants.

For most simulations, where the density variation is itself limited, equation (4.10)

satis�es the limits (4.11) automatically. However, for highly dynamic models, such

an assertion cannot be made. In these conditions an upper limit for the smoothing
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length is enforced by rede�ning equation (4.10) by

ha = β

(
ma

α+ ρa

) 1
ν

(4.12)

where β retains its original de�nition, and α is some suitable constant (Monaghan,

2005). A lower limit can be enforced with a similar rede�nition.

4.2.2.2 Initialisation

The smoothing length and density are functions of each other, by equation (4.10)

and equation (2.72), and must therefore be de�ned consistently at t<0>. Thus, some

root �nding algorithm and control routines must be added to the initialisation phase

of the simulation.

Let ρ
(1)
a be the density as calculated by rearranging the de�nition of ha, equa-

tion (4.10), and ρ
(2)
a be the density as calculated by the summation approximation

equation (2.72), i.e.

ρ(1)
a = ma

(
β

h
(1)
a

)ν
(4.13)

ρ(2)
a =

∑
b∈ξa

mbWab

(
H(2)

)
(4.14)

where H(2) = H
(
h

(2)
a , h

(2)
b

)
. Note that the smoothing length is quoted as H(2)

rather than h
(2)
a in equation (4.14) to generalise the routine (see Section 4.3 for

further details). Similarly, let h
(1)
a and h

(2)
a be the smoothing lengths found by

inversions of these de�nitions.

The objective, during the initialisation phase, must be that the pseudoparticle

properties conform to

ρ(1)
a − ρ(2)

a = 0

h(1)
a − h(2)

a = 0

One of these equations � typically the former as equation (4.14) may not be rear-

ranged to give h
(2)
a = h

(
ρ

(2)
a

)
, depending on the de�nition of H � forms the basis

of the root �nding algorithm. Most authors (Price and Monaghan, 2004b; Bonet

and Rodríguez-Paz, 2005; Price, 2012) quote use of the Raphson-Newton method,

though most root �nding algorithms will su�ce as there is little need for a partic-

ularly rapid approach as the routine only runs once, during the initialisation of the

plasma.
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4.2.3 Temporal Variation

Of the two new system properties, equations (4.2) and (4.3), the former is the easiest

to include into the original SP algorithms. At its simplest, when the properties

that the smoothing lengths are dependant on vary, the smoothing lengths must be

recalculated. Logically, this occurs just after the properties have been evolved by

whatever numerical integration technique is in use (see Section 3.4.1).

In the case of a physical property dependant ha, the rate of change in time

can be found analytically by taking the time derivative of the de�nition of ha.

The derivative can then be used simultaneously with the other rates of change to

evolve the system properties through numerical integration. Using equation (4.1)

for instance
dha
dt

=
dha
dρa

dρa
dt
≈ dha

dρa

[
dρa
dt

]
SP

(4.15)

and, specifying equation (4.10), equation (4.15) can be expanded to

dha
dt

=
[
− ha
νρa

]ρa∑
b∈ξa

mb

ρb
vjab∇

j
aWab(H)

 =
ha
ν

∑
b∈ξa

mb

ρb
vjba∇

j
aWab(H) (4.16)

assuming Ψ = 1 (see Section 2.2.6).

A numerically de�ned ha must be recalculated each step using formulae similar

to the procedure described in Section 4.2.1.2. Both methods introduce a limited

number of additional expressions to be computed.

4.2.4 Spatial Variation

A spatially variant h e�ects the algorithm through the smoothing function. Specif-

ically,

W = W (|rab|, H) = Wab(H) (4.17)

where, rather than a speci�ed smoothing length, H is used here to indicate that

the value is subject to a speci�c interpretation (see the discussion in Section 4.3).

In addition, ∇jW = ∇jaWab(H) = dWab(H)

drja
. However,

dWab(H)

drja
6= ∂Wab(H)

∂rja
(4.18)

as with constant smoothing length, but rather

dWab(H)

drja
=
∂Wab(H)

∂rja
+

dH

drja

∂Wab(H)
∂H

(4.19)
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By substituting the general form of the smoothing function, equation (2.25), the

partial derivative with respect to H can be rede�ned as

∂Wab(H)
∂H

=
∂

∂H

( σν
Hν

F (q)
)

=
σν
Hν

∂F (q)
∂H

+ σνF (q)
∂H−ν

∂H

=
σν
Hν

∂q

∂H

∂F (q)
∂q

− νσνF (q)
Hν+1

= − σνq

Hν+1

∂F (q)
∂q

− νσνF (q)
Hν+1

= −|rab|
H

∂Wab(H)
∂r

− ν

H
Wab(H) (4.20)

where q = |rab|/H. Subsequently, by substituting equation (4.20) and a direction

derivative into equation (4.19),

∇jaWab(H) =
rjab
|rab|

∂Wab(H)
∂r

− dH

drja

(
|rab|
H

∂Wab(H)
∂r

+
ν

H
Wab(H)

)
(4.21)

This expression collapses to give

∇jaWab(H) =

(
rjab
|rab|

− |rab|
H

dH

drja

)
∂Wab(H)

∂r
− ν

H

dH

drja
Wab(H) (4.22)

Without specifying dH

drja
, which as an unknown gradient must include an SP

derivative approximation within its de�nition, ∇jaWab(H) is clearly more complex

than when calculated with constant smoothing length.

4.3 Multiple Interpretations

In order to appreciate the e�ect that the increase in complexity of W and ∇W
has on the implementation of an algorithm, the variation in interpretation of the

smoothing function under variable h conditions must be discussed. The general

forms considered here are the four most proli�c interpretations from SP literature

and a new derivative formalism. These constitute the basis of speci�c forms that

arise during the speci�c implementations of the method.
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4.3.1 Extreme Perspectives

First, consider the following interpretive question. When computing the value of

λa via an SP summation, equation (2.48), is the information drawn into the central

pseudoparticle, a, or donated by the surrounding pseudoparticles, b ∈ ξa? While

the smoothing length is constant, the answer is entirely arbitrary and the question

only exists as a conceptual subtlety. However, when the smoothing length is allowed

to vary, di�erent answers imply di�erent de�nitions of the smoothing function, W .

Speci�cally, if the information is drawn into the ath pseudoparticle the implied

smoothing length, for every smoothing function within the summation is H = ha.

Alternatively, if the information is donated by the set of neighbouring pseudoparti-

cles, b ∈ ξa 6= a, the implication is that Wab is a function of the smoothing length,

H = hb. These two answers represent the two fundamental, opposing perspectives,

de�ned by Hernquist and Katz (1989), as the Gather and Scatter interpretations.

The smoothing functions under these interpretations are, respectively,

Wab(H) = Wab(ha) (4.23)

and

Wab(H) = Wab(hb) (4.24)

Illustrated in Figures 4.1a and 4.1b.

4.3.2 Intermediate Perspectives

The conceptual question can be generalised to instead ask where, during the cal-

culation, does the information �ow? The former question (Section 4.3.1) must be

considered in order to form the logical bounds for the latter, that is the Gather and

Scatter interpretations. Thus it is reasonable to consider intermediate concepts,

where information is simultaneously drawn into and donated to the ath pseudopar-

ticle. It is logical to consider, speci�cally, that the information from each source

should be weighted equally. Alternatively, though both the Gather and Scatter

interpretations preserve the spherical symmetry of the smoothing function and its

derivative, the reversibility condition ∇W = −∇′W is violated (see Section 4.3.3.2).

As such, several authors have utilised numerical means. An additional complexity

of an intermediate interpretation is the form of the mean. Speci�cally, a mean

can be formed by averaging the smoothing lengths prior to the computation of the

smoothing function or vice-versa, by averaging the results of the Gather and Scatter

interpretations. For this discussion we label the pair of intermediate perspectives

(presented by Hernquist and Katz (1989); Monaghan (2005)) as the Merged in-
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terpretation, where H = hab = 1
2(ha + hb), and Average interpretation, which is

the mean of the Gather and Scattered smoothing functions. These interpretations

respectively dictate that the smoothing functions be formulated as

Wab(H) = Wab(hab) (4.25)

and

Wab(H) =
1
2

[Wab(ha) +Wab(hb)] = Wab(ha, hb) (4.26)

These approaches are illustrated in Figures 4.1c and 4.1d.

The distinction between the Merged and Average interpretations is important

as they are not equal, either numerically or conceptually. The latter, for instance,

preserves the spherical symmetry of each particles contribution, however the result-

ing interactions are not spherically symmetric. The Merged interpretation, on the

other hand, has no spherical symmetry at all. Unlike Gather and Scatter, both

mean interpretations preserve symmetry along the line-of-sight between each pair

of neighbouring particles.

4.3.3 Smoothing Function Derivative Interpretations

In the following sections of this document the derivatives of each perspective are

considered. These derivatives add further complexity to the construction of an

algorithm.

It is assumed here that

dhp
drjq

=
drjp
drjq

dhp
drjp

= δpq
dhp
drjp

(4.27)

which is consistant with the SP method as presented in Chapter 2, speci�cally

the derivation of the equation of motion (by solving the Euler-Lagrange equation

(2.131) or through variational principles) in Section 2.5.3.

It is also important to recall that the directional derivative form of the partial

derivative ∂Wab

∂rja
, equation (2.17). To reiterate,

∂Wab

∂rja
=
∂rab
∂rja

∂|rab|
∂rab

∂Wab

∂|rab|
=

rjab
|rab|

∂Wab

∂r
(4.28)

where, for simplicity of notation, r = |rab| in the �nal term.
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Figure 4.1: A graphic representation of the various interpretations of the
smoothing function derivative, ∇aWab. Represented in each image plane is the
same arrangement of pseudoparticles. The position of the particle of interest,
ra, is given by a �xed black star and the position of all other particles, rb (where
b ∈ ξa 6= a), given by a number of �xed black points. Also displayed as blue and
grey curves are, respectively, isolines at the same unspeci�ed value of ∇aWab

and the compact support domains, ωa and ωb, of each particle factored into
the particular interpretation. If ∇aWab = −∇bWba as required by Newton's
third law as well as the derivation of the SP derivative approximations and the
acceleration equation, the isolines would intersect at particular locations along
the lines of sight between each pseudoparticle pair a and b, given by the red
crosses. The image planes a) through d) represent, respectively, the Gather,
Scattered, Average and Merged interpretations. Image plane e) represents the
Re�ected Form, presented in detail in Section 4.3.4.
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4.3.3.1 General De�nitions

Consider the derivative smoothing functions of each implementation, by substituting

into equation (4.19) and/or equation (4.22). By far the simplest is Gather, formed

by direct substitution of H = ha, i.e.

∇jaWab(ha) =
∂Wab(ha)

∂rja
+

dha
drja

∂Wab(ha)
∂ha

=

(
rjab
|rab|

− |rab|
ha

dha
drja

)
∂Wab(ha)

∂r
− ν

ha

dha
drja

Wab(ha) (4.29)

Initially, Scattered appears equally simple, producing by substitution,

∇jaWab(hb) =
∂Wab(hb)

∂rja
+

dhb
drja

∂Wab(hb)
∂hb

=

(
rjab
|rab|

− |rab|
hb

dhb
drja

)
∂Wab(hb)

∂r
− ν

hb

dhb
drja

Wab(hb) (4.30)

However, given equation (4.27), equation (4.30) simpli�es to give

∇jaWab(hb) =

(
rjab
|rab|

− δab |rab|
hb

dhb
drjb

)
∂Wab(hb)

∂r
− δabν

hb

dhb
drjb

Wab(hb)

=
rjab
|rab|

∂Wab(hb)
∂r

− δabν

hb

dhb
drjb

Wab(hb) (4.31)

which should increase the complexity of the implementation, as the particle loops

would have to include the ath pseudoparticles e�ect on itself, if there is a non-zero

smoothing length gradient about it. For the standard SP summation approximation

(of some macroscopic variable, A), however, the e�ect of latter term can be ignored

as Aaa = Aa − Aa = 0 and thus the [aa]th term of the summation cannot be

non-zero no matter what de�nition the derivative takes when a = b. And, given the

derivation of the equation of motion follows from the de�nition of the SP summation

approximation, the latter term can be ignored completely. Therefore,

∇jaWab(hb) =
rjab
|rab|

∂Wab(hb)
∂r

(4.32)

which appears very similar to the original smoothing function derivative, equation

(2.17).

The derivative of the Merged perspectives follows a similar argument. Substi-
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tuting H = hab into equation (4.19) yields

∇jaWab(hab) =
∂Wab(hab)

∂rja
+

dhab
drja

∂Wab(hab)
∂hab

(4.33)

and, given equation (4.27), the smoothing length derivative expands by

dhab
drja

=
d

drja

[
1
2

(ha + hb)
]

=
1
2

(
dha
drja

+
dha
drjb

)
=

1
2

dha
drja

(
1 + δab

)
(4.34)

to give equation (4.35),

∇jaWab(hab) =
∂Wab(hab)

∂rja
+

1
2

dha
drja

(
1 + δab

) ∂Wab(hab)
∂hab

(4.35)

Repeating the implementation argument, and expanding by equation (4.22), the

Merged derivative simpli�es to give

∇jaWab(hab) =

(
rjab
|rab|

− |rab|
2hab

dha
drja

)
∂Wab(hab)

∂r
− ν

2hab

dha
drja

Wab(hab) (4.36)

Finally, the Average derivative is simultaneously simpler and more complex than

previous derivatives. Expanding,

∇jaWab(ha, hb) = ∇ja
{

1
2

[Wab(ha) +Wab(hb)]
}

=
1
2
[
∇jaWab(ha) +∇jaWab(hb)

]
(4.37)

That is, the Average derivative is the mean average of the Gather and Scattered

derivatives. Therefore,

∇jaWab(ha, hb) =
1
2

[
∂Wab(ha)

∂rja
+

dha
drja

∂Wab(ha)
∂ha

+
∂Wab(hb)

∂rja

]
(4.38)

which collapses to give,

∇jaWab(ha, hb) =
∂

∂rja
Wab(ha, hb) +

1
2

dha
drja

∂Wab(ha)
∂ha

(4.39)
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or the expanded form,

∇jaWab(ha, hb) =
1
2

[(
rjab
|rab|

− |rab|
ha

dha
drja

)
∂Wab(ha)

∂r

+
rjab
|rab|

∂Wab(hb)
∂r

− ν

ha

dha
drja

Wab(ha)

] (4.40)

4.3.3.2 E�ect of Re�ective Constraint

Referring back to Chapter 2, if the derivation from �rst principles holds then,

∇jaWab(H) = −∇jbWba(H ′) (4.41)

becomes a constraint on the system, termed here the reversibility constraint, via the

derivation of the SP derivative approximations (Section 2.2.6), and again through

the derivation of the SP equation of motion (2.140) (Section 2.5.3). It is not clear,

however, that equation (4.41) is required by the derivation from density approxima-

tion (Section 2.3).

Consider the derivation of ∂ρb
∂rja

(Price and Monaghan, 2004b). Given the de�ni-

tion of density, assuming the Gather interpretation,

ρb =
∑
c∈ξb

mcWbc(hb) (4.42)

the �rst step in the derivation is to state that,

∂ρb

∂rja
=

∂

∂rja

∑
c∈ξb

mcWbc(hb) =
∑
c∈ξb

mc
∂Wbc(hb)

∂rja
(4.43)

Now, assuming the smoothing length is some function of the mass density, e.g.

equation (4.10), leads to the de�nition

∂ρb

∂rja
=

1
Ωb

∑
c∈ξb

mc
rjbc
|rbc|

∂Wbc(hb)
∂r

(
δba − δca

)
(4.44)

where

Ωa = 1− ∂ha
∂ρa

∑
b∈ξa

mc
∂Wab(ha)
∂ha

(4.45)

However, the �rst statement (4.43) assumes that the masses are sample data,
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rather than variables and therefore the derivative cannot be given by

∂ρb

∂rja
=
∑
c∈ξb

∂

∂rja
(mcWbc(hb)) =

∑
c∈ξb

mc
∂Wbc(hb)

∂rja
+Wbc(hb)

∂mc

∂rja
(4.46)

but there is no proof of that assumption. In order for equation (4.46) to collapse to

equation (4.43), the latter term must be equal to zero, and since W 6= 0 if |rab| < κ,

∂mb

∂rja
≡ 0 (4.47)

Though, assuming the mass conforms to a Kronecker delta interpretation, similar

to equation (4.27),
∂mb

∂rja
= δab

∂ma

∂rja
(4.48)

and therefore, equation (4.46) reduces to

∂ρb

∂rja
=
∑
c∈ξb

mc
∂Wbc(hb)

∂rja
+ δabWac(ha)

∂ma

∂rja
(4.49)

which is clearly not equal to the initial statement.

To prove the validity of the statement (4.43), it must be necessary to cause the

summation to revert back to the integral form and follow the derivation of the SP

derivatives. Thus, equation (4.41) exists for both derivations as the reversibility

constraint. However, for each of the interpretations in the previous Section 4.3.3.1,

the constraint does not hold.

For instance, consider the simplest interpretation, the Scattered perspective. In

order for equation (4.41) to hold, ha ≡ hb. For a model with variable smoothing

length, where max(h)−min(h) 6= 0, this is impossible. The more complex perspec-

tives would require that ha ≡ hb and dha
drja
≡ −dhb

drjb
, or that all the variables involved

(the smoothing lengths, particle con�guration, the scale of particle separation, etc.)

exist in perfect balance at all times, t<n> =
∑n−1

m=0 δ
<m>
t . All of these conditions

are very unlikely to be possible. Even if the initial conditions (at t<0> = 0) could be
prescribed such that the constraint holds, there is no constraint within the dynam-

ics equations that would ensure a valid solution at t<1> = δ<0>
t . This qualitative

argument occurs in quantitative form in Vila (1999), and accounts for the �rst of

the 'problems' identi�ed in Section 3.1 of that document.

In addition, without the re�ective constraint enforcing Newtons third law, the

applicability of the algorithm must come into question. There exists, also, a numer-

ical facet to this problem. Speci�cally, it must become possible that, of a pair of
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pseudoparticles a and b, ∇jaWab = 0 while ∇jbWba 6= 0. And thus a more accurate

formulation must be required.

4.3.4 Revised Derivative (Re�ected) Formulation

Given that each of the previous perspectives fails to formally ensure the reversibil-

ity constraint, proposed here is a revised formulation. This new derivative resulting

from my research, is termed the re�ective form � so named as it averages the out-

going derivative value from a to b with the incoming value from b to a is de�ned

by

∇jabWab =
1
2

[
∇jaWab −∇jbWba

]
(4.50)

Note the negative used here. It must be negative to reverse the image of the kernel

derivative created from b to a.

