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Abstract— In this paper, we present an efficient way of
representing and tracking a moving object in images. In our
approach, the object is visually represented as a set of pixels
corresponding to an ideal view of the object as seen by a camera.
As the object moves, its appearance can change in a number of
ways, depending on the application. In this paper, we present
two applications: leader-follower formation and visual guidance
from a “camera in the sky”. In these two applications, the object
translates in the column and row directions of the images as well
as, respectively, changes in size and orientation. However, other
transformations, such as skewing and shearing, could be used in
the proposed framework. We present results of real experiments
performed in our Lab and show that even on low specification
computers, the method performs well and fast enough.

I. INTRODUCTION

The problem of tracking moving objects in images grabbed
by a static or moving camera and controlling the camera
and/or the tracked object to a desired relative pose has been
the subject of many publications in the past. However, in
most cases this has used explicit features of the objects that
therefore need to be extracted from the images and tracked
across the sequence of images. This is for example the case
in [1] and [2] where a specific coloured target is fitted on the
object to be tracked and the known colour explicitly extracted
from the images. In [3], a target is painted on the object to be
tracked, while in [4] a geometrical model of the object itself
is used. These methods track specific features that make up
the geometric model and the geometric transformation of the
model is used to estimate the (pseudo) 3D pose of the object.

Another class of method uses the independent motion of
the object. For example, in [5] the optical flow in omni-
directional images is segmented to extract the moving objects
and their motion properties are used to control the tracking.
In [6], independent motion in stabilised images is extracted
to create blobs that are then tracked using “appearance and
shape similarity score”.

In [7] a correlation filter-based comparison of the object
and current views is used, using optimal filters that are
adapted to accommodate for 3D variations of the object.
This method is appealing but requires the non-obvious step
of determining the filters. Moreover, adapting the filters to
cope with visual changes of the object could lead to drift in
the used filter that could result in detection failure.

In [8], a comparison between Image-Based Visual Servo-
ing (IVBS) and Position-Based Visual Servoing (PVBS) is
made and concludes that IVBS could lead to more stable
servoing control compared to PBVS. However, this also
concludes that if the starting point is far from the destination,

a less than optimum behaviour could be produced. It is
clear that if optimal control is desired, the camera must be
calibrated and its relationship to the space where the object
is controlled must be taken into account. For example, in the
three very similar papers [9], [10], [11], differential flatness is
used to linearise the relationship between image and ground
control. Recently, such calibration has been used to perform
servoing based on the tracking of features in a pinhole
[12] and omni-directional [13] camera using geometrical
constraints of the motion of the camera and its geometry.

In this paper, we use a different approach where the object
is represented by its appearance, i.e., an image of it, as in
[14]. The appearance is in fact a set of pixels the position
of which can be transformed to take into account changes in
the apparent shape of the object.

The main contribution of this paper is the presentation of
a framework that allows the efficient localisation of the ap-
pearance of the object in an image even after transformations
that would normally require re-sampling of the images. This
framework is applied to two different applications, showing
its usefulness and applicability. The applications are:
• leader-follower formation: the follower robot visually

tracks and follows an object only using an image of it;
• visual guidance of a robot on the ground from a camera

in the sky: a camera overlooking an area on the ground
on which a robot can move is used to track and control
the robot to specified positions in the image.

The two applications and their experimental results are
given in Sections III and IV. Section II presents the frame-
work, including the appearance representation and recog-
nition, the method used to track the appearance in the
succession of images and how this can be used to control
the camera and/or the object (if controllable) to adjust their
relative pose. Section V discusses the proposed methods and
offers a conclusion.

II. OBJECT SPECIFICATION AND RECOGNITION

In previous work we have compared two entire images
[15], [16], [17] or sub-images [14], [18] to evaluate changes
in view point, track objects or register images. However,
we have always assumed that either the images were not
geometrically transformed or have precomputed these trans-
formations (e.g., using warping in [17] or scaling in [14]). In
this work, we propose to dynamically transform sub-images
to cope with larger changes in view point. Indeed, many
applications where tracking an object is required imply large



changes in camera-object relative pose, therefore implying
important changes in appearance of the object. For example,
in [14], the change was due to variable distance between the
camera (carried by a follower robot) and the object (a leader
robot). In this previous instance, the object was represented
as a number of appearances corresponding to a number of
distances, the change being reflected as a change of the size
of the appearance of the leader.

