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Abstract

Models for converting expert-coded data to point estimates of latent concepts assume
different data-generating processes. In this paper, we simulate ecologically-valid data
according to different assumptions, and examine the degree to which common methods
for aggregating expert-coded data can recover true values and construct appropriate
coverage intervals from these data. We find that hierarchical latent variable models
and the bootstrapped mean perform similarly when variation in reliability and scale
perception is low; latent variable techniques outperform the mean when variation is high.
Hierarchical A–M and IRT models generally perform similarly, though IRT models are
often more likely to include true values within their coverage intervals. The median and
non-hierarchical latent variable modeling techniques perform poorly under most assumed
data generating processes.



Many prominent social-scientific data-gathering enterprises survey experts in order to

collect data on concepts that are difficult to directly measure (Teorell, Dahlström and

Dahlberg, 2011; Norris, Frank and Mart́ınez I Coma, 2013; Bakker et al., 2012; Coppedge

et al., 2018). Typically, such surveys ask multiple experts to evaluate each case, in order

to mitigate potential bias and idiosyncratic error in individual responses; they then use

the mean-plus-standard deviation (MpSD) to aggregate these data. However, there is a

growing body of literature that suggests that this approach is problematic, since coders

likely vary in both their scale perception (differential item functioning, or DIF) (Brady,

1985; King and Wand, 2007; Bakker, Edwards, Jolly, Polk, Rovny and Steenbergen, 2014)

and their level of stochastic error. MpSD cannot account for either type of error.

Recent work has suggested three alternative methods for accounting for these forms

of error: the bootstrapped median (BMed) and two types of latent variable models,

Aldrich-McKelvey (A–M) scaling (Bakker, Jolly, Polk and Poole, 2014; Aldrich and McK-

elvey, 1977) and item-response theory (IRT) models (Clinton and Lewis, 2008; Pemstein

et al., 2018). The BMed approach is both simple and arguably more robust than MpSD

(Lindstädt, Proksch and Slapin, 2018), while both latent variable modeling approaches

rely on rather complicated techniques to adjust for DIF and random error.

Each of these three approaches conceptualizes the underlying process that translates

expert perceptions into survey responses in different ways. Previous research investigating

the performance of different models has generally assumed only one data generating

process (DGP), potentially favoring the models which match the assumed process. For

example, Marquardt and Pemstein (2018) analyze how A–M, IRT, and MpSD perform

under a variety of rating processes, all matching IRT assumptions, and find that IRT

models outperform both A–M scaling and MpSD in ecologically-valid simulations with

high DIF and variation in expert reliability. On the other hand, Lindstädt, Proksch and

Slapin (2018) assume a different DGP and show that the median can outperform the

mean when summarizing expert ratings.

In this paper, we extend this earlier work and ask how each method—A–M, IRT, and

the bootstrapped median and mean—perform under each model’s assumed rating process,

retaining MpSD as a baseline comparison technique. We do so by creating simulated

data in which we vary how experts perceive latent values, as well as the distribution of

the latent values themselves. We find that the mean and latent variable models with

hierarchically-clustered DIF (both A–M and IRT) generally perform similarly when DIF

and variation in expert reliability are low. When DIF and variation in expert reliability

are high, hierarchically-clustered latent variable models outperform the mean. While the

two techniques exhibit similar errors, in many cases hierarchical IRT models are more

likely than their A–M counterpart to contain the true values within their uncertainty

intervals.

In contrast, latent variable models that do not include hierarchical clustering tend
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to underperform their hierarchical counterparts, likely because of sparse bridging in our

simulated data. BMed only performs as well as hierarchical latent variable models un-

der very specific conditions, and generally underperforms even the bootstrapped mean

(BAvg).

These findings show that the BMed approach of Lindstädt, Proksch and Slapin (2018)

lacks robustness. They also temper the claims of Marquardt and Pemstein (2018). While

the results provide further evidence that latent variable models—or at least those which

cluster DIF hierarchically—outperform simple summary statistics whenever DIF and

cross-rater reliability variance is substantial, they also indicate that hierarchical clus-

tering is most important for latent variable model specification in the context of (sparse)

expert-coded data, not an IRT framework per se. However, the fact that IRT models often

have better coverage than their A–M counterparts is additional evidence that hierarchical

IRT models are perhaps the safest modeling approach with expert-coded data.

