
Aberystwyth University

Enhancing digital elevation models for hydraulic modelling using flood frequency
detection
Ettritch, Georgina; Hardy, Andrew; Bojang, Landing; Cross, Donall; Bunting, Peter; Brewer, Paul

Published in:
Remote Sensing of Environment

DOI:
10.1016/j.rse.2018.08.029

Publication date:
2018

Citation for published version (APA):
Ettritch, G., Hardy, A., Bojang, L., Cross, D., Bunting, P., & Brewer, P. (2018). Enhancing digital elevation
models for hydraulic modelling using flood frequency detection. Remote Sensing of Environment, 217, 506-522.
https://doi.org/10.1016/j.rse.2018.08.029

Document License
CC BY-NC-ND

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 03. Oct. 2019

https://doi.org/10.1016/j.rse.2018.08.029


Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Enhancing digital elevation models for hydraulic modelling using flood
frequency detection

Georgina Ettritcha,⁎, Andy Hardya, Landing Bojangb, Dónall Crossc, Peter Buntinga, Paul Brewera

a Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
bDepartment of Water Resources, the Gambia
c Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom

A R T I C L E I N F O

Keywords:
Digital elevation model
DEM
SRTM
Flood modelling
River Gambia
Landsat

A B S T R A C T

Medium-resolution DEMs have limited applicability to flood mapping in large river systems within data sparse
regions such as Sub-Saharan Africa. We present a novel approach for the enhancement of the SRTM (30m)
Digital Elevation Model (DEM) in The Gambia, West Africa: A time-series analysis of flood frequency and land
cover was used to delineate differences in the vertical limits between morphological units within an alluvial
floodplain. Combined with supplementary river stage data and vegetation removal techniques, these methods
were used to improve the estimation of bare-earth terrain in flood modelling applications for a region with no
access to high-resolution alternatives. The results demonstrate an improvement in floodplain topography for the
River Gambia. The technique allows the reestablishment of small-scale complex morphology, instrumental in the
routing of floodwater within a noise-filled DEM. The technique will be beneficial to flood-risk modelling ap-
plications within data sparse regions.

1. Introduction

In data sparse regions (such as sub-Saharan Africa), hydraulic flood
modelling applications are limited to the use of medium-resolution
(~30m) Digital Elevation Models (DEMs) including the Shuttle Radar
Topography Mission (SRTM: NASA JPL), ASTER Global DEM (GDEM:
NASA JPL), and most recently, the ALOS Global Digital Surface Model
(AW3D30: JAXA). These products have been implemented within 1D/
2D flood modelling applications across large river reaches (typically
exceeding 10,000 km2 in domain extent) to basin-scale and region-scale
analysis (covering multiple basins) (e.g. da Paz et al., 2011; Neal et al.,
2012; Wilson et al., 2007; Biancamaria et al., 2009; Amarnath et al.,
2015; Lewis et al., 2013). A large domain extent requires the resam-
pling of DEM data at coarser resolution (e.g. through mean pixel ag-
gregation) or the use of low-resolution data (e.g. Biancamaria et al.,
2009) to reduce the computational demand on flood model perfor-
mance (Amarnath et al., 2015) (Table 1). Increasing computational
efficiency through coarse resolution resampling is particularly im-
portant for large-scale rivers, where flood pulses are extensive not just
in space, but also in time (da Paz et al., 2011).

Coarse resolution resampling can, in itself, be viewed as a DEM
enhancement technique: SRTM, as the most commonly used product in

large-scale flood modelling and the primary subject of this investiga-
tion, contains a high level of pixel-to-pixel noise, known as the short-
wave error component (Rodriguez et al., 2006). The smoothing effect of
pixel aggregation works to lower the vertical error margin of the DEM
relative to the vertical range of floodplain morphology and flood wave
amplitude (e.g. Wilson et al., 2007; Neal et al., 2012). Recent im-
provements in hydraulic modelling have been made specifically in re-
lation to large-scale flood mapping at resolutions below the native grid
spacing of a DEM. For example, the development of the sub-grid
channel mode in LISFLOOD-FP allows the inclusion of channel geo-
metry at the sub-grid level. As such, DEM resolution for the 2D com-
ponent can be coarsened without impacting upon the representation of
channel flow in the 1D component (Neal et al., 2012; Lewis et al.,
2013).

However, care must to be taken to ensure that DEM coarsening is
not detrimental to model performance, particularly when floodwater
routing is controlled primarily by floodplain topography. For example,
DEM aggregation has been found to lead to the eradication of key re-
gions of riparian floodwater storage, fundamental to the accurate si-
mulation of flood wave travel time (Horritt and Bates, 2001). Pixel
aggregation has also been found to limit processes of floodplain de-
watering and the representation of low water inundation extent
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through the removal of complex, small-scale topography (Wilson et al.,
2007). Overall, optimal DEM resolution is a compromise between: 1)
Accounting for flood wave amplitude and the complexity of floodplain
topography (e.g. Wilson et al., 2007), 2) The vertical accuracy of the
DEM relative to the above and 3) Optimising computational efficiency
of the flood model relative to study domain extent and flood wave
temporality.

1.1. Methods of DEM enhancement

The relative/absolute vertical error of medium-resolution DEMs
(e.g. SRTM with an absolute vertical error > 5m in regions with slopes
of< 10° (Gorokhovich and Voustianiouk, 2006)) will often exceed the
vertical range in floodplain morphology and flood wave amplitude.
Therefore, medium-resolution DEMs are often considered to be un-
suitable for use in the modelling of overbank flow controlled by
floodplain topography, without modification (Bates, 2012). Further-
more, large river systems contain complex flow networks that control
the routing of water/sediment across the floodplain (Lewin and
Ashworth, 2014). Many small-scale features instrumental in floodwater
routing will be missed by medium-resolution DEMs in the first instance,
a problem exacerbated further by coarse resolution resampling, as
outlined above. In addition, the presence of closed canopy vegetation,
such as mangrove forests, can mask the bare earth terrain below (Sun
et al., 2003; Yastikli et al., 2006; Tighe and Chamberlain, 2009). This is
problematic for the majority of large tropical floodplains where vege-
tation cover is often dense, continuous and does not experience the leaf-
off conditions typically associated with winter months in temperate
regions. As such, an estimate of bare-earth terrain under vegetation
using Earth Observation data is limited. Tidally-influenced tropical re-
gions are particularly problematic as saline-tolerant species will persist
throughout the hydrological year and may experience only limited
periods of die-off and subsequent exposure of the underlying surface.
The following literature review is a brief account of techniques avail-
able to the end-user for the enhancement of SAR-based or optical-based
elevation data.

Common DEM enhancement techniques include data fusion (i.e.
hybridisation), waterbody masking, void filling, stream burning and
vegetation removal. Data fusion is typically conducted at the landscape-
scale. For example, SRTM can be fused with ASTER GDEM to capitalise
on the relative differences in sensor performance over mountain slopes,
valleys and floodplains for respective SAR and optical-derived DEMs
(e.g. Tran et al., 2014). However, this technique has also been effective
at improving topography within the floodplain. For example, 2.5m
Cartosat-1 data (Patel et al., 2016) was combined with 90m SRTM data
to form an 8m hybridised DEM that compensated for the limited per-
formance of the Cartosat-1 DEM over paddy fields (Sanyal et al., 2014).

