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Abstract 

Homologous recombination represents a DNA repair pathway. Its role in a plant 

cell is not limited to double strand break repair. It also extends to genome evolution via 

rearranging of DNA sequences, and has an important application in foreign DNA 

integration in the plant genome. Our study demonstrated that effects exerted by stress on 

homologous recombination and genome stability are not restricted to the exposed 

generation. The progeny of plants exposed to stress exhibited elevated spontaneous 

homologous recombination, changes in DNA methylation and higher tolerance to stress. 

These heritable changes are mediated by an unknown stress-inducible epigenetic signal. 

Furthermore, we demonstrated that using factors that enhance homologous recombination 

can improve the efficiency of genetic transformation by Agrobacterium. We have 

developed and patented a plant growth medium enhancing homologous recombination 

and significantly increasing the transformation frequency. The role of several other 

chemicals for the improvement of transformation was also evaluated. 
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 1 

1. Introduction 

Plant adaptation to changing environmental conditions represents a complex array 

of biochemical, molecular and metabolic responses, all of which are orchestrated by the 

cell’s genetic material. High plasticity of the plant genome is one of the key determinants 

for quick acclimation to ever-changing growth conditions (Chinnusamy et al., 2004; 

Turunen and Latola, 2005). Plants rely on a complex network of stress perception and 

stress signaling pathways, many of which may cross-talk at various steps (Zhu, 2001; 

Seki et al., 2002, 2003; Chinnusamy et al., 2004), leading to the activation of hundreds of 

genes, changes in cell transcription and metabolome profiles followed by adaptive 

changes to new growth conditions (Thomashow, 1999; Cook et al., 2004; Kaplan et al., 

2004; Larkindale et al., 2005; Kotak et al., 2007; Zhu et al., 2007a).  

Successful adaptation to the new environment is not restricted to physiological 

changes but also requires effective mechanisms protecting the integrity of the plant 

genome under a negative influence of stress (Arnholdt-Schmitt, 2004; Madlung and 

Comai, 2004). Stress perception, signaling and defensive reactions frequently involve the 

overproduction of reactive oxygen species (ROS) in various cell compartments (Vranova 

et al., 2002). Apart from their role as a secondary messenger and defense molecule 

(Mittler, 2002; Pastori and Foyer, 2002; Vranova et al., 2002), ROS may cause an 

extensive damage to cellular macromolecules and organelles (Blokhina et al., 2003) and 

even trigger cell apoptosis (Mittler, 2002). Thus, a tight control over the balance between 

ROS production and ROS scavenging must exist in a cell to prevent or minimize negative 

effects of oxidative damage under stress or normal physiological conditions (Desikin et 

al., 2001, Knight and Knight, 2001; Mittler, 2002).  
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Oxidative damage to DNA resulting from the interaction with ROS represents a 

significant threat to genome integrity and carries a powerful mutagenic potential (Loeb 

and Preston 1986; Breimer, 1990; Evans et al., 1993; Babiychuk, et al., 1994). ROS-

derived DNA damage challenges the DNA repair machinery. In fact, even a successful 

repair event may still result in altering an original DNA sequence due to either the 

imprecision of DNA repair pathways used or lower fidelity of repair polymerases, 

compared to replicative polymerases (Loeb and Preston, 1986; Strathern et al., 1995; 

Gorbunova and Levy, 1999; Orel et. al., 2003; Kovalchuk et al., 2004a; Puchta, 2005). 

One of the most critical forms of oxidative damage to DNA is represented by DNA 

double strand breaks (DSBs) (Breimer, 1990; Mittler, 2002: Blokhina et al., 2003), which 

if left unrepaired can result in a loss of genetic information, chromosomal translocations, 

cell cycle arrest and apoptosis (Evans et al., 1993; Critchlow and Jackson, 1998; 

Shrivastav et al., 2008). 

In fact, a number of natural stresses and various chemicals were shown to affect 

genome stability. Among those are light spectrum (Ries, et al., 2000a) and day length 

(Boyko et al., 2005), various types of ultraviolet (UV) (Puchta, et al., 1995; Ries, et al., 

2000b; Molinier et al., 2005; Boyko et al., 2006b) and ionizing radiation (Kovalchuk, et 

al., 1998), chemical mutagens (Brennan and Schiestl, 1998; Kovalchuk, et al., 2001), 

toxic substances such as herbicides (Filkowski, et al., 2003), temperature (Lebel, et al., 

1993; Jiang, et al., 2003; Boyko et al., 2005), salt (Puchta, et al., 1995; Boyko et al., 

2006c, 2008; Boyko and Kovalchuk 2008b), water stress (Kalendar, et al., 2000), and 

pathogen attack (Lucht, et al., 2002; Kovalchuk, et al., 2003a; Boyko et al., 2007). 
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There are two major evolutionarily conserved DNA repair pathways available in a 

cell that can repair DSBs. These are homologous recombination (HR) and non-

homologous end-joining (NHEJ). They both compete for the same substrate, the DSB 

substrate, and as their names suggest, they have different requirements with respect to a 

repair template (high homology vs. microhomology), thereby offering a different fidelity 

of DNA repair (Salomon and Puchta, 1998; Gorbunova and Levy, 1999; Orel et. al., 

2003; Dudas and Chovanec, 2004; Puchta, 2005; Bleuyard et al., 2006; Shrivastav et al., 

2008). Moreover, a cell can discriminate in favor of using one of these two DSB repair 

pathways. In general, the balance between these two competitors is tightly controlled, and 

it depends on the availability of repair templates, cell cycle phase, proliferation rate, and 

functions of specific cell types (reviewed in Shrivastav et al., 2008).  

Recent literature reveals that DSB repair pathways and HR in particular are 

important in plant genome evolution and development of stress tolerance, with DSBs 

being raw material for increasing intragenome diversity and plasticity (Gorbunova and 

Levy, 1999; Kirik et al., 2000; Puchta, 2005; Boyko et al., 2007). In plant genomes that 

contain high amounts of repetitive DNA (Flavell, 1985), the elevated activity of HR may 

mediate rearrangements between repetitive sequences, and these rearrangements generate 

new alleles of existing genes. Importantly, many disease-resistance genes usually show 

high polymorphism and can be located in clusters, thereby being a good target for HR 

mediated rearrangements (Richter et al., 1995, Stah et al., 1999; Rocha et al., 2002; 

Tornero et al., 2002; Mauricio et al., 2003; Meyers et al., 2005).  

A negative correlation between HR activity and the methylation level of repair 

templates (Engler et al., 1993; Bender 1998; Bassing et al., 2002) allows speculation that 
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DNA methylation can be used to protect important genes from undesirable 

rearrangements, or in contrast, DNA demethylation can encourage recombination when 

plants are exposed to certain stresses (Rizwana and Hahn, 1999; discussed in Boyko et 

al., 2007). A correlation has been observed between tolerance to pathogen stress and the 

increased frequency of rearrangements in the R-gene-like loci in the progeny of virus-

challenged plants (Boyko et al., data not published). This notion supports a contribution 

of HR toward stress-accelerated evolution of sequences of a given gene.  

Similarly, DNA methylation plays an important role not only in control of the 

activity of transposable elements and defence against foreign DNA but also in reversible 

modifications of gene expression profiles that can be inherited (Bender, 2004; 

Rassoulzadegan et al., 2006). Importantly, various stresses were shown to trigger changes 

in DNA methylation (Steward et al., 2000; Henderson and Dean, 2004). Some of these 

changes are essential for stress protection (Wada et al., 2004; Sha et al. 2005; Dyachenko 

et al., 2006). Information about stress-induced transcription profiles that might also 

confer tolerance to stress can be reversibly stored in DNA using epigenetic modifications 

(reviewed in Boyko and Kovalchuk, 2007, 2008a). The inheritance of stress-induced 

changes in gene expression is of great importance to plants, since equipping the progeny 

with a ‘memory of stress’ can enhance its tolerance and minimize damage delivered 

during the first exposure (reviewed in Boyko and Kovalchuk, 2007, 2008a). Increased 

tolerance to the same stress in the progeny of stress-treated plants was shown for cold 

(Blödner et al., 2007), salt (Boyko et al., 2008; Boyko and Kovalchuk 2008b), heavy 

metals (Boyko et al., 2008), and pathogen stresses (Boyko et al., data not published). 

Intriguingly, increased stress tolerance observed in the immediate progeny of stressed 
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plants correlated with elevated spontaneous frequency of HR (HRF), suggesting that HR 

may also contribute to a phenomenon of acquired transgenerational tolerance to stress 

(Boyko et al., 2008; Boyko and Kovalchuk 2008b; Boyko et al., data not published). 

Epigenetic memory fixed in the form of DNA methylation can be further 

reinforced via numerous histone modification and chromatin remodelling processes that 

lead to the formation of heritable epialleles and paramutations (reviewed in Boyko and 

Kovalchuk, 2008a). Targeting chromatin structure followed by changes in gene 

expression and generation of new transcription profiles can be mediated via the activity 

of small RNA (smRNA) molecules (Bender 2004; Matzke et al., 2004; Chan et al., 2006; 

Matzke et al., 2006; reviewed in Matzke and Birchler, 2005). In fact, a number of 

smRNAs reported to date were found to be regulated by a variety of stresses, including 

mechanical stress, dehydration, salinity, cold, pathogen attack, abscisic acid and nutrient 

deprivation (Sunkar and Zhu, 2004; Borsani et al., 2005; Lu et al., 2005; Katiyar-

Agarwal et al., 2006; reviewed in Sunkar et al., 2007).  

Similarly to epigenetic traits, an altered HRF can be inherited by the progeny of 

stressed plants, persisting in a population for one or several non-stressed generations 

(Kovalchuk et al., 2003b; Molinier et al., 2006; Boyko et al., 2007, 2008; Boyko and 

Kovalchuk 2008b). Based on the fact that both meiotic and somatic HRF can be induced 

by a variety of biotic and abiotic stresses (Kovalchuk et al., 2003a, 2003b, 2004a; 

Molinier et al., 2005, 2006; Boyko et al., 2005, 2006b, 2006c, 2007, 2008; Boyko and 

Kovalchuk 2008b), we suggest that HR can represent one of the mechanisms of stress 

adaptation. 
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Not only does HR play an important role as a DNA repair pathway and an 

evolutionary mechanism contributing to plant adaptation to stress, but it also has an 

essential application in biotechnology for foreign DNA integration in the host genome 

(Vergunst and Hooykaas, 1999; Puchta 2002; Hanin and Paszkowski, 2003; Reiss 2003; 

Lida and Terada, 2004). A homology-dependent mode of DNA repair possessed by the 

HR pathway makes it an invaluable tool for gene targeting (GT) technology in plants. 

Unfortunately, unlike NHEJ events that usually occur at high frequency in plant cells, the 

frequency of HR is quite low, thereby creating a major obstacle for GT in plants. In fact, 

there are only a very few reports of successful GT by HR in higher plants (Kempin et al., 

1997; Terada et al., 2002).  

Nowadays, one of the dominant technologies used for the delivery and integration 

of foreign DNA is represented by Agrobacterium-mediated genetic transformation. This 

approach relies on the ability of a natural plant soil pathogen, Agrobacterium, to 

transform its host with bacterial DNA. This leads to the expression of bacterial genes in a 

host cell. Current technology involves substitution of bacterial genes with sequences of 

interest that can be delivered to host cells instead (reviewed in Gelvin, 2003). A list of 

species that can be transformed using this technology includes various plants, fungi, yeast 

and even human cells, and it continues to grow (Tzfira and Citovsky, 2003; reviewed in 

Lacroix et al., 2006). Increasing the efficiency of Agrobacterium-mediated genetic 

transformation is one of the critical problems in modern biotechnology. 

Successful transgene integration into the recipient genome completely depends on 

the activity of host DNA repair proteins (van Attikum and Hooykaas, 2003; reviewed in 

Citovsky et al., 2007). Therefore, the activity of related host factors has become a 
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bottleneck in the entire transformation procedure. In fact, transgene integration is 

preferentially targeted to DSB sites in the host genome (Chilton and Que, 2003; Tzfira et 

al., 2003); hence, HR and NHEJ become key players during the last step of 

Agrobacterium-mediated transformation. 

Different fidelity of DNA repair by HR and NHEJ is reflected in the precision and 

intactness of transgene integration via either of these two pathways. While the 

involvement of NHEJ usually results in multiple transgene insertions containing deletions 

and filling sequences (Salomon and Puchta, 1998; Chilton and Que, 2003), HR can 

mediate precise site-specific transgene integrations, which makes it a highly desired tool 

for GT (Vergunst and Hooykaas, 1999; Puchta 2002; Reiss 2003). Consequently, factors 

that could promote HR and/or inhibit NHEJ can considerably facilitate the improvement 

of Agrobacterium-mediated genetic transformation and GT in particular. 

Our previous studies demonstrated that HRF can be greatly increased by a variety 

of abiotic and biotic stresses (Boyko et al., 2005, 2006b, 2006c, 2007, 2008; Boyko and 

Kovalchuk 2008b). Based on our previous findings, we hypothesised that growing plants 

under mild salt stress, which is known to trigger ROS overproduction, will result in DNA 

damage. The high number of DNA DSBs will increase the activity of HR. Furthermore, 

continuous exposure to stress will result in the establishment of epigenetic ‘stress 

memory’ or other signal(s) that can be transmitted to the progeny of stressed plants. If our 

hypothesis is correct, increased tolerance to salt or other genotoxic stress accompanied by 

a modified DNA repair capacity and changes in DNA methylation will be seen in the 

progeny of stressed plants. Additionally, we hypothesised that using factors that increase 

HRF could influence the rate and quality of transgene integration via the Agrobacterium-
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mediated plant transformation system. If our hypothesis is correct, we will see a higher 

number of stable transformants in plants which before transformation were grown in 

media containing factors which favor a higher HRF. Overall, we think that revealing the 

mechanisms that control HR could enhance our understanding of plant stress responses 

and facilitate the identification of factors that influence the efficiency of plant 

transformation by Agrobacterium. 

The primary goal of our work is to identify cellular factors, abiotic and biotic 

stress elements which may control the level of chromosomal HR in plant somatic cells 

and elucidate the roles of the abovementioned factors in plant adaptation to stress. In 

order to reach the primary goal, two specific aims have been established:  

– To analyze immediate and transgenerational changes in plant genome stability 

triggered by salt stress and investigate the role of HR in the development of 

adaptation to stress;  

– To develop an efficient protocol that would allow the improvement of the rate 

and precision of transgene integration into the plant genome using a 

conventional Agrobacterium-mediated transformation system 

 

In order to reach the goal, the following objectives were set: 

 

Salt stress: 

– to describe the influence of salt stress on genome stability of somatic cells; 
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– to describe changes in genome stability in the progeny of salt-exposed plants; 

and to elucidate the role of continuous stress exposure in the persistence of 

these changes; 

– to describe the role of epigenetic changes in the maintenance of 

transgenerational genome stability and plant adaptation to stress 

 

Improving plant transformation efficiency: 

– to select the best medium composition that enhances the HRF and optimizes 

the rate of Agrobacterium-mediated plant transformation; 

– to compare transformation rates between a conventional protocol and our 

novel protocol(s) 

– to characterize transgene integrations via a segregation analysis and cloning of 

insertion sites 

 

The major purpose of this study is to expand current knowledge on mechanisms 

underlying genome stability in plants, generation and inheritance of stress memory, and 

establishment of acclimation to stress. Our study attempted to develop an improved plant 

transformation protocol using factors and mechanisms that influence the rate of HR (RR) 

in a plant cell. Our approach was based on measuring the HRF as an indicator of genome 

stability via a sensitive detection system based on transgenic plants carrying a 

recombination substrate. This technique allowed a quick and accurate detection of factors 

that affect genome stability and HRF and made it possible to track these changes through 

several plant generations.  
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We showed that exposure of plants to salt results in a drastic change in genome 

stability and leads to dramatic changes in the response of their progeny to the same and 

different stresses. We were able to demonstrate that the progeny of stressed plants 

exhibited higher spontaneous HRF, and it was consistent with transcriptional activation 

of the AtRad51 gene and a shift towards HR-mediated DSB repair. An increased HRF 

was inherited by the progeny of stressed plants as an epigenetic trait. The progeny of salt-

treated plants displayed higher tolerance to salt and methyl methane sulfonate (MMS) 

stresses, which correlated with considerable changes in DNA methylation that were 

primarily observed within coding sequences. Transgenerational genome instability 

persisted only if plants were constantly exposed to stress. This suggests that the evolution 

of plant tolerance requires constant and prolonged exposure of several plant generations 

to stress.  

We have managed to develop a fast screening system to search for various factors 

that influence the activity of HR and could be potentially applied in plant transformation. 

Using this system, we determined and evaluated several chemical factors that, if 

delivered to a growth medium, drastically improved the rate of Agrobacterium-mediated 

plant transformation. This allowed us to develop and successfully patent the growth 

medium composition that enhances HRF and increases the rate of plant transformation 

(Boyko and Kovalchuk, US Patent No. 11/466184). Overall, we strongly believe that our 

work will make a great contribution to the basic research and agricultural industry in 

Alberta. 
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2. Literature review 

2.1. Plants and stress: major factors affecting genome stability 

2.1.1. Plant environment and stress 

During its life span, living matter is trying to respond and, if possible, to adapt to 

numerous environmental stimuli present in the environment. One of the most significant 

environmental factors is stress. Usually, stress has multiple negative effects on growth, 

development and reproduction of organisms (Arnholdt-Shmitt, 2004; Madlung and 

Comai, 2004). Stress often determines the distribution of species and more importantly 

exerts strong evolutionary pressure on a given population. The environmental stimuli that 

can be defined as stresses fall into several categories. Depending on their character, they 

can be subdivided into internal stresses, such as altered genome stability, polymerase 

errors and radical production upon cell metabolic reactions, and external stresses which 

can be further subdivided into two classes based on their abiotic or biotic nature 

(reviewed by Madlung and Comai, 2004).  

Different strategies can be applied in order to minimize the influence of stress. 