1 Three Models of Expert Rating

A–M, IRT, and BMed assume different rating processes. A–M assumes that there is a

linear correspondence between the latent traits—such as de facto regime characteristics

or party ideology—that each expert observes and the ratings she reports. Thus, A–M

conceptualizes DIF in terms of intercept shifts and stretches. IRT relaxes the linearity

assumption made by A–M, and models the translation between perception and score

in terms of a series of thresholds on the latent scale: if an expert perceives a latent

value to fall below her lowest threshold she assigns the case the lowest possible ordinal

score, she assigns the second-lowest score to cases which she perceives to fall between

her first and second thresholds, and so on. Both models assume normally distributed

random errors. BMed does not derive directly from an explicit model of the rating

process, but Lindstädt, Proksch and Slapin (2018) posit a specific model that motivates

their choice of the median for producing point estimates. Specifically, like A–M, their

model assumes a linear translation between perceptions and scores, but it assumes both

a uniform underlying distribution of the true values and uniform error structure that

produces truncated errors. That is, they assume that the key problem that experts

introduce when they translate perceptions to scores is making errors disproportionally

toward the center of the scale.

In this section, we provide brief analytical descriptions of these different frameworks as

well as the specific implementations we use in this paper. For more detailed descriptions

of the A–M and IRT implementations, see Marquardt and Pemstein (2018).
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1.1 A–M Scaling

We modify the Bayesian A–M approach of Hare et al. (2015), for which Equation 1

provides the likelihood function.

yctr ∼ N (µctr, τr)

µctr = αr + βrzct
(1)

Here, yctr is the ordinal response by rater r to case ct,1 zct is the latent score for

case ct, αr, βr and τr are expert-specific intercept, slope and variance parameters. These

parameters allow for a specific class of cognitive bias and error: αr allow individual raters

to be uniformly more or less strict than other raters, βr implies that experts perceive

distances on the latent scale as uniformly larger, or smaller, than other raters, and τr

captures the idea that raters make random errors—perhaps as a function of differences

in access to information or cognitive ability—at potentially different rates.

To estimate values with an A–M model we use the following prior specification:

zct ∼ N (0, 1),

αr ∼ N (0, 5),

ln(βr) ∼ N (0, ln(2)),

τ−1
r ∼ Γ(υ, ω),

υ ∼ Γ(1, 1), and,

ω ∼ Γ(1, 1).

(2)

We refer to the specification in equation 2 as the standard A–M model. Because

expert survey data are often nested within units, we also estimate a hierarchical A–M

model, which uses the following prior specification:

zct ∼ N (0, 1),

βr ∼ N (βcr , 0.11),

βcr ∼ N (βµ, 0.11),

ln(βµ) ∼ N (1.5, 2),

(3)

1Our focus here is on panel expert ratings: c is for country, and t for time/year.
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and

αr ∼ N (αcr , 0.13),

αcr ∼ N (αµ, 0.13),

αµ ∼ N (3.1, 4),

(4)

and

τ−1
r ∼ Γ(1, 1). (5)

These priors assume that differences in rater parameters are more similar within

cases, than they are across cases. Specifically, though experts may code multiple cases

we assume that they have expertise in a certain case—indexed here by the “country”

parameter c—and that experts with expertise in the same case translate perceptions into

scores in similar ways. The exact parameters in these prior specifications are somewhat

arbitrary, but calibrated to the simulations described in Section 2.

1.2 Ordinal IRT

The standard ordinal IRT model starts with the assumption in Equation 6:

ỹctr = zct + ectr (6)

Here zct is the “true” latent value of the given concept in country c at time t, ỹctr is

rater r’s perception of zct, and ectr is the error in rater r’s perception for the country-year

observation. As in A–M, we assume normally distributed, rater-specific, errors:

ectr ∼ N (ectr/σr). (7)

Ordinal IRT models DIF in terms of “thresholds” that describe how experts perceive

the latent scale. This model assumes that rater r translates her perception into an ordinal

response category k if γr,k−1 < ỹctr ≤ γr,k, where γr = (γr,1, . . . , γr,K−1) is the vector of

rater r’s thresholds, mapping into K ordinal categories, γr,0 = −∞, and γr,K =∞.

