
Image Region Completion by Structure
Reconstruction and Texture Synthesis

Najm Alotaibi

Department of Computer Science
Aberystwyth University

August
2009

This thesis is submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy of Aberystwyth University.

Declaration

This thesis has not previously been accepted in substance for any degree and is
not being concurrently submitted in candidature for any degree.

Signed . (Najm Alotaibi)

Date .

Statement 1

This thesis is the result of my own investigations, except where otherwise stated.
Where correction services have been used, the extent and nature of the correction
is clearly marked in a foonote(s) Other sources are acknowledged by footnotes
giving explicit references. A bibliography is appended.

Signed . (Najm Alotaibi)

Date .

Statement 2

I hereby give consent for my thesis, if accepted, to be made available for photo-
copying and for inter-library loans after expiry of a bar on access approved by
Aberystwyth University.

Signed . (Najm Alotaibi)

Date .

i

ABSTRACT

In this thesis, we present a new image completion method that automates the
filling in of holes left by the removal of undesired areas in images so that the
final output image is visually plausible. The reconstruction of the hole is based
on the assumption that regions, particularly in natural images, tend to be spa-
tially continuous and are only separated by the hole and must therefore be linked.
Therefore, our approach is based on first creating image structure (regions bound-
aries) in the hole and then propagating texture from surrounding areas constrained
by this structure. Structure reconstruction is performed in order to preserve the
global structure of the image, by creating regions in the hole with well defined
boundaries such that they match the surroundings.
The images are first segmented into homogeneous regions. The regions touching
the hole are then relabelled based on their colour and spatial distances. Similar
regions are then linked resulting in creating a new area in the hole that will
be flood-filled and then synthesised to match the surrounding structure. This
reconstructed image is then used for texture synthesis as a constraint.
Our texture synthesis method proposes two modifications to the generic texture
synthesis method and this includes a parallel synthesis order and an iterative
synthesis scheme. The parallel synthesis, in which a pixel being synthesised is
independent of other pixels during any given iteration and not affected by other
previously synthesised pixels, helps reducing the directional bias caused by sequen-
tial scanning orders such as the raster scan. The iterative synthesis scheme allows
global randomness which will progressively converge towards fine detailed texture.
This scheme ensures that the created texture has sufficient, but not excessive, ran-
domness and does not have replications of entire patches. As a result, the method
is able to convert gradually the input image into plausibly synthesised image and
to remove visible boundary artifacts. The combination of the image structure and
texture synthesis methods results in having an image completion method that is
capable of dealing with images with large holes that are surrounded by different
types of structure and texture areas.

ii

ACKNOWLEDGEMENTS

I would like to thank a number of people who have helped me greatly during my
PhD until the production of this thesis.
Firstly, my supervisor, Dr. Frédéric Labrosse, for everything I have learned from
him, his warm encouragement, thoughtful guidance, and infinite kindness and
patience over the last four years. I also want to thank Dr. Reyer Zwiggelaar and
Dr. Mark Neal for the helpful discussions we had about my thesis.
I also want to thank my sponsor, the Saudi Institute of Diplomatic Studies for the
financial support during my PhD study.
I am grateful to my parents for their continuous help and sincere prayers. Their
advise has always been helpful. Also, great thanks to my family: my wife, Modi
and my kids Lama, Feras and Bayan for their support and patience over the past
four years.
Finally, I must thank my brother Saad and cousin Maziad for their general sup-
port.

iii

Contents

Glossary x

1 Introduction 1
1.1 Image completion . 1
1.2 Research contributions . 3
1.3 Overview of the thesis . 5

2 Literature Review 6
2.1 What is texture? . 6
2.2 Texture analysis . 7

2.2.1 Statistical methods . 7
2.2.2 Structural methods . 10
2.2.3 Model-based methods . 10
2.2.4 Signal processing methods 11

2.3 Texture synthesis . 11
2.3.1 Feature matching approach 12
2.3.2 Non-parametric approach 13

2.3.2.1 Pixel-based texture synthesis 14
2.3.2.2 Patch-based texture synthesis 16

2.3.3 Pixel-based vs. patch-based methods 18
2.3.4 Filling Order . 19

2.4 Image completion . 20
2.4.1 Overview . 20
2.4.2 Image inpainting . 20
2.4.3 Texture completion . 22
2.4.4 Structure and texture completion 26

2.5 Conclusion . 28

3 Data evaluation and methodology 30
3.1 Images used in the experiments . 30
3.2 Evaluation of the results . 37

3.2.1 Human evaluation . 37
3.2.2 Formal quantitative evaluation 40
3.2.3 Our evaluation approach . 41

4 Texture synthesis method for image completion 43
4.1 Introduction . 43
4.2 Generic method . 44
4.3 Parallel synthesis . 45

iv

4.4 Initial hole filling . 47
4.5 Iterative synthesis scheme . 49
4.6 Neighbourhood characteristics . 53

4.6.1 Size and shape . 53
4.6.2 Search area . 55

4.7 Results and discussion . 57

5 Reconstruction of globally consistent image structure 63
5.1 Introduction . 63
5.2 Image segmentation . 64
5.3 Relabelling of image regions . 66

5.3.1 HBRs histogram matching 66
5.3.2 HBRs spatial proximity . 67

5.4 Connecting HBRs . 69
5.4.1 HBR connection principles 69
5.4.2 Line-crossing detection and straight line creation 71

5.4.2.1 Line-crossing detection 71
5.4.2.2 HBRs linking points 71
5.4.2.3 Straight line creation 74

5.4.3 HBRs connection priorities 75
5.4.4 Hole regions flood-filling . 75
5.4.5 Iterative connections and flood-filling of hole regions 76

5.5 Remaining unfilled areas inside the hole 77
5.6 Segmentation synthesis . 79
5.7 Results and discussion . 80

6 Image completion: combining both methods 97
6.1 Introduction . 97
6.2 The completion method . 97
6.3 Results and discussion . 99
6.4 Conclusion . 112

7 Conclusion and future work 118
7.1 Conclusion . 118
7.2 Future work . 120

References 121

Appendices 133

A Additional results 134

v

List of Figures

1.1 Example of applying our image completion to the cledwyn image 1

2.1 Examples of structural textures . 6
2.2 Examples of statistical textures . 7
2.3 An example of texture synthesis . 12
2.4 Successful synthesis example of Heeger and Bergen 13
2.5 Failure synthesis examples of Heeger and Bergen 13
2.6 Failure examples of texture synthesis by Efros and Leung 15
2.7 An example of applying Wei and Levoy’s method on this particular

texture, taken from [3] . 17
2.8 Synthesis order for constrained texture synthesis, from [125] 19
2.9 TV inpainting of a broken bar, from [24] 22
2.10 CDD inpainting of a broken bar, captions are also taken from [24] . 23
2.11 Inpainting blurring problem . 24
2.12 An example of a failure when applying the method in [38] to the

image . 26

3.1 The grass image . 31
3.2 The window image . 32
3.3 The street image . 32
3.4 The bush image . 33
3.5 The cledwyn image . 34
3.6 The dustbin image . 35
3.7 The pavement image . 36
3.8 The roundabout image . 37
3.9 The bungee-jumber image . 38
3.10 The tube image . 39
3.11 The elephant image . 39

4.1 Example of the texture synthesis completion 44
4.2 Outline our texture synthesis method 45
4.3 Parallel synthesis for hole pixels at each iteration. 47
4.4 Initial filling in for a given pixel . 49
4.5 Convergence of the iterative synthesis for the bush image using

only texture synthesis . 51
4.6 Results of the iterative synthesis before and after the stopping cri-

terion using only texture synthesis 52
4.7 Convergence of iterative synthesis for the bush image for structure

reconstruction . 53

vi

4.8 Results of the iterative synthesis before and after the stopping cri-
terion using only structure reconstruction 54

4.9 Convergence of iterative synthesis for the bush image for both tex-
ture synthesis and structure reconstruction 55

4.10 Results of the iterative synthesis before and after the stopping cri-
terion using both structure reconstruction and texture synthesis . . 56

4.11 Texture synthesis result for the grass image 58
4.12 Texture synthesis result for the window image 59
4.13 Zoom in of the hole and parts of the surrounding areas of the win-

dow image . 59
4.14 Texture synthesis result for the street image 60
4.15 Zoom in of the original image, hole image and the final synthesised

image of the street image . 60
4.16 Texture synthesis result for the bush image 61
4.17 Zoom in of the original image, hole image and the final synthesised

image of the bush image . 61
4.18 Texture synthesis result for the cledwyn image 62

5.1 General outline of the structure reconstruction method 65
5.2 A typical configuration between two HBRs 68
5.3 An example of showing the regions relabelling process 69
5.4 Example of compatible and incompatible hole structure 70
5.5 Examples of pair- and self-connections 71
5.6 Example of line-crossing check . 72
5.7 Example of allowing line-crossing inside the hole and prioritising

pair regions connections . 72
5.8 Example of identifying hole regions linking points 73
5.9 Example of connecting region pairs and self-regions using lines . . . 74
5.10 Example of hole regions flood-filling 76
5.11 Example of Iterative hole regions connection and flood-filling 78
5.12 Example of complex unfilled areas of the hole 79
5.13 Hole structure reconstruction results for the cledwyn image 83
5.14 Zoom in results for the cledwyn image 84
5.15 Hole structure reconstruction results for the bush image 85
5.16 Zoom in results for the bush image 85
5.17 An example of improving the reconstruction of the hole by manually

segmenting the regions that correspond to the areas of the brown
grass of the bush image . 86

5.18 Zoom in results for the improved bush image 86
5.19 Hole structure reconstruction results for the dustbin image 87
5.20 Zoom in results for the dustbin image 87
5.21 Changing the size of the hole for the dustbin image to see the

changes in the structure. 88
5.22 Zoom in results for the improved dustbin image 88
5.23 Hole structure reconstruction results for the pavement image . . . 89
5.24 Zoom in results for the pavement image 89
5.25 Hole structure reconstruction results for the roundabout image . 90
5.26 Zoom in results for the roundabout image 91

vii

5.27 Hole structure reconstructions results for the bungee-jumber image 92
5.28 Zoom in results for the bungee-jumber image 93
5.29 Hole structure reconstruction results for the tube image 94
5.30 Zoom in results for the tube image 95
5.31 Hole structure reconstruction results for the elephant image, from

[35] . 96
5.32 Zoom in results for the elephant image, from [35] 96

6.1 General outline of the image completion process 98
6.2 Image completion results for the cledwyn image 101
6.3 Zoom in results for the cledwyn image 102
6.4 Image completion results for the bush image 103
6.5 Zoom in results for the bush image 103
6.6 Improving the image completion result for the bush image by using

a new constraint image . 104
6.7 Zoom in results for the improved bush image 104
6.8 Image completion results for the dustbin image 105
6.9 Zoom in results for the dustbin image 105
6.10 Narrowing the hole size for the dustbin image 106
6.11 Zoom in results for the dustbin image with narrowed hole 106
6.12 Image completion results for the pavement image 107
6.13 Zoom in results for the pavement image 107
6.14 Image completion results for the roundabout image 108
6.15 Zoom in results of the area of the hole and parts of the surroundings

for the roundabout image . 109
6.16 Image completion results for the bungee-jumber image 110
6.17 Zoom in results for the bungee-jumber image 111
6.18 Comparing our image completion result to others for the bungee-

jumber image . 112
6.19 Zoom in results for comparing our image completion result to others

for the bungee-jumber image . 113
6.20 Image completion results for the tube image 114
6.21 Zoom in results for the tube image 114
6.22 Image completion results for the improved results of the tube image115
6.23 Zoom in for the improved results of the tube image 115
6.24 Image completion results for the elephant image, from [35] 116
6.25 Zoom in results for the elephant image 116
6.26 Comparing our image completion result to others for the elephant

image . 116
6.27 Zoom in results for comparing our image completion result to others

for the elephant image . 117

A.1 Image completion results . 135
A.2 Image completion results . 136
A.3 Image completion results . 137
A.4 Image completion results . 138
A.5 Image completion results . 139

viii

List of Tables

2.1 Examples of statistical properties that can be extracted from inten-
sity histogram of an image . 8

2.2 Examples of statistical properties that can be extracted from the
co-occurrence matrix . 10

ix

Glossary

HBR Hole bounded region: a region created by the segmentation of the image
that touches the hole of the image but is outside the hole, p. 66.

HBR-BE HBR boundary extremity: a point at the end of the boundary between
the hole and the hole bounded region.

Hole An area of the image left by the removal of pixels corresponding to
unwanted features and that needs to be filled-in with structure and
texture in a plausible, convincing manner.

Hole region A region that is created in the hole after its structure and texture
have been reconstructed.

RCPL Region connections priority list: a list of hole bounded regions which
will be connected according to the order, p. 68.

x

Chapter 1

Introduction

1.1 Image completion

Images sometimes contain regions that are flawed or have undesirable objects.
Fixing these flaws correctly is an important goal in applications such as photo
editing, wireless transmission of images (recovering lost blocks), and film post-
production. The problem of image completion is defined as being the following:
given an original image and a hole mask, the goal is to automatically fill in the
area of the image corresponding to the mask such that the synthesised part is as
indistinguishable as possible from the rest of the image, as well as being plausible.
Typically, such completion propagates new texture from the surrounding areas
into the hole by “copying” similar examples from such areas. This propagation
should produce a realistic structure and texture inside the hole so that it matches
the surroundings with no visual artifacts. The hole can be of any size and shape
and surrounded by many different areas. Figure 1.1 shows an example of applying
our image completion method to the cledwyn image. There are editing tools,

(a) (b) (c)

Figure 1.1: Example of applying our image completion to the cledwyn image:
(a) original image, (b) original image with a hole masked, and (c) final result

1

such as clone brush strokes, that can be used to fill in the removed portion of the
image. However, with such tools professional skills and manual user interaction
are required. As a result, image completion deals with these limitations especially
when the region to be removed is large and within many different textures.

During the last decade, there has been substantial work dedicated to deal with
the problem of image completion and the current results are very convincing for
many types of images. However, existing methods may produce visual artifacts
such as hole boundaries, blurring, replicating large blocks of texture, or simply
cannot preserve the global structure in the image, especially when the hole is
large and surrounded by different types of textures. By the structure of the image
we mean the spatial organisation of the different parts that constitute the image.
These parts can typically correspond to areas of the image where the texture is
homogeneous, according to some measure that will be discussed later. Methods
used to solve this problem have used different approaches and strategies varying
from completion using structure, completion using texture, and completion using
both texture and structure. The methods of the first category fill in the hole based
on propagating linear structure by generally using mathematical models such as
partial differential equations (PDEs) and image diffusion. This approach is best
suited to restoring and fixing small scale flaws such as scratches, stains and overlaid
text, but is not suited for large holes surrounded by textured regions, as the process
is local and can cause blurring artifacts. The second group of methods complete
the hole using texture synthesis by creating texture that is copied or modelled
from the surrounding examples of texture. This approach produces good results
for a large variety of textures. However, it does not ensure the correctness of the
global structure of the image as many of these methods are based on local sampling
that doesn’t take into account the global structure of the image. However, other
methods of this approach that are based on global feature extraction can preserve
the global image structure, but can result in insufficient representation of the
texture structure. The third category of methods combines the two approaches
by creating texture that is constrained by structure. These methods have been
successful in completing holes in images, by propagating the structure in the hole
first and then creating texture based on that structure constraint. The methods of
producing structure and texture in the hole vary in their strategy of completion,
and a review on these methods and other image completion methods is discussed
in Section 2.4.

In this thesis, we present a new method that automates the filling in of a given hole
left by the removal of an undesired area in an image so that the final output image
is visually plausible. The method follows the approach of combining structure and

2

texture to complete the hole of the image. The hole structure is propagated first
in order to preserve the global structure of the image by creating regions in the
hole with well defined boundaries so that they match the surrounding structure
of the rest of the image. A modified texture synthesis method (based on the work
proposed in [38]) is then used to create textures inside the hole that are constrained
by the reconstructed structure, and the textures will be coherent globally, hence
producing plausible results. Also, the texture synthesis method is used for all the
stages of image completion which include the structure reconstruction and texture
synthesis, which provides an integrated scheme to do the whole process. Also, it is
important to distinguish between the structure of the image/hole and the structure
of the texture. What we mean by the structure of the image/hole is a layout that
define boundaries between regions in the hole while the structure of the texture
defines various characteristics of the texture elements such as arrangement, size
and shape.

It is important to point out that our method does not have high level knowledge of
what the real hole structure should be and therefore some user interaction might
in some cases be necessary to modify the existing structure so that it matches the
structure of the surrounding areas.

The following sections describe the main contributions in this thesis followed by
an overview of its chapters.

1.2 Research contributions

The main contributions in this thesis can be divided into two main parts: recon-
structing image structure and synthesising texture.

• We propose an image structure reconstruction method that is based on the
assumption that regions (particularly in natural images) tend to be spatially
continuous and are separated by only the hole and must therefore be linked.
These regions are homogeneous and are spatially continuous in the sense
that their local statistics do not change with position. The originality of
the method is that the reconstruction of the image structure is based on
measuring the similarity and connectivity of these regions.

• Measuring the similarity is based on colour statistics and proximity of re-
gions. Thus, the image is first segmented and the regions attached to the
hole are then relabelled based on their colour and spatial distances (Sec-
tion 5.3). In practice, colour similarity is computed by normalising colour

3

histogram for each region that touches the hole and then calculating the
Euclidean distance between the two histograms. The assumption that areas
of the original image are only broken up into different regions because of the
presence of the hole implies that regions should be linked not only based on
their colour content but also on their spatial proximity. This is computed
based on the Euclidean distance between points that link two corresponding
regions across the hole.

• Connecting regions is done by joining similar regions together using straight
lines, and then flood-filling the created enclosed regions (Section 5.4). These
connections are governed by principles that do not violate other valid region
information, and can produce acceptable structure. These newly created re-
gions are then synthesised to match the surrounding structure (Section 5.6).
This structure reconstruction of image regions in the hole incorporates the
global structure of the images which results in a structure that is consistent
with the surrounding structure and therefore will guide the texture synthesis
to produce more realistic results.

• We propose a texture synthesis method based on the work proposed in [38].
Our method introduces modifications to the existing general texture synthe-
sis methods, which works for many different textures with less parameter
tweaking than these methods. The two main parts of our method are an
iterative synthesis scheme and order independent parallel synthesis.

• The iterative synthesis scheme allows global randomness while preserving
local precision of the synthesised texture. The selection of good matches is
important for the quality of the results. This selection must ensure that the
generated texture has sufficient variation without replicating entire patches.
In order to achieve this, we iteratively fill in the hole (using the parallel
method), first allowing a wide set of good matches, then reducing the size
of the set (Section 4.5).

• The parallel synthesis, in which a pixel being synthesised is independent and
not affected by other pre-synthesised pixels, helps reducing the directional
bias caused by scanning orders such as the raster scan (Section 4.3), and
avoids introducing boundary artifacts. In practice, a new image (temporary
buffer) holds the values of the synthesised pixels. This temporary buffer is
then copied back to the image being synthesised at the end of each iteration,
when all the pixels have been processed. In order for the parallel syntheses
to work, it requires an initial seed. The aim is to provide initial values in
the hole that have a certain amount of randomness. However, the values

4

must be plausible. Therefore, They are copied from nearby pixels that do
not belong to the hole using a Gaussian distribution centred on the current
pixel.

We combine both the structure reconstruction and texture synthesis methods by
using the reconstructed structure image as a constraint for the texture synthesis.
This ensures that the texture synthesis creates texture from relevant regions and
also preserves the global structure of the image, thus, producing realistic textures,
having consistent image structure.

1.3 Overview of the thesis

The rest of the thesis is structured as follows: in Chapter 2, a literature review on
the work related to texture analysis, texture synthesis, and image completion is
provided. Chapter 3 describes the methodology used in this work to evaluate the
results and presents the images used in the experiments performed to evaluate the
performance of the proposed method. Chapter 4 investigates the limitations of the
generic texture synthesis approach and proposes our solution to these limitations.
It also discusses the results of image completion using only texture synthesis. In
Chapter 5, the structure reconstruction of the hole is analysed, and the results
of the method are discussed. Chapter 6 describes the whole process of image
completion by combining the structure reconstruction of the hole with the texture
synthesis. Results of this combined method are also analysed and discussed. Fi-
nally, we conclude our work in Chapter 7 together with a discussion on possible
future work.

5

Chapter 2

Literature Review

2.1 What is texture?

Texture is an important characteristic of an image that has been widely studied
over the last three decades. Although human beings perceptually recognise a tex-
ture when they see one, the concept is difficult to define, and there is no general
agreement of accepted definition as it can be formulated based on a particular
application. However, in general, “texture” is usually referred to as visual ele-
ments that are spatially repeated deterministically or stochastically. Therefore,
textures can be classified into two categories: structural (e.g. regular) textures
and stochastic textures. Structural textures are formed based on the arrangement
of image primitives (texture elements) and by placement rules defining the spatial
distribution of the primitives. Such placement rules include scaling, rotation and
reflection [27,50]. On the other hand, stochastic textures are based on probabilistic
models such as Markov Random Field, and do not have clear identifiable primi-
tives or regular placement rules. In reality, most real-world textures are mixtures
of these two types. Figures 2.1 and 2.2 show examples of structural, statistical
textures respectively.

(a) (b)

Figure 2.1: Examples of structural textures: (a) wall bricks and (b) stones, taken
from [114].

6

(a) (b)

Figure 2.2: Examples of statistical textures: (a) birdseed and (b) hair, taken
from [114].

2.2 Texture analysis

Many methods of analysing and characterising textures have been proposed and
used for many years. They are categorised into four main groups: statistical, struc-
tural, model-based, and signal processing methods. These methods are discussed
in the following sections.

2.2.1 Statistical methods

Statistical methods have been used to analyse the spatial distribution of grey val-
ues in an image by computing a set of statistical properties. The process starts
by determining local features at each point in the image and then extracting a set
of statistical properties from the distribution of the local features. The statistical
methods can be a first-order (one pixel), second-order (two pixels), and higher-
order (three pixels or more). There are many statistical methods of analysing
texture such as intensity histogram features, co-occurrence matrix, autocorrela-
tion function and edge frequency. The co-occurrence matrix is the most popular
method for extracting features for texture analysis. Thus, it is chosen to be dis-
cussed in this section. The intensity histogram method is also explained as its
statistics are used in Chapter 5. For more detail on the other statistical analysis
tools, the interested reader is referred to [117].

Intensity histogram

The intensity histogram (H) of an image is a process of recording the number of
occurrences of gray levels in the image, so it only contains first-order statistics.
The probability density function of occurrence of grey level values is defined as:

P (i) =
H(i)

S
, i = 0, 1, 2...n− 1 (2.1)

where H(i) is the intensity histogram value at gray level i, S is the size of the
image or its regions, and P (i) is the probability of occurrence of gray level i.

7

Mean µ =
n−1∑
i=0

iP (i)

Variance σ2 =
n−1∑
i=0

(i− µ)2P (i)

Energy E =
n−1∑
i=0

(P (i))2

Entropy H = −
n−1∑
i=0

P (i) log2(P (i))

Table 2.1: Examples of statistical properties that can be extracted from intensity
histogram of an image.

From the histogram, a number of useful statistical parameters can be extracted
including mean, variance, energy and entropy. The mean describes the average
intensity of the image while the variance measures the variation of intensity around
the mean. The energy of a texture image describes its uniformity. Thus, the
energy of an image is high when the image is homogenous. The entropy on the
other hand, describes the randomness of the image. In general, when energy gets
higher, entropy gets lower. Therefore, homogenous images have higher energy,
but lower entropy. Table 2.1 shows examples of these statistics. The statistics of
intensity histogram are used in Chapter 5 to extract statistical properties of image
regions.

