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Abstract 

 

 
 

This investigation employs Anomalous Small Angle X-ray Scattering (ASAXS), and 

further expands the technique for conducting time resolved experiments within 

synchrotron facilities. ASAXS utilises the absorption effects of a given element as photon 

energies approach an absorption edge, and is used to extract partial scattering functions of 

the individual species within a composite material. 

In situ ASAXS is used to explore and understand the complex reactions in sol gel 

processing. The gelation process for zirconia, yttria stabilised zirconia (YSZ), YSZ and 

zirconia in silica, and zinc-silica systems are observed using in situ ASAXS across the 

zirconia and zinc absorption edges respectively. A new technique of high temperature 

time resolved double ASAXS, which explores two absorption edges in a single 

experiment, has also been employed to investigate phase changes during the sintering of 

YSZ and YSZ in silica. 

A computational model for ASAXS is also proposed, which can be used as a tool for data 

analysis. It is shown that monochromator resolution induces an uncertainty into the 

correct values of the coefficients - used to extract scattering information from individual 

species within a composite material. The model suggests methods to reduce this 

uncertainty in order to converge on the correct solution. New techniques for future time 

resolved ASAXS experiments are also presented. 

 Time resolved ASAXS of the gelation process reveals contrast in the resonant term for 

sol-gels containing zirconia. The profile of which is independent of the relative 

concentrations of yttria and silica. It is proposed that the zirconia is being fully integrated 

into the gel network to form zirconia-silica chains. In comparison, the zinc systems did 

not reveal this effect, and instead display contrast in both the resonant and cross terms, 

implying a gel network is forming at the exclusion of zinc. 

High temperature in situ double ASAXS of the YSZ materials reveals the nucleation of 

nano zirconia at temperatures close to 400ºC. The nano crystals grow to eventually 

incorporate yttria, preserving the zirconia in the cubic and tetragonal phases. 

Inhomogeneities are revealed during crystal growth; caused by the mixed phase states of 

zirconia and YSZ present in the material. It is also shown that the presence of a silica 

matrix delays the growth of these crystals until a temperature of 780 ºC is reached. 

Samples with high concentrations of yttria also reveal an additional feature beyond 900ºC 

indicating a saturation point for cubic YSZ formation.  

 

 

 

 



 2 

 

 

 

 

 

 

 

To the memory of my 

Grandmother



 3 

Acknowledgements 
 

 

 

Before all others, I would like to extend my deepest gratitude to my partner, Phoenix, 

whose support kept me sane during my research. 

I would like to extend my gratitude to my supervisor, Dr Rudi Winter, for his advice and 

guidance throughout my PhD and thesis writing. 

Special thanks is given to Dr Chris Martin, SRS Daresbury, and Armin Hoel, Sylvio Haas 

and Dragomir Tachev, BESSY, Berlin, for their invaluable help during my time resolved 

ASAXS experiments. 

My deepest gratitude also goes to Dr Nicholas Terrill and his fellow beamline scientists 

on I22 at Diamond Light Source, for their continued help and guidance before, during 

and after experiments. 

 

Funding from the Engineering and Physical Sciences Research Council is also gratefully 

acknowledged. 

 

 

 



 4 

Contents 

 

 
Introductory Statement 7 

  

1 Sol-Gel Processing 9 

      1.1 Silica Sols 12 

      1.2 Transition metal gels 15 

      1.3 Composite gels 19 

      1.4 Alternative sol-gel routes 21 

      1.5 Finishing – Drying and sintering 22 

  

2. Sources of Synchrotron Radiation 24 

      2.1 The basic synchrotron 25 

      2.2 The SAXS beamline 30 

            2.2.1 The Optics hutch 30 

            2.2.2 The experimental hutch 32 

            2.2.3 The control room 35 

      2.3 An ideal ASAXS beamline 35 

  

3 Small Angle Scattering 38 

      3.1 Small angle scattering theory 40 

      3.2 Scattering from non-spherical objects 45  

            3.2.1 Ellipsoids of revolution 45 

            3.2.2 Disk-shaped objects 46 

            3.2.3 Long rods of negligible radius 47 

      3.3 Rough surfaces and the fractal model 48 

      3.4 High particle concentrations 50 

  

4 Anomalous Small Angle X-ray Scattering (ASAXS) 54 

      4.1 The ASAXS concept 54 

      4.2 Techniques in anomalous scattering 59 

            4.2.1  Comparing two scattering patterns far below and 

above the absorption edge 

59 

            4.2.2  Multiple scattering intensities taken at a range of 

energies across the absorption edge 

61 

            4.2.3    The ASAXS deconvolution method 61 

           4.2.3.1  The X-ray Absorption Spectrum 63 

      4.3 ASAXS across multiple absorption edges 64 

  

5 Experimental methods 67 

      5.1 Sol-gels 68 

            5.1.1 Zirconia sol-gel 68 

            5.1.2 YSZ sol-gel 69 

            5.1.3 Silica-zirconia and silica-YSZ sol-gel 70 



 5 

            5.1.4 Silica-zinc sol-gels 71 

      5.2 Xerogels 73 

      5.3 Beamline methods 74 

            5.3.1 Sample environments 74 

            5.3.2 The furnace 75 

            5.3.3 Monitoring the transmitted and reflected  beam 76 

            5.3.4 Detectors and Camera Lengths 77 

            5.3.5 Beamtime 77 

            5.3.6 Tuning the monochromator 78 

            5.3.7 Scattering from silver behenate or collagen 79 

            5.3.8 Scattering from the sample environment 79 

            5.3.9 Calibrating the monochromator 80 

            5.3.10 Absorption spectrum of the sample 81 

            5.3.11 Scripting the energies 83 

            5.3.12 Performing the experiment 84 

  

6 Data Analysis 85 

      6.1 data reduction 85 

      6.2 Solving the terms 86 

             6.2.1 Corrections to the atomic scattering functions 87 

            6.2.2 Deconvolution 89 

  

7 Computational and Mathematical Models of Anomalous 

SAXS Results 

91 

      7.1 Signal versus noise 91 

      7.2 Monochromator resolution 94 

      7.3 The sensitivity problem 96 

      7.4 Simplifying the model 103 

            7.4.1 When energies are above the edge 104 

      7.5 Fine tuning f-prime – An iterative approach 107 

  

8 Results and Discussions 114 

      8.1 The gelation process 114 

            8.1.1 Stabilised zirconia 114 

            8.1.2 Zinc-silica gels 119 

            8.1.3 Discussions of the gelation process 121 

      8.2 Analysis of the sintering of sol-gel prepared yttria-

stabilised-zirconia using time resolved double ASAXS 

122 

            8.2.1 Time resolved (single energy) SAXS 122 

            8.2.2 Anomalous (energy dependent) effects 125 

            8.2.3 In situ ASAXS 129 

            8.2.4 Surplus yttria 131 

            8.2.5  Contrast between the normal and resonant terms: 

The role of yttria and zirconia 

132 

            8.2.6 Comparative results from wide angle X-ray diffraction 135 

            8.2.7 The nucleation of the YSZ process 137 



 6 

 

 

 

9 Conclusions 138 

      9.1 Conclusions on gelation 138 

      9.2 Conclusions on the sintering of yttria stabilized zirconia 139 

      9.3 Future Work 140 

      Afterthoughts 141 

  

References 143 

 
 

 

 

  
 

 

 

  
 

 



 7 

Introductory Statement 

 

 

Sol-gel chemistry enables the production of novel ceramics, glasses and high purity metal 

oxides. Typically, a liquid organo-metallic compound such as an alkoxide is hydrolised 

under controlled conditions to obtain the desired product. Metal nitrate solutions can also 

be added to introduce dopants to the forming material. 

The use of liquid precursors ensures homogeneity to the sub-nanometer level. Usually the 

precursors are mixed in a co-solvent such as alcohol for complete miscibility. The 

resultant sol is then kept at a temperature of between 50 and 80 degrees Celsius until a gel 

is formed. The gel can be dried in air to make a xerogel, or dried with supercritical carbon 

dioxide to produce an aerogel. Xerogels are then usually sintered in a furnace to give 

glasses and dense ceramics. 

Such versatility provides the additional advantage of being able to adjust the materials 

and chemistry to suit. It may be desirable, for instance, to keep the precursor mixture in a 

constant liquid state, which can then be used for coating substrates. Ceramic fibres can be 

produced by drawing a highly viscous sol on the point of gelation. pH can be adjusted to 

induce either a clear gel (for Xerogels and Aerogels) or to force precipitation of a high 

purity oxide. 

Despite the versatility and the obvious industrial applications sol-gel holds, the chemistry 

is still poorly understood. This investigation will focus on analysing sol-gel reactions 

using time resolved (in situ) X-ray scattering techniques. Ex-situ X-ray diffraction is first 

used to determine basic structural information on the atomic scale. In-situ small angle 
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scattering (SAXS) is used to track the growth of particles and networks on the nano-scale.  

In-situ anomalous small angle scattering (ASAXS) is then used to gather information on 

the roles of individual species within a composite material.  

 

In conducting diffraction experiments I shall concentrate on the formation of zirconia 

derived ceramics. In particular, yttria stabilised zirconia (YSZ), which has important 

applications in solid-fuel cell production, and consists of two elements adjacent to each 

other on the periodic table. Silica-zirconia and silica-zinc systems are also explored. The 

compounds are important catalysts in the petroleum industry, and in ultraviolet filtering 

respectively.  

Zirconium ions pose the advantage that their electron densities are relatively high, 

making them strong X-ray scatterers. The zirconium K-edge is also within range of a 

majority of synchrotron sources. Due to beamline experimental constraints it is only 

possible to do ASAXS on elements with absorption edges of between 5keV and 20keV. 

Yttria – zirconia systems pose the additional advantage that their absorption edges are 

relatively close together (1keV apart) making in-situ ASAXS studies across both 

absorption edges possible using modern synchrotron sources. Further understanding of 

this material will assist the further and more efficient development of solid fuel cells in 

the future. 
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Chapter 1 

 

Sol Gel Processing 

 

Sol-gel processing first began in 1845 when Ebelman reported the formation of a clear 

material after the slow hydrolysis of an ester of silicic acid 
[1]

. Though his findings were 

not the result of a search for alternative ways of producing glass, he hoped the material 

could be used in the construction of optical devices. Later, in the 1930’s, Geffcen and 

Berger of Schott Company devised a sol-gel process for dip-coating oxide layers on 

industrial glasses using organo-metallic precursors 
[2]

. 

After the outbreak of the Second World War an interest in sol-gel came from laboratory 

studies. D. Roy and R. Roy conceived a method for preparing homogenous melts and 

glasses using a sol-gel route 
[3,4]

. This led to an experiment by H. Shroeder in the early 

60’s, where he modified the refractive index of glass by coating the surface with thin 

layers of titanium butoxide 
[5]

. At the same time, nuclear laboratories in the USA were 

already using a sol-gel route for the production of nuclear fuel pellets, which would 

ultimately minimise pollution hazards. Their results remained secret until the early 

1970’s. 

By the beginning of the 1980’s, several publications were released, one of which sparked 

major scientific interest after Dislich produced borosilicate glass by heating oxide 

powders obtained by a low-temperature sol-gel route 
[6]

. This turning point launched sol-

gel research as it is known today; a new branch from a pre-existing sol-gel technology.    
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From then on, a principle drive for sol-gel science was to manufacture glass by simply 

mixing several liquids at room temperature. Sol-gel techniques using other organo-

metallic compounds were also devised, leading to the development of transition metal 

ceramics. Novel glasses, ceramics and high purity oxides could be made by varying the 

environment in which the precursor materials were mixed. Altering pH, for instance, 

while hydrolysing silicic acid esters would quickly lead to precipitation and 

agglomeration of silicon dioxide when slightly alkaline (pH greater than 7). A clear gel 

could be made in a slight acidic environment, which was found to be optimal pH 3 
[7]

. 

More acidic conditions led to a much longer gelation time, or resulted in the sol 

remaining a clear liquid which could then be used in dip-coating. 

Gels could be further treated by either drying them in air to make xerogel. The xerogel is 

usually densified and sintered in a furnace to make a glass or ceramic 
[8]

. Alternatively 

supercritical drying can be applied to the gels. In this process, carbon dioxide molecules 

replace surplus liquids in gel pores to preserve the gel network.
 [8,9]

 Such materials, 

known as aerogels, are known for possessing refractive indexes close to unity. Their 

porous structures give them ultra low density (and hence low mass) and make them one 

of the most efficient insulators of heat known today.
[7,9]

 The properties of aerogels have 

made them ideal for insulating neutrino detectors and space satellites, where weight is a 

critical issue. 

Today, Sol-gel technology has leant itself to a wide range of commercial applications, 

from solid fuel cells and oxygen sensors (YSZ), bone regeneration (calcium sol-gel), and 

satellite insulation (Aerogels) - to the repair of fractured car windscreens (silica sol-gel).  

 



 11 

Traditionally sol-gels are made by the hydrolysis of metallic alkoxides in an 

organic solvent such as alcohol or cyclohexane 
[7]

. As the name suggests; alkoxides are 

produced by the removal of a proton from an alcohol to produce an alkoxyl ligand; these 

ligands then bond with metallic ions. Alkoxides are popular precursors because they react 

readily with water, as in the following case: 

 

 

M(OR)x+H20 → HO-M(OR)x-1 + ROH 

M(OR)x + XH2O → M(OH)x + XROH 

  

 

Here ‘OR’ is the alkoxide ligand, M is the metallic ion and X is the valency of the 

ion. Such reactions lead to fractal polymers providing the number of bonding sites per 

building block is greater than two; forming a gel network, a sol or an oxide precipitate, 

depending on reaction environment. The ability to slow gelation and suspend particle size 

and growth allows one to add dopants or other alkoxides to the sol as it gels. The addition 

of zirconium-n-propoxide to a silica sol, for instance, produces mixed oxide catalysts 

useful for the n-hexane isomerisation reaction to petroleum 
[10-13]

. Neodymia doped silica 

produced by the sol-gel route offers host glasses for high power laser applications 
[14]

. 

Calcium-oxide gels have important applications in bone regeneration - while a careful 

mixing of zirconium and yttrium alkoxides gives yttria stabilised zirconia – an important 

material, for example, in the manufacture of oxygen sensors and coating jet engines
[15]

. 
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Thus sol-gels are an attractive method for producing high quality glasses, ceramics and 

metallic oxides with novel properties.    

 

1.1 Silica Sol-Gels 

 

As previously mentioned, sol-gel techniques using silica derived materials were the first 

to be produced. It is also the most common technique in sol-gel science. Typically, 

tetraethylorthosilicate (TEOS) is mixed with an alcohol such as ethanol or isopropanol, 

and then hydrolysed under controlled conditions. The alcohol serves as a co-solvent to 

ensure complete miscibility of TEOS and water, which would otherwise not wholly 

blend. The addition of alcohol also aids in the slowing of hydrolysis reactions to further 

ensure the formation of a gel network if precipitation is not desirable. Water, in the form 

of a low concentration mineral acid such as nitric or hydrochloric (0.1M) is then added to 

the mixture while keeping the sol at a constant 50 degrees Celsius. A clear, homogenous, 

silica gel is obtained after three hours. 

Silica readily forms a network due to the tetrahedral co-ordination of the silicon ion. In 

the above reaction it could be thought to proceed as follows: 

 

Si(OC2H5)4 + 4H2O → Si(OH)4 + 4C2H5OH 

 

The introduction of protons (by, for example, nitric acid) serves to adjust the charge 

distribution of the TEOS molecule, resulting in a chemical polarity. This serves to 

promote polymerisation by means of an intermediate silica compound with a negatively 
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charged oxygen branch and positively charged silicon centre. The charged molecules can 

then attract and join with others as a silica polymer network. 

 

Figure 1.1 The gelation of silica. Shown here: small pale grey – hydrogen, blue – 

carbon, red – oxygen, large silver - silion (A) TEOS a typical precursor for sol-gel 

synthesis is hydrolysed in acidic conditions. (B) a proton (hydrogen ion) interacts with 

one of the oxygens in the alkoxyl group through hydrogen bonding, This generates a 

distribution in charge across the TEOS molecule, weakening the Si-O and C-O bonds as 

electrons are drawn towards the region of positive charge. (C) The original bond is 

weakened sufficiently so an alcohol molecule is displaced, resulting in a silica network 

former and an alkyl radical. (D) the network formers begin to polymerise. (E) The charge 

centres on the silicon and oxygen atoms allow the formation of a gel network. 
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Consequently, in alkaline conditions, it is the hydroxyl ion that plays the dominant role, 

and generates a charge current across the TEOS molecule in the opposite sense. This 

drives the hydroxyl ion to bond directly with the silicon atom, ejecting the alkoxyl ligand. 

The presence of the OH group on the silicon prevents polymerisation, resulting in the 

colloidal suspension of silicon tetrahydroxide nano-particles. 

 

 

Figure 1.2 The chemical reaction with hydroxyl ions. (A) TEOS in a strong alkaline 

solution first experiences a change current across the silicon atom, induced by the 

hydroxyl ions, which destabilises the alkoxide structure. (B). This leads to the ejection of 

alkyl ligands as the smaller, hydroxide state is more stable (C) and the formation of 

silicon hydroxide nanoparticles in an alcoholic medium (D) 

 

In conditions close to neutrality, silicon hydroxide agglomerates will occur with partial 

polymerisation, resulting in eventual precipitation if the particle agglomerates become too 
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large. The size and growth rate of these agglomerates will depend on the ratio of protons 

to hydroxyl ions. Such conditions can be adjusted to slow down particle growth and 

control their average size; making this a favourable technique in the production of nano-

particles.    

Extreme acidity can slow both polymerisation and precipitation by forcing the organo-

silica moieties to remain in their charged molecular state. Excess protons can partially 

attach themselves to the negatively charged oxygen centres, thus preventing bonding with 

the positively charged silicon atoms in surrounding molecules. Too many protons can 

even stop gelation completely – leaving a clear sol; desirable for the dip coating process 

of thin silica layers.  

