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Abstract 

Ischemia/reperfusion (IR) events result in severe tissue damage and often death.  The complex 

network of molecular and cellular mechanisms that contributes to intestinal IR-induced 

pathology has hindered a comprehensive understanding of IR-induced injury and limited the 

success of medical intervention.  Although several of the mechanisms contributing to intestinal 

IR-induced injury have been identified, the initiating event(s) remains unclear.  Mouse models 

have been instrumental in the unraveling of the many components and interactions that 

ultimately result in tissue damage.  It is clear that leukocyte infiltration, complement activation, 

eicosanoid and pro-inflammatory cytokine production are involved.  Toll-like receptors and 

antibodies also play critical roles.  Based on the literature, and especially data demonstrating a 

significant role for anti-phospholipid antibodies, we hypothesized that ischemia induces 

phospholipid alterations that result in the exposure of a neoantigen which is recognized by anti-

phospholipid antibodies.  Furthermore, we hypothesized that endothelial cells are the primary 

cell type involved in the initial molecular events that result in intestinal IR-induced pathology.  A 

mouse model of intestinal IR as well as an in vitro cell culture system was used to explore these 

hypotheses.  Mass spectrometry-based lipidomics was utilized to assess lipid responses to IR and 

hypoxia/re-oxygenation (HR).  No inherent differences in intestinal phospholipid composition 

were found between wildtype and several strains of knock-out mice.  It was determined that the 

lack of antibody production by Rag-1
-/- mice is responsible for protection against intestinal IR-

induced injury, as antibody is needed to induce prostaglandin E2 production, through up-

regulation of cyclooxygenase 2 transcription.  Unexpectedly, the presence or absence of toll-like 

receptor 9 was found to be inconsequential for tissue damage caused by intestinal IR.  The 

results of several analyses point to endothelial cells as being directly involved in IR-induced 

pathology.  Importantly, the activation of phospholipid scramblase 1 has been identified as a 

potential molecular mechanism by which subsequent molecular and cellular responses are 

elicited as a consequence of IR.       
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Chapter 1 - Introduction 

 Ischemia/Reperfusion 

Ischemia, the lack of sufficient blood supply to tissues, results in cellular dysfunction and 

eventually necrosis.  However, the return of blood flow, termed reperfusion, exacerbates the 

damage begun during the ischemic period.  Ischemia and reperfusion (IR) events occur in 

numerous organs as a result of various insults.  Trauma, shock, routine surgery and organ 

transplantation are all common scenarios in which IR occurs.  The intestinal mucosa is among 

the organs most sensitive to IR (reviewed in (Guan et al., 2009)) with acute mesenteric arterial or 

venous thrombosis, embolism, and obstruction being common causes of intestinal IR (reviewed 

in (Haglund and Bergqvist, 1999; Oldenburg et al., 2004)). 

 Antonio Beniviene (1443-1502), an Italian physician, was the first to describe intestinal 

ischemia (reviewed in (Stamatakos et al., 2008)).  However, it wasn’t until 1895 that a case of 

acute mesenteric ischemia was successfully treated surgically (reviewed in (Stamatakos et al., 

2008)).  By the 1960s and 1970s, physicians were becoming better at diagnosing and treating 

these cases (reviewed in (Stamatakos et al., 2008)).  Despite decades of improved imaging 

devices and medical advances, the mortality rate associated with intestinal IR remains at 50 to 

80% (reviewed in (Stamatakos et al., 2008)).   

 Cases of acute mesenteric ischemia are classified by cause.  In order of incidence, they 

are arterial embolism, arterial thrombus, non-occlusive and venous thrombosis (reviewed in 

(Oldenburg et al., 2004)).  Symptoms are non-specific and can be subtle, resulting in a delay of 

correct diagnosis which further decreases survival probability.  Furthermore, the sequelae to 

many cases of intestinal IR are acute lung injury and multiple organ failure.  Bowel resection is 

indicated in most cases which leaves the surviving patients with bowel issues, such as short 

bowel syndrome, for the remainder of their lives.   

 The mesenteric arteries can maintain adequate perfusion of the intestine over a broad 

range of blood pressures, however below 40 to 45 mm Hg, perfusion is compromised (reviewed 

in (Haglund and Bergqvist, 1999)).  The gastrointestinal tract has a very high capillary density, 

many collateral vessels and receives approximately 25% of total cardiac output at rest (reviewed 

in (Haglund and Bergqvist, 1999)).  Cellular injury in humans is detectable by 20 minutes of 
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total ischemia and within 60 minutes in the case of partial ischemia (reviewed in (Haglund and 

Bergqvist, 1999)). 

Rodents are commonly used as research models for intestinal IR and have provided a 

large knowledge base regarding associated physiology and pathogenesis.  Studies in mice have 

shown changes in the internal pH of enterocytes, abruptly increasing from 6.8 to 7.1 at the 

initiation of ischemia, and rapidly stabilizing at a pH of 6.3 by three minutes into ischemia (Guan 

et al., 2009).  Upon reperfusion, cascades of cellular events lead to eicosanoid production, 

signaling molecules derived from 20 carbon fatty acids via oxidation, formation of reactive 

oxygen species, secretion of cytokines and activation of the innate immune response.  The barrier 

between luminal contents and intestinal mucosa is compromised as enterocytes are shed, by 

necrosis and apoptosis, and capillary permeability increases (Droy-Lefaix et al., 1991; Haglund, 

1994; Noda et al., 1998).  A recent study with mice illustrates the sensitivity of the intestine to IR 

damage.  Wildtype mice were subjected to 30, 35, 40 or 45 minutes of ischemia.  The severity of 

tissue damage as assessed by histology was positively correlated with the duration of ischemia 

(Stringa et al., 2012).  The authors concluded that ischemia longer than 35 minutes is lethal to 

mice as mice subjected to 30 and 35 minutes of ischemia survived a minimum of 18 hours while 

mice subjected to 40 and 45 minutes of ischemia all succumbed within six hours post ischemia 

(Stringa et al., 2012).   

With a loss of epithelial integrity, it has been postulated that intravascular proteins escape 

into the lumen and that luminal contents, such as commensal bacteria, move into the tissue.  

While there is evidence that the efficacy of the barrier is decreased following IR, no clear 

Figure 1.1  Factors contributing to IR-induced tissue damage. 
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answers exist as to if there is an influx of bacteria into tissues or of its role in pathology.  

Albumin leakage from blood to lumen was greater in IR versus Sham treated rats and also 

increased with increasing duration of ischemia (Sun et al., 2000).  Other studies using mice have 

also found increased permeability after IR (Kannan et al., 2011; Williams et al., 1999a).  

Supporting the premise that reperfusion prevents the translocation of bacteria, no increase in 

lipopolysaccharide (LPS) was detected between arterial and venous blood samples by Limulus 

Amebocyte Lysate assay at any point over the two hour reperfusion period in a human jejunum 

study (Matthijsen et al., 2009).  

 

Eicosanoids, derivatives of arachidonic acid, are rapidly produced during the reperfusion 

period.  Prostaglandin E2 (PGE2) was found to be required but not sufficient for tissue damage in 

a mouse model of intestinal IR (Moses et al., 2009).  The conversion of arachidonic acid to 

prostaglandins requires the cyclooxygenase (Cox) enzymes.  It is well established that the 

expression of Cox 2, the inducible isoform, is elevated in the intestinal tissue following ischemia.  

However, the role of Cox 1, the constitutive isoform, in the post-ischemia production of 

prostaglandins is debated.  Increased transcription of Cox 2 was observed in mice two hours after 

a 30 minute ischemic period (Moses et al., 2009).  Similarly, a one hour ischemic period 

followed by either 30 minutes of reperfusion or two hours of reperfusion resulted in significant 

up-regulation of Cox 2 transcription in the small intestine of  rats (Sato et al., 2005).  

Interestingly, protein levels were increased after two hours of reperfusion (Sato et al., 2005).  

Figure 1.2  Representative diagram of lipid metabolism. 
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Transcription of Cox 2 was also elevated in a horse model in which mesenteric blood flow was 

reduced to 20% baseline levels for 75 minutes followed by an equal reperfusion period, however 

no change in Cox 1 transcription was detected (Hilton et al., 2011).  Complete ischemia in horses 

and pigs also results in higher levels of Cox 2 protein in the intestine (Blikslager et al., 2002; 

Marshall and Blikslager, 2011) as does partial ischemia in mice (Watanabe et al., 2012).  The use 

of several Cox inhibitors has further demonstrated the importance of this pathway in reperfusion 

injury.  The Cox 2 inhibitor NS-398 reduced villus injury in a dose-dependent manner when 

administered to rats (Sato et al., 2005).  In contrast, the Cox 2 inhibitor FK3311 did not affect 

villus injury in a dog model of intestinal IR (Kawata et al., 2003).  Cox 1 and Cox 2 appear to 

have some overlapping and some independent effects in IR pathology.  Cox 1 and Cox 2 activity 

contribute to the tissue edema following IR as the Cox 1 selective inhibitor flunixin and the Cox 

2 specific inhibitor Celebrex both decreased intestinal edema in rats as measured by wet to dry 

weight ratio (Arumugam et al., 2003).  Both isoforms also contribute to the epithelial 

permeability that increases following IR as transepithelial resistance in porcine ileum returned to 

baseline more quickly if the pigs had been dosed with either the Cox 1 selective inhibitor, SC-

560, or the Cox 2 selective inhibitor NS-398 (Blikslager et al., 2002). In contrast, only the Cox 2 

selective inhibitor Celebrex reduced villus damage in a rat model (Arumugam et al., 2003).  

Hence, activity of the Cox enzymes contributes substantially to IR injury.      

The Cox enzymes catalyze the formation of prostaglandins, which, as stated above, are 

necessary but not sufficient for intestinal IR damage (Moses et al., 2009).  Prostaglandins are 

potent signaling molecules primarily derived from arachidonic acid (reviewed in (Stuart, 1983)).  

Prostaglandins, having half-lives ranging from seconds to minutes (reviewed in (Egan and 

FitzGerald, 2006)), are not stored by the cell but newly synthesized upon stimulation (reviewed 

in (Schror, 1985)).  Diffusion allows for autocrine or paracrine action via ligation of G protein 

coupled receptors (reviewed in (Egan and FitzGerald, 2006; Schuster et al., 2002)).  PGE2 is 

often associated with inflammation due to its vasodilatory effect and enhancement of vascular 

permeability ((Blikslager et al., 1997), reviewed in (Egan and FitzGerald, 2006)).  Several in 

vivo studies have documented increased PGE2 production in response to intestinal IR (Mangino 

et al., 1989; Moses et al., 2009; Pope et al., 2010; Slone et al., 2012; Sparkes et al., 2010; 

Turnage et al., 1995).  While increased transcription of the Cox enzymes begins during the 

ischemic period, reperfusion is necessary for PGE2 production (Sparkes et al., 2010).  
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Endothelial cells produce prostaglandins (reviewed in (Schror, 1985)); however, not all 

endothelial cells generate the same prostaglandin profile.  PGI2 is the primary prostaglandin 

produced from endothelial cells of the large vessels, but microvessel endothelial cells, like those 

found in the mesenteric vasculature, synthesize more PGE2 and PGF2α (Charo et al., 1984).  It 

has long been postulated that PGE2 may paradoxically contribute to tissue healing by promoting 

angiogenesis and epithelial cell migration (reviewed in (Hawkey and Rampton, 1985)).  An ex 

vivo study of porcine ileum showed that PGE2 application could increase intracellular cyclic 

adenosine monophosphate (cAMP) levels and contribute to closure of leaky tight junctions 

(Blikslager et al., 1997).  It has been proposed that PGE2 may act to downregulate nuclear factor 

kappa light chain enhancer of activated B cells (NFκB) activity in a negative feedback fashion 

(reviewed in (Scher and Pillinger, 2009)).  While the precise mechanisms by which PGE2 exerts 

opposing effects are not well understood, concentration, timing and ligation of differing 

receptors are likely possibilities (reviewed in (Egan and FitzGerald, 2006)). 

Another eicosanoid derived from arachidonic acid in response to intestinal IR is 

leukotriene B4 (LTB4).  LTB4 is produced by endothelial cells, is chemotactic for neutrophils and 

facilitates adherence and degranulation of neutrophils (reviewed in (Bray, 1982)).  The 

chemotactic property has been well documented, both in vitro and in vivo.  Increased neutrophil 

adherence to endothelial cells was observed in ex vivo assays on tissues from rats subjected to 

intestinal IR (Karasawa et al., 1991).  Intravital microscopy confirms the increase in leukocyte 

adherence and emigration from mesenteric venules following intestinal ischemia (Oliver et al., 

1991).  Studies using a whole body hypoxia model in which the animals inhale a gas mixture of 

10% O2 have shown that this level of hypoxia is sufficient to trigger increased leukocyte 

adherence to and emigration into intestinal tissue (Casillan et al., 2003; Steiner et al., 2001).  

Additionally, myeloperoxidase, an enzymeof neutrophils, is increased in response to IR 

(Schmeling et al., 1994).  Application of the LTB4 receptor antagonist LTB4-DMA attenuated the 

effects of hypoxia while application of LTB4 enhanced leukocyte adhesion in a dose-dependent 

manner (Casillan et al., 2003; Steiner et al., 2001).  Rats treated with a different LTB4 receptor 

antagonist, LY-255283, and subjected to intestinal IR had a higher survival rate and decreased 

intestinal myeloperoxidase activity at two hours of reperfusion compared to rats subjected to IR 

but not receiving the antagonist (Karasawa et al., 1991).  Similarly, LTB4 production and 

intestinal myeloperoxidase activity was reduced in dogs subjected to three hours of ischemia and 
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one hour of reperfusion when treated with the 5-lipoxygenase inhibitor A-64077 (Mangino et al., 

1994).  Further evidence for the involvement of the lipoxygenase (Lox) enzymes and LTB4 in the 

recruitment of neutrophils to affected tissue was provided by a study with 5-Lox
-/- mice.  The 5-

Lox
-/- mice sustained less intestinal damage, had decreased intestinal myeloperoxidase activity 

and improved survival compared to wildtype mice following intestinal IR (Cuzzocrea et al., 

2003).       

Several pro-inflammatory cytokines are elevated in response to IR, notably tumor 

necrosis factor α (TNFα), interleukin-6 (IL-6), IL-12p40 and KC (Moses et al., 2009; Pope et al., 

2010; Slone et al., 2012; Wu, 2003).  The transcription factor NFκB contributes to the regulation 

of cytokine expression.  NFκB translocates from the cytoplasm to the nucleus during reperfusion 

(Souza and Teixeira, 2005).  The use of MOL294, an inhibitor of redox proteins, to inhibit this 

translocation, thus blocking NFκB-dependent transcription, in a mouse model of IR resulted in 

lower levels of TNFα, MCP-1 and KC in intestinal supernatants as well as TNFα in the sera 

(Souza et al., 2005).  Furthermore, vascular permeability and neutrophil infiltration of the 

affected tissue were decreased in comparison to IR treated mice not receiving the NFκB inhibitor 

(Souza et al., 2005).  In addition to decreased serum levels of TNFα and IL-1β, the intestines of 

IL-6
-/- mice had lower myeloperoxidase activity and malondialdehyde levels after one hour of 

reperfusion compared to wiltype mice, indicating attenuated neutrophil infiltration and 

generation of reactive oxygen species (Cuzzocrea et al., 1999).  Similarly, myeloperoxidase and 

malondialdehyde were reduced from wildtype levels in the intestines of TNFαR1
-/- mice 

following IR (Esposito et al., 2007).  Unsurprisingly, macrophage migration inhibitory factor 

(MIF) also contributes to pathology, likely by inducing TNFα release.  MIF
-/- mice have 

attenuated intestinal damage, reduced vascular permeability and increased survival compared to 

wildtype mice following IR (Amaral et al., 2007).      

As alluded to above, neutrophils and macrophages play a significant role in IR-induced 

pathology.  Circulating neutrophils respond to chemotactic factors, such as LTB4, and infiltrate 

the affected tissue (reviewed in (Kong et al., 1998)) .  Reperfusion greatly increases the number 

of neutrophils in the intestinal tissue ((Grosche et al., 2011), reviewed in (Gayle et al., 2000)).  

Increased adherence of neutrophils to endothelium has been demonstrated in vitro.  Primary 

porcine neutrophils exhibited an increase in adherence to primary porcine endothelial cells after 

the endothelial cells had been maintained in a hypoxic environment of two percent O2 for two 
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hours (Milhoan et al., 1992).  Similarly, complete anoxia of primary human endothelial cells for 

one hour enhanced the adherence of primary human neutrophils (Arnould et al., 1993).  Hypoxic 

conditions stimulate endothelial cells to upregulate expression of several adhesion proteins 

(reviewed in (Gayle et al., 2000)) and blockade of these proteins with monoclonal antibodies 

precludes any increase in neutrophil adhesion (Arnould et al., 1993).  Activated neutrophils 

produce reactive oxygen compounds which contribute to the reperfusion damage (reviewed in 

(Grisham and Granger, 1988)).  Evidence suggests that circulating neutrophils, in addition to 

emigrated neutrophils, are primed in response to IR (Kim et al., 1995).  N-formyl-Met-Leu-Phe 

(fMLP) stimulation of circulating neutrophils following IR led to superoxide secretion (Koike et 

al., 1995).   

Tissue resident macrophages are very abundant in the intestine.  Profiling of F4/80 

antigen expression, a macrophage surface marker, indicates that the small intestine is one of the 

most macrophage dense tissues in the rodent body (Lee et al., 1985).  Within the muscularis 

externa, the small intestine is the most densely populated area of the gastrointestinal tract (Kalff 

et al., 1998).  While the resident macrophages of the lamina propria do phagocytose, they do not 

secrete many cytokines upon stimulation (reviewed in (Smith et al., 2005)).  Following tissue 

injury, circulating monocytes are recruited as these cells secrete large quantities of cytokines 

(reviewed in (Smith et al., 2005)).  Hypoxia has been shown to increase the migration of 

monocyte-like cells across an endothelial monolayer in vitro (Kalra et al., 1996).  Pro-

inflammatory cytokine production was attenuated after administration of dichloromethylene-

bisphosphonate  (Cl2MBP liposomes or claudronate) to deplete macrophages in a rat model of 

IR or intestinal grafting, respectively (Chen et al., 2004; Schaefer et al., 2007).  Furthermore, 

macrophage depletion reduced the number of damaged villi following IR (Chen et al., 2004).  It 

is clear that both neutrophils and macrophages play a role in the damage sustained following IR. 

The complement system, comprised of over 30 proteins, plays a significant role in the 

pathology resulting from IR.  Traditionally, the complement system is described as having three 

different methods of activation, converging at a common endpoint.  Activation by the classical 

pathway is primarily antibody dependent while the alternative pathway is antibody-independent 

(reviewed in (Ehrnthaller et al., 2011)).  The more recently described lectin pathway is initiated 

when mannose binding lectin (MBL) binds mannose moieties (reviewed in (Ehrnthaller et al., 

2011)).  Several approaches were taken to delineate the contribution of each pathway due to the 
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significant overlap and crosstalk between the initiation pathways.   The involvement of both the 

classical and alternative pathways in IR injury was demonstrated in the early 1990s.  

Administration of soluble complement receptor type 1 attenuated intestinal damage and 

neutrophil infiltration in a rat model (Hill et al., 1992a).  Later studies using this same 

complement inhibitor confirmed that both the classical and alternative pathways of complement 

activation contributed to IR injury (Eror et al., 1999a).  The significance of the alternative 

pathway in IR injury was revealed upon the generation of factor D
-/- mice.  Deficiency of factor 

D inhibits the alternative pathway and attenuated intestinal injury and neutrophil infiltration 

following IR (Stahl et al., 2003).  The lectin pathway was subsequently shown to contribute to IR 

pathology (reviewed in (Arumugam et al., 2006)).  A supporting study demonstrated the 

requirement for MBL in IR injury as MBL
-/- mice were protected from IR damage (Hart et al., 

2005; Zhang et al., 2006c) but susceptible after reconstitution with MBL (Hart et al., 2005).  

Two native inhibitors of the complement pathway, complement C1 inhibitor (classical and 

lectin) and Crry (classical and alternative), attenuate tissue injury and reduce neutrophil 

infiltration (Karpel-Massler et al., 2003; Rehrig et al., 2001b).   

In accordance with the involvement of the classical complement pathway, antibodies are 

essential for IR injury.  Rag-1
-/- mice do not produce antibodies and do not sustain IR damage; 

however, administration of pooled wildtype antibodies as well as the IgM fraction alone results 

in intestinal damage similar to that seen in wildtype animals (Sparkes et al., 2010; Williams et 

al., 1999b).  It was later shown that human IgM can also elicit injury and complement deposition 

in Rag-1
-/- and Rag -2

-/- mice (Weiser et al., 1996; Zhang et al., 2008).  Further support for the 

involvement of antibodies came out of studies investigating complement receptor 2 (CR2), a B 

cell membrane protein.  CR2
-/- mice produce antibodies but have defects in the generation of the 

normal antibody repertoire (Fleming et al., 2002a; Reid et al., 2002a).  CR2
-/- mice are protected 

from IR injury; and, like Rag-1
-/- mice, administration of wildtype IgM results in intestinal injury 

and complement deposition (Fleming et al., 2002b; Reid et al., 2002b).  Further studies with 

CR2
-/- mice identified specific antibodies capable of inducing IR damage.  An anti-phospholipid 

antibody and anti-β2-glycoprotein I (β2-GPI) antibody were each able to induce IR injury and 

complement deposition in CR2
-/- mice; however both antibodies were required in Rag-1

-/- mice 

(Fleming et al., 2004b).   
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β2-GPI is one of three recently identified neoantigens involved in IR injury.  This 54 kDa 

protein, originally named apolipoprotein H, is one of the most abundant human plasma proteins 

with an average concentration of 200 ug per ml (reviewed in (Miyakis et al., 2004)).  Five short 

consensus repeats comprise the 326 amino acid protein categorizing it as a member of the 

complement control superfamily (reviewed in (Miyakis et al., 2004)).  β2-GPI primarily 

circulates unaccompanied but can be found bound to circulating lipid (reviewed in (Miyakis et 

al., 2004)).  A stretch of lysine residues (amino acids 282-287) in Domain V allows for binding 

to anionic phospholipids of cellular membranes which can activate the cells and promote 

apoptosis of the bound cell ((Meroni et al., 2004), reviewed in (Miyakis et al., 2004)).  The 

results of the aforementioned study strongly suggested the involvement of β2-GPI (Fleming et 

al., 2004b) and further studies have demonstrated the efficacy of peptides derived from Domain 

V, the lipid binding domain, in protecting wildtype mice from IR damage.  Additionally, Rag-1
-/- 

mice infused with pooled wildtype antibodies and treated with the β2-GPI -derived peptides 

minimized the intestinal injury, complement deposition and eicosanoid production resulting from 

administration of wildtype antibodies to Rag-1
-/- mice (Fleming et al., 2010).  Interestingly, 

administration of purified human β2-GPI to wildtype mice prior to intestinal IR attenuated injury, 

complement deposition, and PGE2 production (Tomasi et al., 2012).  The authors speculate that 

the anti-β2-GPI antibodies produced by the mice bind the human β2-GPI, thus reducing the titer 

of anti-β2-GPI antibodies available for binding the mouse protein (Tomasi et al., 2012).  This 

hypothesis is supported by further data demonstrating attenuation of IR injury and sequelae when 

Rag-1
-/- were administered pooled wildtype antibodies that had specifically been depleted of 

anti-β2-GPI(Fleming et al., 2010).  Recent studies have suggested that β2-GPI signals through 

Toll-like receptor 4 (TLR4) as anti-β2-GPI antibodies cross react with TLR4, TLR4 co-

immunoprecipitates with β2-GPI and anti-β2-GPI antibodies have been shown to activate NFκB 

via myeloid differentiation primary response gene 88 (MyD88) in endothelial cells ((Colasanti et 

al., 2012; Xie et al., 2013), reviewed in (Cockrell et al., 2008)). 

The other two identified neoantigens induced by IR are the intracellular proteins non-

muscle myosin heavy chain II and annexin IV.  A screening experiment probing ischemic tissue 

with several monoclonal antibodies produced by different B1 cell clones was performed in an 

effort to detect specific monoclonal antibodies involved in IR injury.  This experiment resulted in 

the identification of a monoclonal antibody against non-muscle myosin heavy chain II isoforms 
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A and C that rendered Rag-1
-/- mice susceptible to IR injury (Zhang et al., 2006b).  A peptide 

based on non-muscle myosin heavy chain II provides additional evidence that this protein serves 

as a neoantigen following IR.  Wildtype mice experience attenuated intestinal injury and less 

mucosal permeability as a result of intestinal IR if the non-muscle myosin heavy chain II-derived 

peptide is administered prior to the procedure (Zhang et al., 2006b).  Non-muscle myosin heavy 

chain II may be involved in other models of IR injury as this same peptide has conferred 

protection in hind-limb and myocardial IR models (Chan et al., 2006; Haas et al., 2010). 

 The identification of annexin IV as a neoantigen also resulted from a screening 

experiment.  In vivo experiments in which Rag-1
-/- mice were administered anti-annexin IV 

monoclonal antibodies prior to intestinal IR resulted in tissue injury, complement deposition, 

neutrophil infiltration and eicosanoid production (Elvington et al., 2012; Kulik et al., 2009a).  