Co-occurrence matrix

Co-occurrence matrix is a widely used statistical method which is proposed by [53].
It is generated from the image by computing the statistics of pixel intensity. The
use of the method is based on the concept that the same grey level values are
repeated in the image. The size of the co-occurrence matrix (grey level matrix)
is equal to the number of grey level values in the image, and computed for a
given direction and a given distance as shown in the next example. Practically, an
element C(i, j) of the gray level co-occurrence matrix C counts the co-occurrence
of pixels with gray values i and j at a distance d and a direction θ. To show an
example of a gray level co-occurrence matrix (GLCM), consider a 4 × 4 image
containing 3 different grey values:


0 0 1 1

0 0 2 1

1 2 2 3

2 2 3 2



8

The 4× 4 gray level co-occurrence matrix for this image for the east (1,0) spatial
relationship, and a distance d = 1 is as follows:

C =


2 1 1 0

0 1 1 0

0 1 2 2

0 0 1 0



The GLCM above is not symmetrical. If the GLCM is computed with symmetry,
then only angles (θ) up to 180 ◦ need to be considered. Thus, texture calculations
require symmetrical matrix in which the relationship i to j is indistinguishable for
the relationship j to i, and directions on both sides (e.g. east and west) are con-
sidered. The above GLCM can be made symmetrical by adding it to its transpose
as shown below:

C
′
=


4 1 1 0

1 2 2 0

1 2 4 3

0 0 3 0



The co-occurrence matrix is mainly used to derive second-order statistical texture
properties. The most important used features are energy, entropy, inverse differ-
ence moment, inertia and correlation. These features are defined in Table 2.2.

where C(i, j) is the (i, j) element in a co-occurrence matric C, µi is the the mean
of the horizontal co-occurrence matrix, µj is the mean of the vertical co-occurrence
matrix, σi is the the standard deviation of the horizontal co-occurrence matrix, σj

is the standard deviation of the vertical co-occurrence matrix, and n is the number
of grey levels.

When the high values of the co-occurrence matrix are near the main diagonal, the
inverse difference moment’s value is high. In contrast, the feature inertia has a
high value when the high values of the matrix are far away from the main diagonal.
Both inertia and inverse difference moment features can be used to measure the
coarseness of an image. The last feature is the correlation which measures the
correlation between the matrix elements. When the image correlation is high, the
image seems to be more complex than when correlation is low.

9

Energy E =
n−1∑
i=0

n−1∑
j=0

C(i, j)2

Entropy H = −
n−1∑
i=0

n−1∑
j=0

C(i, j)logC(i, j)

Inverse difference moment D =
n−1∑
i=0

n−1∑
j=0

C(i, j)

1 + (i− j)2

Inertia T =
n−1∑
i=0

n−1∑
j=0

(i− j)2C(i, j)

Correlation R =
n−1∑
i=0

n−1∑
j=0

(i− µi)(j − µj)C(i, j)

σiσj

Table 2.2: Examples of statistical features that can be extracted from the co-
occurrence matrix.

2.2.2 Structural methods

The structural methods of analysing textures are based on the fact that a texture
consists of primitives with their geometrical properties. The structural methods of
texture characterise texture as a set of primitives, which can produce (synthesise)
texture by placing them according to specific placement rules. Texture primitives
can refer to regions (blocks) in the image with uniform gray level values [117].
To analyse a texture using a structural method, two steps need to be considered:
finding ways of deriving these primitives and identifying the placement rule.

Image primitives can be extracted by using different methods such as filtering
the image with Laplacian of Gaussian masks at different image scales in order
to extract “texels” (texture elements) [14]. Once the primitives of the texture
have been identified, one can either compute the statistics of these primitives (e.g.
intensity and shape) or identify the placement rule. The placement rule can be
defined by a tree grammar as Fu described in his approach [45]. When applying
the tree grammar rules, the texture can be viewed as a string in the language
defined by the grammar whose terminal symbols are the texture primitives. This
method can be used to analyse and synthesise texture.

2.2.3 Model-based methods

Model-based methods are based on capturing the underlying process that gener-
ates a texture. An image model can be used to describe, analyse and synthesise
the texture, by estimating its parameters. One widely used model-based methods

10

are Markov Random Fields models.

Markov Random Fields (MRFs)

MRF models are popular and widely used for modelling images. The models
have the ability to capture the local spatial information in an image, and assume
that the intensity at each pixel depends only on the intensities of the neighbouring
pixels [117]. MRF models have also been used in many applications such as texture
synthesis [31], image segmentation [29], and image restoration [48]. Moreover, the
models have been used as a basic assumption for most texture synthesis techniques
[3, 38,49,54,125,134].

2.2.4 Signal processing methods

Signal processing methods analyse the frequency content of the image. They are
based on extracting certain features from filtered images using signal processing
techniques, e.g. spatial domain filters, fourier domain filters, and Gabor filters.
One of the most useful features, the spatial domain filters extract is measuring
the image edge density per unit area. Measuring the edge density is usually done
by using edge masks such as the Laplacian or Robert operators. For more detail
on these filters, the interested reader is referred to [117].

2.3 Texture synthesis

Texture synthesis is the process of creating a new image that is different from the
original, yet being perceptually similar to the original image. Texture synthesis is a
better way to create textures compared with hand drawing and scanned images in
the sense that images are more realistic and made at an arbitrary size. With hand
drawing pictures, it is difficult to make them photo-realistic, and with scanned
images, sizes are not adequate [125]. Therefore, texture synthesis can be used to
generate large textures from small texture samples. Figure 2.3 shows an example of
texture synthesis, which was taken from [125]. Texture synthesis has been an active
area of research for the last decade. For example, in computer vision, computer
graphics and image processing, there are many texture synthesis applications such
as texture classification and segmentation, rendering, compression, wireless image
transmission, image editing, etc.

Texture synthesis methods create a model of the texture and use that model to
produce a new texture having the same properties as the original texture. The
models can be categorised broadly into a feature matching (parametric) [15,57,97]

11

(a) (b)

Figure 2.3: An example of texture synthesis from [125]: (a) original texture (b)
synthesised texture

or non-parametric [3, 38, 125] approaches, and these models being derived from
the original texture. In other methods, the model does not contain the original
texture, but its sufficient statistics [49,134]. The feature matching approach often
use a set of features and synthesise texture based on matching the statistics of the
features in the example texture. On the other hand, the non-parametric approach
generates texture by local probability sampling.

In a general comparison between these two approaches, the feature matching ap-
proach can result in insufficient representation of the texture which can lead to
failing to synthesise. Similarly, the non-parametric methods may not be able to
capture the global representation of the texture. Also, non-parametric approaches
have the advantage over the feature matching approaches that the computational
cost is relatively lower due to avoiding explicit construction of statistical models.

2.3.1 Feature matching approach

Texture synthesis techniques based on this approach use global statical features
to match between the original and new textures (in the context of pure texture
synthesis) or between the undesired area of the image and the rest of the original
image outside the hole. Thus, the new texture is generated according to statical
models derived from the original texture after applying a bank of filters to the
original texture.

Heeger and Bergen [57] have presented a method for synthesising an image that
matches the appearance of a given texture. In practice, they synthesise textures
by matching the histogram of filter outputs of an input texture and initial noise
images. The noise is then modified to make it look like the input texture image.
This was done by matching histograms of two texture images, using a combination
of Laplacian pyramid and steerable pyramid. The synthesis technique succeeds
on highly stochastic textures, but fails on structured ones. Figure 2.4 shows a

12

successful texture synthesis example, which is presented in [57]. Figure 2.5 shows
failure examples of their texture synthesis.

De Bonet [15] generates texture by matching the distributions of multi-resolution
filter output in a way that preserves dependencies across multiple resolutions of
the input texture. The method offered an improvement on the work presented
in [57] by successfully synthesising a wide range of textures including structured
ones. However, boundary artifacts can appear in the produced texture if the input
texture is not tileable [125].

Portilla and Simoncelli [97, 108] synthesise texture by matching pairwise joint
statistics on the wavelet coefficients using multi-scale image representation. Their
method was able to successfully produce good results for both stochastic and
structured images. However, it has difficulties in producing high frequency pat-
terns with highly structured textures [38].

Figure 2.4: Successful synthesis example from [57]: (Left) sample texture image
(Middle) random noise image (Right) synthesised texture

Figure 2.5: Failure examples from [57]: hay and marble texture images

2.3.2 Non-parametric approach

The non-parametric approaches synthesise a texture by computing conditional dis-
tribution of its pixels by using a neighbourhood matching strategy. The methods
are motivated by a Markov Random Field model in the way that a value of a given

13

pixel only depends on its neighbours. This means that the methods do not ex-
plicitly assume that the probability distribution of brightness values as MRF, but
the MRF is only used as motivation. A number of nearest-neighbourhood texture
synthesis methods have been recently presented in [3, 37, 38,54, 58,71, 78, 85,125].
This approach of texture synthesis can be categorised based on the synthesis unit
into pixel-based texture synthesis and patch-based texture synthesis. Pixel-based
methods synthesise texture based on a pixel by pixel synthesis while patch-based
methods use patches (blocks) of pixels to synthesise texture. The following sec-
tions analyse these methods.

2.3.2.1 Pixel-based texture synthesis

Efros and Leung [38] have developed a pioneering approach using probability sam-
pling to generate texture. The method is very simple to implement and can synthe-
sise different types of textures of any size and shape. In their work, the conditional
probability distribution for a pixel is estimated by searching the sample image and
finding the neighbourhood similarity to the pixel’s neighbourhood. In practice, to
synthesise a pixel P, the algorithm scans the whole sample image searching for all
neighbourhoods that have a good match with P’s neighbourhood. Best matches
are computed by the normalised sum of squared differences metric (SSD). Only
these within a distance less than a threshold ε are considered and included in the
best matches list. Later, one is randomly selected and its centre pixel is then
copied into P. One important parameter used is the size of the neighbourhood.
If the size is too small, the local structure of the texture will not be captured
properly. Contrary, if the size is too large, computational cost will be higher and
there can be a risk of having verbatim copying of large areas of the texture.

Despite the fact that the method produces very good results for a wide range
of textures, it reported a few failures. For example, when the texture contains
too many different types of texture elements, the method gets into a wrong part
of the search with no good matches and starts growing “garbage” as referred by
the author to the unrealistic texture especially at the left corner of the bottom
of the image [38]. Another failure is shown in Figure 2.6(b) when the method
gets “stuck” at a particular area in the image and starts producing “verbatim”
(exact) copying [38]. Also, the method uses a “causal” neighbourhood which only
contains the preceding synthesised pixels of the current pixel being synthesised.
This neighbourhood shape does not include other parts of the neighbourhood, and
this can cause boundary artifacts [125].

Many variations of the method presented in [38] have been published that have

14

Figure 2.6: Failure examples from [38]: (a) the method gets into a wrong part of
the search and starts growing “garbage”. This clearly appears at the left corner
of the bottom of the image where the elements of the texture are not realistic,
instead “garbage” was produced. (b) the method produces “verbatim” copying
where exact blocks of the texture are copied from particular areas.

introduced improvements on the method [3, 37, 54, 78, 125]. Wei and Levoy [125]
presented a multi-resolution synthesis in order to reduce the computational cost of
the exhaustive search in [38] by representing large scale features in a lower resolu-
tion level by using a smaller neighbourhoods. The computational cost of applying
a multi-resolution method is much lower than the single resolution method because
at each level of the resolution pyramid, small neighbourhoods are used, which is
faster to compute. The synthesised texture is generated from a coarse to fine scale
in the image multi-resolution levels using a raster scan order. At each pixel, causal
neighbourhoods on the current level and full neighbourhood (symmetric) in the
next higher pyramid level are used. The search for the best neighbourhood match
to the current pixel neighbourhood is performed as in [38] using the (SSD) met-
ric. Also, the multi-resolution synthesis can help to reduce the artifacts caused by
using the causal neighbourhood, by having all the neighbouring pixels available
in the match. Also, the efficiency of the method is improved further by using
tree-structured vector quantisation (TSVQ).

Ashikhmin [3] develops a modification method to [125] that produces better quality
results for natural textures, and also that is faster than their method. He found
that the method of [125] produces poor quality results on certain types of texture
that contain various objects of irregular size and shapes, but “familiar” ones [3].
Figure 2.7) shows that the method of [125] has a tendency to introduce a blurring
artifacts for particular types of textures, and this can be a result of using the TSVQ
as reported in their paper. However, Ashikhmin [3] presented in his paper that
the blurring effects can be the result of using the (SSD) metric and suggested
to be replaced by perceptual metrics to improve the quality of the result, even
though he acknowledged that such metrics are not completely reliable because of

15

lack understanding of the human visual system.

Due to restrictions in the search domain, the method reduces the computational
cost significantly. The method is based on the observation that given the positions
in the original image of the neighbourhood of the pixel being synthesised, a list
of candidates for that pixel can be computed by shifting these positions according
to their displacement with that pixel. Although the method significantly speeds
up the synthesis process, it also can reduce quality because the “small” list of
candidate may lead to a shortage in good matches in the texture. The method
is extended to give the user an interactive control over the appearance of the
synthesised image by simply providing a target image with some general properties
which show how the final result should look like, leaving the details to be filled by
the synthesis algorithm.

Although Ashikhmin’s method produces good results for natural textures, dis-
continuities can occur when synthesising highly structured textures. As a result,
Hertzmann et.al. [58] proposed a method of combining Ashikhmin and Wei and
levoy methods by using the coherent neighbour searching of Ashikhmin and the
Euclidean distance in [125]. This combination of both perceptual similarity mea-
sures produces better results, especially with such textures.

Despite the fact that computational cost of texture synthesis has been reduced
significantly, especially by Ashikhmin’s coherent search, it is improved further in
real time by Zelinka and Garland [135]. The method is very fast because there
are no neighbourhood comparisons at the synthesis stage as they are already pre-
computed at the analysis stage and can be used for texture synthesis. They
presented a method that synthesises texture based on data structure referred to
by the authors as the “jump map”. The jump map stores, for each pixel in the
input texture, a set of k-nearest matching neighbours in a look up table. The
table is then used to make random jumps at the texture synthesis stage, in which
the random jumps decide from which neighbours to continue copying pixels.

2.3.2.2 Patch-based texture synthesis

Recent methods have used patches instead of single pixels as in [37, 71, 78, 81, 85,
86, 119, 131]. The patch-based methods are found to work well for a wide range
of textures and their computational cost is lower than that of the pixel-based
methods. The comparison between the pixel-based and patch-based methods is
discussed in Section 2.3.3. Most of these methods are concentrated on introducing
new techniques to handle patch overlap regions, thus avoiding boundary artifacts.

16

(a) (b)

Figure 2.7: An example of applying Wei and Levoy’s method on this particular
texture, taken from [3]: (a) input texture, and (b) the method has a tendency to
produce blurred results for some types of texture [3].

One of the first attempt to use patches for texture synthesis, instead of copying
single pixels at a time, is the work of [131]. A set of patches are copied from the
input texture and then randomly pasted onto the output texture. The boundaries
between patches are treated by using a cross-edge filtering, which enables a smooth
transition across these boundaries. However, the cross-edge smoothing can cause
mismatch features and image blur.

Instead of blending overlap regions with a filter, Efros and Freeman [37] proposed
a patch-based texture synthesis method that is based on merging patches that
satisfy an overlap boundary region constraint. The synthesis process starts by
placing a square patch, taken randomly from the sample image, in the upper left
corner of the output image as a seed. A new patch is placed on the output image
in a raster scan order overlapping the existing patch by some number of pixels.
The new patch is chosen by searching in the sample image for a set of patches that
satisfy some overlap constraints (the overlap region is on the left and top sides of
the new patch) within some error tolerance.

Once these patches are selected, a random patch is picked up and placed on the
output image. The method finds a good boundary between the newly chosen
patch and the old patches by computing the minimum cost path from one end
of the overlap region to the other. Once the boundary is chosen, it is used as
the boundary of the new patch and placed on the output image. When placing
a selected patch on the output image, the patch’s pixels in the overlapped region
have to be merged with the other old patches in the output image.

Irregular shapes of patches have been used in [78] to remove the seams on the
overlapped regions. The method uses alpha blending across the overlapped regions
to provide a smooth transition between the new and old existing patches. This
however, can cause blurring along the edges of the patches.

A generalisation of the method in [37] to irregular shaped patches, was presented

17

in Kwatra et al. [71]. The method uses a technique they call “graph cut” in which
patches can be of any shape in order to determine the optimal patch. The shape
(portion) of the patches are completely determined by computing the minimum
cost of graph cut along the boundary of the new and old patches.

Nealen and Alexa [85] used adaptive patches and pixel-based re-synthesis to re-
move the visual seams in the overlapped regions. These patches are selected so
that they minimise overlap error with the existing synthesised patches. The over-
lap error is computed for each pixel in the overlap regions and mismatched pixels
above a certain threshold are re-synthesised per pixel. The error is computed using
the Fourier transform iteratively. Although the method produces good results, es-
pecially for textures with anisotropic structure, the iterative process increases the
computational cost. Because of this limitation, they proposed a new method [86]
that is faster than the re-synthesis pixel-based synthesis motivated by the k-nearest
neighbourhood search used in [116]. The k-nearest neighbourhood was used to in-
crease the number of possible pixel locations in the input texture in which limited
number of candidate patches tend to produce unsatisfactory results [86].

Unlike most patch-based texture synthesis methods, which uses only colour in-
formation when searching for the best patch, Wu and Yu introduced a structural
similarity measure that is motivated by the fact that the Human Vision System
(HVS) is most sensitive to edges, curves and other high frequency features [130].
The method combines the structural measures with colour information so that the
visual boundary seams between adjacent pathes are minimised.

2.3.3 Pixel-based vs. patch-based methods

Although pixel-based methods are reported to perform well with many different
textures, still there exist some limitations. For example, the main limitation with
the pixel-based methods is the high computational cost. However, some improve-
ments to speed up the process have been performed using a multi-resolution frame-
work and tree-structured vector quantisation accelerator as in [125], restricted
search area as in [3] or a jump map as in [136]. The other problem with the pixel-
based synthesis is that it may not be able to preserve the global features of the
texture properly, as shown in Figure 2.6(a). However, the methods are good at
matching small features of the texture, and when a symmetric neighbourhood is
used, the representation of global features is better. Another problem with these
methods is the blurring artifacts that can be caused by the limitation of distance
metrics in some textures that are not well suited for mimicking the HVS, as shown
in Figure 2.7.

18

On the other hand, patch-based texture methods have lower computational cost
than the pixel-based methods. They also tend to capture the underlying struc-
ture of the image better than the pixel-based methods, especially with structured
textures. However, due to patch fitting problems, the methods can produce visual
artifacts such as large self-similar areas and visible patch boundaries. The patch
fitting problems can be caused by inaccurate similarity measures [130].

2.3.4 Filling Order

The order in which an image is synthesised is an important part of the synthe-
sis process since it can highly affect the quality of the output image, as different
synthesis orders can generate different textures. This is because pixels being syn-
thesised always depend on previously synthesised pixels and this would result in
“cyclic” dependencies among output texture pixels [126] causing directional bias
in texture propagation.

During the synthesis process, pixels are considered in some order such as raster
scan [125] or spiral from a centre seed in the case of unconstrained texture synthesis
[38] or from the outside of the hole inwards as in the case of constrained texture
synthesis [38,125]. The raster scan order (from top left corner of the image to the
bottom right corner) can favour parts of the image at the expense of others and
this can produce boundary artifacts. The spiral order on the other hand, has been
used successfully to reduce the directional bias caused by the raster scan order,
as shown in Figure 2.8. However, the problems with the spiral synthesis is that
a boundary may remain visible at the “centre” of the spiral, particularly when a
single pass is used.

(a) (b) (c)

Figure 2.8: Synthesis order for constrained texture synthesis, from [125]. (a)
original texture containing a region to be completed, (b) discontinuities caused
by the raster scan synthesis order as well as the causal neighbourhood, and (c) a
spiral order synthesis is used as well as the symmetric neighbourhood using two
passes.

In general, any sequential order can produce boundary artifacts, maybe spread

19

over the size of the neighbourhood in cases of in-homogeneous textures. Therefore,
the best solution to these problems is to have order-independent texture synthesis
[74, 126, 133]. The work of Wei and Levoy [126] presented a new approach to to
the order of synthesis by using order-independent texture synthesis method. The
method is simple as instead of synthesising pixels directly into the output image,
they are stored in a separate image. The neighbourhood comparison are performed
on the pixels of the separate image rather than the ones in the output image, and
synthesise texture in a multi-dimensional paradigm.

We recently discovered that our parallel method is similar to the one proposed
in [126] although it is used in a single resolution synthesis and has a different
initialisation method. More on our parallel method is described in Chapter 4.

2.4 Image completion

2.4.1 Overview

Images often contain undesirable artifacts that need to be removed and later fixed.
The main challenging requirements of image completion is that when removing the
flawed region, the replacing texture of the region and its surroundings must be
compatible and realistic. Also, the boundaries between the new and old regions
must be invisible. These challenges have been investigated by a great deal of
research that broadly can be classified as structure completion (image inpainting),
texture completion, and combined texture and structure completion.

2.4.2 Image inpainting

Image inpainting fills in gaps or undesired small areas in images by smoothly
propagating the surrounding structures inside the areas, considering their angle
of arrival and possible curvature. Several structural propagation techniques have
been investigated in the literature of image inpainting [7, 9, 12,24,39,88,113].

Image inpainting was first introduced by [9] and was based on replicating the way
professional restoration artists work. Their idea of filling in the undesired objects
is to smoothly propagate the surrounding information on the boundary of the area
being removed inwards. This filling in can be achieved by iteratively propagating
the image information along the direction of the isophote lines (lines with equal
gray values) using partial differential equations (PDEs) and image diffusion. The
propagation of image information includes the pixel values and the directions of

20

the isophote, which is done by numerically solving the following partial differential
equation:

∂I

∂t
= ∇⊥I · ∇∆I, (2.2)

where ∇, ∇⊥ and ∆ represent the gradient (gx, gy), the perpendicular gradient
and the Laplace operator respectively. This equation only applies inside the re-
moved areas. The isophote direction is the direction of least change in gray values
(normal to the gradient). A 2D Laplacian is used to smooth the propagation of
the structure. This smoothness will continue along the isophote direction. Thus,
few iterations of anisotropic diffusion [95] are performed after few iterations of
inpainting to preserve sharpness in the structure of the removed area. However,
sharpness in edges is not always preserved [88].

Inspired by the work of Bertalmio et al., Chan and Shen presented two methods
for image inpainting: Total Variation (TV) [25] and Curvature-Driven Diffusion
(CDD) [24]. The TV method is based on an Euler-Lagrange equation that uses the
anisotropic diffusion in [95] inside the inpainting region based on the contrast of
the isophotes. The method works with inpainting small regions and is best suited
to noise removal. However, one of the drawback of this method is that it does not
connect broken lines of objects, especially when the length of the inpainted object
l is much larger than the width of the object w (far separated regions), as shown
in Figure 2.9.

The CDDmethod extends the TV inpainting method to overcome the difficulties of
connecting broken lines. This was achieved by considering geometrical information
of the isophotes when defining the diffusion strength. The diffusion strength gets
stronger where the isophotes contain a larger curvature. However, it becomes weak
when the isophotes stretch out [24]. This allows to have a steady inpainting over
large areas. Figure 2.10 shows a successful CDD inpainting of a broken bar.

A number of other mathematical models have been investigated in the literature of
image inpainting [5–7,12,39,113], and the interested reader is referred to a review
paper published in [112].

It is obvious that the main focus of this approach is the propagation of linear
structures, such as lines and curves, in the undesired area, and does not take into
account texture. Therefore, it is best suited for restoring small undesired regions
or fixing small scale flaws such as scratches, stains, and overlaid text. Another
problem with this technique is that the diffusion process can cause some blur in
the image especially when the filled area is large, as can be seen in Figure 2.11.
Also, it does not rely on global features (it is local), [62].

21

Figure 2.9: TV inpainting of a broken bar, from [24]. The l and w represent the
length of the inpainted bar and the width of the bar respectively. The a, b, c and
d show the parts where the disjoint bars should be connected (e.g a should be
connected to c and b to d). However, the method clearly fails to reconstruct the
structure of the bar.

