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Abstract

Background: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce
obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and b-glucan)
exert similar effects on body composition and central appetite regulation in high fat fed mice.

Methodology/Principal Findings: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat
diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) b-glucan individually. Fecal and cecal
microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton
nuclear magnetic resonance (1H NMR), colonic short chain fatty acids were measured by gas chromatography, body
composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and
manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay,
adipocyte cell size and number were also measured. Both inulin and b-glucan fed groups revealed significantly lower
cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in b-glucan than inulin
fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in
the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. b- glucan appeared to have
marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus,
paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state.

Conclusions/Significance: Although both fermentable carbohydrates are protective against increased body weight gain,
the lower body fat content induced by inulin may be metabolically advantageous. b-glucan appears to suppress neuronal
activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for
nutritionally targeting appetite regulation and body composition.
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Introduction

The gut microbiota is emerging as an important environmental

factor associated with obesity and fat mass development [1].

Aberrant microflora profiles have been observed in both diet

induced animal models of obesity [2] as well as in obese humans

compared with lean controls [3]. Moreover, obese individuals on

either a fat-restricted or carbohydrate-restricted low calorie diet

have been shown to alter the gut bacteria compositions toward an

increase of bacteroides and a reduction of firmicutes [3].

It is known that fermentable carbohydrates like inulin,

oligofructose (fructans) and b-glucan undergo bacterial fermenta-

tion in the colon [4,5]. Fermentable carbohydrates such as

partially hydrolyzed guar gum and fructo-oligosaccharides have

been shown to modulate the intestinal microbiota by increasing

the proportions of bifidobacteria and lactobacilli in humans [6].

Supplementation of dietary fructans has also been shown to

increase the level of anorectic gastrointestinal hormones such as

glucagon like peptide-1 (GLP-1) and peptide YY (PYY) thereby
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reducing body weight gain in experimental animals [7]. The

addition of oligofructose into the diet of obese adults for three

weeks was shown to reduce body weight, suppress plasma ghrelin

and enhance PYY levels [8]. Evidence shows that barley b-glucan

also mediates a satiety effect through increased PYY and a

reduction in ghrelin levels [9]. Moreover, the end products of

bacterial fermentation, short chain fatty acids have been shown to

regulate expression of the gut hormones implicated in satiety [10].

Previously we have shown that the increase in satiety as a result of

resistant starch supplementation correlates with decrease in

neuronal activation in the hypothalamic appetite centers using

manganese enhanced magnetic resonance imaging (MEMRI)

[11].

In the present study, we bring together a number of cutting-

edge techniques to evaluate the efficacy of two different

fermentable carbohydrates (b-glucan and oligofructose enriched

inulin) in delaying the progression of obesity under high fat dietary

conditions. We hypothesize that such carbohydrates may have a

similar impact on body weight reduction but the underlying

mechanisms by which they reduce weight gain may differ.

Materials and Methods

Animals and Treatments
All animal procedures were performed in accordance with the

UK Animals Scientific Procedures Act (1986). Thirty six male

C57BL/6 mice (6–8 weeks old, Charles River, UK) were single

housed under controlled temperature (21–23uC) and light

conditions (12 h light-dark cycle; lights on at 07:00 h). Animals

were randomized and assigned to three different groups (n = 12):

High fat diet (HFD, with corn starch) as high fat control (HFD-C),

HFD + oligofructose enriched inulin (SynergyTM) (HFD-I) and

HFD + b-glucan (GlucagelTM) (HFD-BG). While SynergyTM is a

fructan based preparation containing both long and short chain

fructooligosaccharides, GlucagelTM is a highly rich (,80%) barley

derived b-glucan preparation (DKSH, London, UK). Both

Synergy and GlucagelTM were mixed with the HFD individually

in the ratio of 1:9, the detailed composition of diets is given in the

Table S1. The three diets were isocaloric, each contained the same

total energy of 4.6 kcal/g, with 41.8% energy from fat. HFD diet

was made isocaloric by the addition of cellulose. The diets were fed

ad libitum for 8 weeks to respective group of animals. Body weights

and food intake were measured three times per week. A schematic

diagram outlining the study design is shown in Fig. 1.