In the vast majority of sol-gel processes, the reactions in both figure 1.1 and figure 1.2 

will play a role in determining the appearance and property of the final gel, since 

hydroxyl ions will be present in even the most acid environments. This often results in 

large networks containing a suspension of smaller agglomerates. It is found that clear gel 

formation (in the optical region) is optimal at pH 3 
[7]

, where all silica will be present in 

the gel network. 

 

1.2 Transition metal gels 

 

As well as silica sol-gels, other alkoxides are commonly used in sol-gel processing to 

produce a variety of novel glasses and ceramics. By conventional glass making methods, 

transition metal oxides possess higher melting points and glass transition temperatures 
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than conventional silicon dioxide. Sol-gel prepared transition metal ceramics and glasses 

have a much lower sintering temperature 
[17]

.  

The chemistry of transition metal sol-gel reactions differs somewhat from silica 
[18,19]

. 

Transition metals often have more than one valance state, which render them far more 

susceptible to hydrolysis reactions. Using methods employed in the production of silica-

gels, reactions would occur through nucleophilic substitution of the alkoxyl ligand with a 

hydroxyl; with the remaining proton bonding with the alkoxyl to form alcohol. The 

reactions proceed too fast for polymerisation to occur, resulting in precipitation of 

transition metal hydroxides and oxo-hydroxides.  

Transition metals are most stable in their highest valence state. Thus, to produce clear 

homogenous gels and sols, an additional compound must first be introduced to make the 

transition metal coordinatively saturated. Such compounds are known in sol-gel 

chemistry as chelating agents. 

The most widely used chelating agent is acetylacetone 
[20, 21]

. Acetic acid is also often co-

employed for its additional properties as a proton donor. The chelating agent is added to 

the transition metal alkoxide, which react to form alkoxide-acetylacetonate complexes 

(see Figure 1.3), stabilising the transition metal to its highest coodination state.  
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Figure 1.3: The role of Acetylacetone in transition-metal sol gel reactions. (A) The 

acetylacetone and alkoxide begin to interact. The transition metal ion is in a 4-

coordination state (A). The 2 oxygen atoms of the acetylacetone bond with the metallic 

ion to make a chellate ring, increasing the valence state of the ion to 6, and stabilising 

the metal to its highest valence state (B). The sol-gel reaction then proceeds as it would 

in the case of silica, resulting in network formers and alkyl radicals (C). A transition 

metal polymer begins to form (D).   

 

 

The result is highly dependent on the molar ratio of chelating agent to alkoxide used. For 

zirconia and titania, for instance, where acetylacetone is used, full coordinate saturation 

occurs when the molar ratio is greater than 1, which is desirable when only a liquid sol is 

required. On hydrolysis, the acetylacetoneate complexes remain in solution and cannot 
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polymerise into a gel, in much the same way an overly acidic environment prevents the 

polymerisation of silica sols. In addition, it is often prudent to dilute the water with a 

quantity of alcohol to slow the reaction further.  

Conditions for gelation are optimal when the transition metal coordination is slightly 

under saturated. This way, not all the alkoxide has reacted to create a transition metal 

acetylacetonate and polymerisation can proceed as with silica sols. Decreasing the molar 

ratio acetylacetone:alkoxide further allows both agglomeration and polymerisation and 

results in more opaque gels.  

To further complicate the process, the use of acetic acid can further prevent precipitation 

and also act to slow the polymerisation reactions. An overly acidic environment will 

again result in a clear sol where no polymerisation reactions occur. Calculating the 

chelating agent - alkoxide molar ratio must also include acetic acid due to its chelating 

properties. In the production of clear gels, a small quantity of acetic acid is always added 

at the time of chelating to provide additional protons which prevent precipitation. By 

comparison, the same recipe in the absence of acetic acid results in agglomeration.  

 

The presence of so many compounds, each playing a major role in gel formation, means 

the reaction mechanisms for transition metal sol-gel processing is still poorly understood. 

Careful deduction of the molar ratios give a starting point in which, quite often, the 

desired product is obtained through a little trial and error. Such methods can be costly to 

industry, both in terms of man-power and materials expense.  
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1.3 Composite gels 

 

So far, only single metal gels have been considered. In the vast majority of glasses and 

ceramics, more than one species is present. Sol-gel processing allows for the addition of 

dopant ions, which are added either before or during hydrolysis. The dopants can be 

added in two forms; alkoxides or acetylacetonates, or metallic salts such as nitrates and 

chlorides. Both of these have their own properties which must be taken into account 

during the sol-gel reaction. 

Alkoxides of the more exotic metals, such as rare-earths, are often expensive and difficult 

to synthesise due to their extreme sensitivity to hydrolysis 
[22, 23, 24]

. Small quantities can 

be made by alcoholisis of an anhydrous chloride: In the highly exothermic reaction, the 

chloride strips the proton from the oxygen atom in the alcohol to give hydrogen chloride. 

The alkoxyl ligand then bonds with the metal in the form of an alkoxide 
[25]

. However, 

the quantity of hydrogen chloride gas, and the moisture sensitivity of the alkoxide make 

this an unattractive method for wide-scale production. Also, not all anhydrous chlorides 

react readily with alcohol, such as the case with yttrium III chloride. In these 

circumstances two solutions are prepared, and then mixed in a controlled environment.
 

[7,23]
 The chloride is dissolved in alcohol, and mixed with a second alcoholic solution 

containing an alkali-metal alkoxide such as potassium propoxide.
[24,25]

 The reaction 

proceeds with the formation of the desired alkoxide, and the precipitation of the alkali-

metal chloride which is insoluble in alcohol. The alkoxide can then be siphoned off by 

centrifuge. 
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Once the dopant metal alkoxides are obtained, the alkoxides are combined, then chellated 

and hydrolysed in the usual manner. However, composites where one alkoxide is very 

much more reactive than the other can also lead to gel networks with agglomerates of the 

dopant material. 

 

Where the alkoxides are too difficult or costly to produce, dopants can be added in an 

alternative form, usually as metal nitrates.
 [25]

 Though in principle the nitrates route is a 

safer alternative, the dopant percentage is limited by the solubility and pH of the nitrate. 

Most nitrates that are readily available also come in hydrated form, making them 

unpractical for addition to the alkoxide prior to hydrolysis. Nitrates also readily 

decompose on heating, which make the production of anhydrous nitrates a difficult task. 

Also, it is quite likely that not all the dopant ions will be incorporated into a gel network 

(if desirable). 

 

The resultant sol-gel, and its structure, is very much dependent on the metals used. Silica-

transition metal complexes where all metals have been added in the form of alkoxides, 

give a single silica-transition metal gel network - as in the case of zirconia-silica gels, 

which are sintered for use as a catalyst in the manufacture of high-octane in the petroleum 

industry. On the other hand, gels synthesised via the nitrates route will invariably consist 

of a principle gel network with the nitrate dopants remaining in solution, and hence 

contained within gel pores.  
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1.4 Alternative sol-gel routes 

 

Due to the instability of many metallic alkoxides, attention has been given to searching an 

alternative method of producing nano-particles using non-alkoxide sol-gel routes.  

The simplest method, sometimes used in the production of yttrium aluminium garnates 

and zinc oxide thin films with preferred orientation, is to mix solutions of metal nitrates 

with citric acid 
[19, 26, 27]

. The citric acid forms complexes with the metallic ions, and 

gelation (if desired) can occur after heating for 12-24hours at 80 degrees Celsius. The sol 

or gel can be used for dip-coating, or dried to obtain nano-particles. 

The obvious advantage in these routes is they allow for the precursor materials to be in an 

aqueous rather than alcoholic solution. There is less danger of undesired precipitation and 

agglomeration as the precursors are far less reactive than their alkoxide derivatives.  

Alternative sol-gel routes can also be combined with the conventional alkoxide process to 

generate organo-metallic polymers involving transition and rare-earth metals. Citric acid 

can also replace acetylacetone and acetic acid as a chelating agent, particularly where 

rare-earth sol-gels are required, providing additional opportunities for the manufacture of 

more exotic systems - such as in the production of orientated zinc oxide thin films and 

quantum dots 
[29, 30]

. 
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1.5 Finishing – Drying and sintering 

 

Once a gel has been made, it is necessary to further treat it to obtain the desired product. 

This treatment usually involves extracting the solvent to either preserve or densify the gel 

network and, if needed, sintering to give a ceramic or glass.  

Solvent extraction by drying in open air results in a xerogel. Unless special chemical 

precursors have been used in addition to alcohol during the gelation stage, the gel itself 

will often crack and crumble as the network shrinks. Destruction of the gel network is 

increased if the solvent is allowed to evaporate too quickly; due to increased kinetic 

energy of the alcohol molecules trapped in pores destroying the surrounding walls of gel 

network 
[31]

. Network destruction is not so important in the manufacture of dense 

ceramics, the process of which involves pressing into moulds and sintering at 

temperatures of 1000 degrees Celsius.
[31]

 However glass formation requires the 

transparency of the network to remain intact. Gel cracking is also a major obstacle in the 

production of optical devices. 

 

If the original undensified gel network is required, then solvents can be extracted by 

means of supercritical drying. In a typical synthesis, the wet gel is first washed with 

acetone, and then placed in a carbon dioxide chamber at a pressure of 72 

atmospheres.
[7,31]

 At such pressures, the barriers between liquid and gas become 

indistinguishable for carbon dioxide, and the supercritical fluid is able to penetrate gel 

pours and replace the solvent while at the same time preserving the network. Carbon 
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dioxide is favourable due to its relatively low supercritical limit at room temperature. The 

result is a porous, low density and highly insulating material known as an aerogel. 

 

In addition to the above techniques, a viscous sol can be drawn into fibres or thin needles 

at the onset of gelation. This makes an attractive method for the manufacture of STM and 

SEM devices, which require needles with points of atomic thickness. The fragile gel 

needles can go on to become ceramic nano-fibres by sintering. Similarly, thin films are 

densified by drying and sintering using methods similar to those used in Xerogel 

production. Here, the dense film needs to appear at temperatures low enough not to melt 

or otherwise affect the underlying substrate. This makes sol-gel an attractive method in 

comparison to other techniques in thin-film production - such as sputtering and chemical 

vapour deposition; which require highly specialist equipment.  In contrast, sol-gel can be 

deposited by either dip coating (a substrate is dipped into the sol, and the coating allowed 

to dry), or a substrate is coated using a spin-drying technique. Here, the substrate is spun 

at high velocity, and a droplet of sol is deposited in the centre.  A thin coating is obtained 

as the sol spreads over the surfaces due to the centrifugal forces present during rotation.  
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Chapter 2 
 

 

 

 Sources of Synchrotron Radiation 
 

 

 

 

When charged particles are accelerated by a magnetic field, they emit energy in the form 

of electromagnet radiation. The cause of this emission is more apparent from the 

reference frame of the charged particle. As it accelerates, the particle experiences a 

change in the magnetic field from the particle’s own frame of reference. Schematically, 

this can be visualised by imagining a set of points spaced equally apart inside the field. 

As a particle accelerates and passes them, the time taken to travel from one point to the 

next decreases with increasing particle speed. In the reference frame of the particle, the 

magnetic field density appears to increase.  

If the particle’s velocity remains far below the speed of light (non-relativistic) - then 

emission occurs in the form of an isotropic dipole pattern, with the strongest emission 

taking place perpendicular to the acceleration vector. An example of this type of emission 

is in radio antennae, where electrons move back and forth along the length of the antenna 

and emit photons in the microwave and radio regime. In the most simple case, the length 

of the antenna is one quarter the wavelength of the electromagnetic radiation emitted. 

As the motion of the charged particle becomes relativistic, emission is concentrated into 

the forward direction in the shape of a cone. This occurs due to light aberration and time 

dilation, which concentrates the emitted energy in the form of a beam relative to the 

observer. The radiation cone narrows as the velocity of the charged particle approaches 
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the speed of light. At these relativistic velocities, the electromagnetic radiation is linearly 

polarised in the centre of the beam-cone. 

The existence of synchrotron radiation was first postulated nearly 100 years ago by 

theoretical physicists. They described the loss of energy in the form of electromagnetic 

radiation as electrons are accelerated in a magnetic field. The electromagnetic energy 

would be emitted along a path tangential to the election.
[32,33,34] 

It was not until after the Second World War, in 1947 that technological advancements 

allowed the construction of the first particle accelerators, and synchrotron radiation was 

detected for the first time 
[35,36]

. During testing of a new 100MeV Betatron at 

Schenectady, New York, Blewitt and Livingstone observed radiation being emitted in the 

visible and infrared regions as the direction of motion of an electron was changed by a 

powerful magnetic field 
[37]

. Since then, particle accelerators of ever increasing size have 

been built, many of which are designed specifically for harnessing synchrotron radiation. 

 

2.1 The basic synchrotron 

 

When electrons (or indeed any charged particles) are accelerated to velocities 

approaching the speed of light, the radiation is emitted in an increasingly narrow beam 

due to relativistic effects. The result is a highly collimated beam of light emitted in 

tangent to the electron path. The radiation will have a peak, critical wavelength 
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Here, E0 is the electron rest mass energy, e is the electron charge, c is the velocity of 

light, B is the magnetic field strength and E is the beam energy. 

For synchrotron radiation sources the relation can then be simplified to,
 [16]
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nmc =λ  …… (2.2) 

 

Where E(GeV) is the electron beam energy, and B(T) is the magnetic field strength. In 

actual sources, λc, describes the peak of a Gaussian distribution of wavelength energies 

which usually span the ultraviolet to high energy X-ray regions. These energies make 

synchrotron radiation sources ideal for X-ray scattering experiments and EXAFS.  

 

Figure 2.1 shows a schematic design of a typical synchrotron radiation facility. The 

electrons are initially fired into a booster ring with a linac (1). When the electrons reach 

sufficient energy, they are channelled into the main storage ring (2). Once inside the 

storage ring, the electrons are passed through a series of undulators or wigglers (3) and 

bending magnets (4). The magnets act to keep the electrons in a circular orbit, thereby 

allowing the emission of collimated beams of electromagnetic radiation. Beamlines are 

constructed tangential to the storage ring to harness the radiation for scientific 

experiments. As the beam enters the beamline, the beam itself is comprised of a broad 

range of energies, and is often referred to as the ‘white beam’. This ‘white’ beam first 

passes through an optics hutch, (5) which selects the wavelength, or range of wavelengths 

used, before ending up in the main experimental area, (6). 
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Figure 2.1: A basic design of a synchrotron facility. 1: the linac and booster ring. 2: 

storage ring. 3: undulator or wiggler. 4 is the bending magnet for producing collimated 

beams of electromagnetic radiation. 5 and 6: the beamline where scientific investigations 

are carried out. (image courtesy French National Synchrotron Facility (Soleil)). 

 

 

In modern synchrotron facilities undulators are often installed.
[38]

 An undulator comprises 

of a series of equidistant magnets through which the electron beam passes. The magnets 

force the beam to oscillate in a sinusoidal manner emitting radiation as it does so. 

Radiation produced from an undulator is of a much narrower energy band and much more 

intense than that produced by a conventional bending magnet. The undulator properties 

are governed by the dimensionless parameter given in equation 2.3.
[16]
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The length scale, d, is the distance between the centres of two adjacent magnets of field 

strength B. e, me and c have their usual meanings as the electron charge, rest mass and 

velocity of light. 

 

Figure 2.2 shows how an electron path is changed when passing through an undulator. 

Magnets of alternating field alignment cause the electrons to oscillate in the direction of 

the magnetic field (plane of the magnets) at wavelength 2d, emitting linearly polarised 

radiation tangentially to the electron motion. Changing the parameter d will alter the 

value of K. For an undulator to produce beams across narrow energy band, K must be 

much less than 1. As K increases, the energy bandwidth also increases until a broad 

spectrum is obtained for K>>1. The resultant set up is then a wiggler rather than an 

undulator. 
[39]

 The typical spectra obtained from an undulator and a wiggler is represented 

in figure 2.3. 

Modern facilities using undulators and wigglers are often referred to as third generation 

synchrotron sources. Before the advent of these devices, beams were channelled towards 

beamlines using bending magnets. These dedicated facilities are often termed second 

generation. Today, a good number of synchrotron facilities will have beamlines that are 

placed after an undulator or wiggler, or after a bending magnet. A prime example is 

Diamond Light Source, Oxford. Beamlines are numbered and given the prefix ‘I’ or ‘B’ 

depending on the device used to channel the beam. ‘I’ implies the beamline uses an 

insertion device, such as an undulator. ‘B’ indicates a bending magnet has been installed 

to channel the beam into the beamline area. 
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Figure 2.2. The function of an undulator. Alternating magnetic fields of distance d apart 

cause the electron beam to oscillate at wavelength 2d, emitting electromagnetic radiation 

with a narrow energy band. The oscillation occurs in the plane of the magnets, so in this 

schematic, the electron beam oscillates vertically. 

 

 

Figure 2.3: Schematic representation of typical spectra from an undulator (left) and a 

wiggler (right) as energy vs Intensity (arbitrary units). An undulator has intensity 

concentrated into narrow bands, whereas a wiggler has a broader spectrum. The 

undulator can therefore give a greater photon count (intensity) for a given energy. 
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2.2 The SAXS beamline 

 

As previously mentioned, most small angle scattering experiments utilise X-ray energies 

of between 5keV and 20keV. After creation in the undulator, the photon beam enters the 

first part of the beamline where energies are selected by a monochromator. The resultant 

monochromatic beam is then focussed by a series of mirrors and slits before it is scattered 

by the sample. The scattering pattern is then observed with an X-ray detector. 

A SAXS beamline will typically be composed of three sections, the optics hutch, the 

experimental hutch and a separate region for data collection. 

 

2.2.1 The optics hutch 

 

The first section the beam encounters after being produced by the bending magnets or 

undulator. As figure 2.4 shows, the beam first encounters an aperture and primary slit, 

which aim to provide an initial beam shape.   