Importantly, the anti-annexin IV monoclonal antibody does not recognize non-muscle myosin or 

phospholipids (Kulik et al., 2009a).  In wildtype mice, recombinant annexin IV reduces tissue 

injury as well as neutrophil infiltration and eicosanoid production (Elvington et al., 2012; Kulik 

et al., 2009a).  The authors propose that the recombinant annexin IV binds up the circulating 

anti-annexin IV antibodies, greatly reducing the likelihood of antibody binding annexin IV 

expressed on damaged tissue (Elvington et al., 2012; Kulik et al., 2009a).  Furthermore, anti-

annexin IV antibodies bind endothelial cells in vitro following hypoxia and re-oxygenation (HR) 

(Elvington et al., 2012).     

 

Molecular Responses to Hypoxia 

Ambient air entering the lungs is approximately 21% O2.  However, in the route from the 

alveolae of the lungs to the rest of the body, the O2 content drops to between two and a half and 

nine percent O2 depending on the tissue (reviewed in (Imtiyaz and Simon, 2010)).  In times of O2 

deprivation, systemic or local, the O2 content can drop below two percent which is considered 

the upper limit for hypoxia (reviewed in (Shay and Celeste Simon, 2012)).  The 

microenvironment in areas of tissue damage or infection, is routinely hypoxic, around one 

percent O2 (reviewed in (Imtiyaz and Simon, 2010)).  The decrease in O2 availability triggers 

activity by hypoxia-inducible factors (HIFs). 
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Three HIF α subunits and three HIF β subunits have been identified in mammals.  The 

oxygen labile α subunits, 1α, 2α and 3α, pair with the constitutively expressed β subunits, 1β, 2β 

and 3β, to influence gene expression (reviewed in (Lisy and Peet, 2008)).  HIF1α is ubiquitously 

expressed and is the primary HIF mediating the hypoxia response in endothelial cells.  While 

many aspects of HIF biology are applicable to all three HIFs, the remainder of this section will 

focus on HIF1.   

The β subunit is found in the nucleus while the α subunit resides in the cytoplasm.  When 

O2 is readily available to the cell, the HIF α subunit is targeted for degradation by the 

proteasome.  Prolyl hydroxylases, which require O2 for activity, hydroxylate the two proline 

residues in the α subunit.  Recognition of the hydroxylated prolines by von Hippel-Lindau E3 

ligase leads to polyubiquitinatation by a complex of proteins including von Hippel-Lindau E3 

ligase, tagging it for degradation by the 26S proteasome.  Thus, although HIF α subunits are 

continuously translated, the protein has a very short half-life (less than five minutes) when O2 is 

readily available (Huang et al., 1996).  However, when O2 becomes scarce, the inactivation of 

prolyl hydroxylases allows the α subunit to accumulate and move into the nucleus where it binds 

the β subunit.  Once the α subunit binds the β subunit, additional proteins such as p300 and Creb 

binding protein are recruited to facilitate transcription.  Both HIF subunits contact the DNA with 

p300 and Creb binding protein providing histone acetyltransferase activity to decondense the 

DNA enabling transcription (reviewed in (Kaluz et al., 2008; Lisy and Peet, 2008; Shay and 

Celeste Simon, 2012)). 

Stabilization of the HIF α subunit can also occur, independently of O2 content.  Pro-

inflammatory cytokines, growth factors and other molecules have been shown to influence the 

stability of the α subunit.  For example, the cytokines TNFα and IL-1β, both secreted during HR 

and IR, contribute to stabilization through NFκB even when O2 is available to the cell (reviewed 

in (Imtiyaz and Simon, 2010; Majmundar et al., 2010)).  Furthermore, the cellular responses to 

hypoxia can also be mediated by mammalian target of rapamycin (mTOR) and the unfolded 

protein response (UPR) (reviewed in (Majmundar et al., 2010)). 

The HIF complex ligates hypoxia response elements residing in gene promoters and 

enhances transcriptional activity.  HIFα/β dimers directly interact with a sequence of five 

nucleotides, (A/G)CGTG, the sequence defining hypoxia response elements (reviewed in 
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(Loboda et al., 2010)).  Additional transcription factors can be recruited to the HIF complex to 

further enhance transcription of the target gene (reviewed in (Lisy and Peet, 2008)).   

The effects of HIF activity are varied and numerous.  Activation of HIF1α is estimated to 

directly affect transcription of well over 100 genes (reviewed in (Loboda et al., 2010)).  Many of 

these genes are involved in cellular metabolism, proliferation, angiogenesis, tumor promotion 

and inflammation (reviewed in (Majmundar et al., 2010; Shay and Celeste Simon, 2012)).  The 

number of genes influenced by HIF activity has been estimated to be one to five percent of the 

human genome (reviewed in (Semenza, 2003)).  Two percent of endothelial genes are thought to 

be influenced, either directly or indirectly, by HIF activity (Manalo et al., 2005).  Glycolysis 

becomes the major mode of cellular metabolism, (reviewed in (Shay and Celeste Simon, 2012)) 

with inhibition of β oxidation and promotion of lipid storage (reviewed in (Majmundar et al., 

2010)).  Furthermore, pro-inflammatory cytokine production is increased (reviewed in (Shay and 

Celeste Simon, 2012)). 

Studies with HIF1α null mice illustrate the importance of HIF activity.  Peritoneal 

neutrophils and macrophages from HIF1α null mice had reduced levels of adenosine tri-

phosphate (ATP) even under normoxic conditions (Cramer et al., 2003).  Several abnormalities 

in the behavior of the HIF1α null peritoneal macrophages were noted, including decreased 

migration and invasiveness and lack of TNFα production when exposed to hypoxia or LPS 

stimulation (Cramer et al., 2003).  In a model of acute inflammation, TPA (12-O-

tetradecanoylphorbol-13-acetate) application to the ears of HIF1α null mice resulted in a reduced 

inflammatory response compared to wildtype mice (Cramer et al., 2003).  The weight of the ears 

from wildtype mice, an indicator of edema, were heavier and contained more neutrophils, as 

assessed by myeloperoxicase activity, than the HIF1α null mice (Cramer et al., 2003).  An 

attenuated inflammatory response was also observed in a second skin model as well as a joint 

model of inflammation (Cramer et al., 2003).  Moreover, HIF1α was found to be necessary and 

sufficient to promote reperfusion injury in a model of skeletal muscle IR (Bosch-Marce et al., 

2007).  HIF1α heterozygotes also respond differently to IR.  Intestinal IR did not stimulate 

increased transcription of TNFα, IL-1β, IL-6 or Cox 2 in the intestinal tissue of HIF1α 

heterozygous mice, unlike the response in wildtype mice (Feinman et al., 2010; Kannan et al., 

2011).  Although intestinal myeloperoxidase activity was not different from wildtype, intestinal 

damage was attenuated in the heterozygous mice (Feinman et al., 2010; Kannan et al., 2011).      
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Systemic hypoxia also has a profound effect on the vasculature.  Intravital microscopy of 

mesenteric venules revealed an increase in leukocyte adherence when rats were exposed to 10% 

O2 for 10 minutes followed by a 10 minute recovery period with ambient air (Casillan et al., 

2003).  A four hour exposure to 10% O2 led to increased vascular permeability to albumin and 

significant emigration of leukocytes (Casillan et al., 2003). 

Cells respond to hypoxic conditions by altering their metabolic activities.  With an 

increase in glycolysis, lactic dehydrogenase and lactic acid begin to accumulate (Gloria et al., 

2006; Lum et al., 1992).  MTT assays and luciferin/luciferase assays indicate a reduction in ATP 

(Arnould et al., 1992; Zhang et al., 2011; Zhao et al., 2012).  Morphologically, endothelial cells 

appear swollen (Busija et al., 1996) and viability decreases with increasing lengths of hypoxia 

(Michiels et al., 1992).  Similar to the effect of reperfusion, re-oxygenation of cultured 

endothelial cells results in further damage, manifested by an additional decrease in viability 

(Michiels et al., 1992).      

 

 Endothelial Responses to Hypoxia 

Many of the in vivo responses to IR are replicated in endothelial cultures exposed to HR.  

Although no one in vitro model of HR is used consistently in the literature, the data are 

remarkably consistent providing confidence in the legitimacy of the results.  The effects of HR 

on endothelial cells include production of cytokines and eicosanoids and increased permeability 

and affinity for leukocytes.  Furthermore, involvement of complement, antibodies and neo-

antigens are apparent.   

Many of the same pro-inflammatory cytokines produced in response to IR are made by 

endothelial cells subjected to HR.  Several studies using primary human umbilical vein 

endothelial cells (HUVEC) have demonstrated an increase in IL-1 production in response to HR.  

Higher levels of IL-1α and IL-1β were detected in supernatants of cultures exposed to five hours 

of zero percent O2 hypoxia followed by 19 hours of re-oxygenation than supernatants of control 

cultures (Ala et al., 1992).  A shorter period of hypoxia, two hours at one percent O2, followed 

by 24 hours of re-oxygenation also elicited increased production and secretion of IL-1β into the 

supernatant than was detected in supernatants of control cultures (Harmon et al., 2004).  A time 

course study revealed that IL-1 production positively correlates with the duration of hypoxia and 



 

14 

 

also demonstrated up-regulation of IL-1 transcription during the hypoxic period (Shreeniwas et 

al., 1992).  IL-6 production is also increased in HUVECs and microvascular endothelial cells 

subjected to HR (Ala et al., 1992; Zhang et al., 2011).  Re-oxygenation promoted the release of 

TNFα from microvascular endothelial cells after a six hour exposure to one percent O2 (Zhang et 

al., 2011).  Just as NFκB has been shown to translocate to the nucleus and regulate cytokine 

production during reperfusion (Souza and Teixeira, 2005), the protein level of NFκB increases in 

the nucleus of HUVECs during re-oxygenation (Collard et al., 1999a; Collard et al., 1998). 

HR treated endothelial cells upregulate Cox and Lox enzymes and increase production of 

PGE2 and LTB4.  Increased transcription of Cox 2 requires HIF activity at the hypoxia response 

element located in the gene's promoter sequence (Cook-Johnson et al., 2006; Csiki et al., 2006).   

Transfection of stable HIF1α resulted in a fourfold increase in Cox 2 transcription by HUVECs 

in response to one percent O2 hypoxia (Cook-Johnson et al., 2006).  Cox 2 transcription can be 

further enhanced by the ligation of the NFκB consensus elementby the p65 subunit of NFκB 

(Schmedtje et al., 1997).  Several studies have followed the increase in Cox 2 transcription over 

time.  Most agree with the pattern of early detection, as early as 30 minutes of one percent O2 

exposure, peak transcription two to three hours into one percent O2 exposure and a gradual 

decline with longer hypoxic periods, remaining significantly elevated with as long as 24 hours of 

hypoxia (Cook-Johnson et al., 2006; Schmedtje et al., 1997; Zhao et al., 2012).  Increased protein 

expression of Cox 2 was detected after one and three hours of hypoxia in HUVECs (Zhao et al., 

2012) as well as following HR of cerebrovascular endothelial cells (Busija et al., 1996)  While 

many prostaglandins are produced by endothelial cells, PGE2 is the primary prostaglandin 

produced by both HUVECs and primary coronary microvascular endothelial cells (Gerritsen and 

Cheli, 1983; Weksler et al., 1977).  The literature contains conflicting data as to when PGE2 is 

produced in response to HR.  In agreement with in vivo data, a study with human umbilical 

artery endothelial cells found PGE2 production to increase during the re-oxygenation period 

(Soler et al., 1997).  In contrast, the production of PGE2 increased during the hypoxic period with 

no further increase during the re-oxygenation period in a study using HUVECs (Michiels et al., 

1993).  The discrepancy may be due to the differing endothelial cells used, arterial versus 

venous, as well as the different HR protocols.   

 Shortly after the identification of 5-Lox and LTB4 generation by neutrophils, data 

suggesting the production and release of LTB4 by endothelial cells was published.  Stimulation 
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of primary bovine pulmonary vessel endothelial cells with thiourea resulted in migration of 

neutrophils (O'Brien et al., 1984).  Further studies demonstrated that treatment with a Cox 

inhibitor only slightly attenuated this effect whereas application of a non-specific 5-Lox/Cox 

inhibitor eliminated the neutrophil migration towards the endothelial cells (O'Brien et al., 1984).  

In conjunction with additional data, the authors concluded that a neutrophil chemoattractant, 

likely LTB4, was secreted by stimulated endothelial cells (O'Brien et al., 1984).  More recently, a 

mechanism for the upregulation of LTB4 production in response to hypoxia has been described.  

In addition to 5-Lox, 5-lipoxygenase activating protein (FLAP) is needed for the conversion of 

arachidonic acid to LTB4.  The promoter region of FLAP contains four hypoxia response 

elements as well as a binding motif for NFκB (Gonsalves and Kalra, 2010).  Hypoxia stabilizes 

HIF1α, which binds to the FLAP promoter and initiates transcription of FLAP (Gonsalves and 

Kalra, 2010).  Further regulation of FLAP transcription occurs as the NFκB motif is critical and 

microRNAs (miRNA 135a and 199a-5p) are involved (Gonsalves and Kalra, 2010).  Exposure of 

bovine pulmonary microvascular endothelial cells to four hours of hypoxia and 30 minutes of re-

oxygenation resulted in the increased production and secretion of LTB4 (Wiles et al., 1993).  

Further increases in LTB4 were observed with the addition of primary neutrophils to the hypoxic 

culture (Wiles et al., 1993).   

The chemoattractant property of LTB4 for neutrophils contributes to the neutrophil influx 

observed in IR.  In their migration from the blood to tissue, neutrophils must traverse the 

endothelial layer.  Increased adherence of HL60 cells, a neutrophil-like cell line, to HUVECs 

was observed following a 16 hour hypoxic and four hour re-oxygenation period (Shreeniwas et 

al., 1992).  Re-oxygenation was critical in this study, as no change in adherence was detected 

with hypoxia alone (Shreeniwas et al., 1992).  Examination of a time course revealed an 

increased number of primary human neutrophils adhering to and rolling along a monolayer of 

primary HUVECs when exposed to hypoxia for 30 minutes and re-oxygenation for 10 minutes 

(Rainger et al., 1995).  Lower O2 levels and increased lengths of hypoxia further increased the 

adherence of neutrophils to HUVECs (Rainger et al., 1995).  Similarly, increased adherence of 

neutrophils to bovine pulmonary and cerebral microvascular endothelial cells was elicited by HR 

(Cuzzocrea et al., 1999; Wiles et al., 1993).  Furthermore, addition of TNFα or IL-1α resulted in 

even greater adherence (Cuzzocrea et al., 1999).  A more recently published study reports a 

decrease in adherence of neutrophils to endothelial cells following HR (Schmitz et al., 2011).  
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The specific conditions of this study, use of dermal microvascular endothelial cells and 

neutrophils from a single donor, may account for the disparate result. 

In association with the secretion of LTB4 and adhesion of neutrophils prior to 

extravasation, the endothelial layer becomes more permeable with HR.  Permeability to albumin 

increased when bovine pulmonary artery endothelial cells were subjected to 90 minutes of zero 

percent O2 followed by an equal length of re-oxygenation (Inauen et al., 1990).  A second study 

using albumin translocation as an indicator of permeability found that neither two nor four hours 

of zero percent O2 were sufficient, but that 12 and 24 hours of hypoxia did result in greater 

permeability (Lum et al., 1992).  The difference in the length of hypoxia required for passage of 

albumin may be due to the use of different cells.  The first study used macrovascular endothelial 

cells from the pulmonary artery while the second study utilized endothelial cells from the 

pulmonary microvasculature which may be more resistant to hypoxia.  Work with HUVECs 

illustrated an analogous trend.  Determination of permeability via trans-endothelial electrical 

resistance (TEER) demonstrated correlation between severity of hypoxia and TEER values, 

where decreasing TEER values coincide with increasing severity of hypoxia (Ali et al., 1998).  

Nine hours of exposure to one percent O2 was required for TEER values to begin dropping and 

by 18 hours of hypoxia TEER values were only 60% of the values from control HUVECs (Ali et 

al., 1998).  To further investigate the cellular changes contributing to increased permeability, 

studies examining the actin cytoskeleton were performed.  A 24 hour time course of zero percent 

O2 revealed the formation of actin stress fibers and intercellular gaps (Partridge, 1995).  Dextran 

of 71.2 kDa traversed the monolayer during the hypoxic period (Partridge, 1995).  However, the 

effects of hypoxia are reversible as permeability to 71.2 kDa dextran returned to control levels 

within four hours of re-oxygenation (Partridge, 1995).  A single hour of hypoxia was sufficient 

to alter the actin cytoskeleton in a similar manner in a second study (Wojciak-Stothard et al., 

2005).  As with the previous study, permeability increased during the hypoxic period, as 

evaluated with 42 kDa dextran, and was largely reversible with re-oxygenation (Wojciak-

Stothard et al., 2005).  Furthermore, the surface area of the individual cells in a monolayer of 

bovine pulmonary microvascular endothelial cells decreased in response to HR (Wiles et al., 

1993).  These physical changes correlate with the increased permeability of endothelial cells 

observed following HR.     
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Just as complement and antibodies are deposited in response to IR, deposition also occurs 

when using an in vitro HR model.  C3 deposition occurred in HUVEC cultures if normal human 

sera was provided during re-oxygenation but not if sera depleted of C1q and Factor B was used 

(Mold and Morris, 2001).  Addition of C1q to the depleted sera resulted in C3 deposition, 

suggesting activation of the classical complement pathway (Mold and Morris, 2001).  

Additionally, C1q, C3d and IgM were primarily bound to annexin V positive cells as determined 

by flow cytometry (Mold and Morris, 2001).  Complement deposition (iC3b) appears to be 

enhanced with longer periods of hypoxia followed by longer periods of re-oxygenation (Collard 

et al., 1998).  In addition to C3 and its degradation products, HR also elicits deposition of C5b-9 

(Collard et al., 1999b).  An in vitro model with endothelial cells has revealed increased 

deposition of β2-GPI, a neoantigen, when exposed to HR (Fleming et al., 2010).  Thus, the 

interaction between neoantigens, antibodies and complement are supported by in vitro studies. 

 

 The Contribution of Lipids to Cellular Signaling and Processes 

The majority of lipid biosynthesis occurs at the endoplasmic reticulum (reviewed in (Bishop and 

Bell, 1988)).  Phospholipids, and all other acylglycerol lipids, are derived from phosphatidic acid 

(PA) (Athenstaedt and Daum, 1999).  Acylation of sn-glycerol-3-phosphate yields 1-acyl-sn-

glycerol-3-phosphate, lysoPA (reviewed in (Bishop and Bell, 1988)).  A second acylation, by 

microsomal acetyltransferase, generates PA (reviewed in (Bishop and Bell, 1988)).  PA can then 

be hydrolyzed by phosphatidic acid phosphatase to diacylglycerol from which 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

triacylglycerol are derived (reviewed in (Bishop and Bell, 1988)).  Alternatively, PA can react 

with the nucleotide CTP (cytidine tri-phosphate), forming CDP-diacylglycerol through the action 

of CDP-diacylglycerol synthase.  PI, PG and the mitochondrial lipid cardiolipin are produced 

from CDP-diacylglycerol (reviewed in (Bishop and Bell, 1988)).      

 Transfers of the choline and ethanolamine moieties of CDP-choline and CDP-

ethanolamine to diacylglycerol yield PC and PE, respectively.  PG results from the reaction of 

CDP-diacylglycerol with glycerol-3-phosphate.   The production of PI and PS occurs by the 

addition of inositol or serine, respectively, to CDP-diacylglycerol.  Alternatively, PS can result 

from a base-exchange reaction in which serine is exchanged for ethanolamine on PE ((Yamaji-
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Hasegawa and Tsujimoto, 2006), reviewed in (Baranska, 1982)).  This base-exchange reaction 

occurs primarily at the inner mitochondrial membrane ((Yamaji-Hasegawa and Tsujimoto, 

2006), reviewed in (Baranska, 1982)).   

 Phospholipids move between membranes by several mechanisms.  Phospholipids can be 

transferred by vesicles and proteins (reviewed in (Bishop and Bell, 1988)).  Proteins specific for 

the transport of phospholipids between organelles reside in the cytoplasm (reviewed in 

(Baranska, 1982)).  Additionally, contact between membranes allows for lateral diffusion of 

phospholipids whereby relocation can be achieved (reviewed in (Bishop and Bell, 1988)).       

Phospholipases are lipid hydrolases that catalyze phospholipid hydrolysis and enzymes 

are classified by their cleavage sites.   Phospholipase C separates the phosphate and alcohol from 

the glycerol backbone of a phospholipid, while phospholipase D removes the alcohol only.  

Phospholipase A cleaves fatty acyl chains from the glycerol backbone of a phospholipid. Three 

classes of phospholipase A2, secretory, calcium-independent, and cytosolic, cleave the fatty acyl 

chain from the second carbon of the glycerol backbone (sn-2) (reviewed in (Leslie, 1997)).  The 

ubiquitous cytosolic phospholipase A2 (cPLA2) has an affinity for phospholipids containing 

polyunsaturated fatty acids, particularly arachidonate, at the sn-2 position (reviewed in 

(Anderson et al., 1994; Clark et al., 1995; Leslie, 1997)).  While no preference for a phospholipid 

head group has been identified (Lister et al., 1988), arachidonate is most often associated with 

phospholipids containing choline, ethanolamine or inositol as the head group (Lister et al., 1988).  

The activity of cPLA2 is calcium-dependent and is synergistically increased by mitogen activated 

protein kinase mediated phosphorylation (Lin et al., 1992; Lin et al., 1993).  Calcium is required 

for the translocation of cPLA2 from the cytosol to the plasma and intracellular membranes and 

for binding to a phospholipid substrate (reviewed in (Clark et al., 1995; Leslie, 1997)).  

Phosphorylation of cPLA2 is important for activation of enzymatic activity (reviewed in (Leslie, 

1997)).  The majority of arachidonic acid is released from phosphatidylcholine (PC) by the 

action of PLA2 (Schoonderwoerd and Stam, 1992).  The activity of phospholipase C and D can 

indirectly contribute to the arachidonate pool (reviewed in (Rink and Khanna, 2011)).    

PLA2 activity not only increases the level of free arachidonic acid, but also 

lysophospholipids (Fig 1.2).  Several lysophospholipids are biologically active and circulate 

through the vasculature (reviewed in (Frasch and Bratton, 2012)).  The term “lyso” was applied 

to these lipids because they lyse red blood cells (reviewed in (Frasch and Bratton, 2012)); 



 

19 

 

structurally lysophospholipids are those with a single acyl chain.  Just as PC is the most abundant 

phospholipid of cellular membranes, lysoPC is the most abundant lysophospholipid in serum 

(reviewed in (Frasch and Bratton, 2012)).  The concentration of lysoPA in serum is typically 

greater than 1 µM and between 3 and 300 nM at the tissue level ((Goetzl and Lynch, 2000), 

reviewed in (Goetzl et al., 2004)).  In contrast to lysoPC and lysoPA, lysophosphatidylserine 

(PS) is barely detectable in serum (reviewed in (Frasch and Bratton, 2012)).  In circulation, many 

of the smaller and more water soluble acyl lipids, including lysophospholipids, are bound to 

albumin or other plasma proteins (reviewed in (Lum, 2001; Rosen and Goetzl, 2005)). 

The generation of reactive oxygen species, a feature of reperfusion or re-oxygenation, 

promotes lipid oxidation.  Polyunsaturated fatty acids are the preferred target of reactive oxygen 

species (Tyurin et al., 2008).  In fact, the greater the number of double bonds in the fatty acid, the 

more likely it is to be oxidized (reviewed in (Sparvero et al., 2010)).  Due to the unstable nature 

of reactive oxygen species and oxidized molecules, a proxy for the extent of lipid oxidation is 

often assessed (reviewed in (Rink and Khanna, 2011)).  The reactive aldehydes malondialdehyde 

and 4-hydroxynonenal (4-HNE) covalently bind proteins, enhancing their stability and allowing 

for detection (reviewed in (Rink and Khanna, 2011)).      

 Beyond their contribution to cellular structure, phospholipids are biologically active and 

participate in cellular signaling.  For example, the interaction of PA with mTOR fosters cell 

survival and proliferation (Fang et al., 2001) (reviewed in (Wang et al., 2006)).  Signaling 

through one of its receptors, GPR92, lysoPA affects numerous signaling cascades by increasing 

phosphoinositide hydrolysis and cAMP production (Kotarsky et al., 2006).  The increase in 

cAMP resulting from lysoPA signaling can activate protein kinase C, as can arachidonic acid 

(Hwang et al., 1996; McPhail et al., 1984).   

 PA and lysoPA influence several aspects of immune function.  Many cells of the immune 

system express one or more of the nine known G protein coupled receptors for lysoPA (reviewed 

in (Goetzl et al., 2004)).  GPR92, the lysoPA receptor mentioned above, is expressed by the 

resident lymphocytes of the intestine, including those in the epithelial layer, lamina propria, 

Peyer’s patches and mesenteric lymph nodes (Kotarsky et al., 2006).  Stimulation of the immune 

system can increase the concentration of lysoPA, which is chemotactic for leukocytes, elevates 

intracellular calcium concentrations and compromises the endothelial barrier ((Hines et al., 

2000), reviewed in (Goetzl et al., 2004; Lum, 2001)).  Furthermore, PA can enhance the 
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respiratory burst of neutrophils, through interaction with the p47phox subunit of NADPH 

oxidase (reviewed in (Wang et al., 2006)).  Macrophage adherence to endothelial cells is 

promoted by12-hydroxyeicosatetraenoic acid (12-HETE), an arachidonic acid metabolite (Navab 

et al., 2012).  Activation of macrophages elevates the levels PA and lysoPC as phospholipases 

act on the increased number of PC-containing microvesicles that are released (reviewed in 

(Rosen and Goetzl, 2005)).  An in vitro study found that the addition of exogenous arachidonic 

acid led to translocation of NFκB from the cytoplasm to the nucleus of cells within 30 minutes 

(Hughes-Fulford et al., 2006). 

