
LAST REVISED June 2, 2005

A Proof-Producing Hardware Compiler

for a Subset of Higher Order Logic

Mike Gordon, Juliano Iyoda Scott Owens, Konrad Slind

University of Cambridge University of Utah
Computer Laboratory School of Computing

William Gates Building 50 South Central Campus Drive
JJ Thomson Avenue Salt Lake City

Cambridge CB3 0FD, UK Utah UT84112, USA

(authors listed in alphabetical order)

Abstract. Higher order logic (HOL) is a modelling language suitable for
specifying behaviour at many levels of abstraction. We describe a com-
piler from a ‘synthesisable subset’ of HOL function definitions to correct-
by-construction clocked synchronous hardware. The compiler works by
theorem proving in the HOL4 system and goes through several phases,
each deductively refining the specification to a more concrete form, until
a representation that corresponds to hardware is deduced. It also pro-
duces a proof that the generated hardware implements the HOL func-
tions constituting the specification. Synthesised designs can be translated
to Verilog HDL, simulated and then input to standard design automa-
tion tools. Users can modify the theorem proving scripts that perform
compilation. A simple example is adding rewrites for peephole optimi-
sation, but all the theorem-proving infrastructure in HOL4 is available
for tuning the compilation. Users can also extend the synthesisable sub-
set. For example, the core system can only compile tail-recursions, but
a ‘third-party’ tool linRec is being developed to automatically generate
tail recursive definitions to implement linear recursions, thereby extend-
ing the synthesisable subset of HOL to include linear recursion.

1 Introduction

In the HOL4 proof system for higher order logic, a function f satisfying an
equation f(x) = e, which may be recursive, is defined by executing:

Define ‘f(x) = e‘

We describe an extension to Define, called cirDefine, that generates hardware
implementations for a ‘synthesisable subset’ of higher order logic. Executing:

cirDefine ‘f(x) = e‘

first defines f (i.e. invokes Define) and then automatically generates an imple-
mentation of f as a circuit suitable for executing in hardware.

The synthesised circuit is generated by proof and is thus correct by construc-
tion. A correctness theorem is proved by cirDefine for each circuit generated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/18530022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our system is implemented in HOL4, but the ideas could be realised in other
programmable proof systems.

In the next section we walk through a pedagogical example to illustrate
the flow from higher order logic to Verilog HDL. We then outline how the proof-
producing compiler works. It is a specialised theorem prover and we describe how
deductions are used to generate hardware, and the sense in which synthesised
circuits implement higher order logic functions. Next we discuss related work.
Finally we outline future plans. An appendix contains technical details, including
the formal description of the constructors used to build circuits and the four-
phase handshake protocol that they implement.

2 Compiling higher order logic definitions to circuits

Let’s dive in: cirDefine is an extension of HOL4’s standard command Define

for defining functions. Before using cirDefine one needs to load appropriate
modules and start a new theory in which to store definitions and theorems.
Assume this is done, and also assume that the word32 library [6] is loaded, so
that arithmetic operations like + and - default to 32-bit versions. Numerals like
0w and 1w denote the appropriate 32-bit word values, and w2n:word32->num

converts a 32-bit word to a natural number. The HOL4 top level is Standard
ML (SML); consider the following declaration:
- val (Mult32Iter_def,Mult32Iter_ind,Mult32Iter_cir) =

cirDefine
‘(Mult32Iter(m,n,acc) = if m = 0w then (0w,n,acc) else Mult32Iter(m-1w,n,n+acc))

measuring (w2n o FST)‘;

The right hand side of the declaration applies the SML function cirDefine to
an argument of the form ‘equation measuring measure-function‘. The term
equation is a recursive definition of a function Mult32Iter that takes a triple
of 32-words and returns another triple of the same type. The measure function1

w2n o FST maps a triple of 32-bit words to the natural number denoted by the
first member of the triple (it is used to show termination).

The result of cirDefine is a triple of theorems in higher order logic. The first
component of the triple, which is bound to Mult32Iter def in the declaration
above, is the theorem resulting from applying the HOL4 function definition tool
(Define), using the measure function to aid proof of termination. A side effect of
this definition is to define Mult32Iter as a constant and prove the appropriate
‘definitional’ theorem, which is the theorem returned. Thus the first output from
the input shown above would be:
> val Mult32Iter_def =

|- Mult32Iter(m,n,acc) = (if m = 0w then (0w,n,acc) else Mult32Iter(m-1w,n,n+acc))

The second output is a theorem that is bound to Mult32Iter ind. This is
a custom induction principle for the constant Mult32Iter that can be used for
proofs about it. We show this for completeness, but we do not discuss any proofs.

val Mult32Iter_ind =
|- ∀P. (∀m n acc. (¬(m = 0w) ==> P(m-1w,n,n+acc)) ==> P(m,n,acc)) ==> ∀v v1 v2. P(v,v1,v2)

1 Measure functions are not always necessary as they can be inferred using heuristics
by the termination prover. We expect future releases of the compiler to figure out
the measure function automatically for simple recursions like the one here.

The final component of the triple of theorems returned by cirDefine is the
result of compiling the definition of Mult32Iter to a circuit. We show this now,
and then follow it by some explanation.

val Mult32Iter_cir =
|- InfRise clk

==>
(∃ v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34

v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50
v51 v52 v53 v54 v55 v56 v57.