Taken together, these assumption generate the following likelihood function:

Pr(yctr = k) = Pr(ỹctr > γr,k−1 ∧ ỹctr ≤ γr,k)

= Pr(ectr > γr,k−1 − zct ∧ ectr ≤ γr,k − zct)

= φ

(
γr,k − zct

σr

)
− φ

(
γr,k−1 − zct

σr

)
= φ (τr,k − zctβr)− φ (τr,k−1 − zctβr)

(8)

Here τr,k =
γr,k
σr

represents the estimated threshold with error, and βr = 1
σr

a scalar
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parameter also estimated with error.

We provide three IRT models with different parameterizations of DIF. These three

models allow us to assess the degree to which hierarchical clustering facilitates or hinders

estimation in simulated data with different assumptions about DIF. The first model

assumes no clustering of DIF; the second that expert DIF clusters only about universal

thresholds; and the third that expert DIF is further clustered the main country an expert

coded, in line with the hierarchical A–M model previously discussed. In all three models,

we follow standard practice and model zct ∼ N (0, 1). We further assume βr ∼ N (1, 1),

restricted to positive values for identification purposes. We also model the universal

thresholds, γµk , as distributed U(−6, 6).

Since the models diverge in their parameterization of DIF, we describe the prior

specification of each model in turn. In the standard IRT model, we model γr,k, each

expert’s idiosyncratic thresholds, according to Equation 9:

γr,k ∼ U(−6, 6) (9)

In the standard hierarchical IRT model, we model γr,k, each expert’s idiosyncratic

thresholds, according to Equation 10:

γr,k ∼ N (γµk , 0.5) (10)

The two-level hierarchical IRT model adds an additional cluster, γcrk , representing

each expert’s main country coded. This approach takes the form of Equation 11:

γr,k ∼ N (γcrk , 0.25),

γck ∼ N (γµk , 0.25)
(11)

As with the priors for the A–M models, the prior specification for the IRT models

is somewhat arbitrary, but allows for a decent amount of variation in scale perception

without overpowering the hierarchical clustering.

1.3 Uniform Errors

Lindstädt, Proksch and Slapin (2018) motivate the BMed approach by postulating an

expert rating process that is largely analagous to the A–M model. However, while both A–

M and IRT models assume an unbounded interval-scale latent space, Lindstädt, Proksch

and Slapin (2018) assume that latent values fall on the interval (l, u) ∈ R. In contrast to
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A–M models they also assume that expert intercept, slope and variance parameters are

uniformly, not normally, distributed.

Preliminary simulation results indicated that the key difference between the Lindstädt,

Proksch and Slapin (2018) and A–M approach is the assumption about the underlying

distribution. As a result, we focus on this aspect of their model here, providing a more

detailed analysis of their modeling strategy in Appendix B.

2 Simulation design

We examine the robustness of different modeling strategies to DGP through a series of

simulation analyses. To create ecologically-valid simulated data, we maintain the coding

structure from the V–Dem variable “Freedom from political killings” (Coppedge et al.,

2018): the simulated data have the same number of experts as these data, and these

experts code the same observations (country-years), with true values reflecting general

trends in the data. We vary three aspects of the simulated data: 1) the distribution of the

true values, 2) the general model for converting these values into ratings, and 3) the degree

of DIF and variation in expert reliability.2 We then analyze the performance of different

methods for aggregating expert-coded data in each of the eight possible combinations of

these four aspects (two true value distributions × two models × two levels of variation).

We replicate the simulations thrice to ensure the robustness of our results.

While the prominence of V–Dem provides a strong justification for using these data

as the basis for simulated data, this approach has scope conditions. V–Dem data gen-

erally include five experts per observation,3 which is the minimum number of experts in

the simulations of Lindstädt, Proksch and Slapin (2018). Both Lindstädt, Proksch and

Slapin (2018) and Marquardt and Pemstein (2018) illustrate that greater expert satura-

tion increases the ability of different aggregation methods to recover true values, which

means that analyses of more saturated data would likely have less extreme variation in

technique performance.