 

Figure 2.4: Schematic of beamline I22 at Diamond Light Source, Oxford. (Image 

courtesy of Diamond Light Source Ltd) 
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Once an initial profile has been shaped by the primary slits, the beam then enters a 

section of the optics hutch known as the monochromator. An X-ray monochromator 

typically consists of 2 ultra pure silicon crystals aligned to the Si (111) plane. The Si(111) 

has a ‘d’ spacing of 1.135 Angstroms, which serve to act as a diffraction grating to 

produce an angle dependent monochromatic beam in compliance with Bragg’s law, 

 

)sin(2 θλ dn =  ….. (2.4) 

 

Thus by varying the angle of incidence of the crystal, different beam wavelengths can be 

filtered. In addition to the primary wavelength, additional energies from the 333 and 555 

plane resonances will also be produced – their intensities depending on the energy profile 

of the original undulated beam. A Si(111) crystal monochromator will produce a 

monochromatic beam with an energy resolution, (∆E/E) of 1.2x10
-4

.
 [36,42]

  

 

Having passed through the monochromator, the beam is then further focussed by a series 

of slits and mirrors. The beam is reflected from a pair of Kirkpatrick-Baez (KB) mirrors 

at an angle less than the critical angle of the mirror material. In the case of beamline I22 

at Diamond Light Source, Oxford,
[40]

 the mirrors are coated with Rhodium, which has 

absorption edges of 23.2keV (K) and 3.4keV (L1), and sets an upper and lower limit on 

the potential X-ray photon energies that can be used in an experiment. With the beam 

now highly focussed, it is channelled through another array of slits before emerging from 

the beam-tube to be scattered by the sample. With KB mirrors, the beam width at the 
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sample is 320µm x 70µm. With additional micro-focussing, the beam width can be 

reduced to 2.7µm x 0.9µm. 

Other beamlines, such as 7T-MPW SAXS at BESSY, Berlin,
[41]

 have the option of 

removing the Kirkpatrick-Baez mirrors, so can technically allow the tuning of energies 

greater than 23keV. However, photon flux is significantly reduced at the higher energies 

and at energies lower than 4keV; and the resultant beam – which is shaped by only the 

slits, is less focused, particularly in the vertical direction, and so has much larger 

dimensions, typically of the order of 1mm in width. 

 

2.2.2 The Experimental Hutch 

 

This section of the beamline comprises of the end of the beamtube, the sample 

environment and detector system. Figures 2.5 and 2.6 show typical experimental set ups. 

Small angle scattering requires the high resolution detection of X-rays of angles less than 

5°, and so are placed some distance away from the sample. There are a number of 

detectors available for SAXS. Typical examples include a 2 dimensional CCD, or a 

HOTSAX quadrant detector
[42] 

– which are the two detectors used for experiments in this 

thesis. For scattering at angles less than 5° at a wavelength λ, and detector radius h, 

equation 2.4 can be inserted into a trigonometric relation to give, 
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The value, qmax, is taken as the maximum value of q visible in the detector ‘window’. The 

scattering vector q can be inverse transformed to give real-space length scale, setting the 

minimum length scale that can be probed for a given X-ray energy and sample-detector 

distance (l).  
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Where dmin is the minimum length scale to be probed, and is equal to 2π/qmax. 

For a scattered photon energy of 12keV, a minimum length scale of 1nm (qmas=6.28nm
-1

), 

and a detector radius of 20cm, the detector needs to be placed at a distance of 4m from 

the sample.  

Such distances require an additional vacuum tube to be placed between the sample and 

detector (see figure 2.6). A vacuum is required since X-rays are readily scattered by air, 

which would otherwise greatly reduce the scattered intensity. Typical pressure inside the 

camera tube is 100mPa. The vacuum tube is extendible, which requires it to be 

constructed either of air tight units (I22, Diamond and 6.2 Daresbury), or from bellows 

(7T-MPW SAXS, BESSY). For the case of I22, Diamond, the air tight units (camera 

tubes) come in 0.5m and 1m lengths. The chamber is sealed both ends with kapton, which 

is transparent to X-rays. 

For a more detailed view of experimental setups for SAXS beamlines, the reader is 

directed to chapter 5 of this thesis. 
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Figure 2.5, A SAXS beamline. Shown here is a photo of beamline 7T-MPW at BESSY, 

Berlin. After exiting the beam-pipe, the monochromatic beam is scattered by the sample 

and sample environment (1). Scattered photons travel down a long vacuum chamber (2) 

before being read by the detector (3). 
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Figure 2.6: Schematic of a beamline set up. Incident X-rays (emerging from the left) are 

scattered from the sample and sample environment. A detector (far right) is positioned 

some distance away. Scattered photons traverse this distance along an evacuated camera 

tube to preserve as much intensity as possible since X-rays are readily scattered by air. 

 

 

 

2.2.3 The Control Room 

When an experiment is taking place, and scattered photons are being detected, the 

intensity and energy of the X-rays require the optics and experimental components to be 

in a lead room to prevent harmful radiation from escaping. Investigators therefore need 

an extra space, outside of the sealed environment, in which to collect data and work. In 

the case of I22 at Diamond, this is an extra closed room from which the beamline can be 

controlled remotely by computer. For 7T-MPW, the workspace is set in an open space 

just outside the beamline containment area.    

 

2.3 An ideal ASAXS Beamline 

 

Small angle X-ray Scattering beamlines have monochromators with tuneable energies, 

making them ideal for anomalous scattering experiments. Unlike SAXS, however, 
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additional factors need to be considered when accumulating data. Conventional SAXS 

would use a single energy set well away from any absorption edges of the sample. 

ASAXS requires a successive cycling of energies close to and at the edge of interest.  

As energies go beyond the absorption edge, the sample will begin to fluoresce 
[36,57]

, and 

this fluorescence will be detected as part of the scattered signal. Fluorescence 

contributions need to be accurately measured and removed from the scattering data. 

A much more realistic approach can be taken by using a separate point detector set at a 

wide angle, outside of any scattered signal, since fluorescence is generally distributed 

uniformly over all angles. The fluorescence detector would be calibrated against the beam 

intensity and scattering detector to obtain a value, which can then be subtracted from the 

accumulating data to deduce the scattering profile. 

If the beamline has an additional wide-angle detector, then the intensities from the largest 

angles can be taken as a measure of fluorescence contributions. 

 

Energy resolution from the monochromator can also pose a problem for the higher 

energies. Absorption edges tend to be fairly narrow, meaning there is a limited range over 

which energies can be cycled to give the greatest contrast. At the Niobium K edge at 

19keV 
[36]

, for instance, the energy resolution from a Si(111) crystal is 2.28eV. This will 

result in a scattered signal that is the average for this energy resolution, which can smear 

contrast and reduce visible anomalous effects. Any chosen energy whose distance from 

the edge is less than the energy resolution will also give additional fluorescence 

contributions. It can be that in some materials, the absorption edge is so narrow that its 

width is less than the energy resolution of the monochromator. 
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Better resolution can be obtained by using a silicon crystal of higher order, such as a 

Si(311), and by using four crystals instead of two. Amongst the greatest resolution ever 

obtained was by M. Yabashi  et al, in 2001. Using an array of four Si(11 5 3) crystals the 

team managed to get a resolution, ∆E/E of 8x10
-9

.
[42]

 The cost for such resolution is a 

much lower photon count in the monochromatic beam, which reduces time resolution for 

in situ experiments. For comparison, if the photon flux from a pair of Si(111) crystals is 

10
11

s
-1

, the flux from an array of four Si(11 5 3) crystal reflections is 10
7
s

-1
. 
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Chapter 3 

 

Small Angle Scattering 

 

As a natural occurrence, small angle scattering of light can be seen everywhere. A ring 

can appear around the sun or moon. When the moon itself passes behind a thin, high 

altitude cloud, a glowing hazy disk appears. Such sights are caused by tiny particles of ice 

and water in the atmosphere which scatter visible light. If one was to measure the angular 

distance of the ring, or the intensity gradient of the glowing haze, information about the 

size and even the shape of these particles can be gathered. If the particles were close 

enough together, extra features may appear in the intensity map, providing additional 

information about the distances between the particles and how they interact.  

 

 

Figure 3.1 Small angle scattering of visible light occurs in nature. Shown here, a hazy 

disk around the moon is created from the scattering of tiny particles of water and ice in 

the atmosphere. 
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Experimental observation of light scattering first began in the early nineteenth century, 

when Young and Fresnel observed scattering maxima and minima in the shadow space of 

a hair.
[43,44,45]

 They deduced the patterns were caused by interference of waves from 

either side of the hair. Later, the findings of Young and Fresnel provided a template for 

Robert Maxwell to develop his famous Maxwell equations – a fundamental law in 

electromagnetism.
[46]

 

With the discovery of X-rays in 1895, Sir William Lawrence Bragg first published his 

experiments on X-ray diffraction from crystals to the Cambridge Philosophical Society in 

1912.
[47]

 He showed peaks in diffraction patterns which were a measure of inter-atomic 

distances in reciprocal space. An inverse Fourier transform of these patterns would result 

in real-space distances from which information on crystal lattice structures could be 

obtained. 

 

Though Sir William Bragg dealt mainly with larger angle scattering from crystals, it soon 

became apparent from his devised relations that at smaller angles, larger features could be 

measured. Guinier and Porod developed the first theories and experimental techniques in 

Small Angle X-ray Scattering in the 1930’s.
[48,49,50]

  They showed that at small angles, X-

rays scatter at angles depending on the curvature of the particle; the smaller the curvature 

(and hence larger the particle) the smaller the scattering angle. The scattering angle 

would be zero on non-curved (flat) surfaces.  
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3.1 Small Angle Scattering Theory 

 

Diffraction occurs due to interference of waves scattered by an object which, in the case 

of X-rays, are electrons. In this regime, electrons behave as if they were free since the X-

ray energy is larger than the atomic binding energy. Scattered waves are also elastic at 

small angles, meaning that Compton scattering (inelastic scattering) can be neglected.  

It has already been mentioned that small angle scattering occurs from particles with small 

curvature, and are very much larger than the scattered wavelength. X-rays typically have 

a wavelength of the order of an angstrom and will scatter at small angles in the presence 

of electron densities in the nano-meter length scales. This makes SAXS an ideal tool for 

exploring nano-structures such as colloids and proteins. 

In the most simple of cases, a nano-structure such as a mono-disperse colloid can be 

considered to be an arrangement of spheres of radius, r, dispersed in a medium of 

different electron density to that of the colloidal particles. The scattering intensity (I(q)) 

can be given by
[52]

: 

 

)()()(
2222

qSqFVNrqI e ρ∆=              (3.1) 

 

Where N is the particle number density, ∆ρ is the difference in electron density between 

the primary particles and the surrounding medium, re is the classical electron radius, and 

V is the average particle volume. The term F(q) is the particle form factor, and contains 

information on the size and shape of the particle. S(q), commonly termed the structure 
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factor, provides information on interactions between particles, and the distances between 

them. The momentum transfer, q, has units of inverse length (r), and is given by, 

λ

θπ )sin(4
=q                    (3.2) 

  

For the case of a simple colloid of spheres separated by a distance far greater than their 

diameters, the structure factor (S(q)) can be neglected, resulting in a scattering intensity 

that is related to the particle shape only. In the case of identical spheres of radius r and 

uniform density, the particle form factor has been calculated explicitly. 
[51]
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Figure 3.2: The scattering intensity from a sphere, which is the square of the form factor 

(equation 3.3). 
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Figure 3.2 shows the scattering intensity resulting from equation (3.3). Though a special 

case, the assumption already provides a greater insight into the colloidal structure. Taylor 

Expansion of the trigonometric terms 
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And re-inserting into equation 3.3 gives, 
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The scattering intensity is proportional to the form factor squared, inserting equation 3.4 

into equation 3.1 and assuming the spheres are far apart so the structure factor can be 

neglected, gives, 
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The (qr)
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term is very much smaller than the others so can be dropped, this results in 
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As X-rays scatter from electrons, it is common practice to replace the particle radius with 

the radius of gyration Rg, which is effectively proportional to the root mean square 

distance between scatterers, and is given by the relation: 

 

5

3 2
r

Rg =  ….. (3.6) 

 

From this it can be seen that by using this approximation, estimates of the particle radii 

can be measured from Gaussian fitting to the scattering intensity curve, or by a linear plot 

of log Intensity versus q
2
.  In small angle scattering, such analysis is known as the 

Guinier Radius – named after the scientist to first derive the relation.  

 

An additional and valuable piece of information that is easily extracted from a scattering 

intensity is the Porod relation. From equation 3.3, it can be seen that as qr becomes large 

and approaches 2π, sin(qr) tends to zero and cos(qr) tends to one. Under these conditions, 
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Which, when squared for the scattering intensity gives, 
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This is an important result in small angle scattering. The Porod relation can be 

determined by measuring the gradient of a plot of log I(q) versus log q. In this case, a 

gradient of -4 implies a dispersion of smooth spheres.  

 

The vast majority of materials analysed using small angle scattering do not consist of 

particles all of the same size and shape. This imposes additional complications in 

extracting information, so often some knowledge of the system being investigated is 

required before proper analysis can begin. 

The following sections describe the scattering functions obtained from a number of 

simple objects such as disks, rods and ellipsoids. Following this, a further section 

describes theoretical scattering functions from fractal networks. Due to the similarities in 

Porod gradients for some of these systems – in particular between colloids (particle 

suspensions) and fractal networks – prior knowledge of what type of structure is being 

observed is essential in order to create an accurate model of a sample.  
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 3.2 Scattering from non spherical particles 

 

3.2.1 Ellipsoids of revolution 

 

The scattering intensity (I(q)) for ellipsoids is given as
[52]

 

 

( )∫ +Φ= 2

0

2222 cossincos)(

π

θθθθ dvqrqI  ….. (3.9) 

 

Where Φ
2
 is the square of the spherical form factor given in equation 3.3, and v is the 

axis length factor given an ellipsoid of dimensions 2r, 2r, 2vr.  

 

Again, expansion of this equation results in a Guinier approximation similar to the result 

in equation 3.5, only the radius of gyration (Guinier radius) is 
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The Porod relation is effected by the additional qr in the integral. This is especially 

apparent with extreme ellipsoids where v>>r or v<<r. In such cases, the Porod relation is 

reduced to equation 3.11, giving a gradient of -3 for ellipsoids.  
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3.2.2 Disk-shaped particles 

 

The radius of gyration for cylinders of radius r and thickness H, is 
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22
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Assuming negligible thickness, the particles can be considered to be two dimensional 

disk objects of radius r, and scattering intensity 
[52]
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Where J1(2qr) is a Bessel function. It can be seen that as qr becomes large, the first term 

begins to dominate as the second term shrinks to zero. At high q, the scattering intensity 

tends to 
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Giving a gradient of -2 for disks. 
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3.2.3 Long rods of negligible radius 

 

Assuming random orientation of long rods with a length, H, the scattering intensity 

becomes 
[52]
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As qr tends to infinity (ie, qr>>1), the integral converges towards 
2

π
 and the squared 

terms reduce to zero. This leaves the Porod relation for long rods, 
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A log-log plot of the scattering intensity will thus show a gradient of -1 at large q. 
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3.3 Rough Surfaces and the Fractal Model 

 

So far, only smooth surfaces from 1, 2 and 3 dimensional particles have been considered. 

One might assume that it is sufficient to measure the Porod gradient in order to obtain the 

particle shape, from which a suitable fitting can be derived to extract the size 

distributions. The assumptions immediately break down when network and agglomerate 

forming materials such as sol-gel are analysed using SAXS. 

As already discussed in chapter one, sols consist of primary particles which can bind 

together to form tree-like structures (gel networks), and larger particle agglomerates. 

Scattering profiles obtained from such networks exhibit Porod gradients of magnitudes 

less than four. In these cases, the Porod gradient can be used as a measure of surface 

roughness (on the nano-scale for X-ray scattering). The closer the gradient tends to four, 

the smoother and more spherical the scattering particles. Mathematically, such structures 

can be modelled as fractals. Where rough surfaces are known to be present, the Porod 

gradient provides information on the fractal dimension of the material. 

Generally there are two types of structural fractals, each with their separate scattering 

functions at small angles. The surface fractal, which can be visualised as resembling a 

screwed up piece of paper, is described by 
[53]
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Where S2 is the smooth surface area of length scale ls, and D is the fractal dimension. For 

a mass fractal, which is more tree-like in structure, the following function applies: 
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The function A(q) is the square of the average form factor of the particles making up the 

fractal-like structure. In the case of sol-gel, these particles (termed primary particles) are 

the oxide and hydroxide monomers forming the network. The term ξ is the fractal 

correlation length – that is, the length scale of the ‘fractal particles’ in the material. 

It is clear from both cases that the Porod exponent differs. For the surface and mass 

fractal respectively, where D is the fractal dimension. 
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From the above relations, it is clear the only difference between them is surface fractals 

have ‘6-D’ and mass fractals ‘D’ in their power terms. The numerical differences in 

fractal dimension of surface and mass fractals may be slight if the fractal dimension, D, 

has a value close to 3. In general, surface fractals have a fractal dimension greater than 3 

– this is evident from the screwed up paper model described earlier. A sphere is a three 
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dimensional body enclosed by a surface of area A=4πr
2
. Visually, it is clear that a surface 

fractal has a surface area greater than A, whilst enclosing the same ‘Volume’, so the 

fractal dimension can be described as being greater than 3 in this case. Similarly, the 

same volume enclosed by a tree-like structure will have porous regions, so the actual 

volume of material comprising the fractal will be less than the volume of the sphere. For 

this reason, mass fractals generally have a dimension less than 3. 

This subtle difference in fractal dimension (D) will generally give comparable Porod 

gradients if D is close to 3, so the slope of the high q region on a log-log plot itself cannot 

be used to determine the fractal type of the system. For this reason, especially where the 

fractal type is uncertain or not known, the gradient is taken as a measure of surface 

roughness, which is described in terms of a Porod exponent α; resulting in the relation 

given in equation 3.22. 
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3.4 High Particle Concentrations 

 

In systems comprising of high concentrations of scatterers, or randomly ordered close 

packed particles, the distance between particles becomes comparable to their diameters. 

