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Tolerance-based and Fuzzy-Rough Feature Selection

Richard Jensen and Qiang Shen

Abstract— One of the main obstacles facing the application
of computational intelligence technologies in pattern recognition
(and indeed in many other tasks) is that of dataset dimensional-
ity. To enable pattern classifiers to be effective, a dimensionality
minimization step is usually carried out beforehand. Rough set
theory has been successfully applied for this as it requires only
the supplied data and no other information; most other methods
require supplementary knowledge. However, the main limitation
of traditional rough set-based selection in the literature is
the restrictive requirement that all data is discrete; it is not
possible to consider real-valued or noisy data. This has been
tackled previously via the use of discretization methods, but
may result in information loss. This paper investigates two
approaches based on rough set extensions, namely fuzzy-rough
and tolerance rough sets, that address these problems and retain
dataset semantics. The methods are compared experimentally
and utilized for the task of forensic glass fragment identification.

I. I NTRODUCTION

Feature selection [5] addresses the problem of selecting
those input features that are most predictive of a given
outcome; a problem encountered in many areas of compu-
tational intelligence. Unlike other dimensionality reduction
methods, feature selectors preserve the original meaning
of the features after reduction. This has found application
in tasks that involve datasets containing huge numbers of
features (in the order of tens of thousands) which, for some
learning algorithms, might be impossible to process further.
Recent examples include text processing and web content
classification [8].

There are often many features involved, and combina-
torially large numbers of feature combinations, to select
from. Note that the number of feature subset combinations
with m features from a collection ofN total features is
N !/[m!(N − m)!]. It might be expected that the inclusion
of an increasing number of features would increase the
likelihood of including enough information to distinguish
between classes. Unfortunately, this is not necessarily true if
the size of the training dataset does not also increase rapidly
with each additional feature included. A high-dimensional
dataset increases the chances that a learning algorithm will
find spurious patterns that are not valid in general. Most
techniques employ some degree of reduction in order to
cope with large amounts of data, so an efficient and effective
reduction method is required.

A technique that can reduce dimensionality using infor-
mation contained within the dataset and that preserves the
meaning of the features (i.e. semantics-preserving) is clearly
desirable. Rough set theory (RST) [10] can be used as such a
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tool to discover data dependencies and to reduce the number
of features contained in a dataset using the data alone.
However, traditional RST methods are generally incapable of
handling real-valued data directly. Previously, discretization
methods were applied beforehand in order to transform the
data into discrete values, but this may result in information
loss. As a result of this, several extensions to the original
theory have been proposed. Two significant developments
in this area have been fuzzy-rough sets [6] and similarity-
or tolerance-based rough set theory [15]. It is, therefore,
desirable to develop techniques to provide the means of data
reduction for crisp and real-value attributed datasets which
utilize this additional information.

This paper presents two methods for feature selection
that employ rough set extensions for this purpose. By using
tolerance relations or fuzzy equivalence classes, the strict
requirement of complete equivalence can be relaxed, and a
more flexible approach to subset selection can be developed.
The rest of the paper is structured as follows. Section 2
introduces the main theoretical concepts behind crisp and
fuzzy-rough set-based feature selection. Section 3 presents
the tolerance rough set-based selection method with a worked
example. The experimentation carried out is detailed in the
fourth section, and the approaches compared with respect to
reduct size, time taken and resulting classification accuracy.
Their utility is also evaluated with respect to a challenging
task - glass fragment identification. The paper is concluded
in section 5.

II. A PPROACHES

Rough set theory [10] is an extension of conventional set
theory that supports approximations in decision making. The
rough set itself is the approximation of a vague concept
(set) by a pair of precise concepts, called lower and upper
approximations, which are a classification of the domain of
interest into disjoint categories. The lower approximation is
a description of the domain objects which are known with
certainty to belong to the subset of interest, whereas the upper
approximation is a description of the objects which possibly
belong to the subset.

A. Rough Set Attribute Reduction

Central to Rough Set Attribute Reduction (RSAR) [3], [7]
is the concept of indiscernibility. LetI = (U, A) be an
information system, whereU is a non-empty set of finite
objects (the universe) andA is a non-empty finite set of
attributes such thata : U → Va for every a ∈ A. Va is the
set of values that attributea may take. With anyP ⊆ A there
is an associated equivalence relationIND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)



The partition ofU, generated byIND(P) is denotedU/IND(P)
(or U/P) and can be calculated as follows:

U/IND(P ) = ⊗{a ∈ P | U/IND({a})}, (2)

where

A⊗B = {X ∩ Y | ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes fromP . The equivalence classes of theP -
indiscernibility relation are denoted [x]P .