DtypeT (clk,load,v21) ∧ NOT (v21,v20) ∧ AND (v20,load,v19) ∧

Dtype (clk,done,v18) ∧ AND (v19,v18,v17) ∧ OR (v17,v16,v11) ∧

DtypeT (clk,v15,v23) ∧ NOT (v23,v22) ∧ AND (v22,v15,v16) ∧

MUX (v16,v14,inp1,v3) ∧ MUX (v16,v13,inp2,v2) ∧

MUX (v16,v12,inp3,v1) ∧ DtypeT (clk,v11,v26) ∧ NOT (v26,v25) ∧

AND (v25,v11,v24) ∧ MUX (v24,v3,v27,v10) ∧

Dtype (clk,v10,v27) ∧ DtypeT (clk,v11,v30) ∧ NOT (v30,v29) ∧

AND (v29,v11,v28) ∧ MUX (v28,v2,v31,v9) ∧ Dtype (clk,v9,v31) ∧

DtypeT (clk,v11,v34) ∧ NOT (v34,v33) ∧ AND (v33,v11,v32) ∧

MUX (v32,v1,v35,v8) ∧ Dtype (clk,v8,v35) ∧

DtypeT (clk,v11,v39) ∧ NOT (v39,v38) ∧ AND (v38,v11,v37) ∧

NOT (v37,v7) ∧ CONSTANT 0w v40 ∧ EQ32 (v3,v40,v36) ∧

Dtype (clk,v36,v6) ∧ DtypeT (clk,v7,v44) ∧ NOT (v44,v43) ∧

AND (v43,v7,v42) ∧ AND (v42,v6,v5) ∧ NOT (v6,v41) ∧

AND (v41,v42,v4) ∧ DtypeT (clk,v5,v48) ∧ NOT (v48,v47) ∧

AND (v47,v5,v46) ∧ NOT (v46,v0) ∧ CONSTANT 0w v45 ∧

Dtype (clk,v45,out1) ∧ Dtype (clk,v9,out2) ∧

Dtype (clk,v8,out3) ∧ DtypeT (clk,v4,v53) ∧ NOT (v53,v52) ∧

AND (v52,v4,v51) ∧ NOT (v51,v15) ∧ CONSTANT 1w v54 ∧

SUB32 (v10,v54,v50) ∧ ADD32 (v9,v8,v49) ∧ Dtype (clk,v50,v14) ∧

Dtype (clk,v9,v13) ∧ Dtype (clk,v49,v12) ∧

Dtype (clk,v15,v56) ∧ AND (v15,v56,v55) ∧ AND (v0,v7,v57) ∧

AND (v57,v55,done))
==>

DEV Mult32Iter
(load at clk, (inp1<>inp2<>inp3) at clk, done at clk, (out1<>out2<>out3) at clk)

This theorem, which is bound to the ML name Mult32Iter cir, has the form:

|- InfRise clk ==> circuit ==> device specification

The variable clk represents the clock and is modelled by a function from time
(natural numbers) to clock values (Booleans). The term InfRise clk asserts
that clock has an infinite number of rising edges. This is a standard precondition
for temporal abstraction [10] and is needed because of the use of the at-operator
(explained below) in the device specification.

The circuit is a standard representation as a conjunction of component in-
stances with internal lines existentially quantified (ibid). The components used
here are described in Section 2.1. Circuits in this form are the lowest level of
formal representation we generate. However they are easily converted to HDL
and then simulated or input to other tools. We have written a ‘pretty-printer’
that generates Verilog HDL and have used several simulators and the Quartus
II FPGA synthesis tool to run examples (including Mult32Iter) on FPGAs.

The device specification uses a HOL predicate DEV that specifies how a HOL
function f is computed using a four-phase handshake. The general form is:

DEV f (load at clk, inp at clk, done at clk, out at clk)

where a term of the form σ at clk denotes the signal consisting of the sequence
of values of σ at successive rising edges of clk. This is a standard operation of

temporal abstraction (sometimes called clock projection and denoted by σ@clk).
Temporal abstraction (projection) converts a signal σ representing the behavior
of a wire (or bundle of wires) at the clocked circuit level to a signal σ at clk

representing the behavior at the ‘cycle level’ – i.e. to an abstracted signal in
which successive values represent the values during successive stable states of
the circuit. The predicate DEV relates the values of signals at the abstracted
level. A term DEV f (load,inp,done,out) specifies a handshaking device com-
puting f where the signals load, inp, done and out are the handshake request
line, the data input bus, the handshake acknowledge line and data output bus,
respectively.

DEV f
done

out

load

inp

The behavior of such a handshaking device is formalised in the HOL definition
of DEV, which says that if a value v is input on inp when a request is made
on load then eventually f(v) will be output on out, and when this occurs T

is signalled on done. A formal specification of the handshake protocol is given
in the Appendix. At the start of a transaction (say at time t) the device must
be outputting T on done (to indicate it is ready) and the environment must be
asserting F on load, i.e. in a state such that a positive edge on load can be
generated. A transaction is initiated by asserting (at time t+1) the value T on
load, i.e. load has a positive edge at time t+1. This causes the device to read
the value, v say, being input on inp (at time t+1) and to set done to F. The
device then becomes insensitive to inputs until T is next asserted on done, at
which time (say time t′ > t+1) the value f(v) computed will be output on out.
In the implementation generated by our compiler, load, inp, done and out are
only sampled on rising edges of a clock clk, hence the behavior is specified by:

DEV f (load at clk, inp at clk, done at clk, out at clk).
In Mult32Iter cir, the lines inp and out carry triples of 32-bit words, which

are represented by inp1<>inp2<>inp3and out1<>out2<>out3where inp1, inp2,
inp3, out1, out2, out3 are 32-bit busses and <> denotes word concatenation.