Scattered rays will ‘see’ those spaces as regions of different electron density in much the 

same way X-ray photons ‘see’ the electron density of the individual particles, and so 

these regions will have an additional contribution to the scattering function. The 

scattering information from this contribution provides details of how the particles are 
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distributed within the sample, and how they interact. So it is possible to calculate the 

structure of the material. This contribution is described by the structure factor, S(q).  

In much the same way the Form factor depends on particle shape, the function of the 

structure factor differs depending on whether there is any ordered structures present, and 

the concentration of the particles in the surrounding medium. For the case of fluids with a 

large concentration of scatterers, the amplitude of the structure factor increases with 

concentration, and hence the closer the particles are to each other. In such fluids, the 

structure factor can be described in terms of a particle interference function of the form
[48]
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Vp is the volume offered to each particle, and ε is a constant which is generally 

considered to be unity. The function β(q) has the form 
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Φ(r) is a potential energy function, k is the Boltzmann constant and T is the temperature 

of the sample. 
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Figure 3.3: Plot of structure factor and the effect on the scattering intensity profile for 

hard spheres, given in figure 3.2. For clarity, the temperature is taken to be constant. Top 

shows the structure factor of a system with increasing particle concentration. As the 

particle concentration is increased (and hence get closer together) the amplitude of the 

function increases. Bottom: the result of the scattering function for a distribution of hard 

spheres when the structure factors are applied. 
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When the structure factor (equation 3.23), is inserted into equation 3.1, the resultant 

scattering function displays a Gaussian shaped ‘hump’ spanning a range of q. (see figure 

3.3 bottom) The hump amplitude intensifies with increasing concentration. 

As can be seen from the exponential in equation 3.24, this particular structure factor is 

also dependent on temperature. In the extreme cases, when T approaches 0 degrees 

Kelvin, the exponential also approaches zero, leaving the integral as a sinusoidal function 

which, when integrated over infinity, will also tend to zero. Thus, at very low 

temperatures, equation 3.24 will become small and the structure factor approaches unity. 

For high temperatures, where kT>>Φ(r), the exponential reduces to one, and equation 

3.24 becomes proportional to the inverse of q. When applied to a scattering function, such 

a structure factor would have the greatest intensity contribution at very low q.     
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Chapter 4 

 

Anomalous Small Angle Scattering (ASAXS) 

 

4.1 The ASAXS Concept 

 

X-ray scattering experiments are typically done with photon energies of between 5 and 

20keV. Conventional SAXS does not take into account the effect these energies have on 

the individual atoms within a sample. It is possible to visualise atoms as comprised of a 

spherical volume of protons and neutrons surrounded by an orbiting cloud of electrons. 

 

Figure 4.1: Schematic of the absorption process. An incident photon excites an electron, 

sending the electron to a higher energy level. The energy is then released (as photons) 

giving fluorescence.  

 

Figure 4.1 shows a schematic of the absorption process. Quantum mechanics dictates 

these electrons to occupy certain energy levels, and if they are struck by a photon of at 

least matching energy, then the electron will absorb that photon, placing it in an 

excitation state, which - in the case where the original photon energy is greater than the 
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energy level - results in the electron emitting a second photon. This is referred to as X-ray 

absorption, with the electron energy level depicting the absorption edge for a given 

element. 

It so happens that the X-ray photon energies are within range of many transition metal K, 

L and M absorption edges. These edges correspond to excitation states of the inner 

electron orbitals; the n=1, 2 and 3 levels respectively. The K-edges correspond to the 

orbital energy levels of the inner most electrons of an atom. Atoms with absorption edges 

in range of X-ray scattering experiments typically extend from titanium to molybenum. 

As the atomic proton number increases, so does the energy required to excite the inner 

electrons. For larger atoms, such as the rare earths and actinides, the photon energies are 

within range of their L and M edges. M edges begin to dominate for atomic proton 

numbers over 90.  

 

 

Figure 4.2: atomic absorption edges within range of photon energies used in a typical X-

ray scattering experiment. Orange, K edges, Green, L edges, Pink, M edges. 
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The effect of this is that the absorption edge adds a complex correction to the atomic 

scattering function. The closer the X-ray energy is to the absorption edge, the larger this 

additional correction becomes. 

In general, the correction to the scattering function is described as 

 

)( 0 fifff ′′+′+=   …… (4.1) 

 

Since the scattered intensity is proportional to the square of the scattering function, 

equation 4.1 is multiplied with its complex conjugate to obtain 
[54] 
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The term f0 is defined by the proton number of the absorbing atom. The additional two 

energy dependant terms, f’ and f’’, show I(q) is composed of three separate scattering 

intensities known collectively as the normal, cross and resonant terms. From equation 4.2 

it is evident that in the event of no scattering correction contributions, the terms f’ and f’’ 

become zero, leaving only the normal term multiplied by the square of the atomic proton 

number. Such approximation is valid when the X-ray energy is far below the absorption 

edge of the sample, and so is the ‘ideal’ scattering pattern obtained in the event of zero 

atomic absorption.  
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Corrections to the atomic scattering functions are derived from the Kramer-Kronig 

relations 
[55,56,57]

 given in equation 4.3  
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With E0 being the energy of the X-ray photon and f’’(E) being determined from the 

sample absorption spectrum, which is essentially a ‘step’ function at the absorption edge. 

Figure 4.3 shows the theoretical values of f’ and f’’ for the element zirconium. The shapes 

of the functions are typical for all elements (and hence all absorption edges). Far below 

the edge, the values are close to zero, but as X-ray energies come within range of the 

absorption edge, f’ begins to approach a minimum (and therefore increase in magnitude) 

towards a singularity on the exact point of the absorption edge. The position of the edge, 

in terms of absorption energy, is unique for each element. 
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Figure 4.3: Theoretical ‘ideal’ values for Zirconia of the corrections to the atomic 

scattering functions as calculated using the Kramer-Kronig relation.
[57]

 The values of f’ 

intensify close to the absorption edge (at 18keV). Such patterns are typical for all 

elements, though the position of the absorption edge is unique for each.  

 

 

By placing this trend into equation 4.2, it becomes apparent that the terms Ic(q) and Ir(q) 

will have a greater contribution close to the absorption edge. Ir(q), the resonant term, 

which is dependent on the square of both terms will show the most significant change. 

The resonant term thus describes the scattering function of the absorbers in the sample. 

From equation 4.2 and figure 4.3, it is clear the cross term is dominated by the atomic 

proton number and a negative f’. As one draws closer to the edge, the magnitude of this 

negativity increases as the resonant scatterers become more absorbing, and hence 

reducing the overall intensity of I(q). In general, the cross term provides information on 

the scattering function of ‘unlike’ particles – that is, the interaction between the resonant 
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scatterers and the remaining sample. An increasingly negative pre-factor also forces the 

cross term to become a negative scattering function which acts to reduce the intensity of 

I(q) – thus, the term can also be used as a measure of  absorption over q space.   

The ability to extract three partial scattering functions make ASAXS an ideal tool for 

examining composite materials.   

 

4.2 Techniques in Anomalous Scattering 

 

With a scattering contrast which changes as X-ray energies approach an absorption edge, 

a number of different approaches can be taken in performing a successful ASAXS 

experiment. Modern synchrotron sources also provide the additional advantage of higher 

beam intensities over a range of energies, allowing ASAXS experiments to be done in-

situ where chemical properties change over time. 

There are three distinct approaches that can be taken in an experiment, each with their 

own unique advantages.  

 

4.2.1 Comparing two scattering functions taken far below and above the absorption 

edge 

 

 This technique, which is the simplest type of ASAXS experiment to perform on a 

beamline 
[58]

, relies on the value f’ being relatively constant, and f’’ to exhibit variability; 

avoiding the often narrow edge region completely. As the resonant scatterers are 
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absorbing just above the edge, the resultant scattering function is the profile of the 

remaining sample.  

The scattering function taken above the edge is then subtracted from the SAXS pattern 

obtained far below, resulting in the scattering contribution from the resonant particles, 

together with a contribution from the cross term.  

In principle such an experiment should be fairly straightforward, however once energies 

pass the absorption edge, the resonant material begins to exhibit fluorescence as excited 

electrons release photons of differing energies. Often the fluorescence contribution is 

hard to deduce, particularly when the particles surrounding the absorbers have a much 

lower scattering intensity. Current 2d X-ray detectors are also non-energy discriminating, 

meaning they will count X-ray photons regardless of their incident energy. 

The excited, fluorescing electrons will emit photons uniformly over all angles. To 

account for the fluorescence contribution, it is necessary to place an addition detector at a 

very wide angle where no scattering occurs. This additional detector can be calibrated 

with the main detector and incident beam to obtain a value for the fluorescence.  

 

Though simple in principle, the fluorescence contribution can be very large if there is a 

high percentage of absorbing particles, or when the proton-number of the absorbers is 

much larger than the others. This has the effect of drowning out the often weaker signal 

from the non-resonant scatterers.  
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4.2.2 Multiple scattering intensities taken at a range of energies across the 

absorption edge 

 

Perhaps the most widely used technique in ASAXS, this method offers a succession of 

scattering intensities at set intervals across an absorption edge. 
[59,60,61,62]

 Comparisons 

can be made to see changes in various regions of q-space as a function of energy. 

Fluorescence also does not become a major contributing factor so long as all the photon 

energies are kept below the singularity in f’.  

The employment of this method can only be used for a comparative analysis. Information 

on the scattering profiles of the resonant scatterers can only be obtained with knowledge 

of the values for the complex corrections f’ and f’’. 

 

4.2.3 The ASAXS Deconvolution Method 

 

If the values for the atomic scattering corrections are known, or can be measured, then the 

most accurate and informative method in ASAXS is to solve equation 4.2 for the normal, 

cross and resonant terms. For this to work, 3 scattering profiles, I(q), need to be measured 

at different energies, and hence different values of f’ and f’’, which can be solved as a 

simultaneous equation.  

Figure 4.4 shows a typical choice of energies for an ASAXS experiment that utilises the 

deconvolution method. The two taken just below the f’ singularity serve to provide the 

greatest possible contrast for the complex corrections. A third, taken far below the edge, 

has minimal values of f’ and f’’.  
[63,64] 
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Figure 4.4 ASAXS using the deconvolution method, showing the typical energy choices 

along the profile of f’. The energies are chosen to provide the greatest contrast between 

scattering intensities, whilst remaining below the singularity. Shown here are the 

energies an investigator may choose if performing ASAXS over the zirconium K-edge. 

 

 

The corrections themselves are measured by means of an X-ray absorption spectrum – 

often referred to as the Extended X-ray Absorption Fine Structure (EXAFS) by ASAXS 

communities, which is taken in conjunction with the three scattering profiles, and appears 

in the form of a step function similar to f’’.  The Absorption spectrum is the subject of the 

next section. 
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4.2.3.1 The X-ray Absorption Spectrum 

 

Figure 4.5 shows the absorption spectrum for a sample of yttria stabilised zirconia, 

spanning the absorption edges of both yttria and zirconia. 

An X-ray absorption spectrum is taken by measuring the incident and transmitted beam 

intensities just before and after passing through the sample. In an ideal situation, the 

absorption spectrum would cover all energies – however, since beamline constraints 

make this impossible (such as limits set by monochromator resolution and KB mirrors), it 

is sufficient to measure the spectrum over the absorption edge being investigated. High 

resolution spectra spanning all energies (attainable by the beamline) are often referred to 

as Extended X-ray Absorption Fine Structure (EXAFS for short).  

 

Figure 4.5: An X-ray absorption spectrum (taken at beamline 6.2, SRS Daresbury). The 

sample shown here is yttria stabilised zirconia. The absorption edges (here, yttrium and 

zirconium) are highlighted by the step functions shown. 
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The EXAFS spectrum taken over a wide range of X-ray energies, provides a diagram of 

excitation states for electrons within a sample – giving chemical and structural 

information. In the scope of ASAXS, only the region close to the absorption edge of the 

resonant scatterers is taken since the absorption spectrum is used to derive the corrections 

to the atomic scattering factors. In the scope of this thesis, the EXAFS spectrum is taken 

as the absorption spectrum close the absorption edge. 

The absorption spectrum can be integrated using equation 4.3. Or alternatively if only the 

position of the singularity and approximate width of the resonance is required, the 

function obtained from EXAFS can be differentiated, and the result can be used as a 

reference plot for choosing suitable energies for the experiment. 

 

4.3 ASAXS across multiple absorption edges 

 

Many composite materials of interest contain more than two elements, some of which 

will also be in range of X-ray photon energies available at most synchrotron sources. In 

such cases, multiple edge ASAXS experiments can give the resonant terms for each edge 

element. 

In the case of double ASAXS, equation 4.1 can be expanded to include the scattering 

contributions for each edge element. 
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Squaring equation 4.4, and taking the real parts, gives three components which can be 

compared to equation 4.2. 
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The additional correlation terms in equation 4.5, provides scattering information on the 

interactions between the two edge elements under investigation. Expanded for a general 

formula of n number of edges, the additional terms give a matrix form of equation 4.2, of 

dimensions nxm where n=m. 
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Equation 4.6 shows that the number of SAXS patterns that have to be taken per cycle 

increases as 3
n
, reducing time resolution drastically with in-situ measurements, especially 

in ASAXS experiments with three or more edges. However, this is also an ideal situation. 

The scattering correction terms, f’ and f’’ are the contributions for each edge element. 

Experimentally, it is not possible to extract these partial contributions from an X-ray 

absorption scan with the required accuracy. This simplifies equation 4.6 so that: 
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Therefore eliminating the additional cross correlation terms pertaining to the interaction 

between different edge scatterers, giving: 
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Multiple edge ASAXS can then be considered to be a series of single edge ASAXS 

experiments cycled over each absorption edge of interest. This lessens the quantity of 

SAXS scans needed for full deconvolution to 3n. 

Time resolution can be further increased by considering the normal term to be the ideal 

SAXS pattern obtained in a zero absorption environment. The function will be identical 

for each deconvoluted edge. Provided the edges are close so the q-ranges do not change 

too significantly, one pattern may be taken below all edges, with just two per edge of 

interest. That is, 1+2n SAXS frames per ASAXS cycle. 
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Chapter 5 

 

Experimental Methods 

 

Three sol-gel systems are analysed and presented in this thesis: Yttria stablised zirconia 

(YSZ) and YSZ in a silica matrix; where the whole process from gelation to calcination is 

studied.  The gelation of zinc-silica sols is also investigated. Time resolved (double) 

ASAXS of YSZ and YSZ in silica experiments across two absorption edges were 

conducted at beamline 6.1, SRS Daresbury. Single edge time resolved ASAXS of Zinc-

silica gelation was investigated using beamline I22, Diamond Light Source. 

Sol gel preparation, be it in situ or ex situ, requires the controlled hydrolysis of alkoxide 

precursor materials that are often doped with metal nitrates or acetates. For the analysis of 

their bulk properties, the sols were prepared in such a way as to allow gelation over a 

time period of 3-5 hours, which allows a proper time resolved study of the reaction 

mechanisms. For calcination studies, the bulk gels were dried before placing in a furnace 

so the residual volatiles such as alcohols could evaporate. 
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5.1 Sol-gels 

 

5.1.1 Zirconia Sol gel 

 

Zirconia sols are prepared for comparative analysis, and for the preparation of YSZ, 

which follow the same methodology. The recipes and detailed preparation methods are 

provided below.  

12ml 70%wt Zirconium n-propoxide solution was mixed with 6ml Isopropanol and 

stirred in an airtight container. 2.25ml of Acetylacetone (Acac) was then added as a 

chelating agent, together with 0.1ml glacial acetic acid. The volumes were chosen so that 

the molar ratio or Zirconium to Acetylacetone was close to 1:1, and the pH of the 

precursor solution was 3. 

In a separate vessel, 2ml distilled water was added to 3ml isopropanol.  The mixture was 

then stirred into the zirconium n-propoxide solution, sealed and kept at a constant 

temperature of 50 degrees Celsius. Gelation occurred after 3 hours.  

 

Figure 5.1 shows the sample environment used to study gelation reactions in situ. With 

time resolved ASAXS, the zirconia n-propoxide, acac and acetic acid solution was 

poured into the main vessel. A water/isopropanol mix was introduced by remote injection 

by syringe. The force of injection and shape of the sample container ensured proper 

mixing occurred through fluid flow. The sample was kept at a constant 50°C throughout 

the investigation. 
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Figure 5.1 The sample environment used for time resolved ASAXS studies of the gelation 

process. The precursor materials are placed inside the main gelation cell (1), and a 

second mixture containing water and alcohol is drawn into a syringe (2). Gelation 

reactions are induced by injection of the alcohol-water mixture into the alkoxide 

precursors by means of a remote syringe pump (3). 

 

5.1.2 YSZ sol gels 

 

 Yttrium isopropoxide solution was prepared by dissolving 1.5g anhydrous yttrium (III) 

chloride in 25ml isopropanol (IPA) in a dry nitrogen atmosphere. An additional 25ml 

isopropanol was reacted with 1.46g clean potassium metal. The environment was kept 

oxygen free in a glove box with a nitrogen atmosphere to prevent oxidation of the 

potassium alkoxide precursor. Emitted hydrogen gas was allowed to escape under 

controlled conditions in a fume cupboard.  

The potassium isopropoxide and alcoholic yttrium (III) chloride solutions were then 

mixed and vigorously stirred under reflux at 80°C for 3 h. The potassium chloride 

precipitate was removed by placing the sealed containers in a centrifuge set at 3000 rpm, 

a clear solution of yttrium isopropoxide was siphoned off into a clean, air tight, dark glass 

container in a dry nitrogen atmosphere to preserve the compound for future use.  
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As shown by table 5.1, yttria stabilised zirconia samples were prepared using a variety of 

yttria-zirconia molar ratios. The sol gels were prepared in much the same way as pure 

zirconia gels, only the yttrium isopropoxide was added to the zirconia precursor solution 

before hydrolysis. 