Fluorescent in situ hybridization (FISH)
The protocol was followed as previously described by Martin-

Pelaez et al. [12] See method S1 for details. The probes used were

Lab158 [13], Bif164 [14], Erec482 [15] and Mib663 [16] to

enumerate Lactobacillus-Enterococcus, bifidobacteria, Eubacterium rec-

tale-Clostridium coccoides and mouse intestinal bacteria belonging to

Bacteroides subgroup in the phylum Cytophaga-Flavobacter-Bacteroides,

respectively. Total cell counts were obtained with DAPI (49,6-

diamidino-2-phenylindole dihydrochloride) staining.

1H nuclear magnetic resonance (NMR) spectroscopy
Fecal samples were prepared and analyzed by 1H NMR using

method adapted from Saric et al. [17]. See method S1 for details.

Gas chromatography
Short chain fatty acids (SCFA) in the colonic contents were

determined by gas chromatography. The method used was

adapted from Richardson et al [18]. See method S1 for details.

Magnetic resonance studies
A combination of magnetic resonance imaging and spectrosco-

py (MRI/S) techniques explained below were carried out to

determine body composition in terms of total body fat content and

distribution, and ectopic lipid levels in liver and muscle tissue. We

also used MEMRI to assess the impact of fermentable carbohy-

drates on appetite centres in the hypothalamus.

Whole body 1H MRS. Whole body 1H MRS was performed

to determine the whole body adiposity. The mice were fasted for

16 h and anesthetized with 1–2% isoflourane-oxygen mix which

was maintained throughout the scan. The animals were scanned

on a 4.7 Tesla Varian INOVA imaging system (Varian Inc, USA)

using a pulse sequence with the following parameters: repetition

time (TR) = 10 s, pulse angle = 45u and averages = 4. The spectra

obtained were analyzed and body adiposity was calculated as

previously described [11].

Whole body MRI. Whole body MRI was carried out to

determine the amount of internal (epididymal and mesenteric fat)

and total subcutaneous depots. Consecutive 2 mm thick slices

were acquired using a spin-echo sequence with the following

parameters: TR = 2.2 s, echo time (TE) = 20 ms, matrix

size = 2566192, field of view (FOV) = 45645 mm and averag-

es = 2. The slices/images were then subjected to segmentation

analysis (SliceOmaticTM, TomovisionH, Canada) by an observer

blinded to the experimental groups to obtain volumes and the

masses of the different adipose tissue depots were calculated.

Localized 1H MRS. Localized 1H MRS was performed to

assess the lipid content in the liver and muscle. The intrahepa-

tocellular and intramyocellular lipid content was assessed by

placing a voxel of 26262 mm3 on a selected slice of the liver and

muscle in the MR images. A PRESS sequence with the following

parameters, TR = 10 s, TE = 9 ms and averages = 64, was applied

on the voxel to obtain the spectra and relative percentage of lipid

was determined by integration of the lipid peak [11].

Manganese enhanced MRI (MEMRI). MEMRI was

performed to determine the neuronal activation in selected

appetite centers of brain using 9.4 Tesla Varian INOVA imaging

system (Varian Inc, USA) as described earlier. The mice for

MEMRI were selected by the average body weight of each group

and they had free access to food and water before the scan. Mice

were anesthetized with 1–2% isoflourane-oxygen mix which was

maintained throughout the scan. A fast spin-echo multi-slice

sequence was applied with the following parameters:

TR = 600 ms, TE = 10 ms, matrix size = 1926192,

FOV = 25625 mm and average = 1 acquiring 4660.4 mm thick

slices [19]. An array of 66 acquisitions was set up so that the 46

slices were acquired 66 times throughout the infusion. Maximum

three scans were performed per day during the day light time and

each scan lasted for 2 hr. Normalized percentage enhancement

(NPE) in signal intensity was calculated in the hypothalamic

appetite centers like arcuate nucleus (ARC), ventromedial

hypothalamus (VMH), paraventricular nucleus (PVN), periven-

tricular nucleus (PE), and the brainstem region like nucleus of

tractus solitarius (NTS) [20].