Dynamically transforming sub-images is expensive. The
problem lies in the fact that transforming the pixel positions
results in an new image lattice that does not anymore align
with the lattice of the image in which the sub-image must
be located. The traditional method to resolve that problem is
to re-sample the transformed image on the lattice of pixels
that correspond to the un-transformed lattice by computing
new pixel values from the surrounding pixels. This can be
done using bi-linear interpolation or, a faster method, nearest
neighbour pixel value. Note that more expensive methods
do exist that will provide visually better results. However,
whichever interpolation method is used, no new information
is created from the original sub-image. In fact, in the case
of a scale reduction, information is even lost.

This therefore results in un-necessary processing when the
only reason for the creation of the new re-aligned sub-image
is to compare it with another image.

A. Comparing images

Instead of re-sampling the transformed sub-image on the
original lattice, we propose to only use the original pixels
(after transformation) for the image comparison. Indeed,
since the re-sampling does not introduce new information,
at best, only using the original pixel values should provide
a similar result.

As in previous work, we consider images (or sub-images)
as points in the image space and use the Euclidean distance
to compare them. More formally, we define p ∈ R2 as a
pixel position. Note that positions are not discrete. However,
we define the operator η(·) that returns the nearest neighbour
discrete position of a continuous one: η(p) ∈ Z2. Also note
that coordinates outside the image area will have to be treated
in some way, depending on the application. This is done
by the operator ι(·): ι(p) ∈ P, where P is the set of pixel
positions delimited by the image size: P = {(x, y) | x ∈
R, 0 ≤ x ≤ w, y ∈ R, 0 ≤ y ≤ h}, where w and h are
respectively the width and height of the images.

The operator Θ(·) geometrically transforms positions in
two dimensions: Θ(p) ∈ R2. Depending on the application,
this operator can correspond to, but is not limited to, a
combination of translation, scaling and rotation.

Associated to a position in an image is a pixel value v that
takes its values in some space C that depends on the actual
colour space used. In all the experiments reported here we
used the Red-Green-Blue (RGB) colour space and C is thus a
space of dimensionality 3 and v is a three-component vector
of integer values between 0 and 255: v = (Rv Gv Bv)T.

The appearance A of an object is thus a set of pairs of

positions and pixel values:

A = {(pi,vi) | pi ∈ R2,vi ∈ C}.

Similarly, an image I is a set of pairs of discrete pixel
positions and corresponding pixel values:

I = {(qi,vi) | qi ∈ P,vi ∈ C}.

For ease of notation, we will use the same symbol as an
operator returning a specified colour component k of the
pixel value of a given discrete pixel position:

kvi = I(qi, k).

We can now transform an appearance and compare the
result with an image using the Euclidean distance:

d(I,A,Θ) =

√√√√ |A|∑
i=1

c∑
k=1

{
I

(
η

(
ι
(

Θ
(
pi

)))
, k

)
− kvi

}2

,

(1)
where (pi,vi) ∈ A, |A| is the number of pixels in the
appearance and c is the number of colour components.
The effect of computing this distance is to compare all the
pixels of the appearance A, after they have been transformed
using Θ(·), to the pixels of the image I that fall near the
transformed appearance pixels. The lower the distance is,
the better the match is between the transformed appearance
with the corresponding part of the current image. A distance
of 0 would indicate a perfect match. Figure 1 shows the
distance function (1) between the image and appearance
shown in Figure 2 for a transformation that represents a
scaling (multiplication of the size by a given factor) of the
appearance and a horizontal (X) and vertical (Y ) transla-
tion. Figure 1(b) shows a cone around the position that
corresponds to where the object is, the bottom of which is
easy to locate. However, when the object’s appearance is
scaled, the distance function presents steps (Figure 1(d)) and
a grid pattern (Figure 1(c)) that are due to the non-explicit
re-interpolation of the appearance (a phenomenon observed
in multi-scale image registration [18]).