These are tolerance, resistance and avoidance, or escape. The combination of these 

strategies may vary from species to species, but the most prominent difference can be 

observed when plants and animals are compared. Due to their sedentary life style, plants 

are usually restricted only to tolerance and resistance mechanisms. The persistence of 

stress on a given site for several plant generations would impose an additional challenge 

on plants, thus confirming the need to develop effective strategies for surviving.  
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2.1.2. Internal and external sources of oxidative damage and its effect on 

genome integrity 

One of the most significant threats to plant cell integrity at a molecular level is the 

presence of ROS. Generation of ROS in different cell compartments under physiological 

conditions is an unavoidable consequence of aerobic metabolism (Foyer and Harbinson, 

1994). The constant occurrence of two central aerobic processes, photosynthesis and 

respiration, in a plant cell results in a continuous production of various ROS in 

mitochondria, chloroplasts and peroxisomes. The reduction of molecular oxygen in these 

cellular compartments triggers spontaneous chain reactions, generating singlet oxygen, 

superoxide radicals, hydrogen peroxide and hydroxyl radicals. All of them are moderate 

or highly reactive molecules which may react with and damage cell proteins, unsaturated 

fatty acids in the plasma membrane, carbohydrates, and nucleic acids (Blokhina et al., 

2003). ROS may also trigger cell apoptosis, if they over-accumulate (reviewed in Mittler, 

2002).  

Oxidative damage to DNA resulting from the interaction with ROS is of special 

concern, as this form of damage possesses powerful mutagenic properties. Superoxide 

anion and hydrogen peroxide are normally not reactive towards DNA. However, in the 

presence of a ferrous or cuprous ion, they can be converted to the highly reactive 

hydroxyl radical via a Haber-Weiss and Fenton reaction. DNA exposure to the hydroxyl 

radical results in the release of free bases from DNA, and in base and sugar 

modifications. It generates DNA single and double strand breaks, DNA-protein 

crosslinks, and simple apurinic/apyrimidinic sites (AP) (Breimer, 1990).  
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DNA replication past AP sites by DNA polymerases results mainly in the 

insertion of dATP (review by Loeb and Preston 1986). In contrast, repair of abasic sites 

by base excision repair leads to the introduction of transient DNA strand breaks 

(Babiychuk, et al., 1994). If left unrepaired, single and double strand breaks caused by 

ROS can block DNA replication, and therefore they can be lethal to a cell (Evans et al., 

1993). Moreover, repair of strand breaks frequently results in deletions, insertions, point 

mutations, and may lead to gene conversion, gene translocation, and duplication events 

(Loeb and Preston, 1986; Gorbunova and Levy, 1999; Orel et. al., 2003; Kovalchuk et 

al., 2004a; Puchta, 2005). Importantly, no scavenger of hydroxyl radicals is produced in a 

plant cell (Apel and Hirt, 2004). Therefore, the avoidance of oxidative DNA damage and 

associated genotoxic effects is possible only by precise control over reactions that lead to 

the generation of this radical. 

To avoid the negative influence of ROS, plants have developed complex and 

efficient enzymatic and non-enzymatic antioxidant defense systems that allow 

scavenging ROS and protecting cells from oxidative damage. These systems consist of a 

number of enzymes (superoxide dismutase, catalase, peroxidases, glutathione peroxidase, 

glutathione S- transferases, phospholipid-hydroperoxide glutathione peroxidase, 

ascorbate peroxidase, alternative oxidases) and low molecular mass antioxidants 

(ascorbate, glutathione, phenolic compounds, tocopherols) (Mittler, 2002; Blokhina et al., 

2003). The distinct subcellular localization of enzymatic components involved in the 

antioxidant defense and their differential inducibility allow them to achieve flexible 

control over ROS accumulation spatially and temporally (Vranova et al., 2002). We can 

observe the equilibrium between ROS production and ROS scavenging under 
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physiological conditions. This delicate balance can be shifted toward a rapid production 

of ROS by a number of stress factors. A rapid increase in ROS accumulation is known as 

an oxidative burst, and it was shown to be a general response to various biotic and abiotic 

stresses (Vranova et al., 2002).  

A number of studies demonstrated the production of ROS to be triggered by 

various stress conditions, including drought and desiccation, high temperature, chilling, 

salt, heavy metals, UV, intensive light, air pollutants (ozone and SO2), mechanical and 

nutrient deprivation, and pathogen attacks (Bowler, et al., 1994; Mittler and Zilinskas, 

1994; Allen, 1995; Noctor and Foyer, 1998; Desikin, et al., 2001). In fact, ROS play a 

critical role of secondary messengers in stress-response signal transduction for the vast 

majority of stresses (Desikin et al., 2001, Knight and Knight, 2001). Consequently, 

different stresses such as cold, drought or salinity result in the activation of similar 

signaling pathways (Seki et al., 2002, 2003).  

The latter notion is supported by a cDNA microarray analysis that used 7 000 

independent Arabidopsis full-length cDNA sequences and revealed 299 drought-

inducible genes and 213 high-salinity-stress-inducible genes (Seki et al., 2002). More 

than half of high-salinity-stress-inducible genes were also induced by drought stress, 

indicating a significant crosstalk between these two responses (Seki et al., 2002). Overall, 

a tightly regulated balance between different ROS-producing and ROS-scavenging 

mechanisms existing in a cell allows ROS to play a role as cellular stress indicators and 

secondary messengers associated with stress-response signal transduction pathways 

(Desikin et al., 2001, Knight and Knight, 2001; Mittler, 2002). 
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2.1.3. Double strand break repair. Two competitors: non-homologous 

end-joining and homologous recombination 

Repair of oxidative DNA damage caused by stress exposure is one of the 

keystones for a successful plant defense against stress. It helps preserve genome integrity 

and stability, and thereby reduces the risk of heritable DNA damage. Interactions of ROS 

derived from various exogenous and endogenous sources with DNA frequently result in 

the formation of DSBs that pose a major threat to genome integrity. If left unrepaired, 

DNA DSBs may lead to loss of genetic informationa, and chromosomal translocations. 

They may cause replication arrest and even trigger apoptosis, if a cell suffered extensive 

DNA damage (Evans et al., 1993; Critchlow and Jackson, 1998; Shrivastav et al., 2008) 

(Figure 2.1). In contrast, the presence of DSBs is absolutely required for initiating DNA 

strand exchange via HR and generating genetic diversity in gametes during meiosis 

(Richardson et al., 2004). Similarly, DSBs are necessary during the development of T 

and B lymphocytes in vertebrates, where generation of antigen-receptor and 

immunoglobulin diversity is critical for proper immune system functions (Rooney et al., 

2004). 

There are two major evolutionarily conserved DNA repair pathways available in a 

eukaryotic cell that have an impact on DSBs and insure the maintenance of genome 

stability: NHEJ and HR. NHEJ acts independently of significant homology between 

interacting DNA molecules, and HR requires extensive sequence homology for repair 

events to occur. NHEJ involves the direct rejoining of break ends. If it is not possible, 

NHEJ searches for microhomology, aligns one or few complementary bases to direct 

repeats, and removes the DNA in between (Bleuyard et al., 2006; Shrivastav et al., 2008). 
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Consequently, NHEJ is a relatively inaccurate DNA repair pathway which is frequently 

associated with small and large-scale deletions (from 1 bp up to > 1 kb), insertions (up to 

1.2 kb long) or point mutations (Gorbunova and Levy, 1999). In contrast, HR can be 

considered to be a more precise DNA repair pathway with a 100% accuracy, if a perfectly 

homologous template like a sister chromatid, a homologous chromosome, or a repeated 

region are used to prime repair synthesis. Alternatively, if a template with imperfect 

homology is used for repair, HR may result in gene conversion events leading to loss of 

heterozygosity. It may lead to gene translocation and duplication events or generate large 

deletions, if intrachromosomal recombination occurs within the DNA region containing 

multiple repeats (Orel et. al., 2003; Dudas and Chovanec, 2004; Puchta, 2005). Finally, 

lower fidelity of repair polymerases, if compared to replicative polymerases, leads to an 

increase in point mutation frequency at the sites of DSBs, even if a perfectly homologous 

template is used for repair (Strathern et al., 1995).  

Repair of DSBs via a HR pathway can be described by several different models 

(reviewed in Puchta, 2005). The first one, a synthesis-dependent strand annealing 

(SDSA) model, postulates that induction of DSB is followed by creation of a 3’ overhang 

in the acceptor molecule using exonucleases. The resulting 3’ end invades a double 

stranded donor forming a D-loop and initiates repair synthesis. Two scenarios are 

possible at this stage. If the 3’ end of the acceptor molecule is elongated up to the 

homology of the second 3’ end of the break, single strands anneal and a DNA molecule is 

repaired. Alternatively, if the 3’ elongated end of the acceptor molecule is not 

complementary to the 3’ end of the break, the break is closed via NHEJ, sometimes using 

microhomology of a few nucleotides (Puchta, 2005). In contrast to SDSA, the single-
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strand annealing (SSA) model postulates the generation of 3’ single-stranded overhangs 

by exonucleases at both ends of DSB. If overhangs carry complementary sequences, they 

can anneal forming a chimeric DNA molecule. The presence of non-complementary 

sequences on the 3’ end of overhangs will lead to the formation of overhanging ends in a 

chimeric DNA that will be resected. Similarly, gaps in single-stranded regions can be 

filled by DNA repair synthesis (Puchta, 2005). Clearly, the most likely targets for repair 

via the SSA mechanism can be found within DNA regions containing repeated 

sequences, and SSA-mediated damage repair may lead to a deletion of DNA sequences 

flanked by complementary repeats.  

While both SDSA and SSA are frequently observed in somatic tissues, HR in 

cells undergoing meiosis can occur via the classic DSB repair (DSBR) mechanism that 

involves the formation of a double Holiday junction and its resolution, leading to gene 

conversion and crossover events (Gorbunova and Levy, 1999). To reduce risks of 

crossover and translocation, the SDSA mechanism is predominantly used in somatic 

cells. Moreover, the prevalence of the SDSA mechanism over DSBR in somatic plant 

cells may be critical, since plants contain high amounts of repetitive DNA in their nuclei 

(Flavell, 1985) that can increase the risk of unpredictable deleterious genome 

rearrangements by crossovers. In contrast to DSBR, the SDSA mechanism represents a 

safer option, since it may result only in gene conversion events (Gorbunova and Levy, 

1999; Puchta, 2005).  

There exist a number of proteins that influences both HR and NHEJ DSB repaur 

pathways. This includes: the MRE11/RAD50/NBS1(XRS2) complex; BRCA1; histone 

H2AX; DNA-PKcs; PARP-1, RAD18 and ATM (Bleuyard et al., 2006 and references 
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therein; Shrivastav et al., 2008 and references therein). The 

MRE11/RAD50/NBS1(XRS2) complex processes the ends of a DSB prior to its repair. 

BRCA1 may negatively regulate end-processing by the MRE11-containing complex, 

thereby enhancing fidelity of NHEJ. BRCA1 also promotes HR via interactions with a 

RAD51 and BRCA2 protein. Phosphorylation of histone H2AX may result in activation 

of the DNA damage checkpoint and recruitment of a INO80 chromatin remodeling 

complex. Finally, DNA-PKcs facilitates the alignment of non-complementary ends and 

phosphorylates the key proteins involved in NHEJ and some of proteins involved in HR. 

In contrast, some proteins such as RAD51 and a KU heterodimer that consists of Ku70 

and Ku80 (or Ku86) function exclusively in one of the two pathways. The RAD51 

sequence is a highly conserved one among eukaryotes. It plays a critical role in HR via 

the formation of the Rad51/ssDNA nucleofilament from the 3’ overhang of a DSB and 

promotes strand exchange reactions (Bleuyard et al., 2006 and references therein). 

Consistently with its role in HR, an Arabidopsis rad51 mutant displays an extremely 

severe sterility phenotype caused by the failure to synapse and repair meiotic DSBs 

during prophase I of meiosis which results in extensive chromosomal fragmentation (Li 

et al., 2004a). The KU heterodimer mediates NHEJ and represents a part of DNA-PK. 

KU binds to various types of DNA ends including single-stranded gaps, helps protect 

them and forms a bridge between two ends of a break, thereby contributing to their 

juxtaposition (Bleuyard et al., 2006 and references therein). Overall, the complexity of a 

system of protein factors involved in DNA repair indicates the existence of a multilevel 

regulatory network controlling DSB repair management in a cell.  
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Figure 2.1. Effects of double strand breaks on plant cells 
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2.1.4. Assaying double strand break repair pathway choice 

Competing for the same substrate, DSB repair pathways HR and NHEJ have 

different requirements with respect to a repair template, and thus offer different repair 

fidelity. Therefore, the balance between HR and NHEJ should be tightly controlled. 

Indeed, a cell can discriminate in favor of using one of these two DSB repair pathways, 

depending on the availability of repair templates, cell cycle phase, proliferation rate, and 

functions of specific cell types (reviewed in Shrivastav et al., 2008). Prominent examples 

of such discrimination can be found when yeast is compared to higher eukaryotes. While 

HR is the dominant mode for DSB repair in yeast (Liang et al., 1998; Paques et al., 1999; 

Aylon and Kupiec, 2004), the vast majority of breaks in higher eukaryotes are processed 

by NHEJ (Salomon and Puchta, 1998; Kirik et al., 2000). In contrast to the small yeast 

genome comprised mainly of coding sequences, higher eukaryotes have large genomes 

with a very high content of non-coding sequences (Beaton and Cavalier-Smith, 1999). 

HR as a dominant mode of repair allows yeast to prevent generation of random changes 

in coding DNA that could occur if the same damage were repaired using NHEJ. In 

contrast, small-scale deletions and insertions caused by NHEJ (Gorbunova and Levy, 

1997, 1999) can be easily accommodated by higher eukaryotes due to their large 

genomes with a low content of coding sequence. Furthermore, NHEJ as a dominant mode 

of repair helps resolve the challenge of locating a homologous template in a large genome 

(Sonoda et al., 2001; Sonoda et al., 2006).  

Similarly, when NHEJ is dominant during the G1 phase of a cell cycle, the 

upregulation of HR can be observed during S and G2 phases if sister chromatids are 

available (reviewed in Shrivastav et al., 2008). Control over the shift from NHEJ toward 
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HR at the molecular level is mirrored by increasing expression of Rad52 and Rad51 

during the S phase (Chen et al., 1997). In fact, the balance between these two repair 

pathways is cell-cycle phase-dependent. Moreover, it changes during plant development 

and differs in various plant tissues (Boyko et al., 2006a, 2006d). These changes are 

consistent with a different cell genome content and ploidy level in different plant tissues 

during different developmental stages as a result of somatic polyploidisation (Galbraith et 

al., 1991; Joubes and Chevalier, 2000). Taking into consideration large amounts of 

repetitive DNA in the plant genome (Flavell, 1985), it becomes clear why high levels of 

HR may pose a threat to genome stability and lead to large-scale deletions and 

chromosomal translocations (Swoboda, et al., 1994; Gorbunova and Levy, 1999; Puchta, 

2005).  

The existence of passive competition between HR and NHEJ can be supported by 

increased HR in cells deficient for various NHEJ proteins (Pierce et al., 2001; reviewed 

in Shrivastav et al., 2008). Recently, Shrivastav et al. (2008) suggested a model 

explaining an active regulation of DSB repair pathway choice via DNA-PKcs and ATM. 

The KU heterodimer binding to DSB ends recruits DNA-PKcs, which being bound to 

DNA becomes activated and phosphorylates itself, KU and other proteins. There are two 

phosphorylation clusters available at DNA-PKcs, T2609 and S2056. In contrast to the 

T2609 cluster that can be autophosphorylated either by the DNA-PKcs kinase domain or 

ATM, the S2056 cluster is a subject to autophosphorylation only. Phosphorylation of the 

T2609 cluster is sufficient to release DNA-PKcs from the break site, allowing an access 

of HR and NHEJ proteins. In contrast, phosphorylation of the S2056 cluster is required 

for initiation of the NHEJ repair pathway. Mutations in the S2056 cluster that block 
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phosphorylation lead to a significant increase of HR activity above a wild type level. 

However, the level of HR in the S2056 cluster mutants does not exceed the HR level 

observed in DNA-PKcs null cells (Shrivastav et al., 2008).  

To further investigate the role of DNA-PKcs, Shrivastav et al. (2008) generated a 

cell line that expressed a mutant form of DNA-PKcs in which inactivation of a kinase 

domain was achieved without introducing major changes in gross domain structure. This 

modification of a protein domain did not interfere with its ability to be phosphorylated by 

ATM. It also led to a 3-fold increase in the level of DSB-induced HR as compared to 

DNA-PKcs null cells (Shrivastav et al., 2008). The foregoing indicates a combined 

positive effect of preventing phosphorylation at the S2056 cluster and the absence of 

competition with NHEJ. Importantly, ATM also promotes the HR pathway via 

phosphorylation of 12 other targets that play a role in HR; and the level of ATM can be 

stabilized by DNA-PKcs. Interestingly, six ATM targets can also be phosphorylated by 

DNA-PKcs (Shrivastav et al., 2008).  

Another possible mechanism of control over the balance between NHEJ and HR 

can be provided by Poly(ADP-ribose)polymerase (PARP) that covalently attaches ADP-

ribose moieties to target proteins and mediates one of the earliest cell responses to DSBs 

(Ame et al., 2004). Various biochemical studies demonstrated physical interactions 

between PARP and the Ku/DNA-PKcs complex (Sonoda et al., 2006 and references 

therein). Wang et al. (2006) recently demonstrated that PARP competed with KU for 

DSB ends, thereby promoting HR and antagonizing NHEJ (Saberi et al., 2007). 

