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Abstract 

Support for sustainable agriculture by farmers and consumers is increasing as 

environmental and socio-economic issues rise due to more intensive farm practices. Site-

specific crop management is an important component of sustainable agriculture, within 

which remote sensing can play an integral role. Field and image data were acquired over 

a farm in Saskatchewan as part of a national research project to demonstrate the 

advantages of site-specific agriculture for farmers. This research involved the estimation 

of crop biophysical parameters from airborne hyperspectral imagery using Spectral 

Mixture Analysis (SMA), a relatively new sub-pixel scale image processing method that 

derives the fraction of sunlit canopy, soil and shadow that is contributing to a pixel's 

reflectance. SMA of three crop types (peas, wheat and canola) performed slightly better 

than conventional vegetation indices in predicting leaf area index (LAI) and biomass 

using Probe-1 imagery acquired early in the growing season. Other potential advantages 

for SMA were also identified, and it was concluded that future research is warranted to 

assess the full potential of SMA in a multi-temporal sense throughout the growing 

season. 
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CHAPTER I 

1.0 INTRODUCTION 

1.1 Introduction 

In today's world, there is increasing concern with respect to the agriculture sector 

and the estimated longevity of a sufficient food production system. Environmental issues 

can hinder food production systems (e.g. soil erosion, water quality, climatic change), 

while socioeconomic issues can be equally as damaging. Concern from both the 

consumer and the farm community stems from issues surrounding the volatility of the 

international agricultural marketplace, and the requirement of farmers to meet the food 

demands of an increasing population while maintaining quality. These factors coupled 

with increasing production costs have resulted in a substantial decrease in the number of 

North American "family" farms and public concern surrounds the subsequent increase in 

industrial and corporate farms (Brklacich et al., 1991). 

The adoption of sustainable agriculture practices by farmers involves daily 

management strategies that strive to protect the land resources required to grow food. A 

sustainable food production system has been defined as an agri-food sector that over the 

long term can simultaneously maintain environmental quality, provide economic and 

social rewards for all individuals involved in the system, and produce an adequate and 

accessible food supply (Brklacich et al., 1991). Essentially, if the food production system 

cannot meet these criteria then the system is deemed unsustainable. 

Site-specific agriculture is one approach to farm management that can promote 

sustainable agriculture. Site-specific agriculture, also known as precision agriculture, can 

be defined as the application of technologies and principles to manage spatial and 
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temporal variability associated with all aspects of agricultural production to improve crop 

performance and environmental quality (Pierce and Nowak, 1999). This style of 

agriculture practice refers to a "knowledge-based system" that allows farmers to manage 

variability at scales that are within a defined farm unit (e.g. section, quarter section) and 

to specific spatial regions of the farm unit where required (Lu et al., 1991). Spatially 

variable crop yield can exist due to many factors such as soil nutrient and moisture 

content, topography, as well as insect and weed infestations that change over time. Site-

specific agriculture requires both spatial and temporal management, which in the case of 

farming can require highly time-sensitive information over large agricultural fields. In 

the past this type of real-time information has not been easily accessible and farmers have 

treated fields as homogenous units applying average rates of crop inputs over the entire 

field. As a result of this practice, farmers tend to over or under-apply crop inputs (e.g. 

fertilizer) which can result in both economic loss and environmental contamination (Lu et 

al., 1997). 

More recently, the increased availability of remote sensing imagery accompanied by 

comprehensive site-specific crop management plans has offered farmers a more definitive 

means of implementing sustainable agricultural practices in large agricultural areas. 

Remote sensing can play a unique role in agriculture because it is a non-invasive, time-

specific method of acquiring information about seasonally variable crop and soil 

conditions. Remote sensing is a geospatial tool often incorporated into a management 

strategy for the whole farm operation that together with the benefits of Global Positioning 

Systems (GPS) and Geographic Information Systems (GIS) can be used to develop 

Variable Rate Application (VRA) maps for crop inputs (Lu et al., 1997; Pierce and 
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Nowak, 1999; Batte, 2000). Recently launched commercial Earth Observation (EO) 

satellites can provide the spatial resolution, timeliness, and high quality imagery that site-

specific agriculture requires (Moran et al., 1997). This thesis research has examined the 

potential of narrow band hyperspectral imagery in site-specific agriculture rather than 

more traditional multispectral sensors. Narrow band hyperspectral imagery provides 

increased spectral definition, and this is addressed in this thesis research by assessing new 

sub-pixel remote sensing image processing methods. Remote sensing as part of a site-

specific agriculture management strategy can provide the farm enterprise with the ability 

to satisfy increasing environmental, economic, and market demands (Stafford, 2000) 

The remote sensing and ground-based data collected for this research were part of a 

much larger multi-organizational and multi-disciplinary project undertaken at the Indian 

Head Agricultural Research Foundation (IHARF) in Indian Head, Saskatchewan to 

demonstrate the full potential of remote sensing in site-specific agriculture. The IHARF 

project was led by the Canada Centre for Remote Sensing (CCRS) with contributions 

from partners including Agriculture and Agri-Food Canada (AAFC) as well as a number 

of Canadian universities. 

The IHARF project had 5 main scientific objectives (CCRS, 2000): 

• validate remote sensing algorithms for estimating biophysical parameters such as 

leaf area index (LAI) and biomass, as well as plant water content and percent 

cover from hyperspectral data sets for agricultural crops 

• explore the potential of hyperspectral sensors to estimate biochemical parameters 

such as chlorophyll and nitrogen in crops 
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• investigate whether hyperspectral, multispectral and radar imagery can detect the 

presence of water, nutrient and weed stresses in crops 

• determine at what growth stage and how early crop stressors can be detected 

using both satellite based and ground based remote sensing data 

• demonstrate that remote sensing data can be delivered in near-real time for use in 

assessing crop condition 

The research objectives for this thesis work concentrate on the estimation of biophysical 

parameters using hyperspectral remote sensing, as described next. 

1.2 Research Objectives 

Vegetation indices (Vis) have been used with some success for characterizing crop 

biophysical parameters (Weigand and Richardson, 1990; Weigand et al., 1991; 

Thenkabail and Ward, 1994; Rondeaux, 1995). However, vegetation indices have been 

criticized since they use only two spectral bands yet many more are available from 

multispectral and hyperspectral data, and they do not account for mixtures of scene 

components at sub-pixel scales (Peddle et al., 2001b). Identifying scene components at 

sub-pixel scales is important since background soil, residue and shadow have significant 

influence on pixel-scale reflectance. Furthermore, vegetation indices tend to saturate in 

mature crop stages with higher leaf area index (LAI), thus providing very little 

information about crop biophysical parameters when LAI exceeds two (Major et al., 

1990; Rondeaux, 1995). 

The SMA method can use more than two spectral bands and explicitly examines the 

various sub-pixel components that contribute to the overall pixel signal. SMA is 

dependent on the accurate spectral characterization of endmembers by determining the 
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purest (without the presence of other surface material) spectral response pattern of each 

scene component (Davidson, 2002). In an agricultural context, three components were 

identified: sunlit vegetation, sunlit background (soil and residue), and shadow. The 

product from SMA is a set of fraction values for each scene component that can then be 

used as a physical and spatial descriptor of crop biophysical parameters and can 

contribute to the management of variability site-specifically. 

In this research, the purpose of comparing the conventional vegetation indices to 

SMA was to evaluate the advantages of using the new method to provide an improved 

spectral and spatial management tool for site-specific agriculture. SMA has been used 

effectively for the estimation of biophysical parameters in forestry (Hall et al., 1995; 

Radelhoff et al., 1999; Peddle et al., 1999a; Peddle and Johnson, 2000), but only limited 

research has been completed with respect to SMA in agricultural applications for defining 

crop biophysical parameters (Staenz et al., 1997b; Deguise et al., 1998; Lelong et al., 

1998; Peddle et al., 1999b; Maas, 2000; Peddle and Smith, 2003). In agricultural 

applications of SMA, very little research has included narrow band remote sensing 

imagery, and more importantly, research has not fully addressed the variety of crops that 

are found predominantly in western Canada. This research concentrated on remote 

sensing of three prominent crop types found in the prairie region of western Canada: peas 

iPisum sativum L.), wheat (Triticum aestivum L) and canola (Brassica napus L.) all of 

which play a substantial economic role in the national and international agriculture 

market. 
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Accordingly, the main science objectives for this thesis research were to: 

1. Investigate spectral mixture analysis (SMA) as a relatively new remote sensing 

image processing method that provides sub-pixel scale fractions (sunlit 

vegetation, sunlit background, and shadow) to estimate crop biophysical 

parameters (LAI and biomass) in site-specific agriculture. 

2. Compare SMA with conventional vegetation indices (Vis) for the prediction of 

crop biophysical parameters 

1.3 Organization of Thesis 

This thesis is organized into six chapters. In this chapter, the thesis has been 

introduced and the research objectives have been stated. 

In Chapter Two, the literature is reviewed, starting with the broader context of 

this research in agriculture and site-specific management. The role of remote sensing in 

site-specific agriculture is defined in terms of how spatial management tools contribute to 

the practice of sustainable agriculture. Environmental factors that influence leaf and 

canopy spectral reflectance are outlined, and crop biophysical parameters are described. 

The final section of this chapter provides a review of conventional remote sensing image 

analysis methods. 

Chapter Three provides an extensive review of spectral mixture analysis (SMA). 

The theory of SMA is described, an overview of various algorithms is provided, and 

parameters of the algorithm are reviewed. Several advanced approaches to SMA are 

discussed briefly, and specific SMA applications in agriculture are reviewed. 
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In Chapter Four, the research methodologies are presented. The study area, field 

data collection and image data set are described. All image pre-processing tasks 

including radiometric correction and surface reflectance retrieval are outlined. Various 

types of spectral measurements are summarized, including endmember sets (reference, 

image, and integrated) which were used as input into the SMA. The vegetation indices 

and the SMA algorithms used in this research are defined, and finally statistical methods 

are presented which were used to assess each remote sensing method for predicting crop 

biophysical parameters. 

In Chapter Five the results are presented and discussed. Statistical results are 

presented for the vegetation indices and SMA fractions as predictors of crop biophysical 

parameters. The discussion of the results is presented for each individual crop type, and 

followed by a synthesis and comparison of all results from the SMA and Vis. 

In Chapter Six, major conclusions from the research are drawn. Contributions to 

the research community are presented, and suggestions for future research are 

highlighted. 
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C H A P T E R II 

2 .0 L I T E R A T U R E R E V I E W 

2.1 Introduction 

In this chapter, a review of the literature is given with respect to remote sensing in 

site-specific agricultural applications. The first section refers to the broader research 

context of sustainable agriculture, the role of site-specific agriculture within this context, 

and the use of remote sensing as a site-specific management tool. Next, crop biophysical 

parameters are identified and defined. Following this, the spectral properties of crops are 

discussed at the leaf and canopy level, and the effects of environmental stress on the 

spectral characteristics of the crop are presented. Finally, a review of conventional 

remote sensing image processing methods is presented. The emphasis for this portion of 

the review is placed on traditional vegetation indices (Vis) and soil adjusted vegetation 

indices (SAVIs) as these are more pertinent to this research and are used in a direct 

comparison with spectral mixture analysis. 

2.2 Sustainability and Site-Specific Agriculture 

2.2.1 Sustainable Agriculture 

The broader context of this thesis research falls within the domain of sustainable 

agriculture. The implementation of sustainable farm practices is closely related to the 

way the agricultural sector has historically evolved. In the 1950s through to the 1980s, 

the emphasis in farming was placed on the modernization and industrialization of 

agriculture to increase farm output (Ilbery and Bowler, 1998). This time period is also 

referred to as the "green revolution" that was conceptually adopted on the farm due to the 

introduction of higher yielding grain varieties, an increased number of irrigation 
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facilities, increased access to inorganic fertilizers, and changes to redundant government 

policies (Khush, 1999). A key factor in this era of agricultural intensification was global 

consideration for the food-balance equation that focused on meeting higher demands for 

food due to population growth in underdeveloped countries (Khush, 2001). Higher 

demand for production led to intensified agricultural land use which resulted in 

environmental degradation (e.g. over use of chemicals, soil erosion). These 

environmental consequences were realized through an international movement that 

focused on sustainable development and conscious use of the world's limited natural 

resources (World Commission on Environment and Development, 1987). It was through 

this paradigm shift that both the public and the farm community became aware of the 

environmental damage which occurred due to intensive agriculture practices. 

By the 1990's, the focus changed from increasing food output to concern over 

food quality and sustainable food production (Ilbery and Bowler, 1998). The 1990's 

were not only characterized by reduced output of food, but also progressive withdrawal 

of subsidies, resulting in an increasingly competitive market, and growing environmental 

regulation of agriculture (Ilbery and Bowler, 1998). During this time period there were 

vast advances in biotechnology which also affected how farmers implemented sustainable 

agriculture practices (Mannion, 1998). Overall, farmers became more aware of 

alternative sustainable practices (e.g. organic farming, improved crop rotation, no-till 

practices, site-specific agriculture) and the implementation of these practices became 

more common (Sivakumar et al, 2000; Rigby et al., 2001). 

As farmers began to recognize the importance of sustainable agriculture, the 

adoption of alternative practices on the farm involved a transition from substituting 
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capital for labor, to substituting management for capital (Petrzelka et al., 1997). 

Measuring management as capital can be quite difficult to quantify, and the literature 

describes the issues surrounding the development of an adequate definition for 

sustainable agriculture (Brklacich et al., 1991). Ilbery and Bowler (1998) summarized 

the work of Brklacich et al. (1991) by defining a sustainable agriculture system in terms 

of simultaneously satisfying three types of sustainability: 

• Environmental sustainability - the capacity of an agricultural system to be 

projected into the future without unacceptable pollution, depletion or physical 

destruction of its natural resources such as soil, water, air, and natural or semi-

natural habitats. 

• Socio-economic sustainability - the capacity of an agricultural system to provide 

an acceptable economic return to those employed in the productive system. 

• Productive sustainability - the capacity of an agricultural system to supply 

sufficient food and support the non-farm population. 

In order to simultaneously promote these three types of sustainability adequately, farmers 

recognize there is a need to balance and define what is to be 'sustained' in terms of level 

and scale (i.e. international, national and regional scales) (Ilbery and Bowler, 1998), as 

well as defining what is "acceptable" and "unacceptable" within each type. 

The 1990's was also a period where climate change was identified as a key factor in 

the future success of the agricultural sector (Sivakumar et al., 2000). Climate change will 

impact agriculture in Canada greatly as the nation begins to experience warmer 

conditions, longer frost-free seasons and increased evapotranspiration (Brklacich et al., 

1998). Although one would expect longer growing seasons and increased carbon dioxide 
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(CO2) concentrations to benefit the agriculture sector in Canada, other factors such as 

reduced soil moisture, extreme climate events, soil degradation and increased disease and 

pests may counteract any potential benefits (Natural Resources Canada, 2002). Since 

1992, Canada has supported the United Nations Framework Convention on Climate 

Change (Government of Canada, 2003) and in 1990 it was estimated that 5% of Canada's 

greenhouse house gas emissions were directly related to methane and nitrous oxide 

emissions from agricultural activities (Environment Canada, 1995). In 1995, the federal 

government released The National Action Program on Climate Change which called for 

an increase in the carbon content of agricultural soils, a decrease in equipment usage 

through reduced tillage practices, and the control of methane and nitrous oxide emissions 

related to livestock production and fertilizer applications (Environment Canada, 1995). 

The storage of carbon in agricultural soils is known as a carbon sink. Carbon sinks are 

based on the premise that agricultural crops absorb atmospheric CO2 during the growing 

season then convert CO2 into the soil as organic carbon which is not released back to the 

atmosphere. Increasing agricultural carbon sinks can happen if farmers increase their 

yields, and reduce soil disturbance due to tillage methods (Government of Canada, 2002). 

More recent ratification of environmental policy, such as the Kyoto Protocol, will put 

pressure on Canadian farmers to rapidly adopt the aforementioned practices. Under the 

Kyoto Protocol Canada has committed to reducing greenhouse gas emissions to 6% 

below 1990 levels, on average, through the first commitment period (2008-2012). This is 

equivalent to a 240 MT (megatonne) reduction in the nation's projected "business-as-

usual" emission levels for 2010 (Government of Canada, 2003). Since 1991, the 

agriculture sector has adopted a considerable portion of the recommended conservation 
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practices, and at current rates it is estimated that the agriculture sector will generate a 

carbon sink of 10 MT in the first commitment period (Government of Canada, 2003). 

The agricultural policy framework within the Climate Change Plan for Canada indicates 

that there is a strong "national incentive to promote sustainable land use and expand the 

area covered by perennial forage and trees" (Government of Canada, 2003). Sustainable 

agricultural land use initiatives will involve adaptation options in farm technology 

developments, government programs and insurance, farm production practices, and farm 

financial management (Natural Resources Canada, 2002). New technological 

developments in site-specific agriculture practices, including crop monitoring using 

remote sensing, will not only enable farm level implementation of sustainable land use 

practices, but will also aid in monitoring results of the adaptation process nationally and 

over time. 

2.2.2 Site-Specific Agriculture 

Site-specific agriculture is a knowledge-based system that enables farmers to 

apply precise amounts of fertilizers, pesticides, water, seeds or other inputs to specific 

areas where and when they are needed for optimal crop growth (Lu et al., 1997). 

Successful site-specific agricultural management systems are well documented in the 

literature (Stafford, 2000; Macy et al., 1994; Mulla, 1991, Stafford et al., 1991; 

Wollenhaupt and Buchholz, 1992). Schilfgaarde (1999) emphasized that this type of 

management is very information intensive, and is not based solely on spatial technology 

but also on rapidly evolving information technologies that contribute to the site-specific 

modification of land management as conditions change spatially and temporally. One of 

the most important factors in farm practices is managing more static natural field 
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variability (i.e. soil type, topography) and variability that is in flux due to environmental 

stressors (i.e. weather induced, pests). Managing crop variability successfully considers 

two domains: (1) the spatial variability of the land under production (e.g. soil sampling to 

establish the amount of phosphorus in the soil), and (2) how that variability changes over 

time with improved management practices (e.g. applying more phosphorus to those 

regions of the field that require more for optimal crop production). Successful site-

specific farming is dependent on how well practices can be used to assess, manage, and 

evaluate the 'space-time continuum' in crop production (Pierce and Nowak, 1999). 

A quality food production system requires optimal yield performance from the 

land, and farmers employ site-specific management practices to reduce production costs 

and increase crop yields (Mulla, 1991). Other reasons for employing site-specific 

farming practices are not just economic in nature, but include environmental benefits 

(Hammond, 1992). However, the environmental benefits are not widely documented in 

the literature (Pierce and Nowak, 1999) and are not easily quantified (Perez-Munoz and 

Colvin, 1996). 

Site-specific farming has been primarily 'technology-driven' (Stafford, 2000) and 

involves the use of four primary enabling technologies: (a) Geographic Information 

Systems (GIS), (b) Global Positioning Systems (GPS), (c) Sensors and (d) Variable Rate 

Technology (VRT). A GIS is an organized collection of computer hardware, software, 

geographic data, and personnel designed to efficiently capture, store, update, manipulate, 

analyze, and display all forms of geographically referenced information (ESRI, 1995). A 

GIS is a key tool in extracting and quantifying crop variability within agricultural fields 

(Pierce and Nowak, 1999). A GIS not only establishes where the variability is, but can 
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address the variability through the application of crop inputs using maps (e.g. variable 

rate fertilizer maps). Over time, the GIS is a record keeping tool that can provide a cost-

benefit analysis for the farmer (e.g. assess if adding more fertilizer to a specific region of 

the field resulted in more crop yield and more economic return). 

The second enabling technology, GPS, became widely accessible in the early 

1990s and was originally a constellation of military satellites known as the NAVSTAR 

(NAVigation System with Time And Ranging) system. In 1994, NAVSTAR became 

available for general civilian use, including agriculture (Pierce and Nowak, 1999). In 

1995, a Russian constellation of satellites was also launched for civilian use and is known 

as the GLObal Navigation Satellite System or GLONASS (Stafford, 2000). GPS 

provides location control in site—specific agriculture and is essential to delineate within 

field spatial variability and to deliver site-specific applications using variable rate 

technology (VRT) (Tyler et al, 1997). 

The third enabling technology involves the use of sensors that can be defined as 

devices that transmit or receive an impulse in response to physical stimulus such as heat, 

light, magnetism, motion, pressure and sound (Pierce and Nowak, 1999). The sensors 

include yield monitors, remote sensing, and soil sensors that measure surface and sub­

surface features. Remote sensing and visual image interpretation of individual fields has 

been used in agricultural research and development for the last 25 years (Bullock et al., 

2000). Remote sensing has been used in agriculture in the laboratory, in the field, and 

from the sky. The advantages of remote sensing in agriculture stems from its non­

destructive, non-intrusive measurement capabilities and its flexibility of scale. 

The fourth enabling technology, VRT, involves the controlled application of crop 
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inputs. Variable Rate Technology (VRT) is a remediation tool that ingests the 'map' 

results derived from the GIS, remote sensing and GPS technologies and is available with 

farm equipment. Examples of a VRT tool are fertilizer or pesticide applicators, and yield 

monitors, both of which have evolved rapidly and have resulted in the growth of site-

specific agriculture significantly (Brisco et al., 1998). The degree to which a farmer will 

invest in "high technology" or expensive VRT equipment is not only dependent on the 

size of operation but also on the type of crop and the current market value of that crop 

(Batte, 2000). It is important to recognize that all of the technology components listed 

above work together to form a viable site-specific farm management system. GPS is 

used to spatially record the location of field activities, sensors are used to spatially 

characterize the physiological properties of the crop, a GIS ingests the GPS and sensor 

derived information to create management maps, and VRT is used to implement the 

management strategies back in the field. As described next, remote sensing in agriculture 

is an important component of this comprehensive approach to site-specific management. 

2.3 Remote Sensing of Crop Information 

Remote sensing is the practice of deriving information about the earth's land and 

water surfaces using images acquired from an overhead perspective, using 

electromagnetic radiation in one or more regions of the electromagnetic spectrum, 

reflected or emitted from the earth's surface (Campell, 1996). Optical remote sensing 

provides an indirect method of observing the physical processes in plant canopies. Radar 

and other remote sensing methods can provide structural information about the crop but 

are not as successful in identifying the physiological processes of the crop canopy. 

Recognition of the value of remote sensing by the agriculture community provides 
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additional motivation for further research within the context of site-specific agriculture 

(Moran et al., 1997; Brisco et al., 1998; McNairn and Brown, 1999; McNairn et al., 

2001a). It wasn't until the mid 1970's to early 1980's when the first Earth Observing 

(EO) satellites were launched that a significant research effort was initiated to investigate 

the use of multispectral images for crop inventory and crop production (Moran et al., 

1997). 

In site-specific agriculture, three types of information can be obtained: (1) 

information on seasonally stable conditions, (2) information on seasonally variable 

conditions, and (3) information required to diagnose the cause of the crop yield 

variability and develop a management strategy (Moran et al., 1997). This research 

primarily focuses on the use of remote sensing to derive the third type of information. 

Remote sensing can be used as a diagnostic management strategy to estimate crop yield 

variability, aid in the creation of field management zones based on crop vigour and soil 

variability, and in turn guide in-field soil sampling to derive zone-based variable 

application maps (Bullock et al., 2000). Remote sensing is also an efficient method of 

spatially characterizing both site-specific crop biophysical parameters as well as broader 

ecological information and for modelling (Wiegand and Richardson, 1990; Mack et al., 

1990; Wiegand et al., 1991; Thenkabail et al., 1994; Cihlar et al., 1991). The advantage 

of remote sensing is that it allows the farmer access to information about the health of the 

crop at more mature growth stages and much later in the growing season. Other ground-

based technologies (e.g. plant tissue sampling) may be too impractical and labour 

intensive in mature crop stages. Using remote sensing throughout the growing season to 

define crop variability potentially provides farmers with a pro-active method of 
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remedying crop stress prior to actual yield loss. 

2.3.1 Factors Affecting the Spectral Properties of Crops 

The focus of this research is to better analyse crop conditions that are important in 

farm management, such as biophysical parameters (e.g. LAI) that can aid in the 

identification of poorer yielding regions of the farm. All plants, both native and 

cultivated, respond to environmental stresses in the same way: through a decline in 

growth rate and in the rate of acquisition of all resources (Chapin, 1991). Many studies 

have been conducted on the ability of remote sensing to detect stresses in crops such as 

nutrient deficiencies (Milton et al., 1991; Yoder and Pettigrew-Crosby, 1995; Masoni et 

al, 1996; Marrioti et al., 1996). To fully understand canopy level reflectance in airborne 

agricultural applications of remote sensing, one must first understand leaf spectral 

properties and how the leaf is linked to morphological and physiological conditions 

(Mariotti et al., 1996). 

2.3.1.1 Leaf Spectral Properties 

The leaf of a plant is the primary photosynthesizing organ. Photosynthesis occurs 

in the chloroplasts where the chlorophyll pigment is located (Gates et al., 1965). When 

examining the spectral properties of a single leaf, only part of the incident energy is 

reflected with the balance either absorbed or transmitted. Figure 2-1 demonstrates how 

these components are closely related and it is necessary to consider the interplay among 

all three to evaluate the physical and physiological basis for leaf reflectance (Knipling, 

1970). A plant leaf typically has low reflectance in the visible (except in the green 
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Figure 2-1 Reflectance, absorptance, and transmittance spectra of a plant leaf (from 
Knipling, 1970). 

region) because of strong chlorophyll absorption, relatively high reflectance in the near 

infrared because of internal leaf scattering and no absorption, and relatively low 

reflectance in the infrared beyond 1.3um because of strong absorption by water 

(Knipling, 1970). This strong absorption beyond 1.3 um due to water is shown in Figure 

2-2 as a function of dehydration of a bean leaf. Water content in the leaf is a dynamic 

feature because cell structure scatters light as it passes through air and water interfaces of 

the leaf (Yoder and Pettigrew-Crosby, 1995). 

Leaf photosynthetic rate is linked to the amount of absorbed radiation, which 

depends on incident radiation and leaf absorptance. Leaf absorptance is affected by 
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Figure 2-2 The effect of leaf dehydration on the spectral reflectance of bean leaves. The 
numbers on the curves (10% and 100%) refer to the water content of the leaves at the 
time of sampling as a percentage of their water content when fully hydrated (from 
Knipling, 1970). 

external and internal reflectance and by leaf pigment content that is essentially 

represented by chlorophyll content (Masoni et al, 1996). The distribution of chemical 

constituents within the leaf is not uniform because proteins and chlorophylls are packed 

into chloroplasts that migrate and clump as the light environment changes, and due to the 

distribution of lignin in the cell walls (Yoder and Pettigrew-Crosby, 1995). There have 

been many studies that have examined the relationship between regions of the 

electromagnetic spectrum, crop leaf structure, and chemical constituents (Wolley, 1971; 

Thomas and Gausman, 1977; Wiegand and Richardson, 1984; Maas and Dunlap, 1989; 

Walter-Shea et al., 1991; Horler et al., 1983; Buschmann and Nagel, 1993). Leaf 

reflectance responses to environmental conditions that inhibit growth (i.e. plant stress) 
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usually involve increased reflectance in the visible region of the electromagnetic 

spectrum and in the infrared regions if the stress is severe enough to cause dehydration 

(Carter, 1992). Remote sensing, and the ability to analyze specific regions of the 

electromagnetic spectrum, provides a method to examine crop stress at the leaf level, and 

at the canopy level as described next. 

