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Abstract

Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several
eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation
termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined
‘‘initiation-specific’’ binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy
polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and
HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3
mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing
deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by
overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1
promotes eRF3?GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1.
Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1D as well as its
termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation
than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as
a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop
codon recognition, defining a communication bridge between the initiation and termination/recycling phases of
translation.
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Introduction

Protein synthesis or mRNA translation is a complex and highly

conserved process that can be separated into initiation, elongation,

termination and ribosome recycling phases. Although these four

phases are distinct in time, there is a longstanding notion for some

form of communication among them. Notably, several initiation

factors and related proteins have been proposed to function in

more than one phase. These include ABCE1/RLI1 and GLE1,

which are believed to promote both the initiation and termination

phases by a mechanism that remains to be elucidated [1–3], eIF5A

proposed to stimulate all three major phases [4], and the bona fide

translation initiation factor eIF3, which has been recently

suggested to promote the recycling phase, at least in a mammalian

in vitro reconstituted system [5,6].

The beginning of a translational cycle involves a series of steps

that culminate in the assembly of the 80S initiation complex (IC)

on the AUG start codon (reviewed in [7]). These steps include 1)

Met-tRNAi
Met recruitment to the 40S subunit to form the 43S pre-

initiation complex (PIC), 2) mRNA recruitment to the 43S PIC to

form the 48S PIC, 3) scanning of the 48S PIC to the first

recognized start codon, and 4) joining of the 60 subunit to commit

the resulting 80S IC to the elongation phase. The translation

initiation factor eIF3, which in yeast consists of five essential core

subunits (eIF3a/TIF32, b/PRT1, c/NIP1, i/TIF34 and g/TIF35)

and one transiently associated, non-essential subunit (eIF3j/

HCR1), is actively involved in regulation of the first three of

these steps [7]. In the PIC assembly steps, the action of eIF3 is

further stimulated by one of its interacting partners, the ATP-

binding cassette protein ABCE1/RLI1, by an unknown mecha-

nism [1]. In contrast to the most of eIFs, eIF3 interacts with the

solvent-exposed side of the small ribosomal subunit [7] and as such

it was proposed to be able to interact with active 80S ribosomes

post-initiation [8–10].

PLOS Genetics | www.plosgenetics.org 1 November 2013 | Volume 9 | Issue 11 | e1003962



The end of a translational cycle involves another series of steps

that culminate in the release of a newly synthesized polypeptide

from the translating ribosome (the termination phase), and in

the dissolution of the ribosome:tRNA:mRNA complex (the

recycling phase). Termination begins when a stop codon enters

the ribosomal A-site, forming a pre-termination complex (pre-

TC) [11]. In eukaryotes, all three stop codons are decoded by

the eukaryotic release factor 1 (eRF1). According to recent

models [12,13], eRF1 enters the ribosomal A-site in complex

with a second release factor, eRF3, in its GTP bound form.

Recognition of a stop codon triggers GTPase activity of eRF3,

which leads to its dissociation from the complex in its GDP

bound form. eRF1 is then free to activate the ribosomal peptidyl

transferase centre (PTC), which hydrolyses the bond between

the P-site tRNA and the nascent polypeptide. Importantly, these

steps are promoted by RLI1 in an ATP-independent manner;

i.e. by the same factor that also somehow stimulates the eIF3

function in the initiation phase. Molecular details of this RLI1

role in termination are similarly not known, nevertheless, the

proposed active role of RLI1 in stop codon recognition is

consistent with observations that conditional down regulation of

RLI1 protein levels increases stop codon read-through in yeast

[2]. Based on the most recent structural model, RLI1 binds to

the same site on the terminating ribosome as eRF3 (thus their

binding is mutually exclusive), and its 4Fe-4S domain interacts

with the C-terminal domain of eRF1 to push the conserved

GGQ motif in the middle domain of eRF1 to the PTC next to

the acceptor stem of the P-site tRNA to trigger polypeptide

release [13].

Recycling of eRF1-associated post-termination complexes (post-

TCs) is also mediated by ABCE1/RLI1, this time, however, in an

ATP-dependent manner [6,12]. It was hypothesized that RLI1,

upon binding and hydrolyzing ATP, switches its conformation into

a closed state, and the mechanochemical work generated by this

switch splits post-TCs into free 60S subunits and deacylated

tRNA- and mRNA-bound 40S subunits (40S-post-TC) [13].

Finally, Pisarev et al. showed that the release of tRNA and mRNA

from the 40S-post-TCs is in vitro ensured by the bona fide initiation

factors eIF1, eIF1A and eIF3 [5,6]. eIF3, and in particular its j

subunit (HCR1 in yeast), were suggested to play the key role in

mRNA dissociation.

Since the implication of eIF3 in the recycling process was

deduced only from experiments carried out with 11-codon long

model mRNAs in mammalian in vitro reconstituted systems, we

decided to investigate whether or not eIF3 also plays a direct role

in translation termination and/or ribosomal recycling in the living

cell. Here we show that the five core eIF3 subunits and HCR1

control translation termination and stop codon read-through in

yeast, although in the opposite manner. HCR1 specifically

cooperates with eRF3 and RLI1 and based on our and previous

findings we propose that HCR1 and its mammalian orthologue

should no longer be considered as bona fide subunits of eIF3. In any

case, involvement of the canonical translation initiation factor eIF3

in termination strongly supports the idea that there is a highly

coordinated communication between individual translational

phases.

Results

Mutations in eIF3 subunits and hcr1 deletion affect stop
codon read-through

eIF3 and the eIF3-core-associated factors like HCR1 and RLI1

play a role in ribosome recycling – at least in vitro [5,6], while only

RLI1 is to date known to somehow promote also the preceding

translation termination step [2]. In order to address whether eIF3

itself is likewise functionally involved in translation termination, we

first measured the frequency of stop codon read-through in a

collection of eIF3 mutants using an established dual-luciferase

reporter assay, specifically designed to be independent of mRNA

levels [14]. This reporter system is similar to the one which was

also used to demonstrate increased stop codon read-through upon

conditional down-regulation of RLI1 [2]. The [psi2] strain

background used in these initial experiments contains a genome-

encoded UGA suppressor tRNA leading to unusually high basal

UGA read-through levels of 3–4%, which is however ideal for

studying stop-codon read-through effects. Importantly, as shown

below, the results we obtained are independent of the presence of

this suppressor tRNA.

The eIF3 mutants that were chosen for read-through analysis

were previously shown to affect multiple initiation steps, from the

43 PIC assembly (due to reduced 40S-binding affinity of eIF3) to

scanning for AUG recognition (with wild-type 40S-binding affinity

of eIF3); summarized in Table S1. Strikingly, the majority of

mutations in the core eIF3 subunits that we tested showed a

significant reduction in stop-codon read-through (Figure 1) that

thus could not be simply attributed to the reduced eIF3 association

with ribosomes. Also, since the effect of eIF3 mutations on

translation initiation does not correlate well with the observed

translation termination defect (such as, for example, in case of prt1-

W674A vs. tif34-DD/KK or tif35-TKMQ vs. tif35-RLFT mutants),

we conclude that the impact of these mutations on translation

initiation vs. termination is genetically separable. Importantly, in

contrast to all core eIF3 subunits, deletion of the non-essential hcr1

gene encoding eIF3j resulted in significantly increased stop-codon

read-through (Figure 1), similar to that reported for RLI1 down-

regulation [2]. Neither eIF3 mutations nor hcr1D have any impact

on eRF1, eRF3 and RLI1 protein levels.

In order to confirm this unexpected result and to explore

whether the observed effect on translation termination was specific

to eIF3 or common to all other members of the Multifactor

complex (MFC; composed of eIF1, eIF2, eIF3 and eIF5) and their

closely co-operating factor eIF1A, we used partial depletion alleles

(DaMP alleles) for these essential factors from the genome-wide

DaMP collection [15]. DaMP alleles contain a selectable marker

cassette inserted into the 39-UTR of a gene, leading to

Author Summary

Protein synthesis (translation) utilizes genetic information
carriers, mRNAs, as templates for the production of
proteins of various cellular functions. Typically it is divided
into four phases: initiation, elongation, termination and
ribosomal recycling. In this article we argue that the strict
mechanistic separation of translation into its individual
phases should be reconsidered in the light of ‘‘multitask-
ing’’ of initiation factors eIF3, HCR1 and ABCE1/RLI1. In
detail, we show that eIF3 and HCR1 not only promote the
initiation phase but also specifically act at the other end of
the translational cycle during termination. We present
genetic and biochemical data linking eIF3 and HCR1 with
both eukaryotic release factors (eRF1 and eRF3) and the
ribosomal recycling factor ABCE1/RLI1, and propose a
model for how all these factors co-operate with each other
to ensure stringent selection of the stop codon. Collec-
tively, our findings suggest that changes in one phase of
translation are promptly communicated to and coordinat-
ed with changes in the other phases to maintain cellular
homeostasis of all ongoing processes.