2.4.3 Texture completion

Early work on image completion using only constrained texture synthesis has
been presented in [17, 35, 38, 60, 61, 69, 79, 125, 129, 138]. Efros and Leung directly
apply their texture synthesis technique, described in Section 2.3.2.1, to fill in holes
completely surrounded by homogenous texture. Similarly, Wei and Levoy use their
texture synthesis technique to fill in unknown regions in images, but with some
modifications on the original algorithm [125]. They synthesise texture in multi-
resolution fashion, which includes using two passes to allow valid pixels in the
search for neighbourhood match (Section 2.3.2.1). Also, a spiral order was used
instead of the raster scan ordering (see Section 2.3.4). Most of texture completion
methods performance vary depending on the followings: the filling order of the
completion, neighbourhood searching strategy, the selection of the best match
from the source image, and pasting it in the hole.

Inspired by the work in [38], Bornard et. al. [17] propose a method to generalise
Efros and Leung’s method to include complex textures in the context of image
completion. In their work, the hole filling starts from the ones having the most
valid neighbours (known pixels within the square neighbourhood window). For
every pixel in the hole, the search for the best candidate matches is performed

22

Figure 2.10: CDD inpainting of a broken bar, captions are also taken from [24].
The TV inpainting method will produce two separate bars while the CDD in-
painting successfully restored the whole bar, and this is what most human would
perceive [24].

using a restricted adaptive domain search. This means that at a missing pixel,
a sub image window of an initial size is centred on this pixel to be used as a
search domain for the current pixel. The size of this sub image is increased until
it reaches at least a minimum number of pixels outside the hole, in which the
sub image is now ready to be searched. This domain search is later restricted
by using the same coherence search introduced in [3]. This improvement is done
to exclude irrelevant information in the sub image and to significantly reduce the
computational cost even further. The method may have problems with using local
restricted search as there might be a risk of not having enough examples of the
texture, particularly when the hole is at the edge of the image. Also, the results of
this work are only compared with the “image inpainting” method presented in [9],
which gives an indication that the method may have difficulties in producing good
result for texture image of large holes.

A more effective technique has been proposed by [35] to fill in large holes that

23

(a) (b)

(c) (d)

Figure 2.11: Image inpainting blurring problem, (a) and (b) taken from [62] and
(c) and (d) from [30]. (a) and (c) original images with a microphone and a bungee-
jumber to be removed, (b) and (d) the results of applying the image inpainting
method, presented in [9], to (a) and (c) respectively.

are surrounded by multiple textures and structures. Their work used three main
components to fill in the unknown regions: approximating the missing region,
computing the filling order, searching for most similar source patch (outside the
hole) and composting source and target patches. The algorithm runs these tasks
on multiple levels of an image pyramid from coarse to fine where features from
different resolutions are used. The smooth approximation of the unknown region
is used to guide the search process, and is computed based on iterative filtering
process. Once the approximation is done, the filling in process starts by identifying
the traversal order for the unknown region based on a confidence map, which
determines the position of the next target patch. As a result, the target pixels of
high confidence will be filled before low confidence pixels. Therefore, pixels close

24

to the border of the unknown region will be filled first. Once the target fragment
is located, a search for the best source match is performed over all positions, five
scales and eight orientations. The shape of the neighbourhood is circular and its
size is adaptive dependant on feature at different scales. Once the best source
fragment is found, it composites under the target fragment in which the pixels of
high confidence in the source fragment seamlessly merges with the pixels of low
confidence in the target fragment. Merging the source and target fragments is
performed using a Laplacian pyramids and OVER operator. The OVER operator
is used to composite two similar fragments, one over the other, to create seamless
transition between them according to alpha values. Although the method produces
very impressive results, it is complex and is computationally expensive.

Different filling orders and patch matching strategies have been proposed by [138].
First, the filling order of the unknown area is done by measuring the textureness
in the target patches. The textureness is measured according to a spatial-range
model. The model is a combination of distances between neighbourhood pixels
and their mean value and spatial distances between the target pixel (at the centre
of the target neighbourhood) and the rest of the neighbourhood pixels. Therefore,
the filling in starts with the areas of less textureness (low frequency areas). After
identifying the target patch, a source patch is selected by computing projective
transformation parameters between the two patches before applying the SSD sim-
ilarity distance. The reason of adjusting the two patches appearance before the
comparison is that there are images with perspective deformation in which apply-
ing the SSD directly may result in inaccurate matching. Once the source patch
is chosen, a graph cut algorithm is used where a minimum cut is applied in the
overlapped region to separate the two patches in order to keep the boundaries of
the patches least noticeable.

Lin [79] presented a patch-based image completion method based on restricting
the search space to a region around the target patch. This is similar to [17], but
the size of the searching region is a user defined parameter. He also used a different
similarity metric that is not only based on computing gray level differences, but
also includes the gradient differences. This metric integrates colour and anisotropic
structure to find better matches for the patches of the hole. The filling order of the
hole is based on shrinking the boundary of the hole based on identifying points
on the boundary with strong edges where the filling in process starts from the
two end points and shrinks to the middle. The method is fast and produces
acceptable results. However, it can cause artifacts due to search restriction that
limit the number of available examples of the source patches.

25

(a) (b)

Figure 2.12: An example of a failure when applying the method in [38] to the
image. The original image with a building to be removed (a), and (b) the result of
applying the method in [38] which shows that different textures require different
parameter in order to work properly. Also, it clearly shows that boundaries need
to be created first. Note that these image are take from [72].

2.4.4 Structure and texture completion

The combination of both structure and texture propagation has been investigated
in [11,30,51,64,72,101,110]. Most previously described methods of texture comple-
tion have their own limitations when filling in holes surrounded by many different
textures. This includes the following: one is that many methods need a set of
specially tuned parameters that work with one set of textures but not with others.
Another problem is that the boundaries between the various synthesised textures
must look realistic. Figure 2.12 shows an example of a failure when applying the
method presented in [38] to this image.

This has been addressed in [72] where boundaries between textures were first
propagated in the hole, thus creating regions containing only homogeneous texture,
which were then filled in. Both synthesis (boundaries and texture) used a method
based on that described in [38]. The differences were that possible matches of the
current pixel were constrained to belong to the right boundary or region (using
a segmentation of the image) and that a match was chosen using a Gaussian
distribution to choose at random a match that is not too different from the best
match.

26

In [11], the method combines image inpainting and texture synthesis approaches
by decomposing an image into the sum of two functions: one for reconstructing
the structure of the image and the other is for capturing the texture. Similarly,
Criminisi et. al. [30] use both image inpainting and texture synthesis approaches to
fill in holes in images. The image inpainting is used to propagate linear structures
while the texture synthesis is used to propagate texture. The main idea is the
designing of a hole filling order, which explicitly propagates linear structure and
texture information. The filling order is based on the priority values that are
given to patches that are centred on the boundary of the hole. The priority is
calculated based on how much reliable information is around the pixel as well as the
isophote at this point. For example, patches that are located on the continuation
of strong edges will have high priority values, and thus the linear structure would
be extended first. The priority of a patch P (p) is defined as the product of two
elements: a confidence term C(p) and a data term D(p) . The confidence term
describes the amount of reliable information surrounding the current pixel, which
can be measured by computing the number of filled pixels in the patch. The data
term describes the strength of the isophotes hitting the hole boundary. The data
term is very important since it encourages linear structures to be synthesised first.
Once the highest priority patch is found, a search for the most similar patch in
the rest of the image is performed as in [38]. Once it is found, its pixels are then
copied into the current patch. After the patch has been filled, the confidence value
at P is updated, so as the filling proceeds, the confidence values decrease when
coming close to the centre of the current region in the hole.

Rares et. al. [101] propose a new method for restoring missing areas in images and
films. The method consists of three main components: image segmentation and
feature extraction, hole structure reconstruction and texture synthesis. The seg-
mentation of the image is performed to identify different textured regions around
the hole. Once the segmentation is done, edges connected to the hole within a
specified distance are extracted. A number of features used to identify edges with
similar properties are computed. These features are the intensity and gradient an-
gle histograms within the image segments. Therefore, each edge is characterised
by these two features on the left and right side of the edge, shape fitting cost and
sequentially. The sequentially factor is used to measure the degree to which the
edge connections do not cross each other.

The second component is to construct the structure of the hole based on measuring
the similarity of these edge features and selecting the best match. The output of
this operation is a list of edge couples arranged in groups of couples and a list of
spare edges. And edge couple consists of two edges from the same area while the

27

spare edges are the ones for which there is no match. Once identifying all these
groups of edges, all the edge couples are propagated in the hole according to a
circle fitted to the couple while the spare edges are fitted as straight lines into the
hole.

After the hole structure has been constructed, the texture is synthesised using a
modified method presented in [17]. The modification is that the texture synthesis
is constrained by a mask of the same segmented region inside the belt area. In
this method, using a fixed belt size may influence negatively neighbourhoods and
edges matching process. With the neighbourhoods matching process, it restricts
the search to this belt area inside the current object region, and this may lead to
ignoring some valuable information outside the belt area. The same problem may
occur with edge matching if the edges do not have enough pixels to be compared
with.

A different approach is presented in [110] as an interactive technique to image
completion by propagating structure information in the hole using user specified
curves. The curves are used to provide high level knowledge on what structure
should be propagated and where texture can be obtained from. The method first
synthesises the missing structure and texture along these curves in the unknown
region using patches around the curves in the known region. In this work, struc-
ture propagation is considered as a global optimisation problem that is solved
by dynamic programming or belief propagation. If only one curve is specified,
dynamic programming is used while if multiple intersecting curves are specified,
belief propagation is used to reduce the computational cost. After the user creates
the curve, a set of anchor points are generated in the unknown region in which
the centre of the synthesised patches are located on these points. Outside the
unknown region the sample patches are centred within one to five pixels along
the specified curve. After structure propagation, texture is then synthesised from
the corresponding sub regions, which are partitioned by the creation of the user
curves. The limitation of the method is that it lacks automation and requires user
interaction for completing the unknown regions.

2.5 Conclusion

From the literature review, we can conclude the following:

• The generic texture synthesis methods are not well suited for dealing with
images with large holes that are surrounded by different texture areas. Ap-
plying these methods directly to such images will cause problems related to

28

replicating complete image areas, boundary artifacts or lack of preserving
global image structure. Therefore, modifications to these methods has been
introduced to handle these problems.

• The methods of image completion that are based on the image inpainting
method presented in [9] are suited for propagating only linear structure and
completing small holes. Also, problems of blurring can occur due to the
diffusion process, which is local and does not consider global structures of
the image.

• The methods that combine image structure and texture synthesis have pro-
duced good results for a large variety of textures. However, they do not
ensure the global consistency image structure. Methods create image struc-
ture using image inpainitng which had its own problems as already discussed,
or image segmentation, but connectivity of regions were based on local cur-
vature that may not necessary represent the actual patterns of the surround-
ing structure. Other methods use interactive techniques to create the image
structure, but such methods lack automation.

We propose to tackle these problems by developing a new method of image com-
pletion that will (1) explicitly re-create image structure in the hole that matches
both the topology and geometry of the surroundings of the hole and (2) create
texture in the hole that matches texture examples in the remaining of the hole.
The new method will be such that the created pixel values merge seamlessly with
the existing content of the image. To achieve this, we propose to modify existing
texture synthesis methods so that they can work with different textures without
requiring precise manual adjustment of parameters.

29

Chapter 3

Data evaluation and methodology

This chapter discusses the images used in the experiments and the reasons behind
selecting them. This include expected difficulty in the shape, size or position
of the hole or complexity of the surrounding texture and structure of the hole.
The chapter also describes how the results could be and are evaluated, and the
methodology used. Different methods of evaluating quality of images are examined
including methods based on Human and formal metrics.

3.1 Images used in the experiments

Images used in our experiments have holes that are surrounded by different types
of textures and structures. In practice, we used a large number of images chosen
at random, and only a selection of the images (the interesting ones) are discussed
and the appendix gives some more. The images have expected difficulty, and this
includes size, shape, and position of the hole and complexity of the surroundings
of the hole (structure and texture). Also, we decide to use competing technique’s
images to compare with our corresponding result images. The compared images
were taken from their results. We considered these images as a benchmark against
which to compare to our method, hence we used the images from the literature.
Examples of theses images are shown in Figures 3.1–3.11. Images shown in Fig-
ures 3.1–3.5 are used in the method that uses only texture synthesis (Chapter 4)
while images shown in Figures 3.6–3.10 are used in the method that combines
texture synthesis and structure reconstruction (Chapter 6). The images shown in
Figure 3.5 and Figure 3.4 are used in both methods. Most of the images used
in the method of using only texture synthesis (Chapter 4) have holes that are
surrounded by simple topology, while the images used in the combined method
(Chapter 6) have large holes that are surrounded by complex topology.

30

(a) (b)

(c) (d)

Figure 3.1: The grass image. Original image at normal size (a) and enlarged at
twice the size (b), (c) original image with its hole at normal size and enlarged at
twice the size (d).

Figure 3.1 shows an image (grass) which has a hole that is completely surrounded
by homogeneous texture (grass). Therefore it is expected that the method of im-
age completion will fill in he hole plausibly. In Figure 3.2, however, the surround-
ings of the hole in the window image is not completely homogeneous with areas
that are locally more homogeneously grey compared to the rest of the brickwork
that is usually more varied and of red-ish tones. The result is expected to have
variations of both areas. Note that the size of the hole is small and its shape is
regular which should make the filling in of the hole easier and more plausible.

The hole of the street image in Figure 3.3 spans three different textures cor-
responding to the bushes, road and grass. Such textures are distinct with well
defined, simple boundaries between them. However, the texture and structure of
the pavement region on the right of the hole do not match that on the left side
of the hole. The completion of such an area would propagate both sides of the
pavement into the hole. However this depends on how plausible the initialisation
of the hole will be. Note that the hole is narrow which means that the completion
of the hole should be easier than for wide holes.

The hole of the bush image is surrounded by two distinct areas: the regular
brickwork of the wall at the top and the grass area at the bottom. A careful look
at the grass shows that in fact it is made of two areas with differently coloured
grass (grey at the top, green at the bottom). The topology of the areas around the

31

(a) (b)

(c) (d)

Figure 3.2: The window image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

(a) (b)

(c) (d)

Figure 3.3: The street image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

hole is similar to that of the STREET image. However, in the BUSH image the
hole is wider. We therefore expect that the propagation of the grey grass area into
the whole might be more difficult compared to the pavement area of the street

image. Moreover, the green grass area being dominant around the hole, it is likely

32

(a) (b)

(c) (d)

Figure 3.4: The bush image. Original image at normal size (a) and enlarged at
twice the size (b), (c) original image with its hole at normal size and enlarged at
twice the size (d).

that the grey area will not be properly preserved. Also, it is expected that a large
neighbourhood size should be used to capture properly the underlining structure
of the textures, particularly the brickwork of the wall.

Figure 3.5 shows an image (cledwyn) which contains a large hole that is po-
sitioned at the edge of the image and surrounded by differently textured areas.
Because of these reasons, the completion of the hole is not likely to be simple as
the boundaries between these areas are not clear. Therefore, explicit recreation
of the boundaries of the hole will be required to create plausible structure that
matches the surroundings. Without this explicit creation of the structure, the
hole may not be realistic, and also the initial filling would initialise random pixels
because of the lack of undefined boundaries between the areas surrounding the
hole. This would directly affect the search for the neighbourhood matches.

In Figure 3.6, the hole of the dustbin image covers four types of different textures
including sky, bushes, trees and grass. The topology of the areas surrounding
the hole looks obvious and therefore, it is expected that the boundaries of the
areas inside the hole would be created properly. However, boundaries between the
sky and trees areas are very specific and this needs to be recreated well to look
plausible. Also, the texture of each area on the left side of the hole looks similar
to that on the right side of the hole, therefore, it is likely that these textures will
propagate plausibly inside the hole. This though depends on the availability of
similar examples in these areas.

33

(a) (b)

(c) (d)

Figure 3.5: The cledwyn image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

Figure 3.7 shows the hole of the pavement image spanning different textures
corresponding to the pavement, kerb and road. In this image, the kerb area around
the hole has two areas that have two slightly different levels of grey, one being dry
and the other wet. It is expected that the kerb area with light grey would connect

34

(a) (b)

(c) (d)

Figure 3.6: The dustbin image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

to that of dark grey area as the hole is not wide and there are sufficient examples
of these areas around the hole. Also, the tiny part of the light gray kerb (on the
left of the hole) may be connected to the same area on the right side of the hole,
as the initialisation process is expected to have sufficient pixels from such area
inside the hole. Textures are likely to be created plausibly in the hole because the
surrounding topology is simple, the hole is narrow, and the textures are simple.

In Figure 3.8, a hole from the roundabout image is surrounded by differently
textured areas. What is interesting about this image is the completion of the
area of the hole where the road, grass and roundabout meet. This is because the
topology around this area of the hole is not obvious and therefore the completion
will depend on the segmentation of the areas where the initialisation will be con-
strained to. Therefore, it is important to have a plausible initialisation of the area
in order to create realistic textures corresponding to these surrounding areas.

In Figure 3.9, the hole of the bungee-jumber image is large and covers about
40% of the image. Also, it is surrounded by different types of textures, a house,
grounds, grass and river and such textures should be propagated well inside the
hole. The structure of the textures should also be captured properly. For example,
capturing the structure of the house would require increasing the neighbourhood
size to be large enough, which would be prohibitively expensive.

In Figure 3.10, the hole in the tube image spans different textures, vertical and

35

(a) (b)

(c) (d)

Figure 3.7: The pavement image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

horizontal tubes, tree and grass. Most or the hole is expected to be easy to
reconstruct because the hole is narrow and surrounded by an obvious topology.
However, the part where the horizontal and vertical tubes meet is expected to be
more difficult, if not impossible, because there are no examples of such a situation
in the rest of the image. In such a case, only high level knowledge about the
content of the image would guarantee a good reconstruction, knowledge that is
not available to the method but that can be input by a user.

Figure 3.11 shows the elephant image which contains a large hole that is sur-
rounded by different textures corresponding to the sand, river, shore, trees and
mountain areas. Areas of the hole surrounded by the mountain, river, and sand
are expected to have plausible filling as the the surrounding topology is not that
complex and the area of the hole is not too wide. On the other hand, the area in
the middle of the hole is expected to be difficult to complete as the area is wide
and therefore will require good initialisation in order to reconstruct its structure
and texture.

36

(a) (b)

(c) (d)

Figure 3.8: The roundabout image. Original image at normal size (a) and
enlarged at twice the size (b), (c) original image with its hole at normal size and
enlarged at twice the size (d).

3.2 Evaluation of the results

3.2.1 Human evaluation

Evaluating image quality is important for many image processing applications,
such as compression, acquisition, reproduction and restoration. The evaluation
methods can be classified according to the availability of the reference image.
Therefore the methods can be categorised into two main types: methods that
have a reference image and methods that don’t have one. Most methods fall
into the first category and have an obvious limitation that the reference image
may not be available to the evaluation algorithm. However, methods that predict
image quality without a reference image have not been investigated fully, as they
concentrated mostly on measuring the blocking artifacts [105].

A popular subjective method for evaluating image quality is to ask a number of
observers to give their subjective assessment for the image with a ranking number
between, e.g., 1 and 10, where 1 is the worst and 10 is the best. Observers often
complain that they don’t fully understand what the numbers represent. Showing
them with the worst and best images would improve their responses. However,
there are factors that can make the evaluation less efficient. For example the
amount of variation in the responses of the observers would be obvious as the

37

(a) (b)

(c) (d)

Figure 3.9: The bungee-jumber image. Original image at normal size (a) and
enlarged at twice the size (b), (c) original image with its hole at normal size and
enlarged at twice the size (d).

ranking range is high and images that correspond to each ranking number may not
be available. Yet, taking the average of the responses several times with different
observers would reduce the variation in the data and the evaluation would be more
reliable. This is because each observer may have different experience than others
which would help to add more knowledge to the evaluation.

Another subjective method of evaluating image quality is to have a pairwise com-
parison between two images. Participants in this case would be shown a pair of
images and asked to indicate which one of the two “looks visually better”. This

38

(a) (b)

(c) (d)

Figure 3.10: The tube image. Original image at normal size (a) and enlarged at
twice the size (b), (c) original image with its hole at normal size and enlarged at
twice the size (d).

(a) (b)

(c) (d)

Figure 3.11: The elephant image. Original image at normal size (a) and enlarged
at twice the size (b), (c) original image with its hole at normal size and enlarged
at twice the size (d).

39

method of evaluation doesn’t require prior assumptions about the criteria defining
their judgments, but introduces factors that can impact judgment.

Although the aforementioned subjective evaluation approach is an important eval-
uation method to assess the quality of images, such evaluation is time consuming
and expensive. Also, the results depend on various factors such as the observers
background and motivation. However, such evaluation could be tried, and they
might be productive, but they are for future work.

3.2.2 Formal quantitative evaluation

Quantifying visual image quality through subjective evaluation is seen to be more
reliable as images are ultimately to be viewed by human beings. However, because
of its aforementioned limitations, other evaluation methods can be used such as
objective image quality metrics. In the past two decades, several metrics have
been proposed for assessing image quality [32,40,87,137].

The most popular objective metrics are the mean square error (MSE) and signal to
noise ratio (SNR). The reasons for their popularity are their simplicity to be com-
puted. However, the methods do not generally correlate well with the perceived
image quality [40,120] because human perception of artifacts and distortions is not
accounted for in the metrics. However, counter examples of this have been pub-
lished in [55]. As a result, there has been a great deal of interest in incorporating
Human Vision System (HVS) characteristics into the image quality metrics. Thus,
simple metrics such as the MSE have been improved by incorporating the HVS
characteristics into their implementation [103]. Despite the fact that the HVS is
a very complex system to fully understand, the incorporation of even simplified
models into objective measures lead to a better correlation with human observers
response [40].

There are two current approaches for the objective metrics in term of considering
the HVS features: error sensitivity and structural similarity based frameworks.
The error sensitivity approach aim is to quantify the error between the reference
and distorted images. Most objective metrics follow this type of approach, where
various HVS features are correlated in the quality assessment. The most commonly
used features are luminance contrast sensitivity, frequency contrast sensitivity and
masking effects. However, such methods have their own limitations. For example,
it is difficult to deal with complex patterns such as in natural images, where most
of the experiments conducted used simple patterns. Also, they are inefficient
in terms of capturing structures in images [122]. Several methods for the error
sensitivity approach have been proposed [89,103,105,121].

40

The other approach is based on measuring structural similarity [100, 120]. These
methods assume that human visual perception is highly adapted for extracting
structural information from an image. Therefore, the assessment of images is
based on measuring the structural degradation between the reference and distorted
images. Unlike the error metrics that are independent of the underlying signal
structure, the methods of this approach contain measurements that are adapted
to the structures of the reference image signal.

In the context of image completion, the image quality assessment of both ap-
proaches for the completed image may not be applicable for the following reasons.
A reference image can be available. However, it is not necessary to look similar (in
term of structure and texture) to the result image. For example, the original bush

image has two bushes, the one on the right which is removed and replaced by the
surrounding texture, and that one the left of the hole. Our method of completion
fills in the hole of that image from the surrounding wall and grass areas rather
than from the other bush area, which results in an image that is different from the
reference image (grass and wall in the hole, instead of bushes). As a result, our
method being random, the chances for the original (reference) image to match the
synthesised one are rather small. So any metric that would compare two images
should not just look at pixels (such as the MSE) but look at much higher level
and subjective information such as “does it look plausible” or “does it look nice”,
which is very difficult to quantify, let alone evaluate.

3.2.3 Our evaluation approach

Because of the limitations explained in Sections 3.2.1 and 3.2.2, our evaluation
of the results is based on individual subjective evaluation of the general quality
and plausibility of the completion results. The following describes the evaluation
approach.

Visual comparison

The visual comparison between the original and completed parts of given images
is based on how plausible the completion is. The plausibility concept evaluates
whether the completed part is integrated with the rest of the image. This means
that the completed part should be within the context of the rest of the image.
Also, it defines whether the structure and texture of the completed image matches
the rest of the image. This implies that the completed image part should be
indistinguishable from the rest of the image and without visible artifacts.

