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Webpage Classification with ACO-Enhanced
Fuzzy-Rough Feature Selection

Richard Jensen and Qiang Shen

Department of Computer Science, The University of Wales, Aberystwyth
{rkj, qqs}@aber.ac.uk

Abstract. Due to the explosive growth of electronically stored informa-
tion, automatic methods must be developed to aid users in maintaining
and using this abundance of information effectively. In particular, the
sheer volume of redundancy present must be dealt with, leaving only the
information-rich data to be processed. This paper presents an approach,
based on an integrated use of fuzzy-rough sets and Ant Colony Opti-
mization (ACO), to greatly reduce this data redundancy. The work is
applied to the problem of webpage categorization, considerably reducing
dimensionality with minimal loss of information.

1 Introduction

The World Wide Web (WWW) is an information resource, whose full potential
may not be realised unless its content is adequately organised and described.
However, due to the immense size and dynamicity of the web, manual catego-
rization is not a practical solution to this problem. There is a clear need for
automated classification of web content.

Many classification problems involve high dimensional descriptions of input
features. It is therefore not surprising that much research has been done on
dimensionality reduction [4]. However, existing work tends to destroy the un-
derlying semantics of the features after reduction (e.g. transformation-based ap-
proaches) or require additional information about the given data set for thresh-
olding (e.g. entropy-based approaches). A technique that can reduce dimension-
ality using information contained within the data set and preserving the meaning
of the features is clearly desirable. Rough set theory (RST) can be used as such a
tool to discover data dependencies and reduce the number of features contained
in a dataset by purely structural methods [9]. Given a dataset with discretized
attribute values, it is possible to find a subset (termed a reduct) of the original
attributes using RST that are the most informative; all other attributes can be
removed from the dataset with minimal information loss.

Although this is useful, it is more often the case that data is real-valued, and this
is where traditional rough set theory encounters a problem. In the theory, it is not
possible to saywhether two attribute values are similar and to what extent they are
the same; for example, two close values may only differ as a result of noise, but in
RST they are considered to be as different as two values of a different order of mag-
nitude. It is, therefore, desirable to develop these techniques to provide the means
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of data reduction for crisp and real-value attributed datasets which utilises the ex-
tent towhich values are similar.This canbe achieved through the use of fuzzy-rough
sets. Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness
(for fuzzy sets [17]) and indiscernibility (for rough sets [9]), both of which occur as
a result of imprecision, incompleteness and/or uncertainty in knowledge [5].

Ant Colony Optimization (ACO) techniques are based on the behaviour of real
ant colonies used to solve discrete optimization problems [1]. These have been
successfully applied to a large number of difficult combinatorial problems such
as the quadratic assignment and the traveling salesman problems. This method
is particularly attractive for feature selection as there seems to be no heuristic
that can guide search to the optimal minimal subset (of features) every time.
Additionally, it can be the case that ants discover the best feature combinations
as they proceed throughout the search space. This paper investigates how ant
colony optimization may be applied to the difficult problem of finding optimal
feature subsets, using fuzzy-rough sets, for the classification of web content.

The rest of this paper is structured as follows. The second section describes
the theory of fuzzy-rough set feature selection. Section 3 introduces the main
concepts in ACO and details how this may be applied to the problem of feature
selection in general, and fuzzy-rough feature selection in particular. The fourth
section describes the system components and experimentation carried out for
the purposes of web content classification. Section 5 concludes the paper, and
proposes further work in this area.

2 Fuzzy-Rough Feature Selection

The reliance on discrete data for the successful operation of rough set-based
feature selection methods such as [2,6,16] can be seen as a significant drawback
of the approach. Indeed, this requirement implies an objectivity in the data that
is simply not present. For example, in a medical dataset, values such as Yes
or No cannot be considered objective for a Headache attribute as it may not
be straightforward to decide whether a person has a headache or not to a high
degree of accuracy. Again, consider an attribute Blood Pressure. In the real world,
this is a real-valued measurement but for the purposes of rough set theory must
be discretised into a small set of labels such as Normal, High, etc. Subjective
judgments are required for establishing boundaries for objective measurements.