Adipocyte cell size and number
Adipocyte cell size and number were determined as reported

earlier [21–23]. Briefly, white adipose tissue (epididymal depot)

was collected and finely minced in Dulbecco’s modified Eagle

medium (DMEM) supplemented with 4% (w/v) Bovine serum

albumin (BSA) and collagenase (1 mg/0.5 g tissue). The tissue

suspension was incubated in a shaking water bath set at

140 cycles/min for 45 min at 37uC. After the tissue was

completely digested, the suspension was filtered through a
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polypropylene mesh (400 mm) and washed twice using DMEM

containing 4% (w/v) BSA and 1 mg/40 ml trypsin inhibitor. An

aliquot (10 ml) of adipocytes was collected, diluted with trypan blue

in 1:1 ratio and a sample of the cells were counted in a

haemocytometer. Images were taken of different sample regions of

the grid on the haemocytometer for further analysis. Cell number

and size (diameter, mm) was calculated from images using software

CellProfiler (Masachusetts, USA) setting an appropriate threshold

to exclude any cell debris.

Colonic PYY extraction and radioimmunoassay
PYY was extracted from the colons by boiling for 15 minutes in

0.5 M acetic acid (10 ml/g wet weight of colon) as described

previously [24]. Extracts were stored at 220uC until assayed.

Colonic PYY and PYY3–36 immunoreactivity in serum was

measured using radioimmunoassay [25].

Statistical Analysis
All data was checked for normality, and results expressed as

means 6 standard errors (SE), unless otherwise stated. In the case

of the gut microbiota, the data is presented as median and 95%

confidence intervals. Unless otherwise stated, data was analyzed

using two way ANOVA with post-hoc bonferroni correction. PYY

and MRI results were analyzed by one way ANOVA using

software GraphPad prism5. MEMRI timecourse data was

analyzed using GEE with post-hoc Mann Whitney analysis [26].

For the acquired 1H NMR fecal spectra data, the spectra were

initially referenced to sodium 3-trimethylsilyl [2,2,3,3-2H4] propi-

onate, TSP (d 0.0), corrected for baseline distortions and phased

using an in-house routine written in MatlabH 7.3.0 (MathWorks,

Natick, MA) and each spectrum was collected into the 0.005 ppm

spectral region [27]. Analysis of the spectral data was performed

initially using principal component analysis (PCA). Following

PCA, pair wise orthogonal projection to latent structure discrim-

inating analysis (OPLS-DA) models between different types of diet

and at different time points were calculated separately using one

predictive and one orthogonal component. Due to the small

number of samples in this report, separation within the model was

considered significant when p#0.01. The computed regression

coefficient plots [28] were used to identify the differential

contribution of spectral regions in discrimination between class

separations. Metabolites which were highly correlated to the class

separations were assigned using published literature, statistical

total correlation spectroscopy [29] and public databases.

Results

Body weight, food intake, tissue weights and adiposity
data

Both oligofructose enriched inulin (HFD-I) and b-glucan (HFD-

BG) fed mice (n = 12 per group) displayed significantly lower

(p,0.05) body weights at weeks 7 and 8 compared with high fat

control mice (HFD-C). Cumulative body weight gain was

significantly lower (p,0.05) in HFD-I and HFD-BG compared

with HFD-C from week 3 onwards and this was maintained until

the end of the dietary intervention giving a net reduction of 30%

and 37%, respectively (Fig. 2a).

No difference in cumulative food intake was observed between

HFD-C and HFD-I groups (Fig. 2b) despite a significantly lower

cumulative body weight gain in the HFD-I group. The HFD-BG

group showed a significantly lower cumulative food intake from

week 4 as compared to HFD-C (p,0.001) and from week 6 as

compared to HFD-I (p,0.05). Despite a significantly lower

cumulative food intake in HFD-BG mice, no significant difference

in cumulative body weight gain was observed between HFD-BG

and HFD-I groups.