Clearly, this form guarantees that the reversibility condition is applied consis-

tently, given

∇jabWab = −∇jbaWba

1
2

[
∇jaWab −∇jbWba

]
= −1

2

[
∇jbWba −∇jaWab

]
∇jaWab −∇jbWba = −

[
∇jbWba −∇jaWab

]
����∇jaWab −�

���∇jbWba = −
�

���∇jbWba +����∇jaWab

Of considerable note is that this holds for any de�nition of the smoothing func-

tion; gather, scattered, average and merged. Recalling

∇jaWab(H) = r̂jab
∂Wab(H)

∂r
+

dH

drja

∂Wab(H)
∂H

(4.51)

and
dhp
drjq

= δpq
dhp
drjp

(4.52)

under each de�nition the derivative becomes;
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Gather:

∇jabWab =
1
2

[
∇jaWab(ha)−∇jbWab(hb)

]
=

1
2

[
r̂jab

∂Wab(ha)
∂r

+
dha
drja

∂Wab(ha)
∂ha

− r̂jba
∂Wba(hb)

∂r
− dhb

drjb

∂Wba(hb)
∂hb

]

=
r̂jab
2

[
∂Wab(ha)

∂r
+
∂Wab(hb)

∂r

]
+

1
2

[
dha
drja

∂Wab(ha)
∂ha

− dhb
drjb

∂Wab(hb)
∂hb

]

=r̂jab
∂Wab(ha, hb)

∂r
+

1
2

[
dha
drja

∂Wab(ha)
∂ha

− dhb
drjb

∂Wab(hb)
∂hb

]
(4.53)

Scattered:

∇jabWab =
1
2

[
∇jaWab(hb)−∇jbWab(ha)

]
=

1
2

[
r̂jab

∂Wab(hb)
∂r

+
dhb
drja

∂Wab(hb)
∂hb

− r̂jba
∂Wba(ha)

∂r
− dha

drjb

∂Wba(ha)
∂ha

]

=r̂jab
∂Wab(ha, hb)

∂r
+
[
δab

∂Wab(hb)
∂hb

− δab∂Wab(ha)
∂ha

]
=r̂jab

∂Wab(ha, hb)
∂r

(4.54)

Average:

∇jabWab =
1
2

[
∇jaWab(ha, hb)−∇jbWab(hb, ha)

]
=

1
2

{
1
2
[
∇jaWab(ha) +∇jaWab(hb)

]
− 1

2

[
∇jbWba(hb) +∇jbWba(ha)

]}
=

1
4

[
r̂jab

∂Wab(ha)
∂r

+
dha
drja

∂Wab(ha)
∂ha

+ r̂jab
∂Wab(hb)

∂r
+

dhb
drja

∂Wab(hb)
∂hb

−r̂jba
∂Wba(hb)

∂r
− dhb

drjb

∂Wba(hb)
∂hb

− r̂jba
∂Wba(ha)

∂r
− dha

drjb

∂Wba(ha)
∂ha

]

=
r̂jab
4

[
2
∂Wab(ha)

∂r
+ 2

∂Wab(hb)
∂r

]
+

1
4

dha
drja

(1− δab)∂Wab(ha)
∂ha

− 1
4

dhb
drjb

(1− δab)∂Wab(hb)
∂hb

=r̂jab
∂Wab(ha, hb)

∂r
+

1
4

[
dha
drja

∂Wab(ha)
∂ha

− dhb
drjb

∂Wab(hb)
∂hb

]
(4.55)
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Merged:

∇jabWab =
1
2

[
∇jaWab(hab)−∇jbWab(hab)

]
=

1
2

[
r̂jab

∂Wab(hab)
∂r

+
dhab
drja

∂Wab(hab)
∂hab

− r̂jba
∂Wba(hab)

∂r
− dhab

drjb

∂Wba(hab)
∂hab

]

=r̂jab
∂Wab(hab)

∂r
+

[
dhab
drja

− dhab
drjb

]
∂Wab(hab)
∂hab

=r̂jab
∂Wab(hab)

∂r
+

{
1
2

[
dha
drja

+
dhb
drja

]
− 1

2

[
dha
drjb

+
dhb
drjb

]}
∂Wab(hab)
∂hab

=r̂jab
∂Wab(hab)

∂r
+

1
4

[
dha
drja
− dhb

drjb

]
∂Wab(hab)
∂hab

(4.56)

Where (1− δab) is implicit in each term. Of particular note are the similarities

between the all of the formulae. In fact, each of these gather, scattered and average

derivatives could be expressed as

∇jabWab = r̂jab
∂Wab(ha, hb)

∂r
+ β

[
dha
drja

∂Wab(ha)
∂ha

− dhb
drjb

∂Wab(hb)
∂hb

]
(4.57)

where β if given as 1
2 , 0 and 1

4 for the gather, scattered and average perspectives,

respectively. The only reason the re�ected merged derivative has a slightly di�erent

de�nition is the interaction of the two smoothing lengths prior to the derivation � a

phenomena that occurs during the de�nition of the other derivatives. In addition,

note the relative simplicity of the re�ected scattered derivative. It avoids the need to

de�ne/derive/approximate the smoothing lengths gradients and, as such, has a far

simpler implementation. Also, in simulations with smoothly varying h the di�erence

in gradient,
dha
drja
− dhb

drjb
(4.58)

for most [ab] values is likely to be very small, and thus the other re�ected derivatives
approximate the re�ected scattered derivative.

For every other de�nition, a form must be found for the gradient of the smooth-

ing length. As a dynamically varying pseudoparticle property, a de�nite form cannot

be substituted into the formula and, instead, an approximation is required. Assum-

ing no speci�c de�nition of the smoothing length, the simplest approach is a SP

approximation, i.e.

dhp
drjp

=
Np∑
c=1

mc

ρc
hcp∇jpcWpc (4.59)
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where hcp = hc − hp in the standard way. When substituted back into any of each

of equation (4.53), equation (4.55) and equation (4.56), the re�ected derivative for

some speci�c [ab] pair is de�ned as a function of itself and the derivatives formed

between other pairs of pseudoparticles. Thus each must represent large sets of

simultaneous equations (an equation for each a = 1..Np; b = 1..Np) and, therefore,

the implementation of such a scheme must be relatively involved.

4.3.5 Implementation of Re�ected Formulation

The re�ective derivative form introduces a new system of equations to solve. For

a = 1..Np and b = 1..Np, there exists a system of unknowns, ∇abWab(H), con�ned
by

r̂jab
∂W

∂r

(
1− δab

)
= ∇jabWab + β

(
∂Wa

∂h

Np∑
c=1

mc

ρc
hac∇jacWac

−∂Wb

∂h

Np∑
c=1

mc

ρc
hbc∇jbcWbc

)(
1− δab

) (4.60)

This system is representative of a generalised form of the re�ected gather, average

and merged derivatives. The re�ected scattered derivative has been omitted as it

does not produce a set simultaneous equations and therefore most of the follow-

ing arguments do not apply. Aside from some minor rearrangement, the previous

implicit (1− δab)'s have been made explicit and the notation simpli�ed such that

∂W

∂r
=

{
∂Wab(ha,hb)

∂r for gather & average
∂Wab(hab)

∂r for merged
(4.61)

For the gather and average de�nitions

∂Wa

∂h
=
∂Wab(ha)
∂ha

(4.62)

and
∂Wb

∂h
=
∂Wab(hb)
∂hb

(4.63)

In the case of the merged de�nition,

∂Wa

∂h
=
∂Wb

∂h
=
∂Wab(hab)
∂hab

(4.64)
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Also note,

β =

{
1
2 for gather
1
4 for average & merged

(4.65)

In order to solve this system of simultaneous equations, it must be compressed

into a form that resembles

Aijxj = bi (4.66)

This can be achieved if the Np × Np matrix components, ∇abWab(H), ∂W
∂r ,

∂Wa
∂h

and ∂Wb
∂h are forced into vectors by dictating that the kth element of the vector is

related to the [ab]th element of the original matrix by

k = k(a, b) = (a− 1)Np + b (4.67)

It is worth noting that each k identi�es a unique interaction (pair of a and b).

Explicitly, the terms of equation (4.66) are given by

xj[=k(p,q)] = ∇jpqWpq (4.68)

bi[=k(a,b)] = r̂jab
∂W

∂r
(4.69)

and

Ai[=k(a,b)]j[=k(p,q)] =


1 + β ∂Wa

∂h Vbhab if p = a ∧ q = b ∧ p 6= q

β ∂Wa
∂h Vchac if p = a ∧ q = c 6= b ∧ p 6= q

−β ∂Wb
∂h Vchbc if p = b ∧ q = c ∧ p 6= q

0 otherwise

(4.70)

where V = m
ρ and ∧ is a logical and.

This produces a system of N2
p unknowns, vector xj , related by N4

p coe�cients,

in matrix Aij , and N
2
p , in vector bi. The unit memory required to store, rather than

solve, this system is N4
p + 2N2

p . Clearly, an attempt to solve this system, as it is,

requires even more memory and a signi�cant amount of computational time. Both

need reducing as much as possible.

The equation o�ers several opportunities for such reductions. The simplest, and

most obvious, come from the Kronecker deltas in equation (4.60). Namely, that

∇jabWab = ∇jaaWaa = 0 if a = b (4.71)
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and thus the system of equations reduce to

r̂jab
∂W

∂r
= ∇jabWab+β

∂Wa

∂h

Np∑
c=1
c 6=a

mc

ρc
hac∇jacWac −

∂Wb

∂h

Np∑
c=1
c 6=b

mc

ρc
hbc∇jbcWbc

 (4.72)

over a = 1..Np; b = 1..Np 6= a. Note that equation (4.71) is implicit in the original

de�nition of equation (2.18) as

∇jabWab = −∇jbaWba (4.73)

and thus 2∇jaaWaa = 0.

In addition, given equation (4.50), solutions are only required for the upper

triangle of elements within the ∇jabWab matrix. This manifests itself in the system

of equations as, for any ∇jpqWpq, p < q and thus

r̂jab
∂W

∂r
=
[
1 + βhab

(
mb

ρb

∂Wa

∂h
− ma

ρa

∂Wb

∂h

)]
∇jabWab

+β

∂Wa

∂h

− a−1∑
c=1

mc

ρc
hac∇jcaWca +

Np∑
c=a+1
c6=b

mc

ρc
hac∇jacWac


+
∂Wb

∂h

b−1∑
c=1
c6=a

mc

ρc
hbc∇jcbWcb −

Np∑
c=b+1

mc

ρc
hbc∇jbcWbc




(4.74)

for a = 1..(Np − 1); b = (a + 1)..Np. Note also, that the [ab]th terms have been

collected together.

Once again, if the matrices are compressed into vectors, this equation is still

similar to equation (4.66). For the [ab]th element of some matrix, the position in

the vector (or row or column of Aij), k, is computed by

k = k(a, b) = (a− 1)Np + b− a− a(a− 1)
2

= (a− 1)Np + b− a(a+ 1)
2

(4.75)

For this con�guration of the system, the number of unknowns is given by
Np(Np−1)

2 ,

the number of elements of Aij is given by
(
Np(Np−1)

2

)2
and the unit storage memory

is [(
Np − 1

2

)2

+ 1

]
N2
p −N (4.76)
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Further reductions follow from the set of equations. Consider that for each

row of the matrix of coe�cients Aij (ie. NOT each unknown) there are a total

of 1
2Np(Np − 1) elements but the summations of equation (4.74) only encounter a

subset of those. That is the only required coe�cients of Aij , where i = k(a, b), are
those where

j = i = k(a, b) (4.77)

or

j =

{
k(a, c) if a < c

k(c, a) if c < a
(4.78)

or

j =

{
k(b, c) if b < c

k(c, b) if c < b
(4.79)

over a = 1..(Np−1); b = (a+1)..Np and c = 1..Np 6= a 6= b. Thus, the number of c

values is (Np− 2) and the number of non-existent elements, on a row of T = T (Np)
elements is given by T (Np − 2). For the system described in equation (4.74),

T (n) =
n(n− 1)

2
(4.80)

and the number of existing elements per row is given by

E(Np) = T (Np)− T (Np − 2) = 2Np − 3

= 1 +
a−1∑
c=1

1 +
Np∑

c=a+1
c 6=b

1 +
b−1∑
c=1
c 6=a

1 +
Np∑

c=b+1

1


(4.81)

Re-compressing the system of equations, the total number of coe�cients from the

previous matrix Aij in the new E(Np)× T (Np) matrix of existing coe�cients, Ãij ,

is

E(Np)T (Np) = (2Np − 3)
(
Np(Np − 1)

2

)
= N3

p −
5
3
N2
p +

3
2
Np (4.82)

This compression is clearly complex, but still deterministic so that functions could

be written that relate elements in the compressed vectors and matrices to the original

compression, and therefore the originals in equation (4.74). The positions in vectors

xj and bi, and the rows, i, in Ãij are still given by equation (4.75). However, the

positions in the columns, j, of Ãij are wholly more complex, being some complex

stepwise function of a, b and i. It is simpler to, instead, store the values themselves

in a second E(Np)× T (Np) matrix, k̃ij . Therefore, the unit storage memory, U , is
in the range

Np

2
(N2

p − 3Np + 1) ≤ U ≤ 2Np(Np − 1)2 (4.83)
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Con�guration Number of Interactions/Unknowns

1D NI,1 = Nx

2D
Cubic NI,2c = 4NxNy

Hexagonal NI,2h = 3NxNy

3D
Cubic NI,3c = 9NxNyNz

HCP NI,3h = 8NxNyNz

Table 4.1: Formulae de�ning the number of interactions (and therefore the
number of unknowns), NI , for various particle con�gurations assuming pe-
riodic boundaries. HCP (Hexagonal Close Packing) � repeating layers of 2-
Dimensional Hexagonal con�gurations stacked ABABAB, where B is A with
some x and y o�set. Also, Np = NxNyNz where Nz = 1 if ν < 3 and Ny = 1 if
ν = 1, otherwise Nx, Ny, Nz > 2. In addition, for Heptagonal and HCP either
Nx or Ny must be even, and in the case of the later Nz must be even. All
expressions are computed assuming κ ≈ 2h and h ≈ 4

5
∆p.

where the lower limit is for a fully determined implementation and the upper with

the addition of a matrix k̃ij .

Even though the remaining elements exist, they may still, and are likely to, be

zero as the compact support of the smoothing function forces the derivatives ∂Wab

∂rja

and ∂Wab
∂H to zero. This not only reduces the number of coe�cients but also reduces

the number of unknowns as the equations (4.74) collapse to ∇pqWpq = 0 for many

of the possible pairs of p and q in a = 1..(Np−1); b = (a+1)..Np. These derivatives

have become known and can be removed from xj along with the jth column of Aij

(note not Ãij).

If the compression is performed the number of unknowns reduces to the number

of non-zero unknowns from the upper triangle of matrix ∇abWab, which is equal to

the number of unique, non-zero particle interactions, NI . For example �gures see

Table 4.1 and Table 4.2. Also, the number of elements in Aij would be N2
I .

However many of the values in Aij would be zero as the non-zero interactions

of one particle will not e�ect most of the other particles. So instead, the number

of elements per row is far less, and the total number of elements is signi�cantly

reduced. See Table 4.3.
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Con�guration Number of Interactions/Unknowns

1D NI,1 = Nx − 1

2D
Cubic NI,2c = (Ny − 1)[4(Nx − 2) + 5] +Nx − 1

Hexagonal NI,2h = (Ny − 1)[3(Nx − 1) + 1] +Nx − 1

3D
Cubic

NI,3c = (Nz − 1){NxNy + 2[Ny(Nx − 1)
+Nx(Ny − 1)]}+NzNI,2c

HCP
NI,3h = (Nz − 1){Nx + 2(Nx − 1)[3(Ny − 2) + 4]

+(Ny − 1)[3(Nx − 1) + 2]}+NzNI,3h

Table 4.2: Formulae de�ning the number of interactions (and therefore the
number of unknowns), NI , for various particle con�gurations assuming non-
periodic boundaries. HCP (Hexagonal Close Packing) � repeating layers of
2-Dimensional Hexagonal con�gurations stacked ABABAB, where B is A with
some x and y o�set. Also, Np = NxNyNz where Nz = 1 if ν < 3 and Ny = 1
if ν = 1, otherwise Nx, Ny, Nz > 2. All expressions are computed assuming
κ ≈ 2h and h ≈ 4

5
∆p.

r̂jab
∂W

∂r
=
[
1 + βhab

(
mb

ρb

∂Wa

∂h
− ma

ρa

∂Wb

∂h

)]
∇jabWab

+β

∂Wa

∂h

−
∑
c∈ξa
c<a

mc

ρc
hac∇jcaWca +

∑
c∈ξa
c>a
c6=b

mc

ρc
hac∇jacWac



+
∂Wb

∂h


∑
c∈ξa
c<b
c6=a

mc

ρc
hbc∇jcbWcb −

∑
c∈ξa
c>b

mc

ρc
hbc∇jbcWbc




(4.84)

for a = 1..(Np − 1); b = (a+ 1)..Np.

It should be noted that, prior to this reduction strategy, the size of each array

was deterministic. As such arrays could be prede�ned in the code. In addition, the

indices de�ning each element related � by some regular expression � to speci�c in-

dices in the original equations (4.60). That is, the values held in the ith, jth and [ij]th

elements of equation (4.66) (b, x and A, respectively) relate to the [ab]th, [ac]th or

[bc]th terms/variables in equations (4.60). However, now that the size of the arrays

has been made a function of a dynamic system property, the pseudoparticle interac-

tions, both the size and relationship between indices cannot be predetermined. It is

therefore necessary to store not only the information held by each element, but the
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Con�guration |Na| |A| (periodic) |A| (non-periodic)
1D 2 2Np 2(Np − 1)

2D
Cubic 8 32Np 24− 8Np − 11(Nx +Ny)

Hexagonal 6 18Np 6Np − 4(Nx +Ny) + 2

3D
Cubic 18 162Np

18Np + 4(Nx +Ny +Nz)
−10(NxNy +NxNz +NyNz)

HCP 18 144Np �

Table 4.3: The typical number of neighbours (excluding the particle of in-
terest), |Na| − 1, and formulae detailing the approximate number of non-zero
coe�cients in array Aij , |A|, as a function of the particle con�gurations listed
in Tables 4.1 and 4.2. The �nal entry under 3D HCP � |A| (non-periodic) �
is missing as its form �uctuates in tandem with the Nx, Ny and Nz values.
Speci�cally, the form is a function of the divisibility of each by the lowest three
primes (1, 2 and 3). As with Tables 4.1 and 4.2, all expressions assume that
κ ≈ 2h and h ≈ 4

5
∆p.

i and/or j values as well. Though i and j (in A) could be combined to form k by

k = (i− 1)NI + j (4.85)

Any information about known xj need not be stored as, to be known at his point,

they must be zero.

No further reductions are possible from the general equations. If there are other

possible simpli�cations, they will come from the speci�c variable quantities gen-

erated during a simulation. For instance, if (assuming the merged de�nition of

smoothing function)
∂Wpq

∂h = 0 for some speci�c pseudoparticle pair p and q, then

the [pq]th equation would reduce to

∇jpqWpq = r̂jpq
∂Wpq

∂r
(4.86)

and therefore the kth (as a function of p and q) unknown, xk, has become a known!

Thus the kth column of A may be removed, provided that the vector b is rewritten

such that

[bi]new = [bi]old −Aikxk (4.87)

Alternatively, all the h values in the neighbourhood of some particle of interest

may be equal, and therefore

ha = hb = hc (4.88)

for all indices encountered by equations (4.84). Once again, xk has become known
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and the set of equations may be simpli�ed following a similar rewriting of b.

It is also possible that, after all of these types of e�ect have been taken into

account, some other [pq]th equation may have been simpli�ed to the point where only
one unknown remains, ∇jpqWpq. The [pq]th equation may now be solved externally

of the simultaneous equation solving routine. In such a way � if these considerations

are applied � an algorithm could be applied recursively until all possible knowns are

found.

These simulation-speci�c speci�c routines have the potential to reduce the mem-

ory required at the cost of some amount of computation. Whether the bene�ts of

the reduced memory requirements (and hence reduced computation within what-

ever method is utilised to solve the remaining system of simultaneous equations)

out-weigh the impediments of increased computation is entirely dependant on the

dynamics of the system. It is certainly unlikely that the variables will adhere to

similar, stable values throughout an entire simulation and there will be no knowns

to identify, making the identifying routines super�uous. Whether to include these

modi�cations must depend on speci�c models and implementations.

Assuming nothing about the application of the model, in order to solve the sys-

tem of equations (4.84), some numerical scheme must be included. Though explicit

method exist to invert A and, hence, solve the system of equations (e.g. LUP decom-

position) it is more practical to implement some iterative technique better suited

to sparse matrices. In addition, iterative methods also allow for easier optimisation

for speci�c problems. Many such algorithms exist (see Table 4.4).

Iterative methods follow from the following argument. Some equation (4.66),

Ax = b, may be expressed as

Qx = (Q−A)x+ b (4.89)

where Q is the splitting matrix, and an iterative process is formed by rearranging

and de�ning

x<k> = Q−1[(I −A)x<k−1> + b] = (I −Q−1A)x<k−1> +Q−1b (4.90)

Q is usually chosen such that it simpli�es a problem and/or ensures convergence. It

can be shown (Kincaid and Cheney, 2002) that equation (4.90) will always converge

to the true solution if ‖I−Q−1A‖ < 1. Therefore, any implementation of a numerical
solution to equation (4.84) must be written such that it holds to this condition.

Given the relatively high memory requirements of the method, the Gauss-Seidel

algorithm was chosen as it is simple but does not involve remembering and old,
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Method Q G
Richardson I A− I
Jacobi D D−1(CL + CU )

Gauss-Seidel D − CL (D − CL)−1CU
SOR ω−1(D − ωCL) (D − ωCL)−1(ωCU + (1− ω)D)

And so on, with increasing complexity...

Table 4.4: Description of simple iterative methods for solving simultaneous
equations. These are more complex schemes beyond this, most notably, sym-
metric successive over relaxation (SSOR) method � which introduces a half-step

x<k−
1
2> to each estimation. Here, D = diag(A), CL and CU are the strictly

lower and upper parts of A, respectively, 0 ≤ ω ≤ 2 is some weighting factor
and Q is the splitting matrix. G is de�ned by x<k> = Gx<k−1> + c and is,
therefore, usually de�ned by G = I −Q−1A. Note that ‖G‖ < 1.

x<k−1> and new, x<k>, versions of the vector of unknowns. The Gauss-Seidel

algorithm is reasonably common, however the inclusion of this method within the

SP model is novel and requires some discussion.