Let X ⊆ U. X can be approximated using only the
information contained withinP by constructing the P-lower
and P-upperapproximations ofX:

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩X 6= ∅} (5)

Let P andQ be equivalence relations overU, then the positive
region is defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

The positive region contains all objects ofU that can be
classified to classes ofU/Q using the information in attributes
P. Using this definition of the positive region, the rough set
degree of dependency of a set of attributesQ on a set of
attributesP is defined in the following way:

For P, Q⊆ A, it is said thatQ depends onP in a degree
k (0 ≤ k ≤ 1), denotedP ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U|
(7)

The reduction of attributes is achieved by comparing
equivalence relations generated by sets of attributes. At-
tributes are removed so that the reduced set provides the
same predictive capability of the set of decision features
as the original. A reduct, R, is defined as a subset of
minimal cardinality of the conditional attribute setC such
that γR(D) = γC(D). The QUICKREDUCT algorithm given
in [3], attempts to calculate a reduct without exhaustively
generating all possible subsets. It starts off with an empty set
and adds in turn, one at a time, those attributes that result in
the greatest increase in the rough set dependency metric, until
this produces its maximum possible value for the dataset.

B. Fuzzy-Rough Feature Selection

The reliance on discrete data for the successful operation
of rough set-based feature selection methods such as [3] and
expanded in [11], [12] can be seen as a significant drawback
of the approach. Indeed, this requirement implies an objectiv-
ity in the data that is simply not present in many real problem
domains. For example, in a medical dataset, the featureBlood
Pressureis a real-valued measurement but for the purposes of
rough set theory must be discretized into a small set of labels
such asNormal, High, etc. Subjective judgments are required
for establishing boundaries for objective measurements.

A better way of handling this problem is the use of fuzzy-
rough sets, as envisaged in [7]. Subjective judgments are not
entirely removed as fuzzy set membership functions still need
to be defined. However, the method offers a high degree of
flexibility when dealing with real-valued data, enabling the
vagueness and imprecision present to be modelled effectively.
By employing fuzzy-rough sets, it is possible to use this
information to better guide feature selection.

1) Fuzzy Equivalence Classes:In the same way that crisp
equivalence classes are central to rough sets,fuzzyequiv-
alence classes are central to the fuzzy-rough set approach
[6]. For pattern classification applications, this means that
the class values and the feature values may all be fuzzy. In
particular, the family of normal fuzzy sets produced by a
fuzzy partitioning of the universe of discourse can play the
role of fuzzy equivalence classes.

2) Fuzzy Lower and Upper Approximations:The fuzzy
lower and upper approximations are fuzzy extensions of their
crisp counterparts, and can be redefined as:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1−µF (y), µX(y)})

(8)
µPX(x) = sup

F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)})

(9)
The tuple< PX, PX > is called a fuzzy-rough set.

For an individual feature,a, the partition of the universe
by {a} (denotedU/IND({a})) is considered to be the set of
those fuzzy equivalence classes for that feature. For subsets
of features, the following is used:

U/P = ⊗{a ∈ P | U/IND({a})} (10)

Each set inU/P denotes an equivalence class. The extent
to which an object belongs to such an equivalence class is
therefore calculated by using the conjunction of constituent
fuzzy equivalence classes, sayFi, i = 1, 2, ..., n:

µF1∩...∩Fn(x) = min(µF1(x), µF2(x), ..., µFn(x)) (11)

3) Fuzzy-Rough Reduction Process:Fuzzy-Rough Fea-
ture Selection (FRFS) builds on the notion of the fuzzy
lower approximation to enable reduction of datasets contain-
ing real-valued features. The process becomes identical to
the crisp approach when dealing with nominal well-defined
features.

The crisp positive region in the standard RST is defined
as the union of the lower approximations. By the extension
principle, the membership of an objectx ∈ U, belonging to
the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (12)

Using the definition of the fuzzy positive region, a new
dependency function between a set of featuresQ and another
setP can be defined as follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U|
=

∑
x∈U µPOSP (Q)(x)

|U|
(13)



As with crisp rough sets, the dependency ofQ on P is
the proportion of objects that are discernible out of the
entire dataset. In the present approach, this corresponds to
determining the fuzzy cardinality ofµPOSP (Q)(x) divided
by the total number of objects in the universe.

FRQUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, γ′best ← 0, γ′prev ← 0
(2) do
(3) T ← R
(4) γ′prev ← γ′best

(5) ∀x ∈ (C −R)
(6) if γ′R∪{x}(D) > γ′T (D)
(7) T ← R ∪ {x}
(8) γ′best ← γ′T (D)
(9) R← T
(10) until γ′best = γ′prev

(11) return R

Fig. 1. Fuzzy-rough QUICKREDUCT

Computationally, the fuzzy-rough QUICKREDUCT algo-
rithm of Figure 1 employs the dependency functionγ′ to
choose which features to add to the current reduct candidate.
The algorithm terminates when the addition of any remaining
feature does not increase the dependency. The complexity of
the approach is O((n2+n)/2).

III. T OLERANCE-BASED FEATURE SELECTION

Another way of attempting to handle the problem of real-
valued data is to introduce a measure of similarity of feature
values and define the lower and upper approximations based
on these similarity measures.

A. Similarity Measures

In this approach, suitable similarity relations must be
defined for each feature, although the same definition can
be used for all features if applicable. A standard measure for
this purpose, given in [16], is:

SIMa(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(14)

where a is the feature under consideration, andamax and
amin denote the maximum and minimum values respectively
for this feature. When considering more than one feature, the
defined similarities must be combined to provide a measure
of the overall similarity of objects. For a subset of features,
P , this can be achieved in many ways; two commonly
adopted approaches are:

(x, y) ∈ SIMP,τ iff
∏
a∈P

SIMa(x, y) ≥ τ (15)

(x, y) ∈ SIMP,τ iff

∑
a∈P

SIMa(x, y)

|P |
≥ τ (16)

where τ is a global similarity threshold; it determines the
required level of similarity for inclusion within tolerance

classes. This framework allows for the specific case of tra-
ditional rough sets by defining a suitable similarity measure
(e.g. equality of feature values and equation (15)) and thresh-
old (τ = 1). Further similarity relations are investigated in
[9], but are omitted here.

From this, the so-called tolerance classes that are generated
by a given similarity relation for an objectx are defined as:

SIMP,τ (x) = {y ∈ U|(x, y) ∈ SIMP,τ} (17)

B. Approximations and Dependency

Lower and upper approximations are then defined in a similar
way to traditional rough set theory:

PτX = {x|SIMP,τ (x) ⊆ X} (18)

PτX = {x|SIMP,τ (x) ∩X 6= ∅} (19)

The tuple< PτX, PτX > is called a tolerance rough set
[15]. Positive region and dependency functions then become:

POSP,τ (Q) =
⋃

X∈U/Q

PτX (20)

γP,τ (Q) =
|POSP,τ (Q)|

|U|
(21)

From these definitions, feature reduction methods can be con-
structed that use the tolerance-based degree of dependency,
γP,τ (Q), to gauge the significance of feature subsets (in a
similar way as fuzzy-rough QUICKREDUCT). The resulting
algorithm can be found in Figure 2.

TOLERANCEREDUCT(C,D,τ ).
C, the set of all conditional features;
D, the set of decision features;
τ , the similarity threshold.

(1) R← {}; γτ
best = 0;

(2) do
(3) T ← R
(4) γτ

prev = γτ
best

(5) ∀x ∈ (C −R)
(6) if γR∪{x},τ (D) > γT,τ (D)
(7) T ← R ∪ {x}
(8) γτ

best = γT,τ (D)
(9) R← T
(10) until γτ

best == γτ
prev

(11) return R

Fig. 2. Tolerance QUICKREDUCT

Note that for a dimensionality ofn, (n2+n)/2 evaluations
of the tolerance-based dependency function may be per-
formed for the worst-case dataset. However, as with fuzzy-
rough QUICKREDUCT, the algorithm is used for dimension-
ality reduction prior to any involvement of the system which
will employ those features belonging to the resultant reduct.
Thus, this operation has no negative impact upon the run-
time efficiency of the system.