2.3.1.2 Canopy Spectral Properties 

The dynamic spectral nature of individual crop leaves contributes to the non-

uniformity of the canopy, and furthermore the spectral characteristics of a crop canopy 

change due to variation in landscape (e.g. topography, soil fertility and texture). Under 

varying conditions, the reflectance of a plant canopy is modified by the non-uniformity of 

incident solar radiation, plant structure, leaf area, shadow, and background reflectivities 

(Knipling, 1970). One significant difference between the amount of infrared energy 

reflected from a leaf versus a canopy is that a portion of the incident infrared energy is 

transmitted through the uppermost leaves, reflected from lower leaves, and retransmitted 

up through the upper leaves to enhance their reflectance (Knipling, 1970). In agricultural 

applications of remote sensing, it is important to understand how the canopy structure and 

crop geometry (i.e. size, shape and orientation of the plants and their leaves) plays a role 

in what is being sensed from the target. The size, shape and orientation of plants are also 

heavily influenced by human management practices and seasonal growing conditions. 

All of these factors contribute to the optical properties of crop leaves, and in turn the 

canopy with respect to the remotely sensed reflection patterns (Knipling, 1970). 
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2.4 Biophysical Parameters 

In the case of agricultural remote sensing applications, biophysical parameters are 

measured either directly or indirectly from the field of interest during the growing season 

to evaluate how the crop is performing. The information collected by an optical sensor 

(e.g. reflected and transmitted solar energy) must be related to the ground based 

biophysical parameters of the crop. If biophysical parameters are strongly correlated 

with remote sensed data, then these data can be used to predict those biophysical 

characteristics for variable scene and sensor characteristics over large areas (Treitz and 

Howarth, 1999). Empirical relationships established in the literature has led to the 

development of indirect methods for quantifying crop biophysical parameters using 

remote sensing imagery. 

2.4.1 Ground Based Biophysical Parameters 

In remote sensing studies, ground based biophysical sample site locations are 

typically mapped using GPS to enable a direct comparison of the biophysical parameter 

with the imagery. Sampling methods may be designed based on the size of the study 

area, and more importantly the spatial resolution of the imagery or pixel size. Ground 

based biophysical parameters commonly reviewed in the literature for agricultural studies 

are; percent crop cover, leaf area index (LAI), biomass, and yield (post-harvest). 

2.4.1.1 Percent Crop Cover 

Vegetation cover can be defined as the vertical projection of the shoot area of 

vegetation to the ground surface and is expressed as fraction or percent of the reference 

area (Purevdorj et al., 1998). In remote sensing applications, this definition can be 

elaborated to include all "green vegetated areas that are directly detected by the sensor 
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from any view direction" (Purevdorj et al., 1998). Percent crop cover during the growing 

season can be measured using in-field photographs taken directly above the crop. The 

photographs are imported into an image analysis software and classified to obtain the 

percent ground cover for each cover type (McNairn et al., 2001b). Percent crop cover is 

measured to deduce the percentage of each ground cover component in the image (i.e. 

percent crop, percent shadow, percent crop residue or dead matter, percent bare soil). 

This tool is a method of spatial validation for both traditional and new remote sensing 

image processing methods. 

2.4.1.2 Leaf Area Index (LAI) 

In assessing the health of the crop, it is very important to understand not only 

health but also how much plant is present. LAI is defined as the leaf area per unit area of 

soil surface (Daughtry, 1990). Norman and Campbell (1989) defined both direct and 

indirect methods of collecting LAI of a vegetation canopy. Compared to direct methods, 

the indirect methods are less labour intensive. Predicting LAI from remotely sensed 

imagery or physically measuring LAI is important in characterizing how the field is 

producing site-specifically. LAI prediction can aid in defining within field variability and 

if done early enough in the growing season could allow the farmer to remedy problems 

before actual yield loss results. In remote sensing studies, LAI field measurements are 

typically acquired at a limited number of representative sites and used for remote sensing 

input and/or validation over large areas. 

2.4.1.2.1 Direct Measurements of LAI 

One of the earliest direct methods of collecting LAI was leaf tracing. A sample of 
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leaves would be harvested and their contours traced onto graph paper and the area 

measured by counting the squares within the leaf outline (Daughtry, 1990). The leaf 

tracing may be weighed and area calculated based on the area to weight ratio for the 

paper tracing. This method was very accurate, but not time efficient. Other similar 

methods involved matching leaf shapes and sizes to standard sets of leaves by species, 

and calculations were based on linear measurements (Daughtry, 1990). 

In the interest of time efficiency, direct LAI measurements have been developed 

in recent years to include the use of laboratory instruments that measure leaf area such as 

the LI-3100 (Figure 2-3) from LICOR (2003a). With the LAI-3100, a sub-sample of the 

crop is harvested and the leaves are placed through the optical planimetric instrument. 

This instrument measures the leaf area of the sub-sample in cm . This direct method 

requires additional calculations to determine the leaf area index of the entire canopy from 

the sub-sample measurements. Daughtry (1990) defines LAI as a function of the leaf 

area to leaf mass relationship, according to the following equation: 

Equation 2-1 Leaf Area to Leaf Mass Relationship for deriving LAI 

A L = (As / M S ) M L 

Where: 
AL = Leaf Area Index 
As = Leaf Area of sub-sample of leaves 
Ms = Leaf Mass of sub-sample of leaves 
ML = Total leaf mass for a larger sample of leaves 
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Figure 2-3 LI-3100 instrument. Leaves are measured by a camera with cumulative area 
reported in cm 2 on the LED display (Li-COR, 2003a). 

2.4.1.2.2 Indirect Measurements of LAI 

There are many methods and instruments used in measuring LAI indirectly such 

as hemispherical photography, crown meters, and line quantum sensors all of which are 

described in Welles (1990). In this review only the indirect methods that are pertinent to 

agricultural studies will be discussed. A common indirect field instrument used in 

agricultural applications is the LAI-2000 (Figure 2-4) developed by LI-COR (2003b). 

The LAI-2000 measures the gap fraction in foliage and is an optical instrument that does 

not involve destructive sampling. The LAI-2000 instrument measures all light blocking 

objects simultaneously in five equal zenith angles from 0 to 75 degrees and therefore is 
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Figure 2-4 LAI-2000 instrument performs all calculations on-site and results are available 
for immediate inspection (LI-COR, 2003b). 

considered to provide a "foliage area index" (LI-COR, 1992). The units of this 

instrument are dimensionless, but can in theory be thought of as (m 2 foliage area/m 2 

ground area). This instrument makes the assumption that the canopy has random foliage 

distribution, and the clumping properties of the canopy are not considered (Leblanc and 

Chen, 1998). Not accommodating for a clumping index results in a measure of effective 

LAI (eLAl) and not absolute LAI. In the field, the LAI-2000 measurements are generally 

collected in overcast conditions to minimize the effect of scattering within the canopy. 

Other factors to consider in the measurement of LAI in an agricultural setting is the 

orientation of the foliage, foliage size, and gaps in the foliage (Welles and Norman, 

1991). 

The Tracing Radiation and Architecture of Canopies (TRAC) instrument (Chen 

and Chilar,1995) is an optical instrument that measures the gap fraction, however it 

considers clumping properties (e.g. boreal forests have a non-random and 'clumped' leaf 
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architecture). Unlike the LAI-2000, the TRAC foliage clumping index allows for the 

calculation of absolute LAI values. Pacheco et al. (2001b) compared the LAI-2000 and 

TRAC iastruments for three crop types in southern Ontario and found that the LAI-2000 

and eLAI values correlated more strongly with the percent crop cover derived from 

photographs than the TRAC instrument. 

2.4.1.3 Biomass 

Biomass is the total dry-matter production of a crop, the net result from 

photosynthesis, respiration, and mineral uptake (Stoskopf, 1981). Quantifying crop 

biomass can help a farmer to locate inadequately producing regions, and aid in 

developing crop input management strategies (e.g. fertilizer and pesticide application). In 

remote sensing agricultural applications above ground biomass measurements should be 

taken within a day of acquiring the remote sensing image to ensure that the derived 

empirical relationships are valid. The collection of biomass data involves harvesting 

plants from the field within a specified sampling area that adequately represents the 

corresponding pixel size in the imagery. Plants are weighed wet (fresh weight), dried and 

then reweighed (dry weight). The plant water content is calculated from the wet minus 

the dry weight (Staenz et al, 1997b; 1998a; Deguise et al., 1998). Timely pre-harvest 

biomass prediction from remote sensing imagery could help to quantify marketable yield 

and give the farmer an international competitive advantage that could lead to economic 

benefits for the farm operation. 

2.4.1.4 Yield 

In remote sensing agricultural applications, the most spatially accurate yield data 
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available today is obtained using a yield monitor coupled with a Differential Global 

Positioning System (DGPS). A DGPS yield monitor is placed on the combine at the time 

of harvest and captures position as well as crop volume and moisture readings on a per 

second basis. The DGPS receiver allows the yield data to be "stamped" with a 

geographic coordinate and enables the yield across the field to be mapped. Most DGPS 

receivers used in agriculture today are 12 channel and use phase smoothed pseudo-range 

positioning to permit sub-metre accuracy (Stafford, 2000). A typical example is the 

Trimble AgGPS 106 differential GPS antenna and receiver (Linco Equipment Inc., 2003). 

The yield monitor units used to represent yield data can vary by both the yield monitor 

and the manufacturers software used for data post-processing. In the North Amercian 

marketplace yield is represented as bushels per acre (bu/ac), kilograms per hectare 

(kg/ha), or tonnes per hectare (t/ha). 

Generally, yield monitors provide an accurate and reliable source of information 

for farmers over time (Perez-Munoz and Colvin, 1996; DeHaan et al., 1999). Yield maps 

can be visualized in a raw format represented by a set of yield points (Figure 2-5), or 

points can be interpolated into a continuous map surface. The goal of yield map 

interpretation is enhanced profitability through better control of natural and management 

induced sources of yield variation (Doerge, 1999). Successful yield mapping is heavily 

dependent on the auxiliary information from the farmer such as field history (e.g. soil 

type, perennial weed regions, crop rotation), the analysts' geostatistical knowledge (e.g. 

appropriate data interpolation methods) and the available GIS tools (Doerge, 1999). 
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Precision Farm Yield 2 0 0 0 

Figure 2-5 Yield map for the IHARF farm in 2000. Data were collected using an 
AgLeader PF300 yield mapping system and Trimble GPS (top right). 

Sources of yield variation are not always easily identifiable and can be a result of 

weather, soil-water relationships, soil physical and chemical properties, slope and aspect 

of a region, pest infestation, crop inputs, field history, and cultural practices and errors 

(Doerge, 1999). The yield map can be used as a seasonal "report card" whereby farmers 

can evaluate how well the crop performed due to the implementation of new site-specific 

management strategies (Eghball and Varvel, 1997). 

2.4.2 Conventional Remote Sensing Methods for Biophysical Information Extraction 

2.4.2.1 Band Ratios and Vegetation Indices 

Remote sensing has extended the usefulness of the Geographic Information 

System (GIS) in site-specific agriculture by incorporating non-intrusive image analysis 

tools for assessing crop health during the growing season. Vegetation indices, based on 
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the differential reflectance in the red and near-infrared wavelengths, are widely used to 

assess vegetation amount and/or health. Compared to non-vegetated surfaces, vegetated 

surfaces show a sharp contrast in the red and near infrared wavelengths (Bannari et al., 

1995; Chen, 1996). Chen (1996) described the earliest form of the vegetation index 

which was the Simple Ratio (SR) developed by Jordan (1969) (Equation 2-2). 

Equation 2-2 Simple Ratio (SR) Vegetation Index 

SR = (gn)/(gr) 

where gn is NIR reflectance, and gr is red reflectance. 

An issue with the SR occurs when gr values are close to zero the index values increase 

with no bounds (Chen, 1996). Recognizing this led to the development of the 

Normalized Difference Vegetation Index (NDVI). The NDVI (Equation 2-3) resolves the 

issue by normalizing the difference between gn and gr using the sum and the difference 

of both values. 

Equation 2-3 Normalized Difference Vegetation Index (NDVI) 

NDVI = (gn -gr)/(gn + gr) 

The NDVI is not an inherent physical quantity of vegetation but is correlated to the 

physical properties of the vegetation canopy, the LAI, percent crop cover, vegetation 

condition, and biomass. However, the sensitivity of the NDVI to crop biophysical 

parameters such as LAI becomes weak in conditions beyond a threshold value of LAI, 

typically 2 or 3 (Carlson and Ripley, 1997). A common variation of the NDVI used in 

agricultural studies is the Green Difference Vegetation Index (GDVI) in which 

reflectance in the green band is substituted for reflectance in the red band (Smith et al., 

1999; Peddle et al., 1999b; Bannari et al., 1995) (Equation 2-4). 
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Equation 2-4 Green Difference Vegetation Index (GDVI) 

GDVI = (gg-Qr)/(gg+gr) 

where Qg is green reflectance, and pr is red reflectance. 

A common disadvantage of the SR, NDVI and GDVI is the influence of soil background. 

Huete (1988) reported that for a given amount of vegetation, darker soil substrates 

resulted in higher vegetation index values for the SR and the NDVI. To accommodate 

for soil background influences in incomplete vegetation land cover Richardson and 

Wiegand (1977) created the Perpendicular Vegetation Index (PVI) (Equation 2-5). 

Equation 2-5 Perpendicular Vegetation Index (PVI) 

corresponding spectral band (R = red and NIR = near infrared). 

Similar to darker soil substrates, Huete (1988) found that brighter drier soils with 

sparser vegetation also resulted in higher PVI values. Several improvements have been 

made to the PVI, and better methods of accommodating for background soil have been 

implemented (Equation 2-6) in the Soil Adjusted Vegetation Index (SAVI) (Huete, 

1988). 

Equation 2-6 Soil Adjusted Vegetation Index (SAVI) 

rvi = (esoil-Qjz, 

where (psoil - gveg) is the difference between the "bare soil-vegetation" reflectance in the 

SAVI = 
(NIR-R) 

(1 + L) 
(NIR + R + L) 

where L is a soil adjustment factor. 



3 1 

Based on a simplified radiative transfer model, Huete (1988) showed that a value L= 0.5 

permits the best adjustment to minimize the secondary backscattering effect of canopy-

transmitted soil background reflected radiation (Bannari et al., 1995). Three versions of 

the SAVI were developed by Major et al. (1990) to accommodate for wet and dry soils, 

and varying solar inclination angles. As a result of these improvements, and other 

modifications by Baret and Guyot (1991), the Transformed Soil Adjusted Vegetation 

Index (TSAVI) (Equation 2-7) is now believed to be a better indicator than the NDVI for 

low vegetative covers, and is more sensitive to senescent vegetation than the NDVI 

(Bannari et al., 1995). 

Equation 2-7 Transformed Soil Adjusted Vegetation Index (TSAVI) 

TSAVI = MNIR-aR-b)} 
[(R + aNIR-ab + X(l + a2)] 

where a & b are calculated by the "soil line" or "soil brightness vector" which is NIR = 

aR+b, where a is the slope of the bare soil line, b is the ordinate at the origin of the bare 

soil line, andX=0.08 a soil effect minimization constant. 

The equation of the soil line can be determined from a remote sensing image if 

there are enough bare soil pixels with sufficient dynamic range. If the current image 

being used cannot adequately provide a distinct soil line then it can be determined from a 

previous image of the same region with sufficient dynamic range (Bannari et al., 1995). 

One of the main drawbacks in the "SAVI family" of indices is that a soil line must be 

established for each remote sensing acquisition (Rondeaux et al., 1996). In an effort to 

create an index that was more universal, Rondeaux (1995) created the Optimized Soil 

Adjusted Vegetation Index (OSAVI) (Equation 2-8). In the SAVI indices, minimization 

of soil background noise is done by the adjustment of parameters X, whereas with 
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OSAVI, X has been re-examined to optimize the index over a variety of soils, and for 

high and low vegetation cover. OSAVI also incorporates bi-directional reflectance in the 

NIR and red bands. 

Equation 2-8 Optimized Soil Adjusted Vegetation Index (OSAVI) 

OSAVI = 

In equation 2-8, 0.16 is a static soil adjustment coefficient that is used to minimize 

background noise due to soil type variation. It is quite similar with respect to 

performance as the TSAVI and other indices of the SAVI class. The advantage to this 

index is that it is a simplified formula that does not require a priori knowledge of the soil 

type. The residual variation in OSAVI due to soil is evenly spread across the range (0-1) 

of crop ground cover, and is therefore promoted as being an optimal vegetation index for 

agricultural applications (Steven, 1998). 

This research evaluates both traditional and soil-adjusted vegetation indices using 

hyperspectral remote sensing imagery. Vegetation indices have been related to several 

biophysical parameters such as LAI (Turner et al., 1999; Wiegand and Richardson, 

1990); photosynthetic activity (Mack et al., 1990; Wiegand et al., 1991); canopy 

chlorophyll content (Broge and Leblanc, 2000), biomass and yield (Thenkabail et al., 

1994). However, in most vegetation studies there are limitations surrounding the 

relationship between vegetation indices, LAI, photosynthetic activity, and yield in high 

LAI conditions (Wiegand and Richardson, 1990). The ratio of red to NIR approaches 

limiting values asymptotically as LAI increases (Wiegand and Richardson, 1984). The 

relationship between Vis and LAI can vary with crop stage and leaf water content 

(Carlson and Ripley, 1997). Hatfield et al. (1985) performed a ground based remote 
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sensing experiment on different planting dates of wheat and found that Vis saturated at a 

LAI above 4.0 and did not return to the pre-emergence bare soil value at senescense. 

Therefore, the VI to LAI relationship is not absolutely reliable later in the growing season 

in mature crop stages. 

In remote sensing agricultural applications, Vis calculated too early in the 

growing season do not relate well to actual crop yield because measurements do not 

represent the canopies' photosynthetic capacity (Wiegand and Richardson, 1990). There 

are also issues with Vis because the algorithms are performed on the entire pixel and do 

not discriminate for mixtures at sub-pixel scales (e.g. volunteer crops, weeds). 

Components of a pixel in agricultural remote sensing scene may include the crop 

vegetation, but also shadow, background soil and residue, and other types of vegetation 

(e.g. weeds), all of which contribute to the overall remote sensing signal (Peddle et al., 

2001a). Spectral Mixture Analysis (SMA) attempts to discern the sub-pixel components 

in agricultural remote sensing scene, as described in the next Chapter. 

2.5 Chapter Summary 

In this chapter, a review of the pertinent literature was presented within the context 

of sustainable agriculture. Site-specific agriculture can be considered a management 

practice that encompasses the principles of sustainable agriculture. In this research, 

remote sensing is the primary enabling technology examined, but it is only one of the 

many technologies that are combined to deliver site-specific agricultural management 

strategies. Remote sensing can be used to delineate crop biophysical parameters, and 

several ground based biophysical parameters were described in this chapter that can be 

related to remotely sensed imagery using empirical methods. The last section of this 
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chapter reviewed conventional Vis that have also been used with some success in 

predicting crop biophysical parameters. In the next chapter, spectral mixture analysis is 

presented and reviewed as a potential improvement to Vis. 
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CHAPTER III 

3.0 SPECTRAL MIXTURE ANALYSIS 

3.1 Introduction 

In the previous chapter, several issues were raised regarding the use of vegetation 

indices (Vis) to predict vegetation biophysical parameters. In this chapter, Spectral 

Mixture Analysis (SMA) is reviewed as an approach that is suitable to address several of 

these issues, and which forms an analytical framework for this thesis research. One of 

the key motivating factors in the remote sensing community for developing new and 

more advanced sub-pixel analysis techniques, was an understanding of the mixed pixel 

(Elmore et al., 2000). Remote sensing scientists became aware of issues surrounding the 

fact that the instantaneous field of view (IFOV) of a remote sensor contains a number of 

individual surface components that contribute to the overall pixel level radiance (Horwitz 

et al., 1971; Adams et al., 1993). In many cases, the mixed pixel can reduce the amount 

of useful information obtained from remote sensing imagery, and this was widely 

recognised in a variety of remote sensing applications such as geology, forestry, oceans 

and arctic (Ungar and Bryant, 1981; Peddle et al., 1995; Cloutis, 1996; Piwowar et al., 

1998). The SMA approach to this problem is twofold: (1) identify the spectral properties 

of the dominant components within the image, and (2) deconvolve the spectral 

information of each pixel into component surface abundances (Tompkins et al., 1997). 

The first to identify the significance of the mixed pixel problem was Horwitz et 

al. (1971) who developed early SMA algorithms in agricultural applications. As more 

research occurred in the development of SMA, the method also became known as 

spectral unmixing (Endsley, 1995; Chang, 1998) and linear spectral unmixing (llu et 
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al.,1999; Petrou and Foschi, 1999). Awareness of the mixed pixel was not the only 

motivating factor in the development of SMA because increased availability and 

accessibility to sensors also initiated further research. Hyperspectral remote sensing 

imagery became available to the scientific community in 1982 with the introduction of an 

airborne imaging spectrometer (AIS) (Adams et al., 1993). As predicted by Goetz et al. 

(1985), the introduction of these new airborne sensors encouraged further development of 

analysis tools that could better handle the "high dimensionality" of the hyperspectral 

data. 

Within the context outlined above, this chapter is intended to: (1) introduce the 

SMA equation and related parameters, and (2) discuss how SMA has been used in 

agricultural applications. The first section introduces the concept of the endmember 

which is a key SMA input parameter, and then two approaches to SMA are presented: the 

constrained and unconstrained methods. The next section of the chapter outlines various 

methods for endmember acquisition, and the final section presents a review of how SMA 

has been applied in agricultural applications. 

3.2 Endmembers 

SMA is a physically based model in which a mixed spectrum or pixel is modeled as 

a combination of pure spectra, called endmembers (Adams et al., 1993). Therefore 

endmembers can be defined as a set of unique spectra that represent each scene 

component found in the imagery (Bateson et al., 2000). However, the identification of 

endmembers is highly dependent on the region being characterized, and can be scale 

dependent (Rahman et al., 2003). For example, endmembers identified for a national or 

global land cover project that use low resolution sensors (e.g. MODIS or AVHRR 
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imagery) may be quite different from those endmembers identified for site-specific 

agriculture using a higher resolution sensor (e.g. 1KONOS or airborne hyperspectral 

imagery). The scale of the mixed components in the imagery is a function of the 

instantaneous field of view (IFOV) of the sensor, and the endmembers selected to 

represent each component should include consideration for what scene components are 

smaller or larger than the IFOV of the sensor being used. For example, scene 

components found within an AVHRR 4km pixel are much more general and may only 

involve the selection of endmembers for land cover classes (i.e. water, roads, forest). 

However, an IKONOS 4m pixel may include more detailed spectral information that can 

further define each land cover class as being comprised of a vegetation component, a 

background component (e.g. underlying soil) and a canopy shadow component. 

Adams et al. (1993) described two methods of collecting endmembers for the 

purpose of performing SMA on remote sensing imagery: (1) 'image endmembers' which 

are extracted directly from the imagery and (2) 'reference endmembers' which are 

typically collected on the ground but can be measured in the field or in a laboratory 

environment. Endmembers selected from the imagery can be more practical in 

operational applications, but do not guarantee spectra that have 1 0 0 % abundance of one 

scene component (Nielson, 2001). Reference endmembers are spectrally pure, but can be 

very labour intensive to collect (provided they are not already defined in a spectral 

library), and furthermore the endmember spectra and image data must be in the same 

units, which typically results in the need for radiometric image correction to spectral 

reflectance. SMA input variables will be discussed more thoroughly in section 3-4, but 

first the theory of SMA is discussed next. 
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3.3 Spectral Mixture Analysis Theory 

SMA is used to identify the spectral contribution of components within the 

instantaneous field of view (IFOV) of the remote sensing instrument (Piwowar et al., 

1998). Once the endmember components are identified, and their spectral properties are 

obtained, the SMA algorithm evaluates each pixel and estimates the spatial abundance of 

each component contributing to the overall pixel brightness value (Johnson, 2000). The 

algorithm computes the amount of each component as a fraction of the total pixel area. 

The fraction values fall between 0 and 1, where 0 is no contribution of the component, 

and 1 is complete contribution of the component. 

In SMA, there are two basic spectral mixture assumptions when performing 

SMA. The linear spectral assumption requires that the components of the scene be 

arranged in spatially separate areas of the pixel (Elmore et al., 2000). However, when 

incident electromagnetic energy reacts with more than one component before being 

reflected from the surface, non-linear mixing occurs (Mustard and Pieters, 1987). There 

have been some successful attempts at non-linear SMA in vegetation studies (Borel and 

Gerstl, 1986; Ray and Murray, 1996). However, non-linear unmixing can be complicated 

mathematically and a computationally demanding task that is often impractical to solve. 

In most vegetation applications, the linear method can provide a satisfactory approach to 

SMA provided there is limited multiple scattering in the NIR portion of the 

electromagnetic spectrum (Quarmby et al., 1992, Quarmby, 1992; Adams et al., 1993; 

Lelong et al., 1998; Peddle et al., 1999a; Elmore et al., 2000). Imagery that is input into 

the SMA equation are assumed to contain spectrally mixed data, and are "unmixed" to 

find the fractional contribution of each endmember (Piwowar et al, 1998). 
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3.3.1 Unconstrained SMA 

In an unconstrained SMA model, fraction values do not always range from 0 to 1. 

In other words, fraction maps may have values that fall outside the range of 0% to 100% 

contribution of a component to a pixel. Out of range fractions, or "fraction underflow or 

overflow", occur if the endmembers and the mixture model do not adequately 

characterize the image (Adams et al., 1993). The simplified form of the SMA equation 

can be expressed as: 

Equation 3-1 Spectral Mixture Analysis (SMA) Algorithm 

DNb = (EM, • Fl) + (EM2 • F2) +... + (EMn • Fn)+ e, 

where: 

DNb pixel's digital number at wavelength b 

EMX spectrum of the / th endmember (where there are n endmembers in the model) 

Fv fractional contribution of the / th endmember 
S any residual contribution not accounted for by the endmember set 

In Equation 3-1, the pixel's digital number at a specific wavelength (DN b) is from the 

image, and we specify EM. Therefore, a system of equations is used to solve for the 

fractions (F) (Adams et al., 1993; Piwowar et al., 1998). In this equation, SMA produces 

one fraction image for each endmember, with a root mean square value computed as an 

estimate of the residual spectral components not accounted for by the input endmember 

set. This equation can also be expressed in more general terms, as shown in Equation 3-

2. 

Equation 3-2 Unconstrained Spectral Mixture Analysis (SMA) 

DN.^FtDN^ + e, 
1=1 
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where DNb is the intensity of a given pixel in band pass or wavelength b, Fi is the 

fraction abundance of endmember i, DNt b is the intensity of image endmember i at 

wavelength b , n is the number of endmembers, and e is the error of the fit for band b 

(Elmore et al., 2000). In either approach, the ideal number of endmembers for any given 

SMA model should be lower than the input dimensionality (Adams and Smith, 1986). 