2.1 Distribution of true values

We analyze simulations with two different distributions of the true values. We refer

to the first, which matches traditional latent variable modeling assumptions about the

underlying data structure, as normally distributed. For these data, we estimate true

value ξ for country-year ct by taking the mean of expert codings for each country-year,

2Appendix A presents algorithms for the latter three aspects of the simulations.
3We remove observations with only one expert—i.e. most cases from the “Historical V–Dem” project

(Knutsen et al., 2017)—from the simulation dataset to increase the comparability of the simulated data
with other datasets. We also follow standard V–Dem practice and reduce the data to regimes, or periods
in which no experts change their self-reported confidence or scores (Pemstein et al., 2018).
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Figure 1: Histogram of true values for simulation studies with normally distributed un-
derlying data.
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Figure 2: Histogram of true values for simulation studies with uniformly distributed
underlying data.
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weighted by expert self-reported confidence to increase the specificity of the underlying

data. We then normalize these values across country-years. Figure C.2 presents the

resulting distribution of the data. The distribution is normal, albeit with evidence of

truncation at the top of the scale (i.e. the modal category is the highest possible value).

In contrast, Lindstädt, Proksch and Slapin (2018) assume a truncated uniform distri-

bution. To approximate this distribution while maintaining an ecologically-valid struc-

ture, we estimate true value ξ for country-year ct by taking the median of expert codings

for each country-year, shifting non-integer values away from the center of the scale (e.g.

if the country-year median is 3.5, we assign the country-year a true value of four; if it

is 1.5, we assign it a one). This procedure creates true values that are a hard case for

models which assume central tendencies in the distribution of true values (e.g. the latent

variable models we use here), weakly following the assumption of Lindstädt, Proksch and

Slapin (2018) that truncation occurs at the extremes. Figure 2 illustrates the distribution

of the underlying data in this model, which we refer to as uniformly distributed.
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2.2 Models for converting true values to observed ratings

We model the process by which experts convert true values to ratings in two different ways:

A–M scaling, as in Equation 1; and an IRT model, as in Equation 8.4 To standardize the

assumptions of the IRT model with those of A–M scaling, we model experts in the IRT

context as having both a consistent linear trend in their scale perception and idiosyncratic

variation in their thresholds. That is, experts systematically rate countries higher or lower

in both modeling contexts.5

The simulations diverge from those in Marquardt and Pemstein (2018) not just in

the use of different underlying distributions and an A–M DGP, but also in that there

is no hierarchical clustering of simulated DIF. As a result, these simulated data should

present a harder case for models that include hierarchical clustering. We provide analyses

of simulated data with hierarchical DIF in Appendix C.

2.3 Level of DIF and variation in expert reliability

We conduct analyses of simulated data in which error variation (in the form of both DIF

and variation in expert reliability) is at low and high levels. While the first scenario (low

DIF and reliability variation) is perhaps optimistic, the second scenario is nightmarish,

with DIF often spanning the range of true values. Comparison of these two different sce-

narios thus allows us to compare the performance of models in a relatively ideal situation

and a situation in which recovering true values is very difficult.

3 Simulation results

We use the previously-described methods for aggregating expert-coded data—MpSD,

BAvg, BMed, and latent variables models with different hierarchical structures—to re-

cover latent values from the simulated data.6 We assess performance with two metrics.

4Following Lindstädt, Proksch and Slapin (2018), we also conduct analyses of two additional sets of
simulated data that follow the general A–M framework, but assume uniformly-distributed expert inter-
cept, slope and error parameters. The first model, which closely mimics Lindstädt, Proksch and Slapin
(2018), yields results roughly in line with its A–M corollary. The second model assumes that experts
systematically perceive true values at the top or bottom of the scale (i.e. their intercept parameters
are either very high or very low), an approach we pursued to more fully approximate the truncated
errors assumed by Lindstädt, Proksch and Slapin (2018). In these simulations, hierarchical IRT models
dramatically outperform all other models in recovering true values. Results in Appendix B.

5Marquardt and Pemstein (2018) refer to this IRT simulation strategy as truncated threshold vari-
ation. Note that there is preliminary evidence that both hierarchical A–M and standard A–M under-
perform hierarchical IRT when simulated data assume idiosyncratic threshold variation without a linear
trend (Appendix C in Marquardt and Pemstein, 2018).

