
Interpretation of simulation for model-based
design analysis of engineered systems

Jonathan Bell

Department of Computer Science
University of Wales

Aberystwyth

May 2006

This thesis is submitted in partial fulfilment of the requirements for
the degree of

Doctor of Philosophy of The University of Wales.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/185314598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

This thesis has not previously been accepted in substance for any degree and is
not being concurrently submitted in candidature for any degree.

Signed . (candidate)

Date .

Statement 1

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibli-
ography is appended.

Signed . (candidate)

Date .

Statement 2

I hereby give consent for my thesis, if accepted, to be made available for pho-
tocopying and for inter-library loan, and for the title and summary to be made
available to outside organisations.

Signed . (candidate)

Date .

1

ABSTRACT

This thesis attempts to answer the question Can we devise a language for inter-
pretation of behavioural simulation of engineered systems (of arbitrary complexity)
in terms of the systems’ purpose? It does so by presenting a language that repre-
sents a device’s function as achieving some purpose if the device is in a state that
is intended to trigger the function and the function’s expected effect is present.
While most work in the qualitative and model-based reasoning community has
been concerned with simulation, this language is presented as a basis for interpret-
ing the results of the simulation of a system, enabling these results to be expressed
in terms of the system’s purpose. This, in turn, enables the automatic production
of draft design analysis reports using model based analysis of the subject system.
The increasing behavioural complexity of modern systems (resulting from the

increasing use of microprocessors and software) has led to a need to interpret the
results of simulation in cases beyond the capabilities of earlier functional mod-
elling languages. The present work is concerned with such cases and presents
a functional modelling language that enables these complex systems to be anal-
ysed. Specifically, the language presented herein allows functional description and
interpretation of the following.

• Cases where it is desired to distinguish between partial and complete failure
of a function.

• Systems whose functionality depends on achieving a sequence of intermittent
effects.

• Cases where a function being achieved in an untimely manner (typically late)
needs to be distinguished from a function failing completely.

• Systems with functions (such as warning functions) that depend upon the
state of some other system function.

This offers significant increases both in the range of systems and of design analysis
tasks for which the language can be used, compared to earlier work.

2

ACKNOWLEDGEMENTS

Much of the research undertaken for this thesis was part of the work of the
SoftFMEA project, funded by the EPSRC under the critical systems program.
Of members of the department, I would especially like to acknowledge the assis-

tance of, and thank, my supervisor Dr. Neal Snooke and Professor Chris Price,
the other investigator on the SoftFMEA project. They have provided invaluable
comments on (and enthusiasm for!) the work in progress as well as proof reading
this thesis.
I would also like to thank the two colleagues with whom I shared on office dur-

ing this work, Stuart Lewis and Richard Shipman, for interesting and profitable
discussions; and the other members of the Model Based Study Group in the de-
partment.
On a personal level, my thanks to Fran for putting up with an at times hard

pressed husband, my parents for everything and the Aberystwyth Friends (Quak-
ers) for helping me keep my balance.
Thank you all.

To Fran, my parents and everyone else who brought me here.

3

Contents

1 Introduction 11
1.1 Motivation . 12
1.2 Research questions and original work 15

1.2.1 Original contribution of the present research 16
1.3 Scope of the present research . 16
1.4 Structure of the thesis . 17

2 The problem area 19
2.1 Tasks for model based reasoning . 19

2.1.1 Design analysis . 19
2.1.2 Support for the design process 25
2.1.3 Diagnosis . 25
2.1.4 Explanation and instruction 26
2.1.5 Discussion . 26

2.2 The systems to be modelled . 27
2.2.1 Partially achieved functions 27
2.2.2 Intermittent and sequential behaviour 28
2.2.3 Untimely achievement of function 29
2.2.4 Dependent functions . 29

3 Model based design analysis 30
3.1 Model based reasoning for design analysis 30
3.2 The nature of models for reasoning 31
3.3 Qualitative and quantitative models 32
3.4 Simulation for design analysis . 34
3.5 Ontologies for modelling . 39
3.6 Interpretation and simulation . 40

4 Knowledge for reasoning 45
4.1 Classes of knowledge for model building 45

4.1.1 Structural knowledge . 48
4.1.2 Behavioural knowledge . 50
4.1.3 Functional knowledge . 54
4.1.4 Teleological knowledge . 63
4.1.5 Using the four classes of knowledge 66

4.2 Relationships between the classes of knowledge 72
4.2.1 Relations between models within the grid 76
4.2.2 Discussion of the model sets 85

4

5 Representation of function 87
5.1 Requirements of a functional representation 88
5.2 Logic and functional description . 91
5.3 The trigger . 96
5.4 The effect . 98
5.5 Representation of purpose . 99
5.6 Relationship with the simulation . 101
5.7 Functional description and report generation 107
5.8 Notation used . 112
5.9 Discussion . 113

6 Functional decomposition 118
6.1 Subsidiary functions . 120
6.2 Using subsidiary functions . 123

6.2.1 Subsidiary functions with AND and OR 124
6.2.2 Subsidiary functions and exclusive OR 132
6.2.3 Functional decomposition and unexpected effects 133

6.3 A logical basis for subsidiary functions 135
6.3.1 Subsidiary functions and AND 138
6.3.2 Subsidiary functions and OR 139
6.3.3 Subsidiary functions and XOR 141

6.4 Relationships between system and function 142

7 Incomplete representations of function 146
7.1 Purposive incomplete function . 147
7.2 Operational incomplete function . 154
7.3 Triggered incomplete function . 157
7.4 Incomplete functions in functional decomposition 161

7.4.1 Asymmetrical functional decompositions 163
7.5 Differences between behaviour and purpose 164

8 Describing functions that depend on terminating, intermittent
and sequential behaviour 167
8.1 The strict sequence operator . 171

8.1.1 The sequence operator and temporal orderings 176
8.1.2 Using logical NOT . 177

8.2 The loose sequence operator . 178
8.3 Describing functions that depend on cyclical behaviour 182
8.4 Temporal aspects of a function’s trigger 185
8.5 Using the sequential operators . 187

9 Timing and function 192
9.1 Representation of temporal constraints 193

9.1.1 Consequences of untimely achievement of function 202
9.2 Temporal constraints using duration of intervals 202
9.3 Possible representations of timings 205

9.3.1 Qualitative modelling of time 206
9.4 Timing constraints in use . 207

5

10 Dependencies between system functions 210
10.1 Warning or telltale functions . 212
10.2 Fault mitigating functions . 217
10.3 Interlocking functions . 220
10.4 Recharging functions . 223
10.5 Relations between functions . 227
10.6 Simulation of dependent functionality 228
10.7 Uses of modelling of dependent functions 230

11 The Functional Interpretation Language in use 232
11.1 The Functional Interpretation Language

and design analysis . 233
11.1.1 Seat belt warning system . 233
11.1.2 Simulation of the seat belt warning system 235
11.1.3 Functional description of the seat belt warning system . . . 240
11.1.4 Mapping between the functional and system models 246

11.2 Other possible rôles for the language 251
11.2.1 Diagnosis . 252
11.2.2 Functional specification of system design 253
11.2.3 Explanation generation in education and training 257

11.3 Functional description of software 257
11.4 Relationship with the simulation engine 261

11.4.1 Sequential behaviour and temporal constraints 262
11.4.2 Simulation through the design lifecycle 263
11.4.3 Dependent functions . 264

12 Conclusion and future work 267
12.1 How the Functional Interpretation

Language meets its requirements 267
12.2 Future work . 272

A Formal description of the Functional Interpretation Language 275
A.1 Elements of the language . 275
A.2 States of device functions . 276
A.3 Subsidiary functions . 277
A.4 Sequential operators . 279

B Notation used for functional description 281
B.1 The language . 281

B.1.1 Labels . 281
B.1.2 Operators . 282
B.1.3 Functional states and relations 282
B.1.4 Temporal constraints . 283
B.1.5 Other keywords . 283

B.2 Conventions used in this thesis . 284

C Common elements of diagrams 285

D Description of functional decomposition tables 287

6

Glossary 292

References 294

7

List of Figures

4.1 Grid to show possible model relationships 74
4.2 Minimum set of AutoSteve models for FMEA 79
4.3 Models used in the behavioural approach 81
4.4 Models used in Functional Representation 82
4.5 Models in CFRL . 83
4.6 Models used in Multimodeling . 84
4.7 Models for Compositional Modeling 85

5.1 Circuit diagram for the torch example 109
5.2 Model relationships using the proposed functional representation . . 115
5.3 The relationships between the elements in the torch functional de-

scription . 116

6.1 Combining effects using AND . 124
6.2 Combining subsidiary functions with AND 126
6.3 Combining subsidiary functions with OR 128
6.4 Combining effects with OR . 130
6.5 Model relationships for the hob example. 143

7.1 Five functional decompositions . 162

8.1 Using logical operators resulting in a single time slot 168
8.2 Finding function at the end of simulation might miss significant

effects . 169
8.3 Specifying sequences of immediately successive effects 172
8.4 Using SEQ to specify effects that should start together. 173
8.5 The loose sequence operator allows less closely constrained temporal

relationships . 179
8.6 Two temporally unrelated effects. 180
8.7 Using OR to constrain unordered sequences 181
8.8 A cycle of behaviour that continues until a further trigger. 182
8.9 Using the sequence operator in the seat belt warning system. 188
8.10 Synchronising the horn and lamp in the seat belt warning system. . 189

9.1 A simple temporal constraint on achievement of a function. 194
9.2 Adding temporal constraints to a sequence of effects. 196
9.3 Accumulation of tolerance if timing is taken from the initial trigger. 196
9.4 Using L-SEQ to specify timing of a sequence. 198
9.5 L-SEQ does not specify duration of preceding effect. 198

11.1 Schematic for the seat belt warning system. 234

8

C.1 Common symbols in the model relationship diagrams 285
C.2 Common symbols in the function composition diagrams 286

9

List of Tables

5.1 Achievement of function using trigger and effect. 92
5.2 Part of an FMEA report for the torch example. 110
5.3 States of a function and the resulting text. 111

6.1 Achievement of a function in terms of subsidiary functions. 136
6.2 Functional decomposition using AND 138
6.3 Functional decomposition using OR 140
6.4 Functional decomposition using XOR 142
6.5 Functions associated with a car’s exterior lights. 143

7.1 Decomposition using partial incomplete functions with AND 150
7.2 Decomposition using partial incomplete functions with OR 150
7.3 Decomposition using partial incomplete functions with XOR 152
7.4 Functional decomposition using triggered incomplete functions with

AND . 159
7.5 Functional decomposition using triggered incomplete functions with

OR . 160
7.6 Functional decomposition using triggered incomplete functions with

XOR . 160

8.1 Using SEQ to describe different temporal relations 176
8.2 Describing partly ordered temporal relationships 180

9.1 Part of a design analysis showing late achievement of a function. . . 208
9.2 Part of a design analysis showing late achievement of a function

with no specified consequences. 209

10.1 Telltale and warning functions . 212
10.2 Fault tolerant functions . 217

11.1 Part of an FMEA report for the seat belt system example. 250

D.1 Example functional decomposition table 287
D.2 Example of decomposition using PIFs 289

10

Chapter 1

Introduction

The research described herein is concerned with the idea that automated model

based design analysis of engineered systems depends on more than the ability

to simulate the behaviour of the system. The ability of a simulation to derive

knowledge of a system’s behaviour can only describe that behaviour in terms

of internal variables, such as the level of current in an electrical system. For

many design analysis tasks, the finished output is a textual (or tabular) report

describing the effects of unexpected aspects of the system’s behaviour and the work

of interpreting the (internal) results of the simulation is still left to the engineer.

To automate these design analyses, what is required is a way of automating this

interpretation of the results of the simulation, presenting the results in terms of

the system’s purpose. This requirement entails some means of mapping aspects

of the system’s behaviour to achievement of its purpose.

The major component of the original work presented here is a language to support

this mapping of a system’s behaviour to its purpose to allow this interpretive task

to be included as part of an automated design analysis. This enables the automatic

generation of a textual design analysis report that describes the behaviour of the

system in terms of how well it fulfils its intended purpose rather than in terms of

changes to internal values. The thesis is therefore based upon the idea that there

are two stages to automated design analysis.

• Simulation of the system is carried out to establish its behaviour, given

knowledge of the system structure and behaviour either of the components

that make up the system or the physical laws underlying the system’s do-

main(s).

• Interpretation and comparison of the results of the simulation in terms ap-

propriate to the design analysis being undertaken, allowing useful compar-

11

isons to be made either between the (simulated) behaviour of the system and

its intended behaviour or between the behaviour with some internal failure

and its behaviour when working correctly.

Most work in the field of model based reasoning has been concerned with the

simulation of systems’ behaviour while the present work proposes a language to

allow the automation of interpretation of the results of such a simulation in terms

appropriate to the design analysis task. It does this by enabling the description or

specification of the functions of a system, where function is taken to mean, in gen-

eral terms, a description of how the system fulfils its purpose, mapping a system’s

behaviour to its purpose. This knowledge of the function of the system can be

used to interpret the simulated behaviour of the system, identifying those signifi-

cant changes of behaviour that should be included in an automatically generated

draft design analysis report. The relationship between different classes of knowl-

edge in model based design analysis, such as knowledge of behaviour, function and

purpose, is discussed in Chapter 4.

1.1 Motivation

The modelling of engineered systems using knowledge of function (Sticklen et al.,

1989; Iwasaki et al., 1993) has been in use for a number of years, both for deriving

the behaviour of a system from knowledge of its structure and the function of

its components, and for interpreting the results of a qualitative simulation (in

which the system behaviour is derived from the system’s structure and component

behaviour and / or behavioural rules associated with the system’s domain) in terms

of the system’s purpose. See Chapters 3 and 4 for a fuller discussion of approaches

to modelling and simulation of engineered systems.

Historically, most work with functional modelling has been concerned with using

knowledge of the function of a system’s components to derive the behaviour of

the system as a whole. This functional knowledge can be used to support various

design tasks. A design can be developed by refining a functional model based

on the purpose of the system until the functions can be related to individual

components (Iwasaki et al., 1993). The purpose of the system is the need it

is intended to meet while its function or functions are concerned with how it

meets that need. In this case, the system functions are decomposed in terms

of connections between components. Functional modelling has also been used

to support diagnosis (Sticklen et al., 1989) and Failure Mode Effects Analysis

(Hawkins & Woollons, 1998). In all these cases, system function is expressed in

12

terms of component functions which are related to each other primarily in terms

of the connections between components, so capturing the structure of the system.

The functional descriptions used are adequate for systems where the individual

component functions are simple (such as a wire conducting) but many systems’

functions depend on behaviour of greater complexity, requiring a more expressive

language for their description.

Another use of functional knowledge is interpretation of the results of simulation

in terms of the purpose of the system as a whole. Either a numerical or qualita-

tive simulation tool can be used to establish the behaviour of the system being

analysed. Knowledge of the system’s functions maps this behaviour to the sys-

tem’s purpose, allowing significant changes of behaviour to be identified. This is

particulary valuable for design analysis tasks such as Failure Mode Effects Anal-

ysis (FMEA) where the engineer must generate a report showing the effects of

component failures on the system as a whole (Price, 2000). That report will be

couched in terms relating to the intended purpose of the system, so instead of

noting that a failure results in no current flowing through a car headlamp, for

example, it will note that the headlamp fails to light, and the road will not be

lit and the legal implications. This task is a good candidate for automation as

it is extremely repetitive and it is best carried out early in the design process,

so any changes found necessary can be made easily, and analysis can be repeated

whenever changes are made to the design of the system, so the effects of such

changes can be established. While a simulation tool will help with the analysis,

the interpretation will still be the task of the engineer. Sneak Circuit Analysis

(SCA), in which the system is analyzed to ensure there are no unexpected current

flows resulting in unintended system outputs (Price et al., 1996a; Savakoor et al.,

1993), is another design analysis task where similar arguments apply. The need for

interpretation of results of simulation for model based design analysis is discussed

at greater length in Section 3.6.

If the interpretation of the simulation is to be automated (so a draft design anal-

ysis report can be produced completely automatically) then some way of mapping

the system’s behaviour to its purpose is needed. One approach to this that has

been found to be useful is “functional labelling” (Price, 1998). Functional labels

are used to identify the system’s outputs and to associate them with the purpose

of the system, identifying those outputs required for the system to fulfil a given

purpose. This approach has been found to work well for design analysis of many

electrical systems and is in use in a commercial design analysis tool that allows

the automatic generation of FMEA and SCA reports of electrical circuits in the

automotive sector. It has the advantage that the functional models are simple, as

13

only those components whose inputs or outputs are also inputs or outputs to the

system as a whole need explicit representation in the functional model. The func-

tion of other components is (implicitly) derived from their behaviour. Also, the

functional model has no need of failure mode functions as the component’s failure

modes (that is, faulty behaviours) are associated with its reusable behavioural

model. The functional models are also reusable for systems having a similar pur-

pose, so the functional model for a car lighting system, for example, can be kept

and reused for the corresponding systems in future models. All that need be

changed is the mapping between the component level functions and the state of

the actual components.

While this use of functional knowledge does differ from that of other workers in

the field, there is common ground. The modelling of function in terms of the inputs

to and outputs from a system is not inconsistent with the definition of function as

“[a device’s] effect on its environment” in (Chandrasekaran & Josephson, 1996).

Also the mapping between purpose and behaviour and input and output in func-

tional labelling means that the approach specifies the function as the “expected

behaviour” consistently with the notion of function in (Iwasaki et al., 1993). While

the aim of the research is a language to support the interpretation of behavioural

simulation of engineered systems, it is suggested that there is enough similarity

between these notions of function that the proposed language should also be use-

ful for increasing the expressiveness of the functional decomposition in ways that

are appropriate for other functional reasoning tasks, besides the interpretive one.

These other uses of the language presented as the main result of the research are

discussed in Chapter 11.

With the increasing use of microprocessors in modern systems, it has been found

that the functional labelling approach is limited by the expressive power of the

language used to describe the system functions. The present research is concerned

with the development of a more expressive language for functional description that

allows functional modelling of systems whose functionality depends on behaviour

of greater complexity, specifically in the following areas:-

• Systems where a function might be partially achieved.

• Systems whose functionality depends on intermittent or sequential outputs.

• Systems where there is a danger of the required outputs being achieved in

an untimely manner (typically after an undue delay).

• Systems with subsidiary functions (such as monitoring or fault mitigating

“back up” functions) whose achievement depends on the state of some other

14

system function.

These requirements are discussed in Section 2.2. In addition, to increase the range

of tasks for which the new language is applicable the relationship between different

aspects of the representation of function has been more closely defined, as has the

nature of a hierarchical decomposition of function, following on from the work

in (Snooke & Price, 1998). The primary result of this research is therefore a

language for the description of function that is applicable both to a greater range

of engineered systems and to a greater variety of design related tasks.

1.2 Research questions and original work

The aim of the present work is to devise an appropriate language to allow the

interpretation of the results of model based simulation of a system in such a way

as to enable the automatic generation of a (draft) report describing the system’s

behaviour in terms appropriate to the design analysis task.

The question the research attempts to answer is can we devise a language for

interpretation of behavioural simulation of engineered systems (of arbitrary com-

plexity) in terms of the systems’ purpose? The thesis presents such a language,

together with a discussion of its appropriateness both for the task of automatic

generation of design analysis reports and also for other related tasks. There is also

discussion of the relationship between the simulation and interpretation tasks of

a model based design analysis tool. This language expresses the behaviour of the

system in terms of its functionality rather than in terms of its internal state.

There has been earlier work in Aberystwyth on the use of the functional descrip-

tion of an engineered system for the interpretation of model based simulation,

described in (Price, 1998) and (Snooke & Price, 1998). The present work builds

on this earlier research by presenting a language that supersedes the earlier lan-

guage by providing a more complete logical basis for description of system function

and by increasing the language’s expressive power. This enables the description of

the functionality of systems whose behaviour is of greater complexity than could

be handled by the earlier language. This earlier work resulted in the development

and marketing of a commercial model based design analysis tool which, before the

acquisition of the company set up to market the tool, was known as AutoSteve.

This name has been used throughout this thesis, but it should be noted that all

references to AutoSteve are to the tool as developed at the University of Wales

Aberystwyth, not to more recent developments by any other organisation. It is

15

believed that all references to the tool are to materials already in the public do-

main. The tool, now known as Capital Analysis, is described in the web site of

Mentor Graphics, the current developers1.

1.2.1 Original contribution of the present research

The contribution of this research is a language for the description or specification of

a device’s function. The language supports the mapping of the device’s behaviour

to its purpose, allowing interpretation of the results of the simulation of a device

in those terms. This allows the automatic generation of design analysis reports

that state whether or not the device achieved its purpose as opposed to merely

listing the values of internal variables, as output by the simulation. The language

supports the description of device functions that depend on behaviour of greater

complexity than earlier approaches allowed, specifically to fulfil the requirements

listed in Section 1.1 above. The use of this language in design analysis is discussed,

including how it contributes to the generation of design analysis reports. There

is also discussion of how the language might be used in other activities, such as

supporting the design process. The language is for use in a design analysis tool that

combines the simulation of the subject system and its interpretation. This raises

the question of what relationship exists between the simulation and interpretation

tasks of such a tool. There is discussion of this relationship, specifically of the

requirements placed on the output of the simulator if the expressiveness of the

language is to be used to the full.

1.3 Scope of the present research

The language to be presented as the principal result of the research is intended

to allow the interpretation of model based simulation of an engineered system’s

behaviour in such a way as to enable the automatic generation of a textual report

describing the results of the design analysis. The language is not intended for

use in simulation, instead of the conventional model based approach of deriving

knowledge of system behaviour from knowledge of its structure and underlying

behaviours. The language is useful for different design analysis tasks though it is

most valuable in those tasks that require the repeated running and comparison

of simulations, such as Failure Mode Effects Analysis (FMEA). As the aim of the

language is the description of a system’s behaviour in terms of its purpose, it is,

1The Mentor Graphics web page on this design analysis tool is at
http://www.mentor.com/harness/analysis.html

16

perhaps, less appropriate for description of natural systems, such as ecological

systems where the notion of purpose is not appropriate.

With the increasing use of software, a system’s function might be implemented

using behaviour of considerable complexity. The language is to be capable of

describing systems whose correct functionality depends on behaviour of any ar-

bitrary level of complexity. However, it should be noted that in these cases the

simulation must itself be managed in such a way that this complexity of behaviour

is captured. The relationship between the simulation and interpretation of such

systems is discussed in Chapter 11. The function of a system is independent of

any domain whose laws are used as the basis for simulation. A domain can be

seen as having a self contained set of rules and be concerned with a set of internal

variables, so as to allow a certain class of systems to be simulated. It is possi-

ble, given a suitable set of domain rules, to simulate systems without a complete

knowledge of physics. An electrical system can be simulated using a set of rules

and variables (such as current and voltage) applicable to the electrical domain,

for example, but an electrical simulator is restricted by the rules it embodies to

that domain. Similar functional descriptions could be applied to, for example,

gas cookers or electric cookers, even though the design analysis tool might use

different simulators, embodying different domain rules and variables. While ex-

amples have been taken from different domains and application areas, many of

the examples are of electrical systems in the automotive sector. This is a result of

the background to the research rather than any limitation of the language itself.

The fact that these systems are familiar to most people means that they are well

suited for use as illustrative examples in the thesis.

1.4 Structure of the thesis

In outline, the earlier chapters, Chapters 2 to 4 are background material, incorpo-

rating the literature review, the description of the original work starts in Chap-

ter 5. Chapter 2 provides background material, including a description of the

design analysis tasks the research is concerned with and the nature of the systems

whose complex functionality causes difficulties for existing descriptive languages.

This is followed, in Chapter 3, by a brief survey of model based reasoning and

simulation of engineered systems so as to provide a context for the rôle of the

present research. That chapter also discusses the interpretation of simulation in

more detail. The different classes of knowledge used in model based reasoning

and their relationships are discussed in Chapter 4, concentrating on the place of

knowledge of function and purpose (teleology) in model based reasoning. There is

17

also a discussion of different researchers’ approaches to the use of these classes of

knowledge and the relationships between them. A proposed definition of function

that is appropriate for the present work is also introduced in that chapter. Chap-

ter 5 contains a description of the representation of function used in the present

research, which forms the basis for the functional description language used for

interpretation of simulation. This language is referred to as the Functional Inter-

pretation Language to distinguish the specific language from a general reference to

a language for description of function. The following chapters (Chapters 6 to 10)

then extend this by describing the features of the language (and the underlying

representation of function) that are used to describe more complex functionality.

The language is evaluated against a real world case study and its use for different

design analysis tasks and other areas is discussed in Chapter 11. That chapter

also discusses the relationship between the language and the simulation. Finally

the conclusion discusses the degree to which the language meets the aim of the

research and discusses future work.

18

Chapter 2

The problem area

This chapter describes two aspects of the problem area the Functional Interpre-

tation Language is concerned with. First there is a description of the design

analysis tasks that the Functional Interpretation Language can help automate,

together with other related tasks for model based reasoning about engineered sys-

tems. This is followed by a more detailed discussion of the characteristics of the

systems whose functions we want to describe. This includes introductions to some

of the case study systems to be discussed later in the thesis, which are used for

illustration and evaluation of the proposed Functional Interpretation Language.

2.1 Tasks for model based reasoning

Model based reasoning has been used for a variety of tasks which it seems worth

briefly discussing here, so as to provide background for later discussion of the dif-

ferent approaches to these tasks. Here we are primarily concerned with reasoning

about man made systems, specifically for design analysis, so this section will con-

centrate on such tasks. However it is worth noting that model based reasoning

has also been applied to other tasks and also to natural as opposed to man made

systems, and these areas will be briefly introduced so as to inform later discussion

as to the usefulness of the present research in these areas. The usefulness of the

Functional Interpretation Language for some of these tasks will be discussed in

Chapter 11.

2.1.1 Design analysis

One model of the design process describes the process as an iterative cycle between

synthesis of candidate designs and analysis of these designs so as to evaluate the

19

candidate design and to inform any further iterations of the cycle (Wood et al.,

2005). The synthesis of candidate designs is discussed briefly in Section 2.1.2 but

the main focus of the present work is on automating the analysis of candidate

designs.

Design analysis can be considered to be the checking of a system design so as

to ensure that it meets the intended requirements and that any unintended be-

haviours (such as those resulting from component failures) have no unduly haz-

ardous consequences. These are promising tasks for model based reasoning as

they can be carried out by running a simulation of system design to establish

its behaviour. The behaviour is derived from knowledge of the system’s struc-

ture (possibly derived from a schematic drawn in a suitable CAD tool) and either

knowledge of the behaviour of the individual components or the physical domain

rules that underpin the system as a whole. The automation of these analyses

allows them to be carried out early in the design process and repeated for succes-

sive refinements of the design as the design process progresses. It is also a good

deal simpler than constructing a physical model of the proposed system design.

The use of model based and functional reasoning for these design analyses, and

different approaches, will be discussed more fully in the following chapters. There

are broadly speaking two groups of design analysis task:-

Design verification tasks where the design is simulated to ensure that its be-

haviour matches the intended functionality of the system. Such tasks require

the simulation to be compared with a representation of the intended func-

tionality of the system. They therefore need such a representation to act as

the basis for this comparison. These tasks include design verification itself

and Sneak Circuit Analysis.

Failure analysis tasks where the behaviour of the system with some failure (typ-

ically a failure to one or more components) is compared to its behaviour

when working correctly to identify the consequences of such component fail-

ures. Such analyses include Failure Mode Effects Analysis and Fault Tree

Analysis.

The design analysis tasks listed as examples above will each be briefly described

in the following sections.

All these design analysis tasks have in common that they are concerned with how

well the system fulfils its intended function (rather than any more detailed aspects

of its behaviour). They can perhaps usefully be grouped by the term “functional

analysis”. This term will be used to refer to this group of design analysis tasks

here on in.

20

2.1.1.1 Design Verification

The purpose of this analysis task is to ensure that the design for the system is

such that the system will fulfil its intended purpose. A model based approach to

design verification might simulate the system’s behaviour and compare the results

of the simulation with a suitable description of the system’s intended behaviour.

The resulting report will naturally need to highlight any areas where the simulated

behaviour fails to match the intended behaviour.

An approach to design verification has been proposed, (McManus et al., 1999)

based on the design analysis tool developed at Aberystwyth, in which an attain-

able envisionment of the system’s behaviour is compared with a representation

of the intended functionality. An attainable envisionment means that the sys-

tem is simulated in every state that can be reached from a specified initial state.

That paper suggested using a state chart as a means of representing the intended

functionality. This thesis will discuss the use of the Functional Interpretation

Language for this purpose, in Chapter 11.

A good deal of research, especially in the field of reasoning about function, has

been done into automating design verification. (Chandrasekaran et al., 1993)

see the design process as one of verifying and refining candidate designs, using

knowledge of the design’s functionality to inform its physical (structural) design.

This verification and top-down refinement of a system’s functional design is also

used by (Iwasaki et al., 1993).

2.1.1.2 Sneak Circuit Analysis

Sneak circuit analysis ensures that there are no unexpected paths (for electric

current or hydraulic pressure) through the system, resulting in unexpected (and

possibly damaging) actions taking place. Where related subsystems have several

switches (possibly including safety override switches) it is possible that certain

combinations of switch positions will result in an electrical path being completed

for some unexpected part of the system (typically with current flowing in the

opposite direction to that intended). Such “sneak circuits” are often found when

subsystems are combined. It can be carried out by running repeated simulations

of the circuit in different configurations, such as combinations of switch positions.

These simulations could be qualitative or quantitative. While running repeated

quantitative simulation will reveal sneak circuits, the output of the simulator will

need scanning to identify the variable values that indicate the sneak. The use of

an interpretive language can automate this identification of the significant values

21

generated by the simulation. This technique is a good candidate for qualitative

simulation, as sneak circuits can be detected from schematics of the system and are

also best found early in the design process, when changes to the circuit are easily

made. As the analysis requires repeated simulations (and their interpretation)

it is also time consuming if done manually, so automation of the task leads to a

worthwhile saving of an engineer’s time.

Sneak circuit analysis appears to be an analysis that can readily be added to a

tool intended for FMEA, see (Price et al., 1996a), suggesting SCA as a second rôle

for an automatic FMEA tool, and (Savakoor et al., 1993). The latter paper dis-

cusses the combination of sneak circuit analysis and FMEA. That paper includes

an example sneak circuit with potentially serious consequences, the inadvertent

lowering of an aircraft’s landing gear.

The name suggests this analysis is specific to certain domains, such as electrical

and hydraulic, unlike FMEA. However, one of the central ideas behind SCA is that

new failures might arise from the combination of subsystems and this possibility

is not limited to any domain, of course.

2.1.1.3 Failure Mode Effects Analysis

It is suggested by (Bowles & Wan, 2001) that Failure Mode Effects Analysis

(FMEA) is one of the most beneficial tasks in a well structured reliability program.

In FMEA, the effects of known failure modes (faulty behaviours) of components or

subsystems are projected to the next layer in the component / subsystem / system

hierarchy. For example, an electric wire has the failure mode “open circuit” (that

is, the wire breaks). Clearly its effect is that it fails to connect the components at

its ends, but the effect on the system will, of course, be determined by its position

in the system. The rôle of FMEA is to find the effects of all such component (or

subsystem) failures. The result of conducting an FMEA is a report describing

the (system level) effects of component failures, together with figures indicating

the failure’s severity, likelihood of detection and the probability of its occurrence.

The report might also allow the action to be taken by the design team to remove

the failure, and the person responsible for taking these actions, to be added. The

model based FMEA tool developed in earlier work at Aberystwyth automates the

generation of this report by simulating the behaviour of the circuit, both when

functioning correctly and when components have failed. The automatically gen-

erated FMEA report can then be edited by hand, allowing the resulting work to

be specified and allocated.

FMEA is a strong candidate for automation as it is a laborious task and also

22

requires sufficient knowledge of the system and the domain to allow the effects

of faults to be traced. It therefore needs to be undertaken by an experienced

engineer. The laboriousness of the task means that FMEA will often only be

undertaken once, late in the design process, to verify correctness of the design.

Automating the process allows FMEA to be carried out more readily, so it can be

done more often, to see whether changes to the design are necessary, and to trace

the effects of changes to the design, rather than simply carrying out one FMEA

late in the design life-cycle, to confirm the safety of the system. If FMEA can be

done early in the design process, any drawbacks with the design are identified in

time for changes to be made in a cost effective manner. The benefit of running

FMEA early makes its automation a good candidate for the use of a qualitative

reasoning technique, as the necessary simulation of the system can be done with

incomplete knowledge. This is valuable in the automotive industry, for example,

as schematics of the electrical systems will typically be drawn before the actual

components to be used are specified and well before the actual wiring runs (which

depend on the design of the vehicle’s bodywork) are known. Therefore, complete

knowledge of the system, sufficient for a full mathematical simulation will only

come late in the design process.

In many application areas, it is becoming increasingly the case that some of the

intended behaviour of devices is implemented using programmable components,

so software is taking a greater rôle. The increasing use of software in modern

systems, has led a need for software FMEA of embedded systems, as identified

by (Goddard, 2000). That paper suggests two complementary methods, system

level FMEA, based on the top level design and detailed software FMEA, based on

source code. This might raise interesting questions for the automation of FMEA

of systems including significant software, as either model might be incorporated

into an FMEA of the system in which the software is embedded. A technique for

semi automatic safety analysis (including FMEA) is proposed by (Papadopoulos

et al., 2001).

2.1.1.4 Fault Tree Analysis

Fault Tree Analysis has much in common with FMEA, see (Price et al., 1997). A

fault tree relates a fault (i.e. a system failure) to its possible causes (i.e. component

failure). As FMEA relates component failures to system failures, a simple fault

tree can be generated from an FMEA report, by grouping the various component

failures covered in the FMEA by the system failure they lead to. Clearly for the

fault tree to be complete, the FMEA must also be complete, and it is also likely

that there will be some component failures that must be listed in several places

23

in an FTA report, as the same component failure might result in several distinct

system failures. (Price et al., 1996c) discusses the idea of generating a fault tree

from an FMEA. An FTA report can be used as a starting point in diagnosis, as

the symptom can be looked up and the possible causes found.

2.1.1.5 Prioritising failures

As noted in the description of FMEA above, the seriousness of a failure might be

estimated by the design engineer and this estimate expressed using three numbers

between one and ten. These are multiplied together to arrive at the failure’s Risk

Priority Number (RPN). Any alteration made to the system as a result of the

design analysis might depend on how high a failure’s RPN is. Failures with a high

RPN will be given higher priority for corrective work on the system. The RPN

is the product of three values, each of which can take a value between 1 and 10.

These are

Severity Indicates the seriousness of the consequences of the failure. A value of

1 is insignificant, 10 means the failure is likely to result in injury, death or

severe financial loss.

Detection Indicates the likelihood the failure will be noticed by an operator

before the failure results in its likely consequences. A value of 1 means the

failure is easily detected, 10 that it is likely to remain undetected.

Occurrence An indication of the likelihood of the failure occurring. A value

of 1 is highly unlikely, 10 is probable. Note that this is a property of the

reliability of the component, in terms of the failure that leads to a system

failure, rather than of the system failure itself. The same system failure

might have different causes, each with their own value for occurrence, so a

headlamp might not light because the bulb filament has blown (likely) of

because a connecting wire has broken (less likely).

Note that the values for detection and occurrence are not probabilities. Indeed

the value for detection varies inversely to the probability of detection. A value

of zero cannot be used for any of these, of course, as the product (the RPN) will

then be zero and information about the other two factors of the RPN is lost. It is

worth repeating that these values are estimates and it is possible for a failure to

be given different (inconsistent) values for severity and detection in different parts

of an FMEA report although this should not happen. This description is useful

because the values for severity and detection will be used to illustrate features of

24

the decomposition of system functions in Chapter 6. As occurrence is associated

with the likelihood of the cause of a system failure occurring, it has less to do

with the functional model of a system than with the behaviour of the component

whose failure causes the fault, so is of less interest in the present work.

2.1.2 Support for the design process

There has been a good deal of research on automated support for the synthesis

aspect of the design process, some approaches to which are discussed briefly in

Chapter 4. One common model of this aspect of the design process is to refine

the design’s function, decomposing the device function into contributing functions

until these functions map onto component behaviours, so guiding the selection

of components and also the (schematic) structural design of the device. While

the approaches differ in detail, as do the representations used, the approaches

of (Umeda & Tomiyama, 1993; van Wie et al., 2005) as well as (Iwasaki et al.,

1993) all use this decomposition of function and mapping to behaviour as a way of

modelling functional design and an approach to developing computerised support

for the process.

There has been work attempting to use a functional representation language to

capture the functional decomposition of an intended system and use this to guide

the design of the system’s physical structure. For example, (Chandrasekaran et al.,

1993) seek to use their functional representation to capture the functional aspects

of the design rationale of a product, using it to help the design process, which they

see as being one of iterative refinement of the functional design of the product,

evaluating alternative candidate designs.

It has been argued, by (Gero, 1990) that a product’s functional design (concerned

with what a product is to do) is derived from a causal mechanism, this being an

intermediate stage between the requirements specification and the actual physical

design. A functional modelling language has been used, by (Iwasaki et al., 1993),

to capture this causal structure of a proposed system.

This raises the possibility of a model based reasoning tool being used during the

design process itself, rather than to verify the results of a (provisionally) completed

design, as is the case with the design analyses introduced earlier.

2.1.3 Diagnosis

Diagnosis can be considered a distinct field from the analyses introduced above, as

all the analyses above take as a starting point the use of a full set of known com-

25

ponent failures, and they reason from the component failure to a system failure.

Reasoning for diagnosis, of course, works in the opposite direction as the system

failure is known and we wish to find candidate component failures. A fault tree

is one possible means of finding such candidates, of course. (Price et al., 1996b)

discusses the use of fault trees (generated from FMEA) for diagnosis.

Other research has looked at qualitative reasoning as an approach to automated

diagnosis, (David & Krivine, 1986) suggests using knowledge of structure and

behaviour as the starting point for system diagnosis. However, (Price & Hunt,

1989) argues that additional knowledge is needed besides the qualitative model.

It is necessary as a qualitative model might lead to ambiguous results; additional

knowledge, such as knowledge of the diagnosis task might be used to remove

these ambiguities. That paper discusses how such additional knowledge is used

by other workers in the field. Qualitative reasoning and its rôle in design analysis

is discussed in the next chapter.

2.1.4 Explanation and instruction

One other area in which model based simulation and analysis can be used is in the

field of demonstrating and explaining a system’s working. This might be done to

help with instruction of operators of a hazardous system, instructing them on the

system’s failures and how to react to them. The advantages of this with respect to

systems whose failures are hazardous need no explanation. For example, (Tuttle

& Wu, 2001) discusses the use of CyclePad, a thermodynamic modelling program,

in instruction in thermodynamics for engineering students.

2.1.5 Discussion

The design analysis tasks introduced above are all candidates for automation using

model based reasoning, especially qualitative reasoning, as the aim is to identify

significant differences between the intended behaviour and the actual (simulated)

behaviour, in the case of the design verification tasks and between the faulty

behaviour and the correct behaviour (that is with no component failures) in the

failure analysis tasks. In many cases the aim is to find system behaviours with

safety implications, such as the loss of a required output (car lights failing to light)

or internal behaviour changes with safety related consequences, such as electrical

short circuits. In other words, these analyses are less concerned with whether there

are minor changes in the operating state of the system (such as small changes in

26

current) than they are with changes to system state or behaviour that result in

significant changes to the system’s effect on its environment.

As has been noted, these analyses are best carried out early in the design process

when any changes shown to be necessary are easily made and can usefully be

carried out before factors that affect a full numerical model of the system (such

as exact component specifications, cable runs) are known. The use of qualitative

reasoning techniques allows the automation of these analyses at an early stage

in the design process. However, for full automation of these analyses, more is

needed than the ability to run qualitative simulations of the systems. Some way

of presenting the results of these simulations in terms of the system’s effect on

its environment is required. This is where the ability to interpret the results of

simulation is important. There is a fuller discussion of the use of model based

reasoning in design analysis in Chapter 3.

2.2 The systems to be modelled

Another area introduced in Chapter 1 that might usefully be expanded on early

in the thesis is some description of the characteristics of the systems that a model

based design analysis tool might be called upon to model, specifically those fea-

tures of these systems that cause problems for existing functional description lan-

guages. Where appropriate, this discussion will be illustrated using real-world

example systems. The discussion is confined to characteristics of the systems

themselves, the problems caused by these characteristics is left to discussion of

the uses of functional knowledge and the languages themselves, in Chapter 4.

This section is subdivided into sections dealing with each significant characteristic

in turn. These subsections correspond to later chapters describing the proposed

language’s approach to describing these characteristics.

2.2.1 Partially achieved functions

Where a function has more than one effect, it might be necessary to distinguish

between cases where the achievement of some of the effects, but not all, is better

than nothing, so the failure of the function is mitigated and those where the

absence of any required effect is tantamount to complete failure to achieve the

expected function. For example, where a warning system has both an audible

and visual warning (a telltale lamp and a warning horn, perhaps), the failure of

either one of these outputs does mean that some warning is still given, so while the

27

warning function is clearly not correctly achieved this is arguably a less complete

failure than is the case if both outputs fail. This can be contrasted with, say the

failure of either car headlamp, which, partly because of the legal implications can

reasonably be considered to amount to complete failure of the headlamp system,

as it renders the car unusable. This area is discussed in more detail, together with

an approach to representing these cases, in Chapter 6.

2.2.2 Intermittent and sequential behaviour

One aspect of many examples of engineered systems that causes problems for

simple functional languages is the idea that a system function can depend on a

sequence of distinct behaviours (or subsidiary functions). A simple example is a

washing machine whose overall function can be decomposed into a sequence of

wash, rinse and spin dry functions, each of which run to completion during the

cycle and which must occur in the right order. This function cannot readily be

modelled in terms of a single goal state as the goal state (as far as the machine

itself is concerned) is identical to the start state — the machine is idle with clothes

inside. The only difference is likely to be that the control systems (whether elec-

tromechanical switchgear or microprocessors) will be in a different state but this

is not appropriate for checking the function as this only relates indirectly to the

purpose of the machine. To illustrate, the switchgear might be in the required

final state but if the water flow was malfunctioning, the clothes will not be clean.

In many application domains (such as the automotive sector) this characteristic

results from the increasing use of microprocessors. Their use either allows exist-

ing, behaviourally simple systems to be used for more complex behaviours or the

addition of new, behaviourally complex systems. An example of the first case is

the use of counted flashes of a car’s direction indicators to confirm remote locking

or unlocking of the vehicle, for example two flashes to confirm locking, one to con-

firm unlocking. The second case is illustrated by the fitting of a warning system

to indicate that the driver’s or front seat passenger’s seat belts need fastening. An

example of such a system not only lights a telltale lamp on the dashboard but also

sounds a buzzer intermittently for a programmed period of time. This means that

once the function has been correctly achieved, the buzzer is once again idle, of

course. How the proposed functional language models such functions is described

and discussed in Chapter 8.

28

2.2.3 Untimely achievement of function

This characteristic is related to the above. What is meant in this context is that

the expected effects of the function are achieved but not at the right time, relative

to the action that triggers the function. A simple example might be an excessive

delay between a driver pressing the dip switch and the headlamps dipping. Notice

that this differs from the case where the dipped headlights are on even though

they should not be. This particular example is perhaps unlikely, but cases where

the lamp switching is carried out using a network using a carrier sense multiple

access collision detection protocol (such as the widely used CANbus) could result

in delays caused by network loading resulting in collisions delaying transmission

of a message.

It will be appreciated that where a system function depends on intermittent

outputs, the timing of these outputs might be significant. In the seat belt warning

system mentioned above, the individual buzzes must each last a suitable length of

time, so the description of the buzzing sequence might be qualified by how long

each buzz and pause should be. The proposed approach to modelling cases where

a function is achieved late (or early) is discussed in Chapter 9.

2.2.4 Dependent functions

The term “dependent function” is used to refer to a system function that comes

into operation in response to the correct achievement (or otherwise) of some other

system function. Typical examples might be a monitoring or warning function

whose output is triggered by the failure of some expected system function or a

fault mitigation function that is triggered by a failure in the main function. The

nature of these functions is considered in more detail in Chapter 10.

One other similar area is where the action of an input depends on the current

state of a system. A simple example is a toggle switch. For example, in some

cars switching between dipped and main beam is accomplished by the identical

action of pulling and releasing the dip switch. In this case some way of identifying

the fact that a given action (operating the switch) has different consequences is

needed. These consequences depend on the current state of the system.

Having introduced various aspects of the problem area, it is time to consider

approaches to the use of model based and qualitative reasoning in the field of

design analysis.

29

Chapter 3

Model based design analysis

Having introduced the design analysis tasks for which model based and qualitative

reasoning offers a useful approach, this chapter introduces model based reasoning,

discusses its rôles in design analysis and the approaches to model based design

analysis taken by different researchers. Most work in the field has been concerned

with simulation of systems, to gain knowledge of their behaviour, so this area is

discussed here, although the main thrust of the present work is concerned with

the interpretation of the results of simulation. This chapter will conclude with a

discussion of the place of interpretation of the results of this simulation in design

analysis, and discuss the relations between this need for interpretation and dif-

ferent approaches to simulation. This material will lead on to a discussion of the

different classes of knowledge used in model based reasoning and the relationships

between them, which forms the content of the following chapter.

3.1 Model based reasoning for design analysis

The field of model based reasoning has grown from that of qualitative reasoning

which is an area of artificial intelligence with the aim of imitating a human expert’s

ability to reason with imprecise data. For the design analysis tasks outlined in

Section 2.1 the qualitative approach has several advantages. The ability to reason

with limited and imprecise data allows the analysis to be carried out early in

the design process, before all the information necessary for a full mathematical

analysis of the system is known. In addition, these analyses are concerned with

analysing the behaviour of a system in terms of its functionality (how well it

fulfils its intended purpose) which generally means that major changes to the

behaviour are what are of interest. For example, in a power windows system, we

are more interested in the fact that both windows open and close, rather than

30

the more detailed case that the voltage across both motors is close enough that

they open or close at much the same speed. Even though this is of interest, it is

not significant for FMEA or SCA, for example. Naturally the use of qualitative

models of a system will lead to an analysis that captures changes to the system

that lead to such qualitative (with the term used in its more colloquial sense)

changes in behaviour. For example, a typical qualitative electrical model of an

electrical system might use three levels of resistance (zero, load and infinite) and

these will be associated with three levels current; short, active and none. Therefore

any change in the system’s structure must entail a substantial change in current

(from active to none, perhaps, if the resistance of part of the circuit changes

from load to infinite) which will clearly imply a significant change in the system’s

behaviour. This is not to say that there is not a rôle for numerical analysis in

these functional design analyses, merely to suggest that qualitative reasoning is

a useful approach to such analysis. There is more on the relationship between

qualitative and numerical simulation in Section 3.3 and on how they affect the

need for interpretation of the results in Section 3.6.

3.2 The nature of models for reasoning

Reasoning, in this context, is taken to mean the generation and use of knowl-

edge not explicitly included in the original description. For example, the aim of

qualitative simulation, the establishment of a system’s behaviour from knowledge

of its structure, is the generation of new knowledge about the system. The na-

ture of the knowledge to be generated and the use to which it will be put will,

of course, depend on the reasoning task. It will typically be the case that for

a design analysis task, the required new knowledge will indeed be knowledge of

the behaviour of the whole system. How this knowledge is generated will in turn

depend on what knowledge is available to the reasoning system and what methods

are available to work on this available knowledge. For tasks dealing with failures

of the subject system, such as FMEA for example, we might generate a model

of the behaviour of the correctly working system and a model of the behaviour

of the system incorporating the failure and then establish the effects of the fail-

ure by comparing the two models. For design verification the generated model of

the system’s behaviour might be compared with some suitable description of the

system’s required behaviour.

The idea of generating new knowledge from the input models suggests that they

need be executable, though (Leitch et al., 1999) notes that the model itself need

not be executable, if the reasoner includes some sort of simulation engine to work

31

with the model. In an electrical design analysis tool, for example, the structural

model of the circuit need not itself be executable, if a circuit analysis engine (such

as “CIRQ” (Lee & Ormsby, 1991; Lee, 1999a)) provides the necessary facility to

allow reasoning (in this case the derivation of the system’s behaviour) to take place

using that model. In contrast, a state chart might be considered an executable

model of a system. It can certainly be suggested that some way of working with

the model is needed.

Another important feature of the models used as the basis for reasoning is that

they must capture sufficient knowledge of the system to be analysed. There are

two aspects to this. The model must capture sufficient knowledge of the system

to be a sound basis for the reasoning process and the system itself needs to be

sufficiently self contained to allow all the necessary knowledge to be represented.

If a system’s behaviour is to be derived, we need to be able to model all the

(significant) influences on the system. In other words we need to be able to define

the boundaries of the system such that the closed world assumption holds true, and

the boundaries must themselves be such that the amount of knowledge they must

contain does not lead to a model of intractable complexity. This is one reason why

electrical systems have been commonly used as subjects for qualitative reasoning.

The domain knowledge is relatively simple and electrical systems are sufficiently

self contained that the closed world assumption holds in that inputs to and outputs

from the system can easily be defined and other effects on the system (such as

heating from the environment) can be ignored without so simplifying the models

that useful reasoning can no longer be done.

A related aspect of whether a model is adequate for the analysis is the possibil-

ity that for the design analyses discussed in Section 2.1 that are concerned with

analysing the system in terms of its intended functionality a detailed simulation

might require the use of more information than is necessary for the analysis con-

cerned, leading to excessive overhead in capturing the information. This case,

especially as it relates to the relationship between numerical and qualitative sim-

ulation is discussed in the next section.

3.3 Qualitative and quantitative models

Model-based reasoning is concerned with building tools capable of reasoning about

physical systems from first principles, rather than by attempting to explain the

system in terms of rules specific to that system, as is the case with first generation

expert systems. In contrast the rules governing a model based system are more

32

general in scope, such as qualitative versions of the physical laws that underpin a

system’s behaviour. It has grown from the field of qualitative reasoning (QR), to

include quantitative and mixed models as well as those seeking to capture qual-

itative behaviour. This, of course, introduces an immediate distinction between

using conventional mathematical models of a system, such as underpin the nu-

merical electrical circuit analysis tools Saber (Saber, 1996) and SPICE (Quarles

et al., 1980), and qualitative models.

It might be supposed that if mathematical (numerical) models are available,

there is no reason to use a less precise alternative. However, there do appear to

be good reasons for using qualitative techniques alongside conventional numerical

analyses. This section will discuss these and the differences of approach between

using qualitative and numerical analyses. The electrical domain provides a good

example of this, as there exist both numerical and qualitative tools for circuit

analysis.

Conventionally, an engineer will seek to use a mathematical model of the system

under consideration. Tools exist to allow computerised analysis of electrical cir-

cuits using mathematical models, notably Saber and SPICE. These tools allow a

variety of sophisticated analyses. These analyses are detailed and are concerned

as much with how well a system works, how efficient it is for example, as with how

it works, such as whether it fulfils its purpose. It is quite possible to argue that

there is a place for more high level analyses besides these. It will be noticed, for

example, that this list does not include either FMEA or SCA. This is not to say

that such tools cannot be used to help with such functional analyses of electrical

systems, but there are difficulties with so doing.

One difficulty with using the sort of numerical analysis undertaken by these

tools is that it needs considerable interpretation. A change in the system might

alter the potential across some significant component. The analysis will produce

a listing of all changes so will include small changes of no significance as well

as any substantial changes. It is left to the user to interpret this list, to decide

which changes are significant. Some design analysis tasks, including FMEA and

SCA, are concerned with such significant changes to the circuit’s operation. A

qualitative analysis of the system will naturally highlight significant changes, such

as those to the system’s topology, but will not capture relatively small parametric

changes. If the results are to be interpreted in terms of system function, then

this is more easily done from a qualitative analysis because of this highlighting of

major changes to the system. This is valuable for design analysis tasks such as

FMEA. How an interpretive language relates to this difficulty is introduced later.

If a numerical analysis of the system is to be done, full mathematical models of all

33

the components are needed. One aim of qualitative reasoning was to imitate the

human reasoner’s ability to “reason with less data and less precise data” (Forbus,

1988) than is necessary for a full mathematical analysis. The availability of all

the data necessary for mathematical modelling is especially unlikely early in the

design life cycle of a system, when functional refinement of a design might result

in its schematic being drawn before the actual components are specified. Indeed,

in the automotive sector, a full numerical analysis will need to wait until such

details as the cable runs are known, which information depends on the design of

the vehicle’s bodywork and so will not be available until late in the design process.

These difficulties mean that there is a rôle for a simpler qualitative tool, espe-

cially for use early in the design process. Qualitative reasoning is an established

branch of artificial intelligence that seeks to capture the intuitive knowledge of

engineers and scientists and which they will use to guide their analyses of the

problem. As electrical systems are typically self contained with a well known

set of physical laws, that domain has been an important one for research into

qualitative reasoning and various approaches have been tried.

3.4 Simulation for design analysis

There has been a variety of approaches to qualitative reasoning about systems

and as an aim of the present research is to establish relationships between these

approaches, and between the different models used, much of the rest of this chapter

and most of the next are concerned with discussions of these different approaches.

Arguably the most fundamental distinction between approaches is concerned

with the model of behaviour from which the system behaviour can be derived.

One approach makes use of some qualitative physics, such as that proposed in

(Hayes, 1985) or failing that a set of domain specific laws to provide a global view

of a system’s behaviour. In practice, a more realistic target seems to have been

to develop a useful set of rules sufficient for a specific domain (such as modelling

electrical circuits). The series - parallel - star reduction approach to reasoning

about electrical circuits of (Mauss & Neumann, 1996) is an example, discussed

shortly. The alternative approach reasons from knowledge of individual compo-

nents’ behaviour or function. The functional reasoning approaches of (Sticklen

et al., 1989; Sembugamoorthy & Chandrasekaran, 1986) and others are examples

of this approach. These contrasting approaches to reasoning about the behaviour

of a system are discussed in more detail in Section 4.1.2.

These qualitative physics based approaches contrast with the causal reasoning

34

approach of (de Kleer, 1984). That paper uses causal reasoning to derive the

behaviour of a circuit from its structure, and then uses teleological reasoning to

determine the circuit’s function. He is interested in reasoning about how a circuit

reacts to perturbations in its inputs. The circuit is modelled as a connected

graph of component models, each of which interacts with its neighbours, those

components with which it is connected. A component model is used when there is

an input to that component (such as a change in voltage or current). Components

only interact with their neighbours, so preserving a link between the behaviour

and structure of the circuit and only act directionally, so there is no negotiation

between components - a component’s input cannot be changed. This generates a

causal explanation of the circuit’s behaviour. This, of course, relies on the notion

that a change causes other changes, when actually they occur simultaneously, but

is a useful model of an electrical engineer’s intuition. The other area of this paper,

the use of teleological reasoning to link behaviour and purpose, is briefly discussed

in the section on knowledge for reasoning, section 4.1.4. This differs from the

qualitative physics approaches in not being dependent on domain laws.

One possible difficulty with this approach is scalability as a complete causal net

may be of intractable complexity. One approach to this problem is to make use

of knowledge of a device’s function in order to organise causal knowledge of the

device. This is one of the goals of Functional Modelling (Sticklen et al., 1991).

Knowledge of device function is used to inform the construction of and so reduce

the complexity of the causal net. This maintains the domain independence of

a causal (as opposed to a qualitative physics based) simulation while reducing

the problem of scalability. There is more on the uses of functional knowledge in

Section 4.1.3.

One difficulty with any causal reasoning based approach is that it cannot be used

to find the behaviour of systems that cannot be reduced to a chain of causality.

Examples of such systems include electrical circuits where it cannot be shown

which components are active, as directions of current flows cannot be found. It is

a weakness of techniques based on local information (such as component models)

that they miss global information that might add useful extra knowledge about

the circuit. This is a motivation for techniques that reason about a system’s global

structure. Examples of this approach can be found in the field of circuit analysis.

One classification of approaches to qualitative modelling of systems that relates

closely to the contrasting approaches noted above is to distinguish between those

that reason about interactions of components with their neighbours, such as (de

Kleer, 1984) and those that reason about the global structure of the system, such

as (Lee & Ormsby, 1991; Mauss & Neumann, 1996; Milde et al., 1999) in the

35

electrical domain. By “global” in this context is meant knowledge of the structure

of the system as a whole.

These “global” techniques can treat the circuit as a graph and replace constraint

propagation with graph analysis. Mauss and Neumann (Mauss & Neumann, 1996)

use series-parallel-star (SPS) reduction to reduce a circuit to a single resistance.

This resistive edge has a known direction of current and voltage drop, as it joins

power and ground. The act of reducing the circuit generates a tree which is

then used to trace the flow and voltage drop back to the original edges in the

circuit graph. This reduction allows circuits incorporating bridges to be modelled,

but the simple three valued qualitative resistance model will generally not allow

the direction of flow through a bridge to be established, it must be labelled as

ambiguous. The SPS reduction can be used in combination with a quantitative

resistance model, so directions of flow are found through bridges.

A similar approach is used by Milde at al (Milde et al., 1999) as they also re-

duce the circuit to generate a tree to represent the circuit structure. They use

qualitative analysis of the network to generate a diagnostic decision tree for the

circuit. They differ from both (Mauss & Neumann, 1996) and (Lee & Ormsby,

1991) in using deviations from the reference values for resistance, voltage and cur-

rent, as in diagnosis it was felt important to model the effects of slight parameter

deviations. Components have expressions to describe their behaviour, following

FLAME (Pugh & Snooke, 1996). In this approach, a component’s behaviour is

modelled as an expression relating its input and output. For example, a relay

might be modelled as “if there is current through the coil, resistance across the

switch is low”. A component behaviour is instantiated, the qualitative currents

are found and if the instantiated behaviour results in a violation of an internal

condition of the model, another component behaviour is used. Clearly if the all

component models result in such a violation of the internal condition, behaviour

prediction fails. This technique was intended for diagnosis, and as such can as-

sume that the original, correctly functioning circuit’s behaviour can be predicted.

This might not be the case if the topology gives rise to ambiguous current flows.

The paper does not suggest how this difficulty is approached.

A different simplification of the circuit is used by CIRQ (Lee & Ormsby, 1991;

Lee, 1999a). The circuit is represented as a graph of nodes, representing terminals,

and edges representing connections, with a value for resistance. This algorithm

also uses three values for resistance (zero, load and infinite) and the circuit is

simplified by combining the nodes connected by zero resistance edges into so-called

“supernodes”. The simplified graph is then traversed, finding the distance of each

node from power and ground. These values represent the qualitative potential

36

at each node, and can be used to derive the current flow, as current flows from

points of higher potential to points of lower potential. This allows directions of

current to be found for a circuit with no bridges but the same difficulty arises

with bridges as with (Mauss & Neumann, 1996), the three values for resistance

are not sufficient to find unambiguous flows. Clearly, where the original circuit

has bridges some of whose surrounding edges are of zero resistance, these edges

are removed in deriving the supernodes, so the circuit will no longer contain the

bridge. This algorithm is simpler than Mauss and Neumann’s SPS algorithm, but

gives identical results in three-valued qualitative analysis.

This problem with finding direction of flows through bridges has led to some

work in the use of more than three values for resistance. A development of CIRQ

has been devised and implemented, (Lee, 1999b; Lee et al., 2001). This allows any

number of values for resistance, provided they are of different orders of magnitude.

The idea of an order of magnitude follows (Raiman, 1986) and means that there

are no cases where a series of resistances add up to a total resistance as great as

the next higher level, so each level is insignificant relative to the next higher level.

This uses series parallel reduction to simplify the circuit and a variation of CIRQ’s

finding of potentials at the nodes in the circuit graph to find directions of current.

This allows bridges that are unbalanced by an order of magnitude to be identified

and the unambiguous current flow to be found.

AutoSteve (Price, 1998) uses CIRQ as a global (domain level) simulator com-

bined with component models that incorporate behaviour in a similar way to that

described in the discussion of the technique of (Milde et al., 1999). There is more

on the relationship between the structural and behavioural aspects of AutoSteve

in Chapter 4, but it is worth noting here that the component modelling has been

extended by allowing the use of state charts (Harel, 1987) to model components

with internal memory, as described in (Snooke, 1999).

In these cases, (Pugh & Snooke, 1996; Milde et al., 1999; Snooke, 1999), the be-

haviour of a component is specified by the user rather than being derived from a

complete qualitative physics (Hayes, 1985; Forbus, 1984), as was proposed as a tar-

get for qualitative reasoning. This makes the theoretical foundation less complete

than was intended by Hayes, as the bottom level of the system decomposition is

expressed in terms of knowledge of how components work rather than by physical

laws. However, it does capture the knowledge of the engineer who is designing the

system being analysed about electrical components in easily built models, rather

than relying on a library of domain theoretical models describing the behaviour

of components. Although a complete qualitative physics might have laws that

allow the behaviour of a relay, for example, to be derived, this will be a good deal

37

more complex than a simple description of its behaviour. In principle, a quali-

tative physics could, perhaps also derive failures of a component as is needed for

FMEA, but modelling the component in such detail as to allow, say, the ingress

of dirt to cause a relay to stick open seems impossible, as too much will need to

be known about the physical construction and environment of the component. It

seems a good deal simpler to allow the tool to capture the engineer’s knowledge

of component’s failure modes. It is worth noting that both AutoSteve and Milde

et al’s tool are intended for use by engineers, and have been developed as working

tools, so their usability is important. In practice, of course, component models

can generally be retrieved from a library. Simplicity of modelling and re-use of

models is important if a tool is to be used, there is little gained by automating a

task if the automation results in (or is felt to result in) more work than carrying

out the task manually.

All of these global reasoning techniques have in common the fact that they

depend on the circuit being represented by a network of resistances and that

the analysis is of the circuit in a steady state. This limits the components that

can readily be modelled — capacitors, for example, whose behaviour is dynamic,

cannot be included. In some application areas this is not too problematic, as such

components are rare. AutoSteve, for example, is capable of analysing the great

majority of circuits in the automotive sector. However, there are limitations on

the use of qualitative analysis of electrical circuits, both in the circuits that can

be analysed and the kinds of analysis. As both FMEA and SCA depend on the

topology of the circuit (the kind of steady state DC analysis of which qualitative

reasoning is capable) qualitative simulation is a suitable technique for these tasks.

This does, however suggest that there are complementary rôles for qualitative and

quantitative analysis.

Indeed AutoSteve has been extended to make use of a quantitative circuit analysis

tool (Saber). This means that later in the design life cycle, once components have

been specified, a more detailed analysis can be carried out for FMEA, allowing

possibly ambiguous current flows through bridges to be determined as well as the

level of current across fuses, so showing whether the fuse will blow correctly.

If a global view of the system is to be used, as in the cases discussed above,

then this needs to be combined with a global view of behaviour, as can readily

be done in the electrical domain. It could well be argued that it is impossible to

derive a system’s behaviour purely from its structure, there must be some suitable

notion of behaviour either locally (as in the constraint propagation approach)

or globally (as in a qualitative physics) from which the system behaviour can be

derived. The quoted aim of qualitative simulation being “to derive behaviour from

38

structure” is something of an over-simplification. Other domains might either have

a less convenient set of possible domain laws to capture this global behaviour,

or indeed none at all. One example of a domain where domain rules are not

appropriate is modelling of software. In this case a global view of the proposed

system architecture will have different rôles, such as tracing the dependencies of

specific variables through the system. There is more on the relationship between

global and local models of behaviour in section 4.1.2.

3.5 Ontologies for modelling

In the context of model based reasoning, by ontology is meant the nature of the

basis for modelling the system that is to be analysed, of what the model is primarily

composed. It can be seen as defining the chosen view of the nature of the system

being modelled. The model of the system might be composed principally in terms

of it components, the processes it embodies or the constraints that act upon the

possible values of the system’s variables. All of these alternative views might rely

on the same set of variables, so a model of an electrical system will use variables

for voltage, current and resistance, for example, whatever the ontology chosen.

The component centred ontology, see (de Kleer, 1984), describes a system pri-

marily in terms of its components. So a locomotive boiler, for example, will be

viewed as an assembly of a fire box and its water jacket, a pressure vessel, several

fire tubes and an inlet for the water (with a feed pump) and outlet for the steam,

and so on. This is a natural ontology for the design analysis of engineered system,

of course, as they are built up from components and this view of the system will

be readily available for analysis, as in the way an electrical simulator uses the

schematic as the basis for its model building.

The process centred ontology takes the alternative approach of viewing a system

as a collection of related processes, see (Forbus, 1984). Instead of the physical

components, the boiler will be viewed in terms of the processes of flow of water in,

steam out and the heating of the water by the fire. This ontology has been used

for modelling engineered systems, and also has a close relationship with the idea of

functional decomposition for design. For example, a domestic washing machine’s

wash function can be decomposed into the filling, heating, agitation and draining

processes. The idea of refining the functional specification of a system as part of

the design process is discussed in (Iwasaki et al., 1993). In this approach to design

the functional and physical designs are refined in parallel, one might use knowledge

of the functional design to inform selection of components. In the washing machine

39

example, the breaking down of the wash function leads to identification of a need

for a connection to a water supply, further decomposition of the requirements of

the fill subsidiary function will reveal the need for valves and filters in the inlet

system.