If we simulate our implementation of Mult32Iter with inputs (5, 7, 0) using
the Icarus Verilog simulator (http://www.icarus.com) and view the result with
the GTKWave waveform viewer (http://home.nc.rr.com/gtkwave), the result is:

Main.clk

Main.done

Main.inp1[31:0]

Main.inp2[31:0]

Main.inp3[31:0]

Main.load

Main.out1[31:0]

Main.out2[31:0]

Main.out3[31:0]

0 s 100 s 145 s

0 5

0 7

0 0

0

0 7

0 7 14 21 28 35

load is asserted at time 15 and done is T then, but done immediately drops to
F in response to load being asserted. At the same time as load is asserted the

values 5, 7 and 0 are put on lines inp1, inp2 and inp3, respectively. At time
135 done rises to T again, and by then the values on out1, out2 and out3 are 0,
7 and 35, respectively, thus Mult32Iter(5,7,0) = (0,7,35), which is correct.

2.1 Primitive components

The compiler generates circuits using components from a predefined library,
which can be changed to correspond to the targeted technology (the default
target is Altera FPGAs synthesised using Quartus II).

The components used in Mult32Iter cir are NOT, AND, OR (logic gates), EQ32
(32-bit equality test), MUX (multiplexer), DtypeT (Boolean D-type register that
powers up into an initial state storing the value T), Dtype (D-type register with
unspecified initial state), CONSTANT (read-only register with a predefined value:
0w or 1w are used in Mult32Iter cir), ADD32 (32-bit adder) and 32-bit SUB32

(32-bit subtractor). Each of these components is defined in a standard style
(ibid) in higher order logic. For example, NOT is defined by:

NOT(inp,out) = ∀t. out(t) = ¬inp(t)

and the corresponding Verilog module definition that the compiler generates is
// Verilog module implementing HOL unary operator
// $~ :bool -> bool

//
// Automatically generated definition of NOT

module NOT (inp,out);
parameter inpsize = 0;

parameter outsize = 0;
input [inpsize:0] inp;
output [outsize:0] out;

assign out = ! inp;

endmodule

An instance of a NOT-gate occurring in Mult32Iter cir is NOT(v51,v15), which
is ‘pretty-printed’ as a module instance with unique name NOT 12:

/* NOT ((v51 :num -> bool),(v15 :num -> bool)) */
NOT NOT_12 (v51,v15);

defparam NOT_12.inpsize = 0;

defparam NOT_12.outsize = 0;

Notice that comments are automatically generated in the Verilog showing the
corresponding HOL source. This is so that manual inspection can be used to
check that the Verilog is correct (a formal check is impossible, as there is no
formal semantics of Verilog).

NOT is typical of all the combinational components. The two sequential com-
ponents, Dtype and DtypeT, are registers that are triggered on the rising edge
(posedge) of a clock and their definitions use the predicate Rise defined by:

Rise s t = ¬s(t) ∧ s(t+1)

and then Dtype and DtypeT are defined by:

Dtype (clk, d, q) = ∀t. q(t+1) = if Rise clk t then d t else q t

DtypeT(clk, d, q) = (q 0 = T) ∧ Dtype(clk, d, q)

which are coded in Verilog as:

// Positive edge triggered Dtype register

// Dtype(clk,d,q) = !t. q(t+1) = if Rise clk t then d t else q t
module Dtype (clk,d,q);

parameter size = 31;
input clk;
input [size:0] d;

output [size:0] q;
reg [size:0] q;

initial q = 0;

always @(posedge clk) q <= d;

endmodule

// Boolean positive edge triggered flip-flop starting in state 1
// DtypeT(clk,d,q) = (q 0 = T) /\ Dtype(clk,d,q)
module DtypeT (clk,d,q);

input clk,d;
output q;

reg q;

initial q = 1;

always @(posedge clk) q <= d;

endmodule

The reason for initial q = 0 in the definition of the Dtype module is explained
in Section 7. Since our proofs are valid for any initial value of q, the Verilog
module Dtype is a valid implementation of the model in higher order logic.

Terms Dtype(clk,v50,v14) and DtypeT(clk,v4,v53) in Mult32Iter cir

generate named instances of these modules:

/* Dtype ((clk :num -> bool),(v50 :num -> word32),(v14 :num -> word32)) */

Dtype Dtype_8 (clk,v50,v14);
defparam Dtype_8.size = 31;

/* DtypeT ((clk :num -> bool),(v4 :num -> bool),(v53 :num -> bool)) */
DtypeT DtypeT_8 (clk,v4,v53);

The automatically generated comments show the HOL source, to aid checking
that the Verilog is correct.

