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Abstract. Biological neural systems and the majority of other real-
world networks have topologies significant different from fully or ran-
domly connected structures, which are frequently applied for the defi-
nition of artificial neural networks (ANN). In this work we introduce a
deterministic process generating strongly connected directed graphs of
fractal dimension having connectivity structures very distinct compared
with random or fully connected graphs. A sufficient criterion for the gen-
eration of strongly connected directed graphs is given and we indicate
how the degree-distribution is determined. This allows a targeted gen-
eration of strongly connected directed graphs. Two methods for trans-
forming directed graphs into ANN are introduced. A discussion on the
importance of strongly connected digraphs and their fractal dimension
in the context of artificial adaptive neural systems concludes this work.

1 Introduction

Within the context of neural computation and cognitive science artificial neural
networks (ANN) are frequently utilized as the basic building blocks for large-scale
neural models in order to explore the nature of complex information processing
exploited in animals and human beings. The majority of such neural models
are based on connectivity structures which match with the classical types of
ANN, such as, Multi-layered-perceptrons, Hopfield- or Elman-networks [5, 7]. All
these network types establish a connectivity structure close to fully connected
networks. The application of fully connected networks, however, might become
crucial with respect to plausibility if they are intended to model biological sys-
tems. Fully connected ANN can hardly represent brain-like neural structures,
if, as only one example, approximately 10'' neurons in the human brain are
coordinated by “only” 10'® synapses [10].

An alternative, in particular for large-scale neural models, to overcome fully
connected neural networks is the creation of random graph structures [1]. Nev-
ertheless, random graph models do not well describe some essential properties
of real-world or biological networks, such as degree-distribution [13]. Therefore,
we argue, while modeling large-scale neural networks one must consider alterna-
tives for the projections between neural assemblies; alternatives which go beyond
random graphs and fully connected structures.



Furthermore, large-scale neural models are applied for robot control more and
more [8,16]. Such implementations on autonomous robots might be motivated
as a proof of concept as well as for targeting specific issues of embodiment [14].
However, autonomous robots have usually very limited computational resources
CPU and memory. Hence, for performance reasons it becomes important to
utilize highly connected networks established by as less connections as possible.

The objective of this paper is to introduce a deterministic method which en-
ables us to create strongly connected directed graphs [15] established by a number
of edges magnitudes smaller than in fully connected graphs / networks. The gen-
eration process is inspired by fractal sets, namely Sierpiriski carpets [12]. This
makes the resulting structures very distinct compared with random and fully
connected graphs. Due to the simplicity and deterministic character of the gen-
eration process, this method seems to be a promising alternative for the targeted
generation of directed graphs in general as well as it opens a wide field for ap-
plications in many areas of neural modeling. We will introduce two strategies
which allow alternative definitions of connectivity structures for feedforward and
recurrent neural networks.

2 Directed graphs, Sierpinski carpets, and strongly
connected digraphs of fractal dimension

In this section we demonstrate how Sierpinski carpets motivate a process for a
targeted generation of strongly connected directed graphs (digraphs), which will
lead us to the definition of digraphs of fractal dimension.

2.1 Directed graphs and Sierpinski carpets

A directed graph or a digraph is a pair G(V, E), where V is a set of vertices
(sometime also called nodes) and E is a subset of V' x V. An edge e;; € E
represents an edge from node v; to v, where e;; is the in-coming edge for v; and
the out-going for v;. In the following we also allow edges e;; and therefore, edges
can be in-coming as well as out-going edge for one and the same node. We call
the number of in-coming edges of node v; in-degree d;, (v;) and the number of
out-going edges the out-degree dyy:(v;). In a digraph the number of in-coming
edges is equal to the number of the out-going: Y7 din (v;) = > dout(v;), where
n is the number of nodes in G. A directed path between node v; and v; in G is
a sequence of edges eq,eo,...e; such that the end node of edge e; is the start
node of e(j11), 1 = 1,2...k. If there exists a directed path between each pair of
nodes in a digraph, we call it strongly connected.