Experimental evidence presented by Li et al. (2004b) suggested that PARP acted by 

decreasing the affinity of KU for DSB.  
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2.1.5. The role of double strand break repair pathways in plant genome 

evolution 

To describe DSB repair pathways exclusively as factors maintaining genome 

stability would underestimate their role in a cell. Mistakes generated during DSB repair 

provide a raw material for evolution and also increase intragenome diversity and 

plasticity. A great deal of experimental evidence produced during the past several years 

indicates the involvement of DSB repair mechanisms in plant evolution and even in the 

development of tolerance to stress (Gorbunova and Levy, 1999; Kirik et al., 2000; 

Puchta, 2005; Boyko et al., 2007). An intriguing hypothesis is that stress can guide plant 

genome evolution using repair pathways, particularly HR, to trigger loci-specific genome 

rearrangements, thereby accelerating evolution of targeted sequences and development of 

tolerance to stress (reviewed in Boyko and Kovalchuk, 2007, 2008a). 
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2.2. Effects of stress on plant genomes: genetic and epigenetic 

regulations 

2.2.1. Physiological aspects of salt stress 

Soil salinity is one of the most significant stresses in agriculture. It represents a 

major constraint on food production in the world (Zhu, 2000). According to the United 

Nations Environment Program, approximately 20% of agricultural land and 50% of 

cropland suffer from salt stress (Yokoi et al., 2002). Salinity conditions are usually 

caused by the presence of high NaCl concentrations in a plant growth environment. The 

osmotic component of salt stress makes effects of NaCl-mediated stress similar to those 

of drought and cold stresses (Seki et al., 2003). In contrast, a unique component of NaCl-

mediated stress, an ionic stress, is caused by an excessive amount of Na+ (Hasewaga et 

al., 2000; Zhu, 2000, 2002). Nevertheless, both osmotic and ionic stresses are 

complemented by secondary oxidative stress (Niu et al., 1995, Zhu et al., 1997, 

Hasewaga et al., 2000, Zhu, 2000) that represents a significant challenge to the DNA 

repair machinery. However, knowledge of possible salt effects on genome stability in 

plants remains fragmentary and requires further analysis. 
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2.2.2. Exposure to stress may mediate rapid establishment of stress 

tolerance to the same or different stresses 

Continuous exposure to stress may not always have only a negative impact on 

plants and their metabolism. In many cases, exposure to mild stress is followed by 

acquired acclimation to more severe conditions. The role of stress exposure in plant 

adaptation was first described for a phenomenon known as cold acclimation in plants 

originating from temperate regions, where increased freezing tolerance was established 

via exposure to chilling temperatures (Levitt, 1980). Experimental evidence has been 

accumulating suggesting the existence of a similar phenomenon of fast stress-mediated 

acclimation to drought, cold and freezing, high temperature, high light and UV-B 

radiation stresses (reviewed in Chalker-Scott and Scott, 2004; Turunen and Latola, 2005; 

Caldwell et al., 2007). It is apparent that the existence of a such mechanism is of primary 

importance for plants. A continuous presence of mild stress conditions, like chilling, may 

indicate an upcoming period of freezing temperatures, thereby allowing plants to activate 

their stress-defense systems and undergo hardening for more severe upcoming stress. In 

fact, Beck et al. (2004) demonstrated that such seasonal hardening in pine trees mediates 

the establishment of moderate freezing tolerance that can reach down to – 20 °C for the 

first hard frost. Moreover, the first subfreezing event triggers a second wave of hardening 

which together with seasonal hardening leads to acquired tolerance to temperatures as 

low as – 70 °C (Beck et al., 2004). Strikingly, such extreme tolerance can be developed 

within a one-month period (Beck et al., 2004). 

A positive contribution of cold treatment to the development of tolerance to 

subsequent chilling or freezing stresses is not restricted to the exposed generation; it can 
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be observed in the immediate progeny of cold-exposed plants (Blödner et al., 2007). 

Blödner et al. (2007) demonstrated that the progeny of plants grown in moderate cold 

conditions from bolting until the seed maturity stage showed a faster recovery of the 

photosynthetic yield under chilling and freezing conditions, compared to the progeny of 

plants produced at warm temperatures. The development of acquired tolerance by the 

progeny of plants whose ancestors were exposed to cold is consistent with recent reports 

on salt (Boyko et al., 2008; Boyko and Kovalchuk 2008b) and pathogen (Boyko et al., 

data not published) stresses demonstrating similar phenomena. Overall, it may represent 

an important stress tolerance mechanism in plants as sedentary organisms. 

It is evident that the establishment of acquired tolerance to stress is achieved via 

numerous changes in gene expression and the molecular spectrum of metabolites in a 

plant cell (Thomashow, 1999; Larkindale et al., 2005; Kotak et al., 2007; reviewed in 

Zhu et al., 2007a). Indeed, cold acclimation is mainly associated with transcriptional 

activation of hundreds of genes that code for transcription factors (Lee et al., 2005). This 

indicates that a multitude of transcriptional cascades are activated during acclimation. 

Consistently, deacclimation is primarily mediated via transcriptional repression that 

targets many cold-inducible genes (Oono et al., 2006).  

Extensive changes in the cell transcriptome lead to a significant reconfiguration of 

the  metabolome (Cook et al., 2004; Kaplan et al., 2004) which is reflected in synthesis 

and accumulation of various metabolites that perform protective functions (Chen and 

Murata, 2002; Stitt and Hurry, 2002; Kaplan and Guy, 2005). In fact, 75% of 400 poplar 

metabolites analyzed by Cook et al. (2004) for their response to cold stress showed an 

increase in concentration upon cold treatment. Similar changes in the metabolome can be 
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achieved under warm temperature conditions via ectopic expression of dehydration-

responsive-element-binding proteins (DREBs) transcription factors that activate a set of 

cold inducible genes (Cook et al., 2004). The foregoing underlines a major role of cold-

inducible genes in the establishment of acquired tolerance to cold stress via modification 

of a cell’s metabolite spectrum. 

Plants rely on the perception of various abiotic stresses through a complex 

network of stress recognition and signaling pathways, some of which may be shared by 

different stresses, and which may cross-talk at various steps (Zhu, 2001; Seki et al., 2003; 

Chinnusamy et al., 2004). This implies that cold acclimation mentioned above represents 

a general strategy of response to abiotic stress rather than a specific response to cold 

stress. This is consistent with the stress cross-protection theory that was first suggested by 

Levitt (1980). It postulated that exposure to one stress can result in acquired tolerance to 

another stress, even if previously a plant had no experience of being exposed to it.  

A number of studies conducted in the past ten years supported Levitt’s theory 

(Levitt, 1980). They demonstrated that exposure to UV-B can increase tolerance to 

subsequent freezing (Dunning et al., 1994; Richer and Hoddinott, 1997; Binder and L’-

Hirondelle, 1999; Mendez et al., 1999; Chalker-Scott and Scott, 2004), high temperatures 

(Teklemariam and Blake, 2003), drought and high light (Poulson et al., 2002). It can also 

reduce levels of insect herbivory (Roberts and Paul, 2006) and fungal attack (Raviv and 

Antignus, 2004). Similarly, high light treatment can induce freezing tolerance in rye 

plants (Gray et al., 1997); low temperature stimulates resistance to photoinhibition and 

snow moulds (Gaudet et al., 2003). Plants that are more tolerant to cold temperatures 

demonstrate higher resistance to UV-B (Petropoulou et al., 2001).  
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2.2.3. Epigenetic changes as a short-term strategy to minimize stress 

influence 

Salinity stress represents a type of abiotic conditions that can persist at a given 

site for a prolonged period of time, thereby challenging plant defense systems 

continuously during many generations. As has already been mentioned, plants have a 

sedentary lifestyle and cannot use escape as a strategy to minimize the influence of stress. 

Hence, plants require the presence of efficient short-term defense strategies that are based 

on the manipulation of existing genetic information directed to the fast development of 

stress tolerance. These strategies may include an alteration of plant homeostasis during 

somatic growth (Shinozaki et al. 2003; Sung and Amasino, 2004) and heritable (also 

called transgenerational) modifications of gene expression (Whitelaw and Whitelaw, 

2006).  

These modifications can occur without changing the original DNA sequence, and 

are known as epigenetic modifications. They can be achieved on several interdependent 

levels, including reversible methylation of DNA sequences, numerous histone 

modifications and chromatin remodeling (Wagner, 2003; Vanyushin, 2006). All these 

modifications may be regulated by a number of physiological and developmental stimuli 

including stress (reviewed in Boyko and Kovalchuk, 2008a). The spectrum of external 

and internal influences experienced by an organism during its lifespan may lead to the 

generation of specific changes in gene expression that could be epigenetically (without 

changing the DNA sequence) fixed and passed to the progeny forming an epigenetic 

memory.  
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The maintenance of changes in gene expression in prokaryotic and eukaryotic 

organisms over several cell generations was well documented (Bender, 2004). In fact, the 

notion that transgenerational changes in DNA methylation are more frequently observed 

in plants than in animals (Takeda and Paszkowski, 2006) is consistent with a sedentary 

lifestyle of plants. In contrast to animals, plants establish the germ line late during 

development, thus allowing the transmission of epigenetic memory accumulated during 

their lives to the following generations.  
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2.2.4. DNA methylation is an epigenetic mark of primary importance 

DNA methylation plays a major role in the regulation of gene expression, in the 

activity of transposable elements, in the defense against foreign DNA, and even in the 

inheritance of specific gene expression patterns (Rassoulzadegan et al., 2006). The major 

differences in methylation patterns between plants and animals include a substantially 

higher percentage of modified cytosines and the absence of CpNpG and asymmetrical 

cytosine methylation in animals (Finnegan et al., 1998b; Bender, 2004). Symmetrical 

CpG and CpNpG methylation is inherited during DNA replication in the form of 

hemimethylated sequences. Hence, it provides a methylation imprint memory on the 

parental DNA and also guides the activity of methyltransferases (Bender, 2004). On the 

contrary, asymmetrical cytosine methylation must be reestablished de novo after each 

replication cycle, since there is no complementary methylated sequence available to 

guide remethylation (Ramsahoye et al., 2000; Gowher and Jeltsch, 2001). Experimental 

evidence suggests the existence of three distinct classes of enzymes responsible for 

cytosine methylation. 

The first class is represented by a plant homologue of mammalian Dnmt1 

methyltransferases, METHYLTRANSFERASE1 (MET1). Plants defective in MET1 

show a lack of widespread CpG methylation (Lindroth et al., 2001). The second class of 

methyltransferases, CHROMOMETHYLASE3, is unique to plants (Table 2.2.1). A loss-

of-function cmt3 mutant is characterized by a genome-wide loss of CpNpG methylation, 

especially at centromeric repeats and transposons (Lindroth et al., 2001; Tompa et al., 

2002). Recent studies by Kato et al. (2003) on the activation of a normally silenced 

CACTA transposon in the met1 and cmt3 single and double mutants indicated redundancy 
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in the function of CMT3 with MET1 in CpG and CpNpG methylation. The last known 

class, DOMAIN REARRANGED METHYLTRANSFERASES, is composed of DRM1 

and DRM2; it shows homology to the mammalian Dnmt3 methyltransferase (Cao et al., 

2000). DRM1 and DRM2 are mainly directed on de novo methylation of asymmetric sites 

(Cao and Jacobsen, 2002b), and they are capable of methylating CpNpG sites along with 

CMT3 (Cao et al., 2003) (Table 2.2.1). 

While the presence of DNA methylating enzymes is well proven, the existence of 

direct DNA demethylation mechanisms remains controversial. A passive loss of DNA 

methylation may occur due to the inhibition of de novo methylation or inability to 

maintain the parental imprint after DNA replication observed in met1 mutants (Kankel et 

al., 2003). Alternatively, active demethylation may occur via the glycosylase activity by 

removing methylcytosines from DNA (Zhu et al., 2000; 2007b; Agius et al., 2006; 

Morales-Ruiz et al., 2006). It may play a critical role in preventing the formation of 

stable hypermethylated epialleles in the plant genome (Penterman et al., 2007a). Indeed, 

the demethylation activity of Arabidopsis DNA glycosylase DEMETER (DME) regulates 

the gametophyte-specific activation of flowering time (FWA) gene expression (Kinoshita 

et al., 2004). It also reverses imprinting of maternal copies of a MEDEA allele in the 

endosperm (Choi et al., 2002). Gong et al. (2002) isolated a REPRESSOR OF 

SILENCING1 (ROS1), a DNA glycosylase/lyase, functioning on methylated and not 

demethylated DNA substrates (Table 2.2.1). To date, four members of the DEMETER 

DNA glycosylase family involved in DNA demethylation are known in Arabidopsis. 

They are DME and three DME-like proteins, DEMETER-LIKE2 (DML2), DML3, and 

ROS1 (Penterman et al., 2007a, 2007b). 
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Table 2.2.1. Plant factors involved in epigenetic regulations 

Name and function Effects on chromatin Effects of mutation and 
involvement in stress response 

Modification/ 
Transcription References 

DNA methylation     

METHYLTRANSFERASE1 
(MET1)/  
Methyltransferase 

Methylation of symmetrical CpG sites; post 
replicative de novo CpG methylation; not 
required for establishing new methylation 
imprints 

Lack of CpG methylation; passive 
loss of DNA methylation throughout 
generations. MET1 is repressed in 
response to stress, leading to 
activation of repressed genes 

Global/ 
Repression 

Finnegan et al., 
1996; Steward, et 
al., 2000; Kankel et 
al., 2003; Wada et 
al., 2004 

CHROMOMETHYLASE3 
(CMT3)/ 
Methyltransferase 

CpNpG methylation; functionally redundant 
with MET1 and DRM in methylation of CpG 
and asymmetrical sites, respectively; targets 
centromeric repeats and transposons 

Loss of CpNpG methylation Global/ 
Repression 

Bartee et al., 2001; 
Lindroth et al., 
2001; Tompa et al., 
2002;  

DOMAIN REARRANGED 
METHYLTRANSFERASES 
(DRM1, DRM2)/  
Methyltransferase 

De novo methylation of asymmetric sites; 
functionally redundant with CMT3 in 
CpNpG methylation; possibly reinforces 
preexisting methylation 

Loss of de novo asymmetric 
methylation at non-CpG sites 

Global/ 
Repression 

Cao et al., 2000; 
2003; Cao and 
Jacobsen, 2002a; 
2002b  

DEMETER (DME)/ 
DNA glycosylase 

Demethylation of previously silenced 
sequences, possibly in a tissue-specific 
manner 

Inability to activate imprinted genes; 
inheritance of a mutant maternal 
allele results in seeds abortion 

Local, 
promoters/ 
Activation 

Kinoshita et al., 
2004; Morales-Ruiz 
et al., 2006; 
Penterman et al., 
2007a 

REPRESSOR OF 
SILENCING1 (ROS1)/  
DNA glycosylase/lyase 

Demethylation activity on methylated and 
not on demethylated DNA substrates 

Hypermethylation and transcriptional 
silencing of specific genes; enhanced 
sensitivity to genotoxic agents 

Local, 
promoters/ 
Activation 

Gong et al., 2002; 
Kapoor et al., 2005; 
Agius et al., 2006; 
Penterman et al., 
2007a; Zhu et al., 
2007b 
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Table 2.2.1. Plant factors involved in epigenetic regulations (continued)  

Name and function Effects on chromatin Effects of mutation and 
involvement in stress response 

Modification/ 
Transcription References 

DNA methylation     

DEMETER-LIKE (DML) 
proteins: DML2 and DML3/ 
DNA glycosylase/lyase 

Demethylation activity is primarily localized 
at the 5′ and 3′ ends of genes, preventing the 
accumulation of methylation at or near 
genes. DML proteins remove aberrant 5′ and 
3′ methylation from genes and prevent the 
formation of highly methylated stable 
epialleles. 

Hypermethylation of gene sequences 
at either the 5′ or 3′ end; dml mutant 
hypermethylation has a negligible 
effect on gene expression 

Local, 5′ and 3′ 
ends of genes/ 
Mostly 
unaffected 

Penterman et al., 
2007a, 2007b 

Histone modifications     
SUVH1/ 
Histone methyltransferase 

Methylation of histone H3K9; has a minor 
impact on heterochromatin reinforcement. Loss of H3K9 methylation Global/ 

Repression 
Naumann et al., 
2005 

SUVH2/ 
Histone methyltransferase 

Methylation of histones H3K9, H3K27, 
H4K20; heterochromatin reinforcement; 
SUVH2 mediated gene silencing depends on 
MET1 and DDM1  

Loss of H3K9; H3K27 and H4K20 
methylation; reduction of DNA 
methylation in heterochromatin 

Global/ 
Repression 

Naumann et al., 
2005 

SUVH4 (KRYPTONITE) 
(SUVH4/KYP)/ 
Histone methyltransferase 

Methylation of histone H3K9; activity is 
dependent on CpG DNA methylation in the 
given loci; has a minor impact on 
heterochromatin reinforcement 

Loss of H3K9 methylation; a 
negative effect on CpNpG 
methylation 

Global/ 
Repression 

Jackson et al., 2002; 
Johnson et al., 2002; 
Jasencakova et al., 
2003; Naumann et 
al., 2005 

HISTONE 
DEACETYLASE6 (HDA6)/ 
Histone deacetylase 

Reinforcing CpNpG methylation induced by 
RNA-directed transcriptional silencing 

Reactivation of previously silenced 
transgenes 

Local/ 
Repression Aufsatz et al., 2002 

Chromatin remodeling     
METHYL-CpG-BINDING 
DOMAIN PROTEINS 
(MBD1 – MBD13)/ 
5-methylcytosine binding 
proteins 

Bind methylated CpG and change local 
chromatin structure through recruiting 
enzymes involved in modification of core 
histone proteins; promote heterochromatin 
formation and repeat silencing 

Late flowering and reduced fertility 
(mbd11); shoot branching and early 
flowering due to transcriptional 
repression of FLC (mbd9) 

Local/ 
Repression, 
activation  

Ben-Porath and 
Cedar, 2001; 
Zemach and Grafi, 
2003, 2007 and 
references therein 
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Table 2.2.1. Plant factors involved in epigenetic regulations (continued)  

Name and function Effects on chromatin Effects of mutation and 
involvement in stress response 

Modification/ 
Transcription References 

Chromatin remodeling     
LIKE 
HETEROCHROMATIN 
PROTEIN1 (LHP1) 
Chromodomain protein 

Binds to histone H3K9; chromatin 
condensation and coating 

Inability to repress expression of 
euchromatic genes associated with a 
specific developmental stage  

Global/ 
Repression 

Gaudin et al., 2001; 
Mylne et al., 2006 

DECREASED DNA 
METHYLATION1 
(DDM1)/ 
SWI2/SNF2 DNA helicase 

Controls DNA methylation, possibly binds 
methyl-CpG binding domain proteins, and 
affects their subnuclear localization 

Decondensation of centromeric 
heterochromatin, redistribution of 
remaining DNA methylation, 
changes in a pattern of histone 
methylation Silencing of R-genes and 
retrotransposons; involved in DNA 
damage response 

Global/ 
Repression 

Singer et al., 2001; 
Johnson et al., 2002; 
Soppe et al., 2002; 
Stokes et al., 2002; 
Zemach et al., 2005; 
Shaked, et al., 2006 

DEFECTIVE FOR RNA-
DIRECTED DNA 
METHYLATION1 (DRD1)/ 
SWI/SNF-like protein  

Directing non-CpG DNA methylation in 
response to a RNA signal; mediates full 
erasure of methylation when the signal is 
removed; together with pol IVb acts 
downstream of smRNA biogenesis pathway, 
possibly interacting with DNA 
methyltransferases and DNA glycosylases; 
preferentially targets promoter and LTRs in 
euchromatin 

Mutants do not show significant 
defects in CpG methylation but 
exhibit loss of non-CpG methylation  
at previously silenced euchromatic 
promoters and transposons; down 
regulation of ROS1 and DME 

Local, 
euchomatic 
promoters/ 
Repression, 
activation 

Kanno et al., 2004; 
2005a; Matzke et 
al., 2006 and 
references therein; 
Pikaard, 2006 

RNA POLYMERASE IVb 
(pol IVb) (subunits NRPD2a 
and NRPD1b)/  
Nuclear RNA polymerase 

Guides cytosine methylation of homologous 
DNA regions by an unknown mechanism 
using smRNA signals; NRPD1b possibly 
recruits DNA methyltransferases involved in 
de novo cytosine methylation at asymmetric 
sites; together with DRD1 reversibly controls 
promoters and LTRs in euchromatin 

Mutants do not show significant 
defects in CpG methylation but 
exhibit loss of non-CpG methylation 
at on previously silenced 
euchromatic promoters and 
transposons 

Local, 
euchomatic 
promoters/ 
Repression, 
possibly 
activation 

Kanno et al., 2005b; 
Matzke et al., 2006 
and references 
therein; Pikaard, 
2006 

MAINTENANCE OF 
METHYLATION1 
(MOM1)/ 
Similar to SWI2/SNF2 

Regulation of silent heterochromatic regions 
transcription; transgene silencing; preventing 
transcription of 180 bp satellite repeats and  
not of transposons 

Release of transcriptional gene 
silencing and 5S repeat silencing; no 
effect on heterochromatin 
organization and DNA methylation. 