From an implementation point of view, computing the
distance value (1) can be done efficiently, especially when
compared to actually re-sampling the appearance. Only the
positions of the pixels are transformed and no new pixel
value is created. When the distance is computed, the posi-
tions are at least moved to the nearest discrete neighbour
(using the operator η(·), usually a rounding operation) and
maybe modified to fit the image (operator ι(·)), operations
that are typically fast (e.g., clamping or modulo). More-
over, since no new pixels are created, the computation of
the distance value is independent of the transformation.
For example, if the transformation involves scaling of the
appearance and if a re-sampling was performed, then the
distance computation would vary depending on the scaling.
Such variable computation time is generally not good when a
Proportional-Integral-Derivative (PID) controller is used (see
Section II-C) and keeping it constant is therefore good.



(a) (b)

Fig. 2. A typical image (a) and appearance (b) for the leader-follower application

(a) As a function of X and Y for a scale of 0.5

(b) As a function of X and Y for a scale of 1.0

(c) As a function of X and Y for a scale of 1.5

(d) As a function of scale for the translation that gives the minimum
distance

Fig. 1. Distance function for a transformation including horizontal (X)
and vertical (Y ) translations and scaling of the size of the appearance

B. Object tracking

The problem of finding the object given its appearance
A in the current image Ic is now one of minimising the
distance in (1) as a function of the transformation Θ. We
therefore obtain the current transformation Θc as:

Θc = arg min
Θ

(d(Ic,A,Θ)). (2)

When there is no information as to the value of the
transformation, a global search must be performed. In most
cases however, some assumptions can be made and a guided
global, or a semi exhaustive, search can be used.

In most cases however, the object can be tracked from
a previously known transformation. This is done using a

local minimisation method. Using a gradient descent method
would be tempting. However, such a method needs the
gradient of the function, which involves making additional
evaluations of the distance function. More importantly how-
ever, and as can be seen in Figure 1, the gradient can
locally vanish even for transformations that are not at a
minimum of the function. This is because ultimately, the
pixels of the appearance are compared with pixels of the
current image at discrete pixel positions. This, depending
on the transformation, can create flat areas of the distance
function corresponding to appearance pixels lying in between
discrete positions of the image.

As a result, we use the simplex algorithm of Nelder and
Mead as implemented in the Gnu Scientific Library (GSL)1.
The method uses a simplex with n + 1 vertices, where
n is the dimensionality of the function to minimise, and
applies geometrical transformations to the simplex such as
reflections, expansions and contractions, to try to improve the
function value at the vertices of the simplex. Using a suc-
cession of these transformations, the simplex moves through
the parameter space converging towards the minimum of the
function where it contracts to a small size. A threshold on
the size is used to stop the minimisation and is indicative of
the precision reached.

C. Control loop

In applications where some image stabilisation is needed,
a desired transformation is available. The problem is then
to modify the system, e.g., by moving the camera, so that
the current transformation converges towards the desired
transformation. This is the so-called Image-Based Visual
Servoing control as described in [8].

The actual control technique depends on the application
but generally a PID controller is adequate, the error used
being the difference between the current and desired trans-
formations. This is discussed further in Sections III and IV
for the two presented applications.

III. “FOLLOW THAT OBJECT”
A. Description of the application

The first application is an implementation of the classic
leader-follower problem. We presented a solution to that
problem in a previous publication [14], which had a number
of problems, most of them being solved here.

In the leader-follower problem, a moving object is being
tracked in images captured by a camera mounted on a robot

1GSL: http://www.gnu.org/software/gsl/



and the task is to control the robot so that the object remains
at a given position and scale in the sequence of images.

For this work, we used a panoramic camera that uses a
hyperbolic mirror to produce panoramic images that are 360
pixels wide (one pixel per degree of angle) and 50 pixels
high (see [16] for a complete description of the system),
Figure 2. The distortions introduced by the camera are not
corrected. Therefore, the object will be non-linearly distorted
as it moves further away from the camera, depending on the
position of the camera. Indeed, if the camera is above the
object, as is the case here, the object will be reflected on
different parts of the mirror to project on the image, which,
because of its non-linear curvature changes as a function
of height from the tip, will result in a non-linear scaling.
Moreover, the object will move up and down in the image
as a function of the distance camera-object2 in a non-linear
way. However, the experiments show that not compensating
for these distortions is not needed.