InSAR-derived DEMs such as SRTM produce a noisy water surface
with a high density of data voids due to the specular reflection of C-
Band microwave energy over water (Lehner et al., 2008) and side-
looking angles of spaceborne/airborne radar systems. Waterbody
masking applies a constant elevation value over an open water surface
and allows the removal of elevation anomalies and data voids asso-
ciated with these regions. SRTM has been improved at global-scale

through the use of the auxiliary water mask: SWBD (SRTM Water Body
Data). A similar dataset AWBD (ASTER Water Body Dataset) has also
been applied to GDEM version 3 (Abrams, 2016).

Data voids are negative relief features of internal drainage that in-
clude single-cell/double-cell sinks and larger regions. These features are
easily resolvable using common fill techniques that raise the elevation
of an internally draining region to the level of its peripheral pour point
(e.g. Jenson and Domingue, 1988; Planchon and Darboux, 2001; Wang
and Liu, 2006). Fluvial erosion generally dictates a hydrologically
connected landscape (Wang and Liu, 2006; Mark, 1988) suggesting that
the majority of such features are erroneous and should be eliminated
from the topographic profile (Mark, 1988; Senevirathne and Willgoose,
2013; Lindsay and Creed, 2005a, 2005b). However, larger features may
in fact be natural regions of negative relief (e.g. de Carvalho Junior
et al., 2014; Siart et al., 2009; Smith et al., 2013). In a fluvial context,
negative relief formations may include: palaeochannels, riparian la-
goons and pools, that will remain inundated following floodwater re-
cession (Lewin and Ashworth, 2014; Smith et al., 2013). Removal of
these features may contribute to inaccuracies in the calculation of
floodwater storage within the floodplain. Some negative relief features
that are hydrologically connected to the main trunk stream maybe in-
accurately presented as internally draining features. In such cases, a
breaching algorithm (e.g. Martz and Garbrecht, 1999) can be used to
eliminate anomalous topographic highs and allow hydrological re-
connection.

Stream burning also facilitates a hydrologically connected surface
within a DEM, thereby, improving floodwater routing within a 2D hy-
draulic model. Depending on DEM resolution river channels may be-
come disconnected or are too narrow to be detected as a negative relief
feature in the first instance. Automated stream burning procedures
(Lindsay, 2016) can directly modify channel elevation within a DEM,
based on a predefined flow path. One example is the AGREE method for
DEM surface reconditioning (Hellweger, 1997). The technique gen-
erates a trench along a given stream vector, while eliminating proximal
parallel flow paths through a lateral smoothing procedure. In data
sparse regions, streams are typically generated by lowering channel
cells by a constant value (representative of predicted channel depth),
relative to adjacent floodplain cells (representative of river bank
height) (Lindsay, 2016). In doing so, the integrity of channel geometry
estimation is inherently dependent upon the vertical accuracy of the
DEM. If bank height above river bed is distorted by riparian vegetation
cover, channel bed elevation, relative to local floodplain level will be
overestimated.

Furthermore, in lowering channel cells by a constant value it is
assumed that the DEM surface is representative of channel bed gradient
in the first instance. However, this is unlikely to be the case, particu-
larly within gently sloping regions where vertical error typically ex-
ceeds topographic variation within a DEM. As such, stream burning
procedures often incorporate interpolation techniques that linearly re-
condition channel bed elevation between predetermined values in the
downstream direction. For example, LISFLOOD-FP (1D/2D mode) ap-
plies linear interpolation between discrete cross-sections of known
width and bed elevation. Using bank height as an approximation of
channel depth, the estimated geometry is burned directly into the DEM,

Table 1
Examples of the use of medium to low-resolution DEMs in flood modelling and associated resampling of raster-based elevation data relative to model domain extent.

Study DEM Original (m) Resampled (m) Domain (km2) Scale

Neal et al. (2012) SRTM 90 905 210,389 Sub-basin
Wilson et al. (2007) SRTM 90 270 13,000 Sub-basin
Biancamaria et al. (2009) ACE 1000 1000 790,000 Sub-basin
da Paz et al. (2011) SRTM 90 2000 219,514 Sub-basin
Komi et al. (2017) SRTM 30 30–960 72,000 Basin
Lewis et al. (2013) SRTM 90 900 223,000 >Basin
Sampson et al. (2015) SRTM 90 1000 – Global

G. Ettritch et al. Remote Sensing of Environment 217 (2018) 506–522

507



along a predefined channel vector (Bates et al., 2013).
In general, stream burning techniques are limited to the width of a

single cell. A single cell approach is useful in instances where channel
width is equal to DEM resolution. As previously established, where
channel width is below DEM resolution, a sub-grid approach to channel
representation can be applied (Neal et al., 2012). However, instances in
which channel width exceeds DEM resolution are more difficult to re-
concile without access to a high-resolution bathymetric survey. This is
because rivers display anisotropic behaviour (Merwade et al., 2006).
Spatial heterogeneity in flow direction prevents the application of
commonplace interpolation techniques (for example, Inverse Distance
Weighting (IDW) or Kriging) for bed elevation estimation between
discrete cross-sections in the downstream direction (Zhang et al., 2016;
Merwade et al., 2008). Although, such techniques can be modified to
allow a robust estimation of channel bathymetry in a data sparse en-
vironment (Merwade, 2009).

Vegetation removal techniques typically work by subtracting ve-
getation height from the surface profile using a uniform height value,
spatially informed by forest boundary data (e.g. Coe et al., 2008; Paiva
et al., 2011). However, the assumption here is that there is no spatial
variation in inter-species height and that EMR (Electro-magnetic Ra-
diation) is unable to penetrate the vegetation canopy (Wittmann et al.,
2004). An alternative approach (particularly useful for SAR-based
DEMs) is the subtraction of a uniform percentage height value that
accounts for the partial penetration of the canopy by microwave ra-
diation. For example, Wilson et al. (2007) subtracted 50% of height
from the SRTM profile over vegetated areas, based on C-SAR canopy
penetration depth. The study was spatially informed by a vegetation
map of the study area (Hess et al., 2003). Using a global vegetation
height dataset (Lefsky, 2010; Simard et al., 2011), Baugh et al. (2013)
performed a sensitivity analysis on optimal percentage height removal
for C-SAR data, concluding that 50–60% height removal facilitated the
greatest improvement in flood prediction using LISFLOOD-FP for a re-
gion in the Amazon, correlating with results from Wilson et al. (2007).
Recent improvements to vegetation removal have focused on the use of
non-uniform correction values as a function of vegetation height and
density at the global-scale (O'Loughlin et al., 2016; Yamazaki et al.,
2017). Auxiliary datasets including: 1) MODIS-derived canopy density
2) ICESat altimetry data and 3) global vegetation distribution (Simard
et al., 2011) have been combined to allow the level of height subtrac-
tion to vary by climatic zone and species (O'Loughlin et al., 2016).
Overall, vegetation removal techniques will generally improve the
vertical accuracy of a DEM, particularly regarding optical-stereo de-
rived or X-band/C-band data.