6We use a standard non-parametric bootstrap to estimate BAvg and BMed, drawing 500 samples of
ratings for each case in each simulated dataset. We use the statistical software Stan (Stan Development
Team, 2015) to estimate the latent variables models; all include eight chains with 10,000 iterations. In
rare instances, we reduce the number of iterations for non-hierarchical A–M models to 5,000 if they did
not complete running after a week. While all hierarchical models converged according to the Gelman
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First, the mean square error (MSE) of point estimates from the true values provides a

measure of the degree to which a given method yields estimates close to the truth.7 Sec-

ond, the proportion of 95 percent highest posterior/bootstrap density intervals that cover

the the true values (credible region coverage, or CRC) allows us to assess the degree to

which measures of uncertainty provide appropriate coverage. Better methods have lower

MSE and higher CRC.

3.1 Normally distributed true values

Figure 3 presents the results of our simulation studies with low error variation and nor-

mally distributed true values. In the figure, the top row represents estimates from simu-

lated data that use an IRT DGP, the bottom an A–M (“normal”) DGP. The left column

presents MSE; the right CRC. Within each cell, rows represent different families of models

(IRT, BMed, BAvg, and A–M). Within the IRT and A–M families, different shades and

shapes represent different DIF clustering structures. Dark grey circles represent models

without any hierarchical clustering, light grey triangles models with only one level of

clustering (only for the IRT family), and medium grey squares models with two levels

of clustering (i.e. at the universal and main-country-coded level). Each point illustrates

results from a simulation and thus overlapping simulation estimates are darker. Vertical

lines represent estimates from the MpSD approach, which we provide as a benchmark for

MSE estimates.

There are three clear findings visible in the figure. First, MpSD, BAvg and hierarchical

latent variable models perform similarly in terms of MSE, regardless of whether data are

simulated by an IRT or A–M process. Second, CRC is higher for hierarchical latent

variable models than BAvg, with hierarchical A–M and IRT again performing similarly.

Third, non-hierarchical IRT and A–M models underperform their hierarchical equivalents

in terms of both MSE and CRC, even though there is no hierarchical structure in the

simulated data. Fourth, BMed underperforms both hierarchical latent variable models

and BAvg in both MSE and CRC; this poor performance is particularly pronounced when

the simulated data are the result of an IRT DGP.

Figure 4 presents results from analyses of simulated data with high error variation

the same fashion. In these cases, hierarchical IRT models outperform all other models

in terms of both MSE and CRC, though interestingly the distance between hierarchical

and non-hierarchical A–M models is less pronounced with greater error variation. IRT

models tend to slightly outperform their A–M equivalents in terms of MSE, and do so to a

diagnostic (less than 10 percent of latent country-year observations have r̂ > 1.1), non-hierarchical models
rarely did, providing further evidence that a hierarchical structure is important for computational reasons.

7For latent variable models, we use the posterior median as the point estimate; similarly, we use the
median over bootstrapped draws for BAvg and BMed. We normalize each draw of the latent variable
models and BAvg, while we center each draw of the bootstrapped median at zero.
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Figure 3: Results from simulation studies with normally-distributed true values and low
error variation.
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greater extent with regard to CRC. BMed also performs worse than all models (save non-

hierarchical IRT models in A–M-simulated data) in terms of MSE, a result particularly

apparent in when data are simulated according to an IRT DGP.

Cumulatively, these results indicate that hierarchical IRT models perform similarly

or better than other models in terms of both MSE and CRC when the true values are

normally-distributed, though the difference between hierarchical IRT and A–M algorithms

is slight.8 The relatively poor performance of non-hierarchical models is likely a compu-

tational issue with sparse data. The results regarding BMed, on the other hand, indicate

that this approach is a problematic method for aggregating expert-coded data when the

true values have a different distribution than that assumed by Lindstädt, Proksch and

Slapin (2018), especially when the DGP follows IRT assumptions.

8There is generally no difference between the two forms of hierarchical IRT models, which indicates
that a more complicated hierarchical structure does not hinder the recovery of true values when there is
no hierarchical structure rater DIF. We probe this finding by imposing a hierarchical structure in expert
DIF, and report results in Appendix C. The main result is that the three-level hierarchical structure
increases CRC when there is high error variation.
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Figure 4: Results from simulation studies with normally distributed true values and high
error variation.
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3.2 Uniformly distributed true values

We replicate these analyses using data in which the true values are distributed according

to a uniform distribution more in line with the assumptions of Lindstädt, Proksch and

Slapin (2018). Figure 5 presents results for simulated data in which there was low error

variation. In line with previous results, hierarchical A–M and IRT models perform sim-

ilarly to BAvg in terms of MSE in both DGPs; non-hierarchical latent variable models

perform worse than their hierarchical counterparts. However, in both the A–M and IRT

DGP, hierarchical IRT models outperform their A–M counterpart in CRC.