Translation Initiation Factor Promotes Termination
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destabilization of the respective mRNA via the nonsense mediated

decay pathway (NMD).

By their nature, DaMP alleles show varying degrees of depletion

for different genes, and data obtained with DaMP alleles have to

be interpreted with this in mind. Since the depleted genes are all

essential, loss of the corresponding gene product below a critical

level will affect growth, and demonstration of reduced growth for

an individual strain can thus be taken as a reliable indicator for

depletion below a critical threshold. In contrast, an absence of

growth phenotypes cannot be unambiguously interpreted, as

depletion of the gene product may have occurred but may have

remained above a level where fitness is detectably affected. It

should be noted that growth phenotypes are a better indicator of

functional depletion than assessment of physical expression levels

by Western blotting, since the relationship between translation

factor abundance and translation rates is non-linear and generally

not predictable [16]. Finally, since the DaMP strain background

does not contain a UGA suppressor tRNA in the genome, these

data also exclude possible suppressor tRNA effects on the eIF3

mutants in the initial experiments.

When we compared growth rates of the MFC DaMP alleles to

the corresponding wild type (wt) strain (Figure S1), we observed

that most non-eIF3 MFC factors but only one of the eIF3 strains

(TIF35) showed a growth phenotype indicative of a significant

depletion. When we proceeded to assess stop codon read-through

in these strains, we observed that the one eIF3 strain for which the

growth assay indicated significant depletion (about 2.5-fold as

determined by Western blotting) also showed significantly reduced

stop codon read-through. In addition, the NIP1 depletion strain

also showed modest but significant reduction in stop-codon read-

through, which may be caused by depletion of the gene product to

a level that does not yet affect growth rates. In contrast, none of

the depletion alleles for the non-eIF3 MFC component showed a

reduction in read-through, although eIF1A and eIF2a showed

small but significant increases in stop codon read-through and,

interestingly, eIF2c showed even higher increase (,2-fold) that is

similar to hcr1D. While the mechanism behind the increased read-

through in the eIF1A and eIF2 alleles is yet to be explored, these

observations demonstrate that i) reductions in eIF3 activity reliably

lead to reductions in stop-codon read-through levels, whether this

reduction is caused by point mutations or other gene ablation

alleles, ii) this effect is specific to core eIF3 subunits, whereas other

MFC components and HCR1 display either none or the opposite

phenotype, and iii) general reduction in the initiation rates does

Figure 1. Mutations reducing the activity of translation initiation factor eIF3 and HCR1 affect stop codon read-through. Stop codon
read-through was measured using dual luciferase reporter constructs as described in the main text. Plasmid-born mutant alleles of genes encoding
eIF3 subunits and HCR1 were introduced into their respective shuffling strains, which are derived from a common strain background (for details
please see Text S1 and Table S1). The wt strain background has unusually high levels of UGA read-through, due to the presence of an opal (UGA)
suppressor tRNA in the genome. For each independently derived shuffling strain, read-through is shown for pairs of strains shuffled with wt or the
indicated mutant alleles of the gene in question. For the non-essential HCR1 subunit, the H3675 hcr1D strain is shown. All investigated mutants
showed significant (p,0.05) reductions in the level of stop codon read-through, with the exception of tif35TKMQ, which showed no significant
difference, and Dhcr1 which showed strong and significant increase in stop codon read-through.
doi:10.1371/journal.pgen.1003962.g001
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not automatically affect the precision of translation termination –

see for example the read-through data for eIF1 (Figure S1), the

protein levels of which were depleted by ,5-fold – suggesting that

the reduced levels of read-through displayed by eIF3 mutants do

not necessarily occur as an indirect consequence of an overall

compromised protein synthesis. Interestingly, a similar phenotype

(reduced read-through) was also observed for overexpression of

eRF1 in otherwise wt cells (Figure S2; combined overexpression of

eRF1 and 3 led to further, modest exacerbation), indicating that

the eIF3 mutants may somehow affect the availability of eRFs for

the stop codon in the A-site.

Overexpression of ABCE1/RLI1 fully suppresses the
growth and read-through but not the initiation defects
of the hcr1 deletion strain

Next we wished to explore a molecular mechanism of the

increased stop-codon read-through phenotype displayed by

deletion of the non-essential hcr1 gene (Figure 1), which sharply

contrasted with the opposite termination phenotype of mutant

core eIF3 subunits (Figure 1). As discussed above, recent reports

suggested that the ABCE1/RLI1 protein not only critically

promotes ribosomal recycling [6,12,17] but is also somehow

involved in translation termination, as its conditional depletion

produced an increased read-through defect [2]. Moreover, RLI1

was also implicated in biogenesis and transport of pre-ribosomes

from the nucleolus [18] and in stimulating translation initiation by

promoting assembly of 43S PICs together with eIF3 [1]. The

striking resemblance of the latter effects with the previously

reported functions of HCR1 [18–24] plus the earlier observations

that RLI1 directly interacts with HCR1 via its ABC2 domain [2]

and that combination of hcr1D with the TAP-tagged RLI1 results

in synthetic lethality [18] prompted us to test a potential functional

redundancy between these two proteins.

Strikingly, we found that overexpression of RLI1 (about 2.5-

fold) fully suppressed the slow growth defect of an hcr1D strain

(Figure 2A). Moreover, high copy (hc) RLI1 also fully suppressed

the increased read-through phenotype of this strain (Figure 2B). By

way of control, we overexpressed elongation factor eEF3 (encoded

by YEF3) as an independent ABC cassette-containing protein

engaged in translation, which had no effect on the growth or read-

through phenotypes of the hcr1D strain (Figure S3A and B). In

addition, hc RLI1 did not suppress the increased read-through

defect of the DaMP eIF2c mutant (data not shown), further

underscoring the novelty of the proposed role for HCR1 and eIF3

in termination.

Importantly, no hc suppression was observed when either the

formation of the RLI1 N-terminal 4Fe-4S clusters (C25S and

C61S mutants) or the ATP binding by its ABC cassettes (K116L,

K391L, G224D G225D and G470D G471D mutants) were

compromised (Figure 2B and data not shown). The integrity of the

crucial N-terminal region of RLI1 as well as its intact ATPase

activity are therefore critically required for a functional replace-

ment of HCR1. In the opposite arrangement, hc HCR1 suppressed

neither the slow growth nor the increased read-through phenotype

of the Tet::RLI1 conditional depletion strain (Figure S4). It is

noteworthy that in agreement with earlier results [2,12,17], the

intact N-terminal 4Fe-4S clusters and the ability of RLI1 to bind

and hydrolyze ATP were absolutely essential for restoration of the

read-through defect in the Tet::RLI1 cells (Figure S4).

In order to find out if HCR1 acts independently of eIF3 in the

termination process, we examined the read-through phenotype of

hcr1 mutations, which are known to eliminate binding of full length

HCR1 to eIF3 [21,22]. As shown in Figure 2B (mutations hcr1-

Box-NTA, -Box6 and -Box6+R/I), no effect was observed implying

that the HCR1 function in termination does not require its

physical association with eIF3.

One of the major initiation phenotypes of hcr1D is a leaky

scanning defect (a decreased ability to recognize AUG as the

translational start site resulting in increased scanning past it),

which can be suppressed by hc eIF1A [21]. As can be seen in

Figure 2B, neither hc eIF1A nor eIF1 suppressed the read-though

defect of hcr1D. Similarly, hc RLI1 did not suppress the leaky

scanning defect of hcr1D (Figure S5). Hence, these findings clearly

suggest that the hcr1D defects in initiation and termination are

genetically separable and that RLI1 cannot replace HCR1 in all of

its functions. Importantly, however, since hc eIF1A suppressed the

hcr1D growth defect only partially [21], as opposed to the full

suppression by hc RLI1 (Figure 2A), we propose that the major

contributor to the hcr1D slow growth phenotype is not a defect in

initiation, as previously believed, but a defect related to translation

termination. Altogether it seems that this substoichiometric

‘‘subunit’’ of eIF3 works more independently of the core eIF3

than previously thought and therefore we suggest not considering

HCR1 as a bona fide eIF3 subunit anymore (see Discussion for

more details).

