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We investigate the multiple use of a ferromagnetic spin chain for quantum and classical communications
without resetting. We find that the memory of the state transmitted during the first use makes the spin chain a
qualitatively different quantum channel during the second transmission, for which we find the relevant Kraus
operators. We propose a parameter to quantify the amount of memory in the channel and find that it influences
the quality of the channel, as reflected through fidelity and entanglement transmissible during the second use.
For certain evolution times, the memory allows the channel to exceed the memoryless classical capacity
�achieved by separable inputs� and in some cases it can also enhance the quantum capacity.

DOI: 10.1103/PhysRevA.77.050306 PACS number�s�: 03.67.Hk, 03.65.Ud

Recently, spin chains have been proposed as potential
channels for short distance quantum communications �see,
for example, Refs. �1,2��. The basic idea is to simply place
the state to be transmitted at one end of a spin chain initially
in its ground state, allow it to propagate for a specific amount
of time, and then receive it at the other end. Generically,
while propagating, the information will also inevitably dis-
perse in the chain, and even when a transmission is consid-
ered complete �i.e., the state is considered to have been re-
ceived with some fidelity/probability�, some information of
the state lingers in the channel. It is thus assumed that a reset
of the spin chain to its ground state is made after each trans-
mission �3�. If, on the other hand, a second transmission is
performed through the channel without resetting, then the
memory of the first transmission should affect the second
transmission. A spin chain channel without resetting is thus
an interesting physical model of a channel with memory �4�.

In this paper, we show that a ferromagnetic spin chain
used without resetting is a very different channel than those
studied so far in the extensive literature of quantum channels
with memory �4–17� . Firstly, the channels usually studied
are those with the noise during multiple uses being correlated
with each other �5–11�, but being independent of the trans-
ferred states. In our model, however, the state transmitted
during the first use modifies the type of noise during the
second use. Secondly, the noise is most often assumed as
Markovian correlated �5–10�, while this is not the case for
us. Thirdly, and most importantly, the channel noises in our
case stem from a physical model described by a Hamil-
tonian. This should stimulate activity in calculating its ca-
pacities. To this end, we also introduce a memory parameter
to quantify the amount of memory. This parameter depends
on the distance between the Kraus operators of the second
use of the channel with and without memory, so this method
can be used to quantify the amount of memory for those
channels that admit a description in terms of separate Kraus
operators on different uses.

There is also a very important practical issue which mo-
tivates our work. The standard way of resetting the chain
requires its interaction with a zero temperature environment
�18� and this may open up unnecessary avenues for decoher-
ence. Thus one either resets actively by performing a cooling

sequence at the chain ends �2� or uses it several times with-
out resetting which automatically raises the question of the
effect of memory of one transmission on a subsequent trans-
mission. Multiple usage of a chain of two spins has been
studied in �19� to compute the rate of information transmis-
sion, but using the swap operators on both spins, a chain of
length N=2 removes the memory effects. We will compare
and contrast our results for the ferromagnetic channel with-
out resetting with some results that have emerged in the re-
cent literature �4–17�.

Let us consider a communication system like that of Fig.
1�a� which has a set of sender and receiver registers to store
the quantum input and output states respectively and a ferro-
magnetic open spin chain as a quantum channel. The regis-
ters are isolated from the channel, and the Hamiltonian Hch
of the chain commutes with Sz �total spin in the z direction�
so the number of the excitations in the channel is preserved
through the dynamics. Specifically we are going to consider
a Heisenberg chain with N spins coupled by the Hamiltonian
Hch=−J�i=1

N−1�i ·�i+1−B�i=1
N �i

z where J and B are the cou-
pling and magnetic field, respectively, and �i= ��i

x ,�i
y ,�i

z� is
the vector of Pauli operators at site i. To transfer a quantum
state from the register Sk �we will restrict our attention to two
uses of the channel, so k=1,2� to the register Rk we put the
state in the channel by applying a swap operator PS�k�which
exchanges the state of the register Sk and the first spin of the
channel PS�k� ����Sk,1= ����Sk,1, then we leave the spin chain
to evolve for time �k and finally the transmission is com-
pleted by applying another swap operator PR�k� which ex-
changes the state of site N with the register Rk. The total
operator to transfer the quantum state from the sender regis-
ter Sk to the receiver register Rk is W�k�= PR�k�U��k�PS�k�.

FIG. 1. �Color online� Communication setup includes the sender
and receiver registers in both sides of the spin chain. �a� Setup for
state transfer and the classical capacity problem. �b� Setup for en-
tanglement distribution and the quantum capacity problem.