The constraint centred ontology views the system in terms of the constraints

on variables within the system. It is introduced in (Kuipers, 1986). Of the three

ontologies it is perhaps closest to conventional mathematical modelling. For exam-

ple, in modelling a boiler a constraint centred model will capture the relationship

between the pumping of water into the boiler and the boiler pressure — if water is

being injected, the pressure will tend to reduce. It is arguable that these models

are more abstract than is helpful for many design analysis tasks, a simpler view

of the system will be sufficient.

For the design analyses introduced in Section 2.1, the component centred ontol-

ogy might well be seen as the most natural and most work in the area of design

analysis does use this ontology. In failure analysis (such as FMEA), especially,

what we are concerned with is tracing the effects of the failure of a component

on the system and its environment. The fact that component failure modes are

known (and reusable) pieces of behavioural knowledge at a component level, seems

to support this view. The functional refinement of a design proposed as a model

of the process by (Iwasaki et al., 1993) in which function is refined until a function

can be related to a specific component can be seen as relating a process centred

view of the system to a component centred one.

3.6 Interpretation and simulation

While qualitative and model based reasoning have long appeared to be a useful

approach to automating design analysis (and other tasks), the approach has led

to the introduction of very few commercially useful tools. One problem with the

approach, at least from this point of view, could be argued to be the concentration

on the simulation of the subject systems, as this is insufficient to automate the

whole task of design analysis. It is suggested in (Price et al., 1997) that one of

the challenges an automated design analysis tool must meet if it is to be adopted

is that it should offer support for the whole process. To illustrate this idea that a

tool should support the whole design analysis process, let us consider the process

of conducting FMEA using a mock up of the system and using a model based tool

that simulates the behaviour of the system.

FMEA is conventionally undertaken by assembling the system, using examples of

40

the actual components so that its behaviour can be explored and the failure modes

introduced enabling the resulting behaviour to be compared with the behaviour

of the system working correctly. It will be appreciated that even a simple system

will have a good number of components, each with its failure modes whose effects

need to be assessed so this is a time consuming and repetitive task. Firstly, the

system’s behaviour when working correctly must be established, by assembling the

system and noting what happens in response to the various inputs (for example

when throwing switches). Then each failure mode is introduced in turn and the

same programme of alterations to the system inputs is repeated and changes to the

behaviour of the system (especially its outputs) relative to the correct behaviour

are noted and a report describing these effects is compiled. A model based (or

mathematical) simulation of the system can be expected to save time and might

be more reliable, if derived from the design schematic, as the possibility of the in-

advertent incorrect assembly of the test system is eliminated. If a simulation tool

is available, then the system can be simulated working correctly and the behaviour

noted as before and the failure mode behaviours can readily be modelled as these

changes can be inserted into the simulation tool. The drawback of this approach is

that the effects on the outputs of the system still need to be assessed by the engi-

neer. For example, suppose a numerical electrical simulation tool (such as SPICE)

is used, then a comparison between the correct and failure mode simulations might

show that there is a different level of current in parts of the circuit. It is left to the

engineer himself to assess how these changes affect how well the system fulfils its

intended purpose, by translating these internal changes to the system behaviour

to the state of its outputs. It could be argued that the use of a simulator on its

own is therefore not an unmitigated improvement. It saves having to set up the

test system and having to physically model the component faults but against this,

the mock up of the physical system will show the effects on the significant system

outputs. For example, any lamps will be seen not to come on. As the results of

the simulations need assessing manually, then the design analysis tool is limited

to running one simulation at a time and presenting the results to the user of the

system (the engineer) for assessment and comparison with the intended behaviour

(if the analysis is concerned with design verification) or the correct simulation (for

failure analysis). Therefore the use of a simulation or modelling tool does little to

alleviate the repetitive nature of such design analyses as FMEA or SCA. Indeed

as it will involve the interpretation of a complete set of simulations of the whole

system it might even lead to more work, as a human engineer will have enough

knowledge to avoid mentally simulating parts of a system that will be unaffected

by a certain failure.

41

Therefore if the advantages of model based simulation of systems are to be fully

realised for design analysis it is necessary to find some way of enabling the de-

sign analysis tool to present the results of the simulations in terms linked to the

purpose of the system. If this is done, the output of the tool can highlight the

important features of the behaviour of the system. For example, the simulator

might show that there is no current through the one side of a headlamps circuit

by listing all components in which the level of current has changed, while once

the purpose is known, all that need be shown is that there is no current through

one of the headlamps themselves. Also, where the analysis is numerical, the tool

might be able to distinguish between changes of system behaviour that result in

a small change to the level of current (for example) in some part of the system

and behaviours where the change in current results in some important change in

system output. A simulator with no capability for interpretation of its results will

inevitably list all changes of system state or behaviour now matter how insignifi-

cant. Therefore, one important rôle for interpretation of simulation is to provide

a useful basis for the comparison between different simulations in failure analyses

such as FMEA, so that these comparisons can also be handled automatically. A

related rôle is to provide a similar basis for comparison between the intended and

(simulated) actual behaviour of the system in design verification.

Previous work in Aberystwyth has used the approach of “functional labelling”

(Price, 1998) in which significant system states (or, usually, outputs) are associated

with intended system functions. This is discussed in more detail in Section 4.1.3.

This approach has been shown to be successful in allowing the automatic gener-

ation of design analysis (specifically FMEA and SCA) reports from model based

simulation and an important motivation for the present work is to increase the

expressiveness of the functional description language used to allow the approach

to be used for a greater variety of engineered systems.

Different simulation techniques might be used as the system’s design lifecycle

proceeds, allowing different analysis tasks to be done as more detailed informa-

tion about the system becomes available. Design analysis might begin by using a

simple three valued qualitative model, progressing through a more sophisticated

qualitative model (such as an order of magnitude based one) to a numerical model,

as the design process continues, as proposed in (Price et al., 2003). Running suc-

cessively finer-grained simulations allows a greater variety of analyses to be carried

out and also allows more detailed results of repeats of earlier analyses to be ob-

tained. This might serve to disambiguate earlier results, for example by showing

whether or not a fuse will blow, preventing an otherwise uncontrolled short cir-

cuit. For this to be done and textual design analysis reports to be generated

42

automatically the language used for interpretation of the results must be capable

of being mapped either to qualitative or numerical simulations. The commercial

tool developed from the earlier work at Aberystwyth does this, to allow either

three valued qualitative or numerical simulations (using Saber) to be compared

using the functional labelling approach to interpretation. A refinement of the idea

of comparison between the results of different simulations is the notion of an incre-

mental FMEA, (Price, 1996). In that paper it was suggested that the consistency

of automatically generated FMEA reports enabled two such FMEA reports of dif-

ferent versions of the same system to be compared by the automated FMEA tool

and a report to be generated that showed only the changes from the earlier report.

This means that FMEA can be carried out early because it is quick and cheap

to re-do the FMEA in response to changes to the system design. The use of an

interpretive language for this comparison allows the generation of a similar incre-

mental FMEA report following a finer grained simulation of the system, comparing

its results with an earlier coarse grained simulation. These differences have to be

identified using the interpretive language as the two simulations concerned might

have results that are incompatible — the current flow through some significant

component might be “medium” in a qualitative simulation and 2 Amps in a later

numerical simulation. The respective mappings between the simulations and the

interpretive (functional) description of the system provide the means to establish

whether these two values can be regarded as equivalent, in so far as they lead to

the same system behaviour or state. The idea of such incremental design analysis

reports comparing analyses at different granularities is discussed in (Price et al.,

2003) and a similar incremental approach to generating diagnostics is discussed in

(Price, 2002).

It was suggested in Section 3.2 that for simulation the system needs to be mod-

elled such that the closed world assumption applies. However, for automatic gen-

eration of design analysis reports, some knowledge of the systems environment is

required. For example, an FMEA report of a car headlamps circuit might say that

the left headlamp fails to light in full beam so the road ahead is not properly lit

and further note the legal implications. An ideal reasoner might know all this, of

course, but as we have seen, all a model based reasoner’s simulation is likely to

reveal is the loss of current through the part of the system that includes the left

hand headlamp’s main beam filament. The interpretation of the simulation can

and should allow the capture and use of knowledge other than that required for

the simulation itself in presentation of the output of the design analysis tool. Since

the report will typically be concerned with unexpected effects of the system on its

environment or on unexpected loss of intended effects, some way of weakening the

43

closed world assumption is required for interpretation of results. This is discussed

in more detail in the next chapter.

As the rôle of interpretation is concerned with the results of the simulation, it

need not matter how the simulation is carried out. However one possible use

of an interpretive language that might be of interest is in providing a basis for

comparison of a functional decomposition of a newly designed system, as proposed

by (Iwasaki et al., 1993) with the resulting component based behavioural model

of the same system, as an aid to verifying the correctness of the design.

This chapter has suggested that an aim of model based simulation is to derive

knowledge of the behaviour of a system from knowledge of its structure and that

the functional design analyses are concerned with how well the system fulfils its

intended purpose. Therefore we are concerned with different classes of knowledge,

both of the system itself and (some aspects of) its environment. The following

chapter considers these classes of knowledge in more detail and explores the re-

lationships between the commonly accepted classes of knowledge used in model

based reasoning.

44

Chapter 4

Knowledge for reasoning

As suggested at the close of the previous chapter, there are various classes of knowl-

edge held to be useful for model based reasoning. At the simplest, for model based

simulation there is a requirement for knowledge of the subject system’s structure

and some representation of underlying behaviour, whether derived from domain

rules associated with a qualitative physics or representations of the behaviour of

components at the bottom level of decomposition of the system.

The following section discusses these classes of knowledge. It incorporates sepa-

rate subsections for each of the four classes of knowledge commonly held to be of

interest in model based design analysis. These will introduce different researchers’

uses of these classes of knowledge. This section will conclude with a discussion

of the definitions of each class of knowledge used throughout the remainder of

the thesis. There follows a discussion of the different relationships between these

classes of knowledge used by different researchers.

4.1 Classes of knowledge for model building

There are frequently taken to be four classes of knowledge used in model based

reasoning. These were summarised as follows in (Chittaro & Kumar, 1998).

Structural knowledge describes system topology. The main question it answers

is “Which components are in the system?”.

Behavioural knowledge describes the potential behaviours of components. The

main question it answers is “How do components work?”.

Functional knowledge describes the rôles components play in a system. The

main question it answers is “What do components do?”.

45

Teleological knowledge describes the purpose assigned to a system by its de-

signer or users. The main question it answers is “Why is a component in

the system?”.

While there is a fair degree of agreement about the usefulness of these four classes

of knowledge there is less agreement about their uses. Indeed it is frequently the

case that a researcher’s approach will not actually use all four classes of knowledge.

The nature of structural knowledge is generally agreed, perhaps not surprisingly as

it is (generally) distinguished by its static nature as opposed to the more dynamic

nature of the other classes of knowledge. By this is meant that the components of

which a system will not change during simulation, assuming a component centred

ontology. The static nature of the presence of components in the system contrasts

with the accent on what components do and why in the summaries of the other

three classes on knowledge in the list above. In particular, different researchers

have quite different ideas of the rôle of functional knowledge. Some researchers,

especially in the functional reasoning community use it in simulation and so have

an idea of function that is closer to behaviour than those researchers who use

models of behaviour and have a notion of function that might be very close to

that of purpose. These areas will be considered in more detail in the separate

subsections as will the different approaches to these classes of knowledge.

These classes of knowledge are related. Each class can be regarded as an ab-

straction of the class below, provided there is no interest in how the item modelled

achieves its results. Näıvely, we can say that if a system is fulfilling its purpose,

we can say that its function is achieved, if its function is achieved it is behaving

correctly and if it is behaving correctly we need take no interest in its internal

structure. These abstractions are, of course, not helpful when the purpose is

not being correctly fulfilled as we are likely to want to know why not and what

behaviour might be occurring instead.

As a more concrete example of the idea that behaviour abstracts structure, an

electrical relay might have four terminals, two for the coil and two for the switch.

If current flows through the coil, the magnetic field generated will cause a core to

move, so changing the position of the switch, and allowing current to flow between

that pair of terminals. A structural description, combined with knowledge of

electromagnetism reveals this. However, it might be that for the purposes of the

analysis being undertaken, we can simplify the modelling by ignoring the structure

and simply using a behavioural model of the relay. This model might capture no

more knowledge than the idea that if current flows between one pair of terminals

(those associated with the coil), then resistance between the other pair of terminals

is changed to zero or, if we prefer to remove all reference to structure, that flow

46

of current is enabled (though not guaranteed) between the switch terminals. We

cannot state that there is a flow between the switch terminals as that implies

knowledge of the present behaviour of the reset of the system. This does suggest

that we can say that behaviour abstracts structure. The relationship between the

other classes of knowledge is more complex in that they depend on the context of

the system or component, what Chandrasekaran (Chandrasekaran & Josephson,

1996) calls the “mode of deployment”. This is because a component might have

several possible functions, and so several functional models, not all of which will

be used in a given system. For example, a wire might transmit electricity, transmit

a physical force, if pulled, or generate a sound if plucked. Which of these modes

of deployment is used will depend on the system.

The fact that different researchers have used these terms in different ways and the

resulting overlap between them, especially between behaviour and function and

between function and teleology had already been noted by (Franke, 1993). Franke

proposed a set of definitions not dissimilar to those listed above that stressed the

contextual differences between the classes of knowledge. His definition of struc-

ture has it describing the entities (either components or processes) that make up

the system. Behaviour is defined in that paper as the description of the struc-

ture ontology, within and at the boundary of the structural entity (such as the

component), so that the behavioural model is self contained, rather than being

defined in terms of the system. This definition does appear to differ from that

offered by (Chittaro & Kumar, 1998) in so far as there is no idea of explanation

of how the component works. Function is defined as the descriptive elements of

the structure ontology, expressed in terms of the behaviour of the system. This

does give a quite clear distinction between the idea of behaviour and function.

Finally teleology is defined as the elements of the structure ontology considered

in terms of the requirements or specifications of the system. This does lead to a

distinct differentiation between the classes of knowledge, but these definitions do

not appear to have resulted in the hoped for standardisation of usage of the terms.

The remainder of this section will consist of a consideration of different re-

searchers’ definitions and uses of each of these classes of knowledge in turn, before

a discussion of these classes of knowledge (most especially functional knowledge

as being most relevant to the present work) in which definitions used throughout

the remainder of the thesis will be introduced.

47

4.1.1 Structural knowledge

It is suggested that if the behaviour of a system is to be derived either from

knowledge of the behaviour of the individual components or from some global

knowledge of the behaviour of the system’s domain(s), then the reasoner at least

needs knowledge of what component is connected to what, so it can trace the paths

of changes in state of components through the system. There is a fair degree of

agreement between workers on the nature of structural knowledge. The definition

in (Chittaro & Kumar, 1998) has already been quoted, while (Kaindl, 1993) has

“a structural description deals with components and their relationships”. The

idea that structure can be represented in terms of entities and their connections

seems common, though whether these entities are components depends on the

ontology, so (Franke, 1993) notes that the entities might be (physical) components

or processes. Another possibility is that in (Keuneke, 1991), where components

are related according to their functional, rather than topological, relationships.

Keuneke notes that this might result in a different structural diagram. She uses

as an example the difference between a topological deconstruction of a telephone,

which might be split into chassis and handset, and a functional one that might

relate components concerned with transmission of signals as opposed to those

concerned with their reception. Each of these functional groupings will, of course,

include components in both the chassis and the handset. It might be argued that

a process based structural description will be not dissimilar to a functional one.

In Section 3.4, the idea that there are two contrasting approaches to the struc-

tural model was discussed. These are those that have a global view of the structure,

such as is needed by an electrical circuit simulator, see (Mauss & Neumann, 1996;

Lee & Ormsby, 1991) and those that simply add knowledge of what a component

is connected to (and how) to the component models, so there is no global view.

The causal approach of (de Kleer, 1984) and the functional approach of (Sticklen

et al., 1989) are examples. Possible difficulties with this latter approach to repre-

senting structural knowledge (or strictly approaches to simulation associated with

it) were raised in Section 3.4. It is, of course, the case that the structural model

used by the reasoning engine need not be the same one that a user sees. It would

be quite simple to derive knowledge of what each individual component is con-

nected to from a schematic (which encapsulates a global view of the system) or

indeed to derive a global view of the system from a complete set of component

models’ connections, so at the structural level, both approaches can be seen as

equivalent.

One important difference between these approaches, if a component centred on-

48

tology is used, is that the global view of a system must include knowledge of the

components’ internal structure if it is to be analysed using a domain level simula-

tor, such as CIRQ. Both (Mauss & Neumann, 1996; Lee & Ormsby, 1991) model

an electrical circuit as a network of resistances. This network of resistances has to

be constructed both from the schematic (if that is how the circuit’s connections are

captured) and from the internal structure of the components. This combination

of a global circuit model with components structural models is described in (Price

et al., 1997). The resulting design analysis tool provides a user interface to allow

these component structural models (which are reusable) to be drawn. This need

for knowledge of a component’s internal structure could make modelling of com-

ponents difficult in cases where the system designer has insufficient knowledge. An

example might be a system that interacts electrically with a complex Electronic

Control Unit (ECU), as the ECU will typically be supplied by an external con-

tractor, and will be a “black box” as far as the system designer is concerned. If

no global view is used, we need no knowledge of a component’s internal structure.

This provides a neat definition of what is meant by a component in terms of the

decomposition of the system, as it will be modelled purely in terms of function or

behaviour, rather than structure in that there is no need for a description of the

internal structure of the component. In other words, the idea of a component is

placed unambiguously at the bottom of the hierarchy of elements of the system,

rather than being underpinned by a model of domain level behaviour.

The difference between these contrasting approaches is illustrated by the relay

example above. Where there is a global view of the system combined with a

domain based simulator, the effect of a component’s behaviour might be described

in terms of change to the internal structure of the component. In the case of

the relay, “when current flows through the coil, resistance between the switch

terminal becomes zero, else it is infinite”. If there is no domain level simulator,

that description is not helpful, and will be replaced with one along the lines of “if

there is current flowing between the coil terminals then flow is enabled between

the switch terminals”.

Structural knowledge is commonly held to differ from the other classes of knowl-

edge by its static nature, in that the components in the system do not change

during the simulation. There are two areas where the static nature of structural

knowledge does not apply. One is where the connections between components

change during simulation. The relay is a good example of this as during an Au-

toSteve simulation the circuit will be simulated (using CIRQ) and if there is found

to be current in the relay’s coil then the switch will close, changing the resistance

of the switch and so adding an electrical connection between the components pre-

49

viously separated by the open switch. This does, of course, change the structure

of the circuit. The other area in which the static nature of structural knowledge

does not apply is where a process based ontology is used. While new components

are not added to the system during simulation it can certainly be the case that

running a simulation will result in individual processes starting or stopping.

4.1.2 Behavioural knowledge

It has already been suggested that the primary aim of model based reasoning (cer-

tainly when used for design analysis) is to generate knowledge of the behaviour

of the system as a whole. This aim was often stated as “deriving behaviour from

structure” but it is the case that some knowledge of underlying behaviour (either

at a domain or component level) is also required. The early aim was to establish a

qualitative physics (Hayes, 1985) that consisted of underlying knowledge of quali-

tative versions of physical laws that would (in principle) allow the behaviour of any

system to be derived from knowledge of its structure. It might, for example, be

feasible to derive a model of the behaviour of an electric motor from such a physics

and then incorporate this behavioural model (or these behavioural models) into

model based simulation of a larger system. This approach does have drawbacks,

however. The first is the amount of work required in generating the necessary

underlying physics, and the difficulty of devising suitable qualitative versions of

physical laws. Related to this issue is the fact that many qualitative models of

behaviour at a component level are very simple. To return to the motor example,

it is hardly worth qualitatively simulating a motor (even if the physics is available)

to learn, essentially, that if you put a flow of current through the windings, you get

torque at the shaft. This simple model of behaviour is something that engineers

know, so is readily captured by the system without such low level simulation. If

there is no underlying set of laws from which we can derive the behaviour of any

element, then this suggests the need for some approach to capturing knowledge of

behaviour at the bottom level of the component / subsystem / system hierarchy.

Different researchers are concerned with behaviour at different levels of the com-

ponent — system hierarchy. As noted in the introduction to this section, (Chit-

taro & Kumar, 1998) defines behavioural knowledge as describing the potential

behaviours of components. That is, they are concerned with the use of behavioural

knowledge as an aspect of the basis for simulation. In contrast, (Kaindl, 1993) has

a behavioural description representing the potential behaviours of a system. This

might be read as suggesting that this sees the behavioural description as the target

of simulation rather than as knowledge to be used in reaching the target. Kaindl

50

is concerned to distinguish between behaviour and function and sees behaviour

as describing how a function is achieved. (Keuneke, 1991) is also concerned with

this distinction and also has the rôle of behaviour as explaining how an expected

result (function) is achieved. The overlap and distinction between function and

behaviour will be considered in greater detail in the following subsection.

One aspect that these various definitions of behaviour have in common is that

they are concerned with representing the state of the system or component itself,

so there is no explicit representation of the system’s (or component’s) environment.

Function, by contrast, typically does place the effect of a device’s behaviour in the

context of its surroundings, as will be discussed in the next section. This local

nature of behaviour is illustrated by the definition in (Franke, 1993) where the

behavioural representation consists of the descriptive elements of the structure

ontology (that is components or processes) within and at the boundary of the

structural entity. An apparent example of this distinction between behaviour and

function is (Sasajima et al., 1995) which has behavioural representation simply

as “necessary and sufficient information for simulating state changes”. In other

words it has nothing about what the state is intended to achieve. Instead it is

concerned solely with the system in isolation. The other definitions cited here

also represent behaviour in terms of state, though (Franke, 1993) has a sequence

of states where states map variables onto values as an example of a behavioural

representation, as opposed to (an element of) a definition.

As suggested earlier, there are two approaches to behavioural modelling. The

original intention of the qualitative reasoning community, of developing a qualita-

tive physics that would result in a set of physical laws available for deriving the

behaviour of any system, is typically simplified to a set of domain laws, allowing

systems in that domain (such as electrical systems) to be analysed. For example

the approaches to electrical analysis in (Lee & Ormsby, 1991; Mauss & Neumann,

1996; Milde et al., 1999) all model the circuit as a resistive net, allowing the use of

relatively simple domain rules, sufficient to model and simulate most (but not all)

circuits. Exceptions include circuits that include capacitors if the domain model

has no rule for modelling charge. An alternative approach is to model behaviour

as local to a component and trace the influence of that behaviour through the

system.

In practice a combination of these approaches might be used. Both (Price et al.,

1997; Milde et al., 1999) use a domain based simulator to model the behaviour

of the circuit as a whole, combined with component behavioural models that will

affect the structure of the circuit and so cause changes to the circuit’s behaviour.

These researchers use different approaches to modelling the circuit, (Milde et al.,

51

1999) uses the series — parallel — star approach of (Mauss & Neumann, 1996)

while (Price et al., 1997) uses CIRQ, (Lee & Ormsby, 1991). However they both use

similar component models that have dependency expressions to model changes to

the component’s internal structure as a result of its behaviour. The relay example

used earlier might have the dependency expression

if coil.i = ACTIVE then switch.r = ZERO else switch.r = INFINITE;

where i is (qualitative) current and r is resistance. The meaning is, of course,

that resistance between the switch terminals is zero if and only if there is current

in the relay’s coil, otherwise it is infinite. The use of these behavioural models

means simulation is iterative. (Price et al., 1997) describes how the domain level

simulator (CIRQ, in this case) will be run on a circuit in its initial state and then

the components’ behavioural models are checked to ascertain if any changes to the

circuit topology result from the state of the circuit established by the simulation.

These changes are made and the process repeated until a steady state is reached.

For example, if the initial run of CIRQ shows that there is current flowing through

the coil of a relay, the resistance of its switch is changed to zero and CIRQ run again

with the changed circuit. The software component that manages this interaction

between the circuit’s structural model and the components’ behavioural models is

described in (Price et al., 1997).

This use of a library of component behaviour models avoids the overhead of cre-

ating a sufficient set of domain rules to allow components such as (in the electrical

domain) relays and motors to have their (typically) simple behaviours to be es-

tablished by additional simulation. These component models are reusable as they

are independent of the context of the component. It will be appreciated that this

is consistent with the idea that behaviour is local. This does require some care in

modelling component behaviour. An electric motor will generate torque if there is

current in the windings, but whether this torque results in a rotation will depend

on the state of the system, for example that all bearings are correctly aligned

and lubricated so as to allow rotation of the mechanical components to which the

motor is connected.

Where this approach is used, some components need no explicit representation

of behaviour. A wire (used as a connector in an electrical circuit) has no need

for such an expression as its behaviour will not change during simulation and

any changes to the wire (such as failures) can be represented by changes to the

structural model. For example, if a wire is to be modelled as broken (for failure

analysis), its resistance can simply be changed from zero (assuming a qualitative

model) to infinite. If it is to be modelled as creating a short circuit than that

52

can be modelled by adding a zero resistance connection between the wire and the

component it is shorted to.

In contrast, it might be the case that some components have an internal be-

haviour that is too complex for representation by a simple dependency expression.

The increasing use of electronic control units (ECUs) in electrical systems is a case

in point. In these cases a more complex model of behaviour might be required.

For example, (Snooke, 1999) describes the use of state charts to model complex

component behaviour. The system adopted for the tool as developed actually dif-

fers slightly from the description therein, as a component’s interaction with the

system is through its electrical terminals rather than the ports discussed in the

paper. The ports were intended to allow non electrical interactions.

State charts are an extension of state transition diagrams for finite state ma-

chines, see (Harel, 1987). They add three features:

• Hierarchical decomposition. A state can have subsidiary states so that to be

in the state is to be in one or other of its subsidiary states, with transitions

between the subsidiary states and also transitions between the so-called “su-

per state” and other high level states. A transition leaving the super state

entails leaving whichever subsidiary state is active.

• Concurrency. A super state can be divided such that to be in the super state

is to be in more than one of its subsidiary states concurrently. There will

typically be two (or more) concurrent subsidiary state charts, both of which

are active when the super state is active. Leaving the super state entails

leaving each concurrent group of sub states.

• Communication. A state chart might fire a transition which has an associ-

ated action firing a transition in another part of the state chart, or in the

case of many state chart based languages, another related state chart.

As such they are a useful formalism for representing components such as ECUs

whose behaviour implements logic rather than being modelled by domain rules.

Strictly speaking, of course, such components could conceivably be modelled in

terms of domain laws with a model of the governing logic (the software) being

used to guide the iteration through the domain level simulations. This seems un-

duly complicated, however, as this would reduce the simulation to operating at

the gate level of a logic component when all that is needed is an adequate model

of the governing logic. Naturally, if what is modelled is the logic, this depends

for correctness on both the model used for simulation being an accurate model of

53

the actual component’s implementation of the intended logic and that implemen-

tation being itself being correct. A possible approach to modelling software for

design analysis, specifically FMEA, is proposed in (Snooke, 2004). The approach

allows dependencies between variables to be traced statically, showing the effects

of erroneous values. The intention is that either the source code or a graphical

model of the code can be used for such an analysis so this would help ensure the

correctness of the models used in design analysis by avoiding the need to create a

further model of the software (such as a state chart).

The division between a domain based simulator for simulating the system as

a whole (or at least for the whole of that part of a system associated with a

specific domain) and component behavioural models, as in (Price et al., 1997;

Milde et al., 1999) works best if all interactions between components are simulated

at the domain level, so each component model is self contained. Modern systems,

however, in many application areas are making increasing use of data buses for

passing signals between parts of the system. This means that some interactions

within a system are best modelled at a behavioural level in much the same way as

complex component behaviours and for the same reason, that there is no benefit in

modelling such digital signals at the bit level, even assuming an electrical simulator

is available. This raises the difficulty that the correct correspondence between the

behavioural and structural model is less well maintained. An electrical circuit

simulator can readily use the system structural model (possibly derived from an

ECAD schematic) as its primary source but if message passing is modelled at the

component behavioural level, using state charts, then the structural model must

be checked specifically to ensure that there is a suitable connection between the

transmitting and receiving components. Note that all a component behavioural

model can do is make a signal available to the network. It cannot model its

transmission as that depends on the system outside the transmitting component.

This loss of the simulation’s reliance on the structural model might suggest an

increased rôle for functional knowledge in these cases.

4.1.3 Functional knowledge

Of the four classes of knowledge discussed here there is arguably least agreement

about the nature of functional knowledge. There is a good deal of difference be-

tween how different researchers treat this class of knowledge. While (Chittaro

& Kumar, 1998) defines functional knowledge in terms of the rôles components

play in the system, answering the question “what does a component do?”, that

paper notes that function is actually an overloaded term. Besides this so-called

54

“purposive” definition that is concerned with the relation between behaviour and

purpose (teleology), that paper offers an alternative definition of function. The

alternative, “operational”, definition defines function as a relation between input

and output of energy, information or material. It is perhaps closer to the mathe-

matical idea of a function. In addition to the two definitions, (Chittaro & Kumar,

1998) also gives two alternative formalisms for representing function.

Associational defines the function of a component in terms of its effect on the

system or environment. This might relate a component’s function to a sys-

tem purpose, so there is an association between this representation of func-

tion and the purposive definition above. It works well when there is a one

to one mapping between component and output.

Definitional defines function in terms of low level primitives, such as flow and

state. In state based models, the semantics of each unit of function is defined

by the model builder. This introduces the problem that different model

builders will define function differently. In flow based models, a function is

defined as a relation between input and output, which suggests an association

with the operational definition of function. A set of functions is defined for

the modelling system, not by the model builder. Definition of a complete set

is a difficulty, but given a sufficient set, it is less subjective than the state

based approach.

These representations differ in that the associational representation associates a

function with the world outside the system, with the purpose or effect of achieving

the function, while the definitional representation associates a function with values

of flow or state that are intrinsic to the system model itself. This distinction

supports the idea that the associational representation is readily associated with

the purposive definition of function, while the definitional representation can be

associated with the operational definition.

Function is a relational concept in that it establishes relations between a system’s

(or component’s) behaviour and its purpose. This can be thought of as abstracting

behaviour as, if we are to assign a function to a component, then in analysis of the

system, we need not be concerned with how that component fulfils its function,

merely that it does. It can be argued that function in this view simplifies the

effects of a behavioural representation, as the system’s state (resulting from the

behavioural description) is represented in terms of some goal state, as in (Sasajima

et al., 1995). While this abstraction might be useful if a device is fulfilling its

function it is less useful if the device is failing to do so, as we are likely to want

to know more about the effect of the faulty device than that it is not fulfilling its

55

function. This is, therefore, arguably not a useful abstraction for failure analysis,

as we wish to model what happens when a component fails to fulfil its function,

and in doing so model the effects of faulty behaviour. The behaviour of some

component that is failing to fill its intended function might have other, unexpected,

side effects on the behaviour of the system.

Different workers frequently have their own definition of function, but these can

in general be placed within the context of the overall framework outlined above.

Simplistically there are two main schools, one sees function in a more or less

behavioural context, contrasting it with the idea of purpose while the other sees

function in terms of purpose. An extreme case of this latter approach is that of

(Kaindl, 1993) which simply has function as the intended purpose of a component,

so that the function of a steam release valve is to prevent a boiler explosion. An

example of the opposite, behavioural, approach is that of (Navinchandra & Sycara,

1989) where function is represented in terms of inputs and outputs. Function

has also simply been defined as a device’s effect on the flow of material, energy

or information through the device, without reference to the physical processes

that cause the effect (van Wie et al., 2005). This can readily be seen as an

abstraction of behaviour. The absence of reference to physical processes also

seems consistent with the idea in Functional Modeling (Sticklen et al., 1991) that

functional decomposition of a system can be stopped at a level where “world

knowledge” can be treated as the cause of some function’s effect. This allows the

function of a motor, for example, to be explained simply in terms of what motors

do. This is therefore not dissimilar to the idea of a dependency based (or even

state based) model of a component’s behaviour, in that that model also abstracts

away the underlying domain rules.

One area where there is some common ground between these two schools is the

idea that function is to be considered in the context of the enclosing system or its

environment. While (Kitamura et al., 2002) notes there is no consensus on defini-

tion of functionality of artifacts, that paper suggests that most functional models

represent intended goals or rôles of the behaviour and then they are dependent on

the context of the components in contrast with behavioural models [that are] in-

dependent of context. This agrees with the definition of function in (Franke, 1993)

as the descriptive elements of the structure ontology considered in the context of

the larger, enclosing mechanism or system. This idea of function as being in the

context of the component’s (or system’s) surroundings seems to raise interesting

questions about the nature of component function and its use in simulation, which

will be discussed in Section 4.1.5. The idea that function is less local to a device

than its behaviour is suggested by (Sembugamoorthy & Chandrasekaran, 1986)

56

defining function as what the response of a device is to some external stimulus, as

opposed to behaviour explaining how this result is achieved and also by the defini-

tion of function in (Chandrasekaran & Josephson, 1996) as a device’s effect on its

environment. That paper gives three desiderata for a representation of function.

It should:-

• Apply to intended functions of human designed devices and to functions or

rôles in natural systems.

• Apply to functions of both static and dynamic objects (e.g. support).

• Apply to functions of both abstract and physical objects (e.g. software

modules or steps in plans as well as physical systems).

There is a formal definition of function as effect in (Chandrasekaran & Josephson,

1996):

Function: Let G be a formula defined over properties of interest in an

environment E. Let us consider the environment plus an object O. If

O (by virtue of certain of its properties) causes G to be true in E we

say that O performs, has or achieves the function (or rôle) G.

This definition fulfils the three desiderata. It does not have any specific notion of

purpose, which strengthens its applicability for describing natural systems, where

the idea of purpose or design might be philosophically debatable.

While there is general agreement that function and behaviour are distinct con-

cepts, (Loganantharaja, 1993) notes that there is some confusion and that it is

sometimes assumed that function and behaviour are the same thing. It is, however,

arguable that this confusion is less common than failing to distinguish function

and teleology (purpose). Most researchers’ approaches to and definitions of func-

tion have some idea of purpose, intention or goal, so that (Kampis, 1987) suggests

that the concept of function enters into a system when some purpose is supposed

to b accomplished by the system and (Chittaro et al., 1993) defines function as the

relation between a device’s behaviour and the goals assigned to it by the designer.

A related idea is that function is an interpretation of behaviour (Wood et al.,

2005). That paper notes that function is more than a subset of behaviour and

implies a notion of intent on the part of the designer, following (Chandrasekaran

& Josephson, 2000).

The field of functional reasoning seeks to make use of functional knowledge to as-

sist in reasoning about a device’s behaviour and functionality. This arises from the

57

idea in (Sticklen et al., 1989) that knowledge of the function (purpose) of a device

enables an organisation of our causal knowledge of the device. It is suggested by

(Sticklen et al., 1989) that reasoning about function is useful with reference to the

three crux issues identified in (Davis & Hamscher, 1988) as important for model

based reasoning. These are domain independence, scalability and model selection.

It is claimed that the functional reasoning approach is intermediate between the

deep reasoning approach, which entails the production of a complete causal net

for the system (leading to problems with scaling) and naive physics that is based

on a set of domain rules. Representing components in terms of their function

avoids the need both for the causal net and the domain rules, so the approach

addresses the first two of the three issues. This leads to the idea of Functional

Modeling (Sticklen et al., 1991) whose aim is to use the known functionality of

a device to organise causal understanding of the device (so avoiding the need for

a complete causal net) and provide a reasoning algorithm that can simulate the

device for given starting conditions. There might be felt to be a possible question

about the soundness of this approach (at least for some design analyses) as if the

organisation of knowledge is used to avoid a complete causal net there does seem

to be a danger that possible unexpected behaviours will be missed by the analysis.

The importance of capturing the unintended but inevitable functions (by which is

presumably meant behaviours) in FMEA is noted in (Wirth & O’Rorke, 1993).

One use of function in simulation is demonstrated in (Hawkins & Woollons, 1998),

who use a flow based operational definition of function for FMEA. Each component

has a functional rôle model, such as ‘generator’ or ‘conduit’. The components’

rôle models are combined in functional process models that show how components

combine in processes. These processes, in turn, combine to create phenomena,

and these phenomena relate to system goals, the teleological model. The paper

only deals with the rôle and teleological models. The teleological model represents

the designer’s goal for the component, such as “transfer”, “keep” etc. The paper

links these goals to activities in the rôle model. The idea of defining functions for

components can be argued to have the benefit of domain independence, enabling

FMEA of complex, mixed domain systems. The paper example uses a system with

an electrically driven rotary pump. The approach has been demonstrated, but it

does seem to suffer from the difficulty associated with flow based representation

of function, in that there is a need for a full set of functional primitives. An

additional difficulty is arguably the need to capture the functional rôle model of

each component — this relation seems less intuitive than a more domain specific

behavioural model of the component and as the functional rôle is specific to the

system, the resulting component model is less reusable than a behavioural model

58

might be. The analysis for FMEA is complex, as the effect of the introduced

failure is traced all the way through the system’s component models, but it does

support tracing the effects of failures through mixed domains.

Another approach with some similarities to (Hawkins & Woollons, 1998) is that of

(Chittaro et al., 1994). In common with most other work on functional modelling,

function is associated with components. Functional knowledge is represented by

three models, a functional rôle model that interprets the component’s behaviour,

which participates in a process model, and the processes, in turn, participate

in the model of the phenomenon. The teleology of the system is defined as its

goals, which are assumed to be achieved by the phenomenon model. This means

several models are needed for components, as each has a structural, behavioural

and functional model in Chittaro’s “multimodeling” approach. There is more on

this in section 4.2. A theoretical basis is claimed for this method.

The Multi Flow Modelling (MFM) approach of (Lind, 1994; Larsson, 1996) also

has the idea of functions contributing to achieving goals. In this approach, which

is intended for monitoring and diagnosis of industrial plant, components realise

functions and functions achieve goals. These relations are many to many as a

component can contribute to several functions. Each component function is taken

from a set of function definitions intended to specify that component’s effect of a

flow of energy, material or information. This relates the means — end relations

that exist between functions and goals and the whole — part relations involved

in modelling complex plant. The MFM model of a plant is a static graph repre-

senting these relations. This has the advantage that the approach is scalable, the

complexity of the graph increases linearly with the size of the model (plant). As

this graph is the only model of the plant, the correctness of the results depend on

the correctness of the model. The approach is also limited to its intended field.

These approaches to and uses of function contrast with its use in (Price, 1998).

Here, the functional modelling is done at system level, by attaching system func-

tions (“functional labels”) to the output of significant components. For example,

in a car lighting system the function “headlamps on full beam” is linked to the

output of the two headlamp bulbs. Function is therefore defined in terms of pur-

pose of the system. The functional label is easily added to a component centred

representation of the system. Not every component has a functional label, typi-

cally they need only be attached to those components that generate the system’s

output. Three advantages are claimed:

• Simplicity, functional labels are easily added to structural representations

especially as they relate so closely to the system’s purpose.

59

• Re-usability, the functional label is not tied to how a function is achieved,

so can be applied to some other design of system with the same purpose.

• Capability, The approach is capable of recognising the unexpected achieve-

ment of a function.

Linking function to the system avoids the problem of an associative representa-

tion of function relying on a one to one mapping between function and component.

There is no difficulty in combining outputs of several components, if necessary, as

in the headlamp case. The paper does not discuss the use for mixed domain sys-

tems, but as the function is linked to system output, the domains in the system

are scarcely significant. This leaves a rôle for behavioural modelling as the ba-

sis for reasoning about the system, as described in Section 4.1.2. The relations

between models in this approach and elsewhere is discussed in section 4.2. The

usefulness of this approach has been demonstrated by its use in AutoSteve, the

commercial tool resulting from the work. One difference between this representa-

tion of function and many others is that there is no explicit representation of the

input of the function. This is because the input associated with a function can be

derived from the simulation of the correctly working system for failure analysis.

For design verification (such as Sneak Circuit Analysis), the input does need to

be specified. The lack of representation of the input for a function is problematic

when describing cases where a system has functions (such as telltale or back up

functions) that depend on the achievement or otherwise of some other function.

These cases are discussed in Chapter 10.

This approach merely uses the functional labels to interpret the results of a sys-

tem simulation derived from knowledge of behaviour and structure, as discussed

in Section 4.1.2. This contrasts with approach taken by the functional reason-

ing community, where functional knowledge is used as the basis of the reasoning

process. Indeed, as the work at Aberystwyth progressed the functional models be-

came simpler, as discussed in (Pugh et al., 1995) and (Price & Pugh, 1996). This

simplification of functional models started when it was found that the functional

reasoning approach duplicated the results obtained by the domain simulator, so

building the required functional models was found to be redundant.

An extension to that approach to functional modelling has been suggested by

(Snooke & Price, 1998). In this variation, each significant component has a func-

tional label attached and the system’s functional model is built up from the compo-

nent functional models. To reuse the headlamps example, instead of the function

“full beam” being associated with the left and right hand lamps being active, each

lamp has a functional label for full beam and the system function “full beam”

60

is achieved if both functions “left full beam” and “right full beam” are achieved.

This has the advantage of adding detail to the explanation, along the lines of

“function full beam not achieved because left full beam not achieved”. Against

this advantage is the need for some additional work in adding the more complex

functional labels. This extension seems to provide a possible starting point for

the idea of associating functions with subsystems for modelling mixed domain

systems.

A distinguishing feature of both (Price, 1998) and (Milde et al., 1999), is how

much less use they make of functional representation, compared to the functional

reasoning community. They both use behavioural models in a component cen-

tred representation, combined with domain rules, as the basis for reasoning. One

possible explanation is that both systems are concerned with modelling faulty

behaviour, which will not readily be captured using component level functional

modelling, although Hawkins and Woollons use functional modelling for a similar

task. Another arguable point is that behavioural models more readily capture

the available knowledge, so are easier to use. For example, the user (an engineer)

can readily use an existing behavioural model of some component, say an electric

motor, and this can be used in simulation without asking the engineer to provide

a specific description of the motor’s function in the context of that system. Both

these systems are intended for use by engineers, and maybe making fuller use of

functional modelling, at least in this context, is merely unnecessary complication.

Despite this, it is tempting to suggest that functional modelling is more applicable

for other tasks, such as recognition, that is deriving function from structure, us-

ing functional models of known components. The corresponding drawback is the

limitation on the range of systems that can be analysed because of the reliance on

domain rules. The avoidance of domain rules is one of the claimed advantages of

a functional approach.

The functional labelling approach resembles the association of function and sys-

tem behaviour in (Sembugamoorthy & Chandrasekaran, 1986). There function is

defined as the what a device’s response is to an external stimulus and behaviour

explains how this response is achieved. The approach links a functional label

to an external stimulus (such as pressing a button) and a set of descriptions for

the system behaviour. The behavioural descriptions explain how the stimulus

achieves the function for a correctly working system. A drawback is the difficulty

of building the behavioural descriptions for large systems.

There is an alternative approach to associating function with output in (Chan-

drasekaran & Josephson, 1996). Here, the function of a device is simply defined

as its effect on its environment. It is expressed in terms of relationships in the

61

environment, so a pump, for example, will have its function defined in terms of

volumes of water at different locations in the environment. This is intended as a

general definition of device function, capturing various intuitions. An important

part of this definition is the idea of a “mode of deployment”, which defines a

causal interaction between the device and the environment. They suggest a prim-

itive representation of an “object in an environment, viewed from a perspective”.

The view supports abstraction of composed objects. The paper imagines a design

activity that proceeds from a library of stored designs, specialising the designs and

composing items from the library. This relates closely to the purposive definition

of function in (Chittaro & Kumar, 1998). The paper fails to demonstrate their

notion of explaining a device level function in terms of component functions, which

is a feature of the hierarchical functional reasoning proposed by (Snooke & Price,

1998).

Work has also been done on using functional reasoning to support the design

process, notably by (Iwasaki et al., 1993). Here function is defined to mean the

intended behaviour of the system (or device) and as such includes notions of

purpose. The model of the design process follows the idea in (Gero, 1990) that

the physical structure of a design is derived from a causal mechanism and has the

functional model of the system being refined and so informing the refinement of the

physical design. The physical specification must include all components specified

by the functional specification and the requisite connections. It is not made clear

how the physical specification is represented, however, and nor is it made clear how

the system verifies the design — is the system behaviour derived from its physical

structure or from the functional model? There seem to be problems with the

simple model of the design process as in many cases, at least, some of the physical

design might be derived from knowledge of other designs (case knowledge) and

functional refinement will not be necessary. These points are discussed further

later.

There is a slightly different definition of function in (Iwasaki et al., 1995), where

function is defined with reference to a goal, rather than to intended behaviour.

The definition of function is given as

An object O has a function F if there is an agent who can use O under

some circumstances in some specific manner to achieve a goal.

The paper also defines a “device” as a physical object that has a function. There

seems to be no reference to the idea of intent in this definition. For example a

handyman could use a chisel to lever open a paint tin and this appears to suggest

that, according to the definition, a chisel has that rôle as a function. However,

62

intuitively this is not the case, as this rôle amounts to abuse of the chisel, and will

ruin the edge, rendering it less fit for its intended function. There does seem to be

a need for some more explicit notion of intent in this definition, though the lack is

perhaps understandable in the context of supporting the design process, as in this

process, unanticipated uses of a device are more or less by definition excluded.

An approach to supporting the functional design of a device was introduced in

(Umeda & Tomiyama, 1993). That paper divided the design process into three

stages; functional design, basic design and detailed design. In this case, func-

tional design is concerned with what a device must be able to do, so is related

to the needs it must fulfil. They define function in terms of human abstraction

of behaviour and treat it as subjective, as opposed to the objective nature of be-

haviour, which is determined by the underlying physics. They use a model of

function, behaviour and state, in which function is related to behaviour and be-

haviour is defined in terms of changes of state over time. It is therefore not clear

how static (as opposed to dynamic) functions are modelled, though they could

perhaps be modelled in terms of the absence of undesirable changes of state. This

approach has been demonstrated for designing increased reliability into a system

by introducing “functional redundancy” (Umeda & Tomiyama, 1993) and for de-

signing products so as to allow easy upgrading of the products in future (Umeda

et al., 2005).

There is a discussion of these definitions and uses of knowledge of function, with

a proposed definition to be used for the remainder of this thesis in Section 4.1.5.

4.1.4 Teleological knowledge

In the context of design analysis, teleological knowledge is generally taken to be

knowledge of the purpose of the system or component. The idea of purpose can

introduce difficulties in modelling certain natural systems. While there seems to

be little difficulty in stating the purpose of the heart as driving the circulation

of blood, there seem to be philosophical difficulties in using the idea of purpose

in an ecological system. For example, the behaviour of a predator will certainly

include the killing of its prey, and that will have the effect of controlling the

prey’s population but unless one accepts the theological doctrine of teleology (that

there is evidence of design in the natural world), then considering the control of

population as the purpose of the predator seems problematic. It is not proposed to

explore this area of discussion any further here, except to suggest that this is one

reason why these four classes of knowledge are more appropriate for modelling of

engineered systems, the subject of this thesis. (Chittaro & Kumar, 1998) suggests

63

that some researchers feel the need to differentiate between the idea of function

and the idea of purpose. They differentiate between the definitions by associating

purpose with human notions of utility in a sociocultural context. In other words,

teleological knowledge is concerned with the need the system is to fulfil, such as

the need to light the road ahead to allow a car to be driven after dark.

If teleological knowledge is concerned with the purpose of a system (or compo-

nent) this does seem to leave an overlap with the purposive idea of function. It

can be argued that the question given in (Chittaro & Kumar, 1998) as answered

by functional knowledge (“What does a component do?”) and that answered by

teleological knowledge (“Why is a component in the system?”) differ as much

in their respective emphases on the component and system than in their actual

content. For example the question “what does a safety valve do?” could have

the answer that it prevents a boiler explosion by relieving the pressure” while the

teleological question “why is a safety valve in the system?” might have the answer

that it is to prevent a boiler explosion, which it does by relieving pressure. This

is not to suggest that there is no room for both classes of knowledge, rather to

attempt to illustrate how similar they can be considered to be. The requirements

of a system might be considered either in terms of purpose or function. The func-

tional decomposition approach of (Iwasaki et al., 1993), applied to the model of

the design process in (Gero, 1990) could start out with a stated requirement that

is a description of purpose, rather than of function, which is then itself decom-

posed into more specific, closely defined and formally represented functions. This

is illustrated in Section 4.2. For example, one might begin the functional refine-

ment of the design for a washing machine with the simple (not to say obvious)

statement that its purpose is to clean clothes and break this down into more re-

fined functional specifications, such as the need to wash with soapy water, then

rinse then remove at least some of the water. This refinement will continue in

the manner proposed Iwasaki’s paper. This is discussed further in Section 4.2. It

might be argued that this is quite a useful model of the process of requirements

capture for a new system, the aim being to reify the original (typically informal)

idea of the purpose of a new system to generate a sufficiently well specified set of

requirements that the success or failure of a system in meeting the requirements

can be assessed.

(Franke, 1993) differentiates between purpose and function by defining a tele-

ological description as concerned with “the elements of the structural ontology

considered in the context of requirements or specifications of the mechanism or

system” as opposed to function being considered in the context of the (compo-

nent’s) surrounding system. This seems to suggest that a functional description is

64

applied to an element in a larger system (a component or subsystem) while a tele-

ological description is applied to the system itself. As the paper suggests that the

teleological specifications are expressed in terms of structure and behaviour, this

tends to reinforce the similarity between notions of function and purpose. This is

taken a stage further in (Kaindl, 1993) where a functional description reveals the

intended purpose of a component or connection, so the function of a steam-release

valve (to use Kaindl’s example) is to prevent a boiler explosion. This certainly

seems to leave no room for a more abstract teleological description (that paper

does not include purpose as a separate class of knowledge) while being consistent

with the definition of function in (Franke, 1993) in so far as the valve’s function

is in the context of its surrounding system, the boiler.

A language for representing teleological descriptions was proposed in (Franke,

1991). This represents changes to a system design in terms of changes to the

structure and changes to its behaviour. To use the example given in the paper,

the addition of a pressure relieving valve to a boiler changes the behaviour of

the boiler such that its internal pressure will not exceed some known value. It is

tempting to argue that this is closer to Franke’s later definition of a functional

description, being, as it is, placed in the context of the system. It is also devoid of

any explicit notion of the purpose of the component, in this case the prevention

of boiler explosions. This seems to offer further evidence of how closely linked

many researchers’ notions of purpose and function appear to be. This language

makes use of primitives to describe the change the new part of the design has

its behaviour, which looks not dissimilar to the functional primitives in some

functional description languages. However, the use of these languages does appear

to differ, as the component based functional descriptions are intended to build a

causal description of the system’s behaviour. This does not appear to be the

intention with this teleological description language.

While the foregoing appears to suggest that there is little room (or perhaps need)

for teleological representation as well as functional, one area where a notion of

purpose is of value is in the generation of design analysis reports, such as FMEA

reports. This is simply because the consequences of a system failure appear in

these reports and these will relate to the intended purpose of the system. Therefore

some knowledge of the purpose of the system is required if these reports are to be

generated automatically.

As the idea of function is associated with a system in the functional labelling

approach of (Price, 1998) there might be thought to be little room for any more

abstract notion of purpose, especially in the light of the proposed definitions in

(Franke, 1993). Arguably a functional label has no formal notion of purpose, but

65

as a design analysis report generated automatically using functional labels will

include consequences of failure of a system function, this at least will typically

refer to an implicit notion of purpose. For example, a car headlamp system might

have as a consequence of failure that the road ahead is not lit, implicitly referring

to the idea that the purpose of the system is to light the road ahead. This area

is expanded upon in Chapter 5 but it is worth pointing out here that there might

be additional information included in a functional label, such as the consequence

that it is illegal to drive the vehicle if the headlamps have failed. This points

to the idea that functional and teleological knowledge, especially when used for

interpretation of behavioural simulation of engineered systems provide a way of

capturing knowledge that is external to the system and therefore beyond the range

of the simulation engine itself. There is a discussion of the relationship between

the classes of knowledge, the boundaries of the system under analysis and the

boundaries of the simulated world in the following section.

As a final note on the rôle of teleology, it is worth pointing out that there has

been work in qualitative reasoning whose aim is the recognition of the (previously

unknown) purpose of some system or device. This was an aim of (de Kleer,

1984), in which teleological reasoning was employed to derive knowledge of some

system’s unknown purpose from knowledge of its behaviour. As the present work

is concerned with design analysis this use of teleological reasoning is outside its

scope, as it seems safe to suggest that any design process will be founded on

knowledge of the purpose of the system being designed.

4.1.5 Using the four classes of knowledge

The earlier sections in this chapter have been largely concerned with previous work

that has made use of some or all of these four classes of knowledge. It also at-

tempted to identify common threads in these (frequently contrasting) approaches

to functional modelling. This section will propose a set of definitions of these

classes of knowledge that will support the intended use of functional knowledge to

support the interpretation of simulations and allow the automatic generation of

textual design analysis reports. How these new definitions might relate to other

researchers’ approaches will also be discussed. The focus is now, therefore, less on

other researchers’ work and rather lays foundations for the material in the succeed-

ing chapters, describing the Functional Interpretation Language that is one of the

main results of the present research. However, the present chapter will conclude

with a discussion of the relationships between these classes of knowledge in other

work, in the light of the proposed definitions proposed here, concentrating on the

66

uses of functional knowledge.

4.1.5.1 Proposed definitions of knowledge classes

This subsection will propose a set of definitions of the classes of knowledge and

suggest a relatively well defined way in which they can be considered to relate

to each other. The definitions and relations will be explained with reference to

possible examples to attempt to clarify the differences between them, specifically

between function and behavioural knowledge and between function and purpose.

Informally, the four classes of knowledge might be defined as follows:-

Structural knowledge is concerned with the elements that make up a system

and the physical relationships (connections) between them. Typically, this

might be concerned with physical components and connections but the ele-

ments might be processes. For example, a torch contains a battery connected

to a switch connected to a lamp connected back to the battery.

Behavioural knowledge is concerned with what takes place within a device.

This will typically be the possible states of a device and the possible transi-

tions between them. The torch can be on (switch closed and lamp lit) or off

(switch open and lamp not lit).

Functional knowledge is concerned with how a device fulfils its purpose. For

example what system states can be associated with fulfilling some purpose.

The torch being lit can be associated with the purpose of enabling a user to

see in the dark.

Teleological knowledge is concerned with the requirements (or needs) a device

is intended to fulfil. The torch is needed so that a user can use it to light

their way in the dark.

The term device has been used to attempt to free these definitions from any

specific notion of what level of system decomposition they are associated with.

For example, if a system is analysed using a qualitative simulation, knowledge of

the system’s behaviour might be derived from knowledge of its structure and of

the behaviours of its components. The same definition of behavioural knowledge

should be applicable to both component and system behaviour.

One approach to clarifying the relationships between these definitions is with

respect to the device itself. It is suggested that both structure and behaviour are

internal to the device and purpose is external to it. Function, being related to

67

both behaviour and purpose is concerned with describing the interface between the

device and its environment, in terms of purpose. It can be thought of as an external

(“black box”) view of the device and to be related to the device’s environment

(which might be some surrounding system or the environment in general). To

illustrate, consider an electric torch. The purpose of the torch is to allow the user

to see in the dark. This is external to the torch itself, notice that the need could

be filled with a lantern or candle. The functional view of the torch reifies this need

by describing how the torch can be used to fulfil the purpose, in this case by the

switching on of the torch resulting in a beam of light. The behaviour of the torch

describes how switching on completes a circuit linking battery and lamp so the

lamp has current flowing through it and the structure describes the components

and connections that make up the circuit. A not dissimilar distinction between

behaviour, function and purpose is drawn in (Franke, 1993).

As the present work is concerned with interpreting the result of a (behavioural)

simulation with respect to purpose, it seems worth proposing a more formal defi-

nition of function than that listed above. The following is suggested.

Function: An object O has a function F if it achieves an intended goal

by virtue of some external trigger T resulting in the achievement of an

external effect E.

This is similar to the definition in (Iwasaki et al., 1995) but specifies that the goal

is intended (by the designer) and the adds the notions of trigger and effect, which

are discussed in the following chapter. For example, a torch achieves the goal of

lighting the dark when switching it on triggers the effect of the lamp shining. The

nature of the trigger and the effect will depend on the nature of the device whose

function is being described. This approach to function can also be used at the

component level (assuming the use of a component centred ontology) so that the

function of the motor in an electric fan is to generate a flow of air, triggered by

current flowing through its windings leading to the effect of the shaft rotating the

fan blades. This adds some notion of purpose (which is specific to the system that

includes the motor) to the description of behaviour of the motor. The trigger and

effect of the function are defined as being external so as to express the idea that

the function of a system is concerned with its interaction with its environment.

The environment might, of course, be some larger encompassing system that is

being treated as beyond the scope of the present analysis.

This definition raises the point of whether a functional representation should

incorporate a specific description of the goal (purpose). It is suggested that there

68

are advantages in the idea that it does not, but rather has a reference to a teleo-

logical description that is treated as a separate component of the model. In other

words the model incorporates a teleological description achieved by a function,

which describes how the purpose is achieved. This is discussed in more detail in

Chapter 5 but the point is worth raising here as this style of representation has a

bearing on the illustrations of uses of functional knowledge illustrated in the next

section.

The idea that behaviour is local as against function relating to the device’s en-

vironment raises some interesting points about what can be included in a device’s

behavioural model where a device is modelled as an atomic component with a

behaviour rather than in terms of its structure and underlying domain based be-

havioural rules. Such a behavioural description should make no assumptions about

the state of a device’s environment. For example, rather then describing its struc-

ture and deriving its behaviour from domain rules, an electric motor’s behaviour

might be described informally as “if there is current flowing through the windings,

then there is torque at the shaft”. This contrasts with a motor’s functional de-

scription which will (almost certainly) be concerned with moving something. This

does, of course, make assumptions about the motor’s environment, most obviously

that its shaft is connected to the component it is to move and that the connection

allows the required movement. So the motor of an electric fan, for example, might

be behaving correctly in that there is current flowing through the windings and

there is torque at the shaft, but it is failing to achieve its function (making the

fan blades rotate) because one of the blades is fouling the casing, perhaps. This

arguably raises something of a difficulty with the idea of using function in the

simulation of a system’s behaviour, as whether a component is actually fulfilling

its function can only be established with reference to the behaviour (function?) of

the rest of the system.

Arguably a better example of this difference is provided by a digital component,

if only because there is no benefit in modelling such a component at a structural

level, its behaviour is almost certainly best described in terms of the logic it

implements, though this does assume that the logic is implemented correctly.

4.1.5.2 On the proposed definition of function

Having introduced a new definition of function, it seems worth including a discus-

sion of how the definition relates to other researchers’ definitions and uses of the

idea of function.

It is, perhaps, arguable whether this is beneficial, but one feature of this definition

69

of function is that it unites the purposive and operational notions of function in

(Chittaro & Kumar, 1998). On the one hand it relates behaviour to teleology by

defining the external aspects of its behaviour (the trigger and effect) that fulfil the

purpose and on the other hand it relates a trigger (which might be a representation

of input) to the (expected) effect, which equally might be thought of as output,

though it might, in many cases, be better considered to relate to a goal state.

This observation suggests that the proposed definition of function incorporates

the elements of other definitions, so other definitions can be regarded as aspects

(or components) of the proposed definition. Therefore the intended goal can be

likened to the definition of function as purpose in (Kaindl, 1993) and the trig-

ger and effect can be thought of in terms of input and output, consistently with

(Navinchandra & Sycara, 1989). The relationship with the definitions of function

and teleology in (Franke, 1993) raises some interesting questions. His definition of

function as being in terms of “the behaviour of the larger, enclosing mechanism or

system” could be seen to imply that function belongs to a component or subsys-

tem, while the definition of purpose as being in terms of the requirements of the

system places that, perhaps, a little more at the system level. There is arguably

some common ground between Franke’s definitions and the idea expressed above

that behaviour is internal to the device, purpose external and function in between,

at the boundary between the device and its environment. The suggested approach

avoids the apparent implication that function depends on some larger mechanism,

though this objection is weakened if one accepts the idea that a system’s environ-

ment is treated by the reasoner identically to a larger enclosing system. This is

(arguably) unlikely, simply because the reasoner will not contain sufficient knowl-

edge to model the environment in general in the same way as the system under

analysis. In the absence of a reasoner having a complete knowledge of physics

(qualitative or otherwise), either the reasoning (simulation) will be domain based,

restricting analysis of the environment, or if a functional reasoning approach is

used, the network of functional relationships must be extended to include neces-

sary aspects of the environment.

These relationships raise the question of the relationship between the idea of

the system under analysis and the simulated world. One important rôle of a

functional representation is, at least for the present work, to capture knowledge

about the world around the system being analysed. The idea proposed above

that purpose is external to the system implies this, assuming that the system

being analysed corresponds to the simulated world. For example, we might state

that the purpose of a car headlamp system is to light the road ahead, and refine

this into a functional representation in which this purpose is achieved when the

70

headlamp switch is turned on and the headlamps light. This now allows the

system’s simulation to be interpreted in terms that relate to the world outside

the system so the simulation engine itself needs no knowledge of them. All the

simulation has to show is that the headlamps will indeed light up when the switch

is turned on and the functional description will capture the (implicit) knowledge

that this will light the road ahead, assuming that it would be dark otherwise.

This is, it will be remembered, what the “functional labelling” approach of (Price,

1998) already does.

The present definition of function is distinct from notions both of behaviour and

purpose. This is not always the case in definitions and uses of function in the

model based reasoning and functional reasoning communities. For example in the

way (Kaindl, 1993) has function synonymous with purpose or the way that the

functional reasoning community use (component) function instead of (component)

behaviour, as in (Hawkins & Woollons, 1998).

This proposed definition of function can be regarded as an attempt at a more

closely defined idea of function than that used in (Price, 1998). A more detailed

comparison is perhaps best left until later, but it is worth pointing out that in the

original functional labelling approach (for FMEA), function was implicitly defined

largely in terms of output, or effect. The definition proposed herein attempts to

extend that by including express knowledge of input (or trigger) and purpose. How

these fit into the representation of function itself will be discussed in Chapter 5.

It seems well worth considering how well the proposed definition of function

fulfils the desiderata for a representation of function given in (Chandrasekaran &

Josephson, 1996).

Arguably, the first desideratum, that a representation of function should “apply

to intended functions of human designed devices and to functions or rôles in natural

systems” causes difficulties for any purposive definition of function, including that

proposed. These were introduced at the start of the discussion of teleological

knowledge, Section 4.1.4. In other words, any notion of intent implies a notion of

a creator of the system with intentions for it. While replacing the word “intended”

in the proposed definition with “expected” might allow its use for some natural

systems, such as in specifying the function of an organ, it is arguably inappropriate

to use any idea of a goal in ecological systems. Reducing the population of prey

is an effect of predation, but not its goal. Indeed it is disadvantageous to the

population of predators. As the present work is concerned with design analysis of

engineered systems, this objection to the proposed definition is not important to

this research.

71

It might be felt that the proposed definition of function does not fit the second of

the three desiderata, that a representation of function should “apply to functions

of both static and dynamic objects (e.g. support)”. However, this need not be the

case, note that (Chandrasekaran & Josephson, 1996) already uses the idea of effect

in defining function in a way that is argued to fulfil this desideratum. The notion

of a trigger does, it is appreciated, carry connotations of movement or change but

there seems no real difficulty in specifying the trigger as a static entity. To use the

idea of an entity having a function of support, the trigger can be represented in

terms of the maximum intended loading of the entity and the effect as the absence

of movement in the structure. A plausible example of the representation of a static

function might be that the goal of a girder is to ensure the strength of a bridge,

which it achieves adequately if a loading of x tonnes triggers a deflection of no

more than y millimeters. The effect is the lack of excessive deflection under the

designed load.

The final desideratum, that a functional representation should “apply to func-

tions of both abstract and physical objects (e.g. software modules or steps in

plans)” seems to present no difficulty. The goal of the entity can be represented

in such a case, the trigger is readily defined and likewise the effect. For example,

the goal of carrying out an FMEA early in the design process is to find how safe

a system is when operating under component failures so as to establish whether

changes should be made to the design. The trigger is completion of a candidate

design for the system and the effect is the acquisition of knowledge to be used to

inform the decision on changing the design, achieved by production of a report

listing the effects of component failures. Whether such a full representation of

function is useful in this case is, perhaps, open to question and a definition of

purpose (that is, the goal) might be adequate.

One possible difficulty with this approach to function, at least in some areas, is

that it is perhaps unnecessarily detailed. It is clearly more elaborate than (Kaindl,

1993) which defines function purely in terms of purpose.

4.2 Relationships between the classes of knowl-

edge

In this section, the definitions and suggested contexts of the four classes of knowl-

edge discussed above will be used to compare and contrast the uses of different

knowledge by different researchers in the field. In view of the present work’s em-

phasis on functional knowledge, the focus in this review will be on uses of that

72

class of knowledge. In view of the fact that other representations of function do

not include all the elements expected by the more formal definition of function

given above, it is perhaps more useful to use the informal definition, so in this

review functional knowledge is classified as requiring some notion of purpose and

also some representation of how this purpose is achieved, but that representation

need not be in terms of triggers and effects.

Earlier in the chapter the idea that the different classes of knowledge can be

placed in a hierarchy, with each class being an abstraction of the next class below

it in the hierarchy, was introduced. For example, a component behavioural model

can be thought of as abstracting the component’s structure. Another hierarchy

we can consider is that of system elements. This can be thought of as having four

layers.