At its most basic, the implementation discussed here replaces the Compute
dA<3−s>

a
dt as previously described (Section 3.5.1) with a new version that breaks

down into the following four general steps;

i) Identify the unknowns
(
∇jabWab

)
,

ii) Compute the arrays required by the Gauss-Seidel routine

iii) Solve for ∇jabWab (run the Gauss-Seidel routine), and

iv) Calculate dA<3−s>
a
dt

An unknown exists for every unique, non-zero pseudoparticle interaction (pair [ab]),
therefore identi�cation of the unknowns merely requires identi�cation of these pseu-

doparticle pair. This is done in exactly the same way as Figure 3.10, whereby a

sweep is conducted over all possible pairs limited by some measure of optimisation

(the bucket sort algorithm), and |rab| is computed and tested. If the conditions

prove favourable, the routine makes it to the node marked as χ and a pair has been

identi�ed. For greater e�ciency later, all components of the calculation that are a

function of distance are also calculated and stored, including the vector bi for the

Gauss-Seidel routine.

Subsequently, the remaining variables required by the Gauss-Seidel routine must

be computed. This task is in itself quite complex as the algorithm has been optimised

to reduce the memory constraints as far as possible. Consider the compression in

isolation. It is achieved by compressing some sparse matrix Aij into three vectors;
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Compute
dA<3−s>

a
dt

s value

j = 1

List all interacting

pseudoparticle pairs [ab]
Compute bi

First

pair [ab]

For each term of summations in equation

(4.84) which is function of an interacting

pseudoparticle pair, Compute Ãij and kj

Next pair Last pair?

Gauss-Seidel

Routine

First

pair [ab]

h
dA<3−s>

a
dt

i
new

=
h

dA<3−s>
a
dt

i
old

+
h

dA<3−s>
a
dt

i
b»

dA<3−s>
b
dt

–
new

=

»
dA<3−s>

b
dt

–
old

+

»
dA<3−s>

b
dt

–
a

Next pair Last pair?

j = ν?add 1 to j

Update Variables

no

yes

no

yes

no

yes

Figure 4.2: A generalised code structure diagram showing the routine imple-
menting the re�ected formulation of the smoothing function derivative. The
red nodes present summaries of signi�cantly more complex routines. The green
node, Gauss-Seidel Routine, encapsulates the Gauss-Seidel algorithm as de-
scribed in Section 4.3.5.
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the non-zero values sit in a vector Ãk, of length Nk; the original j values sit in the

equivalent position in a vector of equal size, Lk; and, the �nal vector, Γi, stores the
number of non-zero values per row, and is therefore of length Ni (the number of

unknowns). For example,

A =



a11 a12 0 a14 0 0
a21 a22 0 0 a25 a26

a31 0 a33 a34 0 a36

a41 a42 a43 a44 a45 0
0 0 0 a54 a55 0
a61 0 a63 a64 0 a66


(4.91)

is transformed to become

Ã =



a11

a12

a14

a21

a25

a22

a26

a31

a36

a34

a33

a41

a42

a43

a44

a45

a55

a54

a61

a63

a66

a64



& L =



1
2
4
1
5
2
6
1
6
4
3
1
2
3
4
5
5
4
1
3
6
4



& Γ =



3
4
4
5
2
4


(4.92)

where Γi is the number of non-zero values on the ith row of A. Ã stores the non-

zeros from each row in no particular order, however, the block of non-zeros from
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the ith row of A (the ith block) follows the (i − 1)th and precedes the (i + 1)th

blocks. To be clear, Lc holds the column, j, in A where the non-zero value Ãc

occurs. In addition, the ith component of b and and row of A are divided by Aii.

The subsequent optimised Gauss-Seidel algorithm is given by

input Ni, Nk, Ã, L, Γ, b
x = b

start ∞ loop

u = x

c = 0
for i = 1 .. Ni; do

s = 0
for j = 1 .. Γi; do

if c = c+ 1
s = s+ ÃcxLc

end j

xi = bi − s+ xi

end i

if (|x− u| < tolerance); end ∞ loop

jump back to "start ∞ loop"

output x

Given that the compressed vectors required by this routine are populated by a

complex, multicomponent equations that is itself compressed, it is clear that the

implementations of this step is not simple. In general terms, the procedure loops

through the previously identi�ed pseudoparticle pairs, then through all those indi-

cated by the summations in equation (4.84). For each pair that has been shown to

interact, the appropriate terms in each of the four vectors (Ã, L,Γ, b) are calculated.
Once complete, all of this information is fed into Gauss-Seidel routine. One �nal

pass over the interacting pseudoparticle pairs to calculate the rates of change, and

the revised computation is complete.

Clearly, this procedure is complex, relative to the standard SP implementation,

and also quite unwieldy. Further work is required to either signi�cantly reduce the

computational weight (both in run time and memory), or justify the inconsistency

making the re�ective constraint necessary.
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4.4 Numerical Artifact Flow

Consider the visualisation of the results from a Hydrodynamic SP algorithm built

with variable smoothing length, given by equation (4.10). Speci�cally, the mag-

nitude of velocity, |v|, in a 2-Dimensional domain at some arbitrary time, t > 0,
shown in Figure 4.3. The simulations initial conditions were simple. For a regular

distribution of pseudoparticles (|rab| ≡ ∆), a smoothed discontinuity in density at

x0 = 0 was created, in the standard way (Monaghan, 2005), in the x-axis by

ρ<0>
a =

ρL + ρRe
(x<0>
a −x0)/∆

1 + e(x
<0>
a −x0)/∆

(4.93)

where (for general cases)

∆ =

{
∆L if x<0>

a < x0

∆R if x<0>
a > x0

(4.94)

and variables with subscript L or R are the left and right states, either side of

the discontinuity, respectively. Note that there is no de�nition of ∆ at x<0>
a = x0

because, regardless of it's non-zero value, the exponentials in equation (4.93) return

a value of 1(= e0).

In addition the mass is held constant, v<0> = 0, and the initial pressure was

forced constant by de�ning the initial thermal energy such that

u<0>
a ∝ 1

ρ<0>
a

(4.95)

and also has, therefore, a similar though opposing discontinuity as in equation

(4.93).

There is also a Gaussian pressure pulse (with complementary density and thermal

energy pro�les) at the centre of the left-hand portion of the domain, coordinates{[
1
4(↑ x+ 3 ↓ x)

]
,
[

1
2(↑ y+ ↓ y)

]}
. This phenomena exists without relevance herein,

and remains as a reminent of the original intention of the simulation; to test the

ability of the SP algorithm to model acoustic wave refraction.

Referring to equation (2.81), the acceleration is a function of the stress gradient.

As the pressure is constant there is no stress gradient, and therefore there should

be no deviation from the initial velocity, i.e. v<n>a = v<0>
a = 0. However, as can be

clearly seen in the �gure, the velocity in non-zero along x = 0 (the discontinuity).

All the more troubling is the relative direction of the �ow � against the density

gradient. In essence the material is trying to �ow up hill. This phenomena is clearly

a non-physical, numerical artefact �ow.
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Figure 4.3: A plot of the magnetude of velocity, in 2-Dimensions, of a hy-
drodynamic SP test simulation (notice the gaussian pressure pulse that is su-
per�uous to the current discussion topic). The domain is split into two halves,
left and right of x=0. Each half has dissperate physical properties, but equal
pressure (and therefore no cause to accelerate accross the interface between
the two states). Clearly, however, there is motion accross the discontinuity.
This is source of the phenomenon identi�ed in this document as the Numerical
Artefact Flow.

In order to understand the source of this artefact, and therefore understand the

rami�cations of the artefact, consider initially a 1D system of identical pseudoparti-

cles being modelled using a standard, constant-h, SP algorithm. In such a system,

each pseudoparticle would be positioned equidistant from its neighbours and there-

fore the pseudoparticle subdomains, ω, will be equally embedded into each other,

given that |rab| = ∆ and h ∝ ∆. This is shown graphically in Figure 4.4 for ten

pseudoparticles, where the black points are the centres of each, ra, and the curves

show the extent of the kernels (the surface of each subdomain, s(ω)), assuming
κ = h. In reality κ > h, usually by a factor of 2, and has been reduced in Figure

4.4 and Figure 4.5 only for clarity.

Now consider a change to the system, such that ∂ρ
∂x = c, where c 6= 0, and de�ne

that
∂ρ

∂x
∝
(
∂u

∂x

)−1

(4.96)

such that ρu is constant. Under the original de�nition of h as a constant, there

is no change to the pseudoparticle arrangement in Figure 4.4. However, when the
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Figure 4.4: Representation of the initial conditions, constructed using original
SP theory, of ten pseudoparticles in a 1-dimensional simulation with or without
a positive density gradient (left to right). The only properties shown here are
the pseudoparticle positions (in black) and the furthest extents of the kernels
(in red).

Figure 4.5: Representation of the initial conditions, where the positions are
constructed using original SP theory and the smoothing lengths are de�ned us-
ing equation (4.10), of ten pseudoparticles in a 1-dimensional simulation where
there is a positive density gradient (left to right). The only properties shown
here are the pseudoparticle positions (in black) and the furthest extents of the
kernels (in red).

constant from is exchanged for equation (4.10), the smoothing function extents

change dramatically, see Figure 4.5. The pseudoparticles are now clearly unequally

embedded.

It is this unequal embedding that leads to the artefact. For the purposes of this

explanation, and given the initial identi�cation of the numerical artefact, consider

only the motion of the pseudoparticles as a function of the SP acceleration equation

(2.140). The motion of a single pseudoparticle, a, is given by considering the sum

of the line-of-sight stresses place upon it by the interplay with the pseudoparticles,

b, that are part of the set ξa � its neighbouring pseudoparticles, those within the

subdomain ωa � modi�ed by the relative distance between them, |rab|/H. The

imbalance in embedding, caused by the incorrect positioning, induces a non-physical

acceleration against the density gradient towards accurate positions.

It is worth noting that this �ow could be interpreted as the mis-initialisation of

the code, and that the simulation merely began, and subsequently remained, non-

physical. This is the essence of the argument to include a position relaxing algorithm

to any SP set-up codes (Price, 2008). However, there is no justi�cation for assuming
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this is the case, as unless the source of the artefact is investigated there could be

issues that the relaxation of position do not solve.

As we shall see, this is in fact the case.

4.4.1 Quanti�cation

In order to identify the source of the artefact, consider a system of pseudoparticles

with constant, non-zero stress throughout the domain, Sija = Sijb = Sij 6= 0. The

stress gradient, and therefore the acceleration, should be zero in such a system, i.e.[
∂Sija

∂rja

]
SP

=
∑
b∈ξa

mb

ρb

(
Sija + Sijb

)
∇abWab = 2Sij

∑
b∈ξa

mb

ρb
∇abWab = 0 (4.97)

Given that 2Sij 6= 0, for this relation to hold true,∑
b∈ξa

mb

ρb
∇abWab = 0 (4.98)

Price (2012) describes this additional term as an implicit re-meshing scheme

that exists to maintain some measure of order in the pseudoparticle arrangement.

However, it would be fallacious to assume without a rational or a proof that there

exists a solution to equation (4.98) for every system. Therefore a new relation must

be de�ned,

Ija =
∑
b∈ξa

Ijab =
∑
b∈ξa

mb

ρb
∇abWab (4.99)

This may be interpreted as the net interaction of particle a in the jth dimension,

where the direction of interaction between particles a and b is given by sgn
(
Ijab

)
and the magnitude of such interaction is given by

∣∣∣Ijab∣∣∣. Ija is a quantitative measure
of the numerical artefact. Ideally, there should be no net interaction (Ija = 0).

However, recall that equation (4.99) is found by assuming no variability in the

system stress, and that if this were the case that approximating the equations would

be super�uous as the system could be described analytically. In reality, the stress

could not be separated from the numerical artefact (where it exists). As a result of

this analysis though, it is clear that the artefact is a function of the relative interac-

tions of the pseudoparticles. This is of extreme importance as the interactions e�ect

every SP derivative approximation. Take, for example, the SP continuity equation

(2.112), induction equation (2.118) and equation of motion equation (2.140), which
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can be rewritten in terms of the interactions, Ijab, as

dρa
dt

= ρa
∑
b∈ξa

vjabI
j
ab (4.100)

dBi
a

dt
=
∑
b∈ξa

(
Bi
av
j
ab −B

j
av
i
ab

)
Ijab (4.101)

dvia
dt

=
1
ρa

∑
b∈ξa

(
Sija + Sijb

)
Ijab (4.102)

Proving that the numerical artefact not only e�ects motion, but also degrades the

quality of the magnetic �eld and the density.

4.4.2 Artifact in a 1-Dimensional Domain

For any 1D system of particles, assuming κ ≈ 2h and h ≈ 4
5∆p, a solution to

equation (4.99) exists such that δa = 0. This is simply argued. Consider that any

particle, p, in the system only interacts with the two particles either side of it,

(p− 1) and (p+ 1) and given that ∇ppWpp ≡ 0, the criterion (4.99) reduces to;

δp =
m(p−1)

ρ(p−1)
∇p,(p−1)Wp,(p−1) +

m(p+1)

ρ(p+1)
∇p,(p+1)Wp,(p+1) = 0 (4.103)

Thus, if ρ andm are prescribed or are de�ned by some smooth, physical function

of space, and the positions of two adjacent particles are sensibly prescribed, then

equation (4.103) can be solved to iteratively position the remaining particles such

that they are equally embedded. Consider, for example, that mass and density for

all particles are proscribed, and that the positions of a = p = 2 and a = (p− 1) = 1
are prescribed. Therefore the position of particle a = (p + 1) = 3 can be found by

solving;

m1

ρ1
∇21W21 +

m3

ρ3
∇13W13 = 0 (4.104)

using a root �nding algorithm where the unknown is r3. Subsequently, particle

a = 4 can be found by solving;

m2

ρ2
∇32W32 +

m4

ρ4
∇34W34 = 0 (4.105)

And so on, until the position of a = Np is found. For the ten particles discussed

above, this would look result in the positions in blue on Figure 4.6.
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Figure 4.6: Comparison of the initial conditions of the ten particles shown
in Figure 4.5, in red, and the corrected conditions calculated using a root-
�nding algorithm, in blue. Both are 1D systems with positive density gradient
(left to right). The black points indicate the particle positions, ra, and the
lines (red and blue, for incorrectly and correctly embedded particle conditions
respectively) show the furthest extents of the kernels.

4.4.3 Artifact in Multidimensional Domain

Multi-dimensional systems are altogether more complicated. The following argu-

ments, though only discussed in terms of 2D systems, apply to all multi-dimensional

applications of SP theory with variable smoothing lengths.

4.4.3.1 Underdetermined Systems

Assuming that, for some systems initial conditions, there is a solution to equation

(4.99) that ensures Ija = 0, it may still not be possible to discover the exact nature of
that solution as, unlike 1D systems, the number of unknowns in most con�gurations

will far outnumber knowns. The knowns take the form of the particle properties

that e�ect the amount of interaction (other than position) which, in combination,

equal the number of particles. While the unknowns are the vectors connecting each

particle to its neighbours. For a 2D system wherema and ρa are prescribed, consider

the approximate placement of the �rst three particles (Figure 4.7). Initially there

are an equal number of unknowns (blue lines representing the vectors) to knowns

(red dots representing the particles). However when a realistic number of particles

(to accurately model the system) are considered, the number of vectors far outstrips

the number of particles, see Figure 4.8. For explicit de�nitions for various simple,

regular con�gurations see Table 4.3. Quanti�cation of this behaviour is given in

Section 4.4.3.3.



116 Chapter 4. E�ect and E�ectiveness of Variable Smoothing Length

Figure 4.7: A graphic depicting the �rst three particles (red dots) in a hexag-
onal lattice and the three vectors (blue lines) connecting them.

Figure 4.8: A graphic depicting a space full of the particles (red dots) of
a hexagonal lattice and the vectors (blue lines) that connect them to their
neighbours. It should be noted that the number of vectors is much greater
than the number of particles, and that there are, therefore, more unknowns
to knowns in the system which infers that the true positions cannot be found
analytically.
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From this imbalance it is possible to infer that multi-dimensional simulations

are underdetermined systems (where there is no analytical solution to equation

(4.99)), and that only a numerical approach can be used to consistently solve for

the approximate con�guration of particles.

4.4.3.2 Restrictive Phenomena

There are further problems with multi-dimensional simulations induced by the arte-

fact �ow than just the impossibility of a general analytical solution. Not the least of

which is that for almost all multi-dimensional pseudoparticle con�gurations, equa-

tion (4.99) has no valid solutions (where Ija = 0). Even those, very rare, initial

conditions that do satisfy the no-net-interaction constraint are expected to become

invalid once the pseudoparticles set in motion. This can be simply argued.

There are two phenomena that restrict the arrangement of pseudoparticles to

non-zero net iteration con�gurations; the inhibition of deformation to prescribed

property geometries and the existence of impossible pseudoparticle clusters. Simu-

lations are constructed to model how speci�c situations evolve over time. Therefore

each system of pseudoparticles has some prescribed pattern of properties. Consider

seven pseudoparticles of a 2D system in which 0 < ∂ρ
∂x = const, ∂ρ

∂y = 0 and the

smoothing lengths are de�ned by equation (4.10). If the gradients are treated as

sacrosanct, the pseudoparticles must be placed equidistantly, as in Figure 4.9a. How-

ever, these pseudoparticles are clearly unequally embedded and, therefore, Ija 6= 0.
If the pseudoparticles can be arranged in space so that they are equally embedded,

the geometry of the system su�ers deformation. In this case the pseudoparticles are

forced to curve causing the density gradient to alter dramatically such that there is

a non-constant gradient in both x and y, in opposition to the situation intended to

be modelled, see Figure 4.9b.

A pseudoparticle cluster is a group of pseudoparticles within a system that all

interact with one, single pseudoparticle, often at the centre of the cluster. Impossible

clusters are groups of pseudoparticles that cannot be positioned so that for the

central pseudoparticle Ija = 0. Though there are a near in�nite number of impossible
cluster con�gurations, each one can be assigned to one of two categories where either

the central pseudoparticle is too large (Figure 4.10a) or to small (Figure 4.10b)

to allow an arrangement with zero net-interaction. In each �gure, �ve of the six

surrounding pseudoparticles have been positioned around the central one, leaving

a gap that must be �lled by the seventh pseudoparticle. For impossible clusters

where the central pseudoparticle is too large, the gap is similarly too large to allow

the remaining pseudoparticle to be positioned consistently. The inverse is true of
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(a)
(b)

Figure 4.9: Representations of seven interacting pseudoparticles (with vari-
able smoothing length) in a 2D system. Initially the pseudoparticles are ar-
ranged in a hexagonal lattice that holds to the initial conditions of the system,
0 < ∂ρ

∂x
= const and ∂ρ

∂y
= 0, image (a). However, this results in unequal

embedding. The positions are subsequently manipulated such that the pseu-
doparticles are equally embedded, image (b). In this case, the geometry of the
system is deformed and the initial conditions are lost. The black points repre-
sent the position of each pseudoparticle, ra. The lines are depict the extents of
equal interaction (such that touching lines infer equal embedding) around each
pseudoparticle. For each pseudoparticle, the red, dashed line shows what the
extent would be if the pseudoparticle was surrounded by identical pseudoparti-
cles of the same type, while the blue, solid line shows the extent as it has been
deformed by the actual pseudoparticles surrounding it.

clusters where the central pseudoparticle is small, leaving a gap that is far too small.

Given a su�ciently dynamic system, such as those that require a numerical solution,

it is highly likely that at least one impossible cluster of pseudoparticles will exist,

and therefore invalidate the pseudoparticle system.

4.4.3.3 Possible Corrective Formulations

Equation (4.99) produces for each particle the net interaction about it. Where the

value of Ija is non-zero, there must be some error in one or more of the interactions

involved. However, it is not possible to know how much error there is in each in-

dividual interaction. Fortunately the value of Ija not only indicates whether there

is an error, but also quanti�es that error. It must, therefore, be possible to recon-

struct the algorithm in such a way as to reduce, or hopefully remove, the error in

interaction.

To reiterate, Ijab is the e�ect b has on a, where the direction and magnitude of

the interaction is given by sgn
(
Ijab

)
and γjab =

∣∣∣Ijab∣∣∣, respectively. The direction of
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(a)

(b)

Figure 4.10: Examples of the two subtypes of impossible clusters. Where (a)
and (b) are depictions of the large and small central pseudoparticle subtypes,
respectively. Note that the seventh pseudoparticle in (a) cannot be made to �ll
the over-large gap around the similarly large central pseudoparticle. Conversely
the seventh pseudoparticle in (b) cannot be made to �t the overly small gap
around the similarly small central pseudoparticle. The black points represent
the position of each pseudoparticle, ra. The lines are depict the extents of
equal interaction (such that touching lines infer equal embedding) around each
pseudoparticle. For each pseudoparticle, the red, dashed line shows what the
extent would be if the pseudoparticle was surrounded by identical pseudoparti-
cles of the same type, while the blue, solid line shows the extent as it has been
deformed by the actual pseudoparticles surrounding it.
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the interaction is not a function of distance, and therefore the error must be in the

magnitude of the interaction. Explicitly,

Ijab =
[
Ijab

]
true

F jab (4.106)

where F jab is some destabilising factor. Thus, the obvious modi�cation of algorithm

would be

Ijab →
Ijab
F jab

(4.107)

Thus, for the net interaction to reduce to zero,

Ija =
∑
b∈ξa

Ijab = 0 → Ĩja =
∑
b∈ξa

Ijab
F jab

= 0 (4.108)

However, equation (4.108) represents an underdetermined system, and F jab cannot

be found. In addition, there is no simple basis for assumptions as to the values of

F jab.