1.2. Towards a geomorphological approach to DEM enhancement at
floodplain-scale

With the exception of stream burning, enhancement techniques of
medium-resolution DEMs focuses on the refinement of established to-
pography rather than on resolving the omission of key geomorpholo-
gical features. This is inherently problematic when attempting to model
overbank flow controlled by complex floodplain topography. Large
floodplains (typically 4–40 km in width) cannot be classed simply as the
passive recipients of overbank flow and diffuse sediments (Lewin and
Ashworth, 2014). These regions will often contain a complex network
of ephemerally and permanently connected channels (Day et al., 2008;
Trigg et al., 2012) and other features that are actively involved in the
progression, storage and recession of floodwater. This study demon-
strates the use of freely available auxiliary optical data for resolving the
omission of geomorphological features, inherently involved in the
routing of overbank flow within a DEM.

The use of both optical and/or radar satellite imagery (10–30m) for
the mapping of fluvial geomorphology has been successfully demon-
strated (e.g. Lewin and Ashworth, 2014). Coupled with information on
river stage, this presents a unique opportunity to enhance medium-

resolution DEMs, enabling them to represent complex floodplain drai-
nage network features for use in hydraulic flood modelling in data
sparse regions. Specifically, the use of multi-temporal flood frequency
analysis of satellite imagery (e.g., Pekel et al., 2016) can be used
alongside classification of vegetation type (and a phenological under-
standing of their distribution with regards to surface water availability)
to determine the spatiotemporal variance in the exposure of geomor-
phological landforms. In doing so, relative differences in elevation
across the floodplain can be established as a function of river stage. This
information can be used to correct a DEM in regions where the relative
and absolute vertical error of a DEM exceeds the vertical range in
floodplain morphology and flood wave amplitude.

1.3. Characterising the use of surface water mapping in DEM enhancement

By mapping water extent, floodplains can be segmented into geo-
morphological units, defined by their relative level of exposure above a
given water surface height. For example, in tidally influenced reaches,
areas of partially vegetated mudflats remain dry at high tide (e.g.
White, 1983), while areas covered by halophytic vegetation indicate
areas of lower elevation, flooded at high tide. The concept of using
water extent to alter a DEM was first introduced by Mason et al. (2016)
for the purpose of reducing random noise in the TanDEM-X WorldDEM
(12.5 m) product. Mason's method is applied by removing outliers from
the DEM and averaging the height of adjacent pixels along a waterline.
Adjacent contours subsequently form upper and lower elevation
boundaries and pixels between them can be constrained accordingly:
pixel elevation that exceeds the upper flood limit is lowered to match it;
pixel elevation below the lower contour limit is raised to the height of
the waterline. This concept is founded upon the fact that water surface
elevation changes slowly along a reach for large rivers; meaning
therefore, that a waterline will reflect consistent elevation, and can be
subsequently classed as a ‘quasi-contour’ for local DEM adjustment
(Mason et al., 2016).

However, this method was designed specifically for shallow-sloping
regions with short vegetation: Short vegetation reduces the potential for
horizontal error in waterline extent detection within SAR imagery and
elevation overestimation within the DEM, associated with emergent
vegetation. In large tropical wetlands, flood waves are shallow and the
water surface will typically be associated with dense, emergent vege-
tation cover. As such, the establishment of a distinct waterline feature
using optical or SAR-derived imagery is problematic. Studies have
shown the potential for the use of SAR data in detecting changes in
water extent across vegetation using a multi-temporal analysis of
backscatter response (e.g. Tanis et al., 1994; Kasischke and Bourgeau-
Chavez, 1997; Kiage et al., 2005; Long et al., 2014) and/or by assessing
phase difference between polarizations (e.g. Horritt et al., 2003; Lu and
Kwoun, 2009). However, success of a SAR-based approach is dependent
on: 1) wavelength relative to canopy penetration potential (i.e. whether
a double-bounce backscatter response can be obtained from the water
surface, dependant on canopy height, density and stem orientation)
(Henderson and Lewis, 2008); and 2) a thorough understanding of land
cover distribution and antecedent conditions within reference imagery.

Optical data is limited to the detection of open water regions only
(e.g. Pekel et al., 2016). Emergent vegetation at the edges of open water
may result in the underestimation of surface water extent. However, an
understanding of plant phenology with regards to surface water dis-
tribution can be used to inform the enhancement of floodplain topo-
graphy within a medium-resolution DEM. Hydrological controls on
species composition at floodplain-scale are particularly prominent
within low-lying tidal regions (Twilley, 1985). For instance, in The
Gambia, West Africa, savannah woodlands are permanently dry (i.e.
raised above the level of fluvial inundation), mangroves and other ha-
lophytic vegetation types will be semi-diurnally inundated by tides, and
partially vegetated mudflats will remain largely dry, allowing for the
establishment of vegetation with inundation occurring only during
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extreme flood events. A spectral classification of species composition
across a fluvio-tidal environment can therefore be used to rectify clear
topographic boundaries within a noise-filled DEM.

1.4. Study aims

The aim of this study is to develop a hydrologically corrected DEM
surface specifically designed for the modelling of flood event scenarios,
controlled by floodplain topography. This aim is achieved by addres-
sing the following objectives: a) Determine to what extent the spatio-
temporal inundation dynamics of a large tidal floodplain can be de-
tected using a multi-temporal archive of medium-resolution optical
imagery and b) to demonstrate how differences in morphological ex-
posure relative to river stage can be used to improve the vertical ac-
curacy of the SRTM DEM.

2. Methods

2.1. Study area

The study was based on an 86 km reach of the lower River Gambia
in West Africa (Fig. 1). Total domain extent was 1794 km2. Beginning in
the Fouta Djallon Highlands in Guinea (Bøgh et al., 2003), the river
Gambia is one of eight large river systems in the region (length:
1100 km; drainage area: 77,000 km2) (Leveque, 1995). The water-
course follows a classic tropical regime with one short wet season (June
to October) and a significant proportion of the annual runoff (60–75%)
being concentrated within mid-August to mid-October (Leveque, 1995).
Approximately 525 km of the lower course is characterised by a low
valley gradient (~0.013m/km) resulting in a tidal regime which ex-
tends up to the Gambian-Senegalese border during the dry season
(Berry et al., 1985). Daily minimum and maximum stage readings for
the main channel at Balingho (2015–2016) (source: Department of
Water Resources, The Gambia) demonstrates a diurnal tidal range
which exceeds seasonal change as a result of increased upstream dis-
charge (Fig. 2) (Louca et al., 2008). During the dry season, floodplain
inundation frequency is semi-diurnal, with spatial limits determined by
the extent of high spring tide. During the wet season, these spatial
maximums fluctuate as a combined function of increased upstream
discharge at flood tide (Berry et al., 1985).