Complexes containing eIF3, HCR1, ABCE1/RLI1 and both
eRFs, free of ribosomes and RNA, occur in vivo

If eIF3 and HCR1 are indeed involved in translation

termination as our read-through data indicate (Figure 1), it should

be possible to detect a complex between these molecules and the

release factors in vivo. We therefore carried out a series of in vivo

pull down experiments using Myc-tagged RLI1, or TAP-tagged

HCR1, a/TIF32 or eRF3 as baits. To stabilize presumably only

transient interactions between eIF3 and termination/recycling

factors, the TAP-tag experiments were performed after modest

(1%) pre-treatment of growing cells with formaldehyde as

described in [25]. As shown in Figure 3A, Myc-tagged RLI1

specifically pulled down selected eIF3 subunits (,5161% of the

input for a/TIF32 and ,4362.6% for g/TIF35) and HCR1, as

shown before [1]. In addition and in contrast to the latter study,

we also observed significant co-precipitation of both release factors

(,2261.7% for eRF1 and ,1363.9% for eRF3). The TAP-

tagged HCR1 repeatedly co-purified with selected eIF3 subunits,

as expected, but also with RLI1 (,5865.8%) and small but

specific amounts of eRF3 (960.2%) and eRF1 (,260.2%)

(Figure 3B; eRF1 is indicated by an asterisk). eRF3 also co-

precipitated with TAP-tagged a/TIF32 (,1664.7%), and,

importantly, TAP-tagged eRF3 reproducibly and specifically

brought down small but significant amounts of core eIF3 subunits

(,6.460.7% for a/TIF32 and ,1865.8% for g/TIF35) but no

other MFC-members such as eIF1 (Figure 3C and D; note that the

mobility of a/TIF32 and eRF3 vary between Input and Elution

lanes due to a TEV protease-mediated cleavage of the TAP tag).

We also tested the TAP-tagged eRF1 strain, however, no proteins

were recovered – not even the TAP-eRF1 by itself – indicating

that this particular fusion allele is not functional. Importantly, the

yield of neither of these experiments was affected by RNase A

treatment (Figure S6) and no ribosomes were present in the

purified complexes (see RPS0A strips in panels A–D) strongly

suggesting that the ribosome- and RNA-free complexes of eIF3,

HCR1, eRF1, eRF3 and RLI1 do exist in the cytoplasm. More

specifically, these experiments show that eIF3 and HCR1 contacts

all critical termination players discussed in this study, though we

cannot conclude whether all these factors occur in one single

super-complex, or whether we are pulling down their partial

subcomplexes.

Translation Initiation Factor Promotes Termination
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The N-M domains of eRF1 directly interact with the N-
terminal domain of g/TIF35 and weakly also with i/TIF34
in vitro

The fact that eIF3 and HCR1 associate with eRFs in vivo and

that their mutations affect fidelity of the termination process

prompted us to test protein-protein interactions between eIF3

subunits, HCR1 and both eRFs. We fused individual eIF3

subunits and HCR1 to a GST moiety and used these fusions in

pull-down assays with in vitro synthesized, radiolabeled, well-

defined domains of eRF1 and eRF3. As shown in Figure 3E, the

N-terminal and Middle (N-M) domains but not the middle and C-

terminal (M-C) domains of eRF1 specifically interacted with GST-

g/TIF35 and weakly also with GST-i/TIF34, in contrast to GST-

HCR1 and a negative control of the GST protein alone. (The N

domain of eRF1 carries determinants of the stop codon

recognition; the M domain contains the conserved GGQ motif

required for peptide release; and the C domain interacts with

eRF3.) Interestingly, DOM34/Pelota, the release-like factor

closely related in sequence and structure to eRF1, also binds

eIF3g in human cell lines [26], albeit in this case via Pelota’s C-

terminal domain. No interactions between eIF3 subunits and

eRF3 were observed. g/TIF35 can be divided into the N-terminal

Zn-finger and C-terminal RRM domains and our GST pull down

experiments revealed that eRF1-NM binds specifically to the N-

terminal Zn-finger domain of g/TIF35 (Figure 3F). Hence we

propose that eIF3 and eRF1 are in a direct contact via two small

eIF3 subunits and the NTD of eRF1, which requires further

support from the M domain to get fully engaged in these

interactions.

eIF3 and HCR1 associate with 80S couples isolated from
heavy polysomes

To provide more solid evidence implicating eIF3 and HCR1 in

the process of termination in vivo, we tested whether or not both

factors associate with polysomal 80S ribosomes by separating the

formaldehyde cross-linked whole cell extracts (WCEs) on sucrose

gradients by high velocity sedimentation into two major polysomal

pools; the first containing light polysomes (disomes and trisomes)

and the other heavy polysomes (from pentasomes up). These two

pools were then treated with RNase I (Invitrogen) to chop

polysomal mRNAs into segments containing either initiating 43S-

48S PICs or elongating/terminating 80S ribosomes. The second

round of sucrose gradient centrifugation (so called resedimenta-

tion; [25]) was employed to separate the 43-48S PICs from 80S

couples in each polysomal pool into two fractions, which were then

subjected to Western blotting. In both pools, the 80S fractions

contained more than 50% of total eIF3 in comparison with the

40S fractions (Figure 4A), clearly demonstrating that only the

Figure 2. Increased gene dosage of ABCE/RLI1 suppresses the slow growth and read-through defects of hcr1D. (A) The hcr1D strain
was transformed with either empty vector (EV), hc HCR1 or hc RLI1. The resulting transformants were subjected to a growth spot assay at 30uC for 2
days. (B) The hcr1D strain was transformed with hc vectors carrying either wt or mutant HCR1 and RLI1 alleles, and SUI1 (eIF1) and TIF11 (eIF1A). The
resulting transformants were grown in SD and analyzed for stop codon read-through as described in Figure 1. Thus obtained values were normalized
to the value obtained with the hcr1D strain transformed with wt HCR1, which was set to 100%.
doi:10.1371/journal.pgen.1003962.g002

Translation Initiation Factor Promotes Termination

PLOS Genetics | www.plosgenetics.org 5 November 2013 | Volume 9 | Issue 11 | e1003962



Figure 3. Complexes containing eIF3, HCR1, ABCE1/RLI1 and both eRFs, free of ribosomes and RNA, occur in vivo; and the NTD of g/
TIF35 and i/TIF34 directly interact with the N and M domains of eRF1. (A) WCEs were prepared from YDH353 bearing chromosomal Myc-
tagged RLI1 and immunoprecipitated with or without anti-Myc antibodies. The immune complexes were subjected to Western analysis. In, 5% of
input; E, 100% of the elution fraction; W, 5% of the supernatant fraction. Also note that anti-RLI1 and -eRF1 antibodies were raised for the purpose of
this study. (B) WCEs were prepared from HCHO-treated (1%) cells bearing wt (H2879) or TAP-tagged (H553) chromosomal alleles of HCR1 and
incubated with IgG Sepharose 6 Fast Flow beads. The immune complexes were eluted by boiling in the SDS buffer and subjected to Western analysis.
In, 1.5% of input; E, 50% of the elution fraction; W, 1.5% of the supernatant fraction. eRF1 is indicated by an asterisk below the immunoglobulins. (C)
WCEs from HCHO-treated cells (1%) cells bearing wt (H2879) or TAP-tagged (H555) chromosomal alleles of TIF32 were processed as in panel B except
that the immune complexes were eluted by TEV protease cleavage. In, 1.5% of input; E, 100% of the elution fraction; W, 1.5% of the supernatant
fraction. (D) WCEs from HCHO-treated cells (1%) cells bearing wt (74D-694) or TAP-tagged (H517) chromosomal alleles of SUP35 were processed as in
panel C. (E) Full-length i/TIF34 (lane 3), g/TIF35 (lane 4), and HCR1 (lane 5) fused to GST, and GST alone (lane 2), were tested for binding to 35S-labeled
individual domains of eRF1; 10% of input amounts added to each reaction is shown in lane 1 (In). (F) The RRM (lane 3) and N-terminal (lane 4)
domains of g/TIF35 fused to GST, and GST alone (lane 2), were tested for binding to 35S-labeled NM domains of eRF1; 10% of input amounts added to
each reaction is shown in lane 1.
doi:10.1371/journal.pgen.1003962.g003

Translation Initiation Factor Promotes Termination

PLOS Genetics | www.plosgenetics.org 6 November 2013 | Volume 9 | Issue 11 | e1003962



lesser proportion of eIF3 occuring in polysomes is associated with

initiation complexes. Strikingly, in case of HCR1, the 80S

fractions contained even more, ,90% of this protein from the

overall pool. In contrast, the ‘‘polysomal’’ fraction of eIF5, which

is known to tightly interact with eIF3 during translation initiation,

was predominantly associated with 40S species. These results are

thus consistent with a role of eIF3 and HCR1 in other

translational phases than just initiation.