The structure of a digraph G(V, E) can be represented by an adjacency ma-
trix M. Each matrix element m;; of an adjacency matrix can either be zero or
one. The element m;; is one, if and only if e;; € E.

In the following section we describe how adjacency matrixes can build a
bridge between Sierpinski carpets and digraphs as well as they give us a process
for the deterministic development of strongly connected digraphs.



Sierpinski carpets result from an iterative process where a pattern is succes-
sively used to replace specific regions in an evolving pattern. In Fig. 1 an example
is shown which illustrates this process. One starts with a given pattern, here a
square divided into 3 x 3 equal sub-squares. The sub-squares are labeled either
black or white, which creates a specific pattern. In each iteration the original
pattern is used to replace all the black labeled regions, by this pattern again.
This leads to a finer partition of the originally given pattern. Thus, after the first
iteration, when each black labeled square is replaced by the pattern, we have a
square subdivided into 9 x 9 = 81 regions, instead of the 9 regions given in the
original pattern. As we see, after 5 iterations we have a “fractal set” represented
on a square, regularly subdivided into 729 x 729 equal sub-squares. For infinity
iterations we get the Sierpinski carpet, that is a set of fractal dimension.

In this process towards a fractal set we have to distinguish between the
pattern P which is transformed into a new pattern P’ and the pattern which
determines this transformation. The latter we call mask M. In the following we
only allow masks and patterns with dimension n x n (n > 1), where n indicates
the segmentation. Obviously, a mask of segmentation S, written as Mg, applied
to a pattern P of segmentation m results in a new pattern P’ of segmentation
S-m.

We utilize this transformation process to generate digraphs simply by inter-
preting the resulting patterns as an adjacency matrix. Namely, the black labeled
sub-squares are interpreted as edges, i.e. black color represents value 1 in the
corresponding adjacency matrix, while white squares indicate the zero entries,
i.e. no edge. In this way a pattern or a mask of segmentation S is transformed
into an adjacency matrix representing a digraph of S nodes and k edges, where
k is the number of black labeled sub-squares in the pattern. Examples of 3 x 3
patterns transformed into digraphs are given in Figure 1.

With respect to adjacency matrixes we see that the Kronecker product [6]
can be applied in order the define an algorithm which is isomorph to the process
generating Sierpinski carpets:

DO = MS
Dn+1 = Dn b2 MSv

where Mg is an adjacency matrix (M (7,7) € {0;1}) of dimension S x S. In the
following we refer to this algorithm as the digraph generating process DGP.

Due to the direct interpretation of patterns and masks as adjacency matrixes
and digraphs we make use of these terms synonymously. The only important
thing here is that a mask, either written as pattern Mg or adjacency matrix Mg,
is the only seed which initializes the DGP and therefore completely determines
the resulting connectivity structure.

2.2 Masks creating strongly connected digraphs

We now ask which masks of a given segmentation S create strongly connected
digraphs. For the investigation of this question we start with the simplest form



Fig. 1. Top: An example of the first five iterations towards Sierpinski carpets. After 5
iterations the original given 3 X 3 partition is transformed into a 729 x 729 partition,
which can be interpreted as adjacency matrix for a digraph containing 729 nodes. See
text for explanation. Bottom: Examples of digraphs derived from 3 x 3 patterns.

of strongly connected digraphs: cycles, also called rings. Each strongly connected
digraph G(V, F) containing as many edges as nodes forms a cycle. Consequently
such a digraphs has no loops (also called self-connections), i.e. e;; ¢ E. Further
more, each node has only one in-coming and one out-going edge.

Assume the general case where we have a mask Mg and a digraph of seg-
mentation T represented by the adjacency matrix Dg. Both, Mg and Dy, are
digraphs forming cycles. Due to the digraph generation process we can deduce,
that Dl = DO & Msi

1. has as many nodes as edges (T - S),
2. only contains nodes with one out-going and one-incoming edge, and
3. has no node with a self-connection (loop).