A better way of handling this problem is the use of fuzzy-rough sets [8]. Sub-
jective judgments are not entirely removed as fuzzy set membership functions
still need to be defined. However, the method offers a high degree of flexibil-
ity when dealing with real-valued data, enabling the vagueness and imprecision
present to be modelled effectively. By employing fuzzy-rough sets, it is possible
to use this information to better guide feature selection.

2.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to rough sets, fuzzy
equivalence classes are central to the fuzzy-rough set approach [5]. For typical
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applications, this means that the decision values and the conditional values may
all be fuzzy. The family of normal fuzzy sets produced by a fuzzy partitioning
of the universe of discourse can play the role of fuzzy equivalence classes [5].

2.2 Fuzzy Lower and Upper Approximations

The fuzzy lower and upper approximations are fuzzy extensions of their crisp
counterparts. Informally, in crisp rough set theory, the lower approximation of a
set contains those objects that belong to it with certainty. The upper approxima-
tion of a set contains the objects that possibly belong. The definitions given in
[5] diverge a little from the crisp upper and lower approximations, as the mem-
berships of individual objects to the approximations are not explicitly available.
As a result of this, the fuzzy lower and upper approximations are redefined as:

μPX(x) = sup
F∈U/P

min(μF (x), inf
y∈U

max{1 − μF (y), μX(y)}) (1)

μP X(x) = sup
F∈U/P

min(μF (x), sup
y∈U

min{μF (y), μX(y)}) (2)

The tuple < PX, PX > is called a fuzzy-rough set.
For an individual feature, a, the partition of the universe by {a} (denoted

U/IND({a})) is considered to be the set of those fuzzy equivalence classes for
that feature. For subsets of feature, the following is used:

U/P = ⊗{a ∈ P : U/IND({a})} (3)

Each set in U/P denotes an equivalence class. The extent to which an ob-
ject belongs to such an equivalence class is therefore calculated by using the
conjunction of constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

μF1∩...∩Fn(x) = min(μF1(x), μF2 (x), ..., μFn(x)) (4)

2.3 Fuzzy-Rough Reduction Process

Fuzzy-Rough Feature Selection (FRFS) [7] builds on the notion of the fuzzy lower
approximation to enable reduction of datasets containing real-valued features.
The process becomes identical to the crisp approach when dealing with nominal
well-defined features.

The crisp positive region in the standard RST is defined as the union of the
lower approximations. By the extension principle, the membership of an object
x ∈ U, belonging to the fuzzy positive region can be defined by

μPOSP (Q)(x) = sup
X∈U/Q

μPX(x) (5)

Using the definition of the fuzzy positive region, a new dependency function
between a set of features Q and another set P can be defined as follows:

γ′
P (Q) =

|μPOSP (Q)(x)|
|U| =

∑
x∈U

μPOSP (Q)(x)
|U| (6)
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As with crisp rough sets, the dependency of Q on P is the proportion of
objects that are discernible out of the entire dataset. In the present approach,
this corresponds to determining the fuzzy cardinality of μPOSP (Q)(x) divided by
the total number of objects in the universe.

A new QuickReduct algorithm, based on the crisp version [2], has been
developed [7]. It employs the new dependency function γ′ to choose which fea-
tures to add to the current reduct candidate. The algorithm terminates when
the addition of any remaining feature does not increase the dependency.

Conventional hill-climbing approaches to feature selection often fail to find
maximal data reductions or minimal reducts. Some guiding heuristics are better
than others for this, but as no perfect heuristic exists there can be no guarantee
of optimality. When maximal data reductions are required, other search mecha-
nisms must be employed. Although these methods also cannot ensure optimality,
they provide a means by which the best feature subsets might be found. This
motivates the development of feature selection based on ant colony optimization.

3 Ant Colony Optimization-Based Feature Selection

3.1 Swarm Intelligence

Swarm Intelligence (SI) is the property of a system whereby the collective behav-
iours of simple agents interacting locally with their environment cause coherent
functional global patterns to emerge [1]. SI provides a basis with which it is
possible to explore collective (or distributed) problem solving without central-
ized control or the provision of a global model. For example, ants are capable
of finding the shortest route between a food source and their nest without the
use of visual information and hence possess no global world model, adapting to
changes in the environment. Those SI techniques based on the behaviour of ant
colonies used to solve discrete optimization problems are classed as Ant Colony
Optimization (ACO) techniques [1].