In the resedimented light and heavy polysomes different ratios

of terminating versus initiating plus elongating ribosomes can be

expected based on the following arguments. Under nutrient-rich

conditions, the disome/trisome fraction will contain short

mRNAs that cannot accommodate more than two/three

ribosomes, poorly translated mRNAs, as well as recently

transcribed mRNAs, which are not yet in a steady state phase

with regards to their ribosome occupancy. Since mRNAs

shorter than 60 codons make up only 2% of the yeast

transcriptome [27], we expect that a majority of mRNAs in

this pool are newly synthetized species with a standard/average

mRNA length. Hence we posit that the light polysomal mRNAs

contain a smaller proportion of terminating ribosomes than

mRNAs isolated from heavy polysomes, since the likelihood of

having a stop codon occupied by a terminating ribosome

increases with the increasing number of elongating ribosomes

per mRNA. In support of this rationale, we observed more than

3-fold increase in the amounts of eRF3 associated with 80S

ribosomes isolated from heavy versus light polysomes. By the

same token, if eIF3 was involved specifically in translation

termination events, we would expect stronger association of

eIF3 and HCR1 with 80S couples originating from heavy

polysomes. We do indeed observe that the 80S/40S ratio of

eIF3 and HCR1 association is 2- and 2.5-fold higher,

respectively, for heavy polysomes than for the light ones, in

contrast to eIF5 where it remains the same (Figure 4A). These

results thus strongly suggest that eIF3 and HCR1 are present at

80S ribosomes during the terminating process.

To further support this conclusion, we employed the Tet::SUP45

conditional depletion strain. We rationalized that if eIF3 specifically

associates with terminating ribosomes, depletion of eRF1 should

significantly reduce the presence of eIF3 subunits (as well as the

presence of eRF3) in the 80S couples isolated from heavy polysomes.

To test this, we formaldehyde cross-linked the Tet::SUP45 cells grown

in the presence or absence of 1 mg/ml doxycycline for six hours

before harvesting, resolved the WCEs on sucrose gradients, collected

only the fractions containing heavy polysomes, treated these fractions

with RNase I and separated the resulting 43-48S PICs and 80S

species by the second round of centrifugation (resedimentation). Thus

isolated 80S couples from Dox2 versus Dox+ Tet::SUP45 cells were

loaded in six serial two-fold dilutions to the SDS-PAGE gel and the

amounts of RPS0A (as a loading control) and associated eIFs and

eRFs were analyzed by quantitative western blotting. Depletion of the

key termination factor had to be rapid to avoid disassembly of stalled

post-TCs in polysomes as well as secondary defects of dying cells. In

our set-up we achieved ,70% depletion of eRF1 and observed no

changes in polysome profiles of Dox2 versus Dox+ Tet::SUP45 cells

(data not shown). As predicted, whereas the 80S-associated amounts

of eIF1 remained unchanged (small), the amounts of eRF3 and two

eIF3 subunits were significantly reduced (by ,40%) in Dox+ versus

Dox2 Tet::SUP45 cells (Figure 4B). Note that while the overall levels

Figure 4. eIF3 associates with 80S couples isolated from heavy
polysomes in an eRF1-dependent manner. (A) The wt strain
(H2819) was grown in SD medium at 30uC to an OD600 of ,1 and cross-
linked with 0.5% HCHO prior to harvesting. WCEs were prepared,
separated on a 5%–45% sucrose gradient by centrifugation at
39,000 rpm for 2.5 h and two collected fractions containing either
disomes and trisomes or pentasomes and heavier polysomes were
treated with RNase A to separate the initiating PICs from 80S couples on
mRNAs and subjected to the sucrose gradient resedimentation protocol
[25]. Two fractions containing 43-48S PICs and 80S ribosomes from each
polysomal pool were collected and subjected to Western blot analysis;
the ratio of the 80S/40S ratios for heavy over light polysomes was
calculated and plotted for each factor. This experiment was repeated
four times. (B) eRF1 depletion reduced association of eRF3 and eIF3
with 80S ribosomes isolated from heavy polysomes. The Tet::SUP45 cells
were grown in SD medium at 30uC in the presence or absence of 1 mg/
ml doxycycline for six hours before harvesting, and treated as described
in Figure 4A with the exception that only heavy polysomes were
collected after the first round of centrifugation, and only the 80S

couples were collected after the second round of centrifugation. Thus
obtained samples were subsequently subjected to Western blot
analysis; this experiment was conducted three times.
doi:10.1371/journal.pgen.1003962.g004
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of eRF1 were depleted by ,70%, polysome-associated eRF1 was

only depleted by ,30%, which is consistent with the quantitatively

similar reduction in polysome association observed for eRF3 and

eIF3.

Deletion of hcr1 results in accumulation of eRF3 in heavy
polysomes, and the sup45Y410S mutant prevents stable
association of eRF3 and HCR1 with polyribosomes

In order to examine how the network of interactions between

translation initiation and termination factors affects their func-

tions, we investigated the distribution of selected translation factors

in wt cells and cells mutated for either of the factors under study

using formaldehyde cross-linking of living cells by sucrose density

gradients analysis of WCEs [25].

Figures 5A and S7A show a typical distribution of the selected

proteins across all gradient fractions obtained from wt WCEs and

divided into several separable groups: ‘‘Top’’ (fractions 1–4),

‘‘40S’’ (5–6), ‘‘60S’’ (7–8), ‘‘80S+light polysomes’’ (9–13) and

‘‘heavy polysomes’’ (14–18). For technical reasons, several

fractions from individual groups were pooled together to fit all

samples on a single SDS-PAGE gel. Whereas eRF3 is clearly

enriched in the polysome-containing fractions and practically

lacking in the Top fractions, eRF1 is more or less evenly

distributed across the entire gradient, and RLI1 predominantly

sediments in the Top fractions and partially also in the 40S-

containing fractions. Importantly, all strains that we worked with

in this study are [psi2] and hence the observed sedimentation of

eRF3 into heavier fractions cannot be attributed to SUP35

aggregation. In agreement with the aforementioned analysis, eIF3

(represented by a/TIF32) and HCR1 show a robust enrichment in

polysomal fractions, similar to eRF3, whereas eIF5 occurs mainly

in the Top and 40S fractions.

As shown in Figures 5B, E and S7A, deletion of hcr1 significantly

shifted the amounts of ‘‘initiating’’ eIF3 from the 40S fractions to the

Top, as observed before [20], whereas it had no effect on polysomal

distribution of eRF1 and RLI1. However, it led to a statistically

significant accumulation of eRF3 in heavy polysomes with a

commensurate reduction in lighter fractions (Figures 5B, D and

S7A). We interpret the accumulation of eRF3 in heavy polysomes as

an increased number of post-TCs bound by eRF3 in a less-productive

manner; perhaps with a decreased dissociation rate. Most impor-

tantly, overexpression of RLI1, which suppresses both the read-

through and Slg2 phenotypes of hcr1D (Figure 2), partially but

significantly restored the eRF3 distribution in polysomes to wt

(Figures 5C, D and S7A). The fact that the 40S-binding by the

‘‘initiating’’ eIF3 was not restored (Figures 5C, E and S7A)

underscores a specificity of the RLI1 suppressor effect on the

HCR1 role in termination versus initiation. One way to explain these

observations is that HCR1 may promote the release of eRF3?GDP

from the post-TCs upon stop codon recognition and GTP hydrolysis

on eRF3, which serves as a prerequisite for the subsequent binding of

RLI1 as well as the eRF1-stimulated hydrolysis of the bond between

the P-site tRNA and the nascent polypeptide (see our model in

Figure 6). Inability to complete this step may lead to a reduced stop

codon recognition resulting in an increased read-through, which was

observed. Hence the suppression effect of RLI1 on the molecular

level could be explained by proposing that increased dosage of RLI1

forces dissociation of eRF3?GDP from the post-TCs by mass action

and thus eliminates a need for HCR1.