Results regarding BMed indicate that this statistic is sensitive to DGP. In line with

Lindstädt, Proksch and Slapin (2018), BMed outperforms all models in terms of MSE

when the DGP is A–M. However, BMed performs relatively poorly when the simulated

DGP is IRT. At the same time, in both DGPs BMed has an extremely high CRC, likely

due to having very large credible regions.

Figure 6 presents results from simulated data with uniformly distributed true values

and high error variation. As with the corollary results for simulated data with a normal

distribution of true values, hierarchical latent variable models outperform all other ag-
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Figure 5: Results from simulation studies with uniformly distributed true values and low
error variation.
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gregation techniques in terms of MSE. However, hierarchical A–M models perform much

worse than their IRT counterparts in terms of CRC. As with the results for data with low

error variation, BMed performs relatively well when the DGP is A–M in terms of MSE,

and less so when the DGP is IRT. Again, BMed has the highest CRC.

Taken as a whole, these results confirm that hierarchical latent variable models are

the safest approach to aggregating expert-coded data in terms of MSE: at worst, they

perform similarly to other models; at best, they outperform other models. In terms of

credible region coverage, hierarchical IRT models either perform similarly or outperform

their A–M counterpart, depending on the distribution of the true values. Together, these

results indicate that hierarchical IRT models are the overall safest method for aggregating

expert-coded data.
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Figure 6: Results from simulation studies with uniformly distributed true values and high
error variation.
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4 Conclusion

Findings in this paper reinforce and temper those from Marquardt and Pemstein (2018):

hierarchical latent variable models substantially outperform the MpSD approach when

DIF and rater-specific random errors are high, and perform similarly when errors are

low. However, they indicate that the hierarchical aspect of the latent variable model is

of greater importance than the model’s functional form, with hierarchical IRT models

mainly outperforming their A–M counterparts in terms of credible region coverage under

certain conditions. The results also point to limitations in the BMed approach, indicating

that it only outperforms other models in very specific contexts, and then only slightly.

In sum, producers and consumers of expert surveys should be careful when using simple

descriptive statistics—be they means or medians—to summarize expert ratings. While

they are computationally demanding, and potentially more difficult to interpret for a lay

audience, latent variable models with hierarchical DIF are robust to a variety of plausible

expert rating DGPs.
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A Algorithms

A.1 IRT rating

1. Simulate reliability and agreement values.

• Simulate reliability β for expert r

– Low variation: βr ∼ N (1, 0.5).

– High variation: βr ∼ N (1, 1).

• Simulate expert threshold parameters τr;1,2,3,4.

(a) γ1,2,3,4 = (−1.02,−0.40, 0.06, 0.75) as the true thresholds. These values

represent the CDF-transformed probability that an expert provides a value

less than 2,3,4,5 in the data.

(b) Assign each expert r indicator ζr ∼ Bernoulli(0.5) for positive or negative

truncation so that experts tend to consistently perceive scales as higher

or lower than the true values.

(c) Model idiosyncratic expert scale perception according to a truncated nor-

mal distribution: τ rk ∼ N (γk, 0.25). Thus:

– If ζr = 1, min(τr,k) = γk.

– If ζr = 0, max(τr,k) = γk.

(d) Order τ rk .

2. Create perceived latent values λ for expert r and country year ct with equation

λrct = βrξct.

3. Observed score yrct ∼ Categorical(pkrct), where pkrct = φ(τr,k−λrct)−φ(τr,k−1−λrct)
and φ is the CDF of a normal distribution.

A.2 Normal rating

1. Simulate expert agreement and error values

• Assign expert r slope β with variation.

– Low variation: βr ∼ N (1, 0.25).

– High variation: βr ∼ N (1, 1).

• Assign expert r intercept α with variation.

– Low variation: αr ∼ N (3, 0.25).

– High variation: αr ∼ N (3, 0.5).

2. Assign expert r error σ, resampled if value negative.
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• Low variation: σ−1
r ∼ N (1, 0.5).

• High variation: σ−1
r ∼ N (1, 1).