Therefore, Dy forms either a cycle or is fallen apart into “sub-cycles”. In the
latter case D; wouldn’t be strongly connected anymore.

Whether D, is a cycle or not is actually determined by the number of nodes
in Mg and Dy, in other words it depends on their segmentation. The cycles which
Mg and Dy are forming can be represented by the corresponding sequence of
nodes. Taking the example shown in Fig. 2 we get for the following sequence for
Doi

(17) = (37) = (2°) = (47) = (17),

for Mg we have:
1) — (37— (27) = (17),
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Fig. 2. Example of a process where a cycle with 4 nodes (Dy) is transformed by a mask
(Ms, cycle with 3 nodes) into a new cycle of 12 nodes, D;. See text for details.

and D is represented by:
(17,27) — (3",17) — (27,3%) — (47,27) — (1", 1%) — (3",37) — ...

In order to relate these two sequences to the sequence of the resulting graph
Dy we apply a numbering for D; which somehow preserves the numbering of
Dy and Mg. Fig. 2 shows how this can be achieved. Each node in D; is now
represented by a number of two components (a*,bT). Starting with an arbitrary
node (a},b]) we can now write down the sequence of nodes forming a directed
path in the following general form:

(a1,b) = (a3,b3) — ... = (ag, b)) — (af,b]).

Note, due to the definition of DGP each node in Dy can have only one successor,
which is not the node itself. Therefore, we can conclude: if £ = S - T then we
have a cycle formed by ST nodes, which is the number of nodes in D;. Thus, it
would follow: D; is still strongly connected. On the other hand, if k£ < S-T then
D, consist of sub-graphs forming cycles and therefore D; isn’t neither strongly
connected nor connected at all.

We see, it is the value of k£ which indicates whether or not the result is
strongly connected. However, the crucial point for calculating k is to understand
how the two sequences a; and b are determined by Dy and Mg. In fact, the
sequence for a} (first component of the D; numbering) is exactly the same of
Dy. No matter how the sequence of D; actually looks like, considering only the

a*-sequence, we see the same sequence as for Dy:
(1*7b2L) - (3*7[);-1) - (2*7b2L+2) - (4*7[);-3) - (1*7b2L+4) .

The same holds for the b; -sequence (second component of the D; numbering).
It is determined by the “cycle sequence” of Mg:

(af,17) = (af41,37) = (a2, 27) = (a745,17) — ..



Combining these two observation we get: £ = S - T if, and only if S is not divisor
of T or vice versa. In other words D; remains strongly connected. While for
the other case, i.e. S is divisor of T or vice versa, then we get k = max(S,T),
meaning D consist of min(S,T) sub-graphs with & nodes forming separated
cycles and therefore D; isn’t connected at all.

This result tells us that DGP doesn’t create strongly connected digraphs if
it is initialized with a cycle, because Dy and Mg have the same segmentation
per definition.

However, examining the same argumentation we see that by extending Mg
with a single loop (i.e. one self-connection) all separated sub-cycles will be con-
nected. An additional self-connection operates like a junction connecting all sep-
arated sub-cycles. In this case the resulting digraph D; remains strongly con-
nected. Further more, all resulting digraphs D,, (n > 1) would also be strongly
connected, because, due to the definition of DGP, the given mask (with its self-
connection) is always applied to a strongly connected digraph. Speaking pre-
cisely, the mask is always applied to a digraph containing a sub-graph forming
a cycle which involves all nodes.

At this point we are able to formulate a sufficient criterion which guarantees
strongly connected graphs for the DGP: If Mg represents a cycle with at least
one self-connection then all the resulting digraphs D,, are strongly connected. In
the following we call such masks complete.

We also see that each mask containing a complete mask as sub-structure will
generate strongly connected digraphs as well.