Global/ 
Repression 

Amedeo et al. 2000; 
Vaillant et al., 2006 
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2.2.5. Histone modifications: reinforcing DNA-methylation imprints 

Since gene transcription occurs within a nucleosome consisting of DNA wrapped 

around an octamer histone core, modifications of histone proteins via (de)methylation 

and (de)acetylation regulate gene expression. It was demonstrated that the euchromatin 

state is dependent on hyperacetylation of histones H3 and H4 along with methylation of 

H3 at the lysine K4 position (Bender, 2004). In contrast, the formation of 

heterochromatin structure requires underacetylation of H3 and H4, methylation of K9, 

and demethylation of K4 residues of H3 (Bender, 2004). It was suggested, however, that 

different methylation states of histone H3 might also result from the deposition of two 

independent H3 variants that differ in sequence and posttranslational modifications, 

particularly in an enrichment of methylated K9 and K27 (Zilberman and Henikoff, 2005). 

There are several lines of experimental evidence suggesting the interdependence 

of DNA and histone methylation. It was shown that CpG methylation loss in the met1 

mutant results in H3K9 methylation loss (Soppe et al., 2002; Tariq et al., 2003). In 

contrast, H3K9 methylation loss in the KRYPTONITE (KYP) histone methyltransferase 

kyp mutant does not affect CpG methylation (Jasencakova et al., 2003). This suggests 

that H3K9 methylation acts downstream of CpG methylation and reinforces 

heterochromatin. On the contrary, DNA methylation at CpNpG sites appears to be 

partially dependent on the activity of KYP (Jackson et al., 2002). 

Histone methylation can recruit other proteins such as HETEROCHROMATIN 

PROTEIN1 (HP1) that binds to methylated H3K9 (Lachner et al., 2001) and helps 

propagate heterochromatin to adjacent regions on the chromosome (Grewal and Moazed, 

2003). Also, an Arabidopsis homologue of HP1, HETEROCHROMATIN PROTEIN1 
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(LHP1), is involved in regulating flowering time in response to environmental stimuli 

(Gaudin et al., 2001; Mylne et al., 2006). 

Methylated DNA serves as a substrate for binding nuclear proteins named methyl-

CpG-binding domain proteins or MBDs. These proteins bind to 5-methylcytosines, 

recruit enzymes that modify core histone proteins, and change local chromatin structure 

(Ben-Porath and Cedar, 2001) (Table 2.2.1). However, it must be noted that not all 

MBDs are able to bind methylated CpG in vitro. These MDBs can be possibly involved 

in control of chromatin structure through other mechanisms (reviewed in Zemach and 

Grafi, 2007).  
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2.2.6. Chromatin remodeling proteins: shaping and maintaining 

chromatin structure 

Control of gene expression through DNA methylation and histone modifications 

is complemented by the activity of chromatin remodeling proteins. Among them, there 

are members of the SWI2/SNF2 DNA helicase family that are of crucial importance in 

DNA repair, recombination, gene expression and replication (Havas et al., 2001). The 

SWI2/SNF2 family proteins alter chromatin structure through the disruption of DNA-

histone interactions (Geiman and Robertson, 2002).  

The DECREASED DNA METHYLATION1 (DDM1) protein was the first 

member of this family described. It controls methylation directly and indirectly by 

changing histone methylation (Johnson et al., 2002) (Table 2.2.1). Recently, Zemach et 

al. (2005) demonstrated that MBDs bind DDM1. They also reported a disrupted 

localization of MBDs at chromocenters in the ddm1 mutant. This suggests that DDM1 

may facilitate the localization of MBDs at specific nuclear domains. The ddm1 mutant 

shows a 70% reduction in global genome methylation (Jeddeloh et al., 1999), activation 

of transposable elements (Miura et al., 2001; Singer et al., 2001), and phenotypical 

instability (Kakutani et al., 1996). ddm1-induced hypomethylation also results in 

transcriptional activation of a previously silent disease-resistance gene array (Stokes et 

al., 2002), and activates a number of retrotransposons (Kato et al., 2004).  

Another control mechanism of gene expression is represented by the nuclear 

MAINTENANCE OF METHYLATION1 (MOM1) protein with limited homology to 

DDM1 (Amedeo et al. 2000). MOM1 is involved in DNA-methylation-independent 

silencing of repetitive sequences in Arabidopsis (Vaillant et al., 2006). MOM1 prevents 
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transcription of 180 bp satellite repeats of transposons (Vaillant et al., 2006). In mom1 

mutants, a release of transgene silencing (Amedeo et al. 2000) and 5S repeat repression 

(Vaillant et al., 2006) occurs without reducing or altering their DNA and histone 

methylation patterns (Table 2.2.1). This suggests the existence of two distinct epigenetic 

silencing pathways, DNA-methylation-dependent and DNA-methylation-independent. 
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2.2.7. Epigenetic modification – a stress response mechanism controlling 

gene regulation 

Until recently, the link between stress exposure and sequence-specific changes in 

DNA methylation was hypothetical. It was demonstrated that prolonged exposure to cold 

triggers stable transcriptional silencing of FLC that leads to flowering inhibition 

(Henderson and Dean, 2004). Moreover, flowering time directly correlates with the level 

of DNA methylation in MET1 gene antisense knockouts (Finnegan et al., 1998a). 

Therefore, met1 mutants do not require cold treatment to initiate flowering. This proves 

that a developmental switch was epigenetically controlled.  

Cold exposure of root tissues of maize seedlings resulted in DNA demethylation 

at nucleosome core regions (Steward et al., 2000). In fact, DNA replication was strongly 

reduced in chilled tissues, leading to speculation that genome hypomethylation was the 

result of active rather than passive demethylation. Cold-induced demethylation of a 

nucleosome core and relaxation of chromatin structure could serve as a stress-induced 

transcriptional switch for many stress-regulated genes (Steward et al., 2002).  

Several other papers suggest that changes in DNA methylation are required for 

stress protection. Dyachenko et al. (2006) demonstrated a two-fold increase in the level 

of CpNpG methylation in the nuclear genome of M. crystallinum plants exposed to high 

salinity. An increase in methylation was associated with switching from C3- to C4-type 

photosynthesis. Similarly, Sha et al. (2005) reported that an age-dependent increase in 

methylation confers resistance to the blight pathogen X. oryzae in rice. 

Methylation contributes greatly to the plant’s ability to respond to stress. 

Hypomethylation found in met1 results in specific expression of 31 genes, most of which 
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are related to stress response (Wada et al., 2004). Demethylation of the NtAlix1gene 

occurs also as a result of viral infection, thus confirming that induction of this gene under 

natural stress conditions requires sequence demethylation. Steward et al. (2000) also 

showed that transcriptional activation of a ZmMI1 gene in maize seedlings was dependent 

on cold-induced sequence demethylation. The ZmMI1 gene contains a retrotransposon-

like sequence, and its activation mirrored cold-induced root-specific demethylation in 

Ac/Ds transposon regions followed by their activation (Steward et al., 2000). 

Activation of transposons in response to stress is a common phenomenon. Low 

temperature treatment decreases methylation and increases the rate of transposon Tam3 

excision by binding its transposase to GCHCG (H=not G) sites immediately after DNA 

replication, and thus preventing de novo sequence methylation (Hashida et al., 2003; 

2006). Stress induces the activity of Tos17 (rice) (Hirochika et al., 1996), Tto1 (tobacco) 

(Takeda et al., 1999), Tnt1 (tobacco) (Beguiristain et al., 2001) and BARE-1 (barley) 

(Kalendar et al., 2000) retrotransposons. An intriguing hypothesis that stress-activated 

transposons could positively contribute to genome adaptation to growth in colder 

climates was supported by the detection of mPing transposition into a rice homologue of 

the flowering time gene CONSTANS in stressed cultivars (Jiang et al., 2003). Indeed, 

Song et al. (1997) suggested that a number of transposable elements and their derivatives 

present in resistance gene (R-gene) loci played a significant role in a rapid diversification 

of this gene family. These publications support the long-standing hypothesis proposed by 

Barbara McClintock. She suggested that all kinds of stresses could potentially reshape 

plant genomes via transposon activation (McClintock, 1984). 
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Similarly, histone modifications represent another stress response mechanism 

acting by epigenetic control over gene expression. Chua et al. (2003) established a link 

between light-dependent transcriptional induction of a pea plastocyanin gene and histone 

acetylation. It was suggested that binding an enhancer to a nuclear matrix activates 

transcription through alteration of local chromatin structure, thus increasing acetylation 

of the promoter and 5’ coding region (Chua et al., 2003). Tsuji et al. (2006) demonstrated 

that transcriptional activation of submergence-inducible genes ADH1 and PDC1 in rice 

was reversibly mediated through histone H3K4 methylation and H3 acetylation. 

Consistently with the previously mentioned types of epigenetic modifications, the 

involvement of chromatin remodeling factors in stress response was supported by 

extensive studies of plants impaired in their functions. DDM1 deficient plants were 

shown to be more sensitive to UV-C and γ-radiation than wild type and met1 mutant 

plants (Shaked et al., 2006). This indicates that increased radiation sensitivity can be 

mediated by disrupting chromatin remodeling functions rather than cytosine methylation. 

It should be noted, however, that Shaked et al. (2006) did not analyze the double 

met1cmt3 mutant. If they considered any possible functional redundancy of MET1 and 

CMT3 (Kato et al., 2003), they could have made different conclusions.  

Other reports also supported the link between chromatin maintenance and stress 

response. Mutants of a nuclear protein BRU1 involved in the maintenance of chromatin 

structure were highly sensitive to genotoxic stress and were characterized by increased 

intrachromosomal homologous recombination (Takeda et al., 2004). Similarly, 

expression of the MIM1 gene involved in the maintenance of chromosome structure and 
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required for efficient homologous recombination was significantly increased by DNA-

damaging agents (Hanin et al., 2000).  

Another SWI/SNF like protein, DEFECTIVE FOR RNA-DIRECTED DNA 

METHYLATION1 (DRD1), represents a novel plant-specific chromatin remodelling 

protein that is required for RNA-directed de novo methylation of target promoters (Kanno 

et al., 2004). It is also necessary for full loss of induced de novo DNA methylation after a 

silencing RNA trigger is withdrawn (Kanno et al., 2005a). DRD1 interacts with two other 

factors, NRPD1b and NRPD2a, that represent subunits of a novel plant-specific RNA 

polymerase, pol IVb (Kanno et al., 2005b). Together, DRD1 and a pol IVb complex act 

downstream of a small RNA (smRNA) biogenesis pathway. Thus, they direct reversible 

silencing of euchromatic promoters in response to RNA signals possibly through 

recruitment of DNA methyltransferases to methylate homologous DNA sequences 

(Matzke et al., 2006) (Table 2.2.1). It is noteworthy that among putative DRD1 targets 

are DNA glycosylases ROS1 and DME that both are involved in active DNA 

demethylation (Morales-Ruiz et al., 2006; Penterman et al., 2007a). Down-regulation of 

ROS1 in drd1 and pol IVb mutants confirms the importance of a DRD1/pol IVb pathway 

for active loss of induced de novo DNA methylation (Kanno et al., 2005a). 
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2.2.8. smRNAs as a sensitive and selective trigger that directs epigenetic 

modification 

A significant advantage of epigenetic regulation is a fast stimulus-directed 

generation of new transcriptional states that are heritable and reversible. One of the key 

mechanisms involved in targeting chromatin structure and modifying a gene expression 

pattern in response to environmental stimuli is based on the activity of smRNAs. They 

were shown to guide transcription repression through modifications of DNA and histones 

(Bender 2004; Matzke et al., 2004; Chan et al., 2006).  

There are two current models that explain how smRNAs interact with a target 

locus in DNA. They suggest a homology-based pairing of smRNAs with either genomic 

DNA sequences (a DNA-recognition model) or nascent RNA transcribed from the target 

locus (an RNA-recognition model) (reviewed in Matzke and Birchler, 2005). In 

accordance with the DNA-recognition model, the interaction of smRNAs with genomic 

DNA sequences could provide an attractive substrate for cytosine methyltransferases. 

The ability of a DRD1/pol IVb complex to interact with DNA methyltransferases and 

DNA glycosylases suggests the involvement of this complex in the maintenance of 

reversible epigenetic states of euchromatic promoters in response to RNA signals 

(Matzke et al., 2006).  

An initial DNA methylation imprint in response to a stress-induced RNA signal 

can be created by DRMs at asymmetric sites  and then perpetuated at symmetric CpG and 

CpNpG sites by MET1 and CMT3, respectively (Cao and Jacobsen, 2002a; 2002b). In 

contrast to non-CpG methylation that is substantially reduced when a signal is removed, 

CpG methylation can be maintained through several generations (Bender, 2004). These 
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findings are intriguing, since non-CpG methylation is very unique to plants. It may 

represent an additional degree of complexity added to a gene expression control system 

to insure its fast and reversible response to environmental stimuli.  

Small RNAs reported up-to-date are involved in the regulation of plant 

development (Chen, 2004; Juarez et al., 2004; Kidner and Martienssen, 2004). They are 

tissue and organ specific (Sunkar and Zhu, 2004; Lu et al., 2005) and are regulated by a 

number of abiotic stresses including mechanical stress, dehydration, salinity, cold, 

abscisic acid, and nutrient deprivation (Sunkar and Zhu, 2004; Borsani et al., 2005; Lu et 

al., 2005; reviewed in Sunkar et al., 2007). A large number of non-conservative micro 

RNAs (miRNAs), available in some species and absent in the others, might support a 

hypothesis that the development of a specialized miRNA network was driven by 

physiological and stress conditions specific for each species (reviewed in Lu et al., 2005). 

Identification of 22 miRNAs from developing secondary xylem of P. trichocarpa 

stems (Lu et al., 2005) further confirmed that species-specific miRNAs contribute to 

regulation of gene expression associated with specific growth/stress conditions. The 

expression of many ptr-miRNAs was induced in the developing xylem of stems in the 

presence of gravitropism-mediated mechanical stress (Lu et al., 2005). This stress 

triggers upregulation of ptr-miR408 expression and regulates the plastocyanin-like 

protein mediating lignin polymerization. In addition, mechanical stress downregulates the 

expression of ptr-miR164 and ptr-miR171. These miRNAs target genes are involved in 

cell division and elongation in response to gravitropism. 

Recent data by Sunkar and Zhu (2004) demonstrated the existence of stress-

inducible changes in the Arabidopsis miRNA pool. The most interesting examples are 
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miRNA402 and miRNA407 regulated by dehydration, salinity, cold, and abscisic acid. 

Whereas miRNA402 targets ROS-like DNA glycosylase, miR407 targets a SET domain 

protein functioning in histone Lys methylation (Sunkar and Zhu, 2004). Some of miRNAs 

were shown to have multiple target sites within the same gene, which implies that 

different levels of gene repression might be achieved by binding different numbers of 

miRNAs to the target (Doench et al., 2003).  

Stress-induced miRNAs have a tissue-specific expression pattern. It reflects 

organ-specific functional and metabolic differences in response to stress. Indeed, miR393 

downregulates TIR1, a positive regulator of auxin signalling, and has its strongest 

expression in the inflorescence under physiological conditions. Hence, strong miR393 

induction by stress is consistent with inhibition of plant growth under stress conditions 

(Sunkar and Zhu, 2004). Consistently with the role of miRNAs in the establishment of a 

stress-induced gene expression pattern, Arabidopsis mutants hen1-1 and dcl1-9 partially 

impaired in the production of miRNAs were shown to be hypersensitive to abiotic 

stresses (Sunkar and Zhu, 2004). 

Recently, nat-siRNAs (a new class of small interfering RNAs (siRNAs) that 

derives from natural antisense transcripts) have been reported (Borsani et al., 2005). They 

are involved in stress-mediated regulation of genes located in antisense overlapping pairs 

that results in generation of complimentary transcripts. The authors showed that induction 

of one of these genes in an antisense pair by stress results in the production of nat-siRNA, 

which guides the cleavage of other gene transcripts followed by downregulation of the 

gene activity. Similarly, studies of Katiyar-Agarwal et al. (2006) demonstrated induction 

of another specific nat-siRNA during Pseudomonas syringae infection that conferred 
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resistance to this pathogen. This mechanism may play an important role, since there are 

thousands of genes that are grouped in antisense overlapping pairs (Borsani et al., 2005). 
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2.2.9. Inducible epigenetic changes may guide genome evolution and 

shape the plant genome 

Epigenetic modification of DNA via selective cytosine methylation plays a crucial 

role in establishing a stable epigenetic mark in plants. Despite their reversibility, changes 

in DNA methylation are quite stable modifications that are not easily reset; and they are 

frequently transmitted for several generations. Indeed, backcrosses of a ddm1 mutant to 

wild type plants do not revert the mutant phenotype. This demonstrates that 

hypomethylation can be stably transmitted during meiosis, gametogenesis, and mitosis, 

regardless of the presence of a functional DDM1 gene (Kakutani et al., 1999). The 

progeny of MET1 antisense plants exhibit DNA hypomethylation independent of the 

presence of the transgene locus that previously triggered inhibition of MET1 (Finnegan et 

al., 1996).  