3. Create perceived latent values λ for expert r and country year ct with equation

λrct = αr + βrξct.

4. Observed score yrct ∼ N (λrct, σr), rounded to nearest integer between 1 and 5.

B Uniform DGP

B.1 Uniform models

Lindstädt, Proksch and Slapin (2018) assume that experts translate their perceptions of

the scale into ratings as

ỹctr ∼ T N (l,u)(αr + βrzct + ectr), (12)

where yctr = round(ỹctr). This model closely resembles A–M, except that it assumes that

both the latent scale (each y), and expert perceptions (each ỹ) are truncated.

Here we simply note that they assume that:

αr ∼ U(−2, 2)

βr ∼ U(0.7, 1.3)

ectr ∼ N (0, σr)

σr ∼ U(0, 3)

(13)

Note that Lindstädt, Proksch and Slapin (2018) assume l = 0 and u = 10 when

conducting their simulation analysis and various parameters in Equation 13 reflect this

arbitrary assumption about scale. While these parameters could be used to construct

prior distributions for an explicit estimator, we use them only to inform our simulation

procedure.

Specifically, we create simulated data using two algorithms. The first model is similar

to both the A–M algorithm and that proposed by Lindstädt, Proksch and Slapin (2018).

Figure B.1 describes this algorithm.

Note that the uniform rating model diverges from that which Lindstädt, Proksch and

Slapin (2018) use. First, we have made the model more commensurate with the IRT and

normal algorithms with low variation in DIF and reliability by modeling the slope param-

eters with greater variation than they do, and the error and intercept parameters with
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Figure B.1: Uniform model algorithm

1. Simulate expert agreement and error values.

• Assign expert r slope β with variation: βr ∼ U(0, 2).

• Assign expert r intercept α with variation: αr ∼ U(2, 4).

2. Assign expert r error σ: σr ∼ U(0, 2.5).

3. Create perceived latent values λ for expert r and country year ct with equation
λrct = αr + βrξct.

4. Observed score yrct ∼ U(λrct − σr, λrct + σr), rounded to nearest integer between 1
and 5.

less variation. Second, we incorporate error into the model using a uniform distribution,

as opposed to a normal distribution; we do this for ideological consistency.

The second set of simulated data we create using the framework of Lindstädt, Proksch

and Slapin (2018) induces truncated error by modeling experts as perceiving values as

either extremely high or low; this approach is inspired by their second set of simulations

(pg. 5-6). Figure B.2 presents the algorithm we use for these simulations.

Figure B.2: Truncated uniform rating

1. Simulate expert agreement and error values.

• Assign expert r slope β with variation: βr ∼ U(0, 2).

• Assign each expert r indicator ζr ∼ Bernoulli(0.5) for high (H) or low (L)
intercept (α) values.

• Assign expert r intercept α with variation, based on ζr variation:

– αLr ∼ U(1, 2).

– αHr ∼ U(4, 5).

• Assign expert r error σ: σr ∼ U(0, 2.5).

2. Create perceived latent values λ for expert r and country year ct with equation
λrct = αr + βrξct.

3. Observed score yrct ∼ U(λrct − σr, λrct + σr), rounded to nearest integer between 1
and 5.

Note that this algorithm produces data with a much higher level of truncation than

the uniform rating algorithm (i.e. the histogram of ordinalized coder scores peaks at one

and five, as opposed to three).
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Figure B.3: Results from simulation studies with normally distributed underlying data
and uniform rater assumptions.
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B.2 Results for uniform DGPs

Figure B.3 presents results from simulation analyses of the two uniform DGPs when the

true values follow a normal distribution.9 The top row presents results for data simulated

according to the algorithm in Figure B.1 (a uniform corollary of the A–M simulations),

while the bottom row presents results for data simulated according to the algorithm

in Figure B.2 (severe uniform expert DIF). The results for uniform simulated data are

roughly akin to their A–M corollaries in Figure 3, though CRC coverage is much worse

for A–M models; this result reinforces evidence in the paper that A–M models tend to

have worse coverage than IRT models.

Results for the analyses of data with a truncated uniform DGP provide the strongest

support for the use of hierarchical IRT models, with hierarchical IRT models providing

by far the best combination of low MSE and high CRC. While a non-hierarchical A–M

provides MSE estimates similar to those of hierarchical IRT models, it has the poorest

CRC; the pattern of results are reversed for BMed.