41

Pairwise comparison

Our results are compared to corresponding results from a variety of image com-
pletion methods. The comparison is done subjectively by perceptually evaluating
the quality of the compared results. The images are also subjectively assessed
according to their plausibility.

42

Chapter 4

Texture synthesis method for image
completion

4.1 Introduction

The main goal of image completion is to automatically fill in the area of the
image corresponding to an undesired area such that the synthesised part plausibly
matches the surrounding areas. Typically, such completion propagates new texture
from the surrounding areas into the hole by “copying” similar examples from such
areas. This propagation should produce a realistic structure and texture inside the
hole with no visual artifacts. Figure 4.1 shows an example of the texture synthesis
completion.

Texture synthesis methods create a model of the texture and use that model to
produce a new texture having the same properties as the original texture. The
model can be statistical as in [15,57,97] or exemplar as in [3,38,125], and both cases
being derived from the original texture. In other methods, the model does not
contain the original texture, but its sufficient statistics [49,134]. All these methods
assume that a single texture is used and that it is homogeneous. Therefore, it is
expected that using such methods for completing holes in images will not work
properly with images that contain many different textures.

Section 4.2 will briefly describe the generic method on which the currently most
popular texture synthesis methods are based. Sections 4.3 to 4.6 will describe our
modifications to this generic method such that it can be used in the context of
image completion as defined above. Finally, Section 4.7 will present and discuss
results of applying our method to a variety of images introduced in Chapter 3.

43

(a) (b) (c) (d)

Figure 4.1: Example of the texture synthesis completion: (a) original image, (b)
original image with the hole masked, (c) hole mask and (d) final result of the
texture synthesis completion.

4.2 Generic method

Our texture synthesis method is based on the work proposed by [38], and it is
a variation on a generic method presented here. In this generic method, pixels
being synthesised are given a value by matching their neighbourhood to similar
pixel configurations elsewhere in the image. In the context of image completion,
possible matches are considered only outside the hole. The neighbourhood of the
current pixel is compared with the neighbourhood of possible matches to build a
list of good matches. From that list, one match is selected and its centre value is
used as the new value for the current pixel.

The comparison is usually done using the normalised Sum of Squared Differences
(SSD) between the two neighbourhoods and a good match is therefore one for
which the distance to the current pixel’s neighbourhood is low. “Low” is defined
in various ways. In [38], this was set below a threshold defined as a proportion
of the lowest distance. In [125], only the best match was kept while in [72], a
Gaussian distribution was used to select at random a match close to the best
match.

The problem with the use of fixed thresholds as in [38] is that the randomness
of the created texture is dependant on the value of the threshold. Smooth tex-
tures require a lower threshold than rough textures. Therefore, if the threshold
is too high, the texture will look too random. At the other extreme as in [125],
selecting the best match (or very low threshold) can lead to replicating complete
patches of texture [72]. Also, this fixed threshold used in [38] can create unrealistic
boundaries between regions [72].

The improvement proposed in [72], namely the use of a Gaussian distribution
to randomly choose a good match similar to the best match, constitutes a soft
threshold rather than a fixed, hard threshold. This does help in dealing with
many different textures in a single image, but does not guarantee that the best
match is not often selected, and therefore that entire patches are not replicated.

Our approach uses an iterative synthesis scheme starting with a high value of

44

Original Image + Hole

Initial Filling In

Parallel Synthesis

Iterative Refinment Scheme

Final Output Image

Figure 4.2: An outline for texture synthesis procedures.

the threshold which is then progressively lowered. This refinement scheme allows
sufficient randomness and avoid replication of complete patches (see Section 4.5).

During the synthesis process, pixels are considered in some order such as raster
scan [125] or spiral from a central seed in the case of unconstrained texture syn-
thesis [38]. Problems with such synthesis orders can occur. For example, the
raster scan order leads to directional bias in texture propagation which can propa-
gate certain areas at the expense of others. Also, this synthesis order can produce
boundary artifacts [125]. On the other hand, when using the spiral synthesis order,
a boundary can remain visible at the “centre” of the spiral (see Section 2.3.4).

We propose in the following sections our solution to limitations of this generic
method. The processes used in our solution are outlined in Figure 4.2 and ex-
plained in the following sections. A pseudocode for the texture synthesis method
is described in Algorithm 1.

4.3 Parallel synthesis

The order in which an image is synthesised plays an important part as it can
directly affect the quality of the output image, Section 2.3.4. Different synthesis
orders produce different synthesised textures because pixels being synthesised al-
ways depend on previously synthesised pixels, causing “cyclic dependencies” among
the texture pixels [126].

45

Algorithm 1 Pseudocode for the texture synthesis method
Initialise the hole as described in Algorithm 2.
DO

For each pixel in the hole
For each pixel outside the hole
Neighbourhood template = get neighbourhood(current pixel)
IF the Neighbourhood template have a number of pixels equal to
or greater than the number of pixels in the current neighbourhood
Compute Euclidean distance for the two neighbourhoods
Save the location of the pixel and its neighbourhood distance in
a NH list

ENDIF
ENDFOR
Possible matches list = all pixels (i,j) in the NH list where Euclidean
distance(i,j) <= Min(Euclidean distance) * randomness factor
Best match = Pick up randomly a mach from the Possible matches list
Pixel value = the value of the pixel at the centre of the Best match
Copy the Pixel value to the current pixel in the hole

ENDFOR
Decrease the randomness factor by a value at each iteration

While (the ratio of changed pixels of the current and previous iteration results
is greater than P)

A new order is proposed here to solve the above problems: all pixels are synthesised
in parallel in an iterative scheme. At each iteration, the value of any given pixel
is independent of the value of the other pixels and is therefore not affected by
the order in which the pixels are considered. This approach has been mainly
developed to reduce the directional bias and the propagation of some regions at
the expense of others. The strength of this method is that hole pixels can be
synthesised independently from the rest of the already synthesised pixels. Thus it
is an order-independent synthesis.

In practice, a new image (temporary buffer) holds the values of the synthesised
pixels. This temporary buffer is then copied back to the image being synthesised
at the end of each iteration, when all the pixels have been processed. Figure 4.3
shows the parallel synthesis process.

In order for the parallel synthesis to work, it needs an initial seed. The idea of
placing an initial seed for non-parametric texture synthesis was introduced in [38].
Also, previously published work [125] has also used initial filling in, but random
uniformly distributed noise was used. This is discussed in Section 4.4.

During the parallel synthesis, the neighbourhood comparison is done using the
Euclidean distance between the two neighbourhoods and a good match is there-
fore one for which the distance to the current pixel’s neighbourhood is below a

46

Hole

Original image + hole

Temporary buffer

All pixels have been synthesised

T
he
bu
ffe
r
va
lu
es
ar
e

co
pi
ed
ba
ck
to
th
e

or
ig
in
al
im
ag
e

Temporary buffer

Neighbourhood

Figure 4.3: Parallel synthesis for hole pixels at each iteration.

threshold. One match is selected and its central pixel is copied to the current pixel
in the buffer image.

This method is similar to the order-independent synthesis method presented in
[126]. However, that method is based on multi-resolution synthesis and is used in
the context of pure texture synthesis. Our method uses single resolution synthesis
and is used in the context of image completion. For the order independent syn-
thesis to work, it needs an initialisation of the texture. In [126], pixels are copied
randomly from the lowest resolution of the image pyramid, and this initialisation
completely determines the texture synthesis result as each synthesised pixel is
only determined by the pixels at the lowest resolution [126]. Initialisation in our
method is done using plausible values rather than random noise (Section 4.4).

4.4 Initial hole filling

Natural textures often have some degree of randomness and therefore capturing
this characteristic is important for producing realistic textures. The aim here is
to provide initial values in the hole that have a certain amount of randomness.
However, the values must be plausible. They are therefore copied from nearby
pixels of the image that do not belong to the hole, and in the same region of the
current pixel being processed (when image segmentation constraint is used, see
Chapter 6). This is done using a Gaussian distribution centred on the current

47

pixel. The distribution allows us to obtain random positions close to the current
pixel, depending on the value of the standard deviation of the distribution. It is
first set to 1 pixel, implying that 99.7% of the positions will be 3 pixels away from
the current pixel. If after a number of randomly selected positions (N = 1000),
none fall outside of the hole, the standard deviation is increased (by one) and the
process is repeated until one position is found outside the hole. In practice, we
found that 1000 produced an acceptable compromise between accuracy and speed.
Figure 4.4 shows the initial filling in for a given pixel. A pseudocode for the initial
filling in is described in Algorithm 2.

Algorithm 2 Pseudocode for Initial hole filling in
rndgenr = new Random()
For each pixel in the hole

xpos = current x position
ypos = current y position
WHILE (xpos and ypos inside the hole)
IF i ≥ N
xstdev = xstdev +1
ystdev = ystdev +1
ENDIF
xpos = (xpos + (xstdev * rndgenr.nextGaussian()))
ypos = (ypos + (ystdev * rndgenr.nextGaussian()))
i = i+1

ENDWHILE
Image(x,y) = Image(xpos , ypos)

ENDFOR

In our work, we use a symmetrical neighbourhood during the matching process,
see Section 4.6, instead of using, say, an L-shaped neighbourhood as in [125], which
was reported to cause boundary artifacts. Indeed, the symmetric neighbourhood
contains more available, plausible, values compared to the L-shaped neighbour-
hood, and therefore provides a better selection mechanism. It is possible to use
such neighbourhood in our case because the initial filling in provides plausible
values for all the pixels in the hole. Note that in [125], initial filling in was also
used but was made of uniformly distributed random noise (matching the colour
statistical properties of the whole image), which was introducing uncertainty in
the neighbourhood matching and was therefore only used to synthesise the first
few rows of the images.

48

Figure 4.4: Initial filling in for a given pixel. Stars show tentative pixels for copy,
while the black square shows the current pixel. The radius of the circle is three
times the standard deviation.

4.5 Iterative synthesis scheme

Iterative synthesis has been used in previously published work with different pur-
poses. In [125], Wei and Levoy used two passes as a modification to their original
method for constrained texture synthesis. Ashikhmin [3] used several passes to
improve on the quality of his user-controlled texture synthesis method. Also,
in [126], multiple synthesis passes were used for generating texture. With patch
based synthesis, Efros and Freeman presented a texture transfer method based
on using an iterative synthesis process [37]. In this work, an iterative refinement
scheme is also used as an essential part of the method.

The selection of good matches is important for the quality of the results (Section
4.2). This selection must ensure that the generated texture has sufficient, but
not excessive, randomness and does not have replications of entire patches. To
achieve this, we iteratively fill in the hole (using the parallel method described
above for each iteration), first allowing a wide set of good matches, then reducing
the size of the set. This refinement scheme allows global random initial texture
structure that progressively converges towards good quality fine detailed texture.
More precisely, the threshold T used in the matches selection is initially set to:

T = d× r, (4.1)

where d and r respectively represent the Euclidean distance for the best match and
the randomness factor, and r = 1.2 at the first iteration. The threshold is then
reduced by decreasing the value of r by 0.01 at each iteration. A list of matches
which are below this threshold is considered and then one match is randomly
selected and its centre pixel is used as the new synthesised value for the current

49

pixel. Other values of r such as 1.3 and 1.1 have been used, but were ruled out as
they produce too random texture or insufficient randomness in the texture. Also
other values for the reduction of r such as 0.001 has been tried, but were ruled out
as gradual convergence of the texture was not maintained. The retained values
represent a good compromise.

The automatic termination of the iterative synthesis can be based on using the
difference in the Euclidean distance between the images of the current and previous
iteration results, as reported in [3, 107]. However, the Euclidean distance is not
a good measure of visual quality as the behaviour of visual similarity between
two synthesised textures can vary depending on the particular texture [3]. As
a result, we are not interested on how much the difference is, but whether the
pixels in the hole are different. Thus, the termination of the iterative process is
based on computing the number of changed pixels in the hole compared with the
previous iteration. The comparison is done using the complement of Kronecker
delta function defined as:

δ̄(i, j) =

{
0, i = j

1, i 6= j
(4.2)

where i and j are the pixel values for the current and previous iteration results
respectively. Note that i and j are on the same position in the hole. The total
number of changed pixels is normalised by the total number n of pixels in the hole
as follows:

P (t) =

∑n−1
i,j=0 δ̄(i, j)

n
, (4.3)

where P (t) is the ratio of changed pixels for the current iteration t. If P is below a
threshold, the iterative process is stopped. The threshold is set to 0.1 for all images
synthesised as described in this chapter and Chapter 6. The segmented images
synthesised as described in Chapter 5 require a lower threshold (set to 0.002)
because of their nature (colour corresponding to labels rather than texture). In
practice, we found that the thresholds of 0.1 and 0.002 produced acceptable results
for varieties of segmented and textured images respectively.

Figures 4.5 and 4.9 show the convergence of the iterative synthesis using only
texture synthesis, and both texture synthesis and structure reconstruction respec-
tively. As shown in these figures, the number of changed pixels decreases rapidly
until iteration 20 and then continues to reduce and rise within a small range of
values where the change is not significant. Figures 4.6, and 4.10 show few result

50

0.6

0.7

0.8

0.9

1

1.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Iteration No

R
at

io
s

of
 c

ha
ng

ed
 p

ix
el

s

Figure 4.5: Convergence of the iterative synthesis for the bush image using only
texture synthesis: the iterative synthesis process is stopped at iteration 21 where
the ratio is lower than a threshold of 0.1

images before and after the iterative synthesis would have been stopped. Signifi-
cant change occurred in the images before the iterative synthesis would have been
stopped while only few number of pixels changed after the iterative process would
have been terminated showing that this change is visually not significant.

Figure 4.7 shows the convergence of the iterative synthesis for structure reconstruc-
tion (Chapter 5). As shown in the figure, the number of changed pixels decreased
significantly, but with fluctuations at iterations 13 and 17. From iteration 20 on-
ward, the number of changed pixels is 0. Figure 4.8 shows a few result images
after the iterative synthesis would have been stopped where only few number of
pixels change, and this change is not significant.

51

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.6: Results of the iterative synthesis before and after the stopping criterion
using only texture synthesis: (a) the original image with the hole, (b) result of the
initial filling in, (c) – (g) results for iterations 3, 7, 11, 15 and 19, (h) result for
iteration 21 where the process would have been stopped and (i) and (j) results for
iterations 22 and 25.

52

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Iteration No

R
at

io
s

of
 c

ha
ng

ed
 p

ix
el

s

Figure 4.7: Convergence of iterative synthesis for the bush image for structure
reconstruction: the iterative synthesis process is stopped at iteration 16 where the
ratio is lower than a threshold of 0.002

4.6 Neighbourhood characteristics

4.6.1 Size and shape

The quality of the synthesised texture depends on the size and shape of the neigh-
bourhood used in the search for possible matches. This size should be large enough
to capture the underlying structure of the texture elements, otherwise the structure
of the texture will be lost. At the same time, having a very large neighbourhood
size may encourage too much region growing [3]. In our work, the neighbourhood
size is set by the user and its default value is set to 11, unless otherwise specified.

The shape of the neighbourhood is also important as it can affect the result of the
synthesis. In our method, the shape of the neighbourhood plays a different role
from that in the original method used in [125]. In the original method of [125], it is
essential to have a “causal” neighbourhood (one that contains only already synthe-
sised pixels) or otherwise, the generated texture will be unrealistic. This is because
a non-causal neighbourhood contains non-synthesised pixels (noise) which intro-
duces uncertainty in the search for the best match. The method is later modified to
ensure the use of a causal neighbourhood by using multi-resolution neighbourhood

53

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4.8: Results of the iterative synthesis before and after the stopping criterion
using only texture synthesis: (a) the original segmented image with the hole, (b)
result of the initial filling in, (c) – (f) results for iterations 3, 7, 11, and 15, (g)
result for iteration 16 where the process would have been stopped and (h) and (i)
results for iterations 17 and 20.

54

0.6

0.7

0.8

0.9

1

1.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Iteration No

R
at

io
s

of
 c

ha
ng

ed
 p

ix
el

s

Figure 4.9: Convergence of iterative synthesis for the bush image for both texture
synthesis and structure reconstruction: the iterative synthesis process is stopped
at iteration 22 where the ratio is lower than a threshold of 0.1

in which texture synthesis is performed in a lower to higher resolution pyramid. In
contrast, our method uses a non-causal (symmetric) neighbourhood without the
need for the multi-resolution synthesis. This is done by the initialisation of the
hole area with plausible values, which are included in the neighbourhood where
the synthesis is done in parallel and iteratively.

4.6.2 Search area

In texture synthesis methods, identifying the search area for the neighbourhood
match is important since it affects the quality and the speed of the synthesis
process. Methods that use an exhaustive search (all pixels outside the hole are
considered) are slow but ensure that relevant pixels are not excluded [38, 125].
Others restrict the search area using a fixed “belt” surrounding the hole area as
in [101] or using a mask for each hole pixel and such mask area is determined by
a fixed number of pixels outside the hole [17]. Such methods are reported to be
faster. However relevant regions may be excluded in this type of search as it is
difficult to decide if the search area is sufficient for producing realistic texture.

Our method is not designed for real time applications and therefore the focus of

55

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.10: Results of the iterative synthesis before and after the stopping cri-
terion using both structure reconstruction and texture synthesis: (a) the original
image with the hole, (b) result of the initial filling in, (c) – (g) results for iter-
ations 3, 7, 11, and 15, (h) result for iteration 22 where the process would have
been stopped and (i) and (j) results for iterations 23 and 26.

56

this work is on the quality of the result rather than the speed. Thus, the search for
source neighbourhood matches is done exhaustively over all pixels outside the hole.
The search area is later improved by constraining it by the synthesised segmented
image where only relevant regions are included, as discussed in Chapter 6.

Pixels near the image boundaries can affect the quality of the match in the sense
that they only include partial neighbourhoods that may not be well matched
with the target neighbourhood, and can cause boundary artifacts. A possible
solution to this is to use circular indexing. For example, if I(x, y) denotes a pixel
at position (x, y) of the image I, then I(x, y) == I(x mod r, y mod c) where
r and c are the number of rows and columns respectively. However, using this
edge handling method can include irrelevant pixels from different regions on the
other side of the image. The other possibility is to use reflected indexing where
each pixel outside the image can reflect itself back onto the image. However, this
can cause uncertainty in the neighbourhood due to the reflected pixels. Also,
another solution is to use only neighbourhoods that are completely inside the
image, but this ignores pixels that are on the edge of the image, particularly when
the neighbourhood size is large.

As a result, in order to keep as much information as possible, neighbourhoods
matching the current neighbourhood are selected not only based on their Euclidean
distance (Section 4.3) but also based on the number of pixels they have inside the
image; only neighbourhoods that have a number of pixels equal to or greater than
the number of pixels in the current neighbourhood are considered.

It is also important to note that only considering potentially matching neighbour-
hoods that are completely outside the hole can exclude pixels near the hole that
could be good potential candidates for pixels in the hole. Therefore, neighbour-
hoods that have pixels in the hole but their central pixel outside of it are considered
as potentially matching neighbourhoods.

Also, if the hole is touching the image border, some neighbourhoods in the hole
may not be complete. Therefore, the method will only compare the pixels that
are inside the image taking into account the aforementioned constraint. This gives
less priority to pixels that are on the image border.

4.7 Results and discussion

The method of image completion using only texture synthesis has been applied
to different types of textures and has produced acceptable results as shown in
Figures 4.11–4.14. However, the method has its own limitations as shown in the

57

(a) (b) (c) (d) (e)

(f) (g)

Figure 4.11: Texture synthesis result for the grass image: (a) original image,
(b) original image with the hole masked, (c) hole mask, (d) initial filling in of the
hole area, (e) first iteration of texture synthesis, (f) middle iteration of texture
synthesis and (g) final synthesised result.

examples of Figures 4.16, 4.18.

Figure 4.11 shows the grass image where the hole is completely surrounded by
homogeneous texture (grass). Intuitively, the method should easily handle holes
that are completely contained in one homogeneous texture. In this case, the
surrounding texture is indeed well propagated inside the hole.

In Figure 4.12 the hole of the window image is surrounded by structural texture
which is not completely homogenous with areas that are locally more homoge-
neously grey compared to the rest of the brickwork that is usually more varied
and of red-ish tones. The texture is propagated well in the hole with the locally
dominant grey-ish texture from the top-right corner of the hole. On the other
hand, the overall structure of the wall is plausibly reconstructed, yet the area in
the middle does not appear to have a clear structure. This is due to the unchar-
acteristic feature of the wall around the hole. Figure 4.13 is a zoom in of the hole
and parts of the surrounding areas of the original and final synthesised images.

In Figure 4.14, the hole of the street image spans three different textures (cor-
responding to the bushes, road and grass, which themselves in fact contain several
distinct textures) with well defined, simple boundaries between them. As a result,
the texture in the hole is well reconstructed and therefore looks natural. The
method is able to propagate well the overall structure of the surrounding of the
hole without using the explicit structure propagation discussed in Chapter 5. This
due to the fact that the hole is horizontally narrow and not surrounded by complex
regions, but instead by completely different homogenous regions, hence leading to
more accurate initial filling and parallel syntheses. Figure 4.15 is a zoom in of the
original and final synthesised images.

In Figure 4.16, the hole of the the bush image is closely surrounded by two distinct

58

(a) (b) (c) (d) (e)

(f) (g)

Figure 4.12: Texture synthesis result for the window image: (a) original image,
(b) original image with the hole masked , (c) hole mask, (d) initial filling in of the
hole area, (e) first iteration of texture synthesis, (f) middle iteration of texture
synthesis, (g) final synthesised result.

(a) (b)

(c)

Figure 4.13: Zoom in of the hole and parts of the surrounding areas of the window
image: (a) original image, (b) original image with the hole and (c) final synthesised
image.

regions (wall and grass) where the structure of the wall in itself is reconstructed
well (the vertical and horizontal alignments), but the wall texture is expanded
over the grass area causing the structure of the image to look unrealistic. This is
because this method is only designed to propagate texture information, and does
not explicitly handle propagation of image structure. In this example, the texture
synthesis alone was not able to create proper boundary between the wall and the
“brown” grass regions because the initialisation of the hole does not contain enough
pixels from the brown grass area at the bottom of the hole, but wall and “green”

59

(a) (b) (c) (d) (e)

(f) (g)

Figure 4.14: Texture synthesis result for the street image: (a) original image,
(b) original image with the hole masked, (c) hole mask, (d) initial filling in of the
hole area, (e) first iteration of texture synthesis, (f) middle iteration of texture
synthesis and (g) final synthesised result.

(a) (b)

(c)

Figure 4.15: Zoom in of the original image, hole image and final synthesised image
of the street image: (a) original image, (b) the original image with the hole and
(c) final synthesised result.

grass pixels are dominantly copied.

As a result, the patches in this area of the hole mainly contain too many random
wall and green grass pixels. This configuration of wall and green pixels in such
patches do not exist in the examples outside the hole. Thus, the method only
produces the closest matches to this configuration which is the wall pixels as they
are more available in these patches than the green grass pixels. This problem
is solved by constraining the initial filling and texture synthesis to the “correct”
regions, see Chapter 6. Figure 4.17 is a zoom in of the original and final synthesised

60

(a) (b) (c) (d) (e)

(f) (g)

Figure 4.16: Texture synthesis result for for the bush image: (a) original image,
(b) original image with the hole masked, (c) hole mask, (d) initial filling in of the
hole area, (e) first iteration of texture synthesis, (f) middle iteration of texture
synthesis and (g) final synthesised result.

(a) (b)

(c)

Figure 4.17: Zoom in of the original image, hole image and the final synthesised
image of the bush image: (a) original image, (b) original image with the hole and
(c) final synthesised result.

images.