 

Sol 1 (ml) Sol 2 (ml) 

Zr prop Y prop TEOS Acetylacetone Acetic IPA Mol%Y/Zr IPA Water 

12 0 0 2.25 0.1 6 0 3 2 

12 3 0 2.25 0.1 6 2.8 3 2 

12 6 0 2.25 0.1 6 5.6 3 2 

12 9 0 2.25 0.1 6 8.7 3 2 

12 15 0 2.25 0.1 6 14 3 2 

         

12 0 4 2.25 0.1 6 0 3 2 

12 3 4 2.25 0.1 6 2.8 3 2 

12 6 4 2.25 0.1 6 5.6 3 2 

12 9 4 2.25 0.1 6 8.7 3 2 

         

2.21 6 6 0.66 0.01 6 50 3 2 

         

         

         

Table 5.1: Sol-gel recipes. Quantities are given in ml. Zr prop – Zirconium n-propoxide; 

Y prop – yttrium isopropoxide solution; TEOS – the silica precursor tetra-

ethylothosilicate. IPA – isopropyl alcohol; Mol% Y/Zr – the molar ratio of yttrium and 

zirconium  ions displayed as a percentage. Sol 1 indicates the initial mixture placed in 

the sample environment, Sol 2 the mixture injected into Sol 1 to commence gelation. 

 

 

 

5.1.3 Silica-Zirconia and Silica-YSZ sol gels 

 

Preparation for zirconia and YSZ in a silica matrix follows similar methods to pure YSZ 

synthesis. For both in-situ and ex-situ experiments, 4ml Tetraethylorthosilicate is added 

to zirconium n-propoxide, and the two alkoxides are stirred to ensure complete 
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miscibility. A volume of yttrium isopropoxide solution is also added at this stage for the 

preparation of YSZ-Si systems. 2.25ml Acetyl acetone, 0.1ml acetic acid were then 

immediately stirred into the alkoxide blendes to chellate the precursors and stabilize pH. 

Hydrolysis was induced by injection of 5ml of an isopropanol:water solution in a volume 

ration 3:2 in a similar manner to the preparation of pure zirconia gels. The recipes, along 

with the volumes of yttrium isopropoxide used for the investigations, are show in the 

lower half of table 5.1. 

 

5.1.4 Silica-Zinc sol gels 

5.1.4.1 Preparation of the silica matrix 

 

Silica solgel is made by first dissolving 4ml Tetraethylorthosilicate (TEOS) with 4ml 

Isopropanol. Hydrolysis is achieved by adding a further 1ml of 1Molar solution nitric 

acid. 

For in situ experiments, the silica sol is then placed in an aluminium sample cell with 

kapton windows (figure 5.2), separated by 2mm and maintained at a temperature of 70°C. 

Zinc sols were remotely injected into the silica as the gel network began to form 

 

5.1.4.2 Zinc sols 

 

The recipe used to make a Zinc sol is similar to that used to coat substrates with 

orientated Zinc Oxide nanocrystals for use in detector systems. 
[67,68,69,70]

 Zinc Acetate is 
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first dissolved in Methoxyethanol (MEA) with an equal quantity of Ethanolamine. The 

mixture is kept at a constant 70°C to ensure complete solubility of the zinc acetate. 

The silica and zinc sols are then mixed whilst maintaining a constant temperature of 

70°C. Different volumes of zinc sol and silica sol were mixed to produce different 

concentrations of zinc. (See table 5.2) 

 

Zinc Sol (ml) Silica Sol (ml) 

8 0 

7 1 

6 2 

5 3 

4 4 

3 5 

2 6 

1 7 

Table 5.2: The volumes of zinc and silica sols mixed for the silica-zinc gelation 

experiments. 
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Figure 5.2: The sample environment used for time resolved ASAXS investigations of zinc-

silica systems. Shown here is the sample environment set up on beamline I22 at Diamond 

Light Source Ltd. An initial silica gel precursor material is contained within the main cell 

(insert, 1) which is visible through the kapton window (2). Zinc ions and hydrolysis is 

induced by injection from a pneumatic pump (3), into the main cell which forces mixing. 

An incident X-ray beam emerges from the beamline end pipe (4) where it is scattered by 

the sample. 

. 

 

5.2 Xerogels 

 

Preprepared gels were left for 24 hours in a sealed vessel to densify, and the excess 

solvent drained. Before placing in a furnace, the dried gels were left in open air to allow 

evaporation of any remaining volatiles.  
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For Ex-situ (X-ray diffraction) experiments, the xerogels were placed in a furnace, and 

heated in 50°C steps up to 1000°C, and after each step, the xerogel was allowed to cool, 

and then crushed into a fine powder with a mortar and pestle for powder diffraction. 

Xerogels for in situ experiments were dried in open air, and then pressed into pellets 

13mm in diameter and 0.3mm thick, using an applied pressure of 10 tonnes.  

 

5.3 Beamline Methods 

 

In situ ASAXS investigations require the use of synchrotron radiation facilities such as 

Diamond Light Source Ltd, Oxford, and BESSY, Berlin. As previously mentioned in 

chapter 4, a small angle scattering beamline consists of a series of slits and mirrors 

designed to focus highly collimated monochromatic X-ray beams of high intensity. The 

beam intensity must be sufficient to ensure the photon count is large enough to allow a 

scattering pattern to be detected in as small a time-scale as possible. The beam width in 

energy space must also be small enough to accommodate cycling energies across the 

absorption resonance.  The spatial dimensions of the beam must also be small, of the 

order of less than a millimeter in width, so blurred scattering effects are minimised.   

 

5.3.1 Sample Environments 

 

For in situ gelation experiments, a sample environment was custom built from an 

aluminium frame with kapton windows to allow passage of the X-ray beam through the 

sample (see figures. 5.1 and 5.2). Sol gel reactions were initiated by placing one mixture 
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in the sample cell where the beam passes, and another in a syringe. The second solution is 

then be injected remotely in order to observe the reactions at the onset of hydrolysis. The 

entire cell is placed on a hotplate and set in order to maintain a constant temperature of 

50°C across the sample for the case of YSZ, and 70°C across the sample for the zinc 

based systems. An aluminium sample cell ensured proper heat conduction. A completely 

full sample cell had maximum temperature gradient of 2°C from top to bottom.  The 

beamline sample area was arranged in order to facilitate the hotplate and sample 

environment. 

 

5.3.2 The Furnace 

 

Figure 5.3 is a photograph of the furnace used during in situ sintering experiments at 

beamline 6.2, SRS Daresbury. The furnace was custom built for the beamline by the 

Workshop of the Royal Institution of Great Britain, London. 

The ceramic furnace has an internal heating element made from platinum wire, and is 

capable of sustaining temperatures up to 1000°C. Temperatures are controlled by means 

of a remote interface plugged into a computer in the control room using the LabView 

software package. The package allows for the construction of complex temperature 

profiles which can be sent to the furnace during an experiment.  

For the sintering experiments, temperatures were ramped up at a rate of 10°C per minute 

to 1000°C, giving a total duration for each experimental run of 1 hour 40 minutes.  
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Figure 5.3: The calcinations furnace used for in situ ASAXS experiments. Shown here is 

the set up for SAXS Beamline 6.2 at SRS Daresbury Laboratory. The reddish glow of the 

heated sample is visible through the kapton window. 

 

 

5.3.3 Monitoring the transmitted and reflected beam 

 

Measurements of the empty sample environments are taken for each of the energies used 

in the experiments. For the case of experiments conducted at Daresbury Laboratory, 

normalisation is achieved through continuous measurements of the X-ray photon counts 

of the transmitted and reflected beam using two ion chambers, positioned both before and 

after the beam passes through the sample, during each SAXS measurement. At Beamline 
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I22, Diamond Light Source, incident and transmitted beam intensities are measured using 

a photosensitive diode placed on the beam stop close to the detector. A second diode, 

positioned between the monochromator and sample, could be moved in and out of the 

beam path to measure the incident beam intensity at different energies.  

 

5.3.4 Detectors and Camera Lengths 

 

Using the 1d quadrant detector at Daresbury, zirconia and YSZ experiments are 

performed using a camera length of 3.75m, and a detector channel resolution of 1024. 

The maximum value of q attainable on the zirconium edge at 18keV was 4.95nm
-1

.  

Zinc-silica sol-gel experiments on beamline I22, Diamond Light Source, are measured 

using a 2d CCD detector with a 512x512 pixel (channel) resolution and a camera length 

of 4m. The maximum value of q attained is 3.0nm
-1

 at the zinc absorption edge. 

 

 5.3.5 Beamtime 

 

In any ASAXS experiment, it is crucial to know what energies are used in relation to the 

distance from the absorption edge. A typical experiment will consist of the following 

preparations: 

 

• Tuning the monochromator 

• Scattering from Silver Behanate 

• Scattering from the sample environment 



 78 

• Calibrating the monochromator 

• Ex-situ EXAFS of the initial sample 

• Writing a script to continuously cycle beam energies 

• In situ ASAXS and In situ EXAFS 

 

 

5.3.6 Tuning the Monochromator 

 

Monochromators used are those already provided on the beamline. 

The energy is chosen by changing the angle of a Si(111) crystal to the incident white 

beam, which is done remotely via a software interface custom programmed for the 

specific beamline. The collimated monochromatic beam is then focused onto the detector 

or sample environment for data collection. The energy is chosen to be one close to, or just 

below the absorption edge of interest, or in the case of two adjacent absorption edges 

(double ASAXS), the monochromator is tuned to a value exactly between the two edges. 

The beamline is then optimized for this particular energy, and can cycle through a range 

of energies within ±1keV without the need to further adjust slits and mirrors to prevent 

beam migration.  The double ASAXS experiments were performed at beamline 6.2, 

Daresbury, which uses a wiggler. 
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5.3.7 Scattering from Silver Behenate or Collagen 

 

These are standard calibrants for determining the q-scaling of the scattering function. 

Silver Behenate has a diffraction peak (001) at 5.838 nm, and further resonances, (002, 

003 etc) are clearly visible, corresponding to q values of 0.93nm
-1

, 1.86  nm
-1

, 2.79 nm
-1

, 

... , It is a suitable calibrant for higher energies, or shorter camera lengths, where the q-

range (maximum value of q ‘visible’ in the scattering pattern) is relatively large.  

For larger particle sizes, lower energies and very long camera lengths, where the q-range 

is less than 1nm
-1

 an alternative calibrant is collagen. This is a biological material 

extracted from rats tail, and has a typical Bragg peak at 66.8nm (q=0.094nm
-1

) 

 

Both calibrants also serve as a means to accurately determine the central beam position 

relative to the detector, since both will scatter X-rays to create ‘rings’ from which the 

centers can be calculated (and hence the beam position). The beam position is also 

located by means of a diode placed on a beamstop immediately before the detector. (A 

lead beamstop is required in order to prevent unscattered beam intensity from damaging 

the detector.) For this reason, scans are normally carried out over a range of energies both 

far below and close to the absorption edge to track any potential beam migration.  

 

5.3.8 Scattering from the Sample Environment 

 

The sample container will always have a scattering contribution in the data which needs 

to be accurately known and removed (see chapter 6, section 1). The SAXS pattern is 
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measured over a longer time period (typically several minutes) across a range of energies 

to obtain an accurate function. Further SAXS patterns, taken at a range of energies, are 

taken of the sample cell and principle solvents to deduce their additional scattering 

contributions. For both gelation and sintering experiments, the main contribution is from 

the kapton windows. 

 

5.3.9 Calibrating the monochromator 

 

Absorption edges for pure metals are accurately known for most elements - and in 

particular those of interest and in the range of ASAXS investigations. If the exact 

energies are required, instead of a relative distance from an edge, the values can be 

calculated by taking an X-ray absorption spectrum of a metallic foil of the edge of 

interest.  

Figure 5.4 shows the absorption spectrum for Zirconium foil. Differentiation of the 

spectrum (5.4 top) reveals a sharp minimum (shown by the ‘valley’ shape 5.4 bottom) at 

17.8keV. Since the exact value of the zirconium K-edge is known, the scale on the 

monochromator is calibrated to this value. In this case, the measured uncalibrated value 

17.8keV is reset as 17.9975keV – the value of the zirconium absorption edge. However, 

since ASAXS only deals with relative distances from an absorption edge, the calibration 

is not always necessary unless comparing between experiments performed on different 

beamlines. The foils are then compared to the sample to determine the chemical shift 

(motion of the absorption edge). 
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Figure 5.4: A Zirconium Foil absorption scan across the K edge (top) is differentiated to 

reveal a minimum (shown by the sharp ‘V’ at 17.98 keV). Since the Zirconium edge is 

known to be exactly 17.9975keV, the monochromator can be tuned to the minimum, and 

the scale reset to the true value of the zirconium edge.  

 

 

5.3.10 Absorption spectrum of the sample 

 

In order to choose correct values for the energies, in particular to ensure at least two will 

lie within the resonance, (see figure 4.3) a similar X-ray absorption spectrum of the 

sample is carried out, and differentiated to properly obtain the edge position. As shown 

by figure 5.5, there will be a difference in the value of the absorption edge from that of 
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the native metal. This is caused by interactions between zirconium ions and the 

immediately surrounding atoms (for sol-gel ceramics, these are oxygen) and is generally 

known as a chemical shift.  

Chemical evolution of the sample, such as structural or compound changes, will also 

create additional shifts in the edge position. To ensure energies are kept within the 

resonance minimum, a second absorption spectrum of a pre-prepared sample as it would 

be at the end of the experiment is done. The two edges can then be compared and 

accurate energies chosen.  

 

 

Figure 5.5 Differentials of the absoption spectrum of a sample. Shown here is the 

chemical shift experienced by a zirconia xerogel (black) is heated to 1000°C to become a 

dense ceramic (red). The edge position has changed by -3eV.  
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5.3.11 Scripting the energies 

 

In situ ASAXS experiments will ultimately consist of many cycled scattering patterns 

taken at different energies. To avoid having to manually type the energies each time, a 

script can be written into the beamline software to cycle the energies, and output the 

scattering data. Beamline I22 at Diamond Light Source, and 6.2 at Daresbury both use 

GDA as an interface. GDA is a jython based data acquisition software platform. 

Figure 5.6 shows a screen shot of a typical GDA script used for in situ ASAXS 

experiments. The energies listed are chosen to cycle across the resonance of a zirconia sol 

gel. 

 

 Figure 5.6 The jython script for cycling energies. An energies array is determined, 

where the user can enter their chosen energies for the experiment. Once declared, an 

infinite loop is set which tells the monochromator to move to each energy in turn and take 

a reading from the detector, which will cycle continuously. The loop is terminated by 

entering ‘carryOn=0’ (false) on the GDA command window. The energies will complete 

the current cycle before exiting. To start a new experiment, CarryOn must be set to ‘1’ 

(true) to initiate a new continuous loop. 
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5.3.12 Performing the Experiment 

 

With the monochromator and detectors properly calibrated, each sample is investigated 

first by using a succession of cycled energies, and then repeated with continuous X-ray 

absorption scans (EXAFS). In an ideal experiment, the EXAFS would be carried out after 

each cycle - however the longer data acquisition time makes such a set up unfeasible. 

Separate in-situ EXAFS experiments using identical samples are required when chemical 

shifts occur. The scans monitor how the edge moves, and hence changes in the scattering 

corrections f’ and f’’ with time 

For the YSZ gelation and calcinations experiments, using a quadrant detector, each 

SAXS frame is acquired over 2 second intervals. The zinc ASAXS experiments use a 2D 

CCD detector, and data acquired at a rate of 10 seconds per SAXS frame.  
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Chapter 6 

 
 

Data Analysis 

 

 

6.1 Data reduction 

 

The scattered signal which would be collected from only the sample is calculated using 

the relation in equation 6.1 
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00 −=         (6.1) 

 

Here, S and B are the raw data from the sample and its environment, and the empty 

sample environments respectively. I0S and I0B represent the intensities of the incident 

(non-scattered) beams, τ is the transmission measurements, and t is the data acquisition 

time. For the gelation experiments, the sample environment is the gelation cell. For 

sintering experiments, it is the furnace. 

 

Uncertainties in I(q) are calculated by measuring the amplitude of the noise in the SAXS 

patterns to give a ratio ∆I/I. Similar calculations are performed to obtain a margin of error 

in the determined ASAXS normal and resonant terms. 

Since neither I22, nor beamline 6.2 at Daresbury have a fluorescence detector, 

fluorescence contributions are subtracted using the measurements taken from the wide 
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angle (WAXS) detector. The higher angles are chosen to ensure no scattering features 

from the sample, such as Bragg peaks, are present. Photon counts from the high angle 

segment are averaged, and then normalised against the value obtained from a 

measurement taken far below the absorption edges of interest. It is assumed that 

Fluorescence contributions from small elements such as carbon, oxygen and silicon, are 

negligible. 

Investigations performed at Daresbury laboratory use a 1d quadrant detector. As 

fluorescence is assumed to be uniform over all angles, the values obtained from the 

SAXS segment actually become the gradient of a function of the form y=mx due to the 

SAXS detector shape. Fluorescence subtraction and radial averaging is achieved by 

dividing the linear function with the result obtained from equation 6.1. 

Detector response and flat field corrections were determined by beam-line staff prior to 

the commencement of experiments.  

 

 

6.2 Solving the terms 

 

ASAXS deconvolution is performed using Interactive Data Language (IDL) 

programming software. A linear interpolation scheme is applied to the normalised 

scattering functions to ensure each data point matches with their appropriate value in q 

space. This results in scattering functions in a slightly larger q-window than others, since 

q is inversely proportional to X-ray wavelength (see equation 3.2) and hence proportional 



 87 

to photon energy. The highest value of q for the lowest energy a measurement is taken is 

made the upper limit (cut off point) on which ASAXS algorithms are applied to the data.  

 

6.2.1 Corrections to the atomic scattering functions 

 

EXAFS measurements taken during the experiments are normalised to theoretical data 

tables provided for download on the internet by Ethan A Merrit 
[73]

. The EXAFS plots are 

assumed to correspond to values of f’’.  

 

 

Figure 6.1. Normalisation of the X-ray absorption spectra to theoretical values of f’’. 