Figure B.4 presents results from analyses that use the same uniform DGPs but uni-

9We only replicate these analyses twice, as opposed to thrice as in the main body of the paper.
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Figure B.4: Results from simulation studies with uniformly distributed underlying data
and uniform rater assumptions.
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formly distributed underlying data. The results are essentially in line with their corollaries

in the previous analyses. Taken together, these results reinforce the claim that hierar-

chical IRT models are the most robust method for aggregating expert-coded data with

different DGPs.

C Hierarchical structure

Since there is reason to believe that expert DIF is hierarchically-clustered, we also analyze

simulated data in which we assume hierarchical clustering of DIF. Specifically, we cluster

expert DIF by their main countries coded, then assign them idiosyncratic DIF about their

cluster average. The algorithms we use to create these data follow the same structure

as those in Appendix A, but with the added step of first simulating cluster values for

thresholds (in the IRT framework) and intercept and slope parameters (in the A–M

framework), then using these cluster values to simulate expert-specific DIF. We also use

the same values as in the algorithms in Appendix A for both steps of the hierarchical

simulation.
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C.1 Normally distributed underlying data

Figure C.1 presents results from analyses that use normally distributed data as the un-

derlying true values. These results indicate that imposing hierarchical assumptions about

rater behavior to simulated data increases the divergence between latent variable models.

Specifically, when there are normal assumptions about rater behavior, hierarchical A–M

models lightly outperform hierarchical IRT models in terms of MSE and perform simi-

larly in terms of credible region coverage; when there are IRT assumptions about rater

behavior, hierarchical IRT models perform slightly better than hierarchical A–M models

in terms of credible region coverage, and similarly in terms of MSE. Again, all hierarchi-

cal latent variable models perform similarly to the bootstrapped mean in terms of MSE

and better than the boostrapped mean in terms of credible region coverage; hierarchical

latent variable models universally outperform the bootstrapped median.

Figure C.1: Results from simulation studies with normally-distributed true values, hier-
archical DIF, and low error variation.
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Figure C.2 presents results from data with a similar DGP, but high error variation.

In the context of data simulated according to an IRT DGP, hierarchical IRT models

outperform all other models in terms of both MSE and CRC, while the coverage of the

IRT model with two hierarchical levels is slightly better than that of the IRT model with
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Figure C.2: Results from simulation studies with normally-distributed true values, hier-
archical DIF, and high error variation.
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only one cluster. In the context of data simulated according to an A–M DGP, hierarchical

IRT and A–M models perform similarly in terms of MSE, while the hierarchical IRT

models slightly outperform their A–M equivalent in terms of CRC.

Taken together, these results are largely in line with those in the main text: hierar-

chical latent variable models outperform the mean in the presence of high error variation,

and similarly in the presence of low variation; hierarchical IRT models tend to have better

coverage than their A–M counterpart.

C.2 Uniformly distributed underlying data

Figure C.3 presents results from analyses that use uniformly distributed data as the

underlying true values and have hierarchically-clustered DIF and low error variation. Hi-

erarchical A–M slightly outperforms hierarchical IRT models in terms of MSE, regardless

of the assumed model of rater behavior in the simulations. However, hierarchical IRT

models outperform hierarchical A–M in terms of credible regions in both contexts. The

bootstrapped median outperforms all other models in terms of credible region coverage

in both contexts, but performs worse than the hierarchical A–M in terms of MSE in
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a context of normal assumptions and all hierarchical latent variable models in an IRT

context.

Figure C.3: Results from simulation studies with uniformly-distributed true values, hier-
archical DIF, and low error variation.
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Figure C.4 presents results from analyses of data with similar DGPs and high error

variation. The results are in line with those for their corollaries with normally-distributed

underlying data (Figure C.2): hierarchical IRT models perform similarly or better than

their A–M counterpart in terms of MSE, but outperform it in terms of CRC (in this case,

somewhat drastically). Hierarchical IRT models also outperform all non-hierarchical

models in terms of MSE, and only BMed has better coverage (though BMed has the

worst MSE in this context).

As with the previous set of analyses, these results indicate that IRT models are the

safest method for aggregating expert-coded data.
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Figure C.4: Results from simulation studies with uniformly-distributed true values, hier-
archical DIF, and high error variation.
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