TABLE I

EXAMPLE DATASET

Object a b c q
1 −0.4 −0.3 −0.5 no
2 −0.4 0.2 −0.1 yes
3 −0.3 −0.4 −0.3 no
4 0.3 −0.3 0 yes
5 0.2 −0.3 0 yes
6 0.2 0 0 no

C. Worked Example

To illustrate the operation of the tolerance QUICKREDUCT

algorithm, it is applied to the example data given in table
I, which contains three real-valued conditional attributes
and a crisp-valued decision attribute. For this example, the
similarity measure is the same as that given in equation
(14) and equation (15) for all conditional attributes, with
τ = 0.7. This choice of threshold permits attribute values
to differ to a limited extent, allowing close values to be
considered as identical. For the decision feature,τ is set
to 1 (i.e. objects must have identical values to appear in
the same tolerance class) as the decision value is nominal.
Setting A = {a}, B = {b}, C = {c} and Q = {q}, the
following tolerance classes are obtained:

U/SIMA,τ = {{1, 2, 3}, {4, 5, 6}}
U/SIMB,τ = {{1, 3, 4, 5}, {2}, {6}}
U/SIMC,τ = {{1}, {2, 4, 5, 6}, {3}}
U/SIMQ,τ = {{1, 3, 6}, {2, 4, 5}}
U/SIM{a,b},τ = {{1, 3}, {2}, {4, 5}, {4, 5, 6}, {5, 6}}
U/SIM{b,c},τ = {{1, 3}, {2, 6}, {4, 5, 6}, {2, 4, 5, 6}}
U/SIM{a,b,c},τ = {{1, 3}, {2}, {4, 5, 6}}

It can be seen that some objects belong to more than one
tolerance class. This is due to the additional flexibility of
employing similarity measures rather than strict equivalence.

Based on these partitions, the degree of dependency can
be calculated for attribute subsets, providing an evaluation of
their significance. The tolerance QUICKREDUCT algorithm
considers the addition of attributes to the currently stored
best subset (initially the empty set) and selects the feature
that results in the highest increase of the dependency degree.
Considering attributeb, the lower approximations of the
decision classes are calculated as follows:

Bτ{1, 3, 6} = {x|SIMB,τ (x) ⊆ {1, 3, 6}} = {6}
Bτ{2, 4, 5} = {x|SIMB,τ (x) ⊆ {1, 3, 6}} = {2}

Hence, the positive region can be constructed:

POSB,τ (Q) =
⋃

X∈U/Q

BτX

= Bτ{1, 3, 6} ∪Bτ{2, 4, 5}
= {2, 6}

The resulting degree of dependency is:

γB,τ (Q) =
|POSB,τ (Q)|

|U |
=

|{2, 6}|
|{1, 2, 3, 4, 5, 6}|

=
2
6

For the other conditional features in the dataset, the corre-
sponding dependency degrees are:

γA,τ (Q) =
|{∅}|

|{1, 2, 3, 4, 5, 6}|
=

0
6

γC,τ (Q) =
|{1, 3}|

|{1, 2, 3, 4, 5, 6}|
=

2
6

Following the tolerance QUICKREDUCT algorithm, attribute
b is added to the reduct candidate (R = {b}) and the search
continues. The algorithm makes an arbitrary choice here
between attributesb and c as they produce equally high
degrees of dependency (although they generate different pos-
itive regions). As attributeb was considered before attributec,
it is selected. The algorithm continues by evaluating subsets
containing this attribute in combination with the remaining
individual attributes from the dataset.

γ{a,b},τ (Q) =
|{1, 2, 3, 4, 5}|
|{1, 2, 3, 4, 5, 6}|

=
5
6

γ{b,c},τ (Q) =
|{1, 3}|

|{1, 2, 3, 4, 5, 6}|
=

2
6

The subset{a, b} is chosen as this results in a higher
dependency degree than{b}. The algorithm then evaluates
the combination of this subset with the remaining attributes
(in this example only one attribute,c, remains):

γ{a,b,c},τ (Q) =
|{1, 2, 3}|

|{1, 2, 3, 4, 5, 6}|
=

3
6

As this value is less than that for subset{a, b}, the algorithm
terminates and outputs the reduct{a, b}. Note that this is the
same subset as that found by the fuzzy-rough method [7]
for this dataset, but applying RSAR leads to a non-minimal
reduct{a, b, c}.

IV. EXPERIMENTATION

This section presents the experimental evaluation of the
selection methods for the task of pattern classification, over
nine benchmark datasets and one real-world problem with
several different classifiers.

A. Experimental Setup

FRFS uses a pre-categorisation step which generates as-
sociated fuzzy sets for a dataset. For the tolerance-based
method, the threshold is selected by initially settingτ to
1 and applying tolerance QUICKREDUCT to the data.τ is
then decremented by 0.01 and this process is repeated for
a set number of iterations. From this, the threshold value
resulting in the largest reduct is chosen. After feature se-
lection, the datasets are reduced according to the discovered
reducts. These reduced datasets are then classified using the
relevant classifier. (Note that the feature selection step is not
employed for the unreduced dataset.)