In Figure 4.18, the hole of the cledwyn image is located at the edge of the image
(top right) and surrounded by different textures, and therefore the filling in of
the hole is not easy as the boundaries between these regions are not well defined.
However, the method is reasonably able to create plausible, although repetitive,
structures (region boundaries especially for the tree line). Yet the method fails
to correctly create texture as seen in the image where unrealistic replication of
complete grass patches into the area in the middle of the hole exists. This problem
is due to a number of reasons. Because of the size of the hole, the initial filling in

61

(a) (b) (c) (d) (e)

(f) (g)

Figure 4.18: Texture synthesis result for the cledwyn image: (a) original image,
(b) original image with the hole masked, (c) hole mask, (d) initial filling in of the
hole area, (e) first iteration of texture synthesis, (f) middle iteration of texture
synthesis and (g) final synthesised result.

of the hole is random especially at the middle of the hole (the size of the Gaussian
had to be increased many times to obtained valid pixels). Therefore, the initial
neighbourhoods of the pixels in the hole contain a random arrangement of dark
green (coming from the bushes) and light grey (coming from the sky) pixels. In
the RGB colour space, these two colours correspond to almost opposite corners of
the RGB cube and the only other colour available is the green from the grass. As
it happens, this green colour is roughly half-way between the dark green and light
grey. Therefore a neighbourhood from the hole made of randomly positioned dark
green and light grey pixels will match better with homogeneously green pixels
than any other neighbourhood from the image. This resulted in the creation of
grass in the hole.

This problem, as well as the one of the bush image, will be addressed in the
following chapters by explicitly creating structure in the hole that will then be
used to constrain the texture synthesis.

62

Chapter 5

Reconstruction of globally
consistent image structure

5.1 Introduction

Pure texture synthesis is not often suited for completing holes which cover large
areas of images that are surrounded by complex image structures. This is because
the method depends on local neighbourhood search that does not consider the
global structure of the image. Consequently, image completion using only texture
synthesis with such images is expected to produce unrealistic results as shown in
Figure 4.16 (g). Therefore, explicit reconstruction of the structure in the hole is
necessary to deal with such images. This structure can then be used to create
texture that will be coherent globally, hence producing plausible results.

The reconstruction of the hole structure is based on the assumption that regions
(particularly in natural images) tend to be spatially continuous and are only sep-
arated by the hole and must therefore be linked. Regions are spatially continuous
when the local statistics of the regions do not change with position. Thus, the
images are first segmented and their regions are then relabelled based on their
statistics. For example, if two regions with similar properties touch the hole, they
should correspond to the same real region in the scene and should therefore be
linked.

Our approach of explicit reconstruction of image structure is similar to recent
work presented in [64, 101] in terms of using segmentation statistics to group
similar regions and then connect them. However, the difference is in the way of
measuring the similarity and connectivity of such regions. For example, in [64], the
similarity of regions is based on computing their histograms and gradients, while
in [101], the edges that separate different regions are selected and grouped based

63

on their intensity and gradient angle histograms. The boundary curves (edges),
are generated inside the hole using Tensor Voting in [64] while in [101], similar
edges (couples) are joined inside the hole according to a circle fitted to the edge
couple, and straight lines for edges (single edges) which do not have any matches.

The method of connecting curves inside the hole in [64] has the advantage of
using Tensor Voting to smoothly link these curves. However, the method can
have difficulties in deciding what constitutes a boundary between two regions [30].
In [101], the connectivity of region edges is based on the assumption of local
curvature, being either circular or straight. Although this assumption works for
various images, it may fail with cases where other shapes are needed for connection.

Our method of reconstructing hole structure measures similarity between regions
attached to the hole based on histogram statistics and proximity of these regions
(Section 5.3). The connection of regions is performed based on joining similar
regions together using straight lines, and then flood-filling the created enclosed
regions (Section 5.4). The structure of the regions in the hole is then modified to
match the surrounding structures (Section 5.6).

More specifically, the method proposed for reconstructing the structure of the hole
has three main components: image segmentation and relabelling, structure recon-
struction (connections and filling), and segmentation synthesis. The segmentation
and relabelling part deals with segmenting the original image and relabelling the
segmented regions based on their statistics (see Sections 5.2 and 5.3 respectively
). The structure reconstruction focuses on connecting “similar” relabelled regions
using lines which results in creating enclosed region(s). After connecting these
regions, they are flood-filled to form distinct regions (Section 5.4). The remaining
regions in the hole that have no similarity with other regions are initialised using
the same filling in process discussed in Section 4.4), but applied to segmented im-
ages (see Section 5.5). Once the regions in the hole are reconstructed, they need
to be synthesised to match the surroundings of the hole (Section 5.6). Section 5.7
presents and discusses results of the structure reconstruction. Figure 5.1 shows a
general outline of the structure reconstruction method.

5.2 Image segmentation

The segmentation of an image is an important part in identifying different regions
in the image. In this work, we have used the segmentation method reported in [33]
and called JSEG, which we found to be working well for a wide variety of colour-
textured images. Also, it is reported in [64,101] that they used the method in their

64

Figure 5.1: General outline of the structure reconstruction method

experiments, and even claimed JSEG to be one of the best available segmentation
methods. Although the method in our experiments worked well for a wide range
of images, it has failed to segment properly some reported cases. It is important
to point out that image segmentation is not the subject of this work and therefore
we only used this existing method.

The JSEG method works in two independent stages: colour quantisation and
spatial segmentation. The colour quantisation stage quantises the image colour
to different classes which are used to discriminate the image regions. The image
pixels are then replaced by their corresponding class labels. As a result, the class
labels form what is referred to as “class-map”, a 2D vector of pixel positions in the
image. The class-map is then used in the spatial segmentation stage to analyse
the spatial distribution of the pixels rather than their corresponding similarity.
Applying local measurements to the class-map introduces another concept called
“J-images”. This measures local homogeneities at different scales to find possible
boundary locations. Based on the J-images, a region growing and merging method
is then used to segment the image.

The JSEG method has three parameters which influence the segmentation results.
The first parameter is a threshold for the process of colour quantisation, which
computes the minimum distance between two quantised colours. This parameter
can highly influence the segmentation results. For example, a small threshold can
introduce a large number of quantised colours which will result in many regions
being produced. On the other hand, the use of a small distance is justified to
separate two neighbouring regions which have similar colours, yet are different.

65

According to the authors, a “good” parameter value is the one that can separate
two regions with the minimum number of colours [33]. The second and third
parameters are the number of scales and the threshold for region merging. In
our experiment, the threshold value of the colour quantisation is set to 200, the
number of scales is set to 1 and the merging threshold is set to 0.4, unless otherwise
specified. Also, the segmentation method can be used to help a human operator
select parts of the image he/she wants to remove, therefore creating the hole from
the segmentation.

5.3 Relabelling of image regions

5.3.1 HBRs histogram matching

A hole bounded region (HBR) is a region created by the segmentation that is
limited by the hole. It therefore has as part of its boundary a section of the
boundary of the hole. The two extremities (HBR-BE) of this section are labelled in
a consistent order (clockwise when turning around the hole) and are noted, unless
otherwise specified, pi

1 and pi
2 respectively being the first and second extremity of

the boundary between the hole and the hole bounded region i.

Based on the assumption that regions tend to be spatially continuous and are only
broken up by the presence of the hole, the regions created by the segmentation
may have to be relabelled to ensure that similar regions separated by the hole
are indeed considered to be the same region. Similarity is in here measured using
statistical properties of the colour of the regions. These similar regions will then
be used to create structure in the hole by connecting them (Section 5.4). However,
without high-level knowledge about the image, such relabelling can create false or
too numerous possible matches that would be impossible to reconcile. Therefore,
because it is more likely for nearby regions to match, connections between nearby
regions will be preserved over connections between distant regions.

In our method, similar HBRs are identified based on their colour similarity and
location. Colour similarity is computed based on colour histograms. This process
works by computing the normalised colour histogram for each region that touches
the hole and then calculating the Euclidean distance between the two histograms.
Using the RGB colour space, the colour Euclidean distance between regions i and

66

j can be expressed as:

d(i, j) =

√√√√ n∑
c=0

(HR
i (c)−HR

j (c))2 + (HG
i (c)−HG

j (c))2 + (HB
i (c)−HB

j (c))2,

(5.1)
where HR, HG and HB are the histograms for the three colour components, H(c)

is the cth bin of histogram H, Hi and Hj are the colour histograms of regions i and
j and n is total number of histogram bins (255 in our experiments). We assumed
that R, G and B are independent, and computed the one-dimensional histograms
of the colour component and this works with a variety of images because mainly the
regions are taken from the same image. Thus, less variation between these regions
compared to the image retrieval problem. Also, using the RGB colour space is
not ideal but acceptable here because we only deal with one image and shadows
are considered to be different regions (we don’t want to propagate shadows where
we don’t want them).

In practice, we used the Euclidean distance to measure similarity between images
(regions, patches and histograms). However, it is not a good measure for percep-
tual similarity between images as it does not take into account the relationship
between the light source, the object and the viewer. However, because our method
is designed to complete the hole from only the same image (same camera), it is
less likely these factors will cause problems.

Because regions around the hole could be different, a general threshold on the
distance is used to exclude regions that cannot be possible matches because of the
substantial differences in their colour histograms. Therefore, the pair of regions
having a distance below this general threshold (G = 0.2) is selected and included
in a list of possible matches. A second threshold is then introduced and applied
to this list as a way of narrowing down the selection of these good matches to
choose better matches. This only includes regions that are below a set threshold
as a proportion of the lowest distance (dm), and this threshold is set to be S×dm,
where S = 1.2. In practice, we found that G = 0.2 produced acceptable results
for variety of textured images.

5.3.2 HBRs spatial proximity

Once the similarity between HBRs has been established based on their colour
content, their spatial proximity must be evaluated to determine possible matches.
Indeed, the assumption that areas of the original image are only broken up into
different regions because of the presence of the hole implies that regions should be

67

Round
Order

j i

Hole

p1

p2p1

p2

Figure 5.2: A typical configuration between two HBRs: Regions i and j are con-
nected using two lines. The points are determined through the sequential order
scan discussed in Section 5.4.

linked not only based on their colour content but also on their spatial proximity.
The HBR pairs with the minimum spatial distances are considered and relabelled
with similar labels for each pair and then saved in a region connections priority
list (RCPL) for connection. The spatial distance between two HBRs i and j is
expressed as:

dij = d(pi
1, p

j
2) + d(pi

2, p
j
1), (5.2)

where d(p, q) is the Euclidean distance between points p and q. The lines (pi
1, p

j
2)

and (pi
2, p

j
1) will be considered later for linking the two corresponding regions across

the hole (5.4). Figure 5.2 shows a typical configuration between two HBRs.

As the aim of finding similar HBRs is to link them across the hole, we must en-
sure that pairs of HBRs considered for linking would not break the existing struc-
ture (outside the hole). The lines considered to link the regions (Equation 5.2)
are therefore checked for crossing of other regions before computing their spatial
distances. If any crossing occurs, then the pair of HBRs is discarded (see Sec-
tion 5.4.2). Figure 5.3 shows a general example of the region relabelling process
for region R1 based on computing colour and spatial distances.

We now describe the creation of the connections and constraints used, followed by

68

R2

R3
R4

R5

R6

R1
R2
R3
R4
R5
R6
R7

R2
R3
R6
R7

R2
R3
R7 R7

R2
R3
R7

Regions

Threshold < 0.2

 < Min * 1.2
No line-crossing

Regions
locations

R1 R7

R7 is similar to R1, so have the same label

Figure 5.3: An example of showing the regions relabelling process. In this example,
if we assume that region R1 is the current region processed for relabelling, then we
compare the possible matches to R1 by comparing histogram differences, checking
line-crossing and applying spatial proximity. In this example, we select region R7
to be the best match to Region R1

the flood-fill procedure.

5.4 Connecting HBRs

The structure reconstruction in the hole is essentially based on the idea that pairs
of HBRs with similar properties are connected using lines and the created enclosed
area are then flood-filled by the same label. Similarly, the HBRs that are not
pairs are self-connected using straight lines and then flood-filled. The principles
of establishing such connections and flood-filling are discussed in this section.

5.4.1 HBR connection principles

Connecting a pair of regions inside the hole is governed by principles that can
create a connection that does not violate other valid region information, and can
produce acceptable structure. The created structure is acceptable when the con-

69

R1R2

R1R2

(a)

(b)

H

H1H2

Hole

Hole

Figure 5.4: Example of compatible and non-compatible hole structure. In (a) the
structure of the hole area looks compatible with the structure of the regions pair.
However, in (b) the lines which connect regions cross each other and therefore
produce two enclosed regions that are not compatible with the structure of the
region pair.

nection produces an area in the hole in which its structure is compatible with
the structure of the surrounding region pair, as can be seen in Figure 5.4(a). On
the other hand, the created structure is not acceptable when it is not compatible
with the structure of the regions pair. For example, when two connecting lines
cross each other, it produces enclosed regions that are not compatible with the
surrounding structure. Figure 5.4(b) shows an example of this crossing and the
structure created. Such situation is easy to prevent by using a sequential scan or-
der so that each HBR-BE is connected to the closest HBR-BE of the other region
(Section 5.4.2.2).

One could argue that limiting the creation of connections between pairs of regions
is too constraining and that tripartite, or even larger, groups should be considered.
However, this can potentially lead to intractable situations that may be difficult, if
not impossible, to solve. Instead, we iteratively create connections between pairs
of HBRs, which, overall, provides us with a tractable way of creating larger groups
of HBRs, see Section 5.4.5

Another case is to be considered: the case of HBRs that do not match any other
HBR but can nevertheless lead to connections. We will call these self-connections.
Figure 5.5 shows examples of pair- and self-connections.

70

Figure 5.5: Examples of pair- and self-connections. In this example, we assume
that regions R2 and R4 are similar, so they should be pair-connected. On the
other hand, regions R1 and R3 do not match with other regions therefore, they
should be self-connected.

5.4.2 Line-crossing detection and straight line creation

5.4.2.1 Line-crossing detection

As mentioned before, some connections cannot be kept as they would modify the
structure of the image outside the whole. These connections, either pair- or self-
connections, are detected by checking for intersections between the corresponding
lines and any other region outside the hole other than the connected ones. If an
intersection happens, the connection is discarded. Figure 5.6 shows an example of
a pair-connection that violates that constraint and cannot therefore be kept.

It is worth pointing out here that a line-crossing that is completely inside the hole
is allowed in order to preserve parts of the structure of the pair regions that are
being painted over by higher priority regions. This depends on the priority of
the regions being connected which is discussed later in Section 5.4.3. Figure 5.7
shows an example of allowing line-crossing inside the hole. In this figure, the lines
which connect regions R1 and R6 cross with the lines that connect regions R3 and
R8, and this crossing is allowed as long as the region connections are prioritised
according to the RCPL.

5.4.2.2 HBRs linking points

Before explaining the straight line creation for linking HBR pairs, the points be-
tween the hole and the HBRs need to be identified first in order to make the

71

Hole

Figure 5.6: Example of line-crossing check. In this example, let us assume that
the regions R2 and R6 on the one hand and R3 and R5 on the other hand are
similar, according to the image relabelling process discussed in Section 5.3. The
region pair (R3, R5) has no line-crossing and therefore can be connected. Also,
regions R1 and R4 have no line crossing and hence can have self-connections. On
the other hand, regions R2 and R6 cannot be connected because one of the lines
R2R6 crosses region R1 and therefore the connection between region R2 and R6
cannot be made. Note that the double lines R1, R2R6, R4, R3R5 are shown for
the pair and self connections, while lines R2R6 and R3R5 are shown for the pair
connection only where each of these lines is connected to its corresponding region
points.

R1

R2

R3

R4

R5
R6

R7

R8

R9

R1R6

R1R6

R3R8
R3R8R3R8

Figure 5.7: Example of allowing line-cross inside the hole and prioritising pair
regions connections. In this example, we assume, according to the RCPL, that
the region pair (R1, R6) is connected before the region pair (R3, R8). This means
that this pair paints on the connected (R1, R6) region. However, parts of the
region pair (R1, R6) are preserved.

72

Figure 5.8: Example of identifying hole regions linking points. In this example all
regions except R5 have two neighbouring regions and therefore have two sequential
start and end points. Region R5, however, starts from region R7 (if we assume
the sequential order starts at region R7 down to region R5, R6, etc.) and ends at
region R4.

connection. Identifying the HBR-BEs is important since they determine the be-
ginning and ending of the connection. Identifying extremities can vary depending
on the nature of the region and its spread around the hole, as well as the shape of
the hole. However, regions, particulary natural ones, often tend to have two points
which connect them to different neighbouring regions as shown in Figure 5.8 where
each region of R1, R2, R3, R4, R6 and R7 has two neighbouring regions and hence
two linking points. However, there exist cases where regions can spread around
the hole and have more than two neighbouring regions. In such cases, the points
of such regions are determined based on the beginning and ending points of the
region according to the sequential order. Figure 5.8 shows an example where re-
gion R5 is spread around region R6 and therefore has four connecting points with
its neighbouring regions (R4, R6 and R7). As a result, region R5 linking points
therefore should be the start and the end of the region as shown in Figure 5.8.

The determination of the HBR-BEs is done for each HBR according to a sequential
scan order. This order starts from an initial hole boundary point (first located
pixel in a raster scan order) and then scans the hole points in a clockwise or
anti-clockwise order depending on the maximum number of hole pixels for each of
the eight pixels centred around the current pixel. The scanning of the hole pixels
scans on its way the hole regions pixels that are connected to the hole and then
select only the region’s boundary points that link the region to other HBRs.

73

R1

R2

R3

R4

R5

R6

R5

Start point

End point

round order

R3R6

R2R1

lin
e1

line2

lin
e
3

p61

p62

p31

p32

p21

p22
p11

p12 p71

p72
R7

Figure 5.9: Example of connecting region pairs and self-regions using lines. In
this example, the regions of the pair (R6, R3) are connected using lines where
points are connected according to the closest point to them. For example, if we
take the region pair (R6, R3), points p62 and p31 on the one hand, and p32 and
p61 on the other hand are connected. The points of the region pair (R2, R1) are
connected as point p21 with p12, but points p22 and p11 do not need a line to
connect because they are adjacent points. For the self-region connection, region
R7 is self-connected using lines between points p72 and p71, but did not create
much structure in the hole due to fact that it does not surround much of that hole
area.

5.4.2.3 Straight line creation

Once HBR-BEs are identified, connecting HBRs are done using a straight line con-
nection. The line starts connecting the region points according to the sequential
order. This means that a HBR-BE is connected to its closest HBR-BE of the other
HBR, and this can often ensure that an enclosed region is created in the hole for
flood-filling. However, if it happens that the regions of the pair are neighbours, or
the self-regions are not surrounding the hole, the connection may not create much
structure in the hole, as can be seen in Figure 5.9 (e.g. region R7). Figure 5.9 also
shows an example of creating connecting region pairs and self-regions using lines.

Using straight lines may seem unhelpful especially when the surrounding structure
of the hole does not necessarily have this particular structural pattern. However,
these line structures are modified to match the surrounding regions structure out-
side the hole. This is done by synthesising the hole in order to match the structure
of the surroundings, which is discussed in Section 5.6.

74

5.4.3 HBRs connection priorities

We previously established the RCPL of good possible matches for the HBRs based
on colour statistics and spatial proximity. We then try to link these matches in
an iterative process by creating connections in the hole, making sure that some
constraints are respected (no crossing, regions belong to the same hole). Each
closed region created is then flood-filled.

The main reason for prioritising HBR pair connections is the tendency for nearby
regions to have clearer structures when connected than distant regions, and to
prevent distant regions from crossing such connections and hence changing the
structure of the existing reconstructed regions. This priority of connections enables
nearby regions to have complete connections (the two lines connect the regions
without any discontinuity) over distant regions. On the other hand, the pairs of
regions with low priority (large distances) can have complete connections if there
are no crossing over by the pairs of nearby regions, or partial connections (the two
lines are disconnected by the existence of other regions, but create some structure
in between) when they are being painted over, hence recovering at least parts of
their structure.

In practice, once the HBR pairs have been identified and relabelled, they are
stored in the RCPL list. The list is sorted in a descending order according to their
corresponding spatial distances. This means that regions that are distant from
each other are connected first while the nearby ones are connected next, allowing
painting on the existing reconstructed regions that are distant from each other.

Figure 5.7 shows an example of prioritising these connections. In this example,
we assume that each of the region pairs (R1, R6) and (R3 and R8) has similar
statistics according to the relabelling process discussed in Section 5.3. Regions
R1 and R6 are connected first because their corresponding spatial distance is
larger than the distance between regions R3 and R8. Regions R3 and R8 are then
connected and their lines paint on the R1R6 lines. This enables us not to loose the
structure of regions R1 and R6 (caused by the connection of regions R3 and R8),
and to include parts of the structural information of regions R1 and R6. Regions
R3R8 and R1R6 will be flood-filled according to their corresponding label, which
will be discussed in Section 5.4.4.

5.4.4 Hole regions flood-filling

Pair or self-connections and their corresponding connecting lines create an area
in the hole that is completely surrounded by the same colour, that corresponding

75

Figure 5.10: Example of hole regions flood-filling. In this example, the region pairs
(R1, R6) and (R8, R3) are connected and flood-filled forming enclosed region(s)
for each pair. Self regions R5 and R9 are also flood-filled while region R2, R4 and
R7 have not been flood-filled due to the fact that there are no areas in the hole
for flood-filling for these regions.

to the label of the region(s) that initiated the connection. This area is flood-filled
with the same label to create a single new region covering a part of the hole and
therefore structure. The flood-fill order follows the RCPL order where HBR pairs
with higher spatial distance are flood-filled first.

The region pairs (R1, R6) and (R8, R3) in Figure 5.10 show the flood-filling of
the region pairs. Once such region pairs are flood-filled, the self regions are flood-
filled next in the same way as the region pairs. The reason for connecting and
flood-filling pair regions before self regions is that pair regions connections can
create more structure (structure of two regions) than self connections which only
reconstruct single region’s structure. In Figure 5.10, the region pairs (R1, R6) and
(R8, R3) are flood-filled. Regions R5 and R9 are self-connected and flood-filled.
Regions R2, R4 and R7 are self-connected, but there are no area in the hole for
flood-filling.

5.4.5 Iterative connections and flood-filling of hole regions

As discussed in Section 5.3, limiting the connections of regions to pair connections
may seem too constraining, however, using tripartite, or even larger groups may
lead to a situation that could be very difficult to solve. Therefore, using iterative
pair- and self- connections can be a possible solutions to this.

In practice, when computing the histogram matching for the HBRs, only best

76

similar pairs are selected. However, there can still be good similar regions that
are not being considered and could be good matches. Thus, the regions should be
connected and flood-filled in an iterative connection and flood-filling process.

The process of this stage is similar to the main connections and flood-filling stage
(first iteration), but differs in aspects explained here in more detail. First, for
each new connected and flood-filled hole region, similar regions are selected from
the already saved good match regions list when computing the colour histogram
in the regions relabelling process discussed previously in Section 5.3, so there is
no need for relabelling these regions again.

The second step is to exclude regions that are not touching the same hole as the
target region. The reason for this is that the hole after the main connections and
flood-filling may not be a a single connected hole. Thus, potential HBRs should
belong to the same hole as the current hole region, as this emphasise the concept
of spatial proximity of regions. Once this is tested, the new regions list is checked
for line-crossing as done in the main regions connections. This produces a new list
and from the list the spatial distances are computed and the region with minimum
distance is selected to be the best match for the current hole region. It is exactly
the same computation of spatial distances discussed previously in Section 5.3.

In addition, the principles of hole regions connections (Section 5.4) are applied to
the new reconstructed hole, taking into consideration that HBR pairs belong to
the same hole, and their HBR-BEs are the ones that are connected to the hole in
a sequential order. Figure 5.11(a) shows an example of the iterative hole regions
connections and flood-filling.

5.5 Remaining unfilled areas inside the hole

When connecting and flood-filling pairs and self regions, there can still be remain-
ing areas in the hole that need to be filled in order to complete the entire structure
of the hole. Because these remaining areas can be of any shape and surrounded by
different regions, the topology of such areas can be complicated, and there can be
different connection possibilities that might or might not be acceptable for flood-
filling. Figure 5.12 shows an example of the difficulty of connecting such unfilled
areas of the hole.