Consider, instead, the proposition that, Ijab is modi�ed such that some approxi-

mation of the error is removed by subtraction, i.e.

Ijab → Ijab −R
j
abI

j
a (4.109)

The change must modify the measure of net interaction, which is no longer equal

to Ija,

Ija =
∑
b∈ξa

Ijab → Ĩja =
∑
b∈ξa

Ijab −R
j
abI

j
a (4.110)

which is still an underdetermined system, but with some rearrangement,

Ĩja =
∑
b∈ξa

Ijab − I
j
a

∑
b∈ξa

Rjab = Ija − Ija
∑
b∈ξa

Rjab (4.111)

Therefore,

Ĩja = 0 

∑
b∈ξa

Rjab = 1 (4.112)

That is, the net interaction in this modi�ed system must reduce to zero if the sum

total of the corrective factors is one. Rjab must, therefore, be the fraction of the total

error that can be apportioned to the interaction between the two particles a and b.

This forms the basis for assumptions as to the de�nition of Rjab. There are several

possibilities.
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Assumption 1: Every b with a non-zero interaction with a in the jth dimension

contributes an equal proportion of the net interaction. Note that the number

of pseudoparticles, b, is equal to one less than the degree of the jth subset of

the interacting pseudoparticles in the neighbourhood about a, ξja ∈ ξa.

Rjab =
1∣∣∣ξja∣∣∣− 1

(4.113)

where
∣∣∣ξja∣∣∣ is the degree of the subset ξja ∈ ξa.

Assumption 2: The proportion of the net interaction of a that b is responsible for

is equal to the ratio of the magnitude of the interaction between a and b over

the total interaction at a. Explicitly, the total interaction is given by

γja =
∑
b∈ξa

γjab =
∑
b∈ξa

|Ijab| (4.114)

and, therefore,

Rjab =
γjab
γja

(4.115)

Assumption 3: The proportion of the net interaction of a that is due to b is

equal to the ratio of the error in net interaction of b over the net of the net

interactions of all the particles that interact with a. The net of net interactions

about a is given by

ηja =
∑
b∈ξa
b6=a

Ijb =
∑
b∈ξa
b6=a

∑
c∈ξb

Ijbc (4.116)

and

Rjab =
Ijb
ηja

(4.117)

Assumption 4: As a logical adaptation of the previous assumption, the proportion

of the net interaction of a due to b is equal to the total interaction about b

over the net total interaction at a,

χja =
∑
b∈ξa
b6=a

γjb =
∑
b∈ξa
b 6=a

∑
c∈ξb

γjab (4.118)

Thus,

Rjab =
γjb
χja

(4.119)
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Assumption N: Further propositions could be created, factoring in the net and

total interactions of an increasing number of surrounding particles and/or in-

creasing the complexity of the fraction with each new modi�cation. However,

the error is only being spread out further into the other particles, rather than

keeping localised. Further modi�cations may also add considerable computa-

tions.

The �rst assumption is, very much, the simplest. However, it must also be the

least accurate as it is improbable that the contributions to the net interaction for

all particles can be equally weighted. It is also the simplest to implement. All

assumptions require at an additional pass over the particle interactions, to calculate

Ija and γ
j
a, but the other assumptions (N > 2) require at least one more loop through

the particles in order to create ηja and χja. The modi�ed algorithms behaviour is

di�cult to analyse.

Consider �rst a�rmation of the e�ectiveness of each proposition to eliminate the

numerical artefact under conditions of constant stress, regardless of the inaccuracy

in pseudoparticle con�guration. In reference to Figure 4.11, the four demonstrated

con�gurations are

1. Regularly spaced with particle separations of ∆p.

2. Regularly spaced, with a single exception at 1
2Np where the particle is o�set

by some amount less than ∆p.

3. Regularly spaced, excluding the a reduced gap between a = 1
2Np and b =

1
2Np + 1.

4. Regularly spaced con�guration modi�ed by a sub-∆p random shift.

In addition the volume of each particle, mρ , is constant.

Note that, as expected, for all con�gurations there is no deviation from the true

solution, ∂S∂r = 0.
Consider tests with more dynamic stress conditions for each of the con�gurations

in turn. The stress is de�ned by these, progressively more complex, forms;

1. Linear Variation, S = S0mx.

2. Sinusoidal Variation, S = S0 sin
(

2πx
max(x)

)
.

3. Variation de�ned by the quadratic polynomial, S = S0x
2.

4. Constant stress o�set by some Gaussian variation, S = S0

(
1 + e

−(x−x0)2

0.05

)
.
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Figure 4.11: Plots of the stress gradients (as calculated by uncorrected SP
approximation and with the various corrective methods) for each particle con-
�guration 1 to 4. Each con�guration begins as regularly spaced, δx = ∆p,
pseudoparticles (con�guration 1) then the pseudoparticle a = Np/2 is shifted
by 0 < δp < ∆p (con�guration 2), or |rab| < ∆p where a = Np/2 and b = a+1,
i.e. the gap between a and b is reduced (con�guration 3), or a random shift,
±∆pR/2 where R is a random number, is applied to each pseudoparticle (con-
�guration 4). Using English directionality (as pertaining to the conventions of
print, i.e. reading top to bottom, and left to right within that), each plot shows
the stress gradients with con�guration 1 to 4, respectively. Notice, in Black,
that the original stress gradient is non-zero around the focus of miscon�gura-
tion (nowhere in the case of con�guration 1 and everywhere in con�guration 4)
and that each assumption corrects the problem.
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See Figure 4.12 for plots of these stresses for each con�guration.

There are an in�nite number of other miscon�gurations, beyond the three pre-

sented here, so why discuss these speci�c forms? Con�gurations 2 and 3 are the

simplest, where the miscon�gurations are highly localised, and are asymmetric and

symmetric, respectively. They allow investigation of a corrective methods ability to

reduce the error, while not smearing out the error beyond the localised frame. In

addition, a measure of the e�ectiveness of each to discern the source of an error in

simple cases with and without asymmetry. The �nal con�guration (4) is included to

see how each proposition deals with unpredictable net interactions spread out over

the domain.

Consider each con�guration in turn. Firstly, the simplest has only one particle

(a = Np/2) out of place by some distance less than the particle spacing (con�gura-

tion 2). As such, and as with all of the con�gurations, the neighbour lists remain the

same. Figure 4.13 shows the calculated stress gradients, and the absolute residual

once the true solution (as calculated by SP approximation with the correct particle

con�guration, at the same spatial resolution) was removed. Secondly, exchange the

con�guration for the set of pseudoparticles separated by |rab| = ∆p, excluding the

distance between a = Np/2 and b = a+1 (con�guration 3). See Figure 4.14 showing

the gradient curves and residuals. Finally, rede�ning the particle con�guration such

that the original regular set of particles have some random, sub-∆p o�sets applied

individually to each (con�guration 4). See Figure 4.15.

Before discussing the speci�c results, consider the more general observation that

the residuals are in several cases larger than the true stress gradients. It is clear,

therefore, that none of the assumed corrections are without fault, though the di�er-

ences are pronounced. In asymmetric conditions, assumption 2 behaves most poorly,

but in symmetric conditions assumption 2 performs as well or better than the other

methods. It appears for assumption 3, particularly in Figure 4.15, that where the

sign of the stress, sgn
(
Sja
)
, and the net interaction, sgn

(
Ija
)
, are equal then the

O
(
Ĩja
)

= O
(
Ija
)
and for the majority Ĩja ≈ Ija. This rule is not universal. For

the simpler symmetric con�guration, Figure 4.14, the observation appears to hold

in terms of the order of the two arguments O
(
Ĩja
)

= O
(
Ija
)
, however rather than

the equal signs of stress and net interaction, the sign of all modi�ed net interactions

are equal. In the asymmetric con�guration, Figure 4.13, the behaviour is similar.

However, for most cases it displays the lowest residuals of the various assumptions.

The only exception is the gradients generated from Gaussian stress. In this case

the central particle (a = Np/2), O
(
Ĩja
)

= O
(
Ija
)
. Of each corrective proposition,

the behaviour of the fourth is the most stable. Throughout all tests Ĩja < Ija and
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Figure 4.12: Plots showing each stress curve with each pseudoparticle miscon-
�guration (Np ≈ 50). Each con�guration begins as regularly spaced, δx = ∆p,
pseudoparticles (con�guration 1) then the pseudoparticle a = Np/2 is shifted
by 0 < δp < ∆p (con�guration 2), or |rab| < ∆p where a = Np/2 and b = a+1,
ie. the gap between a and b is reduced (con�guration 3), or a random shift,
±δpR/2 where 0 < R < 1 is a random number, is applied to each pseudopar-
ticle (con�guration 4). Top to bottom the plots show, respectively, the stress
curves with con�guration 2, 3, and 4.
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Figure 4.13: Plots showing the stress gradient curves and absolute residuals
constructed by subtracting the the true solution, as calculated by SP approx-
imation with the correct particle con�guration at the same spatial resolution.
Using English directionality, boxed are pairs of stress gradients and residuals
for linear, sinusoidal, quadratic polynomial and Gaussian stress. All are cal-
culated with con�guration 2, where the pseudoparticles are regularly spaced,
excluding a = Np/2 which is o�set by 0 < δp < ∆p. For larger plots see Figures
B.1 and B.2.
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Figure 4.14: Plots showing the stress gradient curves and absolute residuals
constructed by subtracting the the true solution, as calculated by SP approx-
imation with the correct particle con�guration at the same spatial resolution.
Using English directionality, boxed are pairs of stress gradients and residuals for
linear, sinusoidal, quadratic polynomial and Gaussian stress. All are calculated
with con�guration 3, where the pseudoparticles are regularly spaced, excluding
the pair a = Np/2 and b = a + 1 where are closer together (|rab| < ∆p). For
larger plots see Figures B.3 and B.4.
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Figure 4.15: Plots showing the stress gradient curves and absolute residuals
constructed by subtracting the the true solution, as calculated by SP approx-
imation with the correct particle con�guration at the same spatial resolution.
Using English directionality, boxed are pairs of stress gradients and residuals
for linear, sinusoidal, quadratic polynomial and Gaussian stress. All are cal-
culated with con�guration 4, where the pseudoparticles are regularly spaced,
then o�set by ±δpR/2 where 0 < R < 1 is some random number. For larger
plots see Figures B.5 and B.6.
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normally Ĩja << Ija. Somewhat counter-intuitively the proposition that reduces the

error most, number 1, is also the least complex and did not take into account any

of the quanti�able measures associated with that error. The only exception appears

in, seemingly, the simplest test of the algorithm � the linear stress, computed for

the symmetric miscon�guration � whereby the net interaction displays little change,

Ĩja ≈ Ija.
Clearly, none of these approaches functions as intended in each test. This is of

grave concern as, if the errors cannot be reduced, then the numerical artefact �ow

will create non-physical data to be generated by the algorithm.

4.5 Conclusion

The work in this chapter revealed a lack of consistency among the traditional in-

terpretations of the smoothing function derivative, and restored that consistency by

proposing the re�ected formulation.

∇jabWab =
1
2

[
∇jaWab −∇jbWba

]
(4.120)

However, this accurate restoration came at the cost of computational e�ciency.

Evidence and explanation of a numerical artefact was also presented, as well as

unsuccessful attempts to correct for the error. The error could be reduced, or at the

very least localised, but the cost to the physical dynamics is impossible to quantify.

As such, it is clear that an investigation into how errors manifest in the SP model

is required. This is the impetus for the research presented in the next chapter.





Chapter 5

Considering the SP Errors and

Corrected SP Method

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 SP Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Discretisation Error . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.2 Consequence of the Discretisation Error . . . . . . . . . . . 136

5.3 Corrected SP Method . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 General De�nition and Error Formulation . . . . . . . . . . 138

5.3.2 Interpretation of the CSP Error . . . . . . . . . . . . . . . . 139

5.3.3 Creating CSPMHD . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.3.1 Modi�cation of the SP Equations . . . . . . . . . 141

5.3.3.2 E�ect on Numerical Artifact Flow . . . . . . . . . 143

5.3.3.3 Numerical Modi�cations in CSPMHD . . . . . . . 144

5.3.4 Implementation of CSPMHD . . . . . . . . . . . . . . . . . 145

5.4 Simplifying the CSP Method . . . . . . . . . . . . . . . . . . . . . . 147

5.4.1 CSP-∆h Method . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.2 Error in the CSP-∆h Approximation . . . . . . . . . . . . . 149

5.4.3 Relative Accuracy in the CSP-∆h Approximation . . . . . . 150

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.1 Introduction

The complications under negative stress (due to the tensile instability) discussed in

Section 3.6.1 and the numerical artefact �ow, as well as the di�culty in correcting

for the artefact, discussed in the previous chapter (Section 4.4) show that the errors

in the SPMHD algorithm can be complex and very di�cult to understand. Con-

sequently, this chapter is dedicated to the quanti�cation and mitigation of errors
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or error sources. Of particular concern, given its position as a fundamental part

of the SP technique, is the unde�ned error due to the discretisation approximation

presented in Chapter 2.

Subsequent to the successful quanti�cation of the discretisation error in Section

5.2.1, a corrective procedure mitigating it is described (the Corrected SP method).

Analysis of the technique reveal that it is highly accurate if somewhat computa-

tionally intensive. Once properly investigated, by returning to the derivation of the

corrective procedure, the method is simpli�ed to form the CSP-∆h (Corrected-SP-

built-without-smoothing-length-gradient-terms) method while continuing to miti-

gate the error due to discretisation.

5.2 SP Errors

Assuming that an SP model has been constructed consistently, and that subsequent

simulations are properly con�gured � ie. boundary and initial conditions are physical

� then there are only four sources of error that contribute to the actual error in the

data output.

• Error induced by numerical integration,

• Approximations in the model,

• Model instabilities, and

• Computational error (due to truncation, etc.).

These errors can become compounded over simulated time, leading to increasingly

inaccurate results. Reducing these errors produces more accurate data, and allows

the simulation to remain stable for a longer period of time. The �rst three sources

of error have been touched on in earlier sections of this document (Sections 3.4.1,

2.2.2 and 3.6). The �nal error source, a form of systematic error, is unavoidable. Of

the four sources, discussed here are the errors introduced by approximations made

in the construction of the SP model. Speci�cally, the approximations made creating

the SP model are the smoothing and discretisation approximations, Theorems 2.2

and 2.8, respectively.

The error due to the smoothing approximation, εsm, has already been discussed

in Section 2.2.5 and was shown to be O
(
h2
)
(Theorem 2.3). However by implement-

ing a higher-order smoothing function this estimate can be reduced (Monaghan,

1985). Monaghan (2005) gave a Gaussian example,

W (r, h) =
1

h
√
π

(
3
2
− q2

)
e−q

2
(5.1)
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where q = r
h , which showed the smoothing approximation to be accurate to O

(
h4
)
.

He went on to note that the higher-order smoothing functions, by necessity, were not

positive de�nite and therefore could produce, for instance, negative density values.

Hence, to exclude this possibility the smoothing functions conceptually employed

here are consistent with an error of O
(
h2
)
.

The error due to the discretisation is more complex, and is the subject of inves-

tigation in the next section.

5.2.1 Discretisation Error

De�ning the error induced by the discretisation approximation, εdc, more involved

than the smoothing approximation error, εsm, because the pseudoparticles only exist

at points within the subdomains ωa, with no restrictions as to relative position

or even the number of pseudoparticles, |ξa|. Any rigorous analysis is therefore

challenging. The most accurate estimates are only applicable to quasi-static �uids,

which are rarely modelled as they can commonly be solved analytically (Monaghan,

2005; Colagrossi, 2004b).

By splitting the discretisation of the smoothing approximation (the summation

approximation) and the smoothing approximation of derivatives (SP derivatives),

some limited analysis is possible. For instance, Monaghan (2005) presented a deriva-

tion of the error based on; a set of pseudoparticles equally spaced on an in�nite line

(in a 1D domain);a Gaussian smoothing function; m
ρ = ∆p, and; reconstructing

g(x) = α + βx by the summation approximation and g′ with SP gradient approx-

imation. In both reconstruction cases, εdc was shown to be �exponentially small

and negligible if h > ∆p�. However, these conditions are highly restrictive and not

representative of a real simulation.

Due to the parallels that can be drawn between SP and Monte-Carlo methods,

the error was initially approximated as ∼ N
− 1

2
p by Gingold and Monaghan (1977).

However, the true error was shown to be much less than this. Monaghan (2005) at-

tributed this to the Monte-Carlo estimates ignorance of the dynamics of the system.

Consider some distribution of identical pseudoparticles with errors in their positions

given by 0 < δr < ∆p, where ∆p is the pseudoparticle spacing if δr = 0. The result-
ing pressure imbalance causes the pseudoparticles to accelerate, acting to smooth out

the pressure gradient. Thus, at the next iteration, the error |δr|<n+1> ≤ |δr|<n>

and over a number of such iterations, the error reduces dramatically. Monaghan

(2005) exerted that �...the SPH [pseudo]particles are [therefore] disordered, but in

an orderly way�.

Given this perspective it is possible deduce that, in order to quantify the discreti-
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sation error, the errors knowledge of the system must be accounted for. Explicitly

de�ning some all-encompassing, general formula for the discretisation error is there-

fore not possible, as it would have to ignore the relationship to the speci�c conditions

under approximation. Instead, it must be possible to express the error as a function

of the approximated system. Here the problem is rede�ned such that the approxima-

tions for which a de�nition of the error is required are all approximating derivatives.

This is consistent with (and therefore most useful to) the SPMHD equations that

evolve the properties via de�nitions of the rates of change, rather than using the

summation approximation. The unknown error can, therefore, be expressed as εdc,X

where X is some property the derivative of which undergoing approximation.

The following derivation produces an expression de�ning the discretisation error

for vector derivatives.

Theorem 5.1 Consider �rst that an approximation, [X]approx, is the sum

of the true value and any errors, i.e.

[X]approx = X + εapprox = X +
∑
q

εq (5.2)

where εapprox is the total error, and εq is the error induced by the q
th source.

In this way, for the SP outer product approximation [∇⊗Aa]SP where A

is some vector,

[
∇jAia

]
SP

= ∇jAia + εSP = ∇jAia + εjidc,A + εsm (5.3)

using indice notation. Also consider the de�nition of the SP outer product

identity (2.67), such that by substitution,

[
∇jAia

]
SP

=
∑
b∈ξa
b6=a

mb

ρb

(
Aib −Aia

)
⊗∇jaWab (5.4)

Now, a Taylor series expansion of Aib about rb = ra yields

[
∇jAia

]
SP

=
∑
b∈ξa
b6=a

mb

ρb

([
Aia + rkba∇kAia + · · ·

]
rb=ra

−Aia
)
∇jaWab (5.5)
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Theorem 5.1 (continued) The zeroth order terms of equation (5.5)

clearly cancel and, if the higher order terms are collected, it collapses to

give [
∇jAia

]
SP

= ∇kAia
∑
b∈ξa
b 6=a

mb

ρb
rkba∇jaWab +O(h2) (5.6)

where the pseudoparticle summation is the SP approximation of ∇ ⊗ ra.

Thus, recalling the de�nition of the the error due to the smoothing approx-

imation, equation (2.31), it is possible to de�ne

[
∇jAia

]
SP

=
[
∇jrka

]
SP
∇kAia +O(h2) =

[
∇jrka

]
SP
∇kAia + εsm (5.7)

Finally, by setting equation (5.7) equal to equation (5.3) and subsequent

simpli�cation it is possible to show that

εjidc,A =
([
∇jrka

]
SP
− δjk

)
∇kAia (5.8)

is the Vector Derivative Discretisation Error.

An analysis of the other vector derivatives show that the discretisation error in

each case is composed of elements of the εdc,A as de�ned. Explicitly, for the SP

divergence approximation,

[∇ ·Aa]SP = ∇ ·Aa + εjjdc,A + εsm (5.9)

where εjjdc,A is the discretisation error. Or, for the kth element of the SP curl

approximation,

[∇×Aa]
k
SP = (∇×Aa)

k + εkjiεjidc,A + εsm (5.10)

where εkjiεjidc,A is the discretisation error, and εkji is the Levi-Civita symbol (2.70).