2.2 Compiled components

After compiling Mult32Iter, its implementation is added to the library of com-
ponents, so one can use it in subsequent compilations. For example, a multiplier
using Mult32Iter could be defined by:

(***)

(* Create an implementation of a multiplier from Mult32Iter *)
(***)

val (Mult32,_,Mult32_cir) =
cirDefine
‘Mult32(m,n) = SND(SND(Mult32Iter(m,n,0w)))‘;

where SND(SND(m,n,acc)) evaluates to acc. The compiler finds hardware im-
plementing Mult32Iter in the component library and uses that to generate an
implementation of Mult32 (abbreviated to Mult32Circuit below):

|- InfRise clk
==> Mult32Circuit

==> DEV Mult32 (load at clk, (inp1<>inp2) at clk, done at clk, out at clk)

Mult32 is then added to the component library and can be used in subsequent
compilations, for example:

(***)
(* Implement iterative function as a step to implementing factorial *)

(***)
val (Fact32Iter,Fact32Iter_ind,Fact32Iter_cir) =
cirDefine

‘(Fact32Iter(n,acc) =
if n = 0w then (n,acc) else Fact32Iter(n-1w, Mult32(n,acc)))

measuring (w2n o FST)‘;

(***)
(* Implement a function Fact32 to compute SND(Fact32Iter (n,1)) *)
(***)

val (Fact32,_,Fact32_cir) =
cirDefine

‘Fact32 n = SND(Fact32Iter (n,1w))‘;

This generates a circuit Fact32Circuit to compute the factorial function:
|- InfRise clk

==> Fact32Circuit

==> DEV Fact32 (load at clk, inp at clk, done at clk, out at clk)

The example waveform below shows that if 4 is input then 24 (i.e. 4!) is being
output on Main.out when Main.done next goes high.

Main.clk = 1

Main.done = 1

Main.inp[31:0]= 4

Main.load = 0

Main.out[31:0]= 24

0 s 100 s 200 s 300 s 395 s

0 4

0 1 4 12 24

The 32-bit registers will overflow if one attempts to compute the factorial of
n where n > 12. One can prove in HOL that:

` ∀n. (FACT n < 232) ==> (FACT n = w2n(Fact32(n2w n)))

FACT is the factorial function on natural numbers and the value of n2w n is the
32-bit word representing n mod 32. We have downloaded the Verilog version of
Fact32Circuit onto an FPGA using Quartus II and verified that the factorial
function is computed for n ≤ 12, and that the expected wrap-around values are
computed for n > 12.

3 How the compiler works

The compiler implements functions f where f : σ1 × · · · × σm → τ1 × · · · × τn

and σ1, . . . , σm, τ1, . . . , τn are the types of values that can be carried on busses
(e.g. n-bit words). The starting point of compilation is the definition of such a
function f by an equation of the form: f(x1, . . . , xn) = e, where any recursive
calls of f in e must be tail-recursive. Applying cirDefine to such a definition (if
necessary with a measure function to aid proof of termination) will first define
f in higher order logic (using TFL [16]) and then prove a theorem:

|- InfRise clk

==> circuitf
==> DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

where inputs will be inp1<>· · ·<>inpm, outputs will be out1<>· · ·<>outn (with
the type of inpi matching σi and the type of outj matching τj) and circuitf

will be a HOL term representing a circuit with inputs clk, load, inp1, . . ., inpm
and outputs done, out1, . . ., outn.

The first step (Step 1) in compiling f(x1, . . . , xn) = e encodes e as an ap-
plicative expression, ec say, built from the operators Seq (compute in sequence),
Par (compute in parallel), Ite (if-then-else) and Rec (recursion), defined by:

Seq f1 f2 = λx. f2(f1 x)
Par f1 f2 = λx. (f1 x, f2 x)
Ite f1 f2 f3 = λx. if f1 x then f2 x else f3 x

Rec f1 f2 f3 = λx. if f1 x then f2 x else Rec f1 f2 f3 (f3 x)

The encoding into an applicative expression built out of Seq, Par, Ite and
Rec is performed by a proof script and results in a theorem ` (λ(x1, . . . , xn). e) = ec,
and hence ` f = ec. The algorithm used is straightforward and is not described
here. As an example, the proof script deduces from:

` FactIter(n, acc) = (if n = 0 then (n, acc) else FactIter(n−1, n×acc))

the theorem:

` FactIter =
Rec (Seq (Par (λ(n, acc). n) (λ(n, acc). 0)) (=))

(Par (λ(n, acc). n) (λ(n, acc). acc))
(Par (Seq (Par (λ(n, acc). n) (λ(n, acc). 1)) (−))

(Seq (Par (λ(n, acc). n) (λ(n, acc). acc)) (×)))

The second step (Step 2) is to replace the combinators Seq, Par, Ite and
Rec with corresponding circuit constructors SEQ, PAR, ITE and REC that compose
handshaking devices (see the Appendix for their definitions). The key property
of these constructors are the following theorems that enable us to composi-
tionally deduce theorems of the form ` ImpC =⇒ DEV f , where ImpC is a
term constructed using the circuit constructors, and hence is a handshaking de-
vice (the long implication symbol =⇒ denotes implication lifted to functions –
i.e. f =⇒ g = ∀x. f(x) ⇒ g(x)):

` DEV f =⇒ DEV f

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (SEQ P1 P2 =⇒ DEV (Seq f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (PAR P1 P2 =⇒ DEV (Par f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (ITE P1 P2 P3 =⇒ DEV (Ite f1 f2 f3))

` Total(f1, f2, f3)
⇒ (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (REC P1 P2 P3 =⇒ DEV (Rec f1 f2 f3))

where Total(f1, f2, f3) is a predicate ensuring termination.
If ec is an expression built using Seq,Par, Ite and Rec, then by suitably

instantiating the predicate variables P1, P2 and P3, these theorems allow us to

construct an expression eC built from circuit constructors SEQ, PAR, ITE and REC

such that ` eC =⇒ DEV ec. From Step 1 we have ` f = ec, hence ` eC =⇒ DEV f

A function f which is combinational (i.e. can be implemented directly with
logic gates without using registers) can be packaged as a handshaking device
using a constructor ATM, which creates a simple handshake interface and satisfies
the refinement theorem:

` ATM f =⇒ DEV f

The circuit constructor ATM is defined with the other constructors in the Ap-
pendix. To avoid a proliferation of internal handshakes, when the proof script
that constructs eC from ec is implementing Seq f1 f2, it checks to see whether f1

or f2 are compositions of combinational functions and if so introduces PRECEDE
or FOLLOW instead of SEQ, using the theorems:

` (P =⇒ DEV f2) ⇒ (PRECEDE f1 P =⇒ DEV (Seq f1 f2))

` (P =⇒ DEV f1) ⇒ (FOLLOW P f2 =⇒ DEV (Seq f1 f2))

PRECEDE f d processes inputs with f before sending them to d and FOLLOW d f

processes outputs of d with f . The definitions are:

PRECEDE f d (load, inp, done, out) =
∃v. COMB f (inp, v) ∧ d(load, v, done, out)

FOLLOW d f (load, inp, done, out) =
∃v. d(load, inp, done, v) ∧ COMB f (v, out)

COMB f (v1, v2) drives v2 with f(v1), i.e. COMB f (v1, v2) = ∀t. v2 t = f(v1 t). The
construction SEQ d1 d2 introduces a handshake between the executions of d1 and
d2, but PRECEDE f d and FOLLOW d f just ‘wire’ f before or after d, respectively,
without introducing a handshake.

The result of Step 2 is a theorem ` eC =⇒ DEV f where eC is an expression
built out of the circuit constructors ATM, SEQ, PAR, ITE, REC, PRECEDE and FOLLOW.

The third step (Step 3) is to rewrite with the definitions of these constructors
(see their definitions in the Appendix) to get a circuit built out of standard kinds
of gates (AND, OR, NOT and MUX), a generic combinational component COMB g

(where g will be a function represented as a HOL λ-expression) and Dtype
registers.

The next phase of compilation converts terms of the form COMB g (inp, out)
into circuits built only out of components that it is assumed can be directly re-
alised in hardware. Such components currently include Boolean functions (e.g. ∧,
∨ and ¬), multiplexers and simple operations on n-bit words (e.g. versions of +,
− and <, various shifts etc.). A special purpose proof rule uses a straightforward
recursive algorithm to synthesise combinational circuits. For example:

` COMB (λ(m, n). (m < n, m+1)) (inp1<>inp2, out1<>out2) =
∃v0. COMB (<) (inp1<>inp2, out1) ∧ CONSTANT 1 v0 ∧

COMB (+) (inp1<>v0, out2)

where <> is bus concatenation, CONSTANT 1 v0 drives v0 high continuously, and
COMB < and COMB + are assumed given components (if they were not given, then
they could be implemented explicitly, but one has to stop somewhere).

The circuit resulting at the end of Step 3 uses unclocked abstract registers
DEL, DELT and DFF that were chosen for convenience in defining ATM, SEQ, PAR,
ITE and REC (see the Appendix). The register DFF is easily defined in terms of
DEL, DELT and some combinational logic (details omitted).

The fourth step (Step 4) introduces a clock (with default name clk) and
performs an automatic temporal abstraction as described in Melham’s book [10]
using the theorems:

` InfRise clk ⇒ ∀d q. Dtype(clk , d, q) ⇒ DEL(d at clk , q at clk)

` InfRise clk ⇒ ∀d q. DtypeT(clk , d, q) ⇒ DELT(d at clk , q at clk)
By instantiating load , inp, done and out in the theorem obtained by Step 3
to load at clk , inp at clk , done at clk and out at clk , respectively, and then
performing some deductions using the above theorems and the monotonicity of
existential quantification and conjunction with respect to implication, we obtain
a theorem:

|- InfRise clk ==>

circuitf ==>

DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

4 Third party tools: linRec

The ‘synthesisable subset’ of HOL is the subset that can be automatically com-
piled to circuits. Currently this only includes tail-recursive function definitions.
We anticipate compiling higher level specifications by using proof tools that
translate into the synthsisable subset. Such tools are envisioned as ‘third party’
add-ons developed for particular applications. As a preliminary experiment we
are implementing a tool linRec to translate linear recursions to tail-recursions.
This would enable, for example, the automatic generation of Mult32Iter and
Fact32Iter from the more natural definitions:

Mult32(m,n) = if m = 0w then 0w else m+Mult32(m-1w,n)

Fact32 n = if n = 0w then 1w else n*Fact32(n-1)

A prototype implementation of linRec exists. It uses the following definition
of linear and tail recursive recursion schemes:

linRec(x) = if a(x) then b(x) else c (linRec(d x)) (e x)

tailRec(x,u) = if a(x) then c (b x) u else tailRec(d x, c (e x) u)

A linear recursion is matched against the definition of linRec to find values of
a, b, c, d, e and then converted to a tail recursion by instantiating the theorem:

∀ R a b c d e.
WF R
∧ (∀ x. ¬(a x) ==> R (d x) x)
∧ (∀ p q r. c p (c q r) = c (c p q) r)
==>
∀ x u. c (linRec a b c d e x) u = tailRec a b c d e (x,u)

where WF R means that R is well-founded. Heuristics are used to choose an ap-
propriate witness for R.

5 Case studies

As part of a project to verify an ARM processor [5], a high-level model of the
multiplication algorithm used by some ARM implementations was created in
higher order logic. This is a Booth multiplier and we are using Fox’s existing
specification as an example for testing our compiler.