Therefore, the number of spectral bands (m) should be greater than the number of 

endmembers («), hence the maximum number of endmembers in SMA should be m-l 

(Boardman, 1989). 

There are a number of ways that the linear SMA equation can be solved. One 

method presented quite early in the literature was singular value decomposition 

(Boardman, 1989). A more common method presented in the literature is the least 

squares approach described by Shimabukaro and Smith (1991) where the proportion of 

each component inside the pixel is solved for by minimizing the sum of squares of the 

errors (Equation 3-3). 

Equation 3-3 Minimizing the Least Squares Error 

Where / is the function to be minimized, and m is the number of spectral bands. This 

component of the equation ensures that the total error is minimized for each spectral band 

included in the SMA equation. 

As mentioned previously, SMA model accuracy can be assessed using a 

measurement of Root Mean Square Error (RMSE). Equation 3-4 is the total root-mean 

square error (RMSE) output from the unconstrained approach where b is the number of 

spectral bands. 

1=1 
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The RMSE is an excellent measurement of validity for the endmembers selected as input 

for the SMA model. Elmore et al. (2000) tested this method for Landsat TM imagery 

over a semi-arid region, and model accuracy was based on the precision of the input 

image data (i.e. RMSE = ± 1 to 2 DN's). 

3.3.2 Constrained SMA 

The SMA model can be constrained using one or both of the following: (i) 

constraining the equation to unity so that fraction values must sum to 1, and (ii) 

constraining the equation to ensure that fractions values fall between 0 and 1. A properly 

constructed unconstrained mixture model should return values that fall between 0 and 1, 

however constraining to unity tends to stabilize the solutions (Elmore et al., 2000). In 

the first case (Equation 3-5) all resulting fraction values sum to 1. 

Equation 3-5 SMA Constrained to Unity 

In reference to Equation 3-2, n is the number of endmembers, and Fi is the fraction 

abundance of endmember i. In the second case, when an SMA equation is fully 

constrained, the fraction values will not only sum to 1 but all fractions values will fall 

between 0 and 1. In the example of solving the equation for three endmember 

components, the constraint becomes Xi + Xz + X3 = 1 (or X3 = 1 - Xi - X2). The use of a 

fully constrained equation implies that the pixel is well defined and there are no unknown 

contributors to the spectral components of the image (Adams et al., 1993). There has 

Equation 3-4 Root Mean Square Error (RMSE) 
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been some disagreement with this approach because the resulting fraction maps have the 

appearance of always being reasonable. For example, each pixel is always between 0 and 

1 regardless of how well the input endmembers characterize the components of the 

image, and this can lead to erroneous results (Elmore et al., 2000; RSI, Personal 

Communication, 2001). 

3.4 SMA Inputs 

As mentioned in section 3.2, the selection of endmembers is critical to the success 

of the SMA model. Endmembers are the central input for any SMA equation, and can be 

collected from the imagery or on the ground using ground-based sensors such as a 

spectroradiometer. Image endmembers and reference endmembers can also be combined 

and used in integrated endmember approach to SMA. The integrated endmember 

approach to SMA is quite useful when the collection of reference endmembers may not 

always be practical, and when extensive reference spectral libraries are not readily 

available for a specific remote sensing application. The next three sections of this 

chapter discuss how reference, image, and integrated endmembers can be collected and 

used in SMA. 

3.4.1 Reference Endmembers 

Reference endmembers can be measured in the field, in the laboratory or 

selected from an existing spectral library (e.g. USGS Public Spectral Library for Minerals 

and Vegetation, USGS, 2003). The use of reference endmembers in SMA depends on 

having a well-calibrated image (Tompkins et al., 1997). Reference endmembers can be 

measured in two ways, one involves removing a sample of the component from the field 

(destructive method), and the other involves is an in situ measurement where the 
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component is left intact. For SMA studies involving the use of reference endmembers, 

both the endmember spectra and the airborne or satellite imagery must be converted to 

the same physical units, and this is usually reflectance (Piwowar et al., 1998). Both 

types of measurements involve a considerable amount of care in the field, and in the 

calibration of the ground spectra and the remote sensing imagery (Peddle et al., 2001a). 

3.4.1.1 Non-Destructive In Situ Endmember Acquisition 

Non-destructive in situ endmember acquisition is done in the field above the 

target of interest using a ground-based sensor such as a spectroradiometer. The main 

advantage of collecting reference endmembers using in situ measurements in vegetation 

studies is that the geometry of the image components can be maintained. Geometry of 

the plant canopy and background material such as soil, can play an important role in 

spectrally defining the complex interaction of energy before the signal is received back at 

the sensor. The size of the area sampled using in situ methods is heavily dependent upon 

the scale of the application, and the spatial resolution of the imagery. If the objective is 

to acquire near pure representations of one component with no influence from complex 

geometry such as shadow, then it can be difficult to find a plot location in a natural 

setting with minimal background and shadow noise within the IFOV of the sensor 

(Peddle et al., 1999b). 

The difficulties associated with in situ sampling was demonstrated in the literature 

by Franklin et al. (1991) who used a pole-mounted radiometer to acquire in situ 

reflectance characteristics over different tree species in Africa. This study showed how 

there were distinct differences in the red and NIR reflectance characteristics of the 

various vegetation components in the canopy. It also illustrated how difficult it is to 
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locate a spectrally pure region with only one spectral component within the IFOV of the 

sensor. Similarly, Peddle (1998) illustrated some of the disadvantages of in situ sampling 

in forestry applications as part of the Boreal Ecosystem Atmosphere Study (BOREAS). 

In this case, spectral measurements were collected to represent maximum and minimum 

solar illumination of the background component that was a complex mixture of materials 

found in the forest understorey. Collecting endmembers on the forest floor proved to be 

challenging due to significant fluctuations in solar illumination because of differences in 

terrain, wind blowing the trees that caused sunfleeks in the sample, and multiple 

scattering within the canopy. These illumination issues were less than adequate for 

reference endmembers, and instead samples were removed from the forest and measured 

at a stationary site outside of the region of interest. 

In an agricultural study by Peddle et al. (1999a), endmembers were collected for 

the background component that in this case was primarily bare soil. The collection of 

endmembers for agricultural soils can involve a consideration for soil type, and tillage 

practices (i.e. soil roughness and orientation). In that study, in situ endmembers were 

collected for cultivated, disturbed loose soil, and an area of flat compacted soil. Similar 

to the forestry studies above, there was some difficulty finding bare soil patches in the 

field with no shadowed areas from the crop, therefore regions were selected outside of 

the crop and along the borders of the field. The most representative endmember for soil 

came from the in situ cultivated soil region because it more closely represented the 

geometry and tillage practices of the study area. 

The non-destructive in situ method of endmember acquisition can involve sensing 

more than one component (e.g. canopy and canopy shadow), but can retain the natural 
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geometry of the sample (e.g. soil orientation and roughness). It should be noted that the 

spectral issue of sensing more than one component at a time using in situ methods are 

similar to those issues found in the mixed pixel problem. The success of the in situ 

endmember sampling strategy is highly dependent on the scale of the application, and if 

the dynamic nature of the components' geometry is important for the SMA. 

3.4.1.2 Destructive Endmember Acquisition 

Destructive endmember acquisition involves removing samples from their 

natural environment for spectral measurements. In vegetation applications, there are a 

variety of removal methods based on the amount of plant available, and what is 

acceptable in terms of the level of disturbance to the plants and the surrounding 

environment. Minimal destructive removal methods include cases where single leaves 

are extracted from the study area and transmittance and reflectance properties of the leaf 

are measured using an integrating sphere coupled with a spectroradiometer (e.g. Model 

LI-1800 from LiCor Inc.). Inversions of radiative transfer models such as the 

PROSPECT can simulate leaf reflectance and transmission (Jacequemoud et al., 2000), 

and canopy level reflectance and transmission can be simulated using the Scattering by 

Arbitrarily Inclined Leaves (SAIL) model (Daughtry et al., 2000). Both the SAIL and 

PROSPECT models can then be used to relate leaf biochemistry to the spectral properties 

of the plant, and to the biophysical parameters of the plant canopy (Zarco-Tejada et al., 

2000; Jacquemoud et al., 2000). SMA can be performed on simulated canopy reflectance 

in addition to conventional remotely sensed imagery, and results can be compared and 

calibrated to SAIL-generated biophysical parameters such as LAI, fractions of absorbed 

photosynthetically active radiation (fAPAR), and soil brightness (Van Leeuwen et al., 



4 6 

1 9 9 7 ) . 

Other destructive endmember sampling strategies consider how the plants are 

arranged in a sample for optimal nadir reflectance measurements and involve the use of a 

ground sensor such as a spectroradiometer (Peddle, 1998). Ideally the sensor is placed at 

a stationary location outside of the study area and samples are transported to this site for 

controlled spectral measurements (Peddle, 1998). The Optically Thick Stack (OTS) 

method involves harvesting plants and stacking them in several layers on a black 

background under the IFOV of the ground-based spectroradiometer (Peddle et al., 

1999b). The objective with an OTS is to maintain some of the in-field plant geometry, 

while minimizing the background noise. 

Another method is the flat array sampling strategy. This destructive method 

involves removing all the leaves from the plant stem and placing them in a flat 

contiguous arrangement on a black background. The flat array virtually eliminates 

shadow and background noise within the sample, but alters the geometry of the plants 

relative to how they are found in their natural environment (Peddle et al., 1999b). These 

methods can also be used for collecting shadow endmembers. Shadow spectra can be 

obtained in the field by using the same sunlit samples, only the direct beam of 

illumination is obstructed. In this case, the shadow is induced and the sampled spectra are 

converted to reflectance using a shadowed target and a fully illuminated reference panel. 

This is a measurement of "apparent reflectance" (Miller et al., 1997) instead of absolute 

reflectance, which is an inherent property of any object and is independent of 

illumination (Peddle et al., 1999b). 

Similar to the non-destructive in situ sampling method, the value of retaining 
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some geometry in the destructive sampling is highly dependent on the scale required for 

the remote sensing application. The flat array sampling method ensures that there are no 

external influences in the spectral measurement from background noise and shadow, 

whereas the OTS compromises these factors to maintain geometry. Overall, both the 

OTS and flat array sampling strategy provide the most spectrally pure methods and are 

optimal methods for establishing national spectral libraries. 

3.4.2 Image Endmembers 

Image endmembers provide a more practical approach to the use of SMA in 

real-time applications of remote sensing. However, there is no guarantee that image 

endmembers are derived from only one scene element (Nielson, 2001). It is unlikely that 

the reflectance of any one pixel in a remotely sensed image is attributable to only one 

component, therefore some level of mixing must be tolerated within these endmember 

spectra. The degrees of impurity to be tolerated, as well as the methods used to reduce 

it, are important considerations when using image endmembers as input for SMA. 

There are several analytical and visualization methods used to extract or derive 

endmembers from imagery. Boardman (1993) used convex hull geometry to derive 

image endmembers from n-dimensional space. The linear mixed pixel problem in remote 

sensing shares all the defining attributes of a convex set of points in n-dimensional space, 

where all points are positive, sum to unity, and form what is known as a convex hull. 

This relationship is best shown theoretically in Figure 3-1 where the shaded area 

represents a mixture of three endmember materials: A, B, C. The triangle formed by the 
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E n d m e m b e r A 
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E n d m e m b e r B 

Endmember C 

Spectral Band 1 

Figure 3-1 Convex hull approach to image endmember selection. Above shows 2D 
spectral space for three components with feasible mixtures located inside the 2D simplex 
(triangle) (Boardman, 1995). 

vertices is known as a simplex, and if there was a fourth feasible endmember then the 

triangle would become a tetrahedron. Depending on the dimensionality of the image data 

the simplex can range from 0 to n dimensions (Boardman, 1993). The convex hull 

approach is basically a measure of pixel purity, where pixels near the vertices of the data 

cloud have a high score in terms of spectral purity, and pixels that lie along the flat edges 

score low (Boardman, 1995). Figure 3-2 shows an agricultural dataset in 2D spectral 

space, where all pixels that fall within the simplex are mixtures of three components. In 

an agricultural setting the three components would be sunlit vegetation, shadow, and 

sunlit background (likely soil and residue). The purest pixels that would represent these 

three components would fall closest to the vertices of the simplex, and it is these spectra 

that would be selected as the image derived endmembers. Manually selecting 
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Figure 3-2 Image endmember selection in 2D spectral space where the x-axis is the red 
band, and y-axis is the NIR band (units in % reflectance). 

endmembers using this analytical n-dimensional spectral approach is only appropriate for 

datasets with low dimensionality and few spectral bands, whereas data sets with much 

higher dimensionality would require more automatic statistical methods. The success of 

this technique is highly dependent on the quality of the imagery. For example, sensor or 

atmospheric noise can appear in spectral space as spectrally distinct pixels near the 

vertices of the convex hull when in fact they are artefacts of noise and can lead to 

erroneous endmember spectra (Boardman, 1994). 

Tompkins et al. (1997) used the approach of Boardman (1993) and described it 

as a "fit" approach where an n-dimensional polyhedron was applied to the data cloud. 

Tompkins employed a data transformation to determine the dimensionality of the 

polyhedron and extracted the total number of endmembers from the imagery. The edges 

of the polyhedron guided the fitting process, and the endmembers were selected at the 

vertices of the polyhedron. The advantage of this method is that it does not require a 
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priori knowledge of the scene. Conversely, the difficulty with this endmember selection 

method is that the straight lines of the convex hull polyhedron prevent a unique fit to the 

data cloud and could result in endmembers that are not realistic in a physical sense 

(Tompkins et al., 1997). 

Other mathematical methods of deriving image endmembers involve the use of a 

principal component analysis (PCA) (Deguise et al., 1999; Lelong et al., 1998; Tromp 

and Epema, 1999). PCA indicates the spectral variability in the data and its spatial 

organization in the imagery (Lelong et al., 1998). The objective of PCA is to reduce 

interband correlation that can be a problem in the analysis of multispectral and 

hyperspectral imagery (Lillesand and Kiefer, 2000). Most of the spectral variability in 

the image will be captured in the first principal component, and when the principal 

components are viewed in spectral space they can give a clearer view of where the most 

spectrally distinct pixels are in the imagery. PCA is also a very efficient tool for isolating 

noise in the imagery, and this is optimal for the endmember selection process. Thus, 

PCA is very effective in that it can identify endmembers that best encompass the whole 

spectral variability of the image (Lelong et al, 1998). 

Recently, more automated endmember extraction methods have been presented 

in the literature. Szeredi et al. (1999) presented four methods for automatic endmember 

extraction from imaging spectrometer data; (a) the Iterative Target Transform Factor 

Analysis (ITTFA), (b) the Alternating Regression (AR), (c) the Iterative Error Analysis 

(IEA) and, (d) the Purest Pixel Clustering (PPC). To determine image endmembers, all 

four methods include an orthogonal transform of the data (e.g. PCA, Minimum Noise 

Fraction), and an examination of the eigenvalues from the transform versus the 
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eignevalue number to determine the change in slope. The total number of endmembers is 

determined by where this change in slope occurs. The ITTFA and AR are derived from 

chemistry literature and are iterative approaches that use an unconstrained least squares 

unmixing equation. The geometric interpretation of these iteration procedures is that the 

algorithm analyzes the input data and zig-zags through n-dimensional space until it 

encounters the extremities of the data cloud. Alternatively, the IEA uses a constrained 

unmixing equation, and with successive iterations endmembers are chosen by 

representative pixels that minimize the remaining error in the unmixing results. This 

algorithm will terminate when a specific criteria is reached such as a maximum error 

value, or a predetermined number of endmembers is met. The PPC includes a pixel 

purity index (PPI) that determines the purest pixels in the image and then performs a 

cluster analysis on these pixels. The highest weights are assigned to the purest pixels, 

and these are based on the number of times the pixels were selected after the iterations 

are complete (Szeredi et al., 1999). The ITTFA and AR methods were designed to be 

used in scenes where every pixel was mixed, while the IEA and the PPC methods were 

most useful in the extraction of endmembers from a number of scenes that had relatively 

pure pixels. When all four methods were compared the ITTFA and AR were determined 

to be the more desirable methods. The reason for this conclusion was because the 

condition that an endmember be absent from at least some pixels in a scene (required by 

the ITTFA and AR) is far more realistic than the condition that endmembers be pure in at 

least some pixels (required by the PPC and IEA) (Szeredi et al., 1999). 

The image endmember selection process has also been researched in terms of 

defining the full extent of component and image variability. Bateson et al. ( 2 0 0 0 ) 
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suggested that endmembers should represent the variability found within the remotely-

sensed image, and that variability could be incorporated into SMA by representing each 

endmember as a set or 'bundle' of spectra. The bundles are created from the data itself 

and by manual extraction of the endmembers from the imagery. This approach to SMA 

produces minimum and maximum fractions bounding the correct cover fractions and 

specifiying error due to endmember variability. Similar to the latter approach, Saghri et 

al. (2000) proposed an improved ISODATA clustering method for the selection of image 

endmembers. The ISODATA clustering algorithm was altered to use a "spectral angle" 

criterion rather than the typical Euclidean distance criterion. The advantage of this 

method over manual extraction or mathematical selection is that the resulting 

endmembers would (a) represent physically identifiable and likely pure species on the 

ground, (b) the residual error would be small, and (c) minimal human interaction is 

required. Newer methods of image endmember selection seem promising but currently 

are limited in terms of software accessibility. 

3.4.3 Integrated Endmember Selection Method 

Reference endmembers may not always be available to a study due to logistics, 

equipment or location limitations. Furthermore, some of the literature has suggested that 

reference endmembers may not always be a realistic measurement for all the endmembers 

being observed (Asner and Lobell, 1999). In some cases, the best solution may involve 

selecting reference endmembers in combination with image endmembers, and targeting 

specific materials that are being remotely sensed (Small, 2001). Integrated endmember 

selection can be defined as a method to determine the best set of endmembers for a 

particular image under study. Endmembers in this case, can be combination of image, 
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laboratory, and in-field spectral measurements. Roberts et al. (1998) proposed a quasi-

integrated method of selection known as the multiple endmember SMA (MESMA). In 

this case, a series of two and three endmember models were created from a number of 

field and laboratory measurements. A set of endmembers were chosen to model a pixel if 

they met a series of criteria where fractions had to fall within a specific range of absolute 

values, and where the RMS error was low in seven or more contiguous bands. They 

found that the two endmember models were the best in defining vegetation maps, and 

three endmember models provided greater spatial coverage but provided poorer 

vegetation discrimination due to model overlap (e.g. where two or more model candidates 

modeled the same pixel). 

Tompkins et al. (1997) proposed a Modified SMA (MSMA) algorithm that 

utilized both reference and image endmembers. This algorithm gave the endmembers 

(and their fractional abundances) a starting point and then forced the endmember spectra, 

by a set of constraints and by data dimensionality, to move or "grow" into a new set of 

values referred to as a "virtual" endmember. The MSMA algorithm had two distinct 

differences from the conventional linear SMA model: (1) both fractional abundances and 

the endmember spectra were treated as unknown which in turn creates a non-linear set of 

equations, and (2) all pixels were solved for at one time, rather than one pixel at a time as 

in conventional SMA models. 

Overall, the most important consideration in using any integrated endmember 

approach is that it takes advantage of both the spectral purity of the reference 

endmembers, and the uncomplicated acquisition of image endmembers. Currently, very 

few comprehensive vegetation reference spectral libraries exist, and the use of image-
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based or integrated endmembers may be important in SMA to realistically represent the 

conditions at the time of image acquisition. 

3.5 Agriculture Applications of SMA 

The use of airborne and satellite remote sensing in agriculture is relatively new in 

comparison to other applications such as geology and forestry, although in agriculture 

remote sensing has filled a technology gap by providing information related to crop 

health throughout the growing season and at a variety of scales (e.g. from a quarter 

section to several hundred sections). In a remote sensing image of an agricultural area, 

the digital reflectance value for each image pixel is a result of the combined spectral 

contributions of various components, namely the crop, crop background (soil and/or 

residue), and shadow. Conventional methods such as Vis do not separate these 

components explicitly, yet for the most part it is only the crop for which information is 

sought. In theory, SMA can offer site-specific agriculture a tool to 'data mine' at sub-

pixel scales and in turn provide more detailed spectral and spatial information about the 

crop. 

As mentioned previously, Horwitz et al. (1971) was the first to begin the 

development of SMA equations. This work was motivated by the fact that the low spatial 

resolution of some of the first sensors reduced the amount of useful information which 

could be extracted, and that developing methods to extract information about objects that 

were smaller than the IFOV of the sensor would be more beneficial. The objective of the 

Horwitz et al. (1971) research was to extract more specific information about crop 

vigour, maturity and yield. A model was developed that related the signature of a 

combination of materials within a pixel to the signatures of individual materials. This 
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preliminary SMA model was based on a maximum likelihood estimate of the proportions 

of the various materials and included measurements of uniqueness and error (Horwitz et 

al., 1971). 

3.5.1 SMA for Crop Area Estimation 

After the initial interest in developing the fundamental SMA equation, SMA was 

implemented in agriculture to determine crop type area estimations. Quarmby (1992) 

presented results from northern Greece using linear mixture modelling on multi-temporal 

AVHRR data for national crop area estimations. Image endmembers were derived using 

ground data, and a supervised classification of multi-temporal SPOT imagery. The SMA 

results compared favourably with ground based agricultural statistics from the Greek 

Department of Agriculture with overall accuracy for the crop area estimates being 90%. 

The resulting image products successfully provided the % contribution of each crop type 

(i.e. rice, maize, cotton and wheat) on a per pixel basis in the study area. It was 

concluded that linear mixture modelling would be useful for operational crop monitoring 

on a regional basis. 

3.5.2 SMA for Ground Cover Estimation 

Maas (2000) presented a more simplistic SMA approach in estimating cotton 

canopy ground cover, which assumed scene reflectance for cotton crops is more affected 

by canopy ground cover than by plant canopy density. Thus, cotton fields in incomplete 

ground cover conditions can be decomposed into contributions from the upper surface of 

the plant canopy versus the soil surface between plant rows. A modified linear mixture 

model was implemented that used only two endmembers to estimate cotton canopy 

ground cover from Lands at satellite multispectral imagery (Equation 3-6). 
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Equation 3-6 Estimating Ground Cover using SMA 

GC = {Rscene-Rsoil)l{Rcmopy-Rsoil) 

where GC is the ground cover, Rscene is scene reflectance in a given spectral band, 

^•canopy i S m e reflectance of the upper surface of the plant canopy, Rsoil is the reflectance 

of the bare soil surface, and GC is the ground cover. A constant value for Rcanopy was 

used based on field measurements over a number of years for healthy cotton (reflectance 

values of 0.04 in the red band 600-700 nm, and 0.56 in the NIR 800-900 nm), constant 

value for Rsoil was also used from an average of field measurements (reflectance values 

of 0.18 in the red band, and 0.23 in the NIR). The results suggested that Equation 3-6 

works well when computed for either the red or NIR band on fields with incomplete 

ground cover, and when no shadows are cast on the ground between the plant rows. The 

absolute mean value of the estimated GC from the satellite imagery (0.579) was 

comparable to the mean of the in-field estimates of GC (0.582) and resulted in an r 2 of 

0.832. On average, the Landsat TM estimates of GC were within 7% of the field 

measurements. The advantage of this method is that this calculation does not rely on 

additional field information such as plant size, row spacing, or row orientation. 

3.5.3 SMA for the Prediction of Crop Biophysical Parameters 

The value of using remote sensing imagery in site-specific agriculture becomes 

more apparent as one examines the potential of the infrared (IR) region of the 

electromagnetic spectrum. The IR region is sensitive to plant cell structural information 

that is not available in the visible portion of the electromagnetic spectrum, and allows for 

the detection of crop stress before it is apparent to the human eye. One of the advantages 
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of SMA is that several IR bands can be used as input to analyze distinct absorption 

features which may better describe the spectral features of a specific crop type. Using 

SMA to predict crop biophysical parameters such as LAI and biomass, can provide more 

detailed spatial information about the crop for site-specific applications. Understanding 

where the crop is highly vigorous (i.e. high LAI and biomass regions) and where it is not, 

can help farmers prescribe crop inputs such as fertilizer to areas of the field where they 

are most needed. 

Lelong et al. (1998) used SMA in France to estimate leaf area index (LAI) and 

map stress in wheat fields. The theory was that if LAI could be accurately quantified 

early in the growing season then potential problem areas in a crop could be remedied 

before yield was impacted. Four endmembers where chosen: two wheat endmembers 

(Wl= high vigour and W2=low vigour crop), bare soil, and shade. As an alternative to 

Vis, linear regression was performed to establish an empirical relationship between 

ground based LAI measurements and SMA fraction maps (Wl r 2=0.96, and W2 r 2=0.97). 

Linear regression results were then used to empirically produce image-based LAI maps 

for the two wheat endmembers. The high vigour wheat endmember (Wl) resulted in an 

LAI estimate of 4.0, and the low vigour wheat endmember (W2) resulted in an LAI 

estimate of 0.6. Both of these estimates were within a reasonable LAI range for wheat 

during the particular stage of growth (from 0 to 6-8 for most developed wheat crops). 

The RMSE between image estimated LAI and measured LAI was 0.05. The only 

limitation identified for this method occurred when soil fractions exceeded 15% and 

higher overall RMSE resulted. 
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More advanced LAI estimation research was presented by Staenz et al., (1998a) 

using Compact Airborne Spectrographic Imager (casi) hyperspectral imagery over a 

study area that consisted of canola, wheat and beans. This research presented LAI 

estimates using the NDVI and SMA crop fractions as input. Using crop fraction results 

as input into the LAI algorithm can account for between crop row spacing, and unwanted 

types of vegetation such as weeds, whereas Vis cannot account for these sub-pixel 

variables. When the NDVI estimates of LAI were compared to those derived using 

SMA, the values agreed over all crop types to within one standard deviation. 

The work of Staenz et al. (1998a) was expanded by Pacheco et al. (2()01a,b) to 

include more crop types (white beans and corn) in different geographic locations. In the 

initial research, Pacheco et al. (2001a) measured LAI using the TRAC and LAI-2000 in 

fields located in southern Ontario. To validate these results, percent crop cover 

photographs were taken over the crop, and were classified to discern crop cover from 

other image components such as shadow, and soil. When LAI from each ground-based 

instrument was compared to the percent crop cover, the effective LAI (eLAI) from the 

LAI-2000 had a significantly higher correlation (r=0.90) than the TRAC derived LAI 

(r=0.49). The results of this work were then applied in Pacheco et al. (2001b) where the 

LAI-2000 eLAI measurements for the three corn fields were compared with LAI 

estimations from the corresponding airborne hyperspectral imagery. SMA was 

performed on airborne hyperspectral imagery to derive crop fractions that accounted for 

non-vegetated areas between the crop rows in an automated LAI algorithm. Results 

showed a moderate correlation (r=0.69) with in-field measurements of eLAI, and the LAI 

estimated from the hyperspectral imagery. Linear regression did not result in a high 
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coefficient of determination (r2) because the relationship did not appear to be linear in 

nature. Overall, the derived LAI tended to be overestimated when compared to LAI 

collected in the field. Automatically derived image endmembers were used and this may 

have introduced additional error. 