Shown here is the EXAFS spectrum for yttria stabilized zirconia spanning both edges 

(black) A higher percentage of yttria has been added for visual clarity. The red and blue 

step functions correspond to the theoretically calculated yttrium and the zirconium edges 

respectively.  
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Figure 6.1 shows how the X-ray absorption spectra are normalised to theoretical values of 

f’’. The function is the integrated using the Kramers-Kronig relation (equation 4.3), 

which is expanded to the following form 
[55]

: 
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The x and y terms in the integrals of equation 6.2 are the lowest and highest energies used 

in the EXAFS scan. Essentially, the middle term integrates the region covered by EXAFS 

scan, while the remaining two terms are derived from theoretical calculations. 

 

Figure 6.2: A comparison between theoretically calculated values of f’ against those 

determined from experiment. Shown here are the values of f’ across the yttrium edge for 

yttria stabilised zirconia. 
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As shown by figure 6.2, there is a difference between theoretical calculations and the 

values of f’ derived from experimental data. Theoretical calculations are derived from 

solving the Kramers Kronig relation (equation 4.3) explicitly 
[57]

 and are assumed to be 

the spectra obtained from pure metals. The difference between theory and experiment 

observed is due to the absorbing ions (in this case yttrium and zirconium) being present 

as compounds rather than their pure metallic form. Better fits could be obtained by 

increasing the range in which an absorption spectrum is measured (but would reduce time 

resolution due to the increased data acquisition time), or by deriving theoretically derived 

values of the compounds. However, this would be a separate research project in its own 

right, and is therefore only mentioned as a subject for further work.  

The figure describes the values of f’ across the yttrium K edge for yttria stabilised 

zirconia. Intensity of the resonance minimum is also dependent on the concentration of 

yttria to zirconia - making derived f’ values unique for a particular sample. The ‘wiggles’ 

visible in the experimental data are a result of noise in the original absorption spectrum 

that was integrated. 

 

6.2.2 Deconvolution 

 

Once the values of f’ and f’’ are determined, the normal, cross and resonant terms are 

solved using the matrix form of equation 3.2.  
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Which for multiple edge ASAXS is the matrix form of equation 3.9.  
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The terms IE1,IE2 and IE3 correspond to the SAXS scattering patterns taken at three 

energies in a consecutive cycle. In equation 6.4, An corresponds to the operator matrix 

containing the corrections to the atomic scattering functions, Bn is the three SAXS 

scattering functions and Xn is the normal, cross and resonant terms for edge element n.  

 

Matrices are solved using Cramer’s Rule. For a matrix equation Ax=b, the general case 

for solving x is, 
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Where Am is the matrix obtained by replacing the nth column in the operator matrix A 

with column vector b.  
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Chapter 7 

 

Computational and Mathematical Models of Anomalous SAXS Results 

 

Cumulative errors during experimental procedure place additional constraints on the 

range of potential anomalous scattering experiments in terms of time resolution and 

materials. The detector system will have its own noise which overlays the scattering 

function 
[74]

, and the resolution of the monochromator generates errors in determining 

accurate energies 
[75,76]

. Of particular importance is the use of accurate values for the 

cross and resonant term pre-factors determined by the Kramers Kronig relation (see 

chapter 4, section 1 and equation 4.3). This chapter aims to tackle those issues using a 

combination of simulated and experimental data, and provide insight into how slight 

variations in the resonant term pre-factors can be used to extract the overall shape and 

form of the normal, cross and resonant terms.  

 

7.1 Signal versus Noise 

 

The ASAXS equation 4.2 is dominated by the normal term due to the pre-factor, f0
2
. For 

atoms with large proton numbers, such as zirconia, this number can be over 100 times the 

pre factors for the resonant term
[64]

 when comparing the ratios of terms between the 

normal and resonant. It has already been discussed in chapters three and four that 

elements with proton numbers of between 20 and 41 have K-edges within range of most 

synchrotron sources, with the L and M edges coming into range for the heaviest elements. 
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This rapidly increases the dominance of the normal term at the expense of the resonant in 

all but the lightest elements. 

Theoretical calculations of the corrections to the atomic scattering factors show f’ varies 

from -0.5 far away from the edge, to -8 on the edge. For f’’, the values vary from 0.5 

below the edge, to 3.5 just above the edge (see figure 6.2). Even at maximum contrast, 

using values of f’=-8 and f’’=2.0 (derived from theoretical calculations), the resonant 

term pre-factor is unlikely to reach a value greater than 70. The inherent problem of 

attempting to solve an equation for a small effect implies that any detector noise present 

in the scattering function is going to be amplified. The signal to noise ratio places an 

additional upper limit on what elements a successful ASAXS experiment can be 

performed. 

In general comparing the ratios of the cross and resonant to the normal terms can be 

considered to give an upper limit for a detector with a known signal to noise ratio, which 

can be expressed as, 
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    ……. 7.1 

 

Where ∆I is the average amplitude of the detector noise and I is the average intensity of 

the scattering function. The resonant term pre-factors, derived from the Kramers-Kronig 

relation, are taken as those of the energy closest to the edge position. 

The 1d HOTSAXS quadrant detector used during experiments at beam-line 6.2 at 

Daresbury Laboratory 
[77]

 has an average noise-signal ratio, ∆I/I of 0.075. When inserted 

into equation 7.1, using the values of f’ and f’’ at maximum contrast (ie, on the absorption 
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edge), reveals an upper limit for the proton number, f0, to be 30. This is the proton 

number for zinc. The result has implications for potential ASAXS experiments of heavier 

elements using L and M edges, and those K-edge elements with proton numbers greater 

than 30. Zirconium, which has an absorption K-edge of 17.9975keV, is close to the upper 

limit of the range of most synchrotron SAXS beam-lines, and would have resonance 

effects that dwell within the detector noise. 

Fortunately, the detector noise is fairly periodic, and the chosen energy closest to the 

edge is never going to be exactly on the edge due to the monochromator resolution. 

Smoothing and Fourier transforms can be performed to increase the signal-noise ratio, 

with negligible loss of the underlying subtle differences in scattering functions associated 

with ASAXS. For non ordered structures, such as glasses, ceramics and sol-gel, the 

features are generally a lot broader than the frequency of the noise, and any applied 

smoothing function will preserve the broader contrast features, provided the smoothing 

range is very much smaller than the width of the contrast variation. 

Figure 7.1 shows the result of applying a smoothing algorithm on experimental data to 

increase the signal to noise ratio. The detector noise, shown by periodic oscillations in the 

raw data (black) has been minimised by smoothing, whilst preserving the broader features 

(red). After smoothing, the noise to signal ratio is reduced to a value of 2.4x10
-3

, which 

corresponds to an upper proton number limit of 170 after solving equation 7.1, and 

assuming a resonant term pre-factor of 70. Naturally occurring, stable elements, have 

proton numbers below 92 (Uranium). 
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Figure 7.1 Reducing the signal-noise ratio by applying smoothing functions. The 

periodic, higher frequency oscillations from the detector in the raw data (black) are 

minimised, giving a ‘curve of best fit’ shown by the red. The line thickness of the 

smoothed function has been increased for clarity. 

 

 

7.2 Monochromator Resolution 

 

The vast majority of SAXS beamlines with the facility to do anomalous scattering, all use 

silicon crystals aligned to the (111) plane for monochromatic tuning. A Si(111) crystal 

has an energy resolution of 1.2x10
-4

. The range of energies available at such beamlines is 

between 5keV and 20keV, which corresponds to energy resolutions of 0.6eV and 2.4eV 

respectively.  

Figure 7.2 shows a typical edge minimum as a plot of energy versus f’. Unlike the 

relatively broad minimum present in theoretical data, experimentally determined values 
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have a much narrower resonance. Shown here the f’ values, for zirconia, are typical for 

most oxide ceramic materials. The thin resonance limits the range of energies to a band 

within 20eV. At 18keV, the monochromator resolution is 2.16eV, which results in a 

broadening and an averaging of f’ over that range. The number of energies that can be 

used is also limited. Additional energies may be required in the event of large chemical 

shifts which would otherwise move the original choices outside of the minimum. Any 

additional energy choices should be separated by at least the width of the monochromator 

resolution in order to provide the best possible contrast and minimise resolution error. 

 

 

Figure 7.2: The choices of energy are limited by the monochromator resolution and 

width of the resonance slope. The choices should be separated by at least the width of the 

monochromator resolution, while at the same time remaining inside the resonance for the 

duration of the experiment. 
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The monochromator resolution limit automatically places an uncertainty on the values of 

f’ and f’’. Uncertainties in the motion of the mechanisms that orientate the 

monochromator crystal correspond to additional fluctuations in the actual centre of the 

beam width in energy space. As can be seen by figure 7.2, the possible variations in f’ 

over the peak intensity of the resolution width can vary by as much as ±0.2. Though the 

broader beam in energy space will result in an averaging of f’ over that range, the 

uncertainty associated with monochromator movement fluctuations can result in 

inaccurate measurements of f’ for a given cycle. Such inaccuracies can lead to wrong 

conclusions and peculiar effects in the deconvoluted data; the subject of the following 

sections.  

 

7.3 The Sensitivity Problem 

 

Since the normal term is much larger than the resonant term, the problem arises into how 

sensitive is a solution with slight variations in the calculated values of f’ and f’’. The 

following sections describe the issues arising from the sensitivity, and offers methods to 

ensure a correct solution is obtained, as well as how to spot where things could go wrong. 

 

As described in chapter 4, (equation 4.2,) the scattering function of a composite material 

comprises of partial contributions from each species of element. This leads to slight 

changes in the shape of the function as X-ray energies approach an absorption edge. The 

effect has led to equation 4.2, which describes a scattering function as being the sum of 

three terms; the normal, cross and resonant. The resonant term, which is the scattering 
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contribution from the absorbing element, increases in intensity at energies very close to 

the absorption edge due to the pre-factors f’ and f’’, which are derived from the Kramers-

Kronig relation, (equation 4.3). 
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  A cycle of three energies can be solved by considering equation 4.2 as a system of 

simultaneous equations. 

 

)()()()( 111 qIqzCqyBqAx =++  ….. (7.2a) 

)()()()( 222 qIqzCqyBqAx =++ ….. (7.2b) 

)()()()( 333 qIqzCqyBqAx =++  ….. (7.2c) 

 

Where, 
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The functions x(q), y(q) and z(q) correspond to the normal, cross and resonant terms 

respectively. 
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Solving explicitly for the resonant term z(q) reveals, 
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While for the cross, 
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It can be seen that the scattering functions for the three energies are all on the top of the 

fraction, while the denominator, which is a collection of constants for the given energies, 

is identical for both. The form of the resonant term is dependant on the cross term pre-

factor, Bn, and so the values of f’ only, since it is assumed the proton number is known 

precisely. The form of the cross term, however, is dependent only on the values of the 

resonant term prefactor, Cn, which contains both f’ and f’’. 

The resonant term can also be further reduced, since 2f0 cancels. 

 

( )( ) ( )( )
( )( ) ( )( )32212132

32212132 )()()()(
)(

CCffCCff

qIqIffqIqIff
qz

−′−′−−′−′

−′−′−−′−′
=  ….. (7.5) 

 

Equation 7.5 shows the scattering correction term for the second and third energies, f’2 

and f’3, as having the greatest effect on the solution of the function, since f’1 is generally 

smaller. Inaccurate values derived from the Kramers-Kronig relations will have the effect 
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of altering the solutions to the equation, and in particular, being most sensitive to the 

variations resulting from the second and third energies in the cycle. 

 

 

Figure 7.3: Changes in intensity and sign of the resonant term in varying f’2 , showing 

singularities and a region where the solution results in a negative scattering function 

(top). Bottom shows how the denominator (black) and the numerator (red) of equation 

7.5 changes with the same variation.   

 

The plot in figure 7.3 shows the changes to the resonant term intensity as a function of 

changing f’2 (top), for a given value of intensities for I1, I2 and I3 at a single point in q 

space. Singularities occur in cases where the denominator approaches zero. The resonant 

term can also have zero intensity when the terms making up the numerator of equation 

7.5 cancel to zero. Figure 7.3, bottom, shows the changes in the numerator (red) and 
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denominator as the middle f’ (ie f2’) is varied. In regions 1 and 3, the solution is negative, 

whilst in region 2, the solution becomes positive. The actual solution for the resonant 

term must be positive, since it is the scattering contribution of the resonant scatterers, and 

so the true value for f’2 must be in region 2; where both the numerator and denominator 

are of the same sign. 

Applying this to the scattering functions for all q, it is evident that contrast effects 

between the scattering functions from the three different X-ray energies can either be 

enhanced or reduced if the values derived from the Kramers Kronig function happen to 

sit close to a point of inflection. Out side of these points, all or parts of the resonant term 

can be negative; the first indication of a wrong solution. 

Figure 7.4 shows how a solution for the resonant term can change when the values 

derived from the Kramers Kronig relation are incorrect. Scattering plots have been 

modelled using simulated functions for the normal, cross and resonant terms. The normal 

term is that of a fractal network derived from equation 3.19, the resonant term is that of a 

distribution of small monodisperse spheres (equation 3.3), and the cross is an arbitrary 

combination of the two. The actual normal, cross and resonant terms are shown top left. 

Three functions representing the scattering from three different X-ray energies close to 

the absorption edge are then derived (figure 7.4, top right). These three functions are then 

solved for alternate solutions of the normal, cross and resonant terms using 10 different 

values for the mid energy f’, and the corresponding f’’.  

The bottom two plots of figure 7.4 show the effects of varying f2’ over a range of -4.5 to -

3.5, with the actual value being -4.0. Lower magnitudes (bottom left) show a resonant 

term of increased intensity while at the same time contrast variation is lost, resulting in a 
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gradual change in the shape of the function; particularly noticeable in the higher q region 

where the spherical form factor of the correct resonant term is close to zero. For values 

close to the true value with slightly greater changes in f’ magnitude - parts of the solution 

begin to have regions of negative intensity when f’ is changed by 0.1. Increase the 

magnitude of f’ further, and the resonant function is reflected along the q-axis, producing 

solutions with high negative intensities (figure 7.4, bottom right).  

Results from this simplified model already provide insight into a method in which wrong 

results can be identified and inaccurate values of f’ corrected. Strongly negative solutions 

from an experimental observation, can be the result of f’ being too high in magnitude, and 

solutions where parts of the resonant term are negative are indicative of the calculated f’ 

being out by a small margin, of the order of 0.1. In addition, given the width of the beam 

spectrum at a chosen energy, a small superposition of different results will be observed as 

the scattering pattern. However due to the Gaussian nature of the beam spectrum, the 

intensities of the additional superposition caused by a subsequent range of f’ are much 

lower than the central ‘focus’. The values can therefore be tweaked with these constraints 

in mind, to converge on a more accurate solution. 

In addition, variations in the values for the third energy indicate a similar effect, but this 

time strongly negative solutions indicate a f3’ value that is too small in magnitude, 

whereas intensely positive solutions indicate f3’ as being too large. In any model designed 

to seek out the correct solutions, additional constraints (using prior knowledge) need to 

be imposed to consider this, which will be the covered in section 7.5.    
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Figure 7.4 Changes to the resonant term solution with varying f’. Top right: the true 

functions for the normal, cross and resonant terms are first simulated. Near edge 

scattering data is simulated using f’=-0.5,-4.0,-7.5, and f’’=0.5, 1.5, 2.0 for the three 

energies (solid line, dotted and dashed) respectively (top left). Bottom left: The true value 

for the mid f’ is -4.0, values of f’ of a slightly lesser magnitude result in loss of features 

where the resonant term intensity is close to 0. Increased magnitude first exaggerates the 

contrast effects by making some parts of the solution negative at f’=-4.1. Increasing the 

magnitude further reflects the solution in the q axis, giving solutions of high negative 

intensity (bottom right) – the signs of the solutions have been reversed to enable 

logarithmic plotting for clarity.  

 

 

 

Changes in the coefficient, f’’, do not alter the solution as much. EXAFS plots taken 

during an experiment are normalised to theoretical data across the chosen range of 

energies - since it is impossible to do an EXAFS scan spanning all energies from 0 to 

infinity. On the edge, f’’ is typically of the order of 2.0, with a total range across the 

entire resonance of 0.5 to 3.5. Energies are chosen so at least two sit in the resonance just 
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below the absorption edge, revealed by the minimum in f’. This makes the total possible 

range in which f’’ can change to within 0.5 to 2.0.  

The resonant term prefactor, Cn, is the sum of the squares of both f’ and f’’. With f’ 

typically ranging from -0.5 to -8.0, it is clear that this factor will also dominate Cn at 

energies very close to the absorption edge. For energies very close to the edge, Cn→f’
2
. 

 

 

7.4 Simplifying the Model 

 

For both f’ and f’’, energies far from the absorption edge are fairly constant. Conventional 

SAXS takes the assumption that they are both equal to zero, and so the scattering 

function obtained in experiment is that of the normal term. Far below any absorption 

edge, this can be a valid approximation since the values of both coefficients are minimal 

in magnitude (ie closer to zero). Taking the assumption of conventional SAXS that the 

complex corrections to be close to zero for off edge energies, the functions z(q) and y(q) 

can be simplified, so that (after expanding the brackets), 
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Taking the additional assumption that for energies very close to the edge and within the 

absorption resonance, the contribution from f’’ is small compared to f’. The normal, cross 

and resonant terms become: 
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The cross and resonant terms have now been reduced so only fluctuations in f’ need be 

considered. This is assuming that the scattering function, I1(q), is taken using an X-ray 

photon energy far below any absorption edges present in the sample. I2(q) and I3(q) are 

also chosen so that the photon energies are within the absorption resonance just below the 

minimum, and remain within this region at all times during the experiment.  

 

 

7.4.1 When energies are above the edge 

 

The assumptions given above break down when chosen energies migrate across the 

absorption minimum, or even out of the resonance all together. Such events are possible 

if a larger than expected chemical shift occurs. Provided fluorescence and Resonant 
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Raman Scattering can be properly accounted for, greater contrast in the resonant term 

pre-factors can result, and even begin to compare with the cross term for smaller atoms. 