Product The top layer in the hierarchy, having several distinct (and largely in-

dependent) functions. For example, a motor car combines several quite

distinct systems that either contribute to its core functionality (such as the

transmission) or are necessary adjuncts, such as lighting.

System A self contained set of related components (or subsystems) whose role

is to fulfil one aspect (or several closely related aspects) of the product’s

functionality. The lighting system of a car would be a good example.

Subsystem or module An identifiable part of a system, identifiable either in

terms of physical separation (the front lamps of a car lighting system) or

in terms of function (such as the direction indicators in the car’s lighting

system). While the term subsystem is frequently used to refer to a physical

subset of the system and module to refer to a functional subset, these terms

are treated as interchangeable.

Component An individual item. For the purpose of modelling, we can regard a

component as being something to be modelled as a single atomic unit, the

bottom level of system decomposition.

It is not impossible that there are several intermediate ‘subsystem’ layers between

system and component, depending on the complexity of the system and how this

system is to subdivided. Another possible decomposition, typically at system or

subsystem level, might be in terms of domain. For example, a domestic washing

machine might have its structure decomposed into water and electrical systems.

It will be appreciated that in simple cases, the product layer will be unnecessary

as a simple product can be regarded as embodying one system, which might be

decomposed into subsystems. The washing machine is a case in point.

73

This decomposition of a system can be regarded as orthogonal to the idea that

each class of knowledge in the hierarchy introduced in Chapter 4 abstracts the

previous class of knowledge. It should be noted that there are problems with the

treatment off these hierarchies as being orthogonal, to be discussed later. This

introduces the idea that we can use a simple two dimensional grid to represent the

space in which the necessary models are placed. This grid can have the system

hierarchy as the vertical axis and the four classes of knowledge as the horizontal

axis, as illustrated in figure 4.1. The grid might be used to show the models a user

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

Figure 4.1: Grid to show possible model relationships

is expected to provide and also the models the system itself will derive, and can

also show relations between models, either expressed by the user, or implicit in the

system. In these diagrams, the models the user will have to provide are shown as

grey boxes and the models either included in the system (such as domain models)

or derived by the system’s reasoning as white ones. The relations the user should

explicitly express are shown as solid arrows and those native to the reasoner are

dashed arrows. The grid in use is illustrated in Figure 4.2 on page 79 and there is

a key to the symbols used in Appendix C on page 285.

In any given case, it is unlikely that all the layers in the system hierarchy will

be used. Indeed the typical, simple, case is that a system will be modelled as

being assembled from components. It does seem possible, however, that during

the design process, small systems will later be combined as subsystems of a larger

system and so on up to the product level. It seems likely that in most cases the

aim of the reasoning (certainly the simulation) will be to establish the behaviour of

the entity that is currently the highest in the hierarchy, possibly using the results

of earlier simulations of smaller systems to allow subsystems to be treated as

atomic components whose behavioural models are used in simulation of the newly

74

integrated larger system (or product). Work has been done on this approach, see

(Snooke & Bell, 2002), with the aim of simplifying simulations of systems whose

size might otherwise render them intractable. The only layer, therefore that has a

fixed nature throughout the process is the component layer, as the diagram is based

on the idea that a component is treated as being atomic and is modelled primarily

in terms of its behaviour (or function). As has been observed, some representation

of component structure might be needed to complete the structural description of

a system for a domain based simulation engine, such as CIRQ.

It is also frequently the case that a specific approach will not use all the classes of

knowledge either. Indeed, one of the aims of the functional reasoning community

is to reason with a minimal set of knowledge. It is therefore the case that not all

the spaces in the grid will be filled. How different researchers’ model sets fit in

with the grid will be described later in the section.

Implicit in this hierarchy, from the point of view of modelling, is the idea that

any layer except the lowest (component) will need a representation of structure,

so that that element’s behaviour can be determined from the behavioural models

of the next layer down, and its structure. There remains a decision to be made

as to what level of complexity we wish to place at the bottom of our hierarchy,

represented in terms of behaviour (or function) rather than structure. For example,

do we treat an electric motor as a component, simply modelling it with some sort of

behavioural model (such as a state chart) or is its internal structure to be modelled,

allowing its behaviour to be derived from its structure and the necessary domain

laws from a suitable qualitative physics? The answer will depend on the nature of

the task to be undertaken, of course. An engineer designing an electrical system

is likely to be happy with a simple behavioural model of a motor, treating it as a

component of his design.

This leads to a characteristic of what is meant by a component in this context

being that it is modelled in terms of behaviour rather than structure — so is at

the bottom of the decomposition. A similar characteristic of the system level on

the hierarchy is also useful, as it is the top level of our decomposition, if it is to

be modelled usefully, it should be the case that the closed world assumption is

applicable so we can ignore influences on its behaviour from anything outside the

system. Any model reasoner will therefore use models at each of these layers but

the other two layers need not be used in a given case. The subsystem layer might

have models included to simplify management of the information (for example,

having a structural diagram split into separate subassemblies) or for functional

decomposition in that column of the grid. These two uses of the subsystem layer

mean that there will not necessarily be a mapping between subsystems in different

75

columns. An example is the way that the transmitting and receiving functions of

a telephone both use components in the chassis and handset. The product layer

has been included largely for the sake of completeness. The main reason for it

might well be to allow several systems to be combined to analyse their interactions,

especially as this is a common cause of sneak circuits. It could, however, be argued

that once this is done, then the product becomes the system under analysis, so

this layer shifts. As noted above, (Snooke & Bell, 2002) describes an approach to

deriving a behavioural model of a system or subsystem and substituting this for

the structural model. This is intended to avoid the size of the system becoming

intractable for running design analysis simulations on a whole product (such as a

car) and this could be seen as a use of the product layer in the grid.

4.2.1 Relations between models within the grid

In the grid, there is a column for each class of knowledge, but it will be appreciated

that not all columns need be used, depending on the approach taken. Indeed, one

problem with this attempt to define the relationships between models is that

the distinctions are by no means clearly defined, nor are they consistent between

researchers. These relations will be discussed in general terms here and illustrated

by considering the model relationships used by different researchers later in this

section.

The aim of most of the approaches discussed in Chapters 3 and 4 is to generate a

behavioural model of the specific system under consideration, to occupy the space

at the top of the second column. How they differ is in what knowledge is used to

derive this. Individual cases will be discussed later. It is true that all approaches

have some knowledge of structure and the distinction between structure and be-

haviour is arguably the most clearly defined of those between adjacent columns

in the representation. This is because structure is essentially static while all the

other classes of knowledge are concerned with what things do and why, so are

concerned with changes to the system’s states and effects.

This structural model might be represented as a view of the system as a whole

or by each model including knowledge of its neighbours. Which is chosen might

depend both on how the reasoning is to be done, particularly whether a domain

rule based reasoning engine is used and how the knowledge itself is to be captured,

for example whether a schematic is used or whether individual components are

arrived at by a process of functional decomposition. In the case of functional

decomposition, the structure might be treated as implicit in knowledge of which

functions contribute to which of the functions that are higher up the functional

76

hierarchy so there is no explicit representation of the system’s physical structure,

this being derived from the functional hierarchy.

As has already been observed, the view the user has of the structure need not be

the same as that used by the reasoning engine. If, say, the system structure was

derived from a schematic (so a global view) it would be perfectly feasible to use

that information merely to instantiate each component model with knowledge of

its neighbours. This might be useful in cases where a schematic covers several do-

mains, not all of which have a suitable domain level analyser. Equally, it would be

simple to use each component’s knowledge of its neighbours to construct a global

view of the system. If an electrical system had been specified using a functional

decomposition, this would support the possibility of introducing a circuit analysis

tool to analyse the behaviour of the system. This could be valuable if the circuit

topology is complex, so that the difficulties in finding current through bridges

that are associated with purely local structural knowledge apply in this case. One

problem with this is that a global system structural model will need the internal

structures of the components and this might not be available.

The relations between the other classes of knowledge are less clear cut. Indeed

the functional reasoning approach might well omit the behavioural models and

express components’ behaviour purely in terms of its function. The operational

definition of function as illustrated by (Hawkins & Woollons, 1998) can be regarded

as mapping more closely to behaviour while the purposive definition provides a

more explicit mapping between behaviour and purpose, especially when function

is defined as intended behaviour, as by (Iwasaki et al., 1993). This use of function

could be argued to include notions of teleology. This will be discussed further in

describing these sets of models.

It is tempting to regard the three right most columns in the grid as fairly arbi-

trary divisions of what is almost a continual gradation between representations of

behaviour at one end and purpose at the other. However, this observation must be

tempered by noting that as one of the most important tasks of design analysis is to

establish how well the system’s behaviour maps to its purpose, then in any given

reasoning system there is a need for a clear cut distinction between the capturing

of the knowledge of the intended behaviour and the knowledge that leads to the

derivation of the actual (simulated) behaviour. As far as possible, models used in

each illustration in this chapter have been placed consistently with the definitions

of the four classes of knowledge proposed earlier. That set of definitions does

provide a way of avoiding the danger of the divisions between the columns being

too arbitrary.

There are other shortcomings of the simple illustration of model relationships,

77

which should be made plain, although it is felt that they do not prevent this matrix

illustration being useful. The first of these is that there is nowhere in the grid to

represent domain knowledge. There are arguments for placing it at the bottom,

especially if it is used to underpin (and so explain) component level behaviour in

the way “knowledge” is referred to at the bottom of the functional decomposition

in (Sticklen et al., 1989). However in the case of the domain level rules in (Price

et al., 1997) and the circuit reduction rules used by (Mauss & Neumann, 1996;

Milde et al., 1999) that are applied to the system, and as any such domain rule

is applicable to other systems within the domain, it can be regarded as global in

nature, so should arguably be added as a top layer. In both cases the domain

model cannot really be considered a part of the system in the way component

or subsystem models can, so it was felt reasonable not to allow space for domain

models and add them at the top or bottom of the grid as seemed appropriate.

The other point to be made is that it could be argued that the axes of the

grid are not truly orthogonal in that if a component’s function is expressed as its

effect on the system, then it could perhaps be argued that the relation between

functional and behavioural model must imply moving both across the grid, from

the behaviour to the function column, and up it, from component to subsystem

(or system if there is no subsystem layer in the decomposition). It is considered

that despite this, the grid remains useful. After all, a full functional decomposition

will end at a layer where the behaviour is known and the relationship implicit in

the representation of function as effect can be expressed as a link between the

component and (sub)system level functional model.

Despite these points, the simple model of model relationships appears useful

both in illustrating potential weaknesses in a specific model set and in showing

how different model sets differ.

The commercial design analysis tool developed from earlier work in Aberystwyth

is a useful starting point for comparison of different model sets as it happens to

use a quite a large set of models. It should be observed that individually, these

models are relatively simple and reusable.

The minimum set of models needed for FMEA by the design analysis tool de-

veloped at Aberystwyth is as shown in Figure 4.2. It will be seen that the user is

expected to provide a representation for each column in the grid, except teleology.

This might seem to ask the user for a good deal of work in input, but the com-

ponent behavioural models are reusable, being independent of the system. The

functional model is also reusable, being simply a list of functions the system is ex-

pected to achieve, these functions being related by boolean operators as described

in (Snooke & Price, 1998). The system structural model is the schematic the en-

78

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

schematic

component

structure

state chart

system

functions

purpose

added to

component's

domain

variables

output

properties

CIRQ

system

behaviour

interprets

derived from

derived from

derived from

component

function

functional

decomposition

Figure 4.2: Minimum set of AutoSteve models for FMEA

gineer is working with, so that also comes with no additional effort. As a domain

level simulator is used to define the relationships between the components, the

components need internal structural models (shown at bottom left in the figure)

to be combined with the schematic to create the network of resistances for CIRQ.

These component structural models are also reusable.

The relationships in figure 4.2 are actually specific to FMEA. For sneak circuit

analysis the sets of models required are identical (though the models themselves do

differ slightly) but the relationship between the system behavioural model derived

by the reasoner and the system functional model is different. While in FMEA, the

functional model is simply used to interpret the results of a comparison between

the system behavioural models of the correctly working system and the system

affected by a failure, in SCA (and in design verification in general) the actual

comparison is between the system behavioural models and the required behaviour

represented by the functional model. This leads to the necessity of including the

required inputs to the system (that is, the switch positions) in the functional

model for SCA. This has been dispensed with for FMEA as the input states of

the two behavioural models can be compared.

The models shown in Figure 4.2 are the minimal set that might be required.

Typically, there will be functional models at the intermediate, subsystem, level,

as the system functions will be decomposed into the necessary subsidiary func-

tions, as described in (Snooke & Price, 1998). An example might be that a “head-

lamps” top level function might include subsidiary functions for side lights and tail

lamps. These functions themselves can be decomposed into component level func-

79

tions leading to a one to one mapping between the bottom level of the functional

decomposition and component behaviour. It could be argued that this mapping

should be a requirement. This arises from the fact that it is possible to build

an incomplete functional model and use that. This leads to misleading results in

the FMEA report. For example it is quite possible to carelessly specify a head-

lamp circuit functional model in such a way that all functions are recorded as

being achieved as expected, despite one of the headlamps staying on full beam

the whole time. This leads to questions as to whether a component level mapping

between behaviour and function will prevent this, and also as to whether a full

functional model should specify what should not be happening (undesirable out-

puts to be avoided) as well as what should. One of the benefits of the Functional

Interpretation Language described in this thesis is that it avoids this pitfall. This

is discussed later in the thesis.

The “output property” 1 that links behaviour to function can be made to cross

both between rows and columns in the diagram. This is done by using a Boolean

expression to combine more than one output upon which a function depends as

part of the output property rather than completing the functional decomposition.

This is what leads to the possibility of the incomplete mapping between behaviour

and function outlined above and leads to the suggestion that such “diagonal”

relations between models in the grid should be avoided.

This set of models has been discussed at some length because of its importance

as a starting point for the present work. The grid can also be used to illustrate the

model relationships used by other researchers. This will now be done and both

the models and their relationships compared and contrasted. The interpretation

of the models used has, of course, been derived from the literature, as reviewed

in the preceding chapter and earlier in this chapter. It was felt better to separate

this material, partly as it was decided that introduction of different approaches

was better separated from this more interpretive discussion, as interweaving the

two might be more confusing for the reader and partly simply to emphasise that

this material is interpretive, and the interpretation is my own, rather than the

original authors’, and others may prefer different interpretations.

Attention has already been drawn to the idea that there are two contrasting

approaches to model based reasoning. These are a “bottom up” behaviour based

approach (deriving behaviour from structure and component or domain behaviour)

1In AutoSteve, those components that are interfaces to the system have “interface properties”
attached to them. These might be input properties, which allow the user to set input states of
the system using them, so will be attached to switches, or output properties, which associate
a component with a system output. For example, a lamp will have the output property “lit”
associated with the state of having current flowing through the filament.

80

and the top down functional reasoning approach in which structure is derived from

function. These contrasting approaches are illustrated by the different model sets

used.

The model set described above, see figure 4.2, is consistent with a behaviour

based approach, so includes structural and behavioural models as the basis for

simulation and adds simple functional models for interpretation. A similar model

set is used by (Milde et al., 1999), as shown in figure 4.3. It will be seen that

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

resistive net

dependency

expression

system

behaviour

structure

tree

derived from

derived from

derived from

Figure 4.3: Models used in the behavioural approach

the set of models used for simulation is similar to that in figure 4.2, though the

models themselves differ. The main difference is the replacement of CIRQ as the

domain level simulator by their tree decomposition of the circuit. This does suggest

that it would be possible to swap between these two alternatives relatively easily.

How easily depends also on the models themselves being similar. The component

models are similar, either can use dependency expressions (expressed as if...then

rules) as are the structural models, as both represent the circuit as a network of

resistances.

The most important difference is the addition of the interpretive functional mod-

els in figure 4.2, but the similarity of the models used for simulation does suggest

that if it was desired, a similar set of interpretive models could be added.

It will be appreciated that the model set used by (Mauss & Neumann, 1996) is

also similar, but as that paper does not explain how components with complex

internal behaviour (such as relays) are modelled, that model will be missing. This

would tend to militate against easy addition of functional models for interpretation

of behaviour.

81

These model sets contrast quite strongly with the model sets used by the func-

tional reasoners.

The functional reasoning approach has components’ rôles defined in terms of

their function in the system, so there is a functional decomposition down to the

component level, as shown in figure 4.4. Here, the physical structure of the system

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

device

function

component

function

component

behaviour

sub-device

function

device

response

component of

component of

defines

derived from

Figure 4.4: Models used in Functional Representation

is (implicitly) derived from the functional decomposition, which is underpinned

by knowledge of components’ behaviour. The functional models in the Functional

Modeling approach (Sticklen et al., 1991) actually incorporate knowledge of the

structure (in that each component functional model knows which are its neigh-

bours) and behaviour. This does perhaps raise the question of how appropriate

this approach is for design verification, the aim of which is to compare what the

system actually does with what it is intended to do. There might be thought to

be a danger that if the composition of a system is defined in terms of function, the

actual behaviour simulation will miss any possible errors in the physical specifi-

cation. There is also the need to define the functional model for a component. If

this is specific to the system, then such models are not reusable, and it might be

argued that they are less intuitive for the user to build than the kind of context

free behavioural models used by (Snooke, 1999) and (Milde et al., 1999). How-

ever, this relationship between functional and physical structure does introduce

the possibility of using knowledge of the functional structure of a proposed system

to guide the design of its physical structure. This is consistent with the model of

the design process used in (Iwasaki et al., 1993).

The use of a similar functional decomposition is common to other approaches

to functional reasoning. In (Chandrasekaran & Josephson, 2000), the top level

function in a decomposition is described in terms of the device’s effect on its en-

82

vironment. This is contrasted with the “device centred” functions lower down the

decomposition, which are closer to abstract behavioural models, described in terms

of variables that are internal to the system. For example, an electrical switch is

defined in terms of the voltage across its terminals (if closed) and the absence of

current through the switch if it is open. The examples quoted in (Chandrasekaran,

2005) are dependency expressions not dissimilar to the component behaviour mod-

els used in (Milde et al., 1999). One slight difference is that a behavioural model of

a switch might be expressed in terms of its electrical resistance as the behavioural

simulator can use domain knowledge to find the switch’s effect on the voltages and

current in the circuit.

The models used by (Iwasaki et al., 1993) are similar, but as their representation

of function includes explicit notions of purpose and as they seek to model the

design process, then there is a fuller set of models in both the functional and espe-

cially the teleological columns, as in figure 4.5. As their representation of function

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

functional

goal

sub-goal

generic

component

device

function

component

function

sub-function

component

goal

predicted

behaviour

achieves

achieves

achieves

functional

decomposition

functional

decomposition

verifies

derived from

Figure 4.5: Models in CFRL

includes the function’s goal, that suggests that part of the functional representa-

tion belongs in the teleology column of the grid. The additional (optional) models

of subsidiary goals and functions are intended to represent their model of func-

tional refinement as part of the design process. However, it is arguable that this

model is an over simplification of the design process. A design support tool should,

though, be able to offer support to all stages of the process, and so arguably needs

to support the idea of functional refinement. The more complete functional model

that should result would address the problem identified above with the functional

labelling in figure 4.2, but if the tool is only to be used for behaviour based anal-

ysis of a system whose physical design is done, such a model might be unduly

elaborate, and capturing the necessary functional knowledge might be excessively

83

time consuming for the user.

The multimodeling approach of (Chittaro et al., 1993), figure 4.6, does include

explicit representation of the connections between the components. The verifi-

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

connections

components

terrahedron

of state

functional

role

functional

process

functional

phenomenon

goal

predicted

behaviour

node

co-function

organisation

Figure 4.6: Models used in Multimodeling

cation model of system behaviour is derived from knowledge of the components’

functional rôles which are, in turn, derived from knowledge of the components’

behaviour.

It could be argued that the express representation of a component’s functional

rôle is unnecessary, as in many cases it can be implicitly derived from knowledge

of its behaviour and the system structure. For example, the functional rôle of

the wire connecting the left headlamp main beam pin can readily be identified as

part of the path of current from battery to lamp, so its rôle is to transmit any

flow. There is arguably no need for such elaborate functional modelling unless it

is of help in refining the design, as in the model of the design process suggested in

(Iwasaki et al., 1993).

It will be seen that in all the cases illustrated above, the job of the reasoner is

to generate a model of the system’s behaviour. This contrasts with the aim of

(Falkenhainer & Forbus, 1991) which is to generate a sufficient model to allow a

specific query to be answered. It might be suggested that the aim of the reasoner

in their work is to generate a behavioural model of a sufficient subset of the

system to allow the query to be answered. In figure 4.7, this different aim has

been illustrated by placing the reasoner generated model in the subsystem layer

of the grid. This implies an interpretation of the aim of compositional modelling

in terms of its identifying a subsystem whose behavioural model is sufficient for

answering the query concerned.

84

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

system

structure

query

domain

theories

answering

model

query analysis

derived from

derived from

Figure 4.7: Models for Compositional Modeling

It might be suggested that the aim of the compositional modelling approach is

better suited to other tasks than design analysis. The example given in their

paper, of using it to find the effect of changing the air flow through the firebox of

a steam turbine, suggests it is well suited to training of operators of systems, for

example.

It is felt that these differences of aim between compositional modelling and the

other approaches, all of which seem to be aimed more at using model based rea-

soning for design of systems, means that this approach can be considered more

peripheral to the aim of this research.

4.2.2 Discussion of the model sets

The most apparent difference between the various sets of models illustrated above

is the idea that they can be grouped by whether they are associated with a be-

havioural or functional approach. This seems to confirm the idea that there are

two contrasting approaches. It is worth noting, however, that most of the reasoners

do have the same aim, to generate a behavioural model of the subject system.

In most of the approaches illustrated, functional models are used as part of the

simulation process, in that functional knowledge of components is used to derive

the behaviour of the system as a whole. The exception is the approach illustrated

in figure 4.2, (Price, 1998), where the simulation is purely based on knowledge

of the system’s structure and components’ behaviours and the functional models

are used to interpret this behaviour in terms of the system’s purpose. This is the

aim of the Functional Interpretation Language that is the result of the present

work. The similarity of the model sets used for simulation in figure 4.2 and the

85

set in figure 4.3 suggest that a similar approach to interpretation of their simula-

tion would be possible, using functional labelling or the Functional Interpretation

Language. This further suggests that the present work, building as it does on

the functional labelling approach, is not dependent on any specific approach to

simulation. However, its use for interpretation of simulation does perhaps imply

a behaviour based (as opposed to a function based) simulation.

In general the approaches illustrated all use a component centred ontology, the

main exception being that of (Falkenhainer & Forbus, 1991), which is processed

based. Therefore all uses of functional models seem to be associated with the com-

ponent centred ontology. This is a natural, intuitive approach to design analysis,

as the design of a system can be seen as the specification and connection of the

components used in the system. That being the case, the present research was

also centred on that ontology.

Having explored the background to the use of functional modelling as the basis

for interpretation of model based simulation, it is time to consider the Functional

Interpretation Language itself.

86

Chapter 5

Representation of function

This chapter will introduce and discuss the nature of the proposed language for the

representation of function, in the light of the definition proposed in the previous

chapter,

an object O has a function F if it achieves an intended goal by virtue

of some external trigger T resulting in the achievement of an external

effect E.

This can be less formally described as a representation of function in terms of the

triggers and effects of a system that result in its meeting some intended purpose,

and as such in terms of how a device fulfils its purpose when viewed externally.

The discussion will concentrate on the use of functional representation for the

interpretation of the results of simulation, to drive the automated production of

design analysis reports. The usefulness of the proposed functional representation

for other tasks (such as functional reasoning and functional refinement of a pro-

posed design) will be introduced briefly here but will be discussed at greater length

in Chapter 11.

The definition of function as a relation between trigger, effect and purpose leads

to the need for a representation of function to incorporate the three elements:-

• The trigger of the function can be thought of as the preconditions for the

correct achievement of the function. This is a Boolean expression which, if it

resolves to true, means the function’s effects are expected. This allows sev-

eral input states of the system to be identified and combined appropriately,

using Boolean operators.

87

• The effect amounts to the post-conditions of the function. This is also a

Boolean expression, so (loosely) the function is achieved when the post-

conditions resolve to true. The use of Boolean operators allows cases where

a function depends on several effects to be described.

• A representation of the purpose the function is to fulfil. A possible ap-

proach is to have a distinct teleological description that is referred to by the

functional description, as being achieved by the function. This is discussed

further below.

The trigger and effect between them provide a link to the behavioural model of

the system, being concerned with inputs and outputs respectively. These three

elements of a functional representation will be discussed in turn, following a dis-

cussion of the requirements of a functional representation and of the use of logic

in recognising achievement of a system function.

As elements of the Functional Interpretation Language are introduced in this

chapter, it is an opportune point to introduce the convention that elements of

the language and quotations of functional descriptions are highlighted using a

typewriter typeface and in addition keywords of the language, including the

conventional logical relations, are in CAPITAL LETTERS.

5.1 Requirements of a functional representation

Before discussing the proposed representation of function, it seems worth briefly

summarising requirements for a useful representation, specifically in the light of

its use in interpretation of a simulation of an engineered system. The important

requirements of a functional language are that it should be:-

1. Capable of recognising whether the purpose is being fulfilled. This naturally

implies a mapping to some description of purpose. This is consistent with the

reference to the idea of a function fulfilling a purpose in definition of function

given earlier. This also requires a mapping to the simulated behaviour. What

is required is some way of recognising whether or not the simulated behaviour

fulfils an intended purpose of the system, so the behaviour is considered in

terms of the truth or falsehood of the achievement of a function, and in turn

the fulfilling of the intended purpose. This follows the functional labelling

approach of (Price, 1998) and a logical basis for recognition of function that

allows the development of recognisers for the achievement or otherwise of

some function forms the subject of the next section.

88

2. Applicable to static or dynamic functions. This is one of the three desiderata

for function in (Chandrasekaran & Josephson, 1996).

3. Applicable to physical and abstract objects. This is also one of the desiderata

for function in (Chandrasekaran & Josephson, 1996) and is clearly signifi-

cant if we are to use the representation of function in analysis of software

based systems. The use of the proposed representation for interpretation of

software based systems will be discussed later.

4. Independent of the system, specifically of the representation of its structure

and behaviour. By this is meant that it should be possible to construct a

functional description or specification of the intended system with no ex-

plicit reference to the details of the system itself. This increases the lan-

guage’s usefulness for functional refinement of a design and also improves

the reusability of the functional model. One aspect of this is that the func-

tional representation might be independent of the domain(s) of the internal

workings of the subject system. For example, the purposes of gas and electric

hobs are identical and at an admittedly rather high level of abstraction they

both consume energy from some external source and convert that energy

into heat. Therefore, at this abstract level, a similar functional description

might be used for either. This independence from the system is important

if the functional language is to be used to support the design of a system by

functional refinement as the functional description will precede the specifica-

tion of the details of the system. It also allows the functional language to be

used for specification of detailed requirements of the planned system. The

idea that the functional model is independent of the target system differs

from the approach to functional labelling in (Price, 1998), where functions

were attached to existing behaviours of significant components.

5. Capable of specifying expected behaviour to an arbitrary level of precision.

What is meant by this that the functional model can be developed as far

as is necessary to specify the intended (external) behaviour of the system.

It will be appreciated that there is a likely conflict between the detail with

which a functional model specifies the intended behaviour of a system and

the model’s reusability. For example, if the functional model of a gas hob

specifies that to light a ring, the knob should be turned to some appropriate

setting and then pushed in to trigger ignition of the resultant gas flow, then

this description is not useful for an electric hob. This is valuable for func-

tional specification of a system as the intended behaviour can be specified

without reference to the implementation. One specific area where this is

89

valuable is if a functional specification is used to clarify the requirements

of a system early in the design process. For example rather than simply

stating that it is required to dip a car’s headlamps the functional model

could specify how this is to be achieved in terms of the user interactions,

such as specifying that whenever the headlamps are first switched on they

are dipped and that the dip switch itself is pulled and released to both dip

the headlamps and return them to main beam, as opposed to simply having

two positions of the dip switch. Later in the design process, the candidate

design can then be verified against these requirements by simulation and

interpretation of the results, using the specified functional description.

It will be seen that two of the three desiderata for a functional representation in

(Chandrasekaran & Josephson, 1996) have been included. As the present work is

concerned with functional representation in design analysis of engineered systems,

the third, that a functional representation should be usable for both natural and

man made systems, is not relevant. How the Functional Interpretation Language

meets these requirements will discussed later in this chapter. In addition, there

are the requirements identified in the introduction. These are that the language

be capable of describing

• Systems where a function might be partially achieved.

• Systems whose functionality depends on intermittent or sequential effects.

• Systems where there is a danger of the required effects being achieved in an

untimely manner (typically after an excessive delay since the function was

triggered).

• Systems with subsidiary functions whose achievement depends on the state

of some other system function.

How the proposed language approaches these requirements forms the content of

Chapters 6 to 10.

As the first of these requirements is that the functional model can be used to

establish whether or not a function has been achieved, the main rôle of the func-

tional representation is to abstract the behavioural state of the system in these

terms. The basis for this is described in the following section.

90

5.2 Logic and functional description

If a representation of function is to be used to interpret the results of simulation, in

other words to express the system’s behaviour in terms of its purpose, then some

method of recognising the achievement (or otherwise) of the function is required,

along with a representation of (or mapping to) the purpose the function is to

fulfil. What is required is a mapping between the behavioural state of the system

and the functional model, such that a behaviour can be identified as achieving

the function or not, and through this whether or not it succeeds in achieving the

system’s purpose. To return to the simple torch example in Section 4.1.5.1, the

simulation of the correctly working (and correctly designed) torch might, assuming

a domain based electrical simulator, show that when the switch is closed, there

is current flowing through the lamp (bulb). Informally, the definition of function

given in Section 4.1.5.1 can be stated as “that relation between input (trigger)

and output (effect) that achieves some purpose” so if we identify the purpose as

being to “light the dark”, the trigger with the switch being closed and the effect

as current flowing through the bulb, then that behavioural state can be identified

as fulfilling the torch’s purpose. However, if a wire comes adrift, so it no longer

makes the required connection, then switching on the torch no longer triggers

the required effect and the torch no longer fulfils its purpose. Incidentally, in

this case it seems safe representing the lamp as shining whenever there is current

flowing if any failure of the bulb (such as the filament breaking) that prevents

it lighting also prevents current from flowing. Such a condition might well be

associated with some specific state in the component’s behavioural model. For

example a lamp might have a qualitative behavioural description along the lines

of if filament.i = ACTIVE then state is LIT and that state might be used

to map to the functional model of the torch. In this case the use of state is arguably

an unnecessary complication, however. The relation between the simulation (and

so the behavioural models) and interpretation (and so the functional model) is

discussed in more detail in Chapter 11. Where a behavioural description is used

in illustration of an example in the present thesis, it will be done (implicitly) in

terms of state.

This approach to functional modelling follows (Price, 1998), with the change that

the proposed representation of function includes the trigger as well as the effect.

This is necessary for design verification and indeed is added to the functional model

when the tool developed as a result of earlier work in Aberystwyth (AutoSteve)

is used for SCA, see (Price et al., 1996a). This approach has the advantage that

a functional model need only be associated with the system as a whole and it

need only be concerned with those components that form the “interface” between

91

the system and its environment, typically the controlling components (such as

switches) and the effectors, simplifying the functional modelling. There is no need

to add functional models for purely internal components (such as connections in

the case of the torch) as the simulation does not require them and the system’s

functional model is stated in terms of its interfaces with the system’s environment,

any significant effects of malfunctions in internal components will show at these

interfaces. This might require additional behavioural models that describe failure

mode behaviours of components, at least for failure analysis.

The trigger and effect of a function are treated as Boolean expressions that be-

tween them serve to define the state of the function. The trigger can be seen as

the precondition of the function, showing when the function’s effect is expected,

and the effect as its post-condition. The present representation of function dif-

fers from most other representations by its inclusion of the trigger that leads to

the expected effect (output). The trigger and effect expressions are mapped to

appropriate properties of the system’s structural and behavioural model. This is

discussed later. This has the advantage for the present work that the represen-

tation of function is intrinsically capable of showing the unexpected achievement

of the effect, which does seem to be a potential weakness of the use of function.

Naturally, if the trigger is false and the effect true, then the effect is achieved un-

expectedly, unless, of course, the same effect can result from some other trigger,

as part of some other function. This leads to the idea that there are actually four

states that might be associated with the achievement of a function, as shown in

Table 5.1. The table shows that if the trigger (precondition) is false, the function

trigger
 effect
 function state

True

True

True

True

False

False
 False

False

Inoperative (In)

Failed (Fa)

Unexpected (Un)

Achieved (Ac)

Table 5.1: Achievement of function using trigger and effect.

should not be achieved, so the effect (post-condition) should also be false. If the

effect resolves to true, there is something wrong. If the trigger resolves to true

then the function should be achieved and clearly if the effect is false in this case

then the function has failed. Therefore a function can fail in two ways — either

by not being achieved when expected (referred to as failed, Fa) or the effect being

achieved when not expected (achieved unexpectedly or unexpected, Un, in the

Functional Interpretation Language). It will be seen that the trigger and effect

92

sharing a common value (whether true or false), is consistent with correct be-

haviour of the system. Either the function is correctly achieved or not intended,

which case has been labelled inoperative (In). Despite this pairing off of values

as being consistent with correct behaviour of the system (whenever the truths of

the trigger and effect expression agree) or not, there remains a need to distinguish

between the two cases of inconsistent behaviour(failed and unexpected). This is

because the consequences of these two cases differ. As a function’s state is consis-

tent with the expected behaviour of the system if the trigger and effect have the

same truth value, this consistency could be identified using the Boolean expression

NOT XOR. However, this would lose the distinction between the two cases.

These functional states are used as keywords in the language so they can be used

in specifying the triggering of some function that depends on the state of some

other system function. This is discussed in Chapter 10.

The four function states, inoperative, achieved, failed and unexpected are defined

in terms of the truth of the trigger and effect expressions, so for example a function

having failed means that is trigger is true and its effect is false or in practice that

the trigger has not resulted in the expected effect. The abbreviations as given in

parentheses in the table are those used elsewhere in the thesis. Failed has been

abbreviated as ‘Fa’ rather than ‘F’ to avoid confusion with false and the other

three function states given similar two letter abbreviations. If we let f be some

function that depends on a trigger expression t and an effect expression e, we can

restate table 5.1 as four rules to define the four function states, inoperative, In(f),

failed, Fa(f), unexpected, Un(f) and achieved Ac(f). The function f is said to

be inoperative if neither the trigger not effect are present.

In(f) ⇔ ¬t ∧ ¬e (5.1)

If the trigger is present but the effect absent, function f is failed.

Fa(f) ⇔ t ∧ ¬e (5.2)

The effect being present without the trigger means f is unexpected.

Un(f) ⇔ ¬t ∧ e (5.3)

If both trigger and effect are present the function f is achieved.

Ac(f) ⇔ t ∧ e (5.4)

All the formal definitions of the rules used in the Functional Interpretation Lan-

93

guage are summarised in Appendix A on page 275.

In addition to these four functional states, it is sometimes useful to define the

state of a function purely in terms of one or other of its trigger or effect. A function

f is said to be triggered, Tr(f), if its trigger t is true regardless of the truth of its

effect e.

Tr(f) ⇔ t ⇔ t ∧ (e ∨ ¬e) (5.5)

Likewise, f is said to be effective, Ef(f), if its effect e is true regardless of its

trigger t.

Ef(f) ⇔ e ⇔ e ∧ (t ∨ ¬t) (5.6)

This allows the four function states inoperative, failed, unexpected and achieved

to be defined in terms of these function states, by replacing the trigger and effect

with the triggered and effective function states.

In(f) ⇔ ¬Tr(f) ∧ ¬Ef(f) (5.7)

Fa(f) ⇔ Tr(f) ∧ ¬Ef(f) (5.8)

Un(f) ⇔ ¬Tr(f) ∧ Ef(f) (5.9)

Ac(f) ⇔ Tr(f) ∧ Ef(f) (5.10)

It will be seen that these are identical to the four rules (5.1 to 5.4) given earlier.

These relations are useful in the text and also for describing dependencies between

functions, as discussed in Chapter 10. All of these relations can be traced back to

the truth of the triggers and / or effects, and as such there is no ambiguity.

The operator TRIGGERS is used to represent the relationship between the trigger

and effect, table 5.1 can be regarded as the truth table for this operator. The

trigger and effect between them serve to show the state of achievement of the

function, so in combination they serve as the recogniser for the function. The ex-

pression that precedes TRIGGERS describes the function’s trigger and the keyword

is followed by the required effect. For example, the recogniser for the functional

description for a torch might read like this.

switch_on TRIGGERS lamp_lit

Here switch_on is a label that represents the trigger and lamp_lit the effect.

These labels are then attached to appropriate properties of component behavioural

description. This is described in Section 5.6.

There are arguably objections to the idea that the function is achieved unex-

pectedly if the effect is true and the trigger false. Pedantically, if the function is

94

to be defined as being dependent on both trigger and effect, then it should not

be regarded as being achieved if either are false. This does lead to an interesting

point, however, which is that the consequences of unexpected achievement of a

function’s effect do not, typically, relate to the purpose, while the consequences of

failure of the expected effects do. To re-use the headlamps example, if the lamps

do not light when expected the goal of lighting the road ahead is not achieved

but if they are achieved unexpectedly, the consequences are dazzling of oncoming

road users, unnecessary drain on the battery (if the engine is not running), and, of

course, the road ahead might not be lit by the lamps at all, if it is daylight. There

is therefore some asymmetry between the consequences of failure of a function and

the unexpected achievement of its effect. This will be considered further in the

sections discussing the effect of a function and the purpose to which the function

relates.

As the trigger and effect are Boolean expressions, the Boolean operators can be

used to specify the trigger and effect in cases where the achievement of a function

depends on required combinations of triggers and effects, such as a combination

of switch positions and / or several outputs being required. This is the simplest

approach to decomposition of a system function and is discussed alongside the

other possible approaches in the following chapter.

It appears to be the case that this four valued table applies less well to component

function, as this will have a closer correspondence with its behaviour. Specifically

it is unlikely that a component function’s effect will be achieved unexpectedly as in

this case the trigger will generally be the actual cause of the effect, instead of being

merely one end of a causal network that leads to the effect. For example, a lamp’s

(that is a bulb’s) function might be “light room achieved when filament current

is active triggers shining”. In this case the functional description adds little to

the behavioural description as the behaviour of a lamp can be described in the

same way, except for the reference to purpose, which arguably is more a property

of the system the lamp is a part of, though it does (implicitly) suggest that the

lamp should be in a room! As the proposed use of the functional representation

is the interpretation of a system’s behaviour with reference to its purpose, this is

not seen as an undue difficulty. It is out of concern for the complexity of causality

in a system that the term trigger has been preferred to cause. This is not to rule

out the use of this representation of function for component functions, a lamp’s

function could be represented in terms of its being triggered by the presence of a

current triggering the effect of light delivered to the rest of the system. However,

it might be felt that the express description of purpose is superfluous at this level,

unless functional models are used in simulation and a description of purpose is

95

useful in guiding the structural design of a system. For example, if a functional

decomposition of some system includes the knowledge that a wire’s purpose is to

conduct electricity to some specified effector, this guides the structural design by

implying that the wire be on a path to that effector.

Having shown that the state of achievement of a system function can be recog-

nised in terms of the truth of pre and post conditions (its trigger and effect) the

nature of the trigger and effect can now be discussed. In the simplest case, each

need be no more than a label which acts as a hook to which some property of the

simulated behavioural model can be attached.

5.3 The trigger

The trigger can be thought of as the required precondition for the function to be

expected. If the trigger resolves to false, then the trigger’s effects are unexpected

and its purpose can remain unfulfilled. It might, of course, be the case that a

given effect might be associated with more than one function, and so with more

than one trigger. A possible example might be an industrial monitoring system

where a hooter sounds to draw attention to any one of a number of failures in the

process being monitored, which failure being distinguished by a different warning

lamp. In this case, of course, the hooter sounding is not an unexpected effect of

one such warning function if another process failure has triggered it.

Another view of the trigger is that it describes an interface with which a user

(either human or some other encompassing system) interacts with the system being

designed. It can be thought of the controlling condition that calls on the function.

A switch is a typical example of such an interface. When specifying the trigger

for a system function, any power supply will generally not be modelled as part of

the trigger. This is simply because the power is either part of the system (such as

a battery) or beyond the scope of the system design, such as the public electricity

or gas supply, the testing of which is not really part of the design process for a

specific mains powered device. An exception to this case is where the failure of

the external power supply should result in some specific behaviour of the system,

such as the starting of a backup power supply to allow the system to be shut down

correctly. Even in these cases, the power supply need not be treated as part of

the trigger of the main function, instead there will typically be a backup function

triggered by the failure. This is discussed in Chapter 10.

The idea that the trigger is concerned with control of the system rather than

driving it is one area where system level function typically differs from component

96

function. In the case of an effector component of a dynamic system, the input

that triggers its function will be of energy, the task of the rest of the system being

to deliver that energy and additionally control its delivery.

As has already been noted, a function might depend on several triggers which

can be related using Boolean operators. It is quite possible that any of the three

binary Boolean operators might be used in describing a trigger. The headlamp

example mentioned above includes a trigger that combines two necessary compo-

nents, combined using AND. While this is, perhaps the most usual operator, there

are cases where the other binary operators (OR and XOR) might be used. An exter-

nal light, for example, might be switched on either manually or by an automatic

device that senses the ambient light level and switches on the external light if the

level drops below some threshold. This can be described using OR:

light_switch_on OR light_level_low

TRIGGERS

outside_light_on

Here, of course, the simulation will need some way of modelling the idea that the

ambient light is low. XOR is useful for describing the typical dual switched light in

a stairwell, for example, where if one or other of the two switches is in the down

position, the lamp should be lit:

ground_floor_switch_on XOR first_floor_switch_on

TRIGGERS

stairwell_light_on

In both these cases, of course, the effect and purpose associated with each trigger

are the same. The use of the Boolean operators is discussed in greater detail in

the following chapter, which discusses decomposition of function.

Having suggested that one requirement of a functional language is that it applies

to static as well as dynamic systems, following (Chandrasekaran & Josephson,

1996), then a discussion of how the idea of a trigger might work in a static sys-

tem seems necessary. The idea that a function is achieved by an effect resulting

from a trigger does, it is appreciated, appear more consistent with dynamic sys-

tems. However there seems no difficulty in using the approach to describe a static

function, such as support. For example, a bridge might be required to support a

vehicle of some specified gross weight. This might be expressed as follows.

loading NOT greater than max weight TRIGGERS NOT collapse

97

The maximum weight is that intended (plus, presumably, some safety margin)

and the effect of not collapsing might be defined in terms of a maximum deflection

of the centre of the bridge. These can be specified when associating the functional

description of the bridge to the simulation or could be specified in the functional

description itself.

loading <= than 25 tonnes TRIGGERS deflection < 10 millimetres

On the one hand this seems a reasonable part of the functional specification of

a bridge (though the figures might not be realistic!), but it does raise questions

as to how best to associate the functional description with the simulation. An

approach to associating simulations and functional models is discussed later.

5.4 The effect

At its simplest the effect in a functional description is, like the trigger, simply

a label to which a property of the system’s behaviour can be attached. The

nature of this property is independent of the functional description itself. It might

be an output, as will be the case if the system is a software module, or a goal

state, such as a centrally locked car’s doors all being locked. The effect does, of

course need to be linked to some recognisable feature of the system’s behavioural

model. It will typically be some property associated with an effector component.

It should certainly be some component whose effect on the system’s environment

is apparent.

While the use of logical operators is as applicable to effects as it is to triggers,

in practice OR and XOR will seldom (if ever) be used to combine effects. This

is because it is extremely unusual for a system to have a trigger that triggers,

non-deterministically, one or both of two possible effects, such that either is an

acceptable way of fulfilling the same purpose. Indeed, if this seems to be the

case, then typically the trigger should be better defined. In the case of a software

module, for example, an input might result in one of two outputs but if there is

no need to distinguish between the outputs (they both fulfil the same purpose)

then what is the purpose of the module? It is, perhaps, not impossible that for

some analyses, all that is required is to know that the module handles the input

concerned without crashing, in which case, arguably, the different outputs might

be immaterial. This seems unlikely but should not be ruled out. This, combined

with the possibility of wanting to describe a non-deterministic system, suggests

98

that the use of OR and XOR should be allowed in combining effects. One possible

approach to this case might be to have a tool that implements the functional

language warn the user about the use of these operators in this situation.

It does seem worth noting that where a description of function is used to interpret

a simulation, then the effect on which the function depends does need to be capable

of representation in a simulation. This does restrict its use for cases where a

function is aesthetic and / or subjective, such as the function (strictly, the purpose)

of placing a potted plant in the room is to improve the room’s ambience. The anti-

corrosive properties of paint could be represented, while the aesthetic properties

could not.

Having considered the two components of a functional description’s recogniser,

we can now consider the representation of the purpose the function is to fulfil.

Note that from hereon a single function, associated with the achievement of some

purpose of a system will be referred to as a “functional description”, the term

“functional model” being reserved for the set of functional descriptions associated

with some system. In the case of a simple system like the torch, therefore, the

functional model might contain but one functional description. However, for many

systems, the system’s functional model will include several functional descriptions.

For example, a car exterior lighting system’s functional model will include func-

tional descriptions for headlamps (dipped and main beam), tail lamps, brake lights

and so on.

5.5 Representation of purpose

At its simplest, in principle, a description of purpose need consist of no more than

a textual description of the purpose, so the purpose of a torch might be no more

than the entry “help the user see in the dark”. This could, of course easily be

incorporated a functional description. The keyword ACHIEVES is used to indicate

the purpose associated with a function, so the torch functional description can be

expanded to this.

FUNCTION torch

ACHIEVES "help the user see in the dark"

BY

switch_on TRIGGERS lamp_lit

The keyword FUNCTION labels the function itself and BY indicates the recogniser.

However, for design analysis there is more interest in unexpected results (whether

99

failure to achieve the required effect or unexpected achievement of an unwanted

effect) so that the functional description in (Price, 1998) includes a description of

the consequences, both of failure and unexpected achievement of a function. As

the consequences of failure of the function (the expected effects not being achieved)

will typically relate to the purpose of the function (so if the torch fails to light, the

user is not helped to see in the dark) these can neatly be added to the description

of purpose. Similarly, the values for severity and detection, used to arrive at the

failure’s risk priority number (see Section 2.1.1.5 on page 24), can also be added

to the description of purpose. The value for occurrence is associated with the

likelihood of the component failure that gives rise to the failure of the function, so

is included in the component’s behavioural model. It is not part of the functional

description. The torch’s functional description might now be further expanded.

FUNCTION torch

ACHIEVES "help the user see in the dark"

FAILURE_CONSEQUENCE "user not helped to see"

SEVERITY 5

DETECTION 1

BY

switch_on TRIGGERS lamp_lit

Separating the description of purpose (teleological model) from the functional

description itself simplifies the functional description. It is also consistent with

the idea that function is concerned with how a purpose is fulfilled rather than the

purpose itself. Therefore the torch’s functional description might look like this.

FUNCTION torch

ACHIEVES see_in_dark

BY

switch_on TRIGGERS lamp_lit

Here see_in_dark is a reference to a separate teleological model.

PURPOSE see_in_dark

DESCRIPTION "help the user see in the dark"

FAILURE_CONSEQUENCE "user not helped to see"

SEVERITY 5

DETECTION 2

This has the practical advantage of assisting in reuse of existing information. For

example, the purpose, consequences of failure and severity value of a stop lamp

100

system on any road vehicle are similar and such information could well be reused

by functional models that associate the function with the lighting of one lamp

(on a motorbike), two (on a car) or three (if there is an extra repeater fitted).

The alternative is, of course, to use the same functional description in each case,

but this cannot be done without changes to the composition of the effect, at

the very least, so reusing only the teleological description might be simpler and

more convenient in this case. The idea that a purpose is external to the system

(and therefore generally to the simulated world) makes a formal description more

difficult and arguably unnecessary. One of the purposes of the functional language

is therefore to provide a connection between the informal teleological description

and the formal representation of behaviour associated with the reasoner.

While the consequences of failure of a function will be associated with the purpose

the function is associated with, the consequences of unexpected achievement of

the effects will frequently not be. For example, the consequences of a torch lamp

staying on when switched off are concerned with draining the battery rather than

seeing in the dark. Therefore these consequences typically will not be included

in the teleological model but instead will be associated with the link between the

functional description and the simulation, as will be discussed later. However,

there are occasions where unexpected achievement of a function’s effects do relate

to the system failing to fulfil its purpose. For example, if a car’s stop lights stay

lit when the brake pedal is not being pressed, the driver of a following car is not

shown that the car is stopping. Therefore, a teleological model can, optionally,

include a similar set of consequences, and values for severity and detection for

unexpected achievement of a function’s effects. The idea that the consequences

of unexpected achievement of a function’s effects are attached to the link between

the functional model and the system’s behavioural representation is discussed in

the following section, on the relationship between those two models. Note that the

inclusion of the values for severity and detection will depend on the use to which

the design analysis is being put, and they need not be present. In this thesis, their

use is assumed, partly because their presence is of help in clarifying features of

the Functional Interpretation Language.

5.6 Relationship with the simulation

The inclusion of the trigger and the use of labels to represent the trigger and effect

of the function allow the functional description to be built independently of the

target system. This has the advantage that the language can be used for tasks

in which the functional model is built before the system itself, such as supporting

101

the functional refinement of a design and capturing functional requirements of a

possible system. It should also encourage reuse of functional models.

For interpretation of a simulation, we naturally require a mapping between the

system’s behavioural model and the functional model. The approach taken here

is to link a complete functional description with appropriate properties of the

system’s behavioural model. This does follow (Price, 1998) in that the models

are actually those of significant components, that is input components (such as

switches) and effectors. These behavioural models are labelled as implementing

a trigger or effect of a function, from some existing functional description. For

example, the component models of the torch will include a switch and a lamp

(bulb). The switch might be modelled as having two positions, open and closed.

On attaching the model of the torch system to the torch functional description, the

switch being closed will implement the trigger of the torch function. The model

of the torch will then have the following attached on associating the system with

an appropriate functional model.

switch.position = closed IMPLEMENTS torch.switch_on

Here, torch is, of course, a reference to a functional description and switch_on

a reference to that model’s trigger. Naturally such an attachment will use com-

ponents that control inputs to the system being simulated

Implementing effects is a little more complex. An effect might be an output

(such as light) or a goal state, such as a car’s central locking system having all

the doors locked. It also requires the consequence of unexpected achievement of

the effect adding. If an effect is achieved unexpectedly (that is, when it is not

triggered) this failure of the system will have its own consequences, distinct from

those associated with failure to achieve an expected effect (that is, failure of the

function). These consequences will, like the consequence of failure of a function,

consist of a textual description of the consequences and (depending on the use

to which the language is being put) values for severity and detection. Attaching

these consequence to the association between system and functional description

maintains the independence of the functional description from its target system

and so encourages reuse of the functional description itself. The IMPLEMENTS

connection for the torch effect is as follows

lamp.state = lit IMPLEMENTS torch.lamp_lit

UNEXPECTED_CONSEQUENCES "Drain on battery"

SEVERITY 3

DETECTION 2

102

The lamp has a (possibly redundant) state description. All that is required is

that the property of the system that implements an effect can be recognised by

the simulation. In this case the state description could be dispensed with and a

(qualitative) current used instead, as shown here.

lamp.current = active IMPLEMENTS torch.lamp_lit

UNEXPECTED_CONSEQUENCES "Drain on battery"

SEVERITY 3

DETECTION 2

This does assume that there is no failure of the bulb that allows current to

flow through it without it lighting. In general, where such associations are shown

in this thesis, they will be shown using state, for the sake of consistency. The

nature of the relationship between the functional model, its target system and the

simulation is discussed in more detail in Chapter 11.

One aspect of the links between a functional description and its associated system

is how this affects the precision of the functional description. Should the functional

description itself specify the possible triggers of a function, or should this be left

to the association between function and system? To illustrate, a torch might have

a sprung push-to-make switch to switch on the torch when it is only required for a

short flash, as well as the two position switch. There are three possible approaches

to representing this case. The simple functional description given earlier could be

used, with the alternative trigger specified in the association.

slider_switch.position = closed OR push_button.position = pressed

IMPLEMENTS torch.switch_on

This simplification of the functional description itself does, of course, encour-

age its reuse, but at the expense of precision in the description of the expected

functionality. One advantage of the use of labels for representing the trigger (and

effect) is that this precision can, if required, be incorporated into the functional

description itself.

FUNCTION torch

ACHIEVES see_in_dark

BY

switch_on OR flash_on TRIGGERS lamp_lit

This shows that an alternative way of switching on the torch is required, with

identical effects (and purpose). It will require two associations with the system.

103

slider_switch.position = closed IMPLEMENTS torch.switch_on

push_button.position = pressed IMPLEMENTS torch.flash_on

An alternative (as in this case) might be to associate the flash_on function with

its own purpose (signalling, perhaps), with the two functions sharing an effect and

so have two separate functional descriptions, one for each intended use of the

torch. There are cases where one might or might not wish to associate an effect

with alternative triggers, but where there is no question of a distinct purpose the

option of using different functions is arguably not appropriate, though the two

functions could be associated with one description of purpose. These alternative

approaches allow the intended functionality to be specified to an arbitrary level of

precision, subject to an inevitable “trade off” between precision and reusability of

the functional description. This was one of the requirements of a functional lan-

guage listed earlier in this chapter. The choice of how much precision to use will

be at least partly dependent on how the functional model is used. If a system’s

functional model is to be used simply for interpretation of simulation, the simplest

model is likely to be adequate, but if functional modelling is used to guide the

design process then the more elaborate model might be more appropriate as en-

suring all intended behaviours are allowed for in the physical design. For example,

the functional model above shows that the design of the torch is to allow for it to

be flashed briefly on and off.

There is less need for the use of logical operators to combine implementations

of a function’s effects than triggers. The effects are typically all going to be

required for achievement of the function rather than being alternatives, as might

well be the case for triggers. Also, of course, the effects are also what actually

achieves the function, so a correct functional description will specify them with

adequate precision. For example, the effect clause in a car headlamps main beam

function should specifically refer to the effect of both right and left headlamps.

This association with the effects of a system might rely on an indirect indicator,

so in the case of the headlamps system, the presence of current through the lamps

can be taken as indirect evidence of the output of light (the real effect) given that

there is no failure of a lamp that allows current to flow through the lamp without

it giving off light.

Attaching the consequences of the unexpected achievement of an effect to the

mapping between system and function has the advantage that the model includes

the unexpected consequence of any effect, even where it does not amount to achiev-

ing a function. In the approach taken by (Price, 1998), the consequences of both

failure and unexpected achievement were associated with a function, with the

104

result that the consequences of unexpected achievement of an effect were not re-

ported if that effect did not itself amount to achieving a function. For example, a

car headlamp main beam function might look like this.

FUNCTION main_beam

FAILURE "Driver cannot see road ahead"

SEVERITY 8

DETECTION 2

UNEXPECTED "oncoming drivers dazzled"

SEVERITY 6

DETECTION 2

BY

right_main_filament.current = active

AND

left_main_filament.current = active

Note that this is not an accurate rendition of the functional label approach in

(Price, 1998), but is a plausible one, that carries the same meanings. There are

two differences between this and the Functional Interpretation Language presented

in this thesis that while appearing slight are nonetheless significant. The first of

these is the lack of a trigger expression (which for FMEA is derived from the cor-

rect simulation). Its inclusion in the Functional Interpretation Language allows

the state of some system function to be included in the trigger expression for some

other function, as discussed in Chapter 10. The second and the use in functional

labelling of existing properties of the system as effects that achieve the function.

The Functional Interpretation Language’s use of labels for the effect, which are

later associated with the appropriate system properties, allows a functional de-

scription of a system to be built independently of the structural design.

It will be seen that as the function depends on both headlamps’ main beam

filaments being active, if one lamp is on, the function is not achieved. Therefore

any fault that causes one lamp to stay lit the whole time (possibly a wire shorting

to ground) does not achieve any function (correctly) but the consequence of the

unexpected effect is lost, as it is associated with the achievement of the function.

One headlamp being full beam is still capable of dazzling oncoming drivers but

this is not reported. As implemented in the commercial tool (AutoSteve) there is

a way of avoiding this problem, by associating each lamp with its own function,

so the main beam function has two subfunctions, left main and right main. There

are objections to this solution, in that it complicates the functional description

and anyway as one headlamp on its own does not really fulfil any purpose (both

are required to drive after dark) its effect does not really constitute a function.

Attaching the unexpected consequences to the mapping between the part of the

105

system that implements a function’s effect and the function avoids this difficulty

as each effect than has its own consequences of unexpected achievement. In the

Functional Interpretation Language presented here the same system’s functional

description might look like this.

FUNCTION main_beam

ACHIEVES light_road_ahead

BY

lamp_switch_heads AND dip_switch_main

TRIGGERS

left_main_beam AND right_main_beam

left_main_filament.current = active IMPLEMENTS left_main_beam

UNEXPECTED_CONSEQUENCE "oncoming drivers dazzled"

SEVERITY 6

DETECTION 2

right_main_filament.current = active IMPLEMENTS right_main_beam

UNEXPECTED_CONSEQUENCE "oncoming drivers dazzled"

SEVERITY 6

DETECTION 2

The two identical unexpected consequences could, of course, be a single sepa-

rate description, applied to both effects. In this case the consequence of either

headlamp being lit on main beam unexpectedly is not lost and the achievement

of the headlamps main beam function still depends on both lamps being lit cor-

rectly. There is still a rôle for subsidiary functions, discussed in the following two

chapters.

Where a function depends on more than one effect, it is possible that if both or

all of the effects are achieved unexpectedly, the consequences are different from

the unexpected achievement of one. For example if one brake light stays on when

the pedal is not pressed, it is wasteful and distracting to a following driver, but

at least some warning that the vehicle is slowing is given by the other brake

light working normally. If they both stay on, no warning is given. This is why

a description of the consequences of a function’s effects can be attached to a

description of purpose. It is likely that where all a function’s effects being achieved

unexpectedly have different consequences from any one of them, this will result

in the purpose not being fulfilled. It is still necessary in these cases to provide a

set of unexpected consequences to each mapping between effect and behaviour, to

capture the consequences of that effect alone being achieved unexpectedly. This

is discussed further in the chapter on functional decomposition.

106

5.7 Functional description and report generation

Having discussed the relationship between the functional description and the sim-

ulation, allowing its interpretation, it is worth introducing how the functional

description is used to generate a design analysis report. This report will include

entries for all behaviours that result in unexpected functional states and the con-

sequences of these unexpected function states.

The reporting of the state of a function can readily be described in terms of the

state of the function, as described in Section 5.2 above. Let f be some device func-

tion associated some description of purpose and through that with consequences

of failure of the function cf . In addition, each effect is associated with the conse-

quences of unexpected achievement of that effect. In the simplest case, the effect

expression has a single element e with unexpected consequences ue. The report

will include an entry for each function that is in a state that is not consistent with

expected behaviour of the system. Let us use the notation R(f) to mean “the

resulting design analysis report includes f” and R(cf) to mean the report includes

the consequences fop failure of f . The report will include references to functions

as follows.

R(f) if Fa(f) ∨ Un(f) (5.11)

So the report will include any function that is failed or unexpected. The report

should also include a reference to the individual effect e that led to this inconsistent

behaviour.

R(e) if (Tr(f) ∧ ¬e) ∨ (¬Tr(f) ∧ e) (5.12)

So any effect that is absent when it is expected or present when it is not triggered

will also be included in the resulting report. It should be noted that where an effect

expression includes several individual elements (as in the headlamp example) each

element is included following this rule, and therefore an element might be included

in a design analysis report even though it does not result in a function being either

failed or unexpected. For example, if one of the headlamps was lit unexpectedly,

this does not amount to the function being unexpected (as the effect expression

is false) but that headlamp being lit is still included in the report. The following

chapter discusses this. The use of these rules is illustrated in the example that

follows and forms the bulk of this section.

The report should also include the consequences of these inconsistent behaviours.

As the consequences of failure of a function are associated with that function

(through its description of purpose) the consequences of failure can be reported

107

when the function is failed.

R(cf) if Fa(f) (5.13)

Because the consequences of unexpected achievement of an effect are associated

with that effect’s mapping to the system model, this can be reported like this.

R(ue) if ¬Tr(f) ∧ e (5.14)

So the consequences of any effect are noted even if this does not amount to a

function being unexpected where a function depends on more than one element in

the effect expression. Note that while the preceding descriptions serve as formal

rules for the simple example used in this section, they are simplifications of the

rules used in the Functional Interpretation Langauge. In the case of 5.13, this

is because a function might be an Operational Incomplete Function, described in

Section 7.2, which has no associated description of purpose and therefore no con-

sequences of failure. A function might optionally be associated with consequences

of its being unexpected. This is discussed in Section 6.2.3. This entails additional

conditions in the rule derived from 5.14.

These formal rules give a more complete foundation to what is essentially the

same approach as is already used in the design analysis tool developed in earlier

work, but it does seem worth describing its use as an introduction to provide back-

ground to the extensions of the expressiveness of the approach that the present

Functional Interpretation Language supports. This will be done primarily using

the simple torch example used earlier. It seems worth recapitulating the functional

description and associated description of purpose together with the mappings be-

tween the system and the functional model.

FUNCTION torch

ACHIEVES see_in_dark

BY

switch_on TRIGGERS lamp_lit

PURPOSE see_in_dark

DESCRIPTION "Help the user see in the dark"

FAILURE_CONSEQUENCE "User not helped to see"

SEVERITY 5

DETECTION 2

switch.position = closed IMPLEMENTS torch.switch_on

lamp.state = lit IMPLEMENTS torch.lamp_lit

UNEXPECTED_CONSEQUENCE "Drain on battery"

SEVERITY 3

108

DETECTION 2

The resulting report will typically be in a tabular format, with columns for failure

cause and effect, consequences (possibly) and severity and detection. In generating

a report in such a format, all that is required of the design analysis software is to

look up the functional model and so establish which functions are achieved, which

have failed (that is triggered but with the effect absent) and what, if any, effects are

unexpected. If the torch is designed as in the little schematic in Figure 5.1 then if

there are no component failures, the torch will work as expected. When the switch

is closed, the lamp will light. For FMEA, the design analysis report will include

lamp
 switch

wire A
 wire B

Figure 5.1: Circuit diagram for the torch example

the consequence of each failure of any component in the circuit. Here two failures

are included for brevity, wire A breaking (going open circuit) and wire B shorting

to ground. It will be seen that the result of running an electrical circuit simulation

on this circuit with wire A broken will show that no current will flow through the

lamp whether or not the switch is closed. The lamp’s behavioural model will

then show that it will not enter the lit state. The design analysis software can

then examine the functional description, which shows that when the switch is

closed, the function torch is triggered, but is not achieved because the lamp is

not lit. Likewise, the electrical simulator will show that when wire B shorts to

ground, current flows through the lamp (so it stays lit) whether or not the switch

is closed, as the switch is bypassed by the short to ground. On examining the

functional models, the software has shown that there are no functions that result

in the lamp being lit with the switch open, so the effect is achieved unexpectedly.

The functional models (and descriptions of purpose) already contain the text to

be incorporated into the design analysis report, so this can readily be generated,

and might resemble Table 5.2. In the first result, the failure effect field includes

the name of the failed effect, consistently with rule 5.11 above and also includes

the effect that caused the failure of the function, from rule 5.12. As the effect

has failed, rule 5.13 has the report including the consequences of the failure, in

109

Sev
 Det
Failure effect
 Cause
 Consequence

When switch_closed, function

torch failed because expected

effect lamp_lit was absent

wire A open

circuit

User not helped

to see

When switch_open, function torch

was unexpected because

unexpected effect lamp_lit present

wire B short

to ground

Drain on battery

5
 2

2
3

Table 5.2: Part of an FMEA report for the torch example.

the third column. The second result includes the unexpected function and the

unexpected effect that causes the function to be unexpected, from rules 5.12 and

5.13 but in this case the consequences are those of the unexpected effect, from

5.14.

A complete report will, of course, have other columns, including one for the

occurrence value (which is a property of the failure cause and so of the model

of the component concerned), one for the RPN value and various columns that

will be filled by hand, describing any action to be taken. Where generated text

is quoted in this thesis, a simple textual format has been used, as it was felt this

was easier to read. The textual form used for the first of the failures listed in the

table would read

Function see in dark not achieved because expected effect lamp lit was

absent. Consequences are: User not helped to see. Severity 5, detec-

tion 2.

These textual quotations from possible design analysis reports will generally be

shortened to include only the text required to illustrate the point being made.

In both cases it will be seen that most of the text is taken from an existing

model, either the functional description, the description of purpose, or the mapping

between system and function. Only simple linking words or phrases are added,

such as the ‘because’ linking the function failure with the missing effect. It will

be seen that the necessary text is easily generated and, indeed, this technique

is in use from the earlier work. In this case, the labels for trigger and effect

in the functional description have been used, but it will be appreciated that it

would be straightforward for the software to use the mappings between system and

functional models to generate text that includes the states of components in the

system model. The only novel feature here is the use of the effect label to give some

explanation of the failure of the function. This is clearly more interesting where a

110

function depends on several effects, as the missing effect(s) can be specified. For

example, a report on the headlamp example might include “Function main beam

not achieved because expected effect left main beam was absent”.