The ability of SMA to predict above ground crop biomass has been demonstrated 

in a study by Deguise et al., (1998) where hyperspectral airborne data (4m spatial 

resolution) was acquired in 1997 over a potato crop in Carman Manitoba using the cast 

sensor. The research showed that SMA crop fractions were related to in-field 

measurements of above ground biomass with an overall r 2 of 0.48. The lack of a strong 

relationship was in part attributed to two common problems in this type of work, namely 

the inability to locate the exact pixels that corresponded to the GPS sites used to mark the 

in-field measurements, and the inability to properly sample the pixel area on the ground 

(i.e. in-field samples were taken from areas smaller than 4m pixel size). This study also 

extracted endmembers from the imagery using PCA, and this may have contributed some 

error. Although there was no direct comparison to Vis, the authors recognized very basic 

advantages in using SMA for row crops when a substantial portion of the image contains 

either bare soil or other types of vegetation (i.e. weeds) that could be separated from the 

crop component. 

3.5.4 SMA for the Detection of Weeds in Crops 

Identifying weed patches that use resources and compete with growing crops is an 

important part of site-specific crop management. The basic principles of SMA, 

especially when applied to very narrow band hyperspectral imagery, can be advantageous 

in identifying weeds and unwanted vegetation over conventional methods such as Vis or 
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classification methods that operate on the whole pixel. In research by Deguise et al. 

(1999), high spatial resolution (4m) hyperspectral imagery was acquired using the 

Compact Airborne Spectrographic Imager (casi) over a canola field near Altona, 

Manitoba, with the objective to spectrally separate weed patches of Canada Thistle from 

the crop using SMA. The Iterative Error Analysis (IEA) automatic image endmember 

extraction process was implemented and compared to a manual endmember extraction 

method (Szeredi et al., 1999). Unlike the IEA, the manual endmember extraction method 

did not result in the detection of the weeds because the three pixels that defined the weed 

patches were not at the vertex of the data cloud. The interesting part of this study was 

that SMA was performed first on the radiance data and then on the atmospherically 

corrected data. The results from the atmospherically corrected imagery did not match the 

weed patches identified from the uncorrected imagery. One possible explanation was 

that the small spectral feature differences between weeds and canola used by the SMA 

algorithm might have been reduced due to uncertainties of the atmospheric modeling. 

This research demonstrates that significant areas of weeds can be detected using 

an automated image endmember extraction technique, however this work was based on 

high resolution imagery with substantial regions of weeds present in the crop. A similar 

methodology may not work as well for low spatial resolution imagery over a study area 

that has very small patches of weeds in more mature crop stages. Currently, operational 

agricultural remote sensing applications demands real-time deliverables so that 

information can be used effectively in site-specific farm applications. Atmospheric 

correction of imagery can be a time consuming and labour intensive task and if it is not 
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required for adequate SMA results as demonstrated here, then this would present an 

operational advantage. 

3.5.5 SMA in Comparison to Conventional Vegetation Indices 

Similar to remote sensing applications in forestry, conventional remote sensing 

Vis have been used as a source of site-specific information for agricultural applications. 

As mentioned earlier, Vis tend to saturate and provide little information later in the 

growing season when LAI values are high and when the crop reaches full maturity. Vis 

only use two spectral bands, can only operate on the whole pixel, and must be related 

empirically to the biophysical parameters of the crop (e.g. LAI, biomass). The 

disadvantage of the empirical approach is that in-field ground data collection is not 

always feasible (Maas, 2000). Several studies have demonstrated that SMA can be 

superior to the commonly used NDVI in estimating agricultural parameters. Wessman et 

al. (1997) implemented SMA on AVIRIS data over a tallgrass prairie region of Kansas, 

hi this work image endmembers were derived for soil, rock, shade and three types of 

green vegetation. The sum of two of the vegetation fraction results had a much higher 

correlation (r=74) than the NDVI (r=51) to field biomass measurements. This study 

demonstrated that SMA was not only a better discriminator than the NDVI in the 

detection of grazing treatments, but that SMA better characterized the treatments by 

quantifying the vertical structure, percentage cover, greenness, and distribution of soil 

and litter. 

Staenz et al. (1997b) presented SMA fraction results from the Imaging 

Spectrometer Data Analysis Systems (1SDAS), a customized remote sensing software 

package developed by the Canada Centre for Remote Sensing (CCRS). The SMA 
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fraction results were qualitatively compared to the conventional NDVI for a bean and 

canola field in Altona, Manitoba. The purpose of this preliminary research was to 

examine the potential of hyperspectral image products, and more specifically the ISDAS 

fraction map output, as a source of data for an agricultural GIS. This work demonstrated 

that the within field variability of crop fractions, and a corresponding soil fraction for the 

study area, showed more detailed within field variability than the conventional NDVI. 

Peddle et al. (1999b) and Peddle and Smith (2003) compared conventional Vis to 

SMA for optical data collected in a controlled ground-based study of a potato crop in 

southern Alberta. Ground-based endmember spectra were collected, as well as spectra 

from above the crop, using an ASD Fieldspec-FR spectroradiometer. A major 

component of this work determined what endmember sampling methods (i.e. in situ, 

optically thick stacks (OTS), and flat array) performed best in the collection of reference 

endmember spectra for three scene components: sunlit soil, sunlit crop and shadow (crop 

and soil). A comprehensive fraction validation was done by comparing the SMA 

fractions with manually classified ground-based photographs taken on the same day as 

the field spectral measurements. The study showed that the best sampling strategy for 

each reference endmember was the excised leaves flat array strategy for sunlit and 

shadowed crop, and the in situ sampling method for cultivated soil. This study also 

demonstrated that the shadow fraction outperformed the SR, NGVI, and NDVI for the 

prediction of potato crop biophysical parameters (e.g. biomass, LAI, plant height, and 

width). 
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3.6 Chapter Summary 

This chapter included an introduction to SMA that began with an explanation of 

the concept of the endmember, a key SMA input. The theory of SMA was presented, as 

well as the linear versus non-linear spectral assumption that is important to understand 

prior to implementing SMA. The constrained and unconstrained SMA methods were 

both presented in addition to the various endmember acquisition and sampling methods. 

The use of SMA in agricultural research and development was reviewed, and it was 

evident from the literature that SMA in site-specific agriculture could provide farmers 

with new spatial management tools and benefit the entire farm operation. Similar to 

other GIS precision farming tools, the SMA technique endorses the principle of 

improving the characterization of management zones and only applying crop inputs (e.g. 

fertilizers and chemicals) to those regions of the farm that require them. This is 

essentially what the concept of sustainable agriculture advocates, improved farm 

management practices that benefit the surrounding environment and secures a better 

socio-economic future for the agricultural community. 
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4.0 METHODS 

4.1 Introduction 

This chapter describes the experimental design and methods used to compare the 

ground-based measurements of crop biophysical parameters with estimates derived from 

remote sensing data. The chapter begins with a description of the Indian Head study 

area, and the ground-based and remote sensing data collection methods used. The next 

section describes the remote sensing image processing tasks for radiometric correction 

and surface reflectance retrieval, co-registration of the sample site locations to the 

hyperspectral imagery, and computation of the vegetation indices (Vis) and the Spectral 

Mixture Analysis (SMA) fractions. Finally, the statistical methods are presented for 

evaluating each image processing technique as a predictor of crop biophysical parameters 

(i.e. biomass and LAI). 

4.2 Study Area and Field Data Set 

4.2.1 Indian Head Study Area 

The study area was centred at 112°50'W, 49°42'N near Indian Head, 

Saskatchewan (Figure 4-1). This study area is located within Canada's prairie ecozone 

which comprises the northern extension of open grasslands in the Great Plains of North 

America. This ecozone has little topographic relief and has a subhumid to semiarid 

climate (Environment Canada, 2003). The land selected for this project was dedicated to 

site-specific farming as part of an ongoing project being conducted by the Indian Head 

Agricultural Research Foundation (IHARF). The experimental farm is 307 acres (124 

ha) and is subdivided into eight sub-sections (i.e. fields) where each section is part of a 
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Figure 4-1 Study Area (a) provincial map showing Indian Head study site (star) east of 
Regina; and (b) false colour multispectral IKONOS satellite image, June 28, 2000. 
IHARF experimental farm shown in yellow box. 

four year crop rotation: spring wheat (Triticum aestivum L.), canola {Brassica napus L.), 

spring wheat, field peas (Pisum sativum L.) (Figure 4-2), The study area ranges in 

elevation from approximately 573 m to 584 m above sea level, and the landscape is 

relatively level to very gently undulating with slopes ranging from 0.5 to 2.5 percent 

(Figure 4-3). A large part of the farm slopes toward a shallow draw running diagonally 

from the western edge of the farm (south central) toward the northeastern corner (Kozac 

and Padbury, 1999). The experimental farm is under zero-till practices, therefore the 

amount of residue or dead matter across the study area is substantial from year to year. 



Figure 4-2 Crop types (clockwise from top left: wheat, canola, and field peas) at the 
IHARF study area (a) oblique photograph of each crop type, and (b) close-up view of 
each crop type taken from SMA endmember samples. 
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Figure 4-3 3D illustration of IHARF precision farm, created as TIN digital elevation 
model from 1998 elevation data. False colour 1999 aerial image was draped over the 
DEM and illustrates the drainage area running south central to northeast (IHARF, 2003). 

4.2.1.1 Soil and Climate 

A site-specific soil and topographic survey was completed for the experimental 

farm in 1999. The combined results of this survey are shown in Figure 4-4. The soils on 

the IHARF farm can be characterized as predominantly black chernozem developed on 

neutral to slightly alkaline uniform clayey lacustrine deposits (Kozac and Padbury, 1999). 

In some areas the soils are relatively shallow (< lm thick) and can be underlain with 

loamy or clayey water-modified glacial till. Surface texture throughout the study area 

ranges from clay to heavy clay (Kozac and Padbury, 1999). 
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can also be extremely variable. gullies occur along the slope. 

Figure 4 - 4 Site-specific map of IHARF study area showing soil type relative to slope 
(Kozac and Padbury, 1999). 
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Month Precipitation (mm) 
80 year Average 

2000 Precipitation (mm) Difference 

April 25 29 +4 
May 48 68 +20 
June 86 104 +18 
July 55 46 -9 
Total 214 247 

In the 2000 remote sensing campaign, a weather station was used to record 

climate data near the study area. Agriculture and Agri-Food Canada (1976) provided the 

historical temperature and precipitation data for the experimental farm in Indian Head 

(Tables 4-1 and 4-2). Historically, the average precipitation over the past 80 years (prior 

to 1976) for the growing growing season (April to May) was 214 mm (Table 4-1). In 

comparison, the spring of 2000 was exceptionally wet which contributed to delayed 

planting dates, slow plant emergence, and below average crop maturity at the time of the 

field campaign in late June and early July. Due to excess moisture, the first field on the 

experimental farm was not planted until May 3 r d and the last field was not planted until 

May 20 t h . In an average spring season, planting dates commence in April and finish by 

early May. The application of herbicides for weed control was also delayed due to excess 

soil moisture, and consequently a substantial amount of weeds and volunteer crop from 

the previous year were still present during the remote sensing image acquisition on June 

28 t h . 

Table 4-1 Comparison of Historical (AAFC, 1976) and 2000 Precipitation Data 
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Table 4-2 Comparison of Historical Temperature (AAFC, 1976) and 2000 Temperature 
Data 

70 Year Historical Average 
Temperature (°C) 

2000 Temperature (°C) Mean 
Temp. 

<°C) 
Month Mean 

Minimum 
Mean 

Maximum 
Mean Minimum. Maximum Mean Difference 

April -3.3 9.1 2.8 -11.2 23.77 3.5 +0.7 
May 2.9 17.4 10.2 -4.4 24.52 10.5 +0.3 
June 8.5 22.1 15.2 2.7 27.88 13.1 -2.1 
July 10.7 25.8 18.4 2.1 32.53 18.2 -0.2 

4.2.1.2 Cropping Practices 

In 2000, cropping practices were specific to each field and crop type. Table 4-3 

shows the basic information for each field on the experimental farm (i.e. identification 

number, crop type, crop variety, planting date, and harvest date). Fertilization application 

A comparison of the historical and the 2000 temperature data indicated that the 

spring was also cooler than average (Table 4-2). The 70 year average minimum 

temperature recorded for May was 2.9°C, and 8.5°C for June. However, in 2000 the 

minimum temperature recorded for May was -4.3°C, and 2.7 °C for June. Since the 

crops were planted in May, the crops would have been emerging in June and 

consequently in a very young, temperature sensitive growth stage. The latter minimum 

temperature differences indicate there were days early in the growing season with 

temperatures substantially below average. Temperatures that lie outside of the typical 

range can have severe consequences on crop development and crop yield, and in the most 

severe case can cease crop development all together (Porter and Gawith, 1999). Below 

average temperatures combined with delayed planting and weed control due to excess 

moisture, may have contributed to below average crop maturity at the time of the remote 

sensing campaign. 
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Table 4-3 Study area field identification number, crop type and variety, seeding date and 
rate, plant count date, and harvest date in 2000. 

Field ID# and Crop Type Variety Planting 
Date 

Harvest Date 
2000 

Field 1 - Wheat AC Barry May 17 Sept 14 

Field 2 - Canola Liberty Link Invigor 2573 May 17 Sept 12 

Field 3 - Wheat AC Barry May 20 Sept 15 

Field 4 - Peas Swing May 3 Aug 19 

Field 5 - Peas Swing May 5 Aug 24 

Field 6 - Wheat AC Barry May 20 Sept 14 

Field 7 - Canola Liberty Link Invigor 2573 May 9 Sept 12 

Field 8 - Wheat AC Barry May 20 Sept 15 

Table 4-4 2000 fertilizer, chemical, and seeding application strategies. 

Field ID# 
and Crop 

Type 

Seeding Rate 
(lbs per acre) 

Fertilizer 
Application Chemical Application 

Field 1 -
Wheat 120 

Phosphorus (12-51-0): 
side banded 59 lb/ac 
Nitrogen (28-0-0 Liquid): 
Uniform Rates: 

• High: 118 lb/ac 
• Medium: 103.8 lb/ac 
• Low: 47.1 lb/ac 

Variable Rates: 53.5 lb/ac to 132.1 lb/ac 

Puma Super: 0.31 L/ac 
Curtail M: 0.8 L/ac 
Water: 4.5 gal/ac 

Field 2 -
Canola 5 

Phosphorus (12-51-0): 
side banded 59 lb/ac 
Sulfur (20.5-0-0-24): 
side banded 62.5 lb/ac 

Liberty: 1.35 L/ac 
Select: 0.026 L lac 
Amigo: 0 . 5 L / 1 0 0 L o f 
Solution 

and seeding rates were implemented to test both conventional application practices (i.e. a 

uniform rate) and variable rate application technology. Both the wheat and canola fields 

had conventional and variable rate fertilizer application, whereas the peas had a uniform 

rate of fertilizer but the seeding rates were varied. Table 4-4 shows the fertilizer, 

chemical, and seeding rates, and Figure 4-5 illustrates how each treatment was applied on 

each field. Treating each crop differently with a number of application practices may 

have increased the amount of variability found within each field. 
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Nitrogen (28-0-
Uniform rate: 26 
Variable rate: 

• Zone 1: 
• Zone 2: 
• Zone 3: 
• Zone 4. 

3): 
.9 lb/ac 

33.4 gal/ac 
31.7 gal/ac 
26.9 gal/ac 
20.0 gal/ac 

Water: 5.0 gal/ac 

Field 3 -
Wheat 120 

Phosphorus (12-51-0): 
side banded 59 lb/ac 
Nitrogen (28-0-0 Liquid): 
Uniform Rate: 

• High: 73.9 lb/ac 
• Medium: 62.1 lb/ac 
• Low: 32.1 lb/ac 

Variable Rate: 
• 0 to 121.4 lb/ac 

Puma Super: 0.31 L/ac 
Curtail M: 0.8 L/ac 
Water: 4.5 gal/ac 

Field 4 -
Peas 

161 & 218 
(10 acres per rate 

and 2 replicates of 
each rate see 
Figure 4-5) 

Phosphorus (12-51-0): 
side banded 59 lb/ac 

Odyssey: 0.017 kg/ac 
Merge: 0.5 L / 100 L solution 
Water: 6.5 gal /ac 
Lefatech soil inoculant: 3.8 
lb/ac 

Field 5 -
Peas 

161 & 218 
(10 acres per rate 

and 2 replicates of 
each rate see 
Figure 4-5) 

Phosphorus (12-51-0): 
side banded 59 lb/ac 

Odyssey: 0.017 kg/ac 
Merge: 0.5 L / 1 0 0 L solution 
Water: 6.5 gal /ac 
Lefatech soil inoculant: 3.8 
lb/ac 

Field 6 -
Wheat 120 

Phosphorus (12-51-0): 
side banded 59 lb/ac 
Nitrogen (28-0-0 Liquid): 
Uniform Rates: 

• High: 92.8 lb/ac 
• Medium: 81 lb/ac 
• Low: 51 lb/ac 

Variable Rates: 
• 0 to 107.1 gal/ac 

Puma Super: 0.31 L/ac 
Curtail M: 0.8 L/ac 
Water: 4.5 gal/ac 

Field 7 -
Canola 5 

Phosphorus (12 
side banded 59 

Nitrogen (28-0-
Uniform rate: 2( 
Variable Rates: 

• Zone 1 
• Zone 2 
• Zone 3 

.-51-0): 
b/ac 

0): 
5.6 gal / ac 

: 116 lb/ac 
: 97 lb/ac 
: 76 lb/ac 

Liberty: 1.35 L /ac 
Select: 0.026 L /ac 
Amigo: 0.5 L / 1 0 0 Lof 
Solution 
Water: 5.0 gal/ac 

Field 3 -
Wheat 120 

Phosphorus (12-51-0): 
side banded 59 lb/ac 
Nitrogen (28-0-0 Liquid): 
Uniform Rates: 

• High: 94 lb/ac 
• Medium: 82.8 lb/ac 
• Low: 52.8 lb/ac 

Variable Rates: 
42.8 to 96.4 lb/ac 

Puma Super: 0.31 L/ac 
Curtail M: 0.8 L/ac 
Water: 4.5 gal/ac 
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Crop Planning for 2000 

Figure 4-5 Nitrogen fertilizer application strategy for wheat and canola, seeding rates 
shown for peas. Units in imperial gallons per acres unless otherwise specified (from 
IHARF, 2003). 

4.2.2 Field Data Collection 

4.2.2.1 Selection of Sample Sites 

In the 2000 remote sensing campaign, airborne hyperspectral and satellite 

multispectral imagery were acquired by the project partners in conjunction with extensive 

ground sampling during a two week period from June 26 t h to July 7 t h . The sampling 

design for each of the eight fields was based on agronomic knowledge provided by local 
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Figure 4-6 Location of 98 sample sites selected to capture the extent of within-field 
variability. The sample sites were mapped using GPS with an accuracy of +/-1 metre. 

field managers and research scientists, soil maps, aerial photography, and GPS derived 

fertility and yield maps that defined the extent of within-field variability (Figure 4-6). 

The objective of the sampling scheme was to establish management zones (represented 

by one sample site location) that were homogenous over time. It was assumed by CCRS 

that each sampling site represents a homogenous zone with respect to crop performance, 

and as a result these representative zones would be used as individual units for applying 

site-specific management practices. 
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4.2.2.2 Crop Biophysical Measurements 

Ground-based crop data were collected to characterize growth within two weeks 

of the image acquisition date by CCRS staff. At each sample site, plants were counted 

within four 0.33 m 2 areas (i.e. one north, one south, one east and one west of the sample 

site location) on May 30 t h or June 5 t h . The average number of emerged plants was 

calculated for each sample site. Plant emergence is sometimes very dependent on the 

weather conditions early in the spring, which can help explain within-field variability. In 

addition to plant counts, plant height measurements were taken between June 28 t h to July 

2 n d as indicator of crop status. Three separate measurements were made at each of the 98 

sample site locations and averaged. The three measurements at each site were taken 

within 2m of the GPS pin location to ensure that spatial consideration was given to the 

corresponding resolution of the hyperspectral imagery (pixel size was 5m). The plant 

counts and crop height data were used only as a reference for plant emergence and crop 

status, these measurements were not used directly in the statistical analysis (Chapter 5) 

Plant samples for biomass estimation were collected on the day of image 

acquisition. At each sample site, plants were harvested from three separate 0.25 m 2 areas 

located within 1-2 m of the sample site location. Samples were weighed within 1-2 hours 

of harvest to determine fresh weight, then placed in a drying oven at 105 °C for 48-72 

hours and reweighed to derive dry weight. To prevent water loss, samples were placed in 

brown paper bags and kept cool until fresh weights were determined and until 

transportation to the drying oven was completed. The difference between the fresh 

weights and dry weights was used to derive Plant Water Content (PWC) at the time of 

image acquisition. For this research, because it was the fresh plant matter (living crop) 
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that was remotely sensed by the airborne sensor, the fresh biomass weights were used in 

the analysis. 

A Licor LAI-2000 plant canopy analyzer was used by the projects' field staff to 

measure ground-based LAI, and to provide further biophysical characteristics of each 

crop type. The LAI-2000 is an optical instrument that measures canopy gap fraction 

based on radiation transmission through the canopy (Chen et al., 1997). LAI is used to 

describe the percentage of vegetation cover and to estimate productivity of agriculture 

and forestry (Pacheco et al., 2001a). LAI is defined as one half the total green leaf area 

per unit ground surface (Chen and Black, 1992). This definition takes into account that 

foliage of plant canopies can be oriented in various directions, and the projected area in 

one direction does not contain all of the information for estimating radiation interception 

(Chen et al., 1997). 

The LAI-2000 instrument only measures effective LAI (eLAI) (LI-COR, 1992) 

because it does not take into account the clumping characteristics within the crop canopy 

(Pacheco et al., 2001a). The foliage of plant canopies are generally clumped, but the 

LAI-2000 can calculate LAI without information about the foliage angle distribution 

because it measures at five zenith angles (Chen et al., 1997). In an earlier agriculture 

project it was shown that eLAI values acquired with the LAI-2000 had very strong 

correlation (r=0.90) to percent crop cover measurements (Pacheco et al., 2001b). In this 

research, the LAI-2000 was fixed with a lens cap that restricts the instrument FOV to 

sensing 90° of the hemisphere and output is a measurement of how much light is 

attenuated into the five zenith angles simultaneously (Figure 4-7). When the instrument 

is below the crop it views upward through the canopy and sense approximately 3.5m 
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Figure 4-7 The above diagram is a profile of the LAI-2000 instrument pointed away from 
the field technician. 

away from the user and not below a zenith angle of 74 degrees (Peter White, personal 

communication, August 14, 2002). In agricultural applications, the size of crop leaves at 

a particular growth stage should be considered and zenith angles that are too small in 

comparison to leaf size should be omitted before outputting the final LAI-2000 values 

(Peter White, electronic mail, August 14, 2002). In this research, the sensing was done 

early enough in the growing season that leaf size was not a factor. 

Ground based LAI measurements were acquired in overcast conditions using the 

LAI-2000 instrument oriented perpendicular to the sun. Samples were collected along 

20m transects (Figure 4-8) on a diagonal between two plant rows to accommodate for 

row spacing (Pacheco et al., 2001a,b). Within each transect, a reference measurement 

was taken above the canopy, and then four measurements were acquired below the 

canopy which resulted in the final eLAI value for the whole transect. Three transects 

were measured at each sample site location and averaged to return the final eLAI value. 

OM30 W-28 0 32'-4T .4T-5%<> 61^-74° 
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Figure 4-8 Ground based LAI-2000 sampling method. 

4.3 Remote Sensing Imagery 

4.3.1 Airborne Imagery 

Airborne hyperspectral imagery was acquired using the Probe-1 sensor (Figure 4-

10) which is a "whiskbroom style" instrument that collects data in a cross-track direction 

by movement of an airborne platform (Earth Search Sciences Inc., 2002). The Probe-1 is 

mounted on a three-axis gyrostabilizer to minimize geometric distortion from aircraft 

movement. The flying altitude for this research was 2500 m, producing a swath width of 

3 km and spatial resolution of 5 metres. The sensor collects upwelling radiance in 128 

spectral bands in the visible, NIR and SWIR between 440 to 2500 nm. The bandwidths 

are between 11 and 18 nm at full width half maximum (FWHM). Two flightlines were 

collected over the study area on June 28 t h . The first flightline was acquired between 
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Figure 4-9 The aircraft and Probe-1 sensor that were used in the 2000 campaign. 
Services provided by Earth Search Systems Inc. 

10:40 a.m. and 10:42 a.m., and the second between 11:09 and 11 : l la .m local time. 

Portions of both flightlines were used in the image analysis (SMA and Vis), and the 

portion being used was heavily dependent upon the co-registration of the imagery and the 

sample site locations which is explained in more detail in section 4.3.3.4. Upon 

examination, CCRS deemed the last 11 bands too noisy and the dataset was reduced to 

117 bands (Appendix A). 

4.3.2 Satellite Imagery 

Multispectral satellite imagery was also acquired on the same day as the airborne 

acquisition. The Space Imaging IKONOS II satellite acquired a 11.2 km x 7.7 km image 

at 11:37 a.m local time on June 28, 2000. This multispectral sensor has four spectral 

bands in the visible and NIR between 444.7 to 852.7 nm. This sensor collects 

information in one panchromatic and four multispectral (Table 4-5). The altitude of the 

satellite sensor is 681 km and the sensor has a nominal swath width of 11 km at nadir. 

All default IKONOS products are radiometrically corrected to in-band radiance 

(mW7cm2*sr) and are available in 11 bit or 8 bit format. In this research, 11 bit imagery 
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Band Lower 50% 
(nm) 

Upper 50% 
(nm) 

Bandwidth 
(nm) 

Center 
(nm) 

Spatial 
Resolution 

(m) 

Pan 525.8 928.5 403.0 727.1 1 

MS-1 (Blue) 444.7 516.0 71.3 480.3 4 

MS-2 (Green) 506.4 595.0 88.6 550.7 4 

MS-3 (Red) 631.9 697.7 65.8 664.8 4 

MS-4 (VNIR) 757.3 852.7 95.4 805.0 4 

4.3.3 Image Pre-Processing 

4.3.3.1 Ground-based Spectral Measurements 

Two types of ground-based spectral measurements were acquired in this research. 

Calibration spectral measurements were collected for use in deriving surface reflectance 

from the airborne hyperspectral imagery. An asphalt parking lot that could be readily 

identified on the airborne imagery was used as the radiometric calibration target. Spectral 

measurements were collected of individual scene components to serve as reference 

endmembers in the SMA. Ground-based reference endmembers were collected in this 

research to acquire the most spectrally pure measurement of each scene component that 

was expected to be present in the imagery. 

Spectroradiometers were used to obtain ground based spectral measurements. A 

spectroradiometer measures reflected energy and the magnitude of the measurement is 

highly dependent on incoming solar radiation (spectral irradiance) reaching the target 

which varies due to the time of day (due to changing solar zenith angle and atmospheric 

was used in the image rectification and co-registration of the sample site locations to the 

hyperspectral imagery. 