As a result, randomly initialising prior to synthesising the structure of the unfilled
areas can be a solution to this problem as it propagates parts of these areas inside
a hole. Thus, the same initial filling process described in Chapter 4 is used,
but applied to segmented images. The process initialises the areas of the hole

77

Hole

(a)

(b)

(c)

R8

R8

R4

R3

R3

R3

R1

R1

R1

R7

R2 R6

R2 R4 R5 R6

R1R7

R2

R7

R4 R5

Figure 5.11: Example of Iterative hole regions connection and flood-filling. In this
example, (a) shows a hole that is surrounded by eight regions, and we assume that
regions R1 and R7 on the one hand and R2, R4, R5 and R6 on the other hand are
similar according to the image relabelling process discussed in Section 5.3, (b) is
the main connection (first iteration) where the pair (R2, R4) in (a) was assumed
similar and thus relabelled with the same label, connected and flood-filled. The
same procedure applies to the pair (R5, R6). Note that parts of regions R4 and R5
are missed during the connection process. This is because there are no HBR-BEs
to connect the upper part of the regions since they are not attached to another
region, (c),is the second iteration of connection and flood-filling where the regions
of the pairs (R2, R4) and (R5, R6) in (b) were assumed similar according to the
relabelling process, and therefore iteratively connected and flood-filled.

to provide initial values that have some degree of randomness, but are plausible.
Regions inside the hole are then synthesised in order to coerce the structure of the
regions to match the structure of the ones surrounding the hole. This process is
discussed in Section 5.6.

It is also important to point out that as the main goal here is not to fully automate
the connection process because this is not possible without high level knowledge
about the scene, there can be problems related to regions mismatch in the rela-
belling process and therefore creating wrong connections. As a result, some user
interaction may be needed to modify these connections. A simple user interaction
could happen via a file that saves the structure of the hole. The file contains the

78

Unfilled Area

Unfilled Area

R9

R8

R4 R5

R2 R7

R1

R3 R6

R2R7

Figure 5.12: Example of complex unfilled areas of the hole.

regions being selected for connection, which the user can modify if necessary. The
other possibility of user interaction would be to design a graphical user interface
with which the user could modify current region connections by adding or deleting
straight lines.

5.6 Segmentation synthesis

In previous sections we proposed a method to fill in the hole with a structure that
matches as best as possible the topology of the surroundings of the hole. However,
the structure was created using straight boundaries between adjacent regions. This
is unlikely to match existing boundaries outside the hole. We therefore need to
modify the shape of these boundaries to create a more plausible structure with
boundaries that match the shape of, and seamlessly propagate, the boundaries
outside the hole into the hole. This is performed using the same texture synthesis
method as described in Chapter 4 but applied to label images, instead of colour
images, using a different method to match neighbourhoods.

The synthesis starts by updating the hole pixels by searching for similar neigh-
bourhoods in the rest of the image. Unlike the texture synthesis method de-

79

scribed in Chapter 4, the neighbourhood matching comparison is not done using
the Euclidean distance but, instead, using the complement of the Kronecker delta
function defined as:

δ̄(i, j) =

{
0, i = j

1, i 6= j
(5.3)

The reason for choosing such a binary distance function is that what is compared
here are labels, not colours. There is no point in considering how different labels
are, only that they are different.

The synthesis process is done in parallel to update the pixels in the hole, without
considering the values of the already synthesised pixels. As a result, the value of a
pixel being synthesised will not be affected by previously synthesised ones. More
on the parallel synthesis is discussed in Section 4.3.

Iteratively, we update the hole using the same iterative synthesis scheme used for
texture synthesis, but applied here to segmented images. This refinement scheme
allows global random initial structure that progressively converges towards good
quality structure. More on iterative refinement scheme is explained in Section 4.5.
When the image reaches its final convergence, it is then used as a constraint to
propagate texture, which is discussed in Chapter 6.

When searching for the possible matches to the current target pixel’s neighbour-
hood, it is important to take into consideration the size of the neighbourhood.
This size should be large enough to capture the structure of the image (shape
of the boundaries between regions), otherwise the structure of such images will
be lost. In our work, the neighbourhood size was set to 11 × 11 pixels, unless
otherwise specified. A pseudocode for the reconstruction of image structure in is
described in Algorithm 3.

5.7 Results and discussion

Our method for reconstructing the structure of the hole has been applied to dif-
ferent images and produced good results as can be seen in Figures 5.13–5.31.
Figure 5.13 shows the results of structure reconstruction for the cledwyn image.
It contains a building that needs to be removed and replaced with proper structure
and texture. Reconstructing the structure of the hole is not easy as the HBRs are
not completely surrounding the hole because it is located on the edge of the image.
Although the pair and self region connections have been able to reconstruct part
of the hole, a large area of the hole is left to be filled in. This means that the

80

Algorithm 3 Pseudocode for the reconstruction of image structure
Segment the image
For each HBRs

Compute R, G and B histograms independently
Normalise histograms
Compute histogram difference for each HBR pair
Select all pairs that their distances are less or equal to G
Select all pairs that their distances are less or equal toMinmumdistance×S
Check line crossing
IF there is no line crosses other region
Compute spatial distances
Select a region with the minimum spatial distance
Save the HBR pair in RCPL
Remove the two regions from the HBRs list
Relabel the HBR pair with the same label

ENDIF
ENDFOR
Order the RCPL in a descending order according to their corresponding spatial
distances
For each region pair in the RCPL

Connect them
Flood-fill them

ENDFOR
For the remaining HBRs

Check line crossing
IF there is no line crosses other region
Connect self region

ENDIF
ENDFOR
IF there is unfilled area in the hole

Initialise the areas using the algorithm described in Algorithm 2
ENDFOR
Synthesise the reconstructed image as described in Algorithm 1, but applied to
the segmented image
Produce the final reconstructed image and use it for the image completion
method

81

structure reconstruction will not only depend on the self and pair connections but
also, and to a large extent, on the initial filling-in and the synthesis process.

In practice, the original image is segmented and its unwanted building area (hole)
is masked out, as is shown in Figure 5.13 (b) and (c) respectively. The hole is then
reconstructed by relabelling, connecting and flood-filling the regions corresponding
to the trees and the bushes in the middle, as shown in Figure 5.13 (d). Also, the
sky and the small bush regions (on the bottom right of the hole as in (b)) are self-
connected, forming a sky region starting from the middle to the top of the building,
as shown in Figure 5.13 (d). In the second iteration of the hole reconstruction,
the dark green and blue regions are judged similar, hence are connected and flood-
filled, as shown in Figure 5.13 (e). This leaves a remaining hole area (undecided
area) in the middle, shown in Figure 5.13 (f), to be filled by the initial filling
process as shown in Figure 5.13 (g). This initialised area has random pixels from
the light green region (sky) on top and the light blue region (trees and bush) on the
bottom of the area, which makes plausible initial values for the synthesis process to
use. This image in Figure 5.13 (g) is synthesised so that the hole structure matches
the surroundings. The images in Figure 5.13 (h), (i) and (j) show the first, middle
and final iterations respectively of the iterative parallel synthesis. Clearly, the
structure of the hole in the final result is reconstructed well, producing acceptable
boundaries in the hole, and propagating plausible structure between the sky and
the tree-bush regions. Figure 5.14 shows a zoom in of the the cledwyn image
results.

Figure 5.15 shows a structure reconstruction for the bush image where the re-
moved area was the bush part of the image. The hole in this image is surrounded
by three textured regions, one of them is a regular texture. The regions are dif-
ferent in terms of colour statistics and therefore, there is no similar regions pairs
in this image. The reconstruction of this area is done using only self region con-
nections. Therefore, self region connections are performed for the pink (wall) and
purple (grass) regions, and then flood-filled, as shown in Figure 5.15 (d). The
remaining unfilled area is initialised from the surrounding regions (pink, purple
and green areas), as shown in Figure 5.15 (f).

In Figure 5.15 (i), the final hole structure is shown. Although the structure re-
construction of the hole is acceptable, the boundaries between the wall and grass
regions were not propagated along the horizontal direction. This can be caused by
inaccurate values of the initial hole filling process which selects more wall pixels
than grass pixels as shown in the middle area between them in Figure 5.15 (f).
This is due to the fact that at this hole area, the wall region is more available
(outside the hole) in the area of the Gaussian distribution than the grass area.

82

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.13: Hole structure reconstruction results for the cledwyn image: (a)
original image, (b) segmented image, (c) hole, (d) and (e) first and second iteration
of reconstructing the hole structure, (f) undecided area, (g) initial filling in of the
undecided area, (h), (i) and (j) are first, middle and final iterations of synthesising
the reconstructed segmented image.

As a result, the first synthesised image in Figure 5.15 (g) and the following itera-
tions will be affected by these initial values when searching for good neighbourhood
matches. The problem is also related to the fact that the segmentation method
fails to segment the grass region into two regions (brown grass at the top and
green grass at the bottom of the region). Figure 5.16 shows zoom in of the bush

image results.

Therefore, if the brown grass had been identified in the segmentation, then the
pair-connection of these regions would have been able to connect the regions prop-
erly and there would have been no need for inaccurate initial filling, as shown in
Figure 5.17 (d). In Figure 5.17 (f), a clear reconstruction of the brown grass area
is created where boundaries are well defined between this area and the wall on
one side, and the brown grass and the green grass areas on the other side. This
emphasises the fact that the segmentation is an important process of the method
and that it needs to be carefully controlled so that the correct regions are created.
Note here that the threshold of the colour quantisation for the segmentation of
this image was set to 400 instead of 200 to exclude unnecessary regions. Also, the

83

(a) (b)

(c) (d)

Figure 5.14: Zoom in results for the cledwyn image: (a) original image, (b)
original image with a hole, (c) initial filling in, and (d) final reconstructed image.

value of neighbourhood size was set to 15 to capture properly the structure of the
wall. Figure 5.18 shows a zoom in of the the improved bush image results.

In Figure 5.19 (b), the hole of the dustbin image is surrounded by different types
of regions and their structures will be propagated inside the hole to create its
structure. Figure 5.19 (d) shows how the structure of the outside regions are

84

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.15: Hole structure reconstruction results for the bush image: (a) original
image, (b) segmented image, (c) hole, (d) reconstructing the hole structure, (e)
undecided area, (f) initial filling in of the undecided area, (g), (h) and (i) first,
middle and final iterations of synthesising the reconstructed segmented image.

(a) (b)

(c) (d)

Figure 5.16: Zoom in results for the bush image: (a) original image, (b) original
image with a hole, (c) initial filling in, and (d) final reconstructed image.

clearly reconstructed, particularly in the pink area where the curvy line patterns
are propagated, as shown in Figure 5.19 (g). Also, the figure shows the result of
connecting the region pairs in the middle of the hole (red and pink regions). The
regions on the top (sky) and the bottom (grass) of the hole are self-connected.
These pair and self regions are flood-filled forming a well structured region. In
the synthesis process shown in Figure 5.19 (d), (e), (f) and (g), the structure of
the pink region inside the hole has converged to match the surrounding structural
patterns (curvy lines) of that regions. The structure of the blue (grass) region is
also reconstructed well. Figure 5.20 shows a zoom in of the the dustbin image
results.

85

(a) (b) (c) (d) (e)

(f)

Figure 5.17: An example of improving the reconstruction of the hole by manually
segmenting the regions that correspond to the areas of the brown grass of the
bush image. (a) original image, (b) manual segmented image (dark and light
gray regions), (c) hole, (d) reconstructing the hole structure, (e) and (f) first and
final iterations of synthesising the reconstructed segmented image.

(a) (b)

(c)

Figure 5.18: Zoom in results for the improved bush image: (a) original image,
(b) original image with a hole, and (c) final reconstructed image.

On the other hand, the structure does not change a lot in the top area of the hole
due to the fact that there are not enough patches outside the hole that include
a green area in the top half of the patch and red in the bottom of it. Therefore,
the line connection pattern did not converge to match the surrounding regions
since such regions have insufficient examples of the same patch. However, when
we change the hole size to allow more examples of the matching patches, the line
structure converges to match the surrounding structures (curvy lines), as shown
in Figure 5.21 (g). Figure 5.22 shows a zoom in of the improved dustbin image
results.

86

(a) (b) (c) (d) (e)

(f) (g)

Figure 5.19: Hole structure reconstruction results for the dustbin image: (a) orig-
inal image, (b) segmented image, (c) hole, (d) reconstructing the hole structure,
(e), (f) and (g) first, middle and final iterations of synthesising the reconstructed
segmented image.

(a) (b)

(c)

Figure 5.20: Zoom in results for the dustbin image: (a) original image, (b)
original image with a hole, and (c) final reconstructed image.

Figure 5.23 shows the results of structure reconstruction for the pavement image.
The results demonstrate that initial filling-in and parallel synthesis are able to
connect regions that are not identified as similar by the relabelling process. The
reconstruction of the hole is done using only self-region connections, as shown in
Figure 5.23 (d), as the regions of the pavement (pink) and the road (green) connect
themselves and are then flood-filled. Although the pavement regions on the right
and the left of the hole should have pair connections, the colour (of the original
image) corresponding to the region on the right of the hole is fairly different. Thus,
the relabelling process did not identify them as similar regions.

87

(a) (b) (c) (d) (e)

(f) (g)

Figure 5.21: Changing the size of the hole for the dustbin image to see the changes
in the structure: (a) original image, (b) segmented image, (c) segmented image
mask for the new hole, (d) reconstructing hole structure, (e), (f) and (g) first,
middle and final iterations of synthesising the reconstructed segmented image.

(a) (b)

(c)

Figure 5.22: Zoom in results for the improved dustbin image: (a) original image,
(b) original image with a hole, and (c) final reconstructed image

After self-region connections, the remaining hole area is initially filled in as shown
in Figure 5.23 (f). The hole is then synthesised starting from first iteration in
Figure 5.23 (g) and ending at the final one in Figure 5.23 (i). Although the pave-
ment regions are not connected at the beginning, the iterative parallel synthesis
is able to connect such regions with the help of the initial filling in, as shown
in Figure 5.23 (h) and (i). This is because the hole is horizontally narrower and
there are no available patches of pink and green areas outside the hole. The final
image in Figure 5.23 (i) shows proper and clear propagation of neighbouring HBR
structures into the hole. Note that the value of neighbourhood size was set to 15

88

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.23: Hole structure reconstruction results for the pavement image: (a)
original image, (b) segmented image, (c) hole, (d) reconstructing hole structure,
(e) undecided area, (f) initial filling in of the undecided area, (g), (h) and (i) first,
middle and final iterations of synthesising the reconstructed segmented image.

(a) (b)

(c) (d)

Figure 5.24: Zoom in results for the pavement image: (a) original image ,(b)
original image with a hole, (c) initial filling in, and (d) final reconstructed image.

to capture properly the underlying structure of the pavement. Figure 5.24 shows
a zoom in of the the pavement image results.

89

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.25: Hole structure reconstruction results for the roundabout image: (a)
original image, (b) segmented image, (c) hole, (d) reconstructing hole structure,
(e) undecided area, (f) initial filling in of the undecided area, (g), (h) and (i) first,
middle and final iterations of synthesising the reconstructed segmented image.

Figure 5.25 shows the results of structure reconstruction for the roundabout

image. It contains a sign that need to be removed and plausibly filled in by the
surrounding region structures. Therefore the image is segmented and the hole
is connected as shown in Figures 5.25 (b) and (d) respectively. Only self-region
connection were applied here to the bush (pink) and roundabout(green) regions,
creating a large structure of the hole and leaving at the same time a small area to
be filled-in by the initial filling-in process. The initial filling-in was able to provide
a good initialisation as more road and grass pixels are added than the bushes
pixels, as shown in Figure 5.25 (f). This guides the iterative parallel synthesis to
match this structure with the surroundings and this results in propagating regions
structure plausibly in the hole, as shown in the final image in Figure 5.25 (i). This
is clear in the construction of well defined boundaries between these regions. Note
that the small road area on the right side of the hole was not identified by the
segmentation as a distinct area, but was selected as part of the grass region on
the right hand side of the hole. This does not affect the structure in this case, but
may affect the quality of the match at the texture synthesis stage. Figure 5.26
shows zoom in of the the roundabout image results.

In Figure 5.27 (a) the original image (bungee-jumper) from [9] has a large area
to be removed (the bungee-jumper), and then replaced by proper structure. The
house structure in general was propagated well in the hole forming a one block
house, as shown in Figure 5.27 (d). However the bottom edge of the house was not
reconstructed properly during the synthesis process as possible matching patches
have green area dominantly at the top of them and not enough light brown areas on
the bottom of these patches. Also, there are not enough source patches that have
straight lines structures, but angled patches along the edge of the hole between the

90

(a) (b)

(c) (d)

Figure 5.26: Zoom in results for the roundabout image: (a) original image, (b)
original image with a hole, (c) initial filling in, and (d) final reconstructed image.

green and light brown areas. All of these factors created the angled line between
the green and brown areas, as shown in Figure 5.27 (g), (h) and (i). The other
regions are reconstructed well forming region boundaries plausibly propagated
inside the hole, as seen, e.g., in the reconstruction of boundaries between the blue
and light brown regions. Note that the value of the neighbourhood size was set
to 21 to properly capture the structure (of the texture) of the house which covers
too many pixels for the normally used size of 11. Figure 5.28 shows a zoom in of
the the bungee-jumper image results.

Figure 5.29 shows the results of structure reconstruction for the tube image. Al-
though the structure reconstruction of the most of the hole regions were clearly
created (e.g. the tree, tubes, and grass), it failed to connect the vertical and hori-
zontal tubes. This is because this kind of connection requires high level knowledge
that our method doesn’t have. During the connection process, similar regions of
the horizontal tube on one hand and the vertical tube on the other hand were
connected and flood-filled. The grass region on the left of the vertical tube is
self-connected as shown in Figure 5.29 (d). The remaining unfilled regions are
initialised where the lower grass region is completely surrounded by grass regions,
hence producing suitable filling as shown in Figure 5.29 (f). However, this will not
affect the synthesis process where the vertical tube will not be able to connect to
the horizontal one since there are no examples of green and brown patches out-
side the hole. Therefore, due to the fact that our method does not have high level

91

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.27: Hole structure reconstruction results for the bungee-jumber image:
(a) original image from [9], (b) segmented image, (c) hole, (d) reconstructing hole
structure, (e) undecided area, (f) initial filling in of the undecided area, (g), (h) and
(i) first, middle and final iterations of synthesising the reconstructed segmented
image.

knowledge of what the real hole structure should be, some user interaction is neces-
sary to edit or add connections. In this case, the user can connect the vertical tube
with the horizontal ones and run the synthesis process to match the surrounding
structures. Figure 5.29 (j) shows a manual user interaction which connects and
flood-fills the vertical and horizontal tubes. Note that the user connection in this
case is not performed before the synthesis process, but after, because of the same
reason of unavailable examples. Thus, the synthesis after the manual connection
would not be helpful in this case as it could affect the connected regions and re-
place them with undesirable structure. As a result, manual connection should be
performed on the final image of the synthesis result. For this image, the threshold
of the colour quantisation was set to 400 instead of 200 to exclude unnecessary
regions. Note that the value of neighbourhood size was set to 15 to properly cap-
ture the structure of the tree. Figure 5.30 shows a zoom in of the the tube image
results.

In Figure 5.31, the original image (elephant) has a large area to be removed
(the elephant), and then replaced by proper structure. The structure of the hole
is created, having well defined boundaries of the sand, river, shore, trees and
mountain regions, as shown in Figure 5.31 (i). Although the tree regions on
the right and left sides of the hole are connected plausibly, the boundary that

92

(a) (b)

(c) (d)

Figure 5.28: Zoom in results for the bungee-jumber image: (a) original im-
age from [9], (b) original image with a hole, (c) initial filling in, and (d) final
reconstructed image.

separate them from the mountain region is not created properly as its structure
does not match well the surrounding structure along that area. This is because
the connected line between the tree regions are angled slightly (due to region
segmentation) and the best match to this configuration is taken from the angled
small area of the tree on the right side of the hole. However, this could be fixed by
increasing the neighbourhood size to capture the shape of the boundaries between
such regions. Figure 5.32 shows a zoom in of the the elephant image results.

93

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.29: Hole structure reconstruction results for the tube image: (a) orig-
inal, image (b) segmented image, (c) hole, (d) reconstructing hole structure, (e)
undecided area, (f) initial filling in of the undecided area, (g), (h), and (i) first,
middle and final iterations of synthesising the reconstructed segmented image, and
(j) a manual user interaction connecting and flood-filling the region between the
vertical and horizontal tube.

94

(a) (b)

(c) (d)

(e)

Figure 5.30: Zoom in results for the tube image: (a) original image, (b) original
image with a hole (c) initial filling in, (d) final reconstructed image, and (e) a
modified user image.

95

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.31: Hole structure reconstruction results for the elephant image,
from [35]: (a) original, image (b) segmented image, (c) hole, (d) reconstruct-
ing hole structure, (e) undecided area, (f) initial filling in of the undecided area,
(g), (h), and (i) first, middle and final iterations of synthesising the reconstructed
segmented image.

(a) (b)

(c) (d)

Figure 5.32: Zoom in results for the elephant image, from [35]: (a) original
image, (b) original image with a hole, (c) initial filling in, (d) final reconstructed
image.

96

Chapter 6

Image completion: combining both
methods

6.1 Introduction

Texture synthesis methods are well suited for creating texture, but do not handle
propagation of image structure, yet they can produce implicit structure for im-
ages with simple structure surrounding the hole as has been shown in Figure 4.14.
However, the methods can fail with images that have large holes that are sur-
rounded by complex image structures. As a result, explicit reconstruction of the
structure of the hole is necessary in order to deal with such images to produce
realistic results. The structure can then be used to create texture that will be
coherent globally, hence producing plausible completion.

Our image completion approach is based on combining both explicit structure
reconstruction (Chapter 5), and texture synthesis (Chapter 4). Figure 6.1 shows
a general outline of the image completion process.

6.2 The completion method

Combining the methods of structure reconstruction and texture synthesis is im-
portant for producing plausible completion of holes in images. The structure
reconstruction method creates the structure of the hole having regions with de-
fined boundaries that matches the surrounding structure. One example of this
reconstruction of structure is demonstrated in Figure 6.2 for the cledwyn image
where the structure of the regions inside the hole match the surrounding regions,
particularly for the tree region. Compared with the same image, but without

97

Input Image
 & Hole

Structure
Reconstruction

Texture Synthesis

Image Completion

Output Image

Figure 6.1: General outline of the image completion process

reconstructing the structure (only texture synthesis), the structure in the hole
was not properly preserved, particularly the tree area, as shown in Figure 4.18.
Also, without using the structure reconstruction of the hole, the completion can
produce unrealistic filling as shown in Figure 4.16 where the region of the wall
expanded into the grass area resulting in unrealistic completion. However, when
the structure was reconstructed, it guided the texture synthesis to preserve the
boundaries between the grass and wall regions, as shown in Figure 6.4.

The method of texture synthesis creates texture constrained by the reconstructed
structure. This allows to synthesis textures from relevant areas of the image by
searching for similar neighbourhoods that belong to the current region of the
pixel being synthesised. Also, the initial filling in of the hole is constrained by
the reconstructed structure. Each pixel being initialised will be taken from the
relevant area according to that constraint. A pseudocode for the image completion
method is described in Algorithm 4.

However, the processes of initialisation and texture synthesis will be highly influ-
enced by the quality of the segmentation. The segmentation may fail to segment
images by including irrelevant regions or excluding relevant ones, and this will af-
fect the initialisation of the hole by copying pixels from irrelevant areas. This will
affect the synthesis process in the sense that the neighbourhood match of a pixel

98

Algorithm 4 Pseudocode for the image completion method
Initialise the hole as described in Algorithm 2, but constrained to the regions
in the final reconstructed image described in Algorithm 3.
DO

For each pixel in the hole
For each pixel outside the hole and inside the corresponding region of
the final reconstructed image
Neighbourhood template = get neighbourhood (current pixel)
IF the Neighbourhood template have a number of pixels equal to or
greater than the number of pixels in the current neighbourhood
Compute Euclidean distance for the two neighbourhoods
Save the location of the pixel and its neighbourhood distance in a NH
list

ENDIF
ENDFOR
Possible matches list = all pixels (i,j) in the NH list where Euclidean
distance(i,j) <= Min(Euclidean distance) * randomness factor
Best match = Pick up randomly a mach from the Possible matches list
Pixel value = the value of the pixel at the centre of the Best match
Copy the Pixel value to the current pixel in the hole

ENDFOR
While (the ratio of changed pixels of the current and previous iteration results
is greater than P)

in the hole will not have plausible values, which can result in mismatches in the
neighbourhood matching process. Another problem related to the quality of the
segmentation is when the method produces too small regions. This can result in
difficulty of reconstructing structure due to the possibility of mismatch in identify-
ing similar regions and uncertainty in connecting them, hence creating a structure
that might not be compatible with the surrounding (creating large structure that
is different from the one of the small regions, especially when the hole is large).
The texture synthesis will also be affected when using such small regions by not
having enough variation and examples which can result in replication of complete
patches.