The ability of real ants to find shortest routes is mainly due to their depositing
of pheromone as they travel; each ant probabilistically prefers to follow a direc-
tion rich in this chemical. The pheromone decays over time, resulting in much
less pheromone on less popular paths. Given that over time the shortest route
will have the higher rate of ant traversal, this path will be reinforced and the
others diminished until all ants follow the same, shortest path (the “system” has
converged to a single solution). It is also possible that there are many equally
short paths.

ACO is particularly attractive for feature selection as there seems to be no
heuristic that can guide search to the optimal minimal subset every time. Addi-
tionally, it can be the case that ants discover the best feature combinations as
they proceed throughout the search space.

3.2 Feature Selection

The feature selection task may be reformulated into an ACO-suitable problem.
ACO requires a problem to be represented as a graph - here nodes represent
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features, with the edges between them denoting the choice of the next feature.
The search for the optimal feature subset is then an ant traversal through the
graph where a minimum number of nodes are visited that satisfies the traversal
stopping criterion.

A suitable heuristic desirability of traversing between features could be any
subset evaluation function - for example, an entropy-based measure [10] or the
fuzzy-rough set dependency measure. Depending on how optimality is defined
for the particular application, the pheromone may be updated accordingly. For
instance, subset minimality and “goodness” are two key factors so the pheromone
update should be proportional to “goodness” and inversely proportional to size.
How “goodness” is determined will also depend on the application. In some cases,
this may be a heuristic evaluation of the subset, in others it may be based on
the resulting classification accuracy of a classifier produced using the subset.

The heuristic desirability and pheromone factors are combined to form the
so-called probabilistic transition rule, denoting the probability of an ant k at
feature i choosing to move to feature j at time t:

pk
ij(t) =

[τij(t)]α.[ηij ]β∑
l∈Jk

i
[τil(t)]α.[ηil]β

(7)

where Jk
i is the set of ant k’s unvisited features, ηij is the heuristic desirability of

choosing feature j when at feature i and τij(t) is the amount of virtual pheromone
on edge (i, j).

Two types of information are available to ants during their graph traver-
sal, local and global, controlled by the parameters β and α respectively. Local
information is obtained through a problem-specific heuristic measure. For the
purposes of this paper, the fuzzy-rough dependency measure defined in equa-
tion (6) is used for this. The extent to which the measure influences an ant’s
decision to traverse an edge is controlled by the parameter β. This will guide
ants towards paths that are likely to result in good solutions. Global knowledge
is also available to ants through the deposition of artificial pheromone on the
graph edges by their predecessors over time. The impact of this knowledge on
an ant’s traversal decision is determined by the parameter α. Good paths dis-
covered by past ants will have a higher amount of associated pheromone. How
much pheromone is deposited, and when, is dependent on the characteristics of
the problem. No other local or global knowledge is available to the ants in the
standard ACO model, though the inclusion of such information by extending the
ACO framework has been investigated [1]. The choice of α and β is determined
experimentally.

Selection Process. The ACO feature selection process begins with the gen-
eration of a number of ants, k, which are then placed randomly on the graph
(i.e. each ant starts with one random feature). Alternatively, the number of ants
to place on the graph may be set equal to the number of features within the
data; each ant starts path construction at a different feature. From these initial
positions, they traverse edges probabilistically until a traversal stopping crite-
rion is satisfied. The resulting subsets are gathered and then evaluated. If an
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optimal subset has been found or the algorithm has executed a certain number
of times, then the process halts and outputs the best feature subset encountered.
If neither condition holds, then the pheromone is updated, a new set of ants are
created and the process iterates once more.

Complexity Analysis. The time complexity of the ant-based approach to
feature selection is O(IAk), where I is the number of iterations, A the number
of original features, and k the number of ants. In the worst case, each ant selects
all the features. As the heuristic is evaluated after each feature is added to the
reduct candidate, this will result in A evaluations per ant. After one iteration in
this scenario, Ak evaluations will have been performed. After I iterations, the
heuristic will be evaluated IAk times.