Table 4-5 IKONOS Spectral band Characteristics (Space Imaging, 2003) 
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path length), atmospheric conditions, weather, topography of the surface, and intervening 

features which alter incoming radiation (e.g. canopy structure) (Peddle, 1998). Spectral 

reflectance is the ratio of incident-to-reflected radiant flux measured from an object or 

area over specified wavelengths and is an inherent property of an object, regardless of 

time, location, illumination intensity, atmospheric condition and weather. For the latter 

reasons, spectral reflectance is a key unit in remote sensing especially over time, but it is 

not measured directly and must be derived (Peddle et al., 2001a). To calculate spectral 

reflectance from the energy measurements collected with a field spectroradiometer it is 

imperative to acquire a measurement of irradiance coincident to the target radiance 

measurement (Johnson, 2000). In most cases a white reference panel is used which has 

known spectral and angular reflective properties. For this research, a white Spectral on™ 

panel was used that is composed of pressed polytetrafluoroethylene (PTFE) and has near 

lambertian properties over a wide spectral range (Labsphere, 2002). 

Two models of spectroradiometers were used in this research: (i) an Analytical 

Spectral Device (ASD) FieldSpec® Pro (Analytical Spectral Devices Ltd., 2003) and (ii) 

a GER3700™ (Geophysical and Environmental Research Corporation, 2003). Each 

spectroradiometer was used for very specific tasks that were essential to the project, and 

the use of both instruments distributed the time-critical workload amongst field staff on 

the days on or near the airborne image acquisition date. In this research, the ASD 

FieldSpec® Pro was used to collect endmembers for each scene component, and the 

GER3700U V was used to collect spectral measurements of the calibration targets used in 

radiometric correction of the hyperspectral imagery. 
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The ASD FieldSpec® Pro instrument was made available in this research by 

Agriculture and Agri-Food Canada (AAFC) Lethbridge, and measurements were 

acquired by AAFC staff in Indian Head. The ASD FieldSpec® Pro is designed with a 

fibre-optic cable that extends a custom foreoptic to which is attached a digital video 

camera. The digital camera is configured to view the same FOV on the ground as the 

spectroradiometer and enables simultaneous capture of video frames for each ground-

based spectral measurement (Figure 4-10a and b). The ASD FieldSpec® Pro 

spectroradiometer used in this research measures reflected energy over a wide spectral 

range (350-2500 nm), and band widths vary from 3 nm (between 350-700 nm) to 10 nm 

(between 1400-2100 nm) at FWHM which are then sampled and interpolated to output 

data in lnm intervals (ASD, 2001). In the scene endmember collection, the foreoptic was 

attached to a tripod so that view angle and sensor height above the target could be 

controlled precisely. A 12° foreoptic was used for all measurements, and to ensure an 

acceptable signal to noise ratio each sample was the average of three spectral scans. To 

remove noise internal to the spectroradiometer, a dark current was measured prior to each 

scan set and substracted from each target measurement. 

CCRS provided a GER3700™ spectroradiometer (Geophysical and 

Environmental Research Corporation, 2003) for the project. This instrument has 642 

channels spanning the wavelength interval between 301.56 to 2523.06 nm, and bands 

vary from 1.5 nm to 9.5 nm in width (Figure 4-11). An asphalt parking lot was chosen as 

the radiometric calibration target with spectral measurements taken on the day of airborne 

image acquisition. The GER3700™ was configured with a 10° FOV lens giving a 0.26 

m diameter ground field of view (GFOV) from a height of 1.5 m above the target. To 
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Figure 4-10 (a) ASD FieldSpec® Pro spectroradiometer FOV and video camera mount 
(b) ASD FieldSpec® Pro stationary field set-up, target shown is the Spectralon™ panel. 

ensure an acceptable signal to noise ratio, each sample was the average of seven spectral 

scans. To remove signal to noise internal to the spectroradiometer, a wavelength 

dependent dark current signal was obtained and subtracted from each channel before the 

GER3700™ output the target measurement. 
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Figure 4-11 GER3700™ Spectroradiometer used by CCRS to measure the radiometric 
calibration target for radiometric correction. 

4.3.3.2 Radiometric Correction 

Radiometric correction of the airborne hyperspectral imagery was performed by 

CCRS based on 39 spectral measurements of a uniform dark target (i.e. asphalt parking 

lot without painted lines) using the GER3700™ field spectroradiometer and a white 

reference panel on the day of image acquisition. The reflectance was derived as the ratio 

of the raw GER3700™ radiance measurements of the target, and the radiance of the 

calibrated Spectralon™ panel reference. The resulting reflectance values were pre-

processed to correct for angular (bi-directional reflectance factor - BRF) and spectral 

variations in the reflectance of the near lambertian surface of the Spectralon™ panel 

(Seeker et al., 2001). The correction factors for the Spectralon™ panel were measured at 

the University of Arizona's Optical Sciences Center in March 1999, and values at the 

appropriate solar zenith angle (SZA) and wavelength were obtained via interpolation. 

Spectral reflectance retrieval was completed using the CCRS software package ISDAS 
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(Imaging Spectrometer Data Analysis System), and all reflectance spectra were averaged 

to yield a single mean corrected reflectance spectrum for the calibration site. The result 

was then convolved to the band centres of the Probe-1 hyperspectral sensor. 

The airborne hyperspectral imagery was radiometrically calibrated using 

reflectance-based vicarious calibration (RBVC) and the calibration target reflectance 

(Seeker et al., 1999, 2001). RBVC provides a method for the absolute calibration of 

remote sensors via reference to accurate spectral measurements made separately from the 

airborne sensor (Seeker et al., 20001). RBVC was used in this research to replace 

laboratory coefficients for the Probe-1 sensor with a new set of radiometric coefficients. 

The calibrated mean of 39 spectral measurements from the asphalt uniform target were 

applied with this method to generate new coefficients, and consequently allowed for the 

conversion from raw digital numbers (DN) to at-sensor radiance (Appendix A). 

Atmospheric correction was performed on the calibrated Probe-1 radiance data (Figure 4-

12). The MODTRAN3 radiative transfer code was implemented within ISDAS using a 

look-up table (LUT) approach to correct the Probe-1 radiance data to surface reflectance 

(Staenz and Williams, 1997; Staenz et al., 1998b). 
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Figure 4-12 Flow diagram illustrating the pre-processing steps applied to the airborne 
hyperspectral data (Seeker et al., 2001). 

, Early in the radiometric correction of the Probe-1 imagery, CCRS detected a 

harmonic signal in the GER3700™ spectral measurements from 1465 to 1777 nm. This 

was initially detected in the multiple asphalt spectra of the uniform target used in the 

vicarious calibration procedure. The harmonic signal could not be corrected by the 

calibrated gain values provided by the manufacturer because only radiance data (not the 

digital raw data) were recorded by the GER3700™. Alternatively, the signal was 
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corrected by using a filtering function on the reflectance data with a second order 

polynomial on a moving window of 1(X) nm in the 1465 to 1777 nm range. Due to the 

uncertainty of this correction, this thesis research only considered bands up to 1350 nm 

for analysis and this effectively reduced the number of bands in the data set to 63. 

4.3.3.3 Image Rectification 

It is important to establish positional control in remote sensing imagery to 

correctly locate ground sites and to enable co-registration with other spatial data. In 

addition to the sample site locations within the study area located using GPS (Figure 4-6), 

ground control points (GCP's) were also collected outside of the experimental farm 

(Figure 4-13) to facilitate sufficient spatial coverage for geometric correction of the 

hyperspectral imagery with the IKONOS satellite imagery. Twelve GCP's were chosen 

based on static features in the image that would not change significantly over time (e.g. 

road intersections). 

Figure 4-13 False colour multispectral IKONOS imagery showing the location of the 12 
GCPs (yellow asterisk). 
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4.3.3.4 Co-Registration of Imagery and Sample Site Locations 

Substantial geometric distortion was present in the Probe-1 imagery due to the 

mechanical failure of the hydraulic mount used to stabilize the sensor on board the 

aircraft (Figures 4-14 and 4-15). To preserve the spectral integrity of the hyperspectral 

imagery, the Probe-1 imagery was not geometrically corrected using conventional 

methods. Instead, to locate the Probe-1 pixels that corresponded to the field sample site 

locations, a reverse image-to-image registration was performed by CCRS. The 4m 

multispectral IKONOS image was ortho-corrected using 12 GCP's collected using GPS 

around the fields of interest (Figure 4-13), a national topographic database (NTDB) sheet 

(1:50 000), and the GPS derived sample site locations within each field (Figure 4-6). 

Each field in the study area was registered using a total of 10-12 GCP's. The sample 

sites were located on the IKONOS imagery and then the IKONOS image with sample site 

locations were transformed to the Probe-1 imagery using a second order polynomial. 

Sample site locations (x and y coordinates) were extracted from both Probe-1 flight! ines 

by evaluating the accuracy of the transformation for each sample site location, and 

choosing the flightline with the least distortion. 

Spectral data from the Probe-1 imagery for each ground based sample site 

location was extracted using ENVI image analysis software. An average of a 3x3 pixel 

window surrounding each sample site location was extracted as input for the Vis and the 

SMA. Due to the presence of co-registration error, a 3x3 pixel window helped to ensure 

that the absolute location of each ground based sample site would be included within the 

pixel window. Upon closer examination of the sample site locations, Field #1 wheat 

(Figure 4-6) was excluded from this research due to geometric distortion and lack of 
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Figure 4-14 Natural colour composite of Probe-1 flightline one showing the co-registered 
sample site locations (yellow crosses). 

Figure 4-15 Natural colour composite of Probe-1 flightline 2 showing the co-registered 
sample site locations (yellow crosses). 

confidence in the co-registration process. Sample site locations were omitted from the 

analysis if they were too close to the next field (border locations) and where a complete 

3x3 window could not be extracted with confidence within the field boundary. 
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4.3.3.5 Band Selection 

From the 63 band Probe-1 dataset a reduced number of image bands was sought 

that would sufficiently characterize the spectral response of the crops being observed. It 

was determined that it is unlikely 60 or more bands would be required spectrally for 

optimal characterization of crop biophysical parameters using hyperspectral imagery 

(Thenkabail et al., 2000). It should also be noted that in practical terms, future 

hyperspectral satellites may not have a payload that allows for 60 or more bands while 

maintaining high enough spatial resolution for site-specific applications at a local scale 

(Chabrillat et al., 2002; Rahman et al, 2003). In this research the number of bands was 

reduced while maintaining good spectral coverage of discrete crop response features, and 

as a result allowed for a more manageable interpretation of the SMA results. Thenkabail 

et al. (2000) presented hyperspectral band centers and band widths specifically for 

agricultural crops from ground based spectral measurements collected in the field using 

an ASD FieldSpec® on five irrigated crops at distinct growth stages. The five crop types 

were potatoes, cotton, soybeans, corn, and sunflowers and only spectral data between 

350-1050nm were analyzed (Table 4-6). Research by Thenkabail et al. (2000) 

demonstrated that the use of 12 narrow bands could be used more effectively than broad 

bands in quantifying the biophysical characteristics of crops. 
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Table 4-6 Recommended bands for characterizing crop biophysical variables by 
Thenkabail et al., 2000. 

Band 
Region 
of EM 

Spectrum 

Band 
Center 
X (nm) 

Band 
WidthX 

(nm) 

X 
Minimum 

(nm) 

X 
Maximum 

(nm) 

Band 
Description 

1 Blue 495 30 480 5 1 0 
Longer wavelength portion of the blue 
band. Crop-to-soil reflectance ratio 
minima for the blue and green bands. 

2 Green 525 20 515 535 

Positive change in reflectance per unit 
change in wavelength of visible 
spectrum is maximum around this 
"green" band (1st order derivative plot 
of crop spectra will show this) 

CO
 Green 550 20 540 560 

Green band peak in the visible (maxima 
reflectance). Best of 3 green bands. 

4 Green 568 10 563 573 

Negative change in reflectance per unit 
change in wavelength of visible 
spectrum is maximum around this 
"green" wavelength (1st order derivative 
plot of crop spectra will show this) 

5 Red 668 4 666 670 
Chlorophyll absorption pre-maxima (or 
reflectance minima 1) narrow bands 
more sensitive to crop variables. 

6 Red 682 4 680 684 
Greatest crop-soil contrast. Chlorophyll 
absorption maxima anywhere in 350-
1050nm range (reflectance minima). 

7 Red 696 4 694 698 

Chlorophyll absorption post-maxima 
(reflectance minima 2). Sudden change 
in reflectance from near-maximum 
absorption in red to dramatic increase 
along red-edge. 

8 Red-edge 720 10 715 725 

Point on red edge around which there is 
a maximum change in slope of the 
reflectance spectra per unit change in 
wavelength 

9 NIR 845 70 810 880 

Center of "NIR shoulder". A broad band 
or a narrow band will provide the same 
results due to near-uniform reflectance 
throughout NIR shoulder. 

10 NIRpeak 920 20 910 930 
Peak or maxima reflectance region of 
the NIR spectrum. 

11 
NIR 

moisture 
sensitive 

982 30 967 997 

Centre of moisture sensitive trough 
portion of NIR. The 'trough' is 940-
1040nm and had minimum reflectance 
around 982nm (or point of 
maximum"dip" in the trough portion). 

12 NIR late 1025 10 1020 1030 
Portion of sudden rise in reflectance 
soon after the moisture sensitive band or 
reflectance minimum 
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Table 4-7 Characteristics of Spectral Bands Recommended by Thenkabail et al. (2000) 
and equivalent Probe-1 bands 

Band 
Number 

Thenkabail et al. (2000) Eq uivalent Probe-1 Bands Band 
Number Band 

Center 
(nm) 

Band 
Width 
(nm) 

XMin. 
(nm) 

X Max. 
(nm) 

Band 
Center 

(nm) 

Band 
Width 
(nm) 

X 
Min. (nm) 

X 
Max. 
(nm) 

1 495 30 480 510 491.0 16.0 483.00 499 
2 525 20 515 535 521.6 16.3 513.45 529.75 
3 550 20 540 560 552.8 15.7 544.95 560.65 
4 568 10 563 573 567.5 15.5 559.75 575.25 
5 668 4 666 670 660.1 16.5 651.85 668.35 
6 682 4 680 684 675.7 16.4 667.50 683.90 
7 696 4 694 698 690.9 15.9 682.95 698.85 
8 720 10 715 725 721.6 15.3 713.95 729.25 
9 845 70 810 880 843.1 17.0 834.60 851.60 
10 920 20 910 930 929.0 13.8 922.10 935.90 
11 982 30 967 997 972.9 19.1 963.35 982.45 
12 1025 10 1020 1030 1021.4 15.4 1013.7 1029.10 

In this research, the 12 Probe-1 bands closest to those recommended by 

Thenkabail et al. (2000) were chosen for investigation (Table 4-7). Examination of the 

12 band reflectance spectra indicates that the selection of these bands accurately 

characterize the spectral response over the observed wavelength range (350-1050nm) of 

the crops studied in this research (Figure 4-16). The Probe-1 bands shown in Figure 4-16 

demonstrate the peak and valley configuration of spectral response described by 

Thenkabail et al. (2000) and it was determined that the these bands would be appropriate 

for defining the biophysical parameters of the crops studied in this research. The 

objective of this research falls within the confines of testing new image processing 

methods using several input bands versus traditional methods that only utilise two bands. 
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Figure 4-16 12 Thenkabail et al. (2000) narrow bands (labelled in nm) versus the selected 
Probe-1 Bands that best matched the recommended band centers (band widths Table 4-7) 
superimposed on an average sunlit canola spectral measurement. The portion of the 
spectrum where leaf pigment and cell structure drives spectral response are shown at top. 

4.4 Experimental Design 

4.4.1 Vegetation Indices 

The SR, NDVI, GDVI, TSAVI, and OSAVI were computed from the 

hyperspectral imagery (see equations in Section 2.4.1). For indices, the Probe-1 bands 

centered at 660.1 nm and 721.6 nm were used as the red and NIR bands, respectively. 

Spectral data for each sample site location was extracted from the imagery for the two 

bands using an average of a 3x3 pixel window (refer to section 4.3.3.4). The soil line 

required for the TSAVI was extracted from the imagery by viewing the red and NIR 

bands in spectral space (Figure 4-17). Corresponding pixels were examined in the 

imagery to ensure they were in spatial locations that consisted of bare soil. One should 
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4 

Figure 4-17 Establishing the soil line from the Probe-1 hyperspectral imagery. Only the 
study area (307 acre farm) was included in the analysis. The red band (660.1 nm) is 
shown on the x-axis, and the NIR band (721.6nm) is shown on the y-axis. 

note that dry residue and dead matter are spectrally similar to a dry light textured soil, but 

given the nature of a zero-till plot this was considered to be an important component of 

the background noise that would negatively affect the Vis not adjusted for soil (e.g. SR, 

NDVI, GDVI). Selecting representative pixels from the imagery for the soil line 

provided the dynamic range necessary to accommodate any soil type variation in the 

study area. These pixel values for the red and NIR bands were input into a regression test 

that resulted in a coefficient of determination (r 2) of 0.99 (Figure 4-19). The linear 

regression equation provided in Figure 4-18 provide the slope (a) and intercept (b) soil 

coefficients required for the TSAVI (Equation 2-6). 
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Extracting the Soil Line from Probe-1 Imagery for theTSAVI 

40 i •• 

Red (660nm) 

Figure 4-18 Linear regression analysis of pixel values selected from Probe-1 imagery to 
represent bare soil line required for TSAVI. 

4.4.2 Spectral Mixture Analysis 

Spectral mixtures analysis (SMA) quantifies the abundance of subpixel scene 

components within an image (Adams et al., 1993). SMA is dependent on the accurate 

spectral characterization of endmembers by determining the purest (without the presence 

of other surface material) spectral response pattern of each scene component (Davidson, 

2002; Small, 2001). In this agricultural context, three endmembers were identified: sunlit 

crop (C), sunlit background (B), and shadow (S). The spectral reflectance of each 

endmember (@c @b @s) in each band was input into the SMA together with the overall 

pixel band reflectance values ( ^") to be unmixed (Peddle et al., 2000; 1999a; Hall et al., 

1995). 
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Equation 4-1 Spectral Mixture Analysis (SMA) in Agriculture 

Qy = Cpc+Bpb+Sps 

where: 

@y = overall pixel level reflectance value 

C = fraction of crop 

B = fraction of background 

S - fraction of shadow 

@c = spectral reflectance of crop 

@b = spectral reflectance of background 

@s = spectral reflectance of shadow 

Each SMA component is represented by a spectral measurement comprised of only one 

scene component that is referred to as endmember. In this research, three types of 

endmember sets were tested for each respective field and crop type: (1) reference 

endmembers collected in the field within 48 hours of the image acquisition date, (2) 

image endmembers extracted from the hyperspectral imagery, and (3) integrated 

endmember sets that comprised of both reference and image endmembers. 

The use of the three endmember approaches stems from the fact that even though 

reference endmembers are spectrally superior, the collection process can be very labour 

intensive and invasive, in-field collection may not always be feasible in an agricultural 

environment (i.e. in more mature crop stages), and the successful use of reference 

endmembers in SMA is heavily dependent on the accurate radiometric correction and 

surface reflectance retrieval in the associated imagery (Note: radiometric correction is 

also a labour intensive task). Image endmembers can be extracted from the imagery in a 
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less labour and time intensive fashion, and can circumvent issues that may surface in 

SMA due to discrepancies between ground collected reference endmembers and the 

radiometric correction of the associated imagery. Image endmembers do not guarantee 

that spectra will contain only one scene component, yet they offer a practical approach to 

real-time site-specific agriculture applications of remote sensing. 

Integrated endmember sets included the use of both reference and image 

endmembers, and in order to take advantage of both the spectral quality of the reference 

endmembers as well as the efficiency of the image endmembers. In the future, practical 

use of SMA in site-specific agriculture may involve the use of integrated endmember sets 

because it is likely that national reference agricultural spectral libraries will be under 

development for many years (i.e. complex task to develop a library for numerous crop 

types, crop varieties and growth stages). The methods used to select the reference and 

image endemembers are described next. 

4.4 .2 .1 Reference Endmembers 

The collection of reference endmembers involved the establishment of a 

stationary measurement site for the ASD FieldSpec® Pro in the field (Figure 4-10b). The 

excised leaf sampling strategy described by Peddle et al. (1999b) was used for the crop 

and residue spectral measurements. The excised leaf and residue samples were stacked in 

a flat array to minimize shadow and placed under the field of view (FOV) of the 

spectroradiometer on a dark panel. However, due to the time-critical nature of the field 

campaign, and the inherent complexity of maintaining the geometry of representative soil 

samples, all reference endmembers for the soil component were performed in situ on bare 

soil patches. 



98 

The first task in using the ASD FieldSpec® Pro involved an optimization process 

which included a dark current measurement to ensure internal signal-to-noise was 

reduced. Then a two step process was implemented for each spectral measurement; first, 

incident irradiance of the Spectralon™ white reference panel was measured, and secondly 

target radiance under the same illumination conditions was measured. The shadow 

reference endmember was collected under diffuse light conditions using a sheet of 

plywood positioned in the principal plane of the sun in order to block all direct solar 

illumination (Peddle, 1999b; Johnson, 2000). In addition to the diffuse measurements, a 

fully illuminated incident irradiance measurement was acquired at the same time using 

the Spectralon™ panel. Consequently, to generate a shadow component an apparent 

reflectance measure was calculated by taking the ratio of diffuse target radiance to 

incident irradiance (Miller et al., 1997; Peddle, 1998; Peddle et al., 1999b; Peddle et al., 

2001a). 

The reference endmember data were converted from radiance to reflectance for 

use with the airborne hyperspectral imagery that was also corrected to reflectance 

(Section 4.3.3.2). In previous research, Peddle et al. (2000) suggested that equation 4-la 

be used to convert endmembers because the reference panel should be calibrated as they 

do not reflect all of the incident radiation in all regions of the electromagnetic spectrum. 

In this research, AAFC staff converted the reference endmembers to reflectance using 

Equation 4-lb which estimated the spectral response of the Spectralon™ panel at 100%. 

When the manufacturers' spectral response file was recovered for the AAFC Spectralon™ 

panel the absolute response was 99% for the wavelength range used in this thesis 

research, and AAFC staff remained satisfied with their initial estimation. 
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Equation 4-2 Spectral Reflectance Equation for Endmember Spectra 

(a) Reflectance (0,<P) = (Target Radiance / Panel Radiance) * Panel Calibration 

(b) Reflectance (9,0) = (Target Radiance / Panel Radiance) * 100% 

Where: Reflectance (0,<t>) = is the spectral reflectance for a given SZA (0) and view angle 

In this research, the imagery was calibrated using the GER3700 , whereas the 

reference endmembers were collected using the ASD FieldSpec® Pro. Differences in the 

manufacturer design of the two spectroradiometer instruments could have contributed a 

significant source of error in the results of the SMA. The spectroradiometer instrument 

discrepancy in the calibration of the imagery (GER3700™) versus the spectral 

measurement of the endmembers (ASD FieldSpec®) was evaluated by analysing the 

response of the two spectroradiometers for a series of cross-calibration targets measured 

on the acquisition day. The cross-calibration targets included a Spectralon panel, an 

orange tarp, a uniform cement pad, and a black panel. Both the GER3700™ and the 

ASD FieldSpec® Pro were used to measure each target simultaneously. 

The cross-calibration sensor files from the GER3700™ and the ASD FieldSpec® 

Pro were convolved to match those bands (Table 4-8) selected from the Probe-1 imagery 

for the SMA. Ideally, this would be done with reference to the spectral response of the 

airborne sensor, but in this case the spectral response files for the Probe-1 sensor were not 

available. Instead, the data were convolved using a linear average between each 

instrument. To examine the statistical relationship between the two instruments a series 

of linear regression tests were conducted for each calibration target. Overall, the values 

obtained with the two instruments were similar (r2=0.99) for all bands selected for the 

SMA. The linear regression equations for the cross-calibration targets were then used to 
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adjust the endmember spectral measurements (Figure 4-19). Calibration of the sunlit 

crop endmembers resulted in an adjustment of 0.5 to 1.7% reflectance in the visible, and 

2.0 to 3.0 % reflectance in the NIR (Figure 4-19a). Calibration of the sunlit residue 

endmembers resulted in an adjustment of 0.6 to 1.5% in the visible, and 1.5 to 2.0% in 

the NIR (Figure 4-19b). Calibration of the sunlit soil endmember resulted in an 

adjustment of 0.5 to 1.3 % reflectance in the visible, and 1.3 to 1.6 % reflectance in the 

NIR (Figure 4-19c). 
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(a) Calibration of Sunlit Crop Endmembers for Spectroradiometer 
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Figure 4-19 Original endmembers (solid line) and calibrated endmembers (dashed line) 
for sunlit crop, sunlit residue, and sunlit soil endmembers. 
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4.4.2.2 Image Endmembers 

As discussed in section 3.4.2, and in section 4.4.2, image endmembers are not 

ideal for SMA primarily due to the difficulty of locating homogenous targets within the 

sensor FOV for all of the agricultural scene components identified for SMA. However, 

image endmembers are an alternative for ground based reference endmembers that may 

not always be feasible for a specific crop type or for a specific growth stage. At present, 

a complete and comprehensive spectral library of agricultural targets does not exist for 

Canada. Futhermore, the accuracy of image radiometric correction to surface reflectance 

is critical when using reference endmembers as input into SMA. In light of these realistic 

issues, image-based endmembers may be more practical especially for applications of 

SMA in large agricultural areas, when SMA is attempted later in the growing season and 

ground-based reference endmember collection is too cumbersome. Two methods were 

used in deriving the image endmembers for this research: (i) manual endmember 

extraction, and (ii) automatic endmember extraction. 

The manual selection method included examining the reflectance of the two bands 

that were the basis for of all Vis calculated in this research. Reflectance values for each 

pixel in the 660 nm (red) and 721.6 nm (NIR) Probe-1 bands were plotted in spectral 

space using ENVI for the seven fields in the study area. Image endmembers for sunlit 

crop, shadowed crop and crop background (residue and soil) were chosen by selecting 

pixels from the image that fell at the extremes (vertices) of the simplex in spectral space 

(Figure 3-1). The n-dimensional visualizer in ENVI allowed the user to select pixels in 

spectral space and view their corresponding locations in the image (ENVI, 2002). The 

spectral curve for the pixels selected from the imagery were examined to ensure that the 
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values represented a realistic spectral signature for each scene component. The evaluation 

of the spectral signatures for each component, and the corresponding location of the 

pixels which represented each component, was based on an understanding of crop row 

structure and prior knowledge of the experimental farm. As a result, this type of selection 

process does involve a certain degree of estimation, and one cannot be certain that the 

pixels chosen do not include a shadow component or a slight mixture of components. 

Figure 4-20 demonstrates this mixture issue for the manually selected image shadow 

endmember in that the spectral response of shadow seemed to be slightly higher than the 

image sunlit crop endmember for two of the red Probe-1 bands (660 nm and 675 nm). 