Figure 1. Flowchart showing the study design.
doi:10.1371/journal.pone.0043263.g001
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Epididymal fat mass was significantly lower (p,0.05) in HFD-I,

while cecal weight (along with contents) was significantly higher

(p,0.001) in both HFD-I and HFD-BG, compared with HFD-C

(n = 6 per group, Table 1). The cecal weight of HFD-BG mice was

significantly lower than that of HFD-I mice (p,0.01). Liver and

colonic weights did not differ significantly.

Body composition and adipocyte data
Whole body adiposity measured by 1H MRS (n = 6 per group)

at week 8 showed a stepwise increase with HFD-I the lowest,

followed by HFD-BG than HDF-C group. HFD-I (8.9561.66%)

was significantly lower (p,0.05) compared with both the HFD-BG

(12.1761.92%) and HDF-C (18.0362.72%) groups (Table 1).

There were no significant differences in internal and subcutaneous

fat levels, however, a trend towards a lower internal and

subcutaneous fat was observed in HFD-I and HFD-BG compared

with HFD-C group. There were no significant differences

observed in either liver or muscle lipid content between any of

the three groups.

Adipocyte size was significantly lower (p,0.05) in the HFD-I

(72.9568.72 mm) compared to either the HFD-BG

(111.1964.03 mm) or HFD-C (122.25610.2 mm), however, there

was no significant change in adipocyte number between the

different groups (Table 1).

Gut microflora composition and SCFAs
Fluorescence in situ hybridization (FISH) was carried out in both

fecal pellets (collected at weeks 0, 4 and 8) and cecal contents at

week 8 (when the mice were culled). A significant modulation of

bacterial populations was observed in both the cecal and fecal

contents (n = 6 per group, Fig. 3). Bacterial groups, Lactobacillus-

Enterococcus and Bifidobacterium hybridized with probes Lab156 and

Bif164, respectively, showed a significant increase in both HFD-I

(p,0.001) and HFD-BG (p,0.01) compared to HFD-C in cecal

contents post dietary intervention at week 8. HFD-I and HFD-BG

fed mice also exhibited a significant increase in total bacterial

(p,0.05), MIB (p,0.05) and EREC counts (p,0.01) compared to

HFD-C (Fig. 3a).

Baseline fecal microbial contents were similar for mice fed with

different diets (Fig. 3b–f). No significant changes in the fecal

microbial contents were observed in HFD-C group over the 8

weeks dietary intervention. However, a non-significant reduction

in the total bacteria and EREC was observed at week 8 in HFD-C

group. The intake of fermentable carbohydrates resulted in a

Figure 2. The effect of inulin and b-glucan supplementation over the 8-week dietary interventional period (a) weekly cumulative
body weight gain, n = 12 per group (b) weekly cumulative food intake over the 8 week dietary intervention period, n = 12 per
group. * = p,0.05, ** = p,0.01, *** = p,0.001. Key: HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+b-glucan.
doi:10.1371/journal.pone.0043263.g002

Table 1. Effect of inulin and b-glucan supplementation on
adiposity parameters and tissue weights in high fat fed mice
(n = 6).

HFD-C HFD-I HFD-BG

Epididymal adipose tissue (g) 1.1460.16 0.5960.10* 0.7760.10

Whole body adiposity (%) 18.0362.72 8.9561.66* 12.1761.92

Liver lipid content (%) 6.3061.62 6.0261.97 6.0261.36

Muscle lipid content (%) 0.9660.149 0.7260.05 1.2960.57

Internal fat (g) 2.1760.46 1.2360.17 1.4960.27

Subcutaneous fat (g) 3.4060.53 2.0860.13 2.4460.28

Adipocyte size ( mm) 122.25610.2 72.9568.72**,# 111.1964.03

Adipocyte number (6107) 1.43E+08 1.31E+08 1.86E+08

Liver size (g) 1.4360.13 1.2360.15 1.4060.06

Caecum (with contents, g) 0.2160.01 0.6960.05***,## 0.4960.03***

Caecum (without contents, g) 0.0660.01 0.2160.01***,## 0.1460.01***

Colon (g) 0.1360.01 0.1960.02 0.1460.02

Superscipt (*) shows the significant difference between HFD-I or HFD-BG vs.
HFD-C.
* = P,0.05,
** = P,0.01,
*** = P,0.001.
Superscipt (#) shows the significant difference between HFD-I vs. HFD-BG.
# = P,0.05,
## = P,0.01.
doi:10.1371/journal.pone.0043263.t001

Fermentable Carbohydrates and Appetite Regulation

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43263



significant increase (p,0.001) in the numbers of total bifidobac-

teria and lactobacilli as compared to week 0, showing a similar

pattern of microbial modulation as observed in cecal contents.