If our model is correct, one can predict that the polysomal levels

of HCR1 could be reduced without any functional defect, if the

interaction between eRF1 and eRF3 was impaired. Hence we next

analyzed changes in polysomal distribution of factors of interest in

the sup45Y410S mutant, which disrupts the eRF1–eRF3 interaction

[28]. As expected, the sup45Y410S mutant significantly shifted the

amounts of eRF3 from polysomal to the Top fractions when

compared to wt (Figures 7A–C and S7B). Importantly, in accord

with our proposed model, a similar, significant change was also

observed for HCR1 but not for a/TIF32 and RLI1. We interpret

these data by proposing that HCR1 readily dissociates along with

eRF3 when eRF3 binding to the post-TCs is weakened by a

mutation. This effect could be either direct or indirect/allosteric.

The fact that we could not detect any direct binding between HCR1

and eRF3 using conventional in vitro protein-protein binding

techniques may speak for the latter option; however, it is also

possible that HCR1–eRF3 binding does occur but only in the

context of the post-TCs.

Genetic interactions between hcr1D, mutant eIF3
subunits and mutant release factors

To further support our model, we analyzed genetic interactions

between the hcr1 deletion strain and selected mutations in both

release factors. The temperature sensitive eRF mutants we used

are all known to cause termination defects including stop codon

read-through strong enough to suppress the ade1-14 nonsense

allele [29]. They include a sup35N536T mutant located in a region

near the C-terminus of eRF3 that disrupts termination by an

unknown mechanism, a sup45M48I mutant that interferes with stop

codon decoding [30], and the aforementioned sup45Y410S mutant

that directly disrupts the eRF1–eRF3 interaction [28].

It could be proposed that if the sup45Y410S Ts2 mutant reduced or

even eliminated a need for HCR1 functioning in termination, an

epistatic interaction should be observed when this mutant is

combined with hcr1D. Consistently, at the permissive temperature

the absence of HCR1 further increased read-through of this sup45

mutant (Figure 8A, 30uC; compare open and grey bars with the

black one) and also exacerbated its slow growth (Figure 8B).

However, at the higher temperature, where the eRF1:eRF3

interaction is more severely disrupted by the sup45Y410 mutation

[28], as evidenced by its increased termination defect (Figure 8A;

compare grey bars between 30 and 34uC), the absence of HCR1

had only a little additional effect on the sup45Y410S read-through

(Figure 8A, 34uC; black vs. grey bars). Moreover, the sup45Y410S

mutation also completely eliminated the negative impact of hcr1D on

growth rates at this temperature (Figure 8B). The specificity of this

epistatic interaction is further underscored by the fact that neither

sup45M48I (eRF1) nor sup35N536T (eRF3) mutants showed any

synthetic effects in the background of the hcr1 deletion (Figure S7C).

Finally, to obtain further genetic evidence supporting our findings

implicating eIF3 in regulation of the termination process, we

combined two selected mutations in the a/TIF32 subunit of eIF3

(D8 and Box17), both reducing the stop codon read-through in

otherwise wt cells (Figure 1), with the sup35N536T and sup45Y410S

mutants. When combined, the double mutants show a stop codon

read-through frequency that is clearly reduced compared to either

release factor mutant (Figure 8C), demonstrating that the tif32

mutations partially rescue the read-through phenotype of the latter.

In contrast, when we investigated slow growth (Slg2) and

temperature sensitive (Ts2) phenotypes, we observed synthetic

exacerbation of these phenotypes (Figure 8D). This demonstrates

that i) the release factors and the core eIF3 complex have

antagonistic functions in the same stage of the termination phase

and losses in their functions can thus partially compensate for each

other in terms of the stop codon read-through efficiency; and ii) that

the degree of stop codon read-through per se is not the major source

of the fitness defects in these strains. This latter notion is consistent

with earlier quantitative trait analyses, which showed that the

termination defects are unlinked from growth defects in many eRF1
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mutants [31]. Hence, synthetic exacerbation of growth could be

explained by proposing that besides the stop codon recognition step

(which is assessed in the dual luciferase assay), also other aspects of

termination are impaired in the eRF and eIF3 mutants, which, in

combination with the initiation defects of eIF3 mutants, reduce the

growth rate as a compound effect.

Discussion

It is becoming increasingly apparent that factors involved in

regulating various steps of gene expression may have multiple

functions and that this multitasking may integrate transcription,

mRNA export, translation and mRNA decay into a delicately

regulated higher-order process. For example, translation initiation

factor eIF3 links translation initiation to transcription [32], to

mRNA export [3] and to the NMD pathway [33,34]. Here we

show for the first time that eIF3 and HCR1 critically connects

initiation of translation with its termination.

In particular, deletion of hcr1 increases stop codon read-

through, independently of its association with the rest of eIF3, and

results in accumulation of eRF3 in heavy polysomes. Increased

Figure 5. Deletion of hcr1 results in accumulation of eRF3 in heavy polysomes. (A–C) The hcr1D strain (H3675) was transformed with either
hc HCR1 (A), empty vector (B), or hc RLI1 (C), and the resulting transformants were grown in SD medium at 30uC to an OD600 of ,1 and cross-linked
with 0.5% HCHO prior to harvesting. WCEs were prepared, separated on a 5%–45% sucrose gradient by centrifugation at 39,000 rpm for 2.5 h and
subjected to Western blot analysis. Several fractions corresponding to the Top, 40S, 60S, and 80S plus polysomal species were pooled, as indicated.
Asterisk indicates a non-specific band. (D) Statistical significance of the eRF3 accumulation in heavy polysomes in the hcr1 strain and its partial
recovery by hc RLI1. Amounts of each individual factor in all fractions were quantified by fluorescence imaging. Thus obtained values for the fractions
containing heavy polysomes (14–18) as well as all remaining fractions (1–13) were added up for each of these two groups. Values (mean6SE; n = 4)
given in the table then represent relative amounts of factors in heavy polysomes divided by the compound value of the rest of the gradient. Changes
in the redistribution of factors between the heavy polysomes and lighter fractions in all three strain were analyzed by the student’s t-test and shown
to be statistically significant only for eRF3 as shown in the table. (E) Statistical significance of the eIF3 shift from 40S-containing fractions to the top,
which is independent of the effect of hc RLI1 on eRF3. Essential the same as in panel D, except that the values for the Top fractions (1–4) as well as the
40S fractions (5–6) were added up for each of these two groups. Values (mean6SE; n = 4) given in the table then represent relative amounts of factors
in the Top divided by the 40S group. Changes in the redistribution of factors between the 40S and Top fractions in hcr1D+EV or +hc RLI1 strains vs. wt
were analyzed by the student’s t-test and shown to be statistically significant only for eIF3 as shown in the table.
doi:10.1371/journal.pgen.1003962.g005

Figure 6. Model of eIF3 and HCR1 involvement in yeast translation termination. Upon stop codon entry into the ribosomal A-site the pre-
TC forms, composed of the canonical release factors eRF1 and eRF3?GTP, and eIF3 and HCR1. eRFs and eIF3 may associate with the pre-TC as a pre-
formed unit or alone. In the pre-TC, eIF3 interacts with the N domain of eRF1, via its two small g/TIF35 and i/TI34 subunits, and modulates, perhaps
inhibits its stop codon recognition activity during the proofreading step. Upon stop codon recognition the GTP molecule on eRF3 is hydrolyzed.
Subsequently, HCR1 promotes eRF3?GDP ejection to allow the ABCE1/RLI1?ATP recruitment to begin the accommodation phase of termination – the
eRF1 GGQ motif is pushed to the peptidyl-transferase center (PTC) – during which HCR1 interacts with ABCE1/RLI1. Subsequently, both factors
together with eIF3 participate in ribosomal recycling to enable and promote initiation of the next translational cycle (the elongation step is shown
only for illustration purposes).
doi:10.1371/journal.pgen.1003962.g006

Translation Initiation Factor Promotes Termination

PLOS Genetics | www.plosgenetics.org 10 November 2013 | Volume 9 | Issue 11 | e1003962



dosage of ribosomal recycling factor RLI1 then substitutes for the

HCR1 roles in termination (but not in initiation) and in enabling

efficient cell growth, together implying that the HCR1 function in

termination is more critical for optimal cell proliferation than its

function in translation initiation. This is consistent with the fact

that yeast HCR1 is only loosely associated with the core eIF3

complex [19] and that it was shown to interact with both sides of

the 40S mRNA entry channel on its own [21]. Similarly, its

mammalian ortholog also appears to be the most loosely associated

subunit of all 13 eIF3 subunits that is, in addition, often missing

from the purified 12-subunit complex [35–37]. Moreover, it was

also shown to associate with the 40S ribosome completely

independently of the rest of eIF3 and promote several translational

steps practically on its own (see for example [5,35–40]). Taken

together, we suggest considering eIF3j/HCR1 as an independent

initiation factor (eIF) that associates and closely co-operates with

eIF3 but it is not its integral part. We therefore propose to use the

following designations for this old-new eIF: HCR1 for the yeast

protein and hHcr1 for its mammalian counterpart.