As the design analysis report will include repetitious entries of failure effects,

even in this simple example any wire going open circuit will have the same effect,

the use of functional descriptions and associated models means that such text is

only written once, on creating the initial models. This both saves time, avoiding

repetitious work, and reduces the danger of inconsistency between similar failures.

For example, there is now no danger of the effects of wire B going open circuit

being any different from those of wire A.

In Table 5.2 the different entries in the report are associated with different states

of the torch’s functional model. Wire A going open circuit caused the function to

fail (trigger true, effect false) so the consequences are those associated with failure

of the function. In contrast, wire B shorting to ground caused the unexpected

achievement of the effect of the lamp being lit, so the consequences are those asso-

ciated with that effect. This relationship between the state of the function (failed

or unexpected) and the generated text can be generalised for a simple functional

description is shown in Table 5.3. Here a general form of the generated text for

function
F

t
 e
 state

F
 F

F

F
T

T

T
 T

I

U

Fa

A

generated text

(no entry)

Function
F

achieved unexpectedly because unexpected effect
e

was present

Function
F
 failed because expected effect
e
 was absent

Function
F
 achieved

consequences

Fa(
F
)

U(
F
) or U(
e
)

Table 5.3: States of a function and the resulting text.

an automatically generated report is associated with the state of a function. In

the table, the consequences associated with any inappropriate result are treated

implicitly as a set that consists of a textual description, a value for severity and

one for detection. They are denoted by the abbreviated form of the functional

state (failed or unexpected) associated with the name of the function or effect

concerned, so Fa(F) means the consequences associated with the failure of func-

tion F. The alternatives for the consequences of unexpected achievement are, of

course, because the function itself might or might not have a set of consequences

of unexpected achievement associated with it. In such a simple case, it is unlikely

that it would as they would, of course be much the same as the required ones of

111

achievement of the effect. The notation used in this table and other similar tables

that appear in the following chapters is described in more detail in Appendix D

on page 287. The table illustrates the straightforward relationship between a

functional description and the generated text in a resulting design analysis report.

5.8 Notation used

Two notations are used from here on, a textual one that is consistent with the file

format for a functional description and a graphical notation intended to illustrate

the relationships between different elements of the functional description itself and

between that description and other related parts of the system model.

The textual notation has, of course, already been used in the example functional

description included above, and is also described in Appendix B. A brief summary

of the notation and conventions governing its use in this text seems useful here,

however, as it will be used in illustration throughout the remainder of the thesis.

The headlamp main beam functional description used above is shown as follows.

FUNCTION main_beam

ACHIEVES light_road_ahead

BY

lamp_switch_heads AND dip_switch_main

TRIGGERS

left_main_beam AND right_main_beam

PURPOSE light_road_ahead

DESCRIPTION "Allows driver to see road ahead after dark."

FAILURE_CONSEQUENCE "Driver cannot see after dark."

SEVERITY 8

DETECTION 3

light_switch.position = heads IMPLEMENTS main_beam.lamp_switch_heads

dip_switch.position = main IMPLEMENTS main_beam.dip_switch_main

left_main_filament.current = active IMPLEMENTS main_beam.left_main

UNEXPECTED_CONSEQUENCE "oncoming drivers dazzled"

SEVERITY 6

DETECTION 2

right_main_filament.current = active IMPLEMENTS main_beam.right_main

UNEXPECTED_CONSEQUENCE "oncoming drivers dazzled"

SEVERITY 6

DETECTION 2

112

The description of purpose and the mappings to the system model are not them-

selves part of the functional description itself. A blank line in the notation is

used to separate parts of a description that are separate. These might be sepa-

rate files, or possibly different entries in a database of functional representations.

Such implementation issues are discussed in Chapter 11. The textual elements

have been kept brief to save space and the arrangement of lines and indentation

are intended to assist with reading the descriptions. Keywords of the language

have been printed in block capitals to distinguish them from other elements of the

functional models, all of which are lower case.

This notation will be expanded in the following chapters to include other parts of

the language. There is a full listing of the language in Appendix B, on page 281.

5.9 Discussion

It seems worth recapitulating some of the general points this somewhat discursive

chapter has raised, and further describing the relationships between the different

models (or model fragments) used in the approach described above. This section

will also briefly summarise how the language meets the requirements enumerated

in Section 5.1.

The proposed approach to the use of this functional representation language for

interpretation of simulation in terms of purpose follows the functional labelling

approach of (Price, 1998) so that the trigger and effect are linked to the states (the

behaviour) of the relevant components in the system, and are used to interpret the

state of the simulation in terms of the achievement of the function, so they allow

achievement of the function to be recognised, fulfilling the first of the requirements

for a functional description.

The approach suggested in (Price, 1998) is that functional labels are attached

to the relevant component descriptions, specifically their outputs. The approach

described here reverses that in that the functional description is constructed in-

dependently of the system model, which is later attached to the functional model

(using IMPLEMENTS). This change in the use of functional description is sup-

ported by the explicit inclusion of the trigger and by the use of labels to mark the

expected trigger and effect associated with a function. The inclusion of the trigger

increases both the range of design analyses that are supported by the language

and also the range of systems that can be analysed. If the trigger is omitted, then

the preconditions for a function are derived from a simulation of the system when

working with no failures, which relies on the assumption that this is an accurate

113

reflection of the intended behaviour of the system. This is consistent with failure

analysis, but not with design verification. Even for failure analysis, though, a

system function that is triggered by failure of some other system function (such as

a warning function) cannot be unambiguously derived from a failure free simula-

tion. This is because the triggering conditions will ever be achieved in the correct

simulation, and must be stated in terms of the state of the function on which the

function concerned depends. There is some other triggering condition needed to

trigger a fault mitigating function. This is discussed in Chapter 10.

The reversing of the earlier approach, so that system properties are attached to

an existing functional description rather than the other way around, means that

the functional model can be built independently of the target system, fulfilling the

fourth of the requirements listed in Section 5.1. This allows the language to be

used to support design activity as well as analysis. This independence from the

system enables the required functionality to be described in as much detail as is

necessary to specify functional aspects of the design. This was illustrated using

the torch example earlier. In that case, the functional description in which the

lit function was triggered by either a slider switch or by a push to make switch

(for shorter flashes) can be used to specify that a way of flashing the torch on is

a requirement. This could, of course, be done in more specific terms than in the

example as given above, like this.

FUNCTION torch

ACHIEVES see_in_dark

BY

slider_closed OR button_pressed TRIGGERS lamp_lit

This fulfils the fifth of the requirements listed in Section 5.1 and supports the

use of the language for functional refinement of a design and enables its use as a

vehicle for clarifying design requirements. The use of labels for triggers and effects

also makes the functional description more self contained, which encourages reuse

of existing models.

The use of a separate description of purpose is another difference between the

present language and the earlier functional labelling approach. This further en-

courages reuse of existing models, as the description of purpose can be reused even

in cases where systems that fulfil that purpose need different functional descrip-

tions, such as the differences between a car’s and motorbike’s lighting systems.

The relationships between the functional description itself and the other models

used to map between a system’s behaviour and its purpose are shown in Figure 5.2.

114

product

system

subsystem

or

module

component

structure
 behaviour
 function
 teleology

output

component

property

system

functions

purpose

implements

system

behaviour

interprets

effect

functional

composition

input

component

property

trigger

implements

achieves

Figure 5.2: Model relationships using the proposed functional representation

The use of Boolean expressions uniting aspects of the required trigger and effect

allow the functional language to be used to describe functions that depend on

combinations of inputs and outputs of the system in a similar way to that proposed

in (Snooke & Price, 1998). How the language manages different aspects of this is

discussed in the next chapter.

The proposed language also has two other dimensions besides the hierarchy.

These are new. The intention is that they will be introduced here and then

discussed in greater detail in later chapters. These are

• The need to model intermittent and sequential behaviours and the ordering

of state transitions.

• The need to allow modelling of cases where a function is achieved but not in a

timely manner (typically late). This is increasingly important with the use of

Carrier Sense Multiple Access / Collision Detection (CSMA/CD) networks

to communicate between controllers and effectors within a system. This is

because such networks cannot guarantee the prompt arrival of a message.

The use of Controller Area Networks (CAN) in the automotive sector is an

example.

• The need to model functions whose achievement should depend on the

achievement or otherwise of some other function.

It can be argued that these provide additional functional relationships that are

orthogonal to the straightforward logical hierarchy in the existing language. They

add a temporal axis and a dependency axis that are both distinct from the hier-

archical function / subfunction axis.

115

The approach proposed has the description of purpose that the function is to fulfil

as a separate model (file) and also allows for elements of the system’s behavioural

description to be attached to parts of the functional description. The models used

for the simple torch example used earlier are illustrated in Figure 5.3. This is

FUNCTION

torch

PURPOSE see_in_dark

DESCRIPTION "Allows user to see in

the dark"

FAILURE "User cannot see"

 SEVERITY 5

 DETECTION 1

TRIGGERS

switch_on

lamp_lit

switch.position = 'closed'

lamp.current = ACTIVE

IMPLEMENTS

UNEXPECTED "Drain on battery"

 SEVERITY 3

 DETECTION 2

IMPLEMENTS

ACHIEVES

behaviour
 function
 teleology

system

component

Figure 5.3: The relationships between the elements in the torch functional de-
scription

a more concrete rendition of the set of mode relationships shown in Figure 5.2

above. Here a thick walled box is used to denote a function, and arrows are

used to indicate links between separate model elements. There is a full key to

this and similar diagrams in Appendix C. While the figure shows a relatively

large number of models (or model fragments), they are relatively simple and,

as suggested above, reusable, so in use it will often be the case that a system

can simply be associated with existing functional models or, failing that, existing

descriptions of purpose. These can simply be retrieved from a library of models

and model fragments. The functional model itself is simplified by only having

to refer to inputs and outputs (or goal states) of the system as a whole. Those

components whose effects are internal need no functional representation. This

follows the functional labelling approach. Further simplification of the functional

description is achieved by separating it from the description of purpose.

How the language can be used to describe the function of static systems (the

second of the requirements listed in Section 5.1) was discussed in Section 5.3. It

could be argued that the use of the functional language to interpret the results

of a simulation is more applicable to dynamic systems, but it could be used to

interpret a simulation in which the goal was for nothing to happen.

As a functional description is free of details of the target system any appropriate

system property can be chosen as implementing the function’s triggers or effects.

116

Effects will typically by associated with an output, such as of light in the torch

example, or with a goal state such as all doors being locked in a central locking

system. This supports the description of software components, either as part of a

larger system or separately. For example, a networking subsystem (such as CAN)

might have a functional description like this.

FUNCTION send_message

ACHIEVES pass_information

BY

data_to_send TRIGGERS message_broadcast

Here, the arrival of data to send is labelled by data_to_send and the func-

tion is achieved if all nodes on the network receive the message, labelled with

message_broadcast. Note that this model is simplified by the lack of any de-

tails of how the function is achieved, the function is achieved if the message gets

through. For example the protocol is not specified, though the functional descrip-

tion could be refined so as to suggest requirements that might influence the choice

of protocol.

Alternatively, an individual software component could also be associated with

appropriate functional descriptions. This might be done at a variety of levels,

such as an object in Object Oriented programming or an individual procedure

(or method). The use of the functional description with software is discussed in

more detail in Chapter 11. This is an important application of the third of the

requirements listed in Section 5.1, that a language be applicable to abstract as

well as physical systems.

The language as described in this chapter provides a basis for approaches to

fulfilling the additional requirements listed in the Introduction. How the language

does so is discussed in the following chapters.

While the use of Boolean expressions to represent the trigger and effect of a

system function allows functions that depend on more than one condition for the

trigger and effect to be described, this places limitations on the expressiveness of

the language, especially in its use for functional refinement of a design. There

are cases where a function is more accurately represented in terms of subsidiary

functions rather than combinations of triggers and effects. The following chap-

ter considers the different decompositions of function that might be used, and

describes the language’s support for these decompositions.

117

Chapter 6

Functional decomposition

In all but the simplest of systems, a system function will depend on more than one

trigger and / or effect and the use of Boolean expressions to describe the relation-

ship between elements in these complex triggers and effects has been introduced

in the previous chapter. This chapter will discuss the decomposition of function

in rather more detail, introducing and discussing the idea that a function might

instead be composed of subsidiary functions with their own trigger, effect and pur-

pose. This enables the Functional Interpretation Language to describe functions

that have several elements each with its own distinct purpose that nonetheless

contributes to the achievement of the main function.

The idea that a function can be thought of as being composed of either trigger

and effect or subsidiary functions differs from the approach in (Snooke & Price,

1998). In that paper, a function was considered to be composed of subfunctions.

For example, a car’s headlamp main beam function would be composed of left

main beam and right main beam subfunctions. This allowed the automatically

generated design analysis report to describe a failure in more detail, so if the

left headlamp failed then the report might state “function headlamps main beam

failed because left main beam failed”. The approach described here extends this

increased expressiveness by contrasting cases where a function is composed of

subfunctions with those where it is simply composed of triggers and effects.

The following section discusses subsidiary functions and this is followed by a dis-

cussion of how subsidiary functions are used to increase the expressiveness of the

interpretation of simulation, resulting in a more precise and detailed design analy-

sis report than is possible without their use. The theoretical basis for combination

of subsidiary functions is then discussed.

The simplest case of functional decomposition is where a function depends on

some expected combination of triggers and / or effects. For example, the recogniser

118

of a car headlamps main beam function might be described as follows.

lamp_switch_heads AND dip_switch_main

TRIGGERS

left_main_beam AND right_main_beam

Both trigger and effect have two elements both of which must be true for the

function to be achieved. The use of logical AND means, of course, that if one of

the headlamps fails to light in response to the switching on of the headlamps and

switching to main beam, the trigger is true but the effect expression is false and

so the function is said to have failed. This is consistent with Table 5.1 on page 92.

In this case, then, the failure of either headlamp cannot be distinguished from the

failure of both as either results in failure of the function. This is arguably appro-

priate in this case, as the loss of either headlamp renders the car unroadworthy,

but in some cases the resulting design analysis report will be more precise and

detailed if a distinction is drawn between failure of one of a function’s effects and

all of them. One approach to this is to link the effect with its own description

of purpose. Where an effect can be associated with both its own purpose and

with its own trigger it forms a subsidiary function, the subject of the next section.

This allows greater refinement of the failure of a function compared to the simple

binary Boolean true or false state of triggering and achievement of a function.

Specifically, it allows the report to

• Distinguish between partial and total failure of a function in appropriate

cases.

• Show the significance of alternative ways of achieving a function.

• Model differences between a function’s purpose and its expected behaviour.

The first two of these advantages are discussed in this chapter, the remaining one

is left until Section 7.5 in the following chapter.

One aspect of the use of logical operators that has not been raised is the rôle of

NOT. One possible use is to distinguish effects that are inimical to achievement of

a function as opposed to any effects that are irrelevant to a certain function. For

example, the purpose of a headlamps dipped beam function is to light the road

ahead without dazzling oncoming road users. Clearly, then, if a headlamp main

beam stays on, this latter aspect of the purpose is not achieved. This is distinct

from the case of the direction indicators, say, as they play no part in the purpose

associated with the dipped beam function, so they could be on or off, while the

main beams should be off. It is possible to specify this case using NOT like this.

119

lamp_switch_heads AND dip_switch_dipped

TRIGGERS

left_dipped AND right_dipped

AND NOT left_main_beam AND NOT right_main_beam

Therefore, of course, if either headlamp’s main beam stays on, the function will

have failed. In practice these cases need seldom be specified as any unwanted

effects will be unexpected and as such will appear in the resulting report. The

main beam staying on is not triggered so the effect will be achieved unexpectedly.

As the consequences of unexpected achievement are associated with the effect

itself, these consequences are noted even if only (in this case) one headlamp’s

main beam filament stays lit, so this will appear in the report independently of

the dipped beam function. The other possible use of NOT is to simplify cases where

a trigger or effect is not a binary state and one state is to be excluded. A possible

example is a fan heater where the element will not come on unless the fan is

running at either speed (slow or fast, or whatever range of speeds is supported),

so the heating trigger might be specified as follows.

heater_switch_on AND NOT fan_stopped

This use of NOT also helps in mapping the functional description to a simulation

that supports multiple levels of activity, as discussed in Chapter 11.

6.1 Subsidiary functions

While the idea of composing a function of triggers and effects combined using

Boolean operators has been introduced, there are cases where a function is bet-

ter decomposed in terms of subsidiary functions, each with its own trigger, effect

and purpose, beside contributing to the achievement of the top-level function.

One example of this might be the functional model of a hob where provided any

ring works, the hob can be used for cooking. In other words a top level function

cook_on_hob can be decomposed into four identical cook_on_ring functions, com-

bined using OR. Each ring’s behaviour is modelled in terms of function, because it

has its own trigger (the knob being turned on), effect (output of heat for cooking)

and purpose, the use of that ring for cooking. The benefit of this is that this

allows the functional model to capture the idea that if any one ring works, this is

a less serious failure than the loss of all the rings as some cooking is still possible

by using the other rings, though the failure might restrict the sophistication of the

cuisine.

120

This introduces the most important benefit of the two alternative decompositions

of function, in terms of triggers and effects or in terms of subsidiary functions,

which is that it increases the expressiveness of the language. It does this by

enabling the description of cases where the failure of a subsidiary function has a

different consequence from failure of the top level function. There are two cases

where this typically applies. The first is where a system has alternative ways of

achieving the purpose of the top level function, as in the hob example mentioned

above. The other case is where the achievement of some of a function’s expected

effects can be regarded as mitigating the failure of a function and these can be

distinguished from functions where the loss of any effect is regarded as tantamount

to complete failure of the function. For example, a warning function might consist

of both audible and visual signals (such as a horn and a telltale lamp). In this case,

the failure of both means no warning is given while the failure of either one means

there is some signal, so this can be regarded as a less serious failure of the system.

This contrasts with functions where both effects can be regarded as tantamount

to complete failure of the function. An example is be the headlamp function

of a car already mentioned, where the loss of either the left or right headlamp

renders the car unroadworthy. How the use of subsidiary functions increases the

expressiveness of the language and hence of the automatically generated report is

discussed in Section 6.2.

In addition, the use of subsidiary functions is consistent with the idea of a func-

tion as having a distinct purpose. In building a hierarchical functional description,

the guiding principle is that if a distinct purpose can be identified with a subset of

a function’s effects, they can be modelled as a subsidiary function. For interpre-

tation of design analysis, an important aspect of this is identifying effects whose

failure has specific consequences, apart from those of the higher level function to

which the effect contributes. This is because the resulting design analysis report

will include entries for effects (or subsidiary functions) that are not present. If the

report is to be as specific and detailed as possible, then what it should contain is

the consequences associated with the actual missing function rather than a func-

tion higher in the hierarchy. To be consistent with the definition of function, a

subsidiary function should be associated with a description of purpose. It should

be noted, however, that even though a subsidiary function has its own purpose, its

achievement contributes to fulfilment of the top level function’s purpose, either as

a component, as in the warning system, or an alternative, as in the hob example.

It may well be the case that a system has several functions that, while related, are

not part of one hierarchical functional description. This is discussed in Section 6.4.

Where a function is composed of subsidiary functions these take the place of the

121

trigger and effect expressions in the recogniser of the top level function. For

example, a car’s seat belt warning system that sounds a chimer and lights a

dashboard telltale if either front seat is occupied and its seat belt is unbuckled

might be described as follows.

FUNCTION belt_warning

ACHIEVES warn_unbuckled

BY

FUNCTION audible_unbuckled_warning

AND

FUNCTION visual_unbuckled_warning

Here, the warning function consists of two subsidiary functions, each of which

can be associated with a distinct purpose that contributes to correct fulfilment of

the top level function’s purpose. Each subsidiary function is a separate functional

description. The audible warning function, for example, might be like this.

FUNCTION audible_unbuckled_warning

ACHIEVES sound_unbuckled_warning

BY

driver_unbuckled OR passenger_unbuckled

TRIGGERS

sound_chimer

The labels for trigger and effect can then be used to attach system properties

as described in the previous chapter. Note that the trigger expression has been

simplified here. This system is used as a worked example in Chapter 11 and

is discussed in more detail there. There is a description of the system itself in

Section 11.1.1 on page 233. It will be appreciated that in this case both the

subsidiary functions actually have identical triggers. An approach to eliminating

this redundancy is introduced in the following chapter.

Each function is associated with its own description of purpose. This might be a

component of the top level function’s purpose, as here, but it could also be a more

general purpose. For example, a plant monitoring system might use an audible

warning to draw attention to the existence of any of several faults in the plant,

while the nature of the fault is indicated by which of several warning lamps is lit.

In this case the audible warning function might have a purpose description based

on the need to draw attention to the presence of a fault and this function can be

reused in the various warning functions, in combination with the correct warning

lamp. The use of subsidiary functions and their associated descriptions of purpose

is discussed in the following section.

122

6.2 Using subsidiary functions

This section discusses how subsidiary functions can be used to increase the expres-

siveness of the functional language and so of the automatically generated design

analysis report that is the final result of the analysis. The discussion is mostly

concerned with how this is used to describe failure of functions and subsidiary

functions, that is the effect and consequences of the failure of a trigger to result

in the expected effect. How functional decomposition relates to the unexpected

achievement of the effects associated with a function is discussed in a separate

subsection, Section 6.2.3.

That the hierarchical approach to function described in (Snooke & Price, 1998)

can provide a more detailed explanation of the failure of a system function has

been noted in the introduction to this chapter. The present approach builds on

that work by allowing the decomposition of a function into either a combination

of triggers and effects or into a combination of subsidiary functions, allowing those

effects that achieve some purpose of their own to be distinguished from those that

do not. The possibility of composing a function from subsidiary functions also

supports the use of the language for support of functional refinement as part of

the design process. In this section, the use of subsidiary functions to improve an

automatically generated design analysis report will be discussed.

Two contrasting examples might be used to illustrate the use of subsidiary func-

tions in design analysis. In a car’s headlamp system, each headlamp being lit on

main beam is, of course, necessary to achieve the “main beam” function. There

is no benefit in complicating the description by attaching a function to each in-

dividual headlamp’s output. There is never any reason to have one lit without

the other and as the loss of either renders the car unroadworthy, there is arguably

no benefit in distinguishing failures that result in the loss of one headlamp from

those that result in the loss of both.

This can be contrasted with a system where the consequences of failures of one

or other of the expected effects differ both from each other and from the failure

of both, even though both are required for full achievement of the function. A

possible example is a railway signalling system, where to direct an incoming train

to a certain platform the signaller must first set the road so the train runs into the

correct platform and then set the signals to allow the train driver to pull into the

station. Suppose the points all worked correctly but the signals failed, the train

could (subject to suitable operating checks being made) be called forward by hand

(maybe using flags). This is clearly less difficult to handle than total failure of the

system, so both points and signals fail. Associating the signal and point failures

123

with their own subsidiary functions allows the design analysis report to draw this

distinction. Both of these examples are discussed in more detail below.

As a function can be composed of either effects or subsidiary functions combined

using AND or OR, this gives four gradations of the effect a failure that one a func-

tion’s effects has on the top level function. Each of these can be associated with

a different style of entry in the resulting design analysis report.

6.2.1 Subsidiary functions with AND and OR

The simplest case is where a function depends on two effects that are not associated

with any purpose of their own. This case is illustrated in Figure 6.1. Here,

IF EFFECT
E2
 IS ABSENT, OUTPUT IS

Function
TOP
 failed

 because expected effect
E2
 absent.

Severity = sP

Detection = dP

Consequences are those of failure of
P

AND

E1
 E2

TOP

TRIGGERS

T

ACHIEVES

P

Severity = sP

Detection = dP

Figure 6.1: Combining effects using AND

failure of either effect will simply result in failure of the top level function and

the consequences (together with values for severity and detection) are taken from

that function, as they must be, there being no others available. Note that in this

case, the expected effects share a trigger, though that itself might be an expression

using Boolean operators. The headlamps example mentioned above is an example

of this case. The main beam function could be specified as follows.

FUNCTION main_beam

ACHIEVES light_road_ahead

BY

light_switch_heads AND dip_switch_main

TRIGGERS

left_headlamp_main AND right_headlamp_main

124

The associated description of purpose might look like this.

PURPOSE light_road_ahead

DESCRIPTION "Lights road ahead so driver can see obstacles"

FAILURE_CONSEQUENCE

"Driver cannot see ahead. Legal implications"

SEVERITY 8

DETECTION 3

If some failure causes, say, the left headlamp to fail to light, the resulting design

analysis report will include

Function main beam not achieved because expected effect

left headlamp main was absent. Consequences are: Driver cannot see

ahead. Legal implications. Severity = 8, detection = 3.

These are, of course, the consequences associated with the light_road_ahead

purpose, associated with the main_beam function. As noted earlier, there is no

need to specify any difference between the consequences of the loss of one headlamp

and the loss of both, so the consequences and the severity and detection values are

the same in both cases. There is therefore no need for the additional complexity

in the functional description resulting from the use of subsidiary functions. It is

appreciated that in practice the failure of one headlamp is perhaps less troublesome

to the driver than that of both but the legal implications, if nothing else, make

the example applicable.

As has already been discussed, this contrasts with the case where a function

depends on two subsidiary functions. Here if one subsidiary function fails, the

consequences in the resulting report (together with the values for severity and

detection) are those of that subfunction. This is illustrated in Figure 6.2. In

this case, the resulting report can either include consequences of failure of the

top level function or the subsidiary functions. This can be illustrated using the

railway signalling system mentioned in the introduction to this section.

FUNCTION accept_train

ACHIEVES guide_to_platform

BY

FUNCTION set_points

AND

FUNCTION set_signals

The function might be associated with this description of purpose.

125

IF EFFECT
E2
 IS ABSENT
, OUTPUT IS

Function
TOP
 failed

 because function
SUB 2
 failed
.

Severity = s2

Detection = d2

Consequences are those of failure of
P(SUB 2)

AND

TOP

ACHIEVES

P(SUB 2)

Severity = s2

Detection = d2

SUB 1
 SUB 2

ACHIEVES

P(TOP)

Severity = sT

Detection = dT

TRIGGERS

T2
 E2

TRIGGERS

T1
 E1

Figure 6.2: Combining subsidiary functions with AND

PURPOSE guide_to_platform

DESCRIPTION "Allow a train to pull into the station platform"

FAILURE_CONSEQUENCE "train cannot be accepted into station"

SEVERITY 9

DETECTION 3

Each subsidiary function has its own description, as a separate (reusable) data

item. The set_signals function might have the following description.

FUNCTION set_signals

ACHIEVES show_clear_road

BY

set_to_clear

TRIGGERS

signals_green

It has its own description of purpose.

PURPOSE show_clear_road

DESCRIPTION "Allow driver to take train into platform"

FAILURE_CONSEQUENCE "Need to flag train into platform"

SEVERITY 7

DETECTION 3

Now, if a power failure causes both the points and signals to fail, the resulting

report might read

126

Function accept train has failed because functions set points and

set signals have failed. Consequences are: Train cannot be accepted

into station. Severity = 9, detection = 3.

The additional detail in the functional description allows the consequences of fail-

ure to only one of the subsidiary functions to be differentiated. If the signals fail

but the points can be set, the report might read

Function accept train failed because function set signals has failed.

Consequences are: Need to flag train into platform. Severity = 7,

detection 3.

So the consequences of the top level function are still included in the report if

both the subsidiary figures fail (so the top level function can be thought of as

having failed completely). However, if only one of the subsidiary functions fails,

the consequences of failure of that function are included instead, though the report

does, of course, still include an entry to the effect that the top level function has

failed. There are arguable difficulties with this approach. The use of AND suggests

that the top level function has failed and as such its consequences of failure should

be included in the report. This is not done simply because the report should

include the most specific results available. It will be seen that if the top level

consequences are given, then there is no gain in information resulting from the use

of subsidiary functions, a subsidiary function combined using AND will never have

its consequences included in a report, as they will invariably be replaced by those

of the top level function. In the approach adopted, the design analysis report does

still include a note that the top level function has failed. This approach allows

subsidiary functions to be used to describe cases where achievement of one of the

subsidiary functions can be thought of as mitigating the failure of the top level

function. There is more on such cases in Section 6.2.1.1.

Another use of subsidiary functions is where they constitute alternative ways

of achieving a function, as in the hob example mentioned earlier. This case is

illustrated in Figure 6.3. If one subsidiary function fails, there is no need for the

report to mention the top level function as it need not have failed. Naturally

in this case, then the consequences of failure of a subsidiary function are those

associated with that function. So the hob might have the following functional

description, simplified by assuming it only has two rings.

FUNCTION cook_on_hob

ACHIEVES cook_food

127

IF EFFECT
E2
 IS ABSENT
, OUTPUT IS

Function
SUB 2

failed

Severity = s2

Detection = d2

Consequences are those of failure of
P(SUB 2)

OR

TOP

ACHIEVES

P(SUB 2)

Severity = s2

Detection = d2

SUB 1
 SUB 2

ACHIEVES

P(TOP)

Severity = sT

Detection = dT

TRIGGERS

T2
 E2

TRIGGERS

T1
 E1

Figure 6.3: Combining subsidiary functions with OR

BY

FUNCTION cook_on_right

OR

FUNCTION cook_on_left

The function might be associated with this description of purpose.

PURPOSE cook_food

DESCRIPTION "Allow preparation of cooked food"

FAILURE_CONSEQUENCE "Hob cannot be used for cooking"

SEVERITY 7

DETECTION 3

Each ring has its own (identical) functional description.

FUNCTION cook_on_left

ACHIEVES cook_on_ring

BY

switch_on

TRIGGERS

heat_ring

As the purpose of the two rings is identical and as descriptions of purpose are

separate models, they can share this description of purpose.

128

PURPOSE cook_on_ring

DESCRIPTION "Use ring for cooking"

FAILURE_CONSEQUENCE "Ring cannot be used, limits cooking"

SEVERITY 4

DETECTION 3

If the left ring fails to come on when triggered, the report might read

Function cook on left failed because expected effect heat ring absent.

Consequences are: Ring cannot be used, limits range of cooking. Sever-

ity = 4, detection = 3.

This is, of course, consistent with the use of OR in combining the subsidiary

functions. The cook_on_hob function is achieved as the other ring works correctly.

Naturally, if both rings’ functions fail, the top level function also fails and the

report will use that function’s consequences.

One interesting feature of the functional model described here, and its description

of purpose, is that it is not independent of the top level function. The consequence

of its failure is merely the restriction on cooking. In other words this description

of purpose can be written with the assumption that there is another ring so that

failure of this one does not eliminate the possibility of using the hob. It will be

seen that if the functional model was applied to a hob with only one ring, this

would still not matter, as failure of the ring would lead to failure of the top level

(cook_on_hob) function. There is, however, nothing to be gained by associating

a subsidiary function with a function’s one effect. This is consistent with the idea

that a subsidiary function contributes to the purpose of the top level function

rather than replacing it.

The final possible case is where a function depends on two effects combined using

OR. Here the loss of one of the effects has no consequences at all, as there are no

failed functions, as illustrated in Figure 6.4. This case is unlikely, simply because

it will be unusual that a trigger will trigger either one or both of two possible

effects, and the loss of one of the effect is of no consequence. A very weak example

might be where a room has two lamps, both triggered by the same switch and

either of which can be regarded as sufficient to light an occupant’s way around

the room. The functional description might look like this.

FUNCTION lights_on

ACHIEVES light_room

BY

switch_on_lights

TRIGGERS

wall_lamp_on OR ceiling_lamp_on

129

IF EFFECT
E2
 IS ABSENT, OUTPUT IS

E
ffect
E2
 not present.

Severity = 0

Detection = 0

No consequences, no function has failied.

OR

E1
 E2

TOP

TRIGGERS

T

ACHIEVES

P

Severity = sP

Detection = dP

Figure 6.4: Combining effects with OR

The solitary description of purpose is as follows.

PURPOSE light_room

DESCRIPTION "Allows use to see around the room"

FAILURE_CONSEQUENCE "Room unlit, user may collide with furniture"

SEVERITY 6

DETECTION 2

Here, then, if one lamp fails, the report will include no more than

Expected effect wall lamp on absent.

As this failure is not itself associated with a function, its failure is taken to be of

no consequence. The contents of the report outlined here assume that both effects

are expected which might not always be the case, it is not impossible that a given

trigger might be intended to trigger one or both effects non-deterministically. It

will be seen that the relation between trigger and effect is inappropriate as it

suggests that the trigger triggers one or both of the possible effects, whereas both,

of course, are expected. This highlights an interesting feature of this representation

of function, which is that as it includes both the relationship between trigger and

effect and effect and purpose, it arguably attempts to model two different (if

related) aspects of the system, that is its purpose and the expected behaviour.

Discussion of this is left until Section 7.5 on page 164.

The rule used for inclusion of consequences in the design analysis report is simple,

in that where a function is composed of two (or more) subsidiary functions com-

bined using either AND or OR, then where one of those subsidiary functions fails,

130

then the consequences of the failure of the subsidiary function are included in the

report while if both (or all) of the subsidiary functions fail, then the consequences

of the top level function’s failure are included. The consequences are treated as

a triplet of the description, and the values for severity and detection and these

are not split, what is used in the resultant report comes from one description of

purpose.

There is an apparent difficulty with this approach, which is that the effects of

failure of a subsidiary function (or at least the consequences) are very similar

whether AND or OR is used. The only difference is the note in the resulting report

that the top level function has failed. As has already been discussed, it would

be consistent with the use of AND to simply use the consequences (and value for

severity) of the top level function given that that function is considered to have

failed. This would mean that the consequences of subsidiary functions would never

be used when they are combined using AND so the gain in expressiveness would

not be realised. It is accepted that the functional description will be built with

this in mind. For example, the consequences of failure of the signal subsidiary

function in the example above implies that the points function worked correctly

so the incoming train can reach the right platform.

Another aspect of the use of consequences of subsidiary functions is that the

value for detection should be that of the subsidiary function, simply because this

might be higher than that for the top level function, so the chosen approach avoids

the need to use elements from different descriptions of purpose (not that doing

so leads to any insuperable problems). For example, the failure of a function to

make a car visible is (arguably) less severe if only the tail lamps fail, but harder

to detect than if all the lamps fail.

It will be seen from the foregoing that subsidiary functions can be used to provide

a finer distinction between degrees of achievement of a function than is possible

with a straightforward Boolean description. This allows cases where a function is

partly achieved to be distinguished from cases of total failure and also to indicate

cases where alternative subsidiary functions allow a main function to be achieved.

6.2.1.1 Mitigation of failure

The use of the consequences of a subsidiary function in the design analysis re-

port allows the functional modelling language to describe systems where partial

achievement of a function is less severe than its complete failure, so achievement

of one of a function’s effects (subsidiary functions) can be thought of as mitigating

the failure of the main function. The railway signalling example used earlier is

131

an example, in that it is more feasible to keep trains running if only the signals

fail than if the signals and points fail, though it will clearly create considerable

difficulties.

To reduce the apparent inconsistency with the use of AND in these cases, some

thought was given to the idea of specifically labelling the subsidiary functions as

mitigating the main function if achieved, so the top level signalling function might

look like this.

FUNCTION accept_train

ACHIEVES guide_to_platform

BY

MITIGATING FUNCTION set_points

AND

FUNCTION set_signals

All other parts of the functional description would be similar to the earlier ex-

ample. The idea here would be that, because hand signals could be used if the

signals failed, if the points work correctly, this mitigates the failure of the main

function, so if the signals failed, a mitigating subsidiary function was achieved and

the consequences of the failure of the signal subsidiary function would be included

while if the points failed, no mitigating function was achieved so the consequences

of the failure of the top level function would be used. The function would be

labelled as MITIGATING, rather than using a “mitigated AND” operator to allow

such asymmetric cases to be modelled. In the end this was not done as in practice

it adds little expressiveness to the language. If the consequences of the failure of

a subsidiary function really are identical to those of the top level function, then

either they could be repeated in the subsidiary function’s description of purpose or

the two functions might share the same description of purpose. Another approach

to this asymmetry in functional decomposition is to regard only the trigger and

effect whose failure does not amount to total failure of the top level function (the

signal function in this case) as a subsidiary function with its own purpose. This

does lead to problems with the use of the top level function’s TRIGGERS keyword

as one half of the functional decomposition requires it and the other does not.

How this can be solved is described in Section 7.2 in the next chapter.

6.2.2 Subsidiary functions and exclusive OR

Having looked at how the use of AND and OR can express a range of different

relationships between a function and its expected effects, it seems worth discussing

the place of exclusive OR in functional decomposition.

132

The rule used for inclusion of consequences of failure of a subsidiary function

combined using AND or OR, use the subsidiary functions’ consequences if one fails,

the top level function’s if both fail is not suitable with XOR as if both subsidiary

functions are achieved, the top level function is inoperative. The relations between

the state of a top level function and those of its subsidiary functions is described

in Section 6.3 below. This relationship is more complex when XOR is used than

either of the other operators. The rule for inclusion of consequences of failure

is the reverse of that used with AND and OR, so if both subsidiary functions fail,

the consequences of those failures, or possibly the worse of them, is included and

the consequences of the top level function are included if one of the subsidiary

functions fails.

In practice, it is suggested, XOR will rarely be used to combine subsidiary func-

tions, though it is not impossible that a system has two mutually exclusive ways

of achieving some purpose. One possible case where it might be is where there

is a back up system that replaces the main system in event of a failure to that

system. An emergency lighting system is a possible case in point. Here XOR

might be used to specify that both systems’ effects being present is not consistent

with correct behaviour of the combined systems, so the emergency lights should

not be lit when the main lights are working. Another possible use is to model

software systems where there are two mutually exclusive ways of accessing data

to preserve its consistency, such as database transactions. XOR is of more use for

combining triggers (as in a lamp with two switches, such as a landing light).

The lack of any suitable example means that a discussion of the relationship

between subsidiary functions and their consequences and the top level function

is best left to the discussion of the theoretical basis for this relationships in Sec-

tion 6.3.3.

6.2.3 Functional decomposition and unexpected effects

Having discussed the use of functional decomposition to improve the description

of the effects of failure of a function it is time to consider the effects of the use

of functional decomposition on unexpected achievement of the effects associated

with a function.

As has already been described in Chapter 5, the consequences of unexpected

achievement of an effect are associated with the effect itself (or, strictly, with the

mapping between the functional description’s effect and the appropriate system

property) so that all unexpected effects are noted in the design analysis report,

even where an effect does not amount to achieving a function. However, as noted

133

earlier in this chapter, it might be required to associate consequences of unexpected

effects higher up a functional decomposition, typically because achieving all the

effects of a function might result in different (more severe) consequences. For this

reason, a function’s description of purpose can, but need not, include a description

of consequences of unexpected achievement of that function’s required effects. This

description of consequences will typically include values for severity and detection

of the unexpected achievement of the effects. As noted earlier, this is why the

tables in Section 6.3 have alternative consequences for unexpected achievement of

a function.

The possibility of associating consequences of unexpected achievement of a func-

tion with that function entails the addition of rules for reporting of these conse-

quences, following from rule 5.14 in Section 5.7. If f is a function, then if it includes

unexpected consequences uf then these will be reported (annotated R(uf)) if the

unexpected effects are such that the effect expression of the function is true (that

is the function is unexpected).

R(uf) if Un(f) and if (f includes uf) (6.1)

Where includes is used to show that the function is associated with its own unex-

pected consequences. This also entails additional conditions applying to the rule

for reporting of an effects unexpected consequences, as these might be replaced by

the function’s consequences. The rule is that the unexpected effect’s consequences

are reported if the function is not unexpected (that is the effect expression as a

whole is still false) or if the function has no unexpected consequences of its own.

So unexpected consequences ue of an effect e, are reported as follows.

R(ue) if (¬Tr(f) ∧ e) ∧ (¬Un(f) ∨ ¬(f includes uf)) (6.2)

This is the complete version of rule 5.14 in Section 5.7.

An example of where this might be done is a car’s stop lights, where the stop

light function requires both stop lights to light in response to the trigger, pressing

the brake pedal. It will be seen that in this case, the consequences of one brake

light staying on (so being achieved unexpectedly) are less serious than those of

both staying on, as if one light responds correctly to the trigger, then a following

driver will still have some warning that the car is slowing while if both are lit the

whole time, no warning is given.

The rules used for which consequences are included in the report are the same

as that used for failure of a function. Where a function’s effects (or subfunctions)

are combined using AND or OR, if one effect is achieved unexpectedly, the unex-

134

pected consequences of that effect are included and if both effects of a function

are achieved unexpectedly, then the consequences of unexpected achievement of

the function are included, provided, of course, that the function’s description of

purpose has a set of unexpected consequences. The reverse applies if XOR is used,

as is the case with failure of a function, so the function’s unexpected consequences

(if any) would be included if one but not both of the effects are unexpected.

This results in an apparent inconsistency in the case of unexpected achievement

of a function where OR is used, as the function’s effects might be achieved unex-

pectedly even if only one effect is achieved unexpectedly. This mirrors the similar

effect with failure of a function using AND, where a function fails if one effect fails

(provided, of course, that the effect is associated with a subsidiary function) but

the consequences of that effect’s subsidiary function are included in the report.

The reason for accepting this anomaly is the same as that for the difficulty with

AND, it leads to a more detailed report than if the consequences were dependent

of achievement or otherwise of the function itself.

As the unexpected consequences are initially associated with an effect, there is,

of course, no need for the effect to be associated with a subsidiary function. This

reflects the idea that failure of a function is considered working down the hierarchy,

while unexpected achievement works up the hierarchy.

Having considered the use of subsidiary functions in increasing the expressiveness

of the functional language and so of the resulting report it is time to consider the

relationships between the state of achievement of the top level function and the

states of the subsidiary functions. This forms the topic of the next section.

6.3 A logical basis for subsidiary functions

Where a function is composed of subsidiary functions, these are combined using

the logical operators in much the same way as triggers and effects are. Where

subsidiary functions are used, each will have its own trigger and effect, so a sub-

sidiary function can be in any of the four functional states illustrated in Table 5.1

on page 92. Therefore the state of the top level function must be defined in terms

of the states of the subsidiary functions. The rule used is that the truth of the

trigger of the top level function depends on the truth of the triggers of the sub-

sidiary functions combined using the operator that relates the subsidiary function

and the truth of the effect of the top level function is derived from the truth of

the effects of the subsidiary functions related using that operator.

135

To put this more formally, let f be a function composed of two subsidiary func-

tions a and b related using some Boolean operator ⊗ so f is composed of a ⊗ b.

The rules for finding the state of f are as follows.

Tr(f) if Tr(a) ⊗ Tr(b) (6.3)

Ef(f) if Ef(a) ⊗ Ef(b) (6.4)

The function state can then be derived from these using rules listed in Appendix A

as A.7 to A.10.

It will be seen that this forces the same Boolean relation between the triggers

and effects of the subsidiary function. This limitation can be circumvented by

using trigger and effect expressions instead of the subsidiary functions (with the

loss of associated descriptions of purpose for the lower level functions). If the

descriptions of purpose are required, then incomplete functions, described in the

following chapter, can be used.

For example, if a function F depends on subsidiary functions C1 AND C2 the

top level function is only triggered if the triggers for both subsidiary functions

are true and only achieved if both the subsidiary functions’ effects are present.

If only one subsidiary function is triggered, the implicit trigger expression for F

is not true. Likewise if that subsidiary function’s effect is present, the effect of

F is still not true as it requires both. Therefore F is inoperative in this case.

The results of this approach are summarised in table 6.1. where the subsidiary

C 1
 C 2
 C 1 AND C 2
 C 1 OR C 2
 C 1 XOR C 2

subsidiary functions
 main function

Inoperative

Inoperative

Inoperative

Inoperative

Inoperative
 Inoperative

Achieved

Achieved

Achieved

Achieved

Achieved

Achieved

Failed

Failed

Failed

Failed

Failed

Failed

Unexpected
 Unexpected

Unexpected

Unexpected

Unexpected

Unexpected

(Inoperative)

(Inoperative)

(Inoperative)

(Inoperative)

Failed

Unexpected

Inoperative
 Inoperative

Achieved
 Achieved

Failed
 Failed

Unexpected
 Unexpected

Achieved

(Achieved)

(Achieved)

(Achieved)

Failed

Unexpected

(Inoperative)

Unexpected

Failed

(Inoperative)

(Inoperative)

(Achieved)

Table 6.1: Achievement of a function in terms of subsidiary functions.

functions are Child 1 and Child 2 and are related using the binary Boolean

136

operators. It will be seen that some of the results are, perhaps unexpected, or at

least not intuitively correct. For this reason, fuller descriptions of the relationships

are given in following subsections, with brief discussions of the more surprising

results. However, the approach taken is consistent, both with itself and with the

idea that the four functional states are defined in terms of the truth of triggers

and effects.

In some cases (identified in the table by the resulting functional state being

in parentheses) a top level function might be in a state consistent with correct

operation of the system despite the fact that a subsidiary function is either failed or

achieved unexpectedly. In these cases the resulting design analysis report need not

include any reference to the top level function, so where, for example, a function

depends on two subsidiary functions combined using AND, if one subsidiary function

has failed and the other is inoperative, the report need only include an entry

for the failed subsidiary function. These points will, it is hoped be clarified by

the following subsections, which discuss the relationships between functions and

subsidiary functions for each logical operator.

The reporting of subsidiary functions follows the rule for reporting of functions,

rule A.11 in Appendix A. However, as described earlier, to capture the idea that

partial achievement of a function might mitigate its failure there are different rules

for reporting the consequences of failure of subsidiary functions. If f is a function

with its consequences of failure cf and composed of subsidiary functions a and b,

combined using AND or OR, and each with their own consequences of failure ca and

cb then the consequences of failure of f are reported (R(cf)) only if both subsidiary

functions fail.

R(cf) if and only if Fa(a) ∧ Fa(b) (6.5)

If only one of the subsidiary functions, say a fails then its consequences are re-

ported, even if this means that f has failed.

R(ca) if Fa(a) ∧ ¬Fa(b) (6.6)

Where the subsidiary functions are combined with XOR, this rule is inappropriate

and instead we report the consequences of failure of f if only one of the subsidiary

functions fails.

R(cf) if (Fa(a) ∧ ¬Fa(b)) ∨ (¬Fa(a) ∧ Fa(b)) (6.7)

The rules for reporting consequences of unexpected achievement of functions follow

the rules numbered A.14 and A.15 in Appendix A, as described earlier in the thesis.

137

These reporting rules are illustrated in the tables that accompany the following

sections.

6.3.1 Subsidiary functions and AND

The relationships between the states of a function and its subsidiary functions,

combined using logical AND are shown in Table 6.2. This table (as do the similar

function

C1

t1
 e1

function

C2

F

(
C1
 AND

C2
)

t2
 e2
 st
at

e

t
 e

F
 F
 F
 F
 F
 F

F

F

F

F

F

F

F

F

F
F

F
 F

F
 F

F
 F

T

T

T

T

T

T
 T

T

T

T

T

T

T
 T

T
 T

T
 T

T
 T

In
 (no entry)

generated text
 consequences

F
 F

F
 F

F
 F

Ac
T
 T

T

T

T

T

F
 F

F

F

F

F
 Fa

Fa

Un

Un

Function
C2
 achieved

Function
C2
 failed because expected

effect
e2
 absent

Function
C2
 achieved unexpectedly

because unexpected effect
e2
 present

Function
F
 achieved

Function
F
 failed because function
C2

failed

Function
F
 achieved unexpectedly

because function
C2
 achieved

unexpectedly

Function
F
 failed because functions

C1
 and
C2
 failed

Function
C1
 failed and function
C2

achieved unexpectedly

Function
F
 achieved unexpectedly

because functions
C1
 and
C2
 achieved

unexpectedly

Fa(
C2
)

Un(
C2
) or Un(
e2
)

Fa(
C2
)

Fa(
F
)

max

(Fa(
C1
), Un(
C2
))

Un(
F
)
 or max

(
Un(
C1
),
Un(
C2
))

Un(
C2
) or Un(
e2
)

st
at

e

In

Fa

Fa

Fa

st
at

e

In

In

In

In

Ac

Fa

Fa

Un

Ac

Ac

Ac

Ac

Un

Un

Un

Un

In

In

In

In

Table 6.2: Functional decomposition using AND

tables in the following subsections) makes explicit the relationship between the

functional state (both of the top level function and the subsidiary functions) and

the trigger and effect. It also includes a brief rendition of the text that will be

included in a design analysis report and a brief notation showing how the report

will include the consequences of the functional state. There is a fuller description

of the notation used in these tables in Appendix D.

It will be seen that the top level function cannot be in a state that requires its

trigger to be true unless both subsidiary functions’ functions are true and also

that it cannot be in a state in which its effects are true unless both subsidiary

138

functions’ effects are true. This is what would be expected, the top level function

is only achieved if both subsidiary functions are achieved.

It will be seen that where the top level function is in a state apparently consistent

with correct behaviour of the system (in this case inoperative) but one of the

subsidiary functions is not (it has failed or is unexpected) then the generated text

(for the design analysis report) need only refer to that subsidiary function. In such

cases, both in this table and in Table 6.1 above, the top level function’s state is

in parentheses to highlight this. Where the top level function has failed because

of the failure of one subsidiary function (in this case C2) the report can include

this detail and also include a specific set of consequences. The report uses the

subsidiary function’s consequences in cases where one of the subsidiary functions

is inconsistent (failed or unexpected) and uses the consequences of the top level

function where both subsidiary functions have failed or are unexpected. This

allows cases where achievement of one of the subsidiary functions mitigates failure

of the top level function to be distinguished, which is one of the advantages of using

subsidiary functions. As has been discussed, this representation of consequences

is (arguably) inconsistent with AND for failure of the top level function but if it

is not done, the expressiveness of the approach is reduced. The generated text

does include a note that the top level functional has failed. The table includes

alternatives for the consequences of unexpected achievement of functions, simply

because such consequences are required for individual effects but might not be used

higher up the decomposition. In such cases, the report will include the highest

available set of unexpected consequences.

It should be noted that the use of subsidiary functions is different from a function

that requires a combination of triggers and effects, as each subsidiary function’s

trigger is associated with that function’s effect. For example, if the hob’s functional

model did not use subsidiary functions, and the rings and their switches are simply

treated as triggers and effects of the cook_on_hob function, there is no way of

associating the switch with the correct ring. If either of the switches is on and

either of the rings is on, the function is achieved. This is another reason for

adopting subsidiary functions and an approach to using subsidiary functions to

associate triggers and effects where they are not to be associated with their own

descriptions of purpose is described in Section 7.2.

6.3.2 Subsidiary functions and OR

When the subsidiary functions are combined using OR then, following the rule that

the trigger and effect of the top level function depends on the triggers and effects,

139

respectively, of the subsidiary functions, if either trigger is true, the top level

function is triggered, as shown in Table 6.3. Here, of course a top level function

function

C1

t1
 e1

function

C2

F

(
C1
 OR
C2
)

t2
 e2
 t
 e

F
 F
 F
 F
 F
 F

F

F

F

F

F

F

F

F

F
F

F
 F

F
 F

F
 F

T

T

T

T

T

T
 T

T

T

T

T

T

T
 T

T
 T

T
 T

T
 T

In
 (no entry)

generated text
 consequences

T

T

T

T

T
 T

T
 T

T
 T

T

T
 T

T

F

F

F

F

Ac

Un

Fa

Fa

Function
F
 achieved because function

C2
 achieved

Function
F
 failed because function
C2

failed

Function
F
 achieved unexpectedly

because function
C2
 achieved

unexpectedly

Function
F
 achieved

Function
C2
 failed because expected

effect
e2
 absent

Function

C2
 achieved unexpectedly

because unexpected effect
e2
 present

Function
F
 failed because functions

C1
 and
C2
 failed

Function
C1
 failed and function

C2

achieved unexpectedly

Function
F
 achieved unexpectedly

because functions
C1
 and
C2
 achieved

unexpectedly

Fa(
C2
)

Un(
C2
) or Un(
e2
)

Fa(
C2
)

Un(
C2
) or Un(
e2
)

Fa(
F
)

max

(Fa(
C1
), Un(
C2
))

U(F) or max

(Un(
C1
), Un(
C2
))

st
at

e

In

In

In

In

Ac

Fa

Fa

Un

st
at

e

In

Fa

Fa

Fa

st
at

e

Ac

Ac

Ac

Ac

Un

Un

Un

Un

Un

Ac

Ac

Ac

Ac

Table 6.3: Functional decomposition using OR

might be achieved despite failure of a subsidiary function, as in the sixth line of

the table. In such cases, the report need only refer to the failure of the subsidiary

function. The result of one subsidiary function failing and the other being achieved

unexpectedly (the ninth row of the table) is apparently anomalous. However the

result is consistent with the use of OR, in that the top level function is triggered

(one of the subsidiary functions is) and its effect is true (one of the subsidiary

function’s effect is true). In practice, too, this is a plausible result, in that the

purpose of the top level function can be fulfilled in this case. To demonstrate,

consider the hob example mentioned earlier. Suppose that a connection error in

an electric hob means that turning on the left front ring results in the right front

ring heating. Clearly in this case, the left front ring’s function is failed (triggered

but not effective) and the right front ring’s function is unexpected (not triggered

but effective). In this case, then a top level function for the hob as a whole is

achieved and, at least arguably, this is the on the grounds that this state allows

cooking to be done so its purpose is fulfilled. This is subject to the proviso that the

140

cook notices that the wrong ring has come on. The precise effect of this will depend

on the type of hob, of course, as this state is fairly obvious with radiant rings,

less so with hot plates. This does leave the model builder to build the functional

model with this in mind, of course. This apparent anomaly is mitigated by the fact

that the generated text will refer to the inconsistent behaviour of the subsidiary

functions, as shown in the table.

The same rule for deciding which consequences are included in the report is

used here, so where one subsidiary function has failed (or is unexpected), its

consequences are used, while if both have failed (or are unexpected) the top level

function’s consequences are used. There is a similar inconsistency as is the case

with AND here, in that where one of the subsidiary functions is unexpected, so is

the top level function but the subsidiary function’s consequences are included in

the report. This is for the same reason, so that the report distinguishes between

cases where one or both subsidiary functions are unexpected.

6.3.3 Subsidiary functions and XOR

For a top level function using exclusive or (XOR) to be achieved, one but not both

of the subsidiary functions must be achieved, as shown in Table 6.4. In fact,

of course, the same unexpected result of one subfunction being failed and the

other unexpected as with OR is apparent here, and the same argument apply. It

will be seen that there are other apparently unexpected results here, such as one

subfunction’s inconsistent behaviour causing the other inconsistent behaviour in

the top level function, so that in the seventh row of the table, an unexpected

subsidiary function causes the top level function to fail. This is consistent with

the approach taken, as the trigger expressions combined using the operator resolve

to false, while the effect resolves to true. The opposite case is found in the sixth

row. It is suggested that while these results appear anomalous, they are therefore

correct and the report will be consistent with this.

As noted earlier, the rule used with AND and OR for including consequences in the

report (use the subsidiary function’s consequences if subsidiary function has failed

or is unexpected, the top level functions if both are) is clearly inappropriate here,

as it is only when one subsidiary function has failed (or is unexpected) that the

top level function fails (or is inconsistent). Therefore, for XOR, the rule is reversed

and the consequences of the top level function are included in the report when

both subsidiary functions have failed or are unexpected and the consequences of

the top level function when only one has. The approach taken here is that the

report will include the consequences of that subsidiary function that has the more

141

function

C1

t1
 e1

function

C2

F

(
C1
 XOR

C2
)

t2
 e2
 st
at

e

t
 e

F
 F
 F
 F
 F
 F

F

F

F

F

F

F

F

F

F
F

F
 F

F
 F

F
 F

T

T

T

T

T

T
 T

T

T

T

T

T

T
 T

T
 T

T
 T

T
 T

In
 (no entry)

generated text
 consequences

T
 T

T

T

T

T

T
 T

F

F

F
 F

F

F

F
 F

F
 F

Ac

Fa

Fa

Un

Function
F
 achieved because function

C2
 achieved

Function
F
 failed because function
C2

failed

Function
F
 achieved unexpectedly

because function
C2
 achieved

unexpectedly

Functions
C1
 and
C2
 achieved

Function
F
 achieved unexpectedly

because function
C2
 failed

Function
F
 failed because function
C2

achieved unexpectedly

Functions
C1
 and
C2
 failed

Function
C1
 failed and function

C2

achieved unexpectedly

max

(Fa(
C1
), Un(
C2
))

Functions
C1
 and
C2
 achieved

unexpectedly

max

(Un(
C1
), Un(
C2
))

max

(Fa(
C1
), Fa(
C2
))

Fa(
F
)

Un(
F
) or Un(
C2
)

Fa(
F
)

Un(
F
) or Fa(
C1
)

st
at

e

In

In

In

In

Ac

Fa

Fa

Un

st
at

e

In

Fa

Fa

Fa

Ac

Ac

Ac

Ac

Un

Un

Un

Un

In

In

In

Ac

Un

Table 6.4: Functional decomposition using XOR

severe consequences (indicated by ‘max’ in the table) but, of course, both could

be included.

6.4 Relationships between system and function

It seems worth closing this chapter with a brief discussion of the relationship be-

tween the functional hierarchy and the system. Figure 6.5 shows the relationships

between the functional descriptions, descriptions of purpose and system attributes

for the hob example used earlier. In this case, a given ring’s function can be asso-

ciated with a subsystem of the hob in that not all the components of the hob are

involved in achieving that function. For example the failure of a wire connecting

the left ring with its knob does not affect achievement of the cook on right ring

function. However, there is unlikely to be a neat mapping between a functional

subsystem and a structural subsystem. Typically, the failure of some components

will affect several of a system’s functions, of course and it is possible that a physical

subsystem will contribute to several functional subsystems, such as the handset of

142

FUNCTION

cook_on_hob

TRIGGERS

knob_turned_on

ring_hot

right_knob.position

NOT 'off'

IMPLEMENTS

UNEXPECTED "Danger of burn to user"

 SEVERITY 8

 DETECTION 4

PURPOSE cook_food

DESCRIPTION "Allow preparation of cooked food"

FAILURE "Hob cannot be used for cooking"

 SEVERITY 7

 DETECTION 3

right_ring.i = ACTIVE

IMPLEMENTS

ACHIEVES

FUNCTION

cook_on_left
 FUNCTION

cook_on_right

OR

PURPOSE cook_on_ring

DESCRIPTION "Use ring for cooking"

FAILURE "Ring cannot be used. Limits cooking"

 SEVERITY 4

 DETECTION 3

ACHIEVES

behaviour
 function
 teleology

system

component

subsystem

Figure 6.5: Model relationships for the hob example.

a telephone being required in both the transmit and receive functions.

A further area to consider when discussing functional decomposition is the point

that the top level of a functional hierarchy relates to a purpose not to a physical

system. Some systems might well be cohesive enough to be analysed as a whole

even though they actually fulfil several different (if related) functions. For ex-

ample, it is quite likely that a car’s exterior lighting system will be analysed as

a whole as it is a cohesive structural design, but this system implements several

distinct functions, each fulfilling a distinct purpose. Some of these are listed in

Table 6.5. The functions informally listed in that table do not combine to achieve

function
 effect

make car visible

light road

light road without dazzling

warn of slowing

indicate right

indicate left

left and right side lights and tail lights lit

left and right headlamps main beam

left and right headlamps dipped

left and right brake lights lit

right hand indicators flashing

left hand indicators flashing

Table 6.5: Functions associated with a car’s exterior lights.

some higher level purpose, with the proviso that dipped headlamps might be con-

sidered to contribute to the “make car visible” function. Therefore, they should

not be modelled as components of a system level function. That there is no need

143

for a system level “exterior lights” function is made clear by the fact that there is

no single purpose that can be attached to it, other than the rather loose idea that

the car is not roadworthy if any of the lights is not working and this is captured

by the need to fulfil all the listed purposes.

This serves to highlight the idea that a functional hierarchy should have a clearly

defined purpose at the top and need not imply the correct working of the whole

system, as there is no necessary relationship between the structural and functional

decompositions of the system. Of course, if the system has parts that are not

necessary to achieve any function, these are likely to be redundant, though they

could of course be associated with fault tolerant back up functionality.

Another point that arises is that the listing of functions in Table 6.5 is only

one possible alternative functional description. An alternative might have two

“make visible” functions, a parked one requiring sidelights and tail lights and

a running one that adds dipped or main beam headlamps. This does suggest

that the building of an appropriate functional model requires some knowledgeable

judgement as to the correct relationships between the different functions and their

triggers and effects. However, this could be seen as emphasising the advantage

of this approach in that using functional description to interpret the results of

a simulation for design analysis does mean that these relationships need only be

described once, rather than repeating the description each time a given failure is

found, as would be the case if only the simulation were available.

The alternative decomposition, with the dipped beam contributing to both the

make visible and the light road ahead functions introduces the idea that a sub-

sidiary function might be associated with more than one top level functions. As

each function is a separate model, there is no difficulty in doing so. A possible

example is the plant monitoring audible warning function used as an example ear-

lier. As this same siren is used to draw attention to any one of a number of plant

failures, the effect might well be treated as a subsidiary function of each failure’s

warning function. It will be appreciated that there is a possibly drawback in doing

so, in that the severity of the failure of the warning siren might well be considered

to depend on which plant failure it is failing to draw attention to (so to which top

level function its failure is affecting). It might be better to use several subsidiary

functions and associate each audible warning subsidiary function with the same

effect (the siren) or even to dispense with subsidiary functions altogether in such

cases.

This chapter has described the decomposition of system functions in cases where

the subsidiary functions are themselves complete representations of function, with

trigger, effect and reference to a description of purpose. However, there are cases

144

where a system function is better decomposed in to several subsidiary functions

that share one of these three elements. The next chapter considers such cases, and

the use of such incomplete representations of function.

145

Chapter 7

Incomplete representations of

function

While a subsidiary function might have its complete set of three characteristic

elements (the trigger, effect and purpose), as described in the previous chapter,

there are cases where one of these elements is common to some function’s sub-

sidiary functions and so the repetition of this element is redundant. The seat belt

warning example in Section 6.1 is a case in point as the audible and visual warn-

ing subsidiary functions will share a trigger. This suggests a rôle for incompletely

specified functions, allowing the repetition of common elements to be avoided.

Indeed, such representations are necessary for completeness of the language. The

use of Boolean expressions to relate subsidiary functions (as discussed in the pre-

vious chapter) limits such decompositions to cases where the same operator is

used for the triggers and effects of the subsidiary functions. The use of incomplete

representations of function allows functions whose triggers and effects are not to

be combined using the same operator to be related as subsidiary functions, with

their own descriptions of purpose.

The use of three elements in a complete function introduces the possibility of

incomplete functions (or incomplete representations of function) that specify the

relationship between any two of these elements. If function is seen as a relational

concept, then at least two elements are necessary, of course, so the function can

define the relation between them. The three possible pairings of elements are:-

• The relation between effect and purpose.

• The relation between trigger and effect.

• The relation between trigger and purpose.

146

This in turn suggests that there are three possible classes of incomplete function.

Purposive incomplete function (abbreviated to PIF) relates an effect to a

purpose. It is used where several effects each have their own purpose (be-

sides contributing to that of a higher level function), but share the trigger

of that higher level function.

Operational incomplete function (OIF) relates a trigger to an effect with no

separate purpose. It is used to associate specific triggers with specific effects,

all of which contribute a higher level function

Triggered incomplete function (TIF) relates a trigger to a purpose. It can

be used where some common effect can be triggered in different ways and

where the trigger defines the purpose of the effect and so the function.

Each of these classes of incomplete function will be discussed in its own section,

before concluding the chapter with a discussion of how these incomplete functions

are used in differing functional decompositions.

The terminology used for the first two classes of incomplete function follows

the alternative definitions of function in (Chittaro & Kumar, 1998). A purposive

incomplete function expresses the relationship between behaviour (specifically ef-

fect) and purpose, consistently with that paper’s purposive definition of function

while an operational incomplete function describes the relationship between trig-

ger and effect (so input and output), consistently with their operational definition

of function. The triggered incomplete function does not follow so definitely from a

definition of function and there might be felt to be no need for that class of incom-

plete function as there is no direct relationship between trigger and purpose — a

trigger must result in an effect to achieve its purpose. The relationships between

trigger, effect and purpose are linear in that a trigger results in an effect that fulfils

a purpose. Earlier discussions of this approach to functional decomposition, (Bell

et al., 2005a; Bell et al., 2005b) did indeed only include discussion of purposive

and operational incomplete functions. However, there are reasons for the inclusion

of the remaining class, to be discussed in Section 7.3

7.1 Purposive incomplete function

A purposive incomplete function (PIF) maps between an effect expression (which

might, of course, combine individual effects using Boolean operators) and a specific

purpose. There is no trigger expression, allowing purposive incomplete functions

147

to be used to describe subsidiary functions that share a triggering condition. This

avoids the redundant repetition of triggers noted in the subsidiary function ex-

ample mentioned earlier, the seat belt warning system. That same functional

description can be built using purposive incomplete functions instead of the (com-

plete) functions used in the earlier example.

FUNCTION belt_warning

ACHIEVES warn_unbuckled

BY

driver_unbuckled OR passenger_unbuckled

TRIGGERS

PIF audible_unbuckled_warning

AND

PIF visual_unbuckled_warning

Each purposive incomplete subfunction is a separate model wherein the recog-

niser is reduced to an expression describing the effect. The reference to a descrip-

tion of purpose is similar to that for a complete function. It will therefore have a set

of consequences of failure associated with it (and so with the purposive incomplete

function) and might also have a set of consequences of unexpected achievement of

the effect, in exactly the same way as a description of purpose associated with a

complete function. The audible_unbuckled_warning subfunction as a purposive

incomplete function might look like this.