6.3 Results and discussion

The results of our image completion method are based on integrating both struc-
ture reconstruction and texture synthesis. The method has been applied to dif-
ferent types of textured images, and has produced good results as can be seen in
Figures 6.2–6.27. Other result images are shown in Appendix A.

Figure 6.2 shows the cledwyn image with a building to be removed and replaced

99

with proper structure and texture. The structure of the hole was already created in
the structure reconstruction stage, discussed in Section 5.4, producing acceptable
boundaries between the regions of the hole, as shown in Figure 6.2 (c). This
structure is used when synthesising texture as a constraint. This appears clearly
in the initial filling-in of the hole and the synthesised images where boundaries
between the sky and tree regions are well defined and match the surrounding
structure, compared with Figure 4.18 (g) where the boundaries between the regions
were not well preserved. In Figure 6.2 (d), the initial filling-in is able to initialise
plausible values in the hole. However, the sky area has noise which is produced
from parts of the tree area near the hole between the sky and tree regions. These
tree parts are considered by the constrained structure reconstructed image as
sky because it was not “correctly” identified by the segmentation as trees at the
segmentation stage. The noise is then modified by the texture synthesis to form
sky region as shown in Figures 6.2 (e), (f) and (g). The final synthesised image in
Figure 6.2 (g) shows that the image structure is well propagated inside the hole
where clear boundaries between the sky and tree regions are created. Also, the
texture is properly synthesised capturing the structure of the surrounding texture
elements and also producing branches of the tree inside the hole. Figure 6.3 shows
a zoom in of the original image, the initial filling in and the final synthesised
image.

In Figure 6.4, the bush image has a hole that is surrounded by regular texture
(wall) around the upper half of the hole and different grass textures (green and
brown) around the lower half of the hole. In Figure 6.4 (g), the structure of the
hole is created with well defined boundaries between the wall and the grass areas.
Also, the structure of the wall elements are captured and aligned well. Its texture is
also well synthesised. However, the texture synthesis of the grass only propagates
green grass which does not match the area of the surrounding brown grass. This
is because the brown grass area is not identified in the segmentation as a separate
region from the green grass region and therefore, the initial filling-in in the area
mainly copies pixels from the green grass, as shown in Figure 6.4 (d). This is
due to the fact that at this hole area, the green grass region is more available for
copying pixels (outside the hole) in the area of the Gaussian distribution than the
brown grass area. This affects the iterative synthesis results which produce green
grass instead of brown grass in that area of the hole, as shown in Figures 6.4 (e),
(f) and (g). However, this problem can be solved by using a different segmented
image which identifies the brown grass as a separate region. Thus, the initial
filling-in image using this new constrained image is able to copy pixels from the
brown grass areas, as shown in Figure 6.6 (d). This would “coerce” the iterative

100

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.2: Image completion results for the cledwyn image. (a) original image,
(b) original image with a hole masked, (c) final image of the hole structure recon-
struction process, (d) initial filling in of the hole area, (e), (f) and (g) first, middle
and final iterations of image completion.

texture synthesis to create plausible brown grass texture in this area of the hole,
as shown in Figure 6.6 (g). Figures 6.5, 6.7 show zoom in of the original, the initial
filling in, and the final synthesised images of the bush image and its improved
result respectively.

In Figure 6.8, the hole of the dustbin image is surrounded by differently textured
areas such as smooth sky area around the upper part of the hole, and other
varied textures (bushes and grass) on the middle and bottom of the hole. The
structure of the hole is properly created having clear boundaries between the
regions of the hole. Also, the texture of the hole is propagated satisfactorily inside
the hole. However, implausible repetition of parts of the texture is noticed, see
Figure 6.8 (g). For example, the area of the hole between the sky and bushes
has “small” tree branches that are repeated along the horizontal line of that area.
This is because there are no sufficient patches similar to the ones in the hole and
therefore the matching often selects these patches, as shown in Figure 6.8 (g).
However, when a narrowed hole is used to allow more patches along the area
between the sky and the bushes, more patches are included in the search for the
possible matches which resulted in having more variations of the patches, hence

101

(a) (b)

(c) (d)

Figure 6.3: Zoom in results for the cledwyn image. (a) original image, (b)
original image with a hole, (c) initial filling in of the hole area, and (d) final
result.

producing better results, as shown in Figure 6.10 (g). Figures 6.9, 6.11 show zoom
in of the original image, the initial filling in and the final synthesised image of the
bush and its improved result respectively.

In Figure 6.12, the hole spans different types of textured regions where one of

102

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.4: Image completion results for the bush image. (a) original image, (b)
original image with a hole masked, (c) final image of the hole structure reconstruc-
tion process, (d) initial filling in of the hole area, (e), (f) and (g) first, middle and
final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.5: Zoom in results for the bush image. (a) original image, (b) original
image with a hole, (c) initial filling in of the hole area, and (d) final result.

them is not identified in the segmentation process as a separate region (the pave-
ment’s light gray area) and the other (the kerb) is identified as two regions in the
structure reconstruction process (where it should be one). Although the structure
reconstruction process was not able to reconstruct the pavement area properly,
the texture synthesis propagates texture well in this area.

The kerb region is identified in the segmentation as two separate regions for which
the structure reconstruction method was not able to connect the two regions due
to the different texture characteristics of these regions. However, it managed to
create reasonable boundaries between itself and the pavement region on the one
hand, and the road on the other hand. It also connects part of the kerb on the

103

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.6: Improving the image completion result for the bush image by using a
new constrained image. (a) original image, (b) original image with a hole masked,
(c) final image of the hole structure reconstruction process, (d) initial filling in of
the hole area, (e), (f) and (g) first, middle and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.7: Zoom in results for the improved bush image. (a) original image, (b)
original image with a hole, (c) initial filling in of the hole area, and (d) final result.

right of the hole with its other part on the left of the hole. The texture created
in the kerb region is also synthesised well, having this area of the hole created
with different kerb textures that meet in the middle of the hole, and this makes
a plausible image completion. Figure 6.13 shows a zoom in of the original image,
the initial filling in and the final synthesised image.

In Figure 6.14, the roundabout image contains a speed limit sign to be removed
and replaced by structure and texture from the surrounding regions. The structure
of the hole is already reconstructed, having well defined boundaries between the
regions of the hole, as discussed in Section 5.4, and shown in Figure 6.14 (c). The
propagation of texture area of the roundabout, grass, and road are well created,

104

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.8: Image completion results for the dustbin image. (a) original image,
(b) original image with a hole masked, (c) final image of the hole structure recon-
struction process, (d) initial filling in of the hole area, (e), (f) and (g) first, middle
and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.9: Zoom in results for the dustbin image. (a) original image, (b) original
image with a hole, (c) initial filling in of the hole area, and (d) final result.

as shown in Figure 6.14 (g). However, the reconstruction of the kerb on the right
of the hole is slightly different from the left. This is because the structure of
the kerb on the right of the hole is slightly different from the one on the left
of the hole, as one is higher than the other. The initial filling in is plausible
having pixels copied from the surrounding bushes and roundabout areas into their
corresponding regions in the hole, as shown in Figure 6.14 (d). The initialisation of
the road however, does not have enough road pixels from the region on the right of
the middle of the hole, but this is fixed by the iterative texture synthesis process,
as shown in Figure 6.14 (g). Also, the texture synthesis creates texture that look

105

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.10: Narrowing the hole size for the dustbin image. (a) original image,
(b) original image with a hole masked, (c) final image of the hole structure recon-
struction process, (d) initial filling in of the hole area, (e), (f) and (g) first, middle
and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.11: Zoom in results for the dustbin image with narrowed hole. (a)
original image, (b) original image with a hole, (c) initial filling in of the hole area,
and (d) final result.

realistic in the hole, as show in in the Figure 6.14 (g). Figure 6.15 shows a zoom
in of the original image, the initial filling in and the final synthesised image.

Figures 6.16 (a), (b) show a large area to be removed from the bungee-jumber

image and then replaced by proper structure and texture. The areas of the hole are
properly filled in with the surrounding textures. However, the filling in of the area
down the house with water does not match the surrounding texture. This filling in
of the areas is because the shore area in the bottom of the house is not connected
with the other shore (in the right side of the middle of the hole) in the structure

106

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.12: Image completion results for the pavement image. (a) original
image, (b) original image with a hole masked, (c) final image of the hole structure
reconstruction process, (d) initial filling in of the hole area, (e), (f) and (g) first,
middle and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.13: Zoom in results for the pavement image. (a) original image, (b)
original image with a hole, (c) initial filling in of the hole area, and (d) final
result.

reconstruction process because this region was not identified in the segmentation
as a separate region, but part of the water region. Also, because the surrounding

107

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.14: Image completion results for the roundabout image. (a) original
image, (b) original image with a hole masked, (c) final image of the hole structure
reconstruction process, (d) initial filling in of the hole area, (e), (f) and (g) first,
middle and final iterations of image completion.

area to that region is a shadow of the house which is dark area where the closest
region in terms of colour is the water region. The region covers a larger area than
the shore area, which results in more water pixels selected at the beginning of the
texture synthesis process than the shore due to the randomisation effect at the
beginning of the texture synthesis process. The texture of the regions of the hole is
synthesised well, having clear structure of the house with proper alignments of its
block elements. The other region textures are also created well where the ground
region above the house matches the surrounding ground areas. The texture of the
water is also propagated well inside the hole. Figure 6.17 shows a zoom in of the
original image, the initial filling in and the final synthesised image.

Figure 6.18 shows comparisons with results of other methods. Figure 6.18 (b)
shows the result of applying the image inpainting method presented in [9], which
produces a great deal of blur artifacts. This is because of the use of diffusion
process to propagate colour inside the hole. Also, a complete lack of texture
is clearly shown in the result due to the diffusion process. In Figure 6.18 (c),
the structure is well propagated into the hole, especially the shore area and the
bottom of the house. However, the roof structure is not well preserved. Also, the
texture is generally created plausibly, however, parts of the shore area (grass) is
expanded towards the water area. Moreover, visual artifacts in the area of the
bungee cord is obvious where texture was not propagated well in that area. These
artifacts are marked using “circular” dots. Our result shown in Figure 6.18 (d)
produces better results in term of creating plausible image structure, particularly
the reconstruction of the roof of the house. however, the reconstruction of the
shore structure was not preserved as the shore areas were not identified as separate
regions in the segmentation stage, hence not connected. The texture of the regions

108

(a) (b)

(c) (d)

Figure 6.15: Zoom in results of the area of the hole and parts of the surroundings
for the roundabout image. (a) original image, (b) original image with a hole,
(c) initial filling in of the hole area, and (d) final result.

inside the hole is also propagated well, having clear structure, particularly the
house region. Figure 6.19 shows zoom in of the comparison results.

In Figure 6.20 (g), the structure of the hole of the tube image is reconstructed well
for the vertical and horizontal tubes, and the tree. These regions connected inside
the hole with well defined boundaries. However, the horizontal tube is not con-
nected to the vertical one as it was not connected in the reconstructed segmented
image shown in Figure 6.20 (c). Therefore, some user interaction is needed to
modify the reconstructed image, as shown in Figure 6.22 (c), (see Section 5.4 for
more details). This new reconstructed image is used for the texture synthesis and

109

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.16: Image completion results for the bungee-jumber image. (a) original
image from [9], (b) original image with a hole masked, (c) final image of the hole
structure reconstruction process, (d) initial filling in of the hole area, (e), (f) and
(g) first, middle and final iterations of image completion.

therefore the reconstruction of the structure between the vertical and horizontal
tubes is created, as shown in Figure 6.22 (g), mainly filled from the horizontal
tube area as defined by the structure reconstructed image.

Also, the texture of the hole is propagated well, having clear tubes and tree struc-
tures and textures that match the surrounding corresponding textures and struc-
tures. Note that the vertical tube, horizontal tube, grass and tree are homogeneous
regions surrounding the hole which results in plausible initial filling in for the hole
as shown in the initial filling-in of the areas in Figure 6.22 (d). Thus, this leads to
plausible completion of the image as shown in Figure 6.22 (g) where each region of
the hole has its structure and texture plausibly created. Figures 6.21, 6.23 show
zoom in of the original image, the initial filling in and the final synthesised image
for the tube image and its improved results respectively.

Figure 6.24 (a) and (b) shows a large area to be removed from the elephant

image and then replaced by proper structure and texture. The structure of the
hole generally looks plausible, having created defined region boundaries in the hole.
The texture is also created well, particularly in the sand, river and mountain areas.
The texture of the tree region is reasonably propagated inside the hole. However,
the top middle area includes areas from the mountain, which is due to the “missed”
structure of that region in the reconstructed structure. The texture of the shore

110

(a) (b)

(c) (d)

Figure 6.17: Zoom in results for the bungee-jumber image. (a) original image
from [9], (c) original image with the hole, (c) initial filling in of the hole area, and
(d) final result

area is also reasonably propagated. However, repetition of some parts of the shore
are noticed, specifically in the areas between the legs of the elephant. This is
because there is no sufficient examples of the shore areas, and this is due to the
existence of a small shore area outside the hole between the left legs of the elephant,
where pixels are copied from. Figure 6.25 shows a zoom in of the original image,
the initial filling in and the final synthesised image.

Figure 6.26 shows a comparison with the result of the method presented by Drori
et al. in [35]. Our method shows comparable results to their method in term of

111

(a) (b)

(c) (d)

Figure 6.18: Comparing our image completion result for the bungee-jumber
image. (a) original image from [9], (b) the result of applying image inpainting
in [9], (c) the result of applying the method in [30], and (d) our result.

creating plausible structure of boundaries for regions in the hole. Also, the struc-
ture is well propagated for most regions, however, the method in [35] outperforms
our method in creating proper texture of the tree in the middle of the hole. This
is because their method is patch-based texture synthesis which can capture tex-
ture structure better than the pixel-based texture synthesis methods. Figure 6.27
shows zoom in of the comparison results.

6.4 Conclusion

In summary, the chapter combines the methods of structure reconstruction and
texture synthesis in order to produce realistic results. The combination is per-
formed by firstly reconstructing a structure (Chapter 5) and then using this struc-
ture as a constraint for the texture synthesis method (Chapter 4). This means
that the texture synthesis method is guided by the reconstructed structure which
will propagate texture from relevant regions and preserve the global structure of
the image.

112

(a) (b)

(c) (d)

Figure 6.19: Zoom in results for comparing our image completion result to others
for the bungee-jumber image. (a) original image from [9], (b) the result of
applying image inpainting in [9], (c) the result of applying the method in [30], and
(d) our result.

113

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.20: Image completion results for the tube image. (a) original image,
(b) original image with a hole masked, (c) final image of the hole structure recon-
struction process, (d) initial filling in of the hole area, (e), (f) and (g) first, middle
and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.21: Zoom in results for the tube image. (a) original image, (b) original
image with a hole, (c) initial filling in of the hole area, and (d) final result.

114

(a) (b) (c)

(d) (e) (f) (g)

Figure 6.22: Image completion results for the improved results of the tube image.
(a) original image, (b) original image with a hole masked, (c) final image of the
hole structure reconstruction process using a manual user interaction connecting
and flood-filling the region between the vertical and horizontal tube, (d) initial
filling in of the hole area, (e), (f) and (g) first, middle and final iterations of image
completion.

(a) (b)

(c) (d)

Figure 6.23: Zoom in for the improved results of the tube image. (a) original
image, (b) original image with a hole, (c) initial filling in of the hole area, and (d)
final result.

115

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.24: Image completion results for the elephant image. (a) original image
from c, (b) original image with a hole masked, (c) final image of the hole structure
reconstruction process, (d) initial filling in of the hole area, (e), (f) and (g) first,
middle and final iterations of image completion.

(a) (b)

(c) (d)

Figure 6.25: Zoom in results for the elephant image. a) original image, (b)
original image with a hole, (c) initial filling in of the hole area, and (d) final
result.

(a) (b)

(c)

Figure 6.26: Comparing our image completion result for the elephant image:
(a) original image from [35], (b) the result of applying the method in [35], and (c)
our result.

116

(a) (b)

(c)

Figure 6.27: Zoom in results for comparing our image completion result to others
for the elephant image. (a) original image from [35], (b) the result of applying
the method in [35], and (c) our result.

117

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we presented a new method that automates the completion of a
given hole left by the removal of an undesired area in an image. the aim was to
automatically, without high-level knowledge about the content of the image, create
a completion that is plausible, i.e. not showing any visible visual artifacts and such
that the created structure and texture seamlessly fuses with the surrounding areas.
The method first creates image structure that is then used as a constraint to guide
the texture synthesis method.

The aim of reconstructing image structure in the hole is to create regions in the hole
with well defined boundaries such that the structure of these regions is globally
consistent with the structure of the surrounding areas. The method is based on
the assumption that regions of images, particularly in natural images, tend to have
spatial continuity that are only broken by the presence of the hole, and therefore
must be linked. In order to link them, the image is segmented and its similar
regions that are attached to the hole are relabelled with the same label and then
connected and flood-filled. The similarity measure is based on histogram statistics
and proximity of regions.

The method of texture synthesis creates texture inside the hole that is constrained
by the reconstructed structure image, and this texture will be coherent globally
and matches the surrounding texture. Two modifications to the generic method
of texture synthesis have been introduced and this includes the parallel synthesis
order and the iterative synthesis scheme. As the order of the synthesis can af-
fect the quality of the output image, a parallel synthesis order is presented which
synthesises each pixel in the hole independently from its previously synthesised
pixels. This will ensure that pixels being synthesised are not dependant on pre-

118

vious pixels during any given iteration, and therefore will remove any directional
bias to specific regions. Also, it allows us to have full symmetric neighbourhood
(with the help of the initial hole filling) for the neighbourhood matching pro-
cess. This symmetric neighbourhood contains more available, plausible, values
compared to the L-shaped neighbourhood. This provides a better mechanism of
selecting matches. The other modification is the iterative synthesis scheme which
allows to have global randomness which will progressively converge towards fine
detailed texture. This scheme ensures that the created texture has sufficient, but
not excessive, randomness and does not have replications of entire patches. This
is achieved by iteratively filling the hole (using the parallel method), allowing a
wide set of good matches, and then reducing the size of the set at each iteration.

Our image completion method combines both structure reconstruction and texture
synthesis methods by using the structure reconstructed image as a constraint for
the texture synthesis method. This results in producing consistent image structure
in the hole as well as creating texture from relevant regions, thus producing realistic
completion.

Although our method produces good results for many variety of images (Chap-
ter 6), it has its own limitations. First, the success of the method of reconstructing
the structure of the hole is based on the quality of the segmentation. Although
we used one of the best available segmentation methods, the method may fail to
properly segment images (see Figure 6.4). This can result in losing connection of
regions, connecting the “incorrect” regions, or simply producing small segmented
regions that may cause incompatibility in the reconstruction of region structures,
especially when the hole is large. This will also directly affect the texture synthesis
quality as the texture synthesis method uses the reconstructed image as a con-
straint and this image does not sufficiently represent the proper image structure
of the hole.

Another limitation is that our method does not have high level knowledge of
what the real image structure and texture in the hole should be (e.g. the case in
Figure 6.20) and therefore, some user interaction might be necessary in such cases
to modify the existing structure such that it matches the surrounding structure.

Also, using lines when connecting similar regions in the structure reconstruction
stage may not necessarily match the structure of the surrounding areas. Although
these line structures are modified by synthesising the segmented image, it may
not properly match the patterns of these structures, as it might be difficult to find
good matches for the these line structures due to lack of similar examples in the
rest of the image.

119

Finally, our method was not intended to be designed for real time completion.
Improving the quality of the completed image was of high priority, possibly with
some sacrifice in efficiency. Although, the method is slow due to pixel-based
processing and iterative synthesis, it is inherently parallel and could therefore be
implemented on a parallel machine.

7.2 Future work

In the future, we intend to investigate the followings:

• We plan to introduce an adaptive neighbourhood size that can properly
capture texture elements. As the hole can be surrounded by many different
types of textures, determining the “correct” neighbourhood size for each
region separately will create a more representative texture of the specified
region. This can be based on computing statistics of the texture regions such
as homogeneity of these regions and the arrangements of their elements.

• We intend to investigate further the initial hole filling process to improve its
accuracy by using texture orientation.

• We also plan to extend our approach of image relabelling to be based not
only on colour and spatial proximity of regions, but also on the size and
shape of these regions to ensure more accurate similarity measures between
image regions. This will result in more accurate reconstruction of image
structure which will improve the quality of the synthesised texture.

• Instead of using lines, when connecting similar regions in the hole, and
matching that structure with the surroundings, it could be better to cap-
ture the structure of the region boundary (lines/curves) around the hole
by approximating their pattern and then propagating that structure inside
the hole. However, the approximation can be difficult in cases where the
structure of the boundary of a region is completely different on both sides of
the hole. Therefore, synthesising the approximated regions will create more
plausible structure that matches the structure of the surrounding areas.

• We plan to incorporate the gradient when computing the Euclidean distance
in order to improve the image similarity measure.

120

Bibliography

[1] Scott Acton, Dipti Mukherjee, Joebob Havlicek, and Alan Bovik. Oriented
texture completion by AM-FM reaction-diffusion. IEEE Transactions on
Image Processing, 10(6):885–896, 2001.

[2] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex
Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive dig-
ital photomontage. ACM Transactions on Graphics, 23(3):294–302, 2004.

[3] Michael Ashikhmin. Synthesizing natural textures. In Proceedings of the
2001 symposium on Interactive 3D graphics, pages 217–226, New York, NY,
USA, 2001. ACM Press.

[4] Bara’a Attea and Laylan Rashid. A gentic algorithm for texture synthesis
and transfer. In Proceedings of the 4th International Workshop on Texture
analysis and synthesis, pages 59–64, 2005.

[5] Coloma Ballester, Vicent Caselles, and Joan Verdera. A variational model
for disocclusion. In Proceedings of the International Conference on Image
Processing (ICIP 03), pages 677–680, 2003.

[6] Coloma Ballester, Vicent Caselles, Joan Verdera, Marcelo Bertalmío, and
G Sapiro. A variational model for filling-in gray level and color images. Pro-
ceedings of the Eighth IEEE International Conference on Computer Vision
(ICCV 01), 01:10, 2001.

[7] Celia Zorzo Barcelos, Marcos Batista, Adriana Martins, and Antonio
Nogueira. Level lines continuation based digital inpainting. Computer
Graphics and Image Processing, XVII Brazilian Symposium on (SIB-
GRAPI 04), 00:50–57, 2004.

[8] William Barrett and Alan Cheney. Object-based image editing. In Proceed-
ings of the 29th annual conference on Computer graphics and interactive
techniques (SIGGRAPH 02), pages 777–784, New York, NY, USA, 2002.
ACM.

121

[9] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma
Ballester. Image inpainting. In Proceedings of the 27th annual conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 00), pages
417–424, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publish-
ing Co.

[10] Marcelo Bertalmío, Luminita Vese, Guillermo Sapiro, and Stanley Osher.
Image filling-in in a decomposition space. In Proceedings of the International
Conference on Image processing (ICIP 03), pages 853–855, 2003.

[11] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, and Stanley Osher.
Simultaneous structure and texture image inpainting. In Proceedings of the
Conference on Computer Vision and Pattern Regonition, volume 2, page
707. IEEE Computer Society, 2003.

[12] Marcelo Bertalmío, A Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid
dynamics, and image and video inpainting. Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 01), 1:355, 2001.