To ensure that other candidate image endmember pixels were not being excluded 

in a variety of other spectral band combinations, an automatic endmember selection 

process was also implemented. All 12 bands recommended by Thenkabail et al. (2000) 

were used in the ENVI automatic endmember extraction tool. The purest pixels for 

describing each primary scene component were located in the imagery. The n-

dimensional visualizer allowed various band combinations to be viewed where the 

chosen pixels are located in spectral space and in the corresponding image. The values of 

the selected pixels can also be viewed as a spectral response curve graphed for each scene 

component. To select the purest crop endmember, the highest (brightest) vegetation 

reflectance curve was chosen to represent sunlit crop, and a curve that represented both 

soil and residue was chosen for the sunlit background component (Figure 4-21). The 

automatic method did not provide a spectral curve that definitively characterized a 

shadow image endmember, therefore this component was not extracted using this 

method. 
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Manual Selection of Image Endmembers from Two Spectral Bands 
(Red 660nm v.s. NIR 721 nm) 
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Probe 1 Band Center (nm) 
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Figure 4-20 Manually selected Image Endmembers using two spectral bands (Probe-1 red 
band 660 nm and NIR band 721 nm) in the ENVI n-dimensional visualizer. 
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ENVJ Automatic Image Endmember Extraction for 12 Probe 1 Bands 
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Figure 4-21 ENVI Automatic Image Endmember selection for 12 Probe-1 spectral bands. 

4.4.2.3 Integrated Endmembers 

An integrated endmember set was created for SMA that consisted of both reference 

and image endmembers. As mentioned in section 4.4.2, the integrated endmember 
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approach provides a method that takes advantage of the spectral purity of the reference 

endmembers, and the uncomplicated acquisition of image endmembers. For the image 

endmembers, both the automatically selected and manually selected image endmember 

were tested. A controlled experiment was conducted for the integrated approach, 

whereby the substitution process was done using each individual image endmember for 

one component at a time. Using this approach, the SMA model was tested to determine if 

the different endmembers significantly change the SMA results for predicting crop 

biophysical parameters. 

4.4.2.4 SMA Software 

Two software packages were used to assess SMA. The first is a fortran 

program developed by Shimabukuro and Smith (1991) and modified by Dr. D. Peddle to 

include both a constrained and unconstrained version of the least squares algorithm. 

The Shimabukuro and Smith SMA program can process a maximum of seven bands 

(Table 4-8). This software is a very flexible and useful program for research purposes, 

but it is not a commercially available software package. The unconstrained SMA 

algorithm chosen for this research can produce underflow or overflow fraction values (i.e. 

fraction values below 0, or above 1). This is a more advantageous method than the 

constrained algorithm because the overflow and underflow, as well as the frequency of 

these occurrences, can alert the user to portions of the dataset where the SMA model may 

not be correctly parameterized. In this case, the user can assess each sample site location 

in the dataset to infer why the endmembers may not adequately characterize the scene 

components of the imagery for certain regions of the field in the study area. The spatial 

abundance of each component in the imagery can also be better characterized by the 
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Table 4-8 Input Probe-1 Hyperspectral Bands for SMA 

Probe-1 
Wavelength 
Center (nm) 

Band 
Width (nm) 

Wavelength 
Minimum (nm) 

Wavelength 
Maximum (nm) 

491.0 16.0 483.0 499.0 
552.8 15.7 545.0 560.7 
660.1 16.5 651.9 668.4 
690.9 15.9 683.0 698.9 
721.6 16.4 714.0 729.3 
929.0 13.8 922.1 936.0 
972.9 19.1 963.4 982.5 

unconstrained method. If the spatial contribution of one component in the imagery is 

minimal, then negative fraction values for a particular scene component would indicate 

minimum contribution to the area being observed or error in the endmembers. 

The second software package used in this research was the commercially 

available ENVI remote sensing software (Research Systems Inc., 2003) The Linear 

Spectral Unmixing (LSU) tool in ENVI (Version 3.5) is based on earlier work by 

Boardman (1989) however, as with all proprietary software, little has been published on 

the specific implementation of the LSU algorithm and therefore it was not ideal for this 

research environment. Similar to the Shimabukaro and Smith (1991) program, the LSU 

algorithm in ENVI is unconstrained (i.e. where overflow and underflow fraction values 

can result) but a constraint to unity can be placed on the algorithm to ensure the fraction 

values from each component sum to unity (Research Systems Inc., 2003). The ENVI 

software does provide a more convenient fraction map output than the Shimabukaro and 

Smith (1991) program. Results of a comparison between the two programs are shown in 

Appendix B, with the sole purpose being to demonstrate that similar results could be 
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achieved using commercially available remote sensing software and the modified 

Shimabukuro and Smith (1991) fortran program. 

4.4.3 Statistical Methods 

The Vis and SMA fractions were analysed and compared statistically for their 

ability to predict crop biophysical parameters (i.e. LAI and biomass) using linear 

regression analysis. The predictive ability of each remote sensing method was based on 

the strength of coefficient of determination (r2), the standard error (S.E.), and the F-

statistic. The coefficient of determination (r2) (also known as regression coefficient) 

measures the proportion of the total variability explained by fitting the regression model. 

As the r approaches 1, a greater proportion of the variability is explained by the model, 

similarly as the r values approach 0, less variability is explained. The S.E. for each 

regression model provides an estimate of the deviation of the model from the observed 

value. The F-statistic is a measure of significance, and if the value is large a significant 

proportion of variability is due to the relationship between the variables. Due to the 

empirical nature of this research, and the sampling scheme that was dependent on specific 

homogenous management zones, the statistical methods used were not inferential in 

nature. As a result, the predictive power of each image processing method by crop type 

was specific to the pre-defined management zones, and consequently the regression 

analysis presented in this research cannot necessarily be applied to different crop types in 

other geographic regions. 

4.5 Chapter Summary 

In this chapter, the study area was defined, and the ground-based and remote 

sensing data collection methods were described. The conventional image processing 
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method used for predicting crop biophysical parameters included the computation of a 

series of vegetation indices (i.e. SR, NDVI, GDVI, TSAVI, and OSAVI). The new 

image processing method presented in this chapter for predicting crop biophysical 

parameters was SMA. This chapter described the analytical and statistical methods that 

were used in evaluating the predictive capability of the new and conventional image 

processing methods for predicting crop biophysical parameters (i.e. LAI and biomass). 
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CHAPTER V 

5.0 RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter, vegetation indices (Vis) and SMA fractions from airborne 

hyperspectral remote sensing imagery are compared for their ability to predict crop 

biomass and LAI for each sample site location, and each crop type. Regression analyses 

were used to determine the amount of variation in the dependent variable (LAI or 

biomass) that may be explained by the independent variable (VI value or SMA fraction 

value) based on the magnitude of the coefficient of determination (r2) (also known as 

regression coefficient), the standard error (SE), and the F statistic (F). 

This chapter is organized into four main sections. In the first section, descriptive 

statistics are presented for the ground based biophysical data by crop type. In the next 

two sections, linear regression results for predicting crop LAI and biomass are presented 

for Vis (section 5.3) and SMA (section 5.4). In section 5.5, the results from 

conventional Vis and SMA for predicting crop biomass and LAI are discussed and 

compared. 

5.2 Biophysical Data 

As presented in section 4.2.2.2, crop biophysical measurements were taken at each 

of the 98 sample site locations. Descriptive statistics are given for crop height, biomass 

and LAI in Tables 5-1 to 5-3 respectively. The pea crop was planted the earliest in the 

growing season (Table 4-3) and as expected, the crop had the highest mean crop height. 

The canola crop had a much broader leaf base than the peas, and as expected showed the 

highest mean biomass and LAI values. The canola crop demonstrated the most 
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Table 5-1 Crop heights measured at the time of airborne image acquisition. 

Crop 
Type 

Number of 
Samples 

Minimum 
Height 

(cm) 

Maximum 
Height 

(cm) 

Mean 
Height 

(cm) 

Standard 
Deviation 

Peas 24 27 62 40 9 
Canola 22 5 63 24 16 
Wheat 34 19 44 28 7 

Table 5-2 Crop biomass measurements based on fresh weight 

Crop 
Type 

Number of 
Samples 

Minimum 
Biomass 

(g/m 2) 

Maximum 
Biomass 

(g/m 2) 

Mean 
Biomass 

(g/m 2) 

Standard 
Deviation 

Peas 24 629 1611 1038 274 
Canola 22 274 3315 1247 1001 
Wheat 34 406 1183 650 176 

Table 5-3 Leaf Area Index (LAI) 

Crop 
Type 

Number of 
Samples 

Minimum 
LAI 

Maximum 
LAI 

Mean 
LAI 

Standard 
Deviation 

Peas 24 0.66 2.74 1.58 0.54 
Canola 22 0.51 4.5 1.96 1.12 
Wheat 34 0.80 2.68 1.38 0.42 

variability across the sample sites in comparison to the other two crops. This is apparent 

from the wider range of LAI and biomass values. The three wheat fields used in this 

research were the last to be planted in 2000, and as expected, the wheat mean height, 

biomass and LAI were the lowest. Crop height measurements were not used directly in 

the regression analysis for each crop type, but instead were used as a reference for crop 

status since it can serve as an additional indicator of the amount of crop variability 

amongst the various pin locations. In a similar agricultural study, it was determined that 

the use of a nadir sensor did not result in a strong relationship between crop height and 

crop biophysical parameters, although the strength of this relationship may be improved 

if the imagery was captured using an off-nadir view angle (Peddle et al., 1999b). 
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5.3 LAI and Biomass Prediction using Vegetation Indices 

The results of the linear regression analysis to predict LAI and biomass for each 

crop type using the conventional Vis are presented in Table 5-4 (for linear regression 

figures see Appendix C). The Vis tested were; simple ratio (SR), normalized difference 

vegetation index (NDVI), green difference vegetation index (GDVI), transformed soil 

adjusted vegetation index (TSAVI), and the optimized soil adjusted vegetation index 

(OSAVI) which were presented in sections 2.4.1 and 4.4.1. Each VI was used as an 

independent variable in separate predictions of LAI and biomass for each crop type. The 

F statistic was consistently large (at the 95% confidence level) for all results (except 

wheat biomass) and indicated that a significant portion of the variability was explained 

by the relationship between the variables. 

The highest r 2 value for predicting biomass of the pea crop was the SR with an r 2 of 

0.66 and standard error (SE) of 162.95 g/m 2 with similar results (r2 = 0.63 and 0.64) for 

the other vegetation indices. The highest r value for predicting LAI of the peas was 

OSAVI with an r 2 of 0.50 (SE = 0.37), with similar results for the GDVI and TSAVI (r2 = 

0.48) and the SR (r2 = 0.49). For the canola crop biomass, the highest r 2 value was the 

GDVI with an r 2 of 0.77 (SE = 489.14), although all other indices performed similarly 

with an r 2 of 0.75. (SE = 511.77 to 512.78 g/m 2). The highest r 2 value for predicting 

canola LAI was the GDVI with r 2 = 0.68 (SE = 0.64), whereas all the other indices 

performed similarly r 2 = 0.59 or 0.60 (SE = 0.72 to 0.74). None of the Vis were 

statistically significant for predicting wheat crop biomass, whereas the highest r 2 value 

for predicting wheat LAI was the SR with an r 2 of 0.65 (SE = 0.26). Similar to the latter 
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results, all other indices performed almost equally for wheat LAI prediction with r of 

0.62 to 0.64 (SE = 0.26). 
Table 5-4 Linear regression analysis results for vegetation index prediction of LAI and 
biomass based on magnitude of coefficient of determination (r z), standard error (SE), and 
F-statistic (F). Note: "*" indicates not statistically significant at the 95% percent 
confidence level and highest r 2 value per crop type in bold. 

Vegetation 
Index 

Biomass LAI Vegetation 
Index SE F SE F 

P EAS 
SR 0.66 162.95 43.26 0.49 0.39 21.02 

NDVI 0.63 170.55 37.57 0.48 0.40 20.31 
GDVI 0.64 168.58 39.98 0.38 0.43 13.44 

TSAVI 0.63 171.17 37.15 0.48 0.40 20.33 
OSAVI 0.63 170.62 37.53 0.50 0.40 10.63 

CA1 VOLA 
SR 0.75 511.77 60.35 0.60 0.72 30.48 

NDVI 0.75 512.54 60.10 0.59 0.74 28.74 
GDVI 0.77 489.14 67.95 0.69 0.64 45.01 

TSAVI 0.75 512.78 60.03 0.59 0.74 28.64 
OSAVI 0.75 512.21 60.21 0.59 0.74 28.75 

WHEAT 
SR 0.01 177.96 0.17* 0.65 0.26 58.24 

NDVI 0.00 178.11 0.12* 0.64 0.26 56.44 
GDVI 0.01 177.94 0.18* 0.62 0.27 51.96 

TSAVI 0.00 178.19 0.09* 0.64 0.26 57.22 
OSAVI 0.00 178.12 0.12* 0.64 0.26 56.60 

There were slight differences amongst the various VI results, but overall they 

performed very similarly as predictors of biomass and LAI for all crop types (Figure 5-la 

to 5-lc). Early in the growing season a higher portion of soil or residue (dead matter due 

to no-tillage practices) is present between the crop rows. Residue or senescing vegetation 

is also a valid consideration for soil-adjusted indices and the soil-line concept (Baret et 

al., 1989). In this research, one may have expected in a no-till environment that the soil-
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adjusted indices would have performed better as predictors of crop biophysical 

parameters early in the growing season. However, the sensitivity of Vis to soil 

background is greatest with moderate levels of vegetation cover (>50% green cover). In 

low vegetation cover there is insufficient vegetation to induce a canopy-scattered, soil-

reflected signal (Huete, 1988). In this research, the background was primarily residue 

with some bare soil, and vegetation cover was not greater than 50% (crop maturity was 

below average in June, see section 4.2.1.1). Therefore, the sensitivity of the soil-adjusted 

Vis in this research was minimized because there wasn't enough crop present in the 

imagery to induce a canopy-scattered background-reflected signal. 
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Figure 5-1 Magnitude of coefficient of determination (r 2) for vegetation indices as a 
predictor of biomass and LAI for all three crop types. Note: "*" not significant at the 
95% confidence level. 
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The lack of a relationship between Vis and wheat crop biomass (Figure 5-lc) has 

been found in another related agricultural study performed by CCRS (Dr. Heather 

McNairn and Catherine Champagne, personal communication, Feb 17, 2003). 

Interpretation of results in this research suggests that the lack of predictive capability for 

wheat biomass using remote sensing imagery may be due to some or both of the 

following: (i) the architecture of the crop, and/or (ii) the way the biomass ground data 

were collected. Early in the growing season small wheat plants have a compact 

erectophile structure (Figure 5-2), whereas the canola and peas have a planophile 

structure. In wheat, the LAI derived using the LAI-2000 provides a better representation 

of ground cover than the biomass measurements. Although biomass is expressed in plant 

matter per unit area, in the case of wheat with its erectophile architecture, much of this 

matter is present in the vertical plane rather than the horizontal plane. In the case of peas 

and canola, the planophile nature of the plants results in a stronger relationship between 

the LAI and biomass measurements (Appendix E). 

The ground based data collection methods may also have contributed to the issues 

surrounding wheat biomass prediction versus the wheat LAI prediction. To improve the 

ground-based biomass sampling technique, CCRS implemented a new sampling 

technique later in the growing season in the 2002 IHARF campaign that involved 

weighing the leaves separately from the stem of the crop. CCRS hypothesized that by 

weighing only the leaves, which are the portion of the plant that is primarily detected by 

the sensor (not the stem), the relationship between the imagery and wheat biomass may 

be improved. However, the results of this study have not yet been published. 
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Figure 5-2 Ground based nadir picture of the wheat crop in June 2000. 

In this section several Vis, including soil-adjusted Vis, were discussed and 

performed relatively similarly for the prediction of crop biomass and LAI. Vis are based 

on the magnitude of change in the spectral slope between the red and NIR regions of the 

electromagnetic spectrum. Therefore, Vis operate not only on the whole pixel signal, but 

also in a very narrow range of the spectrum and cannot accommodate the full magnitude 

of the spectral response curve for each crop type. Similar to results found in forestry 

application of Vis, it may be that complex interactions between scene components in an 

agricultural image (e.g. crop, soil, residue, and shadow) may not be differentiated by the 

linear relationship typically found in the red-NIR space of Vis (Peddle et al., 2001b). The 

results of this research suggest that utilizing a number of Vis early in the growing season 

may be empirically redundant. 



117 

5.4 LAI and Biomass Prediction Using SMA 

SMA was performed using three different endmember strategies: (i) reference 

endmembers, (ii) image endmembers (automatic and manual), and (iii) integrated 

endmembers (refer to sections 3.4 and 4.4.2). Each SMA fraction value was used as the 

independent variable, with LAI and biomass input separately as the dependent variables 

in the regression analysis. The F statistic was consistently large (except in the case of 

wheat biomass) for all results and indicated that a significant portion of the variability 

was explained by the relationship between the variables (for linear regression figures see 

Appendix D). 

5.4.1 Reference Endmembers 

In this portion of the analysis reference endmembers collected on the ground 

using the ASD FieldSpec® Pro spectroradiometer were input into the SMA. This series 

of SMA tests demonstrates the use of the most spectrally pure set of endmembers for all 

three components defined for the experimental farm. In this case, each sunlit crop 

endmember was the brightest spectra collected for each respective crop type (i.e. sunlit 

canola, sunlit peas and sunlit wheat). The shadow reference endmember was the darkest 

shadowed crop spectra measured on the ground. The sunlit background was the brightest 

residue spectra for each individual crop type and included consideration of the sequence 

of the crop rotation practiced in each field (e.g. if the crop from the previous year was 

wheat for the current canola field, then the wheat residue endmember was used). 

Preliminary SMA tests showed that when the reference sunlit soil endmember was input 

into the SMA as the sunlit background component, the fraction results produced severe 

underflow values, indicating that one or more of the endmembers were inappropriate. 
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Figure 5-3 Ground based nadir pictures of peas, canola, and wheat (clockwise) showing 
predominantly crop residue rather than bare soil contribution to the background. 

Visual examination of the percent crop cover photographs taken at each sample site 

confirmed that due to the nature of the no-till study area, in general residue was the 

dominant background component. Overall the soil component was spatially less abundant 

and therefore not appropriate for a three endmember model (Figure 5-3). 
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The results of the linear regression analysis to predict LAI and biomass for each 

crop type from the reference endmember set are presented in Table 5-5. The highest r 

value for predicting pea biomass was sunlit background fraction with r 2 of 0.62 (SE = 

173.44 g/m 2), however the sunlit crop fraction was similar (r2 = 0.58, SE = 182.84 g/m 2). 

The relationship between crop background and crop biomass is inverse (Appendix D) 

compared to that of the sunlit crop fraction. This relationship occurs because when there 

is less crop on the ground, there is less biomass present in the imagery, and more 

background visible to the sensor. The highest r 2 value for predicting pea LAI was the 

sunlit crop fraction with r 2 of 0.57 (SE = 0.36), although the sunlit background fraction 

performed similarly with r 2 of 0.52 (SE = 0.38). The highest r 2 value for predicting 

canola crop biomass was the sunlit crop fraction with an r 2 of 0.80 (SE = 456.61 g/m 2). 

The highest r 2 value for predicting canola LAI was the sunlit crop fraction with an r 2 of 

0.61 (SE = 0.72), with similar results for the sunlit background fraction (r 2 = 0.59, SE = 

0.74). Similar to the results of the Vis, there was no significant relationship between the 

SMA fractions and the ground based biomass measurements for the wheat crop. The 

• 2 2 
highest r value for predicting wheat LAI was the sunlit crop fraction with an r of 0.71 

(SE = 0.23). 
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Table 5-5 Linear regression results using reference endmembers for SMA prediction of 
LAI and biomass based on magnitude of coefficient of determination (r2), standard error 
(SE), and F-statistic (F). Note: "*" indicates not statistically significant at the 95% 
percent confidence level and highest r value per crop shown in bold. 

SMA Fraction Biomass LAI SMA Fraction 
SE F mm SE F 

PEAS 

Reference Sunlit Crop 0.58 182.84 29.84 0.57 ^ . 3 6 29.61 
Reference Shadowed Crop 0.22 247.59 6.27* 0.07 0.53 1.54* 
Reference Sunlit Background 0.62 173.44 35.60 0.52 0.38 23.52 

CANOLA 
Reference Sunlit Crop 0.80 456.61 80.93 0.61 0.72 30.82 
Reference Shadowed Crop 0.04 1002.60 0.93* 0.00 1.15 0.03* 
Reference Sunlit Background 0.74 520.08 57.80 0.59 0.74 28.66 

WHEAT 
Reference Sunlit Crop 0.01 177.68 0.28* 0.71 0.23 79.09 
Reference Shadowed Crop 0.04 174.56 1.44* 0.02 0.43 0.51* 
Reference Sunlit Background 0.04 174.65 1.40* 0.46 0.32 27.55 

The reference endmember results show that the reference sunlit crop and sunlit 

background fractions were the strongest predictors of biomass and LAI for all three crop 

types early in the growing season (except in the case of wheat biomass, which was also 

the case for the Vis in the last section). This result makes sense in that the most spatially 

abundant scene components were the crop and the crop background. Overall, Figure 5-4a 

to 5-4c show the shadow fraction was not generally a good predictor of crop biophysical 

parameters. This was expected early in the growing season because the crops were very 

small and it is feasible that the shadow within the canopy was minimal and thus its 

contribution to the image values was minimal (Figure 5-3). These results may also be 

due to the way the reference shadow endmembers were collected. In this research, the 

plant geometry and associated 'natural leaf shadowing' may have been lost in the flat-
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array sampling strategy. Other methods of sampling such as the optically thick stack 

(Peddle et al., 1999b), or vertical bundling of crop stacks (CCRS, IHARF 2002 

campaign) attempt to maintain canopy geometry and natural shadowing but these 

methods were not implemented in this research. 

The purpose of SMA is to discriminate between scene components that contribute, 

or do not contribute, to the overall signal strength for each pixel. In this early growing 

season research, it was expected that not all fraction values would be good predictors of 

crop biophysical parameters (i.e. shadowed crop fraction). The advantage of 

implementing SMA as a sub-pixel analysis tool is that this method allows for extraction 

of only the relevant portions of the pixel that more closely represent real field conditions, 

on the acquisition date, and for a specific growth stage. The results of this research will 

determine for agricultural remote sensing applications early in the growing season what 

specific fractions more closely represented each biophysical parameter. 
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Figure 5-4 Magnitude of coefficient of determination (r 2) for SMA using fractions from 
reference endmembers for predicting biomass and LAI for all three crop types. Note: "*" 
indicates not statistically significant at the 95% confidence level. 
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5.4.2 Image Endmembers 

As discussed in section 4.2.3, image endmembers do not guarantee that spectra will 

only contain one scene component, yet they can offer a potentially more practical 

approach to real-time agriculture applications of remote sensing. Manual and 

automatically derived image endmembers were extracted from the imagery (section 

4.4.2.2), but the automatic method did not return an acceptable endmember for the 

shadowed crop component. As a result, only the manually derived endmembers were 

utilized for the image endmember approach to SMA. 

Image endmembers were derived manually by plotting the red and NIR bands in 

spectral space and selecting pixels from the imagery to represent each scene component. 

However, the manual method did not explicitly identify each crop type, pixels were 

chosen from 2D spectral space that were located within the study area but only one 

spectra was chosen to represent all crop types (refer to Figure 3-1). This approach is not 

ideal, but the overriding advantage of image endmember SMA is that it does not require 

labour intensive (and sometimes impractical) spectral measurements of endmembers in 

the field, and the imagery does not have to be atmospherically corrected. It should be 

noted that in the future reference endmembers may be considered somewhat less labour 

intensive if selected from an established spectral library (i.e. no new field data collection 

required), although in this case atmospheric correction and surface reflectance retrieval 

would still be required. 

The linear regression results for the image endmember SMA approach of each crop. 

type are presented in Table 5-6. The highest r value for predicting pea biomass was the 

image sunlit background fraction with r 2 of 0.61 (SE = 176.34 g/m2), and the image sunlit 
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crop fraction had the highest r 2 value for predicting pea LAI with r 2 of 0.57 (SE = 0.36). 

The highest r 2 value for predicting both biomass and LAI of canola was the image sunlit 

crop fraction with an r 2 of 0.81 (SE = 442.84 g/m2) and r 2 of 0.61 (SE = 0.72) 

respectively. Similar to the vegetation index results, there was no significant relationship 

between any of the image endmember derived fractions, and the ground based biomass 

measurements of the wheat crop. The highest r 2 value for predicting wheat LAI was 

image sunlit background fraction with an r 2 of 0.71 (SE = 0.23). 

Table 5-6 Linear regression analysis results using image endmembers for SMA 
prediction of LAI and biomass based magnitude of coefficient of determination (r 2), 
standard error (SE), and the F-statistic (F). Note: "*" indicates not statistically significant 
at the 95% percent confidence level and highest r value per crop shown in bold. 

SMA Fraction Biomass L A I SMA Fraction 
• '-AY SE F • v ;\ SE F 

PEAS 
Image Sunlit Crop 0.52 194.52 23.80 0.57 0.36 29.64 
Image Shadowed Crop 0.35 226.25 11.85 0.17 0.50 4.38 
Image Sunlit Background 0.61 176.34 33.73 0.48 0.39 20.41 

CANOLA 
Image Sunlit Crop 0.81 442.84 87.31 0.61 0.72 30.82 
Image Shadowed Crop 0.66 602.29 38.01 0.37 0.91 11.69 
Image Sunlit Background 0.68 579.56 42.65 0.56 0.76 25.48 

WHEAT 
Image Sunlit Crop 0.01 177.78 0.24* 0.71 0.23 77.70 
Image Shadowed Crop 0.01 177.44 0.36* 0.18 0.39 7.16 
Image Sunlit Background 0.04 174.97 1.28* 0.45 0.32 25.73 
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In the image endmember approach to SMA results show that, with the exception of 

wheat biomass, the image sunlit crop and sunlit background fractions were the strongest 

predictors of biomass and LAI for all crop types early in the growing season (Figure 5-5a 

to 5-5c). The strength of the shadow fraction as a predictor of crop biophysical 

parameters improved in these results in comparison to the reference endmember set. This 

improvement may have resulted because the shadow endmember is better characterized 

by image pixels. As found in previous results, the reference shadow endmember may not 

adequately characterize shadowing due to the loss of geometry in the flat array sampling 

strategy. Selecting endmembers from the imagery preserves the natural canopy 

geometry, and captures the transmission of energy in the IR region of the spectrum 

between leaves that is included in the shadowed crop signal. This research also took 

place early in the growing season when the crops were very small. The transmission 

properties of small plant leaves may have resulted in some of the soil or residue 

reflectance from beneath the plant being included in the returned shadowed crop signal 

from the imagery. An example of this is shown in Figure 5-6 which illustrates the 

reference endmembers and the less specific image-based endmembers. The image 

shadowed crop endmember falls between the purer reference shadowed crop endmember 

and the reference soil endmember. This mixture of components (shadow and soil) in 

endmembers derived from the imagery may have better characterized the shadow and 

background dynamic. 
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statistically significant at the 95% confidence level. 
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space. 