A more substantial example, being done at the University of Utah, is imple-
menting the Advanced Encryption Standard (AES) [13] algorithm for private-key
encryption. This specifies a multi-round algorithm with primitive computations
based on finite field operations. The AES formalization includes a proof of func-
tional correctness for the algorithm: specifically, encryption and decryption are
inverse functions. Deriving the hardware from the proven specification using log-
ical inference assures us that the hardware encrypter is the inverse of the hard-
ware decrypter. An encryption round performs the following transformations on
a 4-by-4 matrix of input bytes:

1. application of sbox, an invertible function from bytes to bytes, to each byte;
2. a cyclical shift of each row;
3. multiplication of each column by a fixed degree 3 polynomial, with coeffi-

cients in the 256 element finite field, GF(28);
4. adding a key to the matrix with exclusive OR.

We are exploring various options for generating components either as separate
handshaking designs or expanding them into combinational logic. We have also
explored converting our high-level recursive specification of multiplication into
a table lookup. The resulting verified tables can then be stored into a RAM
or ROM device. For synthesizing the tables directly into hardware, we have
automated the definition of a function on bytes as a balanced if expression,
branching on each successive bit of its input.

0xB ** x = if WORD_BIT 7 x then
if WORD_BIT 6 x then
...

if WORD_BIT 0 then 0xA3 else 0xA8
...

else
if WORD_BIT 6 x then
...

Our experience so far is positive: compiling implementations by deduction
provides a secure and flexible framework for creating and optimising designs.

6 Related work

Previous approaches to combine theorem provers and formal synthesis estab-
lished an analogy between the goal-directed proof technique and an interactive
design process. In LAMBDA, the user starts from the behavioural specification
and builds the circuit incrementally by adding primitive hardware components

which automatically simplify the goal [4]. Hanna et al. [7] introduce several
techniques (functions) that simplify the current goal into simpler subgoals. Tech-
niques are adaptations to hardware design of tactics in LCF.

Alternative approaches synthesise circuits by applying semantic-preserving
transformations to their specifications. For instance, the Digital Design Deriva-
tion (DDD) transforms finite-state machines specified in terms of tail-recursive
lambda abstractions into hierarchical Boolean systems [8]. Lava and Hydra are
both hardware description languages embedded in Haskell whose programs con-
sist of definitions of gates and their connections (netlists) [1, 12]. While Lava
interfaces with external theorem provers to verify its circuits, Hydra designers
can synthesise them via formal equational reasoning (using definitions and lem-
mas from functional programming). The functional languages µFP and Ruby
adopt similar principles in hardware design [9, 15]. The circuits are defined in
terms of primitive functions over Booleans, numbers and lists, and higher-order
functions, the combining forms , which compose hardware blocks in different
structures. Their mathematical properties provide a calculational style in design
exploration.

These approaches deal with an interactive synthesis at the gate or state-
machine level of abstraction only. Moreover, the synthesis and the proof of cor-
rectness require a substantial user guidance. Gropius and SAFL are two related
works that address these issues.

Gropius is a hardware description language defined as a subset of HOL [2, 3].
Its algorithmic level provides control structures like if-then-else, sequential com-
position and while loop. The atomic commands are DFGs (data flow graphs)
represented by lambda abstractions. The compiler initially combines every while
loop into a single one at the outermost level of the program:

PROGRAM out default (LOCVAR vars (WHILE c (PARTIALIZE b)))

The body b of the WHILE loop is an acyclic DFG. The list out default provides ini-
tial values for the output variables. The term LOCVAR declares the local variables
vars and PARTIALIZE converts a non-recursive (terminating) DFG into a poten-
tially non-terminating command. The compiler then synthesises a handshaking
interface which encapsulates this program. Each of these hardware blocks are
now regarded as primitive blocks or processes at the system level. Processes
are connected via communication units (k-processes) which implement delay,
synchronisation, duplication, splitting and joining of a process output data (ac-
tually there are 10 different k-processes [2]). Although the synthesis produces
the proof of correctness of each process and k-process, the correctness of the
top-level system is not generated. The reason for that is mainly because the
top-level interface of a network of processes and k-processes does not match the
handshaking interface pattern.

Our compilation method is partly inspired by SAFL (Statically Allocated
Functional Language) [11], especially the ideas in Richard Sharp’s PhD thesis
[14]. SAFL is a first-order functional language whose programs consist of a se-
quence of tail-recursive function definitions. Its high-level of abstraction allows

the exploitation of powerful program analyses and optimisations not available in
traditional synthesis systems. However, the synthesis is not based on the correct-
by-construction principles and the compiler has not been verified.

The novelty of our approach is the compilation of functional programs by
composing especially designed and pre-verified circuit constructors. As each of
these circuit constructors has the key property of implementing a device that
computes precisely their corresponding combinators, the verification and the
compilation of functional programs can be done automatically.

7 Current State and Future work

The compiler described here has been through several versions and now works
robustly on all the examples we have tried. There were, however, some initial dif-
ficulties when we first experimented with Verilog simulation. Our formal model
represents bits as Booleans (T, F), but the Verilog simulation model is multival-
ued (1, 0, x, z etc.), so our formal model does not predict the Verilog simulation
behavior in which registers are initialised to x. As a result, Verilog simulation
was generating undefined x-values instead of the outputs predicted by our proofs.
The behaviour of most real hardware does not correspond to Verilog simulation
because in reality registers initialise to a definite value, which is 0 for the Altera
FPGAs we are using. By making our Verilog model of Dtype initialise its state
to 0 we were able to successfully simulate all our examples. Our investigation
of this issue was complicated by a bug in the Verilog simulation test harness:
load was being asserted before done became T, violating the precondition of
the handshake protocol, so even after we understood the initialisation problem,
simulation was giving inexplicable results. However, once we fixed the testbench,
everything worked. All our examples now execute correctly both under simula-
tion and on an Altera Excalibur FPGA board.