The study reach is morphologically static due to the stabilising ef-
fect of riparian vegetation cover, characteristic of most fluvial wetland
systems (e.g., Martinez and Le Toan, 2007). The region is inter-tidal
containing a complex network of creeks (known locally as bolons) that
route tidal water across the floodplain on a semi-diurnal basis. Flood-
plain substrate consists of clay-based alluvium (Guillard et al., 2004;
Louca et al., 2008) supporting mangrove forest (including Rhizophora
sp. and Avicennia sp.; Bøgh et al., 2007) and short herbaceous vegeta-
tion (≤2m) including grasses Paspalum, sp., Sporobulus sp., sedges
(seasonal spike-rush: Eleocharis sp.), perennial shrub (sea-purslane:
Sesvium sp.) and tall reeds (Cyperus papyrus, Phragmites karka). Aquatic
floating vegetation, predominantly Nymphaea sp. (water lillies) occurs
seasonally over open areas of freshwater (Bøgh et al., 2003). Areas of
permanently exposed sediment within the floodplain represent regions
least likely to be tidally influenced (White, 1983).

2.2. Flood frequency analysis

In total, 99 Landsat scenes (1986–2016) (including Landsat 5;
Landsat 7; and Landsat 8) were incorporated into a rule-based classi-
fication system (Fig. 3) to classify nine land cover types representing
key hydrologically-driven land cover classes within the floodplain
(Table 2). The purpose of incorporating 99 scenes was to determine
average hydrological conditions at season-scale, within a morphologi-
cally stabilised reach. In doing so, the effect of extreme flood events
with a long return period on land cover representation was minimised.

Scenes were atmospherically corrected to surface reflectance using
ARCSI (http://rsgislib.org/arcsi/) and were subsequently subset to the
study reach. The rule-based system was largely based on thresholding
using vegetation indices including the Normalised Difference Vegeta-
tion Index (NDVI) (Eq. (1)) for identifying difference in chlorophyll
content or leaf ‘greenness’ (Hay et al., 1998) and the Normalised Dif-
ference Pond Index (NDPI) (Eq. (2)) which can discriminate turbid
water bodies with high suspended sediment (typical of large river sys-
tems) from other land cover types (Vignolles et al., 2009). Vegetated or
partially vegetated mudflats were delineated by a threshold on Landsat
7/8 panchromatic band as these areas tend to be brighter (typical pixel
value (Digital Number) > 8000) in the green to near infrared regions
of the spectrum compared to other land cover types. Thresholds were
determined manually by calibrating against false colour composites of
the original Landsat imagery.

= − +NDVI [NIR RED]/[NIR RED] (1)

= − +NDPI [MIR GREEN]/[MIR GREEN] (2)

Success of the classification with regards to flood frequency as-
sessment relies on a priori knowledge of land cover and land use to
determine whether vegetation boundaries represent true regions of
topographic change, or merely reflect a change from emergent to sub-
merged vegetation, leaf-on to leaf-off conditions or the seasonal culti-
vation of cropland across relatively flat land. For example, tidally-in-
fluenced rice fields will change seasonally, transitioning to open water
prior to initial growth stages and following harvesting (Carney, 1998a,
1998b). Whereas, the reduction in panchromatic brightness across bare
mudflats suggests the encroachment of surface water. Peripheral rice
fields are pluvially-fed and will dry out during the dry season as they
are above tidal influence and persistent groundwater saturation
(Fillinger et al., 2009). Inaccuracies in water extent prediction in the
presence of floating aquatic vegetation must also be considered. The
rule-based classification shown in Fig. 3 was designed specifically to
account for these expected variations.

The resulting land cover map was used to determine variation in
inundation extent at the sub-daily to seasonal scale based on the in-
undation characteristics associated with each land cover class (sum-
marised in Table 2). Table 3 shows the total number of scenes available
for each month. No data were available for wettest months, August and
September due to extensive cloud cover.

The classification system was implemented in ERDAS Imagine
(Version 2014). Classification accuracy was assessed through an error
matrix using 1800 points with reference to high-resolution imagery
(February 2016) in Google Earth Pro (version 7.1.5) and a panchro-
matic ALOS PRISM mosaic consisting of four individual scenes, cov-
ering the dry season (February 2010/2011) (provided by ESA). Each
class was initially designated with 200 points, randomly spatially dis-
tributed using stratified random sampling. Ground-truth points were
subsequently compared to land cover as predicted by the multi-tem-
poral classification. Due to their narrowness, creeks (i.e. bolons) and
drainage channels (of 15–30m in width) were manually digitised
within the classification and therefore excluded from the error matrix.

Each class represents a unique geomorphological unit with distinct
spatiotemporal differences in inundation. However, from a non-tem-
poral perspective there is significant overlap between some of these
regions: Rice fields form a managed agricultural landscape but, swamp
rice is also a saline tolerant species, spectrally similar to, and spatially
concurrent with wild, unmanaged halophytic vegetation. Mudflats,
whether ephemerally dry or permanently dry, consist of bare alluvial
sediments raised above the local level of the densely vegetated flood-
plain. The main channel of the River Gambia and its tributaries remain
hydrologically connected throughout the year and therefore represent
regions of permanent water. For simplicity, distinct geomorphological
classes with spectral similarities were merged to form five sub-cate-
gories (Table 4).
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2.3. DEM enhancement

The flood frequency product was used to modify and enhance 1-
second arc SRTM DEM. The enhancement procedure is divided into two
primary work packages outlined below (summarised in Fig. 4).

2.4. Work package 1: vegetation removal

Prior to the implementation of a hydro-geomorphologically cor-
rected DEM, the influence of vegetation height noise within the inter-
tidal zone was reduced. Studies have shown that C-band InSAR (used to
generate the SRTM DEM) is capable of penetrating to within ~50% of
the total canopy height (Kreiselmeier, 2015; Baugh et al., 2013).
However, penetration potential is dependent on species- specific var-
iations regarding canopy height and density (O'Loughlin et al., 2016).
Within the Gambia study site, mangrove stands, and halophytic vege-
tation have a clear influence on the DEM. Average height for Rhizophora
sp. is 20 m along the north bank within the study region (Twilley,

Fig. 1. Study Area in The Gambia, West Africa (values given in panel B) represent distance upstream (km) of gauging stations (red markers) from river mouth at
Banjul. Panel C shows the specific location of the study area. Panel D shows the location of cross-sections for Figs. 10 and 11. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Month-averaged high (MAX) and low (MIN) stage (metres above sea
level) at Balingho gauging station (2015–2016).
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1985). Halophytic vegetation (considering sedges, tall reeds and
grasses) has an average height of ~2m (Twilley, 1985).