High concentrations (75 µmol/L) of lysoPC are toxic to cells.  The addition of exogenous 

lysoPC (16:0) to cultures of human aortic endothelial cells reduced mitochondrial respiration, as 

assessed by MTT assay, promoted detachment of cells from the matrix and increased the number 

of apoptotic cells in a time- and dose- dependent manner (Matsubara and Hasegawa, 2005).  

Uptake of extracellular calcium is promoted by lysoPC, increasing the intracellular calcium 

concentration, which appears necessary for lysoPC-mediated apoptosis (Chaudhuri et al., 2003; 

Matsubara and Hasegawa, 2005).   

A hallmark of apoptosis is externalization of PS (reviewed in (Leventis and Grinstein, 

2010)).  As the process of apoptosis begins, cardiolipin, the major constituent of mitochondrial 

membranes, is oxidized (Tyurin et al., 2008).  Cytochrome c is then released into the cytoplasm 

where it can oxidize PS residing in the inner leaflet of the plasma membrane (Tyurin et al., 

2008).  Subsequently, oxidized PS is flipped to the outer leaflet where it is recognized as an 

apoptotic marker by the macrophage membrane protein CD36, promoting phagocytosis (Fadeel 

and Xue, 2009; Tyurin et al., 2008).  Although transient exposure of PS occurs often, such as 

during cellular activation or fusion of membranes (Smrz et al., 2008), the phospholipid is rapidly 

re-internalized under physiological conditions.  LysoPS can also be flipped to the outer leaflet; 

however, lysoPS is not re-internalized, thus serving as a marker for phagocytosis (reviewed in 

(Frasch and Bratton, 2012)).  Macrophage clearance of aged neutrophils is facilitated by the 

exposure of lysoPS on the neutrophil membrane at sites of inflammation (reviewed in (Frasch 

and Bratton, 2012)).  PS is also involved in the clotting of blood when externalized by platelets 

and acts as a co-factor for maximal activity of protein kinase C and sodium/potassium ATPase 

(Yamaji-Hasegawa and Tsujimoto, 2006).   
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Hypoxia was demonstrated to activate PLA2 in a study exposing primary HUVECs to 

zero percent O2 for two hours (Michiels et al., 1993). However, in the context of IR, reperfusion 

seems essential for stimulating PLA2 activity and elevating lysophospholipid content (Otamiri et 

al., 1987).  A decrease in total phospholipids is observed after intestinal IR and IR studies in rats 

indicated that administration of quinacrine, a non-specific inhibitor of PLA2 enzymes, reduced 

intestinal permeability and lowered the ratio of lysoPC to PC suggesting a role for PLA2 in IR 

injury (Otamiri et al., 1987; Otamiri and Tagesson, 1989).  Quinacrine also attenuated the loss of 

total phospholipids following IR in a porcine heart model (Das et al., 1986).  The total 

phospholipid content per gram of tissue following ischemia of the heart decreased in an 

investigation of the metabolic effects due to ischemia in cardiac tissue (Das et al., 1986; Shaikh 

and Downar, 1981).         

An ex vivo study of myocardial cells indicated loss of PC and phosphatidylethanolamine 

(PE) with a concomitant increase of lysoPC and lysoPE in response to four hours of zero percent 

O2 exposure (Kawaguchi et al., 1991).  An increase in fatty acids including arachidonic acid was 

detected in the culture supernatant (Kawaguchi et al., 1991).  PC and PE were similarly 

decreased and lysophospholipids increased in a rat model of cerebral IR (Drgova et al., 2004).  

Two independent studies found a decrease in total phospholipids, up to 20%, when primary 

porcine pulmonary artery endothelial cells were exposed to zero percent O2 for 24 to 48 hours 

(Bhat and Block, 1992; Block et al., 1989).  In accordance with the myocardial cell study, culture 

supernatants contained elevated levels of arachidonic acid and other free fatty acids (Bhat and 

Block, 1992; Block et al., 1989).  Primary HUVECs exposed to zero percent O2 for two hours 

followed by 45 minutes re-oxygenation released approximately 15% more arachidonic acid than 

the controls (Michiels et al., 1993).  Accordingly, eicosanoid production was augmented when 

HUVECs and bovine aortic endothelial cells were enriched with fatty acids in a HR study (Oudot 

et al., 1998). 

The altered phospholipid composition resulting from hypoxia increases the fluidity of the 

cellular membrane, an effect that is reversible with a sufficient re-oxygenation period (Block et 

al., 1989).  In vivo studies demonstrated the effect of lysophospholipids on endothelial 

permeability.  Addition of lysoPC to the lumen of the ileum resulted in increased permeability to 

molecules as large as 70 kDa (Tagesson et al., 1985).  LysoPC also enhanced the permeability 

that ischemia alone causes (Otamiri et al., 1986). 



 

22 

 

Inflamed tissue exhibits some of the same lipid changes found in HR studies.  Colon 

biopsies from inflammatory bowel disease patients and inflamed intestinal mucosal samples 

contained significantly more arachidonic acid than biopsies and mucosa from healthy control 

patients (Morita et al., 1999; Pacheco et al., 1987).  LysoPE in the inflamed intestinal mucosal 

samples was also elevated in comparison to healthy control samples (Morita et al., 1999).  

Evidence of lipid oxidation is found in both in vitro HR and in vivo IR studies.  An 

increase in malondialdehyde occurred in  primary pulmonary artery endothelial cells after a 

hypoxic period of eight hours (Block et al., 1989).  However, evidence of free radical production 

and lipid oxidation was detected with a 45 minute hypoxia, 15 minute reoxygenation treatment 

of aortic endothelial cells in a separate study (Kramer et al., 1995).  A rat model of intestinal IR 

showed that reperfusion was necessary for an increase in malondialdehyde (Otamiri et al., 1987).  

Interestingly, a model of oxidative tissue damage in which mice are exposed to γ-irradiation 

revealed an increase in oxidation of cardiolipin and PS but no other phospholipids, suggesting an 

increased susceptibility of cardiolipin and PS to oxidative stress (Tyurina et al., 2008). 

 

 The Response of Phospholipid Scramblase 1 to Hypoxia 

The cellular membrane consists of a bilayer of phospholipids which form a hydrophobic barrier 

between the cellular constituents and the outside environment.  This bilayer is not a passive 

barrier however; the composition and distribution of membrane phospholipids are highly 

regulated.  Under normal conditions, the membrane exists in an asymmetric distribution, with 

neutral phospholipids residing in the outer leaflet of the bilayer and anionic aminophospholipids 

remaining in the inner leaflet.  This asymmetric distribution of phospholipids is not present in all 

membranes that fuse with the cellular membrane, such as during endocytosis.   Thus, 

transmembrane proteins are shuttling phospholipids from one leaflet to the other as a means of 

maintaining the asymmetric distribution of phospholipids.      

The first of these lipid transporting proteins to be characterized was aminophospholipid 

translocase (Seigneuret and Devaux, 1984).  Incorporation of spin-labeled analogs of PC, PS and 

PE were analyzed using electron spin resonance spectroscopy (Seigneuret and Devaux, 1984).  

Studies showed incorporation of all analogs to the membrane of red blood cells; however, less of 

the PS and PE analogs were reduced with sodium ascorbate with increasing lengths of 
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incubation, providing evidence that these analogs were internalized to the inner leaflet of the 

lipid bilayer (Seigneuret and Devaux, 1984).  Use of spin-labeled analogs with bovine serum 

albumin back-extraction provided similar results with regard to specificity, confirming an 

affinity for PS and PE, and rate of transport, demonstrating more rapid internalization of PS 

(Connor et al., 1992; Morrot et al., 1989).  This aminophospholipid translocase was found to be 

ATP-dependent with a stoichiometry of one ATP per PS or PE transported (Beleznay et al., 

1993; Seigneuret and Devaux, 1984).  There is some evidence that basic fibroblast growth factor 

signaling regulates activity as incubation with an anti-basic fibroblast growth factor 

immunoglobulin inhibited aminophospholipid translocase activity in cultured bovine aortic 

endothelial cells (Julien et al., 1995).  

 

Figure 1.3 Schematic of membrane proteins involved in regulating phospholipid 

asymmetry. 

 

A counterpart to the aminophospholipid translocase, which transports 

aminophospholipids from the outer leaflet to the inner leaflet of the bilayer, was proposed for the 

cell to maintain shape and function.  Early evidence for such a counterpart was provided in 

studies with red blood cells (Andrick et al., 1991).  Subsequently, this activity was also shown to 

be ATP-dependent, although independent of the aminophospholipid translocase (Connor et al., 
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1992).  This putative transporter was called floppase; for consistency and simplicity, the 

aminophospholipid translocase became known as flippase.   

A third class of transmembrane proteins involved in regulation of membrane asymmetry 

were discovered nearly a decade later and named scramblases.  Four members of this protein 

class have been identified in human ((Francis et al., 2013; Wiedmer et al., 2000), reviewed in 

(Sahu et al., 2007))  and in mouse (reviewed in (Sahu et al., 2007)).  The properties of the 

scramblases are in stark contrast to those of the floppases and flippases.  While floppases and 

flippases transport phospholipids in one direction, from inner leaflet to outer leaflet or vice versa, 

respectively, scramblases are bi-directional transporters, capable of moving phospholipids 

between leaflets in both directions (reviewed in (Sahu et al., 2007)).  Additionally, scramblases 

show very little specificity for phospholipid head-groups, transporting both neutral and 

aminophospholipids at a similar rate (reviewed in (Bevers, 1996; Sims and Wiedmer, 2001)).  

Thus, scramblase activity serves to disrupt and reduce the membrane asymmetry ((Williamson et 

al., 1995; Williamson et al., 1992), reviewed in (Sahu et al., 2007)).  The exposure of 

aminophospholipids, particularly PS, is at times desired, such as for initiation of the coagulation 

cascade and clearance of apoptotic cells (reviewed in (Bevers and Williamson, 2010)).  

Conceptually, scramblase activity should be tightly regulated even in cases of physiologic 

benefit.  Experimentally, activation of scramblase corresponds with very specific intracellular 

conditions.  Scramblase is activated by high concentrations of intracellular calcium (Basse et al., 

1996; Stout et al., 1997; Williamson et al., 1995; Williamson et al., 1992; Zhou et al., 1997) and 

acidic pH (Stout et al., 1997).  In contrast to the constitutive activity of floppases and flippases, 

scramblase activity is highly regulated and ATP-independent.   

The scramblases are a conserved family, with orthologs found in several diverse 

organisms including the model organisms Mus musculus, Drosophila melanogaster, Danio rerio 

and Saccharomyces cerevisae (reviewed in (Sahu et al., 2007)). The four human homologs are 

similar in sequence with PLSCR2 – 4 exhibiting 46 to 59% protein identity with PLSCR1 

(Wiedmer et al., 2000).  Each of the four known scramblases appears to have distinct 

localizations and functions.  The localization of each murine protein has been investigated and 

all findings regarding the localization of human homologs are consistent with the murine data.  

Phospholipid scramblase 1 (PLSCR1), the first to be characterized (Basse et al., 1996; Zhou et 

al., 1997), primarily localizes to the cellular membrane (Frasch et al., 2004; Ory et al., 2013; Sun 
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et al., 2002; Wiedmer et al., 2003) while PLSCR3 resides in the outer mitochondrial membrane 

(Liu et al., 2003).  Expression of PLSCR2 is only detected in the testes (Wiedmer et al., 2000) 

and PLSCR4 appears to distribute both to the cellular membrane and the nucleus (Francis et al., 

2012), though the functions of these two family members remain unidentified.    

The first cloning of the human PLSCR1 gene suggested a type 2 transmembrane protein 

of 318 amino acids with a single transmembrane helix but no signal sequence (Zhou et al., 1997).  

A second cloning provided additional information about the human PLSCR1 gene.  The gene is 

located on chromosome three and consists of nine exons the first of which is untranslated, and 

eight introns with the open reading frame beginning at exon two (Wiedmer et al., 2000).  There 

is evidence that the murine gene for PLSCR1 may contain an alternative splicing site resulting in 

transcription of mTRA1a, a truncated form of PLSCR1 which may be the closest murine 

ortholog to human PLSCR1  (Wiedmer et al., 2000).  Although a crystal structure of the protein, 

human or mouse, has not been solved, a three-dimensional structural model based on homology 

modeling exists (Bateman et al., 2009).    

Activation of PLSCR1 involves the binding of calcium or potentially other divalent 

cations  (Basse et al., 1996; Sahu et al., 2009) to a predicted single cation binding site (Sahu et 

al., 2009) in the cytoplasmic portion.  Several studies have demonstrated an increase in 

phospholipid scrambling in the presence of calcium (Basse et al., 1996; Stout et al., 1998; Zhou 

et al., 1997). It is hypothesized that calcium binding is followed by a conformational change and 

perhaps self-aggregation (Frasch et al., 2004; Sahu et al., 2009; Stout et al., 1998).  In the 

absence of calcium, acidic conditions (pH < 6.0) activate PLSCR1 in erythrocyte-derived inside 

out vesicles (Stout et al., 1997).  Data suggest that protein kinase Cδ phosphorylates PLSCR1 at 

the threonine residue at position 161 following calcium binding (Frasch et al., 2000).  This 

phosphorylation appears to be required for PLSCR1 activity; as either specific inhibition of 

protein kinase Cδ or transfection of PLSCR1 alone in cells intrinsically lacking both protein 

kinase Cδ and PLSCR1 resulted in loss of phospholipid scrambling (Frasch et al., 2000).   

Additionally, PLSCR1 and epidermal growth factor receptor are primarily localized to lipid rafts.  

There is evidence that PLSCR1 is a component of the epidermal growth factor receptor complex 

as epidermal growth factor stimulation allows for the co-immunoprecipitation of phosphorylated 

PLSCR1, epidermal growth factor receptor and the adaptor protein Shc (Sun et al., 2002).  
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Furthermore, data suggest that signaling via epidermal growth factor receptor activates synthesis 

of PLSCR1 (Sun et al., 2002).    

Normally, PLSCR1 is found in the cellular membrane and to a lesser extent membranes 

of secretory vesicles, often associated with lipid rafts (Frasch et al., 2004; Merregaert et al., 

2010; Ory et al., 2013; Sun et al., 2002).  The protein contains 18 cysteine residues (Wiedmer et 

al., 2003), each of which could potentially serve as a site of palmitoylation.  Using a mutated 

PLSCR1 that cannot be palmitoylated or the native structure with inhibition of palmitoylation 

revealed that palmitoylation is required for the protein’s association with the membrane 

(Wiedmer et al., 2003).  Site directed mutagenesis studies in which alanine residues were 

systematically substituted for cysteine residues provided insight into which cysteine residues 

were important for palmitoylation.  Only when all five of the cysteine residues between amino 

acids 184 and 189 were changed to alanine residues was palmitoylation lost (Wiedmer et al., 

2003).  Additionally, the binding affinity for calcium and activity of PLSCR1 is greatly 

decreased in the absence of palmitoylation (Zhao et al., 1998).   

In the absence of palmitoylation, PLSCR1 is found diffusely in the nucleus (Wiedmer et 

al., 2003).  While PLSCR1 does not contain a classical nuclear localization signal (Ben-Efraim et 

al., 2004), the amino acid sequence from residues 257 to 266 is necessary for active import into 

the nucleus by importin α and β (Ben-Efraim et al., 2004; Chen et al., 2005).  Recent studies 

suggest a role for PLSCR1 in the interferon response as an interferon regulatory factor is found 

upstream of the gene’s promoter (Wiedmer et al., 2000) and the untranslated exon one contains 

an interferon stimulated response element (Zhou et al., 2000).  Following translation, PLSCR1 

decreases the synthesis of viral proteins (Yang et al., 2012).  However, the full significance of 

PLSCR1’s function in the nucleus is still unclear.   

 

 Toll-Like Receptors and Ischemia/Reperfusion 

TLRs are a highly conserved (Roach et al., 2005) group of pattern recognition receptors that 

recognize pathogen-associated molecular patterns (PAMPs).  TLRs are transmembrane receptors 

belonging to the IL-1 superfamily as their intracellular domains are homologous to that of the IL-

1 receptor.  TLRs are further characterized by leucine-rich repeats in the extracellular domains.  

As pattern recognition receptors, TLRs function as components of the innate immune response; 
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recognizing and responding to various bacterial and viral components.  Ten functional TLRs 

have been identified in humans and twelve in mice.  Importantly, TLR 1-9 are conserved 

between the two species (reviewed in (Bryant and Monie, 2012)).   

A critical TLR for IR injury in multiple organs is TLR4.  Several studies have 

demonstrated the participation of TLR4 in intestinal, myocardial, cerebral and renal IR pathology 

(Gao et al., 2009b; Li and Cherayil, 2004; Moses et al., 2009; Takeishi and Kubota, 2009; 

Victoni et al., 2010; Wu et al., 2007; Yang et al., 2008a).  IR damage to the liver requires TLR9 

(Bamboat et al., 2010; Huang et al., 2011).  Like most TLRs, TLR4 and TLR9 signal through 

MyD88, which is necessary for intestinal IR damage (Moses et al., 2009).  These data prompt the 

question as to the involvement of TLR9 in intestinal IR injury.   

TLR9 is an intracellular pattern recognition receptor.  TLR9 is trafficked to the 

membrane of endosomes where it interacts with ligands.  One of the first identified ligands of 

TLR9 is unmethylated CpG (cytidine-phosphate-guanosine) dinucleotides (Hemmi et al., 2000) 

which are abundant in bacterial genomes but limited in mammalian genomes.  Viral RNA (Krug 

et al., 2004a; Krug et al., 2004b; Lund et al., 2003) and synthetic single stranded 

oligodeoxynucleotides (reviewed in (Jurk and Vollmer, 2007)) also ligate TLR9 resulting in 

signaling.  More recently, self-nucleotides (mammalian as opposed to bacterial) and chromatin, 

when presented in immunoglobulin complexes, have been identified as ligands for TLR9 (Boule 

et al., 2004; Means et al., 2005).   

Early studies indicated that the majority of translated TLR9 remains in the endoplasmic 

reticulum prior to phagocytosis or endocytosis by the cell (Ahmad Nejad et al., 2002; Kim et al., 

2008; Latz et al., 2004; Leifer et al., 2006; Leifer et al., 2004), after which it is rapidly shuttled to 

endosomes (Kim et al., 2008; Latz et al., 2004; Leifer et al., 2006).  The Golgi apparatus 

appeared to be bypassed as endosomal TLR9 remains sensitive to endoglycosidase H digestion 

(Leifer et al., 2006; Leifer et al., 2004).  More recent work has provided compelling evidence 

that TLR9 does in fact pass through the Golgi apparatus prior to localization in endosomes 

(Chockalingam et al., 2009; Ewald et al., 2008).  However, the Golgi-processed protein remains 

sensitive to digestion by endoglycosidase H  (Chockalingam et al., 2009).  Gp96, an endoplasmic 

reticulum paralog of heat shock protein 90 (Yang and Li, 2005), serves as a chaperone, assisting 

in the proper folding of TLR9 (Yang et al., 2007).  Both the cytoplasmic and ectodomain, but not 

the transmembrane domain, are important for correct localization of TLR9 to endosomes (Leifer 
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et al., 2006) and two endoplasmic reticular proteins, UNC9B1 and protein associated with TLR4 

A (PRAT4A), have been identified as critical for the proper shuttling of TLR9 to endosomes 

(Kim et al., 2008; Takahashi et al., 2007).  Endosomal maturation and acidification (Ahmad-

Nejad et al., 2002) as well as proteolytic cleavage of the TLR9 ectodomain are required prior to 

signaling (Ewald et al., 2008; Park et al., 2008).  Binding of stimulatory ligands induces a 

conformational change in the ectodomains of the homodimers allowing for recruitment of the 

Toll/IL-1R homology domain (TIR) domain adaptor protein MyD88 (Latz et al., 2007).  TNF 

receptor associated factor (TRAF) 6 is required to mediate signaling via the Jun-amino-terminal 

kinase (JNK; one of the mitogen activated protein kinases) and I kappa kappa B kinase (IΚΚ) 

pathways (Hacker et al., 2000).  Nuclear translocation of NFκB results in the production of 

several cytokines.  TLR9 stimulation by CpG oligodinucleotides elicits production of IL-6 (Butt 

et al., 2012; Suwarti et al., 2013), KC, the murine homolog of IL-8 (Agrawal and Gupta, 2011; 

He et al., 2012; Johnson et al., 2005), IL-12 (Cowdery et al., 1999; Mason et al., 2002; Sasai et 

al., 2010; Yi et al., 2002) and TNFα (Agrawal and Gupta, 2011; Butt et al., 2012; Chockalingam 

et al., 2012).  

 

 Summary 

The pathogenesis of intestinal IR-induced injury involves several cell types and signaling 

cascades.  The lack of oxygen during ischemia initiates an altered physiological state within 

affected cells, such as transcription of HIF-regulated genes and a switch to anaerobic metabolism 

(reviewed in (Shay and Celeste Simon, 2012)).  While reperfusion is required for salvage of the 

organ or tissue (provided viable cells remain), the collateral damage is significant.  As the 

interface between the tissue and blood, endothelial cells are critically important in the 

pathogenesis of intestinal IR. 

  Apoptosis can be induced during the ischemic phase, particularly in the cells furthest 

from the vasculature (Droy-Lefaix et al., 1991; Haglund, 1994).  Reperfusion initiates the 

formation of reactive oxygen species, activation of the complement cascade and production of 

pro-inflammatory cytokines and eicosanoids.  The endothelial barrier is compromised as 

permeability increases and recruitment of neutrophils, and later macrophages, occurs.  Yet, the 

initial event(s) that sets the aforementioned processes in motion remains elusive.     
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 Recent studies have identified neo-antigens as a potential trigger, but their roles remain 

undefined (Fleming et al., 2010; Kulik et al., 2009b; Zhang et al., 2006a).  The involvement of a 

lipid moiety is suggested by data in the literature.  Antibodies are known to be one of the 

required components for IR-induced tissue damage as antibody-deficient Rag-1
-/- mice are 

protected.  Reconstitution of Rag-1
-/- mice with antibodies from wildtype mice prior to intestinal 

IR renders the Rag-1
-/- mice susceptible to IR-induced injury (Sparkes et al., 2010). Likewise, 

reconstitution with a monoclonal anti-phospholipid antibody and anti-phospholipid binding 

protein, β2-GPI, (both found in wildtype sera) produces IR-induced pathology in the otherwise 

protected Rag-1
-/- mice (Fleming et al., 2004a).  Thus, the hypothesis that phospholipids of the 

cellular membrane were modified as a result of IR was examined.  Furthermore, endothelial cells 

were hypothesized to be the primary cell type involved in intestinal IR-induced damage.   

Several TLRs, pattern-associated molecular pattern receptors, have been shown to be 

involved in IR-induced pathogenesis as well.  TLR2 and TLR4 signaling promotes IR-induced 

injury in the kidney, heart, brain and intestine (Gao et al., 2009b; Li and Cherayil, 2004; Li et al., 

2013; Moses et al., 2009; Takeishi and Kubota, 2009; Victoni et al., 2010; Wu et al., 2007; Yang 

et al., 2008a).  TLR9 is a key component in hepatic IR-induced damage (Bamboat et al., 2010; 

Huang et al., 2011).  The role of TLR9 in intestinal IR-induced injury, however, had not been 

investigated.  Given that TLR9 recognizes self-DNA, TLR9 was hypothesized to contribute to 

intestinal IR-induced injury.  The following studies were performed to address these hypotheses.    
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Chapter 2 - Intestinal lipid alterations occur prior to antibody-

induced PGE2 production in a mouse model of ischemia/reperfusion 

 Summary 

Ischemia/reperfusion (IR) induced injury results in significant tissue damage in wildtype but not 

antibody deficient Rag-1
-/- mice.  However, Rag-1

-/- mice sustain intestinal damage after 

administration of wildtype antibodies or naturally occurring, specific anti-phospholipid related 

monoclonal antibodies, suggesting involvement of a lipid antigen.  We hypothesized that IR 

initiates metabolism of cellular lipids, resulting in production of an antigen recognized by anti-

phospholipid antibodies.  At multiple time points after Sham or IR treatment, lipids extracted 

from mouse jejunal sections were analyzed by electrospray ionization triple quadrupole mass 

spectrometry.  Within 15 min of reperfusion, IR induces significantly more 

lysophosphatidylcholine (lysoPC), lysophosphatidylglycerol (lysoPG) and free arachidonic acid 

(AA) production than Sham treatment.  While lysoPC, lysoPG and free AA levels were similar 

in C57Bl/6 (wildtype) and Rag-1
-/- mice, IR activated Cox 2 and prostaglandin E2 (PGE2) 

production in wildtype, but not in the antibody deficient Rag-1
-/- mice.  Administration of 

wildtype antibodies to Rag-1
-/- mice restored PGE2 production and intestinal damage.  These data 

indicate that IR-induced intestinal damage requires antibodies for Cox 2 stimulated PGE2 

production but not for production of lysoPC and free AA.   

 

 Introduction 

Ischemia, a condition in which a lack of oxygen and nutrients results in severe inflammation and 

cellular damage, is a common medical pathology (Mallick et al., 2004; Zimmerman and Granger, 

1994).  Ischemic cells undergo biological and chemical changes including activation of 

numerous proteases and lipases which induce tissue damage (Zhang and Carroll, 2007).  