Note also that by de�ning A = Ti, where Ti is the ith row/column of some tensor

T, it is possible to express the discretisation error for simple derivatives of tensors.

For example, the error due to discretisation in
[
∂T ija
∂rj

]
SP

is

εjidc,T =
(
∇jrk − δjk

) ∂T ika
∂rk

(5.11)

In a similar manner to Theorem 5.1, it is also possible to de�ne the discretisation

error for the SP gradient approximation.



136 Chapter 5. Considering the SP Errors and Corrected SP Method

Theorem 5.2 Consider the de�nition of the SP gradient identity (2.63),

[
∇jλa

]
SP

=
1

Ψa

∑
b∈ξja
b 6=a

mbΨb

ρb
(λb − λa)∇jaWab (5.12)

such that another Taylor series expansion (of λb about rb = ra) yields

[
∇jλa

]
SP

=
∑
b∈ξa
b 6=a

mb

ρb

([
λa + rkba∇kλa + · · ·

]
rb=ra

− λa
)
∇jaWab (5.13)

Cancelling the zeroth order terms and collecting the higher order terms once

again, gives

[
∇jλa

]
SP

= ∇kλa
∑
b∈ξa
b 6=a

mb

ρb
rkba∇jaWab +O(h2) (5.14)

where the pseudoparticle summation is the SP approximation of ∇ ⊗ ra.

Thus, recalling the de�nition of the the error due to the smoothing approx-

imation (2.31) and equation (5.2), it is possible to de�ne

[
∇jλa

]
SP

=
[
∇jrka

]
SP
∇kλa + εsm = ∇jλa + εdc,λ + εsm (5.15)

Hence,

εdc,λ =
([
∇jrka

]
SP
− δjk

)
∇kλa (5.16)

is the Gradient Descretisation Error.

5.2.2 Consequence of the Discretisation Error

By writing the discretisation errors in vector form, and collecting them together, it

is possible to show that εdc,λ

εdc,A

εdc,T

 = ([∇⊗ ra]SP − I)

 ∇λ
∇⊗A

∇⊗T

 (5.17)

Given this expression, it is simpler to interpret the εdc more generally. Clearly two

factors contribute to the error; the di�erence [∇⊗ ra]SP − I and the true gradient

under approximation. In order to understand the former, �rst note that for the true
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value ∇⊗ ra ≡ I, and therefore,

[∇⊗ ra]SP − I = [∇⊗ ra]SP −∇⊗ ra (5.18)

Thus the εdc must be proportional to the systems inability to represent the isotropy

of space. The latter leads to the simple conclusion that εdc,λ

εdc,A

εdc,T

 ∝
 ∇λ
∇⊗A

∇⊗T

 (5.19)

Hence, the error must degrade high energy simulations (with large gradients) more

so than simpler, low energy models.

In order to better understand the error, consider that the approximation

[∇⊗ ra]SP can be expressed as its true value (the identity matrix, I) modi�ed by a

scalar k > 0 and matrix D, which respectively express some numerical scaling fac-

tor and some measure of the distortion from the ideal pseudoparticle arrangement.

That is

[∇⊗ ra]SP = kI +D ≈ kI ± δJ (5.20)

where D has been expanded ±δJ (where J is the unit matrix) by assuming that the

distortion uniformly induces values in D with a maximum magnetude of |δ|, termed
here the distortion coe�cient. It is important to note that the two scalars (k and δ)

are not mutually exclusive. This may be discussed in terms of information sampling.

If too large/small a weighting is placed on the sampling from each neighbouring

pseudoparticle both the scaling factor and distortion coe�cient would be ampli�ed.

Additionally, if the subdomain about ra were over-sampled in one direction relative

to the sampling in the opposite direction, an increase in the distortion coe�cient

and a decrease, of unequal magnitude, in the scaling factor would be evident. Thus,

the error may be approximated by εdc,λ

εdc,A

εdc,T

 ≈ [(k − 1)I± δJ]

 ∇λ
∇⊗A

∇⊗T

 (5.21)

Now, assuming some static pseudoparticle number density such that the scaling

factor remains roughly constant, to keep the error constant as the true gradient

increases, the pseudoparticles must be come increasingly ordered. Since this is im-

possible to enforce, the number density of the pseudoparticles must be increased.

The error due to discretisation must, therefore, be responsible for the disproportion-
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ately high resolution requirements for dynamic simulations relative to grid-based

numerical methods (Hubber et al., 2011).

In the context of a Solar simulation, the discretisation is particularly problematic.

Consider that the degree of material transport in the Solar Corona is very high,

leading to potentially highly disordered pseudoparticle arrangements. Isolated, this

would be distressing enough, however consider that this occurs in combination with

signi�cant gradients su�cient to bind the plasma into complex magnetic structures

that store vast amounts of energy. In order to keep the number of pseudoparticles

low, and therefore increase the pace and e�ciency (in terms of physical memory) of

the simulations, some measure of correction is required.

5.3 Corrected SP Method

The de�nition of the discretisation error facilitates the creation of a corrective matrix

that can improve the accuracy of the SP method.

5.3.1 General De�nition and Error Formulation

Rearrangement of equation (5.15) yields

∇⊗Aa = [∇⊗ ra]
−1
SP ([∇⊗Aa]SP − εsm) (5.22)

By dropping the smoothing error term, which must be dropped as it is not known

explicitly, its possible to de�ne the Corrected SP (CSP) outer product approxima-

tion,

[∇⊗Aa]CSP = [∇⊗ ra]
−1
SP [∇⊗Aa]SP (5.23)

and, therefore

[∇⊗Aa]CSP = ∇⊗A + εCSP = ∇⊗Aa + [∇⊗ ra]
−1
SP εsm (5.24)

In a similar manner, corrective procedures can be formulated for each SP deriva-

tive approximation, such that [∇λa]CSP

[∇⊗A]CSP

[∇⊗T]CSP

 = [∇⊗ ra]
−1
SP

 [∇λa]SP

[∇⊗A]SP

[∇⊗T]SP

 (5.25)
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and, constructed from these,

[∇ ·Aa]CSP = [∇⊗Aa]
jj
CSP (5.26)

and

[∇×Aa]
k
CSP = εkji [∇⊗Aa]

ji
CSP (5.27)

each with an equal error measure, εCSP = [∇⊗ ra]
−1
SP εsm.

Note that these approximations are similar to those that de�ne Normalised

Corrected Smoothed Particle Hydrodynamics (NCSPH) as formulated by Vignje-

vic (2004). Note, however, the manner by which information is passed around the

system of equations. The anisotropy of space causes the correct information to be

shifted into the incorrect elements of the matrix [∇⊗Aa]SP, such that in order to

recover the correct distribution of that information (i.e. correct for εdc) the whole

matrix must be constructed, even if all that is required by some algorithm is the di-

vergence of Aa. Therefore, the CSP method is not a modi�cation of the smoothing

function such that

∇aWab → ∇̃aWab = [∇⊗ ra]
−1
SP∇aWab (5.28)

as is the case for NCSPH. Note that, for NCSPH, the smoothing function has

already been normalised in discrete space such that

Wab =
W (|rab|, h)∑

b∈ξa
mb
ρb
W (|rab|, h)

(5.29)

This is the fundamental di�erence between the CSP method and NCSPH, mak-

ing CSP super�cially more complex to implement, but leading to a more accurate

approximation (see next).

5.3.2 Interpretation of the CSP Error

In order to be be useful, the CSP approximation i only required to be more accurate

than SP approximation, ie. εCSP = [∇⊗ ra]
−1
SP εsm < εdc,X + εsm. However, the aim

must be to drive the error as low as possible, the limit of which is the system noise

εsm, therefore ∥∥∥[∇⊗ ra]
−1
SP εsm

∥∥∥ ≤ ‖εsm‖ (5.30)

Given that ‖Ax‖ ≤ ‖A‖ ‖x‖, equation (5.30) must be true if∥∥∥[∇⊗ ra]
−1
SP

∥∥∥ ≤ 1 (5.31)
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Recall the approximation of [∇⊗ ra]SP, equation (5.20), whereby the matrix is

expressed as the sum of the identity matrix multiplied by some scaling factor, k,

added to the unit matrix multiplied by a distortion coe�cient somewhere in the

range of ±δ. After signi�cant rearrangement, this expression can be rewritten as

Sk ≥ 1 + ν|δ|

1−O
(
δ2

k2

) (5.32)

giving limits on the scaling factor k relative to the distortion coe�cient, δ. In order

to arrive at this expression, |δ|k−1 must be a su�ciently small value. One of the

bene�ts of the SP method, is the deformability of the system. It follows, therefore,

that |δ| << 1 is unlikely to be true.

However, consider that [∇⊗ ra]SP can be written in terms of the general form

(2.25) as

[∇⊗ ra]SP = −
∑
b∈ξa
b 6=a

mb

ρb
rkab

rjab
|rab|

σν
hν+1

dF
dq

=
∑
b∈ξa
b 6=a

mb

ρb
rkab

rjab
|rab|

σν
hν+1

∣∣∣∣dFdq
∣∣∣∣ (5.33)

where mb; ρb;σν ; |rab| ≥ 0 for a physical medium and

sgn
(
rkabr

j
ab

)
=

{
±1 if k 6= j

1 if k = j
(5.34)

Clearly, therefore, the main diagonal elements are sums of positive terms and the

o�-diagonal elements are sums of both positive and negative terms. Assuming there

are a signi�cant number of neighbours, |ξa|, the number of positive and negative

terms should roughly balance, such that k > δ, and therefore equation (5.32) is a

valid upper limit on the minimum value of k. Consequently, equation (5.30) holds.

That is, the error in the CSP approximation is approximately equal to the system

noise.

5.3.3 Creating CSPMHD

The creation of the CSPMHD algorithm, as with all modi�cations of the SP method,

begins with the premise that the SP algorithm as previously de�ned requires only

modi�cation of those elements that di�er between the SP method and, in this case,

CSP method. All the equations remain the same, it is merely the approximation of

spatial gradients that change.
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5.3.3.1 Modi�cation of the SP Equations

Beginning with the simplest equations, therefore, the continuity equation (2.99) and

induction equation (2.101) become

dρa
dt

= −ρa [∇ · va]CSP (5.35)

and
dBa

dt
= Ba [∇ · va]CSP − [(Ba · ∇) va]CSP (5.36)

respectively. Expanding these approximations, in index notation, the equations are

dρa
dt

= −ρa [∇⊗ va]
jj
CSP (5.37)

and
dBi

a

dt
= Bi

a [∇⊗ va]
jj
CSP −B

j
a [∇⊗ va]

ji
CSP (5.38)

where

[∇⊗ va]
ji
CSP ≡

[
∇jvia

]
CSP

=
(

[∇⊗ ra]
−1
SP

)jk [
∇kvia

]
SP

(5.39)

and, as per the SP identities,

[
∇jvia

]
SP

=
∑
b∈ξa
b 6=a

mb

ρ
viba∇jaWab (5.40)

and [
∇jrka

]
SP

=
∑
b∈ξa
b 6=a

mb

ρb
rkba∇jaWab (5.41)

Note that, though the complexity has increase somewhat, the number and nature

of the approximation calculations remains constant. That is, there are two SP

approximation calculations required by both SP and CSP methods, and it is only

how those approximations are applied (and the variables undergoing approximation)

that change.

If the SP equation of motion were derived using the SP identities directly, as

with the SP continuity equation (2.112) and SP induction equation (2.118), the

process of substitution would be similarly simple. However, the momentum and

energy conserving behaviour of the model should be preserved, and therefore the

CSP should be applied to the true SP equation of motion (2.140). This requires

further manipulation as the correction matrix de�ning the CSP method was derived

using the SP identities which rely on the di�erence, and not the sum, of the property
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(λ, A, T, etc.) at a and b. Consider that the SP equation of motion, built assuming

Ψ = 1, can be written such that

dvia
dt

=
1
ρa

[
∇jSija

]
SP

consv
(5.42)

where [
∇jSija

]
SP

consv
=
∑
b∈ξa
b6=a

mb

ρb

(
Sija + Sijb

)
∇jabWab (5.43)

represents the approximation of ∇jSija that ensures conservation, rather than the

SP approximation
[
∇jSija

]
SP
. This is the element of the equation of motion that

must be altered to conform to the CSP method.

Consider that equation (5.43) can be expanded to give

[
∇jSija

]
SP

consv
=
∑
b∈ξa
b6=a

mb

ρb

(
Sijb − S

ij
a

)
∇jabWab + 2Sija

∑
b∈ξa
b 6=a

mb

ρb
∇jabWab (5.44)

The �rst summation is the gradient of the stress as determined by direct application

of the SP identities
([
∇jSija

]
SP

)
, and therefore the second summation must repre-

sent the numerical procedure ensuring conservation of momentum and the implicit

re-meshing scheme discussed by Price (2012). Now, rewrite equation (5.45) such

that

[
∇jSija

]
SP

consv
=
[
∇jSija

]
SP

+ 2Sija
∑
b∈ξa
b 6=a

mb

ρb
φba∇jabWab =

[
∇jSija

]
SP

+ 2Sija
[
∇jφa

]
SP

(5.45)

where φa is some purely numerical property that exhibits the following, non-physical

behaviour,

(φb − φa)b→a ≡ (φa − φb)a→b ≡ 1 (5.46)

for all pseudoparticle pairs a and b. To be clear, the di�erence between φa and φb

is always 1, and the sgn (φba) is always positive, no matter whether calculating the

e�ect of pseudoparticle b on a (b → a), or the e�ect of a on b (a → b). Expanded

in this way, it is clear that the transformation to a conservative CSP approximation

requires that [
∇jSija

]
CSP
consv

=
[
∇jSija

]
CSP

+ 2Sija
[
∇jφa

]
CSP

(5.47)
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and by substitution and rearrangement,

[
∇jSija

]
CSP
consv

=
(

[∇⊗ ra]
−1
SP

)jk [
∇kSika

]
SP

+ 2Sija
(

[∇⊗ ra]
−1
SP

)jk [
∇kφa

]
SP

=
(

[∇⊗ ra]
−1
SP

)jk ([
∇kSika

]
SP

+ 2Sija
[
∇kφa

]
SP

)
(5.48)

=
(

[∇⊗ ra]
−1
SP

)jk [
∇kSika

]
SP

consv

Hence, the correction matrix may be applied ahead of all of the spatial derivative

components and the CSP equation of motion is given by[
dva
dt

]
CSP

=
1
ρa

[∇⊗ Sa] CSP
consv

(5.49)

where the spatial derivative is given by the above. This, in combination with the

CSP continuity equation (5.37) and induction equation (5.38), provides the �nal

changes to the basic SPMHD de�ning the CSPMHD algorithm. Note that there

remain an equal number of approximations, the outer product of position, velocity

and stress.

It is also worth noting that the justi�cation of the application of the corrective

matrix only holds for the SP equation of motion de�ned by Ψ = 1. For other

de�nitions, the applicability of the corrective procedure is debatable. Certainly, the

expression could not be expanded in the manner described above.

5.3.3.2 E�ect on Numerical Artifact Flow

One point should be stated clearly such there can be no misunderstanding. The

CSP method only corrects for the discretisation error, it does not remove any errors

or instabilities other than those stemming directly from the inaccuracy in the spatial

gradients due to discretisation approximation. Other numerical issues, such as the

tensile instability and the inability to capture shocks or, necessarily, constrain ∇·B
to zero must remain. Similarly, however, the modi�cation procedures (if not the

expressions themselves) that correct for these problems also remain.

So, what of the numerical artefact �ow, as discussed in Section 4.4? The two are

certainly connected. Both are functions of the anisotropy that the SP method per-

ceives in the discretised space. However, the correction procedure cannot eliminate

the numerical artefact �ow. This is simply argued. Given the previous de�nition

(Section 4.4.1) of the numerical artefact �ow, it will only vanish if [∇λa]CSP = 0
when λa is constant. Let

P = [∇⊗ ra]SP (5.50)
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and

q = [∇ · λa]SP (5.51)

such that the corrective method may be expressed as P−1q. It is clear to see that

because P 6= 0 (and therefore invertible), if the numerical artefact is evident in q,

and hence non-zero,

P−1q 6= 0 (5.52)

Thus the corrective procedure cannot eliminate the numerical artefact �ow. It can

however reduce the error, as numerical artefact �ow is a clear function of the spatial

derivative approximations, which are made more exact by the CSP method.

5.3.3.3 Numerical Modi�cations in CSPMHD

Of the two numerical modi�cations to the original SPMHD algorithm. the avoid-

ance/removal of the tensile instability (Section 3.6.1) and the dissipation formulae

(Section 3.6.2), the former are easier to adapt for CSPMHD. Taking each of the

methods in turn,

1. Arti�cially stressing the system to avoid the negative stress that induces the

tensile instability is just as simple in CSPMHD as SPMHD. Speci�cally,[
dvia
dt

]
CSP

=
1
ρa

(
[∇⊗ ra]

−1
SP

)jk∑
b∈ξa
b 6=a

mb

ρb

(
Sika + Sbik − 2Sikmax

)
∇kabWab

(5.53)

2. The approach presented by Morris (1996), proposed calculating the isotropic

components of the stress gradients using the conservative SP approximation

and the anisotropic components using the standard (linear) SP identities.

However, as was discussed in the previous section, the corrective matrix can

be applied to both forms and therefore[
dvia
dt

]
CSP

=
[

dvia
dt

]j
CSP
iso.

consv

+
[

dvia
dt

]j
CSP
aniso.
linear

(5.54)

=
(

[∇⊗ ra]
−1
SP

)jk
[

dvia
dt

]k
SP
iso.

consv

+
[

dvia
dt

]k
SP

aniso.
linear

 (5.55)

3. This �nal approach follows a similar pattern, namely that spatial derivatives
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in the modi�cation must be composed of a CSP approximation, i.e.[
dva
dt

]
new

=
[

dva
dt

]
CSP

+
B̃a

ρ
[∇ ·Ba]CSP (5.56)

These �nal two modi�cations demand that an additional approximation in the

CSPMHD algorithm. Speci�cally,

[∇⊗B]SP (5.57)

computed using the direct (linear) or conservative SP approximations, as appropri-

ate.

The dissipation terms are wholly more complex, and a rigorous treatment has

yet to be derived. For the purposes of the work in this document, the terms remain

unchanged. If the automatic switch (that evolves the αλ parameters) is not used,

the parameter is set to 0.9 ≤ αλ ≤ 1. Where it is, the physics of the system is

relied upon to constrain αλ to reasonable �gures. This has worked reasonably well,

although a consistent justi�cation is still required.

5.3.4 Implementation of CSPMHD

The implementation of the CSPMHD method is simple, assuming the SPMHD pro-

gram as previously described (Chapter 3) already exists. The structure of all ele-

ments of the code structure remain the same, however the Compute dA<3−s>
a
dt com-

ponent has a few additions and minor alterations relative to the structure as given

by Figure 3.10. These changes are depicted in Figure 5.1. Speci�cally, the sweep

over the pseudoparticle pairs remains in existence, however the SP approximations

calculated change to suit the CSPMHD model. Subsequent to the computation of

the SP approximations, an additional sweeep over the pseudoparticles (not the pseu-

doparticle pairs) is required, to sequentially invert [∇⊗ ra]SP, compute the required

CSP approximations and �nally compute dA<3−s>

dt .

Note that this is not the most e�cient way of calculating the CSPMHD equations

in terms of the memory requirements. Assuming parallel computation, the sweep

over the pseudoparticle pairs must be simpli�ed, allowing for a merger of the SP and

CSP components of the method, reducing the required memory. However CSPMHD

is implemented, it will still require an increased amount of memory in order to store

the increased number of variables that survive to the outside of the sweep over

pseudoparticle pairs.
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Compute
dA<3−s>

a
dt

s value

dA<3−s>

dt
= 0

φb ≤ a?

|raφb | < Ch?

χ
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Add 1

to q

Add 1

to a

b = fpq
wa

?
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q = 0
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Figure 5.1: A generalised code structure diagram showing the implementation
of the CSP algorithm. The node labelled χ computes the SP approximations
required by the CSP method. Namely, [∇⊗ va]SP, [∇⊗Ba]SP, [∇⊗ Sa]SP,
and [∇⊗ ra]SP.
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5.4 Simplifying the CSP Method

Given the relative complexity and increased memory constraints of CSPMHD, when

the e�ects of variable smoothing length are factored in as well, the resulting algo-

rithm can be very large. However, it is possible to extend the CSP approach in order

to signi�cantly reduce the computational weight. Presented next is the derivation,

and subsequent analysis, of the CSP-∆h method.