In contrast to hcr1D, various mutants of core eIF3 subunits, but

not of other initiation factors, decrease stop codon read-through in

living cells and show synthetic phenotypes with mutant release

factors eRF1 and 3. eIF3 also directly interacts with eRF1 and

occurs in complex with eRF1, eRF3 and RLI1 in vivo. Since eIF3

and HCR1 were, based on in vitro experiments, previously

implicated in promoting also the very final step of translation –

ribosomal recycling [5], we propose that eIF3 – and to some

extend also HCR1 – is one of the very few factors that connects

Figure 7. The sup45Y410S mutation prevents stable association of eRF3 and HCR1 with polyribosomes. (A–B) The sup45Y410S mutant and
its corresponding wt strain were subjected to HCHO cross-linking (0.5%) and polysomal gradient analysis as described in Figure 5. (C) Statistical
significance of the reduction of polysomes-associated amounts of eRF3 and HCR1 in sup45Y410S. Amounts of each individual factor in all fractions were
quantified by fluorescence imaging. Thus obtained values for the Top fractions as well as fractions containing 80S couples and polysomes were
added up for each of these two groups. Values (mean6SE; n = 4) given in the table then represent relative amounts of factors in the Top divided by
the 80S+polysomes group. Changes in the redistribution of factors between the Top and 80S+polysomes fractions in the sup45Y410S mutant vs. wt
were analyzed by the student’s t-test and shown to be statistically significant for HCR1 (P,0.05) and SUP35 (P,0.1).
doi:10.1371/journal.pgen.1003962.g007
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Figure 8. hcr1D and eIF3 mutants genetically interact with release factor mutants. (A–B) The sup45Y410S mutation eliminates the negative
impact of hcr1D on (A) read-through and (B) growth rates. The hcr1D strain was crossed with the sup45Y410S mutant strain and the resulting double
mutant was transformed with sc SUP45, hc HCR1, or empty vector (EV), respectively, and (A) processed for stop codon read-through as described in
Figure 1 (hcr1D read-through values were set to 100%) or (B) subjected to a growth spot assay at indicated temperatures for 2 or 3 days. (C–D)
Combining the selected TIF32 mutants with sup35N536T and sup45Y410S (C) reduces their read-through defects and (D) produces synthetic growth
phenotypes. The wt and mutant alleles of TIF32 were introduced into tif32D, sup35N536T tif32D, and sup45Y410S tif32D strains, respectively, by plasmid
shuffling. (C) The resulting double mutant strains were grown in SD and processed for the stop codon read-through as described in Figure 1 (the
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various processes of mRNA life and integrates them into the

ultimate translational output. Taking into account that the

translation pathway is highly conserved among low and high

eukaryotes, it is highly likely that this connecting role of eIF3 is

also conserved.

eIF3 modulates the precision of the stop codon
recognition by eRF1

Our observations that 1) eIF3 and eRF3 can be found enriched

in 80S fractions isolated from RNase-treated heavy polysomes in

an eRF1-dependent manner (Figure 4); 2) that a complex between

eIF3, RLI1 and eRFs exists free of RNA and ribosomes in the

cytoplasm (Figure 3A–D), and 3) that two small eIF3 subunits g/

TIF35 (in particular its NTD) and i/TIF34 directly interact with

the N and N-M domains of eRF1 (Figure 3E–F) together suggest

that eIF3 does associate with terminating 80S couples and may

come to the pre-TC in a pre-formed complex with eRFs. The

alternative that they are ejected from post-TCs as a holocomplex

upon completion of termination is highly unlikely considering that

i) eRF3 must be ejected prior to RLI1 binding [12] and ii) that

eIF3 is supposed to participate in the late steps of ribosomal

recycling that should be devoid of eRF1 and RLI1 [5,6]. The last

scenario would be that eIF3 stays present on the elongating

ribosome throughout the entire elongation cycle and promotes

recruitment of eRF1?eRF3?GTP to the pre-TCs; there is,

however, genetic evidence contradicting this possibility [9].

Our data show that eIF3 mutants specifically decrease stop

codon read-through in otherwise wt cells (Figures 1 and S1) and

that tif32 mutations partially compensate for the increased read-

through in eRF mutants (Figure 8C). This clearly suggests that wt

eIF3 modulates the precision of stop codon recognition by eRF1 in

order to fine tune the termination process (see our model in

Figure 6). During stop codon decoding, eRF1 was proposed to sit

in the ribosomal A-site with a part of its N-domain contacting

small ribosomal protein RPS3 and helix (h) 18 of 18S rRNA [41].

Strikingly, g/TIF35 also interacts with RPS3, in addition to

RPS20 [42], and as both g/TIF35 and i/TIF34 are tightly bound

to the extreme C-terminus of b/PRT1 [43], i/TIF34 is expected

to occur nearby g/TIF35. Moreover, the C-terminal domain of a/

TIF32 interacts with h16-18 of 18S rRNA [44] and RPS3 as well

[22]. Taylor and colleagues further proposed that one of the

conformational changes induced by eRF1–eRF3–GMPPNP

binding to pre-TCs involves a movement of h16 of 18S rRNA

and the N-terminal domain (NTD) of RPS3 toward each other,

which results in the establishment of a new head–body connection

on the solvent side of the 40S subunit and a constriction of the

mRNA entrance. Hence, it is conceivable that eRF1 and eIF3, by

contacting the same 40S binding partners, modulate these

conformational changes in the termination complex in a way that

influences a proper placement of eRF1 in the spatially restricted A-

site. This scenario could provide a rational explanation for the

antagonistic effect of eIF3 on translation termination.

For interpretation of these data it must be kept in mind that the

reporter constructs we use essentially measure stop codon read-

through on a premature termination codon. At present, we do not

know whether the antagonistic influence of eIF3 on stop-codon

read-through is restricted to such sites, or whether it also affects

termination on stop codons located nearer to the poly(A) tail.

However, our observation that the sup45Y410S mutant, which

affects stop codon selection by disrupting the eRF1–eRF3

interaction, reduced the polysome-associated amounts of eRF3

and HCR1 (Figure 7) indicates that a delay or imperfection in the

decoding of natural stop codons disrupts this ‘‘initiation-termina-

tion’’ complex, most probably to enable resumption of elongation.

Investigation of the precise molecular mechanism of the eIF3

action in termination is a pressing task for our future research.

HCR1 promotes eRF3?GDP ejection from the post-TCs to
allow RLI1 binding

In contrast to mutations in core eIF3 subunits, deletion of hcr1

did not decrease but increased the stop codon read-through

(Figure 1). The fact that mutations disrupting the HCR1 contact

with eIF3 had no effect on read-through clearly suggests that the

HCR1 role in termination is independent of its association with

eIF3, as discussed above. Moreover, our findings that hcr1D results

in accumulation of eRF3 in higher polysomal fractions (Figure 5)

and that sup45Y410S (breaking the eRF1–eRF3 interaction) shifts

HCR1 to the Top fractions (Figure 7) led to the model presented

in Figure 6. We propose that following stop codon recognition and

subsequent GTP hydrolysis on eRF3, HCR1 promotes

eRF3?GDP ejection from the post-TCs to allow binding of its

interacting partner RLI1 [2], which in turn stimulates polypeptide

release – both eRF3 and RLI1 bind to the same site in the post-TC

[13]. Inability to complete this step may lead to a reduced stop

codon recognition resulting in an increased read-through. In

support, eRF1 was shown to associate more firmly with post-TCs

in the presence of eRF3 [6], which led the authors to propose that

after GTP hydrolysis, eRF3 might not dissociate entirely from

ribosomal complexes on its own and its release thus might require

a stimulus by an additional factor; in our opinion by the HCR1

protein.