5.4.3 Integrated Endmembers 

As discussed in sections 4.4.2.2 and 4.4.2.3, integrated endmembers provide an 

approach to SMA that takes advantage of the spectral purity of the reference 

endmembers, and the uncomplicated acquisition of image endmembers. Image 

endmembers were derived using both a manual and automatic method. The difference 

between these two methods is a factor of the number of bands utilized to select 

endmembers from the imagery (i.e. ENVI automatic method utilized 7 bands whereas 

manual selection used only the red and NIR). Prior to performing an extensive test of 

integrated endmembers in SMA, the automatically and manually derived image sunlit 

crop and background endmembers were first compared and evaluated for similarity in 

two preliminary integrated tests. The automatic method did not yield an identifiable 

shadowed crop endmember, therefore in these preliminary tests only the manual and 
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automatic image sunlit crop and background endmembers were substituted for the 

reference sunlit crop and sunlit background endmembers. 

In the statistical analysis of these SMA results, the absolute fraction values from 

all crop types were input to determine (for all sample sites) the amount of difference 

between fractions obtained from automatic and manual endmembers. First, a paired-

samples T-test was used to compare the means of two variables (integrated SMA test 

with automatic versus manual image endmember) for a single group (fraction results for 

each scene component of all crop types). Then linear regression analysis was used to 

determine the amount of variation in the dependent variable (integrated test with 

automatic image endmembers) that may be explained by the independent variable 

(integrated test with manual image endmember). Table 5-7 and 5-8 show the results of 

the paired-samples T-test. Overall, the P value from the T-test indicates that the mean 

value for the dependent and independent variable are statistically different from one 

another for each fraction result (at the 95% confidence level). However, the linear 

regression analysis for all crop types shows that 97-100% of the variability in the 

dependent variable is explained by the independent variable. In the integrated SMA test 

that substituted the reference sunlit crop endmember with an automatically or manually 

derived image endmember (Table 5-7), the sunlit crop fraction had an r 2 of 1.00, the 

shadowed crop fraction had an r 2 of 0.97, and the sunlit background fraction had an r 2 

0.99. In the integrated SMA test which substituted only the reference sunlit background 

endmember with an automatically or manually derived image endmember (Table 5-8), 

the sunlit crop fraction had an r 2 of 0.99, the shadowed crop fraction had an r 2 of 0.97, 

and the sunlit background fraction had an r 2 0.99. These results suggest that the 
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dimensionality of the image data (i.e. 2 bands for manual, and 7 for automatic) may not 

be crucial in the selection of image endmembers for agricultural crops, and the red to NIR 

relationship may be sufficient for the image endmember selection process. For the 

purpose of the integrated endmember approach to SMA, it was concluded that the 

automatically derived image endemember was considered to be a redundant input when 

compared to the manually derived endmember. As a result, only the manually derived 

image endmembers were included in the comprehensive set of integrated SMA tests. 

Table 5-7 Paired-samples T-test of integrated endmember SMA test #1 & #2 for all crop 
types. Note: Reference (Ref) and image (Img) automatically derived (a) or manually 
derived (m) endmembers shown for sunlit crop image endmember (C), shadowed crop 
(S), sunlit background (B). Bold text highlights the endmember that was substituted. 

SMA Fractions for 
all crop types 

(n=80) 

Integrated Test #1 
C Img ( a ) / S Re f /B Ref 

Mean Fraction Value 

Integrated Test #2 
CImg ( m ) / S R e f / B R e f 

Mean Fraction Value 

P Value 

Sunlit Crop 0.31 0.26 0.00 
Shadowed Crop 0.33 0.37 0.00 

Sunlit Background 0.35 0.37 0.00 

Table 5-8 Paired-samples T-test of integrated endmember SMA test #3 & #4 for all crop 
types. Note: Reference (Ref) and image (Img) automatically derived (a) or manually 
derived (m) endmembers shown for sunlit crop image endmember (C), shadowed crop 
(S), sunlit background (B). Bold text highlights the endmember that was substituted. 

SMA Fractions for 
all crop types 

(n=80) 

Integrated Test #3 
Ref C / S R e f / B l m g ( a ) 

Mean Fraction Value 

Integrated Test #4 
Ref C / S Ref / B Img (m) 

Mean Fraction Value 

P Value 

Sunlit Crop 0.17 0.20 0.00 
Shadowed Crop 0.35 0.43 0.00 

Sunlit Background 0.47 0.37 0.00 
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The approach to the comprehensive set of integrated endmember SMA tests 

involved various combinations of both the reference and manually derived image 

endmembers (Figure 5-7). Results for the integrated endmember SMA tests are shown 

by crop type in Tables 5-9 though 5-11. In all of the integrated endmember SMA tests 

for the peas (Table 5-9), the highest r 2 value for predicting pea biomass was both the 

image and the reference sunlit background fraction with an r 2 of 0.62 (SE = 173.63 to 

176.39 g/m 2). The image and reference sunlit crop fractions also performed similarly in 

the first two integrated tests with an r 2 of 0.58 (SE = 182.94 g/m 2). In all of the tests, the 

image and reference sunlit crop fraction had the highest r value for predicting pea LAI 

(r2 = 0.57 to 0.58, SE = 0.35 to 0.36). 
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Figure 5-7 Flow diagram illustrating the different integrated endmember sets tested for 
the reference (Ref) and image (Img) cases for sunlit crop (C), shadowed crop (S), and 
sunlit background (B) endmembers. Bold text highlights the endmember that was 
substituted from the previous entry. 
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Table 5-9 Linear regression analysis results for integrated SMA prediction of LAI and 
biomass of pea crop based on the magnitude of coefficient of determination (r2), the 
standard error (SE), and F-statistic (F). Note: "*" indicates not statistically significant at 
the 95% percent confidence level. Bold text highlights the endmember that was 

.l.„4.!j 4. i r • . . j i L _ i • i . 2 . _ A 

SMA Fractions 
Pea Crop 

Biomass LAI SMA Fractions 
Pea Crop r 2 SE F r 2 SE F 

Integrated Test #1 
Image Sunlit Crop 0.58 182.94 29.78 0.58 0.36 29.92 
Reference Shadowed Crop 0.02 277.84 0.45* 0.12 0.51 3.05* 
Reference Sunlit Background 0.62 174.09 35.18 0.50 0.39 22.31 

Integrated Test #2 
Reference Sunlit Crop 0.58 182.96 29.77 0.58 0.36 30.38 
Reference Shadowed Crop. 0.55 188.61 26.71 0.38 0.43 13.39 
Image Sunlit Background 0.62 173.63 35.48 0.53 0.38 24.60 

Integrated Test #3 
Reference Sunlit Crop 0.52 194.49 23.81 0.57 0.36 29.47 
Image Shadowed Crop 0.55 188.75 26.64 0.38 0.43 13.37 
Image Sunlit Background 0.62 174.00 35.24 0.51 0.38 23.36 

Integrated Test #4 
Image Sunlit Crop 0.55 188.74 26.65 0.58 0.36 29.85 
Image Shadowed Crop 0.02 277.70 0.47* 0.12 0.51 3.13* 
Reference Sunlit Background 0.60 176.39 33.70 0.47 0.40 19.53 

Integrated Test #5 
Reference Sunlit Crop 0.55 188.80 26.61 0.57 0.36 29.47 
Image Shadowed Crop 0.22 248.17 6.14 0.06 0.53 1.48* 
Reference Sunlit Background 0.62 173.88 35.32 0.50 0.39 22.22 

Integrated Test #6 
Image Sunlit Crop 0.57 183.10 29.69 0.58 0.35 30.60 
Reference Shadowed Crop 0.35 226.06 11.91 0.17 0.50 4.41 
Image Sunlit Background 0.61 174.20 35.11 0.51 0.38 23.21 

2 

Table 5-10 shows the integrated endmember SMA tests for canola. The highest r 

value for predicting canola biomass was the image and reference shadowed crop fractions 

in the first and fourth integrated test with an r 2 of 0.85 (SE = 402.22 to 403.06 g/m 2). The 

image and reference sunlit crop fractions were similar in their prediction of canola 

biomass with r 2 of 0.80 (SE = 456.79 to 459.00 g/m 2). In all of the tests, the highest r 2 

value for predicting canola LAI was both the reference and image sunlit crop fractions 

with an r 2 of 0.60 to 0.61 (SE = 0.72). However, the image and reference sunlit 
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background fractions performed similarly as predictors of canola LAI (r2 of 0.56 to 0.59, 

SE = 0.74 to 0.76). 

Table 5-10 Linear regression analysis results for integrated SMA prediction of LAI and 
biomass of canola crop based on the magnitude of coefficient of determination (r 2), 
standard error (SE), and F-statistic (F). Note: "*" indicates not statistically significant at 
the 95% percent confidence level. Bold text highlights the endmember that was 
substituted from the previous entry and the highest r 2 value per test. 

SMA Fractions 
Canola Crop 

Biomass LAI SMA Fractions 
Canola Crop r 2 SE F r 2 SE F 

Integrated Test #1 
Image Sunlit Crop 0.80 457.13 80.70 0.61 0.72 30.81 
Reference Shadowed Crop 0.85 402.22 110.07 0.60 0.73 29.39 
Reference Sunlit Background 0.73 537.72 52.78 0.58 0.74 27.87 

Integrated Test #2 
Reference Sunlit Crop 0.80 459.00 79.88 0.60 0.72 30.45 
Reference Shadowed Crop 0.59 654.12 29.18 0.51 0.80 20.86 
Image Sunlit Background 0.74 521.25 57.45 0.58 0.74 28.15 

Integrated Test #3 
Reference Sunlit Crop 0.81 442.54 87.45 0.61 0.72 30.85 
Image Shadowed Crop 0.60 651.62 29.56 0.52 0.80 21.36 
Image Sunlit Background 0.73 530.75 54.70 0.58 0.74 28.00 

Integrated Test #4 
Image Sunlit Crop 0.81 448.10 84.80 0.61 0.72 30.93 
Image Shadowed Crop 0.85 403.06 109.53 0.59 0.73 29.25 
Reference Sunlit Background 0.68 578.43 42.90 0.56 0.76 25.86 

Integral ed Test #5 
Reference Sunlit Crop 0.81 447.21 85.22 0.61 0.72 31.03 
Image Shadowed Crop 0.05 1001.78 0.97* 0.00 1.15 0.03* 
Reference Sunlit Background 0.73 530.43 54.79 0.59 0.74 28.37 

Integrated Test #6 
Image Sunlit Crop 0.80 459.07 79.85 0.60 0.72 30.49 
Reference Shadowed Crop 0.66 598.94 38.66 0.38 0.91 12.01 
Image Sunlit Background 0.72 539.31 52.35 0.58 0.75 27.37 

Similar to the results of the vegetation indices and the previous SMA results, there 

was no significant relationship between the integrated SMA fraction results and the 

ground based biomass measurements of the wheat crop (Table 5-11). The highest r 2 
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value for predicting wheat LAI was both the image and reference sunlit crop fractions in 

integrated test one, two and six the with an r 2 of 0.71 (SE = 0.23). The remaining 

integrated tests showed a similar result for sunlit crop fraction with an r 2 range of 0.66 to 

0.67 (SE =0.25). 

Table 5-11 Linear regression analysis results for integrated SMA prediction of LAI and 
biomass of wheat crop based on the magnitude of coefficient of determination (r2), the 
standard error (SE), and F-statistic (F). Note: "*" indicates not statistically significant at 
the 95% percent confidence level. Bold text highlights the endmember that was 

SMA Fractions 
Wheat Crop 

Biomass LAI SMA Fractions 
Wheat Crop r 2 SE F r 2 SE F 

Integrated Test #1 
Image Sunlit Crop 0.01 177.75 0.25* 0.71 0.23 78.16 
Reference Shadowed Crop 0.02 176.96 0.54* 0.11 0.41 4.12 
Reference Sunlit Background 0.04 174.67 1.40* 0.40 0.33 21.26 

Integrated Test #2 
Reference Sunlit Crop 0.01 177.61 0.30* 0.71 0.23 78.84 
Reference Shadowed Crop 0.04 174.96 1.29* 0.01 0.43 0.47 
Image Sunlit Background 0.05* 173.57 1.82 0.46 0.32 27.64 

Integrated Test #3 
Reference Sunlit Crop 0.00 178.09 0.13* 0.67 0.25 65.07 
Image Shadowed Crop 0.04 175.02 1.26* 0.02 0.43 0.49 
Image Sunlit Background 0.06 173.05 2.03* 0.33 0.35 16.03 

Integrated Test #4 
Image Sunlit Crop 0.00 178.24 0.07* 0.66 0.25 61.23 
Image Shadowed Crop 0.01 177.21 0.45* 0.13 0.40 4.81 
Reference Sunlit Background 0.04 174.63 1.41* 0.15 0.40 5.68 

Integrated Test #5 
Reference Sunlit Crop 0.00 178.23 0.07* 0.66 0.25 61.09 
Image Shadowed Crop 0.04 175.18 1.20* 0.01 0.43 0.25 
Reference Sunlit Background 0.04 174.73 1.37* 0.34 0.35 16.31 

Integrated Test #6 
Image Sunlit Crop 0.01 177.67 0.28* 0.71 0.23 78.21 
Reference Shadowed Crop 0.01 177.58 0.31* 0.25 0.37 10.83 
Image Sunlit Background 0.05 173.60 1.81* 0.41 0.33 22.66 
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Results from the integrated endmember tests showed that both the reference and 

image-based endmembers for both sunlit crop and sunlit background were consistently 

the strongest predictors of pea LAI and biomass, and the image sunlit crop fraction for 

wheat LAI (Figure 5-8 and 5-10). However, in the case of the canola crop, the shadow 

fraction appeared to have the highest r 2 value for predicting biomass (Figure 5-9). For 

wheat biomass, the remote sensing imagery available for this research did not provide 

adequate information content. This may be due to the nadir perspective of the imagery 

and the architecture of the wheat plants as discussed previously. Off nadir imagery or 

new biomass sampling methods as implemented by CCRS in 2002, may provide more 

insight on this issue in the future. 

In a specific application of SMA such as agriculture, the integrated approach is 

advantageous in that the user can distinguish why one fraction may perform better than 

another simply by controlling the endmember inputs (i.e. image versus reference) 

throughout a series of tests. Overall, the shadow component was the most variable in 

terms of its predictive capability for both LAI and biomass. As discussed earlier, the 

reference shadow endmember may not characterize the natural shadowing of plant leaves 

due to a loss of geometry in the sampling technique. However, the image "shadowed 

crop" endmember may have been a mixture of both soil and shadow, and similarly the 

image sunlit crop may have been a mixture of crop and shadow. The integrated results 

showed improvements in the predictive capability of the shadow fraction when any 

image-derived endmember was introduced in to the integrated test. The image 

endmembers may have improved the dynamics among all scene components in a three 

endmember SMA model, and may have better represented the reality of the crops early in 
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the growing season. The reality of an agricultural scene is complex early in the growing 

season, and the spectrally mixed image-based endmembers may better represent the 

interaction between all scene components (e.g. crop, shadow, soil, and residue) in 

comparison to their reference endmember counterparts. 
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LLLLL̂ Ĥ H* • 
I** i 

?£; 
• H I 
LLLLIMBI 

C 1 Biomass • LAI 
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Figure 5-9 Magnitude of coefficient of determination (r2) from SMA integrated tests for 
predicting biomass and LAI of canola crop. Image (Img) and reference (Ref) 
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fractions. Boxes highlight the endmember that was substituted from the previous entry. 
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Figure 5-10 Magnitude of coefficient of determination (r 2) from SMA integrated tests for 
predicting biomass and LAI of wheat crop. Image (Img) and reference (Ref) endmembers 
shown for sunlit crop(C), shadowed crop (S), sunlit background (B) fractions. Boxes 
highlight the endmember that was substituted from the previous entry. Note: "*" 
indicates not statistically significant at the 95% confidence level. 
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5.5 Discussion 

In this discussion it is important to recognize the practical considerations of the 

new SMA method versus the conventional two band Vis. The context of the discussion 

involves several perspectives: (i) what are the advantages to SMA for predicting 

biophysical parameters, (ii) what investment of resources and time is required to realize 

these advantages, (iii) beyond biophysical prediction what other information does SMA 

provide that cannot be derived from Vis, (iv) what prospects exist to further improve the 

SMA approach used in this research, and (v) how might SMA be applied in site-specific 

agriculture throughout the growing season and beyond the early growing season 

conditions presented in this study. 

The advantages of implementing sustainable agricultural practices, and enabling 

technologies such as remote sensing, are driven by the ability to distinguish different 

contributions of various agricultural scene components. Separating remote sensing 

imagery into relevant and irrelevant information for the prediction of biophysical 

parameters using SMA could enhance the techniques farmers currently use in site-

specific agriculture. One of the primary driving forces behind site-specific agriculture is 

the ability to define management zones based on crop performance and allow for more 

cost-effective and environmentally sound use of seasonal inputs (e.g. fertilizer and 

chemicals). In the future, if sub-pixel LAI and biomass mapping can more accurately 

define crop yield in the growing season at a local scale, then this could potentially help 

farmers and agriculture economists market crops internationally, more competitively, and 

prior to harvest. 
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The advantage of using a relatively new image processing methods such as SMA, 

is largely dependent on the amount of resources and time required. For example, if 

image derived endmembers perform adequately in agricultural applications of SMA then 

the processing time and resources required for SMA are reduced because there is no need 

for reference endmembers (i.e. labour intensive ground-based measurements). There are 

also other practical considerations regarding the radiometric and atmospheric correction 

of the imagery. If image endmembers perform adequately as predictors of biophysical 

parameters, then image radiometric correction is not required prior to the use of SMA 

(Adams et al., 1993), and thus the image pre-processing required for SMA would be the 

same as with Vis. 

The advantages of implementing SMA go beyond the prediction of biophysical 

parameters. The spatial benefits of SMA should be considered in comparison to more 

conventional methods such as Vis that do not provide sub-pixel information. SMA 

fractions could be used as maps that only define the crop, not the soil, or residue, or 

perhaps other types of unwanted vegetation such as weeds in the future. Omitting 

irrelevant portions of the image may in turn increase the spatial accuracy of creating 

management zones that are then used in site-specific application of crop inputs (i.e. 

chemicals and fertilizer application strategies). For example, quantifying "crop only" 

pixels, or pixels which meet an end-users' threshold (e.g. a farmer decides that only 

pixels with less than 50% crop will be considered for application) could lead to more 

accurate application and spatial distribution of crop inputs. 

This research presents a very preliminary approach to SMA, for three specific crop 

types, early in the growing season and for one geographic location. To understand the 
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full potential of SMA in agriculture other sensors should be tested for multiple dates and 

locations, and new studies should include other crop types with a variety of SMA 

algorithms. Throughout the course of this discussion references will be made which 

suggest other methods for expanding the use and flexibility of SMA in agriculture. 

For each individual crop type and biophysical parameter (biomass and LAI) Figure 

5-11 to 5-15 summarizes the most significant results for each approach. Each figure 

shows the magnitude of the coefficient of determination (r2) for the prediction of biomass 

and LAI for each crop type, and provides a visual comparison of the best results obtained 

from different types of endmember sets (reference, image and integrated), and the 

different Vis. 

5.5.1 Biomass Prediction by Crop Type 

Figure 5-11 summarizes the performance of all of the remote sensing methods used 

in this research for the prediction of pea biomass. The highest r 2 value for predicting pea 

biomass in the Vis was the SR (r2 of 0.66), although the GDVI performed very similarly 

in predicting pea biomass (r2 of 0.64). The reference, image and integrated endmember 

SMA approaches showed that both the reference and image sunlit background fraction 

were good predictors of pea biomass (r2 of 0.61 to 0.62). In this instance, both the 

conventional VI and the SMA approach performed very similarly in predicting pea 

biomass early in the growing season. Practical considerations may dictate that it is not 

advantageous to use SMA for pea biomass prediction early in the growing season, unless 

the objective is to obtain an improved spatial map that shows only the sunlit crop 

component for crop input management. 
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Peas - Biomass Prediction 

Vis Reference SMA Image SMA Integrated SMA 

Figure 5-11 Summary of results for the prediction of pea biomass using remote sensing. 

Figure 5-12 summarizes the performance of all of the remote sensing methods used 

in this research for the prediction of canola biomass. The highest r 2 value for predicting 

canola biomass was both the image and reference shadowed crop fractions (r 2 of 0.85) 

from integrated test one and four. However, the reference or image sunlit crop fraction in 

all of the SMA tests was also a good predictor of canola biomass (r 2 of 0.80 to 0.81). 

Comparatively, all of the Vis predicted canola biomass with an r 2 of 0.75 to 0.77. 

Overall, the shadow fraction provided an improvement in r 2 of 0.08 to 0.10 over all of the 

conventional Vis used to predict canola biomass. As a result, the integrated endmember 

approach does offer an advantage because not all of the endmembers are reference (more 

labour intensive), and some endmembers can be selected from the imagery. In the future, 

this approach may offer the most flexibility, especially when the development of national 

reference spectral libraries may be a long and complex task for agriculture. 
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Canola - Biomass Prediction 
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Figure 5-12 Summary of results for the prediction of canola biomass using remote 
sensing. Note"*" not statistically significant at the 95% confidence level. 

In the case of the wheat crop, and biomass prediction, there was no statistically 

significant relationship to any of the remote sensing methods tested in this research. As 

discussed previously in section 5.3, this may be due to (i) the architecture of the wheat 

plant, and / or (ii) the method used to collect the ground based biomass data. 

5.5.2 LAI Prediction by Crop Type 

Figure 5-13 summarizes the performance of all of the remote sensing methods used 

in this research for the prediction of pea LAI. The highest r 2 value for predicting pea 

LAI was the reference and image sunlit crop fraction from all SMA tests (r 2 of 0.57 to 

0.58). The highest r 2 value for predicting pea LAI from the Vis was the OSAVI (r 2 of 

0.50). The relatively new SMA method provided an improvement in r 2 of 0.07 to 0.08 

for pea LAI prediction early in the growing season. This meaningful level of 

improvement may warrant the implementation of SMA over conventional methods for 
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Figure 5-13 Summary of results for the prediction of pea LAI using remote sensing. 
Note"*" not statistically significant at the 95% confidence level. 

pea LAI prediction early in the growing season, These results also indicate that further 

analysis should be done later in the growing season to understand the full potential of 

SMA as an improved spatial management tool. 
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Figure 5-14 Summary of results for the prediction of canola LAI using remote sensing. 
Note"*" not statistically significant at the 95% confidence level. 

Figure 5-14 summarizes the performance of all of the remote sensing methods used 

in this research for the prediction of canola LAI. The highest r 2 value for predicting 

canola LAI was the GDVI vegetation index with r 2 of 0.69. In all of the SMA 

approaches, the highest r 2 values for predicting canola LAI were the reference and image 

sunlit crop fractions (r 2 of 0.60 to 0.61). In this case, the conventional method was a 

better predictor of canola LAI. SMA as a predictive tool may not be advantageous for 

canola early in the growing season unless the objective is to obtain an improved spatial 

map that shows only the sunlit crop component for crop input management. 
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Figure 5-15 Summary of results for the prediction of wheat LAI using remote sensing. 
Note"*" not statistically significant at the 95% confidence level. 

Figure 5-15 summarizes the performance of all of the remote sensing methods 

used in this research for the prediction of wheat LAI. The highest r 2 value for predicting 

wheat LAI was obtained from both the reference and image sunlit crop fraction (r 2 of 

0.71) and these results included three different integrated SMA tests (one, two and six). 

The highest r 2 value for predicting wheat LAI using Vis was the SR (r2 of 0.65). Overall, 

the sunlit crop fraction from SMA provided an improvement in r 2 of 0.06 over the 

conventional VI approach as a predictor of wheat LAI. These early growing season 

results indicate that the implementation of SMA as an improved management tool may be 

advantageous for wheat LAI prediction. Image endmembers performed adequately in this 

case and therefore reduces the need for labour intensive reference endmembers and image 

correction as input into the SMA algorithm. 
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5.5.3 Summary of Results for All Crop Types 

Figures 5-16 and 5-17 provide a useful and graphic summary of the best results 

from each remote sensing method for predicting biomass and LAI for all three crop types. 

These figures are most useful for deciphering which method (new or conventional) was 

the most advantageous in predicting crop biophysical parameters. For canola, SMA 

provided an improved means for biomass prediction, whereas conventional methods 

appeared to be satisfactory in predicting pea biomass (Figure 5-16). For wheat there was 

no relationship between any of the remote sensing methods and biomass, but the results 

show that SMA provided an improved means for predicting wheat LAI (Figure 5-17). 

The conventional method appeared to be sufficient in predicting canola LAI, whereas 

SMA provided an improved means for predicting pea LAI. 

Biomass Prediction - All Three Crop Types 
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Figure 5-16 Summary of best results obtained in terms of magnitude of the coefficient of 
determination (r 2) for each remote sensing method tested to predict biomass for each crop 
type. Note: "*" not statistically significant at the 95% confidence level. 
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LAI Prediction - All Three Crop Types 
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Figure 5-17 Summary of best results obtained in terms of magnitude of the coefficient of 
determination ( r ) for each remote sensing method tested to predict LAI for each crop 

type. 

5.6 Chapter Summary 

In this chapter, remote sensing results from Vis and SMA were presented and 

discussed for predicting crop biomass and LAI. The ground based biophysical data (i.e. 

biomass and LAI) for all 98 sample site locations were first summarized for each crop 

type using descriptive statistics. Several different Vis were tested as predictors of crop 

biophysical parameters, and then a series of SMA approaches were tested which utilised 

reference, image and integrated endmembers. The final section of this chapter contained 

a discussion that was based primarily on practical management considerations that a user 

should evaluate prior to implementing any of the new or conventional remote sensing 

methods in site-specific agriculture. In this section, the strongest overall predictors of 

biomass and LAI from all of the remote sensing methods were presented. 



150 

Early in the growing season, the conventional VI method appeared to be sufficient 

in predicting pea biomass and canola LAI. In all other cases, SMA fractions were 

slightly better in predicting LAI and biomass early in the growing season. The advantage 

of implementing one method over the other is highly dependent on the end-users' 

specification for crop management in site-specific agriculture. Practical considerations 

for the time, cost and resources required to perform each method may dictate which 

method is more advantageous for real time agricultural applications. Previous research 

(Peddle et al., 1999b; Peddle and Smith, 2003) has shown greater improvements from 

SMA in comparison to Vis in the middle of the growing season. This research only 

examined three specific crops early in the growing season, however the slight 

improvements shown in this work warrants further investigation of SMA at other times 

during the growing season. 