PIF audible_unbuckled_warning

ACHIEVES sound_unbuckled_warning

BY

sound_chimer

The difference between a purposive incomplete function and a straightforward

effect is the association with some specific purpose that contributes to that of

the top level function of which the PIF is a subsidiary function. A purposive

incomplete function can be thought of as inheriting a trigger from the function

of which it is a subsidiary function. This avoids the need to repeat an identical

expression for several subfunctions, avoiding the danger of inconsistency between

the expressions and also simplifying the mapping between system properties and

trigger, as only one such mapping is needed.

The relationship between trigger, effect and achievement of a purposive incom-

plete function is similar to that for a complete function, the only difference being

that the trigger is elsewhere in the function hierarchy. If the effect is true and the

148

trigger false, the effect is unexpected. Whether the effect of the function of which

the PIF is a subfunction is also achieved unexpectedly will depend on the rela-

tionship between the function’s subsidiary functions and which of the subsidiary

PIFs’ effects are present. To define the relationship between a function and its

subsidiary PIFs more formally, let f be a system function with subsidiary PIFs p

and q, related using some binary Boolean operator ⊗.

In(f) ⇔ ¬Tr(f) ∧ ¬(Ef(p) ⊗ Ef(q)) (7.1)

Fa(f) ⇔ Tr(f) ∧ ¬(Ef(p) ⊗ Ef(q)) (7.2)

Un(f) ⇔ ¬Tr(f) ∧ (Ef(p) ⊗ Ef(q)) (7.3)

Ac(f) ⇔ Tr(f) ∧ (Ef(p) ⊗ Ef(q)) (7.4)

The trigger expression belongs to f , so we can consider f to be triggered. Notice

that the trigger cannot be associated with each of the PIFs (making them complete

subsidiary functions) as if they are combined using XOR then teh top level function

will never be triggered as both subsidiary functions’ trigger expressions will be

either true of false at any one time. This relationship is discussed further below.

In the seat belt warning system example, if the audible warning sounds despite

there being no unbuckled passengers then the seat belt warning function’s effects

are not achieved unexpectedly because of the lack of the visual signal. Similarly, if

the purposive incomplete function’s inherited trigger is true and its effect false, the

PIF has failed and whether the top level function has failed will, likewise, depend

on the state of other subsidiary functions and the relationship between them. In

this case, failure of either the audible or visual warning PIFs will amount to failure

of the belt warning function. However, it could be argued that the achievement

of either of the subsidiary functions mitigates failure of the warning function as

at least some indication is given, so the failure of the warning system might be

felt to be less severe than if both were lost. This is consistent with the idea of

using subsidiary functions to show cases where achievement of some of a top level

function’s effects mitigates failure of the function, as discussed in the previous

chapter.

The relationships between the state of a top level function and the states of its

purposive incomplete subsidiary functions are worth a brief description. The sim-

plest and most common cases is where the subsidiary PIFs are combined using

AND, as in the seat belt warning system discussed above, and the resulting rela-

tionships are shown in Table 7.1. When purposive incomplete functions are used,

the trigger is a Boolean expression belonging to the top level function, so is not

149

t

P1
 P2

st
at

e

function
F
 (
P1
 AND
P2
)

generated text
 consequences

F

F

F

F
 F

F

F
 F

F

F

F

F

F

T

T

T

T

T
 T

T

T

T
 T
 T

In
 (no entry)

In

Un

Fa

Fa

Ac

Function
P1
 achieved unexpectedly because

unexpected effect
e1
 present

Function
F
 achieved unexpectedly because

functions
P1
 and
P2
 achieved unexpectedly

Function
F
 failed because functions
P1
 and
P2

failed

Function
F
 failed because function
P2
 failed

Function
F
 achieved

Un(
P1
) or Un(
e1
)

Un(
F
) or max

(Un(
P1
), Un(
P2
))

Fa(
F
)

Fa(
P2
)

e
F

e1
 st

at
e

st
at

e

e2

In
 In

In
Un

Fa
 Fa

Fa
Ac

Un
 Un

Ac
 Ac

Table 7.1: Decomposition using partial incomplete functions with AND

derived from the truth of the subsidiary functions triggers as is the case where they

are complete functions. Where AND is used to relate the subsidiary functions, the

results are similar to those obtained using complete subsidiary functions, shown

in Table 6.2 on page 138, but without the need to include relationships where only

one of the subsidiary functions is triggered, of course.

The same relationship between the use of purposive incomplete functions and

complete subsidiary functions is also found where OR is used to combine the sub-

sidiary functions, as shown in Table 7.2, which can be compared with Table 6.3

on page 140. One possible example of the use of PIFs with OR is a room lighting

t

P1
 P2

st
at

e

function
F
 (
P1
 OR
P2
)

generated text
 consequences

F

F

F

F
 F

F

F
 F

F

F

T

F

T

T

T

T

T

T
 T

T

T

T
 T
 T

In
 (no entry)

Function
F
 achieved
Ac

Fa

Un

Function
P2
 failed

Function
F
 failed because functions
P1
 and
P2

failed

Function
F
 achieved unexpectedly because

functions
P1
 and
P2
 achieved unexpectedly

Function
F
 achieved unexpectedly because

function
P1

achieved unexpectedly

Fa(
F
)

Fa(
P2
)

Un(
F
) or max

(Un(
P1
), Un(
P2
))

Un(
P1
)

e
F

st
at

e

st
at

e

e1
 e2

In
 In

In
Un

Fa
 Fa

Fa
Ac

Un
 Un

Ac
 Ac

Ac

Un

Table 7.2: Decomposition using partial incomplete functions with OR

circuit where a switch is intended to switch on two lamps, either of which is suf-

150

ficient to light an occupant’s way around the room. For example, if there was a

ceiling lamp and a wall lamp, the functional description might look like this.

FUNCTION lights_on

ACHIEVES light_room

BY

light_switch_on

TRIGGERS

PIF ceiling_lamp

OR

PIF wall_lamp

The wall lamp’s function might be as follows.

PIF wall_lamp

ACHIEVES light_side_of_room

BY

wall_lamp_on

Because each light is associated with its own function, the failure of one light will

be reported, using that PIF’s description of purpose and consequences of failure.

For example, if the wall lamp failed the report might read

Function wall lamp failed because expected wall lamp on not present.

Consequences are side of room dimly lit. Severity 3, detection 2.

The consequences are, of course, those of the description of purpose associated

with the wall lamp function. This would clearly contrast in severity with failure

of both lamps leaving the occupant in the dark. If the lamps were simply effects

associated with the lights_on function, then if one failed the report would show

nothing, unless, of course, AND was used instead of OR, in which case the report

would show the room was not lit and could not distinguish between failure of one

lamp or failure of both.

This raises the interesting point that the relations between subsidiary functions’

purposes might differ from the system’s expected behaviour. In addition to en-

abling the report to show a more refined interpretation of the system behaviour

than a simple Boolean (“all or nothing”) functional description would allow, the

use if purposive incomplete functions allows the functional description to capture

differences between the intended purpose of a system and its expected behaviour.

In this case, the (main) purpose of the lamps differs from the expected behaviour

151

of the system as the purpose is adequately fulfilled by one of the lamps, while

both are, of course expected to light up in response to the trigger. The idea that

a function represents both a relationship between behaviour and purpose and the

expected behaviour of a system is discussed further in Section 7.5.

The similarity between the results of using complete functions (repeating the trig-

ger) and purposive incomplete functions is lost when the relation is exclusive OR.

Table 7.3 shows that achievement of the top level function depends on the trig-

ger being true and one (but, of course, not both) of the PIFs being achieved. If

t

P1
 P2

e
F

st
at

e

function
F
 (
P1
 XOR
P2
)

generated text
 consequences

F

F

F

F
 F

F

F
 F

F

F

T

F

T

T

T

T

T

T
 T

T

F

T
 T
 F

In
 (no entry)

Un

Fa

Fa

Ac

Function
F
 achieved because function
P1

achieved

Function
F
 achieved unexpectedly because

function
P1
 achieved unexpectedly

Functions
P1
 and
P2
 achieved unexpectedly

Function
F
 failed because functions
P1
 and
P2

failed

Function
F
 failed because functions
P1
 and
P2

achieved

Un(
F
) or Un(
P1
)

max

(Un(p1), Un(p2))

Fa(
F
)

Fa(
F
)

e1
 e2
st
at

e

st
at

e

In
 In

In
Un

Fa
 Fa

Fa
Ac

In
Un
 Un

Ac
 Ac

Table 7.3: Decomposition using partial incomplete functions with XOR

instead of PIFs, each subsidiary functions were complete functions each with its

own (identical) trigger, then as the two triggers from which the triggering of the

top level function will always share a value, the trigger of the top level function

will always be false so the top level function can never be triggered and therefore

never achieved correctly. This follows from the rule used that the truth of the

triggering of the top level function is derived from the truth of the triggering of

the subsidiary functions combined using the logical relation, so with XOR the top

level function is only triggered if one of the subsidiary functions is triggered. This

is shown in Table 6.4 on page 142. This difference does capture a real difference in

the meaning of the functional decomposition, contrasting a function that is trig-

gered by the trigger of one of its subsidiary functions with one that is triggered by

(implicitly) both, even though only one of the effects is expected. This also means

that partial incomplete functions are a necessary part of the functional language

because this case cannot be described without their use.

An example of a system that might use such a functional description is not

152

easy to find as such a system uses a trigger with a non-deterministic effect. One

possibility is a game where a random (or pseudo-random) element is necessary.

A coin slot arcade game in which one of two model animals appears periodically

for a short time, the idea being for the player to score as many hits as possible

might be modelled in this way, in that a given trigger (either starting the game or,

during play, an animal returning to its hole restarting the timer and selector) will

result in either one but not both of the models appearing. This might be worth

modelling using PIFs rather than simply effects as some play is possible if only one

of the animals fails to appear. It is suggested that the somewhat contrived nature

of this example serves to demonstrate how rarely XOR will be used in combining

purposive incomplete functions.

In most cases, where XOR might be used to combine subsidiary functions, the

trigger should be refined to eliminate this non-deterministic nature of the system.

Main and emergency lighting systems might be considered to be PIF subfunctions

of a light room function, either being triggered by switching on the lights and

combined using XOR (or possibly OR). However, this fails to describe the fact that

the emergency lighting system should only be triggered if the main system fails, so

which system is triggered has a significance that is lost if XOR is used in describing

these functions. In other words which effect is triggered is not non-deterministic

and a correct description will have the emergency lighting function triggered by

the state of the main lighting system, avoiding such non-determinism. Purposive

incomplete functions are not appropriate in such cases, being intended principally

to allow subfunctions that combine to achieve a function and that share a trigger

to be described.

The discussion of relationships between states of purposive incomplete functions

and the top level function is concluded by noting that the rule for including the

consequences of failure of a function in the resulting design analysis report is,

as might be expected, the same as when complete subsidiary functions are used.

So when the PIFs are combined with AND or OR, the consequences are those

of the failed PIF if one fails and the top level function if both PIFs fail. If XOR

is used this is reversed (again as is the case with complete subsidiary functions)

so if one PIF fails the top level consequences are included and if both do, the

consequences of (one of) the PIFs. The unexpected achievement of PIFs is also

handled in the same way as is unexpected achievement of complete subsidiary

functions, so the consequences will depend as much on whether any have been

added for unexpected achievement of function or whether those associated with

individual effects are being relied upon.

153

7.2 Operational incomplete function

An operational incomplete function (OIF) defines a relationship between a trigger

and effect that does not itself fulfil any purpose, but rather contributes to the

fulfilment of the purpose of a function of which it is a subsidiary function. This

might be felt to be inconsistent with the idea that any function is associated with

a purpose and indeed an operational incomplete function is best regarded as a way

of defining the expected behaviour of a system rather than its purpose. This raises

the interesting point that a system function might be thought of as describing the

system’s expected behaviour as distinct from relating behaviour to purpose and in

interpretation of simulation both of these might be of interest. This is discussed

later, in Section 7.5. A description of an operational incomplete function therefore

merely consists of a recogniser. An example of the use of operational incomplete

functions might be a room with two independent lamp circuits, each with a switch

and lamp. In this case, either will do to light an occupant’s way around the room

and arguably neither has a sufficiently distinct purpose of its own to justify the

additional complication of completing their functional descriptions. The room

light function might look like this.

FUNCTION room_light

ACHIEVES find_way_around_room

BY

OIF wall_lamp

OR

OIF ceiling_lamp

Here, of course, the recogniser for the top level function is similar to cases where

the subfunctions are complete functions. The only difference is that these sub-

functions include no reference to a description of purpose.

OIF wall_lamp

switch_on

TRIGGERS

light_on

As an operational subfunction consists of a recogniser, there is arguably no need

to label it with the BY keyword. Because the subsidiary functions include both

triggers and effects, the relationships between achievement of the top level func-

tion and the subsidiary functions is identical whether the subsidiary functions

are complete functions or operational incomplete functions. They are therefore

as illustrated in the tables in Section 6.3. Because there is no purpose attached

154

to an operational incomplete function, all consequences of failure are those of

the top level function, just as though the top level function was described using

triggers and effects. This means that the failure of one of a function’s OIF sub-

functions might not result in failure of the top level function, as in this example.

For example, if both room lights are switched on but the wall light has failed, the

room_light function is still achieved. This is, of course, no different from the case

where a function consists of several effects. Consequences of unexpected achieve-

ment can either be those associated with the relevant effect or, if the top level

function is achieved and it is associated with a set of consequences of unexpected

achievement, with the top level function. As there is no purpose associated with

an operational incomplete function, it will not have its own consequences of unex-

pected achievement. The rôle of an operational incomplete function is to ensure

that a trigger is associated with the right effect. Notice that in this example, the

wall light switch is associated with the wall light, while using OR to combine the

triggers and effects in the room_light function loses this association.

FUNCTION room_light

ACHIEVES find_way_around_room

BY

wall_lamp_switch_on OR ceiling_lamp_switch_on

TRIGGERS

wall_lamp_on OR ceiling_lamp_on

This is not equivalent to the use of the operational incomplete subfunctions as,

of course, either switch could trigger either light, which is not a good model of the

intended functionality. This could be avoided by having more than one TRIGGERS

in the recogniser of the function, of course, like this.

FUNCTION room_light

ACHIEVES find_way_around_room

BY

wall_lamp_switch_on

TRIGGERS

wall_lamp_on

OR

ceiling_lamp_switch_on

TRIGGERS

ceiling_lamp_on

It will be appreciated that these formulations give identical results if the trigger,

effects or subfunctions are combined using AND.

Although the use of the formulation above avoids the necessity for using opera-

tional incomplete functions, there are arguments for using them. Their use allows

155

the idea that a function has one trigger and one effect (so TRIGGERS appears just

once) to be retained. Another advantage of the use of operationally incomplete

functions is that later in the design process, the design might become refined such

that these subfunctions might acquire a distinct purpose of their own, so they can

be promoted to complete functions. This is simply done by adding an ACHIEVES

clause with a reference to the purpose to the description of the operational incom-

plete function. For example, once the layout of the room in the example above

is known, it might become apparent that someone working at the desk will be

working in their own shadow if the ceiling light is in use, so the wall light acquires

a specific purpose, lighting work at the desk. If this functional refinement is done

without the use of operational incomplete functions, a good deal more rebuilding

of the functional models will be required.

The use of operational incomplete functions also allows a function to be decom-

posed such that only one of the subsidiary functions mitigates failure of the top

level function. This problem was touched on in Section 6.2.1.1 earlier. To use the

railway signalling example, the top level function might be written as follows.

FUNCTION accept_train

ACHIEVES guide_to_platform

BY

OIF set_points

AND

FUNCTION set_signals

Now, if the points fail, the consequences of the main function will be included

in the report, as there are no others available, while if the signals fail, those

consequences are included, allowing the report to show that in this case, the loss

of functionality in the system can be worked around by hand signalling. In other

words, failure of the points amounts to complete failure of the system while failure

of the signals is only a partial failure. While such asymmetric functional models

will, it is suggested, be unusual it does seem worthwhile allowing the language the

flexibility to describe such cases. There is a fuller discussion of this in Section 7.4.1.

It will be seen that formulating the above example without using an OIF would

be somewhat cumbersome.

As a final note on OIFs, their presence makes it necessary to refine the formal rule

5.13 in Section 5.7, as it is possible that a function has now associated description

of purpose and so consequences of failure. To allow for this, the rule is changed

so that consequences are only reported if the fucntion includes them, as follows.

R(cf) if Fa(f) and if (f includes cf) (7.5)

156

Where R(cf) means the consequences of f are reported if f has failed and f inludes

such consequences (in its associated description of purpose).

7.3 Triggered incomplete function

As was noted in the introduction to this chapter, this last class of incomplete

function might be thought to be unnecessary, expressing as it does a relationship

which requires an intermediary element (the effect). Indeed it is likely that trig-

gered incomplete functions will be used a good deal less often than either of the

other classes of incomplete function. The principal reason for its inclusion in the

Functional Interpretation Language is completeness but there do exist systems

whose description might make use of such an incomplete representation of func-

tion. A very simple example is a door with a tumbler lock (such as a “Yale” lock)

where the releasing of the lock can be triggered either by using the key (with the

purpose of letting somebody in) or the knob, with the purpose of letting some-

body out. While there is arguably little need for such complication here, it will be

noticed that the consequences of failure of these two purposes (and so triggers) is

different and also that the consequences of failure of either one of the subsidiary

functions is less severe than both. If, say, some fault renders the key unusable,

someone wanting to get in could knock so that an occupant can open the door.

If neither trigger works, the lock needs removing to open the door. This example

might seem a little contrived, which does, perhaps, serve to suggest that this class

of incomplete function will seldom be used. It does seem possible that it might be

of some use in describing software systems, where the consequences of the output

of a certain module might depend on how the module was called.

Formally, a function f composed of two TIFs s and u combined using some

operator ⊗ has its function state defined following these rules.

In(f) ⇔ ¬(Tr(s) ⊗ Tr(u)) ∧ ¬Ef(f) (7.6)

Fa(f) ⇔ (Tr(s) ⊗ Tr(u)) ∧ ¬Ef(f) (7.7)

Un(f) ⇔ ¬(Tr(s) ⊗ Tr(u)) ∧ Ef(f) (7.8)

Ac(f) ⇔ (Tr(s) ⊗ Tr(u)) ∧ Ef(f) (7.9)

These are similar to the rules for PIFs, above, but now the triggers are associated

with the subsidiary functions and the effect with the top level function. A similar

point regarding the use of XOR applies here as applies to PIFs in that if the same

effect is associated with each subsidiary function, the top level function will never

157

be effective as both or neither effect will be true at any time.

The description of a triggered incomplete function is not unlike that for a pur-

posive incomplete function but, of course, the TIF takes the place of the trigger

expression, so the lock example might look like this.

FUNCTION unlock_door

ACHIEVES door_open

BY

TIF unlock_with_key

OR

TIF unlock_with_knob

TRIGGERS

lock_released

Here, lock_released is an effect with two purposes, which are distinguished by

the trigger used. The TIF’s description consists of a reference to a description of

purpose and a recogniser that is simply a trigger expression.

TIF unlock_with_key

ACHIEVES let_in

BY

key_inserted_and_turned

The description of purpose (here let_in) is similar to one that might be associ-

ated with a complete function. It will not, generally, include a set of consequences

of unexpected achievement of the effect. As there is no effect in the function, it

would be inappropriate. If the effect (common to two TIFs) occurs unexpectedly

it could apply to either or both of the TIFs. This allows the hierarchical functional

description (and so the resulting design analysis report) to differentiate between

the consequences of the effect failing in response to each trigger.

The relationships between states of triggered incomplete functions and the top

level function are not dissimilar to those for purposive incomplete functions with

the obvious difference that as the effect is shared, it is inherited from the top level

function rather than the trigger. Combining triggered incomplete functions with

AND has the results shown in Table 7.4. The results are similar to those lines in

Table 6.2 on page 138 where both effects share a value. It will be appreciated

that where AND is used, both triggers are required to trigger the expected effect.

This leaves a limited rôle for combining triggered incomplete functions with AND

as it will never be the case that one or other of the subsidiary functions will fail.

However, it is possible that one of the TIFs is achieved unexpectedly when the

158

t1

T1
 T2

st
at

e

function
F
 (
T
1
 AND
T
2
)

generated text
 consequences

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T

T

In
 (no entry)

Function
F
 achieved

e
st
at

e

st
at

e

In
 In

In

Un

Fa

Fa

Fa

Ac

t2
 tF

F

F

F

F

T

T

In

Un

Fa

Ac

Function
F
 achieved unexpectedly because

effect
e
 unexpectedly present

Un(
F
) or Un(
e
)

(no entry)

Function
F
 achieved unexpectedly because

function
T1
 achieved unexpectedly

Function F failed because functions T1 and T2

failed

Fa(
F
)

Un(
T1
) or Un(
e
)

Un
Un

Un

Ac

Ac

Table 7.4: Functional decomposition using triggered incomplete functions with
AND

effect appears in response to one of the two triggers, so the other TIF is achieved

unexpectedly. There is therefore the possibility of using TIFs combined with AND

where it is required to add consequences of unexpected achievement of a function’s

effects at this intermediate level in the functional hierarchy. It is therefore not

impossible that the description of purpose associated with a TIF will include a set

of consequences of unexpected achievement.

There is a more definite rôle for triggered incomplete functions combined with

OR, indeed the lock example mentioned in the introduction to this section is a case

in point. Here, again, the relationships between the TIFs and the achievement

of the top level function, shown in Table 7.5, are similar to those for complete

subsidiary functions, compare with table 6.3 an page 140. If one of the TIFs fails,

the consequences are those of the TIF while if both fail (neither trigger will result

in the expected effect) the consequences are those of the top level function. This

is consistent with the rule used with complete subsidiary functions and purposive

incomplete functions, and is also used where TIFs are combined with AND. This

leads to an interesting side effect with the lock example, as in this case it is unlikely

that both triggers will occur simultaneously. Therefore the interpretation must

allow for this and compare the results of the use of each trigger to establish that

neither results in the expected effect and therefore that the top level function’s

consequences are to be included in the report. There seems to be no problem with

this, provided the results of the simulation(s) allow this comparison to be made.

As is the case with purposive incomplete functions, the relationship between

subsidiary triggered incomplete functions and the top level function using XOR is

different from that of using two complete subsidiary functions with the same effect.

159

t1

T1
 T2

st
at

e

function
F
 (
T
1
 OR
T
2
)

generated text
 consequences

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T

T

In
 (no entry)

Function
F
 achieved

e
st
at

e

st
at

e

In
 In

In

Un

Fa

Fa

Fa

Ac

t2
 tF

F

F

T

T

T

T

Uc

Fa

Ac

Fa

Function
F
 failed because function
T2
 failed
 Fa(
T2
)

Function
F
 achieved unexpectedly because

effect
e
 unexpectedly present

Un(
F
) or Un(
e
)

Function
F
 achieved

Function
F
 failed because functions
T1
 and
T2

failed

Fa(
F
)

Un

Un
 Ac

Ac
 Ac

Table 7.5: Functional decomposition using triggered incomplete functions with
OR

These relationships are shown in Table 7.6. Here an effect is triggered by one or

t1

T1
 T2

st
at

e

function
F
 (
T
1
 XOR
T
2
)

generated text
 consequences

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T

T

In
 (no entry)

e
st
at

e

st
at

e

In
 In

In

Un

Fa

Fa

Fa

Ac

t2
 tF

F

F

F

F

T

T
 Function
F
 achieved
Ac

Un

Fa

In

Function F failed because function T2 failed
 Fa(
F
)

(no entry)

Function
F
 achieved unexpectedly because

effect
e
 unexpectedly present

Un(
F
) or Un(
e
)

Function
F
 achieved unexpectedly because

effect
e
 unexpectedly present

Un(
F
) or Un(
e
)
Un
Ac

Ac

Un

Un

Table 7.6: Functional decomposition using triggered incomplete functions with
XOR

other of two alternative triggers, rather then a top level function being achieved by

one or other of two subsidiary functions. If complete subsidiary functions are used

in place of the triggered incomplete functions, then if one subsidiary function’s

effect is present, so is the other. The two effects combined with XOR will, therefore

always resolve to false, so the top level function would never be achieved. This is

consistent with the rule used for functional decomposition, where the truth of a top

level function’s effect is derived from the truth of the subsidiary functions’ effects

combined using the relevant logical operator. A possible example of using TIFs

with XOR is the common arrangement for a landing light with two switches, and

the light lighting when either one of the switches in on. This might be described

160

like this.

FUNCTION landing_light

ACHIEVES light_stairwell

BY

TIF downstairs_switch

XOR

TIF upstairs_switch

TRIGGERS

lamp_on

It is at least arguably the case that the purposes of these two TIFs are not really

distinct, but it is possible that the functions are described this way to allow for

the idea that one of the switches failing to switch on the lamp is a less serious

failure of the system than both failing. This works because each TIF will include

a related description of purpose besides the expression for the trigger, like this.

TIF upstairs_switch

ACHIEVES light_way_down_stairs

BY

upstairs_switch_pressed_down

As TIFs combined using XOR cannot be replaced with complete subsidiary func-

tions, because the resulting relationship with the top level function is different,

TIFs are a necessary component of the functional language, even though it is likely

they will only infrequently be used.

Where PIFs or TIFs are used in a functional decomposition, the rules for report-

ing failures of functions follow those for complete subsidiary functions, A.11 and

A.12 in Appendix A and the rules for reporting the consequences of these failures

follow A.18, A.19 and A.20.

7.4 Incomplete functions in functional decompo-

sition

The three classes of incomplete function are used as subsidiary functions of a

complete function to assist with the construction of a hierarchical functional de-

composition. A function can therefore be decomposed in five ways, using triggers

and effect, complete subsidiary functions, or any class of incomplete function, as

illustrated in figure 7.1. In the figure, a functional description is shown by a thick

161

FUNCTION
 ACHIEVES

PURPOSE

effect

TRIGGERS

trigger

operator

OIF
 OIF

TRIGGERS

trigger
 operator

PIF
 PIF
 ACHIEVES

PURPOSE

FUNCTION
 FUNCTION
 ACHIEVES

PURPOSE

effect

TRIGGERS

trigger
 effect

operator

BY

TRIGGERS

effect
operator

TIF
 TIF

ACHIEVES

PURPOSE

trigger

Figure 7.1: Five functional decompositions

lined box while a thin box used for an associated description of purpose. Arrow

heads are used to distinguish relationships between model components that are

(or could be) seen as separate models, in different files. Incomplete functions are

shown by a broken outline and “operator” is used to indicate any Boolean op-

erator. Any “trigger” and “effect” in the diagram can, of course, be a Boolean

expression. There is a key to this and other similar figures in Appendix C on

page 286.

Where an effect is associated with a distinct purpose (so the consequences of its

failure are different from those of failure of the top level function), then either

a complete function or a purposive incomplete function is used, depending on

whether the effect is associated with its own trigger. Otherwise, the function is

simply composed either of trigger and effect or, if there is more than one of each

and they need associating, operational incomplete functions are used.

It is possible (though perhaps unlikely) that these decompositions might be

mixed, though it will be apparent that there are restrictions on this mixing. It

will be seen in figure 7.1 that three of the decompositions start with TRIGGERS

and the other two with a Boolean operator. It is possible to mix elements from

these related decompositions, so a purposive incomplete function can be paired

with an effect that fulfils no independent purpose, a complete subsidiary function

can be paired with an operational incomplete function and a triggered incomplete

function with a trigger expression that triggers the same effect. This might be

done in cases where a function depends on two effects, one of which has a clearly

defined purpose (or clearly defined consequences of failure) of its own while the

other does not. This allows functional decompositions that are not symmetrical,

in that one of the effects is more essential to correct achievement of a function

than the other.

162

7.4.1 Asymmetrical functional decompositions

An advantage of the approach to functional decomposition described here is that

it allows functions that might be considered to be asymmetrical to be described.

What is meant by this are the cases where a function depends on two effects (say)

only one of which can be regarded as a subsidiary function or where a function

depends on two subsidiary functions only one of which is regarded as mitigating

the failure of the top level function. While such cases are likely to be unusual,

it not impossible that a trigger has effects of different degrees of significance in

achieving a function. A simple example might be a car’s brake lighting function,

where the car has a repeater in addition to the two required brake lights. As the

brake lights proper are legal requirements it could be argued that their failure is

more significant than failure of the repeater. This might be described by mixing

effects and a purposive incomplete function, like this.

FUNCTION stop_lights

ACHIEVES warn_of_slowing

BY

press_brake_pedal

TRIGGERS

left_brake_light

AND

right_brake_light

AND

PIF stop_light_repeater

The purposive incomplete function will, of course, have its own description of

purpose and effect.

PIF stop_light_repeater

ACHIEVES additional_slowing_warning

BY

repeater_lights

PURPOSE additional_slowing_warning

DESCRIPTION "More visible warning of slowing vehicle"

FAILURE "No extra warning of slowing"

SEVERITY 3

DETECTION 6

It will be seen that in this case, failure of either brake light is treated as failure

of the top level function, while failure of the repeater is less significant, as the

consequences of its failure will be those of the failure of the purposive incomplete

function, presumed to be less severe than those of the main function.

163

The easiest ways of describing these asymmetric decompositions are by combining

effects and purposive incomplete functions and by combining complete subsidiary

functions and operational incomplete functions. This was illustrated in Section 7.2.

It is also possible to combine triggered incomplete functions and trigger expressions

in the same way. While it will perhaps be an unnecessary refinement in the

functional description for interpretation of simulation, there might conceivably be

cases where it is of use in functional refinement of a design, by helping to identify

those effects that are seen as more essential to achieving some system function

and so possibly focussing the provision of additional fault tolerant functionality.

7.5 Differences between behaviour and purpose

The use of incomplete functions to represent the relationship between trigger and

effect and effect and purpose suggests that the complete representation of a func-

tion actually captures both these different, if related, relationships. This raises

the possibility that the relationship between the trigger and effect, the system’s

expected behaviour, does not require the same effect as the purposive relation-

ship. The most typical case of this is where a trigger triggers redundant effects.

A possible example where these two aspects of a function do not require the same

relationship between effects is where a room has two lights that share a switch.

The expected behaviour is clearly

switch_on

TRIGGERS

ceiling_light_on AND wall_light_on

However, it might be felt that either one of these lights being lit is sufficient

to fulfil the purpose of letting occupants find their way around the room. The

significance of this consideration being, of course, that a system failure that results

on the loss of one light is less severe than one that results in the loss of both.

Ignoring the trigger, then the purposive relationship might be written as

ACHIEVES light_way_around_room

BY

ceiling_light_on OR wall_light_on

This raises the question of whether in fact a complete function should be split

into a purposive and an operational component to capture this difference. While

such an approach is interesting, it is rejected because of the additional complexity

164

required to capture what might well be regarded as a somewhat pedantic distinc-

tion (in that the functional description could readily be built around the expected

behaviour) and the relative rarity of such cases.

If it is felt necessary to include this distinction in the model, subsidiary functions

can be used by combining them with OR but having them share a trigger, so that

one should never be achieved without the other, like this.

FUNCTION room_light

ACHIEVES light_way_around_room

BY

FUNCTION wall_lamp

OR

FUNCTION ceiling_lamp

FUNCTION wall_lamp

ACHIEVES light_desk

BY

switch_on

TRIGGERS

wall_lamp_lit

FUNCTION ceiling_lamp

ACHIEVES light_room

BY

switch_on

TRIGGERS

ceiling_lamp_lit

For both subsidiary functions to share a trigger, both switch_on labels need

attaching to the same system property, of course. This being done neither sub-

function should be achieved without the other, but either can be regarded as

achieving the room_light function. If the wall_lamp function fails, for example,

the report will include

On switching the lights on, function wall lamp not achieved.

The consequences and severity will, of course, be those associated with that lower

level function.

In practice, similar results in the resulting report can be achieved more simply

using purposive incomplete functions. These can be combined using AND, to rep-

resent the expected behaviour, or OR, to represent the purposive relationship, as

the rule used for reporting on the failure of one subsidiary function means that

the results will be not dissimilar in both cases. As was discussed in the previous

165

chapter, the only difference is the loss of the reference to the top level function

if OR is used. It is suggested that these approaches are sufficient for adequate

description of cases where the expected behaviour differs from the representation

of the purposive relationship and so there is little or no need to express these two

relationships distinctly in the functional representation.

So far the basis for the present Functional Interpretation Language has been

described, together with how system functions can be decomposed either into ex-

pected effects or into subsidiary functions, which need not themselves be complete

representations of function. There are other dimensions to functional decompo-

sition that might be required however. These are the requirement to specify a

temporal aspect to functional elements, either in terms of a function depending

on a sequence of subsidiary functions or effects or to allow the untimely (typically

late) achievement of a function to be described and also to allow functions whose

state depends on the achievement of some other system function to be modelled.

The following chapters examine how the present language addresses these needs,

and describes and discusses the extensions required to enable such cases to be

modelled.

166

Chapter 8

Describing functions that depend

on terminating, intermittent and

sequential behaviour

The approach to functional decomposition described in the preceding chapters is

adequate for describing system functions where a trigger results in some effect

(whether output or goal state) that then lasts until some other trigger results in

some further change in the state of the system. For example a lamp that, having

been switched on, remains lit until it is switched off again. However, there are

many systems whose functionality depends on some terminating or intermittent

change of state, or a sequence of such changes, that cannot readily be described

using the conventional logical operators. A simple example is the confirmation of

remote locking by two flashes of all of a car’s direction indicators where the effect

of the confirmation function is completed and the system returns to a similar state

to that before the triggering of that function with no further external stimulus.

To describe functions that depend on such behaviour, some way of expressing

temporal relationships between successive effects is required. The conventional

logical operators lack any temporal element. For example, in defining a function’s

effects (or subfunctions) using AND, all that is stated is that the two effects should

both be present at some indeterminate time. This is appropriate for describing

persistent effects (such as a light staying on) as the results of the simulation can

be checked against the functional model at some suitable point in time. A suitable

point is once the system’s response to a triggering event (such as the simulated

throwing of a switch) is behaviourally complete and the system is in a steady state

awaiting the next stimulus. The simulation of a system’s response to a triggering

event is therefore implicitly placed in a single time slot, beginning with the trigger

167

and ending once the system is in a steady state, whereupon the effects (outputs

or goal states) are compared to the system’s functional model to establish what

functions are achieved and what effects are unexpected. This is the approach

taken by the design analysis tool developed in earlier work at Aberystwyth and

is illustrated in Figure 8.1. In this and similar diagrams, the horizontal axis

time

left_main_beam

AND

right_main_beam

trigger

steady

state

Figure 8.1: Using logical operators resulting in a single time slot

represents time and the vertical axis the decomposition of the function’s effects

(or subsidiary functions). A thick line represents the presence of the named effect

and an arrow head its continuation beyond the time represented in the diagram,

as in this case where the main beam effects continue indefinitely. Here, the effect

is checked against the functional model at the end of the simulation step, taken

to be once the simulated behaviour of the system reaches a steady state. As the

expected effects are present at that point in time, the function is achieved, but it

will be seen that strictly speaking the model fails to specify that the two effects

start together and the possibility that they do not is ignored. This is unlikely to

be a problem in most cases. Typically the effects will start together but if they do

not, it does not affect the intended functionality of the system. For example, it

is possible (if unlikely) that the two headlamps in the example have their current

switched by different relays and that a fault in one of them delays that headlamp

switching to main beam so both effect do not start simultaneously. If the state

of the system is only checked at the end o the time slot, this will be missed.

This case does serve to illustrate the fact that the conventional logical operators

lack any temporal dimension. This approach is, however, clearly inappropriate

for modelling systems whose functions depend on effects that depend on some

behaviour that is completed before the system settles into a steady state. For

example, in the remote locking confirmation function mentioned earlier, the flashes

will be over before the system enters a steady state, so these effects will be missed

if comparison with the functional model is only made then. Consider a simple

warning system that, for simplicity, flashes a lamp and sounds a horn in response

to some stimulus, as illustrated in Figure 8.2. This simple system is used as

168

time
trigger

start

intemittent

steady

state

end

intermittent

warning_flash

warning_horn

AND

Figure 8.2: Finding function at the end of simulation might miss significant effects

an illustration during this chapter, before discussing the modelling of sequential

behaviour with a more realistic case study. It will be seen that if these terminating

effects (which might, of course, be combined to create a sequence of several outputs

such as a number of repeated flashes) are not to be lost in comparison with the

functional description, what is required are operators that allow the ordering of

such effects to be specified and that also indicate the intermediate time steps which

require comparison with the functional model to ensure any terminating effects

that are found in running the simulation of the system are compared with those

specified by the functional description.

To meet this need, the functional language incorporates two sequential operators

similar to operators found in temporal logic. These are

• SEQ (or “strict sequence”) resolves to true if the following condition resolves

to true in the next time slot so the following state immediately succeeds the

preceding system state. This is similar to the N “in the next time step”

operator found in some temporal logics, such as Computational Tree Logic,

abbreviated to CTL (Emerson & Halpern, 1985).

• L-SEQ (or “loose sequence”) resolves to true if the following condition is true

some time after the operator’s place in the temporal sequence, similar to the

tense logic F “some time in the future” operator (Prior, 1957).

The use of a next time step operator entails the use of a model of time that consists

of intervals that meet such that one can be considered to follow immediately after

another. The interval model of time in (Allen, 1984) is such a model as while

he does not regard an interval as containing instants, he does have a relation

MEETS(a, b) that is satisfied if interval b follows interval a with no intervening

interval. In other words, (Allen, 1984) does not explicitly model instants, but that

relation implies the possibility of instantaneous transitions between intervals. The

notion of “properties” that can hold (or not hold) during an interval can be likened

169

to system states that are true during an interval. There is a relation HOLDS(p, t)

that is satisfied if the property p is true in the interval t and its sub-intervals.

To answer difficulties found in modelling continuous change using this model of

time, it was refined in (Galton, 1990). In that model of time, intervals can contain

instants so, for example, the interval during which something is travelling North

can contain the instant when that object passes due West of some other object.

Allen’s HOLDS relation is subdivided into three relations.

• HOLDS-AT(p, I) is satisfied if p is true at instant I.

• HOLDS-IN(p, T) is satisfied if p is true at some instant within interval T .

Therefore p need not be true throughout interval T .

• HOLDS-ON(p, T) is satisfied if p is true at all instants within interval T , so

it is true throughout T .

As the Functional Interpretation Language was devised for functional modelling

of systems whose behaviour was expressible using state charts, the SEQ can L-SEQ

operators can be expressed in terms of intervals and properties. The Functional In-

terpretation Language sequential operators can be defined in terms of the MEETS

relation in (Allen, 1984) and the HOLDS relations from (Galton, 1990), as follows.

Let a and b be some specified system states (that are the required effects of some

function) and I1 and I2 are intervals of time. The relation a SEQ b is true if

an interval throughout which a is true is immediately followed by an interval

throughout which b is true.

a SEQ b if HOLDS AT(a, I1) ∧ HOLDS AT(b, I2) ∧ MEETS(I1, I2) (8.1)

The relation a L-SEQ b is true if an interval in which a is true at some point is

immediately followed by an interval in which b is true at some point.

a L-SEQ b if HOLDS IN(a, I1) ∧ HOLDS IN(b, I2) ∧ MEETS(I1, I2) (8.2)

As is the case in temporal logics such as CTL (Emerson & Halpern, 1985),

the sequential operators (both SEQ and L-SEQ) are unary so they resolve to true

provided the succeeding state resolves to true (in an appropriate time step). If the

preceding state is not achieved, the sequence has already failed, of course. This

means that a sequence can begin with the operator, referring to the first effects

triggered by the relevant triggering event, as here. This is illustrated in the section

discussing the use of SEQ.

170

One question that arises from the similarity of these sequential operators to the

“future” operators from temporal logic is whether there is any need for equivalents

of the past operators. As the aim of these operators is to allow the functional de-

scription to describe a sequence of effects that can be matched by tracing forwards

through a description of the sequence of states of the behavioural simulation, it

is suggested that such operators are not necessary. This might be likened to their

absence in CTL (Emerson & Halpern, 1985) which also traces forward through a

graph of possible states of a system. One area where past operators might be used

is in adding the effect of an earlier trigger, such as an over-ride of some function

whose effects are permanent, or at least beyond the present use of the system.

This is a feature of the seat belt warning system discussed in Chapter 11 where if

the user buckles and unbuckles the driver’s seat belt five times in succession, the

system is permanently disabled and no warning will be given in future. Rather

than using “past” operators in the trigger of each function, it is possible to treat

this behaviour as an additional function of the system and use the goal state of

this function as the condition for the trigger of the warning function. The use of

functions in the triggers of other functions is discussed in Chapter 10.

The use of the sequential operators is discussed in the following sections before

considering how the language models sequences of effects that continue indefinitely

and illustrating the use of these features of the language with simple case studies.

8.1 The strict sequence operator

As noted above, the operator SEQ is used to specify changes that should imme-

diately follow one another. It can therefore be used to specify that the flash and

horn of the simple example warning system should be simultaneous, as illustrated

in Figure 8.3. If the flash and horn are treated as required effects of a warning

function, the functional description itself can be written as follows.

FUNCTION warning

ACHIEVES warn_user

BY

malfunction

TRIGGERS

SEQ (warning_flash AND warning_horn)

SEQ (NOT warning_flash AND NOT warning_horn)

In this case, NOT is used to show that the effects should be absent during certain

intervals in the sequence. This avoids the need to associate any function with the

171

time
trigger

steady

state

warning_flash

warning_horn

AND

SEQ
 SEQ

SEQ (warning_flash AND warning_horn)

SEQ (NOT warning_flash AND NOT

warning_horn)

Figure 8.3: Specifying sequences of immediately successive effects

absence of the effects. In this case this is acceptable as we can regard the effects

as being either “on” or “off”, the lamp is either lit or not lit for example. The

use of NOT is discussed in subsection 8.1.2 below. The fact that the sequential

operators are unary means that they can be used at the start of a sequence as here.

This will frequently be the case as the initial state of the system will be defined

in some other functional description. In this case, SEQ is satisfied if the first state

transition following the trigger that involves any change in the effects included in

the functional model results in the state following SEQ being true. This allows SEQ

to be used to specify that two effects are achieved simultaneously in cases where

a single time slot is otherwise sufficient, such as shown in Figure 8.1 above. For

example, if it is felt necessary to specify that a car headlamps’ main beams come

on simultaneously, the functional description might be written using SEQ.

FUNCTION main_beam

ACHIEVES light_road_ahead

BY

lamp_switch_heads AND dip_switch_main

TRIGGERS

SEQ (left_main_beam AND right_main_beam)

The fact that this specifies that a time step in which the headlamps are not on

main beam (implicitly) is immediately followed by one in which they are both

on main beam stipulates that the lamps come on together. The single time slot

is divided into two, the second of which must immediately follow the first as

illustrated in Figure 8.4. The the system states, and so the effects present, at

the beginning of a simulation step are unknown as that depends on the previous

trigger. In the headlamps example, the main beam function might either be

triggered by the dip switch being switched to the main beam position or by the

headlamps being switched on, if the dip switch was left in that position, so they

172

time

left_main_beam

AND

right_main_beam

trigger
 steady

state

SEQ

Figure 8.4: Using SEQ to specify effects that should start together.

first come on in main beam. Either of those triggering operations could therefore

make the function’s trigger true. The state of the headlamps at the time of the

triggering event is therefore unknown and so not part of this functional description.

The use of this operator both specifies the expected behaviour that achieves

the function concerned and indicates that the simulation step will have to be

divided into successive time steps, beginning with the triggering event and ending

with the system entering a steady state ready for the next triggering event. The

intermediate time steps are delineated by the occurrences of SEQ in the functional

description. This means that for interpretation using these sequential operators,

the simulation engine must provide a sequential description of the system states

associated with the simulation step rather than simply a description of the state

of the system at the end of the simulation. This means that the interpreter can

step through the description checking the state of the system at each step. The

step in the simulation preceding the first instance of SEQ and, especially, the step

following the final instance might be of zero duration as the system immediately

enters a steady state. The system might well enter a steady state immediately

following the ending of the flash and sounding of the horn in the simple warning

example.

The succession of system states specified by the functional description are, of

course, purely concerned with changes to the system’s effects, rather than any in-

ternal system states. For example, suppose the headlamp system in the example

above uses a relay to allow a relatively low current in the dashboard switch to

switch the higher current needed to light the headlamps. In this case, the sim-

ulation will start with the dashboard switch being changed, which will result in

current flowing through the relay’s coil. This will, in turn, cause the relay switch

to trip and allow current to flow through the lamps, resulting in the achievement

of the function. This results in an intermediate state in which current is flowing

through the coil, before the lamps light. As this change of state is purely internal

it does not affect the functional model. What is of interest for interpretation is

173

changes of system behaviour that changes the effector components, those that im-

plement some part of a function’s expected effects. The simulation side of a design

analysis tool will provide a complete step by step description of the results of the

simulation and the interpreter will ignore those steps that do not involve a change

in the effects generated by the system. This means, to return to the example,

that the intermediate state of current flowing in the relay coil does not affect the

truth of the SEQ operator as neither headlamp changes state. The behavioural

simulation can be expected to list all these changes of state (whether the effects

are internal or external) so the sequential functional description indicates which

of these changes are functionally significant. This is illustrated in the example

simulation in Chapter 11.

While SEQ will perhaps be most commonly be used to describe the succession of

effects required when a function depends on intermittent or sequential behaviour,

as discussed in (Bell & Snooke, 2004), there is no reason why the operator should

not be used to specify a sequence of subsidiary functions. Indeed, the simple

warning system might well have the horn and lamp associated with their own

purposive incomplete functions on the grounds that achievement of either effect

mitigates the failure of the warning function. As purposive incomplete functions

are used in place of effects in a functional description, the resulting functional

description might look like this.

FUNCTION warning

ACHIEVES warn_user

BY

malfunction

TRIGGERS

SEQ (PIF visual_warning AND PIF audible_warning)

SEQ (NOT PIF visual_warning AND NOT PIF audible_warning)

The subsidiary functions are then associated with their own descriptions of pur-

pose and effects as described in the previous chapter. The operators might also

be used to specify a sequence of triggering events required to achieve a function,

such as pressing and releasing a push switch that toggles a functional change. No-

tice that the subsidiary functions need to be associated with the presence of the

required effect Consistently with the example above, as shown below.

PIF visual_warning

ACHIEVES warn_user_visually

BY

show_warning_lamp

174

The sequence of subsidiary functions (and so their effects) must be managed by

the top level function to specify the temporal relationship between the two effects.

If the sequence of lamp on and lamp off is specified in the subsidiary function

(and likewise for the horn) then the functional description cannot specify that the

lamp and horn start and end simultaneously. To illustrate, if the sequences in the

subsidiary PIFs, like this.

PIF visual_warning

ACHIEVES warn_user_visually

BY

show_warning_lamp SEQ NOT show_warning_lamp

The audible warning PIF will be similar. The PIFs are then related using AND.

FUNCTION warning

ACHIEVES warn_user

BY

malfunction

TRIGGERS

visual_warning AND audible_warning

This functional model fails to specify any relationship between timing of the

flash of the lamp and the sounding of the horn, as they are combined using AND.

This is discussed further in Section 8.2. One difficulty this gives rise to is that the

subsidiary function (and so the subsidiary purpose) is associated only with the

“active” effect, not with the expected sequence of effects. In this case, that does

not seem particularly problematic as it is the lighting of the warning lamp and

sounding of the horn that give the warning.

The use of the SEQ operator entails a discrete model of time where intervals are

divided by instantaneous “points” in time when a change might occur. This is

not dissimilar to the model of time in (Galton, 1990). This model of time is

more appropriate in some application fields than others, of course, and is usable

where a behaviour can be described using a state transition diagram. Strictly

speaking in many systems changes of state will not be instantaneous, such as where

a mechanical system accelerates to its operating speed, overcoming the inertia

of its resting components. This difficulty could be avoided either by specifying

intermediate states or by using the loose sequence operator, described below. In

many cases it would be quite appropriate to simply ignore the intermediate states,

so an electric motor might be modelled as either stopped (no current) or running

if there is current in the windings. The fact that when it starts running it is

175

accelerating to overcome inertia in the mechanical part of the system can be

treated as insignificant. Including intermediate states in a functional description is

arguably an unnecessary complication, especially as these states do not, typically,

relate to any purpose (other than reaching the final state). The only reason for a

washing machine, say, having a “filling” state is to manage the transition between

empty (so the door can be opened or spin drying can take place) and full (for

washing or rinsing).

8.1.1 The sequence operator and temporal orderings

Because the strict sequence operator relies on a similar interval based ontology

of time to that in (Allen, 1984) the operator can be used to define the temporal

relations defined in that paper. There are thirteen of these relations, listed in

Table 8.1. Twelve of these actually pair off into six pairs. The table also shows

how SEQ can be used to describe these relations. It will be seen that using the

y
 overlapped-by
x

x
 before
y

y
 after
x

x
 meets
y

y
 met-by
x

x
 overlaps
y

x
 during
y

y
 contains
x

x
 starts
y

y
 started-by
x

x
 finishes
y

y
 finished-by
x

x
 equal
y

Relation
 Meaning

x

x

x

x

x

x

x

y

y

y

y

y

y

y

(NOT
x
 AND NOT
y
) SEQ (
x
 AND NOT
y
) SEQ (NOT
x
 AND NOT
y
)

SEQ (NOT
x
 AND
y
) SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) SEQ (
x
 AND NOT
y
)
SEQ (NOT
x
 AND
y
)

SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) SEQ (
x
 AND NOT
y
) SEQ (
x
 AND
y
)

SEQ (NOT
x
 AND
y
) SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) SEQ (NOT
x
 AND
y
) SEQ (
x
 AND
y
)

SEQ (NOT
x
 AND
y
) SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
)
SEQ (
x
 AND
y
) SEQ (NOT
x
 AND
y
)

SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) SEQ (NOT
x
 AND
y
) SEQ (
x
 AND
y
)

SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
)

SEQ (
x
 AND
y
)
SEQ (NOT
x
 AND NOT
y
)

Description

Table 8.1: Using SEQ to describe different temporal relations

strict sequence operator allows the correct ordering of the starts and ends of each

effect to be specified. In describing these relationships, the initial state has been

included to avoid any possible suggestion of ambiguity. The terms for the relations

are actually taken from (Gerevini & Schubert, 1995) but the notion of causality

implicit in these terms is not appropriate in this case. For example, the relation

in which both effects start together and x finishes before y is called “x starts y”

which suggests that x is the cause of y. This will not be the case when describing

a function’s effects as they will share a trigger. Where functional modelling is

used for interpretation of simulation, there is no need for any notion of causality

176

in the functional description, beyond the notion of a trigger. A full causal chain

(or net) can be derived from the behavioural model of the system if it is required.

The causal aspects of the relationships in (Gerevini & Schubert, 1995) are what

distinguish the individual elements in the paired relationships.

It will be seen from Table 8.1 that SEQ can be used to describe any of these thir-

teen temporal relations when combined with AND and NOT, though this summary

does depend on the effects being of a binary (on or off) nature. The use of NOT is

discussed further below. It will also be appreciated that while sequences of effects

have been kept short here, for simplicity and clarity, there is no reason why they

should not be of arbitrary length, described simply by including repeated states

linked using the sequence operator (or the loose sequence operator).

8.1.2 Using logical NOT

In the examples used above, logical NOT has been used to specify the absence

of a particular effect, specifically (in the example) that once the simulation step

finishes, neither the warning lamp should be lit nor the horn sounding. This is

appropriate in this case as each effect can be regarded as being binary in nature

- the lamp is either lit or not lit and the horn either sounding or silent. These

two alternative states can be associated with the presence or absence of current,

if the simulation is to be qualitative, or with suitable ranges of current if the

simulation is numerical. This use of NOT saves any need to specify an “off” effect.

Many effectors can be described in these terms (such as a flashing lamp alternating

between on and off) but others cannot be so described. For example a windscreen

wiper system might have two speeds, slow and fast, and an intermittent wipe

feature that alternates between slow and stopped. Clearly in this case NOT slow

cannot be used as having the intermittent wipe alternate between slow and fast

would fit that description. Therefore it might well be the case that a “null” effect

in which nothing is done might be necessary. The use of such a null effect could

be avoided by use of NOT, of course, by combining all the available effects, so

the windscreen wipers being stopped can be written as NOT slow AND NOT fast

but this will become decidedly cumbersome in cases where an effector has several

effective states.

The description of functions that depend on an intermittent behaviour that al-

ternates between an active and passive state (such a lamp flashing) is perhaps the

most likely reason for using NOT in functional descriptions. Another possible use

(which has less to do with describing intermittent behaviour) is if it is desired to

include the absence of a specific behaviour that is inimical to achievement of a

177

function. For example, as the purpose of dipped headlamps is to light the road

without dazzling the driver of oncoming traffic, if either headlamp’s main beam fil-

ament remains lit, the purpose is not achieved (as drivers will be dazzled). It might

therefore be considered appropriate to include the absence of such inimical effects

in the functional description. The headlamps dipped effects therefore reading

left dipped AND right dipped AND NOT left main AND NOT right main.

This is generally unnecessary because the main beams being lit will be included

in the design analysis report as unexpected effects. Relying on these inimical ef-

fects being marked as unexpected also has the advantage of distinguishing between

the consequences of failure of a function because expected effects are missing and

failure because unexpected effects are present. Therefore such complication of a

functional description is seldom beneficial. One case where it might be useful is

where a function has a likely side effect that must be avoided and whose effect is

not covered by any other function, so will not otherwise appear in the functional

model.

8.2 The loose sequence operator

The strict sequence operator described above is appropriate for describing inter-

mittent behaviours that can be described as switching immediately from one state

to another, using an interval ontology of time, but is not useful for describing

changes that entail an intermediate state that is not part of the functional model.

For example a washing machine’s full state cannot immediately follow its empty

state as the filling operation will not take place in an instant. There is an interme-

diate “filling” state that is an inevitable part of the behaviour of the machine. The

transitions between empty, filling and full could be specified using SEQ. However,

it is arguable that the filling state need not be specified in the functional model.

The only effect of that state is internal in that its goal is for the machine to be

full. These cases can be described using the “loose sequence” operator, L-SEQ. An

expression using this operator resolves to true if the succeeding expression resolves

to true at some time in the future. Therefore, there can be intermediate states

that need not be specified in the functional description, such as the filling state

in the washing machine example. This increases the flexibility of the language,

the model builder can decide whether or not these intermediate states should be

included in the functional description.

This operator allows two effects (or subsidiary functions) to be temporally related

in a less constrained manner than SEQ allows, as illustrated in Figure 8.5. In

this case, the functional description is satisfied provided both lamp and horn are

178

?
 ?

L-SEQ
 L-SEQ

AND

trigger
 time

steady

state

warning_flash

warning_horn

L-SEQ (warning_flash AND warning_horn)

L-SEQ (NOT warning_flash AND NOT warning_horn)

Figure 8.5: The loose sequence operator allows less closely constrained temporal
relationships

active at the same time at some period of the simulation, but they need not start

and end simultaneously because the period where one or the other is active is

covered by the undefined intervals between both effects being active and both

being passive. The use of L-SEQ avoids the need to specify intervals where one

or other of the effects is present, though this could be done using SEQ and OR.

This complicates the functional description and where effects are binary (“on” or

“off”) in nature this complication can be avoided. A possible example is a system

that requires two valves to open to allow flow between two reservoirs. In this case,

it is likely to be unimportant which valve opens or closes first, provided there is

a period in which both are open, so the flow is possible. This allows a further

set of less closely constrained temporal relationships to be described, as shown

in Table 8.2. This set of partly ordered relationships can be described using a

combination of SEQ and L-SEQ, where L-SEQ is used to describe those aspects of

the relationship where the order need not be specified, provided that there is no

danger of unwanted intermediate states being missed. The only exception is the

case where two terminating effects are temporally unrelated, where two separate

sequences are combined using AND. This means that both effects must have been

achieved at some point during the simulation but the ordering is unimportant.

Either can occur before the other or they can occur together, in which case they

need not start or end simultaneously. This can be likened to the discussion at the

beginning of this chapter, in which it was noted that AND has no temporal aspect,

but complicated by the presence of two sequences of effects. This allows branching

of time to be represented, as in such temporal logics as CTL, where it is not the

case that some event must always be before, after or simultaneous with some other

event. This case is illustrated in Figure 8.6. While this is illustrated using SEQ,

L-SEQ could be used where possible intermediate states are to be allowed for.

179

Relation
 Meaning

x

x

x

x

x

x

x

y

y

y

y

y

y

y

?

?
 ?

?

?

?

?

?

x
 unordered-with
y

x
 starts-with
y

x
 ends-with
y

x
 starts-before
y

x
 ends-before
y

x
 starts-before
y

and
x
 ends-before
y

x must-overlap y

both
x
 and
y
 must occur at

some stage in the simulation

step

There must be an overlap

between
x
 and
y
 but either

can start or end first

both
x
 and
y
 must start

together but the ordering of

the ends is unspecified

both
x
 and
y
 must end

together but the ordering of

the starts is unspecified

x
 must start before
y
 but the

ordering of the ends is

unspecified

x
 must end before
y
 but the

ordering of the starts is

unspecified

x
 must start before
y
 starts

and end before
y
 ends but can

end before or after
y
 starts

Interpretation

(NOT
x
 AND NOT
y
) SEQ (
x
 AND

NOT
y
) SEQ (
x
 AND
y
) L-SEQ

(NOT
x
 AND NOT
y
)

(NOT
x
 SEQ
x
 SEQ NOT
x
) AND

(NOT
y
 SEQ
y
 SEQ NOT
y
)

(NOT
x
 AND NOT
y
)

L-SEQ (
x
 AND
y
)

L-SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
)

SEQ (
x
 AND
y
)

L-SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
)

L-SEQ (
x
 AND
y
)

SEQ (NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) L-SEQ (
x

AND
y
) SEQ (NOT
x
 AND
y
) SEQ

(NOT
x
 AND NOT
y
)

(NOT
x
 AND NOT
y
) SEQ (
x
 AND

NOT
y
) L-SEQ (NOT
x
 AND
y
) SEQ

(NOT
x
 AND NOT
y
)

Description

Table 8.2: Describing partly ordered temporal relationships

AND

SEQ

SEQ

trigger
 time

steady

state

warning_flash

warning_horn

(warning_flash SEQ NOT warning_flash) AND

(warning_horn SEQ NOT warning_horn)

Figure 8.6: Two temporally unrelated effects.

The L-SEQ operator needs using with care where the effector components have

more than two effective states, as the state of the system between the trigger and

achieving the specified state are not specified, so the functional description would

be satisfied if a motor jumped into running fast between being stopped and slow

(for example), where slow was the required effect. Where such multiple effective

states are a problem, SEQ and OR can be used to further constrain the behaviour

180

so that only the correct states are allowed, while leaving the order in which the

intended states are entered unconstrained. This is illustrated in Figure 8.7. This

trigger

steady

state
time

SEQ
 SEQ
 SEQ
 SEQ

AND
OR
 OR

warning_flash

warning_horn

(
NOT
 warning_flash
AND NOT
 warning_horn)
SEQ

 (warning_flash
OR
 warning_horn)
SEQ

 (warning_flash
AND
 warning_horn)
SEQ

 (
NOT
 warning_flash
OR NOT
 warning_horn)
SEQ

 (
NOT
 warning_flash
AND NOT
warning_horn)

Figure 8.7: Using OR to constrain unordered sequences

formulation means that the system cannot enter any effective states other than

those specified in the functional description.

Where an intermittent or terminating effect depends on one effector with two

possible states (particularly active and passive states) then the sequence and loose

sequence operators are equivalent. Note, however, that despite the one change

of a binary effective state in many of the temporal relationships in Table 8.1,

L-SEQ cannot be used because the unspecified temporal intervals might include an

unexpected state, such as both effects being present before the one required effect

is.

While both the SEQ and L-SEQ operators will frequently be used to relate effects

required for some system function, it is possible that they are used to relate

subsidiary functions with their own description of purpose. In such cases, the

same rule for inclusion of the consequences of failure of a function is used as

for subsidiary functions combined using AND or OR, so if one of the subsidiary

functions fails, that function’s consequences of failure are included in the design

analysis report while if more than one fail, the top level function’s consequences

are included. This case will generally only arise if one of these operators is used

to combine purposive incomplete functions, so the sequence is launched using a

single trigger.

181

8.3 Describing functions that depend on cyclical

behaviour

The sequential operators described above are appropriate for the description of a

function that depends on a sequence of effects (outputs or goal states) that termi-

nates with the system settling into a steady state with no further triggering input.

However, a system function might also depend on some sequence of behaviour that

continues until some further trigger results in the behaviour terminating. A simple

example is the flashing of a car’s direction indicators until they are cancelled either

by the driver switching off the indicators or by the self cancelling mechanism after

completion of the manoeuvre.

Such functions are described by wrapping a non-terminating sequence of effects

(or subsidiary functions) in a “cycle”. The first state within the cycle is preceded

by the CYCLE keyword and the state that is followed by a return to the first state is

followed by the NEW-CYCLE marker. How this is used to describe a simple direction

indicator function is illustrated in Figure 8.8. In this example, the system will

time

trigger

SEQ

SEQ

left_front_on

AND

left_rear_on

CYCLE

NEW-CYCLE

CYCLE (left_rear_on AND left_front_on)

SEQ (NOT left_rear_on AND NOT

left_front_on) SEQ NEW-CYCLE

Figure 8.8: A cycle of behaviour that continues until a further trigger.

alternate between both left hand indicators being lit and unlit (simultaneously

as SEQ is used) and this behaviour will continue until the triggering condition

becomes false. In this case, the function will be triggered by the indicator switch

being moved to the “indicate left” position and it will stay triggered until either

the switch is moved again or the self cancelling mechanism ends the function. This

might be described like this.

182

FUNCTION indicate_left

ACHIEVES warn_of_left_turn

BY

indicator_switch_left

AND NOT self_cancel_left

TRIGGERS

CYCLE

SEQ (left_rear_on AND left_front_on)

SEQ (NOT left_rear_on AND NOT left_front_on)

NEW-CYCLE

in this case, the use of NOT for the effects is safe as they can be regarded as binary

in nature (either the indicators are lit or not). The actual trigger conditions can

be specified using IMPLEMENTS in the usual way on mapping the system model to

its functional model. The implements clause for the switch might look like this.

indicator_switch.position = LEFT

IMPLEMENTS

indicate_left.indicator_switch_left

This supposes that the target system has a component called indicator_switch

with the possible positions CENTRE, LEFT and RIGHT. The mapping between

the functional and system models for the self cancelling feature is perhaps a little

more elaborate, it could be written as follows.

steering_wheel.steer_left L-SEQ steering_wheel.steer_straight

IMPLEMENTS

indicate_left.self_cancel_left

Implementing this in the simulation might prove problematic. For modelling the

self cancelling of direction indicators it is arguably sufficient to treat the steering

wheel as having three positions, for turning left, turning right and straight ahead

and the act of returning the wheel to straight ahead, having first turned left, will

trigger the self cancelling of the direction indicators, hence the need to specify

the act of turning the wheel left beforehand. If the wheel is modelled as having

three discrete positions, SEQ and L-SEQ are equivalent, as it is impossible to have

the wheel steering right without it first being centred in the straight ahead posi-

tion. The use of these operators in specifying the triggers of functions and other

temporal aspects of their description is discussed further in Section 8.4 below.

This use of CYCLE to indicate a continuing cycle of effects or subsidiary functions

can be likened to a “while loop” in a programming language where the condition

183

upon which the loop depends is the triggering precondition of the function. This

is consistent with the idea that a functional description uses an external view of

the system, so the external nature of the loop’s condition is appropriate. In such

cases the simulation will not reach a steady state at the end of a simulation step.

If the simulation is not then to continue indefinitely, the simulation engine must be

capable of recognising such cases and stopping the simulation. Such requirements

of the simulation are discussed in Chapter 11.4.

Another possible use of CYCLE is to abbreviate a long repeating sequence of effects

that does terminate by associating the CYCLE with a count. For example, suppose

a washing machine sounds a chimer three times to indicate completion of the wash

cycle. This requires a somewhat repetitive functional description.

FUNCTION wash_complete_chime

ACHIEVES call_attention_to_completion

BY

wash_complete

TRIGGERS

SEQ chimer_sounding

SEQ NOT chimer_sounding

SEQ chimer_sounding

SEQ NOT chimer_sounding

SEQ chimer_sounding

SEQ NOT chimer_sounding

This could be shortened by using a cycle that only repeats three times instead

of continually until some external trigger stops it.

FUNCTION wash_complete_chime

ACHIEVES call_attention_to_completion

BY

wash_complete

TRIGGERS

CYCLE [3]

SEQ chimer_sounding

SEQ NOT chimer_sounding

NEW-CYCLE

These formulations are identical, all this use of CYCLE does is shorten the de-

scription of the repeated sequence of effects. In other words, the cycle should

start with the system achieving the first listed effect and the cycle should end

with the system in the state associated with the effect preceding the NEW-CYCLE

flag after the correct number of repetitions.

184

These sequential (and cyclical) operators introduce a temporal dimension to the

functional modelling language. How this affects the nature of a trigger is discussed

next while the extension of this temporal aspect to allow the language to describe

untimely achievement of a function is discussed in the following chapter.