2.3 Digraphs of fractal dimension and their degree distribution

The generation of strongly connected digraphs therefore has always to start with
a mask Mg containing at least S + 1 edges. The maximal number of edges in
Mg is S? and it is easy to see that such a mask generates only fully connected
digraphs. Hence, the non-trivial cases of connected graphs are generated by
masks with n edges, where S < n < S2. Interestingly enough, masks with this
number of labeled segments generate Sierpinski carpets of fractal dimensions
dy between 1 and 2 [12], since: dy = fggég;, from which follows: 1 < dy < 2.
Therefore, we say a fractal digraph or a digraph of fractal dimension d ¢ is defined
as a strongly connected digraph resulting from a mask of fractal dimension dy.

The degree distribution is an important property in order to classify net-
works. Due to the deterministic nature of the DGP the mask determines this
distribution in the following way. Be Mg the adjacency matrix. Out- and in-
degree for each node in the digraph are directly given by the sums over the
entries in the column or row of Mg:

S S
din(vn) :ZMS(nvj)v dout(Un) :ZMS(jan)v 1<n<6S.
j=1 j=1

Considering only the in-degree we can calculate the degree for each node in
digraph D; (i.e. resulting digraph after i iterations of DGP initialized with Mg
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Fig. 3. Two ways of transforming a given digraph of fractal dimension (left) into a
artificial neural networks. First, the digraph is directly interpreted as ANN with recur-
rent neural connections (middle). Second, the adjacency matrix as a description of a
feed-forward network (right).

and i > 0) as follows:
(din (V1) + din (v2) + . . . + din(vs)) T

Solving this equation in a symbolic manner we get S**! products each repre-
senting the in-degree of one node in D;. The distribution of these product values
is the actual distribution of the in-degrees in D;.

As an example let us assume we have a complete mask where only one node
has an in- and out-degree greater 1, for all the other nodes in- and out-degree is
one. The resulting digraphs will have a degree distribution characteristic of scale-
free networks. Thus, the majority of nodes have very less in-coming and out-going
edges but a few nodes (usually called hubs) have degrees magnitudes larger then
the average [2]. On the other hand we can create digraphs out of masks, where
each node has the same number of in- and out-degree. The resulting digraphs
are going to have equal in- and out-degree as well. Due to this relation of the
degree distribution between mask and resulting digraphs one is able to generate
networks of specific degree-distribution.

3 From fractal digraphs to artificial neural networks

There are in principle two strategies to turn a digraph of fractal dimension into
an artificial neural network (see Figure 3). First, the adjacency matrix / the
digraph can directly be interpreted as a neural network containing recurrences
of any kind. Second, the adjacency matrix can purely be seen as the connec-
tions between two separated layers of neurons: input and output layer. Both
layers contain the same number of neurons. In this way a feed-forward struc-
ture between two neuron layers is created. One can also think about a chain of
feedforward connections where each projection layer might be based on different
digraphs of fractal dimension.

The recurrent case might be interesting as method for the generation of
reservoirs of non-linear dynamics. Based on random graphs, this has been done
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Fig. 4. Three examples of feedforward connections between two neural layers of an
ANN. The left shows a non-degenerated matching between input and output signal.
Each neuron in the left layer does only activate one neuron in the right layer. Due to the
introduced representation this can be described as a cycle. On the right a completely
degenerated matching. Each neuron on the left activates each neuron on the right. This

is represented by a fully connected digraph. In between a degenerated matching formed
by a digraph of fractal dimension.

in the echo-state [9] and liquid-state-machine [11] approach. The intention of
using digraphs of fractal dimension as dynamical reservoir is one reason for us to
aim for strongly connected digraphs only. The dynamics of echo-state and liquid-
state-machines rely on the recurrences. If an underlying digraph would be only
connected (i.e. not strongly connected) neurons can emerge which only project
signals out of the reservoir or which would feed constant signals into it. This is
obviously not the intention of a dynamical reservoir for both approaches. In the
worst case a connected digraph could have no recurrences at all and therefore no
complex dynamics would emerge. Only strongly connected digraphs guarantee
recurrent neural structures involving all components of the network.