Based on the cryo-EM structures of DOM34:HBS1 (release

factor-like proteins closely related in sequence and structure to

eRF1:eRF3) on the yeast ribosome showing that the N-terminus of

HBS1 extends away from the body of the protein and contacts the

mRNA entry site, it was proposed that the N-terminus of eRF3

also occurs in the A-site area [13]. Since HCR1 was shown to

occur in this area too [21], it could directly act upon this eRF3

domain to trigger the release of this factor in its GDP form from

eRF1-bound post-TCs. In support, the N-terminal extension of S.

pombe eRF3 was proposed to regulate eRF1 binding to eRF3 in a

competitive manner [45]. Interestingly, both the N-terminus of

eRF3 as well as the HCR1 protein as a whole are non-essential

[45,46], suggesting that they might act simply by shifting the

equilibrium towards the loss of affinity between the eRF1 and

eRF3?GDP binary complex. If true, the loss-of-function of both of

them could be overcome by redundant mechanisms with slower

reaction rates. In agreement, hc RLI1 fully suppressed the read-

through effect of hcr1D in a manner dependent on its intact 4Fe-4S

and ABC domains (Figure 2B). We propose that in the hcr1D cells,

RLI1 makes its way to its binding site in the post-TCs by forcing

dissociation of eRF3?GDP through mass action and thus

eliminates a need for HCR1. These results are consistent with

the aforementioned observation that the eRF1 mutation su-

p45Y410S, disrupting the eRF1–eRF3 interaction, shifts the

amounts of eRF3 and also that of HCR1 from polysomes to the

top of the gradient (Figure 7).

The model proposed in Figure 6 also explains the behavior of

genetic interactions observed for the hcr1 deletion (Figure 8). Failure

to eject eRF3?GDP can perceivably have two consequences. First, if

read-through values of both single eRF mutants were set to 100%), or (D) spotted in four serial 10-fold dilutions on SD medium and incubated at
indicated temperatures for 4 days. ND; not determined due to severe growth deficiency.
doi:10.1371/journal.pgen.1003962.g008
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peptidyl hydrolysis by eRF1 fails to be induced because RLI1

cannot bind to it, the eRF1?eRF3?GDP complex can dissociate

from the ribosomal A-site, thus necessitating a renewed round of

tRNA sampling with an ensuing risk of stop codon decoding by a

near-cognate or suppressor tRNA. This is consistent with the

increased stop codon read-through we observe experimentally in

hcr1 deletion strains. Second, if peptidyl hydrolysis does take place (in

vitro, eRF1 clearly has some release factor activity also in the absence

of RLI1 [11]), a stalled ribosome complex would be formed in

which eRF1 was still bound to eRF3, and in which RLI1 was thus

not free to initiate the recycling step. Such stalled complexes would

impede ribosome flow on the affected mRNA, reduce correspond-

ing gene expression levels and potentially necessitate degradation by

one of the surveillance pathways. If this occurred frequently, it

would give rise to fitness defects, as we observe for hcr1 deletion

strains. This is also consistent with the fact that deletion of hcr1

produces unexpectedly mild polysomal run-off with respect to its

growth defect [23]. However, in the presence of eRF1 mutations,

which accelerate spontaneous dissociation of eRF3?GDP from

eRF1, timely RLI1 binding to eRF1 in the post-TCs would be re-

enabled even in the absence of HCR1. This would explain why the

sup45Y410S mutation, but not sup45M48I and sup35N536T mutations,

eliminated the negative impact of hcr1D on growth rates at the

semipermissive temperature (Figure 8B).

To further support our model, we wished to employ a recently

established in vitro reconstituted yeast translation system, which has

been used previously to monitor both the peptide release and

ribosome recycling steps of the translation cycle [12]. HCR1 did

not have an appreciable effect on ribosome recycling in this assay

(unpublished observations). This is probably not surprising given

that ribosome recycling is slow relative to the preceding steps.

Thus, accelerating eRF3.GDP dissociation is unlikely to affect the

observed rate of recycling. In contrast, the model predicts that the

observed rate of peptide release by eRF1, eRF3 and RLI1 may

accelerate in the presence of HCR1. Unfortunately, however, the

rate of peptide release by eRF1, eRF3 and RLI1 is very rapid,

such that further increases in rate (such as those that may occur in

the presence of HCR1) are unable to be measured in this system.

Since the former two assays are the only in vitro assays available to

us at the moment and neither of them can either directly or

indirectly monitor the rate of eRF3?GDP dissociation from the

post-TCs, further efforts will be necessary to fully characterize the

role of HCR1 in termination/recycling reactions biochemically.

Upon completion of the termination-specific reactions, eIF3,

HCR1 and RLI1 further participate in the ribosomal recycling

steps, as proposed by [6], and it is conceivable that all these factors

remain bound to the small 40S subunit to promote the next round

of initiation (Figure 6). Alternatively, the pre-occupation of the

40S?mRNA complex by the ‘‘initiation factors’’ that would not be

recycled could ensure reinitiation on the same mRNA molecule as

proposed by the mRNA closed-loop model [47]. An in vivo

experimental evidence implicating eIF3, HCR1 and other eIFs in

the recycling steps is, however, still lacking.

General conclusions
Taken together, we argue that strict mechanistic separation of

translation into its individual, mutually independent phases should

be reconsidered in the light of ‘‘multitasking’’ of eIF3, HCR1,

RLI1 and most likely also eIF1 and eIF1A, for which evidence is

presented here and elsewhere. Collectively, these findings suggest

that changes in one phase of translation, evoked for example via

cell signaling pathways, are promptly communicated to and

coordinated with changes in the other phases to maintain cellular

homeostasis of all ongoing processes. Without a doubt there is

much to be learned about how all four phases of translation come

together in one balanced system that rapidly and accurately

responds to different needs of the cell exposed to constantly

changing environmental conditions.

Materials and Methods

Yeast strains and plasmids
The lists and descriptions of plasmids and yeast strains used

throughout this study can be found in the Supplemental

Information (Tables S2, S3, S4 and Text S1).

Read-through assays
Stop codon read-through assays were performed using a

bicistronic reporter construct consisting of a Renilla luciferase gene

followed by an in-frame firefly luciferase gene. Separating the two

genes is either a tetranucleotide termination signal (e.g., UGA C)

[plasmids pTH477 (URA3) or YEp-R/T-UGAC-L (LEU2)] or, for

control purposes, a similar sequence containing a sense codon

(e.g., CAA C) [plasmids pTH460 (URA3) or YEp-R/T-CAAC-L

(LEU2)]. It is noteworthy that this system avoids possible artifacts

associated with changes in the efficiency of translation initiation

associated with the function of the NMD machinery [48], because

both the Renilla and firefly enzymes initiate translation from the

same AUG codon. For further details, see [14]. Microtitre-plate

based dual luciferase assays and analyses of the resulting data were

as described [31]. Samples were processed in quintuplicate, and

each experiment was repeated at three times.

Co-immunoprecipitation and affinity tag pull downs
Yeast whole cell extracts (WCEs) were prepared as described

previously [49] except that buffer A (30 mM HEPES (pH 8.8),

20 mM KAc, 3 mM magnesium acetate,1 mM dithiothreitol, 1%

Nonidet P-40 supplemented with Complete Protease Inhibitor

Mix tablets (ROCHE), and protease inhibitors 1 mg/ml aprotinin,

1 mg/ml leupeptin, 1 mg/ml pepstatin and 100 mM phenylmethyl-

sulfonyl fluoride (PMSF)) was used for lysis of the cells, and cell

lysates were centrifuged at 3,000 r.p.m. for 10 min at 4uC. The co-

immunoprecipitation analysis was performed as described else-

where [50], using 500 mg of the total protein and 1 ml of mouse

anti Myc-Tag IgG (CELL SIGNALING TECHNOLOGY).

Yeast cells expressing the TAP-tagged genes of interest were

grown in YPD medium at 30uC to an OD600 of ,1 and treated

with 1% HCHO prior to harvesting for 60 mins. The WCEs was

prepared as described above using buffer B (50 mM Tris-HCl

(pH 7.6), 150 mM NaCl, 0.05% Tween 20) with all protease

inhibitors in the presence or absence of 0.1 mg/ml RNase A.

Samples containing 1 mg of total protein in a final volume of

600 ml were incubated for 2 h at 4uC with 50 ml of 1:1 slurry of

IgG Sepharose 6 Fast Flow beads in buffer B. Samples were

centrifuged briefly and the supernatants were removed. The

collected beads were then washed five times with 1 ml of ice cold

buffer B, and incubated either with TEV protease (INVITRO-

GEN) for 30 min at 30uC followed by boiling in the SDS-loading

buffer for 5 min at 95uC, or directly boiled the SDS-loading

buffer. Corresponding aliquots of input, eluate and wash

(supernatant) were analyzed by SDS-PAGE followed by immu-

noblotting.

Polysomal gradient analysis
The 0.5% formaldehyde (HCHO) cross-linking followed by

WCE preparation and fractionation of extracts for analysis of

translational complexes were carried out as described previously

[25] with the following exceptions. Cycloheximide was added at a
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concentration of 0.05 mg/ml 5 minutes before the HCHO

treatment, after which the cells were broken by FastPrep

Instrument (MP Biomedicals) at the intensity level of 5 in two

20 second cycles. The resulting WCEs were separated on 5–45%

sucrose gradients.