An alternative approach to modelling cyclical behaviours for interpretation of

simulation might be to use an abstract state that encompasses such behaviour,

so a direction indicator might have a flashing state that abstracts the cycling

between on and off. This is similar to the approach in (Keuneke & Allemang,

1988). This approach is feasible provided there is no danger of a system fault

(either in design or arising from component failure) that results in a behaviour

that is hidden by the abstraction. For example, if we treat the indicators as either

off or on (implying that when on they are flashing, the functional description

will be unable to distinguish between correct system behaviour and the behaviour

arising from some fault in the flasher unit that results in the indicators lighting

up but not flashing.

8.4 Temporal aspects of a function’s trigger

In the preceding chapters, a trigger was treated as some condition that was (and

implicitly remained) true if the function was to be achieved. For example, a switch

being (and remaining) closed to switch on the torch’s lamp. However, the use of the

sequential operators introduced in this chapter suggests that a trigger be treated

as an event as much as a persistent condition, so the sequence of effects associated

with a function is started in response to the event of triggering the function, which

might or might not imply a persistent change of state of the component associated

with the trigger. The washing machine example above is a case in point, where

the three chimes are triggered by the event of completion of the wash cycle, with

no specific component state being associated with this trigger. This confirmation

function is actually triggered by the achievement of the washing function; such

functional dependencies are discussed in Chapter 10. Implicit in this treatment of

a triggering condition is the idea that the function’s effects will, once triggered,

run to completion. In the washing machine example, the chimes will continue,

even though the user might respond to the signal (maybe by opening the door to

unload the machine) before its sequence of effects is complete.

The approach taken with the functional modelling language is that once an ex-

ternal event makes a triggering condition true, it is considered to remain true until

some other external event causes it to become false (like the self cancelling of the

185

direction indicators). This is consistent with the functional description viewing

the system as a black box as the functional description need not take into account

whether some triggering action causes a persistent change of state of any compo-

nent in the system. One example to which this applies is the dip switch of some

cars. In this case, the action of pulling and releasing the dip switch causes the

headlamps to dip if they are on main beam or switch to main beam if dipped.

This could either be accomplished by the dip switch having a toggle so that if

the switch is open pulling and releasing it closes the switch and vice versa or

the switch itself might simply be a “pull-to-make” passing contact switch and the

pulse of current resulting from the switch beng pulled and released causes an inter-

nal component (such as an electronic control unit) to toggle between two possible

states. From the external point of view, that of either the user of the system or

the functional description, it does not matter which of these implementations of

the expected behaviour is actually used. Notice that if the dip switch is “pull-to-

make”, then there is no persistent change of state associated with the switch so

it is not appropriate to use the switch state as a persistent precondition for the

dipped headlamps function. This is another case where a sequential operator is

needed in describing a function’s trigger.

This means that if a sequence of effects is to be ended by some user action,

this must be explicitly included in the function description. This has already

been shown, of course, in the direction indicator example used earlier, as such

a cancelling condition is necessary for a cycle of effects that will otherwise never

terminate, as in that case. It could, however, also be used in the case of a sequence

that will terminate of its own accord if not cancelled. For example a simple

electrical kitchen timer might sound a series of bleeps until cancelled or up to a

certain number of such bleeps has been emitted, whichever happens sooner. This

function might be described as follows.

FUNCTION timer_sounds

ACHIEVES call_attention

BY

time_complete AND NOT cancelled

TRIGGERS

CYCLE [20]

SEQ bleeper_sounding

SEQ NOT bleeper_sounding

NEW-CYCLE

The act of pressing a button on the timer will implement the cancelled trigger

condition so will stop the bleeper sounding even if the expected number of bleeps

have not been sounded. This raises the need to trace back through the description

186

of the sequence of states arising from the simulation to establish whether or not

the terminating condition becomes true, in this case whether the cancelling button

is pressed. The use of these sequential operators already entails such a sequen-

tial description of the simulation for interpretation but this raises the difficulty

of incorporating the later external triggering event into the simulation. This is

problematic if a simulation of the behaviour is associated with a single triggering

event on the system, which remains in the state it was eft in by the previous

simulation. For example, in the case of the timer, a simulation will be run after

starting the timer, so it should end with the timer sounding. The next simulation

might be of what happens when the cancel button is pressed but then some way is

needed, in the simulation tool, of specifying that this action takes place while the

timer is still sounding (or not, as the case may be). In practice such a timer might

well stop sounding after a certain time has elapsed since the sequence of bleeps

began, if it isn’t cancelled. How this is described in the Functional Interpretation

Language is the subject of the next chapter.

8.5 Using the sequential operators

As the example functions used to illustrate the use of the sequential operators have

been unrealistically simple, it seems worth discussing their use in the context of a

more realistic case study. The seat belt warning system that has been mentioned

earlier and is used as a complete case study in Chapter 11 is a useful example of

a system whose functions require the use of the sequential operators. The system

lights a telltale on the dashboard and sounds a horn three times if the driver or

front seat passenger has not buckled their seat belt once the car has moved off.

There is a fuller description of the system’s intended functions in Section 11.1.1.

The system’s main warning function might be described like this.

FUNCTION unbuckled_warning

ACHIEVES warn_seatbelt_unbuckled

BY

car_moving

AND

(driver_unbuckled OR

(passenger_seat_occupied AND passenger_unbuckled))

TRIGGERS

dashboard_lamp

AND

(horn SEQ NOT horn SEQ horn SEQ NOT horn

SEQ horn SEQ not horn)

187

The trigger for this function is itself quite complex and is discussed in Chap-

ter 11 so it is not considered further here. The effects specified are as shown in

Figure 8.9. Here there is no synchronisation specified between the lamp coming

time

trigger

steady

state

dashboard_lamp

horn

AND

SEQ

dashboard_lamp
AND
 (
horn
SEQ NOT
 horn
SEQ
 horn

SEQ NOT
 horn
SEQ
 horn
SEQ NOT
 horn)

horn
 horn

SEQ
 SEQ
 SEQ
 SEQ

Figure 8.9: Using the sequence operator in the seat belt warning system.

on and the starting of the horn’s sequence. While such synchronisation is likely

to be unnecessary, if it is to be specified the effect might be changed to

SEQ (dashboard_lamp

AND

(horn SEQ NOT horn SEQ horn SEQ NOT horn

SEQ horn SEQ not horn))

The other parts of the functional description are identical to that above so have

been omitted. The lamp should come on simultaneously with the start of the first

sounding of the horn. This is similar to the way the headlamps should come on to

main beam simultaneously was specified above and is illustrated in Figure 8.10.

Another possible improvement is to use a counted cycle to shorten the description

of the horn sequence, as was discussed in the washing machine example. This will

result in the following effect.

SEQ (dashboard_lamp

AND

CYCLE[3] SEQ horn SEQ NOT horn NEW_CYCLE)

There is arguably no need to add SEQ at the start of the sequences of horn

sounding above as the horn is a single effector with a binary effect - sounding or

not sounding - it is either on or off so the first sounding can be taken to immediately

follow a not sounding state. However, it is needed at the start of a cycle so as to

188

time

trigger

steady

state

dashboard_lamp

horn

AND

SEQ

SEQ (dashboard_lamp
AND
 (
horn
SEQ NOT
 horn
SEQ

horn
SEQ NOT
 horn
SEQ
 horn
SEQ NOT
 horn))

horn
 horn

SEQ
 SEQ
 SEQ
 SEQ
SEQ

Figure 8.10: Synchronising the horn and lamp in the seat belt warning system.

specify the sequential relationship between the last effect in the cycle and the first

effect of the next iteration. The nature of the horn’s effect also means that L-SEQ

could be used in the horn sequence but not to specify that the sequence and lamp

should start simultaneously.

In all these variants of the seat belt warning functional description, purposive

incomplete functions could be used in place of the individual effects so that the

description captures the idea that the presence of either one of the effects mitigates

the failure of the main function, as described in Section 7.1.

In practice, the horn sequence of the actual seat belt warning system is timed,

so the horn sounds intermittently for a set period of time before stopping. How

such cases are modelled is discussed in the following chapter.

While the discussion in this chapter has, like (Bell & Snooke, 2004), concentrated

on the use of the sequential operators to describe effects of a function, which is

perhaps their most common use, it is possible to use them for describing other

parts of a functional description. The possibility of the effects being replaced by

purposive incomplete functions has already been noted, and as these simply take

the place of an effect in the top level function’s description, this substitution is

simple.

Where the triggering of a function depends on two actions taken in a certain

order, the sequential operators can be used to specify the intended order. The

steering left and returning to straight ahead to implement the self cancelling of

the direction indicators is a case in point as is the pulling and releasing of the dip

switch in the dipped headlamps example discussed in the previous section. Either

SEQ or L-SEQ might be used as appropriate. One interesting example where L-SEQ

is appropriate is the dip switch example as the dip switch will typically be on the

stalk attached to the steering column housing that also switches the indicators.

189

In such cases it will presumably be the case that the operation of dipping the

headlamps should still be triggered even though the indicators are switched on (or

off) between the pulling and releasing of the dip switch.

It is also possible to use these operators to specify a sequence of complete sub-

sidiary functions (or operational incomplete functions) that must be achieved (in

the specified order) to achieve the main function. A possible example of this use of

these operators might be the signalling example discussed earlier, in Section 6.2.1.

The functional description of the main function used there was as follows.

FUNCTION accept_train

ACHIEVES guide_to_platform

BY

FUNCTION set_points

AND

FUNCTION set_signals

This, of course, merely specifies that the points and signals should both be set

and does not specify in which order these operation be carried out. It might be

considered necessary for the functional description to specify that the points be

set first in which case, the two subsidiary functions will have to follow each other

in the right order, like this.

FUNCTION accept_train

ACHIEVES guide_to_platform

BY

FUNCTION set_points

SEQ

FUNCTION set_signals

In practice, this is unlikely to be necessary as a railway signalling system will

incorporate safeguards to prevent the signals being set unless the points are already

set, but this does serve as an illustration. In this case SEQ was used to specify

that no other functions should be triggered between the two specified. Again here

it is likely that triggering some other function will be impossible, or will render

completion of the sequence impossible because of the interlocking of the signalling

system. For example if some other route is set between setting the points and

signals, it is likely that the signals can no longer be set in case there is a conflict

between the newly set route and the original route set as part of the present

function.

It will be appreciated that these sequences of events are likely to be constrained

by the timing of individual effects (for example, each flash of a direction indicator

190

must last a certain period). How these timing constraints are represented in the

functional modelling language forms the subject of the following chapter.

191

Chapter 9

Timing and function

The introduction of representation of functions that depend on sequential effects,

leads naturally on to the idea that a functional description might be required

to specify the duration of each element in such a sequence. An example might

be so that the duration of each flash of a sequence of flashes can be specified.

Another reason for specifying the timing of achievement of a function is so that the

functional description can be used to highlight cases where a function is achieved

correctly (that is, in response to its trigger) but in an untimely manner. This

will typically be because the effect is delayed, so the function is achieved late,

but might be because an expected delay is absent (or reduced) so the function is

achieved early.

The increasing use of networks for the transmission of control signals and data

is a possible cause of change to the timing of the achievement of the expected

effect of some function. This is, of course, especially likely if the network is of

non-deterministic message latency, such as the collision detection and resolution

protocol used in the CANbus (Bosch, 1991) common in the automotive sector.

In such carrier sense multiple access collision detection (CSMA/CD) networks,

any node can transmit a signal at any time so if two nodes attempt to transmit

simultaneously the signals collide. Unlike in the CSMA/CD protocol used in

Ethernet, in CANbus and similar protocols the transmitters are given a priority

rating and so only the lower priority message is lost and must be re-transmitted

later. This does, of course, result in a delay to that message and this might

in turn lead to a delay in response to a control input. Therefore heavy use of

the network could conceivably lead to undue delays in response to relatively low

priority operations. For example, where the driver’s control operations for a car’s

lighting are transmitted between electronic control units by such a protocol, some

delay in, say, the headlamps dipping might be encountered.

192

Where a function’s effect depends on a sequence of outputs (or goal states) then

it is also possible that the timing of the members of this sequence is significant.

A simple example is the timing of a car’s direction indicators. A fault in the

flasher unit might result in the flashing being unexpectedly rapid, which failure

is of some significance if only because there are legal restrictions on the timing of

these flashes.

These two cases highlight the need for a functional description to be able to spec-

ify any requirements in timing so that the design analysis tool can indicate that

these are not being met, if some function is achieved late, for example. These spec-

ifications of requirements in timing of achievement of a function are referred to as

“temporal constraints” (on correct achievement of the function). This chapter dis-

cusses how they are specified in the functional modelling language and then some

questions that arise are discussed in the light of the chosen approach. Alternative

approaches are considered in that discussion.

9.1 Representation of temporal constraints

As stated above, rather than discussing alternative approaches to specifying tem-

poral constraints, the chosen approach will be described next, allowing it to be

used as a starting point for this discussion. This description will be centred on the

specification of timing of effects of a function relative to the event that triggers the

function, as this is the most common use. This does, of course, imply the presence

of a triggering event which can be used as the basis for timing the achievement of

a function’s effects. This is similar to the idea that a trigger starts the first time

slot in a simulation step in the use of the sequential operators as discussed in the

previous chapter. So, for example, rather than a switch being closed triggering

the function, for the present purposes, the action of closing the switch (which can

be regarded as momentary) is what triggers the function.

Where a function’s timing is significant there are naturally two ways that it can

deviate from the specified timing. It can either be too late or, more rarely, too

early. The most common case of a function’s effect occurring too early is when

it results in a terminating effect ending too soon, such as a light’s flashes being

made too short. To distinguish between these cases, a temporal constraint can

have either one or both of these two keywords.

• AFTER, is used to specify a minimum delay before the effect should be

achieved.

193

• BEFORE to specify a deadline by which the effect should be achieved.

One or other of these constraints, or both, are added to the functional description

immediately following the element to which they apply. They are separated from

the functional description itself by being placed in square brackets. Each temporal

constraint is followed by the specified time itself. For the purpose of this descrip-

tion numerical values of time are used but possible approaches to representation

of time are discussed in Section 9.3 below. While these constraints are likely to

be used with the sequential operators described in the last chapter, adding ex-

pected durations to the time slots into which these operators divide the intended

behaviour, they can be used together with other operators, or, of course where

no logical operator is required. A simple example might be the headlamp dipping

function of a car where CANbus is used to carry control messages in the lighting

system, introducing a the possibility of delay in response to the driver’s action of

moving the dip switch. This might be described like this.

FUNCTION dipped_beam

ACHIEVES light_road_without_dazzling

BY

lamp_switch_heads AND dip_switch_dipped

TRIGGERS

left_dipped

AND [BEFORE 250ms]

right_dipped

This specifies that for the function to be achieved in a timely manner, the post-

condition left_dipped AND right_dipped must resolve to true within 250 mil-

liseconds of the precondition becoming true. This is illustrated in Figure 9.1. The

time

left_main_beam

AND

right_main_beam

trigger

0 mS

steady

state

250 mS

Figure 9.1: A simple temporal constraint on achievement of a function.

time constraint refers to the achievement of the required effects, not to the end of

the simulation, which will typically follow the achievement of the effects more im-

mediately than in the figure. If the post-condition does not become true until after

the time limit, the function is achieved late. Therefore the functional description

194

allows the design analysis to distinguish between cases where the function fails

(the post-condition does not become true) and where the function is achieved, but

late. In this case, there is no need to specify a time that should elapse before the

effect is achieved, so AFTER is not included in the temporal constraint. Note that

the position of the temporal constraint is significant. For the constraint to be met,

the condition specified by AND must be true, so both headlamps must dip in time.

As was discussed in the previous chapter, this description does not specify that the

headlamps actually dip simultaneously merely that they have both done so within

the time specified. The sequence operator SEQ can be used if it is required that

the headlamps do dip simultaneously, as discussed in Section 8.1. If the temporal

constraint is placed after one of the effect labels, it would apply only to that label.

This is unlikely to be appropriate in the headlamp example, but a warning system

that sounds a horn and light a lamp might have the effect described like this.

light_telltale

AND

sound_horn [BEFORE 250ms]

In this case, the horn must sound within 250 milliseconds but the lamp treated

as not being subject to any temporal constraint, perhaps because it is the horn

that first draws attention to the subject of the warning. Note that to save space,

the example functional descriptions in the rest of this section will only include the

effect as that is where the temporal constraint will generally be added. However,

there are cases where a trigger might consist of a timed series of operations (such

as switch being pulled and released within a certain time. This will be discussed

further.

The most common use for the AFTER constraint is to specify a minimum duration

for a transient effect (such as a flash). Suppose, for example, that the warning

system above was to sound its horn three times and it was necessary to specify

the duration of each sounding. This might be done as follows.

light_telltale

AND

SEQ sound_horn [BEFORE 250ms]

SEQ NOT sound_horn [AFTER 800ms BEFORE 1200ms]

SEQ sound_horn [AFTER 500ms BEFORE 700ms]

SEQ NOT sound_horn [AFTER 800ms BEFORE 1200ms]

SEQ sound_horn [AFTER 500ms BEFORE 700ms]

SEQ NOT sound_horn [AFTER 800ms BEFORE 1200ms]

195

As the sequential operators are unary, placing the temporal constraint after the

operator means the same as placing it after the effect label or expression to which

the operator applies. The temporal constraints constrain the timing of the ends of

each interval in the temporal description, as illustrated in Figure 9.2. In this case,

time

trigger

0 mS

steady

state

light_telltale

sound_horn

AND

sound_horn
 sound_horn

SEQ

800 - 1200

mS

SEQ

500 - 700

mS

SEQ

0 - 250

mS

SEQ

800 - 1200

mS

SEQ

500 - 700

mS

SEQ

800 - 1200

mS

Figure 9.2: Adding temporal constraints to a sequence of effects.

the horn should first sound within 250 milliseconds of the trigger, and should stop

sounding after at least 800 milliseconds but before 1200 milliseconds and so on.

The temporal constraints of some event in the sequence specify the duration of the

preceding interval. In general, a range of times for the events will be specified (as

here), so as to avoid the danger of insignificant changes of timing being recorded

on the resulting design analysis report. It will be seen that each time constraint

is timed from the previous one. This is necessary because if there is any tolerance

in the required timings, as in this example, then these tolerances will accumulate

during the sequence, as illustrated in Figure 9.3, which contrasts the tolerances of

timing of the horn on and off intervals using the two possible ways of specifying

the timings. In the top line of the figure, the timings are specified relative to

time
trigger

0-250

0-250
 800-1200
 500-700
 800-1200

800-1450
 1300-2150
 2100-3350

on

on

off

off

2600-4050
 3400-5250

500-700
 800-1200

Figure 9.3: Accumulation of tolerance if timing is taken from the initial trigger.

the previous event (starting with the trigger) while in the lower version, the same

range of timings is used, but all relative to the trigger. It will be seen that to

preserve the degree of tolerance of variation of duration of each period the overall

tolerance gets so large as to allow any individual period to have a duration of zero.

196

This specification of timing is simple where the strict sequence operator (SEQ)

is used, of course, because the transition between the preceding and succeeding

intervals is treated as instantaneous so the temporal constraint is unambiguous.

However, the loose sequence operator (L-SEQ) has to be used with care where

time constraints are to be used. In this case, the time constraint naturally applies

to when the operator becomes true, so to the end of the undefined transitional

interval associated with L-SEQ, as illustrated in Figure 9.4. This has the drawback

that when successive effects are joined using L-SEQ, the timing of the later effect

cannot be used to limit the duration of the preceding effect, as the timing of

the start of the undefined interval implicit in the use of L-SEQ is not specified. A

possible example might be an automatic machine tool where the machining should

not start until the workpiece has reached the correct operating speed after starting

the motor and the correct operating speed has to be maintained for a sufficient

period to allow the machining to be completed before stopping the rotation so the

workpiece can be removed from the machine. In this case, SEQ cannot be used

to join the successive goal states (stopped and running, where running is defined

as running at the correct operating speed) as there will be a period during which

the piece is accelerating and another when it is slowing down. If SEQ is used

(implying the acceleration and deceleration are instantaneous) than the result of

the simulation will be “out of step” with a simulation that includes the correct

sequence of states. It will also lose either the distinction between running at the

correct operating speed and some other speed, or running at this (slower) speed

and being stopped. This sequential effect might (näıvely) be described using

L-SEQ, as shown below, with the time constraints that the workpiece should reach

the operating speed in 3 seconds and run for at least 8 seconds.

stopped

L-SEQ running [BEFORE 3s]

L-SEQ stopped [AFTER 8s]

This is illustrated in Figure 9.4 where it will be seen that as the time constraints

apply to when the operator becomes true, there is no specification of when the

deceleration should start. The duration of the running state is undefined, the

same functional description would be fulfilled by the case in Figure 9.5 which

differs in having the deceleration taking longer at the expense of the duration of

the period the machine is running at the correct operating speed. Indeed, in this

case the functional description would be fulfilled be the workpiece momentarily

reaching the operating speed and immediately starting to decelerate.

There are various ways of avoiding this problem. The simplest is arguably to

add additional effective states (accelerating and slowing) so as to allow SEQ to be

197

L-SEQ
 L-SEQ
trigger
 time

steady

state

running

stopped
 stopped

BEFORE

3 sec

AFTER

8 sec

Figure 9.4: Using L-SEQ to specify timing of a sequence.

L-SEQ
 L-SEQ
trigger
 time

steady

state

running

stopped
 stopped

BEFORE

3 sec

AFTER

8 sec

Figure 9.5: L-SEQ does not specify duration of preceding effect.

used, as now the transitions between the intended goal states can be treated as

instantaneous, though at the expense of complicating both the functional descrip-

tion and the mapping between it and the system model. The resulting description

of the function’s effect might look like this.

stopped

SEQ accelerating

SEQ running [BEFORE 3s]

SEQ slowing [AFTER 8s]

SEQ stopped

In both this description and that above, the timing of the sequence starts with the

trigger becoming true. As temporal constraints are taken from successive timed

steps, the amount of time spent accelerating is undefined, provided the operating

speed is reached within 3 seconds, and the time taken for the workpiece to come

to a stop is also undefined. Temporal constraints could be added to either or both

of these events.

In some cases, NOT could be used to avoid the definition of additional states, as

shown below.

198

NOT running

SEQ running [BEFORE 3s]

SEQ NOT running [AFTER 8s]

This loses the distinction between accelerating and slowing and stopped, signifi-

cant because it is only once the workpiece is stopped that it can be removed from

the tool. A possible, if slightly cumbersome, solution might be to use NOT running

in the place of accelerating and slowing, though stopped SEQ NOT running is

rather a meaningless distinction, since if stopped is true, so is NOT running. How-

ever, it is not the case that stopped is necessarily true when NOT running is true,

so the distinction between those states is not itself meaningless.

The language could be extended to avoid this difficulty with the use of L-SEQ and

temporal constraints. Two possibilities are to add a duration to allow the temporal

constraint to be associated with an interval rather than a transition event. This

is rejected as in general, such durations can be defined using a combination of

BEFORE and AFTER. Using durations of intervals in the temporal model to specify

temporal constraints is discussed in Section 9.2. An alternative would be to allow

an L-SEQ operator to be associated with two (pairs of) temporal constraints, one

of which specified when the undefined interval should start and one that defines

when it should finish. Either or both could be specified for a given instance of

L-SEQ, so for the example used above, the description of the effect might be as

follows.

stopped

L-SEQ running [END BEFORE 3s]

L-SEQ stopped [START AFTER 8s]

Here START is used to indicate that the undefined period starts consistently with

the temporal constraint and END that that interval should end consistently with

the constraint. In this case, then, the workpiece reaches the operating speed before

3 seconds have elapsed since the trigger became true and the (implicit) slowing

of the workpiece will not start for another 8 seconds. They could, of course, be

used together to restrict the duration of the undefined period associated with

L-SEQ. These additions to the language have not been adopted as they add no

expressiveness over and above the careful use of SEQ, as outlined above.

The warning system mentioned earlier is a case where a cycle might be used to

avoid a repetitive description of the horn sounding. This raises the difficulty that

the first sounding of the horn will typically have a different temporal constraint

from the later ones, that take place within the cycle. The approach taken is to

associate the first timing constraint with the start of the cycle, as shown here.

199

light_telltale

AND

CYCLE[3] [BEFORE 250ms]

SEQ sound_horn [AFTER 500ms BEFORE 700ms]

SEQ NOT sound_horn [AFTER 800ms BEFORE 1200ms]

NEW_CYCLE

This is perhaps not completely clear. The rule is that the cycle begins when the

first effect (or expression) listed within the cycle is true (so in this case, the horn

starting to sound) which in this case should happen within 250 milliseconds of the

trigger. The timing associated with that first effect are for its later occurrences

within the cycle. In other words the cycle’s temporal constraint overrides the first

effect’s temporal constraint for the first occurrence. Naturally, this approach will

work either for a counted cycle as here or to specify a timing for a cycle that is to

continue until some future triggering event causes it to stop.

Another possible case that involves timing of a cycle is where the cycle should

continue for a specified period of time before stopping. For example, a horn might

sound intermittently for a period of (say) between ten and fifteen seconds after

which it stays silent. This can be described by specifying the state that follows

the cycle, like this.

light_telltale

AND

CYCLE [BEFORE 250ms]

SEQ sound_horn [AFTER 500ms BEFORE 700ms]

SEQ NOT sound_horn [AFTER 800ms BEFORE 1200ms]

NEW_CYCLE

SEQ NOT sound_horn [AFTER 10s BEFORE 15s]

This specifies that the state following the cycle should be achieved between ten

and fifteen seconds following the start of the cycle. It s unaffected by the timing

constraints within the cycle. This is perhaps not dissimilar to the scoping of

variable within an iteration in a program. There is, of course, a possible difficulty

here as the cycle might correctly stop after ten seconds with the horn already silent

so the cycle appears to have ended early, despite the absence of any fault. The

simplest approach to this problem is simply for the resulting design analysis report

to show the apparent early end to the cycle and as it arises from no malfunctions

for it to include timing tolerances with the cycle as the cause of the apparent fault.

In the description of CYCLE in the previous chapter, the functional description is

taken to remain in the state immediately before the NEW-CYCLE operator once the

cycle finishes. Of course, where a cycle’s end is triggered by an external timer,

200

any of the effects listed within the cycle might happen to be active. Therefore

the effect that is expected after the time has passed is specified in the functional

description, as in the example above. This specification of the terminating effect

will generally not be needed when the cycle is dependent on the truth of some

triggering condition, such a switch position.

It is appreciated that the construction used for specifying temporal constraints

is not easily read, as the timings associated with an expression that includes some

effect are those for the duration of the preceding effect, but this could be hidden

from the user and the meaning, though perhaps unclear, is unambiguous. An

alternative approach would be to specify a duration for each effect, so associating

timings with intervals rather than transitions, but this introduces complications

of its own. This alternative approach is discussed in Section 9.2, that discussion

includes reasons for preferring the chosen approach, as described here.

While this discussion of temporal modelling has been concerned with the timing

of a function’s effects, it is entirely possible that a function might be triggered by

a temporally constrained sequence of events. A simple example is where shutting

down a personal computer requires the power button to be pressed for a certain

length of time to avoid the danger of an accidental knock to the button resulting

in an unintended shutdown. This can be described like this.

FUNCTION shut_down

ACHIEVES safely_power_down

BY

press_power_button SEQ release_power_button [AFTER 5S]

TRIGGERS

close_down_computer

It is appreciated that the effect will typically be a good deal more complicated

than shown here. This raises the difficulty of how the simulation manages these

temporal triggers. Typically, the simulation runs in steps, each triggered by a

single triggering action (such as pressing the power button) but this is not appro-

priate here. Short of having a real time simulation there is no ideal solution to

this problem. One possible answer is to work around the problem by having the

two actions combined as one trigger, but this does not allow the system to model

what happens when the button is not pressed for long enough. Of course, even

though the interpretation of simulation might be unable to take full advantage

of this extra expressiveness for this reason, it is quite possible that such tempo-

ral triggers are included if the language were used for refinement of a functional

specification in design of a system.

201

9.1.1 Consequences of untimely achievement of function

The advantage of the temporal constraints described here is that the functional

model can distinguish between failure of a function and its untimely achievement.

One consequence of this is that the resulting design analysis report will need to

distinguish between the consequences of untimely achievement of a function and

its failure. These will typically differ, with the untimely consequences being (in

general) less severe as actual failure.

The suggested approach to this is to allow the mode builder to specify a separate

set of consequences for late or early achievement of a function if these are felt

necessary. If these are not added to the model, the design analysis report can still

include details of the temporal failure (such as the function being achieved late),

but without any consequences. Where no specific consequences are added, the

value for severity can be treated as having the value 1 (the lowest possible, so it

will result in the temporal failure having a low risk priority number. In many cases

this would seem to be appropriate, so there might be no need to demand the extra

work of the model builder, in adding the additional consequence. However, the

possibility of adding the additional consequences exists where the consequences

of temporal failure of a function are felt to be sufficiently significant. This is

illustrated in Section 9.4, below.

9.2 Temporal constraints using duration of in-

tervals

The approach adopted, as described above, associates temporal constraints with

the transitions between system states. Therefore, the temporal constraint for the

simple headlamp example specifies that the transition between the headlamps not

being dipped and being dipped must be completed before 250 milliseconds have

passed since the trigger condition became true. An alternative approach would,

of course, be to specify the temporal constraints in terms of the time the system

should remain in a certain state, so specifying them in terms of the intervals rather

than the transitions of the temporal model. This might be done either instead of

or as well as the chosen approach.

As observed above, the use of intervals addresses the difficulty of reading the

functional description in the rather un-intuitive layout described above. This

difficulty is especially apparent in reading the examples that include a cycle of

successive effects. For example, the simple timed cycle might be described as

follows.

202

light_telltale

AND

CYCLE[3]

SEQ sound_horn [>= 800ms <= 1200ms]

SEQ NOT sound_horn [>= 500ms <= 700ms]

NEW_CYCLE

Where ‘greater than or equal’ and ‘less than or equal’ are used to specify the

minimum and maximum tolerable durations respectively. There is a considerable

problem, however, with using this approach instead of the preferred association of

temporal constraints with transitions. This is the difficulty of specifying the timing

of the undefined interval between the trigger and the first effect. In the example

here, there is an interval between whatever action triggers the warning function

and the lighting of the telltale and the start of the horn sounding cycle. There

is no label for this interval with which the temporal constraint can be associated

and, worse, there are actually two concurrent intervals, only one of which (in this

case) has an associated temporal constraint. As the state of the effects of the

system are derived from the previous function (before the trigger event) the label

for this initial interval cannot be unambiguously defined. Consider the dipped

headlamps example from earlier in the chapter.

FUNCTION dipped_beam

ACHIEVES light_road_without_dazzling

BY

lamp_switch_heads AND dip_switch_dipped

TRIGGERS

left_dipped

AND [BEFORE 250ms]

right_dipped

Here, the trigger depends on two switches and in general one of the two conditions

will be true before the trigger itself becomes true. Either the dip switch will be

in the dipped position with the headlamp switch set for sidelights only or the

headlamps switch is on and the dip switch set to main beam. Therefore the state

of the system at the start of the functional description is unknown. Therefore

there is no easy way of attaching a label to this initial interval. In this case

the headlamps should be either off or on main beam, which could be combined

(using OR) to specify the initial state, but this will not always be the case. At

least in this case the initial interval has a clearly defined end. In many cases

this might well not be so. Consider the simple warning system, where a temporal

constraint was associated with the sounding of a horn, but not with the lighting of

the telltale lamp. To describe this in terms of intervals requires two (concurrent)

initial intervals, labelled (presumably) with the assumed state of the respective

203

effects to allow the temporal constraint associated with the horn starting to sound

to be specified. This might be described like this.

some_malfunction

TRIGGERS

NOT light_telltale SEQ light_telltale

AND

NOT sound_horn [< 250ms] SEQ sound_horn

There seem to be several objections to this. One obvious one is the additional

complexity of the description compared with the equivalent description specified

in terms of transitions. Another is the inclusion of effects that are not properly

associated with the trigger. The trigger here does not trigger the lamp being off

and coming on, as the description appears to state, rather it is assumed that the

lamp is already off. Of course it might not be, either because of some malfunction

such as a wire shorting to ground or because some other function that is already

achieved required the same lamp to be lit.

In addition to this difficulty with the use of intervals, the approach does not solve

the difficulty with the use of loose sequence (L-SEQ). L-SEQ implies an undefined

interval, in the functional description and this interval does, of course, remain

undefined whether intervals or transitions are used as the basis for specifying

temporal constraints. The machine tool example used above might be described

like this using intervals.

stopped [< 3s]

L-SEQ running [> 8s]

L-SEQ stopped

The same objection applies here. An interval will be regarded as starting once the

condition becomes true and continues until the condition is no longer true so the

machine is regarded as stopped until L-SEQ running is true (which must happen

within three seconds) and this interval continues until L-SEQ stopped becomes true,

so there is still no specification of the duration of acceleration and deceleration,

so the period the machine is running at the operating speed is undefined, just as

is the case when transitions are used. The difficulty here is that there needs to

be a mapping between the operating speed (a numerical value) and the state (a

Boolean value). This can be managed by defining the acceleration and deceleration

as distinct states as described earlier.

The use of intervals rather than transitions still implies a model of time consisting

of intervals separated by (instantaneous) transitions. The timing of the start and

204

end of the interval being regarded as instantaneous. This is arguably an inevitable

result of treating an effect as a Boolean (on or off) property of the system. Suppose

an effect was a sinusoidal wave, such as perhaps a varying frequency in an audible

warning). The functional description might simplify this by treating the sound

(in this case) as being of high or low frequency. There will, of course, then be

an instantaneous transition between the high and low frequencies (or frequency

ranges) at some point on the upward and downward slopes of the curve.

It will be seen from the foregoing that while the use of intervals as the basis for

temporal constraints does have the advantage of making the functional description

clearer in the case of functions that use timed sequences of effects, there are

considerable disadvantages of that approach, so the use of transitions is preferable.

As the two approaches depend on a similar model of time (of intervals divided by

instantaneous transitions) they could be mixed, by being offered as alternatives.

This is not done merely to simplify the language.

9.3 Possible representations of timings

While the examples used in this chapter have all included a numerical represen-

tation of time, it seems natural to allow for the possibility of a qualitative model

of time, if only for consistency with the possible use of the Functional Interpre-

tation Language in concert with a qualitative simulation. This section discusses

approaches to this, following a brief discussion of some apparent difficulties with

temporal constraints.

Where time is specified numerically, as above, this leads to the introduction of a

hard deadline which, if met is fine, but if missed results in the temporal failure of

the function. In the headlamps example if the lamps dip in 250 milliseconds, this

is fine but if they are found to take 251, the function is deemed to be achieved

late. There is no way of avoiding this problem, it is at least in part a consequence

of blending a numerical model with a qualitative one, where a function is either

achieved or not. The argument that “if 250 milliseconds is OK why not 251?”

breaks down, of course because it can just as well be applied to 251 and 252, and

so on, so some arbitrary end point is required. Using a qualitative model of time

provides a partial answer to this question, as will be discussed later.

The use of a range of acceptable values for a temporal constraint does mitigate

this, but does not eliminate it, of course. In the horn sequence above, the horn

can stay on for any time between 800 and 1200 milliseconds, so some deviation

from the supposed intended duration of one second is tolerated, but still 1200

205

milliseconds is acceptable and 1201 is not.

An alternative approach to specifying a range of times might be to start with

the intended time and allow a variation, so instead of specifying the end of the

horn sounding as AFTER 800ms BEFORE 1200ms it might be specified as “1000ms

+- 200ms”. Naturally, different times could be specified for each direction of

variation or they could possibly be shown as a percentage variation. These are

not adopted as they offer no real advantage over the approach described earlier.

Note that they do not address the hard deadline problem. “1 second + 10 percent”,

say, still means that 1100 milliseconds is acceptable while 1101 is not, so all these

variations do is disguise the hardness of the deadline.

As was noted, a qualitative model of time might be a way of mitigating this

difficulty. Approaches to qualitative modelling of time are discussed next.

9.3.1 Qualitative modelling of time

There are two possible qualitative models of time that might be considered. One

is to specify times by order, so some effect must be achieved before some other

event in the simulation. This is not appropriate in most cases, including all the

examples discussed in this chapter. One case where it might be is a car engine

management system, where the system has to decide on the timing of the spark for

ignition before a certain point in the cylinder’s crank cycle. Is is possible even here

that this will not be regarded as a functional description because the behaviour of

the engine management system might simply be incorporated into the simulation

of the engine. If this is not done, then the timing of the cycle must be represented

as some sort of deadline. It is therefore suggested that this approach to modelling

time is not really appropriate for functional description, where function is regarded

as modelling an external view of some system.

The other approach to qualitative modelling of time is to use an order of mag-

nitude approach, following (Raiman, 1991). Here changes of timing within one

order of magnitude are allowed, but not changes of timing that cross into another

order of magnitude. This is consistent with Raiman’s approach, where an order

of magnitude is regarded as negligible to the next bigger order of magnitude. For

example, a function might be specified as being achieved if the effect is true within

milliseconds, but not if it takes seconds. This is used with qualitative behavioural

modelling in the design analysis tool developed at Aberystwyth. Here a relay (for

example) will have a delay of milliseconds between the coil becoming active and

the switch closing. Therefore some system function that depends on the relay will

206

be achieved within milliseconds. If some fault causes the system function not to

be achieved until seconds have passed the function is achieved late.

One difficulty with this approach for specifying temporal failures of functions

is the difference between likely order of magnitude. A function that should be

achieved in, say, 50 milliseconds might take 500 and still be within the order

of magnitude despite the tenfold increase in the delay. This approach arguably

depends on the order of magnitude behavioural modelling. If it was used to draw

qualitative distinctions between different periods where the simulation itself uses

a numerical model of time, the question of where the borders of the qualitative

periods are placed arises. Is a period of 500 milliseconds counted as milliseconds

or as half a second? There must then be such boundary times. Maybe 499

milliseconds is treated as belonging to the millisecond interval while 500 is treated

as half a second in the seconds interval. It will be seen that this reintroduces the

strict deadline problem discussed earlier, but there are fewer of these deadlines.

However, they are not specified by the model builder on a case by case basis, the

model relies on the assumption that any delay within a specific order of magnitude

time slot is acceptable and any that crosses the boundary between adjacent time

slot is not.

It would be possible to introduce a bigger set smaller intervals, perhaps, such

as milliseconds, tens of milliseconds and so on. This increases the sensitivity of

the temporal functional description at the expense of introducing more boundary

times.

9.4 Timing constraints in use

While the discussions above have been illustrated using simple examples and more

complex examples of the use of the functional language are discussed in Chap-

ter 11, it seems worth providing a simple illustrative example of how the temporal

functional modelling might be incorporated into design analysis.

If we reuse the simple headlamp dipped example, where the vehicle’s lighting

system makes use of a CANbus (or similar network protocol) to pass control

messages across the lighting system. This raises the possibility that a delay to a

message, because of its being retransmitted after collisions, results in a delay in

achieving a function’s effects. The functional description has been shown before,

but as a reminder it is reproduced here.

FUNCTION dipped_beam

207

ACHIEVES light_road_without_dazzling

BY

lamp_switch_heads AND dip_switch_dipped

TRIGGERS

left_dipped

AND [BEFORE 250ms]

right_dipped

So once the trigger condition becomes true (either by switching on the headlamps

or by dipping them) both headlamps should be dipped within 250 milliseconds.

There are, of course, different possible consequences depending on whether the

headlamps were off or on full beam before. This is mitigated by the fact that

a headlamp remaining on full beam will be treated as an unexpected effect. An

extract from the resulting design analysis report might look like that in Table 9.1.

In the table, it will be seen that the consequences of a failure (excess traffic on

Sev
 Det
Failure effect
 Cause
 Consequence

When dipswitch_dipped,

function headlamps_dipped

failed.

wire A open

circuit

Road ahead unlit

When dipswitch_dipped,

function headlamps_dipped

achieved late

excess traffic on

CAN

7
 2

4
3
Oncoming drivers

momentarily

dazzled

Table 9.1: Part of a design analysis showing late achievement of a function.

the network) that result in late achievement of a function are distinguished from

those of one that result in its failure. In this case, the temporal failure assumes

that the headlamps were on full beam, and properly the report might include this.

It has been omitted for simplicity.

As was suggested in Section 9.1.1 above, it might be felt that the consequences

of temporal failure of a function are not so severe as to require the inclusion of an

additional set of failure consequences, so they might be omitted. If this were done

in this case, the corresponding extract from the resulting design analysis report

might look like that in Table 9.2. Here default values of 1 (the lowest possible)

are used for the indicators of severity and detection. This results in the failure

having a low risk priority number (RPN), of course.

Incidentally this example raises a difficulty with modelling systems that depend

on a network as the failure that results in the late achievement of the function

might well be outside the system, such as some other node on the network trans-

mitting more often than intended. One possible approach to this in simulating

208

Sev
 Det
Failure effect
 Cause
 Consequence

When dipswitch_dipped,

function headlamps_dipped

failed.

wire A open

circuit

Road ahead unlit

When dipswitch_dipped,

function headlamps_dipped

achieved late

excess traffic on

CAN

7
 2

1
1

Table 9.2: Part of a design analysis showing late achievement of a function with
no specified consequences.

the system is, of course, to treat the network as a component, one of whose failure

mode behaviours is to delay messages. A more sophisticated approach might be

to combine the simulator with a tool capable of modelling the network so that

possible heavy loading resulting in message collisions can be modelled. To do this

realistically, however, implies a model that simulates all the systems associated

with the network, so that loading are correctly simulated. It also seems to imply

running the simulation in real time (or a scale model of real time).

The inclusion of temporal constraints discussed in this chapter allows functions

that have to be achieved in a certain time to be described and their temporal

failures (such as being achieved late) to be distinguished from failure and also

increases the precision of description of functions that depend on sequential effects,

as described in the previous chapter. The remaining class of function that the

language should be able to describe is the class of functions that depend on the

state of some other system function. These functions and how they are described

form the subject of the next chapter.

209

Chapter 10

Dependencies between system

functions

This chapter discusses classes of function that depend on the state of some other

system function and how the Functional Interpretation Language can be used to

describe such functions. Previous chapters have dealt with operators that allow

triggers and effects (or subsidiary functions) to be combined so as to describe a

single top level function with a clearly defined purpose. In other words triggers,

effects and / or subsidiary functions are combined in a single functional hierarchy

(that might have a temporal dimension described using the operators and temporal

constraints already discussed) so they are all concerned with the fulfilment of some

purpose that is associated with the top of the functional hierarchy. However, there

are many cases where a system includes functions (or effects) that achieve some

distinct purpose from some system function but are related in some way, and which

might well be triggered by the achievement or otherwise of that other function. A

warning lamp that lights when some expected system output is not achieved is a

simple case in point. Here, the warning lamp does not contribute to fulfilling the

purpose of the main function (that which the combination of trigger and effect was

expected to fulfil) but rather it has its own purpose, being to draw attention to the

failure of the main function. The idea that some effect might be associated with

some other function’s effect but with a distinct purpose is simply illustrated by a

car’s blue dashboard lamp that shows the headlamps are on full beam. Clearly

this lamp contributes nothing to the purpose of lighting the road ahead (it is too

feeble and in the wrong place!) but there is also an association between that

lamp and the headlamps themselves. In practice, of course, this is simply that it

shares a trigger with the headlamps main beam’s function and, indeed, it might

well be regarded as being part of a separate system; the dashboard electrics as

opposed to the exterior lighting system. However, if such a warning system is

210

more sophisticated, it cannot be tested independently of the main system as the

working of the main system will affect the working of the associated system. For

example, if the dashboard light only lit if the headlamps were actually lit on main

beam rather than that effect being triggered. In this chapter the term dependent

function is used to refer to a function that relates to and depends on the state of

some main function.

The thesis will discuss four categories of “dependent function” that are to be

considered in addition to the function that fulfils the main purpose of the system.

This function (referred to here as the “prime function”) will, typically, be the

function on which the dependent function depends. These four categories are:-

• Warning or telltale functions whose purpose is to increase the detectability

of achievement or otherwise of the core function, such as the warning lamp

mentioned above.

• Fault tolerant functions that allow the system to continue to (at least par-

tially) fulfil its purpose despite the failure of some prime function. A “limp

home” function, such as a car’s brakes reverting to conventional operation

if the sensors for anti-lock braking fail is a case in point.

• Interlocking functions that enforce correct achievement of one function’s

effects to ensure that some other function does not have unintended conse-

quences. A railway signalling system is an example, where it is a function

of the system to prevent setting the signals for a route unless the points are

already set for that route.

• Recharging functions that return the system to a state ready for a repeat of

the prime function, such as the refilling of the cistern after the flushing of a

W.C.

This chapter will discuss each of these classes of function in turn, considering their

relationships with the core function and how the functional modelling language

can describe them, as well as any other problems that arise. There will follow a

discussion of the effects such relationships between functions have on the functional

models associated with a system.

In the following sections, tables are used to classify these different categories

of dependent function and the notation used in these tables might warrant some

explanation. The function on which the dependent function depends (so whose

state triggers the dependent function, the prime function is called P and it has two

elements, the trigger (t) and the effect (e), so Pt means the trigger (precondition)

211

of the prime function resolves to true (that function is triggered) and Pe means

that the prime function’s effect is present. For example, a function that is triggered

when the prime function is triggered and its effect fails (maybe its purpose is to

warn of failure of the prime function) can have its trigger expressed as Pt ∧ ¬Pe.

This means, of course that the prime function’s precondition (trigger) is true but

its post-condition (effect) is false.

10.1 Warning or telltale functions

The first category of functions can be considered to be dependent on some other

function is that of telltale (or warning) functions. The purpose of such functions is

to increase the detectability of the state of the prime function with which they are

associated. To this end they will have some effect that is audible or visible to the

operator of the system. Possible relationships between such functions and a prime

function are listed in Table 10.1. Given that a prime function is achieved when

its trigger Pt and its effect Pe are true, then we might classify telltale functions

by which of the prime function’s conditions are used in its trigger. There are also

cases where the trigger and effect of the prime function are true but the expected

behaviour is not, because the effect is achieved by an alternative fault mitigating

behaviour. These cases are listed in Table 10.1 together with the straightforward

examples. By way of further illustration, these classes of telltale function are listed

Class Trigger Prime function state
input telltale Pt Prime function triggered

no input telltale ¬Pt Prime function not triggered
output telltale Pe Prime function’s effect present

no output telltale ¬Pe Prime function’s effect absent
behaviour warning ¬Pb Unexpected behaviour detected

confirmation Pt ∧ Pe Prime function achieved
failure warning Pt ∧ ¬Pe Prime function failed

unexpected warning ¬Pt ∧ Pe Prime function achieved unexpect-
edly

off confirmation ¬Pt ∧ ¬Pe Prime function inoperative
limp home warning Pt ∧ Pe ∧ ¬Pb Prime function achieved by unex-

pected (fault tolerant) behaviour
fault tolerant confirm Pt ∧ Pe ∧ Pb Prime function achieved by expected

behaviour

Table 10.1: Telltale and warning functions

below, with examples where appropriate.

212

Input telltale is triggered whenever the prime function is triggered and should

be achieved regardless of the post-condition of the prime function. An ex-

ample is the main beam telltale on a car dashboard that lights whenever the

light switches are set for main beam.

No input telltale is triggered whenever the prime function is not triggered re-

gardless of its post-conditions. One possible example is an electrical appli-

ance that has a telltale lamp to indicate that it is plugged in but not switched

on.

Output telltale is triggered by the post-condition of the prime function, regard-

less of its precondition, so the prime function might be achieved unexpect-

edly.

No output telltale is triggered by the failure of the post-condition regardless of

its precondition, so the prime function might be failed or simply off.

Behaviour warning is triggered by the failure of the behaviour (presumably

according to some detectable internal state) of the prime function, so either

misbehaviour is detected or the function is not active.

Confirmation This is triggered by the truth of both the pre- and post-conditions

of the prime function, so it confirms that it is active and achieved correctly.

Failure warning is triggered if the trigger of the prime function is true but the

effect is false, so the function has failed.

Unexpected warning is triggered if the prime function’s trigger is false and the

effect is true, so that function is achieved unexpectedly.

Off confirmation is triggered if both the pre-and post-conditions of the prime

function are false, so the prime function is inoperative.

Limp home warning is triggered if the pre- and post-conditions of the prime

function are true but there is a fault in its internal behaviour. An example

would be a warning lamp showing that a fault tolerant system was running

without some expected sensor data, so there is a loss of redundancy.

Fault tolerant confirm is triggered if preconditions, post-conditions and be-

haviour are all active as expected. It therefore confirms that a fault tolerant

system is working normally, not in a fault tolerant mode. It might be used

in safety critical areas in preference to a “limp home warning” as in that

case a failure in the warning system might mean loss of safety in the fault

213

tolerant system going undetected whereas a failure of a fault tolerant con-

firm system will at least make it apparent that there is a failure (either in

the main system or the telltale).

It should be pointed out that some of these classes of function are included for the

sake of completeness. It is unlikely (but not impossible) that all of these classes

will actually be found in use.

It will be seen from Table 10.1 that all combinations of a prime function’s trigger

and effect are covered so there is no need for any other classes of telltale function

associated with failure of the prime function’s behaviour provided we are willing

to accept that the function operating with trigger and effect conditions satisfied

implies correct behaviour and conversely that the absence of either trigger or

effect implies incorrect behaviour. Given these assumptions, a telltale that the

correct behaviour is taking place is identical to the confirmation function (pre-

and post-conditions both present) and adding incorrect behaviour to the failure

and unexpected warning functions creates conditions that will be satisfied similarly

to the conditions without any express inclusion of the (internal) behaviour. Note

that the use of behaviour of the prime function (as opposed to trigger or effect)

as a trigger of the telltale function implies that there is some mechanism that

detects the loss of some (internal) behaviour. A fault tolerant system detecting

the absence of sensor data is a possible case in point.

It will be seen that where the telltale function is dependent purely on the prime

function’s trigger and effect, its trigger can be described in terms of the state of

the prime function. If keywords describing the state of a function’s trigger and

effect are added (so a function is said to be TRIGGERED when its trigger is true

regardless of the state of the effect and EFFECTIVE if its effect is present regardless

of the state of its trigger) then this description of the trigger of a dependent

function can be extended to the simple cases where only the trigger or effect is

used as the trigger of the dependent function. Of course, no claims can be made

for the completeness of this set of telltale functions where the conditions are not

atomic. It might be the case that they are triggered either by a specific output

state, such as the oven light coming on whenever the heater is on and going off

when the heater is off (the oven has reached the right temperature) or because a

subset of the prime function’s post-conditions is sufficient to trigger the telltale

function. Consider, for example, the idea of the car main beam warning being a

confirmation function, so it comes on when the headlamps really are on main beam.

If its purpose is to warn the driver that oncoming traffic will be dazzled, it might

well be intended that it lights whenever one or both headlamps are on main beam,

as one headlamp is enough to dazzle oncoming drivers even though the headlamps’

214

prime function is not achieved. This means that this collection of telltale functions

can only be regarded as a complete set if it is sufficient to model them in terms

of the state of a function, rather than any specific state of the effects of the

prime function. Because the triggering of a dependent function might depend on

a different combination of effects than are required to achieve the purpose of the

prime function, it becomes necessary in some cases to define the trigger of the

telltale function in terms of specific effects of the prime function rather than in

terms of the state of the function itself. This is discussed below. This means

that some way of unambiguously linking a systems’ functions is required, so the

correct triggers and effects are unambiguously identified. This allows the prime

and dependent functions to share the mapping between the functional and system

models, eliminating redundancy of description and the possible errors in mapping

between the models. Approaches to this are discussed at the end of this chapter.

The significant difference between these functions and the prime function, in

general, is that they are not simply triggered by a user’s input to the system. This

means that the trigger needs to be explicit in the functional description. While

for failure analysis of prime functions (that are dependent on no other function),

the triggering condition for a function can be derived from a simulation of the

system behaving correctly, this is not the case if there are dependent functions.

Consider a plant warning system, which lights a telltale if an expected effect of

some prime function is absent. In the correct simulation, the expected effect

of the prime function will never be absent, so the telltale function will not be

triggered. Unless the trigger condition of the telltale function is explicitly stated

in the functional description, it will not be clear whether the effect of the telltale

function is expected or not. This raises the more general point that the telltale

function cannot be evaluated independently of the prime function, except in the

case of the simple input triggered ones. It is useless to model the output of the

prime function as an external “input property” (trigger) of the dependent function

as the aim of testing these functions is to show that failures of the prime function

will be detected correctly. They depend on some mechanism for detecting the

state of the prime function and if that function is reduced to a switch then that

mechanism will not be simulated.

As the Functional Interpretation Language includes the trigger and effect of a

function it is simple to incorporate either the state of the prime function or its

trigger and effects in the trigger of the telltale function. For example, consider a

simple warning function, being used to detect failure of, say, a ship’s navigation

lights.

215

FUNCTION nav_lights

ACHIEVES ship_lit

BY

nav_lights_on

TRIGGERS

port_light AND starboard_light

As the failure of either navigation light needs to be detected by the telltale

function, its trigger can be expressed in terms of this function.

FUNCTION nav_light_warning

ACHIEVES warn_no_nav_light

BY

nav_lights FAILED

TRIGGERS

warning_lamp_lit

As FAILED is defined as the trigger being true and the effect false, this is identical

to specifying the trigger of the warning function like this.

FUNCTION nav_light_warning

ACHIEVES warn_no_nav_light

BY

nav_lights_on AND

NOT (port_light AND starboard_light)

TRIGGERS

warning_lamp_lit

In this case, the description in terms of the prime function is simpler, but if a

combination of trigger and effects of the prime function are used, it is possible to

specify a different combination than results in achievement of the prime function.

The warning lamp that either headlamp is on main beam, mentioned earlier, can

be described by replacing the AND used in the main beam function with OR, so

the trigger of the warning lamp’s function is true if either headlamp comes on.

FUNCTION main_beam_warning

ACHIEVES warn_of_dazzle

BY

right_main_beam OR left_main_beam

TRIGGERS

warning_lamp_lit

216

Here the warning function is triggered by the effects of the prime function, which

case highlights the need to trigger the dependent function with the trigger and

effect of the prime function, or some combination of its trigger and / or effects.

As telltale functions that warn that some unusual behaviour is causing the effect

of the prime function imply that there is some means of detecting that this is

the case, that can be incorporated in the warning function’s trigger. This might

typically be done by specifying the failure of some internal component’s function

(or effect). These cases are discussed in the following section on fault mitigating

functions, which also depend on some internal failure being detected.

10.2 Fault mitigating functions

Another area where functions might relate closely is where the failure of a prime

function is mitigated by fault tolerant behaviour. Possible cases are listed in

the table in Table 10.2. These functions relate to a prime function with trigger

Pt, effect Pe, normal behaviour Pb and purpose Pp. In all cases, of course, the

purpose of the fault mitigation function is to enable the continued fulfilment of the

purpose of the prime function, at least to a limited extent — possibly at a reduced

efficiency or for a limited time. Cases where a fault mitigating function results

Class Trigger Effect Purpose
backup output Pt ∧ ¬Pe backup Pp

fault tolerant Pt ∧ ¬Pb Pe Pp

limp home Pt ∧ ¬Pb ⊂ Pe ⊂ Pp

Table 10.2: Fault tolerant functions

in partial fulfilment of the prime function’s purpose (such as an anti lock braking

system working conventionally, with no automatic anti lock control) are indicated

using the subset symbol. In contrast to the functions listed in Table 10.1 above,

it is possible that there are other triggers for a fault tolerant function. However,

such a function will certainly share a trigger with the prime function and also

depend on the loss of the required effect or of internal behaviour (such as a sensor

failing). Where Pe is used in the effect column of the table, the same effectors are

taken to be delivering the effect of the fault tolerant function as would be the case

if the prime function was achieved. The backup effect in the top row implies the

use of different effectors, such as an emergency lighting system. The ⊂ symbol is

used to indicate cases where the fault tolerant function only partly achieves the

effects, and therefore partly fulfils the purpose of the prime function, such as the

217

loss of anti-lock brakes. The table is illustrated using textual descriptions of these

classes of fault tolerant function:-

Backup In this case the purpose is (at least) partly fulfilled by some separate

system that automatically switches in on failure of the main system. An

emergency lighting system that lights routes to fire escapes after failure of a

building’s main lights is an example.

Fault tolerant Here the output of the system is identical to the prime function’s

output, but there is a loss of behaviour, covered by redundancy within the

system. A brake by wire system continuing to work despite loss of a sensor’s

data is a possible example. It is likely that this will be regarded as a “limp

home” mode, because the loss of redundancy means that another system

failure might lead to dangerous loss of functionality.

Limp home The output of the fault tolerant function is not identical to that of

the main system, but is sufficient to allow continued operation of the device.

An engine management system failing in such a way that a default value for

ignition timing is used instead of a calculated optimal value is an example,

as is an anti-lock braking system falling back on braking conventionally

following loss of sensor data.

In practice, as observed in (Manzone et al., 2001), the classes of function labelled

as “fault tolerant” and “limp home” are both intended for use to allow limited

further use of the system. It is, of course, necessary in many areas (such as aviation

and automotive) that a system will tolerate one failure for at least long enough

for the user to deal safely with the consequences (such as for the aeroplane to

land). The distinction drawn here is that a limp home function implies reduced

functionality while a fault tolerant function allows the device to work normally

(at least apparently) albeit for a restricted time and with a loss of tolerance of

further failure.

It will be seen that the “limp home warning” function in Table 10.1 is identical

to a confirmation function for the fault tolerant function (its precondition is that

of the fault tolerant function combined with that function’s postcondition using

logical AND). It is likely that such a telltale will be the only sign that the system

is not working normally, it being needed to warn the operator that the system

requires attention before some other component failure causes the system to fail.

One difficulty with describing such functions is that the trigger of the fault mit-

igating function might depend on detecting some internal aspect of the system

behaviour. For example, the trigger and effect of a fault mitigating function of

218

an engine management system in a car are apparently identical to those of the

prime function, the only difference might be a loss of performance and increase

in fuel consumption. However, in such systems the system itself must have some

component that detects the loss of behaviour that leads to the adoption of the

fault mitigating strategy, so it seem not unreasonable to incorporate that in the

functional description. It is at least possible that in such cases the difference in

effect between the prime and fault tolerant functionality will be ignored. For ex-

ample the function of the engine might be to drive the car and the aim of the

fault tolerant engine management function is to enable the engine to continue to

achieve that function despite the loss of sensor data.

The example of a car’s anti-lock braking system reverting to conventional braking

if sensor data is missing has been mentioned. This is an example where an internal

component failure will trigger the loss of the prime function and its replacement

by the “limp home” function. This might be described like this.

FUNCTION conventional_braking

ACHIEVES stop_vehicle

BY

brake_pedal_pressed AND

(NOT right_front_rotation_data_input OR

NOT left_front_rotation_data_input OR

NOT right_rear_rotation_data_input OR

NOT left_rear_rotation_data_input)

TRIGGERS

right_front_brake_on AND

left_front_brake_on AND

right_rear_brake_on AND

left_rear_brake_on

This will be triggered instead of the prime anti-lock braking function, then if

the anti-lock braking controller fails to receive the expected data from any of

the wheel rotation sensors. There seems to be no real difficulty with this model,

except for its relative complexity. The sensor data should be mapped to the

system model as input to the controller module as then any failure that results in

the loss of the data (whether to the sensor itself or to the network linking it to

the controller) will result in the loss of the data and so the triggering of the fault

tolerant function. The realistic approach to modelling these internal failures is at

the component that detects the failure, not the component that causes the failure.

It will be appreciated that this functionality cannot readily be modelled without

a fair degree of knowledge of the likely design of the system.

219

One point that arises is that specification of the trigger of a dependent function

in terms of function can lead to different expected behaviour compared with spec-

ifying its trigger in terms of triggers. For example, an emergency lighting system

(an example of a “backup function”) might be specified as being triggered when

the prime function is triggered but the effect is absent. Therefore the emergency

lighting function should be triggered by all the lamps in the main lighting system

failing at the same time. In practice the emergency lighting function is likely to

be triggered by the detection of failure of the main power supply, so the function

will not actually be triggered by the failure of the lamps. Arguably, this makes

the backup function independent of the prime function as the trigger and effect

are both different but it does illustrate that triggers need to be chosen carefully,

unless the idea is to capture the possibility that certain main system failure will

not result in apparently expected behaviour of the dependent function.

It is worth noting that this discussion of fault tolerant functions excludes manual

backup systems as these can be regarded as independent of the main system. An

example might be a reserve parachute with its own rip cord which the parachutist

will activate on finding a problem with the main canopy. This can be considered

an independent system (though it clearly has a closely related purpose) except in

any cases where it is desired to simulate some interlock mechanism that prevents

both main and backup systems being active at once. Arguably, the enabling of

the backup mechanism is then a backup function of the main system though it

does, of course, not itself have any output unless some telltale is associated with

it, to both warn the operator that the prime function has failed and to show that

the backup can be used.

10.3 Interlocking functions

This category of dependent function differs from the others discussed here as while

in the other categories, the prime function is (part of) the trigger, in this case,

the state of the function upon which the interlocking function depends prevents

the triggering of the interlocking function unless that function is achieved. A

rather weak example is the exiting of a computer application being prevented

when there is an open file that has not been saved since the last edit. This is a

slightly untypical example because the likely result is a distinctive effect (a dialog

box giving the user the chance to save the open file) rather than simply preventing

the closing of the application. In a hardware system, a more likely case is that the

dependent function is simply prevented by the non-achievement of the function

upon which it depends. A better example (if less familiar) is a railway signalling

220

system, where the interlocking system makes it impossible to pull the levers (in a

old fashioned mechanical system) to clear the signals for a given route unless the

points have already been set correctly for that route. A related example might be

the accessories in a car that will not operate unless the ignition has been switched

to the right position, so power is available. This differs from the signalling example

in that the driver can switch on the windscreen wipers (say) before starting the

car, but they won’t come on until the car is started (or at least the process of

starting the ignition is in progress). This case does differ in that the ignition

switch simply gets added to the trigger for the wiper circuit, whereas in both the

unsaved work and signalling examples, the relationship between the functions is

more complex.

The signalling system is simpler to model as if the interlocking function is blocked,

nothing will happen. Given the setting of the points concerned is described in a

route_set function, a signalling function can be described like this.

FUNCTION pull_off_signals

ACHIEVES road_shown_clear

BY

FUNCTION route_set ACHIEVED AND pull_lever

TRIGGERS

signal_cleared

Naturally in this case, the route and signals concerned would need to be specified,

but it is suggested that this simple example illustrates the point that the trigger of

the interlocking function depends on achievement of another function, that upon

which the interlocking function depends.

The unsaved work example is more complicated as here there will be an alter-

native effect if the user attempts to close the application if there is unsaved work

that will be lost. The simplest approach is to have two functions in this case.

The closing function might look similar to the signalling example above, though

in practice it might be better associated with the system state that is the effect

of the save function.

FUNCTION close_application

ACHIEVES work_over

BY

clicking_exit AND no_unsaved_work

TRIGGERS

application_closes

221

This is complicated slightly as while the effect no_unsaved_work is a result of

achievement of the save function, it is also true if no changes have been made to

any file since opening the application. This illustrates the need for the functional

language to be able to have effects (or states) in common with several functions,

which is the most significant effect that the idea of dependent functions has on

the Functional Interpretation Language. While the functional description above

serves to show that the application should not close if there is unsaved work, it

does nothing to specify what should happen if the user tries to close the application

and there is unsaved work open. This can be done with another function.

FUNCTION save_reminder

ACHIEVES warn_of_unsaved_work

BY

clicking_exit AND NOT no_unsaved_work

TRIGGERS

FUNCTION save_option_dialog

So all clicking the exit button achieves itself is the display of the options dialog

giving the user the chance to save the open work. This is itself a separate function.

FUNCTION save_option_dialog

ACHIEVES forces_exit

BY

FUNCTION save_and_close

OR

FUNCTION close_losing_changes

This leads to yet another pair of related functions, of which save_and_close

might be described as follows.

FUNCTION save_and_close

ACHIEVES work_over

BY

clicking_save_option

TRIGGERS

no_unsaved_work AND application_closes

It might well be the case that there is no need for the save_option_dialog

function, indeed it is arguable whether it is really a separate function as opposed to

the means by which the save_and_close and close_losing_changes functions

are made usable. The use of this set of functions depends in how detailed a

222

functional model is required, to what extent the means of accessing the closing

functions needs specifying in the functional model.

In the example, it is assumed that names are unique and can be used to match

functions and effects unambiguously, as well as matching descriptions of purpose

(which separate models). This suggests that there is a case for separating all

elements of the functional description, or at least for allowing one function to un-

ambiguously refer to another function’s trigger or effect. This both reduces the

work in carrying out the mapping between the trigger and effect and the system

model, as there is no need to reproduce the same mapping for each function. This

also reduces the danger of mappings that should match not doing so following

an error in making the mappings. This is discussed in Section 10.5 below. An-

other point worth making in passing is that the functional model (or that part

of it illustrated here) of the software example might seem complex, but that is

(arguably) an inevitable result of the complexity of intended behaviour of many

software systems. Indeed, the need for a functional interpretation language to

model such systems was one of the motivations for the present work.