Without auxiliary ground data it is not possible to establish pene-
tration depth of C-band radar over vegetation. As such, a penetration
potential of 50% was selected for both mangrove and halophytic ve-
getation. Although relatively optimistic (particularly regarding the
dense canopy structure of mangroves) this value is in agreement with
the penetration potential of other dense, fluvially-influenced vegetation
types across tropical wetlands (e.g. Wilson et al., 2007). Per-pixel ele-
vation was reduced by a respective 10m across mangroves (reflective of

the dominance of tall, Rhizophora sp. with a mean height of 20m) and
1m across halophytic vegetation (assuming that short halophytic ve-
getation will be ~2m in height). The aim of the procedure is not to
increase the absolute/relative vertical accuracy of bare-earth terrain
across halophytic vegetation and mangrove as mutually exclusive ve-
getative units. Its purpose is to improve the relative vertical accuracy
between these units and the subsequent routing of water within the
inter-tidal zone.

Fig. 3. Rule-based decision tree of land cover classification applied to Landsat imagery (Values represent typical thresholds relating to NDVI, NDPI, seasonal
differences and summed incidence; DN (Digital Number) refers to Panchromatic Brightness).

Table 2
Land cover classes and associated inundation dynamics.

Class Description Return period Classification feature

Halophytic vegetation Tidally-influenced, short herbaceous vegetation < 1 day to 14 days NDVI
Mangrove Tidally influenced mangrove forest < 1 day to 14 days NDVI
Partially vegetated mudflats Permanently dry raised mudflats beyond the influence of tidal or seasonal

inundation except for extreme events
Non-seasonal extreme event
(> 1 year)

Panchromatic brightness

Unvegetated mudflats Ephemerally dry mudflats unable to support continuous vegetation cover 14 days to seasonal Panchromatic brightness
Savannah woodland Raised islands with sandstone substrate - enclosed by the floodplain but elevated

above the temporal dynamics of surface water inundation
Permanently dry NDVI

Creeks and drainage
channels

Distributaries of the main river channel, permanently inundated Permanently wet Manual digitisation

Permanent water bodies Areas of open water which remain inundated at all times Permanently wet NDPI
River Gambia/tributaries Main river channel and its tributaries Permanently wet NDVI
Mid/riparian rice fields Wamifaro/Bafaro types – tidally influenced < 1 day to 14 days NDVI
Peripheral rice fields Bantafaro/Leofaro types - subject to pluvial inundation elevated above high tide

levels
Rain-fed (Jun-Oct) NDPI
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2.5. Work package 2: geomorphological enhancement

DEM enhancement was based on the extent of vegetation cover
under the assumption that the distribution of vegetation within the
floodplain is dependent on semi-diurnal to bi-monthly differences in
surface water extent. For example, areas classified as partially vege-
tated mudflats would remain dry at high tide and therefore exist at
relatively high elevations compared to areas covered by halophytic
vegetation that are frequently (diurnally) inundated, signifying areas of
lower elevation (Table 2).

Geomorphological enhancement of the DEM involved six primary
steps, outlined as follows:

1. The land cover classification was converted to polygons. Class
boundaries were extracted as polylines from the resulting layer file
in ArcMap 10.3. These polylines represented hydrological bound-
aries where a distinct change in elevation was expected based on the
spatiotemporal analysis of morphological exposure (conceptually
depicted in Fig. 5).

2. Land cover polygons were used to clip the SRTM DEM into discrete
raster units based on the spatial distribution of hydrologically-in-
fluenced land cover.

3. Each water-based polyline was assigned an elevation value using
daily minimum and maximum river stage data at Balingho (Fig. 1).
The local vertical datum for the region is known as the Gambian
Datum (GD) (Berry et al., 1985). The difference between GD as a

local datum and mean sea level approximated by EGM96 (Earth
Gravitational Model 1996: the geoid used as reference for ortho-
metric height in SRTM) is unknown. For the purpose of this in-
vestigation, GD and EGM96 were presumed to be in agreement.
River stage was converted to water surface elevation by summing
stage height above chart datum (CD) at Balingho with height of CD
above GD as follows:

+ =CD(0.731 m) stage(m) water surface elevation (MSL) (3)

Average daily minimum and maximum stage in the dry season was
used as vertical markers of low tide and high tide. Fortnightly high tide
differences were used to establish spring tide stage (Table 5). The lower
limit of the main channel/major tributaries was based on reach average
depth of the study site (Albaret et al., 2004). The lower limit of bolons
and drainage channels were based on reach average depth of bolon

Table 3
Total number of Landsat scenes available for each month.

Month n Season

JAN 7 Dry
FEB 11 Dry
MAR 12 Dry
APR 15 Dry
MAY 9 Dry
JUN 2 Wet
JUL 1 Wet
AUG 0 Wet
SEP 0 Wet
OCT 11 Wet
NOV 15 Dry
DEC 16 Dry
Total 99

Table 4
Accuracy assessment class designations.

Original classes Merged class Class ID ∑ Test
points

Halophytic vegetation
Mid/riparian rice fields Halophytic

vegetation
HV 600

Peripheral rice fields

Unvegetated ephemerally dry
mudflats

Raised mudflats MF 400

Partially vegetated permanently
dry mudflats

Permanent water Permanent water PW 400
Main channel/tributaries

Mangrove Mangrove M 200

Savannah woodland Savannah
woodland

SW 200

Creeks/drainage channels – – –
Total 1800

Fig. 4. Workflow for DEM enhancement.

Fig. 5. Typical cross-section through floodplain morphology where: 1=Raised
island with sandstone substrate, 2= raised alluvial mudflat (permanently dry),
3= creek or drainage channel, 4= raised alluvial mudflat (ephemerally dry),
5= alluvial floodplain below daily/spring high tide level, 6= permanent
water body (groundwater-fed with or without tidal/seasonal inundation) and
7=main river channel or tributary.
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features (Berry et al., 1985). The upper vertical limit of floodplain
morphology (4m above sea level) was based on average elevation
(defined by the SRTM DEM) at the landward edge of alluvial sediments
(defined by the land cover classification). Peripheral rice fields and
unvegetated raised mudflats were considered to be within a similar
elevation range, above tidal influence. Although mangrove and halo-
phytic vegetation will contain some areas that are only inundated at
spring high tide level (Table 2), the use of optical data limited the re-
gion to a holistic average high tide threshold (Table 5).

4. The elevation value of each waterline represented the upper/lower
elevation boundary between two land cover classes (Table 5.). For
example, halophytic vegetated areas should not exceed 2.1 m above
sea level, and raised mudflats should equal or exceed, but never be
below this value.

5. To constrain elevation across the land cover class between an upper
and lower boundary, the following workflow was applied to each
class individually using ArcMap 10.3:

a. Remove overlying vegetation cover.
b. Calculate the mean elevation value of the raster unit and determine

outliers by selecting all the pixels of elevation>3-sigma.