Subsequent reperfusion to the ischemic region results in far greater injury than observed as a 

result of ischemia alone (Fleming et al., 2002a; Mallick et al., 2004; Zimmerman and Granger, 

1994).  The intestines are thought to be the organ most sensitive to reperfusion induced damage 

(Clark and Coopersmith, 2007; Mallick et al., 2004).  Mesenteric reperfusion damage is 
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associated with multiple organ failure, resulting in a mortality rate ranging from 60 to 80% in 

humans (Clark and Coopersmith, 2007; Deitch, 2001; Leaphart and Tepas, 2007).  Very little is 

understood about prevention and diagnosis of this condition, and therapeutic treatments are 

limited.  Thus, there is strong incentive to understand the mechanisms leading to IR injury in the 

intestine. 

The pathology of intestinal IR involves neutrophil infiltration and complement activation, 

as either neutrophil depletion (Crawford et al., 1988; Hernandez et al., 1987; Simpson et al., 

1993) or complement blockade (Eror et al., 1999b; Hill et al., 1992b; Rehrig et al., 2001a) 

attenuates injury.  Although naturally resistant to mesenteric IR-induced injury, antibody-

deficient Rag-1
-/- mice sustain significant inflammation and damage following administration of 

antibodies (Ab) from wildtype mice.  Indeed, Ab play a critical role in both neutrophil 

recruitment and complement activation (Fleming et al., 2004a; Williams et al., 1999a).  After 

administration of monoclonal Ab against phospholipids and a phospholipid binding protein, 

these damage resistant mice sustained inflammation and intestinal injury at levels seen in 

wildtype mice (Fleming et al., 2004a; Williams et al., 1999a).  These data suggest that a newly 

expressed lipid antigen (neo-antigen) may be important in reperfusion-induced damage.  

Identification of lipid alterations during IR might suggest therapeutic targets for reperfusion-

induced damage. 

Despite advances in “lipidomics”, or mass spectrometry-based lipid analysis, only a few 

studies have applied this technology to investigate intestinal lipid composition.  One study 

utilized electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to determine the 

relative prevalence of 10 glycerophospholipid classes in normal rat intestine (Hicks et al., 2006).  

Another study showed that phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) were 

decreased in the intestinal mucus of ulcerative colitis patients (Braun et al., 2009; Ehehalt et al., 

2004).  Using lipidomics, a recent study found the mouse duodenum and jejunum contained the 

highest concentrations of PC and lysoPC in normal intestines (Braun et al., 2009).  These data 

indicate that lipidomics is a useful tool for identification of intestinal lipid changes associated 

with disease.  Since intestinal lipid changes in the IR model were not investigated in previous 

studies, ESI-MS/MS may be useful in determining the IR-induced lipid antigen.  In the current 

study, we test the hypothesis that mesenteric IR alters total intestinal lipid composition and 

examine the role of Ab in IR-induced lipid changes and subsequent tissue injury.   
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 Methods 

 Mice 

C57Bl/6 wild-type mice and Rag-1
-/- mice (Jackson Laboratories) were bred and maintained at 

Kansas State University.  Male mice were between 10 and 16 weeks of age when used in 

experiments.  Mice were maintained in a 12 h light/dark cycle with constant access to standard 

rodent chow and water and were not fasted prior to experimental use.  All procedures were 

approved by the Institutional Animal Care and Use Committee and were in compliance with the 

Animal Welfare Act. 

 

 Intestinal Ischemia/Reperfusion 

Mice were subjected to IR as described previously (Fleming et al., 2004a).  Briefly, mice were 

anaesthetized by an intraperitoneal injection of 8 mg per kg xylazine and 16 mg per kg ketamine.  

All subsequent manipulations were performed on a heat pad to maintain body temperature.  After 

performing a midline laparotomy, blood flow to the superior mesenteric artery was occluded for 

30 min using a small vascular clamp.  Following removal of the clamp and suturing the body 

wall, the intestines were reperfused for 15, 30 or 120 min.  Mice were then euthanized and one to 

two cm long jejunal sections (approximately 10 cm distal of the gastroduodenal junction) were 

removed and fixed in formalin or frozen in liquid nitrogen.  Sham treated animals underwent the 

same surgical procedure without occlusion of the superior mesenteric artery.  Additional Rag-1
-/- 

mice received an intravenous injection of 100 µg of purified Ab 15 to 20 min prior to occlusion 

of the superior mesenteric artery.  All tissues collected were assayed in a blinded manner. 

 

 Injury Scoring of Intestinal Villi 

A formalin fixed, hematoxylin and eosin stained transverse jejunum section from each mouse 

was scored for intestinal damage based on a six tiered scale adapted from Chui et al. (Chiu et al., 

1970).  Each villus was assigned a score according to the following criteria: 0: intact villus with 

no damage, 1: bulging of the epithelium, 2: Guggenheim’s space, 3: visible breakage of the 
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epithelium, 4: exposure of the intact lamina propria, 5: exuding of the lamina propria, and 6: 

blood loss and denuding of the lamina propria.  Scores from 75 to 150 villi in a two cm section 

were averaged to determine the injury score for that mouse. 

 

 Lipid Extraction 

Frozen two cm jejunal samples were homogenized into a fine powder in liquid nitrogen using a 

steel mortar and pestle and extracted as described previously with adaptations (Bligh and Dyer, 

1959; Folch et al., 1957).  A portion of the homogenized tissue was retained for bicinchoninic 

acid (BCA, Pierce) protein analysis.  The remaining tissue (80 to 150 mg) was resuspended in 

one ml cold water.  One ml chloroform and three ml methanol were added and the sample was 

shaken vigorously.  An additional one ml chloroform and one ml water were added and the 

sample was centrifuged at 4000 rpm for five min at 4ºC.  The lower organic layer was removed 

and one ml chloroform added to the aqueous layer.  The sample was again centrifuged and the 

process repeated for a total of three chloroform extractions.  The lower organic layers from each 

extraction were pooled and washed with one ml water.  The final organic layer was submitted for 

mass spectrometry analysis. 

 Mass Spectrometry Analysis 

An automated electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) approach was 

used and data acquisition and analysis carried out at the Kansas Lipidomics Research Center as 

described previously (Bartz et al., 2007; Devaiah et al., 2006) with modifications.  Solvent was 

evaporated from the pooled organic layers of the extracts and each sample was dissolved in one 

ml of chloroform.  An aliquot of 20 µl of extract in chloroform was analyzed.  Precise amounts 

of internal standards, obtained and quantified as previously described (Welti et al., 2002), were 

added in the following quantities (with some small variation in amounts in different batches of 

internal standards): 0.66 nmol di14:0-PC, 0.66 nmol di24:1-PC, 0.66 nmol 13:0-lysoPC, 0.66 

nmol 19:0-lysoPC, 0.36 nmol di14:0-PE, 0.36 nmol di24:1-PE, 0.36 nmol 14:0-lysoPE, 0.36 

nmol 18:0-lysoPE, 0.36 nmol 14:0-lysoPG, 0.36 nmol 18:0-lysoPG, 0.36 nmol di14:0-PA, 0.36 

nmol di20:0(phytanoyl)-PA, 0.24 nmol di14:0-PS, 0.24 nmol di20:0(phytanoyl)-PS, 0.20 nmol 

16:0-18:0-PI, 0.16 nmol di18:0-PI and 1 nmol 15:0 fatty acid.  The sample and internal standard 

mixture was combined with solvents, such that the ratio of chloroform/methanol/300 mM 
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ammonium acetate in water was 300/665/35, and the final volume was 1.2 ml.  These 

unfractionated lipid extracts were introduced by continuous infusion into the ESI source on a 

triple quadrupole MS/MS (API 4000, Applied Biosystems, Foster City, CA).  Samples were 

introduced using an autosampler (LC Mini PAL, CTC Analytics AG, Zwingen, Switzerland) 

fitted with the required injection loop for the acquisition time and presented to the ESI needle at 

30 µl per min.   

Sequential precursor and neutral loss scans of the extracts produce a series of spectra with 

each spectrum revealing a set of lipid species containing a common head group fragment.  Lipid 

species were detected with the following scans: PC, SM and lysoPC, [M + H]+ ions in positive 

ion mode with Precursor of 184.1 (Pre 184.1); PE and lysoPE, [M + H]+ ions in positive ion 

mode with Neutral Loss of 141.0 (NL 141.0); PI, [M + NH4]+ in positive ion mode with NL 

277.0; PS, [M + H]+ in positive ion mode with NL 185.0; PA, [M + NH4]+ in positive ion mode 

with NL 115.0; and free fatty acids (i.e., free arachidonic acid, (AA)), [M - H]- in negative mode 

with single stage MS analysis.  SM was determined from the same mass spectrum as PC 

(precursors of m/z 184 in positive mode) (Brügger et al., 1997; Liebisch et al., 2004) and by 

comparison with PC internal standards using a molar response factor for SM (in comparison with 

PC) determined experimentally to be 0.39.  Acyl,alk(en)yl (“ether-linked”) ePCs and ePEs were 

determined in relation to the same standards as diacyl PC and PE species, and no response 

factors were applied.  The scan speed was 50 or 100 u per sec.  The collision gas pressure was set 

at two (arbitrary units).  The collision energies, with nitrogen in the collision cell, were +28 V for 

PE, +40 V for PC (and SM), +25 V for PI, PS and PA.  Declustering potentials were +100 V.  

Entrance potentials were +15 V for PE, +14 V for PC (and SM), PI, PA and PS.  Exit potentials 

were +11 V for PE, +14 V for PC (and SM), PI, PA and PS.  The mass analyzers were adjusted 

to a resolution of 0.7 u full width at half height.  For each spectrum, 9 to 150 continuum scans 

were averaged in multiple channel analyzer (MCA) mode.  The source temperature (heated 

nebulizer) was 100°C, the interface heater was on, +5.5 kV or -4.5 kV were applied to the 

electrospray capillary, the curtain gas was set at 20 (arbitrary units) and the two ion source gases 

were set at 45 (arbitrary units).   

The background of each spectrum was subtracted, the data were smoothed, and peak 

areas integrated using a custom script and Applied Biosystems Analyst software.  The lipids in 

each class were quantified in comparison to the two internal standards of that class.  The first and 
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typically every 11th set of mass spectra were acquired on the internal standard mixture only.  

Peaks corresponding to the target lipids in these spectra were identified and molar amounts 

calculated in comparison to the internal standards on the same lipid class.  To correct for 

chemical or instrumental noise in the samples, the molar amount of each lipid metabolite 

detected in the “internal standards only” spectra was subtracted from the molar amount of each 

metabolite calculated in each set of sample spectra.  The data from each “internal standards only” 

set of spectra were used to correct the data from the following 10 samples.  Finally, the data were 

expressed as mole percent of total lipid analyzed.  Each class of lipid was also normalized to 

intestinal proteins and expressed as nmol lipid class per mg protein.   

Acyl ions (product ions) of PE, PI and PS species were identified after collision induced 

dissociation of the [M - H]- ions, and acyl ions of PC species were identified following collision 

induced dissociation of the [M + OAc]- ions. 

 

 Prostaglandin E2 Concentrations 

A freshly excised mid-jejunal section of intestine was used for analysis of prostaglandin E2 

(PGE2) as described previously (Fleming et al., 2002a; Miner et al., 1999b; Rehrig et al., 2001a).  

Briefly, the intestinal section was minced in oxygenated Tyrode’s buffer (Sigma), washed three 

times to remove feces and incubated for 20 min at 37ºC in freshly oxygenated Tyrode’s buffer.  

The supernatant was collected and stored at -80ºC until assayed for PGE2 by EIA (Cayman 

Chemicals).  The PGE2 concentration was normalized to total intestinal protein which was 

determined by BCA analysis and expressed as pg PGE2 per mg protein.   

 

 Cox 2 mRNA Expression 

Mid-jejunal intestinal sections were snap-frozen in liquid nitrogen and stored at -80ºC until 

homogenized in Trizol (Invitrogen) and RNA extracted using the manufacturer’s protocol.  RNA 

concentration was determined by spectrophotometry (Nanodrop 1000 spectrophotometer).  RNA 

(1 µg) was reverse transcribed with a first strand cDNA synthesis kit (MBI Fermentas, Hanover, 

MD) with random hexamer primers.  The cDNA was subjected to real-time PCR on a mini-

Opticon thermocycler (Bio-Rad).  PCR was performed using SYBR green in 25 µl volumes with 

the following amplification conditions: 95°C for 3 min followed by 50 cycles of 95°C for 10 sec, 
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58°C for 30 sec and 72°C for 10 sec.  All reactions were performed in duplicate.  After 

normalization to 18s, relative gene expression between treatment groups was determined using 

the comparative ∆Ct method.  The fold change in mRNA expression for Cox 2 expression was 

determined relative to the C57Bl/6 (wildtype) Sham treated control group after normalization to 

18s rRNA.  18s rRNA was selected as the internal standard based on preliminary studies 

indicating no significant differences in the 18s rRNA quantities between treatment groups.  Cox 

2 primers were: sense, 5`-ATCCTGCCAGCTCCACCG- 3’; anti-sense, 5`-

TGGTCAAATCCTGTGCTC ATACAT -3’ and 18s primers were: sense, 5`-

GGTTGATCCTGCCAGTAGC- 3’; anti-sense, 5`-GCGACCAAAGGAACCATAAC -3’.  

Primer sequences were designed by Beacon Designer 5.0 (Premier Software, Palo Alto, CA) and 

synthesized by Integrated DNA Technologies (Coralville, IA). 

 

 Antibody Purification 

Immunoglobulins (Ig) from C57Bl/6 sera were purified using protein L bead columns (Pierce) to 

allow purification of all antibody isotypes.  Subsequent multiplex analysis indicated that IgM, 

IgG1, IgG2b and IgG3 were present in similar proportions to that found in the sera (data not 

shown).  Beads were packed into a 0.5 ml bead bed and 0.5 ml sera applied to each column.  

Multiple Ig fractions were collected and each analyzed by spectrophotometer.  Those fractions 

containing the highest absorbance were pooled and dialyzed at 4°C overnight in phosphate 

buffered saline (PBS).  The PBS was changed twice during dialyzation.  Dialyzed fractions were 

concentrated to one mg per ml using Centriplus concentrators (Millipore).   

 

 Statistical Analysis 

Statistical analysis was performed using an unpaired t-test or one-way ANOVA with Newman-

Keuls post hoc analysis (Graphpad Prism 4).  Data were expressed as the mean ± SEM analyses.  

Data were deemed to be statistically different when p < 0.05. 
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 Results 

 Lipidomic analysis of the molecular composition of intestinal phospholipids, 

sphingomyelin, and free arachidonic acid in Sham treated wildtype mice 

Using ESI-MS/MS, characterization of the intestinal polar glycerophospholipids and 

sphingomyelin species of Sham treated wildtype (C57Bl/6) mice revealed that 

phosphatidylcholines, including diacyl (PC), acyl,alk(en)yl (ePC), and monoacyl (lysoPC) 

species, and phosphatidylethanolamines, including diacyl (PE), acyl,alk(en)yl (ePE), and 

monoacyl (lysoPE) species, are the major phospholipids of the intestine making up 61 mol% and 

13 mol% respectively (Fig. 1A).  Phosphatidylinositol (PI), sphingomyelin (SM) and 

phosphatidylserine (PS) represented six, seven and five mol% respectively of the measured 

phospholipids in C57Bl/6 wildtype mice, while phosphatidic acid (PA), phosphatidylglycerol 

(PG), monoacyl PG (lysoPG) and free arachidonic acid (AA) were present in lesser amounts  

(Fig. 1A).  

The fatty acyl compositions of the various phospholipid classes from intestines were 

different (Fig. 1B).  In the PC class, species containing a total of 34 and 36 fatty acyl carbons 

were most abundant, while in PE and PS, species containing 36, 38 and 40 carbons were most 

abundant.  The 38:4 species of PI represented nearly half (45%) of the total PI.  Mass spectral 

product ion analysis indicated that each of the major diacylphospholipid classes included 

molecular species containing arachidonic acid (AA).  For example, 36:4 PC and 38:4 PC were 

primarily 16:0-20:4 and 18:0-20:4 PC, 38:4 PE was primarily 18:0-20:4 PE, 38:4 PS was 

primarily 18:0-20:4 PS and 38:4 PI was primarily 18:0-20:4 PI (Fig. 1B). 
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 Following IR, Rag-1
-/-

 mice sustain significantly decreased damage compared to 

wildtype mice 

Rag-1
-/- mice sustain significantly less IR-induced mesenteric injury than C57Bl/6 wildtype mice 

at two h post ischemia (Fleming et al., 2004a).  To verify this finding and examine the extent of 

injury at earlier time points of reperfusion, Rag-1
-/- mice and wildtype mice were subjected to 30 

min ischemia followed by 15, 30 or 120 min reperfusion.  As indicated in Figure 2A, intestinal 

damage in Rag-1
-/- mice was significantly attenuated compared to wildtype mice at all observed 

time points.  Sham treatment of either mouse strain resulted in no damage as indicated by the low 

injury scores (Fig. 2A).  Wildtype mice sustained significant damage compared to the Sham 

treated mice by 15 min reperfusion (Fig. 2A, B).  The damage increased slightly by two h post 

ischemia (Fig. 2A, C).  In contrast, Rag-1
-/- mice sustained minimal damage at all time points 

measured (Fig. 2A, D, E).  Administration of wildtype Ab to Rag-1
-/- mice results in significantly 

increased intestinal damage by 15 min post ischemia (Fig. 2A).  The data indicate that Ab-

Figure 2.1  ESI-MS/MS identifies mid-jejunal lipids in Sham treated C57Bl/6 mice. 

Lipids were extracted from mid-jejunal sections from Sham treated C57Bl/6 mice and analyzed 

by ESI-MS/MS to determine mol% of (A) polar intestinal glycerophospholipids, sphingomyelin 

and free arachidonic acid and (B) fatty acyl compositions of the major phospholipid classes.  

Each bar represents the mean ± SEM of 7 to 8 mice. 
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Figure 2.2  Rag-1
-/-

 mice sustain significantly less IR-induced intestinal damage than 

wildtype mice. 

Rag-1
-/- (open bars) and C57Bl/6 (solid bars) mice were subjected to mesenteric IR with 

15, 30 or 120 min reperfusion or Sham treatment.  Additional Rag-1
-/- mice received 100 

µg purified C57Bl/6 antibody prior to IR with 120 min reperfusion (striped bar).  

Formalin fixed, H & E stained intestinal sections were scored for mucosal injury as 

described in Methods.  Average injury scores ± SEM for each treatment group of 4 to 10 

mice are shown (A).  Representative sections of intestinal tissue after 15 min reperfusion 

(B, D) or 120 min reperfusion (C, E) from Rag-1
-/- mice (D, E) or C57Bl/6 mice (B, C) 

are shown.  Also shown is a representative section of intestinal tissue at 120 min 

reperfusion from Rag-1
-/- mice receiving wildtype Ab prior to IR treatment (F).  A one-

way ANOVA with Newman-Keuls post-hoc test was used to determine significance; * 

indicates significant difference (p < 0.05) from Sham treatment and τ indicates 

significant difference from wildtype. 
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mediated intestinal damage occurs within 15 min after reperfusion begins in wildtype mice.  The 

damage was further increased by 2 h post ischemia (Fig. 2A, F). 
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Figure 2.3  IR induces a rapid increase in 

intestinal lysolipids and free arachidonic 

acid with a concurrent decrease in 

phospholipid.  

Mid-jejunal lipid extracts from IR treated 

C57Bl/6 mice were analyzed by ESI-MS/MS.  

Mol% lysoPC, lysoPE and lysoPG (A), PC and 

PE (B) and free arachidonic acid (C) were 

examined at 0 (Sham treatment), 15, 30 and 

120 min post ischemia.  Mean ± SEM of 3 to 7 

mice per group are shown.  One-way ANOVA 

with Newman-Keuls post-hoc test was used to 

determine significance; * indicates significance 

from Sham treatment where p < 0.05. 

 

 In response to IR, palmitoyl and stearoyl lysoPCs and free arachidonic acid levels are 

significantly increased in intestines 

Mass spectrometry analysis allows identification of individual lipid molecular species.  The data 

suggest that lysoPC and lysoPE rise quickly after IR, with lysoPC becoming significantly higher 

than the Sham group at 30 min after ischemia (Fig. 3A).  LysoPG also rose over time with 

significant increases from Sham group at 30 and 120 min post ischemia (Fig. 3A).  PC levels 

decreased upon reperfusion, with significant differences from Sham group at 30 and 120 min 

reperfusion (Fig. 3B).  Neither PE nor lysoPE were significantly altered during reperfusion (Fig. 

3A, B).  The levels of lysoPC were maximal at 30 min after IR with 6.0 ± 1.1 (SD) mol% 

compared to 3.5 ± 2.6 (SD) mol% following Sham treatment.  Figure 4 shows that five major 

lysoPC molecular species, 16:0, 18:2, 18:1, 18:0 and 20:4, increased following IR with palmitoyl 

(16:0) and stearoyl (18:0) lysoPCs the most prominent.  Free arachidonic acid (AA) levels were 

increased by IR treatment at 15 min post ischemia (Fig. 3C).  By 30 min reperfusion, free AA 

levels in Sham treated wildtype mice were 1.7 mol%, while free AA levels of IR treated wildtype 

mice were 4.5 mol%.  The elevated free AA was maintained at 120 min post ischemia.  Taken 

together, these data suggest that activation of acyl hydrolytic activity during or following IR 

results in hydrolysis of phospholipids to lysolipids 

and free fatty acids, in particular free AA. 
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Figure 2.4  Specific lysoPC molecular species 

increase significantly within the intestine in 

response to IR. 

C57Bl/6 mice were subjected to Sham (open 

bars) or IR (solid bars) with 15 (A) 30 (B) or 

120 (C) min reperfusion prior to ESI-MS/MS 

determination of mol% of lipid analyzed within 

the intestine.  The major lysoPC species which 

increased in response to IR, lysoPC 16:0, 18:2, 

18:1, 18:0 and 20:4 are illustrated.  Each bar 

represents the mean ± SEM with 4 to 5 mice 

per group.  An unpaired t-test determined 

significant difference (p < 0.05) between Sham 

and IR treatment within a molecular species (*) 

and one way ANOVA with Newman-Keuls 

post hoc analysis was used to determine 

significance of a species over time (θ) where p 

< 0.05. 

 

 

  

 

 

 

Total jejunal lipid composition is similar between Rag-1
-/-

 mice and wildtype mice 

during mesenteric reperfusion 

Rag-1
-/- mice are naturally resistant to IR-induced damage.  Examination of total jejunal lipids 

between mouse strains revealed no significant differences (Table 1).  Additionally, comparison 

of intestinal lipid composition of Sham-treated mice (Table 2) showed no significant 
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Total Lipid 

nmol/mg protein 

mean ± SEM
1
 

Sham IR 15 IR 30 IR 120 

B6 253 ± 85 114 ± 21 104 ± 23 152 ± 36 

Rag 110 ± 13 81 ± 17 72 ± 26 129 ± 3 

 

Lipid Class
1
 B6 (mol% ± SEM)

 2 Rag (mol% ± SEM) 

Lyso PC 2.298 ± 0.443 2.196 ± 0353 

PC 58.920 ± 2.885 51.900 ± 0.804 

SM 8.194 ± 0.721 7.977 ± 0.225 

ePC 2.758 ± 0.234 2.478 ± 0.092 

Lyso PE 0.200 ± 0.069 0.252 ± 0.039 

PE 18.580 ± 0.924 17.690 ± 0.294 

ePE 3.186 ± 0.621 3.650 ± 0.272 

PI 6.191 ± 0.465 6.003 ± 0.302 

PS 4.888 ± 0.696 4.223 ± 0.395 

PA 0.874 ± 0.205 0.604 ± 0.104 

Lyso PG 1.433 ± 0.164 1.398 ± 0.155 

PG 0.013 ± 0.004 0.016 ± 0.004 

Free AA 1.743 ± 0.261 1.464 ± 0.221 
 

Table 2.2  C57Bl/6 and Rag-1
-/-

 mice maintain similar intestinal lipid classes. 

1 Lipids were extracted from mid-jejunal intestinal sections from C57Bl/6 (B6) and Rag-1
-/- 

(Rag) Sham treated mice.  ESI-MS/MS analysis determined mol% of polar intestinal 

glycerophospholipids, sphingomyelin and free arachidonic acid of major lipid classes.  
2 The mean ± SEM of 5 to 9 mice. 

Table 2.1  Total jejunal lipids analyzed in Sham and IR treated C57Bl/6 and Rag-1
-/- 

mice. 

1 Each value is the nmol total lipids per mg tissue analyzed and is a mean of 4 to 8 mice per time 

point. 
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Figure 2.5  Intestinal lipid 

composition is conserved between 

C57Bl/6 and Rag-1
-/-

 mice. 

C57Bl/6 (solid bars) and Rag-1
-/- 

(open bars) mice were subjected to IR 

treatment with 15, 30 or 120 min 

reperfusion prior to collection of the 

mid-jejunum.  After intestinal lipid 

extraction, ESI-MS/MS analysis 

determined mol% lipid analyzed from 

the mid-jejunum of each animal.  Each 

bar represents the mean ± SEM with 3 

to 4 mice per group.  A one way 

ANOVA with Newman-Keuls post 

hoc analysis was used to determine 

significance of a species over time (*) 

where p < 0.05 (both B6 and Rag, 

from 15 min). 

differences in the lipid class compositions between wildtype and Rag-1
-/-

 mice.  Acyl 

composition within classes was also similar between wildtype and Rag-1
-/- mice (Table 3).  