For this application, the transformation Θ(·) contains two
terms: the first is a scaling of the appearance (multiplication
of the coordinates of the pixels of the appearance by a
factor); the second is a translation along the two axes of
the image (addition of a 2D vector to the coordinates).
The scaling results in moving the pixels apart (for scaling
factors greater than 1.0) or closer to each other (for scaling
factors lower than 1.0). This has the effect of simulating a
change in size of the object due to a change in camera-object
distance. The horizontal translation simulates the effect of
the object moving sideways in the field of view while the
vertical translation, combined with the scaling, simulates the
camera-object distance changing. The minimisation in (2)
was therefore performed against these three parameters. The
initial transformation was determined by a first limited global
search and then by a local minimisation using the simplex
method (Section II-B).

The operator ι(·) is in this case a clamping of the vertical
pixel position to the limit of the vertical range and a modulo
of the horizontal position to implement the wrapping around
of the panoramic image.

The control uses two of the transformation parameters.
The horizontal position is compared to the ideal horizontal
position that corresponds to the front of the robot while
the scaling factor is compared to the ideal factor, i.e., the
one that sets the correct camera-object distance (1.0 in all
the experiments reported here). The difference between the
actual and ideal parameters is used in a PID controller
setting the turning rate (from the horizontal position error)
and speed (from the scaling error) with parameters manually
determined.

B. Experiments and results

To evaluate the performance of the follower, we used the
appearance shown in Figure 2(b) and teleoperated the leader
robot along a variety of trajectories, repeating each ten times.
The positions of the leader and follower were recorded using

2This fact was exploited in [14] to estimate the distance camera-object.
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our Vicon 512 motion tracking system and for each of the
experiments we present a typical trajectory for both robots,
statistics on the leader-follower distance for the ten runs and
the graphs of the distances for all ten runs. This was done
for a STRAIGHTLINE, an OVAL and a FIGUREOFEIGHT,
Figures 3 to 8 and Tables I to III.

In all these experiments, the desired leader-follower dis-
tance was 1 m and the tracking was performed at approxi-
mately 12 frames per second. The software was executed on
the on-board computer (a Pentium III at 800 MHz).

It is clear that in all cases, the performance is good with
actual leader-follower distance close to the desired value and
small standard deviation. This is a good improvement over
the previously published method [14], in part due to the use
of a PID controller instead of a simple P controller. Note
however that the parameters of the PID controller could have
been better fine tuned to obtain an even better performance.

The speed of the algorithm is also good, much better than
the previously published one (12 fps instead of 4 fps on the
same hardware).

Finally, this new method is better than the previously
presented one in that it does not make any assumptions as to
the geometry of the system while we previously assumed
that the camera was above the leader and that the floor
was flat. These two assumptions are not needed anymore
as their effect is now explicitly taken into account by the
transformation of the appearance of the leader.

IV. “THE EYE IN THE SKY”

A. Description of the application

The second application involves a different transformation.
The application is to track and guide a mobile robot on
the ground seen from a “camera in the sky”. The results
presented here were using a camera mounted on the ceiling



(a) (b)

Fig. 9. A typical image from the sky (a) and appearance (b)

TABLE I
STRAIGHTLINE: DISTANCE STATISTICS (IN M)

Index Min Max Mean Std. dev.
1 0.80 1.22 1.04 0.11
2 0.79 1.29 1.06 0.17
3 0.79 1.32 1.10 0.18
4 0.83 1.18 1.03 0.10
5 0.81 1.31 1.12 0.15
6 0.81 1.33 1.04 0.12
7 0.79 1.23 1.03 0.12
8 0.78 1.27 1.06 0.14
9 0.82 1.20 1.04 0.12

10 0.79 1.27 1.05 0.12

TABLE II
OVAL: DISTANCE STATISTICS (IN M)

Index Min Max Mean Std. dev.
1 0.86 1.22 1.09 0.09
2 0.73 1.46 1.12 0.18
3 0.77 1.47 1.16 0.17
4 0.75 1.35 1.10 0.14
5 0.76 1.39 1.15 0.14
6 0.80 1.24 1.06 0.14
7 0.81 1.53 1.21 0.17
8 0.75 1.49 1.16 0.20
9 0.74 1.40 1.13 0.14