Pheromone Update. Depending on how optimality is defined for the par-
ticular application, the pheromone may be updated accordingly. To tailor this
mechanism to find fuzzy-rough set reducts, it is necessary to use the fuzzy-rough
dependency measure as the stopping criterion. This means that an ant will stop
building its feature subset when the dependency of the subset reaches the max-
imum for the dataset. The pheromone on each edge is then updated according
to the following formula:

τij(t + 1) = (1 − ρ).τij(t) + Δτij(t) (8)

where

Δτij(t) =
n∑

k=1

(γ′(Sk)/|Sk|) (9)

This is the case if the edge (i, j) has been traversed; Δτij(t) is 0 otherwise. The
value ρ is a decay constant used to simulate the evaporation of the pheromone,
Sk is the feature subset found by ant k. The pheromone is updated according
to both the fuzzy-rough measure of the “goodness” of the ant’s feature subset
(γ′) and the size of the subset itself. By this definition, all ants update the
pheromone. Alternative strategies may be used for this, such as allowing only
the ants with the currently best feature subsets to proportionally increase the
pheromone.

To show the utility of fuzzy-rough feature selection and to compare the hill-
climbing and ant-based fuzzy-rough approaches, the two methods are applied as
pre-processors within a webpage classification system. Both methods preserve
the semantics of the surviving features after removing redundant ones. This is
essential in satisfying the requirement of user readability of the generated knowl-
edge model, as well as ensuring the understandability of the pattern classification
process.

4 Web Classification

There are an estimated 1 billion webpages available on the WWW with around
1.5 million webpages being added every day. The task to find a particular web-
page, which satisfies a user’s requirements by traversing hyper-links, is very
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difficult. To aid this process, many web directories have been developed - some
rely on manual categorization whilst others make decisions automatically. How-
ever, as webpage content is vast and dynamic, manual categorization is becoming
increasingly impractical. Automatic web content categorization is therefore re-
quired to deal with these problems.

Information can be structured within a webpage that may indicate a relatively
higher or lower importance of the contained text. For example, terms appearing
within a <TITLE> tag would be expected to be more informative than the
majority of those appearing within the document body at large. Because of
this, keywords are weighted not only according to their statistical occurrence
but also to their location within the document itself. These weights are almost
always real-valued, which can be a problem for most feature selectors unless
data discretization takes place (a source of information loss). This motivates the
application of FRFS techniques to this domain.

Initial investigations have been carried out in this area [7], however these
employed simplistic methods for classification - the vector space model and the
boolean inexact model. The work presented here investigates the utility of more
powerful approaches for this task, with the novel use of ACO-assisted feature
selection.

4.1 System Overview

A key issue in the design of the system was that of modularity; it should be able
to integrate with existing (or new) techniques. The current implementations
allow this flexibility by dividing the overall process into several independent
sub-modules:

• Keyword Acquisition. From the collected webpages, keywords/terms are ex-
tracted and weighted according to their perceived importance, resulting in
a new dataset of weight-term pairs. These weights are almost always real-
valued, hence the problem serves well to test the present work. For this, the
TF-IDF metric [12] is used.

• Keyword Selection. As the newly generated datasets are too large, mainly
due to keyword redundancy, a dimensionality reduction step is carried out
using the techniques described previously.

• Keyword Filtering. Employed only in testing, this simple module filters the
keywords obtained during acquisition, using the reduct generated in the key-
word selection module.

• Classification. This final module uses the reduced dataset to perform the
actual categorization of the test data. Four classifiers were used for compar-
ison, namely C4.5 [10], JRip [3], PART [13] and a fuzzy rule inducer, QSBA
[11]. Both JRip and PART are available from [14].

C4.5 creates decision trees by choosing the most informative features and
recursively partitioning the data into subtables based on their values. Each
node in the tree represents a feature with branches from a node represent-
ing the alternative values this feature can take according to the current
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subtable. Partitioning stops when all data items in the subtable have the
same classification. A leaf node is then created, and this classification as-
signed.

JRip learns propositional rules by repeatedly growing rules and pruning
them. During the growth phase, antecedents are added greedily until a termi-
nation condition is satisfied. Antecedents are then pruned in the next phase
subject to a pruning metric. Once the ruleset is generated, a further opti-
mization is performed where rules are evaluated and deleted based on their
performance on randomized data.