Because Rag-1
-/- mice sustain less IR-induced intestinal damage as compared to wildtype mice, 

we tested the hypothesis that changes in lipid composition in response to IR would differ 

between strains.  Results indicated that total lipids from mid-jejunal samples collected at 15, 30 

and 120 min post ischemia did not display differences in composition between the strains of 

mice at any time of reperfusion examined (Fig. 5).  The major change occurring in response to 

IR in the measured phospholipids of the Rag-1
-/- mice, as in the wildtype mice, was the 

production of lysoPC species (Fig. 5).  Free AA levels also increased in response to IR in the 

Rag-1
-/- mice, similar to the increase observed in wildtype (C57Bl/6) mice (Fig. 5), with maximal 

Rag-1
-/- free AA levels at 120 min after reperfusion at 1.4 mol% in Sham-treated and 4.9 mol% 

in the IR group. 
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 PC PE PI PS 

Acyl 

chains 
B6 Rag B6 Rag B6 Rag B6 Rag 

32:0 0.977 ± 0.173 1.199 ±  0.026 0.005 ± 0.002 0.008 ±  0.001     

34:2 13.790 ± 2.709 13.950 ±  0.783 1.031 ± 0.305 0.757 ±  0.056 0.653 ± 0.112 0.486 ± 0.036 0.036 ±  0.006 0.022 ±  0.004 

34:1 2.075 ± 0.372 2.174 ±  0.150 0.168 ± 0.042 0.164 ±  0.011 0.243 ±  0.068 0.168 ± 0.016 0.039 ±  0.015 0.024 ±  0.002 

34:0 0.182 ± 0.066 0.251 ±  0.018 0.005 ± 0.002 0.011 ±  0.002   0.004 ±  0.001 0.006 ± 0.001 

36:5 0.772 ± 0.228 1.002 ±  0.066 0.139 ± 0.039 0.133 ±  0.011 0.077 ± 0.015 0.063 ± 0.006 0.001 ± 0.001 0.001 ± 0.001 

36:4 4.047 ± 0.773 5.253 ±  0.109 0.770 ± 0.214 0.597 ±  0.013 0.793 ± 0.099 0.621 ± 0.043 0.008 ±  0.002 0.008 ± 0.002 

36:3 2.527 ± 0.644 3.499 ±  0.082 1.168 ± 0.329 0.719 ±  0.030 0.348 ± 0.073 0.258 ± 0.022 0.067 ±  0.015 0.050 ± 0.007 

36:2 9.034 ± 2.151 12.840 ±  0.497 5.449 ± 1.558 4.163 ±  0.183 1.050 ± 0.215 0.702 ± 0.041 1.896 ±  0.443 1.290 ±  0.095 

36:1 0.635 ± 0.115 0.938 ±  0.081 0.413 ± 0.103 0.443 ±  0.013 0.110 ± 0.031 0.072 ± 0.005 0.819 ±  0.285 0.508 ±  0.077 

38:6 1.077 ± 0.225 1.474 ±  0.030 1.048 ± 0.221 0.873 ±  0.020 0.153 ± 0.039 0.095 ± 0.008 0.009 ±  0.003 0.008 ±  0.001 

38:5 1.082 ± 0.264 1.683 ±  0.032 1.322 ± 0.381 1.086 ±  0.035 0.431 ± 0.076 0.324 ± 0.023 0.071 ±  0.013 0.060 ± 0.004 

38:4 1.900 ± 0.503 3.265 ±  0.094 4.539 ± 1.243 3.944 ±  0.105 4.047 ± 0.792 2.683 ± 0.119 0.730 ±  0.239 0.467 ±  0.044 

38:3 0.458 ± 0.125 0.772 ±  0.038 0.433 ± 0.130 0.492 ±  0.034 0.344 ± 0.062 0.275 ± 0.019 0.438 ±  0.114 0.280 ± 0.037 

40:7 0.149 ± 0.043 0.236 ±  0.016 0.703 ± 0.148 0.517 ±  0.015 0.008 ± 0.001 0.004 ± 0.001 0.025 ±  0.006 0.023 ±  0.004 

40:6 0.630 ±  0.174 1.028 ±  0.054 2.587 ± 0.536 2.265 ±  0.075 0.201 ± 0.037 0.138 ± 0.012 1.833 ±  0.677 0.840 ±  0.088 

40:5 0.108 ± 0.039 0.201 ±  0.008 0.297 ± 0.073 0.329 ±  0.008 0.054 ± 0.013 0.048 ± 0.003 0.316 ±  0.089 0.191 ±  0.008 

 

Table 2.3 C57B1/6 and Rag-1
-/-

 mice maintain similar intestinal acyl chains within the lipid classes. 

Lipids were extracted from mid-jejunal intestinal sections from C57B1/6 (B6) and Rag-1
-/- (Rag) Sham treated mice.  ESI-MS/MS 

analysis determined mol% of the fatty acid chains for the major lipid classes.   

The mean ± SEM of 5 to 9 mice. 
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 IR-induced Cox 2-mediated prostaglandin E2 expression requires antibody 

The formation of PGE2 requires multiple enzymatic activities, including activation of the acyl 

hydrolase, phospholipase A2 (PLA2) which releases free AA.  Subsequently, activation of 

cyclooxygenase converts free AA to PGH2 which in turn is converted to PGE2.  Previous studies 

have correlated IR-induced inflammation and tissue damage with increased PGE2 production in 

wildtype mice after 2 h reperfusion (Fleming et al., 2002b; Miner et al., 1999a; Rehrig et al., 

2001b).  In addition, we previously demonstrated that inhibition of Cox 2 and subsequent PGE2 

production resulted in attenuated IR-induced intestinal damage (Moses et al., 2009).  Therefore, 

we quantified intestinal PGE2 production in wildtype and Rag-1
-/- mice at 2 h post ischemia.  As 

in previous studies, we observed that wildtype IR treated mice had significantly increased PGE2 

concentrations compared to the Sham treatment group (Fig. 6A).  In contrast, PGE2 

concentrations were not significantly increased in response to IR in Rag-1
-/- mice.  

Administration of wildtype Ab prior to intestinal IR induced significant concentrations of 

intestinal PGE2 in Rag-1
-/- mice within 120 min post ischemia.  The observed difference in PGE2 

production, despite similar levels of free AA, in wildtype and Ab-deficient mice, suggest that Ab 

are required for IR-induced PGE2 production from AA.   

To better understand the Ab requirement, we compared the IR-induced expression of Cox 

2 mRNA in wildtype and Rag-1
-/- mice.  Cox 2 expression was rapidly increased in response to 

IR in wildtype mice (Fig. 6B) and the elevated expression was maintained for 2 h post ischemia.  

In contrast, Cox 2 expression was not elevated at any time point in similarly treated Rag-1
-/- mice 

(Fig. 6B).  Importantly, Cox 2 mRNA expression increased in Rag-1
-/- mice which were 

pretreated with Ab purified from wildtype mice.  These data suggest that Ab have a role in Cox 2 

activation. 
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 Discussion 

Using ESI-MS/MS, we determined the phospholipid profile of the mid-jejunum of Sham and IR 

treated mice.  We showed that IR induces an increase in intestinal lysoPC and free AA in 

wildtype and Rag-1
-/- mice.  Despite this increase in both strains of mice, Rag-1

-/- mice did not 

exhibit Cox 2-mediated PGE2 production and intestinal damage as did wildtype mice.  These 

data indicate that the production of lysoPC and free AA occurs early in the IR-induced process of 

cellular injury.  In addition, Ab present in wildtype mice and lacking in Rag-1
-/- mice are 
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Figure 2.6  Antibody is required for IR-induced Cox 2-mediated PGE2 expression.  

C57Bl/6 (solid bars) or Rag-1
-/- mice (open bars) or Rag-1

-/- mice treated with 100 µg purified Ab 

(striped bars) were subjected to Sham or IR treatment prior to collection of mid-jejunal tissue at 

15, 30 or 120 min post ischemia.  (A) Ex vivo intestinal PGE2 production was determined by 

enzyme immunoassays.  Each bar represents the average ± SEM with 5 to 9 animals per group.  

(B) RT-PCR determined intestinal Cox 2 expression from additional intestinal sections.  The fold 

change was determined by the ∆Ct method after normalization to 18s rRNA.  Each bar represents 

the average ± SEM with 3 to 8 animals per group.  One-way ANOVA with Newman-Keuls post-

hoc test was used to determine significance; (*) indicates p < 0.05 compared to Sham treatment. 
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required for Cox 2-mediated PGE2 production but not for the IR-induced intestinal lipid 

alterations.   

Phosphatidylcholine, PI, PS, PE and SM were the main lipid classes present in both 

wildtype and Rag-1
-/- mice after Sham treatment (Fig. 1 and Table 2).  Similar results were 

obtained by ESI-MS/MS analysis of untreated mouse and rat intestines (Hicks et al., 2006; 

Tyurina et al., 2008).  Hicks et al. found the prominent PC peaks in the rat intestine were 

composed of 16:0-18:2 PC species (Hicks et al., 2006).  These data correlate with the current 

data, which indicate the most prominent PC species was 34:2 (Fig. 1).  A recent study by Braun 

et al. also showed that normal mouse jejunum expressed a 496 Da and 524 Da lysoPC in the 

highest concentrations (Braun et al., 2009).  These masses correlate with the predominant 16:0 

and 18:0 lysoPC species found in Sham-treated animals (Fig.4).  This is consistent with 

formation by a lipase acting at the sn-2 position since mammalian lipids typically are enriched in 

saturated fatty acids at the 1-position and polyunsaturated fatty acids at the 2-position.   

Previously, there has been limited use of ESI-MS/MS to study lipids in intestinal disease 

with variable results depending on the disease model.  Glycerophospholipids were not 

significantly changed in response to 15 Gy of total body irradiation (Tyurina et al., 2008).  

However, using MS/MS, Ehehalt et al. found that the intestinal mucus of ulcerative colitis 

patients contained significantly less of the protective glycerophospholipids PC and lysoPC with 

no significant differences in the molecular species between diseased and normal subjects 

(Ehehalt et al., 2004).  Similarly, Braun et al. recently showed that PC was significantly lower in 

ulcerative colitis patients but not in patients with Crohn’s disease (Braun et al., 2009).  

Correlating with this finding, the lysoPC to PC ratio also increased (Braun et al., 2009).  The 

present study showed that IR increased lysoPC with a concomitant decrease in PC (Fig. 3A, B).  

Others found that PLA2 activity and the subsequent lysoPC:PC ratio increased in response to IR, 

although these studies involved two h ischemia and five min reperfusion (Otamiri et al., 1987).  

In addition, we found the lysoPC increase was specifically in the 16 and 18 carbon molecular 

species (Fig. 5).  These data correlate with previous studies indicating that lysoPC increases the 

intestinal permeability and PLA2 activity as a result of intestinal IR (Cunningham et al., 2008).  

In addition to increased lysoPC levels following IR treatment, we found increased intestinal free 

AA levels.  Similar significantly increased free AA levels occurred in the inflamed intestinal 

mucosa of patients with Crohn’s disease when compared to non-inflamed mucosa (Morita et al., 
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1999).  Thus, some, but not all, forms of intestinal damage alter the lipid profile by changing 

either the lipid classes or molecular species.   

It appears as though Ab are essential for the release of PGE2 and that PGE2 production 

contributes to IR-induced damage.  Cox 2-mediated PGE2 production has been correlated with 

IR-induced damage via use of selective Cox 2 inhibitors (Arumugam et al., 2003; Moses et al., 

2009; Sato et al., 2005).  Previous studies also indicate that treatment of complement receptor 1 

and 2 deficient mice with anti-phospholipid Ab induces damage and eicosanoid production 

similar to that of wildtype mice (Fleming et al., 2004a), further supporting the role of Ab 

involvement in cellular damage.  The specific role of Ab in PGE2 production is currently 

unknown.  Early studies showed that intestinal smooth muscle cells release PGE2 in response to 

IL-1 and LPS (Longo et al., 1998).  In addition, recent studies indicate that in the absence of the 

LPS receptor, TLR4 significantly attenuated intestinal damage and Cox 2 expression (Moses et 

al., 2009).  It is possible that Ab recognize a lipid moiety expressed on the cell surface or bound 

to a surface receptor, triggering Cox 2 expression which leads to formation of PGE2 (Fig. 6).   

Although Ab appear important for Cox 2 catalyzed formation of PGE2, Ab are not 

required for cleavage of PC to lysoPC.  This is indicated by the fact that after IR, Rag-1
-/- mice 

express similar quantities of lysoPC as wildtype mice without elevated PGE2 and subsequent 

tissue damage.  The specific phospholipase which produces lysoPC in the intestines during IR is 

currently unknown.  Previous studies demonstrate a role for PLA2 and subsequent AA formation 

in glomerular epithelial cell damage due to the complement complex C5b-9 (Cohen et al., 2008).  

In vitro studies also indicate that calcium independent PLA2 induces damage in cardiomyocytes 

following simulated IR (Andersen et al., 2009; Lawrence et al., 2003).  The contribution of 

soluble PLA2 (sPLA2) is controversial.  Inhibitory studies suggested that sPLA2 is critical in 

intestinal IR induced lung damage at two to eight h post reperfusion (Koike et al., 2000; 

Kostopanagiotou et al., 2008) and may play a role in intestinal damage at three h post reperfusion 

(Arumugam et al., 2003).  Our data indicate that lysoPC 16:0 and lysoPC 18:0 are rapidly 

increased in the intestine in response to IR and previous studies indicated that these lipids 

uncompetitively inhibit sPLA2 expression (Cunningham et al., 2008).  Thus, it is possible that 

multiple PLA2s are responsible for cleavage of PC to lysoPC.   

In summary, using ESI-MS/MS, we have shown that wildtype C57Bl/6 and antibody 

deficient Rag-1
-/- mice have conserved lipid profiles.  In response to intestinal IR, both strains of 
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mice show increased levels of lysoPC.  However, Rag-1
-/- mice produced significantly less Cox 

2-mediated PGE2 compared to wildtype mice.  With the injection of wildtype Ab into Rag-1
-/- 

mice, Cox 2 mRNA expression and PGE2 concentrations were restored to similar levels observed 

in wildtype mice.  Thus, Ab play a role in inducing intestinal damage and identification of the 

specific lipid antigens recognized may provide improved therapeutics for the prevention of tissue 

damage associated with ischemia. 
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Chapter 3 - TLR9 is dispensable for intestinal ischemia/reperfusion-

induced tissue damage 

 Abstract 

The mortality rate due to intestinal ischemia/reperfusion (IR) remains at 60 to 80%.  As Toll-like 

receptor (TLR) 4 has been shown to be critical for IR injury in several organs, including the 

intestine, and TLR9 is necessary for IR-induced damage of the liver, we investigated the 

hypothesis that TLR9 is involved in intestinal IR-induced damage.  Wildtype (C57Bl/6) and 

TLR9
-/- mice were subjected to intestinal IR or Sham treatment.  Several markers of damage and 

inflammation were assessed, including mucosal injury, eicosanoid production, cytokine secretion 

and complement deposition.  Although IR-induced injury was not altered, PGE2 production was 

decreased in TLR9
-/- mice.  Attenuated PGE2 production was not due to differences in percentage 

of lipids or Cox 2 transcription. The data indicate that TLR9 is not required for IR-induced injury 

or inflammation of the intestine. 

 

 Introduction 

Intestinal ischemia/reperfusion (IR), while not as common as myocardial or cerebral IR, is 

associated with a 60 to 80% mortality rate (Clark and Coopersmith, 2007; Deitch, 2001; 

Leaphart and Tepas, 2007). Mesenteric ischemia induces cellular damage which is exacerbated 

upon reperfusion resulting in tissue injury and often systemic inflammation and death.  

Reperfusion initiates an excessive inflammatory response involving complement activation and 

cytokine and eicosanoid production which recruit inflammatory neutrophils and macrophages 

(reviewed in (Fleming and Tsokos, 2006)).  

In response to hypoxia, cells express cryptic antigens similar to those expressed on the 

plasma membrane of apoptotic cells (Holers and Kulik, 2007; Weiser et al., 1996). During 

reperfusion, naturally occurring antibodies (Ab) recognize newly expressed antigens, triggering 

complement activation and the innate immune response. Identification of naturally occurring 

monoclonal Ab which result in damage when administered to IR-resistant, Ab-deficient Rag-1
-/- 

mice have suggested the neo-antigens include DNA, non-muscle myosin and cardiolipin 
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(Fleming et al., 2004a; Keith et al., 2007; Weiser et al., 1996; Williams et al., 1999a; Zhang et 

al., 2004; Zhang and Carroll, 2007).  Additionally, oxygen deprivation is known to cause 

membrane lipid alterations and results in the liberation of arachidonic acid and subsequent 

production of eicosanoids.  We have previously shown that prostaglandin E2 (PGE2) is necessary 

but not alone sufficient for tissue damage (Moses et al., 2009; Sparkes et al., 2010).  Leukotriene 

B4 (LTB4) is chemotactic for neutrophils, which are also involved in IR-induced damage 

(Simpson et al., 1993).   

Recent studies indicate a significant role for Toll-like receptors (TLRs) in IR-induced 

tissue damage and inflammation (Moses et al., 2009; Pope et al., 2010). As pathogen-associated 

molecular pattern receptors, TLRs recognize distinct microbial components. Although TLRs 

recognize commensal microflora to maintain intestinal homeostasis (Rakoff-Nahoum et al., 

2004), activation of these pathogen recognition receptors also induces inflammation following 

tissue damage (Mollen et al., 2006). As a regulator of complement activation, TLR4 is required 

for IR-induced tissue injury and inflammation in the intestine, kidney, brain, lung and heart (Gao 

et al., 2009b; Li and Cherayil, 2004; Moses et al., 2009; Takeishi and Kubota, 2009; Victoni et 

al., 2010; Wu et al., 2007; Yang et al., 2008a).  TLR9 has been shown to be critical in liver IR 

(Bamboat et al., 2010; Huang et al., 2011). Upon activation, most TLRs, including TLR4 and 

TLR9, signal through the common MyD88 pathway. Recently, we demonstrated that MyD88 is 

necessary for intestinal IR-induced tissue damage (Moses et al., 2009) and that both TLR4 and 

MyD88 are critical for PGE2 production and the inflammatory response. 

TLR9 localizes to endosomal and lysosomal compartments, where it can recognize 

internalized ligand.  In addition to bacterial CpG DNA, TLR9 recognizes self DNA, particularly 

histones and mitochondrial DNA (Huang et al., 2011; Oka et al., 2012).  As IR-induced injury 

involves both cellular damage and death, self DNA is released into the extracellular environment 

for uptake by macrophages and other cells.  Furthermore, anti-DNA and anti-histone monoclonal 

Ab restored intestinal IR-induced injury in Rag-1
-/- mice (Fleming et al., 2004a). Although TLR9 

is a key component for IR-induced liver damage, its role in intestinal IR is not clear. It is possible 

that TLR9 regulates complement activation, PGE2 production or other critical components in IR-

induced injury.  We hypothesized that TLR9 is critical to IR-mediated intestinal damage.  We 

tested the hypothesis by subjecting C57Bl/6 and TLR9
-/- mice to intestinal IR and examined 

several markers of intestinal tissue damage, including complement deposition, eicosanoid 
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production and cytokine secretions, in both TLR9
-/-

 and wildtype mice.  Contrary to expectations, 

TLR9 appears to be dispensable in intestinal IR-induced tissue injury. 

 

 Methods 

 Mice 

TLR9
-/- mice were obtained from S. Akira (Osaka University, Osaka, Japan) and bred as 

homozygote deficient mice along with C57Bl/6 mice (wildtype control) (Jackson Laboratory, 

Bar Harbor, ME) in the Division of Biology at Kansas State University with free access to food 

and water. All mice were backcrossed to the C57Bl/6 background for at least nine generations 

and maintained as specific pathogen free (Helicobacter species, mouse hepatitis virus, minute 

virus of mice, mouse parvovirus, Sendai virus, murine norovirus, Mycoplasma pulmonis, 

Theiler’s murine encephalomyelitis virus, and endo- and ecto-parasites).  Research was 

conducted in compliance with the Animal Welfare Act and other federal statutes and regulations 

relating to animals and experiments involving animals and was approved by the Institutional 

Animal Care and Use Committee at Kansas State University. 

 

 Ischemia/Reperfusion 

Animals were subjected to IR using a protocol similar to that of previous studies (Moses et al., 

2009). Briefly, a laparotomy was performed on ketamine (16 mg per kg) and xylazine (80 mg per 

kg) anesthetized mice with buprenorphine (0.06 mg per kg) administered for pain. After a 30 min 

equilibration period, ischemia was induced by applying a small vascular clamp (Roboz Surgical 

Instruments, Gaithersburg, MD) to the isolated superior mesenteric artery. Blanching of the 

intestine and absence of pulsations distal to the clamp confirmed ischemia.  Covering the bowel 

with warm normal saline moistened surgical gauze prevented desiccation.  After 30 min of 

ischemia, the clamp was removed allowing two h mesenteric reperfusion, confirmed by color 

change of the bowel and the return of pulsatile flow to the superior mesenteric artery. Some 

experiments reconstituted Rag-1
-/- mice by intravenous injection of 200 µg of Protein L purified 

Ab from TLR9
-/- or wildtype (C57Bl/6) mice at the time of laparotomy.  Sham treated animals 

underwent the same surgical intervention except for vessel occlusion.  All procedures were 
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performed with the animals breathing spontaneously and body temperature maintained at 37°C 

using a water circulating heating pad.  Additional ketamine and xylazine was administered as 

needed and immediately prior to sacrifice. After sacrifice, two cm sections of the small intestine 

10 cm distal to the gastroduodenal junction were harvested for histologic evaluation and 

eicosanoid determination.   

 

 Histology and Immunohistochemistry 

Mid-jejunal specimens were promptly fixed in 10% buffered formalin phosphate prior to being 

embedded in paraffin, sectioned transversely (8 µm) and H & E stained.  The mucosal injury 

score was graded on a six-tiered scale defined by Chiu et al. (Chiu et al., 1970). Briefly, the 

average damage score of the intestinal section (75 to 150 villi) was determined after grading each 

villus from 0 to 6.  Normal villi were assigned a score of 0; villi with tip distortion were assigned 

a score of 1; a score of 2 was assigned when Guggenheims’ spaces were present; villi with 

patchy disruption of the epithelial cells were assigned a score of 3; a score of 4 was assigned to 

villi with exposed but intact lamina propria with epithelial sloughing; a score of 5 was assigned 

when the lamina propria was exuding; last, villi that displayed hemorrhage or were denuded 

were assigned a score of 6. Photomicrographs were obtained from H & E stained slides using a 

20X, 0.5 Plan Fluor objective on Nikon 80i microscope and images acquired at room 

temperature using a Nikon DS-5M camera with DS-L2 software (Nikon, Melville, NY).  

 

An additional two cm intestinal section was immediately snap-frozen in O.C.T. freezing 

medium and 8 µm sections were transversely cut and placed on slides for immunohistochemistry. 

Nonspecific antigen binding sites were blocked via treatment with a solution of 10% donkey sera 

in phosphate buffered saline (PBS) for 30 min. After washing in PBS, the tissues were incubated 

with primary Ab overnight at 4°C.  The C3 deposition, IgM and F4/80 expression on the tissue 

sections was detected by staining with a purified rat anti-mouse C3 (Hycult Biotechnologies, 

Plymouth Meeting, PA) or anti-IgM Ab (eBioscience, San Diego, CA) or anti-F4/80 Ab 

(eBioscience) followed by a Texas-red conjugated donkey anti-rat IgG secondary Ab (Jackson 

Immunoresearch, West Grove, PA). Each experiment contained serial sections stained with the 

appropriate isotype control Abs. All slides were mounted with ProLong Gold (Invitrogen, Grand 
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Island, NY). A blinded observer obtained images at room temperature using a Nikon Eclipse 80i 

microscope equipped with a CoolSnap CF camera (Photometrics, Tucson, AZ) and analyzed 

using Metavue software (Molecular Devices, Sunnyvale, CA).   

 

 Eicosanoid and Cytokine Determination 

The ex vivo generation of eicosanoids in small intestine tissue was determined as described 

previously (Sjogren et al., 1994). Briefly, fresh mid-jejunum sections were minced, washed and 

resuspended in 37°C oxygenated Tyrode’s buffer (Sigma, St. Louis, MO). After incubating for 

20 min at 37°C, supernatants were collected and supernatants and tissue were stored at -80°C 

until assayed.  The concentration of LTB4 and PGE2 were determined using an enzyme 

immunoassay kit (Cayman Chemical, Ann Arbor, MI). Cytokine analysis of the same intestinal 

supernatants was determined using a Milliplex MAP immunoassay kit (Millipore, Billerica, MA) 

and read on a Milliplex Analyzer (Millipore, Billerica, MA).  The tissue protein content was 

determined using the bicinchoninic acid assay (Pierce, Rockford, IL) adapted for use with 

microtiter plates.  Eicosanoid and cytokine production was expressed per mg protein per 20 min. 

 

 Lipid Extraction 

Lipids were extracted as described previously (Sparkes et al., 2010).  Briefly, after Sham or IR 

treatment, intestinal sections (jejunum) were snap-frozen in liquid nitrogen.  Samples were 

ground into a fine powder using a liquid nitrogen-cooled stainless steel mortar and pestle.  