PHYSICAL REVIEW A 77, 050306�R� �2008�

RAPID COMMUNICATIONS

1050-2947/2008/77�5�/050306�4� ©2008 The American Physical Society050306-1

http://dx.doi.org/10.1103/PhysRevA.77.050306


The initial state of the system is ��0�
=�S�0� � �ch�0� � �R�0�, where �S�0� is an arbitrary initial
density matrix of the sender registers, �ch�0�= ��GS���GS� is
the ground state of the chain and �R�0� contains all receiver
register spins in the states �0�. In the numerical analysis for
this paper we have used N=4. In fact, for N=2 the opera-
tions PS and PR exclude any memory effects �19� while for
N=3 the quality of transmission is low �1�.

After the first transmission the total state is ��1�
=W�1���0�W†�1� which is the case studied in �1�. The re-
ceived state in the register R1 is �R1

�1�=�i=1
N+1Mi�S1

�0�Mi
†,

where Mi’s are the following operators:

Mm = 	0 fm1��1�
0 0


, MN = 	1 0

0 fN1��1�

 , �1�

with the index m going from 1 to N−1. In the above equa-
tion, fm1��1�= �m �U��1� �1�, where �m� represents one flipped
spin �1� in site m of the channel and all the other spins in �0�.
The operator MN+1 is a zero matrix which is included here
for comparison with the memory case later on. The effect of
the operators Mm �m=1, . . . ,N−1� can be combined into one
operator, to show that the chain acts as an amplitude damp-
ing channel �1�. Except the case of perfect transfer, some
information of the first state remains in the state of the chan-
nel and the effect of channel is no longer described by the
Kraus operators �1�. We assume that in the first transmission
the state of the sender register S1 is a general pure state
r �0�+ei��1−r2 �1�, but it is easy to generalize the results to
mixed input states. After the first transmission the state of the
channel can be calculated by tracing out the state of the
registers from ��1�. We obtain

�ch�1� = p0�0��0� + p1��1���1� , �2�

where

p0 = �1 − r2��fN1��1��2, p1 = 1 − p0,

��1� =
1

�p1
	r�0� + �1 − r2ei��

n=1

N−1

fn1��1��n�
 . �3�

The state �2� shows that with probability p0 the channel is in
the state �0� and acts like an amplitude damping channel but
there are some corrections with probability p1 due to the
state ��1�. To find the Kraus operators of the channel with the
state ��1� one can consider a general density matrix in S2
where the channel is in the state ��1�. By applying the op-
erator W�2� on the state of whole system, the state of the
register S2 is transferred to the register R2 �albeit with a
certain fidelity�, so the Kraus operators can be easily derived.
We will write down the Kraus operators in a certain way �for
simplicity and interpretation�, though ours may not be the
only way to write the Kraus operators for the channel. Two
of the Kraus operators of the channel with the initial state
��1� are as in �1� multiplied by the coefficient
�1−r2 / p1 � f11��1��2and the others are some matrices that we
shall soon introduce. Thus we can describe the effect of the
channel with initial state ��1� as a probabilistic effect, which
means that with probability q= 1−r2 / p1 � f11��1��2 the chan-
nel affects the inputs like an amplitude damping channel

with Kraus operators �1� and with the probability �1−q� the
effect of the channel is specified by the following Kraus
operators:

Mm� =
1

�p1 − p1q
	Am

�1 − r2ei� fm1��2�r

0 BmN
�1 − r2ei�
 ,

MN� =
1

�p1 − p1q
	 r 0

AN
�1 − r2ei� rfN1��2� 
 ,

MN+1� =
1

�p1 − p1q
	0 �1 − r2ei���

k1k2

��Bk1k2
�2

0 0

 , �4�

where the index m goes from 1 to N−1, �k1k2
�

=�k1=1
N−1 �k2=k1+1

N−1 and Am=�n=2
N−1fmn��2�fn1��1�. Bk1k2

=�n=2
N−1fk1k2,Nn��2�fn1��1� is the two excitation amplitude tran-

sition with fpq,nm= �pq �e−iHt �nm�, and �nm� means all the
spins of the channel are in �0� except the sites n and m.
Notice that Bk1k2

includes physical interaction �scattering� be-
tween the first and second state.