10 0.73 1.36 1.10 0.16

of our Lab. However, the goal is to use a camera mounted
on a flying platform such as a kite [19], [20]. In this
application, an image of the robot as seen in the camera
is given to the system and constitutes the appearance of the
robot to be tracked. The destination of the robot is given as
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Fig. 5. OVAL: typical trajectories

a position in the image plane by a person clicking on the
live image displayed in a Graphical User Interface (GUI).
The robot is then tracked and directed to its destination. The
experiments reported here took place in our Lab, on grey
carpet using a black topped Pioneer robot. To make the robot,
and particularly its orientation, more visually prominent, a
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set of coloured ribbons arranged in a triangle was set on top
of the robot (Figure 9).

The transformation Θ(·) again contains a translation term
(horizontal and vertical in the image). The other term is a
rotation that rotates the appearance around its centre. Note
that the way the robot looks will not remain constant as
it moves around in the field of view of the camera. This
is because even if the camera’s optical axis is vertical, the
change in view point exposes different parts of the robot.
Moreover, un-corrected distortions introduced by the wide-
angle lens used for the experiments reported here imply that
the shape of the robot changes as it moves in the field of view
of the camera. This could easily be solved by calibrating the
camera. Finally, the mapping between pixel coordinates and
positions on the ground is not constant because the line of
sight to the robot is not always vertical. Using differential
flatness [9], this could be taken into account, provided the
pose of the camera is known, and the ground assumed to be
flat, which is unlikely given our goal of the camera in the
sky. Therefore, no calibration of the camera or correction for
the position of the robot was taken into account.

For this application, the operator ι(·) was restricted to a
clamping of the appearance to the size of the image.
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TABLE III
FIGUREOFEIGHT: DISTANCE STATISTICS (IN M)

Index Min Max Mean Std. dev.
1 0.75 1.22 1.04 0.12
2 0.73 1.19 1.04 0.11
3 0.67 1.33 1.07 0.15
4 0.83 1.60 1.19 0.17
5 0.65 1.30 1.05 0.12
6 0.74 1.44 1.09 0.13
7 0.83 1.46 1.05 0.10
8 0.87 2.03 1.32 0.30
9 0.85 1.23 1.03 0.10

10 0.87 1.36 1.16 0.14

The first pose of the robot was found by doing a limited
global minimisation of (2) (only a subset of all possible
transformation values was considered). Once the robot was
acquired, a local search using the simplex method was used
(Section II-B).

A proportional controller was used to minimise the error
between the detected position and the desired position of the
robot, with a threshold on the speed. A change in orientation
of the robot was computed from its current orientation
and the straight line to the destination. To minimise the
space needed by the robot to reach its destination, the robot
was first rotated on the spot to within 30◦ of the desired
orientation. Then both orientation and position were set as a
proportion of the error in position and orientation.

B. Experiments and results

To evaluate the performance of our object tracking method
applied to this application, we have conducted three differ-
ent experiments. The first one was designed to show the
repeatability of the tracking by positioning the guided robot
approximately at the same starting pose and guiding it to the
same point on the image. Nine runs were recorded using our
Vicon 512 motion tracking system and the trajectories are
plotted in Figure 10. Clearly, repeatability is good since the
largest deviation between trajectories is approximately 6 cm.

The next experiment is to show that the same position in
the image can be reached from a variety of starting poses,
Figure 11. Again, the tracking of the robot is good: all final
positions are approximately within 10 cm of each other.

Finally, the robot was guided from the top left corner of the
image to the bottom left of the image and vice-versa, twice
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in each direction, Figure 12. In this case, the target position
was set each time and was therefore only approximately
the same. However, the experiment shows an asymmetry
in the performance. This is partly due to the distortions
in the image due to the wide angle lens and the fact that
the appearance of the object is not symmetric. This resulted

in the orientation of the object being systematically slightly
wrongly estimated when the robot was going upwards (but
also to a lesser extent downwards) in the image. Moreover,
it is not surprising that the robot should in fact follow a
trajectory that is slightly biased towards the centre of the
image given the non-corrected image distortions.