Samples were transferred to glass tubes that had been washed with a cation/phosphate-free liquid 

detergent (Contrex, Decon Labs, King of Prussia, PA).  One ml chloroform and two ml methanol 

were added and tubes shaken vigorously.  An additional one ml chloroform and one ml distilled 

water were added and tubes shaken vigorously again.  Tubes were centrifuged at 4000 rpm for 

five min at 4°C.  The organic layer was transferred to a clean glass tube and one ml chloroform 

added to the aqueous phase.  Twice more, the tubes were shaken, centrifuged and organic layer 

removed.  Distilled water (0.5 ml) was added to the combined organic layers for each sample; the 

tubes were shaken and centrifuged once more.  The organic layer was submitted to the Kansas 

Lipidomics Research Center for mass spectrometry analysis.   
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 Mass Spectrometry 

Mass spectrometry analysis was carried out similar to that described previously (Sparkes et al., 

2010).  An automated electrospray triple quadrupole mass spectrometry (ESI-MS/MS) approach 

was used and data acquisition and analysis carried out at the Kansas Lipidomics Research Center 

as described previously with modifications (Bartz et al., 2007; Devaiah et al., 2006).  Solvent 

was evaporated from the extracts and each was dissolved in one ml of chloroform.  Precise 

amounts of internal standards, obtained and quantified as previously described (Welti et al., 

2002), were added to each sample to be analyzed. The sample and internal standard mixture were 

combined with solvents, such that the ratio of chloroform/methanol/300 mM ammonium acetate 

in water was 300/665/35, and the final volume was 1.2 ml.  These unfractionated lipid extracts 

were introduced by continuous infusion into the ESI source of a triple quadrupole MS (API 

4000, Applied Biosystems, Foster City, CA) using an autosampler (LC Mini PAL, CTC 

Analytics AG, Zwingen, Switzerland) fitted with the required injection loop for the acquisition 

time and presented to the ESI needle at 30 µl/min.   

Sequential precursor and neutral loss scans of the extracts produce a series of spectra with 

each spectrum revealing a set of lipid species containing a common head group fragment.  Lipid 

species were detected with the following scans: phosphatidylcholine (PC), sphingomyelin (SM) 

and lysoPC, [M + H]+ ions in positive ion mode with Precursor of 184.1 (Pre 184.1); 

Phosphatidylethanolamine (PE)  and lysoPE, [M + H]+ ions in positive ion mode with Neutral 

Loss of 141.0 (NL 141.0); phosphatidylinositol (PI), [M + NH4]+ in positive ion mode with NL 

277.0; phosphatidylserine (PS), [M + H]+ in positive ion mode with NL 185.0; phosphatidic acid 

(PA), [M + NH4]+ in positive ion mode with NL 115.0; phosphatidylglycerol (PG), [M + NH4]+ 

in positive ion mode with NL 189.0; lysoPG, [M – H]- in negative mode with Pre 152.9; and free 

fatty acids (i.e., free arachidonic acid, (AA)), [M - H]- in negative mode with single stage MS 

analysis.  For each spectrum, 9 to 150 continuum scans were averaged in multiple channel 

analyzer (MCA) mode.   

The background of each spectrum was subtracted, the data were smoothed, and peak 

areas integrated using a custom script and Applied Biosystems Analyst software (Applied 

Biosystems, Carlsbad, CA).  The lipids in each class were quantified in comparison to the two 

internal standards of that class.  The first and typically every 11th set of mass spectra were 

acquired on the internal standard mixture only.  Peaks corresponding to the target lipids in these 
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spectra were identified and molar amounts calculated in comparison to the internal standards on 

the same lipid class.  To correct for chemical or instrumental noise in the samples, the molar 

amount of each lipid metabolite detected in the “internal standards only” spectra was subtracted 

from the molar amount of each metabolite calculated in each set of sample spectra.  An “internal 

standards only” sample was included for each set of 10 samples.  Finally, the data were 

expressed as percent of the signal (intensity) of total lipid analyzed after the described 

normalization to internal standards.  Each class of lipid was also normalized to intestinal proteins 

and expressed as nmol lipid class per mg protein. 

 

 Real-time PCR 

Total RNA was isolated from the jejunum, liver and spleen using TRIzol reagent (Invitrogen, 

Grand Island, NY) according to manufacturer’s instructions.  RNA integrity and genomic DNA 

contamination was assessed using a BioAnalyzer (Agilent, Santa Clara, CA) and the quantity 

was determined by Nanodrop (Nanodrop 1000 spectrophotometer) evaluation.  Only samples 

with no measurable DNA contamination and RIN values greater than 7.0 were used for cDNA 

synthesis.  Total RNA (two µg) was reverse transcribed using RevertAid first strand cDNA 

synthesis kit (Fermentas, Glen Burnie, MD) using random primers.  Quantitative real-time PCR 

was performed in 25 µl volumes using a Mini-Opticon real time thermal cycler (Bio-Rad, 

Hercules, CA) and B-R SYBR Green Supermix for iQ reagent (Quanta Biosciences, 

Gaithersburg, MD) using the following protocol: 3 min at 95°C; 50 cycles of 10 sec at 95°C, 20 

sec at Tm, 10 sec at 72°C; melt curve starting at 65°C, increasing 0.5°C every 5 sec up to 95°C. 

Primer sequences for Cox 2 were forward: 5’ATCCTGCCAGCTCCACCG  and reverse: 

5’TGGTCAAATCCTGTGCTCATACAT with Tm 54°C. After amplification, gene of interest Ct 

values were normalized to 18s rRNA  (forward: 5’GGTTGATCCTGCCAGTAGC and reverse: 

5’GCGACCAAAGGAACCATAAC with Tm 58°C) and then ∆∆Ct fold change relative to 

Sham-treated wildtype mice was determined as described previously (Zhao et al., 2008).  Melt-

curve analysis of the PCR products ensured amplification of a single product. 
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 Statistical Analysis 

Data are presented as mean ± SEM and were compared by one-way analysis of variance with 

post hoc analysis using Newman-Kuels test (Graph Pad/Instat Software Inc., Philadelphia, PA) 

unless otherwise specified.  The difference between groups was considered significant when p < 

0.05. 

 

 Results 

 TLR9 deficiency does not protect from intestinal ischemia/reperfusion-induced injury 

Previous studies indicated that MRL/lpr autoimmune mice sustain greater tissue damage than 

wildtype mice following intestinal IR (Fleming et al., 2004a). In addition, administration of anti-

DNA or anti-histone Ab (also found in Systemic Lupus Erythematosus) resulted in intestinal 

injury in Ab-deficient Rag-1
-/- mice after IR treatment (Fleming et al., 2004a). As TLR9 

recognizes CpG DNA, we hypothesized that intestinal IR-induced damage would be attenuated 

in TLR9
-/- mice.  We tested the hypothesis by subjecting TLR9

-/- mice to intestinal Sham or IR 

treatment. As indicated in Figure 1, Sham treatment did not result in injury in either strain of 

mice with injury scores of 0.35 ± 0.07 in wildtype and 0.64 ± 0.10 in TLR9
-/- mice (Fig. 1A-C). 

As expected, after IR, wildtype C57Bl/6 mice sustained significant tissue injury (Fig 1A, D). To 

our surprise, the injury sustained by the TLR9
-/- mice (2.02 ± 0.21) was not significantly different 

from wildtype (2.52 ± 0.27) (Fig. 1A, E), suggesting that TLR9 is not required for intestinal IR-

induced injury. 
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 TLR9 deficiency attenuates prostaglandin production. 

Previous studies indicated that Cox 2-mediated PGE2 production is required for IR-induced 

tissue damage and that the signal is transduced via MyD88 (Moses et al., 2009; Pope et al., 

2010). As TLR9 also signals through MyD88, we examined the intestinal eicosanoid production 

in response to IR in the TLR9
-/- mice.  Similar to intestinal damage, Cox 2 transcript was elevated 

in response to IR in wildtype and TLR9
-/- mice (Fig. 2A).   Although IR resulted in an increase of 

PGE2 production in the TLR9
-/- mice, it was attenuated in comparison to wildtype PGE2 levels 

(Fig. 2B).  To determine if the decreased PGE2 levels were specific for PGE2 or common to all 

eicosanoids, we examined the secretion of LTB4 which recruits neutrophils.  Neither the 

production of the chemotactic eicosanoid LTB4 nor peroxidase secretion from the intestine was 
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Figure 3.1  TLR9
-/-

 mice sustain intestinal injury following ischemia/reperfusion.   

Wildtype and TLR9
-/-

 mice were subjected to Sham or intestinal IR treatment.  Intestinal 

sections were collected and formalin fixed following 30 min ischemia and 120 min reperfusion.  

(A) intestinal injury scores as determined by H&E stained intestinal sections and described in 

Methods; (B-E) representative images of H&E stained intestinal sections; each bar represents 

10-11 animals; * indicates p<0.05 compared to Sham treatment. 
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Figure 3.2  The absence of TLR9 attenuates intestinal PGE2 production but not LTB4 

production.   

Wildtype and TLR9
-/- mice were subjected to Sham or intestinal IR treatment.  Intestinal sections 

were collected following 30 min ischemia and 120 min reperfusion.  (A) RNA was extracted 

from snap-frozen intestinal sections and fold change in Cox 2 transcript determined by real-time 

PCR using ∆∆Ct values; (B-C) Intestinal sections were minced in oxygenated Tyrode’s buffer 

and incubated at 37°C for 20 min.  Supernatants were collected for PGE2 (B) and LTB4 (C) 

quantitation by EIA; values are expressed as pg eicosanoid secreted per mg protein per 20 min; 

each bar represents 5 to 6 animals (A) or 8 to 11animals (B-C); * indicates p < 0.05 compared to 

Sham treatment and Ф indicates p < 0.05 compared to wildtype IR. 

significantly different between the strains (Fig. 2C and data not shown).  Thus, it appears that 

neutrophils may be recruited normally but PGE2 production is decreased. 
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Figure 3.3  Arachidonic acid release is 

TLR9-independent.   

Extracted intestinal lipids from Sham and 

IR treated wildtype and TLR9
-/- mice were 

quantitated by ESI-MS/MS.  (A) percent 

of signal of lipids analyzed for selected 

phospholipids as determined by mass 

spectrometry; (B) percent of signal of 

lipids analyzed for free arachidonic acid as 

determined by mass spectrometry; each 

bar represents 5 to 8 animals; * indicates p 

< 0.05 compared to Sham treatment. 

 TLR9 deficiency does not alter cellular lipid composition or metabolism following IR. 

As eicosanoids are derived from the fatty acid arachidonic acid, we examined the lipid profiles of 

both wildtype and TLR9
-/- mice by mass spectrometry.  The relative intestinal lipid composition 

between Sham treated wildtype and TLR9
-/- mice was not different (Table 1).  However, the 

relative amounts of several classes of phospholipids did change with IR treatment (Table 1).  The 

relative amount of PC decreased from 25.07 ± 1.88 to 13.41 ± 1.66 after IR treatment in the 

wildtype mice and from 25.98 ± 4.16 to 14.05 ± 1.83 in the TLR9
-/- mice.  PE similarly decreased 

in both strains of mice following IR treatment (wildtype: 14.15 ± 1.35 to 7.81 ± 1.56; TLR9
-/-: 

15.31 ± 3.44 to 7.47 ± 1.28).  In contrast, IR treatment resulted in an increase in the relative 

amount of free arachidonic acid in the intestine.  Free arachidonic acid increased from 2.67 ± 

0.34 to 7.62 ± 0.89 in the wildtype mice and from 2.59 ± 0.53 to 7.49 ± 0.88 in the TLR9
-/- mice. 

We previously identified specific lipid species, that upon degradation, would likely result in 

release of free arachidonic acid (Sparkes et al., 2010).  The changes in these specific lipid species 

as a result of IR were similar between wildtype and TLR9
-/- mice, except for the PC species 

where a greater decrease from Sham levels occurred in the wildtype mice subjected to IR than 

the TLR9
-/- mice subjected to IR (Fig. 3A).  The relative amount of free arachidonic acid released 

as a result of IR-induced injury was comparable between strains (Fig. 3B). 
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 TLR9
-/-

 mice produce an antibody repertoire conducive to damage. 

Previous studies indicated that the appropriate Ab repertoire is required for recognition of IR-

induced neoantigens and complement activation (Fleming et al., 2002b; Williams et al., 1999b; 

Zhang et al., 2008). In addition, Ab appeared to be required for IR-induced PGE2 production 

(Sparkes et al., 2010).  To verify that TLR9
-/- mice have the proper Ab repertoire, we injected 

Ab-deficient, IR-resistant Rag-1
-/- mice with purified Ab obtained from wildtype or TLR9

-/- mice 

and subjected the mice to IR. As indicated in Figure 4, after IR, addition of Ab purified from 

wildtype mice induced significant intestinal damage and eicosanoid production in Rag-1
-/- mice. 

Similarly, Rag-1
-/- mice administered Ab from TLR9

-/- mice sustained significant intestinal 

damage in response to IR (Fig. 4A). In addition, eicosanoid production was at wildtype levels in 

TLR9
-/- Ab reconstituted Rag-1

-/- mice after IR treatment (Fig. 4 B, C). Thus, the Ab repertoire of 

TLR9
-/- mice is sufficient to induce intestinal damage, PGE2 production and inflammation in 

response to IR.   

Figure 3.4  Antibodies produced by TLR9
-/-

 mice are sufficient to induce intestinal injury 

following IR.   

Rag-1
-/- mice were administered antibodies from wildtype or TLR9

-/- mice prior to Sham or IR 

treatment.  (A) Intestinal injury scores were determined from H & E stained intestinal sections 

as described in Methods; (B-C) Intestinal sections were minced in oxygenated Tyrode’s buffer 

and incubated at 37°C for 20 min.  Supernatants were collected and assayed for PGE2 (B) and 

LTB4 (C) by EIA. Values are expressed as pg eicosanoid secreted per mg protein per 20 min.  

Each bar represents 4 to 7 animals; * indicates p < 0.05 compared to Sham treatment.       
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 Complement deposition and inflammatory cytokine production are TLR9-independent. 

Similar to eicosanoid production and previous studies with TLR4
-/- or MyD88

-/- mice (Pope et al., 

2010), intestinal production of  IL-6, IL-12p40 and TNFα increased in response to IR in both 

wildtype and TLR9
-/- mice (Fig. 5).  Similar to myocardial ischemia, intestinal IR induced 

significant KC and MCP-1 (CCL2) production in wildtype mice that was significantly reduced in  

TLR9
-/- mice (Fig. 5 and data not shown).  These findings are in contrast with previous reports of 

IR in the liver, where IL-6 and TNFα levels were significantly lowered in TLR9
-/- mice (Bamboat 

et al., 2010).      
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3.5  TLR9 deficiency does not affect cytokine secretion.   

Wildtype and TLR9
-/- mice were subjected to Sham or IR treatment.  Intestinal sections were 

minced in oxygenated Tyrode’s buffer and incubated at 37°C for 20 min.  Supernatants were 

collected and assayed for cytokine secretion.  Values are expressed as pg cytokine secreted per 

mg protein per 20 min.  Each bar represents 4 to 8 animals. * indicates p < 0.05 compared to 

Sham treatment.     

 

Because Ab activation of complement C3 is required for IR-induced intestinal damage, C3 and 

IgM deposition within the intestinal villi were determined by immunohistochemistry. As 

indicated in Figure 6, neither C3 nor IgM were deposited in response to Sham treatment. 

However, significant deposits of both IgM and C3 were present in wildtype and TLR9
-/- mice 

after mesenteric IR.  Furthermore, macrophages were identified in both wildtype and TLR9
-/- IR-

treated tissues, as detected by F4/80 staining (Fig. 6).  Both the immunohistochemistry staining 

and cytokine data support the conclusion that intestinal macrophages are not affected by the 

presence or absence of TLR9 in the context of IR.   



 

63 

 

 

IgM

C3

B6 IRB6 Sham

F4/80

TLR9-/- IR 

Figure 3.6  IR-induced complement and IgM deposition occurs in both C57Bl/6 and 

TLR9
-/- 

mice.   

Wildtype and TLR9
-/- mice were subjected to Sham or IR treatment.  Intestinal sections were 

frozen in O.C.T. and serial sections cut for immunohistochemistry.  Antibody staining for IgM 

deposition, C3 deposition and F4/80+ macrophages was performed as described in Methods.  

Original magnification was 200x.  Each photomicrograph is representative of 5 to 6 photos per 

treatment in each of 3 to 4 experiments. 
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 Discussion 

This is the first study, to our knowledge, to examine the role of TLR9 in intestinal IR-induced 

injury. As TLR9 is critical to IR-induced liver damage, we hypothesized that intestinal IR would 

also require TLR9. Surprisingly, TLR9
-/- mice sustained significant tissue damage and 

inflammation following intestinal IR.  Mucosal injury scores and the production of eicosanoids 

and cytokines were very similar between TLR9
-/- and wildtype mice.  In addition, it was verified 

that TLR9
-/- mice produce an Ab repertoire conducive to injury.  The intestinal lipids and release 

of arachidonic acid as well as complement deposition mimic that observed for wildtype mice.  

These data support the conclusion that TLR9 is not required for intestinal tissue damage or 

inflammation following IR. 

TLRs, while originally identified as pathogen-associated molecular pattern receptors, 

recognize various self-ligands.  As IR-induced tissue injury results in cellular damage and 

apoptosis, several self-ligands are released and available for TLR recognition.  TLR4 has been 

shown to be involved in mediating IR-induced injury in several organs.  We have previously 

shown TLR4 to be involved in intestinal IR, as TLR4 mutant mice had attenuated injury and 

eicosanoid and cytokine secretion (Moses et al., 2009; Pope et al., 2010).  Furthermore, TLR4 

mutant mice were protected from liver injury in a model of liver IR (Zhai et al., 2004).  

Additionally, TLR2 has been implicated in IR-induced damage to the kidney (Shigeoka et al., 

2007).   

Limited data exists regarding the role of TLR9 in sterile inflammation and injury models.  

However, recent studies have demonstrated involvement of TLR9 in the pathogenesis of tissue 

injury and inflammation of the liver in both an IR model (Huang et al., 2011) and a hemorrhagic-

shock and trauma model (Gill et al., 2011).  In addition, inhibitory CpG oligodeoxynucleotides 

(ODN) attenuated liver IR-induced injury (Wang et al., 2012). Oka, et al. found TLR9
-/- mice to 

experience attenuated injury and less severe cardiac failure following transverse aortic 

constriction (Oka et al., 2012) and inhibitory CpG ODN attenuated cardiac IR, suggesting a role 

for TLR9 (Mathur et al., 2011).  In contrast, there are conflicting data on the role of TLR9 in 

brain IR. The absence of TLR9 in brain IR was not protective (Hyakkoku et al., 2010) but CpG 

ODN was protective when administered prior to IR (Stevens et al., 2008). These conflicting data 

may be resolved by a current study which indicates that complement receptor 2 may function as 

a receptor for DNA in addition to TLR9 (Asokan et al., 2013).  Similar to brain IR, our data 
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indicate that TLR9
-/- mice are not protected from injury following intestinal IR. It is currently 

unknown if CpG ODN attenuates intestinal IR; however, complement receptor 2 deficient mice 

are protected from IR-induced tissue damage (Fleming et al., 2002a). These data provide another 

mechanism by which IR-induced injury differs between organs. This is an important finding as 

the field continues to uncover contributing factors to IR-induced damage and the differences 

between organs.  

We previously demonstrated that tissue damage requires PGE2 production and the PGE2 

production requires the  appropriate Ab repertoire (Moses et al., 2009; Sparkes et al., 2010).  It is 

interesting to note that PGE2 was secreted but levels were attenuated in the TLR9
-/-

 mice. 

However, the attenuated PGE2 production was not due to an improper Ab repertoire, as intestinal 

sections from Rag-1
-/- mice administered Ab from TLR9

-/- mice secreted similar concentrations 

of PGE2 as Rag-1
-/- mice receiving Ab from wildtype mice.   Thus, TLR9

-/- mice contain the 

proper Ab repertoire to induce normal PGE2 production.   

PGE2 is produced from free arachidonic acid after conversion by Cox 2.  It is possible 

that TLR9 influences the production or release of arachidonic acid to promote eicosanoid 

production.  Our data indicate that Cox 2 transcription is normal despite the fact that previous 

studies indicated that CpG DNA stimulates Cox 2 production (Yeo et al., 2003). Other studies 

indicate that other TLR agonists also stimulate Cox 2 (Fukata et al., 2006). Thus, IR-induced 

PGE2 production does not require TLR9 stimulation of Cox 2. It is possible that arachidonic acid 

is not released in the absence of TLR9 stimulation. Our data indicate that the relative amount of 

free arachidonic acid is the same between wildtype and TLR9
-/- mice (and Rag-1

-/- mice, data not 

shown). However, TLR9
-/- mice do have significantly lower levels of arachidonic acid per mg 

protein (data not shown).  Conflicting reports exist in the literature regarding arachidonic acid 

release following TLR9 stimulation.  Lee, et al. showed an increase in arachidonic acid release 

from RAW264.7 cells after stimulation with CpG ODN and that TLR9 knockdown reduced the 

amount of arachidonic acid released from the stimulated cells (Lee et al., 2007).  However, 

Ruiperez, et al. found no release of arachidonic acid from RAW264.7 or P388D1 cells when 

stimulated with synthetic ODN 1826 (Ruiperez et al., 2009).  Thus, further investigation on the 

effects of TLR9 stimulation-induced release of arachidonic acid is needed.              

 Previous studies indicated that anti-DNA and anti-histone mAb restored injury in the 

Rag-1
-/- mice, suggesting that DNA acted as a neo-antigen. Our data indicate that while TLR9 is 
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involved in IR-induced injury of some organs, it is not vital for injury of the intestine.  A recent 

study suggests that in addition to TLR9, complement receptor 2 functions as a receptor for DNA 

(Asokan et al., 2013).  Thus, CR2 or other DNA receptors may be recognized by naturally 

occuring Ab to promote tissue damage and inflammation in the absence of TLR9. 
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Chapter 4 - A role for phospholipid scramblase 1 in hypoxia and re-

oxygenation-induced endothelial damage 

 Abstract 

Ischemia and reperfusion (IR) of the intestine is highly lethal due to local and systemic 

inflammatory effects.  Previous studies have established a role for innate immune cells and 

naturally occurring antibodies (Ab) in intestinal IR-induced pathology.  Furthermore, 

administration of two monoclonal Ab that recognize phospholipids and the phospholipid binding 

protein β2-glycoprotein I (β2-GPI) restores tissue damage to wildtype levels in IR-resistant, Ab-

deficient Rag-1
-/- mice.  These and other data indicate the involvement of a lipid or lipid-like 

moiety in mediating IR-induced damage.  We hypothesized that phospholipid scramblase 1 

(PLSCR1), a protein that regulates bilayer asymmetry, is involved in altering the phospholipids 

of endothelial cells during hypoxia, a component of ischemia, leading to β2-GPI binding and 

subsequent inflammatory responses.  Using an in vitro cell culture model, we completed the first 

comprehensive study of PLSCR1 transcription, protein expression and activity under conditions 

of hypoxia and re-oxygenation.  PLSCR1 is involved in exposing phosphatidylserine in response 

to oxygen stress, leading to β2-GPI binding and other cellular responses.  

 

 Introduction 

Interruption of blood flow to tissues and organs occurs frequently within a medical context 

(Mallick et al., 2004).  Ischemia, the absence of blood flow, restricts oxygen and nutrient supply 

to cells.  Cellular damage is initiated during this period of deprivation, and the damage is further 

magnified by the return of blood flow, termed reperfusion (Fleming et al., 2002a; Mallick et al., 

2004).  Ischemia/reperfusion (IR)-induced injury accompanies several conditions including 

stroke, myocardial infarction, organ transplantation and many other surgical procedures (Kiang 

and Tsen, 2006; Lopez-Neblina et al., 2005; Mallick et al., 2004).  Intestinal IR is associated 

with a 70 to 80% mortality rate, as both local and systemic damage occurs (Lock, 2001).  Several 

studies have confirmed the involvement of the immune system in perpetuating IR-induced 

injury.  The pathology includes a requirement of antibodies (Ab), complement activation and 
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endothelial damage resulting in a vast influx of neutrophils (Crawford et al., 1988; Eror et al., 

1999b; Fleming et al., 2004a; Hernandez et al., 1987; Hill et al., 1992b; Rehrig et al., 2001a; 

Simpson et al., 1993; Williams et al., 1999a).  

While administration of the entire repertoire of Ab from wildtype mice restores IR-

induced injury in otherwise protected Rag-1
-/- mice, administration of a combination of two 

monoclonal Ab produces the same effect (Fleming et al., 2004a).  Phospholipids appear to be 

involved in the pathology as one of the Ab directly binds phospholipids (FA3) and the other 

(FC1) binds a serum protein that can bind cell membranes.  A prior study investigated the 

intestinal phospholipid composition of wildtype and Rag-1
-/- mice using mass spectrometry 

(Sparkes et al., 2010).  An additional study utilized the same methods for analysis of TLR9
-/- 

mice (Slone et al., 2012).  While no statistical differences in intestinal phospholipids were found 

between the strains of mice, the phospholipid compositions were altered by IR treatment (Slone 

et al., 2012; Sparkes et al., 2010).   

Production of prostaglandin E2 (PGE2), a strong vasodilator and mediator of vascular 

permeability, is necessary, although not sufficient, for IR-induced injury (Moses et al., 2009).  