A 3-sigma outlier is defined as any value that is not found to be
within 3 standard deviations of the mean. The subsequent z-score for
each pixel was calculated as follows:

=Z‐score (value/mean)/standard deviation) (4)

c. Modify outliers to equal the upper or lower elevation boundary of
the class respective of whether the outlier was above the upper limit
or below the lower limit for a class.

d. Normalise class elevation to lie on a scale between 0 and 1 by
identifying the minimum and maximum elevation value as follows
(where NE=Normalised Elevation):

= − −NE (value min)/(max min) (5)

e. Constrain elevation to lie between the stage-based upper class limit
(UCL) and lower class limit (LCL) (see Table 5) as follows:

+ ∗ −LCL (NE (UCL LCL)) (6)

6. Modified raster units were mosaicked to form an enhanced version
of the SRTM DEM.

The resulting topographic profile of the enhanced DEM accentuated
the height differences between hydrologically-driven land cover classes,
and relative to this, supressed elevation variation across a class. Fig. 6
shows a conceptual cross-section of the floodplain. Note that in the

original profile, the elevation differences of tidally-influenced swamp-
land and desiccated, unvegetated mudflats is indistinguishable due to a
high degree of random noise and interference from canopy height. In
the corrected profile, vegetation is removed from swampland. The
stripped profile is then constrained between an upper and lower stage
boundary (in this example (not real values) between 3 and 5m), at the
zone of transition between classes (black lines). Accordingly, the ele-
vation of swampland will never exceed the elevation of mudflats, dic-
tated by the horizontal and vertical limits of daily high tide.

2.6. Flood model parametrisation

The mechanistic flood model: LISFLOOD-FP (Bates et al., 2013) was
used to assess the difference in floodwater extent between the original
SRTM DEM (30m) and enhanced DEM (30m). The simulation was run
under fixed conditions using a diffusive channel solver, with a down-
stream boundary condition representative of river stage at the down-
stream exit. A channel friction value of 0.02 and a floodplain friction
value of 0.03 was established (respectively reflective of typical es-
tuarine channel and vegetated floodplain conditions) (Chow, 1959).
Channel bathymetry was burned into the DEM at a depth of 8m, re-
flective of reach average depth across the study domain (Albaret et al.,
2004). Downstream discharge data as well as upstream inflow within
the tidal reach was not available for the area. Therefore, rather than
modelling real flood events this study simulates theoretical flood events
using a fixed discharge value of 1000m3/s. The value was applied
firstly with a downstream boundary elevation of 1msl (representing
typical low tide conditions in the wet season) and increased in incre-
ments of 0.25m to an elevation of 2.5m (representing typical spring
high tide conditions). In doing so, we are able to test the difference in
flood extent predictions using i) the original DEM and ii) the enhanced
DEM, to enable a direct comparison and assess the effectiveness of the
enhancement approach outlined in this paper. Realistic flood extents
are defined by the floodwater inundation contour limits determined
from serial radar imagery (Sentinel 1).

3. Results

3.1. Flood frequency product – accuracy assessment

The land cover classification and subsequent temporal inundation
map are shown in Figs. 7 and 8 respectively. An overall accuracy (OA)
value of 93% was derived from the error matrix (Table 6) suggesting a
strong level of agreement between established ground truth and pre-
dicted land cover. A Kappa coefficient value of 0.91 shows that the level

Table 5
Elevation thresholds– upper/lower limits in metres above sea level.

Class Lower limit Upper limit Level type

Main channel/tributaries −7.3 0.9 Low tide
Permanent waterbodies −1.3 0.9 Low tide
Creeks/drainage channels −1.3 0.9 Low tide
Mangrove 0.9 2.1 High tide
Halophytic vegetation 0.9 2.1 High tide
Mid/riparian rice fields 0.9 2.1 High tide
Unvegetated raised mudflats 2.1 2.4 Spring high tide
Partially vegetated raised

mudflats
2.4 4 >Spring high

tide
Peripheral rice fields 2.4 4 >Spring high

tide
Savannah woodland > 4 Non fluvial

Fig. 6. Elevation enhancement across the floodplain (black lines represent the
spatial limits of a morphological class; dotted black lines represent the upper
and lower vertical height boundaries of halophytic swampland (3–5m) and
mudflats (5–8m)).
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of accuracy remained high following elimination of the proportion of
agreement expected to occur by chance. As Table 7 shows, halophytic
vegetation was the most dominant class, covering 58.9% of the study
area. From a user-based perspective, confusion between halophytic
vegetation and another class will have a proportionally greater effect on
the overall accuracy of the map than confusion between other classes,
covering a smaller area. To account for this, error was subsequently
weighted by predicted area (km2) per class. Weighted error reduced
overall accuracy to 92%. The negligible change between the non-
weighted and weighted matrix shows that misclassification within ha-
lophytic vegetation has a limited effect on the overall accuracy of the
map. This is supported by a high producer and user accuracy of 91.4
and 89.6% respectively within the unweighted matrix. A Kappa coef-
ficient value of 0.87 shows that when the areal dominance of halophytic
vegetation is accounted for, the proportion of agreement expected to
occur by chance remains low.

Confusion between most classes was minimal. In most cases, asso-
ciated commission/omission error was found to be related to ground
truth points located on the boundary between two classes. The confu-
sion between mudflats and halophytic vegetation was due to the narrow
nature of vegetated slacks between raised mudflats. Confusion was also
identified between HV and PW which occurred due to the presence/
absence of ephemeral aquatic vegetation between the reference and
predicted products.

3.2. DEM enhancement

Fig. 9 compares the original SRTM DEM to the enhanced DEM for a
section of the Gambian floodplain. Visual comparison between the two
models demonstrated a reduction in noise and the subsequent deli-
neation of floodplain morphology within the enhanced DEM. Separa-
tion was particularly discernible between raised mudflat features at the
edge of the floodplain and low-lying swampland dominated by halo-
phytic vegetation that characterises the majority of the floodplain
(58.9%). The effect of vegetation removal is demonstrated towards the
south of the region through the elimination of riparian and mid-stream
mangrove forest.

Fig. 10 compares elevation values for a 1700m cross-section along
halophytic swampland. Normalisation of elevation preserves relative
elevation across the morphological unit. However, overall elevation
range has been reduced from 0 to 12m to 1–2m based on the known
height of daily high tide. Fig. 11 shows elevation for a 6000m cross-
section within the floodplain demonstrating a clear reduction in height
between the profiles of the original SRTM DEM and enhanced product,
as a function of known inundation height. An apparent outlier of>
15m occurs within the original DEM profile at ~3200m across the
floodplain (Fig. 11). This is indicative of the presence of tall mangrove
trees present at the bank line. This feature is subsequently corrected
within the enhanced DEM profile.