In order to get a complete description of the channel for
the second use we know that with probability p0 the state of
the channel is �0� �the spin chain is an amplitude damping
channel� and with probability p1q the state of the chain is
��1� but acts as an amplitude damping channel. Thus with
total probability p0+ p1q the spin chain is an amplitude
damping channel, otherwise with the probability p1�1−q� the
channel is in the state ��1� and its effect is specified by the
Kraus operators �4�. Therefore, we have

�R2
�2� = �p0 + p1q��AD„�S2

�0�… + �p1 − p1q��Mem„�S2
�0�… ,

�5�

where �AD is the amplitude damping evolution �1� and �Mem
is the evolution with Kraus operators �4�.

If we consider the memory as a deviation of the channel
effect from the memoryless case, then to find a distance be-
tween the two evolutions we can consider the distance be-
tween the Kraus operators in the two cases. Thus, to quantify
this deviation, the following memory parameter is suggested:

	 = �p1 − p1q�tr��
m=1

N+1

�Mm� − Mm�†�Mm� − Mm�
 . �6�

Notice that we have multiplied the summation of the dis-
tances in Eq. �6� by p1− p1q which is the probability that this
evolution takes place. By substituting the exact form of the
operators in �6� for the case �1=�2=�, we arrive at

	/2 = �1 − r2��1 − �f11�2 − �fN1�2� + �r − �p1 − p1q�2. �7�

It is clear that the memory parameter is dependent on the first
input of the chain as well as the channel parameter �1. The
largest deviation from the memoryless case is given for r
=0, corresponding to the transmission of �1� on the first use.
In this case the maximum of 	 is 4�1− �fN1�2− �f11�2�. For
�fN1��1� � =1 we have perfect transfer, and for �f11��1� � =1 the
first state is swapped out by the sender into S2.
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To compare the quality of transmission we can compare
the average fidelities. The average fidelity in the kth use of
the channel is Fav�k�=�F�k�d
, where F�k�
=tr��Sk

�0��Rk
�k�� is the fidelity of the kth transmission and

the integration performed over the surface of the Bloch
sphere for all pure input states �Sk

�0�. The total description of
the channel in the second use, Eq. �5� helps to compute the
average fidelity for the second transmission. It is easy to
show that

Fav�2� = �p0 + p1q�Fav�1� +
1 − r2

6 �
m=1

N−1

2 Re�AmB
mN
* �

−
�1 − r2��AN�2

6
+

2�1 − r2�
3

�1 − �f11�2 − �fN1�2� ,

�8�

where Fav�1�= 1
2 +

fN1+fN1*

6
+

�fN1�2

6 is the average fidelity for
memoryless case, and we have used the identity that
�m=1

N �Am�2=�k1=1
N−1 �k2=k1+1

N �Bk1k2
�2=1− �fN1��1��2− �f11��1��2 to

simplify the final result. In Fig, 2�a� the average fidelities for
the second use of the channel has been plotted for equal time
evolutions �1=�2=� �setting J=1�. In this figure the average
fidelity for the memoryless case has been compared with the
case where the state �1� has been transferred in the first use
and with the case of average inputs in the first transmission.
When the average fidelity of the first transmission has a
peak, which means almost perfect transmission, the next
transmission is also good. In non-optimal times when the
first transmission is not good the memory effect can improve
the quality of transmission. In Fig. 2�b� the parameter 1
−	 /4 �we have used this parameter instead of 	 just for
simplicity� and the average fidelity for the second transmis-
sion after sending the state �1� in the first use, have been
plotted together. When 1−	 /4 take its minimum it means
that the amount of the memory in the channel is high, so the
average fidelity in the second transmission has a low value
because the state of the channel is highly mixed and there is
information from the previous transmission in it. In the other

case when the parameter 1−	 /4 has a peak it means that
after the first transmission the channel has been nearly reset
to the initial ground state. But in this case the average fidelity
for the second transmission is not necessarily high because
the average fidelity also depends from the time evolution �.
For example, in Fig. 2�b� for ��4.6, the memory has a low
value but the average fidelity is not high because of the non-
optimal �. In this non-optimal time, �f11� has a large value,
which means that the information is packed in the first spin
and swapped out to the sender register, so the chain reset to
its ground state. The same happens for the second transmis-
sion, so that the average fidelity is low.

Another problem that can be compared for different uses
of the channel is the entanglement distribution. In this case
the sender registers are a set of pair registers like Fig. 1�b�.
Dual registers Sk�Sk �k=1,2� contain a maximally entangled
state. In the first transmission the state S1 is transferred to the
register R1 to create an entangled pair �not necessarily maxi-
mal� between S1�R1. In the second transmission, without re-
setting the chain, the state of S2 is transferred to the register
R2 to create the entanglement between S2�R2. In Fig. 2�c� the
concurrence as a measure of entanglement �20� for the states
�S1�R1

�memoryless� and �s2�R2
�memory case� has been plot-

ted. It shows that the effect of memory is always destructive.
The peaks of entanglement are located at times where nearly
perfect transmission happens.