In the immediate future we plan to continue and complete the case studies
described in Section 5.

At present all data-refinement (e.g. from numbers or enumerated types to
words) must be done manually, by proof in higher order logic. The HOL4 system
has some ‘boolification’ facilities that automatically translate higher level data-
types into bit-strings, and we hope to develop ‘third-party’ tools based on these
that can be used for automatic data-refinement with the compiler.

We want to investigate using the compiler to generate test-bench monitors
that can run in parallel simulation with designs that are not correct by construc-
tion. Thus our hardware can act as a “golden” reference against which to test
other implementations.

The work described here is part of a bigger project to create hardware/software
combinations by proof. We hope to investigate the option of creating software for
ARM processors and linking it to hardware created by our compiler (possibly
packaged as an ARM co-processor). Our emphasis is likely to be on crypto-
graphic hardware and software, because there is a clear need for high assurance
of correct implementation in this domain.

References

1. Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware
design in Haskell. ACM SIGPLAN Notices, 34(1):174–184, January 1999.

2. Christian Blumenröhr. A formal approach to specify and synthesize at the system
level. In GI Workshop Modellierung und Verifikation von Systemen, pages 11–20,
Braunschweig, Germany, 1999. Shaker-Verlag.

3. Christian Blumenröhr and Dirk Eisenbiegler. Performing high-level synthesis via
program transformations within a theorem prover. In Proceedings of the Digi-
tal System Design Workshop at the Euromicro 98 Conference, Västeras, Sweden,
pages 34–37, Universität Karlsruhe, Institut für Rechnerentwurf und Fehlertoler-
anz, 1998. Online at:
http://www.ubka.uni-karlsruhe.de/cgi-bin/psgunzip/1998/informatik/37/37.pdf.

4. Simon Finn, Michael P. Fourman, Michael Francis, and Robert Harris. Formal
system design—interactive synthesis based on computer-assisted formal reasoning.
In Luc Claesen, editor, IMEC-IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, Volume 1, pages 97–110, Houthalen, Belgium,
November 1989. Elsevier Science Publishers, B.V. North-Holland, Amsterdam.

5. Anthony C. J. Fox. Formal verification of the ARM6 micro-architecture. Tech-
nical Report 548, The Computer Laboratory, University of Cambridge, England,
November 2002.

6. Anthony C. J. Fox. HOL n-bit word Library, February 2004. Documentation
available with the HOL4 system (http://hol.sourceforge.net/).

7. F.K. Hanna, M. Longley, and N. Daeche. Formal synthesis of digital systems. In L.
Claesen, editor, Applied Formal Methods for Correct VLSI Design, pages 153–170.
North-Holland, 1989.

8. Steven D. Johnson and Bhaskar Bose. DDD – A System for Mechanized Digital
Design Derivation. Technical Report TR323, Indiana University, IU Computer
Science Department, 1990. Available on the Internet at:
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR323.

9. Geraint Jones and Mary Sheeran. Circuit design in Ruby. Lecture notes on Ruby
from a summer school in Lyngby, Denmark., September 1990. Online at:
http://www.cs.chalmers.se/˜ms/papers.html.

10. Thomas F. Melham. Higher Order Logic and Hardware Verification. Cambridge
University Press, Cambridge, England, 1993. Cambridge Tracts in Theoretical
Computer Science 31.

11. Alan Mycroft and Richard Sharp. Hardware/software co-design using functional
languages. In Proceedings of Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’01), pages 236–251, Genova, Italy, April 2001. Springer-
Verlag. LNCS Vol. 2031.

12. John O’Donnell. Overview of Hydra: A concurrent language for synchronous digital
circuit design. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium. IEEE Computer Society Press, 2002.

13. United States National Institute of Standards and Technology. Advanced Encryp-
tion Standard. Web: http://csrc.nist.gov/encryption/aes/, 2001.

14. Richard Sharp. Higher-Level Hardware Synthesis. PhD thesis, University of Cam-
bridge, the Computer Laboratory, Cambridge, England, 2002.

15. Mary Sheeran. muFP, A language for VLSI design. In Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, pages 104–112.
ACM, ACM, August 1984.

16. Konrad Slind. Function definition in higher order logic. In Theorem Proving in
Higher Order Logics, number 1125 in Lecture Notes in Computer Science, pages
381–398, Turku, Finland, August 1996. Springer-Verlag.

APPENDIX: formal specifications in higher order logic

The specification of the four-phase handshake protocol is represented by the
definition of the predicate DEV, which uses auxiliary predicates Posedge and
HoldF. A positive edge of a signal is defined as the transition of its value from
low to high or, in our case, from F to T. The term HoldF (t1 , t2) s says that a
signal s holds a low value F during a half-open interval starting at t1 to just
before t2. The formal definitions are:

` Posedge s t = if t=0 then F else (¬ s(t−1) ∧ s t)
` HoldF (t1, t2) s = ∀t. t1 ≤ t < t2 ⇒ ¬(s t)

The behaviour of the handshaking device computing a function f is described
by the term DEV f (load , inp, done, out) where:

` DEV f (load , inp, done, out) =
(∀t. done t ∧ Posedge load (t+1)

⇒

∃t′. t′ > t+1 ∧ HoldF (t+1, t′) done ∧

done t′ ∧ (out t′ = f(inp (t+1)))) ∧

(∀t. done t ∧ ¬(Posedge load (t+1)) ⇒ done (t+1)) ∧

(∀t. ¬(done t) ⇒ ∃t′. t′ > t ∧ done t′)

The first conjunct in the right-hand side specifies that if the device is available
and a positive edge occurs on load , there exists a time t ′ in future when done

signals its termination and the output is produced. The value of the output at
time t ′ is the result of applying f to the value of the input at time t+1. The signal
done holds the value F during the computation. The second conjunct specifies
the situation where no call is made on load and the device simply remains idle.
Finally, the last conjunct states that if the device is busy, it will eventually finish
its computation and become idle.