Above the absorption edge, and outside of the resonance, f’ once again becomes small 

(approaching -0.5) whilst the step function, f’’, can have a value of 3.5 across a wide 

range of energies. For a heavy metal such as zirconium, the pre-factors of equation 4.2 

for a scattering function just above the absorption resonance can become, 1600, -40, 12.5 

for the normal, cross and resonant terms respectively. For elements on the lower limit of 

the range of synchrotron sources, such as vanadium which has a proton number of 23, the 

numerical values of the pre factors can reach, 529,-23,12.5. 

 

Consider a situation where chosen energies are positioned around the absorption edge in 

such a way that two or more are on opposite sides of the absorption resonance. In these 

cases, their complex corrections, f’, become identical. Taking equation 4.2, and 

subtracting one scattering function from the other and rearranging reveals, 
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The cross term can be extracted by means of choosing a third energy with an equal value 

of f’’ to the second.  
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The plot in figure 7.5 shows how energies may be chosen to ensure the conditions of 

equations 7.11 and 7.12 are met. The first two energies, E1 and E2 would sit within the 

resonance at opposite sides of the absorption edge, meeting the requirements of equation 

7.11. The third energy, E3, is chosen so the f’’ factors of E2 and E3 are the same. The 

normal term can then be solved by inserting the cross and resonant terms back into 

equation 3.2. A fourth SAXS measurement, taken at an energy far below the absorption 

edge, can be used as a comparison in searching for contrast features. 

Despite the apparent advantage in completing an ASAXS investigation in this way, 

contributions from fluorescence and Resonant Raman Scattering need to be considered 

and accurately subtracted before the above equations can be solved. The two energies 

within the resonance would also be more susceptible to monochromator fluctuations, 

resolution, and potential chemical shifts. In principle it would be possible to take 

measurements at regular intervals across the entire width of the resonance, after the 

motion of the edge with time has been resolved. Samples with a very high concentration 

of resonant scatterers would also produce a fluorescence signal which floods above edge 

scattering features.  

Such an experimental set up would be more suited for ASAXS investigations where the 

percentage of resonant scatterers in the sample is small.    
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Figure 7.5 Three energies are chosen so that the factors f’ are identical in E1 and E2, 

and f’’ are identical in E2 and E3. 

 

7.5 Fine tuning ‘f prime’ – An iterative approach 

 

Provided the concentration of resonant scatterers in the sample is known, a constraint can 

easily be applied by considering the relation given in chapter 3, (equation 3.1) 
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Equation 7.13 implies the area and intensity of the curve swept by a scattering function is 

proportional to the number of particles. In the case of ASAXS, where the normal, cross 

and resonant terms are three partial scattering functions, each will have their own 

respective equivalent of the constant, N. For the normal term, this is just the number of 

particles within the sample being scattered by the beam, for the resonant term, it is the 

number of absorbing particles (resonant scatterers). The cross term, being related to the 

scattering contribution between a resonant and non-resonant scatterer, has an intensity 

which also depends on the number of resonant scatterers. 

Assuming the total number of particles in the sample to be N, the ratio of integrated 

intensities between the normal and resonant, and normal and cross terms, can be 

considered as equal to the percentage concentration (number density) of resonant 

scatterers. 
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Here, ρr is the concentration of the resonant scatterers, which can be considered a molar 

percentage.  
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Equations 7.14 and 7.15 are true when the scattering functions are integrated over all q-

space. Experimentally, it is not feasible to possess a detector capable of such 

measurements, since such a detector would need to cover the interior of a large 

hemisphere, with ultra high pixel resolution. At large q, small angle scattering functions 

tend to zero, so as an approximation, the average intensity of the scattering function may 

be considered as proportional to the integral. Experimental procedure also makes it 

impossible to measure at q=0 due to the intensity of non-scattered beam, this must also 

be considered when determining the average intensities.   

For determining the correct normal, cross and resonant terms, equations 7.14 and 7.15 

give our first constraint: 

 

The ratio of average intensities between the normal and resonant, and normal and cross 

terms must be equal to the concentration of resonant scatterers. 

 

The discussion in section 7.3 already provides a template for the second constraint. 

 

Expanding the concepts already covered in section 7.3, variations in the f’ values for both 

the second and third energy using a single, averaged value for the intensities of three 

scattering functions, generates a topology in f’ space. The correct solution, in which the 

normal, cross and resonant terms are of the correct intensities, is demonstrated by a 

global minimum. Solutions are determined by the square of the difference between the 

concentration of resonant scatterers and the ratio of integrated (average) intensities of the 
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resonant and normal terms. The correct solution will lie in the region where the squared 

difference is equal to zero. 
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Similar results may be obtained for the cross term. 
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The two relations, 7.15 and 7.16, each contain multiple solutions described by a small 

ring in f’ space; the radius of which marks the region where the integrated intensity is less 

intense than the concentration of scatterers. The two functions can be combined to give a 

χ
2
 (chi square) relation. The rings should then touch to give a single, central solution true 

for the equations when χ
 2
→0 at the point of contact. The functions are summed rather 

than subtracted to enhance the amplitude of the topology. 
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A second constraint may be included by considering the initial choices in energy as a 

distance from the absorption edge. Typically, chosen energies will have two within the 

absorption resonance and one far below. The two within the resonance will be the most 

prone to errors due to monochromator resolution and fluctuations. The value of f’ for the 

off edge energy can be assumed to be constant. 

Figure 7.6 reveals the variations in intensity of the resonant term as the two values of f’ 

close to the edge are varied using the relation in equation 7.15. The actual (true) solution 

is marked by a red dot, the solution evaluated from incorrect f’ during experiment is 

pointed to by the red arrows. Monochromator resolution, beam spectrum, and associated 

errors with the beam-line drive motors; the actual energy used, and hence the calculated 

values of f’ for this particular ASAXS cycle, may sit within the region outlined by the 

green square. 

The margin of errors associated with monochromator positioning uncertainties then give 

a second constraint. 

 

Changes in f’ cannot fluctuate more than the associated monochromator resolution and 

movement error. 

 

Using this constraint, a fitting routine can be applied which will allow variations in 

energy, and hence f’ only within a certain margin. This prevents other, erroneous 

solutions occurring where f’2 becomes greater than f’3 (for the case where energies are 

chosen so E3 has the largest f’). The green square outlined in figure 7.6 thus shows the 
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region within which f’ is allowed to vary in searching for a correct solution, which as 

shown also dwells inside the region.  

 

 

 

Figure 7.6 Variations in average intensity of the resonant term as a function of f’ for the 

two near edge energies. The red lines point to a potential solution that may have been 

calculated from experimental data, while the red spot indicates the position of the true 

solution due to a uncertainties in monochromator positioning, which causes a slight 

change in beam energy for that cycle. If the uncertainty and resolution are known, the 

true solution can be found by tuning f’ to values within the green square (the region of 

error) to find the correct solution for the resonant term. 

 

With the two constraints in mind, the relation given by equation 7.17 can be applied to an 

iterative procedure to converge on the true solutions of the normal, cross and resonant 



 113 

terms. Inclusion of the intensities of all three terms also negates the potential of multiple 

solutions occurring, provided the following additional constraint and check is carried out: 

 

The normal, cross and resonant terms must have positive intensity for all q. 

 

Mathematically, an integrated function is the area beneath the curve. If part of that 

function becomes negative, than that integrated section will also be negative. By just 

considering the first two constraints, it is possible that alternate solutions may arise that 

show a resonant term of the correct integrated (or averaged) intensity, but also possessing 

regions of negative intensity. The inclusion of the integrated normal term, x(q), in 

equation 7.17 will generally minimise this effect since the intensities of the normal and 

cross terms will change significantly from their true values should this case arise. 

The inclusion of the third constraint is thus an extra check to ensure the iteration 

procedure has not fallen into a local minimum. 
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Chapter 8 

 

 Results and Discussion 

 

Results are presented from experiments performed at beamline 6.2, Daresbury, and 

beamline I22, Diamond Light Source Ltd. The gelation process is first presented, with the 

stabilised zirconia and zinc-silica systems as separate sections. The results of both 

gelation processes are then discussed.  

The sintering of yttria stabilised zirconia is then presented. The results are obtained after 

conducting a time resolved double ASAXS experiment at beamline 6.2, Daresbury. 

Double ASAXS involves the study of a material across two absorption edges in a single 

experimental run. A comparison of results obtained from X-ray diffraction (XRD) 

performed at the Materials Physics Laboratory, Aberystwyth University, is given towards 

the end of the sintering section.  

 

8.1 The Gelation Process 

 

 8.1.1 Stabilised Zirconia 

 

Figure 8.1 shows the raw data for the gelation of a typical Zirconia, YSZ and YSZ-Si sol 

at beamline 6.2, Daresbury. The scattering functions are those obtained from the lowest 

energy in each cycle (ie, below both absorption edges) before any contrast variations 
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occur. The three systems show near identical scattering functions as gelation proceeds. 

The time resolved SAXS patters shown are those obtained from a X-ray photon energy of 

16.8 keV – far below the absorption edges of yttria and zirconia. The alkoxide precursors 

(b) are slowly hydrolysed resulting in the scattering function for the sol (shown in figure 

8.1 c). As gelation proceeds, an increase in intensity of the regions below q=1 is 

observed. 

 

 

Figure 8.1: Raw, non radial-averaged, SAXS patterns of the gelation of typical YSZ and 

YSZ-Si sols. Radial averaging is first performed by subtracting the function described by 

region ( a) (see chapter 6). The initial precursor material (b) is slowly hydrolysed to 

obtain a clear sol (c). Gelation is revealed by the growth of the low q region (d). This 

form of scattering is typical for both YSZ and YSZ-Si sols as they gel. 
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Figure 8.2: Comparison of the scattering functions obtained for a YSZ-Si gel taken at 

3eV (blue) and 27eV (black) below the zirconium absorption edge. Subtle differences in 

the form of the scattering pattern are observed in the region highlighted by ‘A’. 

  

Comparisons of the energies close to the zirconium absorption edge reveal slight 

variations in the shape of the scattering function (figure 8.2) for YSZ-Si systems. The 

subtle differences are enhanced by subtracting one function from the other to reveal 

contrast variation in the lower q regions which is most intense prior to gelation (figure 

8.3), which then becomes less intense as the gelation proceeds. The contrast is limited to 

the lower q region (below q=1.5 nm
-1

) with identical shapes in the scattering functions for 

larger q.  

Figure 8.3 shows the difference between scattering patterns at energies taken at -3eV and 

-27eV below the zirconia edge for YSZ-silica gel. The black curve indicates the 

difference between functions just after hydrolysis, while the green and red curves 

represent the differences in scattering functions close to and after gelation respectively. 
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A similar analysis performed on pure YSZ gels revealed no scattering contrast between 

functions (ie, the normal, cross and resonant terms were equal in form for the entire 

gelation stage).  

 

 

Figure 8.3 The difference between scattering functions for the two near edge energies on 

the zirconium edge. The contrast is most intense after hydrolysis (black) and slowly 

decreases in intensity during the gelation stage (red) and remains present even after 

gelation (green). 

 

 

Applying the deconvolution method using experimentally derived results from the 

Kramers Kronig function indicates the contrast is dominant in the resonant term (figure 

8.4). The normal term reveals a Porod slope of 1.67; while the Porod gradient of the 

resonant term is 2.16, which close to the fractal dimension of pure zironia (2.35) 
[78]

. The 

patterns remained a constant shape for all times during the gelation process. By 
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comparison, across the yttrium K edge, the normal, cross and resonant terms are of 

similar form throughout the experiment, and do not show similar features in the resonant 

term as compared with zirconium ASAXS.  

Attempts at extracting the partial scattering functions for the pure YSZ gels reveal 

identical patterns for the normal, cross and resonant terms for the two absorption edges. 

In both cases, for YSZ with and without silica, varying the quantity of yttria does not 

make any visible changes to the contrast variations.  

 

Figure 8.5: The normal (black), cross (blue) and resonant (red) scattering patterns of 

yttria-stabilised-zirconia gel in silica. Contrast is revealed in the resonant term by a 

change of gradient (log q =-2 to log q =0).. The green lines a and b are a schematic of  

the linear fits used and the regions of the scattering functions measured. 
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8.1.2 Zinc-Silica gels 

 

The quadrant plot in figure 8.6 shows the radially averaged normal, cross and resonant 

terms at different points in time during the gelation of a zinc-silica sol. After hydrolysis, a 

gel network begins to form, creating a viscous sol. The network further expands until the 

material is fully gelled (figure 8.6, bottom right). Most noticeable is the change in 

gradient of the mid-q range prior to gelation, visible in both the cross and the resonant 

terms (figure 8.6, top right and bottom left). The partial scattering functions are of similar 

form to that of the initial sol, shown in the top left of the figure.  

Table 1 shows the magnitudes of the gradients of the mid q regions (-2.7<log q<-1.7) 

taken from the four log-log plots given in figure 8.6. The gradient for all three terms is 2 

prior to hydrolysis. During gelation, the gradient of the normal term drops to 1.17, while 

the cross and resonant terms show a slight increase in magnitude. A difference in 

gradients is also revealed at different stages of network formation, with the resonant term 

shifting from 1.83 to 2.67, and the cross from 1.83 to 2.28, before both terms become 

identical in form to the normal when the sample fully gels. After gelation has occurred, 

the mid-q gradient of all three terms becomes 0.83.   
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Figure 8.6: The contrast variation between the normal (black), cross (red) and resonant 

(blue) terms during the gelation of a silica-zinc sol. The initial liquid precursors (top left) 

begin to form a viscous sol as gel networks form (top left, bottom right). Bottom right; the 

material is fully gelled. Contrast visible in both the cross and resonant terms is present 

during network formation (top right, bottom left). A schematic of the fits to the gradients 

is shown bottom left (lines a and b) for visual clarity, and to show the difference between 

the normal, and the cross and resonant terms. 

 

 

Table 8.1: The gradient of the mid-q region for the normal, cross and resonant terms 

during the gelation process. 

 

Time (mins) Normal Cross Resonant 

0 2.0 2.0 2.0 

20 1.17 1.83 1.83 

30 1.17 2.28 2.67 

60 0.83 0.83 0.83 
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8.1.3 Discussion of the gelation process 

 

Comparisons between the stabilised zirconia and zinc-silica gels reveal the dominating 

presence of contrast in the resonant term for the YSZ, which remains a constant shape 

throughout the gelation process. Contrast, which is also present in the cross term of the 

zinc systems, is only visible during gel-network formation in the zinc-silica gels.  

The results indicate that both zirconia and yttria primaries become part of the gel 

network, due to their higher coordination states, and since contrast is only present in the 

resonant term. This contrast is caused by three possible linked combinations. If atom A is 

the resonant scatterer, and atom B is a non-resonant, and they are both network formers, 

links may form by three possible combinations; A-A, A-B and B-B.  

The slightly higher fractal dimension present in the resonant term of the Si-YSZ gels also 

indicates zirconia-zirconia linking as well as zirconia-silica and silica-silica, due to the 

higher coordination state of zirconia. As described in chapter 1, the addition of a 

chelating agent will saturate a transition ion to its highest coordination number, which in 

the case of zirconia is 6. Silicon is a tetrahedral ion of coordination number 4. 
[79]

 

 

For zinc-silica systems, contrast is visible in both the resonant and the cross terms, 

indicating slight inhomogeneities on the nano-scale between zinc-zinc and zinc-silica 

interactions respectively. As seen from the zirconia systems, a resonant scatterer 

integrated in the network makes the network appear ‘homogenous’ in the view point of 

the cross term, and therefore identical to the normal (conventional SAXS) pattern. In the 

case of the zinc systems contrast, with identical cross and resonant terms, indicates the 
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resonant scatterers are not being integrated into the gel network and remain trapped 

within pores. This implies the silica gel matrix forms at the exclusion of zinc. The zinc 

itself remains in the sol where it eventually becomes trapped within gel pores as zinc 

oxoacetate primaries.  

Though these are quantitive deductions based on the results obtained from ASAXS, 

further work needs to be performed to fully test this hypothesis. Proposals for future work 

are outlined in the final part of this thesis (chapter 9, section 4). 

 

 

8.2 Analysis of the Sintering of Sol-Gel Prepared Yttria-Stabilised-Zirconia using 

Time Resolved Double ASAXS. 

 

Pre-prepared yttria stabilised zirconia (YSZ) and YSZ in silica gels are analysed using 

anomalous small angle scattering across both the yttrium and zirconium absorption edges. 

 

 

8.2.1 Time resolved (Single Energy) SAXS 

 

The growth of a scattering factor maximum (hump) is observed using time resolved 

SAXS, using a beamline energy set to below the absorption edges of both yttrium and 

zirconium. Figure 8.7 shows the effect of the scattering function with increasing 

temperature. The scattering factor maximum, shown in the scattering pattern by a hump, 

moves to lower q and increases in intensity.  
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The position of the maximum in q space is plotted for different samples in figure 8.8. 

The figure shows a clear distinction between samples of pure YSZ, and those with YSZ 

in a silica matrix. The addition of silica (added in the form of TEOS in the sol-gel) slows 

the growth of the maximum, and only becomes more apparent when temperatures are in 

excess of 780°C. Subsequent samples with varying yttria content do not show changes in 

the rate of formation of the hump (also shown in figure 8.8.) 

 

 

 

Figure 8.7. Normal In situ SAXS revealing the growth of a scattering factor ‘hump’ 

during the sintering of a sol-gel derived yttria stabilized zirconia ceramic with 5.6 mol% 

yttria in air. The feature moves from right to left, and increases in intensity as the 

temperature is increased from 100 to 700°C. The margin of error in intensity is ∆I/I = 

2.4*10
-3

. 



 124 

 
Figure 8.8: The position of the peak of the structure factor maximum on the q scale as a 

function of temperature (°C). The addition of silica (crosses and diamonds) increases the 

nucleation temperature, in comparison to straight YSZ (stars and triangles), which 

nucleates at just below 400°C. The YSZ and YSZ in silica samples contain 5.7 and 8.6 

mol% yttria. 