Numerous studies have reported an increase in PGE2 production following re-oxygenation of an 

oxygen deprived tissue.  In vivo IR studies of the intestine (Moses et al., 2009; Sparkes et al., 

2010) and cerebrum (Candelario-Jalil et al., 2003; Kishimoto et al., 2010) have demonstrated an 

increase in PGE2 levels, as have in vitro hypoxia studies with neonatal dermal cells (Watkins et 

al., 2004).  However, the specific cell types involved in the production of PGE2 during IR is 

unknown.  It is known that hypoxia stimulates transcription of the inducible cyclooxygenase 

(Cox) isoform, Cox 2, which converts arachidonic acid to prostaglandins in endothelial cells 

(Schmedtje et al., 1997).   

One of the damage-inducing Ab, FC1, recognizes surface-bound β2-glycoprotein I (β2-

GPI) (Monestier et al., 1996).  β2-GPI is a serum protein that circulates in a closed, ring-like 

conformation, but adopts an open, J-shaped conformation upon binding to anionic phospholipids 

(Agar et al., 2010).  This conformational change exposes a neoantigen recognized by Ab.  β2-GPI 

is involved in intestinal IR-induced injury, as administration of peptides derived from the 

phospholipid binding domain inhibit both β2-GPI binding and tissue damage (Fleming et al., 

2010). 
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The eukaryotic cell membrane is a mosaic of phospholipids, glycolipids, cholesterol and 

other lipid moieties in addition to the many proteins that associate with the membrane.  The lipid 

bilayer is asymmetric, with the majority of choline containing phospholipids in the outer leaflet 

and most of the anionic phospholipids in the inner or cytosolic leaflet (reviewed in (Daleke, 

2003; Fadeel and Xue, 2009)).  While lipid bilayers are dynamic and continuously undergoing 

slight modifications, certain stimuli can induce major changes in the organization of the bilayer.  

A common end result of bilayer disruption is the exposure of phosphatidylserine (PS), an anionic 

phospholipid, on the outer leaflet of the cell membrane which marks the cell for apoptosis and/or 

coagulation (reviewed in (Fadeel et al., 2010; Zwaal and Schroit, 1997)). 

Three classes of proteins are responsible for maintaining the asymmetry of the 

phospholipid bilayer under quiescent conditions (reviewed in (Contreras et al., 2010)).  Two of 

these protein classes, flippases and floppases, require ATP for phospholipid transport, whereas 

scramblases are ATP-independent, alternatively responding to increased cytosolic calcium 

concentrations ((Basse et al., 1996; Williamson et al., 1995; Williamson et al., 1992), reviewed 

in (Contreras et al., 2010)) or acidic pH (Stout et al., 1997).  The scramblases are a very likely 

candidate for involvement in hypoxia-induced phospholipid changes as hypoxia treatment results 

in ATP depletion (Arnould et al., 1992; Bouaziz et al., 2002), increased acidity (Hattori et al., 

2001) and increased concentrations of intracellular calcium ((Aono et al., 2000; Arnould et al., 

1992), reviewed in (Toescu, 2004)).  While four scramblase genes have been identified, each of 

the resulting proteins localizes to a specific cellular compartment with phospholipid scramblase 1 

(PLSCR1) found in the plasma membrane (Zhou et al., 1997). 

The current study investigates the hypothesis that endothelial cells are key mediators of 

the inflammatory response observed following oxygen deprivation.  Furthermore, this response 

may be initiated by PLSCR1-mediated lipid scrambling allowing for β2-GPI binding and 

subsequent signaling.  We report findings on the transcription, expression and activity of 

PLSCR1 under hypoxic conditions.  The effects of hypoxia and re-oxygenation on β2-GPI 

binding, phospholipid changes and downstream inflammatory markers in endothelial cells are 

also demonstrated.  Our results confirm that endothelial cells contribute to the inflammatory 

response observed following a period of hypoxia and are likely intimately involved in the tissue 

damage observed following IR.  Furthermore, PLSCR1 appears to play a role in facilitating early 

phospholipid changes in endothelial cells which ultimately result in tissue damage.       
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 Materials and Methods 

 Cells 

The mouse (C57Bl/6) endothelial cell line, MS1 (ATCC, Manassas, VA), was grown and 

maintained in Dulbecco modified Eagle medium (DMEM) (Gibco, Grand Island, NY) with 10% 

fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 10% Opti-MEM (Gibco) and one 

percent Gluta-MAX (Gibco) in a humidified five percent CO2 incubator. 

 Hypoxia 

Cells were seeded (3x106 for lipid and PGE2 analysis, 1x106 for RNA extraction and 1x107 for 

western blot) on tissue culture plates 12 to 18 h prior to hypoxia treatment.  At time of 

experiment, media was replaced with media that had been de-oxygenated, either by five min of 

bubbling with a 0.989% O2, 5.070% CO2, 93.941% N2 gas mixture (referred to as one percent 

oxygen) or placing the media under vacuum for 15 min in a sealed flask.  Plates of cells were 

transferred to a hypoxia chamber (modular incubator chamber, Billups-Rothenburg Inc., Del 

Mar, CA) and the chamber purged with the same gas mixture at 20 L per min for 20 min.  The 

chamber was held at 37°C for two h.  After two h of hypoxia, the cells were removed from the 

hypoxia chamber, the hypoxic media was replaced with normoxic media and cells placed into 

normoxic culture conditions (37°C humidified incubator with five percent CO2).  The cells were 

then collected 15, 30 or 60 min later.  Normoxic treated cells were subjected to the same 

treatment with replacement of normoxic media at the beginning of the experiment. 

 Prostaglandin E2 

Following normoxic or hypoxic treatment, supernatants were collected from cells and stored at -

80°C until assay.  PGE2 concentration was determined with a PGE2 Express EIA Kit (Cayman 

Chemical, Ann Arbor, MI) and expressed as pg per ml per 3x106 cells.   

 

 Lipid Extraction 

Lipids were extracted using a method similar to that described previously (Sparkes et al., 2010).  

Briefly, after normoxic or hypoxic treatment, media was removed and the cells lysed with 

distilled water.  Cells were then collected from the tissue culture plates and lysates stored at  
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-80°C until lipid extraction.  Lysates were thawed, vortexed and transferred to glass tubes that 

had been washed with a cation/phosphate-free liquid detergent (Contrex, Decon Labs, King of 

Prussia, PA) to eliminate contamination.  One ml chloroform and two ml methanol were added 

and tubes shaken vigorously.  An additional one ml chloroform and one ml distilled water were 

added and tubes shaken vigorously again.  Tubes were centrifuged at 4000 rpm for five min at 

4°C.  The organic layers were transferred to clean glass tubes and one ml chloroform added to 

the aqueous phase.  The tubes were again shaken, centrifuged and organic layers removed two 

more times.  Distilled water (0.5 ml) was added to the combined organic layers from each 

sample, and each was centrifuged once more.  The samples (organic layers) were submitted to 

the Kansas Lipidomics Research Center for analysis by mass spectrometry.   

 Mass Spectrometry 

An automated ESI-MS/MS approach was used and data acquisition and analysis carried out at 

the Kansas Lipidomics Research Center as described previously with some modifications (Bartz 

et al., 2007; Devaiah et al., 2006).  Solvent was evaporated from the extracts and each sample 

was dissolved in one ml of chloroform.  Precise amounts of internal standards, obtained and 

quantified as previously described (Welti et al., 2002), were added to the sample to be analyzed. 

The sample and internal standard mixture were combined with solvents, such that the ratio of 

chloroform/methanol/300 mM ammonium acetate in water was 300/665/35, and the final volume 

was 1.2 ml.  These unfractionated lipid extracts were introduced by continuous infusion into the 

ESI source of a triple quadrupole MS/MS (API 4000, Applied Biosystems, Foster City, CA) 

using an autosampler (LC Mini PAL, CTC Analytics AG, Zwingen, Switzerland) fitted with the 

required injection loop for the acquisition time and presented to the ESI needle at 30 µL per min.   

Sequential precursor and neutral loss scans of the extracts produce a series of spectra with 

each spectrum revealing a set of lipid species containing a common head group fragment.  Lipid 

species were detected with the following scans: phosphatidylcholine (PC), sphingomyelin (SM) 

and lysoPC, [M + H]+ ions in positive ion mode with Precursor of 184.1 (Pre 184.1); 

phosphatidylethanolamine (PE) and lysoPE, [M + H]+ ions in positive ion mode with Neutral 

Loss of 141.0 (NL 141.0); phosphatidylinositol (PI), [M + NH4]
+ in positive ion mode with NL 

277.0; phosphatidylserine (PS), [M + H]+ in positive ion mode with NL 185.0; phosphatidic acid 

(PA), [M + NH4]
+ in positive ion mode with NL 115.0; PG, [M + NH4]

+ in positive ion mode 
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with NL 189.0; lysophosphatidylglycerol (lysoPG), [M – H]- in negative mode with Pre 152.9; 

and free fatty acids (i.e., free arachidonic acid, (AA)), [M - H]- in negative mode with single 

stage MS analysis.  For each spectrum, 9 to 150 continuum scans were averaged in multiple 

channel analyzer (MCA) mode.   

The background of each spectrum was subtracted, the data were smoothed and peak areas 

integrated using a custom script and Applied Biosystems Analyst software (Applied Biosystems, 

Carlsbad, CA).  The lipids in each class were quantified in comparison to the two internal 

standards of that class, except PI and AA, in which single standards were employed.  The first 

and typically every 11th set of mass spectra were acquired on the internal standard mixture only.  

Peaks corresponding to the target lipids in these spectra were identified and molar amounts 

calculated in comparison to the internal standards on the same lipid class.  To correct for 

chemical or instrumental noise in the samples, the molar amount of each lipid metabolite 

detected in the “internal standards only” spectra was subtracted from the molar amount of each 

metabolite calculated in each set of sample spectra.  The data from each “internal standards only” 

set of spectra were used to correct the data from the following 10 samples.  Finally, the data were 

expressed as mole percent of total lipid analyzed.  Each class of lipid was also normalized to the 

sample protein content and expressed as nmol lipid class per mg protein.   

 Real-Time PCR 

Following normoxic or hypoxic treatment, media was removed and cells washed once with tissue 

culture phosphate buffered saline (TCPBS; 136.8 mM NaCl, 1.47 mM KH2PO4, 2.68 mM KCl, 

8.58 mM Na2HPO4*7H20).  Cells were collected in one ml of TRIzol Reagent (Invitrogen, 

Carlsbad, CA) and total RNA extracted according to manufacturer’s protocol.  Complementary 

DNA was reverse transcribed from two µg extracted RNA using RevertAid First Strand cDNA 

Synthesis Kit (Fermentas, Glen Burnie, MD) and made according to manufacturer’s protocol 

using random hexamers.  Quantitative real-time PCR was used to assess mRNA transcript levels.  

Either Maxima SYBR (Fermentas) or PerfeCTa SYBR Green FastMix (Quanta BioSciences, 

Gaithersburg, MD) was used as master mix (25 µl total volume).    Primers used are listed in 

Table 1 and were obtained from Integrated DNA Technologies (Coralville, IA).  Genes of 

interest were normalized to 18s rRNA of each sample and fold change determined in relation to 

normoxic controls. 
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Table 4.1  qRT-PCR Primer Sequences 

aAnnealing temperature  
bRibosomal RNA; house-keeping gene to which genes of interest were normalized 

Gene Tm °C
a
 Primer Sequence 

18sb 58 
FWD:  GGTTGATCCTGCCAGTAGC 

REV:  GCGACCAAAGGAACCATAAC 

VEGF 57 
FWD:  AGAGCAACATCACCATGCAG 

REV:  TTTCTTGCGCTTTCGTTTTT 

Flt-1 56 
FWD:  TATAAGGCAGCGGATTGACC 

REV:  TCATACACATGCACGGAGGT 

COX-1 56 
FWD:  AAGGAGTCTCTCGCTCTGCTTT 

REV:  TCTCAGGGATGGTACAGTTGGG 

COX-2 58 
FWD:  ATCCTGCCAGCTCCACCG 

REV:  TGGTCAAATCCTGTGCTCATACAT 

PLSCR1 56 
FWD:  TAGCTGCTGTTCCGACATTG 

REV:  ACAAGCACCAAGCATCACAG 

PLSCR3 57 
FWD:  GTTCACCATCTCCAGGCAGT 

REV:  TAAGGGAAGGGTGGTGCTTG 

Atp8a1 
(flippase) 

56 
FWD:  GTGTTTTGCTGTGGCTGAGA 

REV:  ATGGTTTCAGGCACTTGGTC 

Abcb1a 
(floppase) 

56 
FWD:  GGCTTACAGCCAGCATTCTC 

REV:  CCAGCTCACATCCTGTCTCA 

 

 Western Blot  

Cell lysates were prepared after various lengths of normoxia following two h hypoxia as well as 

from normoxic controls.  Cells were lysed and stored in a buffer of 10 mM Tris-HCl, pH 7.0, 200 

mM NaCl, 5 mM EDTA, 10% glycerol, 1% Nonidet P40 with the following protease inhibitors:  

AEBSF (2x10-7 M), aprotin (1 µg per ml), leupetin (10 µg per ml), pepstatin (2.5 µg per ml), 

calpain inhibitor (17 µg per ml), chymostatin (2.5 µg per ml), antipain (2.5 µg per ml).  Protein 
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concentration was determined by bicinchoninic acid assay (Pierce, Rockford, IL) adapted for 

microtiter plates and 60 µg protein loaded per well on a 10% SDS gel.  Following transfer, the 

membrane was blocked and probed with rabbit anti-PLSCR1 Ab (Proteintech Group, Chicago, 

IL) at a 1:1000 dilution or mouse anti-α-tubulin Ab (GenScript, Piscataway, NJ) at a 1:10,000 

dilution.  Peroxidase conjugated goat anti-rabbit IgG (Thermo Scientific, Rockford, IL) and 

peroxidase conjugated donkey anti-mouse IgG (Jackson ImmunoResearch Laboratories, West 

Grove, PA) were used as secondary Ab at a dilution of 1:2,500.  Image J (NIH) was used to 

quantify results and the average of five independent sets of lysates are presented.  

 Immunohistochemistry 

Cells were seeded (1.5x105 per chamber) on eight chamber glass slides (BD Falcon, Franklin 

Lakes, NJ) and allowed to adhere for two to three h.  Media was replaced with serum free de-

oxygenated mediua, as described above, and slides placed in hypoxia chamber for two h or 

remained in normal culture conditions as normoxic controls.  Following hypoxia, cells were 

provided with fresh media and re-oxygenation allowed for one h.  Cells were then fixed with 

methanol and blocked with 10% normal donkey sera for 30 min at 37°C.  Cells were stained with 

goat anti-human β2-GPI Ab (Bethyl Laboratories, Montgomery, TX) at a concentration of one 

mg per ml overnight at 4°C.  Fitc-conjugated donkey anti-goat IgG Ab (Jackson 

ImmunoResearch Laboratories) was used as secondary Ab.  Appropriate isotype control Ab were 

used and slides mounted with Prolong Gold containing DAPI (Invitrogen).  A Nikon eclipse 80i 

microscope with CoolSnap CF camera (Photometrics, Tucson, AZ) and Metavue software 

(Molecular Devices, Sunnyvale, CA) were used to obtain images at room temperature.   

 Labeled Lipid Experiments 

Cells were seeded (1 to 1.5x105) on glass coverslips and allowed to adhere for two h.  During 

this time, a solution containing NBD-labeled phosphatidylserine (NBD-PS) (Avanti Polar Lipids, 

Alabaster, AL) (1 µM lipid, 5.5 mM dextrose in TCPBS) was added at a dilution of 1:100 to the 

media to allow for lipid incorporation.  The thiol modifying chemical N-ethylmaleimide (NEM) 

(Alfa Aesar, Ward Hill, MA) was added to coverslips at a concentration of five mM for the final 

30 min.  The inhibitor NEM was removed and cells treated with hypoxia as described above.  

Following hypoxic or normoxic treatment, cells were rinsed with TCPBS and fixed with ice-cold 

methanol for three min.  Trypan blue (0.4%) was added to selected coverslips for 30 sec to 
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quench fluorescence in the outer leaflet.  After additional TCPBS washes, coverslips were 

mounted on glass slides with Prolong Gold containing DAPI (Invitrogen).  Parallel experiments 

were performed without the inhibitor NEM.  A Nikon eclipse 80i microscope with CoolSnap CF 

camera (Photometrics) and Metavue software (Molecular Devices) were used to obtain images at 

room temperature.  

 siRNA Transfection 

Transfection protocol provided by manufacturer was followed (Santa Cruz Biotechnology, Inc., 

Dallas, TX).  Briefly, cells were seeded into 6-well plates at a density of 2x105 per well.  Five µl 

siRNA duplex and five µl siRNA transfection reagent were used to prepare solutions A and B, 

respectively.  Solutions A and B were mixed and allowed to incubate at room temperature for 30 

min prior to addition to the cells.  Cells were exposed to transfection medium for six h prior to 

addition of serum-containing media.  Cells were assayed approximately 24 h later.  A fraction of 

the cells from each transfected well was collected in Trizol reagent and knock-down was 

assessed by real-time PCR as described above.  The other portion of each well was used for 

labeled lipid experiments as described above.   

 Statistics 

Data are presented as mean ± SEM and significance (p < 0.05) determined by one-way ANOVA 

with Newman-Keuls post hoc analysis (GraphPad Prism 5, GraphPad Software, Inc., La Jolla, 

CA) unless otherwise noted.    

 

 Results 

 Two hours of hypoxia treatment induces transcription of hypoxia inducible factor-

regulated genes.     

To determine an appropriate length of hypoxia treatment for the following studies, an endothelial 

cell line, MS1, derived from a C57Bl/6 mouse was subjected to hypoxia for several hours.  Cell 

viability and transcription of genes regulated by hypoxia inducible factor were assessed.  We 

examined transcript levels of vascular endothelial growth factor (VEGF) and Flt-1 (VEGFR1) as 

markers for hypoxia since transcription of these genes is induced by hypoxia (Gerber et al., 
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Figure 4.1  β2-GPI binds endothelium 

following hypoxia treatment.   

MS1 cells were grown on chamber slides, 

subjected to 2 h hypoxia (1% O2) followed 

by 60 min normoxia or left in normal 

culture conditions, fixed and stained for 

β2-GPI binding or negative control 

(isotype).  Images (40x) are representative 

of 3 independent experiments with 4 to 6 

pictures per treatment group per 

experiment. 

1997; Levy et al., 1995; Liu et al., 1995; Namiki et al., 1995).  Exposure to one percent O2 for 

two h significantly increased the transcript level of VEGF (1.00 ± 0.19 normoxia vs 2.11 ± 0.30 

hypoxia) and Flt-1 (1.00 ± 0.28 normoxia vs 2.50 ± 0.21 hypoxia) as determined by qRT-PCR.  

At two h of hypoxia, cell viability was approximately 88%, but dropped sharply as length of 

hypoxic treatment increased further (data not shown).  Thus, a hypoxic period of two h was used 

for the remainder of the studies. 

 

 β2-glycoprotein I binds hypoxic endothelial cells   

β2-GPI is a serum protein that binds negatively charged lipids and when bound exposes a neo-

antigen.  We have previously demonstrated that β2-GPI binds endothelium following a period of 

hypoxia and re-oxygenation (Fleming et al., 2010).  To confirm our previous results, endothelial 

cells were subjected to hypoxia treatment for two h followed by one h re-oxygenation prior to 

analysis by immunohistochemistry.  As shown in Figure 1, anti-β2-GPI Ab stained the hypoxia-

treated cells to a much greater extent than the normoxic control cells.  This suggests that oxygen 

stress results in exposure of negatively charged phospholipids on the outer leaflet of the bilayer 

as the cells were not permeabilized.   
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Figure 4.2  Phospholipid and arachidonic acid contents change with hypoxia treatment.   

(A, B, C) MS1 cells were subjected to 2 h hypoxia (1% O2) followed by 0, 15, 30 or 60 min 

normoxia or left in normal culture conditions (N).  Lipid content was determined by ESI-MS/MS 

and normalized to protein content of each sample.  N = 5 to 9 samples per bar.  * indicates p < 

0.05 compared to N.   
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 Re-oxygenation of endothelial cells generates lipids involved in signaling   

The β2-GPI binding studies led us to investigate the phospholipid and free fatty acid composition 

of the endothelial cells.  ESI-MS/MS was used to analyze cells treated with two h hypoxia alone, 

two h hypoxia followed by varying lengths of re-oxygenation and cells remaining in normal 

culture conditions.  While the overall phospholipid composition was not changed after treatment 

(Table 2), a significant increase in lysophosphatidylcholine (lysoPC) was found during the re-

oxygenation period (Fig. 2A).  Phosphatidylcholine did not significantly decrease, however the 

abundance of this phospholipid could easily mask small changes in quantity (Fig. 2B).   

We next evaluated the free fatty acid content of the cells, with a special interest in free 

arachidonic acid.  A source of free arachidonic acid is its cleavage from a phospholipid by a 

phospholipase.  The increased lysoPC observed with re-oxygenation (Fig. 2A) implies 

phospholipase activity during this period.  Mass spectrometry indicated a decrease in the free 

arachidonic acid content of the cells with re-oxygenation (Fig. 2C), suggesting possible 

conversion of newly released arachidonic acid to eicosanoids, such as PGE2.    
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Table 4.2  Lipid composition of MS1 endothelial cells with hypoxia and re-oxygenation 

treatment.   

aLipids were extracted from MS1 endothelial cells after being subjected to 2 h hypoxia ± varying 

lengths of re-oxygenation or normoxic culture conditions and subjected to analysis by mass 

spectrometry.  Each treatment group includes 6 to 9 individual samples.  
bNormoxic controls 
c2 h hypoxia + 0 min re-oxygenation 
d2 h hypoxia + 15 min re-oxygenation 
e2 h hypoxia + 30 min re-oxygenation 
f2 h hypoxia + 60 min re-oxygenation 
gData are presented as nmol lipid per mg protein after normalization of signal to internal 

standards of each lipid class.  Mean and SEM are reported. * indicates a significant difference (p 

< 0.05) from normoxic controls.   

Lipid class
a
 Normoxia

b
 0 min

c
 15 min

d
 30 min

e
 60 min

f
 

LysoPC 0.04 ± 0.01g 0.02 ± 0.00* 0.06 ± 0.00* 0.08 ± 0.01* 0.04 ± 0.01 

PC 7.80 ± 0.90 7.82 ± 1.31 8.42 ± 1.21 8.95 ± 1.32 8.59 ± 1.33 

SM 1.06 ± 0.20 1.18 ± 0.45 1.34 ± 0.41 1.70 ± 0.46 1.42 ± 0.42 

LysoPE 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.00 

PE 1.28 ± 0.32 1.61 ± 0.67 2.10 ± 0.67 2.50 ± 0.74 2.18 ± 0.83 

PI 0.33 ± 0.09 0.38 ± 0.19 0.38 ± 0.14 0.54 ± 0.18 0.37 ± 0.14 

PS 0.21 ± 0.05 0.31 ± 0.11 0.30 ± 0.09 0.47 ± 0.10 0.34 ± 0.09 

PA 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 

PG 0.05 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.07 ± 0.02 0.07 ± 0.02 

 

 Hypoxia and re-oxygenation promotes increased transcription of the Cox enzymes and 

production of PGE2   

The lipid findings, particularly the decrease in free arachidonic acid, led us to examine the Cox 

enzymes and production of PGE2, as PGE2, a modulator of inflammation, is a necessary 

component for intestinal IR-induced damage (Moses et al., 2009).  Accordingly, the PGE2 

concentration in the intestine increases significantly following IR of the intestine, while the PGE2 



 

79 

 

concentration is minimal in healthy tissue (Fleming et al., 2010; Miner et al., 1999b; Moses et 

al., 2009; Rehrig et al., 2001a; Sparkes et al., 2010).  The Cox enzymes are required in the 

conversion of arachidonic acid to prostaglandins and we hypothesized that transcription of the 

enzymes as well as PGE2 production would increase with hypoxia.   

We used qRT-PCR to determine the change in transcription of two Cox isofoms in 

normoxia and hypoxia/re-oxygenation treated cells.  The transcript number of Cox 2, the 

inducible isoform, was significantly elevated during the hypoxic period and continued to rise 

with a peak at 30 min re-oxygenation (Fig. 3A).  Surprisingly, a significant increase in Cox 1, 

considered the constitutive isoform, was also observed and followed the trend of Cox 2 (Fig. 

3B).  Furthermore, the fold change of Cox 1 exceeded that of Cox 2 (Fig. 3A, B).  These data 

indicate that both isoforms may be involved in prostaglandin regulation during periods of 

hypoxic stress. 

We continued to investigate our hypothesis by quantifying PGE2 production.  A time 

course was established to determine if PGE2 was produced during the hypoxic period or only 

upon re-oxygenation and to identify the time point of maximal response.  The endothelial cells 

significantly up-regulated production of PGE2 upon re-oxygenation, but no change was seen 

during the hypoxic period (Fig. 3C).  As early as 15 min post-hypoxia the cells significantly 

increased PGE2 production compared to control cells maintained in normal culture conditions.  

Based on our sampling time points, the production of PGE2 peaked at 30 min post-hypoxia.  At 

this time point, the hypoxia treated cells showed an almost 1,800% increase (3,391 ± 575 pg per 

ml at 30 min re-oxygenation versus 179 ± 33 pg per ml for normoxic controls) in PGE2 

production versus normoxia treated cells.  The time course of Cox transcription and PGE2 

production correlate, in that transcription of Cox enzymes is increased during hypoxia while a 

significant increase in PGE2 is not observed until 15 min into the re-oxygenation period (Fig. 3).   