Not only was SMA useful in predicting biophysical parameters, but this research 

also suggests that SMA can provide improved spatial segregation of relevant and 

irrelevant agronomic information (e.g. isolating the percent crop over a field, while 

separating the shadow component which would not likely be useful in delineating 

management zones for crop input application). Overall, the image endmembers were 

equivalent for predicting crop biophysical parameters to that of the reference 

endmembers in the SMA. In practical and real-time environments this is a positive result 

in that labour intensive field work, and image radiometric correction may be reduced or 

omitted entirely from the SMA pre-processing requirements. In this research, high 

resolution airborne imagery (5m) was used at a very detailed local scale. Future research 

would be required to determine if image-based endmembers would perform as well as 



151 

reference endmembers for agricultural applications that use coarser resolution imagery 

(e.g. Landsat 30m, or NOAA's GOES lkm visible or 4km IR) over much larger regional 

or national areas. 
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CHAPTER VI 

6.0 SUMMARY AND CONCLUSIONS 

6.1 Introduction 

The ability to predict crop biophysical parameters using remote sensing in site-

specific agriculture is important for furthering the development of spatially refined 

management tools. Remote sensing is a unique technology in that it provides farmers 

with a non-invasive and broader perspective of their crops throughout the growing 

season. This technology potentially provides an improved means to achieve sustainable 

agriculture in farm practices, and to promote basic principles of sustainability such as 

stewardship of land resources. Understanding and spatially defining crop variability is 

essential to maximize the use of costly crop inputs such as fertilizer, and pesticides. This 

type of spatial inventory allows the farmer to apply crop inputs to only areas of the field 

that require them, and in turn can reduce any negative environmental impacts (e.g. 

chemical run off and leaching). 

This research was conducted on an experimental farm near Indian Head, 

Saskatchewan, Canada, and was part of a much larger multi-organizational and multi-

disciplinary project undertaken at the Indian Head Agricultural Research Foundation 

(IHARF) to demonstrate the full potential of remote sensing in site-specific agriculture. 

The IHARF project was led by the Canada Centre for Remote Sensing (CCRS) with 

contributions from partners including Agri-Food and Agriculture Canada (AAFC) as well 

as a number of Canadian universities. In this study, three crops were examined early in 

the growing season; peas, wheat and canola. The objective of the research was to use 

remote sensing imagery to estimate crop biophysical parameters (LAI and biomass) by 
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employing a more recently developed image processing method (SMA) and a 

conventional image processing method (Vis). In this chapter, a summary of the results 

and findings are provided for the objectives identified (sections 6.2 and 6.3). The last 

two sections of this chapter describe the contribution of this study to the research 

community (section 6.4), and future research areas are suggested (section 6.5). 

6.2 Summary of the Comparison between Vis and SMA for Predicting Crop Biomass 

and LAI 

In this research, a series of Vis were used to predict biomass and LAI of peas, 

canola, and wheat. The Vis used were the: simple ratio (SR), green difference vegetation 

index (GDVI), normalized difference vegetation index (NDVI), transformed soil adjusted 

vegetation index (TSAVI), and the optimized soil adjusted vegetation index (OSAVI). 

Three approaches to SMA were implemented by varying endmember inputs, these 

approaches were: (i) reference, (ii) image, and (iii) integrated. Overall, the Vis performed 

very similarly in predicting biomass and LAI for all crop types early in the growing 

season. Similar to results found in forestry applications, it may be that complex 

interactions between scene components in an agricultural image (e.g. crop, soil, residue, 

and shadow) may not be differentiated by the relationship typically found in the red-NIR 

space of Vis (Peddle et al., 2001b). The results of this research suggest that utilizing a 

number of Vis early in the growing season may be empirically redundant. 

In assessing which remote sensing method (SMA or Vis) was most appropriate 

for predicting biomass and LAI for each crop type several factors were outlined that 

included considerations for the investment of time and resources, as well deciphering 

what other advantages SMA may provide beyond biophysical prediction. The highest r 
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value for predicting pea biomass prediction was the SR vegetation index (r2 of 0.66), 

whereas the highest r 2 value for predicting pea LAI was both the reference and image 

sunlit crop fractions from all SMA approaches (r2 of 0.57 to 0.58). The highest r 2 value 

for predicting canola biomass was both the image and reference shadowed crop fractions 

(r2 of 0.85), and the highest r 2 value for predicting canola LAI was the GDVI (r2 of 0.69). 

There was no significant relationship between any of the remote sensing methods and 

wheat biomass. It is suggested that this may have been due to the architecture of the 

crop, and issues surrounding how the ground data was collected. However, this research 

did determine that the strongest predictor of wheat LAI was both the reference and image 

sunlit crop fractions (r2 of 0.71) for all of the SMA approaches tested. 

In general, all three approaches to SMA (i.e. reference, image and integrated 

endmembers) provided a slightly improved predictive tool for crop LAI and biomass 

early in the growing season, except in the case of pea biomass and canola LAI where the 

conventional VI approach was sufficient. In the reference and image SMA approaches, 

the sunlit crop fraction was the most consistent predictor of LAI and biomass, except in 

the case of the pea crop where the sunlit background fraction was a better predictor of 

biomass. In the integrated endmember approach to SMA, there was an improvement in 

the predictive capability of the shadowed crop fraction for canola biomass, but in most 

cases the sunlit crop fraction was consistently the best predictor of LAI and biomass. 

Successful adoption of SMA in site-specific agriculture could hinge on such 

factors as the ability to obtain proper endmember inputs, and to a lesser extent achieving 

comparable processing time to that of the conventional methods (i.e. Vis). SMA fraction 

results that only quantify the crop (and not irrelevant contributions to the pixel signal 
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such as soil and residue) could be used to improve variable rate application strategies for 

crop inputs (e.g. fertilizers, pesticides including herbicides). In this research, SMA did 

provide a marginally improved tool for predicting crop LAI and biomass early in the 

growing season, except in the case of pea biomass and canola LAI. The image 

endmembers performed very similarly to the more labour intensive and spectrally pure 

reference endmembers. The satisfactory performance of image endmembers as predictors 

of crop biophysical parameters means that the complexity of SMA, and the processing 

time required, would be reduced since field based reference endmember collection and 

image radiometric correction are not required. 

6.3 Conclusions 

A number conclusions were made from this research: 

• The variety of Vis tested for this research all performed very similarly and this 

suggests that implementing a series of Vis may be empirically redundant in 

agriculture, as has been found in forestry. 

• The soil-adjusted Vis may not have been required in this research because the 

background was primarily residue with some bare soil, and vegetation cover was 

not greater than 50% therefore the sensitivity of the soil-adjusted Vis may have 

been minimized because there wasn't enough crop present in the imagery to 

induce a canopy-scattered background-reflected signal. 

• Overall the results showed that image endmembers performed similarly to the 

reference endmembers as input for SMA. The reduction in both complexity and 

time required to perform SMA using image endmembers suggests this is not a 

confounding factor in comparison to conventional Vis. 
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9 SMA fraction maps can be produced using all three approaches to SMA. This 

type of sub-pixel output could provide a more spatially refined management tool 

for site-specific agriculture compared to the conventional methods. 

6.4 Contributions to Research 

This research has made several scientific contributions to the research 

community. The theoretical motivation for this research was to evaluate a relatively new 

remote sensing method (SMA) against conventional methods to improve on what spatial 

tools are available for farmers who practice site-specific agriculture. In theory, if a 

farmer can spatially predict crop biomass and LAI early in the growing season then 

opportunity exists to try and improve deficient regions of the field. As a result, the 

farmer could better understand what regions of a particular field are worth investing in 

economically. If a farmer is making better site-specific decisions on where to place crop 

inputs (e.g. fertilizers and pesticides) then it is likely that the crop is using those inputs 

more efficiently. If the crop is using inputs more efficiently then more environmentally 

sound and sustainable practices are being encouraged on the farm. This thesis research 

has evaluated improved remote sensing management tools that can further the 

development of existing site-specific management programs. 

Methodological contributions of this research stem from the fact that this work 

has addressed two important remote sensing issues that have not been explicitly dealt 

with in the literature: (i) evaluating different inputs to linear SMA for agriculture, and (ii) 

the use of several spectral bands from airborne hyperspectral imagery in the early part of 

the growing season. A variety of endmember approaches to SMA were evaluated (e.g. 

reference, image and integrated) as well as two different software programs. This 
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research also dealt with several pre-processing issues due to the use of two different 

ground based sensors in conjunction with the corresponding hyperspectral imagery. The 

purpose of testing a variety of approaches to the new remote sensing image analysis 

method was to establish the most advantageous approach for site-specific agricultural 

applications. It should be noted that this research expanded on previous work done in 

agriculture by predicting the biophysical parameters of three prominent crop types found 

in the prairie region of western Canada. However, these crop types were specific to one 

geographic location, and further tests at other locations would be needed to verify how 

well these methods work elsewhere. 

This research not only evaluated a relatively new image processing method 

(SMA), but did so in a direct comparison with conventional methods (Vis). In most 

cases, SMA did provide slight improvements in comparison to conventional Vis for 

predicting biomass and LAI early in the growing season. Unlike conventional methods, 

SMA takes advantage of a number of spectral bands that can better characterize the 

spectral response of specific crop types throughout the entire electromagnetic spectrum. 

These empirically based findings suggest that SMA is worth investigating not only for 

biophysical prediction but also at a more simplistic level for spatially separating relevant 

and irrelevant agronomic information for farmers. SMA provides a sub-pixel analysis 

tool which can take full advantage of the information provided in both hyperspectral and 

multispectral remote sensing imagery. The results of this research were from the early 

part of the growing season, and suggest that further examination of SMA later in the 

growing season is warranted. 
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6.5 Future Research 

Several areas for future research have been identified in this thesis. First, an 

evaluation of the full potential of SMA should include a multi-temporal analysis that 

encompasses the life cycle of the crop (i.e. multiple image acquisitions throughout the 

growing season). There are well known limitations with the use of Vis later in the 

growing season because the ratio of red to near infrared approaches limiting values 

asymptotically as LAI increases (Wiegand and Richardson, 1984). The relationship 

between Vis and LAI, photosynthetic activity, and yield are not as strong in high LAI 

conditions (Wiegand and Richardson, 1990), thus SMA may provide a tool for accurately 

quantifying agricultural image components later in the growing season. Earlier work by 

Peddle and Smith (2003) showed improvements using SMA in the middle portion of the 

growing season for potatoes. However, new research should be expanded to include 

other crop types in a variety of geographic locations. 

Secondly, this research utilized a SMA algorithm and software described in 

Shimabukuro and Smith (1991) that was an accessible and well documented starting 

point for agricultural applications, however, it did not readily produce fraction maps. 

Future research should evaluate how fraction maps can be easily transferred into site-

specific management strategies (e.g. as input into a GIS) especially for those strategies 

where the objective is variable rate application of crop inputs such as fertilizer and 

pesticides. This could involve conventional image classification of fraction maps, or 

simple thresholding techniques that can provide the analyst with a method of 

implementing specific intervals. For example, fraction maps could be produced with a 

legend or look-up table applied that isolates regions of the field with only pixels that have 
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greater than or less than 50% contribution of sunlit crop. This type of spatial segregation 

focuses the attention of field managers to discrete regions of the field which require 

immediate attention (stressed areas with less than 50% crop) and those regions that may 

not require any further crop inputs (above 50% crop). 

Apart from the spatial advantages of SMA, this research only examined a three 

endmember SMA algorithm, however, it may require modification for specific 

agricultural applications. This research assumed that the interaction of solar energy 

within the crop canopy was a linear problem. More comprehensive and additional 

algorithms may be worth investigating such as the use of more than three endmembers, 

and possibly more involved non-linear approaches. As highlighted in Chapter 3, there 

are a variety of SMA algorithms available, as well as methods for the optimization of the 

endmember selection process. 

The development of analysis techniques using hyperspectral data, especially SMA, 

have emerged out of the field of spectroscopy and therefore focus on the spectral nature 

of the data (Plaza et al., 2002). In the case of the image endmember approach to SMA, 

typically the analyst will examine the spectral characteristics of the imagery prior to the 

selection of endmembers and very little consideration for spatial variability is explored. 

However, in agriculture there is explicit examination of spatial variability especially with 

the objective of creating management zones. Plaza et al. (2002) established a method 

based on mathematical morphology that recognized the selection of endmembers is a 

non-linear task, and requires a "local-to-global" approach in which the spatial correlation 

of pixels is examined in addition to spectral purity. The spatial context of the Plaza et al. 

(2002) work is based on local operators, which use pixel neighborhoods to replace an 
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anomalous pixel with a value that meets specific conditions (i.e. in the endmember case 

this is criteria for spectral purity). This approach is based on image endmember selection 

that in this research proved to be more than adequate. In site-specific agriculture, one of 

the main objectives is to produce or use existing 'management zone maps' which can be 

implemented and customized over time to treat the crop according to production 

limitations. Spatial considerations for endmember selection could be provided in 

agricultural applications of SMA by using management zones as input into this selection 

process. 

Another suggestion for the future of SMA in agricultural research is modelling. 

Prospective models may ingest SMA results or at a minimum help in modelling more 

effective SMA inputs such as endmembers. Modelling could take the form of deriving 

endmembers in n-dimensional space from image-based spectral inputs for deriving more 

spectrally pure endmembers that are also known in the literature as virtual endmembers 

(Tompkins et al., 1997). Another related area of research may involve canopy reflectance 

models and associated model inversions (e.g. SAIL, PROSPECT, and NADI). These 

models can use endmember inputs to model canopy reflectance, and can be inverted to 

obtain canopy level biochemical and biophysical parameters of the crop such as 

chlorophyll content and LAI (Jaquemoud et al., 2000). 

Geometric-optical reflectance models may provide a mechanism for defining 

agricultural regions more effectively. Geometric-optical models have been used 

primarily in forestry, but may have promise in other vegetation applications such as 

agriculture where the interaction of scene components is somewhat similar. For example, 

crops are much smaller than trees but on a micro-scale have complex backgrounds with 
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similar sun-surface-sensor geometry that can be modeled. Geometric-optical models can 

be used to study the effects of solar zenith angle on mixture fractions (Peddle et al., 

1999a). Modelling of this nature may be useful for multi-temporal studies in agriculture 

where imagery is obtained at different times in the growing season, and at different times 

of the day, and therefore require correction for bi-directional reflectance factors (BDRF). 

More advanced geometric-optical models such as the Multiple Forward Mode 5-Scale 

approach could provide agriculture with structural (e.g. crop height and density) and 

biophysical information (e.g. LAI) that is obtained explicitly from the model and avoids 

the necessity for empirically driven relationships (Peddle 2003a,b,c). 
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Appendix A - Probe-1 Bands and Gains 

Probe-1 
Band 

Center 
Wavelength 

(nm) 
Band 
Width 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 
ESSI Gains 

CCRS-
Vicarious 

Calibration 
Gains 

1 435.7 15.0 428.20 443.20 0.1543373 0.177052 
2 446.2 15.3 438.55 453.85 0.0391416 0.042215 
3 460.4 17.1 451.85 468.95 0.0248649 0.026552 
4 476.5 16.6 468.20 484.80 0.018852 0.019539 
5 491.0 16.0 483.00 499.00 0.0146456 0.015059 
6 506.8 15.7 498.95 514.65 0.0121300 0.012597 
7 521.6 16.3 513.45 529.75 0.0110068 0.011295 
8 537.5 16.9 529.05 545.95 0.0105144 0.010662 
9 552.8 15.7 544.95 560.65 0.0092656 0.009395 
10 567.5 15.5 559.75 575.25 0.0090569 0.009239 
11 582.1 20.0 572.10 592.10 0.0122845 0.012531 
12 599.0 14.0 592.00 606.00 0.0094949 0.009705 
13 613.7 15.2 606.10 621.30 0.0086864 0.008932 
14 627.8 14.4 620.60 635.00 0.0109377 0.011224 
15 645.9 14.7 638.55 653.25 0.0113623 0.011683 
16 660.1 16.5 651.85 668.35 0.0088306 0.008972 
17 675.7 16.4 667.50 683.90 0.0090487 0.009231 
18 690.9 15.9 682.95 698.85 0.0096394 0.009658 
19 705.2 16.4 697.00 713.40 0.0128806 0.012548 
20 721.6 15.3 713.95 729.25 0.0116502 0.011168 
21 735.8 16.0 727.80 743.80 0.0095932 0.008870 
22 750.9 16.5 742.65 759.15 0.0094918 0.008936 
23 765.9 15.9 757.95 773.85 0.0100221 0.008742 
24 780.7 18.7 771.35 790.05 0.0126871 0.011336 
25 796.9 16.2 788.80 805.00 0.0110071 0.010177 
26 812.1 16.9 803.65 820.55 0.0105378 0.010041 
27 827.6 16.8 819.20 836.00 0.0106492 0.010026 
28 843.1 17.0 834.60 851.60 0.0118954 0.010954 
29 857.2 16.8 848.80 865.60 0.0159936 0.014348 
30 874.7 15.8 866.80 882.60 0.0170974 0.015619 
31 888.5 16.9 880.05 896.95 0.016836 0.015787 
32 903.0 16.1 894.95 911.05 0.0238442 0.021957 
33 895.2 15.8 887.30 903.10 0.0148945 0.000165 
34 908.7 12.9 902.25 915.15 0.0146048 0.000157 
35 929.0 13.8 922.10 935.90 0.0102206 0.010384 
36 943.0 15.7 935.15 950.85 0.0059243 0.006007 
37 958.9 15.2 951.30 966.50 0.0052679 0.005215 
38 972.9 19.1 963.35 982.45 0.0082198 0.007434 
39 991.7 14.4 984.50 998.90 0.0057196 0.005342 
40 1006.2 15.5 998.45 1013.95 0.0043127 0.003869 
41 1021.4 15.4 1013.7 1029.10 0.0044344 0.003860 
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Probe-1 
Band 

Center 
Wavelength 

(nm) 

Band 
Width 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

ESSI Gains C C R S -
Vicarious 

Calibration 
Gains 

42 1036.0 19.7 1026.15 1045.85 0.0066560 0.005782 
43 1053.7 14.2 1046.60 1060.80 0.0043655 0.003964 
44 1067.7 15.8 1059.80 1075.60 0.0032962 0.002993 
45 1082.8 15.6 1075.00 1090.60 0.0031843 0.00295 
46 1097.5 16.0 1089.50 1105.50 0.003556 0.003375 
47 1113.0 16.2 1104.90 1121.10 0.0035504 0.003494 
48 1127.9 15.9 1119.95 1135.85 0.0029810 0.003065 
49 1142.5 15.3 1134.85 1150.15 0.0027851 0.002939 
50 1157.0 15.6 1149.20 1164.80 0.0028301 0.002802 
51 1171.5 16.0 1163.50 1179.50 0.0031104 0.003042 
52 1186.4 16.2 1178.30 1194.50 0.0030937 0.003081 
53 1200.8 15.4 1193.10 1208.50 0.0030545 0.003055 
54 1215.0 15.6 1207.20 1222.80 0.0032295 0.003184 
55 1229.3 16.0 1221.30 1237.30 0.0034878 0.003398 
56 1243.7 15.8 1235.80 1251.60 0.0034135 0.003339 
57 1258.0 15.5 1250.25 1265.75 0.0033913 0.003480 
58 1271.9 15.4 1264.20 1279.60 0.0035512 0.003695 
59 1286.2 16.2 1278.10 1294.30 0.0037672 0.003752 
60 1300.4 15.5 1292.65 1308.15 0.0037155 0.003716 
61 1314.3 15.5 1306.55 1322.05 0.0037690 0.003938 
62 1328.1 15.3 1320.45 1335.75 0.0039934 0.004273 
63 1341.3 14.3 1334.15 1348.45 0.0047860 0.004834 
64 1353.7 14.6 1346.40 1361.00 0.0086448 0.008645 
65 1396.7 16.0 1388.70 1404.70 0.0022702 0.002270 
66 1410.2 > 17.0 1401.70 1418.70 0.0019774 0.001977 
67 1424.6 17.6 1415.80 1433.40 0.0020577 0.002058 
68 1440.0 17.3 1431.35 1448.65 0.0019664 0.001966 
69 1454.7 16.2 1446.60 1462.80 0.0016230 0.001623 
70 1468.4 15.9 1460.45 1476.35 0.0014044 0.001643 
71 1482.3 15.8 1474.40 1490.20 0.0013066 0.001563 
72 1496.2 15.9 1488.25 1504.15 0.0012881 0.001454 
73 1510.0 15.3 1502.35 1517.65 0.0012772 0.001372 
74 1523.6 15.3 1515.95 1531.25 0.0013521 0.001413 
75 1537.3 15.5 1529.55 1545.05 0.0014252 0.001451 
76 1551.0 15.5 1543.25 1558.75 0.0014526 0.001461 
77 1564.6 15.1 1557.05 1572.15 0.0014018 0.001413 
78 1577.7 14.9 1570.25 1585.15 0.0013439 0.001379 
79 1590.8 15.2 1583.20 1598.40 0.0013326 0.001370 
80 1604.0 15.1 1596.45 1611.55 0.0013601 0.001382 
81 1617.1 14.8 1609.70 1624.50 0.0014010 0.001415 
82 1630.0 14.7 1622.65 1637.35 0.0014388 0.001433 
83 1642.9 15.0 1635.40 1650.40 0.0014563 0.001448 
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Probe-1 
Band 

Center 
Wavelength 

(nm) 

Band 
Width 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

ESSi Gains C C R S -
Vicarious 

Calibration 
Gains 

84 1655.8 14.6 1648.50 1663.10 0 .0014565 0 .001454 
85 1668.4 14.5 1661.15 1675.65 0.0014956 0 .001502 
86 1681.0 14.4 1673.80 1688.20 0.0015328 0 .001548 
87 1693.7 14.9 1686.25 1701.15 0.0015808 0.001606 
88 1706.3 14.3 1699.15 1713.45 0 .0016134 0 .001649 
89 1718.7 14.2 1711.60 1725.80 0.0015943 0.001643 
90 1731.0 14.0 1724.00 1738.00 . 0.0016011 0 .001669 
91 1743.3 14.2 1736.20 1750.40 0 .0016025 0 .001684 
92 1755.5 14.0 1748.50 1762.50 0.0016608 0 .001735 
93 1767.7 13.8 1760.80 1774.60 0 .0017374 0 .001804 
94 1779.7 13.7 1772.85 1786.55 0 .0018449 0.001931 
95 1791.8 14.0 1784.80 1798.80 0.0020216 0 .002022 
96 1803.8 13.5 1797.05 1810.55 0.002217 0.002217 
97 1979.2 21.1 1968.65 1989.75 0.0006373 0.000637 
98 1998.0 21.2 1987.40 2008 .60 0.0006068 0.000607 
99 2016.7 21.4 2006.00 2027.40 0 .0005959 0.000733 
100 2035.7 21.6 2024.90 2046.50 0 .0005789 0.000641 
101 2054.7 21.3 2044.05 2065.35 0.0005716 0.000600 
102 2073.3 20.9 2062.85 2083.75 0 .0005623 0.000637 
103 2091.5 20.2 2081.40 2101 .60 0 .0005499 0.000612 
104 2109.7 20.1 2099.65 2119.75 0.0005303 0.000587 
105 2127.6 20.3 2117.45 2137.75 0 .0005165 0.000569 
106 2145.8 20.4 2135.60 2156 .00 0 .0005084 0.000555 
107 2163.8 20.1 2153.75 2173 .85 0 .0005060 0.000556 
108 2181.4 19.1 2171.85 2190 .95 0 .0005174 0.000569 
109 2198.1 19.4 2188.40 2207.80 0 .0005334 0.000597 
110 2216.5 19.1 2206.95 2226.05 0.0005576 0.000635 
111 2234.1 18.8 2224.70 2243.50 0 .0005804 0.000635 
112 2251.5 19.4 2241.80 2261 .20 0.0006032 0.000640 
113 2268.9 18.6 2259.60 2278.20 0.0006317 0.000672 
114 2286.1 18.5 2276.85 2295 .35 0.0006558 0.000703 
115 2303.0 17.9 2294.05 2311.95 0.0006865 0.000736 
116 2319.6 17.4 2310.90 2328.30 0.0007116 0 .000754 
117 2336.2 18.0 2327.20 2345 .20 0.0007102 0.000758 
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Appendix B - Comparison of SMA Programs 

In order to demonstrate that SMA can be performed in a commercially available 

software package, the Shimabukuro and Smith (1991) SMA program and the ENVI 

Linear Spectral Unmixing (LSU) results were directly compared for the wheat crop using 

the reference endmembers as input. As mentioned in Chapter 4, the Shimabukuro and 

Smith (1991) SMA program was limited to seven bands (Table 4-9) and to ensure a good 

comparison with the ENVI LSU tools the same seven bands were utilized. For research 

purposes the Fortran program created by Shimabukuro and Smith (1991) allowed for 

much more flexibility in this research in terms of access to the algorithm and its 

parameters. Each respective program is based on the unconstrained algorithm where 

underflow and overflow fraction values can result, but the total of each fraction must sum 

to unity. The advantage of ENVI in comparison to the Shimabukuro and Smith (1991) 

program is that ENVI produces fraction maps for each individual scene component, as 

well as an overall RMS error map. The RMS error map is useful in identifying regions of 

the study area where the endmember input was not sufficient, and provides the analyst 

with a visual method to investigate why this may have occurred. 

Figure B-l shows the minimum, maximum, and mean absolute fraction values for 

each scene component and all sample site locations (n=34) of the wheat crop. The 

minimum, maximum, and mean absolute fraction values were identical between the two 

programs for the reference sunlit crop. The reference shadowed crop maximum fraction 

values were identical for both programs (0.57), whereas the minimum fraction value for 

Shimabukuro and Smith (1991) was slightly lower (0.27) then the ENVI LSU minimum 

fraction value (0.34). There were slight differences in the reference sunlit background 
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Figure B-l Shimabukaro and Smith (1991) SMA (S&S'91) and the ENVI LSU fraction 
results using only the reference endmembers for SMA of the wheat crop (n=34). Each 
fraction result labeled with minimum, maximum and mean absolute fraction values. 

fraction results in that the Shimabukuro and Smith (1991) program produced minimum 

and maximum fraction values that were slightly higher (0.12 versus 0.08, and 0.60 versus 

0.55) than the ENVI LSU minimum and maximum fraction values. Overall, the mean 

value for all absolute fractions from both SMA programs varied +/- 0.05. In conclusion, 

it would be feasible to use the commercial program in operational environments to 

produce very similar fractions results as were found in this research for using the 

Shimabukuro and Smith (1991) software. 
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Appendix C: Linear Regression Analysis for the Prediction of Biomass and LAI 
using Vegetation Indices 

Figure C-l: Linear regression analysis results for vegetation index prediction of pea LAI 
and biomass. 
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Figure C-2: Linear regression analysis results for vegetation index prediction of canola 
LAI and biomass. 
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Figure C-3: Linear regression analysis results for vegetation index prediction of wheat 
LAI and biomass. 
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Appendix D: Linear Regression Analysis for the Prediction of Biomass and LAI 
using SMA 
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Figure D-l : Linear regression analysis results for SMA using reference endmembers to 
predict of pea biomass and LAI. 



Figure D-2: Linear regression analysis results for SMA using image endmembers to 
predict of pea biomass and LAI. 
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Figure D-3: Linear regression analysis results for SMA using reference endmemebrs to 
predict canola biomass and LAI. 
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Figure D-4: Linear regression analysis results for SMA using image endmembers to 
predict canola biomass and LAI. 



Figure D-5: Linear regression analysis results for SMA using reference endmembers to 
predict wheat biomass and LAI. 
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Figure D-6: Linear regression analysis results for SMA using image endmembers to 
predict wheat biomass and LAI. 
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Appendix E: Linear Regression Analysis of ground-based Biomass and LAI data for 
each crop type. 
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Wheat - Biomass versus LAI 