Fig. 7. Land cover classification based on the multi-temporal analysis of Landsat imagery (1986–2016).
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3.3. Flood extent prediction

Fig. 12 shows fixed model outputs between 1.25 and 2m river stage.
Most regions predicted as being dry at 1.5–1.75m align spatially with
regions of mangrove forest cover (Fig. 12). This demonstrates that to-
pographic variation across the inter-tidal zone is predominantly an
artefact of vegetation height removal error. Fig. 13 compares the en-
hanced DEM flood model with the original DEM flood model. At both
2m and 2.5m, floodwater remained in-channel within the original
DEM (Images C and D respectively). A tide height of 2.5m should be
sufficient to at least partially inundate regions of the floodplain

associated with mangrove and halophytic vegetation. This shows that
without modification, the SRTM DEM will vastly underestimate tidally
influenced flood extent within the study reach. This underestimation is
the result of: 1) continuous riparian mangrove growth at the bank line,
forming an anomalous levee structure that subsequently prevents the
channel from reaching bankfull conditions and 2) the absence of tidal
distributaries (bolons) that route tidal water across the floodplain even
when bankfull conditions of the main channel are not met.

Fig. 14 highlights the importance of the inclusion of negative and
positive relief features within the floodplain in the routing of flood-
water. As Image C shows, floodwater present at the floodplain per-
iphery is routed via manually digitised bolons and through auxiliary
pathways between raised mudflats. Comparison with a wet season
aerial image (Image D) shows that peripheral regions are liable to flood
during periods of high river stage. For context, Image A shows the
absence of distinct geomorphological features within the original DEM.

4. Discussion

DEM enhancement techniques for medium-resolution SAR or opti-
cally-derived data include data hybridisation, water masking, stream
burning, the implementation of fill/breaching algorithms and vegeta-
tion removal. These processes focus on improving the vertical accuracy
of elevation data. However, there is limited focus on the reconciliation
of small-scale complex topography within a DEM, in instances when
vertical elevation error far exceeds the vertical range in floodplain
morphology. This study presents an innovative method of DEM

Fig. 8. Sub-annual spatio-temporal inundation map of the Gambian floodplain.

Table 6
Confusion matrix (N=1800) where: HV=halophytic vegetation; MF= raised
mudflats; SW= savannah woodland; M=mangrove; PW=permanent water-
bodies; user/producer %=probability accuracy metrics regarding respective
class commissions/omissions; OA=overall accuracy.

HV MF SW M PW User %

HV 563 49 5 8 3 89.6
MF 19 366 1 0 1 94.6
SW 11 5 178 0 0 91.8
M 9 0 0 187 2 94.4
PW 14 0 0 1 378 96.2
Producer % 91.4 87.1 96.7 95.4 98.4 1800
OA % 93
Kappa 0.91
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enhancement based on the multi-temporal classification of optical-
based satellite imagery. Accuracy of the land cover classification and
flood frequency derivative was 93% (92% weighted by area) with a
kappa value of 0.91 (0.87 weighted by area). The classification was
used to determine clear spatial boundaries in elevation change relative
to tidal stage for the enhancement of a noise-filled DEM. The

Table 7
Predicted class area and % coverage. Weighted OA=overall accuracy
weighted by predicted class area.

Area (km2) % Area

HV 1144.45 58.9
MF 297.40 15.3
SW 8.18 0.4
M 257.86 13.3
PW 233.67 12.0
Total 1941.56
Weighted OA % 92
Kappa 0.87

Fig. 9. Comparison of original DEM (C) and enhanced DEM (D). A and B shows corresponding hill-shade imagery for C and D respectively.

Fig. 10. Comparison of original DEM (DEM) and enhanced DEM (DTM) ele-
vation across halophytic vegetation.
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comparison of flood extent prediction between the original and en-
hanced DEM suggests that, without modification, SRTM underestimates
flood extent within the study region.

In densely vegetated floodplains such as this, the method relies
predominantly on a priori knowledge of the spatial distribution of land
cover in relation to surface water availability. Non-tidal floodplains
associated with emergent vegetation may not exhibit the same degree
of spatial heterogeneity in land cover. For example, the Barotse flood-
plain (Zambia) is covered almost exclusively in short, seasonally oc-
curring grassland. As such, land cover transitions are of more limited
use regarding geomorphological enhancement of underlying terrain.
Furthermore, Non-tidal wetlands will typically have steeper valley
gradients. The key assumption of this method is that water surface
elevation varies negligibly across the reach, forming a near-planar
surface. In steeper reaches, there will be a greater difference between
water surface elevation at the point of inflow and the point of outflow.
As such, in order to use downstream stage as an elevation threshold, an
additional adjustment step in DEM enhancement would have to be
implemented that weights the elevation value of a pixel within the same
geomorphological unit by distance upstream (e.g. Merwade, 2009).

However, the geomorphological enhancement technique is expected
to be relevant to other low-gradient, tidally-influenced tropical regions
where vegetation cover is heterogeneously distributed and pre-
dominantly a function of topographically-controlled surface water in-
undation. Furthermore, the near-global availability of medium-resolu-
tion products such as SRTM allows this technique to represent a
tractable methodology for application to other data sparse environ-
ments.

Regarding application to both tidal and non-tidal regions, this study
highlights the importance of resolving complex topography for the
purpose of hydraulic modelling. As Fig. 14 suggests, the routing of
floodwater to the floodplain periphery is dependent on tidal dis-
tributaries known as bolons rather than direct inundation from the
main channel. In a fixed hydraulic simulation such as this (where the
focus is on predicting maximum extent of floodwater under steady state
conditions), the absence of such features impacts only the accuracy of
flood extent prediction. However, in a dynamic simulation, omission of
these key routing features may also affect water storage representation,
mechanisms of floodplain filling/dewatering and ultimately, the pre-
diction of flood wave travel time (e.g. Horritt and Bates, 2001; Wilson
et al., 2007). Furthermore, as previously noted, the ability to facilitate
hydrological connectivity across a floodplain depends on the chosen
DEM resolution relative to study domain extent and computational
performance of the flood model. The size of Gambia study reach was
chosen specifically to allow the representation of small-scale fluvial
features. However, it is recognised that such an approach may not yet
be re-scalable in relation to larger reaches of> 10,000 km2.

4.1. Practical applications in hydraulic modelling

A key advantage of the enhanced DEM for the Gambia study site is
that it is now appropriate for use in hydraulic flood modelling. Potential
applications include assessing the effect of future damming of the River
Gambia further upstream on water availability and salinity concentra-
tion within the study area (Degeorges and Reilly, 2007). Accordingly,
the short-term and long-term impacts on agriculture and ecology can be
evaluated. A hydrologically accurate surface profile has far-reaching
impacts on the ability of water resource managers in data sparse regions
(such as sub-Saharan Africa) to model floodwater both as a hazard and
as a resource in terms of delivery of seasonal water for use in irrigated
agricultural schemes (e.g., Carney, 1998a, 1998b; Baeza et al., 2013).
Future discharge predictions can be used in conjunction with the en-
hanced DEM to assess changes in flood risk in relation to climate change
scenarios (e.g. Ardoin-Bardin et al., 2009).