Other bacterial groups, MIB bacteroides, residing within Cyto-

phaga-Flavobacter-Bacteroides phylum (p,0.001) and EREC, Eubac-

terium rectale-Clostridium coccoides numbers (p,0.01) also increased in

HFD-I as compared to HFD-C group.

Total level of SCFAs (acetate, propionate and butyrate) (n = 6

per group) were significantly higher in the HFD-BG group

compared with the HFD-I group, which in turn was higher than

the HFD-C group (HFD-BG: 34.462.5 mmol/mg; HFD-I:

27.862.1 mmol/mg; HFD-C: 17.764.1 mmol/mg, p,0.05) in

the colonic contents. Acetate and propionate levels were signifi-

cantly increased in HFD-BG and HFD-I compared with HFD-C

(Acetate; HFD-BG: 30.262.4 mmol/mg; HFD-I:

25.163.1 mmol/mg; HFD-C: 16.763.1 mmol/mg, p,0.05:

Propionate; HFD-BG: 3.061.2 mmol/mg; HFD-I:

2.060.9 mmol/mg; HFD-C: 0.660.3 mmol/mg, p,0.05). How-

ever, there was no significant difference observed in the butyrate

levels among the three groups (HFD-BG: 1.160.3 mmol/mg;

HFD-I: 0.760.2 mmol/mg; HFD-C: 0.460.1 mmol/mg,

p = 0.260).

MEMRI
MEMRI was carried out at the end of the 8 weeks dietary

intervention to measure neuronal activation in the appetite centers

of brain (n = 6 per group) (Fig. 4a–e). Significantly lower signal

intensities were observed in the ARC (p,0.05), VMH (p,0.001),

PVN (p,0.01), PE (p,0.001) and NTS (p,0.05) in HFD-BG fed

mice when compared to HFD-C group of mice. No significant

difference was found between HFD-C and HFD-I groups for

ARC, VMH, PVN and PE except the MEMRI pattern in NTS

which was significantly (p,0.05) lower in HFD-I fed mice. HFD-I

group generally showed higher signal intensities for the neuronal

activation in the appetite centers of the brain when compared to

the HFD-BG group. However, these changes were not significant

except for the MEMRI pattern in PE (p,0.01) (Fig. 4d).

Serum and colonic PYY content
There was no statistical difference observed in the serum (HFG-

BG: 0.1360.016 pmol/mL; HFD-I: 0.0960.008 pmol/mL; and

HFD-C: 0.1060.012 pmol/mL) and colonic tissue (HFG-BG:

19.961.6 pmol/mL; HFD-I: 22.865.3 pmol/mL; and HFD-C:

27.363.7 pmol/mL) concentrations of PYY.

Figure 3. The effect of inulin and b-glucan supplementation on cecal and fecal microbial contents over the 8-week dietary
interventional period (a) cecal microflora groups, n = 6 per group (b) fecal total bacteria microflora at week 0, 4 and 8, n = 6 per
group: (c) fecal mouse intestinal bacteria, (d) fecal Eubacterium rectal-Clostridium coccoides; (e) fecal Lactobacilli; and (f) fecal
Bifidobacteria. * = p,0.05, ** = p,0.01, *** = p,0.001. Key: HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+b-
glucan.
doi:10.1371/journal.pone.0043263.g003
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NMR results
Fecal pellets collected at week 0, 4 and 8 were measured by 1H

NMR spectroscopy to obtain the spectral profiles and to analyze

prominent signals from metabolites (Figure S1). The global fecal

metabolite composition was significantly different in HFD-C from

mice fed either of the fermentable carbohydrates as determined by

principal components analysis (PCA), whereby two clusters were

observed in the scores plots relating to HFD-I and HFD-BG versus

HFD-C (Figure S2). The variation in the first two principal

components was dominated by consumption of fermentable

carbohydrate, such that no time trajectory patterns were observed.