[13] Didier Besset. Object-Oriented Implementaion of Numerical Methods an
Introduction with Java and Smalltalk. Morgan Kaufmann Publishers, San
Francisco, USA, 2001.

[14] Dorothea Blostein and Narendra Ahuja. Shape from texture: integrating
texture-element extraction and surface estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(12):1233–1251, Dec 1989.

[15] Jeremy De Bonet. Multiresolution sampling procedure for analysis and syn-
thesis of texture images. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (SIGGRAPH 97), pages 361–
368, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing
Co.

[16] Siddharth Borikar, K Biswas, and Sumanta Pattanaik. Fast algorithm for
completion of images with natural scenes. Technical report, University of
Central Florida, 2004.

[17] Raphaël Bornard, Emmanuelle Lecan, Louis Laborelli, and Jean-Hugues
Chenot. Missing data correction in still images and image sequences. In Pro-
ceedings of the tenth ACM international conference on Multimedia (MUL-
TIMEDIA 02), pages 355–361, New York, NY, USA, 2002. ACM.

122

[18] Toby Breckon. Completing unknown portions of 3D scenes by 3D visual
propagation. PhD thesis, School of Informatics, University of Edinburgh,
2006.

[19] Stephen Brooks, Marc Cardle, and Neil Dodgson. Enhanced texture editing
using self-similarity. In Proceedings of the conference on Vision, Video and
Graphics, Bath, UK, 2003. Eurographics Association.

[20] Stephen Brooks, Marc Cardle, and Neil Dodgson. Replicated texture edit-
ing. Technical report, Faculty of Computer Science, Dalhousie University,
Halifax, Canada, 2005.

[21] Stephen Brooks and Neil Dodgson. Self-similarity based texture editing. In
Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques (SIGGRAPH 02), pages 653–656, New York, NY, USA,
2002. ACM.

[22] R Cant and C Langensiepen. A multiscale method for automated inpaint-
ing. In Proceedings of the 17th European Simulation Multiconference, Not-
tingham Trent University, 2003.

[23] Tony Chan and Sung Kang. Error analysis for image inpainting. Journal of
Mathematical Imaging and Vision, 26(1-2):85–103, 2006.

[24] Tony Chan and Jianhong Shen. Non-texture inpainting by curvature-driven
diffusions (CDD). Technical report, Department of Mathematics, University
of California, Los Angeles, September 2000.

[25] Tony Chan and Jianhong Shen. Mathematical models for local nontexture
inpaintings. Journal of Applied Mathematics (SIAM 02), 62(3):1019–1043,
2002.

[26] Tony Chan, Jianhong Shen, and Luminita Vese. Variational pde models in
image processing. Notices of the American Mathematical Society (AMS),
50(1), 2003.

[27] Chen Chaur-Chin and Chen Chien-Chang. Texture synthesis: A review
and experiements. Journal of Information and Science and Engineering,
19(2):371–380, 2003.

[28] Qiang Chen, Yingxiang Zhang, and Yuncai Liu. Image inpainting with
improved exemplar-based approach. In Multimedia Content Analysis and
Mining, International Workshop (MCAM 2007), pages 242–251, 2007.

123

[29] Fernand Cohen and David Cooper. Simple parallel hierarchical and relax-
ation algorithms for segmenting noncausal markovian random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(2):195–
219, March 1987.

[30] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and
object removal by exemplar-based image inpainting. IEEE Transactions on
Image Processing, 13(9):1200–1212, 2004.

[31] George Cross and Anil Jain. Markov random field texture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(1):25–
39, January 1983.

[32] Scott Dally. The visible differences predictor: an algorithm for the assess-
ment of image fidelity. In Digital images and human vision, pages 179–206,
Cambridge, MA, USA, 1993. MIT Press.

[33] Yining Deng and B Manjunath. Unsupervised segmentation of color-texture
regions in images and video. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(8):800–810, 2001.

[34] Feng Dong and Xujiong Ye. Multiscaled texture synthesis using multisized
pixel neighborhoods. IEEE Computer Graphics and Applications, 27(3):41–
47, 2007.

[35] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. Fragment-based image
completion. ACM Transactions on Graphics, 22(3):303–312, 2003.

[36] Nick Efford. Digital Image Processing A practical Introduction using Java.
Pearson Education Limited, Essex, England, 2000.

[37] Alexei Efros and William Freeman. Image quilting for texture synthesis and
transfer. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques (SIGGRAPH 01), pages 341–346, New York, NY,
USA, 2001. ACM Press.

[38] Alexei Efros and Thomas Leung. Texture synthesis by non-parametric sam-
pling. In Proceedings of the International Conference on Computer Vision,
pages 1033–1038, Washington, DC, USA, 1999. IEEE Computer Society.

[39] Selim Esedoglu and Jianhong Shen. Digital inpainting based on the
mumford-shah-euler image model. European Journal of Applied Mathemat-
ics, 13(04):353–370, 2002.

124

[40] Ahmeed Eskicioglu and Paul Fisher. Image quality measures and their per-
formance. IEEE Transactions on Communications, 43(12):2959–2965, Dec
1995.

[41] Chih-Wei Fang and James Lien. Fast image replacement using multi-
resolution approach. In Proceedings of the 7th Asian Conference on Com-
puter Vision (ACCV 06), pages 509–520, 2006.

[42] Hui Fang and John Hart. Textureshop: texture synthesis as a photograph
editing tool. In International Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 04), pages 354–359, New York, NY, USA,
2004. ACM.

[43] FreeFoto.com. Accessed 10/06/09.

[44] Haoying Fu, Hongyuan Zha, and Jesse Barlow. Efficient block noise re-
moval based on nonlinear manifolds. In Proceedings of the Tenth IEEE
International Conference on Computer Vision (ICCV 05), pages 549–556,
Washington, DC, USA, 2005. IEEE Computer Society.

[45] King Sun Fu. Syntactic Pattern Recognition and Applications. Englewood
Cliffs; London: Prentice-Hall, 1982.

[46] Claire Gallagher and Anil Kokaram. Wavelet based texture synthesis. In The
Irish Machine Vision and Image Processing (IMVIP 04), Dublin, Ireland,
2004.

[47] Claire Gallagher and Anil Kokaram. Nonparametric wavelet based texture
synthesis. In IEEE International Conference on Image Processing (ICIP 05),
volume 2, pages 462–465, Genova, Italy, September 2005.

[48] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distribu-
tions, and the bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-6(6):721–741, Nov. 1984.

[49] G Gimel’farb. Texture modeling by multiple pairwise pixel interac-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(11):1110–1114, 1996.

[50] L Gool, P Dewaele, and A Oosterlinck. Texture analysis anno 1983. Com-
puter Vision, Graphics, and Image Processing (CVGIP 85), 29(3):336–357,
March 1985.

125

[51] Harald Grossauer. A combined pde and texture synthesis approach to in-
painting. In 8th European Conference on Computer Vision (ECCV 04),
pages 214–224, 2004.

[52] Harald Grossauer. Completion of Images with Missing Data Regions. PhD
thesis, Leopold-Franzens-Universität Innsbruck, 2005.

[53] Robert Haralick. Statistical and structural approaches to texture. Proceed-
ings of the IEEE, 67(5):786–804, May 1979.

[54] Paul Harrison. A non-hierarchical procedure for re-synthesis of complex
textures. In Proceedings of the Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG 01), pages 190–197,
2001.

[55] Richard Harvey, Stephen King, Richard Aldridge, and J Bangham. Compar-
ing image resamplers via a model of the human vision system. In Proceedings
of the British Machine Vision Conference, volume 1, pages 162–172, 1997.

[56] James Hays and Alexei Efros. Scene completion using millions of pho-
tographs. ACM Transactions on Graphics (SIGGRAPH 07), 26(3), 2007.

[57] David Heeger and James Bergen. Pyramid-based texture analysis/synthesis.
In Proceedings of the 22nd annual conference on Computer graphics and in-
teractive techniques (SIGGRAPH 95), pages 229–238, New York, NY, USA,
1995. ACM Press.

[58] Aaron Hertzmann, Charles Jacobs, Nuria Oliver, Brian Curless, and David
Salesin. Image analogies. In Eugene Fiume, editor, Proceedings of the an-
nual conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH 01), pages 327–340. ACM Press / ACM SIGGRAPH, 2001.

[59] Anil Hirani and Takashi Totsuka. Combining frequency and spatial do-
main information for fast interactive image noise removal. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques
(SIGGRAPH 96), pages 269–276, New York, NY, USA, 1996. ACM.

[60] Zhang Hongying, Peng Qicong, and Wu Yadong. Image completion algo-
rithm based on texture synthesis. Journal of Systems Engineering and Elec-
tronics, 18(2):385–391, 2007.

[61] Homan Igehy and Lucas Pereira. Image replacement through texture synthe-
sis. In Proceedings of the 1997 International Conference on Image Processing
(ICIP 97), page 186, Washington, DC, USA, 1997. IEEE Computer Society.

126

[62] Siddharth Jain. Image inpainting and texture synthesis: Two methods for
hole filling in images. Technical report, Berkeley University of California,
2003.

[63] Jiaya Jia, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Drag-and-
drop pasting. ACM Transactions on Graphics, 25(3):631–637, 2006.

[64] Jiaya Jia and Chi-Keung Tang. Image repairing: Robust image synthesis
by adaptive nd tensor voting. Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 03), 01:643, 2003.

[65] Jiaya Jia and Chi-Keung Tang. Inference of segmented color and texture
description by tensor voting. IEEE Transactions on Pattern Analalysis and
Machine Intelligence, 26(6):771–786, 2004.

[66] M Johnson, G Brostow, J Shotton, O Arandjelovic, V Kwatra, and
R Cipolla. Semantic photo synthesis. Computer Graphics Forum, 25(3):407–
414, September 2006.

[67] K Karu, A Jain, and R Bolle. Is there any texture in the image? In
Proceedings of the 13th International Conference on Pattern Recognition
(ICPR 96), page 770, Washington, DC, USA, 1996. IEEE Computer Society.

[68] Erum Khan, Erik Reinhard, Roland Fleming, and Heinrich Bülthoff. Image-
based material editing. ACM Transactions on Graphics, 25(3):654–663,
2006.

[69] Anil Kokaram. Parametric texture synthesis for filling holes in pictures. In
IEEE International Conference on Image Processing 2002, September 2002.

[70] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture op-
timization for example-based synthesis. ACM Transactions on Graphics,
24(3):795–802, 2005.

[71] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. ACM Trans-
actions on Graphics, 22(3):277–286, 2003.

[72] Frédéric Labrosse. On the editing of images: Selecting, cutting and filling-
in. In Proceedings of Vision, Video, and Graphics (VVG 03), pages 71–78,
2003.

[73] Laurent Lefebvre and Pierre Poulin. Analysis and synthesis of structural
textures. In Proceedings of the Graphics Interface 2000 Conference, pages

127

77–86, Montréal, Québec, Canada, 2000. Canadian Human-Computer Com-
munications Society.

[74] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.
ACM Transactions on Graphics, 24(3):777–786, 2005.

[75] M Lettner, P Kammerer, and R Sablatnig. Texture analysis of painted
strokes. In 28th Workshop of the Austrian Association for Pattern Recogni-
tion, pages 269–276, Hagenberg, Austria, 2004.

[76] Anat Levin, Assaf Zomet, and Yair Weiss. Learning how to inpaint from
global image statistics. In Proceedings of the Ninth IEEE International Con-
ference on Computer Vision (ICCV 03), page 305, Washington, DC, USA,
2003. IEEE Computer Society.

[77] John-Peter Lewis. Texture synthesis for digital painting. ACM SIGGRAPH
Computer Graphics, 18(3):245–252, 1984.

[78] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum.
Real-time texture synthesis by patch-based sampling. ACM Transactions
on Graphics, 20(3):127–150, 2001.

[79] Yi Lin. Fast image completion. In Heung-Yeung Shum Andrew Tescher
Shipeng Li, Fernando Pereira, editor, Proceedings of Visual Communications
and Image Processing, volume 5960, 2005.

[80] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular texture analysis
and manipulation. In Proceedings of the International Conference on Com-
puter Graphics and Interactive Techniques (ACM SIGGRAPH 04), pages
368–376, New York, NY, USA, 2004. ACM.

[81] Jeremy Long and David Mould. Improved image quilting. In Proceedings
of Graphics Interface (GI 07), pages 257–264, New York, NY, USA, 2007.
ACM.

[82] Simon Masnou. Disocclusion: a variational approach using level lines. IEEE
Transactions on Image Processing, 11(2):68–76, 2002.

[83] Andrzej Materka and Michal Strzelecki. Texture analysis methods - a re-
view. Technical report, Technical University of Lodz, Institute of Electronics,
Brussels, 1998.

[84] Tim Morris. Computer Vision and Image Processing. Palgrave Macmillan,
2004.

128

[85] Andrew Nealen and Marc Alexa. Hybrid texture synthesis. In Proceedings
of the 14th Eurographics workshop on Rendering (EGRW 03), pages 97–105,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[86] Andrew Nealen and Marc Alexa. Fast and high quality overlap repair for
patch-based texture synthesis. Computer Graphics International (CGI 04),
00:582–585, 2004.

[87] Laszlo Neumann, Kresimir Matkovic, and Werner Purgathofer. Perception
based color image difference. Technical Report TR-186-2-97-21, Institute
of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, December 1997.

[88] Manuel Oliveira, Brian Bowen, Richard McKenna, and Yu-Sung Chang. Fast
digital image inpainting. In Proceedings of the IASTED International Con-
ference on Visualization, Imaging and Image Processing (VIIP 01), pages
261–266, Marbella, Spain, 2001.

[89] Thrasyvoulos Pappas and Robert Safranek. Perceptual criteria for image
quality evaluation. In Handbook of Image and Video Processing, pages 669–
684. Academic Press, 2000.

[90] Patricio Parada and Javier Ruiz.del.Solar. Texture synthesis using image
pyramids and self-organizing maps. In Proceedings of the 11th International
Conference on Image Analysis and Processing (ICIAP 01), page 244, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[91] Mark Pauly, Niloy Mitra, Joachim Giesen, Markus Gross, and Leonidas
Guibas. Example-based 3d scan completion. In Proceedings of the third
Eurographics symposium on Geometry processing (SGP 05), page 23, Aire-
la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[92] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing.
ACM Transactions on Graphics, 22(3):313–318, 2003.

[93] Patrick Pérez, Michel Gangnet, and Andrew Blake. Patchworks: Example-
based region tiling for image editing. Technical report, Microsoft Research,
2004.

[94] Ken Perlin. An image synthesizer. Proceedings of the 12th annual con-
ference on Computer graphics and interactive techniques (SIGGRAPH 85),
19(3):287–296, 1985.

129

[95] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):629–639, 1990.

[96] M Pietikäinen and T Ojala. Nonparametric texture analysis with simple
spatial operators. In Proceedings of the 5th International Conference on
Quality Control by Artificial Vision, Canada, 1999.

[97] Javier Portilla and Eero Simoncelli. A parametric texture model based on
joint statistics of complex wavelet coefficients. International Journal of Com-
puter Vision, 40(1):49–70, 2000.

[98] Gonzalez Rafael and Woods Richard. Digital Image processing. Tom Rob-
bins, 2 edition, 2001.

[99] Shantanu Rane, Guillermo Sapiro, and Marcelo Bertalmío. Structure and
texture filling-in of missing image blocks in wireless transmission and com-
pression applications. IEEE Transactions on Image Processing, 12(3):296–
303, 2003.

[100] D Rao and L Reddy. Image quality assessment based on perceptual struc-
tural similarity. In Pattern Recognition and Machine Intelligence, pages
87–94, 2007.

[101] A Rares, M Reinders, and J Biemond. Constrained texture restoration.
Journal on Applied Signal Processing (EURASIP 05), 2005(1):2758–2771,
2005.

[102] Todd Reed and J Buf. A review of recent texture segmentation and feature
extraction techniques. Image Understanding (CVGIP 93), 57(3):359–372,
1993.

[103] Amine Samet, M Ayed, Nouri Masmoudi, and Lazhar Khriji. New perceptual
image quality assessment metric. Asian Journal of Information Technology,
4(11):996–1000, April 2005.

[104] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface
completion. In International Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 2004), pages 878–887, New York, NY, USA,
2004. ACM.

[105] Hamid Sheikh, Alan Bovik, and Lawrence Cormack. No-reference quality
assessment using natural scene statistics: Jpeg2000. IEEE Transactions on
Image Processing, 14(11):1918–1927, November 2005.

130

[106] Timothy Shih and Rong chi Chang. Super-resolution inpainting. Journal of
Zhejiang University Science, 6A(6):487–491, 2005.

[107] Seunghyup Shin, Tomoyuki Nishita, and Sung Yong Shin. On pixel-based
texture synthesis by non-parametric sampling. Computers & Graphics,
30(5):767–778, oct 2006.

[108] Eero Simoncelli and Javier Portilla. Texture characterization via joint statis-
tics of wavelet coefficient magnitudes. In Proceedings of Fifth International
Conference on Image Processing, pages 4–7. IEEE Computer Society, 1998.

[109] Maneesha Singh and Sameer Singh. Spatial texture analysis: A comparative
study. 16th International Conference on Pattern Recognition (ICPR 02),
01:10676, 2002.

[110] Jian Sun, Lu Yuan, Jiaya Jia, and Heung-Yeung Shum. Image completion
with structure propagation. ACM Transactions on Graphics, 24(3):861–868,
2005.

[111] Francesca Taponecco. User-defined texture synthesis. In Proceedings of the
12th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 04), pages 251–258, 2004.

[112] Zinovi Tauber, Ze-Nian Li, and Mark Drew. Review and preview: Dis-
occlusion by inpainting for image-based rendering. IEEE Transactions on
Systems, Man, and Cybernetics, Part C, 37(4):527–540, 2007.

[113] Alexandru Telea. An image inpainting technique based on the fast marching
method. Journal of Graphics Tools, 9(1):23–34, 2004.

[114] Texturesforrest. Texture Library[http://textures.forrest.cz/]. Ac-
cessed 22/05/06.

[115] Huang Ting, Shifeng Chen, Jianzhuang Liu, and Xiaoou Tang. Image in-
painting by global structure and texture propagation. In Proceedings of
the 15th international conference on Multimedia (MULTIMEDIA 07), pages
517–520, New York, NY, USA, 2007. ACM.

[116] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and Heung-
Yeung Shum. Synthesis of bidirectional texture functions on arbitrary sur-
faces. In Proceedings of the 29th annual conference on Computer graphics
and interactive techniques (SIGGRAPH 02), pages 665–672, New York, NY,
USA, 2002. ACM.

131

[117] Mihran Tuceryan and Anil Jain. Texture analysis. In C.H. Chen, L.F.
Pau, and P.S.P. Wang, editors, The Handbook of Pattern Recognition and
Computer Vision, chapter 2.1, pages 207–248. World Scientific Publishing
Co, second edition, 1998.

[118] Joan Verdera, Vicent Caselles, Marcelo Bertalmío, and Guillermo Sapiro.
Inpainting surface holes. In IEEE International Conference on Image Pro-
cessing (ICIP 03), pages 903–906, 2003.

[119] Bin Wang, Jun-Hai Yong, and Jia-Guang Sun. Real-time texture synthesis
with patch jump maps. Lecture notes in Computer Science, (3314):1155–
1160, 2004.

[120] Z Wang, C Bovik, R Sheikh, and P Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, April 2004.

[121] Zhou Wang, Alan Bovik, and Ligang Lu. Why is image quality assessment
so difficult? In Proceesings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 3313–3316, 2002.

[122] Zhou Wang, Hamid Sheikh, and Alan Bovik. Objective Video Quality As-
sessment, chapter Chapter 41 in The Handbook of Video Databases: Design
and Applications, pages 1041–1078. CRC Press, 2003.

[123] Li-Yi Wei. Deterministic texture analysis and synthesis using tree struc-
ture vector quantization. In Proceedings of the XII Brazilian Symposium on
Computer Graphics and Image Processing (SIBGRAPI 99), pages 207–214,
Washington, DC, USA, 1999. IEEE Computer Society.

[124] Li-Yi Wei. Texture Synthesis By Fixed Neighborhood Searching. PhD thesis,
Stanford University, 2001.

[125] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vec-
tor quantization. In Proceedings of the 27th annual conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 00), pages 479–488, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[126] Li-Yi Wei and Marc Levoy. Order-independent texture synthesis. Technical
report, Stanford University Computer Science Department, 2002.

[127] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. Transferring color
to greyscale images. ACM Transactions on Graphics, 21(3):277–280, 2002.

132

[128] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion
of video. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(3):463–476, 2007.

[129] Marta Wilczkowiak, Gabriel Brostow, Ben Tordoff, and Roberto Cipolla.
Hole filling through photomontage. In Proceedings of the British Machine
Vision Conference, Oxford, United Kingdom, pages 492–501, July 2005.

[130] Qing Wu and Yizhou Yu. Feature matching and deformation for texture
synthesis. ACM Transactions on Graphics, 23(3):364–367, 2004.

[131] Ying-Qing Xu, Baining Guo, and Harry Shum. Chaos mosaic: Fast and
memory efficient texture synthesis. Technical report, Microsoft Research,
2000.

[132] Hitoshi Yamauchi, Jörg Haber, and Hans-Peter Seidel. Image restoration
using multiresolution texture synthesis and image inpainting. Computer
Graphics International (CGI 03), 00:120, 2003.

[133] Alexey Zalesny, Vittorio Ferrari, Geert Caenen, and Luc Gool. Parallel
composite texture synthesis. In Texture 2002 Workshop in conjunction with
ECCV 2002, pages 151–155, 2002.

[134] Alexey Zalesny and Luc Gool. A compact model for viewpoint dependent
texture synthesis. In Revised Papers from Second European Workshop on 3D
Structure from Multiple Images of Large-Scale Environments (SMILE 00),
pages 124–143, London, UK, 2001. Springer-Verlag.

[135] Steve Zelinka and Michael Garland. Towards real-time texture synthesis
with the jump map. In Proceedings of the 13th Eurographics workshop on
Rendering (EGRW 02), pages 99–104, Aire-la-Ville, Switzerland, 2002. Eu-
rographics Association.

[136] Steve Zelinka and Michael Garland. Jump map-based interactive texture
synthesis. ACM Transactions on Graphics, 23(4):930–962, 2004.

[137] Guangtao Zhai, Wenjun Zhang, Xiaokang Yang, and Yi Xu. Image quality
assessment metrics based on multi-scale edge presentation. Signal Processing
Systems Design and Implementation, pages 331–336, November 2005.

[138] Yunjun Zhang, Jiangjian Xiao, and Mubarak Shah. Region completion in a
single image. In Proceedings of European Association for Computer Graphics
(EUROGRAPHICS 04), volume 23, 2004.

133

Appendix A

Additional results

The method of image completion has also been applied to additional textured
images, taken from [43]. In general, the images show acceptable hole completion.
However, there are failures with some of the images. Note that small neigh-
bourhoods (11 × 11) were used which can cause problems related to insufficient
representation of the texture and the structure of the image. Figures A.1–A.5.
show these results.

134

(a) (b) (c) (d)

Figure A.1: Image completion results. (a) original image, (b) original image with
a hole masked, (c) final image of the hole structure reconstruction process, and
(d) final result of image completion.

135

(a) (b) (c) (d)

Figure A.2: Image completion results. (a) original image, (b) original image with
a hole masked, (c) final image of the hole structure reconstruction process, and
(d) final result of image completion.

136

(a) (b) (c) (d)

Figure A.3: Image completion results. (a) original image, (b) original image with
a hole masked, (c) final image of the hole structure reconstruction process, and
(d) final result of image completion.

137

(a) (b) (c) (d)

Figure A.4: Image completion results. (a) original image, (b) original image with
a hole masked, (c) final image of the hole structure reconstruction process, and
(d) final result of image completion.

138

(a) (b) (c) (d)

Figure A.5: Image completion results. (a) original image, (b) original image with
a hole masked, (c) final image of the hole structure reconstruction process, and
(d) final result of image completion.

139