Other yeast biochemical methods
GST pull-down experiments with GST fusions and in vitro-

synthesized [35S]-labeled polypeptides (see Table S3 for vector

descriptions) were conducted as follows. Individual GST-fusion

proteins were expressed in E. coli, immobilized on glutathione-

Sepharose beads and incubated with 10 ml of 35S-labeled potential

binding partners at 4uC for 2 h. The beads were washed 3 times

with 1 ml of phosphate-buffered saline, and bound proteins were

separated by SDS-PAGE. Gels were first stained with Gelcode

Blue Stain Reagent (Pierce) and then subjected to autoradiogra-

phy. b-galactosidase assays were conducted as described previously

[51].

Preparation of antibodies against RLI1 and SUP45
The GST-RLI1 and GST-SUP45 fusion proteins encoded by

pGEX-RLI1, pGEX-SUP45, respectively, were expressed in E.

coli and purified from the WCE by incubation with Glutathione-

Sepharose 4B beads (Pharmacia). The isolated proteins were

resolved by SDS-PAGE (4–20% gels), excised from the gel, and

washed with 16 PBS. Rabbits were injected with the purified

protein and sera containing polyclonal antibodies against RLI1,

SUP45, respectively, were obtained commercially by Apronex

(Prague, the Czech Republic).

Supporting Information

Figure S1 DaMP alleles of various 43S PIC-associated initiation

factors display distinct effects on efficiency of stop codon read-

through. Yeast strains containing kanMX4 cassettes integrated

into their 39-UTRs (so-called DaMP alleles) were recovered from

the genome-wide collection for these alleles [15]. We were able to

recover alleles for all 43S PIC-associated eIFs with the exception of

eIF2b, for which no allele was present in the collection. In order to

aid interpretation of results, and to assess the efficiency of

depletion of the gene in question, we initially measured growth

rates of the respective strains (top panel). Since all of the factors

studied here are essential, we expected a reduction in growth rate

upon significant depletion of any of these factors. We then

proceeded to measure stop codon read-through in these strains,

using dual luciferase reporters as described in the main text. Of the

eIF3 subunits tested, only g/TIF35 is sufficiently depleted to cause

a significant growth defect, and this strain shows a significant

reduction in stop codon read-through. Moreover, the c/NIP1

DaMP allele also shows a significant reduction in stop codon read-

through, even though this protein is not sufficiently depleted to

produce a significant growth defect. Together, these results

confirm those presented for other eIF3 alleles in the main text.

In contrast to the eIF3 subunits, other 43S PIC-associated

translation initiation factors do not reduce stop codon read-

through upon depletion. Conversely, both eIF2 subunits tested

and eIF1A increased read-through when depleted. This demon-

strates that the role of eIF3 in translation termination is specific to

this factor.

(TIF)

Figure S2 Increased gene dosage of eRFs 1 and 3 reduces stop-

codon read-through. Wild type strain H416 was transformed with

designated plasmids overexpressing eRFs and the resulting

transformants were grown in SD and processed for the stop

codon read-through measurements as described in Figure 1.

(TIF)

Figure S3 Increased gene dosage of eEF3 does not suppress the

slow growth and read-through defects of hcr1D. (A) The hcr1D
strain (H3675) was transformed with either empty vector, high

copy (hc) HCR1 or hc YEF3 (eEF3), the resulting transformants

were spotted in four serial 10-fold dilutions on SD medium and

incubated at 30uC for 2 days. Unlike RLI1, eEF3 (which is also an

ABC cassette-containing protein) does not suppress the growth

defect of an hcr1 deletion strain. (B) The strains from panel A were

grown in SD and processed for the stop codon read-through

measurements as described in Figure 1.

(TIF)

Figure S4 Increased gene dosage of HCR1 does not suppress

the slow growth and read-through defects of the Tet::RLI1 strain;

intact ATP-binding cassettes and the Fe-S cluster of RLI1 are

indispensable for its role in ensuring stop codon selection accuracy.

(A) The Tet::RLI1 (Tet-RLI1) and the corresponding wt strain

(W303) were transformed with either empty vector or hc HCR1,

and the resulting transformants were spotted in four serial 10-fold

dilutions on SD medium supplemented with 0.25 mg/ml of

doxycycline and incubated at 30uC for 2 days. (B) The Tet::RLI1

(Tet-RLI1) strain was transformed with hc vectors carrying wt or

mutant RLI1 alleles, or empty vector or hc HCR1. The resulting

transformants were grown in SD supplemented with 1 mg/ml of

doxycycline (DOX) and processed for the stop codon read-through

measurements as described in Figure 1. Obtained values were

normalized to the value obtained with the Tet::RLI1 strain

transformed with wt RLI1, which was set to 100%.

(TIF)

Figure S5 Increased gene dosage of ABCE1/RLI1 does not

suppress the leaky scanning defect of hcr1D. The HCR1+ (H2879)

and hcr1D (H3675) strains were first transformed with either empty

vector or hc RLI1 and subsequently with the GCN4-lacZ reporter

plasmid plig102-3. The resulting double transformants were grown

in SD medium at 30uC to an OD600 of ,1. The b-galactosidase

activities were measured in the WCEs and expressed in units of

nmol of o-nitrophenyl-b-D-galactopyranoside hydrolyzed per min

per mg of protein. The plots show mean values and standard

deviations obtained from at least 3 independent measurements with

three independent transformants. The fold-difference between the

hcr1D versus HCR1+ strains with or without hc RLI1 is indicated.

(TIF)

Figure S6 Complexes containing eIF3, HCR1, ABCE1/RLI1

and both eRFs, free of ribosomes and RNA, occur in vivo – the

RNase A treatment. (A) RNAse A-treated WCEs were prepared

from HCHO-treated (1%) cells bearing wt (H2879) or TAP-tagged

(H553) chromosomal alleles of HCR1 and incubated with IgG

Sepharose 6 Fast Flow beads. The immune complexes were eluted

by boiling in SDS buffer and subjected to Western analysis. In, 1.5%

of input; E, 50% of the elution fraction; W, 1.5% of the supernatant

fraction. eRF1 is indicated by an asterisk below the immunoglob-

ulins. (B) RNAse A-treated WCEs from HCHO-treated cells (1%)

cells bearing wt (H2879) or TAP-tagged (H555) chromosomal

alleles of TIF32 were processed as in panel A except that the

immune complexes were eluted by the TEV protease cleavage. In,

1.5% of input; E, 100% of the elution fraction; W, 1.5% of the

supernatant fraction. (C) RNAse A-treated WCEs from HCHO-

treated cells (1%) cells bearing wt (74D-694) or TAP-tagged (H517)

chromosomal alleles of SUP35 were processed as in panel B.

(TIF)
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Figure S7 (A) Deletion of hcr1 results in accumulation of the

polysome-associated eRF3 – factor distributions across gradient

fractions as shown in Figure 5. Amounts of each individual factor

in the pooled fractions from three independent experiments were

quantified by fluorescence imaging, combined, and the percentage

representation of the signal corresponding to the Top (1–3 and 4),

40S (5–6), 60S (7–8), and 80S plus polysomal fractions (9 through

18) was calculated and plotted. (B) The sup45Y410S mutation

prevents stable association of eRF3 and HCR1 with polyribosomes

– factor distributions across gradient fractions as shown in Figure 7.

Amounts of each individual factor in the pooled fractions from

three independent experiments were quantified by fluorescence

imaging, combined, and the percentage representation of the

signal corresponding to the Top (1–3), 40S (4–5), 60S (6–7), and

80S plus polysomal fractions (8–11) was calculated and plotted. (C)

The sup45Y410S but not the other mutations in eRFs 1 and 3

eliminate the negative impact of hcr1D on growth rates. The hcr1D
strain was crossed with the indicated sup45 and sup35 mutant

strains and the resulting double mutants (PBH104, PBH103 and

PBH105) were transformed with either empty vector (EV) or hc

vector containing HCR1 and together with the corresponding

hcr1D SUP35 SUP45 ‘‘wt’’ strain (YLVH13) spotted in four serial

10-fold dilutions on SD medium and incubated at indicated

temperatures for 2 or 3 days.

(TIF)

Table S1 Mutant alleles used in this study and their associated

phenotypes.

(DOCX)

Table S2 Yeast strains used in this study.

(DOCX)

Table S3 Plasmids used in this study.

(DOCX)

Table S4 Primers used in this study.

(DOCX)

Text S1 Supporting Materials and Methods.

(DOCX)
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