Statistics for various pairwise OPLS-DA comparisons between

different fermentable carbohydrates are shown in Table S2. No

significant difference was observed for the comparison between

HFD-BG and HFD-I. However, clear differentiation of both

HFD-I and HFD-BG from the HFD-C group was confirmed by

orthogonal partial least squares discriminant analysis (OPLS-DA)

which gave Q2 Yhat values of 94.1% and 85.6% respectively for

HFD-I and HFD-BG at week 8 (Table S2), indicating that the

separations between these models are highly robust.

The regression coefficient plots indicated that lactate; citric acid

cycle intermediates (succinate, fumarate); amino acids (lysine,

alanine, glutamate, aspartate, and glycine); and aromatic com-

pounds (uracil, tyrosine and phenylalanine) were the dominant

metabolites in the feces of HFD-I and HFD-BG groups. Fecal

glucose level was characteristic of HFD-BG mice at week 8. The

Figure 4. Representative baseline (pre-contrast) MRI images of the mouse brain showing assignment of regions of interest (ROIs) in
various brain areas from which signal intensities (SI) were obtained. Time course of changes in SI (as a percentage of baseline) before and at
various times after IV manganese chloride infusion in the (a) ARC, (b) VMH (c) PVN (d) PE (e) NTS. Data are presented as means of four consecutive
image acquisitions6SEM. * = p,0.05, ** = p,0.01, *** = p,0.001 Key: ARC, arcuate nucleus; VMH, ventromedial hypothalamic nucleus; PVN,
paraventricular hypothalamic nucleus; PE, periventricular nucleus; NTS, nucleus of solitaries tractus; HFD-C, high fat diet control; HFD-I, high fat
diet+inulin; HFD-BG, high fat diet+b-glucan.
doi:10.1371/journal.pone.0043263.g004
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integration of 1CH glucose signal at d5.230–5.262 showed that

glucose was approximately three times greater in the feces from

HFD-BG mice compared to HFD-I and HFD-C groups. Bile

acids; possibly amine related compounds (characterized by the

broad singlets in d8.5, 8.85 and 8.95); and an unknown metabolite

at d1.17 were highly correlated to HFD-C mice (shown for week 8

in Fig. 5).

Discussion

In the present study, we confirm the finding of others that both

b-glucan [30] and inulin [7,31] attenuate weight gain in high fat

fed mice. Although both groups that were fed fermentable

carbohydrates displayed a similar significant decrease in cumula-

tive body weight gain compared to the high fat control group, the

significant decline in cumulative food intake occurred earlier

(HFD-BG, week 4 vs. HFD-I, week 6), and was significantly

greater in the HFD-BG compared with HFD-I group. However, a

significantly greater reduction in body adiposity was observed in

the HFD-I group as compared to HFD-BG and HFD-C groups.

Considering both the HFD-BG and HFD-I have the similar end

body weight reduction, it would suggest that energy intake alone

does not account for weight loss and change in body composition

in the HFD-I group. Consistent with the decrease in body weight

HFD-BG and HFD-I had lower body fat that HFD-C with HFD-I

significantly lower than the other two groups. Although not

significantly different between HFD-BG and HFD-I, a trend

towards a lower internal fat than HFD-C was observed, with

HFD-I having a smaller epididymal fat pad. It is possible that

inulin may have a preferential effect on adipose tissue. The

mechanism by which inulin displays a greater effect on adipose

tissue is unclear, although we and others have reported impact of

inulin on body fat content previously [19]. There is evidence that

inulin may affect fatty acid oxidation [32].