PART generates rules by means of repeatedly creating partial decision
trees from data. The algorithm adopts a separate-and-conquer strategy in
that it removes instances covered by the current ruleset during processing.
Essentially, a rule is created by building a pruned tree for the current set of
instances; the leaf with the highest coverage is made into a rule.

QSBA induces fuzzy rules by calculating the fuzzy subsethood of lin-
guistic terms and the corresponding decision variables. These values are also
weighted by the use of fuzzy quantifiers. This method utilises the same fuzzy
sets as those involved in the fuzzy-rough reduction methods.

4.2 Experimentation and Results

Initially, datasets were generated from large textual corpora collected from Ya-
hoo [15] and separated randomly into training and testing sets, maintaining class
distributions. Each dataset is a collection of web documents. Five classification
categories were used, namely Art & Humanity, Entertainment, Computers &
Internet, Health, Business & Economy. A total of 280 web sites were collected
from Yahoo categories and classified into these categories. From this collection
of data, the keywords, weights and corresponding classifications were collated
into a single dataset.

Table 1 shows the resulting degree of dimensionality reduction, performed via
selecting informative keywords, by the standard fuzzy-rough method (FRFS)
and the ACO-based approach (AntFRFS). AntFRFS is run several times, and
the results averaged both for classification accuracy and number of features
selected. It can be seen that both methods drastically reduce the number of
original features. AntFRFS performs the highest degree of reduction, with an
average of 14.1 features occurring in the reducts it locates.

Table 1. Extent of feature reduction

Original FRFS AntFRFS
2557 17 14.10

To see the effect of dimensionality reduction on classification accuracy, the
system was tested on the original training data and a test dataset. The re-
sults are summarised in table 2. Clearly, the fuzzy-rough methods exhibit better
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resultant accuracies for the test data than the unreduced method for all classi-
fiers. This demonstrates that feature selection using either FRFS or AntFRFS
can greatly aid classification tasks. It is of additional benefit to rule inducers
as the induction time is decreased and the generated rules involve significantly
fewer features. AntFRFS improves on FRFS in terms of the size of subsets found
and resulting testing accuracy for QSBA and PART, but not for C4.5 and JRip.
The challenging nature of this particular task can be seen in the overall low
accuracies produced by the classifiers (perhaps due to overfitting), though im-
proved somewhat after feature selection. Both fuzzy-rough approaches require
a reasonable fuzzification of the input data, whilst the fuzzy sets are herein
generated by simple statistical analysis of the dataset with no attempt made
at optimizing these sets. A fine-tuned fuzzification will certainly improve the
performance of FRFS-based systems. Finally, it is worth noting that the classi-
fications were checked automatically. Many webpages can be classified to more
than one category, however only the designated category is considered to be
correct here.

Table 2. Classification performance

Original FRFS AntFRFS
Classifier Train Test Train Test Train Test

C4.5 95.89 44.74 86.30 57.89 81.27 48.39
QSBA 100.0 39.47 82.19 46.05 69.86 50.44

JRip 72.60 56.58 78.08 60.53 64.84 51.75
PART 95.89 42.11 86.30 48.68 82.65 48.83

5 Conclusion

This paper has presented an ACO-based method for feature selection, with par-
ticular emphasis on fuzzy-rough feature selection. This novel approach has been
applied to aid classification of web content, with very promising results. In all
experimental studies there has been no attempt to optimize the fuzzifications or
the classifiers employed. It can be expected that the results obtained with such
optimization would be even better than those already observed.

There are many issues to be explored in the area of ACO-based feature selec-
tion. The impact of parameter settings should be investigated - how the values
of α, β and others influence the search process. Other important factors to be
considered include how the pheromone is updated and how it decays. There is
also the possibility of using different static heuristic measures to determine the
desirability of edges. A further extension would be the use of dynamic heuris-
tic measures which would change over the course of feature selection to provide
more search information. Future work will inlcude experimental investigations
comparing current rough set-based methods (such as [6,16]) with the proposed
approach on benchmark data.
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