 



 

80 

 

 

 Recovery from oxygen deprivation selectively up-regulates transcription of PLSCR1   

Phospholipids are involved in facilitating both β2-GPI binding and the arachidonic acid cascade; 

however the mechanism by which the phospholipids change in hypoxic conditions is unknown.  

Several enzymes play a role in maintaining the asymmetry of the lipid bilayer.  We hypothesized 

that PLSCR1 is involved in mediating the lipid changes that occur with hypoxia and re-

oxygenation.  Analysis by qRT-PCR revealed a significant increase in PLSCR1 transcript in 

endothelial cells recovering from hypoxia treatment compared to the normoxic control cells (Fig. 

4A).  Additional phospholipid transporting proteins were examined to verify that the response of 

PLSCR1 to hypoxia and re-oxygenation is specific.  Transcription of PLSCR3, which localizes 

to the mitochondrial membrane, did not change with hypoxia, but decreased upon re-oxygenation 

(Fig. 4C).  Similarly, two h of hypoxia alone did not alter transcription of representative flippase 

(Atp8a1) and floppase (Abcb1a) proteins, whereas re-oxygenation decreased transcription (Fig.  

4B, D).   

Figure 4.3  Transcription of Cox enzymes and PGE2 production increases with hypoxia 

treatment.   

(A, B, C)  MS1 cells were subjected to 2 h hypoxia (1% O2) followed by 0, 15, 30 or 60 min 

normoxia or left in normal culture conditions (N).  (A, B)  Fold change in transcription was 

determined by qRT-PCR.  Cox 2 (A) and Cox 1 (B) results were normalized to corresponding 

18s rRNA and compared to normoxic samples.  N = 4 to 5 samples per bar.  * indicates p < 0.05 

compared to N.  (C)  PGE2 concentration of supernatants was determined by EIA.  N = 3 to 6 

samples per bar.  * indicates p < 0.05 compared to N. 
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 Hypoxia alters PLSCR1 protein expression  

Our qRT-PCR data suggested increasing PLSCR1 protein levels may also increase with re-

oxygenation.  To confirm an increase in PLSCR1 protein, whole-cell lysates were prepared from 

hypoxia-treated and normoxic control endothelial cells.  Western blot analysis indicated a 

Figure 4.4  Hypoxia selectively increases transcription of PLSCR1.   

(A, B, C, D)  MS1 cells were subjected to 2 h hypoxia (1% O2) followed by 0, 15, 30 or 60 min 

normoxia or left in normal culture conditions (N).  Fold change in transcription of PLSCR1 (A), 

floppase Abcb1a (B), PLSCR3 (C) and flippase Atp8a1 (D) was determined by qRT-PCR.  

Genes of interest were normalized to corresponding 18s rRNA and compared to normoxic 

samples.  N = 4 to 5 samples per bar.  * indicates p < 0.05 compared to N. 
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decrease in PLSCR1 protein levels with two h of hypoxia treatment compared to normoxic 

controls (Fig. 5).  Protein levels tended to increase back towards normoxic levels as re-

oxygenation proceeded (Fig. 5).  Taken together, our qRT-PCR and Western blot data indicate 

that PLSCR1 protein decreases during the hypoxic period, while re-oxygenation induces an up-

regulation in transcription and subsequent protein expression within 15 to 30 min (Fig. 4A, 5).  

These data suggest that PLSCR1 is sensitive to oxygen tension and may be involved in the 

phospholipid changes that occur in response to hypoxia and re-oxygenation.       

 

 

 

 

 Hypoxia and re-oxygenation increases activity of PLSCR1   

Changes in transcription and total protein do not necessarily correlate with protein activity. Thus, 

we assayed for PLSCR1 activity under conditions of hypoxia and re-oxygenation.  NBD-PS was 

allowed to incorporate into endothelial cell membranes and flippase activity chemically inhibited 

with NEM.  Excess labeled lipid was removed prior to hypoxia or parallel normoxia treatment to 

determine loss of fluorescent signal due to PLSCR1 activity.  As shown in Figure 6, NBD-PS 

was readily incorporated into the cell membranes and no change in total (inner leaflet and outer 

leaflet) NBD-PS was observed after hypoxia or re-oxygenation (Fig. 6A).  However, quenching 

of the NBD-PS in the outer leaflet by trypan blue revealed a statistically significant decrease in 

inner leaflet NBD-PS in all treatments (Fig. 6B, C).  Furthermore, PLSCR1 activity is 

Figure 4.5  PLSCR1 protein decreases with 

hypoxia in endothelial cells.   

MS1 cells were subjected to 2 h hypoxia (1% O2) 

followed by 0, 15, 30 or 60 min normoxia or left 

in normal culture conditions (N).  Whole-cell 

lysates were prepared and run on SDS-PAGE 

followed by immunoblotting for PLSCR1 and the 

control protein tubulin.  A representative blot is 

shown. Image J software (NIH) was used to 

quantify bands and a ratio of PLSCR1 to tubulin 

was determined.  The average of 5 independent 

sets of lysates is presented. 
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Figure 4.6  PLSCR1 activity increases during hypoxia and re-oxygenation.   

(A, B, C) Prior to normoxia (top row) or 2 h hypoxia (1% O2) ± 30 min re-oxygenation treatment, 

NBD-PS was incorporated into MS1 cell membranes for 2 h with (B, C) or without (A) NEM 

treatment to inhibit flippase and floppase activity . Trypan blue was added to some of the samples 

to quench fluorescence in the outer leaflet (C).  NBD-PS fluorescence is presented in red and 

nuclei are shown in blue.  (A) represents NBD-PS in both the inner and outer leaflets in the 

absence of NEM, (B) represents NBD-PS in both the inner and outer leaflets in the presence of 

NEM, and (C) represents NBD-PS in the inner leaflet only in the presence of NEM.  Images (80x) 

are representative of 3 independent experiments with 3 to 6 pictures per treatment per experiment.  

Image J software (NIH) was used to quantify florescence.  Percent fluorescence remaining in inner 

leaflet after treatment (in the presence of NEM) is presented with 12 to 18 cells per treatment 

analyzed (D).  * indicates p < 0.05 compared to normoxia (N). 
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significantly increased by hypoxia and re-oxygenation, as the percent NBD-PS in the inner 

leaflet significantly decreases with hypoxia and re-oxygenation in comparison to normoxia, 

indicating loss of NBD-PS from the inner leaflet (Fig. 6D).  These data suggest that during 

hypoxia, PLSCR1 activity increases and translocates NBD-PS to the outer leaflet where it is 

quenched by trypan blue.  PLSCR1 activity remains high during re-oxygenation as it continues 

to translocate NBD-PS.   

 

 Knock down of PLSCR1 abrogates PS movement during hypoxia 

To demonstrate a specific role of PLSCR1, the labeled lipid experiments were repeated after 

PLSCR1 expression was knocked down with siRNA.  We hypothesized that if PLSCR1 was 

transporting NBD-PS across the membrane, knock down would limit the movement of NBD-PS 

and no difference would be observed in inner leaflet fluorescence across the treatments.  

Transfection and knock down of PLSCR1 was successful (Fig. 7).  Similar to the untreated cells 

in the previous experiment (Fig. 6), hypoxia treatment did not alter the total fluorescent signal in 

the control cells (Fig. 8A).  However, the inner leaflet fluorescent signal decreased with hypoxia 

treatment suggesting movement from inner leaflet to outer leaflet by PLSCR1 (Fig. 8B).  

Importantly, no change in inner leaflet fluorescence occurred with hypoxia or hypoxia and re-

oxygenation when PLSCR1 was knocked down (Fig. 8D).  No net movement of the lipid was 

detected in the absence of PLSCR1 (Fig. 8D).  The data collected from the labeled lipid 
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Figure 4.7  Knock down of PLSCR1. 

MS1 cells were transfected with PLSCR1 

siRNA, control siRNA or left untreated.  Cells 

were transfected for 6 h and collected in 

Trizol 24 h later.  RNA was isolated, cDNA 

synthesized and fold change in transcription of 

PLSCR1 was determined by qRT-PCR.  

Values were normalized to corresponding 18s 

rRNA and compared to untreated samples.  N 

= 10 samples per bar.  * indicates p < 0.05 

compared to untreated. 
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Figure 4.8  Hypoxia activates PLSCR1. 

(A, B, C, D) Prior to normoxia (top row) or 2 h hypoxia (1% O2) ± 30 min re-oxygenation 

treatment, NBD-PS was incorporated into MS1 cell membranes for 2 h with NEM treatment 

to inhibit flippase and floppase activity. Trypan blue was added to some of the samples to 

quench fluorescence in the outer leaflet (B, D).  NBD-PS fluorescence is presented in red 

and nuclei are shown in blue.  (A) represents NBD-PS in both the inner and outer leaflets 

and (B) in inner leaflet only of cells transfected with control siRNA, (C) represents NBD-PS 

in both the inner and outer leaflets and (D) in inner leaflet only of cells transfected with 

PLSCR1 siRNA.  Images (80x) are representative of 5 independent experiments with 3 to 6 

pictures per treatment per experiment.  Image J software (NIH) was used to quantify 

florescence (E).  Percent fluorescence remaining in inner leaflet after treatment is presented 

with 12 to 18 cells per treatment analyzed (E).  * indicates p < 0.05 compared to respective 

control. 
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experiments suggests that PLSCR1 activity is increased during hypoxia and re-oxygenation 

allowing for the exposure of negatively charged phospholipids, such as PS, on the outer leaflet of 

the bilayer. 

 

Discussion 

Oxygen deprivation, whether acute or chronic, results in several changes at the cellular level.  

Stabilization of the hypoxia inducible factor 1α (HIF-1α) subunit allows for HIF activity, which 

alone influences the transcription of more than 150 genes (reviewed in (Majmundar et al., 2010; 

Schofield and Ratcliffe, 2004)).  It is well established that inflammation contributes to IR–

induced intestinal pathology.  However, the specific cell types involved are unclear.  We 

hypothesized that endothelial cells are key mediators of the inflammatory response observed 

following the oxygen deprivation that occurs with ischemia.  Specifically, we hypothesized that 

lipid scrambling by PLSCR1 allows for binding of β2-GPI, a serum protein, to endothelial cells 

and elicits cellular responses following hypoxia and re-oxygenation.  In this study, we 

demonstrate that PLSCR1 transcription, expression and activity are altered by hypoxia and re-

oxygenation in endothelial cells.   In addition, we confirmed that β2-GPI binds hypoxia treated, 

but not normoxic, endothelial cells (Fleming et al., 2010) further supporting the hypothesis that 

β2-GPI is intimately involved in IR-induced injury.  Endothelial cells produce and secrete vast 

quantities of PGE2, a vasodilator and driver of cellular permeability, in a short time period 

following relief of hypoxic insult, another similarity to intestinal IR pathology. 

Preliminary studies were required to determine the optimal length of hypoxia treatment.  

Our goal was to ensure hypoxic conditions while preserving a high level of cell viability.  

Endothelial cells are more sensitive to hypoxia than other cell types (data not shown).  We found 

that two h of hypoxia at one percent O2 resulted in increased transcription of VEGF and Flt-1, 

genes directly induced by HIF (Gerber et al., 1997; Liu et al., 1995; Namiki et al., 1995), 

providing evidence that a state of hypoxia was attained.  Exposure of the endothelial cells to 

hypoxia for greater than two h significantly decreased cell viability (data not shown).  These 

results are in agreement with Michiels et al. who also found two h of hypoxia to be optimal for 

primary human umbilical vein endothelial cells (Michiels et al., 1993).  As PGE2 production was 

significantly up-regulated following hypoxia treatment, similar to the response observed from ex 
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vivo intestinal tissue after IR (Fleming et al., 2010; Moses et al., 2009; Sparkes et al., 2010), we 

continued our studies exposing endothelial cells to two h hypoxia. 

This is the first comprehensive examination of the effects of hypoxia on PLSCR1 of 

which we are aware.  A study by Rami et al. performed immunohistochemical staining for 

PLSCR1 in human ischemic brain samples and found an increase in PLSCR1 protein in the 

ischemic samples versus controls (Rami et al., 2003).  Our data indicate a decrease in protein 

levels during a period of acute hypoxia (Fig. 5) but a significant increase in transcription upon 

re-oxygenation (Fig. 4A).  Importantly, the Rami study focused on the neurons of the brain while 

our study examined endothelial cells in culture; thus the differences in cell type and insult may 

resolve the apparent discrepancy.  An additional factor to consider is the potential of PLSCR1 to 

be released from the membrane.  The decreased protein expression found with hypoxia treatment 

(Fig. 5) could be due to shedding of the protein into the culture media as was recently described 

for PLSCR3 (Inuzuka et al., 2013).    

PLSCR1 is a transmembrane protein when palmitylated (Wiedmer et al., 2003); it 

facilitates scrambling of the lipid bilayer upon an increase in intracellular calcium or other 

polycations (Bucki et al., 2000).  Unlike flippases and floppases, PLSCR1 activity often 

abolishes membrane asymmetry resulting in exposure of phosphatidylethanolamine (PE) and PS 

on the outer leaflet (reviewed in (Contreras et al., 2010)).  Externalization of PS is a hallmark of 

apoptosis (reviewed in (Fadeel et al., 2010; Ravichandran, 2011)), however, transient exposure 

of PS is observed upon cellular activation, coagulation (Zwaal and Schroit, 1997) and membrane 

blebbing (Kirov et al., 2012).  β2-GPI, a serum protein, binds negatively charged phospholipids 

and has an affinity for PS.  Thus, several events may lead to β2-GPI binding to the endothelium. 

The role of PLSCR1 in PS translocation appears to vary depending on the context or 

purpose of the PS exposure.  Initial studies of calcium activated, PLSCR1 activation 

demonstrated that PLSCR1 translocated PS across the membrane but was not required for 

apoptosis-induced PS translocation or PS-induced coagulation when expressed on white blood 

cells or platelets, respectively (reviewed in (Bevers and Williamson, 2010)).  Ory et al. 

demonstrated that although PLSCR1 is not required for exocytosis by lung epithelial cells, re-

internalization of the vesicular membranes requires PLSCR1(Ory et al., 2013).  Recent data 

suggest that interferon-α activation of PLSCR1 may play a role in PS exposure and apoptosis as 

ovarian cancer cell apoptosis increased when PLSCR1 expression was decreased (Kodigepalli et 
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al., 2013).  Our data demonstrates that hypoxia induces PS expression on the outer leaflet (Fig. 6) 

in a PLSCR1 dependent manner (Fig. 7).  Together, these studies support the hypothesis that 

PLSCR1 is activated during hypoxia and facilitates the movement of phospholipids between 

leaflets.  Importantly PS expression as a result of IR-induced injury does not result in apoptosis 

but rather necrosis due to complement mediated cell death (Zhang et al., 2013).  Thus further 

studies are needed to determine if complement mediated cell death requires PLSCR1. 

Recent studies examined PLSCR1 levels in autoimmune patients, including 

Antiphospholipid Syndrome (APS) and Systemic Lupus Erythematosus (SLE) patients.  

Transcription of PLSCR1 was found to be increased in blood monocytes of APS and SLE 

patients versus controls (Amengual et al., 2012; Suzuki et al., 2010).  Interestingly, β2-GPI is a 

common antigen for APS and SLE patients ((McNeil et al., 1990), reviewed in (Alessandri et al., 

2011)).  Similarly, our data indicate increased PLSCR1 transcription (Fig. 4A) and increased 

binding of β2-GPI (Fig. 1) to endothelial cells with hypoxia and re-oxygenation treatment.  

Furthermore, inflammation is common to APS, SLE and IR-induced injury, supporting the 

hypothesis that PLSCR1-promoted β2-GPI deposition is an early pathogenic change.     

ESI-MS/MS analysis revealed few changes in phospholipid composition of the 

endothelial cells with hypoxia treatment.  LysoPC did increased with re-oxygenation (Fig. 2A 

and Table 2), a trend also observed with hydrogen peroxide treatment of a human endothelial cell 

line (Yang et al., 2011).  Perhaps lysoPC production is a response coupled to oxidative damage, 

as both treatments result in such damage.  Additionally, changes in arachidonic acid were 

observed when endothelial cells were exposed to hydrogen peroxide (Yang et al., 2011).   

The Cox 1 isoform has traditionally been considered the constitutively active Cox 

enzyme, with inflammatory signals up-regulating the Cox 2 enzyme.  Our data indicate a 

transcriptional up-regulation of both isoforms (Fig. 3).  Additionally, the fold increase in 

transcription of Cox 1 is more than double that of Cox 2 (36.0 + 1.4 vs 16.8 + 2.1 at 30 min post-

hypoxia).  North et al. similarly found an increase in Cox 1 protein, but not Cox 2, 15 min 

following exposure of primary pulmonary endothelial cells to low oxygen tension (North et al., 

1994).  These results suggest that both isoforms may be involved in downstream effects of 

hypoxic stress. 

A time course tracking the effect of re-oxygenation on PGE2 production and secretion 

by endothelial cells revealed a peak at 30 min re-oxygenation following two h hypoxia (Fig. 3C).  
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Previous in vivo studies which followed a similar time course found the maximum PGE2 

response at two h post-ischemia (Sparkes et al., 2010).  Several factors may contribute to this 

difference in the timing of maximal PGE2 production and secretion.  The current study examined 

a single cell type (endothelium) while whole intestinal tissue comprised of several cell types 

(including epithelium and smooth muscle which are known to produce PGE2 (Carew and Thorn, 

2000; Longo et al., 1998)) was assessed in the previous study.  Additionally, the hypoxic period 

in the current study was two h versus 30 min ischemia in vivo.  Data from an in vitro study with 

bovine aortic endothelial cells and human umbilical vein endothelial cells complements our data 

(Fig. 3C) as an increase in total prostaglandins was only observed after re-oxygenation, but not 

immediately following a hypoxic period of two and a half h (Oudot et al., 1998).  

Several factors that contribute to IR-induced injury have been identified; however, few 

effective therapies are currently available.  We determined the cell type that contributes to early 

pathology and PGE2 production in relation to intestinal IR.  Our work demonstrates that 

molecular events occurring in endothelial cells are relevant to the perpetuation of tissue injury.  

Lipid scrambling during hypoxia, via PLSCR1, allows for binding of the serum protein β2-GPI 

upon re-oxygenation (reperfusion) which in turn can trigger activation of the complement 

cascade.  Additionally, lipid metabolism, including the generation of arachidonic acid and 

subsequent conversion to PGE2 via Cox enzymes, occurs.  Thus, multiple pathways all leading to 

cellular damage and inflammation begin with the endothelial cells.  Our study also suggests that 

PLSCR1 may be a novel therapeutic target for IR-induced injury.          
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Chapter 5 - Conclusions 

Although the phenomenon of intestinal IR has been recognized for centuries and medical 

knowledge and technology have progressed immensely, a high mortality rate remains for those 

afflicted.  The pathogenesis is multi-factorial and the numerous molecular and cellular 

interactions contribute to the difficulty of designing effective therapeutics.  While several aspects 

of intestinal IR-induced pathogenesis have been identified, the initial molecular response remains 

unknown.  This work contributes to the knowledge regarding early events in intestinal IR-

induced pathogenesis with an ultimate goal of reducing associated tissue damage and death. 

The work presented here supports the hypothesis that endothelial cells are critically 

involved in intestinal IR-induced injury.  Several of the responses observed with in vivo 

experiments are replicated by endothelial cells in vitro.  In addition to their role in activating the 

complement cascade, antibodies are required for the up-regulation of Cox 2 transcription.  In the 

absence of antibodies, Cox 2 transcription is not up-regulated and the production of PGE2, 

another required component for IR-induced damage, is not increased.  The mechanism by which 

antibodies influence Cox 2 transcription remains unidentified.  Future studies addressing the 

relationship between antibodies and Cox 2 transcription will be important not only for the 

development of therapeutics for IR-induced injury but also for other conditions in which a Cox 

2-mediated inflammatory response is detrimental.  The contribution of the Cox 3 isoform to IR-

induced injury is another area of study that may be of therapeutic value.   

TLRs are involved in the pathogenesis of IR-induced injury in many organs.  TLR4 has 

been studied extensively and is an important factor for IR-induced damage to a large number of 

organs (Gao et al., 2009a; Moses et al., 2009; Takeishi and Kubota, 2009; Victoni et al., 2010; 

Wu et al., 2007; Yang et al., 2008b).  Similarly, TLR2 is known to contribute to injury in several 

organs; whereas, much less is known about the role of other TLRs in the context of IR.  Several 

studies have demonstrated the protective effect of TLR4 or TLR9 deficiency in the context of 

hepatic IR (Bamboat et al., 2010; Huang et al., 2011).  As TLR4 is known to contribute to 

intestinal IR-induced damage, the role of TLR9 in the intestine was assessed.  Contrary to 

expectations, intestinal IR-induced injury is not affected by TLR9.  The same degree of tissue 

damage occurs in TLR9
-/-

 as in wildtype mice (Slone et al., 2012).  These results illustrate the 

differences in the pathogenesis of IR-induced injury in different organs.  TLR4 resides in the 
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cellular membrane while TLR9 remains intracellular.  Thus, a TLR4 ligand only needs to contact 

the cell but TLR9 ligands must be phagocytized for recognition.  Although the intestine contains 

a great number of resident macrophages, perhaps the Kuppfer cells of the liver are more efficient 

in phagocytizing apoptotic and necrotic cells.  Ligand recognition by TLR9 may be a relatively 

more important aspect of innate immunity in Kuppfer cells due to their location and function.        

Mass spectrometry was used to compare the intestinal lipid profiles of polar lipids and 

free fatty acids between different strains of mice.  This endeavor led to the first published 

characterization of the intestinal lipid profile of wildtype mice.  IR treatment resulted in 

considerable changes in the lipid composition; however these alterations were largely 

independent of genetic background as intestinal lipid profiles did not differ significantly between 

strains of mice, C57Bl/6, Rag-1
-/-

, TLR9
-/-

, TLR2
-/-

, CR2
-/-.  Importantly, the levels of lysolipids 

increased, especially lysoPC and lysoPE, as did the levels of arachidonic acid.  Release of 

arachidonic acid through phospholipase activity is essential for production of eicosanoids.  These 

data show that cellular lipids are altered in response to intestinal IR and provide support for the 

hypothesis that a lipid moiety participates in the pathogenesis of IR-induced injury.      

As the lipid profiles from various strains of mice prior to and following IR are quite 

similar, this may be the inciting stimulus for the pathogenic cascade leading to tissue damage.  

Following exposure of negatively charged phospholipids, such as PS, circulating β2-GPI is able 

to deposit on the cellular membranes of endothelial cells.  The conformational change that occurs 

in β2-GPI upon binding allows for antibody recognition of the now exposed neo-antigens.  The 

complement cascade can then be activated and an inflammatory response initiated.   

This proposed cascade in the pathogenesis of IR-induced injury is supported by 

experimental results in several strains of mice.  For example, antibody-deficient Rag-1
-/- mice do 

not experience IR-induced tissue damage.  The lipid changes that occur in Rag-1
-/- mice are 

consistent with wildtype mice and β2-GPI levels are comparable.  However, since antibodies are 

lacking, the cascade does not continue and damage does not occur.     



 

92 

 

The identification of IR-induced neo-antigens is an important step in further dissecting 

the early molecular events involved in the pathogenesis.  The mechanism by which these neo-

antigens, being large intracellular or serum proteins, are exposed to the extracellular milieu 

remains a mystery.  It seems likely that facilitated transport of some sort, either direct or indirect, 

must occur to allow for the intracellular neo-antigens to traverse the membrane.  Likewise, it is 

Figure 5.1  Proposed model of early events in the pathogenesis of IR-induced injury.  

During normoxia, the asymmetry of the bilayer is maintained by flippases, floppases and 

scramblases.  The neo-antigen β2-GPI circulates in a closed conformation and annexin IV and 

non-muscle myosin, additional neo-antigens, remain intracellular.  Upon oxygen deprivation 

(ischemia or hypoxia) PLSCR1 is activated and the bilayer asymmetry disrupted with 

translocation of anionic phospholipids such as PS to the outer leaflet.  Upon binding anionic 

phospholipids, β2-GPI adopts an open conformation exposing an epitope for antibody binding 

which can serve as a trigger for initiation of the complement cascade and inflammatory 

responses.  The intracellular neo-antigens may also be exposed to the extracellular environment 

as a result of PLSCR1 activation.   
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probable that some change at the membrane triggers the deposition of the serum neo-antigen, β2-

GPI.  Experiments described in Chapter 4 investigated the relationship between the activation of 

PLSCR1, a transmembrane protein, and membrane changes that promote binding of β2-GPI.  

PLSCR1 is sensitive to changes in O2 tension.  Transcription and activity of PLSCR1 are 

promoted by hypoxia.  The activity of PLSCR1 involves disruption of the cellular membrane, 

with phospholipids flipping between the inner and outer leaflets of the membrane.  To 

successfully disrupt the membrane, this action is fairly non-specific and affects a relatively large 

area of the membrane.  Accordingly, PLSCR1 activity could provide a means for externalization 

of intracellular neo-antigens.  Going forward, with the knowledge that PLSCR1 is activated 

under hypoxic conditions, it will be important to assess the relationship between PLSCR1 

activation and neo-antigen externalization.  In addition to determining if the intracellular neo-

antigens are exposed to the extracellular environment via PLSCR1 activity, studies examining 

the binding of β2-GPI to endothelial cells following hypoxia in the absence of PLSCR1 will 

further clarify the potential value in pursuing PLSCR1 as a therapeutic target (Fig. 5.1).  

Hypothesized to be one of the first cellular responses to hypoxia, PLSCR1 may become an 

important target for the development of IR-related therapeutics.  
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