A 1H NMR spectroscopy-based metabolomic approach was

used to characterize the metabolic profiles of the feces. Here, no

significant difference was observed between the 1H NMR spectra

of the HFD-I and HFD-BG groups. However, compared to HFD-

C, the effects of the b-glucan and inulin on body weight reduction

were coupled with the increased excretion of amino acids, citric

acid cycle intermediates and lactate. This suggests enhanced fecal

energy loss, in both groups through these energy related

compounds. It also reflects reduced utilization of these energy

related compounds that may have led to reduced body weight gain

in fermentable carbohydrates fed groups under high fat dietary

conditions. The HFD-BG group had increased fecal excretion of

Figure 5. Multivariate statistical analysis of the fecal 1H NMR spectra. OPLS-DA cross validated scores plots for mice fed with (a) HFD-C and
HDF-BG; and (b) HFD-C and HFD-I. The corresponding coefficient plots indicated fecal metabolic differences for (c) HFD-C and HFD-BG; and (d) HFD-C
and HFD-I. Insets show an expansion of the aromatic region. HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+b-glucan.
1, Bile acids; 2, Butyrate; 3, Isoleucine, leucine and valine; 4, Propionate (tentative); 5, Unknown at d 1.17 (doublets) ; 6, Lactate; 7, Alanine; 8, Acetate; 9
Glutamate (tentative); 10, Succinate; 11, Aspartate; 12, Citrate; 13, Lysine; 14, Glycine; 15, Glucose and amino acids; 16, Glucose; 17, Uracil; 18,
Fumarate; 19, Thyrosine; 20, Phenylalanine; 21, Histidine; 22, Unknown at d7.84 (doublets); 23, Unknown at d8.02 (doublets); 24, Unknown at d8.20
(doublets); 25, Amine related compounds.
doi:10.1371/journal.pone.0043263.g005
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glucose at week 8, which may indicate incomplete fermentation of

b-glucan. This may be an indication of an additional loss of energy

in the HFD-BG.

Next we investigated if the differences in energy intake between

the HFD-BG and HFD-I could be ascribed to changes in the gut

microbiota. The high fat control diet had little effect on fecal total

microbiota temporally, as measured by FISH at repeated intervals,

over the 8 weeks dietary intervention. However, supplementation of

both fermentable carbohydrates resulted in modulation of gut

microbiota leading to an increase in total Lactobacillus-Enterococcus

and Bifidobacterium both in feces and cecal contents over the 8 weeks

dietary intervention. This suggests similar prebiotic efficacy of both

fermentable carbohydrates in modulating the microbiota and

supports previous reports on the prebiotic potential of oligofructose

enriched inulin [4] and b-glucan [5]. Our results also support

previous observations that increased intestinal bifidobacteria relates

to reduced body weight gain and food intake [33]. Thus, there is the

potential for utilizing fermentable carbohydrates to modulate the

gut microbiota to ameliorate the detrimental effects induced by high

fat diets, which is supported by our current data, but this does not

fully account for the difference in energy intake.