10.4 Recharging functions

While there are various examples of systems that include a recharging function,

the purpose is similar in all cases, being to return the system to a state where it is

ready for a repeat of the prime function. Examples include the refilling of a cistern

after flushing a W. C., motorised winding on of the film and cocking of the shutter

of a motor driven camera and reloading a gun. A failure of the recharging function

means that the prime function can not be achieved subsequently to the failure of

the recharging function. These functions appear to share a trigger with the prime

function, so pressing the shutter release causes the camera to both expose a frame

and to wind on to the next. This can be contrasted with a camera with a manual

wind where the two functions are clearly separate. This example does perhaps

also suggest that the recharging function is to be considered a separate function

even when it does share a trigger with the prime function. The purpose (and

consequences of failure) are different for the prime and recharging functions. If

the prime function fails then the purpose of the system is unfulfilled (the photo

has been missed, for example) while when the recharging function fails, at least

at first, the main function is achieved (so the photo was taken) but the system

is not ready for the next use, the next photo will be missed. This assumes that

before the failure of the recharging function, the system was in a state ready for the

achievement of the prime function which it should be if the recharging function was

previously working correctly. It would be possible to use subsidiary functions to

223

model this case, combining the two functions under a top level “system working”

function, like this.

FUNCTION take_photo

ACHIEVES photograph_taken

BY

press_button

TRIGGERS

PIF expose_frame

L-SEQ

PIF wind_on

As the two desired effects are associated with their own subsidiary functions,

each failure can be associated with its own consequence, so the expose_frame

function might be described like this.

PIF expose_frame

ACHIEVES frame_exposed

BY

shutter_open L-SEQ shutter_closed

It will be seen that there is a difficulty here as the purpose of the expose_frame

function is essentially the same as that of the take_photograph function. It is at

least arguable that in this case, the top level function does not really have a single

clearly defined purpose, but rather a combination of the purposes associated with

the two subsidiary functions.

A more practical objection to this approach is that the two subsidiary functions

do not really share a trigger. The wind_on function is actually triggered by the

achievement of the expose_frame function. If that function fails then there is

no call for the camera to wind on. If the functional description treats both as

sharing a trigger, then can the failure of one or both be distinguished? After all,

if the shutter (say) fails then the camera might well not wind on either. This

could, perhaps, be worked around by modelling the recharging function in terms

of the state of the system after the achievement of the function, so the shutter is

cocked and an unexposed frame is behind the shutter, rather than the expected

behaviour, the action of winding on. A related difficulty, though, is that in this

case, the unexpected achievement of the recharging function will be missed if,

say, the film winds on despite no frame being exposed when the shutter release

was pressed. If the recharging function is considered purely in terms of the goal

state (as suggested above) then the fact that a frame is wasted (to continue with

224

the camera example) is missed. Indeed, the fact that the recharging function is

achieved unexpectedly is missed because if it is described as sharing a trigger with

the prime function (pressing the shutter release) then it is apparently achieved,

both trigger and effect are true. If it is described as triggered by the achievement

of the prime function then if that function fails, the recharging function is correctly

shown as being unexpected.

It is therefore suggested that, while the approach described above might give an

adequate model in some cases, it is more correct to regard the recharging function

as a dependent function of the prime function.

This can simply be done by describing the recharging function with the trigger

and effect of the prime function (or even just its effect) as the trigger of the

recharging function. Whether the prime function’s trigger is included will depend

on what the recharging function is expected to do if the prime function is achieved

unexpectedly (so was not triggered). In general, it is likely that the recharging

function will be expected in this case, but it might not be if there are safety

issues. For example, it might be intended that a gun will not automatically reload

following an accidental discharge. The pair of functions for the motorised camera

might be described like this.

FUNCTION expose_frame

ACHIEVES photograph_taken

BY

press_shutter_release

TRIGGERS

shutter_open L-SEQ shutter_closed

and

FUNCTION wind_on

ACHIEVES film_wound

BY

FUNCTION expose_frame

TRIGGERS

film_transport AND shutter_cocked

This is arguably a rather simplistic attempt at a functional description of a

motorised camera. It does imply that if the shutter trips unexpectedly (an ad-

mittedly unlikely failure) the film should not wind on. Arguably, of course, if

the shutter tripping was unexpected, so was the winding on and also, since the

frame previously in the gate might have been exposed, the fact that the film is

225

wound on is a benefit. A worse difficulty is that the expose_frame function might

actually require more effects than in the model above. If the camera is a single

lens reflex, the mirror will be moved and the lens diaphragm adjusted. How these

effects are incorporated into the expose_frame function will affect the trigger of

the wind_on function. It is likely that its trigger will be the effect of the shutter

opening and closing, even though the failure of one of these other effects might

result in failure of the expose_frame function. There is no reason why this cannot

be described using the functional language, but it does emphasis the point that a

complex system might require a complex functional description. It is suggested,

however, that this does indicate a rôle for the functional language in refining a

proposed system design, if only by ensuring that problems like that mentioned

are considered as part of the functional design of the system. Thus is discussed

further in the chapter on evaluation of the functional language, Chapter 11.

One area that does vary from system to system is that some systems might allow

a sequence of repetitions of the pair of functions (such as a photographer shooting

a series of photographs by keeping the shutter release pressed) and others allow no

such repetition, such as the W. C. example. These cases can be described using a

cycle of the prime and recharging functions. For example, suppose the camera is

intended to shoot a sequence of photographs if the shutter release is held down.

FUNCTION shoot_sequence

ACHIEVES photographs_taken

BY

shutter_button_pressed

TRIGGERS

CYCLE

PIF expose_frame

L-SEQ

PIF wound_on

NEW_CYCLE

This is similar to the simple case described above, so similar difficulties apply. An

additional problem is that strictly, the achievement of each function triggers the

other. If, say, the wound_on function fails, it is not the case that the shutter will

continue to trip repeatedly. This is a further example of the ambiguity introduced

by having the two functions share a trigger. These complexities are discussed

further in the following chapter, where the functional language is evaluated by

describing some case studies.

Having discussed possible categories of dependent function and how they can be

described using the Functional Interpretation Language, some matters that arise

can be now discussed.

226

10.5 Relations between functions

The examples discussed above highlight the need for functions to be able to refer

to elements of some other function associated with the same system. For example,

all but one of the functions in the closing application example discussed earlier

refer to the effect labelled as no_unsaved_work. Strictly speaking, of course, this

is a state of the system, which is either true of false, and the effect (of the save

function) is to make that state true. This sharing of elements of function leads

to the need to ensure that these elements are unambiguously identified. The

approach suggested is to associate an element with its (original) parent function,

separating them with a dot. So if the no_unsaved_work effect’s truth is associated

with the save function, other functions can refer to the element unambiguously

as save.no_unsaved_work. This notation is similar to that used to refer to a

function’s trigger or effect in mapping between the functional and system models.

All such qualified instances of the element are then mapped to the system model

together, ensuring the mapping is identical. In addition functions are labelled

as such (as are incomplete functions as PIFs, OIFs and TIFs) to indicate both

the need to look up that part of a system’s functional model and to specify that

the label is not to be mapped to a system property, which would be needed if

it is a trigger or effect. These labels have already been used in the discussion of

functional decomposition in Chapter 6.

Rather than specifying the prime function’s trigger and effect in the trigger of

a dependent function, this might be specified in terms of the prime function’s

state. This does depend on the trigger for the prime function being identical

to the combination of trigger and effects associated with the appropriate state

of the prime function. The use of TRIGGERED and EFFECTIVE allows this even

in the case of simple telltales. To give a simple example, a car’s main beam

warning lamp’s function can have the trigger FUNCTION main_beam TRIGGERED

which simply means that the telltale lamp’s function shares the trigger expression

with the indicated function. The keyword EFFECTIVE is used to show that a

function is triggered by the truth of some other function’s effect expression. This

avoids the need to repeat the possibly complex conditions associated with the

prime functions trigger (or effect).

All these relationships are between function associated with one system, of

course, as there is nothing to be gained by specifying relationships with a sys-

tem that will not be simulated. If the prime function’s system is not simulated,

there will then be no way of finding whether the dependent function’s triggering

conditions have been met. This leads to the idea that there is a fuller set of rela-

227

tionships between functions than the decompositions in Chapter 6 but this fuller

set incorporates the decompositional relations. It will be seen that the set of rela-

tions in a functional decomposition is defined by a specific purpose, while that of

this more general functional relationship is defined by the system with which they

are associated. This system might, of course, be intended to fulfil several distinct

purposes so the general set of system functions might include several functional

decompositions as well as relations expressing other functional dependencies.

One interesting area of relations between functions is where a warning function

affects the detection value of the consequences of failure of a description of purpose

associated with a prime function. An approach to describing this relation is to

replace the detection value in the consequences of failure in the telltale function’s

description of purpose (which will refer to that of the prime function) with a

revised (higher) value for the prime function’s detection. For example, a warning

function’s description of purpose might be written like this.

PURPOSE warn_of_failure

DESCRIPTION "Warn user system has failed"

FAILURE "User not warned of system failure"

SEVERITY 3

DETECTION PURPOSE system_purpose.FAILURE.DETECTION 9

Here, system_purpose is the description of purpose associated with the prime

function and so its value for detection is then changed to the specified value rather

than the (presumably) lower value in that description. A similar approach can be

used if the telltale function is triggered by the presence rather than the absence

of the prime function’s effects, only now the changed detection value might be

that for unexpected achievement of an effect (or a function, if its description of

purpose includes consequences of unexpected achievement). This approach to

describing description of telltale and warning functions is, of course, available as

an alternative to the usual use of the detection value. The usual approach can be

used in those cases where it is felt more appropriate.

10.6 Simulation of dependent functionality

One aspect of the modelling of these dependent functions is that many of them

are triggered by failure in a system. This means that the triggering of these

functions cannot be derived from the simulation of the system’s behaviour with

no component failure in failure analysis as the function will not be triggered in

that simulation. This has already been mentioned and is a reason for including

228

the trigger of a function in its description, even though it might be considered

unnecessary for failure analysis.

Another result of this dependence on failure in the simulation of the system

is that simulations of the system with component failure are required for design

verification of the subsystems that implement these dependent functions. Clearly

the functioning of a fault tolerant system function will not be tested without

testing the whole system with some failure that should result in the loss of the

prime function. Indeed, the incorporation of such dependent functions can be

seen as blurring the distinction between design verification and failure analysis.

Another aspect of this is that failures that cause the dependent function to fail (in

failure analysis) will only be detected if the system is simulated with some failure

that would otherwise trigger the dependent function, in addition to the failure in

the subsystem that implements the dependent function.

A point that arises from this is that in general a subsystem that implements a

dependent function can be specified in terms of the state (or triggers and effects)

of the prime function, but it will in many cases actually be triggered by some

detection device within the system. This leads to the possibility that the actual

effects of a prime function are absent, but this is undetected by the device that

triggers the dependent function. This might result from careless design so if the

warning lamp in the navigation lights example mentioned earlier was triggered by

the presence of current in some part of the circuit common to both navigation

lamps (to obviate the need for two detectors) then, of course, the failure of one

lamp will be missed as current will still flow in that part of the circuit. If the

warning function is described in terms of the effects of the prime function, this

failure of the warning function will be detected on running a failure analysis of the

system and will be included in the resulting design analysis report. The design

analysis system can distinguish those system failures that cause both the prime

and dependent functions to fail from those that cause the failure of only one or

the other. The navigation lamp example with one detector, as described above

illustrates this, as a failure that causes one navigation lamp to fail will also cause

the warning system to fail, if it is defined in terms of the prime function. Notice

that if one lamp fails the warning function is triggered (the prime function has

failed) but it too will fail (its triggering condition is true and it effect absent) so

this can be included in the design analysis report, highlighting the inadequacy of

the design of the warning system.

229

10.7 Uses of modelling of dependent functions

The uses of modelling dependent functions have been touched upon in passing

throughout this chapter, but it seems worth finishing with a summary of these.

Clearly, if a system that incorporates dependent functions is to be described

accurately, then these functions need to be described accurately in turn. This

depends on the subsystems that implement these dependent functions being de-

scribed alongside and simulated as part of the system that implements the prime

function on which the function depends. It has already been noted that the idea of

defining a dependent function in terms of the prime function on which it depends

is interesting for design verification as it can be used to highlight those system

failures that result in the dependent function not triggering even though its trig-

gering condition is true. This was illustrated using the navigation light example

in the previous section so will not be repeated here.

Another possible use of the Functional Interpretation Language for modelling

dependent functions (though it applies to other functions as well) is that it could

be used, independently of its use for interpretation of simulation, for refining the

design of such functionality. For example, a dependent function might (initially)

be defined in terms of the prime function (so a failure warning function is trig-

gered whenever the state of the prime function is failed) but might be refined to

depend on the actual trigger and effects of the prime function. Initially defining a

dependent function in terms of the state of the related prime function could high-

light cases where the implementation of the dependent function fails to achieve

the intended purpose, so it is not triggered when it was expected for example.

Indeed, it would even be possible to describe the dependent function twice, once

in terms of the state of the prime function and once in terms of the dependent

function’s actual trigger to emphasis such mismatches as part of the process of

design verification of the system that implements the dependent function.

One point that emerges from the foregoing discussion of dependent functions

is that they illustrate the distinction to be drawn between the functional and

physical decompositions of some product. The system that implements a warning

function, for example, might be considered quite distinct from the system that

implements the prime function (though clearly some connection will be required)

but the functionality of the product as a whole depends on the correct functional

relationship between these systems so even though they might be structurally

separate, they are functionally related. An example is the incorporation of a

dashboard warning lamp into the instrumentation system on the structural side

and the exterior lighting system on the functional side. This does mean that for

230

correct design analysis of dependent functions, the modelling of the system must

follow the functional decomposition of the product as a whole.

Having considered the uses of the Functional Interpretation Language in design

analysis of these dependent functions, the use of the language in general can now

be discussed.

231

Chapter 11

The Functional Interpretation

Language in use

While earlier chapters have made use of examples to illustrate the discussions

therein, these examples have been somewhat fragmentary in nature and it seems

well worth illustrating the use of the language with some more fully explored case

studies. There are two primary motives for this. The first is to evaluate the use

of the language in design analysis of systems of realistic size and complexity. The

other motivation is that this offers the opportunity to combine the aspects of the

work that have been described and discussed in different chapters of the thesis,

drawing together the different areas of the language, so as to give a better overview

of the language as a whole. The evaluation will, naturally, be done primarily in

terms of the language’s intended use for interpretation and automation of design

analysis. However, the use of the language in related tasks (such as diagnosis)

will be discussed as will the possibility of making use of the language in refining

the functional specification of a system as part of the design process. Finally,

the chapter will consider the relationship between the functional language and the

simulation engine (or engines) used to generate the simulation whose interpretation

the language is to enable.

One difficulty in selecting suitable example systems is that such a system needs

to be complex enough to support the arguments made, while being simple enough

for these arguments to be readily followed. It is hoped that the examples chosen

are appropriate. They are mostly familiar examples, so an informal grasp of their

functionality should be easily acquired.

232

11.1 The Functional Interpretation Language

and design analysis

This section will explore the use of the language in more depth than was done

in the illustrative examples in the text, by describing how the language might be

used to describe the required functions of a relatively simple real-world system

as well as discussing how the use of the language works in concert with a model

based (or indeed a mathematical) simulation of the system under analysis. The

use of the Functional Interpretation Language for interpretation of simulation can

be illustrated by a system from one of the industrial partners on the SoftFMEA

project, under the auspices of which much of the present work was carried out.

This is a system that warns the driver of a car when s/he has not buckled the seat

belt, or the front seat passenger (if any) has not done so. It does this by lighting

a dashboard lamp and intermittently sounding a “chimer” for a period, before the

chimer falls silent. This system has been used in fragmentary examples earlier in

the thesis, but it will now be discussed in more detail.

11.1.1 Seat belt warning system

This is an example of an electrical system of the type that the design analysis tool

developed in earlier work in Aberystwyth (AutoSteve) was intended to model.

However, its behaviour proved too complex for the existing design analysis tool

and, indeed, the failure to model this system correctly was one of the motivations

for starting on the work described in this thesis. The schematic circuit diagram

is shown in Figure 11.1. This schematic was redrawn from one supplied by one of

the SoftFMEA project’s industrial partners. It was changed because the original

system included other functionality. The electronic control unit (ECU) labelled

“RCU” (the Restraint Control Unit) is also responsible for controlling the car’s

airbags. It was part of the design brief for the original seat belt warning system

that it should use existing components where possible. The schematic in Fig-

ure 11.1 separates out the parts of the original schematic that are concerned with

the seat belt warning system. For simplicity, only those components referred to in

the text are named. The actual schematic will identify all components and might

be slightly complicated by including connectors and several wires in series where

a run is so divided. The connecting pins have been labelled to allow direction

and flow of current to be identified. It is, perhaps, worth observing that all the

connections are electrical, rather than being network bus connections, for example

so the system can be simulated either by a qualitative circuit analysis tool, such

233

RCU

GEM

BMU

seat mat
pass buckle

speed sensor

lamp

chimer

driver buckle

ign

relay

ignition

switch

battery

wire A

wire B

wire C

p

g

g

g

g

p

p

p

2

3

4

5

6

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

4

4

4

5

a
r
 p
s

1

2

Figure 11.1: Schematic for the seat belt warning system.

as CIRQ, (Lee, 1999a), or a numerical tool, such as Saber (Saber, 1996). Such a

simulation is briefly described in the following section.

One shortcoming of the way this schematic has been drawn is that the speed

sensor does not have the behaviour of its input. It is essentially treated as a switch

with two possible states, one for when the car is travelling below the threshold

speed and one for when it is travelling at or above that speed. The speed is

simply set manually in running the simulation. Ideally, some way of modelling

the actual behaviour of the speed sensor would be incorporated, but this would

further complicate the schematic and it was not included in the industrial partner’s

original schematic from which the belt warning system schematic was drawn.

The main function of the system is, of course, to warn the driver that his or her

seat belt in unbuckled and to give a similar warning if the front seat is occupied

by an unbuckled passenger. In addition there are two other functions (in the sense

of intended behaviours) of this system that can be informally stated as follows:-

• The system is to be capable of being temporarily disabled, so the car can be

manoeuvred without the system being activated. This temporary disabling

to last until next time the engine is stopped and re-started.

• The system can be permanently disabled. Strictly speaking this means

disabled until the disabling is manually overridden whereupon the system

should function normally.

234

The functional modelling of this system was actually derived from knowledge of

system’s (intended) behaviour, expressed in state charts describing the system.

These showed that the trigger for the temporary disabling of the seat belt warning

function is the buckling and unbuckling of the driver’s seat belt within a fixed time

and the indefinite disabling was triggered by repeated buckling and unbuckling of

the driver’s seat belt, five repetitions being required. How these can be described

in the Functional Interpretation language and how this is used to interpret the

simulation is illustrated in Section 11.1.3.

11.1.2 Simulation of the seat belt warning system

The Functional Interpretation Language is intended to be independent of the sim-

ulator used, in that the functional models can be mapped to system properties

associated with either a qualitative or a numerical simulator, for example. How-

ever, for the purpose of this illustration, it does seem worth briefly describing the

simulation of the example system. The seat belt warning system is electrical but

with significant software components, the ECUs. For the sake of this illustration,

a multiple level qualitative circuit simulator such as MCIRQ, (Lee et al., 2001)

is used, combined with state chart models of the more complex components (the

ECUs), as described in (Snooke, 1999). However, to save space in the description,

the behaviour of the ECUs will be described without state charts.

The qualitative circuit simulator uses four levels of resistance in this case, INF,

HIGH, LOW and ZERO where wires and closed switches have the value ZERO,

components such as the lamp and chimer have the value LOW and the internal

resistance of solid state components (such as the ECUs) is modelled as HIGH.

Open switches are treated as being INF. Each path from power to ground has

as its overall level of resistance that of the highest component resistance and this

is associated with a level of current of NONE, LOW, ACTIVE and SHORT. To

simplify component models, when the current through the lamp is ACTIVE it

is taken to be lit and likewise when the current through the chimer is ACTIVE,

it is sounding. Control of the intermittent chiming is managed by the GEM.

Each switch has positions associated with a different level of resistance. The

“driver buckle” and “pass buckle” have positions labelled buckled (associated with

a resistance of INF) and unbuckled, when the resistance is ZERO. The “seat mat”

has positions occupied (ZERO resistance) and unoccupied (INF resistance). The

values for these switches are chosen because if they were reversed any breakages

in the wires connecting those switches could result in false warnings. As they are,

such failures disable the system, avoiding potentially distracting behaviour. The

235

ignition switch has a resistance of INF in positions ‘p’, ‘a’ (accessories) and ‘s’

(start) and a resistance of zero in ‘r’ (run). This means that the whole system is

only active when the engine is (or should be) running. The switch that is between

pins 3 and 4 in the “ign relay” has a resistance of zero when the current through

the coil, between terminals 1 and 2 is ACTIVE.

As MCIRQ models circuit behaviour in terms of resistance and current, the

behaviour of the ECUs has to be described in these terms. This would be done

using state charts, but as this illustration is not concerned with the disabling

functions (which entail one of the ECUs having some internal memory) textual

descriptions will suffice. These are described using dependency expressions in

terms of current i and resistance r rather than voltage as this is what the simulator

supports. In all these cases, the resistance that is dependent on the current is INF

unless the current expression is true. The internal resistances are named after the

pins they can be taken to join, so (p, 1) joins the pin connected to power to the

pin numbered 1. Currents are indicated by → so (p → 1) means current flowing

from p to 1. In each case, the expressions are local to the component concerned,

named in the commentary so the name has been omitted from the expression.

The BMU (belt minder unit) passes a current to the pin connecting it with the

GEM if there is LOW current between its power pin and the pass buckle pin and

if there is LOW current between the two seat mat pins, indicating that the seat

is occupied but the seat belt not buckled.

r(p, 1) = HIGH if i(p → 5) == LOW ∧ i(p → 6) == LOW

The RCU passes current to the GEM if there is LOW current between its power

pin and the driver buckle pin.

r(p, 4) = HIGH if i(p → 3) == LOW

The speed sensor is treated as a switch with the states fast (zero resistance between

power and the GEM pin) and slow (INF resistance).

The GEM allows current to flow between its lamp pin and ground if there is

current between the sensor pin and ground and between either the RCU pin and

ground or the belt minder unit pin and ground (or both).

r(4, g) = ZERO if i(3 → g) == LOW∧(i(1 → g) == LOW∨i(2 → g) == LOW)

When the GEM enters that state it will also reduce the resistance between the

chimer pin and ground to ZERO for six intervals of 600 milliseconds, separated

236

by interruptions of 300 milliseconds. The use of current rather than voltage is a

limitation of the simulator used.

The simulation can be run using a sequence of circuit states, such as switch

positions. As most of these give uninteresting results, the sample output listed

below is from one specific state. It also is run on the circuit operating correctly,

with no component failures. The output is further simplified by only listing the

current values for those components named on the schematic. In practice it would

list values for each resistance in the circuit, including those internal to the ECUs.

It is hoped that this representation of the output is sufficiently detailed despite

these simplifications. This sample lists the output of the simulator the engine

running, the car going fast, the driver buckled and the passenger unbuckled and

also that the change from the previous simulation is that the car is now going fast

(so the speed sensor state has changed).

Input system state:

ignition switch.position = run

driver buckle.position = buckled

pass buckle.position = unbuckled

seat mat.position = occupied

speed sensor.state = fast

Result: step 1

ign relay 1 to 2 current = ACTIVE

ign relay 3 to 4 current = LOW

lamp current = ZERO

chimer current = ZERO

driver buckle current 1 to 2 = ZERO

pass buckle 1 to 2 current = LOW

seat mat 1 to 2 current = LOW

wire A current = ZERO

wire B current = ZERO

wire C current = ZERO

BMU p to 1 current = LOW

BMU p to 2 current = LOW

BMU p to 3 current = LOW

BMU p to 5 current = LOW

BMU P to 6 current = LOW

BMU 4 to g current = LOW

RCU p to 3 current = ZERO

RCU p to 4 current = ZERO

RCU 1 to g current = LOW

RCU 2 to g current = LOW

speed sensor p to 1 current = low

GEM 1 to g current = ZERO

GEM 2 to g current = LOW

GEM 3 to g current = LOW

GEM 4 to g current = ZERO

GEM 5 to g current = ZERO

237

step 2: current LOW in GEM 3 to g changes resistance

of GEM 4,g and GEM 5,g to ZERO.

Changes are:

lamp 1 to 2 current = ACTIVE

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

wire B splice 1 to splice 2 current = ACTIVE

wire C lamp to GEM current = ACTIVE

GEM 4 to g current = ACTIVE

GEM 5 to g current = ACTIVE

step 3: after 600mS, GEM changes resistance of GEM 5,g to INF.

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

step 4: after 300mS, GEM changes resistance of GEM 5,g to ZERO.

Changes are:

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

GEM 5 TO g current = ACTIVE

step 5: after 600mS, GEM changes resistance of GEM 5,g to INF.

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

step 6: after 300mS, GEM changes resistance of GEM 5,g to ZERO.

Changes are:

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

GEM 5 TO g current = ACTIVE

step 7: after 600mS, GEM changes resistance of GEM 5,g to INF.

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

step 8: after 300mS, GEM changes resistance of GEM 5,g to ZERO.

Changes are:

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

GEM 5 TO g current = ACTIVE

step 9: after 600mS, GEM changes resistance of GEM 5,g to INF.

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

step 10: after 300mS, GEM changes resistance of GEM 5,g to ZERO.

Changes are:

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

GEM 5 TO g current = ACTIVE

step 11: after 600mS, GEM changes resistance of GEM 5,g to INF.

238

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

step 12: after 300mS, GEM changes resistance of GEM 5,g to ZERO.

Changes are:

chimer 1 to 2 current = ACTIVE

wire A splice 2 to chimer current = ACTIVE

GEM 5 TO g current = ACTIVE

step 13: after 600mS, GEM changes resistance of GEM 5,g to INF.

Changes are:

chimer current = ZERO

wire A current = ZERO

GEM 5,g current = ZERO

The simulation works by running the circuit simulator on the circuit in the state

corresponding to the input settings and then checking the component behavioural

description to see if any component’s internal state changes. In this case, the

current flowing in the GEM from the speed sensor results in the lamp’s path to

ground being completed and the intermittent chiming sequence being started. This

result in current starting to flow through the lamp and chimer. Successive steps

simply alternate the resistance of the chimer’s path to ground between ZERO and

INF, according to the timing of the GEM’s behaviour.

It will be seen that despite omitting many of the components (the wires) and

the reasonable simplifying assumption that only those current values that change

between steps are included in the next step, the output of the simulator is substan-

tial. This extract is for one switch setting, and with no failures. For an FMEA, the

output will include a sequence of switch settings repeated for each failure mode

as well as the correct simulation. Even with this relatively simple system, it will

run to several hundred pages. This illustrates the value of interpreting the output

so only the significant results are shown.

Despite the advantages of combining the simulation with the interpretation en-

abled by the use of the FIL, there are occasions when running the simulation alone

is sufficient, such as checking the behaviour of the system in one specific state.

This could be illustrated by colouring the schematic to show the current flows.

Having described a suitable approach to simulation of the example system, it is

time to consider the functional modelling needed to allow interpretation of these

results.

239

11.1.3 Functional description of the seat belt warning sys-

tem

The main function of the this system has already been used to illustrate various

features of the Functional Interpretation Language. It might be described as

follows.

FUNCTION give_warning

ACHIEVES warn_unbuckled

BY

speed > threshold

AND

(driver_unbuckled

OR

(passenger_present AND passenger_unbuckled))

TRIGGERS

PIF show_warning_lamp

AND

PIF sound_chimer

Strictly speaking, of course, this does not capture the condition that the ignition

is on, though it might be argued that since the car is moving, the ignition will

be on (unless the car is rolling down hill, of course). The trigger is a moderately

complex expression because the triggering of the warning function does depend

on a variety of factors. It will be noted that the factors given here do not include

the possibility of disabling the warning system. This will be discussed later. It

will also be seen that the effects associated with the function have been labelled

as purposive incomplete functions (PIFs) as each can be regarded as fulfilling its

own aspect of the purpose of the function or, pragmatically, that the failure of

either one of the effects is less serious than the failure of both, as discussed in

Chapter 7. It is worth noting that the function need not have been described

in this way. If the designer who was creating the functional description felt that

the consequences of the loss of either one of the effects were as serious as those

of the loss of both, the effects could have been described as such, rather than as

subsidiary functions.

The purpose the give_warning function fulfils might be described like this.

PURPOSE warn_unbuckled

DESCRIPTION "Warns driver that seat belt needs buckling."

FAILURE_CONSEQUENCE "Driver not warned of unbuckled seat belt

Risk of injury."

240

SEVERITY 4

DETECTION 7

As was discussed in Chapters 6 and 7, these consequences will be included in the

design analysis report if the trigger results in neither effect (PIF) being achieved.

In the case of a failure analysis (such as FMEA), this might result from wire

B breaking (going open circuit) so supply to both the chimer and the lamp is

interrupted.

As they are PIFs, there are separate functional descriptions for the effects of the

give_warning function. The show_warning_lamp might look like this.

PIF show_warning_lamp

ACHIEVES visual_unbuckled_warning

BY

lamp_lit

This quite simple. Being a PIF it has no trigger expression of its own, it “inherits”

the one from the top level function, which is shared with the other PIF. As a

subsidiary function, show_warning_lamp is associated with its own description of

purpose.

PURPOSE visual_unbuckled_warning

DESCRIPTION "Visually warns driver that seat belt needs buckling."

FAILURE_CONSEQUENCE "No persistent warning of unbuckled seat belt

Risk of injury."

SEVERITY 3

DETECTION 4

As this description of purpose is only used if the other subsidiary function is

present, it can be described making that assumption and it is also acceptable to

draw on some knowledge of the nature of the other associated effect (the other

subsidiary function). In this case, it is known that the sound_chimer subsidiary

function is not persistent, so if the driver is concentrating on the manoeuvre being

carried out so that s/he fails to hear the chimer, no warning will be noticed. It is

suggested that the presence of the chimer both reduces the severity and detection

values for the failure of this subsidiary function because the sounding of the chimer

will draw attention both to the triggering of the main function and to the absence

of the expected dashboard lamp.

The sound_chimer subsidiary function is a good deal more complex, depending

as it does on an effect that is intermittent in nature and that terminates in a

241

passive state (with the chimer silent). For this reason, this function has been used

as an example in Chapter 8. In that chapter, a simplified version of the sounding

function was used, in which a fixed number of “chimes” were counted. In the

actual system, the behaviour was governed by timing, so the chimer sounds for

a set period of time and is silent for a set period of time and this alternation

continues for a set period of time, whereupon the chimer remains silent. There

were similar examples in Chapter 9. The correct version can be described like

this.

PIF sound_chimer

ACHIEVES audible_unbuckled_warning

BY

CYCLE [BEFORE 250ms]

SEQ chimer_on [AFTER 250ms BEFORE 350ms]

SEQ NOT chimer_on [AFTER 500ms BEFORE 750ms]

NEW_CYCLE

SEQ NOT chimer_on [AFTER 5s BEFORE 7s]

This is, unfortunately, an example of the Functional Interpretation Language

that does not read easily, as was discussed in Chapter 9. The intended behaviour

is that the cycle of chimer on and chimer off starts with the chimer coming on

within 250 milliseconds of the trigger of the top level function becoming true and

each sound of the chimer should last for a period of at least 500 milliseconds but no

more than 750, before a silence of between 250 and 350 milliseconds. Finally, the

chimer should fall silent and remain silent after at least 5 seconds of the chiming

sequence but after no more than 7 seconds. This means that there will be at

least five chimes but there might be as many as nine (though in that case, the

final one should be cut short). This functional description is written with the

assumption that the chimer can be regarded as being either sounding or silent. As

the show_warning_lamp function has no temporal constraint, the lamp can come

on at any time before, during or after the chiming sequence. As the two PIFs share

a trigger, if any temporal relationship between these functions was required, this

can be achieved as each timing sequence will start from the same triggering event.

One point that arises from this description is that the functional description need

not specify which component is responsible for the timing of the chimer sequence.

It might be governed by the GEM or by some timing device in the horn itself.

The audible_unbuckled_warning description of purpose is very similar to the

visual_unbuckled_warning one associated with the lamp subsidiary function,

but it is given here for the sake of completeness.

242

PURPOSE audible_unbuckled_warning

DESCRIPTION "Audibly warns driver that seat belt needs buckling."

FAILURE_CONSEQUENCE

"Driver’s attention not drawn to unbuckled seat belt

Risk of injury."

SEVERITY 3

DETECTION 4

The same comments apply as to the earlier description of purpose. It will be seen

that this means that if either of the effects is achieved correctly, the consequences

of failure of the system, as shown in the resulting design analysis report, are less

severe than if both fail. For example, the consequences of the horn sequence failing

while the lamp comes on correctly (for example, if wire ‘A’ breaks), are those of

audible_unbuckled_warning so the risk priority number (RPN) is likely to be

lower than if both fail. The RPN might be raised by a high occurrence factor if

the subsidiary function depends on a particularly unreliable component, of course.

This completes the functional description for the seat belt system’s primary

function, all that is required is to link the triggers and effects to the correct

system properties. This will be discussed once the system’s other functions (the

temporary and permanent disabling functions) have been described. These do,

of course, affect the primary function as they prevent its being achieved or more

strictly its being triggered.

These two functions are arguably somewhat problematic as they do not really

have a purpose of their own. Rather they negate the purpose of the primary

function. Related to this is the fact that their effect is best regarded as an internal

system state, the only effect is the absence of the otherwise expected effects of

the give_warning function. The temporary disabling function is triggered by

the buckling and immediate unbuckling of the driver’s seat belt. This might be

described like this.

FUNCTION temporary_disable

ACHIEVES no_warning

BY

NOT give_warning.driver_unbuckled

SEQ give_warning.driver_unbuckled [before 2000mS]

TRIGGERS

temp_disabled

Here the driver_unbuckled trigger from the main function has been reused, to

ensure that both triggers map to the same system property. Also, there is no

243

temporal constraint on the buckling of the seat belt (NOT driver_unbuckled be-

coming true) but it has to be unbuckled again within two seconds. The associated

description of purpose can be given as follows.

PURPOSE no_warning

DESCRIPTION

"Avoids distraction by belt warning system during manoeuvres."

FAILURE_CONSEQUENCE "Driver distracted while manoeuvring.

Increased risk of collision."

SEVERITY 5

DETECTION 2

As this function’s effect is an internal system property, it needs to be linked to

the give_warning function to achieve any real purpose. This is done by adding

its effect to the trigger of the give_warning function, like this.

FUNCTION give_warning

ACHIEVES warn_unbuckled

BY

NOT temporary_disabled.temp_disable AND

speed > threshold

AND

(driver_unbuckled

OR

(passenger_present AND passenger_unbuckled))

TRIGGERS

PIF show_warning_lamp

AND

PIF sound_chimer

One difficulty with this function is that the disabling of the system is described

by the temporary_disabled function, but not how the temporary disabling of the

system is ended. What is needed is another function that ends the disabling, like

this.

FUNCTION end_temporary_disable

ACHIEVES warning_enabled

BY

ignition_off

TRIGGERS

NOT temporary_disabled.temp_disabled

It is worth noting that these descriptions imply that the state of the ignition

is irrelevant, except in this case, so the driver could, in principle, buckle up,

244

unbuckle within two seconds and only then start the engine and still have the seat

belt system temporarily disabled. This arguably implies that the components

concerned can change state even though they are not connected to the battery

through the ignition switch, which is not the case in the schematic shown, so it

will be the case that careful verification of the system’s design will show that the

temporary_disable function is not correctly implemented. It is felt that this is

an appropriate simplification of the functional modelling here, though this might

or might not be felt to be the case in actual practice.

The description of purpose associated with this function might be given as fol-

lows.

PURPOSE enable_warning

DESCRIPTION "Ends disabling of seat belt warning system."

FAILURE_CONSEQUENCE

"System unable to warn driver of unbuckled seat belt."

SEVERITY 5

DETECTION 2

The need for a description of purpose for the end_temorary_disable function is

arguably problematic, as illustrated by the weakness of this description of purpose.

These functions do have a purpose so associating them with a description of that

purpose is not unreasonable. The difficulty is more the fact that these functions’

purposes really relate to the purpose of the give_warning function. There is also

the difficulty of distinguishing between the failure of the give_warning function

and the failure of the enable_warning function, both of which result in no warning

being given when expected. One way of distinguishing these cases is to regard the

enable_warning function as having failed if the temp_disabled effect is true.

The permanent disabling function is sufficiently similar to the temporary dis-

abling one that there seems little to be gained by adding those examples. Indeed,

there seems little reason why those functions should not share the one descrip-

tion of purpose. Therefore, in the interest of brevity, that function will not be

described. It will also have a similar cancelling function, unless, of course, it is the

case that permanent disabling is literally true and once triggered nothing should

enable the seat belt warning system for the rest of the life of the car. This then

completes the functional description of this system and the mapping between these

descriptions and the system model can be considered.

245

11.1.4 Mapping between the functional and system models

It will be seen from the above that there is no reference to any actual aspect

of the system in the functional descriptions. For example, while the functional

description calls for a lamp to light up, it does not explicitly refer to the lamp

in the schematic. That link is made after the completion of both the functional

model and the system’s structural model, the schematic in this case. This map-

ping between the two models was discussed in Section 5.6. This approach differs

from that of (Price, 1998), and used in the tool developed in earlier work (Au-

toSteve) where the functional description made explicit use of the actual system

properties. The approach taken here encourages the reuse of functional models

for different systems that fulfil some purpose. For example, the system illustrated

here makes use of electrical connections throughout, as shown by the schematic,

but the functional description is equally applicable to a similar system that makes

greater use of software and digital technology, for example, using network con-

nections between the components. Another advantage of this approach is that it

allows the functional and structural models to be constructed separately, so either

model can be constructed first. This introduces the possibility that the functional

model can be built early in the design process and used both as a representation

of the functional requirements of the system and for verification of its evolving

design. This is discussed more fully in Section 11.2.

The drawback is that there is a need for separate, explicit links between the func-

tional descriptions’ triggers and effects and the corresponding component states or

properties in the system model. Note that in this example a qualitative simulator

is used for the sake of simplicity, as described in Section 11.1.2, and that it is safe

to regard the effectors (the lamp and chimer) as working if there is current flowing

between their terminals. This is, arguably a fairly safe assumption in the case of

the lamp as if it “blows” the filament breaks and no current will flow. It is less safe

in the case of the chimer if it has failure modes that allow current to flow without

it sounding.. If these assumption were not made, then behavioural descriptions

of the components could be used as the basis for these mappings, and would also

be required for simulation of the system, alongside the electrical simulator, as is

described in (Snooke, 1999).

The triggers for the give_warning function mostly map to the states of switches

within the system. Given that the components labelled “pass buckle” and “driver

buckle” are switches within the seat belt fitting that are opened when the buckle

is inserted, then the driver_unbuckled element in the trigger expression can be

implemented either by the state of the switch, or even by indicating that the

electrical resistance across the switch is zero.

246

‘‘driver buckle’’.position = unbuckled

IMPLEMENTS

give_warning.driver_unbuckled

The passenger buckle switch mapping is similar. A similar approach is used

for the passenger seat occupancy detector (the “seat mat”) where if the seat is

occupied, this closes a sprung push-to-make contact, so the mapping might look

like this.

‘‘seat mat’’.position = occupied

IMPLEMENTS

give_warning.passenger_present

In both these cases, of course, a reusable switch model could (in principle) be

used, provided care was taken that the “open” and “closed” switch positions were

correctly mapped.

As noted earlier, the treatment of the speed sensor is simplified, so that there is

no need to include the speed sensing system as part of this system model. As the

seat belt warning system is merely concerned with whether or not the vehicle speed

is over or under some threshold, we can get away with treating the speed sensor

as a binary switch with two states, so that mapping might (rather simplistically)

look like this.

‘‘speed sensor’’.state = fast IMPLEMENTS give_warning.speed > threshold

The remaining element of the give_warning trigger expression is the state of

the disabled functions’ effects. These are discussed below.

That completes the trigger mappings for the give_warning function. The dis-

abling functions mostly reuse these mappings, by specifying triggers such as

give_warning.driver_unbuckled. The temporary_disable function is trig-

gered using an expression that can reuse the mapping between the driver buckle

component and the give_warning trigger. This avoids the need for redundant

mappings, eliminating the danger that the two sets of mappings differ. The addi-

tion is the use of the ignition switch, specifically to cancel the temporary disabling

function when switching off. As a car’s ignition switch typically has four positions

(which can be labelled off, accessories, run, start) the correct subset of these

positions has to be used in mapping between the system model and functional

description.

247

ignition.position = off

OR

ignition.position = accessories

IMPLEMENTS end_temporary_disable.ignition_off

It will be seen that these mappings are quite straightforward. As discussed in

Section 5.6, the mappings for the effects are more complex.

The effects for the give_warning are actually those associated with the two

subsidiary functions, each of which has one effect. The effect lamp_lit of the

show_warning_lamp subsidiary function can be mapped to the lamp, like this.

lamp.current = active IMPLEMENTS show_warning_lamp.lamp_lit

UNEXPECTED_CONSEQUENCE "Dashboard lamp distracts driver"

SEVERITY 3

DETECTION 2

Note the inclusion of the consequences of unexpected achievement of the effect,

which might be caused by the wire connecting the lamp to the GEM shorting to

ground.

The effect of the chimer_on effect of the audible_unbuckled_warning function

is a little more interesting. Here the mapping is between one element of the effect

expression, like this.

chimer.current = active IMPLEMENTS audible_unbuckled_warning.chimer_on

UNEXPECTED_CONSEQUENCE "Incessant chiming distracts driver"

SEVERITY 4

DETECTION 2

In both these cases, component states could be used in place of the values for

current. This might well be required where a component is behaviourally more

complex, and specifically where it has failure modes that mean that the overall

system state (the presence of current) does not necessarily result in achievement

of the required effect. This illustrates the advantage of associating the unexpected

consequences of an effect with the mapping between system and effect rather than

with the function. Here, it is most likely that the timing of the chimer is controlled

by an ECU (the GEM) and this being the case, the wire connecting the chimer

with the GEM shorting to ground will cause the chimer to sound incessantly.

As this does not achieve the associated function (which depends on the ordering

and timing of the effects) if the consequences of unexpected achievement were

associated with the function, that failure would (apparently) have no effect.

248

It is also worth noting that here the value ACTIVE for the current has been used,

consistently with the qualitative simulation described earlier, but these mappings

could equally well be mapped to quantitative values, if a numerical simulator was

to be used.

These are the only two effects associated with the give_warning function, but

there is an effect associated with the temporary_disable function, which is then

added to the trigger expression of give_warning. This might be described like

this.

GEM.state.seat_belt_off IMPLEMENTS temporary_disable.temp_disabled

UNEXPECTED_CONSEQUENCE "Driver not warned of unbuckled seat belt"

SEVERITY 4

DETECTION 7

This assumes some sort of state based behavioural model of the GEM. This aspect

of the GEM was omitted from the discussion of the simulation for simplicity and

as it was unnecessary for the illustration. This mapping is reused in both the

end_temporary_disable function and in give_warning, as part of its trigger

expression. The consequences of the effect being achieved unexpectedly are that

the expected warning is not given when it should be. As these are identical to

the consequences of failure of give_warning, a possible refinement might be to

use these consequences (in the warn_unbuckled description of purpose) as the

consequences of unexpected achievement of this effect. Similar mappings would

also be required for the permanent disable function.

Having completed the mapping between the system model and its functional

model, running simulations of the system in various states can show cases where

the system’s behaviour does not match that specified by the functional model.

This can be used either to verify the design or for failure analysis.

The schematic of the seat belt warning system is believed to be correct, but

if, say, wire ‘C’ was omitted from the schematic, then running a simulation will

reveal that even when the speed is over the threshold and the driver is unbuckled,

there will be no current through the lamp so it will not come on, even though

it should, and the consequences of this error in the system design are known.

If failure analysis is being carried out, then the system can be simulated with

that wire broken (for example) and the same consequences will be found. A

part of an FMEA report that could be automatically generated from simulation

of this system, interpreted using the functional model described here, is shown in

Table 11.1. It will be appreciated that the whole FMEA report will be considerably

249

Sev
 Det
Failure effect
 Cause
 Consequence

Function give_warning failed because

function sound_chimer failed because

expected effect chimer_on was absent

wire A

open

circuit

Driver's attention not

drawn to unbuckled seat

belt. Risk of injury.

Function give_warning failed because

function show_warning_lamp failed because

expected efect lamp_lit was absent and

function sound_chimer failed because

expected effect chimer_on was absent

wire B

open

circuit

Driver not warned of

unbuckled seat belt.Risk

of injury.

3
 4

7
4

wire C

short to

ground

Function show_warning_lamp achieved

unexpectedly because unexpected

effect lamp_lit was present

Dashboard lamp

distracts driver

3
 2

Table 11.1: Part of an FMEA report for the seat belt system example.

longer than this extract, typically an FMEA report will include several hundred

rows. However, this short extract is sufficient to illustrate the main features of

the approach, such as distinguishing between the complete ad partial failure of

the main give_warning function. It has also been simplified by omitting any

reference to the trigger expressions. This seems tolerable here as the failures

shown will mean the associated effects and functions are never achieved correctly.

The descriptions of the functions that have failed or are unexpected and of the

consequences are consistent with the rules for representation of failures introduced

in Chapter 5 and summarised in Appendix A. This summary refers to the rule

numbers as given in the appendix, as they are easier to find for reference. The top

row of the extract shown notes that the function give warning failed consistently

with rule A.11 as are the failed subsidiary function and the missing effect (rule

A.12). As only one of the subsidiary functions failed the consequences are those of

that function, consistently with rule A.19. In the second row, both subsidiary func-

tions have failed, so the consequences are those of the top level function, following

rule A.18. In the third row, there is an unexpected effect leading to unexpected

achievement of the lamp lit function. As that function has no consequences of

unexpected achievement, the consequences are those associated with the effect

(strictly, its mapping to the system model), following rule A.15. It will be seen

that this allows the report to distinguish between complete and partial failure of

the top level give warning function and also means that the consequences of any

unexpected effect are included.

It is perhaps worth closing this section with a brief description of how this simu-

lation and interpretation works, for one of the failures shown. Suppose the system

model has been set with the input states (switch positions) as in section 11.1.2.

250

Also, as this is a failure analysis, the system is simulated with wire A open cir-

cuit. Running the simulator will show that the chimer never sounds, though

the lamp will light. On completing this simulation (actually one of a sequence

of simulations) then a comparison with the mappings and the functional model

will reveal that the settings of the system mean the give_warning function is

triggered, so both the purposive incomplete subfunctions are triggered, but that

the sound_chimer function has failed (its trigger, inherited from give_warning

is true but its effect false as the chimer never sounds) so this failure and the

consequences of its associated description of purpose are included in the result-

ing report, as shown in the table. It will be appreciated how laborious a task

this interpretation would be without the interpretation allowed by the functional

description. It will be seen that a similar simulation and interpretation can be

used for design verification by simulating the system with no failures and finding

similar mismatches between expected results (as specified in the functional model)

and the results of the simulation. This approach does, of course, follow the func-

tional labelling approach described in (Price, 1998) with the difference that the

specification of the trigger allows the use of the functional descriptions for design

verification and the additional operators allow the description of the more complex

behaviour associated with the chimer function.

The foregoing shows the usefulness of the approach for the intended purpose

of automating design analysis of engineered systems. The relationship between

functional models created using the Functional Interpretation Language and the

simulation is discussed in more general terms in Section 11.4, following a discussion

of possible other rôles of the language in the design of engineered systems.

11.2 Other possible rôles for the language

Having described a case study demonstrating the use of the Functional Interpre-

tation Language for interpretation of simulation for design analysis in some detail,

other case studies will be used to illustrate other uses of the language, and espe-

cially features of the language not fully explored in the preceding section. However,

these case studies will not be described in such detail, in the interest of brevity.

Beside the use of language in automating design analysis (both design verifica-

tion and failure analysis), as illustrated in the preceding section, there are two

areas that might be considered as possible applications of the functional mod-

elling the language enables. These are diagnosis and functional specification of a

system design. It should be appreciated that these were not the motivations for

251

the research, so the usefulness of the language in these rôles has not been fully

explored. This might be done in future, especially for the analysis of software

based systems.

11.2.1 Diagnosis

As the Functional Interpretation Language is intended for use in design analysis,

including failure analysis, it can be used for generation of a fault tree that can be

used as the starting point for diagnosis. The use of functional interpretation of

the simulation allows a functional description of the symptomatic system failure

to be used, subject to correct matching of terms in relating the description of the

symptom to the functional description of the failure in the fault tree chart.

The generation of a fault tree from FMEA was described in (Price et al., 1996c)

and the use of a fault tree in diagnosis for identifying candidate failures in (Price

et al., 1996b). These approaches are equally applicable to FMEA carried out using

the Functional Interpretation Language.

One possibility that might be explored is that the more precise functional de-

scriptions that the Functional Interpretation Language is capable of might be used

to improve the candidate identification from a fault tree relative to the earlier ap-

proach. This will certainly be the case where a system includes functions whose

trigger cannot be unambiguously derived from the simulation of the correctly

working system (that is, there are dependent functions) as that need no longer be

the basis of the failure analysis that forms the basis of the fault tree. This fol-

lows from the improvement the present approach offers for failure analysis if such

systems, in that the functional description defines the trigger for all functions.

It is worth noting that diagnosis maps back from effect to cause of a fault in

behaviour unlike the design analyses that the Functional Interpretation Language

is intended to help automate, all of which map forward from cause to effect. In

other words the FIL is intended more to help with forward chaining tasks. There

is at least room for arguing that there is less need for the mapping to purpose in

diagnosis as the symptoms are known and can be described in terms of an effect

(in many cases) rather than the failure of a system to meet its purpose. However,

this is not the case in all cases and there is a possible rôle for a functional language,

such as the present one, in identifying candidate failures in such cases. Because the

Functional Interpretation Language increases the capability of automatic design

analysis and this can be applied to diagnosis as described in (Price et al., 1996b),

it follows that the language increases the capability of the approach in that paper.

252

11.2.2 Functional specification of system design

One advantage of the inclusion of the trigger and the use of labels for the trig-

ger(s) and effect(s) associated with a function is that a functional description and

so a system’s functional model can be constructed independently of the system

model itself. It can, therefore, be constructed before the system model, leading to

the idea that the language can be used to specify the functional requirements of a

proposed system in such a way that validating a design of the system against these

requirements can be done automatically as part of the design process. This idea

was introduced in Chapter 5, using the simple torch example, where it was shown

that the functional model of the torch could be constructed to include a functional

description that included the torch being lit while a button was pressed (for flash-

ing the torch). This would imply the use of a push-to-make switch alongside the

conventional slider switch.

Another aspect of this use of the language is possibility of using the language

to specify what should happen in the event of failure of some system function.

For example, in (Gunzert & Nägele, 1999), the development of a safety critical

system in which a fault tolerant module is built from two “fail silent units” is

described. The failure of a fail silent unit might be described using the Functional

Interpretation Language as in the example below. This is a simplified description

of the Brake By Wire Manager for an automotive braking system as described in

that paper.

FUNCTION brake_requested

ACHIEVES braking

BY

brake_request AND brake_force

TRIGGERS

signal_brake_pressure

This function describes (at an admittedly high level of abstraction) the normal

behaviour of the brake manager, simply that it receives a request (brake_request)

that indicates that braking is required and a request for a force of braking

(brake_force), both derived from the position of the driver’s brake pedal and

in response sends a signal (signal_brake_pressure) to the four brake actuators

(one for each wheel) requesting a certain degree of braking force to be applied.

The system described in (Gunzert & Nägele, 1999) specifies the use of two such

modules, the failure of either one can be tolerated, provided that it fails silently so

no conflicting braking signals are sent to the actuators. The idea that the Brake By

Wire Manager should fail silently can be specified by the Functional Interpretation

Language, together with the condition that should trigger this function.

253

FUNCTION fail_silent

ACHIEVES fault-tolerance

BY

(brake_request AND NOT brake_force)

OR

(brake_force AND NOT brake_request)

TRIGGERS

signal_silent

AND

close_down

Here if one of the input signals is detected and not the other, this implies a fault

in the Brake Manager and it should stop working (having sent a signal to that

effect), allowing its partner to govern braking alone, so the driver can continue

until it is safe to stop. In other words, the braking system as whole carries on in

a limp home mode.

In this case, the description has been simplified somewhat, but it does illustrate

the idea that this failure mode behaviour can be specified as part of the functional

description of the Brake Manager.

Another approach to the specification of a system failure mode behaviour is

the use of dependent functions. For example in a motorised camera, pressing

the shutter release causes a sequence of events to happen. As was shown in

Section 10.4, these can simply be described as a sequence of effects (or subsidiary

functions), like this.

FUNCTION take_photo

ACHIEVES photograph_taken

BY

press_button

TRIGGERS

PIF expose_frame

L-SEQ

PIF wind_on

This covers three actions, the exposure (opening and closing of the shutter), the

effects needed for expose_frame, the winding on of the film and the re-cocking of

the shutter. However, this description does not define what should happen if one

or other of these effects should fail. If dependent functions are used, the response

to failure can be defined and so incorporated into the functional specification of

the camera. One possible approach might be to reduce the take_photo function

such that expose_frame is the effect, like this.

254

FUNCTION take_photo

ACHIEVES photograph_taken

BY

press_button

TRIGGERS

expose_frame

As there is now but the one effect of take_photo, there is no need to treat

expose_frame as a subsidiary function. The recharging function, wind_on is now

triggered by the achievement of this function, and can itself usefully be divided

into two functions, so that the failure mode behaviour is defined. The resulting

functions might look like this.

FUNCTION wind_on

ACHIEVES new_frame

BY

FUNCTION take_photo

TRIGGERS

film_wound_on

And this.

FUNCTION cock_shutter

ACHIEVES shutter_ready

BY

FUNCTION wind_on

TRIGGERS

shutter_cocked

So each function is triggered by the achievement of the previous function in the

sequence. It will be seen that now, if the frame is not exposed, the film should

not be wound on, so preventing the waste of a frame. This example is arguably

an oversimplification, as take_photo might fail if, say, the timing of the shutter

opening and closing was incorrect resulting in the frame being badly exposed. The

other example is safer as if the film winding on fails, the shutter should not be

cocked. This behaviour eliminates the danger of the frame being inadvertently

double exposed. This demonstrates the use of the Functional Interpretation Lan-

guage to specify aspects of the failure mode behaviour of a proposed system as

part of its functional specification. This increases its usefulness for the functional

specification of a system. Thus example shows how the language might be used (if

somewhat informally) to refine the system’s functional specification. The specifi-

cation of the motorised camera might start with the simple description, where the

255

three associated functions share a trigger, and this description might be refined

as the drawbacks of this simple functional specification become clear. This might

happen in response to examining the results of simulation as part of the design

analysis, as the functional model is capable of this automated evaluation. For

example, a simulation might show that the film does wind on despite the failure

of the shutter to open but that this winding on is not itself seen as a failure, that

is it has no consequences in the design analysis report. This could prompt the

designer to create a more refined functional description that does highlight this

failure, such as the more complex version given above.

The idea that the language is used in specifying the functionality of a system, as

discussed in this section, allows the functional modelling and the simulation and

so the design analysis to be integrated more closely in the design process. This

encourages design analysis to be carried out early and often in the system’s design

process, when it is most beneficial.

A rather more speculative area related to this use of the Functional Interpre-

tation Language is whether a system’s functional specification constructed using

the language can be combined with knowledge of the behaviour of candidate com-

ponents to automatically generate a candidate system design, in an approach not

unlike that of (Iwasaki et al., 1993). This use of the language does differ from

the approach in that paper, component functions are not used, being replaced by

knowledge of component behavioural models, of the kind used in simulation for

design analysis. For this to work the functional description of a system would need

to be decomposed rather more than the “black box” description used in this the-

sis. One objection to the Functional Interpretation Language for this task is that

the lower level functional description might be unwieldy as description of purpose

might be felt to be redundant. One possible approach might be to decompose

a system function into subsidiary operational incomplete functions, avoiding any

need to construct superfluous descriptions of purpose. Because these subsidiary

functions can use the effect of some other function as its trigger it is not impos-

sible that a complete functional model could be constructed in this way and its

appropriateness evaluated against the trigger and effect of the original top level

function. This evaluation could be done before the functional model is reified as

a candidate design, simply by comparing the truth of the conditions (trigger and

effect) of the main function with the conditions resulting from the causal model

constructed by combining subsidiary functions in this way. It should be stressed

that this has not been tried and while the Functional Interpretation language

might be insufficient to automate this process, it does seem possible to use it to

help construct and evaluate candidate designs. How these functional models are

256

then mapped to a structural model of the system remains as an area for future

work, as does developing this possible use of the language itself. One possible field

in which this might be done is software design, if only because the knowledge of

component behaviour might be available. Components in this case will, of course,

be software components, such as object oriented classes and methods.

11.2.3 Explanation generation in education and training

One area where model based simulation has been used is in training and educa-

tion. Examples include the use of the General Architecture for Reasoning about

Physics (GARP) (Bredeweg, 1992) in learning. Developments for this applica-

tion have included a graphical representation of the simulation models (Bouwer &

Bredeweg, 2001) and an interactive tool to support the construction of the simu-

lations (Machado & Bredeweg, 2001). In addition, CyclePad, a simulation tool for

thermodynamic systems based on a process centred ontology (Forbus, 1997) was

intended for use in education. It has been used in the instruction of engineers in

the field of thermodynamics, (Baher, 1999) and its use was evaluated in (Tuttle

& Wu, 2001).

The rôle of interpretation of simulation might well be rather different in this

field, as compared to design analysis. For example, students might be encouraged

to predict the result of a simulation and compare their results with the result of

the model based simulation. While this places greater emphasis on the simulation

itself, one can see a need for some means of providing some interpretive explana-

tion of any differences between these results. These explanations will frequently

be in terms of the relationships between the causes of the differences between the

predicted and actual simulations rather than the effects of these differences, but

it is not impossible that there are cases where the Functional Interpretation Lan-

guage might prove useful. One possibility that springs to mind is in explaining the

effects of errors in student exercises in programming. This remains a possible area

for future work, however, as this use of the language has not yet been investigated.

11.3 Functional description of software

One of the motivations for the development of the Functional Interpretation Lan-

guage is the desire to automate design analysis of systems that incorporate soft-

ware based components. This was the aim of the SoftFMEA project which was

the source of funding for much of the research described in this thesis. It will

257

be appreciated that the use of software introduces the greater complexity of be-

haviour on which a system’s functionality can depend, and which the language

was developed to describe.

While software examples have been used in this thesis, the fact that the descrip-

tion of software based systems was an important part of the motivation suggests

that a brief discussion of the use of the language for describing software is worth

including. This section will discuss questions that arise from the use of the Func-

tional Interpretation Language for describing software and software based systems

rather than include a full case study. This is partly because there are such ques-

tions that need some discussion and partly because any case study of realistic scale

will be of sufficient complexity to make the necessary explanation excessively pro-

tracted.

The first question that arises is the one of whether the approach to modelling of

software based systems for design analysis is of interest. There has been interest

in design analysis (particularly FMEA) of software and embedded systems (Maier,

1995; Bowles & Wan, 2001). With the increasing use of programmed components

(such as ECUs) in areas such as the automotive sector the safety analysis of such

systems is of increasing importance, especially with the introduction of “drive

by wire” systems with no mechanical backup, as noted in (Papadopoulos et al.,

2001). That paper describes a “semi-automatic” approach to this safety analysis,

based on constructing fault trees of the system, which process is repeated at finer

granularities as the design process continues. The lack of, and need for, mature

techniques for manual software FMEA is noted by (Goddard, 2000). There is

a description of the early research into an approach to modelling software for

automated safety analysis in (Snooke, 2004). That approach traces the paths of

possible errors arising in a program’s variables and so traces the effects of such

errors. There have been encouraging initial results with the use of the Functional

Interpretation Language for interpretation of the result of this analysis of software.

Using the Functional Interpretation Language to build functional models of the

system as a way of specifying the system’s intended functionality is, of course,

equally applicable to software system as to any other system, so the possibility ex-

ists of building functional models of an intended software system early in the design

process and being able to simulate the behaviour of the system so that the design

can be automatically verified against this functional specification. This approach

is not a substitute for a conventional formal method, because the correctness of

the system described can only be demonstrated by simulation (so depends on the

correctness of the system model) as opposed to being mathematically proved. In

the case of software, of course, it is feasible for the source code to be used in the

258

system model, which means that model’s correctness depends on the compiler. It

does share with formal methods the idea that the functional requirements can be

expressed in a such a way that the system can be verified against them and this

will be done early in the design process.

While the CYCLE operator gives the Functional Interpretation Language a way

of describing iteration in a program, the lack of any control operator might be

seen as preventing its use in modelling the function of software. However, this

is arguably not the case, as any control branching of a program that results in

a different output (or effect) will simply result in the achievement of some other

system function. This does mean that the condition that triggers the branch

program needs representing in the functional description. For example, consider

an Automatic Teller Machine (ATM) that will refuse a request for a withdrawal if

the account has insufficient funds available. A possible pseudocode listing of the

relevant fragment might look like this.

void checkBalance (int request)

if (balance < request) {

refuseWithdrawal ();

} else {

dispenseCash (request);

}

This does, of course, lead to two alternative responses to the original trigger

(which can be taken to be the user entering the amount to be withdrawn). As the

two responses fulfil different purposes, they are modelled as different functions in

the Functional Interpretation Language, as shown here.

FUNCTION make_withdrawal

ACHIEVES cash_dispensed

BY

request_withdrawal

AND

(request_amount <= account_balance)

TRIGGERS

dispense_cash

Here, of course, the variable request in the pseudocode implements the func-

tional description’s element request_amount and the balance variable imple-

ments account_balance. The purpose of this function is, of course, to dispense

the requested amount of cash. The other branch of the ATM pseudocode results

in the triggering of a different system function, the refusal of the request.

259

FUNCTION refuse_withdrawal

ACHIEVES overdraft_avoided

BY

request_withdrawal

AND

(request_amount > account_balance)

TRIGGERS

request_refused

The mappings are shared with the make_withdrawal function. The purpose here

is, of course, to protect the account from becoming inadvertently overdrawn and

the effect is likely to be the display of some appropriate message on the ATM’s

screen.

Where a program’s control path does not affect the actual effect or the purpose

of a program or program fragment it can safely be ignored in the functional model

of the system. Examples are not easy to come up with as these cases are relatively

unusual. One possible case might be that it is specified that a program should

not be closed with any unsaved work open, and while this leads to two distinct

behaviours (if there is any unsaved work it must be saved, if not no action is

necessary), functionally the end result is identical and so the difference between

these behaviours could be ignored. It is appreciated that this is a somewhat

contrived example which does, perhaps, show how unusual such cases are.

While the functional descriptions above are more elaborate than the code they

describe, it is worth pointing out that they do incorporate an abstract view of parts

of the software not listed, as the system functions described also depend on the

correct behaviour of the refuseWithdrawal and dispenseCash code and indeed

the hardware that actually dispenses the cash, so the system these functional de-

scriptions describe is more elaborate than the illustration suggests. This example

illustrates what might well be the most likely use of the Functional Interpreta-

tion Language with regard to the modelling of software, which is the modelling of

embedded systems where at the functional level there is little need to distinguish

between the hardware and software components of the system. Indeed the fact

that the functional descriptions are independent of the domain means that the

same functional description can be used whether a given function is implemented

in hardware or software.

Having considered different uses of the Functional Interpretation Language and

seen that its use for design analysis as well as for functional specification depends

on the availability of a simulation engine to generate a model of the system’s

behaviour, it is time to examine the relationship between functional models built

using the Functional Interpretation Language and the simulation engine.

260

11.4 Relationship with the simulation engine

As was suggested earlier, the automation of design analysis depends on both the

ability to simulate a system, to obtain a description of the system’s behaviour

and the ability to interpret that behaviour in terms of the system’s purpose to

allow the automatic generation of a design analysis report. While the purpose of

the Functional Interpretation Language is this interpretation side of the design

analysis task, it is necessary to at least consider the implications of the use of this

language on the requirements of the simulation engine (or engines) used in a design

analysis tool. As the subject of this thesis is the interpretation language, rather

than simulation, this discussion will be confined to requirements of the simulation.

The use of the Functional Interpretation Language should not restrict the choice

of simulator, provided the chosen simulator provides output that can be mapped

to the appropriate parts of the functional model and it meets the requirements

discussed in this section. While an electrical simulator was used in the worked

example earlier there is no reason why that should be the case. The seat belt

warning system could have had more of its control behaviour implemented in

software (using a data bus for communicating between the ECUs, perhaps) and

while that would lead to a change in the approach for simulation, there would be no

need to change the functional description. One could envisage a design analysis

system that used the FIL for interpretation and allowed the use of alternative

simulators for electrical, hydraulic and software based subsystems, and any others

found necessary.

This follows from the functional labelling approach in (Price, 1998) and a brief

summary of that system as implemented in the commercial design tool (AutoSteve)

will help to clarify the requirements to be discussed. This approach uses an elec-

trical simulator combined with behavioural descriptions of the components, as

described in (Snooke, 1999). To run a simulation, the inputs to the system (such

as switch positions) are set and the simulation started. The simulation will then

run until the system settles into a steady state whereupon the states or activity of

the effector components can be mapped against the functional labels to establish

which system functions are achieved in this system state. For example, if after the

simulation of the current behaviour of a car lighting system is complete and the

system is in a steady state there is current in the headlamp dipped beam filaments,

the dipped_beam function is achieved.