Four classifiers were employed for the purpose of evalu-
ating the resulting subsets from the feature selection phase:
J48, JRip, PART (from [18]) and MODLEM [13]. J48 [14]
creates decision trees by choosing the most informative
features and recursively partitioning the data into subtables



TABLE II

REDUCT SIZE AND TIME TAKEN FORFRFSAND TOLERANCE METHODS.

Dataset Objects Features Reduct size Time taken (s)
FRFS Tol. FRFS Tol.

Cleveland 297 14 11 11 24.11 3.37
Glass 214 10 9 7 1.61 0.61
Heart 270 14 11 10 11.84 2.79

Ionosphere 230 35 11 10 61.80 10.04
Iris 150 5 5 4 0.031 0.206

Olitos 120 26 10 10 11.20 2.60
Water 2 390 39 11 8 96.58 35.02
Water 3 390 39 12 11 158.73 57.81
Wine 178 14 10 8 1.42 0.63

based on their values. Each node in the tree represents a fea-
ture with branches from a node representing the alternative
values this feature can take according to the current subtable.
Partitioning stops when all data items in the subtable have
the same classification. A leaf node is then created, and this
classification assigned. JRip [4] learns propositional rules
by repeatedly growing rules and pruning them. During the
growth phase, features are added greedily until a termination
condition is satisfied. Features are then pruned in the next
phase subject to a pruning metric. Once the ruleset is gener-
ated, a further optimization is performed where classification
rules are evaluated and deleted based on their performance
on randomized data. PART [17] generates rules by means
of repeatedly creating partial decision trees from data. The
algorithm adopts a divide-and-conquer strategy such that
it removes instances covered by the current ruleset during
processing. Essentially, a classification rule is created by
building a pruned tree for the current set of instances; the leaf
with the highest coverage is promoted to a rule. Additionally,
experimentation is carried out for a leading rough set-based
rule induction method, MODLEM, using extended minimal
covering [13].

B. Benchmark Data

This section presents the results of experimental studies
using nine datasets as given in Table II. These datasets are
small-to-medium in size, with between 120 and 390 objects
per dataset and feature sets ranging from 5 to 39. All datasets
have been obtained from [1], [2] and [3].

Table II compares the reduct size and runtime data, using
both FRFS and tolerance-based approaches. It can be seen
that the tolerance-based method consistently locates reducts
that are smaller or equal in size to those found by FRFS.
In fact, in all but two of the test datasets (Cleveland and
Olitos) the reducts are smaller. It is clear from the results
that the runtimes of the tolerance-based technique are also
considerably shorter in general than those of FRFS.

Table III shows the average classification accuracy as a
percentage obtained using 10-fold cross validation. The clas-
sification was initially performed on the unreduced dataset,
followed by the reduced datasets which were obtained by
using both FRFS and tolerance-based feature selection tech-
niques. In most cases the classification accuracy increases or
remains at approximately the same level for both FRFS and

tolerance-based methods. There are some notable exceptions
however, where a decrease in classification accuracy is ob-
served. When such decreases are compared to the reduction
in dimensionality, it is apparent that they are not significant.

For the J48 classifier, FRFS maintains or improves upon
the performance of the unreduced dataset in all but two cases.
The tolerance approach does not perform as well as FRFS
for this classifier, but still retains reasonably high classifica-
tion accuracy with fewer number of features. When JRip
is employed, the tolerance-based method performs better
than FRFS. In comparison to the unreduced dataset results,
accuracy is improved or maintained in six cases, whereas,
for FRFS, this only occurs in three. For PART, the methods
perform similarly. FRFS produces higher accuracies for six
datasets, maintains accuracy in two, and results in worse
accuracy in two. The tolerance method improves accuracy
in seven datasets, and displays poorer performance in three.
With MODLEM, both feature selection methods result in
similar accuracies, and perform slightly worse in general than
the unreduced method.

Overall, the results show that both feature selection meth-
ods greatly reduce dimensionality while generally maintain-
ing or improving performance. Although there are some
instances where the classification accuracy may decrease, it is
small in comparison to the overall reduction of dimension-
ality. The tolerance-based approach often chooses smaller
subsets than FRFS, whilst exhibiting a comparable level of
classification performance.