Perhaps, the best examples of methylation-mediated heritable changes are 

epialleles representing different forms of the same gene regulated epigenetically. 

Epialleles can be formed in response to a number of stimuli, and they may play an 

important role in acclimation. Good examples of such epialleles are methylated and 

demethylated forms of the FWA gene. Both of them are equally stable and can be 

inherited as a true Mendelian trait based on methylation rather than on the sequence 

difference (Zilberman and Henikoff, 2005). Targeting DNA methylation to the FWA gene 

was triggered by positioning its promoter and transcription start site within two pairs of 

direct repeats (Soppe et al., 2000). Moreover, two Arabidopsis ecotypes, Ler and Da (1)-

12, carry transposon insertions in the first intron of the FLC gene. This represents 

independent adaptive events that lead to the establishment of cold-independent flowering 
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initiation by preventing high expression of the FLC gene (Michaels et al., 2003; Liu et 

al., 2004a).  

Paramutations represent another class of heritable epigenetic traits. They are 

caused by interactions between two alleles of a single locus. Paramutation is essentially a 

heritable change of one allele (a target) that is induced by the other allele (a trigger). The 

silenced state of a target allele induced by a trigger remains stable, even if a trigger allele 

segregates out in the next generation (Chandler et al., 2000). Recent studies by Alleman 

et al. (2006) confirmed the critical role siRNAs play in production and maintenance of 

chromatin states in maize. They demonstrated that MEDIATOR OF PARAMUTATION1 

(MOP1) gene that encodes the RNA-dependent RNA polymerase is required for 

production of paramutations (Alleman et al., 2006). It can be hypothesized that a mi-/si-

RNA-induced transgenerational response to stress indeed exists in plants.  

The adaptive advantage of heritable stress memories was recently supported by 

observations that plant exposure to biotic (pathogen) or abiotic (salt) stresses leads to 

global and loci-specific changes in genome stability and methylation. It also results in 

elevated tolerance of the immediate progeny to previously applied stresses (Boyko et al., 

2008; Boyko and Kovalchuk, 2008b; Boyko et al., data not published). 

Genome rearrangements represent another epigenetic-sensitive mechanism 

affecting genome stability. The dual role of HR, as a DNA repair pathway and a putative 

evolutionary tool, was intensively discussed over the past several years (Puchta, 2005; 

Schuermann et al., 2005 and references therein). It has been suggested that HR can be 

involved in genome evolution through rearrangements of existing sequences, frequently 

resulting in gene duplication or deletion events. Indeed, the degree of HR-mediated 



 49 

V(D)J rearrangements depends on DNA methylation (Bassing et al., 2002). It can be 

suggested that stress-directed changes in DNA methylation can stimulate or prevent 

rearrangements in different genomic loci (Rizwana and Hahn, 1999). Highly conserved 

gene families located in clusters could possibly increase their diversity using HR. Indeed, 

it has been suggested that the evolution of plant R-genes involved gene duplication and 

recombination events (Meyers et al., 2005). The fact that meiotic and somatic HRF can 

be altered by a variety of biotic and abiotic stresses could suggest that changes in the 

HRF represent one of the mechanisms of stress adaptation (Kovalchuk et al., 2003a, 

2003b, 2004a; Molinier et al., 2005, 2006; Boyko et al., 2005, 2006b, 2006c, 2007, 2008; 

Boyko and Kovalchuk 2008b). Indeed, in several studies, the increased HRF was 

inherited by the progeny of stressed plants as an epigenetic trait persisting in a population 

for one or several non-stressed generations (Kovalchuk et al., 2003b; Molinier et al., 

2006; Boyko et al., 2007, 2008; Boyko and Kovalchuk 2008b).  

Recent studies by Boyko et al. (2007) established a defined correlation between 

stress exposure, loci-specific epigenetic changes, and genome stability of exposed plants 

and their progeny using a well-studied model of TMV infection. We have demonstrated 

that the progeny of tobacco plants treated with TMV inherited elevated rates of HR that 

correlated with an increased frequency of rearrangements in R-gene-like loci. 

Importantly, the progeny of stressed plants displayed increased levels of global genome 

methylation and exhibited loci-specific hypomethylation. Namely, the R-gene-like loci 

that carry homology to the N-gene conferring resistance to TMV were found to be 

hypomethylated and, as a consequence, rearranged more frequently (Boyko et al., 2007). 

Since plants used for infection (the SR1 cultivar) did not have the N-gene, it would be 
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correct to assume that locus-specific changes in methylation and rearrangements could be 

a plant strategy for creating an active R-gene. It is possible that such transgenerational 

changes in recombination and DNA methylation represent a general epigenetically 

controlled mechanism directed to selective relaxation of DNA sequences, thereby 

allowing faster evolution under the influence of various environmental stimuli. The 

foregoing might somewhat resemble a phenomenon reported in flax, where a number of 

heritable changes could be triggered by environmental changes relatively fast (Chen et 

al., 2005; Cullis, 2005). 
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2.3. Agrobacterium-mediated genetic transformation: basic 

mechanisms and improvement strategies 

2.3.1. Homologous recombination as a biotechnological tool 

The importance of HR is not restricted to its critical role in meiosis and DSB 

repair. HR has increasing significance in the field of biotechnology and genetic 

engineering (Vergunst and Hooykaas, 1999; Puchta 2002; Reiss 2003; Hanin and 

Paszkowski, 2003; Lida and Terada, 2004). Transgene integration into a host genome 

using an HR repair pathway offers unique opportunities for site-specific transgene 

integration into a predetermined location. It has great prospects for developing GT 

technology in plants. The contribution of HR to genetic plant transformation and the 

ways it could be improved are the focus of our study and will be discussed below. 
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2.3.2. Agrobacterium: from a plant pathogen to a favoured genetic 

transformation tool 

During the past decade, Agrobacterium-mediated genetic transformation became 

one of the dominant technologies used to produce a variety of genetically modified 

transgenic plants. The successful introduction of this technology can be partially 

explained by the fact that Agrobacterium tumefaciens used for donor DNA delivery is a 

typical plant pathogen present in soil. However, in contrast to many other plant 

pathogens, it has a unique ability of trans-kingdom DNA transfer (reviewed in Gelvin 

2003). The natural ability to transform a host cell using bacterial DNA observed in 

Agrobacterium triggered an extensive search for other plant pathogens with similar 

properties. To date, three non-Agrobacterium species, all sharing the ability of plant 

genetic transformation, have been identified. This short list includes Rhizobium sp. 

NGR234, Sinorhizobium meliloti and Masorhizobium loti (Broothaerts et al., 2005; 

reviewed in Chung et al., 2006). However, Agrobacterium remains a favoured tool used 

for transgenesis. The foregoing is confirmed by a growing number of Agrobacterium-

related patents being claimed every year (Roa-Rodriguez and Nottenburg, 2003), and by 

a continuously increasing range of host species including various plant species, yeast, 

mushrooms, filamentous and phytopathogenic fungi, and even a human cell (Tzfira and 

Citovsky, 2003; reviewed in Lacroix et al., 2006). Importantly, the ability to transform 

human cells opens up great possibilities for using Agrobacterium not only in plant 

biotechnology but also in human and animal gene therapy. 

Agrobacterium performs genetic transformation of recipient species by 

transferring and integrating the bacterium tumor-inducing plasmid (Ti) region 
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(approximately 10 to 30 kbp in size) into the host genome. The transferred DNA region is 

known as the T-DNA, and it usually represents less than 10% of the Ti plasmid. Borders 

of the T-DNA region are well-defined by the so-called border sequences that are 

represented by 25 bp direct long repeats, flanking the T-DNA right and left borders. 

Generally, there is only one T-DNA region present in the Ti plasmid, however Ti 

plasmids containing multiple T-DNA sequences are also known. T-region sizes of some 

naturally occurring Ti plasmids can reach approximately 23 kpb, allowing the 

introduction of many genes into the T-region (reviewed in Gelvin 2003, and Tzfira et al., 

2004a).  

In the wild-type Agrobacterium strains, the T-DNA encodes a set of oncogenes 

and opine-catabolism genes, and its expression in a plant cell results in neoplastic growth 

and production of opines. In contrast, biotechnology relies on using the so-called 

recombinant or disarmed Agrobacterium strains that have an entire sequence of the native 

T-DNA replaced with any genes of interest, and therefore they are capable of plant 

transformation without causing tumour development (Tzfira and Citovsky, 2006 and 

references therein). Interestingly, recombinant Agrobacterium was shown to transfer 

large T-DNAs (up to 150 kbp) (Hamilton et al., 1996) and 200 kbp (Miranda et al., 

1992). 

The Ti plasmid also contains a set of virulence (vir) genes. These genes together 

with chromosomal virulence (chv) genes mediate processing of T-DNA from the Ti 

plasmid and its subsequent exporting from the bacterium to the host cell. Briefly, VirD1 

and VirD2 act as site-specific endonucleases that recognize the T-DNA border sequences 

and release a single stranded (ss)T-DNA molecule from the Ti plasmid. The resulting 
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ssT-DNA with one molecule of VirD2 attached to the 5’ end represents an immature T-

complex that is exported by the VirB/D4 type IV secretion system into the plant cell 

along with several other Vir proteins, including VirE2, VirE3 and VirF. Once inside the 

host cell cytoplasm, the T-DNA covered with numerous VirE2 molecules can form a 

“telephone cord”-like structure of a mature T-complex, which is then actively transported 

to the nucleus using a cell dynein motor. A mature T-complex enters the nucleus through 

a nucleus pore complex (NPC) and is believed to be directed to DSB sites, where T-DNA 

is stripped of accompanying proteins and integrated into the host genome (reviewed in 

Tzfira et al., 2004b; Tzfira and Citovsky, 2006). It is noteworthy that at various stages of 

T-DNA delivery and integration (including the immature T-complex delivery to the host 

cell cytoplasm, transport through the cytoplasm and nuclear import, intracellular 

transport, T-DNA uncoating and integration), the activity and factors of various host 

cellular mechanisms are actively utilized by Agrobacterium to complete transformation 

(reviewed in Citovsky et al., 2007). The fact that Agrobacterium depends greatly on host 

factors for the successful T-DNA integration suggests a variety of promising strategies 

for improving plant transformation efficiency. These strategies are based on various 

manipulations with host factors participating in T-DNA integration.  
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2.3.3. Host systems involved in Agrobacterium infection 

Among host factors used by Agrobacterium on its way to the nucleus are plant 

cell surface receptors. The attachment of Agrobacterium to host plant cells is an absolute 

requirement for transformation (McCullen and Binns, 2006). Recent studies made it 

possible to isolate several putative receptors and cell-attachment factors localized on the 

host cell surface and utilized by Agrobacterium. Among them are a vitronectin-like 

protein, a rhicadhesin-binding protein, a cellulose synthase-like gene and several VirB2-

interacting proteins (BTIs) (reviewed in Citovsky et al., 2007).  

Once inside the host cytoplasm, the mature T-complex has to be delivered to the 

nucleus. The large size of the complex (with an outer diameter ~ 15.7 nm (Abu-Arish et 

al., 2004) and the dense structure of cytoplasm impedes passive transport of the complex. 

In contrast, a model that suggested an active mechanism mediating transport of this 

complex to the nucleus was developed by Tzfira (2006) based on the experimental 

evidence available (Salman et al., 2005; Tzfira, 2006). Tzfira (2006) suggested that active 

transport is performed by a dynein-like Arabidopsis protein DLC3, which interacts with 

another host factor, a VirE2-interacting protein 1 (VIP1), mediating the recognition of 

VirE2 by the nuclear import machinery (Citovsky et al., 2007).  

The large size of the T-complex no matching closing parameters compared to the 

NPC (~ 9 nm) implies that there should be an active mechanism in a plant cell that could 

deliver the T-complex to the nucleus. The host nuclear-import machinery itself is the best 

tool for doing this. Consistently with this hypothesis, both proteins interacting with T-

DNA in the T-complex, VirD2 and VirE2 proteins, can also interact with host 

importin/karyopherin α (Ballas and Citovsky, 1997) and VIP1 (Tzfira et al., 2001) 
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proteins, respectively. While VirD2 initiates nuclear import and is directly recognized by 

the nuclear-import machinery, VIP1 along with another bacterial factor, a VirE3 protein, 

plays a role of a molecular adaptor between VirE2 and host karyopherin α (reviewed in 

Tzfira and Citovsky, 2006). Consistent with a pivotal role for the importin α family in the 

T-complex import, Arabidopsis plants deficient in one of importin α genes are resistant to 

Agrobacterium infection (Zhu et al., 2003a). Interestingly, a VirE3 protein may play a 

role of a bacterial host range factor (Hirooka and Kada, 1986) that compensates the 

absence or low levels of VIP1 in some plants and non-plant species (discussed in 

Citovsky et al., 2007). Indeed, VirE3 promotes nuclear accumulation of VirE2 in 

mammal cells that lack VIP1 and in plants with suppressed expression of VIP1 (Lacroix 

et al., 2005). Deng et al. (1998) reported interactions between VirD2 and host 

cyclophilins that serve as molecular chaperones and maintain the proper conformation of 

VirD2 during its transport to the nucleus. 

Another group of host factors that influence nuclear import of the T-complex and 

that has been identified in Arabidopsis and alfalfa is represented by a nuclear cyclin-

dependent kinase-activating kinase (CAK2M) (Bakó et al., 2003) and by a type 2C 

serine/threonine phosphatase, DIG3 (Tao et al., 2004). While the former factor 

phosphorylates VirD2 and promotes its nuclear import, the latter reverses 

phosphorylation and negatively regulates nuclear import of the T-complex. The recent 

report by Djamei et al. (2007) suggested that Agrobacterium is also able to use a part of 

the mitogen-activated protein kinase (MAPK) defence signalling pathway, MPK3 kinase, 

for phosphorylation of VIP1 that leads to its nuclear localization (reviewed in Dafny-

Yelin et al., 2008).  
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Delivery of the T-complex to its integration site in chromatin also requires the 

participation of host factors, particularly CAK2M, a TATA-box binding protein (TBP), 

VIP1, and core histones (reviewed in Citovsky et al., 2007). The first two factors, 

CAK2M and TBP, bind to VirD2 (Bakó et al., 2003). Moreover, CAK2M interacts with 

the largest subunit of RNA polymerase II, thus permitting recruitment of TBP that allows 

controlling transcription and transcription-coupled repair. Overall, interactions between 

CAK2M, TBP, and VirD2 target the T-complex to the host chromatin (Bakó et al., 2003). 

Considering the involvement of VIP1 in chromatin decondensation, it is safe to assume 

that its interactions with VirE2 may play a role similar to that of the T-complex targeting 

to chromatin (Tzfira et al., 2001). Consistently with that model, VIP1 was shown to 

interact in planta with the Arabidopsis core histone H2A (Li et al., 2005a; Loyter et al., 

2005). An Arabidopsis histone H2A mutant was found to be deficient in T-DNA 

integration (Mysore et al., 2000a). Finally, the involvement of the host transcription 

machinery in delivery of T-complexes to insertion sites can be further supported by the 

finding of Alonso et al. (2003) that T-DNA insertions into regulatory regions of plant 

genes occur at high frequencies.  

During the integration stage, the interaction of the host DNA repair machinery 

with T-DNA requires uncoating T-DNA of its cognate proteins. Uncoating is completed 

via the plant-targeted proteolysis machinery. VirF, a bacterial F-box protein that 

functions as a subunit of E3 ubiquitin ligase, forms a ternary complex with VIP1 and 

VirE2. This results in their destabilization by targeted proteasomal degradation (Tzfira et 

al., 2004b). The foregoing is consistent with a nuclear localisation of VirF and a negative 

effect of proteasomal inhibitors on early T-DNA expression (Tzfira et al., 2004b). It is 
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possible, however, that unidentified plant F-box proteins are also involved in this process, 

since VirF is known to be dispensable for transformation of some plant species 

(Regensburg-Tuink and Hooykaas, 1993).  

The final step of transformation, the actual integration of T-DNA into plant 

genomes, is almost completely host-dependent. It mainly determines the precision of 

transgene integration (Tzfira et al., 2004a). Unfortunately, there are still some blank spots 

and data controversy regarding mechanisms and factors employed during this stage. Two 

mutually exclusive models explaining T-DNA integration were originally proposed 

(reviewed in Tzfira et al., 2004a). The first, the DSBR model, postulates that T-DNA 

preferentially integrates into DSB sites. Integration via the DSBR model requires 

conversion of ssT-DNA molecules into dsT-DNA molecules before integration. In 

contrast, the single-strand-gap repair (SSGR) model suggests that ssT-DNA integrates 

into a nicked DNA and then provides a template for complimentary DNA strand 

synthesis that substitutes an original host DNA sequence at the integration site. Both 

models were later modified to incorporate new experimental evidence (reviewed in Tzfira 

et al., 2004a).  

Experimental evidence suggests targeted integration of T-DNA into DSB sites via 

double stranded intermediates (Chilton and Que, 2003). A number of studies reported that 

the induction of DSBs via X-ray irradiation (Kohler et al., 1989) and using rare cutting 

endonucleases (Salomon and Puchta, 1998; Tzfira et al., 2003) resulted in enhanced 

transgene integration. In fact, Tzfira et al. (2003) analysed sequences at insertion sites 

obtained from transformation of transgenic tobacco carrying an I-SceI endonuclease 

recognition site with two Agrobacterium strains. One of the strains had the T-DNA 
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carrying an I-SceI recognition site, and the other one allowed transient expression of I-

SceI to induce DSBs. Importantly, seven out of a total of 16 plants, which contained the 

T-DNA integrated into the I-SceI site, contained the T-DNA digested with I-SceI. Since 

the I-SceI endonuclease cuts only double-stranded DNA, it was concluded that 

conversion of ssT-DNA into double stranded DNA occurred before an integration event 

(Tzfira et al., 2003). Overall, it seems that ssT-DNA that enters the nucleus is being 

converted into a double stranded intermediate that later is directed to naturally occurring 

DSBs, and then it is integrated in the host genome using the host DNA repair machinery. 

This implies that host factors are required for conversion of a single stranded T-DNA to a 

double stranded T-DNA, for production of DSBs in the host genome, and finally for 

incorporation (ligation) of T-DNA molecule into these breaks.  