The circuit constructors

The following primitive components are used by the circuit constructors.

` AND (in1, in2, out) = ∀t. out t = (in1 t ∧ in2 t)
` OR (in1, in2, out) = ∀t. out t = (in1 t ∨ in2 t)
` NOT (inp, out) = ∀t. out t = ¬(inp t)
` MUX(sw , in1 , in2 , out) = ∀t. out t = if sw t then in1 t else in2 t

` COMB f (inp, out) = ∀t. out t = f(inp t)
` DEL (inp, out) = ∀t. out(t+1) = inp t

` DELT (inp, out) = (out 0 = T) ∧ ∀t. out(t+1) = inp t

` DFF(d , sel , q) = ∀t. q(t+1) = if Posedge sel (t+1) then d(t+1) else q t

` POSEDGE(inp, out) = ∃c0 c1. DELT(inp, c0) ∧ NOT(c0, c1) ∧ AND(c1, inp, out)

Atomic handshaking devices.

` ATM f (load , inp, done, out) =
∃c0 c1. POSEDGE(load , c0) ∧ NOT(c0, done) ∧

COMB f (inp, c1) ∧ DEL(c1, out)

Sequential composition of handshaking devices.

` SEQ f g (load , inp, done, out) =
∃c0 c1 c2 c3 data .

NOT(c2, c3) ∧ OR(c3, load , c0) ∧ f(c0, inp, c1, data) ∧

g(c1, data , c2, out) ∧ AND(c1, c2, done)

Parallel composition of handshaking devices.

` PAR f g (load , inp, done, out) =
∃c0 c1 start done1 done2 data1 data2 out1 out2.

POSEDGE(load , c0) ∧ DEL(done, c1) ∧ AND(c0, c1, start) ∧

f(start , inp, done1, data1) ∧ g(start , inp, done2, data2) ∧

DFF(data1, done1, out1) ∧ DFF(data2, done2, out2) ∧

AND(done1, done2, done) ∧ (out = λ t. (out1 t, out2 t))

Conditional composition of handshaking devices.

` ITE e f g (load , inp, done, out) =
∃c0 c1 c2 start start ′ done e data e q not e data f data g sel
done f done g start f start g .

POSEDGE(load , c0) ∧ DEL(done , c1) ∧ AND(c0, c1, start) ∧

e(start , inp, done e, data e) ∧ POSEDGE(done e, start ′) ∧

DFF(data e, done e, sel) ∧ DFF(inp, start , q) ∧

AND(start ′, data e, start f) ∧ NOT(data e, not e) ∧

AND(start ′, not e, start g) ∧ f(start f , q, done f , data f) ∧

g(start g , q, done g , data g) ∧ MUX(sel , data f , data g, out) ∧

AND(done e, done f , c2) ∧ AND(c2, done g , done)

Tail recursion constructor.

` REC e f g (load , inp, done, out) =
∃done g data g start e q done e data e start f start g inp e done f
c0 c1 c2 c3 c4 start sel start ′ not e.

POSEDGE(load , c0) ∧ DEL(done , c1) ∧ AND(c0, c1, start) ∧

OR(start , sel , start e) ∧ POSEDGE(done g , sel) ∧

MUX(sel , data g , inp, inp e) ∧ DFF(inp e, start e, q) ∧

e(start e, inp e, done e, data e) ∧ POSEDGE(done e, start ′) ∧

AND(start ′, data e, start f) ∧ NOT(data e, not e) ∧

AND(not e, start ′, start g) ∧ f(start f , q, done f , out) ∧

g(start g , q, done g , data g) ∧ DEL(done g , c3) ∧

AND(done g , c3, c4) ∧ AND(done f , done e, c2) ∧ AND(c2, c4, done)

Circuit diagrams of the circuit constructors are shown on the following page.

inp

out

c1

c0

DELT

(a) POSEDGE

DEL

load

done

c0

inp

c1

out

POSEDGE Comb f

(b) ATM f

load

f

g

outdone

c2

c3

inp

c0

c1 data

(c) SEQ f g

f g

c1

start

done out2
out1

load

c0

inp inp

data1

POSEDGE DEL

d
q
d

q sel sel

done2 data2done1

(d) PAR f g

Fig. 1. Implementation of composite devices.

DELPOSEDGE

POSEDGE

gf

MUX

c1

load

c0

not e

start gstart f

done

c2

out

done g

data g

done e

done f

data f

sel

data e

start′

q q

e

start inp

q
d

sel

q
d

sel

(a) IF e f g

POSEDGE

MUX

inp

DELPOSEDGE

POSEDGE

DEL

done

c1

load

c0

inp e

e

q

sel

not e

start′

q

g

start gstart f

out

f

done f

done g

done

c2

c3

c4

done g
data g

data g

data e

start

d
qsel

done e

start e

(b) REC e f g

Fig. 2. The conditional and the recursive constructors.