5.4.1 CSP-∆hMethod

SP spatial gradient approximations built with variable smoothing length terms can

be generalised by

[∇⊗Aa]SP = K1

∑
b∈ξa
b6=a

mb

ρb
Aba ⊗

∂Wab(H)
∂ra

+K2 (5.58)

where K1 and K2 are additional factors stemming from the smoothing length

gradient terms in the smoothing function derivative. That is,

∇aWab =
∂Wab(H)
∂ra

+
dH
dra

∂Wab(H)
∂H

(5.59)

for the general case.

For example, by substitution,

[∇⊗ ra]SP =
∑
b∈ξa
b 6=a

mb

ρb
Aba ⊗∇aWab(H)

=
∑
b∈ξa
b 6=a

mb

ρb
Aba ⊗

(
∂Wab(H)
∂ra

+
dH
dra

∂Wab(H)
∂H

)
(5.60)

=
∑
b∈ξa
b 6=a

mb

ρb
Aba ⊗

∂Wab(H)
∂ra

+
∑
b∈ξa
b 6=a

mb

ρb
Aba ⊗

dH
dra

∂Wab(H)
∂H

such that, in this case, K1 = 1 and

K2 =
∑
b∈ξa
b6=a

mb

ρb
Aba ⊗

dH
dra

∂Wab(H)
∂H

(5.61)
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Equation (5.58) can be simpli�ed further by de�ning the partial approximation[
∂

∂r
⊗Aa

]
SP

=
∑
b∈ξa
b 6=a

mb

ρb
Aba ⊗

∂Wab(H)
∂ra

(5.62)

such that

[∇⊗Aa]SP = K1

[
∂

∂r
⊗Aa

]
SP

+K2 (5.63)

Now consider a repeat of the procedure that de�nes the CSP approximation,

but begin with the expression above (5.62). The Taylor series approximation about

Ab shows that[
∂Aia
∂rj

]
SP

=
∑
b∈ξa
b6=a

mb

ρb

[(
Aia + rkab∇kAia + · · ·

)
−Aia

] ∂Wab(H)

∂rja
(5.64)

= ∇kAia
∑
b∈ξa
b6=a

mb

ρb
rkab

∂Wab(H)

∂rja
+O(h2) (5.65)

by substitution of equations (5.62) and (2.31) therefore,[
∂

∂r
⊗Aa

]
SP

= ∇⊗Aa

[
∂

∂r
⊗ ra

]
SP

+ εsm (5.66)

and earrangement yields

∇⊗Aa =
[
∂

∂r
⊗ ra

]−1

SP

([
∂

∂r
⊗Aa

]
SP

− εsm

)
(5.67)

Thus, combinations of the partial SP approximation is able to be manipulated to

produce the true derivative. However, the smoothing error is still not de�ned explic-

itly so that, by dropping it, a new correction procedure may be de�ned. Namely,

[∇⊗Aa]CSP−∆h =
[
∂

∂r
⊗ ra

]−1

SP

[
∂

∂r
⊗Aa

]
SP

(5.68)

whereby the full derivative can be formulated on the background of variable smooth-

ing lengths, but without the additional strain on the smoothing function compu-

tation. Also given its similarity to the original CSP method, this new method has

the same implementation. For the same reason it is also entitled the CSP-without-

smoothing-length-gradient method, abbreviated for convenience to CSP-∆h .

As a further comment on the implementation, note that as the smoothing lengths
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tend to some constant, the CSP-∆h method converges with the CSP method as built

with constant smoothing length with minimal additional costs (just the storage and

evolution of h for each pseudoparticle). The CSP-∆h approach also allows for

the rapid variation of smoothing function interpretation (Section 4.3). In addition,

assuming either of the intermediate perspectives is implemented, the method must

conform to the re�ective constraint.

5.4.2 Error in the CSP-∆h Approximation

Given the similarity to the CSP method, it is unsurprising that the errors are also

very similar. The error in CSP-∆h is given by

εCSP−∆h =
[
∂

∂r
⊗ ra

]−1

SP

εsm (5.69)

As with CSP, the aim must be to limit the error to system noise, ensuring that∥∥∥∥∥
[
∂

∂r
⊗ ra

]−1

SP

∥∥∥∥∥ ≤ 1 (5.70)

and therefore ∥∥∥∥∥
[
∂

∂r
⊗ ra

]−1

SP

εsm

∥∥∥∥∥ ≤ ‖εsm‖ (5.71)

where ‖εsm‖ = O(h2) is the system noise.

The matrix can be decomposed in the same way as the inversion of the full

derivative (Section 5.2.2), i.e.[
∂

∂r
⊗ ra

]
SP

= kI + D ≈ kI± δJ (5.72)

where kI is the true solution (the identity matrix) multiplied by some scaling

factor, and D ≈ ±δJ is the matrix of distortions placed on the approximation

of space by the disorder of the pseudoparticles, which has been approximated by

further decomposition into the unit matrix and some distortion coe�cient ±δ. From
this, k must still conform to the same criterion as CSP (relative to the δ here) and

therefore, also conform to the inequality (5.71).

This is unsurprising. Consider that both the error in the full SP derivative

and the CSP correction factor are both functions of the warping of the isotropy of

space, and that the dropping of the K1 and K2 terms cause further warping of that

isotropy. The error in the partial SP derivatives and CSP-∆h correction factor,
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therefore, simply represent a di�erent anisotropy and, by consistent formulation,

correct for it in precisely the same manner. It is equivalent to the full CSP method

being calculated for a more disordered arrangement of pseudoparticles, hence very

similar errors.

5.4.3 Relative Accuracy in the CSP-∆h Approximation

Consider now the relative accuracy of each method. This shall be demonstrated

by simulating the same problem repeatedly for each method, and a wide range of

spatial resolutions. Those methods include the SP and CSP method, built with and

without variable smoothing length, and the CSP-∆h method � all built with and

without arti�cial dissipation. Thus there are 10 di�erent algorithms; SP, SP+∆h,
SP+AV, SP+∆h+AV, CSP, CSP+∆h, CSP+AV, CSP+∆h+AV, CSP-∆h , and

CSP-∆h +AV.

The problem considered is the classic Sod shock tube test as described by

(Sod, 1978). Speci�cally, a discontinuity exists between two left and right states;

on the left {P, ρ,v, γ, h} =
{

1, 1, 0, 7
5 , h0

}
, and on the right {P, ρ,v, γ, h} ={

1
10 ,

1
8 , 0,

7
5 ,∼ 8h0

}
. Once allowed to evolve, a rarefaction wave forms on the left of

the original discontinuity and a shock forms ahead of the advancing pressure wave.

Figure 5.2 shows an example of the Sod test density, velocity and pressure output

at t = 0.245s for the simplest (SP) algorithm.

Once simulated, in order to analyse the large multidimensional data set, the

output of each model is then consolidated into a single measure of error for the

variables ρ, v and P . The error is found by computing the area between the true

solution, and the simulated data. This is achieved by approximating the smooth area

as a series of trapezoids, where the vertices are the determined by the pseudoparticle

data for each adjacent pair (x1, [A1]SP) and (x2, [A2]SP), and vertical intersections

with the true solution, (x1, A1) and (x2, A2), and/or the possible intersection of the

straight lines

y =
(

[A2]SP − [A1]SP

x2 − x1

)
(x− x1) + [A1]SP (5.73)

y =
(
A2 −A1

x2 − x1

)
(x− x1) +A1 (5.74)

The areas between the true and SP solutions are highlighted in the example plots

Figure 5.2 and Figure 5.3, which are the results of the raw SP model and of the

CSP-∆h +AV model, respectively.
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Figure 5.2: Example plots showing the true and SP solutions of the density,
velocity and pressure for the Sod shock tube test. This simplest of algorithms
has the most trouble with the shock interface, massively overestimating the
step. In addition, note the large area between the true and SP velocity so-
lutions, indicating the overestimation of the shock propagation speed. Also
highlighted is the area between the two solutions. This is used as a measure of
the error for this simulation.
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Figure 5.3: Example plots showing the true and CSP-∆h +AV solutions of
the density, velocity and pressure for the Sod shock tube test. Intended for
comparison with the plots in Figure 5.2, these plots highlight the increased
accuracy of the CSP-∆h method over the SP method.
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Figure 5.4: Summary of the error in each algorithm plotted against the
relative smoothing length, h0, as a proxy for the spatial resolution. The
properties considered are density, velocity and pressure. The algorithms are
the SP method with/without variable smoothing length, the CSP method
with/without variable smoothing length, and the CSP-∆h method. Each are
considered with/without arti�cial dissipation.
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Figure 5.5: Summary of the error in each algorithm plotted against the
number of pseudoparticles, Np, as an measure of the amount of computation
required. The properties considered are density, velocity and pressure. The al-
gorithms are the SP method with/without variable smoothing length, the CSP
method with/without variable smoothing length, and the CSP-∆h method.
Each are considered with/without arti�cial dissipation.
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Figure 5.6: Graphs showing the error in pressure for each algorithm plot-
ted against the relative smoothing length, h0, as a proxy for the spatial res-
olution. The algorithms are the SP method with/without variable smooth-
ing length, the CSP method with/without variable smoothing length, and the
CSP-∆h method. Each are considered with/without arti�cial dissipation. Note
the two populations separating the methods built with and without variable
smoothing length, and the signi�cantly small error, at relatively high smoothing
length, in the raw CSP-∆h method.
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Figure 5.7: Graphs showing the error in density for each algorithm plot-
ted against the number of pseudoparticles, Np, as an measure of the amount
of computation required. The algorithms are the SP method with/without
variable smoothing length, the CSP method with/without variable smoothing
length, and the CSP-∆h method. Each are considered with/without arti�cial
dissipation. Note that the lowest errors are exhibited by the CSP with variable
smoothing length and CSP-∆h (both with arti�cial dissipation) in the region
Np > 200. Also note that each method tends (approximately) towards some
constant error as Np increases.
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These errors are then plotted against the relative smoothing length, h0, or the

number of pseudoparticles, Np, so that the relative accuracy of each algorithm can

be determined. The results are summarised in Figures 5.4 and 5.5. Figures 5.6 and

5.7 show speci�c plots pulled from the summaries.

Consider �rst Figure 5.6. There are two clear populations (at high smoothing

length) separating the methods built with and without variable smoothing length,

indicating that algorithms built with variable smoothing length, no matter the re-

maining details of the application, allow for a lower resolution with equivalent accu-

racy. Also consider the particularly small error, at relatively high smoothing length,

of the raw CSP-∆h method. Finally note that as the smoothing length tends to

zero the error in each method appears to converge. Figure 5.7 shows this to be

an artefact of the relative image scale. The errors for each method tend (approxi-

mately) towards individual constant errors as Np increases. Most signi�cantly, note

that the two lowest errors are exhibited by the CSP with variable smoothing length

and CSP-∆h methods (both including arti�cial dissipation) in the region Np > 200.
Rather unexpectedly, but convincingly, the smallest errors are exhibited by the CSP-

∆h method. These show that much lower pseudoparticle numbers (and therefore

lower computational weight) is possible with the variable smoothing length CSP

and the CSP-∆h methods. This experimentally supports the analysis conducted by

Vila (1999), in which he concluded that �[CSP] turns out to be more robust than the

standard [SP] methods, and also less expensive since we can use higher values of the

ratio (∆x)/h. This decreases the number of neighbours...and the cost of the method

also decreases proportionally.�

5.5 Conclusion

It was the intention of this work to better understand the source of errors in SP

simulations. This was achieved by analysing and eventually de�ning the error due

to the discretisation approximation as εdc,λ

εdc,A

εdc,T

 = ([∇⊗ ra]SP − I)

 ∇λ
∇⊗A

∇⊗T

 (5.75)

The de�nition has several troubling factors. The error is a function of the anisotropy

of space, which can only be reduced by signi�cantly increasing the number of pseu-

doparticles. In addition, and far more worryingly, the error is proportional to the

gradients being approximated.
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The error must, for highly dynamic simulations like the Corona, cause a partic-

ular problem. As such the CSP method was presented that eliminated the error.

However, its implementation proved complex and weighty. Hence the novel CSP-

∆h method was subsequently presented that not only eliminated the error but the

cause of the computational weight in the CSP algorithm as well.

Finally, with a stable and (more importantly) accurate algorithm it is now pos-

sible to construct a simulation. Thus the construction of a suitable domain for the

simulation of phenomena within the Corona can now be discussed in the following

Chapter.
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6.1 Introduction

With the completion of an accurate SPMHD algorithm (actually, CSP-∆h MHD)

simulations can be constructed. At this point, the research could take a number

of paths including, for example, comparison of additional MHD codes with CSP-

∆h MHD. However, given this documents focus on the eventual simulation of coronal

phenomena, of the several possible paths available those that make appropriate

steps towards that goal were given preference. In this �nal research chapter an

investigation of the simulation domain, Ω, is conducted.

Speci�cally, using the context provided by the geometry of the Solar Corona and

the constraints of the algorithm, an e�cient domain is constructed using appropriate

boundary conditions.
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Figure 6.1: Graphical representation of a curved surface model and rectan-
gular domain in 2-Dimensions about the coronal loops of two active regions
on the Sun (base image credit: NASA). Shown in blue are the bounds of a
rectangular domain, and in red are the bounds of a curved surface model. Of
particular note is the variation in the physics of the medium adjacent to the
blue boundaries. Also, the amount of non-coronal material encompassed by
those boundaries.

6.2 Curved Surface Model

Consider the simulation of mega-metre scale phenomena in the solar corona. These

phenomena would include, for example, Coronal Bright Fronts (CBFs, also referred

to as EIT waves), Filaments/Prominences and Coronal Mass Ejections (CMEs). All

of these curve appreciably about the surface of the Sun. It is contended here that

to model these large, sub-solar scale dynamics a new domain must be created.

Consider some general, 2-Dimensional phenomenon simulated in a rectangular

domain, shown in blue in Figure 6.1. Notice that the physics throughout the domain

is highly variable, and any solution will required the simulation of multiple �uids

� at the very least coronal plasma and a single state of sub-coronal plasma. More

detrimentally, the physics and the orientation of the physics also varies along the

length of the boundaries. This means that periodic and free surface boundaries can-

not be implemented, leaving only solid boundaries. However, these solid boundaries

are di�cult to utilise as they require ghost particles (requiring large resources - par-

ticularly in 3-Dimensions) and some complex de�nition of their physical behaviour

that is likely to be subject to the evolution of the simulated plasma. All of these are

oportunities to introduce error into the simulation. Also note that, assuming the

interesting portion of the model is the evolution of the phenomena, there is a large

amount of wasted simulated space (and therefore memory in the form of additional

pseudoparticles).

In order to keep the required computation as low as possible, the extent of the

domain should be limited to the region required by the dynamics (shown in red
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Figure 6.2: A scatter plot comparing the volume (as a proxy for the approx-
imate number of pseudoparticles) required to encompass a given subset of the
surface. That subset is de�ned by spherical polar coordinates. The surface
exists between the angles 0 < φ, θ < π

2
, a lower radial boundary set at r = 1

and an upper boundary de�ned between 1 < R ≤ 30. Notionally, the radial
distances are de�ned in units of solar radii, R�. Note that, despite the spread
in curved surface domain values, the reduction in volume (i.e. pseudoparticles)
is approximately 50%.

in Figure 6.1). That is, rather than placing a large rectangular domain about the

phenomenon it is supplanted by a domain that better conforms to the geometry of

the system. Consider a 3-Dimensional equivalent of the 2D domain shown in Figure

6.1 (such as that in Figure 6.3). The scatter plot shown in Figure 6.2 illustrates the

potential reduction in volume of this new domain compared with the volume of a

cuboid capable of encompassing the new domain. Note that there is some spread in

the value of the new domain volume (against cuboid volume) as it is a function of

the spherical geometry. Even with this divergence, the new domain approximately

halves the required simulated volume.

However, this new domain still has to allow

i) The formation of sensible boundary conditions, and

ii) Consistency with the geometry of the algorithm governing the dynamics.
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The �rst point is relatively simple to achieve, though is a function of the required

boundaries. For instance, a background boundary can be warped into almost any

required shape (as long as it curves over an appreciable distance relative to the

smoothing length), however periodic boundaries are more stable when implemented

with �at boundary surfaces.

The second point, demanding consistency between the domain and the dynam-

ics algorithm, places certain limitations on the domain. Given the spherical nature

of the body on which the phenomena take place (i.e. the Sun), it would appear

e�cient to express the CSP/CSP-∆h equations in spherical coordinates. However,

the equivalent spherical correction factor in the CSP or CSP-∆h methods cannot

be separated from the SP approximations. Hence the Corrected models must be

implemented using Cartesian coordinates, which limits the form of the domain.

Speci�cally, the boundaries are much easier to implement if they are built symmet-

rical about the Cartesian axes (see Figure 6.4).

Consider Figure 6.3. Represented in the centre of the frame is some general

domain that sits on the curved surface of the sun. It is bound by the intersection

of six planes. Four of those plane are �at and intersect each other at the centre

of the sun. They exist to limit the angular extent of the domain by creating an

open-ended square-based pyramid that extends out into interplanetary space. This

is termed, here, the wedge and is characterised by the angles 2θ and 2φ which de�ne

the angular separation of the North-South planes, and the East-West planes. These

are shown in Figure 6.4. The remaining two boundaries are concentric spherical

shells, centred on the sun's centre. The smaller sits at the interface between the

lower Corona/upper Chromosphere and the body of the sun, as determined by the

user � though it should be low enough that the phenomena is within the domain.

The upper surface, being further out in a curved space should be set a low as possible

without interfering directly with the modelled dynamics. This is important as even

a small increase in height can introduce a large number of new pseudoparticles.

This latter constraint can be weakened by implementing an algorithm built variable

smoothing lengths, though the numerical artefact �ow can in�uence the results.

The de�ning characteristic of the implementation of this domain must be the

nature of the boundaries. Assuming that the curved surfaces are some type (or

types) of edge boundary (see Section 6.4), consider the plane boundaries.

6.3 Periodic Geometry

Here it is assumed that the four planes represent some form of angular periodic-

ity within the model. Speci�cally, the angular components of the pseudoparticle
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Figure 6.3: A pictographic representation of the sola/curved surface domain.
The orange ball represents the surface of the sun, the yellow layer about it
is the lower Corona and/or upper chromosphere, and the grey region about
that is everything from the upper Coronal out into the Solar Wind and the
heliosphere beyond. Also presented, highlighted green, is the curved surface
domain. A region of space, the extent of which is constrained by upper and
lower curved boundaries conforming to the intersection of the upper and lower
limits of the yellow region and a wedge. That wedge is a baseless square-based
pyramid extending to in�nity, with its apex �xed to the centre of the sun.
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Figure 6.4: Plots showing the xy- and xz-plane intersections with the curved
surface domain. Shown in brown are the upper and lower curved surface bound-
aries. In blue are the periodic angular boundaries, de�ned by the angles φB
and θB (shown in red) made with the x-axis.

position (expressed in spherical coordinates) are constrained such that

|rθa| ≤ θB <
π

2
(6.1)

|rφa | ≤ φB <
π

2
(6.2)

Consider some pseudoparticle moving through the domain, and then through

the Eastern plane. To an external observer, the pseudoparticle should blink out

of existence and reappear coming through the Western plane. However it should,

relative to each plane, have the same relative properties of direction. Thus it is not

enough to translate the particle in a straight line from where it is in the east to

where it should be in the west. All of its vector properties need to be rotated about

the centre of the Sun (the intersection point of all four �at planes).

6.3.1 Usual Periodicity

This rotation is achieved, if the case of an east-west (or vice versa) transformation

by

[Aa]new = Rz(φ) [Aa]old (6.3)
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Figure 6.5: The panels here show (left to right) the rotation of a single
pseudoparticle (with some vector property) from the Eastern ghost wedge back
into the domain wedge. For clarity the wedges are shown as sealed square-based
pyramids, though in reality they are open to simulated space.

where Aa = {ra,va,Ba}, Rz is the rotation matrix (gimbal about z) given by

Rz(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (6.4)

and φ = −2φBI
[

rya
rxa tanφB

]
where I(x) is again a function that truncates x, leaving

only the integer component remaining. Conceptually, a ghost wedge appears, to

the East or West depending on which of the two boundaries the pseudoparticle

violated, around the errant pseudoparticle then the ghost wedge takes possession

of the pseudoparticle and the wedge is rotated until the ghost wedge occupies the

exact position of the domain wedge. This rotation is shown in Figure 6.5.