As it has been mentioned, DSBs can be repaired using one of two alternative 

DNA repair pathways, NHEJ or HR. Both pathways differ in their fidelity of DNA repair 

(Gorbunova and Levy, 1999; Puchta, 2005) which may affect the intactness of the T-

DNA sequence during integration. Moreover, using homologous templates for repair 

makes HR a likely candidate for generation of site-specific insertions and GT (Vergunst 

and Hooykaas, 1999; Puchta 2002; Reiss 2003). Unfortunately, the majority of DSBs in 

plant cells are repaired via NHEJ, and the contribution of HR is very low (Gorbunova and 

Levy, 1999; Puchta, 2005). This is a major drawback in the development of technology 

for a site-specific transgene integration in plant cells. A number of studies conducted in 

the past several years were focused on: identification of host DNA repair factors involved 

in T-DNA integration, detection of mechanisms that control a DSB repair pathway choice 

in a cell, and manipulation of these mechanisms during T-DNA integration in the host 
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genome (reviewed in Tzfira et al., 2004a; Tzfira and Citovsky, 2006; and Shrivastav et 

al., 2008). 
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2.3.4. Host DNA repair factors involved in T-DNA integration 

Most of the experimental evidence supporting the role of host DNA repair factors 

in T-DNA integration was obtained using yeast as a model system. Using this system, it 

was first demonstrated that simultaneous inactivation of HR and NHEJ by mutations in 

RAD52 and KU70 genes inhibits T-DNA integration completely (van Attikum and 

Hooykaas, 2003), proving that the DSB repair machinery of a cell is absolutely required 

for successful transformation. Consistently, mutations inactivating either RAD52 or 

KU70 genes lead to preferential integration of T-DNA via the NHEJ pathway (van 

Attikum and Hooykaas, 2003) or the HR pathway (van Attikum et al., 2001), 

respectively. This suggests that Ku70 and Rad52 enzymes play a key role in the 

determination of a T-DNA integration mode in yeast. 

Using different yeast mutants deficient in DNA repair genes, van Attikum and 

Hooykaas (2003) demonstrated that integration of T-DNA via the NHEJ pathway 

requires the activity of Ku70, Rad50, Mre11, Xrs2, Lig4, and Sir4. In contrast, 

integration via the HR pathway is independent of Rad50, Mre11, Xrs2, Lig4, and Ku70 

and requires the activity of Rad52 and Rad51 (van Attikum et al., 2001) (Table 2.3.1).  

Unfortunately, the results on T-DNA integration using the host’s DNA repair 

pathways obtained in the yeast system can not be directly applied to plants. In yeast, HR 

is the predominant mode of DNA repair. In contrast, plants like other higher eukaryotes 

predominantly use the NHEJ pathway. The difference is also reflected at the molecular 

level: vertebrates and plants have three critical NHEJ-related factors that are missing in 

yeast, including DNA-PKcs, BRCA1, and Artemis (Bleuyard et al., 2006 and references 

therein; Reidt et al., 2006; reviewed in Shrivastav et al., 2008). The presence of DNA-
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PKcs in higher eukaryotes may play a critical role in the regulation of NHEJ and could 

account for its domination over HR (reviewed in Shrivastav et al., 2008). Since a low HR 

frequency in vertebrate cells coexists with the presence of a yeast Rad52 homologue, the 

absence of Rad52 in plants (Iyer et al., 2002) can not be the main cause of a low HR 

activity.  

One of the key factors involved in T-DNA integration in plants is a Ku80 protein 

that in complex with Ku70 and DNA-PKcs proteins represents the NHEJ pathway. The 

role of Ku80 was supported by genetic studies using Arabidopsis insertional mutants in 

the KU80 gene that were found to be deficient in T-DNA integration in somatic cells (Li 

et al., 2005b). Immunoprecipitation of Ku80-dsT-DNA complexes from Agrobacterium-

infected plants supported a physical interaction between Ku80 and T-DNA in the nucleus 

(Li et al., 2005b). Consistently, overexpression of Ku80 in plant somatic cells resulted in 

an increased susceptibility to Agrobacterium infection (Li et al., 2005b). In contrast to 

somatic cells, data on the involvement of Ku80 in T-DNA integration in germ-line cells 

remain controversial. While Friesner and Britt (2003) reported Ku80 to be essential for 

transformations, the study of Gallego et al. (2003) demonstrated its dispensability. 

Similarly, another NHEJ factor, Arabidopsis LIG4 ligase, was dispensable for 

transformation in somatic cells (van Attikum et al., 2003) and required in germ-line cells 

(Friesner and Britt, 2003) (Table 2.3.1). Interestingly, some Arabidopsis mutants, like 

rat1, that show resistance to Agrobacterium somatic transformation (Zhu et al., 2003b) 

also display susceptibility to germ line transformation (Mysore et al., 2000b). This 

phenomenon may indicate the difference in a spectrum of host factors required for 

transformation in somatic (Zhu et al., 2003b) and germ-line cells (Ye et al., 1999). 
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Experimental evidence provided by studies of Mysore et al. (2000a) demonstrated 

that core histones represent another important factor influencing the last step of plant 

transformation. Histone H2A expression in various plant tissues was positively correlated 

with their susceptibility to Agrobacterium infection (Yi et al., 2002). Moreover, 

inactivation of the AtH2A gene in the Arabidopsis rat5 mutant leads to deficiency in T-

DNA integration (Mysore et al., 2000a). Overall, histone H2A may promote T-DNA 

integration via relaxation of a host chromatin structure (Mysore et al., 2000a). 

Consistently, the importance of chromatin structure in T-DNA integration was further 

supported using fas1 and fas2 mutant plants (Endo et al., 2006). FAS1 and FAS2 

represent two of three subunits of Chromatin Assembly Factor 1 (CAF-1) (Kaya et al., 

2001; Henning et al., 2003) that mediates deposition of H3/H4 histones onto replicating 

DNA, thereby promoting chromatin condensation (Tagami et al., 2004). Reduced 

heterochromatin in fas mutants (Schonrock et al., 2006) was consistent with an enhanced 

frequency of T-DNA integration into the plant genome (Endo et al., 2006).  

The significance of host chromatin structure for T-DNA integration is consistent 

with a genome-wide T-DNA insertional analysis that included more than 80 000 

independent insertions and demonstrated preferential integration of T-DNA in intergenic 

regions, including promoters, 5’ and 3’ UTRs, in which active transcription usually 

occurs (Alonso et al., 2003). However, it should be taken into consideration that the 

authors who reported preferential integration of T-DNA into transcriptionally active 

regions of the host genome (Alonso et al., 2003; Tzfira et al., 2003) used an active 

selection during the callus regeneration step. This could result in a preferential selection 

of actively expressed T-DNA insertions located in transcriptionally active regions, 
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thereby discriminating the selection of transgenic plants containing T-DNA insertions 

within heterochromatin or within regions with a low transcriptional activity. In fact, 

recent studies that used non-selective conditions supported the idea that T-DNA 

integration occurs more randomly in a genome, and integration events can be found also 

in heterochomatic regions at relatively high frequencies (Francis and Spiker, 2005; Kim 

et al., 2007).  
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Table 2.3.1. Summary of yeast and Arabidopsis DNA repair proteins involved in T-DNA integration and their functions 

Host gene 
Role in DNA repair 

Yeast 
Arabidopsis References Yeast Arabidopsis HR NHEJ 

KU70 AtKu70 
Binding and stabilization of 
various types of DNA ends; DSB 
end juxtaposition  

Not 
required Required Not determined 

van Attikum et al., 2001; 
Tamura et al., 2002; van 
Attikum and Hooykaas, 2003 

KU80 AtKu80 
Binding and stabilization of 
various types of DNA ends; DSB 
end juxtaposition 

Not 
determined 

Not 
determined 

Required for T-DNA 
integration in somatic cells; 
reported both essential and 
dispensable for integration in 
germ-line cells; 
overexpression in somatic 
cells increases transformation 
frequency 

Tamura et al., 2002; West et 
al., 2002; Friesner and Britt, 
2003; Gallego et al., 2003; Li 
et al., 2005b 

LIG4 AtLig4 ATP-dependent ligase; joining 
DSB ends 

Not 
required Required 

Dispensable for 
transformation in somatic 
cells; required for 
transformation in germ-line 
cells 

Friesner and Britt, 2003; van 
Attikum et al., 2001; van 
Attikum and Hooykaas, 2003; 
van Attikum et al., 2003; 
Calsou et al., 2003; Zhu et al., 
2003b 

SIR4 Unknown 
homolog 

Interacts with Ku70; forms a 
complex with Sir3-Sir2; may be 
involved in histone acetylation 

Not 
determined Required − van Attikum et al., 2001; van 

Attikum and Hooykaas, 2003 

RAD50 AtRad50 

DSB end juxtaposition and end 
processing; together with Mre11 
and Xrs2 forms a complex that 
has the exonuclease activity 

Not 
required Required Not determined 

Gherbi et al., 2001; Gallego et 
al., 2001; van Attikum et al., 
2001; van Attikum and 
Hooykaas, 2003; Bleuyard et 
al., 2004 

MRE11 AtMre11 

DSB end juxtaposition and end 
processing; together  with Rad50 
and Xrs2 forms a complex that 
has the exonuclease activity 

Not 
required Required Not determined 

Bundock and Hooykaas, 2002; 
van Attikum et al., 2001; van 
Attikum and Hooykaas, 2003; 
Puizina et al., 2004 
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Table 2.3.1. Summary of yeast and Arabidopsis DNA repair proteins involved in T-DNA integration and their functions 

(continued)  

Host gene 
Role in DNA repair 

Yeast 
Arabidopsis References Yeast Arabidopsis HR NHEJ 

XRS2 Unknown 
homolog 

DSB end juxtaposition and end 
processing; together with Rad50 
and Mre11 forms a complex that 
has the exonuclease activity 

Not 
required Required − van Attikum et al., 2001; van 

Attikum and Hooykaas, 2003 

RAD51 

AtRad51 
Formation of Rad51/ssDNA 
nucleofilament and strand 
invasion 

Required Not 
required Not determined 

Doutriaux et al., 1998; van 
Attikum et al., 2001; van 
Attikum and Hooykaas, 2003; 
Li et al., 2004a 

AtRad5 
Close homolog of yeast RAD51; 
ATP-dependent homologous 
function in DNA pairing 

− − 
rad5 mutant is deficient in T-
DNA integration in somatic 
cells 

Sonti et al., 1995 

RAD52 Unknown 
homolog 

Binds ssDNA and supports 
Rad51/ssDNA nucleofilament 
assembly prior to Rad51-
mediated strand invasion 

Required Not 
required − van Attikum et al., 2001; van 

Attikum and Hooykaas, 2003 

RAD54 AtRad54 
Supports the extension of the 
heteroduplex region after  
Rad51-mediated strand invasion 

Not 
determined 

Not 
determined 

Overexpression of yeast 
RAD54 in Arabidopsis 
drastically increases the 
frequency of site-specific 
transgene integration 

Shaked et al., 2005, 2006; 
Osakabe et al., 2006 

Unknown 
homolog AtH2A Core histone; DNA packaging − − 

Dispensable for integration in 
germ-line cells and required in 
somatic cells; overexpression 
in somatic cells increases 
transformation frequency 

Mysore et al., 2000a 

Unknown 
homolog 

FAS1 and 
FAS2 

Subunits of a chromatin 
assembly factor 1 (CAF-1) that 
mediates the deposition of H3/H4 
histones onto DNA following 
replication and nucleotide 
excision repair 

− − 

fas mutant reduced 
heterochromatin, drastically 
upregulated HRF, increased 
the activity of AtRAD51 and 
AtRAD54 genes, and enhanced 
T-DNA integration frequency 

Tagami et al., 2004; Endo et 
al., 2006; Schonrock et al., 
2006 
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2.3.5. Genetic manipulation of the host for improving transformation 

efficiency 

The existence of multiple host factors required for Agrobacterium-mediated 

transformation suggests a promising possibility for improving transformation efficiency 

via manipulations of a host rather than of bacterium factors. Moreover, using this 

approach should help us to gain the maximum control over the last step of 

transformation, T-DNA integration, which greatly relies on the host DNA repair 

machinery. This machinery may help direct T-DNA integration preferentially via the HR 

pathway which increases the precision and site-specificity of transgene integration. 

Different strategies can be suggested for improving plant transformation via 

manipulation of host factors. The first strategy, which is probably the most used 

nowadays, is overexpression of host factors that have a positive effect on plant 

transformation. Indeed, overexpression of histone H2A in wild-type Arabidopsis plants 

greatly increased their susceptibility to Agrobacterium infection (Mysore et al., 2000a). 

Similarly, overexpression of BTI in Arabidopsis (Hwang and Gelvin, 2004) and VIP1 in 

tobacco (Tzfira et al., 2002) increased their susceptibility to genetic transformation. 

Overexpression of DNA repair proteins derived from different organisms in plant cells 

may increase the frequency of site-specific integration events. In fact, expression of the 

E. coli RecA gene in transgenic tobacco plants increased HR frequency between sister 

chromatids by 2.4-fold as compared with wild type plants (Reiss et al., 2000). In a similar 

way, expression of the bacterial resolvase RuvC resulted in more than a 10-fold increase 

of somatic crossover and intrachromosomal recombination in transgenic tobacco plants 
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(Shalev et al., 1999). Nevertheless, despite its positive effect on HR, overexpression of 

RecA and RuvC in plant cells had no significant effect on the GT frequency.  

In contrast, expression of the yeast RAD54 gene, a member of the SWI2/SNF2 

superfamily of chromatin remodelling genes in Arabidopsis, increased the GT frequency 

by one to two orders of magnitude (Shaked et al., 2005). This specific induction is 

consistent with reduced rates of GT previously reported in yeast, mouse stem cells, and 

chicken DT40 cells with the inactivated RAD54 gene or its homologs (Bezzubova et al., 

1997; Essers et al., 1997). An important role of chromatin remodelling factors in 

controlling the HRF was also supported by early studies of Hanin et al. (2000), who 

identified the Arabidopsis MIM gene encoding for a protein belonging to the SMS 

(structure maintenance of chromosomes) family. Overexpression of a MIM protein in 

plant cells resulted in a 2-fold increase in the intrachromosomal HR frequency as 

compared with the wild type (Hanin et al., 2000). Mysore et al. (2000a) demonstrated 

that overexpression of the RAT5 histone H2A gene in wild-type Arabidopsis plants 

increases transformation efficiency.  

Inactivation of host genes that negatively influence T-DNA transformation and 

the HR pathway may represent an alternative to the strategy of overexpression. In fact, 

mutation in the Arabidopsis AtRad50 gene that encodes a protein involved in the NHEJ 

pathway stimulated HR and caused a hyper-recombinant phenotype (Gherbi et al., 2001). 

Similarly, other host factors that negatively control T-DNA integration, like the protein 

phosphotase DIG3 that inhibits a nuclear import of VirD2 (Tao et al., 2004), can be 

considered to be possible targets for downregulation during genetic transformation. In 

fact, the studies of Ninomiya et al. (2004) using Neurospora strains deficient in human 
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KU70 and KU80 homologs demonstrated that the rate of HR and GT can be greatly 

increased by suppression or blocking of the NHEJ repair pathway. Similarly, Arabidopsis 

fas1 and fas2 mutant plants deficient in the activity of a CAF-1 protein involved in 

nucleosome assembly and chromatin condensation were hypersusceptible to 

Agrobacterium transformation (Endo et al., 2006). Moreover, fas mutants displayed a 

hyper-recombinant phenotype which was consistent with enhanced transcription of 

AtRad51 and AtRad54 genes (Endo et al., 2006).  

In plant species recalcitrant to Agrobacterium, transient overexpression of specific 

host factors during co-transformation can be problematic. Hence, it can be suggested to 

use an Agrobacterium-independent transformation technique (like biolistics) for 

achieving transient overexpression of specific host factors during inoculation with 

Agrobacterium (Tzfira and Citovsky, 2006). Alternatively, it would be interesting to 

express specific host factors fused to a bacterial export signal in Agrobacterium itself, so 

they could be delivered to host cells in a manner similar to that used for other Vir 

proteins (Tzfira and Citovsky, 2006). Successful expression in Agrobacterium and the 

following export of a chimeric Cre recombinase fused to a VirF protein export signal to a 

plant cell during transformation (Vergunst et al., 2005) hold considerable promise for the 

application of this strategy for enhancing transformation efficiency on a routine basis.  

The choice of plant tissues for subsequent transformation can also greatly 

influence transformation efficiency. Early reports by Grevelding et al. (1993) 

demonstrated that transformation of Arabidopsis root tissues yields plants with fewer T-

DNA insertions than transformation of leaf disks. Similarly, tissue-specific variations in 

histone H2A expression in Arabidopsis (Yi et al., 2002) underline the importance of the 
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tissue type selected for transformation. The age of plant explants chosen for 

transformation was also reported to be an important factor that influenced transformation 

frequency in cauliflower (Chakrabarty et al., 2002) and wheat (Pastori et al., 2001). In 

both cases, explants taken from young donors performed better compared to those 

obtained from older plants (Pastori et al., 2001; Chakrabarty et al., 2002). Overall, the 

creation of complex profiles describing tissue- and stage-specific expression of various 

host factors that contribute to transformation could greatly facilitate a search for optimal 

conditions for genetic modifications.  

Proliferation rates in tissues used for transformation, cell cycle phases and cell 

types used can represent another important component for improving transformation 

efficiency. In fact, early data from the synchronized petunia cell population indicated that 

entry in the S-phase of the cell cycle was essential for stable genetic transformation 

(Villemont et al., 1997). A very low frequency of HR in vertebrate somatic cells that 

represents a serious obstacle for efficient GT was overcome by choosing cell types that 

initially displayed high HRFs (Yamazoe et al., 2004) and actively suppressed NHEJ (Orii 

et al., 2006). This allowed the successful application of chicken B lymphocyte cells (D-

40 system) and mouse embryonic stem cells for genetic transformation and GT (Yamazoe 

et al., 2004).  

Another important consideration on the way of improving plant transformation is 

that even disarmed Agrobacterium tumefaciens used for transformation can activate host 

defence mechanisms (Djamei et al., 2007; reviewed in Dafny-Yelin et al., 2008). A 

number of economically important plants like maize and soybean are susceptible to 

transient transformation, but stable transformants are extremely hard to obtain (Gelvin 
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2003 and references therein). This can be explained by activation of the host defence 

system triggered by bacterium infection, and it may lead to apoptotic responses and 

multiple necroses, thereby drastically decreasing the yield of stable transformants of 

agronomically important plants like grape (Pu and Goodman, 1992; Deng et al., 1995) 

and maize (Hansen, 2000). This obstacle was successfully overcome by using 

antioxidants that made it possible to significantly increase the number of regenerated 

stable transformants of grape, rice, maize, and soybean (Gelvin, 2003 and references 

therein). Similarly, overexpression of the baculovirus apoptotic suppressor genes p35 and 

iap greatly reduced necrotic responses and endogenous DNA cleavage in cells 

transformed by Agrobacterium (Gelvin, 2003 and references therein).  