Let us now discuss the dependence of the fidelity on 	.
As shown above the quality of state transmission in the sec-
ond use of the channel depends on the time evolution �1 as
well. We chose a range of 3.3��1�3.9 such that the
memory parameter is increasing for the case that the state �1�
is transferred in the first use. For each value of �1 we have
compared the maximum average fidelity in a long range of
�2. In Fig. 3 we have plotted this maximum value of the
average fidelity F

av
* in the second transmission versus 	. Fig.

3 is very interesting because it shows that the average fidelity
is decreasing when 	 is increased. This shows that the re-
maining probability amplitude in the chain has a destructive
effect on the quality of transfer in the second use of the
chain.

Finally we investigate whether the memory effect �taking
equal evolution times �1=�2=� for simplicity� can enhance
either the quantum capacity or the single-shot classical ca-
pacity which are both known for the memoryless �amplitude
damping� channel �3�. As we will show below, such enhance-
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FIG. 2. �Color online� As a function of evolution time �: �a�
Average fidelity in the second use for memoryless channel in com-
parison with the memory case when the state �1� is transferred and
also with average pure input states in the first use. �b� The average
fidelity for the second use and the parameter 1−	 /4 after transfer-
ring the state �1�. �c� The entanglement distribution for both the
memory and memoryless channel.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.9

0.91

0.92

0.93

0.94

0.95

0.96

∆ /4

F
max
*
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ment is indeed possible, and can be demonstrated even with-
out explicitly calculating the capacities. We compare the
Holevo bound for a special equiprobable bipartite input
states in memory channel with the classical capacity of sepa-
rable input states in memoryless channels �3�. Assume that
all the four possible equiprobable classical input data are
encoded into a special kind of input states,

��1���� = cos �� + + � + sin ��− − �

��2���� = sin �� + + � − cos ��− − �

��3���� = cos �� + − � + sin ��− + �

��4���� = sin �� + − � − cos ��− + � , �9�

where �
 �= ��0�
 �1�� /�2 and all these sates vary from
separable states ��=0� to the maximally entangled one ��
=� /4�. In Fig. 1�a� one can prepare any of states ��i� in
registers S1 and S2, and by applying the operator W�2�W�1�
this state is received as the state �i in registers R1 and R2.
The Holevo bound for input states �9� per use is C�� ,��
= 1 / 2 �S��i=1

4 pi�i�−�i=1
4 piS��i��, where pi=1 /4 and S���

=−tr � ln �is the von Neumann entropy of the state �. To
find the optimal input states one can maximize C�� ,�� over
the parameter �. Surprisingly, the maximum Cmax���
=max�C�� ,�� is always achieved by separable states ��=0�.
In Fig. 4�a� we have plotted the Cmax��� and also the real
capacity of memoryless channel with separable input states
�3� in terms of �. The memory helps to increase the classical
capacity in non-optimal times. These results for memory spin
chain are analogous to those of memory dephasing channel
�17�.

The coherent information as a lower bound for quantum
capacity is I=S(����)−S(I � ������� � �), where � is the input
and ��� is a purification of �. In Fig. 1�b� consider two maxi-
mally entangled states in registers S1�S1 and S2�S2 so the states
of unprimed sender registers are �S1,S2

= I /2 � I /2. These two
states are transferred through the chain by W�2�W�1� and we
can consider two maximally entangled states in registers
S1�S1 and S2�S2 as a purification of transferred states. In Fig.

4�b� we compare the quantum capacity of �3� with the coher-
ent information per use in our model. From the figure we see
that though the effect is small, there are certain memory
channels �i.e., certain �� for which even a lower bound to the
true quantum capacity exceeds the memoryless quantum ca-
pacity.

In conclusion, we have given a characterization of the
behavior of a spin chain without resetting. It provides an
interesting example of a quantum memory channel, where
the memory of the state transmitted during the first use pro-
duces a qualitatively different channel in the second use.

We have found the relevant Kraus operators for this
model and we have introduced a parameter to quantify the
amount of memory in the channel which has broader appli-
cability even outside the domain of spin chain channels. We
have shown that the memory effect can enable one to exceed
the known classical capacity for separable inputs and the
quantum capacity of the memoryless channel. Our study
might pave the way for the computation of the full capacities
of such a spin chain channel with memory, which will in-
volve joint encodings and a number of uses of the channel in
succession.
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