A similar rotation is required for pseudoparticles violating the Northern or South-

ern boundary so that they too are periodicly bound. Speci�cally,

[Aa]new = Ry(θ) [Aa]old (6.5)

where Ry is the rotation matrix (gimbal about y) given by

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (6.6)

and θ = 2θBI
[

rza
rxa tan θB

]
. This rotation is shown in Figure 6.6.
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Figure 6.6: The panels here show (left to right) the rotation of a single
pseudoparticle (with some vector property) from the Northern ghost wedge
back into the domain wedge. For clarity the wedges are shown as sealed square-
based pyramids, though in reality they are open to simulated space.

6.3.2 Complex Periodicity

Consider a pseudoparticle violating two of the periodic boundaries simultaneously

(both North or South and East or West). Were the boundaries de�ned on a Carte-

sian coordinate system then the periodicity could be enforced by applying the trans-

lations from North/South ghost wedges and East/West ghost wedges sequentially.

However the domain wedges cannot tessellate about their apexes. Alternatively,

consider that the curved geometry ensures that applying the rotations about the y-

then z-axes is not the same as applying the rotations about the z- then y-axes, i.e.

Ry(θ)Rz(φ)Aa 6= Rz(φ)Ry(θ)Aa (6.7)

Thus, if a pseudoparticle drifts through a corner, it must be captured by some new

corner ghost wedge.

Given that the pseudoparticle has violated the limits in rθa and r
φ
a , the corrections

here are more complex. First consider the de�nition two new angular properties, as

functions of θB and φB,

αB = arctan
(

tan θB
tanφB

)
(6.8)

βB = 2 arctan
(√

tan2 θB + tan2 φB

)
(6.9)

where, for ease of explanation, βB is twice the angle between the x-axis and the

vector joining the origin and r′ which is a point anywhere along the intersection

between two boundary planes. αB is the angle between the z-axis and the vector

joining the origin and (0, y′, z′) where the y and z coordinates are components of

the point r′. With these de�nitions, the periodicity can be enforced by the multiple
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Figure 6.7: The panels here (read as one would read text on a page, i.e. top
row left to right, followed by second row left to right, etc.) shows the multi-
stage rotation of a single pseudoparticle (with some vector property) from the
North-Eastern (Edge Interface) ghost wedge back into the domain wedge. The
top row shows the rotation from Aa to Rx(α)Aa, the middle row shows the
rotation from there to Ry(β)Rx(α)Aa, and the lower three panels show the
�nal rotation to Rx(−α)Ry(β)Rx(α)Aa. For clarity the wedges are shown as
sealed square-based pyramids, though in reality they are open to simulated
space.

rotations,

[Aa]new = Rx(−α)Ry(β)Rx(α) [Aa]old (6.10)

where Rx is the rotation matrix (gimbal about x) given by

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 (6.11)

and the two angles are α = sgn (ryarza)αB and β = sgn (rza)βB. This series of

rotations is shown in Figure 6.7.
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6.3.3 Implementation of Angular Periodicity

Wherever the distance between pseudoparticle pairs is calculated within the imple-

mented algorithm, the rotational periodicity must be taken into account. For an

implementation built with a bucket sort, this can be made easier. Assuming that the

cells (though not the contents) remain static, then only those pseudoparticles sorted

into cells near/against a boundary could possibly interact with the pseudoparticles

near/against the opposing boundary. By creating a list (explicit or implicit) of those

cells, all the remain cells, and the pseudoparticles within them continue to evolve as

per the previously de�ned Cartesian algorithm, with no knowledge required of the

boundaries.

For those listed cells, it should be made clear whether they interact with the

boundary intersections (corners) or planes (walls) of the domain, as the rotations

required are di�erent � functions of θB and φB, or αB and βB respectively. Once

the required rotations are identi�ed, the procedure for calculation is identical.

To illustrate consider two pseudoparticles a and b that lie against the North and

South boundaries, respectively, such that with the periodicity a ∈ ξb and b ∈ ξa.

When calculating the contribution of b to a, b must appear to be in the Northern

ghost wedge, with the appropriate rotations to all vector properties. This is, es-

sentially, putting b in the reference frame of a. The opposite must be done when

calculating the contribution of a to b. That is, a must appear to be in the Southern

ghost wedge and hence in the reference frame of b.

6.4 Edge Boundaries

There is no symmetry between the upper and lower curved surface boundaries thus,

assuming the simulated plasma must be con�ned by both, they must be con�gured

using ghost particles. As the source of the energy that feeds the dynamics in the

Corona, it is logical to implement a data boundary as the lower surface to act as a

driver. This data could either be arti�cial or remote-sensed from the Sun. In the

latter there are possible complications due to line of site integration, though these

can be avoided by reducing the angular extent of the domain.

The upper surface is more di�cult to con�gure. In part, this is due to the

fact that it can be set to almost any height away from the solar surface. Placing

the boundary far away limits the amount the boundary con�guration can impinge

on the simulated dynamics. On the other hand, the further away the boundary is

placed, the more pseudoparticles are required to populate the additional volume.

In this 3D space the increase is proportional to H3 + 3HL(H + L), where L is the
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height of the lower boundary above the centre of the Sun and H is the height of

the upper boundary above the lower boundary. Clearly what is required is some

measure of compromise between the two, or additional resources to compensate the

extra workload (either of simulating more plasma or cleaning up the error caused

by the boundary).

The upper surface is also more complex because of the Solar Wind. A large

amount of the material in the Corona is jettisoned into interplanetary space in the

form of the solar wind, as well as massive transients. Large transients are less prob-

lematic from the perspective of the boundaries as, assuming some form of arti�cial

solar �are or CME occurs, it is more than likely the intention of the simulation is

to study those phenomena, and therefore the boundary will be set back from the

transient. However, the constant stream of subsonic solar wind must impinge on and

in�uence the nature of the upper boundary. At the extreme, placing a solid bound-

ary (Section 3.3) at the top of the simulation would drastically e�ect the simulation.

Equally, a free surface boundary would be inappropriate as, with out information

being passed back through the medium of the solar wind, the pseudoparticles would

rapidly become supersonic and signi�cantly warp any modelled phenomena. Again,

this suggests compromise, logically in the form of a background boundary.

6.4.1 Interpolated and Background Boundaries

Consider the background boundary. As an edge boundary, it relies on ghost particles

(ghosts) set up along the edge of the boundary, possibly in depth, a�xed with

particular behaviour. In the case of the background boundary, that behaviour is

relatively simple. Each ghost has the same range of properties and behaviour as

a �uid pseudoparticle with one di�erence � a lack of evolution. The properties, as

de�ned during the initialisation phase of the model do not change over the course

of simulated time, ie.

A<n>g ≡ A<0>
g (6.12)

for any n, where A = {rg,vg,Bg, ρg, ug, Pg, γ, hg, · · · }.
To avoid instabilities and non-physical behaviour, the boundary must be posi-

tioned away from the expected dynamic behaviour so that no information pertaining

to the dynamics is passed to the boundary. Thus, the ghosts should only interact

with �uid pseudoparticles with properties that are also unchanging. Take, for ex-

ample, the Sod shock tube tests run in Section 5.4.3. Given the quanti�able wave

speeds, the dimensions of the dynamic portion of the simulation is easily calculated

at some time tmax, and therefore the theoretical maximum extent of the domain

can be de�ned. However, to ensure no transfer of information to the ghosts, the
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boundary is �xed relatively far from the centre of the domain.

This approach is computationally costly as the extra domain space must be

populated by pseudoparticles. This is particularly problematic for multidimensional

simulations, as they su�er from the same issue as defence-in-depth (proportional

to r2 - see Section 6.4). It also assumes that the spatial scale of the dynamics is

predictable and/or that the simulation will run for a de�ned (usually short) period

of simulated time.

In an attempt to counter these issues, consider some form of interpolated bound-

ary where the ghosts properties are interpolated from the local �uid pseudoparticles.

Assuming some kernel interpolation method,

Ki =

∑
jKjY (ri − rj)∑
j Y (ri − rj)

(6.13)

where, for SP-type methods, the summation is conducted over the local pseudopar-

ticles and Y = m
ρW (Section 2.2), such that

A<n>g =

∑
a∈ξg

ma

ρa
Wga

−1 ∑
a∈ξg

ma

ρa
A<n>a Wga (6.14)

where ξg = {a|g ∈ ξa} However, this too has issues. It can, for instance, arti�cially
draw energy from the system.

6.4.2 Formulation of the Interpolated-Background Boundary

Consider some transient pulse impacting the boundary (Figure 6.8). The upper

panel shows the impact of the pulse, and the manner by which the background

ghosts arti�cially cause steepening of the pulse pro�le, inevitably slowing the rate

at which information leaves the domain. The central panel represents the impact

of the pulse on the interpolated ghosts which arti�cially accelerates the out�ow of

information from the simulation.

Consider now the de�nition of the interpolated-background boundary. The ghost

properties are computed by

A<n>g = (1− η)A<0>
g + η

∑
b∈ξg

ma

ρa
Wga

−1 ∑
a∈ξg

ma

ρa
A<n>a Wga

 (6.15)

where ξg keeps its prior meaning, and η is some external parameter. Conceptually,

the boundary has been re-imagined as some form of rubber sheet which is tied to
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Figure 6.8: The panels (top to bottom) show the background, interpo-
lated, and interpolated-background boundary, respectively, being struck by
some transient pulse. Speci�cally, each shows the property response of the
two-deep ghost particles. Notice how the top two responses respectively damp
or accelerate the pulse.
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Figure 6.9: Plot showing example density data for the simulation used to
evaluate the sti�ness coe�cient, η, for the interpolated-background boundary.

the initial background boundaries but is able to �ex in order to match incoming

property pro�les. In this context, η determines the relative sti�ness of the rubber

sheet. When η = 1, the boundary �exes to entirely match the surrounding �uid,

and when η = 0 the boundary becomes entirely in�exible and is ignorant of the

state of the �uid. Clearly, also, at these extreme values the boundary behaves in

the same way as the interpolated and background boundaries, respectively. The

interpolated-background boundary is shown in the lower panel of Figure 6.8.

6.4.3 Determining the Sti�ness Coe�cient, η

The sti�ness coe�cient, η, is a parameter and must, therefore, be determined by ex-

periment. Presented here is a simple analysis of a circular pressure wave repeatedly

striking the boundary (see Figure 6.9), with η changing with each cycle. Released

from the centre of a unit square (2D) domain, the wave impacts the boundary

approximately 2 simulated seconds after release. Subsequently the boundary will

either actively remove or inject information, depending on the η value.

The error in the results is determined by calculating the absolute di�erence

between the results of the simulations, as described above, and the same modelled

phenomena computed on a domain three times the size of the unit domain. This
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Figure 6.10: A graph showing the average percentage error in the properties
of an simulation conducted in a unit box bound by the interpolated-background
boundary relative to the same model run in a domain three times the size
against the sti�ness coe�cient, η. The pseudoparticle behaviour in the larger
domain simulation provide a benchmark for the expected behaviour of the
pseudoparticles in the boundary regions of the smaller simulation. The two
lines represent the errors as calculated on axis running North-South (red) and
East-West (green). High η values cause larger errors and low η values cause a
loss of symmetry.

second simulation produces data about how the true �uid pseudoparticles would

respond in the boundary region. The errors are assessed, for each η value tested,

along a North-South and East-West line. The results can be seen in Figure 6.10.

Though the sti�ness coe�cient varies over a large range, the errors are approxi-

mately equal at about 10% for most of that range, the exception occurring at high η

values where the error is signi�cantly higher. High sti�ness coe�cient corresponds

to a larger interpolated component of the ghost properties. Consider the hypothesis

that the large jump in error corresponds to the point at which the information is

being drawn out of the simulation faster than the wave is transiting. Without higher

resolution in η, the hypothesis cannot be tested, but assuming that the interpolated

boundary causes more information to �ow out of the simulation then it is just the

sort of behaviour that should be expected. Once the rate at which information is

being drawn out of the system (which cannot be measured) exceeds the wave speed,

the wave should accelerate as if in the presence of an external driver. The simu-

lations also maintain reasonable symmetry until, conversely, η drops to low values,
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where the errors separate by > 0.5%. The di�erence is small, but gets progressively

more pronounced as η decreases, possibly implying some causal relationship. As-

suming there is a link between the two, this could be attributed to the damping

e�ect of the background boundary (see top panel Figure 6.8). However, more data

is required to extend the argument any further.

Given the present data, η ≈ 0.35 appears to have the lowest error, however,

almost all errors are within 2% of the the error at η = 0.35.

6.5 Conclusion

The research in this chapter described the construction and bounds of a domain

that took advantage of the spherical geometry of the solar coronal environment.

That domain was, however, limited by the nature of the CSP-∆h MHD technique,

which can only be implemented in Cartesian coordinates. Despite the restriction,

the reduced volume (and hence reduced computational requirements) equated to

approximately 50% of the cuboid domain required to encompass the same portion

of the solar surface.

In addition, relatively complex periodicities were de�ned that wrap themselves to

the solar surface accounting for a some of the volume reduction. A new interpolated-

background boundary was also developed and investigated that de�ned the proper-

ties of ghost particles as

A<n>g = (1− η)A<0>
g + η

∑
b∈ξg

ma

ρa
Wga

−1 ∑
a∈ξg

ma

ρa
A<n>a Wga

 (6.16)

The modelled phenomenon can now be con�ned within the domain, while allowing

the streaming of solar wind material in accordance with the physics of the simulation.

A logical extension to the work here is to further investigate the de�nition of the

sti�ness coe�cient, η, under a range of di�erent physical and domain conditions.
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Conclusion

7.1 Summary

As a measure of success, the construction of an algorithm and domain is complete.

However, such is the complexity of the intended simulated media, that is is only

complete at the simple test stage. A full 3-Dimensional run of the algorithm, at a

resolution that would allow for meaningful results is simply out of the range of the

machine power available for this project.

As well as completing the model, a number of other discoveries and conclusions

have been made. First among them was the de�nition of the re�ected formalism

that ensures forces act equally and opposite (Chapter 4). The new formalism, while

consistent with the physics was never-the-less very cumbersome to implement. In

that same chapter, a numerical artefact was identi�ed, described and explained.

However, no adequate correction could be found.

Using this error as impetus, the other obvious but unde�ned error was identi�ed

as the discretisation error and quanti�ed. It was determined to be a function of

the true gradients being approximated, which presented a problem for a coronal

model as the gradients can be very steep. To avoid this, potentially, very large

error the SP algorithm was, with the now de�ned error, expanded upon to form the

Corrected SP method. This proved to have a very low error approximately equal to

the system noise. It was, however, yet another cumbersome (though nowhere near

as demanding as the re�ected formalism) addition to the implementation. As the

program was becoming impractical to run, the short term aim became to �nd some

way of slimming down the algorithm without reintroducing potentially large errors.

This chapter culminated with the description of the novel CSP-∆h algorithm, which

is approximately as hefty to implement as the CSP algorithm, with one important

di�erence � the omission of all smoothing length gradient terms. This reduction

causes the pre-corrected components of the algorithm run as e�ciently as the original

SP method. Factoring in the possible reduction in resolution (and hence, number

of pseudoparticles) as the method is more accurate, the runtime is approximately

equal to the raw SP algorithm.

Finally, with a completed algorithm, the geometry and parameters of the domain
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were considered. The domain was de�ned as the space con�ned by the intersection

two spheres and a square-based pyramid. The two spheres are concentric and are

centred on the apex of the pyramid, which has a vertical height greater that the

radius of the largest sphere. Also created was a novel periodicity routine and a

parametrise edge boundary to bind coronal phenomena within the domain.

7.2 Future Work

There are a number of possible paths for the research to progress. A detailed

stability analysis of the CSP-∆h method and an assessment of the interpolated-

background boundary would, for example, be of great interest. However, primary

among the possible tasks is the comparison of the CSP-∆h MHD algorithm with

other established MHD codes. Unfortunately, most established codes are highly

parallel and thus able to handle more complex applications with their increased

memory and processing capacity. This discrepancy between the implementation of

each algorithm is problematic, and as such the logical �rst step on route to result

comparisons is the parallelisation of the algorithm.

An additional argument for the parallelisation of the algorithm is the capacity

required to simulate solar coronal phenomena. Without that capacity, the �ne-

grained nature of the plasma physics would be obscured by the low resolution of the

domain.
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Extended Derivations

A.1 Equation of Motion

The de�nition of the a Lagrangian � of a closed system � is L = ET − EV , where
ET is the total kenetic energy and EV is the total potential energy. For this closed

system the Lagrangian can be written as

L =
∫

Ω

(
1
2
ρv2 − ρu− B2

2µ0

)
dr (A.1)

This can be transformed into SP form, since a mass element is given by ρdr, and

reduced to give A.2 by

L ≈ [L]SP =
∑
b

mb

ρb

[
1
2
ρbv

2
b − ρbub(ρb, sb)−

1
2µ0

B2
b

]
=
∑
b

mb

[
1
2
v2
b − ub(ρb, sb)−

1
2µ0

B2
b

ρb

]
(A.2)

Given a Lagrangian, the equations of motion may be found by solving the Euler-

Lagrange equation, ie.
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0 (A.3)

where qk is the kth generalised coordinate of the system. For a smoothed particle

system, the generalised coordinates are ra (for each pseudoparticle a). Thus the

equation of motion (singular, as indicated by the number of generalised coordinates)

may be found by solving

∂ [L]SP

∂ra
− d

dt

(
∂ [L]SP

∂va

)
= 0 (A.4)

where
∂ [L]SP

∂ra
=
∑
b

mb

{
1
2
∂v2

b

∂ra
− ∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)}
(A.5)
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and

d
dt

(
∂ [L]SP

∂va

)
=
∑
b

mb

{
1
2

d
dt

(
∂v2

b

∂va

)
− d

dt

(
∂ub
∂va

)
− 1

2µ0

d
dt

(
∂

∂va

[
B2
b

ρb

])}
(A.6)

Now, by substituting equation (A.5) and equation (A.6) into equation (A.4);

0 =
∂ [L]SP

∂ra
− d

dt

(
∂ [L]SP

∂va

)
=
∑
b

mb

{
1
2
∂v2

b

∂ra
− ∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)}
−
∑
b

mb

{
1
2

d
dt

(
∂v2

b

∂va

)
− d

dt

(
∂ub
∂va

)
− 1

2µ0

d
dt

(
∂

∂va

[
B2
b

ρb

])}
=
∑
b

mb

{[
1
2
∂v2

b

∂ra
− ∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)]
−
[

1
2

d
dt

(
∂v2

b

∂va

)
− d

dt

(
∂ub
∂va

)
− 1

2µ0

d
dt

(
∂

∂va

[
B2
b

ρb

])]}
=
∑
b

mb

{
1
2
∂v2

b

∂ra
− ∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)
− 1

2
d
dt

(
∂v2

b

∂va

)
+

d
dt

(
∂ub
∂va

)
+

1
2µ0

d
dt

(
∂

∂va

[
B2
b

ρb

])}

Note, ua = ua(ρa, sa), ρa = ρa(ra) and Ba = Ba(ra). Therefore

0 =
∑
b

mb

{
1
2�

�
�∂v2
b

∂ra
− ∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)
− 1

2
d
dt

(
∂v2

b

∂va

)
+

d
dt

(
�

�
�∂ub

∂va

)
+

1
2µ0

d
dt

(
�

���
��∂

∂va

[
B2
b

ρb

])}
=
∑
b

mb

{
−∂ub
∂ra
− 1

2µ0

∂

∂ra

(
B2
b

ρb

)
− 1

2
d
dt

(
∂v2

b

∂va

)}
=− 1

2

∑
b

mb
d
dt

(
∂v2

b

∂va

)
−
∑
b

mb

[
∂ub
∂ra

+
1

2µ0

∂

∂ra

(
B2
b

ρb

)]
(A.7)

Now, consider the three following manipulations.
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Given that
∂Ab
∂Aa

=

{
0 if a 6= b

∂Aa
∂Aa

if a = b
(A.8)

The �rst summation can be reduced to

−1
2

∑
b

mb
d
dt

(
∂v2

b

∂va

)
= −1

2

∑
b

mb
d
dt

(
2δabvb

)
= −

∑
b

mbδ
abdvb

dt

= −ma
dva
dt

(A.9)

The �rst term of the second summation can be expanded by

∂ub
∂ra

=
∂ub
∂ρb

∣∣∣∣
s

∂ρb
∂ra

(A.10)

at constant entropy, s. The �rst law of thermodynamics dictates

dU = mdu = dQ− dW (A.11)

where dQ = Tds = 0 is the heat added to the �uid body (zero as the entropy

is constant), and dW = PdV is the work done as the �uid diverges (or undergoes

compression). Given that V = m
ρ ,

dV
dρ = −m

ρ2 such that by substitution equation

(A.11) can be rewritten as

du|s = − P
ρ2

dρ (A.12)

and thus equation (A.10) becomes,

∂ub
∂ra

=
Pb
ρ2
b

∂ρb
∂ra

(A.13)

The following can be greatly simpli�ed using the conservative induction equation

(??). Consider,
B2
b
ρb

= UV , where U = B2
b and V = ρ−1

b , such that

∂

∂ra

(
B2
b

ρb

)
=

∂

∂ra
(UV )

= U
∂V

∂ra
+ V

∂U

∂ra

= U
∂V

∂ρb

∂ρb
∂ra

+ V
∂U

∂Bb

∂Bb

∂ra
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by substitution therefore,

∂

∂ra

(
B2
b

ρb

)
= B2

b

∂(ρ−1
b )

∂ρb

∂ρb
∂ra

+
1
ρb

∂(B2
b )

∂Bb

∂Bb

∂ra
−
B2
b

ρ2
b

∂ρb
∂ra

+
2Bb

ρb

∂Bb

∂ra
(A.14)

Thus, by substituting equation (A.9), equation (A.13) and equation (A.14) into

equation (A.7),

0 = −ma
dva
dt
−
∑
b

mb

[
Pb
ρ2
b

∂ρb
∂ra
−

B2
b

2µ0ρ2
b

∂ρb
∂ra

+
Bb

µ0ρb

∂Bb

∂ra

]
(A.15)

∂Bb
∂ra

can be found by

∂Bb

∂ra
=
δBb

δra
=
δBb

δra

δt

δt
=

δt

δra

δBb

δt
=

δt

δra

dBb

dt
(A.16)

Substituting in the SP induction equation (2.118),

∂Bb

∂ra
=
δt

δra


1

Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc
[Bb (vbc · ∇bWbc)− vbc (Bb · ∇bWbc)]


=

1
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

[
Bb

(
δt

δra
vbc · ∇bWbc

)
− δt

δra
vbc (Bb · ∇bWbc)

]

=
1

Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

[
Bb

(
δt

δra

∂rbc
∂t
· ∇bWbc

)
− δt

δra

∂rbc
∂t

(Bb · ∇bWbc)
]

=
1

Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

[
Bb

(
δt

δra

δrbc
δt
· ∇bWbc

)
− δt

δra

δrbc
δt

(Bb · ∇bWbc)
]

=
1

Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

[
Bb

((
δrb
δra
− δrc
δra

)
· ∇bWbc

)

−
(
δrb
δra
− δrc
δra

)
(Bb · ∇bWbc)

]
=

1
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

[
Bb

((
δab − δac

)
∇bWbc

)
−
(
δab − δac

)
(Bb · ∇bWbc)

]
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∂Bb

∂ra
=

1
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc
Bb

((
δab − δac

)
∇bWbc

)

− 1
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δab − δac

)
(Bb · ∇bWbc) (A.17)

And, ∂ρb∂ra
can be found in a similar way.