For feedforward structures the use of strongly connected digraphs is also
essential. Strongly connected digraphs guarantee that a signal feed into an arbi-
trary node can be propagated through several layers to any other node. Assume a
multi-layered network structure and each projection between the layers is based
on the same digraph of fractal dimension. In this case we know there must exist
a finite number of layers between the input and output layer which guarantees
that each neuron of the input layer has at least one path to each neuron in the
output layer. In theory the number of layers cannot be larger than the number
of nodes in the underlying strongly connected digraph. It is not shown here,
but simulations indicate that the mean value of the shortest path scales with
log(n) (n number of nodes). Hence, the number for layers supporting a signal
flow through all network components scales with log either.

ANN with feedforward structures based on fractal digraphs might become an
object of investigation within the Neural Darwinism approach to the function



of the brain introduced, developed and promoted by Edelman [3]. According
to this approach, an essential element for the brain-function is the matching
between specific signal configurations and neural groups, which respond in a
specific manner. Obviously, this matching must be sufficient specific in order
to allow distinction among different signals, called recognition. However, more
important within the Neural Darwinism approach is the argumentation, that
such a matching must be degenerated. The assumption is, that there is more
than one way to recognize a signal, that is, one signal configuration activates
different neural groups as well as one neural group can be activated by differ-
ent signal configurations. Two extremes of degeneration can be distinguished: a
non-degenerated (unique) matching on one side and the completely degenerated
matching on the other side. The Neural Darwinism approach claims that the
variability of brain functions occurs within a neural organization is, somehow,
located between these two extremes of non- and complete degeneration.

It is interesting to see that the introduced digraphs of fractal dimension
create feedforward networks between these two extremes. The examples shown
in Figure 4 are only simple schemas. However, it is not hard to imagine that
the fractal dimension and degree distribution of a digraph determine the grad of
degeneration. Therefore, we argue, that within the Neural Darwinism approach
the introduced digraphs of fractal dimension might be a promising substrate for
future research in order to model brain-like mechanisms of adaptation which
take into account not only weight dynamics but also specific neural connectivity
structures.

4 Conclusion

In this work we have introduced a process, called DGP, which allows the deter-
ministic generation of strongly connected digraphs. This process is inspired by
Sierpinski carpets. In order to apply this process for the development of con-
nectivity structures for recurrent and feedforward structures of ANN we have
formulated a sufficient criterion which guarantees the generation of strongly con-
nected digraphs. The resulting digraphs are called digraphs of fractal dimension.
Furthermore, we have shown how the degree-distribution of the resulting
digraphs is determined by the initial structure. This allows us a targeted gener-
ation of strongly connected digraphs with respect to the size (number of nodes)
and the degree distribution of the network. We have indicated that strongly con-
nected digraphs with scale-free network topologies can be expected to emerge
for specific initializations. Thus, the introduced process is an efficient tool for
the generation of a wide variety of connectivity structures for ANN establishing
interactions beyond those provided by fully connected or random graphs.
Within the context of Neural Darwinism, we have highlighted the impor-
tance of ANN based on digraphs of fractal dimensions for the implementation
of adaptive processes. Due to the fractal dimension, the resulting strongly con-
nected networks are established by a number of edges magnitudes smaller then
given in fully connected topologies. Hence, graphs of fractal dimension support



the instantiation of highly connected ANN with much less computational costs.
Therefore, the DGP might be an efficient tool for the instantiation of ANN on
autonomous robot systems having limited computational resources. In addition
to this, fractal digraphs within the context of cognitive robotics and “brain-based
devices” might be become a promising method for a systematic investigation and
modelling of biological neural systems and “their combinations of interactions
that we don’t fully understand yet” [4]. Our future work will be focused on this
issue.
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