 

 

The scattering factor maximum is attributed to the nucleation and growth of nano-sized 

tetragonal and cubic YSZ crystals, as has already been described in similar systems 

[80,81,82]
. These crystals swell rapidly, until the individual sizes are outside of the q 
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window. The initial hump seen in all samples near q=4 nm
-1

 is probably caused by pores 

in the compressed xerogel that slowly shrink due to the combustion of organic matter in 

air. Scattering functions of pure YSZ samples show a rapid growth of the maximum after 

380°C.  For those in the presence of a silica matrix crystal growth is gradual; this growth 

rate increases when temperatures are above 780°C. 

 

8.2.2 Anomalous (energy dependent) effects 

 

 

Figure 8.9. The scattering patterns at six energies; three near the yttrium K edge, and 

three near the zirconium K edge. Shown here are the scattering functions for YSZ in a 

silica matrix, heated to 900°C. The anomalous effects are seen as a decrease in overall 

intensity as first the yttria, and then the zirconia absorbs the X-ray beam; and a 

broadening of the scattering factor maximum close to the zirconium edge. The insert 

schematic shows the relative positions of the chosen X-ray energies around an absorption 

edge, with two being within the minimum (-3 eV and -8 eV) with one far below the edge (-

300 eV). This method is followed for both the yttrium and zirconium edges. (∆I/I=2.4*10
-

3
). (Fluorescence and Resonant Raman Scattering contributions are subtracted using 

large angle WAXS measurements). 
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The results in figure 8.9 show the anomalous effects observed for a sol-gel derived 

YSZ ceramic at a temperature above the nucleation point, and reveal a decrease in 

intensity and broadening of the maximum as energies approach the zirconia K edge for a 

given, fixed temperature.  This broadening is the contrast close to the zirconium edge, 

and indicates that zirconia has the dominant role in the formation of YSZ.  

 

 

Taking the Porod slopes of the log-log plots (the exponent α) reveals noticeable 

changes for energies below the zirconium edge, as well as a difference in gradient 

between those energies on or close to the edge, compared with those below. 

 

Figure 8.10 reveals a rise in gradient from -4 at the time of nucleation, to between -3.2 

and -1.8 for energies at or below the yttrium edge, while results taken from the between-

edge energy, and those on the zirconium edge reveal shallower gradients. Those on the 

zirconium edge, in particular, have a Porod exponent close to zero at the highest 

temperatures. This is due to X-ray absorption by the dense YSZ crystals, leaving the non-

YSZ background as the larger contribution. Below nucleation, the Porod scheme does not 

apply as the samples are still homogenous xerogels, as opposed to nanoscale particles. 
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Figure 8.10. The changes in Porod exponent of scattering patterns around the Y (top) 

and Zr (bottom) edges during the sintering of YSZ without silica. The nucleation point is 

clearly visible for energies below the zirconium edge, shown by the vertical line (a). In 

each case, the triangles represent the energy 300 eV below the edge, with the diamonds 

and crosses being -8 eV and -3 eV respectively. Porod exponents from energies on the 

zirconium edge display gradients close to zero. 
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Figure 8.11: Changes in the Porod gradient of scattering patterns around the Y (top) and 

Zr (bottom) edges for YSZ in a silica matrix. The nucleation point is much higher than in 

YSZ without silica (cf. fig. 8.10), visible as a step in the energies below the zirconium 

edge. The relative edge positions are the same as in figure 8.10.  
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By comparison, YSZ in a silica matrix (Figure 8.11) shows a steady gradient of around 

-4 for each energy until nucleation is about to occur. During this period, gradients below 

the zirconium edge increase in values of between -3 and -2; shown by the step between 

700°C and 800°C in the graphs. Energies on the zirconium edge again show Porod 

exponents closer to zero, though in this case, the convergences are -0.8 and -0.3 for -3 eV 

and -8 eV from the zirconium edge respectively. Beyond temperatures of 800°C, wiggles 

are also seen – particularly on the yttrium edge. This is an indication that yttria is taking 

part in a second reaction, possibly with the silica matrix itself (see section 8.2.4 for cases 

of surplus yttria). Further work needs to be carried out to fully explore this cause. 

In both cases, the differences in gradient with increasing energy can be explained by 

the poly-disperse nature of the growing particles. While a gradient of -4 is attributed to a 

smooth surface, a decrease implies the surfaces are getting rougher with increasing 

temperature and particle size. The two highest energies, where both yttria and zirconia are 

highly absorbing, show the Porod background. For straight YSZ, this is air; while for 

YSZ in silica; the main contribution is the matrix. 

 

8.2.3 In situ ASAXS 

 

Figure 8.12 shows how the three terms of the scattering function evolve with 

temperature during an in-situ experiment of the sintering of yttria stabilised zirconia 

across the zirconium absorption edge. In addition to scattering from macroscopic objects 

at low q, a structure factor maximum grows at higher q and moves to the left as 

temperature increases. While the feature is visible in all three terms, there is a clear 
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difference in shape between the normal and resonant terms once the temperature reaches 

380°C. As the samples are heated further, the resonant term once again becomes identical 

to the normal beyond 640°C.  

 

 

Figure 8.12. In situ Zirconium ASAXS scattering patterns (log Intensity vs log q) showing 

the separated normal (continuous line) cross (dotted) and resonant (dashed) scattering 

contributions. Top left: starting xerogel at room temperature, top right – 380°C, bottom 

left - 420°C, bottom right - 600°C. The resonant term shows a narrowing during sintering 

at the intermediate temperatures. At 600°C, the resonant term becomes identical in shape 

to the normal term again.  (∆I/I  is 2.5*10
-3

 for the normal and 10
-2

 for the resonant). 
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When multiplied by its coefficients (notably f’), the cross term will become a negative 

contribution to the scattering function as energies approach the absorption edge. In figure 

8.12, the normal cross and resonant terms have been multiplied by their coefficients, and 

the sign of f’ reversed for the cross term for visual clarity. 

The difference in width between the normal and resonant terms in q space correlates to 

a distribution in real space. At the nanometer scale, zirconia particles occupy a different 

region of q to that of yttria in the early stages of nucleation (at 380°C). Nucleates then 

grow with further heating, forcing the zirconia clusters to incorporate the yttria primaries 

- increasing homogeneity. Patterns in which the normal, cross and resonant terms are 

identical in shape (though differing in intensity) are an indication of a 2-phase mixture of 

homogeneous YSZ and air at the nanoscale. 

 

8.2.4 Surplus Yttria 

 

Anomalous scattering from high yttria to zirconia ratios indicate the presence of a 

saturation point, beyond which pockets of surplus yttria will begin to form, which yttrium 

ASAXS (edge at 17keV) is able to resolve in the resonant term (figure 8.13, left). In the 

presence of TEOS, yttria will react with the silica matrix at temperatures over 900°C to 

form silicates. This effect is shown in the left half of figure 8.13 as a smaller feature to 

the right of the main scattering factor maximum in both the normal and resonant terms. 

The smaller feature, at higher q, indicates the formation of small features – which could 

be the onset of yttrium silicate nucleation. Further work needs to be performed to 

investigate this additional reaction. 
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Figure 8.13: In-situ ASAXS scattering patterns taken across the yttrium edge (log 

intensity vs log q) of a YSZ sample with higher concentration of yttria (Y/Zr = 15 mol%) 

at 920°C, showing the separated normal (continuous line) cross (dotted) and resonant 

(dashed) scattering contributions. Left: YSZ in silica matrix, right: YSZ without matrix. 

Both normal and resonant terms show an additional feature at larger q in the case of YSZ 

in silica matrix, while for a matrix free YSZ, the feature is only resolved in the resonant 

term. (∆I/I=2.5*10
-3

 for the normal. ∆I/I=10
-2

 for the resonant) 

 

 

8.2.5 Contrasts between the normal and resonant terms: the role of yttria and 

zirconia 

 

Comparisons of the results have revealed some interesting differences between the 

normal and resonant terms. Gaussian fitting using IDL was applied to the scattering 

factor maxima, and their half widths and position in q space measured. These values of q 

were then converted to length scales using the relation in eq. 8.1. The resonant term 
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shows a lower q range and narrowing of the scattering factor maximum, which is 

described as a larger correlation length. In the cases of YSZ with and without silica, the 

size distributions diverge with increasing temperature and hence can be a measure of an 

increase in average particle size. These effects can be seen in Figure 8.14. Results also 

reveal the presence of silica also decreases the size distribution range for a given 

correlation length.  

 

q
L

π2
=    (8.1) 

 

On a sub-nanometre level, the results are interpreted as zirconia playing the dominant 

role, incorporating yttria into the lattice as the crystals grow. This is a thermally driven 

reaction where zirconia primary particles drift through the less dense medium (if a silica 

matrix is present) and coalesce to form nano-sized tetragonal crystals. The inclusion of 

yttria in the growing crystalline structures induces a cubic phase transition 
[83]

.  

An increased correlation length and wider distribution with a given temperature in the 

resonant term can be caused when there are larger pure zirconia crystals. Pure zirconia 

particles nucleate first, some of which absorb yttria to produce the smaller YSZ particles 

visible in the normal term. Silica, itself densifying with increasing temperature, slows the 

thermally driven motion of the zirconia primaries, resulting in smaller crystals and lower 

size distributions for a given temperature. A cartoon to show this process is given in 

section 8.2.7. 
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Figure 8.14: Top left shows the correlation length (L) with temperature for YSZ samples 

with and without a silica matrix. Pure YSZ (stars and triangles) shows a rapid growth 

just after nucleation. The plot to the top right displays the half width of the structure 

factor maximum for the normal and resonant terms for YSZ as temperatures are 

increased. A similar plot (bottom) is shown for YSZ in silica. The presence of a silica 

matrix narrows the length distribution range to a couple of nanometers at 1000 degrees 

Celsius. (Percentages are in terms of mol%) 
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8.2.6 Comparative results from wide angle X-ray diffraction 

 

 

In addition to in situ ASAXS, ex-situ experiments were performed on the same 

samples using X-ray diffraction (XRD) in the materials laboratory, Aberystwyth 

University. Samples were heated in a furnace in 50°C steps, and X-ray diffraction was 

carried out once the sample had cooled to room temperature. Bragg peak formation does 

not commence until sintering temperatures reach 400°C for pure YSZ, (figure 8.12 top). 

For pure zirconia, quenching reveals a tetragonal-monoclinic phase transition when the 

original baking temperatures exceed 500°C (figure 8.16 bottom). Particle sizes are 

estimated by measuring the half widths of the growing Bragg Peaks and applying the 

Scherrer equation
[85]

 (figure 8.15). Results of this investigation are found to compare with 

those obtained from ASAXS. 

 

Figure 8.15: Estimates of particle sizes with temperature measured using XRD. Blue, 

YSZ, grows much faster than its counterpart in silica (black) 
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Figure 8.16. Top: XRD contour maps (count rate vs. Bragg angle and temperature). The 

count rate is colour coded. Experiments were conducted ex situ after quenching samples 

from the temperatures indicated. Top: YSZ (8.7 mol%), bottom: pure (unstabilised) 

zirconia. The latter exhibits a phase transition on quenching when baking temperatures 

exceed 500°C.  
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8.2.7 The nucleation and YSZ process 

 

Figure 8.17 is a schematic of the formation of sol-gel derived YSZ based upon the 

results of the experiments. Initially, there is a homogeneous distribution of yttria and 

zirconia primaries in the xerogel. Upon heating, the zirconia will crystallise, 

incorporating the yttrium ions as the crystals grow. This induces an initial inhomogeneity 

which becomes apparent by changes in the resonant term on zirconium ASAXS. The 

final result is pure cubic phased yttria stabilised zirconia in a homogenous distribution; 

shown in ASAXS by the three scattering functions identical in shape, but differing in 

intensity. 

 

Figure 8.17: Schematic of the formation of YSZ on heating. Starting from top left: 

Nucleates of zirconia (blue) grow, absorbing the yttria (green) as they go along - 

resulting in an initial mixed phase state (top right and bottom right). The material 

becomes single phase YSZ (red) once all the Yttria has been incorporated into the 

growing zirconia crystals.   
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Chapter 9 

 

Conclusion 

 

 

It has been shown that Anomalous Small Angle X-ray Scattering (ASAXS) is a useful 

tool for investigating the sol-gel process. The ability of ASAXS to resolve the scattering 

functions of individual species within a composite material will also prove useful in 

acquiring a greater understanding in similar processes with chemical contrast variations 

in the nano-regime. 

Modern synchrotron radiation sources are ideal for time resolved ASAXS experiments 

due to the high photon flux produced. The only other constraints are the speed in which a 

beam-line monochromator can cycle the different energies, and the beam spectrum 

obtained from the monochromator crystals. 

 

9.1 Conclusions on gelation 

 

Time resolved ASAXS on Zirconia and yttria-zirconia in silica reveal the zirconia and 

yttria primary particles are being fully integrated into the structure of the gel network. 

ASAXS reveals contrast in the resonant term on the zirconium edge, with the normal and 

cross terms having identical forms. 
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By comparison, the addition of zinc ions into the formation of a silica gel reveal the zinc 

primaries are not being incorporated into the network structure, but rather remain trapped 

inside gel pores. 

In situ EXAFS experiments, ran in parallel with the ASAXS investigations, show a 

chemical shift of 2.8eV on the zirconium edge during hydrolysis. Once fully hydrolysed, 

the position of the absorption edge remains constant. 

Varying yttria concentration shows no change on the form of the scattering patterns from 

sols during gelation. 

 

 

9.2 Conclusions on the sintering of yttria stabilised zirconia 

 

YSZ and YSZ in a silica matrix has been successfully prepared by the sol-gel method, 

and the roles yttrium and zirconium ions play during sintering have been investigated 

using in situ double ASAXS over two adjacent absorption edges. The presence of a silica 

matrix slows crystal growth. This growth rapidly increases beyond 780°C, and is also 

shown in XRD studies. SAXS plots reveal the thermally driven growth of cubic phased 

nanocrystals averaging 10 nm in size, which is shown by the presence of a scattering 

factor maximum. The particle sizes determined from SAXS correlate with those obtained 

from XRD. 

Accurate determination of the atomic scattering factors using X-ray absorption spectra 

is important to make sure the correct solutions for the normal, cross and resonant terms 

are obtained.  The resonant term in zirconium ASAXS displays a narrowing of the 
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scattering factor maximum, as well as a peak position at lower values of q, and hence a 

larger particle size. This is interpreted as being due to zirconia playing the dominant role 

during nucleation. Pure zirconia crystals initially nucleate and absorb yttria as they grow, 

resulting in stabilisation of the cubic phase. Contrast between the normal and resonant 

terms vanishes as the temperature increases and all the yttria is absorbed into YSZ, 

making the sample homogeneous. Yttrium ASAXS shows no observable difference 

between the normal, cross and resonant terms for typical YSZ where the yttrium 

concentration is much lower than that of zirconia.  

 

 

9.3 Future Work 

 

Further work needs to be performed in the study of yttria stabilised zirconia in a silica 

matrix. Particularly at temperatures beyond 900°C, where a second reaction appears to 

occur. Sintering experiments need to explore higher temperatures, preferably over 

1000°C (to obtain a good range of data) to fully investigate the formation of yttrium 

silicate. 

Investigations should also be performed on different materials, such as YAG formation 

and superconducting ceramics such as YBCO. Reactions from materials prepared by sol-

gel can be compared to those prepared using other industrial methods.  

Additionally, ASAXS itself needs to be properly modelled. A computer simulation that 

generates scattering functions of the normal, cross and resonant terms from user defined 

materials needs to be produced, which can then further aid the experimenter in 
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interpreting results. ASAXS experiments on known systems will need to be carried out to 

assist and validate simulator development. 

A project to derive theoretical values of the corrections to the atomic scattering functions 

(f’ and f’’) for compounds should also be completed. To date, only the values for pure 

metals have been derived. No attention has been given to compounds such as oxides. 

With such models, better fits can be derived when comparing experimental and 

theoretically derived data. 

The techniques of ASAXS can be combined with those of Grazing Incidence SAXS 

(GISAXS) in order to facilitate time resolved AGISAXS experiments in the study of thin 

films - such as photovoltaic cells. AGISAXS experiments can also be performed on YSZ 

films and reactions compared to the results obtained from bulk samples. 

Further work should also be carried out in the application of ASAXS style techniques to 

longer wavelengths. Novel spectroscopic light scattering experiments can be designed 

using the visible and infrared wavelengths. Here, the anomalous scattering will be the 

result of molecular absorption – and can be used in the study of biological processes.  

 

Afterthoughts 

 

With synchrotron designs and beam-lines constantly improving, the potential time-

resolution and beam-spectra can only improve further. Synchrotron facilities constantly 

look for new, innovative experimental ideas – posing additional challenges to beam-lines 

and their staff. These new challenges will enable the synchrotron facility to remain on the 
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front line of cutting edge research, as experimental demands from research institutes 

increase.  

ASAXS has a great potential, and shows a wealth of promise in the unravelling of further 

mysteries in the future. With time resolution at I22, Diamond Light Source, now 

approaching the milli and micro-second regime, ultra high time resolved ASAXS 

experiments are now within grasp. In addition, anomalous scattering techniques can be 

applied to Grazing Incidence SAXS (GISAXS), to one day produce the first ever time 

resolved AGISAXS experiment in the study of thin films.  

In the future, the next generation of beam-line designs could utilise ultra high power free 

electron lasers (FEL), capable of generating intense monochromatic beams of UV, X-ray 

and gamma photons using inverse Compton scattering 
[85]

. It could be that eventually the 

synchrotron as we know it will become obsolete, as new, laboratory sized beam-lines are 

designed; though this will be someway off in the future – and maybe a topic for our 

children and grandchildren. 

 

Though current SAXS beamlines can only probe energies of between 4keV and 22keV at 

best, it is not impossible to envisage anomalous scattering experiments of much lower 

energies, capable of exploring the absorption edges of smaller atoms. Such “Anomalous 

Small Angle UV Scattering” and “Anomalous Small Angle Light Scattering” 

experiments could be exploited to investigate complex biological and biochemical 

processes. Visible light and infra-red energies are also within range of many molecular 

absorption spectra, making novel spectroscopic scattering experiments very plausible to 

investigate in-situ changes of micro-structures in biochemical materials and polymers. 
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