C. Application to Forensics

One of the less obvious, but frequent, sources of forensic
evidence are traces of glass. This is regularly encountered
at crime scenes, particularly those involving motor vehicle
accidents, car theft and burglaries. The forensic scientist’s
role in analysing glass is to clearly and unambiguously de-
termine the origin of the sample. Variation in the manufacture
of glass allows considerable discrimination even with very
small fragments. To demonstrate the domain-independence
and utility of the work in this paper, the feature selection
methods were applied as pre-processors to this challenging
task of glass fragment classification.

The data was obtained from the Institute of Forensic Re-
search, Krakow, Poland. 800 glass fragments were extracted
from six glass sources. From these, the chemical concentra-
tions of 8 elements (oxygen, sodium, potassium, aluminium,
iron, magnesium, calcium and silicon) were measured via a
scanning electron microscope with an energy dispersive X-
ray spectrometer. These constitute the features of the dataset.
The six glass sources are bulb glass, car window glass,
headlamp glass, optic glass, glass containers and building
window glass. These constitute the classes of the dataset.
The task is to derive classifiers that correctly identify the
source of glass based solely on chemical concentrations.

The results from the experimentation can be seen in
Table IV. The classifiers used previously were employed for
the purpose of predicting glass source. Again, these were
evaluated using 10-fold cross-validation.



TABLE III

RESULTING CLASSIFICATION ACCURACIES(%) FOR UNREDUCED, FRFSAND TOLERANCE METHODS.

Dataset J48 JRip PART MODLEM
Unred. FRFS Tol. Unred. FRFS Tol. Unred. FRFS Tol. Unred. FRFS Tol.

Cleveland 51.85 55.22 51.17 53.87 53.87 53.87 50.17 52.19 57.23 55.80 51.45 53.56
Glass 67.29 69.63 69.16 69.16 67.76 67.76 67.76 68.22 69.62 58.42 57.53 52.01
Heart 76.67 78.89 80.37 79.63 81.85 82.59 73.33 78.52 80.37 77.41 77.41 72.59

Ionosphere 87.83 91.30 87.39 86.96 86.52 86.96 88.26 91.30 86.52 86.52 86.52 86.52
Iris 96.00 96.00 96.00 95.33 95.33 94.67 94.00 94.00 95.33 91.33 91.33 93.33

Olitos 67.50 67.50 61.67 70.00 66.67 61.67 57.50 62.50 72.50 71.67 63.33 64.17
Water 2 83.33 80.26 81.79 81.03 80.51 82.31 85.64 82.56 81.28 81.79 83.33 81.54
Water 3 77.44 79.74 75.64 83.85 80.76 78.46 79.49 78.97 72.05 80.00 81.03 75.90
Wine 94.38 92.14 94.94 91.57 90.45 94.38 93.82 93.82 94.38 94.93 92.65 93.82

TABLE IV

RESULTS FOR FORENSIC DATA.

Method Features J48 JRip PART MODLEM
Unreduced 8 83.13 79.38 80.50 78.00

FRFS 8 83.13 79.38 80.50 78.00
Tolerance 6 82.00 78.25 78.00 74.13

Applying FRFS to the data resulted in all features being
chosen for the classification task, and hence the results are
equal to the unreduced approach. The tolerance method
selected a smaller number of features (6) for the task. It can
be seen that the FRFS method was correct in retaining the
entire feature set as the reduction in dimensionality produced
by the tolerance method resulted in a slight decrease in
performance for all classifiers. However, it should be noted
that there is a cost (both monetary and time) associated with
measuring each chemical within fragments. The results show
that (via tolerance rough sets) two of these can be eliminated
with only a small drop in classification accuracy.

V. CONCLUSION

This paper has presented two methods for handling real-
valued data in feature selection, by the use of tolerance
rough sets and fuzzy-rough sets. Through the benchmark data
experimentation, it was found that the tolerance approach
discovered smaller subsets whilst maintaining a comparably
high level of performance. The methods were also applied to
the real-world problem of glass identification - an important
area in forensic glass analysis.

The experimental work presented here did not take advan-
tage of any optimization for the fuzzifications, similarities or
classifiers involved. It is expected that the results obtained
through the use of such optimization would reflect a marked
improvement. Future work would include the implementation
of optimization methods for both algorithms - improving
fuzzy set definitions for FRFS, and fine-tuning feature simi-
larity measures for the tolerance-based approach.
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