This introduces one immediate difference as using the Functional Interpretation

Language the function will only be achieved if the function’s triggers (which map

to the input components) are also true. In other words, the function will only be

261

achieved if the switches are set correctly for that function. This does not place

any new demands on the simulation engine as the switch positions were known at

the start of the simulation.

There are a few areas where the relationship between the Functional Interpreta-

tion Language and the simulation needs discussion. These arise largely from the

novel features of the language. They will be discussed in turn.

11.4.1 Sequential behaviour and temporal constraints

It will be appreciated that the approach described above is appropriate where a

function depends on a persistent output or state of the system, but cannot be

used with functions that depend on intermittent or sequential outputs, either be-

cause the system will never reach a steady state until some other input causes the

intermittent behaviour to stop or because the earlier outputs in a sequence are

over before the steady state is reached. These are, of course, the types of function

that can be described using the SEQ, L-SEQ and CYCLE operators. Therefore the

ability of the Functional Interpretation Language to describe functions that de-

pend on such behaviour introduces these two new requirements on the associated

simulation engine. In practice the simulation engine has to recognise that the

simulation has entered a cycle regardless of the interpretation, simply because if it

fails to do so, the simulation might run indefinitely. There seems to be no intrinsic

difficulty in having the simulation engine returning a sequential description of the

states the system entered during the simulation. The example simulator output

in Section 11.1.2 does this. The only difficulty is ensuring that such a sequential

description of the system’s behaviour covers all the significant states. Obviously,

if every state change is listed, this will be done, and the interpretation side of the

design analysis tool can ignore those state changes that do not affect the state or

behaviour of any components that are mapped to the functional model. For ex-

ample, the momentary state where a relay has current flowing through it, but the

switch has not yet moved in response can be ignored as the effector components

driven by the current through the relay’s switch will not have changed state.

This requirement of the simulation engine can be further refined by requiring the

modelling of timing of these changes of state, so that the timing of achievement of

a function can be described, allowing the interpretation side of the design analysis

tool to identify situations where a function is achieved in an untimely manner,

as discussed in Chapter 9. This does entail the incorporation of timing informa-

tion in behavioural models, of course, which increases the overhead in building

the necessary models. This is quite applicable to models based on state charts,

262

as described in (Snooke, 1999). This approach is also appropriate for software

based behaviours. Another aspect of timing in a system model is where timing

constraints are a part of the trigger of a system function, as in the temporary dis-

abling function of the seat belt warning system described earlier in this chapter.

This does raise problematic requirements for the simulation engine, as an input

event will have to be added to the simulation at the appropriate point while the

simulation is running following the previous input. The assumption that inputs

to the system are independent and instantaneous can no longer be used. One

possible (though perhaps not feasible) approach is to run the simulation in real

time (perhaps scaled if necessary) so the new inputs can be made when needed.

Another possible (if complex) approach is to allow a programmed scenario of in-

puts (that would otherwise drive distinct simulation steps) to include temporal

information. Then, given that the simulation can keep track of time, the timed

input can be made programmatically at the right point in the simulation.

11.4.2 Simulation through the design lifecycle

Because the Functional Interpretation Language allows the possibility of build-

ing the functional model of a system early in the design process, as part of re-

quirements definition, this raises the possibility of using the functional model to

interpret a sequence of different simulations, of finer granularity, as the design

process progresses. This is not dissimilar to the generation of fault trees of finer

granularity proposed in (Papadopoulos et al., 2001). An approach to analysis us-

ing finer grained as more precise models become available is described in (Price

et al., 2003). Here as the electrical system design is refined, three valued qualita-

tive circuit modelling is superseded by multiple valued qualitative and finally by

numerical circuit models.

The functional descriptions are, of course, equally applicable to any of these

system models. All that is required is a refinement of the mappings between the

system models and the effects in the functional description. For example, a system

function might depend on some lamp being lit, and the lamp might be regarded

as being lit if the current through it is active in the three valued model, medium

in the multiple valued qualitative model and with a current of, say, between 500

and 700 milliamps in the numerical model. The effect’s label need not change,

so neither need the functional description itself; only the mapping between it and

the system model changes. The functions to which the lamp being lit contribute

do not change at all, of course, as the purpose will not. Even this change to the

mappings between the system and functional descriptions might not be needed if

263

the effector components are described in terms of state as the state description

will themselves change with the increasing granularity of the model, but the same

(or at least corresponding) states will be associated with a function’s effect. This

places all the changes required through the design process on the simulation side of

the tool, with the advantage that as they are associated with reusable component

behavioural models. These alternative models can be retrieved from a library of

component models.

11.4.3 Dependent functions

The idea that a system function might depend on some other function (as discussed

in Chapter 10) has relatively little effect on the simulation side of a design analysis

tool. One point that does arise, though, is that a where a function is triggered

by the achievement or otherwise of some other functions, it will be triggered as a

result of a change in system state during the simulation rather than directly by

the inputs from outside the system. There seems no reason why this should cause

any particular problems, but it is the case that the sequential description of the

system behaviour required for functions having intermittent or sequential effects

will also need to be checked by the interpretation side of the design analysis tool

for system states that trigger some dependent function. The idea that a dependent

function might affect the seriousness of the main functions, such as a telltale light

failing and making the failure of the main function less detectable is a purely

interpretive point and has no effect on the relationship between the simulation

and the functional model.

Having discussed the aspects of the Functional Interpretation Language that

might have most affect on the relationship with the simulation engine, there are

one or two minor aspects that can be swiftly discussed.

As the functional descriptions are generally independent of the domain of the

system, there should be no difficulty relating the functional descriptions to systems

whose analysis depends on a mixture of domain based simulators, such as there

being domain based simulators for the electrical and water flow in a washing

machine.

Because the triggers and effects of a function are essentially binary in nature,

being either true or false, there is a need for these to be related to states of com-

ponents that are not binary. This might be because the output (say) is modelled

numerically, in which case an acceptable range of values can be associated with

correct achievement of the effect, as described above, or because the effect depends

on a component with several qualitatively distinct states (such as slow or fast of

264

windscreen wipers). This presents no difficulty as again the mapping between the

functional description and the system model will use the correct one of these pos-

sible states and logical NOT can be used to simplify functional descriptions where

necessary.

All the foregoing has been concerned with the relation between the Functional In-

terpretation Language and a system model and simulator built using a component

centred ontology. This is, arguably, a natural ontology for the design analysis of

engineered systems. It is also the case that other functional modelling approaches

tend to be associated with that ontology. This is clearly the case where the func-

tional language is used to define the function of components, such as in (Hawkins

& Woollons, 1998).

However, while the present work has not investigated the possibility of using the

functional language for interpretation of the effects of a process based simulation,

there seems to be little difficulty in doing so. A function is modelled in terms of

the triggers and effects on a system’s intended behaviour, associated with specific

components (such as the headlamps in the example above). It should be possible to

associate system functions with specific processes rather than specific components.

Indeed, the functional model might be identical. For example, a boiler needs a

function that prevents its pressure climbing above a safe level, like this.

FUNCTION reduce_pressure

ACHIEVES prevent_explosion

BY

pressure > working_pressure

TRIGGERS

release_steam

There seems to be no difficulty in mapping the effect either to the state of a

component (the safety valve) or to the triggering of some process, the escape of

steam.

The discussions above, regarding the relationship between the Functional Inter-

pretation Language and the simulation engine suggest that a design analysis tool

has two distinct (but mutually dependent) aspects, so there is a simulation en-

gine (or more than one domain based one) forming the simulation side of the tool

and the Functional Interpretation Language forms the basis for the interpretation

side of the design analysis tool. In principle, the domain independent nature of

the Functional Interpretation Language allows different simulators to be used in

conjunction with a functional model, simply by changing the mappings between

the system model and the functional model, so it is not impossible, say, that the

same functional model could be used for a gas and electric hob.

265

While this is not concerned with the relationship between the interpretation and

simulation, it seems worth concluding this section with a brief consideration of

how the arrangement of functional descriptions, so that the functions can share

effects and mappings, might be implemented. This is especially important where

there are dependent functions as this increases the number of relationships between

functions, and so cases where ne functional description will refer to another. The

approach taken in this thesis is to use a qualified name for the function or element

that is being referred to, as was illustrated in the seat belt warning case study

earlier in this chapter. For example, the temporary_disable function has as its

trigger the trigger of the seat belt system’s main function, give_warning. This

was shown by qualifying the label of the trigger with the name of the function to

which it belonged, give_warning.driver_unbuckled. One approach to imple-

menting these relationships is to keep the functional descriptions in separate files,

having the arrangement of files mirror the arrangement of functions and elements.

A group of functions might be associated with a system, say, so that the system is

mirrored by a directory with the same name, and functions can therefore be identi-

fied by the system, as well as elements (such as trigger and effect) by the function.

This is very similar to the way the package structure in a Java application’s source

tree matches the file structure itself.

266

Chapter 12

Conclusion and future work

The use of the Functional Interpretation Language for interpretation of simula-

tion of engineered systems, as has already been stated, builds on the Functional

Labelling approach of (Price, 1998) and by the use of that approach in AutoSteve,

the model based design analysis tool developed in previous work in Aberystwyth.

That work demonstrates the effectiveness of the approach on which the present

work builds. Therefore the conclusion of the present work must be in terms of how

effectively the language described herein addresses the limitations of the earlier

work, by increasing the range of systems and tasks for which the language can be

used, and more specifically by how well the Functional Interpretation Language

meets the sets of requirements stated in the Introduction and in Chapter 5.

This chapter will discuss the language in terms of those requirements and in

relation to the research question, can we devise a language for interpretation of

behavioural simulation of engineered systems (of arbitrary complexity) in terms

of the systems’ purpose?, and motivation presented in the introduction before a

discussion of possible future work. This discussion of future work also serves to

highlight other areas in which the Functional Interpretation Language might prove

to be of use, though its use in these areas has not been explored as part of the

present research.

12.1 How the Functional Interpretation

Language meets its requirements

This section discusses how well the functional interpretation language meets the

requirements set out in Chapter 5 and then goes on to discuss how well it meets

267

the requirements for functional modelling of systems of the kinds enumerated in

the Introduction.

There are five requirements of a functional modelling language set out in Chap-

ter 5, each will be discussed in turn.

Capable of recognising whether the system’s purpose is being fulfilled.

This feature of the Functional Interpretation Language is common with the Func-

tional Labelling approach of (Price, 1998) in which the achievement of a function is

associated with the presence or otherwise of some expected effect. The present lan-

guage can be argued to refine this approach by the inclusion of the trigger (which

was added to the functional labelling approach for design verification) leading to

the abstraction of a system’s behaviour into one of four states expressed largely

(though not entirely) in terms of the fulfilling of some purpose of the system. The

use of the recogniser (based on the truth of the trigger and effect expressions)

allows the language to recognise when a system’s purpose is being achieved.

Applicable to static or dynamic functions. This is, arguably, the weakest

aspect of the Functional Interpretation Language. The nature of the recogniser of

achievement of a function, depending as it does on a trigger and effect, can hardly

be said to lend itself naturally to the description of a static function, though an

approach to modelling such functions was described in Chapter 5. As the pri-

mary aim of the language is interpretation of simulation (where it is reasonable

to expect some dynamic change to the system), this weakness is, perhaps, un-

derstandable. However, the approach to describing static functions in Chapter 5

is a sound approach to the problem so the langauge does fulfil this requirement.

What it is incapable of describing usefully are functions whose effect is incapable

of simulation, such as a subjective case like the aesthetic function of a placing

a vase of flowers in a room. The language could be used to describe such func-

tions, but their achievement cannot be recognised, as it cannot be modelled in the

simulation.

Applicable to physical and abstract objects. The most significant example

of abstract systems we might want to analyse are software based ones, and the use

of the Functional Interpretation Language for the design analysis of such systems

was discussed in Section 11.3. The language can be used for the description of

abstract systems, with the proviso that such systems must (assuming the language

is used for its intended purpose of the interpretation of simulation) be capable

of being simulated in terms that are applicable to the language. This implies

268

the presence of triggering inputs and outputs to and from the system that can

be associated with the triggers and effects of the system’s function. It seems

reasonable to suggest that this is an appropriate model for analysis of software

based systems (such as programmable electronic control units). The language

could be used to describe such abstract systems as elements in a work plan (such

as specifying the triggering inputs and effects of individual work packages) but

this has not been explored and the usefulness of the language in this area has not

been established.

Independent of the system. This is a significant difference between the Func-

tional Interpretation language as presented here and the functional labelling ap-

proach from which it is derived. In the functional labelling approach in (Price,

1998), the functional description is attached to an known property of a compo-

nent of the system to be analysed. Therefore, the functional model could not be

built independently of the system with which it was associated. The use of labels

for the trigger and effect of a function, that are then mapped to the appropriate

system properties, does allow a system’s functional model to be constructed inde-

pendently of the system. One advantage of this is the possibility it introduces of

building a functional model of an intended system before the system itself is de-

signed, allowing the functional model to specify the functionality that the system

is to embody and allowing the system to be tested (in simulation) against this

specified behaviour. The functional model can therefore be regarded as represent-

ing the system’s functional requirements. This is arguably the most significant

improvement over the earlier work.

Capable of specifying expected behaviour to arbitrary level of precision.

While the functional hierarchy used in the functional labelling approach, as de-

scribed in (Snooke & Price, 1998), allows a system function to be described with

precision, the use of both triggers and labels for functions and effects encourages a

greater degree of precision in describing a system function. This was discussed in

Chapter 5. The simple torch example used in that discussion serves to illustrate

the advantage of the present approach, illustrated by the example of the use of

the language in specifying the need for a trigger for flashing the torch. It is also

suggested that the use of labels to allow decomposition of functions in terms of

effects as well as in terms of subsidiary functions is valuable in constructing a

precise functional description.

The list of requirements above includes two of the three requirements of a func-

tional modelling language in (Chandrasekaran & Josephson, 1996) and it seems

269

worth at least mentioning the remaining one, that the language be applicable to

natural and man made systems. As was argued in Chapter 5 this was felt not

to be important in a language intended for design analysis of man made systems

and there is arguably a difficulty over considering the behaviour of some natural

systems in terms of purpose. However, it does seem possible that, given that a

system can be described in terms of fulfilling a purpose, the Functional Interpre-

tation Language might be useful for modelling natural systems. For example, it

would be quite feasible to use the language to describe the function of an organ

(such as the heart), but given the problems of any notion of purpose introduces, it

is perhaps inappropriate for describing natural ecosystems. It could conceivably

be used to describe biological systems resulting from human use of land, where

the notion of purpose is less difficult. This has not been explored, however.

As was stated in the introduction to this thesis, the original motivation for the

development of the Functional Interpretation Language was to increase the range

of systems for which the functional labelling approach to model based design

analysis can be applied. The modelling of the four classes of system behaviour

concerned was discussed in Chapters 6 to 10 and how these features of the language

might be used in practice was discussed in Chapter 11. The importance of this

work in motivation of the research herein suggests that it is worth a brief recap of

these features and their use in this concluding chapter. There are four classes of

system behaviour that it was felt the language should be capable of describing.

Systems where a function might be partially achieved. Unlike the ap-

proach to hierarchical functional modelling described in (Snooke & Price, 1998),

the Functional Interpretation Language draws a distinction between a function’s

effects and subsidiary functions. This allows the language to differentiate cases

where the presence of one of two (or more) effects can be regarded as partial

achievement of a function from cases where the function depends on all effects

being present, as discussed in Chapter 6, where these cases were illustrated using

small examples. The flexibility of this use of subsidiary function is increased by

the introduction of “incomplete functions” so that common parts of a functional

hierarchy need no repetition. This was illustrated in Chapter 7. Therefore the

language allows cases where a function is partially achieved to be distinguished,

where this distinction is appropriate. The examples used in those earlier chapters

(the headlamp system against the warning system) illustrate this distinction. This

was further explored in the full case study in Chapter 11 in which one of the visual

and audible outputs occurring despite the loss of the other could be regarded as

mitigating the loss of the warning function.

270

Systems whose functionality depends on intermittent or sequential ef-

fects. This is, perhaps, the most apparent addition to previous functional de-

scription languages. The addition of sequential operators (similar to the future

operators in temporal logic) introduces the possibility of functional description of

a range of systems that could not be so described previously. This was discussed

in Chapter 8, which included examples of such systems and the use of these op-

erators was also explored in the case study in Chapter 11. As has been noted,

the fact that the system described in that chapter could not be modelled with the

earlier language was a trigger for the present research. The use of the sequential

operators allows more precise description of the temporally complex behaviour

to be expected of software based systems and the increasing use of such systems

embedded in many products enables a valuable increase in the range of systems

the language can describe, relative to earlier functional description languages.

Systems where there is a danger of the required effects being achieved

in an untimely manner. This feature of the Functional Interpretation Lan-

guage clearly relates to the sequential outputs summarised above. The use of

temporal constraints to specify the timing of the sequence of the chimer in the

seat belt warning system was illustrated in Chapter 11. The distinction between

the untimely achievement of a function (as opposed to its unexpected achieve-

ment) and its failure was discussed and illustrated in Chapter 9. The possibility

of such untimely achievement of a function is increased by the increasing inter-

relationships between system functions. One example of this is where functions

depend on competition for access to a CSMA-CD network (such as CANbus) so

that network messages are delayed by the network being occupied by the mes-

sages associated with some other (arguably higher priority) function. The use of

these temporal constraints allows such cases of late achievement of a function to

be recognised and differentiated from failure of the function.

Systems with subsidiary functions whose achievement depends on the

state of some other system function. The inclusion of the trigger as the pre-

condition of a function introduces the possibility of the post-conditions (effects)

of a function being used as the precondition (trigger) of some other function, so

that the idea that one function depends on the state of another can readily be

described. This allows the description of the different categories of function that

depend on some other function that were discussed in Chapter 10. The set of tell-

tale and warning functions described therein is complete (given their dependence

on inputs and outputs rather than internal behaviour), but the fault tolerant func-

271

tions set cannot be so described as the nature of that set depends on the behaviour

associated with the fault tolerant function. There is also the recharging function

that was illustrated by the camera example in Chapter 11. A functional language

that does not include the trigger cannot describe such functional dependencies.

An effect of this limitation is that such a functional language cannot describe the

failure of such a function. The failure of a telltale lamp, for example, cannot

be described, because the language fails to unambiguously define that function’s

trigger. The inclusion of the trigger in the Functional Interpretation Language

eliminates this shortcoming.

These summaries have been kept brief, as these features and uses of the language

were discussed in the chapters indicated. It is felt that any further description of

this material in this conclusion is somewhat repetitious and therefore superfluous.

The fact that the Functional Interpretation Language can be used to describe the

functions of systems with the above characteristics demonstrates that the language

increases the range of system that can be modelled for design analysis, relative

to the earlier functional labelling approach. In addition, the incorporation of a

function’s trigger and the use of labels for the function’s trigger and effect, so that

the functional model can be built independently of the system model, increase

the range of tasks for which the language is applicable, as well as encouraging the

closer integration of functional modelling and simulation into the design process.

Because the language depends upon a simulation, rather than being a self con-

tained model of the system, it cannot be proved that the language can be applied

to systems of arbitrary complexity. However, the language’s consistency and the

inclusion of temporal operators suggest that the limitation on complexity is more

likely to be set by the complexity of the models than any inherent shortcomings

with the language. The examples used in this thesis demonstrate that the Func-

tional Interpretation Language can be used to describe the functions of systems

whose behaviour was beyond the capabilities of the earlier language. This enables

the simulation of such systems to be interpreted in terms of the system’s purpose

and so allows the automatic generation of design analysis reports both for design

verification and for failure analysis of a wide variety of engineered systems, most

particularly for software based systems.

12.2 Future work

Some possible areas for future work based on the present research were outlined

in earlier chapters. It seems worth reprising these to summarise different ways in

272

which this research might be carried forward.

One difficulty with the present state of this research is the additional require-

ments on the simulation side of a model based design analysis tool. The Func-

tional Interpretation language would support the design analysis of systems whose

behaviour is beyond the capabilities of the implementation of an associated simu-

lation engine. As was suggested in the section on the relationship with the simula-

tion engine, Section 11.4, there is no intrinsic difficulty with building a simulation

engine that fulfils the requirements that the Functional Interpretation Language

places on that side of the design analysis tool. Indeed the approach to simulation

used in AutoSteve, mixing a domain based simulator with state based component

simulation, offers the possibility of a generating a sufficiently sophisticated de-

scription of a system’s behaviour, but there is a need for an implementation of

such a simulation engine that fulfils this potential.

An interesting possibility for simulation (or behavioural modelling) that might be

used in conjunction with the Functional Interpretation Language is in the field of

software design analysis. The approach to software modelling, based on tracing the

possible paths of errors in variables that was introduced in (Snooke, 2004) seems to

be a promising approach to model based design analysis of software systems. The

basis for the system model (which forms the basis of the behavioural analysis) is,

of course, the source code. There have been some encouraging early results using

the Functional Interpretation Language to interpret this software modelling for

generating FMEA of software. The modelling of software (especially of embedded

software) looks a promising application area for this language, with its capabilities

of describing the sort of complex behaviour that software can introduce into a

system.

A possibly related area of future investigation is the use of the langauge in in-

terpretation for explanation generation in education and training. As was briefly

discussed in Section 11.2.3, this might be found useful in assessing and explaining

the effects of errors in student programming exercises. This introduces a possible

rôle for the language in education, by using it to enrich explanation of the work-

ings of some system. There is possible scope for investigation of this use of the

language in explanation generation relating to physical (and biological) systems,

and possibly in interpretation of the results of exercises in modelling social and

economic systems.

On a more speculative level, the possibility of using the Functional Interpreta-

tion Language for supporting the design process itself, although not a primary

motivation of its development, does look an interesting area. One particular area

that looks worth investigation is the possibility of using the language as a means

273

of specifying the functional requirements of a design, against which a candidate

system design can be analysed by simulation, as the possibility exists of auto-

matically comparing the system’s behaviour (as simulated) with the functional

requirements. This does have the advantage of incorporating the simulation of

the system more closely in the design process, encouraging the early and frequent

carrying out of the sort of safety analyses the functional language is intended to

help automate.

It is worth noting that all the examples in this thesis have been modelled using

a component centred ontology, indeed most approaches to functional description,

at least for design analysis, seem to use that ontology. In the case of the present

approach, as in the earlier functional labelling approach of (Price, 1998), system

functions are associated with the inputs and outputs, or states, of specific com-

ponents. This is an intuitive approach to use for the analysis of system design, in

that it models the system as an assembly of components. However, one possible

area of interest for future work might be to evaluate the use of the Functional

Interpretation Language in relation to process centred simulation. While this is

speculative at this stage, there do not seem to be any intrinsic difficulties with

associating the trigger or effect of a system function with the state of a process

rather than that of a component. One difference is that while physical components

are invariably present in the system, even if they are idle, processes might appear

and disappear during the course of a simulation. It remains to be seen whether

this would lead to problems with associating a function with a process. One other

question that arises is what properties a process has that can be associated with

the trigger and effect conditions of a function.

A final possibility for future research, arguably the only one that involves al-

tering the functional language itself is the investigation of whether the functional

language can be used for supporting the design process by enabling the functional

refinement of a system design. As the Functional Interpretation Language is not

intended for the description of component function, it does not look ideally suited

for this task, especially as the language does not represent the connection between

components. While this is not an intended rôle of the language, the possibility

that the langauge might be extended to allow its use for this task is a possible

area for investigation.

To summarise, while the Functional Interpretation Language cannot be proved to

support the functional description of systems of arbitrary behavioural complexity

for automation of design analysis, it does succeed in increasing both the range of

systems and range of design analysis tasks for which the approach is available.

274

Appendix A

Formal description of the

Functional Interpretation

Language

This appendix contains a formal description of the Functional Interpretation Lan-

guage. It will therefore act as a key to the examples in the text of the thesis as well

as providing a summary of the language’s logical basis. There is little explanation

herein, as that is in the text of the thesis.

A.1 Elements of the language

Let f be some device function. It is associated with a trigger t and an effect e

where t and e are Boolean expressions. The trigger and effect expressions are

mapped to appropriate properties (such as the states of relevant components) in

the system’s structural and behavioural model. In addition, f is associated with

a description of purpose pf that in turn includes a description of consequences of

failure to achieve the function, cf and may optionally incorporate a description

of consequences of unexpected achievement of the function’s effect uf . It is these

descriptions of consequences that will appear in an automatically generated design

analysis report. This is annotated as R (for report) so that where a design analysis

report will include the consequences of failure of f , this is indicated by R(cf). The

term “includes” is used to indicate that a function is associated with an optional

element.

Each element n in an effect expression is associated with a description of con-

sequences of unexpected achievement of that individual effect un. To illustrate,

275

where a function depends on the effect a∧b, there will be unexpected consequences

ua and ub.

A.2 States of device functions

As a device function f depends on two Boolean expressions, it can be in one of

four states. These are termed inactive, In(f); failed, Fa(f); unexpected, Un(f) and

achieved, Ac(f). These are defined in terms of the trigger and effect expressions

as follows.

In(f) ⇔ ¬t ∧ ¬e (A.1)

Fa(f) ⇔ t ∧ ¬e (A.2)

Un(f) ⇔ ¬t ∧ e (A.3)

Ac(f) ⇔ t ∧ e (A.4)

These are numbered 5.1 to 5.4 in Section 5.2. Additionally, the states triggered,

Tr(f) and effective, (f) are defined in terms of the device function’s trigger and

effect respectively.

Tr(f) ⇔ t ⇔ t ∧ (e ∨ ¬e) (A.5)

Ef(f) ⇔ e ⇔ e ∧ (t ∨ ¬t) (A.6)

These are numbered 5.5 and 5.6 in Section 5.2. Notice that the state of a function

can be defined in terms of these states, as follows.

In(f) ⇔ ¬Tr(f) ∧ ¬Ef(f) (A.7)

Fa(f) ⇔ Tr(f) ∧ ¬Ef(f) (A.8)

Un(f) ⇔ ¬Tr(f) ∧ Ef(f) (A.9)

Ac(f) ⇔ Tr(f) ∧ Ef(f) (A.10)

These are equivalent to the definitions above and are numbered 5.7 to 5.10 in

Section 5.2.

The design analysis report will include a reference to the state of any device

function f that is failed or unexpected but not to a function that is inoperative

or achieved.

R(f) if Fa(f) ∨ Un(f) (A.11)

It will also include a reference to the state of any individual effect e that is not

276

consistent with the expected state of the associated device function.

R(e) if (Tr(f) ∧ ¬e) ∨ (¬Tr(f) ∧ e) (A.12)

These are numbered 5.11 and 5.12. in Section 5.7. Here an effect is taken to be

any element of a Boolean expression that describes a function’s required effects,

so a design analysis report will include a reference to some absent or unexpected

effect even where this does not amount to loss of a device function. In addition,

the design analysis report will include consequences of failure of the function f

and of unexpected achievement of the function or of an effect e as follows.

R(cf) if Fa(f) and if (f includes cf) (A.13)

This is numbered 7.5 in Section 7.2.

R(uf) if Un(f) and if (f includes uf) (A.14)

This is numbered 6.2 in Section 6.2.3. In rule A.13, the includes condition is

required because the failed function might be an Operational Incomplete Function

without its own consequences of failure, as described in Section 7.2. Where an

effect e is achieved unexpectedly without unexpectedly achieving a function, or

where a function has no unexpected consequences of its own, we can report ue the

consequences of the unexpected achievement of e.

R(ue) if (¬Tr(f) ∧ e) ∧ (¬Un(f) ∨ ¬(f includes uf)) (A.15)

A.3 Subsidiary functions

Let f be a function composed of subsidiary functions a and b. These subsidiary

functions are related using any Boolean operator ⊗, so f is composed of a⊗ b. It

will also be associated with a description of purpose. The rule used for resolving

the state of f is

Tr(f) if Tr(a) ⊗ Tr(b) (A.16)

Ef(f) if Ef(a) ⊗ Ef(b) (A.17)

These are 6.3 and 6.4 in Section 6.3. This allows the state of f to be defined in

terms of its being triggered and effective, following rules A.7 to A.10. In other

words, the trigger of f can be regarded as the combination of the triggers of a and

b and the effect of f as the combination of the effects of a and b and those triggers

277

and effects are combined using the operator in the functional decomposition. This

does restrict the use of subsidiary functions to cases where their trigger and effect

expressions share an operator The use of incomplete functions, described below,

circumvents this restriction.

The reporting of failure or unexpected achievement of functions follows rules A.11

and A.12 above. There are different rules for reporting the consequences of failure

of functions. Let cf be the consequences of failure of f and ca and cb be those of a

and b respectively. The first rule is used if the subsidiary functions are combined

using AND or OR. In these cases, if one but not both of the subsidiary function fails,

the consequences of the failure of that subsidiary function are included, regardless

of the state of the top function.

R(cf) if and only if Fa(a) ∧ Fa(b) (A.18)

R(ca) if Fa(a) ∧ ¬Fa(b) (A.19)

These rules are inappropriate where the subsidiary device functions are combined

using XOR and the opposite approach has to be taken.

R(cf) if (Fa(a) ∧ ¬Fa(b)) ∨ (¬Fa(a) ∧ Fa(b)) (A.20)

These are numbered 6.5, 6.6 and 6.7 in Section 6.3. The reporting of consequences

of unexpected achievement of a function (or effect) follow rules A.14 and A.15

above.

Where Purposive Incomplete Functions (PIFs) are used, so a device function

f is composed of a trigger t and subsidiary PIFs combined using some Boolean

operator ⊗, p⊗ q, then all these device functions will share the same value for the

trigger and the state of f will depend on the truth of the effects of p and q.

In(f) ⇔ ¬Tr(f) ∧ ¬(Ef(p) ⊗ Ef(q)) (A.21)

Fa(f) ⇔ Tr(f) ∧ ¬(Ef(p) ⊗ Ef(q)) (A.22)

Un(f) ⇔ ¬Tr(f) ∧ (Ef(p) ⊗ Ef(q)) (A.23)

Ac(f) ⇔ Tr(f) ∧ (Ef(p) ⊗ Ef(q)) (A.24)

These are numbered 7.1 to 7.4 in Section 7.1. Note that these rules do not duplicate

simply mapping a given trigger to two subsidiary functions a and b as if device

function f is composed of a ⊕ b the trigger of both a and b will be true whenever

either is triggered, so from rule A.16, f will never be triggered as it will never be

278

the case that only one of a and b will be triggered..

The rules for decomposition of a device function composed of Operational Incom-

plete Functions (OIFs) follows those for decomposition of a function composed of

(complete) subsidiary functions. As an OIF has no description of purpose, and so

no consequences of failure, the consequences of any OIF being in the failed state

must be described in terms of the state of the function of which it is a component.

This accounts for the ”includes” condition in rule A.13 above.

The rules for Triggered Incomplete Functions (TIFs) are similar but the TIFs

take the place of elements of the trigger expression of device function f . Let device

function f be composed of TIFs t ⊗ u and an effect e.

In(f) ⇔ ¬(Tr(s) ⊗ Tr(u)) ∧ ¬Ef(f) (A.25)

Fa(f) ⇔ (Tr(s) ⊗ Tr(u)) ∧ ¬Ef(f) (A.26)

Un(f) ⇔ ¬(Tr(s) ⊗ Tr(u)) ∧ Ef(f) (A.27)

Ac(f) ⇔ (Tr(s) ⊗ Tr(u)) ∧ Ef(f) (A.28)

These rules are numbered 7.6 to 7.9 in Section 7.3. Note that these rules cannot

be matched by sharing an effect between complete subsidiary functions as if one

subsidiary function is effective, so will the other be so if the device function f is

composed of a ⊕ b, it will never be effective as it will never be the case that only

one of a and b will be effective.

The rules for reporting of PIFs and TIFs follow those for reporting subsidiary

functions, rules A.11 and A.12, and the rules for reporting of consequences of

failure follow A.18, A.19 and A.20.

A.4 Sequential operators

To allow the description of functions that depend upon a sequence of effects the

Functional Interpretation Language includes two sequential operators, SEQ and

L-SEQ. These depend on a model of time that consists of intervals bounded by

instants, as proposed in (Galton, 1990). Parts of the notation from that paper

are used in this description. This model of time is consistent with the use of state

charts to describe behaviour of a system or its components.

The sequence operator SEQ is true if the state described after the operator

holds immediately after the present state of the system (defined in terms of the

properties described in the functional description) ceases to hold. This can be

279

described using notation from (Galton, 1990). Let I1 be an interval such that

condition a holds throughout the interval, HOLDS AT(a, I1), as Galton notates

it, and I2 be an interval such that HOLDS AT(b, I2). Then,

a SEQ b if HOLDS AT(a, I1) ∧ HOLDS AT(b, I2) ∧ MEETS(I1, I2) (A.29)

Where MEETS follows the definition in (Allen, 1984),that the interval I2 follows

the interval I1 with no interval separating them. The state preceding the first

use of SEQ (or L-SEQ) in a functional description will not be defined as this

will be the system state that was in effect before the triggering of that function.

This state will not be known at model building time as a function might have

alternative triggers, depending on the preceding system state, or the initial state

might be affected by failure of some other function and so specification of the initial

condition for some function would mean that failure of some preceding function

would inevitably result in failure of the present function. SEQ is therefore treated

as a unary operator, similar to the N (next time step) operator in Computational

Tree Logic (CTL) (Emerson & Halpern, 1985).

The loose sequence operator L-SEQ is true if the state described after the oper-

ator holds some time after the present state of the system ceases to hold. That is

to say that there can be an interval separating the described states. During this

intervening interval the state of the described elements of the functional model is

not defined. L-SEQ is similar to the F (some time in the future) operator in CTL

and tense logic (Prior, 1957). It differs from SEQ in that the intervals when the

states hold need not meet, as long as the second one follows the first eventually.

It can be defined using Galton’s HOLDS IN operator, which is true if the state

is present some of the time during some interval. So if I1 is an interval such that

HOLDS IN(a, I1) and I2 an interval such that HOLDS IN(b, I2), then

a L-SEQ b if HOLDS IN(a, I1) ∧ HOLDS IN(b, I2) ∧ MEETS(I1, I2) (A.30)

As discussed in Chapter 8, this means the state of the system is undefined during

some intermediate interval. L-SEQ has therefore to be used with some caution

and can be replaced by a sequence of SEQ states so the intermediate states are

defined.

Where SEQ (or L-SEQ) is used to combine subsidiary functions, rules A.16 and

A.17 still hold.

The CYCLE and NEW-CYCLE operators and temporal constraints (BEFORE

and AFTER) are not really susceptible to formal description. Informal definitions

of these appear in Appendix B.

280

Appendix B

Notation used for functional

description

This appendix contains a brief summary of the textual notation used for the

Functional Interpretation Language described in this work, and as used throughout

the thesis. The conventions used herein are also described.

B.1 The language

Here, the keywords used in the Functional Interpretation Language, together with

those of the associated external descriptions, are listed, grouped according to their

use.

B.1.1 Labels

This lists the keywords used to label different models and the components of these

models.

ACHIEVES Used in a functional description to label the purpose that function

fulfils, indicates the description of purpose.

BY Used to label the recogniser for a function, separating the recogniser from the

ACHIEVES clause.

FUNCTION Used to label a functional description, as opposed to either an incom-

plete function or a description of purpose.

OIF Labels an “operational incomplete function”, one that is a mapping between

trigger and effect, with no distinct purpose.

281

PIF Labels a “purposive incomplete function”, one that maps between an ef-

fect and a purpose, but shares a trigger with other elements of a top level

function.

PURPOSE Labels a description of purpose (teleological model).

TIF Labels a “triggered incomplete function”, that is one that maps a trigger to

a purpose, allowing representations of functions that share an effect, whose

purpose is defined by the trigger.

B.1.2 Operators

The conventional logical operators are used, with their usual meanings, so are not

listed here.

CYCLE Indicates the start of a cyclical sequence of states that will continue until

some event causes the cycle to be broken.

L-SEQ The system should enter the state following the operator at some time

after the preceding state, as opposed to immediately after.

NEW-CYCLE Marks the end of a cycle. On reaching this, the function is expected

to return to the state described after the corresponding CYCLE.

SEQ The system should enter for following the state immediately after the pre-

ceding state, so all expected effects should start simultaneously.

TRIGGERS Relates the (preceding) trigger expression to the effect expression of a

function. The function is said to be achieved if both are true.

B.1.3 Functional states and relations

The four possible functional states are defined in terms of the truth of a function’s

trigger and effect, as discussed in Section 5.2. They are:-

INOPERATIVE A function’s trigger and effect are both false, so the function is

uncalled for.

ACHIEVED A function’s trigger and effect are both true, so the function is achieved

correctly and its purpose is being fulfilled.

FAILED A function’s trigger is true but its effect is false, so the function is failing

to fulfil its purpose even though it should be.

282

UNEXPECTED A function’s trigger is false but its effect is true, so the effect is

unnecessary.

It will be seen that the first two of these states are consistent with correct behaviour

of the system, the other two are not. In addition to these states, two ‘partial states’

are defined, useful in specifying dependencies between functions. These are:-

TRIGGERED Simply means a function’s trigger is true, so is equivalent to achieved

OR failed.

EFFECTIVE A function’s effect is true, so this is equivalent to achieved OR unex-

pected.

As all these states trace are defined in terms of truth of trigger and / or effect,

there is no ambiguity.

B.1.4 Temporal constraints

These are used to specify that the expression to which the temporal constraint

applies must be achieved within the specified time, measured from the preceding

effective state (starting, typically) with the trigger becoming true).

AFTER Used to label the time before which the associated state should not become

true, so specifies a minimum delay.

BEFORE Used to specify a time before which the associated state should become

true, so specifies a deadline.

B.1.5 Other keywords

These include the items included in a description of purpose and / or the mapping

between a functional description and the system model.

DESCRIPTION Labels the description of some purpose with which a function is

associated.

DETECTION The value from 1 to 10 given for the likelihood that a function’s failure

or an unexpected effect will be noticed.

FAILURE_CONSEQUENCE Labels the description of the consequences of failure to

fulfil the purpose with which the label is associated.

283

IMPLEMENTS Shows the mapping between a system property and the functional

element (trigger or effect) with which it is associated.

SEVERITY The value from 1 to 10 given to show the seriousness of the conse-

quences of a failure to achieve some purpose or of an unexpected effect.

UNEXPECTED_CONSEQUENCE Labels the textual description of the consequence of

some effect (or function) being achieved unexpectedly.

B.2 Conventions used in this thesis

In the thesis, all quotations of or from a functional description, or other aspect

of the Functional Interpretation Language, have been indicated by the use of

a fixed width font. In addition, key words (including the conventional logic

operators) have been placed in block capitals.

Text for quoting in a design analysis report, typically the consequences part of a

description of purpose, are in quotation marks, in the same way as a string literal

in a programming language. It is assumed that these quotes would not be part

of the text, and will not appear in the report. This is also similar to their use in

programming languages.

284

Appendix C

Common elements of diagrams

As there are several similar diagrams, it was felt worth including a key to the

symbols and elements common to these diagrams.

The symbols used in the model relationship diagrams used in comparing ap-

proaches to and uses of functional modelling in Chapter 4 are shown in Figure C.1.

schematic

mental

model

system

behaviour

model that must be generated by user, explicitly represented

model generated by user, no explicit representation (an implicitly required model)

automatically generated model

model relationship provided by user

model relationship provided by system

(in both these cases, arrow head indicate direction of relationship)

domain

theory
 model provided by reasoning engine

subsystem

function
 additional model that user might choose to generate

Figure C.1: Common symbols in the model relationship diagrams

285

description of purpose - to include failure consequences, severity, detection

triplet of unexpected consequences, severity, detection

function

incomplete function

purposive incomplete function, mapping between effect and purpose

operational incomplete function, mapping between trigger and effect

mapping to external model component

a logical operator (AND, OR, XOR, SEQ, L-SEQ)

PIF

OIF

UNEXPECTED

ACHIEVES

IMPLEMENTS

operator

label for mapping between function and purpose

label of mapping between component property and function it implements

relationship between parts of a single description

TIF
 triggered incomplete function, mapping between trigger and effect

Figure C.2: Common symbols in the function composition diagrams

The symbols used in the diagrams used in Chapter 6, to illustrate functional

decomposition are shown in Figure C.2. It should be noted that these diagrams

are not intended to constitute a formal visual notation, they are simply intended

to illustrate features of the language.

In these diagrams, an attempt has been made to arrange components as con-

sistently as possible with the layout of the model relationship diagrams, so the

description of purpose is shown to the right and mappings between the system

model and the functional model to the left. While a simple functional decom-

position (in terms of triggers and effects) is shown using plain lines, arrows are

used to indicate that subsidiary functions (whether complete of incomplete) will

be separate models, available for reuse independently of the present top level func-

tion. Any items at either end of an arrow are (or can be considered to be) separate

parts of the model, stored independently. Naturally, whether or not this is actually

the case might depend on the user’s choice between reusability of models against

the resulting complication of the model library. How this storage is managed is

also dependent on the implementation. It might be done with a file hierarchy as

suggested at the end of Chapter 11 or a relational database might possibly be

used.

286

Appendix D

Description of functional

decomposition tables

This appendix describes the notation used in the tables that illustrate the rela-

tionship between the logical basis of the functional language and the generated

text in a resulting design analysis report, and especially to illustrate the func-

tional decompositions. Tables using this notation appear in Chapters 5, 6 and 7.

Because of their appearance in different places of the thesis and to avoid breaking

up the text around the earlier appearances of such tables, it was decided to place

a detailed description of them here, for reference.

Table D.1 is an example of such a table. This example table contains selected

function

C1

t1
 e1

function

C2

F

(
C1
 AND

C2
)

t2
 e2
 st
at

e

t
 e

F
 F
 F
 F
 F
 F

F

F

F
F

F
 F

F
 F

F
 F

T

T
 T

T

T
 T

In
 (no entry)

generated text
 consequences

F
 F

F
 F

F
 F

T
F
 Un

Function
C2
 achieved

Function
C2
 failed because expected

effect
e2
 absent

Function
C2
 achieved unexpectedly

because unexpected effect
e2
 present

Function
F
 achieved unexpectedly

because functions
C1
 and
C2
 achieved

unexpectedly

Fa(
C2
)

Un(
C2
) or Un(
e2
)

Un(
F
)
 or max

(
Un(
C1
),
Un(
C2
))

st
at

e

In

Ac

Fa

Un

st
at

e

In

In

In

In

In

In

In

Un
Un

Table D.1: Example functional decomposition table

rows from Table 6.2 in Chapter 6. In the headings, “state” has been used to label

287

the functional state of a function as shown in Table 5.1 on page 92. those columns

can therefore have any of the four values:-

Inoperative (In) Both trigger and effect are false, so function is uncalled for

and (correctly) not achieved.

Achieved (Ac) Both trigger and effect are true and function is achieved as ex-

pected (though possibly as a result of unexpected internal behaviour).

Failed (Fa) Trigger is true but effect false, so triggering the function has not

resulted in the expected effect.

Unexpected (Un) Trigger is false but effect true, so the effect is present despite

being uncalled for.

As these values are defined in terms of the truth of trigger and effect, including

the values of trigger, effect and state for the subsidiary functions (C1 and C2) is

tautologous. It was felt that the full description would clarify the relationships

between triggers, effects and states in the decompositions, however.

The heading for trigger is abbreviated to ‘t’ and for effect to ‘e’. Where a specific

trigger or effect might appear in the resulting design analysis report (shown in the

generated text column), it has been italicised and where necessary identified with

a suffix, so e1 is the effect associated with the first child function. Function names

(that might also appear in a resulting report) are similarly italicised, but are in

capitals.

As triggers and effects are Boolean expressions, they have the values true (T)

or false (F). It is to reduce the likelihood of confusion with the value ‘false’ that

‘failed’ is abbreviated to Fa and this has led to the use of two letter abbreviations

for the other functional states throughout the thesis.

The layout of this side of the tables showing purposive incomplete functions

(PIFs) is slightly different, as shown in Table D.2. Here the trigger is common to

the top level function (called F) and both of the subsidiary PIFs. Each PIF has

columns for its effect and state. There is a column for the effect expression of the

top level function, derived from the effects of the PIFs, labelled eF, and one for its

state. The top level function is labelled with the relation between its subsidiary

PIFs in the header.

The entry in the “generated text” column is a brief example of what might appear

in the resulting report, using the names identified in the table headings. It might,

of course, be the case that the actual text is more detailed than appears here, so

that instead of the entry in the last line of the table above, a report might include

288

t

P1
 P2

st
at

e

function
F
 (
P1
 AND
P2
)

generated text
 consequences

F

F

F

F
 F

F

F

F
T

T
 T
 T

In
 (no entry)

In

Un

Function
P1
 achieved unexpectedly because

unexpected effect
e1
 present

Function
F
 achieved unexpectedly because

functions
P1
 and
P2
 achieved unexpectedly

Un(
P1
) or Un(
e1
)

Un(
F
) or max

(Un(
P1
), Un(
P2
))

e
F

e1
 st

at
e

st
at

e

e2

In
 In

In
Un

Un
 Un

Table D.2: Example of decomposition using PIFs

Function F achieved unexpectedly because function C1 achieved un-

expectedly because unexpected effect e1 was present and function C2

achieved unexpectedly because unexpected effect e2 was present.

In these tables, the functional labels have been used, but it would be feasible to

use the linked system properties, traced from the mappings between functional

and system models, in a design analysis report.

The consequences are assumed to be a set of textual description, value for severity

and value for detection, associated with a function’s description of purpose (though

here simply associated with the function itself) or with an effect. This should be

associated with the mapping between the effect and the system model, of course,

but the functional labels themselves are used in the tables, for simplicity. The entry

Fa(C2) means the consequences associated with the failure of (the description

of purpose associated with) function C2. As a description of purpose might or

might not have unexpected consequences, this raises the possibility of alternative

consequences associated with unexpected achievement of a function’s effect(s).

For example, in the fourth line of Table D.1, “U(C2) or U(e2)” means that if

there are unexpected consequences associated with C2 include them, if not use

the (required) ones for the effect e2. These might differ, of course, as C2 might

have several effects combined using a Boolean expression.

Where there are several possible failures whose consequences might be listed,

different approaches are possible, as discussed in the text. In the tables it is

assumed that the more severe of the consequences are listed, indicated by ‘max’.

In practice, this is more complex than the tables suggest, because the consequences

with the higher value for severity will be used (unless both are listed in the report,

of course) but it is arguably more appropriate to use the lower value for detection,

as this shows how likely the fault will be noticed by the operator, and which

might not belong to the same set of consequences. In the tables the columns for

289

consequences, severity and detection, as illustrated in Table 5.2 on page 110, are

treated as one, to save space and simplify the relationships.

290

291

Glossary

Behavioural knowledge Knowledge of what happens within a device.

Dependent function Any function that depends on the state of some other system

function for its trigger.

Detection A value between 1 and 10 indicating the likelihood that some failure

will be detected before any consequences arise.

FMEA Failure Mode Effects Analysis, a design analysis that establishes the effects

on a system of failures to components in that system.

FTA Fault Tree Analysis, a design analysis in which the result is a report that

relates effects (symptoms) back to candidate causes.

Functional (design) analysis A term used to group those design analysis tasks that

are concerned with whether a system fulfils its intended function, either

when working correctly or under a component failure.

Functional description A representation of an individual function of a system that

achieves one of the system’s intended purposes.

Functional knowledge Knowledge of how a device achieves its purpose. More for-

mally defined as

An object O has a function F if it achieves an intended goal by

virtue of some external trigger T resulting in the achievement of

an external effect E.

Functional model The collection of one or more functional descriptions associated

with some system.

Occurrence A value between 1 and 10 indicating the likelihood of the cause of

some failure.

292

Ontology The nature of the model used as the basis for model based reasoning.

Typically concerned with whether the model is built using knowledge of

components, processes or constraints.

Operational incomplete function A representation of a function that only repre-

sents the relation between trigger and effect. It should only be used as

part of a functional decomposition to ensure triggers are associated with

the appropriate effects.

Prime function Some function that fulfils a purpose of the system. Used specifi-

cally to refer to a function upon which some other function depends.

Purposive incomplete function A representation of function that only represents

the mapping between effect and purpose. It should only be used as part of

a functional decomposition.

Risk Priority Number (RPN) A value indicating the seriousness of a system fail-

ure and therefore how much priority should be given to eliminating the

failure. It is the product of values for severity, detection and occurrence.

SCA Sneak Circuit Analysis, an electrical design analysis that ensures that no

unexpected effects occur as a result of combinations of switch settings.

Severity A value between 1 and 10 indicating the seriousness of consequence of

some failure.

Structural knowledge Knowledge of the components (or processes) that make up

a device and the connections between them.

Teleological knowledge Knowledge of the purpose of a device. In the represen-

tation of function proposed herein, it includes a description of the conse-

quences of a function’s failure to achieve the purpose.

Triggered incomplete function A representation of function that relates a trigger

to its intended purpose. It is used where an effect is common to several

triggers, which determine the purpose of achieving the effect.

293

References

Allen, James F. 1984. Towards a general theory of action and time. Artifial

intelligence, 23(2), 123–154.

Baher, Julie. 1999. Articulate virtual labs in thermodynamics education: A mul-

tiple case study. Hournal of engineering education, October, 429–434.

Bell, Jonathan, & Snooke, Neal A. 2004. Describing system functions that depend

on intermittent and sequential behavior. Pages 51–57 of: Proceedings 18th

international workshop on qualitative reasoning, QR2004.

Bell, Jonathan, Snooke, Neal A., & Price, Christopher J. 2005a. Functional de-

composition for interpretation of model based simulation. Pages 192–198 of:

Proceedings of 19th international workshop on qualitative reasoning (QR-05).

Bell, Jonathan, Snooke, Neal A., & Price, Christopher J. 2005b. A language for

functional interpretation of model based simulation. Pages 1547–1548 of:

Proceedings of international joint conference on artificial intelligence (IJCAI

2005).

Bosch. 1991. CAN specification version 2.0. Robert Bosch GmbH. Bosch CAN

website is at http://www.can.bosch.com/.

Bouwer, Anders, & Bredeweg, Bert. 2001. VisiGarp: Graphical representation of

qualitative simulation models. Pages 142–149 of: Proceedings 15th interna-

tional workshop on qualitative reasoning, QR ’01.

Bowles, John B., & Wan, C. 2001. Software failure modes and analysis for a small

embedded control system. Pages 1–6 of: Proceedings annual reliability and

maintainability symposium.

Bredeweg, Bert. 1992. Expertise in qualitative prediction of behaviour. Ph.D.

thesis, University of Amsterdam.

294

Chandrasekaran, B. 2005. Repersenting function: Relating functional rpepresen-

tation and functional modeling research streams. Artificial intelligence for

engineering design, analysis and manufacturing, 19, 65–74.

Chandrasekaran, B., & Josephson, John R. 1996. Representing function as effect:

Assigning functions to objects in context and out. In: Proceedings of american

association for artificial intelligence.

Chandrasekaran, B., & Josephson, John R. 2000. Function in device representa-

tion. Engineering with computers, 16(3–4), 162–177.

Chandrasekaran, B., Goel, A. K., & Iwasaki, Y. 1993. Functional representation

as design rationale. IEEE computer, 26(1), 48–56.

Chittaro, Luca, & Kumar, Amruth N. 1998. Reasoning about function and its

applications to engineering. Artificial intelligence in engineering, 12(4), 331.

Chittaro, Luca, Guida, Giovani, Tasso, Carlo, & Toppano, Elio. 1993. Functional

and teleological knowledge in the multimodeling approach to reasoning about

physical systems. IEEE transactions on systems, man and cybernetics, 23(6),

1718–1751.

Chittaro, Luca, Tasso, Carlo, & Toppano, Elio. 1994. Putting functional knowl-

edge on firmer ground. Applied artificial intelligence, 8, 239–258.

David, Jean-Marc, & Krivine, Jean-Paul. 1986. Reasoning from structure and

behavior: Four relevance criteria. Pages 120–127 of: European conference on

artificial intelligence, vol. 2.

Davis, Randall, & Hamscher, Walter. 1988. Model-based reasoning: Troubleshoot-

ing. Pages 297–346 of: Shrobe, H. (ed), Exploring artificial intelligence. Mor-

gan Kaufmann.

de Kleer, Johan. 1984. How circuits work. Artificial intelligence, 24, 205–280.

Emerson, E. A., & Halpern, J. Y. 1985. Design procedures and expressiveness

in the temporal logic of branching time. Journal of computer and system

sciences, 30(1), 1–24.

Falkenhainer, Brian, & Forbus, Kenneth D. 1991. Compositional modelling: Find-

ing the right model for the job. Artificial intelligence, 51, 95–143.

Forbus, Kenneth D. 1984. Qualitative process theory. Artificial intelligence, 24,

85–168.

295

Forbus, Kenneth D. 1988. Qualitative physics: Past, present, and future. Pages

239–296 of: Shrobe, H. E., & for Artificial Intelligence, American Associ-

ation (eds), Exploring artificial intelligence: Survey talks from the national

conferences on artificial intelligence. San Mateo, CA: Kaufmann.

Forbus, Kenneth D. 1997. Using qualitstive physics to create articulate educational

software. IEEE expert, 32–41.

Franke, David W. 1991. Deriving and using descriptions of purpose. IEEE expert:

Intelligent systems and their application, 6(2), 41–47.

Franke, David W. 1993. Clarifying terminology in functional reasoning. Page iv

of: Reasoning about function: Workshop notes of AAAI-93.

Galton, Antony. 1990. A critical examination of Allen’s theory of action and time.

Artificial intelligence, 42(2–3), 159–188.

Gerevini, Alfonso, & Schubert, Lenhart. 1995. Efficient algorithms for qualitative

reasoning about time. Artificial intelligence, 74(2), 207–248.

Gero, John. 1990. Design prototypes: A knowledge representation schema for

design. AI magazine, 11(4), 26–36.

Goddard, Peter. 2000. Software FMEA techniques. Pages 118–123 of: Procceed-

ings of the annual reliability and maintainability symposium. IEEE.

Gunzert, Michael, & Nägele, Andreas. 1999. Component-based development and

verification of safety critical software for a brake-by-wire system with syn-

chronous software components. Pages 134– of: Pdse.

Harel, David. 1987. Statecharts: A visual formalism for complex systems. Science

of computer programming, 8(June), 231–274.

Hawkins, P. G., & Woollons, D. J. 1998. Failure modes and effects analysis of

complex engineering systems using functional models. Artificial intelligence

in engineering, 12(4), 375–397.

Hayes, P. 1985. The second naive physics manifesto. In: Hobbs, & Moore (eds),

Formal theories of the commonsense world. Ablex Publishers.

Iwasaki, Yumi, Fikes, R., Vescovi, M., & Chandrasekaran, B. 1993. How things

are intended to work: Capturing functional knowledge in device design. Pages

1516–1522 of: Proceedings of 13th international joint conference on artificial

intelligence.

296

Iwasaki, Yumi, Vescovi, M., Fikes, R., & Chandrasekaran, B. 1995. Causal func-

tional representation language with behavior-based semantics. Applied arti-

ficial intelligence, 9(1), 5–31.

Kaindl, Hermann. 1993. Distinguishing between functional and behavioral models.

Pages 50–52 of: Reasoning about function: Workshop notes of AAAI-93.

AAAI.

Kampis, G. 1987. Some problems of system descriptions I: Function. International

journal of general systems, 13, 143–156.

Keuneke, Anne M. 1991. Device representation: The significance of functional

knowledge. IEEE expert, 6, 22–25.

Keuneke, Anne M., & Allemang, Dean. 1988. Understanding devices: Represent-

ing dynamic states. Tech. rept. 88-AK-DYNASTATES. Ohio State Univer-

sity. From the Laboratory for Artificial Intelligence Research, Department of

Computer Science.

Kitamura, Yoshinobu, Sano, Toshinobu, Namba, Kouji, & Mizoguchi, Riichiro.

2002. A functional concept ontology and its application to automatic identi-

fication of functional structures. Advanced engineering informatics, 16, 145–

163.

Kuipers, Benjamin J. 1986. Qualitative simulation. Artificial intelligence, 29,

289–338.

Larsson, J. E. 1996. Diagnosis based on explicit means-ends models. Artificial

intelligence, 80(1), 29–93.

Lee, Mark H. 1999a. Qualitative circuit models in failure analysis reasoning.

Artificial intellligence, 111, 239–276.

Lee, Mark H. 1999b. Qualitative modelling of linear networks in ECAD applica-

tions. Pages 146–152 of: Proceedings 13th international workshop on quali-

tative reasoning, QR ’99.

Lee, Mark H., & Ormsby, Andrew R. T. 1991. A qualitative circuit simulator. In:

Second annual conference on AI simulation and planning in high autonomy

systems. IEEE.

Lee, Mark H., Bell, Jonathan, & Coghill, George Macleod. 2001. Ambiguities and

deviations in qualitative circuit analysis. Pages 51–58 of: Proceedings 15th

international workshop on qualitative reasoning, QR ’01.

297

Leitch, R., Shen, Q., Coghill, G. M., & Chantler, M. 1999. Choosing the right

model. Pages 435–449 of: IEE proceedings d, control theory and applications,

vol. 146.

Lind, M. 1994. Modelling goals and functions of complex industrial plants. Applied

artificial intelligence, 8, 259–283.

Loganantharaja, Rasia. 1993. Representation of functional knowledge. Pages 102–

107 of: Reasoning about function: Workshop notes of AAAI-93. AAAI.

Machado, Vânia Bessa, & Bredeweg, Bert. 2001. Towards interactive tools for

constructing articulate simulations. Pages 98–104 of: Proceedings 15th inter-

national workshop on qualitative reasoning, QR ’01.

Maier, T. 1995. FMEA and FTA to support safe design of embedded software in

safety-critical systems. In: CSR 12th annual workshop on safety and reliability

of software based systems.

Manzone, Alberto, Pincetti, Alessandro, & de Costantini, Diego. 2001. Fualt

tolerant automotive systems: An overview. In: Proceedings of the seventh

IEEE international on-line testing workshop.

Mauss, Jakob, & Neumann, Bernd. 1996. Qualitative reasoning about electrical

circuits using series-parallel-star trees. Pages 147–153 of: Proceedings 10th

international workshop on qualitative reasoning, QR-96.

McManus, Alex, Price, Christopher J., Snooke, Neal A., & Joseph, Richard. 1999.

Design verification of automotive electrical circuits. In: Proceedings 13th

international workshop on qualitative reasoning.

Milde, Heiko, Hotz, Lothar, Kahl, Jörg, & Wessel, Stephanie. 1999. Qualitative

analysis of electrical circuits for computer-based diagnostic decision tree gen-

eration. Pages 204–210 of: Proceedings conference on diagnosis, dx99.

Navinchandra, Dundee, & Sycara, Katia P. 1989. Integrating case-based reason-

ing and qualitative reasoning in design. In: Gero, J. (ed), AI in design.

Computational Mechanics.

Papadopoulos, Yiannis, McDermid, John, Mavrides, Androcles, Scheidler, Chris-

tian, & Maruhn, Matthias. 2001. Model-based semiautomatic safety anal-

ysis of programmable systems in automotive applications. Pages 53–57 of:

Proceedings of ADAS2001, the international conference on advanced driver

assistance systems. IEEE Publications.

298

Price, Christopher J. 1996. Effortless incremental design FMEA. Pages 43–47 of:

Proceedings of annual reliability and maintainability symposium.

Price, Christopher J. 1998. Function-directed electrical design analysis. Artificial

intelligence in engineering, 12(4), 445–456.

Price, Christopher J. 2000. AutoSteve: automated electrical design analysis. Pages

721–725 of: Proceedings ECAI-2000.

Price, Christopher J. 2002 (March). Incremental automated diagnosis. Pages 45–

50 of: Proceedings of the AAAI spring symposium on information refinement

and revision for decision making.

Price, Christopher J., & Hunt, John E. 1989. Augmenting qualitative diagnosis.

In: Proceedings of the 6th alvey DKBS workshop. IEE.

Price, Christopher J., & Pugh, David. 1996. Interpreting simulation with func-

tional labels. Pages 198–204 of: Proceedings 10th international workshop on

qualitative reasoning. AAAI Press.

Price, Christopher J., Snooke, Neal, & Landry, J. 1996a. Automated sneak iden-

tification. Engineering applications of artificial intelligence, 9(4), 423–427.

Price, Christopher J., Wilson, Myra S., & Cain, C. 1996b. Automotive diagnosis

using generated fault trees. Pages 161–167 of: Applications and innovations

in expert systems iv (proceedings expert systems 96).

Price, Christopher J., Wilson, Myra S., Timmis, Jonathan, & Cain, C. 1996c

(September). Generating fault trees from FMEA. Pages 183–190 of: 7th

international workshop on principles of diagnosis.

Price, Christopher J., Snooke, Neal, Pugh, David, Hunt, John E., & Wilson,

Myra S. 1997. Combining functional and structural reasoning for safety anal-

ysis of electrical designs. The knowledge engineering review, 12(3), 271–287.

Price, Christopher J., Snooke, Neal A., & Lewis, Stuart D. 2003. Adaptable mod-

eling of electrical systems. Pages 147–153 of: Salles, Paulo, & Bredeweg,

Bert (eds), Proceedings of 17th international workshop on qualitative reason-

ing (QR2003).

Prior, Arthur N. 1957. Time and modality. Oxford: Clarendon Press.

Pugh, David, & Snooke, Neal A. 1996. Dynamic analysis of qualitative circuits.

Pages 37–42 of: Proceedings annual reliability and maintainability sympo-

sium.

299

Pugh, David, Price, Christopher J., & Snooke, Neal A. 1995. Practical applications

for multiple models - the need for simplicity and reusability. Applications and

innovations in expert systems iii, 277–291.

Quarles, T., et al. 1980. Spice version 3: Users’ guide. On line version available

at http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE.

Raiman, Olivier. 1986. Order of magnitude reasoning. In: AAAI-86 american

association for artificial intelligence.

Raiman, Olivier. 1991. Order of magnitude reasoning. Artificial intelligence, 51,

11–38.

Saber. 1996. Saber users’ guide. Analogy, inc.

Sasajima, M., Kitamura, Y., Ikeda, M., & Mizoguchi, R. 1995. FBRL: A functional

and behavior representation language. In: Proceedings international joint

conference on artificial intelligence (IJCAI-95).

Savakoor, D. S., Bowles, J. B., & Bonnell, R. D. 1993. Combining sneak circuit

analysis and failure modes and effects analysis. Pages 199–205 of: Proceedings

annual reliability and maintainability symposium.

Sembugamoorthy, V, & Chandrasekaran, B. 1986. Functional representation of

devices and compilation of diagnostic problem-solving systems. Pages 47–

73 of: Kolodner, Janet L., & Riesbeck, Christopher K. (eds), Experience,

memory and reasoning. Erlbaum.

Snooke, Neal A. 1999. Simulating electrical devices with complex behaviour. AI

communications, 12(1,2), 45–58.

Snooke, Neal A. 2004. Model-based failure mode and effects analysis of software.

Pages 221–226 of: Proceedings of 15th international workshop on the princi-

ples of diagnosis (DX04).

Snooke, Neal A., & Bell, Jonathan. 2002. Abstracting automotive system models

from component-based simulation with multi level behaviour. Pages 151–160

of: Sixteenth international workshop on qualitative reasoning (QR02).

Snooke, Neal A., & Price, Christopher J. 1998. Hierarchical functional reasoning.

Knowledge-based systems, 11(5–6), 301–309.

Sticklen, Jon, Goel, A., Chandrasekaran, B., & Bond, W. E. 1989. Functional

reasoning for design and diagnosis. In: Proceedings model based diagnosis

international workshop (DX-89).

300

Sticklen, Jon, Kamel, Ahmed, & Bond, William E. 1991. Integrating quantita-

tive and qualitative computations in a functional framework. Engineering

applications of artificial intelligence, 4(1), 1–10.

Tuttle, Kenneth L., & Wu, Chih. 2001. Intelligent computer assisted instruction in

thermodynamics at the U. S. Naval Academy. Pages 105–112 of: Proceedings

15th international workshop on qualitative reasoning (QR ’01).

Umeda, Yasushi, & Tomiyama, Tetsuo. 1993. A CAD for functional design. Pages

172–179 of: Reasoning about function: workshop notes of AAAI-93.

Umeda, Yasushi, Kondoh, Sinsuke, Shimomura, Yoshiki, & Tomiyama, Tetsuo.

2005. Development of design methodolgy for upgradable products based on

function-behavior-state modeling. Artificial intelligence for engineering de-

sign, analysis and manufacturing, 19, 161–182.

van Wie, Michael, Bryant, Cari R., Bohm, Matt R., McAdams, Daniel A., &

Stone, Robert B. 2005. A model of function-based representations. Artificial

intelligence for engineering design, analysis and manufacturing, 19, 89–111.

Wirth, Rüdiger, & O’Rorke, Paul. 1993. Representing and reasoning about func-

tions for failure modes and effects analysis. Pages 188–193 of: Reasoning

about function: Workshop notes of AAAI-93. AAAI.

Wood, William H., Dong, Hui, & Dym, Clive L. 2005. Integrating functional

synthesis. Artificial intelligence for engineering design, analysis and manu-

facturing, 19, 183–200.

301