In this experiment too the frame rate was approximately
12 fps, although on a faster computer (Pentium IV at
2.8 GHz) than the one on-board the Pioneer. The effective
slower frame rate is due to a decentralised application
with networked image acquisition, remote image processing,
larger appearance (the images in Figure 9 are at half scale)
and a graphical user interface used to show the robot being
tracked and set destinations for it. The application was
designed as such so that all three aspects of it (image
acquisition, image processing and robot control) could be
run on different machines.

V. DISCUSSION AND CONCLUSION

The method we have presented to track moving objects
was applied to two different applications. These involve
different types of control of the platform holding the camera
or of the robot being tracked. The method was shown to
work well and to be efficient given the frame rate obtained
on low specification computers without any optimisation of
the code but that provided by the compiler. We have shown
that transforming the appearance of the object to take into
account apparent shape changes can be done efficiently.

Moreover, we have shown that IBVS can be done without
camera calibration or knowledge about the relative pose of
the camera and object. It is clear that this results in a non-
constant effect of the control to the camera and/or object. For
example, as can be seen in Figure 9, the distortions in the
images introduced by the wide angle lens mean that the robot
controlled along a straight line in the image will actually
move along a curved trajectory on the ground. This could
clearly be a problem if the robot had to follow straight lines.
A solution to that problem could be to explicitly represent the
apparent change in shape of the object in the transformation
of its appearance to estimate its pseudo 3D pose. This
could then be used in the control. For example, if the
ground was not flat, this would result in a shortening of the
appearance indicating that the robot is moving up or down
a slope and that its speed in the image must be adapted if a
constant speed on the ground is needed. This more complex
transformation could also be used to obtain a better match of
the object in the images, but would slow down the matching
procedure. In fact, the only failures we have experienced with



the “camera in the sky” experiment happened when the robot
was near the edges of the image, i.e., where the distortions
in appearance are maximum. This problem was especially
acute during the initial global search where the system was
not recognising the object in such situations, but not during
the tracking where the search is only local. A transformation
including some way of shortening the appearance could have
solved this problem.

Another area of possible improvement is in tackling
changes in colour of the target due to changes in lighting
conditions. Such changes could be due to overall illumination
changes, which could be tackled by using a more appropriate
colour space; we used here RGB but CIE L∗a∗b∗ could solve
that issue by not using the luminance information [21]. The
changes could also be due to shadows and/or changes in
colour cast due to different times of the day. The appearance
could be adapted in a controlled fashion to take into account
new pixel values from the successfully localised object. This
could however result in the appearance changing so much
that it would not correspond to the object anymore.

Finally, partial occlusion of the appearance could make the
tracking fail. The minimisation of the distance (2) could be
biased depending on what of the appearance is occluded and
by what. This is essentially a failure of the RGB colour space
where, for example, the distance red-black is lower than the
distance yellow-black because red has only one component
at 255 while yellow has two. This means that if a yellow
part of the appearance is occluded by black this would result
in a worse match than if it had been red occluded by black.
However, changing the colour space alone will not solve this
problem as all colour spaces share the problem of not all
colours being equally different. Occlusions should therefore
be taken into account in the metric used to compare images.
This is still an open problem.

To conclude, we have presented a method that allows
the efficient localisation and tracking of moving objects in
images acquired by a possibly moving camera where the
objects are only specified by a set of colours and their
relative spatial position that can be transformed to take into
account apparent changes of the shape of the object. We have
applied the method to two different applications that involve
two different types of transformation (scaling and rotation)
that would normally require the expensive step of image re-
sampling. Our method to compare the object’s appearance
to pixels in the current image does not lose information or
does not attempt to falsely create more since all and only
the pixels of the original appearance are used.

We have shown a good performance of controllers based
on the tracking of the objects, both in terms of spatial accu-
racy and repeatability and processing efficiency. In addition
to the experiments formally recorded and presented earlier
we have extensively tested our software by tracking a range
of objects in both applications, including following a human
being using our large outdoor robot. In all cases, similar
tracking performance was exhibited by our method.
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