Improvements in flood prediction accuracy through DEM enhance-
ment will also be of benefit to public health managers (Cole et al., 2014;
Hagen and Lu, 2011). For instance, vulnerable communities living
within the floodplains of large rivers become periodically cut-off from
important resources such as the timely delivery of HIV drugs or assis-
tance in child birth: factors that represent a key challenge to public
health managers in regions like the Barotseland floodplain of the
Zambezi River, Western Zambia (Cai et al., 2016). By using flood
models to provide real-time maps of water inundation, public health
managers can make decisions on how best to reach people in need:
overland motor vehicles or by boat.

An additional public health benefit made possible through accurate
floodwater inundation mapping is their use in mosquito-borne disease
control campaigns. Specifically, an important strategy for controlling
the transmission of diseases like malaria is the use of larvicide in wa-
terbodies used by mosquitoes for oviposition and larval development
(Hardy et al., 2013; Majambere et al., 2008 and 2010). However, the
success of this approach hinges on our ability to map waterbodies over
large areas (Majambere et al., 2008 and 2010). By using the methods
presented in this paper to enhance freely available DEMs, the potential
for providing timely and accurate maps of potential mosquito aquatic
habitats in floodplains becomes a reality.

4.2. Study limitations

The majority of change in surface water extent within the study
region is a function of sub-daily tide rather than inter-seasonal change.
At day-scale (based on stage readings between 2015 and 2016), the
daily range in tidal stage exceeds seasonal range (i.e. the difference in
high tide stage in the wet season and dry season is negligible - Fig. 2).
Therefore, the study was limited in part by the acquisition period be-
tween available data. The temporal frequency between optical scenes
(≥14 days) did not allow for semi-diurnal tidal dynamics to be quan-
tified directly. As a result, tidal limits were inferred from the extent of
saline-tolerant vegetation (Yanlong et al., 2011). Furthermore, stage
readings used to define the upper and lower limits of hydrological
boundaries were based on a relatively short measurement period of
2 years (2015–2016) and therefore may not have accounted for the
vertical limits of inundation events that exceed this return period. The
possibility of an offset between river stage (vertically referenced to the
Gambian Datum (GD)) and orthometric elevation of the SRTM DEM
(relative to EGM96) cannot be discounted.

Freely-available archived SAR data (e.g. Sentinel 1) has the poten-
tial to improve DEM enhancement as inundation dynamics can be re-
conciled directly underneath vegetation cover. However, the temporal
frequency of archived image acquisitions is also typically> 1 day.
Furthermore, there was no access to high-resolution stage data timed to
the nearest hour of image acquisition, as a remedial dataset for tide
level assessment. As such, it was not possible to categorise available
imagery by low, high, neap or spring tide stage based on the time stamp

Fig. 11. Cross-section of original DEM (DEM) and enhanced DEM (DTM)
floodplain topography.
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of image acquisition. As previously identified, C-band radar also offers
limited capabilities of water detection under closed canopy mangrove,
suggesting that the use of SAR data would not be advantageous over
optical data within such regions. Therefore, from a remote sensing
perspective, the extent of tidally-influenced vegetation is the most ro-
bust indicator of the maximum extent of tidal flooding within a data
sparse region such as this. The use of archived Landsat imagery was
considered to be suitable for the classification of land cover and water
extent in this regard.

Vegetation removal was based on a rudimentary estimate of average
species height. For example, mangrove canopy removal was

parameterised using average known height of the species Rhizophora sp.
(20m). However, Rhizophora sp. forms mixed stands with Avicennia sp.
between the average daily high and spring tide zone. Avicennia sp. has a
much shorter average height of ≤7m (Twilley, 1985). This suggests
that DEM enhancement could be improved through a more detailed
partitioning of canopy height, based on species variation. Availability
of GCPs or a high-resolution terrain model in conjunction with either X-
band SAR (e.g. Rabus et al., 2003), optical-stereo or laser altimetry-
derived canopy height estimation (e.g. ICESat) would also allow a more
robust estimate of the canopy penetration potential of the C-band de-
rived SRTM DEM. As suggested by the flood model (Fig. 12), regions

Fig. 12. Flood extent prediction with stage at the downstream boundary of 1.25–2m above sea level.
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covered by mangrove were associated with an overestimation of ele-
vation, thereby indicating that 50% was an exaggeration of the canopy
penetration potential of SRTM in comparison to halophytic vegetation.
Future study regarding DEM enhancement within data sparse regions
should consider the use of vegetation height removal as a calibration
parameter for flood model performance.

However, geomorphological enhancement effectively mutes vege-
tation removal height error and random noise by normalising the var-
iation between strict geomorphological boundaries. Relative vertical
accuracy within a geomorphological unit will not show as much of an
improvement as relative vertical accuracy between geomorphological
units within the enhanced DEM. Simply put, the inter-tidal region
containing halophytic vegetation and mangrove is still noisy following
vegetation removal. However, this noise is supressed by accentuating

the presence of raised mudflats and rain-fed peripheral rice fields on
higher ground as positive relief formations; and bolons, drainage
channels, and permanent pools as negative relief formations within the
floodplain. A further improvement could be made to the SRTM DEM by
performing coarse pixel aggregation prior to implementation of the
enhancement technique (e.g. Wilson et al., 2007). DEM resolution could
subsequently be resampled to its original resolution. In doing so,
shortwave error (pixel-to-pixel) would be minimised, but optimal grid
spacing for the representation of small-scale topographic features
through geomorphological enhancement would be preserved.

5. Conclusion

This study has presented a new technique for the enhancement of

Fig. 13. Predicted flood extent where: A= 2m over enhanced DEM; B 2.5 m over enhanced DEM; C=2m over original DEM and D=2.5m over original DEM.
Flood predictions overlay hill shade imagery (dark grey= floodplain; light grey= outside of floodplain). Black line= extent of alluvial sediments.
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medium-resolution DEMs. Products such as the InSAR derived SRTM
DEM are widely applicable in data sparse regions as non-proprietary,
globally available datasets. However, the vertical error margin of these
DEMs will typically exceed the vertical range in floodplain topography
and flood wave amplitude, even within large-scale river systems.
Without modification, these products are not suitable for use within
mechanistic flood model applications, designed to simulate topo-
graphically-controlled overbank flow across a floodplain. The DEM
enhancement technique, presented therein, focuses on the spatio-
temporal frequency of surface water distribution for topographic cor-
rection. The method renders medium-resolution DEMs as fit-for-pur-
pose within 2D flood model applications, in regions where accurate
flood assessment is precluded by a lack of ground data or high-resolu-
tion Earth Observation data. The method is applicable to regions in
which the spatiotemporal dynamics of surface water availability and
associated distribution of vegetation is controlled predominantly by
semi-diurnal to monthly variations in river stage, as a function of tide.
Further testing is required to determine whether the method will be
applicable to non-tidal regions with steeper valley gradients and greater
homogeneity in land cover. Applicability of the technique also depends
on the desired domain extent of available DEM data: The rectification of
small-scale complex morphology within a DEM is key to a robust

estimation of flood extent, floodplain storage capacity and flood wave
travel time. However, computational efficiency of simulated flow may
require a compromise between effective topographic representation
and optimal DEM resolution.
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