∂ρb
∂ra

=
δρb
δra

=
δρb
δra

δt

δt
=

δt

δra

δρb
δt

=
δt

δra

dρb
dt

(A.18)

This time, by substitution of the continuity equation (2.112)

∂ρb
∂ra

=
δt

δra


ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc
(vb − vc) · ∇bWbc


=
ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

δt

δra
(vb − vc) · ∇bWbc

=
ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

δt

δra

(
∂rb
∂t
− ∂rc

∂t

)
· ∇bWbc

=
ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

δt

δra

(
δrb
δt
− δrc

δt

)
· ∇bWbc

=
ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δrb
δra
− δrc
δra

)
· ∇bWbc

=
ρb
Ψb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δab − δac

)
∇bWbc (A.19)

Alternaitvely, ∂ρb∂ra
can be found analytically by

∂ρb
∂ra

=
∂

∂ra

∑
c∈ξb
c 6=b

mcWbc

 =
∑
c∈ξb
c 6=b

mc

(
δab − δac

)
∇bWbc (A.20)

However, this form is inconsistant with the non-conservative induction equation

(2.118).

Now, by substituting equation (A.17) and equation (A.19) into equation (A.15),
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and rearranging slightly gives

0 = −ma
dva
dt
−
∑
b

mb

 Pb
Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δab − δac

)
∇bWbc

−
B2
b

2µ0Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δab − δac

)
∇bWbc

+
Bb

µ0Ψbρb
·
∑
c∈ξb
c 6=b

mcΨc

ρc
Bb

((
δab − δac

)
∇bWbc

)

− Bb

µ0Ψbρb

∑
c∈ξb
c6=b

mcΨc

ρc

(
δab − δac

)
(Bb · ∇bWbc)



Further rearrangement yeilds,

ma
dva
dt

=−
∑
b

mbPb
Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc

(
δab − δac

)
∇bWbc

+
1

2µ0

∑
b

mbB
2
b

Ψbρb

∑
c∈ξb
c6=b

mcΨc

ρc

(
δab − δac

)
∇bWbc

− 1
µ0

∑
b

mbBb

Ψbρb
·
∑
c∈ξb
c 6=b

mcΨc

ρc
Bb

(
δab − δac

)
∇bWbc

+
1
µ0

∑
b

mbBb

Ψbρb

∑
c∈ξb
c6=b

mcΨc

ρc

(
δab − δac

)
(Bb · ∇bWbc)

ma
dva
dt

=−
∑
b

mbPb
Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc
δab∇bWbc

+
∑
b

mbPb
Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc
δac∇bWbc

+
1

2µ0

∑
b

mbB
2
b

Ψbρb

∑
c∈ξb
c6=b

mcΨc

ρc
δab∇bWbc

− 1
2µ0

∑
b

mbB
2
b

Ψbρb

∑
c∈ξb
c6=b

mcΨc

ρc
δac∇bWbc · · ·
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· · · − 1
µ0

∑
b

mbBb

Ψbρb
·
∑
c∈ξb
c 6=b

mcΨc

ρc
Bbδ

ab∇bWbc

+
1
µ0

∑
b

mbBb

Ψbρb
·
∑
c∈ξb
c 6=b

mcΨc

ρc
Bbδ

ac∇bWbc

+
1
µ0

∑
b

mbBb

Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc
δab (Bb · ∇bWbc)

− 1
µ0

∑
b

mbBb

Ψbρb

∑
c∈ξb
c 6=b

mcΨc

ρc
δac (Bb · ∇bWbc)

ma
dva
dt

=− maPa
Ψaρa

∑
c∈ξb
c 6=b

mcΨc

ρc
∇aWac +

maΨa

ρa

∑
b∈ξa
b 6=a

mbPb
Ψbρb

∇bWba

+
maB

2
a

2µ0Ψaρa

∑
c∈ξb
c 6=b

mcΨc

ρc
∇aWac −

maΨa

2µ0ρa

∑
b∈ξa
b 6=a

mbB
2
b

Ψbρb
∇bWba

− maBa

µ0Ψaρa
·
∑
c∈ξb
c 6=b

mcΨc

ρc
Ba∇aWac +

maΨa

µ0ρa

∑
b∈ξa
b6=a

mbBb

Ψbρb
·Bb∇bWba

+
maBa

µ0Ψaρa

∑
c∈ξb
c6=b

mcΨc

ρc
(Ba · ∇aWac)−

maΨa

µ0ρa

∑
b∈ξa
b6=a

mbBb

Ψbρb
(Bb · ∇bWba)

ma
dva
dt

=− maPa
Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb
∇aWab −

maΨa

ρa

∑
b∈ξa
b6=a

mbPb
Ψbρb

∇aWab

+
maB

2
a

2µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb
∇aWab +

maΨa

2µ0ρa

∑
b∈ξa
b 6=a

mbB
2
b

Ψbρb
∇aWab

− maBa

µ0Ψaρa
·
∑
b∈ξa
b6=a

mbΨb

ρb
Ba∇aWab −

maΨa

µ0ρa

∑
b∈ξa
b 6=a

mbBb

Ψbρb
·Bb∇aWab

+
maBa

µ0Ψaρa

∑
b∈ξa
b 6=a

mbΨb

ρb
(Ba · ∇aWab) +

maΨa

µ0ρa

∑
b∈ξa
b 6=a

mbBb

Ψbρb
(Bb · ∇aWab)

Once the summations have been manipulated such that the Kronecker delta's are
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no longer present, the equation can be rearranged to give the acceleration equation,

dva
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρa

{
−ΨbPa

Ψa
− ΨaPb

Ψb
+

ΨbB
2
a

2µ0Ψa
+

ΨaB
2
b

2µ0Ψb

−ΨbBa ·Ba

µ0Ψa
− ΨaBb ·Bb

µ0Ψb
+

ΨbBaBa

µ0Ψa
+

ΨaBbBb

µ0Ψb

}
∇aWab

dva
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρa

{
−ΨbPa

Ψa
− ΨaPb

Ψb
+

ΨbB
2
a

2µ0Ψa
+

ΨaB
2
b

2µ0Ψb

−ΨbvB
2
a

µ0Ψa
−

ΨaB
2
b

µ0Ψb
+

ΨbBaBa

µ0Ψa
+

ΨaBbBb

µ0Ψb

}
∇aWab

dva
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρa

{
−ΨbPa

Ψa
− ΨaPb

Ψb
− ΨbB

2
a

2µ0Ψa

−
ΨaB

2
b

2µ0Ψb
+

ΨbBaBa

µ0Ψa
+

ΨaBbBb

µ0Ψb

}
∇aWab

Now, given Sija = −Paδij + 1
µ0

(
Bi
aB

j
a − B2

a
2 δ

ij
)
the acceleration equation can be

simpli�ed to
dva
dt

=
1
ρa

∑
b∈ξa
b 6=a

mb

ρb

[
Ψb

Ψa
Sa +

Ψa

Ψb
Sb

]
∇aWab (A.21)

So, if Ψ = 1,
dva
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρb
[Sa + Sb]∇aWab (A.22)

or, if Ψ = ρ
dva
dt

=
∑
b∈ξa
b 6=a

mb

[
Sa
ρ2
a

+
Sb
ρ2
b

]
∇aWab (A.23)

A.2 Total Energy Equation

The Hamiltonian represents the conserved total energy, E, and is given by

H = E =
∑
a

va ·
∂L

∂va
− L (A.24)

[E]SP can be found by substituting equation (A.2) into the equation above, and
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is given by equation equation (A.25).

[E]SP =
∑
a

va ·
∂

∂va

[∑
b

mb

(
1
2
v2
b − ub −

1
2µ0

B2
b

ρb

)]

−
∑
b

mb

(
1
2
v2
b − ub −

1
2µ0

B2
b

ρb

)

=
∑
a

[
1
2

∑
b

mbva ·
∂v2

b

∂va
−
∑
b

mbva ·
∂

∂va

(
ub +

1
2µ0

B2
b

ρb

)]

−
∑
b

mb

(
1
2
v2
b − ub −

1
2µ0

B2
b

ρb

)

=
∑
a

[
1
2

∑
b

mbva ·
(

2vbδab
)
−
∑
b

mbva · (0)

]

−
∑
b

mb

(
1
2
v2
b − ub −

1
2µ0

B2
b

ρb

)
=
∑
a

mav
2
a −

∑
a

ma

(
1
2
v2
a − ua −

1
2µ0

B2
a

ρa

)
=
∑
a

ma

[
v2
a −

(
1
2
v2
a − ua −

1
2µ0

B2
a

ρa

)]
Therefore

[E]SP =
∑
a

ma

(
1
2
v2
a + ua +

1
2µ0

B2
a

ρa

)
(A.25)

The comoving time derivative is given by

d [E]SP

dt
=
∑
a

ma

{
1
2

d(v2
a)

dt
+

dua
dt

+
1

2µ0

d
dt

(
B2
a

ρa

)}
=
∑
a

ma

{
1
2

d(v2
a)

dva

dva
dt

+
dua
dρa

dρa
dt

+
B2

2µ0

d
dρa

(
1
ρa

)
dρa
dt

+
1

2µ0ρa

d(B2
a)

dBa

dBa

dt

}
=
∑
a

ma

{
va

dva
dt

+
Pa
ρ2
a

dρa
dt

+
Ba

µ0ρa

dBa

dt
− B2

a

2µ0ρ2
a

dρa
dt

}
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By substitution of pre-existing SP dynamic equations,

d [E]SP

dt
=
∑
a

ma


va
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sa +

Ψa

Ψb
Sb

]
∇aWab

+
Pa

Ψaρa

∑
b∈ξa
b 6=a

mbΨb

ρb
vab · ∇aWab −

B2
a

2µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb
vab · ∇aWab

+
Ba

µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb
[Ba (vab · ∇aWab)− vab (Ba · ∇aWab)]



(A.26)

or in indice notation,

d [E]SP

dt
=
∑
a

ma


via
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sija +

Ψa

Ψb
Sijb

]
∇jaWab

+
Pa

Ψaρa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab −

B2
a

2µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb
vjab∇

j
aWab

+
Bi
a

µ0Ψaρa

∑
b∈ξa
b6=a

mbΨb

ρb

[
Bi
a

(
vjab∇

j
aWab

)
− viab

(
Bj
a∇jaWab

)]

(A.27)

and by rearranging the �nal three terms

d [E]SP

dt
=
∑
a

ma

ρa

via
∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sija +

Ψa

Ψb
Sijb

]
∇jaWab

+
Pa
Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab −

B2
a

2µ0Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab

− Bi
a

µ0Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
viabB

j
a∇jaWab +

Bi
a

µ0Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
Bi
av
j
ab∇

j
aWab



(A.28)
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d [E]SP

dt
=
∑
a

ma

ρa

via
∑
b∈ξa
b 6=a

mb

ρb

[
Ψb

Ψa
Sija +

Ψa

Ψb
Sijb

]
∇jaWab

+
Pa
Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab +

B2
a

2µ0Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
vjab∇

j
aWab

− Bi
a

µ0Ψa

∑
b∈ξa
b 6=a

mbΨb

ρb
viabB

j
a∇jaWab



(A.29)

d [E]SP

dt
=
∑
a

ma

ρa

∑
b∈ξa
b6=a

mb

ρb

{
Ψb

Ψa
Sija v

i
a +

Ψa

Ψb
Sijb v

i
a +

Ψb

Ψa
Pav

i
abδ

ij

−ΨbB
i
aB

j
a

µ0Ψa
viab +

ΨbB
2
a

2µ0Ψa
viabδ

ij

}
∇jaWab

(A.30)

d [E]SP

dt
=
∑
a

ma

ρa

∑
b∈ξa
b 6=a

mb

ρb

{
Ψb

Ψa

(
Pav

i
abδ

ij −
Bi
aB

j
j

µ0
viab

+
B2
a

2µ0
viabδ

ij + Sija v
i
a

)
+

Ψa

Ψb
Sijb v

i
a

}
∇jaWab

(A.31)

d [E]SP

dt
=
∑
a

ma

ρa

∑
b∈ξa
b 6=a

mb

ρb

{
Ψb

Ψa

[(
Paδ

ij −
Bi
aB

j
j

µ0

+
B2
a

2µ0
δij
)
viab + Sija v

i
a

]
+

Ψa

Ψb
Sijb v

i
a

}
∇jaWab

(A.32)

By substitution of Sij = −Pδij − B2

2µ0
δij + 1

µ0
BiBj ,

d [E]SP

dt
=
∑
a

ma

ρa

∑
b∈ξa
b6=a

mb

ρb

{
Ψb

Ψa

[
−Sija viab + Sija v

i
a

]
+

Ψa

Ψb
Sijb v

i
a

}
∇jaWab (A.33)

=
∑
a

ma

ρa

∑
b∈ξa
b6=a

mb

ρb

{
Ψb

Ψa

[
−Sija via + Sija v

i
b + Sija v

i
a

]
+

Ψa

Ψb
Sijb v

i
a

}
∇jaWab

(A.34)

=
∑
a

ma

ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sija v

i
b +

Ψa

Ψb
Sijb v

i
a

]
∇jaWab (A.35)
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Thus the total energy of some particle a;

dEa
dt

=
ma

ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sija v

i
b +

Ψa

Ψb
Sijb v

i
a

]
∇jaWab (A.36)

Therefore the total energy per unit mass is;

dea
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Ψb

Ψa
Sija v

i
b +

Ψa

Ψb
Sijb v

i
a

]
∇jaWab (A.37)

So, if Ψ = 1,
dea
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Sija v

i
b + Sijb v

i
a

]
∇jaWab (A.38)

or, if Ψ = ρ

dea
dt

=
1
ρa

∑
b∈ξa
b6=a

mb

ρb

[
Sija vib
ρ2
a

+
Sijb v

i
a

ρ2
b

]
∇jaWab (A.39)
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Figure B.1: Plots showing the stress gradient curves as calculated by SP
approximation with the correct particle con�guration at the same spatial res-
olution. Using English directionality, the plots show stress gradients for lin-
ear, sinusoidal, quadratic polynomial and Gaussian stress. All are calculated
with con�guration 2, where the pseudoparticles are regularly spaced, excluding
a = Np/2 which is o�set by 0 < δp < ∆p.
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Figure B.2: Plots showing the absolute residual stress gradients constructed
by subtracting the the true solution, as calculated by SP approximation with
the correct particle con�guration at the same spatial resolution. Using English
directionality, the plots show the residual stress for linear, sinusoidal, quadratic
polynomial and Gaussian stress. All are calculated with con�guration 2, where
the pseudoparticles are regularly spaced, excluding a = Np/2 which is o�set by
0 < δp < ∆p.
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Figure B.3: Plots showing the stress gradient curves as calculated by SP ap-
proximation with the correct particle con�guration at the same spatial resolu-
tion. Using English directionality, the plots show stress gradients and residuals
for linear, sinusoidal, quadratic polynomial and Gaussian stress. All are calcu-
lated with con�guration 3, where the pseudoparticles are regularly spaced, ex-
cluding the pair a = Np/2 and b = a+1 where are closer together (|rab| < ∆p).
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Figure B.4: Plots showing the absolute residual stress gradients constructed
by subtracting the the true solution, as calculated by SP approximation with
the correct particle con�guration at the same spatial resolution. Using English
directionality, the plots show the residual stress for linear, sinusoidal, quadratic
polynomial and Gaussian stress. All are calculated with con�guration 3, where
the pseudoparticles are regularly spaced, excluding the pair a = Np/2 and
b = a+ 1 where are closer together (|rab| < ∆p).
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Figure B.5: Plots showing the stress gradient curves as calculated by SP
approximation with the correct particle con�guration at the same spatial reso-
lution. Using English directionality, the plots show stress gradients for linear,
sinusoidal, quadratic polynomial and Gaussian stress. All are calculated with
con�guration 4, where the pseudoparticles are regularly spaced, then o�set by
±δpR/2 where 0 < R < 1 is some random number.
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Figure B.6: Plots showing the absolute residual stress gradients constructed
by subtracting the the true solution, as calculated by SP approximation with
the correct particle con�guration at the same spatial resolution. Using English
directionality, the plots show the residual stress for linear, sinusoidal, quadratic
polynomial and Gaussian stress. All are calculated with con�guration 4, where
the pseudoparticles are regularly spaced, then o�set by ±δpR/2 where 0 < R <
1 is some random number.
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Smoothed Particle Magnetohydrodynamics for the Solar Corona

Abstract:

The focus of the work herein is the construction, by reasoned argument and

investigation, of a Smoothed Particle (SP) algorithm and model suitable for the

stable, accurate simulation of Solar Coronal phenomena.

The SP method is a numerical technique that approximates a medium and the

equations that govern the mediums behaviour such that they form a �nite element,

Lagrangian model suitable for computation. In this case, that medium is the the

Solar Corona, the highly dynamic outer layer of the Sun's atmosphere.

Criteria as to what properties de�ne a suitable simulation are, in themselves, a

matter for debate. However, general criteria can be established by referencing other

numerical models of the Corona and looking at the short-comings of other, more

general SP algorithms. For example, quanti�ably high accuracy, variable spatial

resolution and a degree of optimisation for computational e�ciency.

Subsequent to a through discussion of general SP theory and implementation,

this document initially presents research investigating the nature of the techniques

de�ning variable spatial resolution (variable smoothing length), and discovers a

numerical artefact that in the presence of large variations in smoothing length dras-

tically e�ects the stability of the algorithm. In order to better understand this

artefact, the subsequent research focuses on the quanti�cation of errors leading to

the cumbersome, but more accurate Corrected SP (CSP) method. Following an in-

vestigation into the behaviour of that algorithm, another is presented that conforms

to the high accuracy generated by the CSP method, but strips away that which

makes the it so computationally weighty. Entitled the CSP-∆h method, it avoids

some of the complications of the former method by justi�ably dropping those terms

that are a function of the gradients of spatial resolution (that is the spatial gradients

of the smoothing length). Finally, the work de�nes a novel domain geometry in or-

der to capture the required dynamics with as little wasted computation as possible.

Two new boundaries have been established, the �rst a speci�cation of the periodic

boundary and the second a novel boundary that attempts to let information about

the internal dynamics out of the domain while ensuring the model evolution remains

stable.
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