Among other types of host defence mechanisms activated during Agrobacterium 

infection is a perception of bacterial pathogen-associated molecular patterns (PAMPs) 

that leads to the enhanced production of ROS and increased callose deposition that 

reinforces cell walls (reviewed in Nürnberger et al., 2004). A negative effect of PAMP 

perception on genetic transformation can be removed via mutation of the EFR plant gene 

that encodes a receptor kinase for perception of the bacterial EF-Tu PAMP. In fact, 

inactivation of the EFR receptor kinase gene results in super-susceptibility of the host to 

transformation (Zipfel et al., 2006). 

Taking into consideration that the number of DSBs available in the host genome 

represents a limiting factor for T-DNA integration (Salomon and Puchta, 1998), transient 

induction of DSBs by X-rays or chemical agents may be considered as a possible strategy 

to increase transformation efficiency. The main disadvantage of this approach is a 

negative effect DSBs have on genome stability and cell viability, which affects the final 
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yield and quality of transgenic plants. A good alternative would be a directed site-specific 

generation of DSBs in genetic loci in which T-DNA integration is desirable. There are 

several strategies that use site-specific DSBs for improving precision of transformation.  

The first system is based on using rare cutting endonucleases (I-SceI, I-CeuI), 

which can be transiently expressed in cells during co-transformation with two 

Agrobacterium strains that carry T-DNA containing the genes of interest and T-DNA 

containing the endonuclease gene (Tzfira et al., 2003). Two major drawbacks of this 

approach are: a rare and random dispersion of endonuclease recognition sites through the 

plant genome (Puchta, et al., 1993; Li et al., 2007) that could drastically decrease 

precision of integration, and a need for the previous generation of transgenic plants that 

have a recognition site in a desired location.  

The second approach that results in effective targeting of T-DNA into the desired 

loci is represented by the Cre-lox system (reviewed in Gilbertson, 2005). This 

bacteriophage derived system consists of the Cre recombinase and the 34 bp lox site. Cre 

binds to 13 bp long inverted repeats in the lox sites and catalyzes a crossover in the 8 bp 

spacer region of two lox sites. This system can be effectively used for both site-specific 

transgene integration and selectable marker gene removal (reviewed in Gilbertson, 2005). 

However, this system also has several drawbacks. Despite the absence of wild type lox 

sequences in plant genomes, they still contain pseudo-lox sites, which display more than 

50% similarity with lox sites and can still be involved in recombination (Schmidt et al., 

2000; Silver and Livingston, 2001). Moreover, it was demonstrated that high expression 

of cre results in chromosomal rearrangements in mammalian cells (Schmidt et al., 2000; 

Silver and Livingston, 2001) and produces aberrant phenotypes in plants including 
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chlorosis, leaf deformation, stunted growth, and delayed flowering (Que et al., 1998; 

Coppoolse et al., 2003). High levels of cre expression trigger recombination in 

chloroplasts between the lox site and AT-reach sequences located about 500 bp away 

from it (Hajdukiewicz et al., 2001). Finally, Cre-lox as well as the I-SceI system require 

preceding integration of lox sites and SceI recognition sites in a location selected for site-

specific transgene integration. 

The third approach uses zinc-finger nucleases (ZFNs) that are specifically 

designed to recognise and introduce DSBs into predicted locations within the host 

genome (Lloyd et al., 2005; Wright, et al., 2005). This ZFN is a dimmer of two ZFNs, 

each consisting of a set of zinc-finger motifs allowing specificity in recognition of target 

DNA sequences and a non-specific endonuclease (reviewed in Wright, et al., 2005). Each 

pair of three-finger ZFNs has a recognition sequence of 18 pb, which should occur in a 

genome every 418 bp. It means that three-finger ZFNs could provide enough specificity in 

genomes of a size of about 1010 bp (Lloyd et al., 2005). Moreover, recognition specificity 

can be further increased by using four-finger ZFEs, which have a recognition sequence of 

24 bp. Overall, this strategy has great potential for plant transgenesis and GT technology. 

Its routine application in biotechnology has currently been the subject of many ongoing 

studies (reviewed in Wu et al., 2007).  
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2.3.6. Alternative strategies for improving transformation efficiency via 

manipulation of the host 

In contrast to direct overexpression, inactivation and co-delivery of host factors 

during transformation, indirect stimulation and preparation of the host for future 

transformation can be viewed as possible approaches for improving transformation 

efficiency. Reports in the early nineties suggested some promising ideas for 

transformation enhancement. It was demonstrated that supplementation of growth media 

of a future host with various chemicals can influence DNA repair. Waldman and 

Waldman (1991) grew mammalian cells in the continuous presence of 2 mM 3-

methoxybenzamide, a competitive inhibitor of PARP (Waldman and Waldman, 1990), 

and they were able to demonstrate a 3–4-fold increase of intrachromosomal HR 

(Waldman and Waldman, 1991). Similarly, the use of another PARP inhibitor, 

niacinamide, for biolistic-mediated wheat transformation increased the number of low-

copy transgene integration events (De Block et al., 1997). Moreover, in the case of 

multiple integrations in the host genome, these copies segregated in the next generation 

indicating their unlinked nature (De Block et al., 1997). After its successful application 

for transformation, niacinamide treatment was patented (De Block, US Patent No. 

6074876). Transient expression of a reporter gene was several-fold increased by 

performing bombardment in the presence of silver thiosulfate and calcium nitrate (Perl et 

al., 1992). Lowering temperatures during co-cultivation with Agrobacterium (Li et al., 

2003a) and chilling during a regeneration step (Immonen, 1996) also improved 

transformation efficiency.  
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High transformation efficiency does not rely only on successful transformation 

per se, it also requires the establishment of optimal conditions for efficient regeneration 

of transgenic material from transformed tissues. In many cases, regeneration of 

transformed cells represents a major challenge in transformation of many agronomically 

important plants that are susceptible to T-DNA integration and recalcitrant to somatic 

embryogenesis (SE) (Takumi and Shimada, 1997; Li et al., 2003b). To date, a number of 

chemicals promoting SE and diminishing negative effects during a tissue culture stage 

have been reported. Among the most interesting are the following: various methods of 

increasing cytosolic levels of calcium that can promote SE (Racusen and Schiavone, 

1990; Chugh and Khurana, 2002; Malabadi and Staden, 2006); the application of silver 

that prevents cellular necrosis caused by ethylene (Dias and Martins, 1999; Sahrawat, et 

al., 2003); promotion of SE in wheat by zinc deficiency (He et al., 1991; Kothari, et al., 

2004) and various nitrogen sources (Immonen, 1996); promotion or prevention of shoot 

regeneration by cupric sulphate (Saharawat, et al., 2003; Kothari, et al., 2004) and high 

EDTA (Kothari, et al., 2004). Similarly, supplementation of regeneration media with 

spermidine was shown to improve the recovery of wheat transformants by more than 3-

fold (Khanna and Daggard, 2003). The application of a wide spectrum of rare earth 

elements during a tissue culture stage also holds much promise, as a positive effect of 

these elements on nitrogen metabolism has been documented (Weiping et al., 2003 and 

references therein).  

Ammonium and nitrate levels were reported to promote SE in various plant 

species (He et al., 1989; Grimes and Hodges, 1990; Mordhorst and Lorz, 1993; Choi et 

al., 1998; Jiménez, et al., 2001; Kothari, et al., 2004). High concentrations of ammonium 
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nitrate in regeneration media greatly improved SE and increased the yield of somatic 

embryos in ginseng (Choi et al., 1998). In rice, the relative ratio of ammonium to nitrate 

could affect the sensitivity of immature embryos to auxin; the ratio of 1:1 produced the 

greatest insensitivity (Grimes and Hodges, 1990). In contrast, in barley microspore 

culture, it was shown that the ratio of two ions (except when it is extreme) had no 

influence upon SE yields (Mordhorst and Lorz, 1993). However, a link between the total 

concentration of inorganic nitrogen and the yield of somatic embryos has been 

established (Mordhorst and Lorz, 1993). In wheat, it was not possible to show a strong 

connection between either the ratio or the total content of nitrogen species and SE yield 

(Menke-Milczarek and Zimny, 2001). Interestingly, recent reports established a link 

between the activity of human Rad51 and ammonium-sulphate at the molecular level 

(Sigurdsson et al., 2001; Liu et al., 2004b; Shim et al., 2006). It was demonstrated that 

ammonium-based salts induce conformational changes in hRad51 leading to an increase 

in its activity and therefore promoting recombination (Sigurdsson et al., 2001; Liu et al., 

2004b; Shim et al., 2006). 

Overall, it has become evident that each species, cultivar, and even tissue has its 

own unique set of requirements for various salt combinations and concentrations (Maës et 

al., 1996; He et al., 1989). The foregoing supports the existing need for extensive studies 

directed on elucidating specific concentrations of macro and micro salts as well as 

physical conditions optimal for promoting T-DNA integration and SE in various 

economically important plant species. 
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3.1. MATERIALS AND METHODS 

3.1.1. Plant cultivation 

In the current work, transgenic A. thaliana line #11 plants were used. Plants were 

obtained from Friedrich Miescher Institute (Basel, Switzerland) and were previously 

described (Swoboda, et al., 1994; Ilnytskyy, et al., 2004).  

 

3.1.1.1. Growing Arabidopsis plants for salt stress experiments 

Arabidopsis seeds were surface-sterilized with 70% ethanol for 2 min, followed 

by a solution of 1% sodium hypochloride, 0.05% Tween-80 for 3 min, and washed twice 

with a large excess of sterile distilled water for 5 min each. Then seeds were planted on 

MS medium solidified with agar (8 g/L) (Murashige and Skoog, 1962) and contained in a 

100 mm Petri. Plates were incubated at 4 °C in the dark to break dormancy, and then 

moved to a growth chamber (Enconair, Winnipeg, MB, Canada); light was provided by 

Octron T8 Fluorescent bulbs (Sylvania, Mississauga, ON, Canada).  

After 3 weeks, on the 22nd day post germination (dpg), half of the Arabidopsis 

plants was transplanted to All purpose potting soil (Plant Etc; Lethbridge, AB, Canada) 

for propagation, and the rest of the plants were harvested for histochemical staining or 

snap frozen for further analysis. Once transplanted to soil, plants were grown in a growth 

chamber (Enconair, Winnipeg, MB, Canada), light provided by Cool White Fluorescent 

bulbs (Sylvania, Mississauga, ON, Canada) and Longlife Incandescent bulbs (Sylvania, 

Mississauga, ON, Canada). 



 79 

Over the whole duration of the experiment, plants were grown in high light 

conditions (32.8 µEm-2s-1) at 22 °C in a 16 hour light regime and at 18 °C in a 8 hour 

dark regime, under a constant humidity of 65%. 

 

3.1.1.2. Growth medium composition 

A solid MS medium of standard composition (Murashige and Skoog, 1962) was 

used to grow plants under control conditions. For stress experiments, standard MS 

medium was supplemented with various quantities of NaCl or MMS as discussed below. 

All components of MS medium were prepared separately and combined together prior to 

use. The pH was adjusted to 5.7 before autoclaving; sucrose and vitamins were filter-

sterilized using 0.45 nm Nalgene filters (Nalgene, New York, USA) and added to the 

cooled medium after autoclaving. For experiments that tested effects of NaCl or MMS 

stresses on the plant genome, 1 M NaCl (filter-sterilized) or 106 ppm MMS solutions 

were added to the cooled medium after autoclaving. 
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3.1.2. Detection and analysis of homologous recombination events in 

Arabidopsis 

3.1.2.1. Detection of homologous recombination events 

Transgenic A. thaliana line #11 carries in the genome the uidA (GUS) reporter 

gene which serves as a HR substrate. It consists of two overlapping truncated non-

functional parts of the uidA gene cloned in direct orientation under the control of the 35S 

cauliflower mosaic virus (CaMV) promoter (Figure 3.1.1A) (Swoboda, et al., 1994; 

Ilnytskyy, et al., 2004). Repair of DSB in the region of homology via HR results in a 

recombination event that restores the reporter gene, thereby activating β–glucuronidase 

(GUS) (Figure 3.1.1B). 

 

3.1.2.2. Visualization of homologous recombination events using the GUS gene 

activity 

Recombination events that yielded an intact functional copy of the GUS gene 

were visualized following a histochemical staining procedure as described by Jefferson 

(1987). Plants were harvested and vacuum infiltrated for 10 min in a sterile staining 

buffer containing 100 mg of a 5-bromo-4-chloro-3-indolyl glucuronide (X-glu) substrate 

(Rose Scientific LTD) in 200 mL of 100 mM phosphate buffer (pH 7.0), 0.1% NaN3, 

0.05% Tween-80, 1 mL dimethylformamide. Then, plants were incubated at 37 °C during 

48 hours to allow cells containing an active GUS gene to cleave the X-glu substrate that 

yields an insoluble indigo coloured product. After 48 hours, plants were bleached with 

70% ethanol at room temperature for 2 – 4 days. Stained plants appeared as translucent 
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with blue spots visible under a dissecting microscope which indicated the location of the 

GUS activity (Figure 3.1.1B). 

 

3.1.2.3. Calculating recombination rate and frequency of homologous recombination 

The RR was calculated by relating HRF to the number of haploid genomes per 

single plant. It represented the number of HR events per single haploid genome. The HRF 

was calculated by counting the number of HR events (sectors) in each plant separately, 

summing and then relating it to the number of plants in tested populations. The number of 

haploid genomes per single plant was calculated by relating the yield of total DNA (in 

micrograms per plant) to the mean DNA content (0.16 pg) of an A. thaliana haploid cell 

(Swoboda, et al., 1993) and the number of plants used for DNA preparation. To avoid a 

bias during DNA preparation, DNA was extracted by two different methods.  
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Figure 3.1.1. Detection of recombination events in Arabidopsis line #11 plants  
A – the structure of the GUS-based reporter construct cloned in direct orientation. The construct served as a 
substrate for somatic HR; B – detection of recombination events using histochemical staining (an arrow 
indicates recombination event in leaf tissues). 
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3.1.3. Effects of salt stress on genome stability in Arabidopsis 

3.1.3.1. Immediate effects of salt stress on genome stability 

Arabidopsis line #11 plants were germinated and grown on standard solid MS 

medium (Murashige and Skoog, 1962) supplemented with 0, 50, 75 and 100 mM of NaCl 

(Merck KGaA). After 3 weeks, plants were harvested for histochemical staining, and 

tissues were taken and snap frozen for DNA and RNA preparation. HRF and RR were 

calculated and correlated with the level of DNA DSBs and transcriptional activity of the 

AtRad51 and AtKu70 genes. 

 

3.1.3.2. Obtaining the first (G1) and the second (G2) generations of salt treated 

plants 

To obtain the G1 generation, A. thaliana plants were germinated and grown on 

solid MS medium (Murashige and Skoog, 1962) supplemented with 0, 25 or 75 mM of 

NaCl (Merck KGaA). After 3 weeks, plants were transplanted to soil and propagated into 

the G1 generation. The progenies of plants exposed to 0, 25 and 75 mM NaCl were called 

PofC, PofS_25 and PofS_75, respectively. To obtain the G2 generation PofC, PofS_25 

and PofS_75 plants were grown on MS medium (Murashige and Skoog, 1962) without 

NaCl. After 3 weeks, plants were transplanted to soil and propagated into the G2 

generation. The progenies of PofC, PofS_25 and PofS_75 plants were called P2ofC, 

P2ofS_25 and P2ofS_75, respectively. G2 plants were grown for 3 weeks on standard 

MS medium (Murashige and Skoog, 1962) and harvested for histochemical staining 

(Figure 3.1.2). Three independent groups of progenies were generated for each 

experimental point using the same conditions, and the data obtained were averaged.  
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3.1.3.3. Transgenerational effects of salt stress on genome stability 

Further molecular analysis and histochemical staining was done using tissues 

collected from 3-week-old plants immediately before transferring them from media to 

soil. The RR was calculated for G1 and G2 plants. It was correlated with the level of 

DNA DSBs and compared with the transcriptional activity of AtRad51 and AtKu70 

genes. Then, the activity of HR reflected in RR was correlated with global genome 

methylation, methylation at pericentromeric regions and locus-specific methylation of the 

AtAct2 gene promoter, the GUS gene promoter and GUS gene coding sequences, 

respectively. 
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Figure 3.1.2. Generation of the first (G1) and second (G2) progenies of salt-treated 

plants  
Arabidopsis plants were grown on solid MS medium (control) and media containing 25mM and 75mM of 
NaCl. After 22 days on media, they were transplanted to soil and propagated to the next generation. The 
first progenies (PofC, PofS_25 and PofS_75) were grown under control conditions. They were used to 
obtain the second after stress generation (P2ofC, P2ofS_25 and P2ofS_75).  
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3.1.4. Analysis of plant adaptation to stress 

To analyze whether the progeny of stressed plants acquired higher tolerance to the 

same and different stresses, G1 and G2 plants were exposed to NaCl (Merck KGaA) and 

MMS (Sigma) stress. For salt treatment, plants were germinated and grown on solid 

standard MS medium in the presence of NaCl (Merck KGaA) concentrations ranging 

from 25 to 300mM. For MMS treatment, plants were germinated and grown on solid 

standard MS medium (Murashige and Skoog, 1962) containing 20 – 250 ppm of MMS 

(Sigma). Plant adaptation to stress was evaluated based on increased germination rates, 

decreased germination delays and displayed phenotypes. The germination rate was 

calculated by relating the number of germinated seeds to the total number of seeds 

planted. Additionally, RRs were calculated to reflect the HR activity under specific 

stress. 
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3.1.5. Description of molecular techniques and assays used for analysis 

3.1.5.1. Total DNA, RNA and cDNA preparations 

Total genomic DNA was prepared using the Gene Elute Plant Genomic DNA 

Miniprep Kit (Sigma) according to a manufacturer’s protocol. On average, 25 plants were 

used for preparation of a single sample, and three independent DNA samples per each 

group were prepared. To avoid a bias during DNA preparation in the experiments 

calculating the number of genomes per plant, we used another protocol as was previously 

described (Boyko et al., 2005). Despite some difference in the total DNA yield from two 

extraction protocols, the ratio between the amount of DNA in plants grown under 

different conditions was the same. 