Recent evidence has implicated the ratio of firmicutes:bacter-

oidetes as one of the environmental factors regulating energy

homeostasis. It appears that obese mice and humans possess more

bacterial groups belonging to firmicutes, which possess fermenta-

tion ability to extract energy from otherwise indigestible carbohy-

drates [2]. The energy derived from these indigestible carbohy-

drates in the form of SCFAs contributes to total energy in adults

[34] and to the obese phenotype. However, in the present study,

we observed higher proportions of lactobacilli belonging to

firmicutes as well as enhanced cecal bacteroides number, (as

evident from increased cecal MIB counts) coupled with higher

total colonic SCFA content in HFD-I and HFD-BG compared

with HFD-C, accompanied by a reduction in body weight. Using

high throughput analysis, Everard et al also demonstrated increase

in bifidobacteria and bacteroidetes with oligofructose supplemen-

tation in ob/ob mice. However, they reported decrease in

firmicutes coupled with modulation of actinobacteria and

proteobacteria populations [35]. Our previous work has demon-

strated that fermentable carbohydrates can effect hypothalamic

neuronal activation [19]. MEMRI is an imaging technique which

gives a measure of neuronal activation in vivo. Manganese ions

(Mn2+) enter into the excitable neuronal cells in the brain

producing contrast in the MRI images. The appetite centers are

located in the hypothalamus, that include the arcuate nucleus

which is comprised of neurons expressing orexigenic (neuropeptide

Y, agouti related peptide) and anorexigenic (proopiomelanocortin,

melanocyte stimulating hormone) peptides, which project into

other areas like VMH and PVN. Brainstem is another region

which acts as the receiver of vagal afferent signals from all along

the gastro intestinal tract and all the signals are transmitted to

hypothalamus [19,20]. We demonstrated a significant decrease in

the signal intensity due to manganese uptake, measured in the

ARC, VMH, PVN in the HFD-BG group. These patterns of

activation are similar to those previously reported with acute

infusion of anorectic gut hormones such as PYY and GLP-1

[36,37].The results, therefore, reflect a satiated state in b-glucan

fed mice, which is paralleled by the significantly lower and earlier

decline in the cumulative food intake. A similar decrease in VMH

and PVN nuclei has earlier been reported in resistant starch fed

mice [11]. It has been shown that a decrease in these basal levels of

neural activity is an effect of a satiated state, in a study comparing

fed and fasted neural activity in these hypothalamic nuclei [26].

Therefore, despite the fact that there are populations of neurons

present in the arcuate nucleus, for example, which have opposing

effects on appetite, the overall effect detected with MEMRI links a

higher activation with a fasted state [26].

We expected a similar reduction in the signal intensity of HFD-I

group, but instead MEMRI patterns resembled those of the HFD-

C, except for in the NTS. NTS is located in brainstem, the

significantly lower MEMRI signal in NTS in inulin fed animals

was not coupled with parallel lower signal intensity in the

hypothalamic appetite regions. This is a surprising finding, raising

the possibility of different mechanisms of action behind the anti-

obesity potential of these two different fermentable carbohydrates.

The peripheral changes produced due to inulin supplementation

in diet were reflected in brainstem but it did not produce satiated

state in mice as compared to HFD-BG. A further explanation may

lie in the differences in viscosity and solubility of two different

fermentable carbohydrates. Whereas inulin is highly soluble, beta-

glucan forms a viscous solution in water. It has been reported that

viscosity better explains reduction in energy intake as compared to

solubility and fermentability of fibers [38].

Increased expression of the anorectic gut hormones GLP-1 and

PYY mRNA in the colon and increased portal GLP-1 concentra-

tions in fermentable carbohydrate fed rodents have been reported

previously [7,39,40]. The effect was attributed to the increased level

of SCFAs in these studies. However, despite higher concentration of

SCFA in the feces of both the inulin and b-glucan groups, we found

no significant differences for PYY levels as well as colonic expression

between the groups, due to limited tissue and plasma we were

unable to measure GLP-1. We suggest that our observations link

with a potential role of SCFA impacting on peripheral metabolism

rather than colonic anorectic gut hormones.

SCFA have been shown to have direct metabolic effects on

adipocytes through the SCFA receptor FFAR2 (Free Fatty Acid

Receptor 2) causing a reduction of FFA output in adipocytes [41].

The SCFA receptor FFAR3 (Free Fatty Acid Receptor 3) has been

shown to be expressed in sympathetic nervous system ganglia [42]

and its stimulation increases energy expenditure. In the present

study, total SCFA content was highest in HFD-BG followed by

HFD-I as compared to HFD-C. Therefore, it is possible to speculate

that different levels and patterns of SCFAs produced may cause

differential activation of FFAR2 and FFAR3 in adipose tissue and

appetite centers in brain, respectively, leading to the different effects

of inulin and b-glucan observed in the present study.

In conclusion, this study supports the work of others and

demonstrates that dietary supplementation of inulin or b-glucan

limits weight gain in high-fat fed animals, however, it highlights

the multiple mechanisms involved to explain these observations. b-

glucan supplementation appears to have a greater impact on

energy intake than inulin despite both groups ending at the similar

weight reduction. Supplementation of both compounds caused

energy loss in the feces, a positive change in the microbiota, with

no change in colonic PYY content. Inulin appears to have a

greater effect on limiting total adipose tissue content and adipocyte

size, whereas b-glucan affected appetite regulation by suppressing

neuronal activation in the hypothalamic nuclei implicated in the

appetite high fat control. The study highlighted the multi-factorial

nature of these molecules on energy homeostasis. Understanding

of the different mechanisms involved may open up new strategies

for nutritionally targeting obesity.
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