Total RNA was prepared using the Trizol reagent (Invitrogen) accordingly to a 

manufacturer’s protocol. On average, 25 plants were used for preparation of a single 

sample, and three independent RNA samples per each group were prepared. cDNA was 

prepared using the Revertaid H-Minus First Strand cDNA Synthesis Kit according to 

manufacturer’s protocol (Fermentas). 

Aliquots of each sample were diluted to the final volume of 200 µl in TE buffer 

(10 mM Tris-HCl pH 7.5, 1 mM EDTA) and quantified using the Ultrospec 1100 pro 

UV/Visible Spectrophotometer (Biochrom Ltd, Cambridge, UK) at a wavelength of 260 

nm. 

 

3.1.5.2. Evaluation of the AtRad51 and AtKu70 transcriptional activity 

The transcriptional activity of AtRad51 and AtKu70 genes was measured using a 

semi-quantitative Real Time PCR. The genes were amplified from cDNA using the 
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following primers for the AtRad51 gene: forward primer: 5’-

TTGATGTAAAGAAGCTTAGGG-3’ and reverse primer: 5’-

TACAATCTTGTCAACCTTGGC-3’; for the AtKu70 gene: forward primer: 5’-

GAAGAAAGTGACTCAGGGGC-3’ and reverse primer: 5’-

TTCTTCCCGCTGACGAGGAG-3’. A SmartCycler (Cepheid, Sunnyvale, CA) was used 

to perform PCR cycles, and the fluorescence of SYBRGreen (Molecular Probes) was 

quantified against standards. Melting temperatures were estimated for every gene 

product. Equal loading of each amplified sample was determined by amplification of the 

control Ubiquitin PCR product: forward primer: 5’-TCAAATGGACCGCTCTTATCA-3’ 

and reverse primer: 5’-GGACTCCAAGCATTCTTCAA-3’. 

 

3.1.5.3. DSB measurement (the ROPS assay) 

Quantification of 3’OH DNA breaks was performed using the random 

oligonucleotide primed synthesis (ROPS) assay as described (Basnakian and James, 

1996). The assay is based on the ability of the Klenow fragment polymerase (New 

England Biolabs) to initiate random oligonucleotide-primed synthesis from the re-

annealed 3’OH ends of single-stranded (ss)DNA. After a denaturation-reassociation step, 

the ssDNA serves as its own primer by randomly re-associating to itself or to other 

ssDNA molecules. Under strictly defined reaction conditions the incorporation of [3H]-

dCPT into newly synthesized DNA will be proportional to the initial number of 3’OH 

ends (breaks). 

Immediately before the ROPS reaction, a 1 µg aliquot of plant DNA was heat-

denatured at 100 °C for 5 min and then chilled on ice. The reaction mixture for one 
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sample contained: 1 µg of heat denatured DNA, 2.5 µl of 0.5 mM 3 dNTPs (dGTP, dATP 

and dTTP mix) (Fermentas), 2.5 µl of 10x Klenow fragment buffer (New England 

Biolabs), 5 units of the Klenow enzyme (New England Biolabs), 0.1 µl of [3H]-dCPT 

(PerkinElmer; Boston, MA, USA). The reaction volume was adjusted to 25 µl with sterile 

distilled water. After incubation at 25 °C for 60 min, the reaction was stopped by the 

addition of 2.5 µl of 100 mM EDTA pH 8.0. After this, the reaction volume of each 

sample was pipetted to 25 mm DE-81 ion-exchanging filter paper (Whatman). Filter 

papers were allowed to dry at 70 °C, and then were washed with 500 mM sodium 

phosphate buffer (pH 7.0) for 10 min, repeated three times. Then, filters were thoroughly 

air-dried and transferred to vials containing 5 mL of scintillation cocktail each. Radiation 

levels, 3H decays per minute (DPM), were detected using a scintillation counter 

(Beckman LS 5000CE; Fullerton, CA, USA). The assay was repeated three times, and 

readings were taken at least twice per each reaction. 

 

3.1.5.4. Analysis of global genome methylation  

The level of global genome methylation was measured using a cytosine extension 

assay (Pogribny, et al., 1999). The assay is based on digesting of total genomic DNA 

with methylation-sensitive HpaII restriction endonuclease (Fermentas) and incorporation 

of radioactively labeled nucleotides, [3H]-dCPT, in resulting overhangs. Under strictly 

defined reaction conditions, the incorporation of [3H]-dCPT will be proportional to the 

initial number of HpaII recognition sites (C↓CGG) containing unmethylated cytosine. 

Hence, higher methylation is associated with a decrease in the digestion rate, and thus a lower 

incorporation [3H]-dCTP. 
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One µg of total genomic DNA was digested with 10 units of methylation-sensitive 

HpaII restriction endonuclease (Fermentas) and 1x enzyme buffer in a total volume of   

20 µl overnight at 37 °C. After digestion, 10 µl of each reaction was used for a cytosine 

extension assay (Pogribny, et al., 1999). The reaction mixture for each sample contained 

1.5 mM MgCl2, 0.5 units of Tag polymerase (Fisher Scientific), and 0.1 µl of [3H]-dCPT 

(PerkinElmer; Boston, MA, USA) in a final volume of 25 µl. Samples were incubated at 

56 °C for 1 hour. Following extension, a 25 µl reaction volume of each sample was 

applied to 25 mm DE-81 ion-exchanging filter paper (Whatman), dried at 70 °C, and 

washed with 500 mM sodium phosphate buffer (pH 7.0) for 10 min, repeated three times. 

Subsequently, filters were thoroughly air-dried and transferred to vials containing 5 mL 

of scintillation cocktail. Radiation levels, in DPM, were detected in a scintillation counter 

(Beckman LS 5000CE; Fullerton, CA, USA). As a control, each sample underwent initial 

incubation in the absence of HpaII enzyme and was subjected to identical extension 

conditions. Incorporation of radioactivity was measured in DPM/µg of DNA. The data from 

treated samples were related to the data from control samples, with controls taken as 100%. 

The assay was repeated three times, and readings were taken at least twice per each 

reaction. 

 

3.1.5.5. Analysis of methylation of pericentromeric DNA repeats 

A methylation pattern was analysed within the 180 bp long highly repetitive 

element that is tandemly repeated in long, > 50 kbp arrays present at all five A. thaliana 

centromeres (Martinez-Zapater et al., 1986; Maluszynska and Heslop-Harrison, 1991). 

The sequence of a 180 bp repeat was PCR-amplified from Arabidopsis genomic DNA 
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using primers: forward 5’-GCTTTCATGGTGTAGCCAAAGTCC-3’, reverse 5’-

ACGCTTTGAGAAGCAAGAAGAACG-3’; and cloned into a pGEM-T easy vector 

(pGEM-T easy vector system I, Promega) for further work. The resulting clones were 

sequenced and compared with an originally reported sequence of that repeat (Martinez-

Zapater et al., 1986) to ensure that the right clone is used. No mismatches were found. 

The methylation level at Arabidopsis pericentromeric repeats was analysed using 

the Southern (DNA) blot analysis as described (Vongs et al., 1993; Boyko et al., 2007). 

Total genomic DNA (10 µg) was digested for 24 h with the methylation sensitive enzyme 

HpaII, separated in a 1% agarose (Bio-Rad) gel, transferred to a positively charged nylon 

membrane (Roche). Membranes were hybridized with a cloned 180 bp repeat and 

detected using the DIG Luminescent Detection Kit (Roche) accordingly to manufacturer’s 

protocol. The probe was DIG-labelled using the PCR DIG Probe Synthesis Kit (Roche) 

according to manufacturer’s protocol. The cloned 180 bp repeat served as a template for 

probe synthesis, and the same set of primers was used. The completeness of digestion of 

centromeric arrays detected by a 180 bp repeat probe depends on their methylation: the 

more restriction sites are methylated, the less completely DNA will be digested. 

 

3.1.5.6. Analysis of locus-specific methylation using the combined bisulphite restriction 

analysis (COBRA)  

The assay was performed as described before (Frommer et al., 1992; Xiong and Laird, 

1997). It consists of three consecutive steps: a bisulphite treatment that converts all 

unmethylated cytosines to thymines, a gene-specific PCR that amplifies a gene fragment 

to be analyzed, and a restriction digestion reaction that allows the identification of newly 
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created methylation-dependent restriction sites and methylation-dependent retention of 

pre-existing sites (Xiong and Laird, 1997). Methylation-dependent cytosine 

retention/conversion results in the creation/disappearance of a HpyCH4IV recognition 

sequence (ACGT), and leads to the appearance of a differential digestion pattern. 

For sodium bisulphite treatment, 2 µg of total genomic DNA was denatured by 

adding freshly prepared 3 M NaOH to a final concentration of 0.3 M in a final reaction 

volume of 20 µl. The reaction was incubated for 15 min at 37 °C. Following 

denaturation, sodium bisulphite stock (208 µl of a 3.6 M stock solution) (Sigma), and 

hydroquinone (12 µl of a 10mM stock solution) (Sigma) were added to denatured DNA 

in a final volume of 240 µl. Samples were incubated overnight at 55 °C in the dark for 16 

hours. Next, free bisulphite was removed by passing a sample through a desalting column 

(Wizard DNA Clean-Up System, Promega) and DNA was eluted in 50 µl of sterile 

distilled water. DNA was again denatured by adding freshly prepared 3 M NaOH to a 

final concentration of 0.3 M and incubating a sample at 37 °C for 15 min. The reaction 

was neutralized by adding ammonium acetate (pH 7.0) to a final concentration of 3 M. 

DNA was then ethanol-precipitated and resuspended in sterile distilled water. 

Bisulphite-treated DNA was PCR-amplified with AtAct2 or GUS-specific primers and 

digested with the HpyCH4IV (New England Biolabs) enzyme (Boyko et al., 2007). The 

following primers were used for the promoter region of the AtAct2 gene: forward primer: 

5’-CCTCTCCGCTTTGAATTGTCTCG-3’, reverse primer: 5’-

ACACCATGATGTCTTGGCCTACCA-3’; for the promoter region of the GUS gene: 

forward primer: 5’-ACAGTCTCAGAAGACCAAAGGGCA-3’, reverse primer: 5’-

ACGTTCGTCACCTGCTTAGTCTGA-3’; and for the coding region of the GUS gene: 
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forward primer: 5’-AAGGGATGACGCACAATCCCACTA-3’, reverse primer: 5’-

TGTAGAGCATTACGCTGCGATGGA-3’. 

One µg of PCR-amplified DNA was digested with 10 units of the HpyCH4IV 

enzyme (New England Biolabs) and 1x enzyme buffer supplemented with BSA (New 

England Biolabs) in a final volume of 20 µl. Restriction was analysed in a 3% agarose 

(Bio-Rad) gel and intensity of an undigested fragment (769 nt in actin, 486 nt in the GUS 

promoter and 744 nt in the GUS coding sequence) from three independent experiments 

(25 plants from each group were pooled together for each experiment) was analyzed 

using Image J program (NIH, www.rsb.info.nih.gov/ij). In actin, complete restriction 

digestion results in two fragments of 551 and 218 nt; in the GUS promoter region, 

complete digestion creates five fragments: 239, 193, 40, 11, 3 nt; and in the GUS coding 

region, complete digestion yeilds four fragments: 219, 103, 187, 148 nt. Since sequences 

selected for the analysis contained only original enzyme recognition sites (no new sites 

could be created via bisulphite treatment), the amount of remaining undigested product 

reflected the number of original restriction sites that were demethylated prior to 

bisulphite treatment. 

 

http://www.rsb.info.nih.gov/ij�
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3.1.6. Statistical treatment of data 

In all cases, the mean and standard error or standard deviation was calculated. 

Statistical significance of the experiment was confirmed by either the two-tailed paired 

Student’s t-test with α=0.05 or α=0.1 (comparing data from two treatments), or the single 

factor ANOVA (comparing data from three or more treatments). Statistical analysis was 

performed using the JMP 5.0 software (SAS Institute Inc).  
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3.2. RESULTS 

3.2.1. Immediate effects of salt stress  

To study the influence of NaCl on genome stability, we first performed a pilot 

experiment that intended to identify concentrations that do not change plant appearance. 

This is important, since concentrations of mutagens that interfere with plant physiology 

can trigger cell apoptosis, thus resulting in DNA damage that is higher than DNA damage 

caused by stress. Plants were germinated and grown in media supplemented with 

different concentrations of NaCl ranging from 0 to 300 mM. Our data revealed no 

significant phenotypic difference between plants germinated and grown for 3 weeks in 

the presence of 0 – 75 mM of NaCl (Figure 3.2.1). The first noticeable differences were 

observed in plants subjected to 100 mM of NaCl. The presence of higher amounts of salt 

in growth media led to more severe growth inhibition (Figure 3.2.1). Concentrations 

equal to or exceeding 250 mM completely inhibited plant germination. Further 

experiments were performed with plants grown in 25 – 100 mM of NaCl.  
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Figure 3.2.1. Sensitivity of Arabidopsis plants to different concentrations of NaCl 
A. thaliana plants were germinated and grown on solid MS medium supplemented with different amounts 
of NaCl. Pictures were taken on the 22nd day post germination. 
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3.2.1.1. Salt stress causes DNA damage and increases recombination rates 

Despite the fact that plants exposed to 25 and 75 mM NaCl were not 

phenotypically different from control plants (Figure 3.2.1), these plants showed a 

significant increase in the number of DSBs (Student’s t-test, α=0.05). Applications of 25 

and 75 mM NaCl increased the number of DSBs found per single genome by 16% and 

21%, respectively (Table 3.2.1). High levels of DNA damage resulted in an increase of 

RR by factors of 1.6 and 3.0, respectively, as compared to untreated control plants 

(Student’s t-test, α=0.05). Similarly, exposure of plants to 100 mM NaCl resulted in a 

significant 15% increase of DSBs (Student’s t-test, α=0.05), and a 3.9-fold increase in 

RR (Student’s t-test, α=0.05). A moderate positive correlation between the number of 

DSBs and RR was found (r= 0.66, P<0.05). 

 

3.2.1.2. Exposure to salt up-regulates AtRad51 transcription and down-

regulates AtKu70 transcription 

An increase in RR could be a reflection of either an increase in strand breaks or a 

shift in the mechanism of repair of available breaks towards HR repair. We have already 

showed that salt treatment results in an increase in DSBs. Next, we tested whether salt 

exposure leads to the change of expression of genes involved in strand break repair. We 

analyzed the steady state levels of AtRad51 and AtKu70 mRNA as hallmarks of HR and 

NHEJ. Exposure of plants to 100 mM NaCl resulted in a significant 31% increase in 

AtRad51 expression (Student’s t-test, α=0.05). At the same time, the transcriptional 

activity of the AtKu70 gene was noticeably reduced in plants exposed to 75 mM (Table 

3.2.1). No significant difference, however, was observed in the activity of AtKu70 in 
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plants exposed to either 25 or 100 mM (Table 3.2.1). Up-regulation of the transcriptional 

activity of AtRad51 was strongly and positively correlated with an increase of RR (r= 

0.92, P<0.05). This experiment suggests that the RR increase could be due to two factors: 

first, an increase in the number of strand breaks; second, a partial shift in the expression 

of repair genes. 
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Table 3.2.1. The number of DNA double strand breaks (DPM 3H), the 

recombination rate (RR) and the transcriptional activity of AtRad51 and AtKu70 in 

Arabidopsis exposed to salt 

 DPM 3H, 
E+03 Fold RR, 

E-08 Fold 
AtRad51 
related to 
Ubiquitin 

Fold 
AtKu70 

related to 
Ubiquitin 

Fold 

NaCl 
0 mM 32.94±0.72 a 1 7.50±0.01 a 1 0.496±0.019 b  1 0.643±0.016 ab  1 

NaCl 
25 mM 38.34±1.62 b 1.16 12.29±0.18 b 1.64 0.526±0.029 b 1.06 0.604±0.027 ab 0.94 

NaCl 
75 mM 39.92±0.35 b 1.21 22.52±0.34 c 3 0.545±0.049 ab 1.1 0.577±0.017 b 0.9 

NaCl 
100 mM 37.98±0.64 b 1.15 29.57±0.82 d 3.93 0.647±0.038 a  1.31 0.673±0.043 a  1.05 

 
Tissues were prepared from A. thaliana plants germinated and grown for 3 weeks in 0 – 100 mM NaCl. At 
least, two independent measurements were conducted for each data point. Values represent mean ± s.e. 
Values that are not connected by the same letter are significantly different. Student’s t-test, α=0.05: for 
DSBs, t=2.03; for RR, t=2.78; for AtRad51, t=2.18; for AtKu70, t=2.18. ANOVA: for DSBs, P<0.01; for 
RR P<0.01; for AtRad51, P<0.05; for AtKu70, P>0.1. Fold was calculated by relating data obtained from 
plants grown in the presence of 25, 75 and 100 mM NaCl to data obtained from plants grown in 0 mM. 
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3.2.2. Transgenerational effects of salt stress 

Previous publications suggested that various stresses result in an increase of HRF 

in the progeny of stressed plants (Molinier et al., 2006; Boyko et al., 2007). Hence, the 

progeny of plants exposed to stress exhibits an elevated HRF, even if plants are grown 

under normal, non-stressful conditions. To analyze whether exposure to salt has similar 

effects, we collected seeds of plants grown in 25 and 75 mM NaCl (Figure 3.1.2). While 

25 mM NaCl was the lowest concentration tested in the experiment, 75 mM was the 

highest concentration that did not change plant appearance (Figure 3.2.1). The progeny of 

these plants were called the “progeny of salt” (PofS_25 and PofS_75) treated plants. To 

analyze whether changes in the G1 progeny are maintained when plants are propagated 

without stress, we grew PofS plants without stress. 

 

3.2.2.1. Exposure to salt results in an increase in recombination rates in the 

progeny  

As expected, we did not observe a significant difference in plant phenotypes; all 

plants looked healthy and were phenotypically comparable with the progeny of control 

(PofC) untreated plants. The analysis of recombination events showed that both the G1 

and G2 progenies of salt treated plants had higher RRs, when grown under normal 

conditions. A 2-fold difference in RR was significant for the G1 PofS_25 progeny 

(Student’s t-test, α=0.05), in comparison to the G1 PofC progeny (Figure 3.2.2). 

Similarly, a 1.6-fold difference was found, when G1 PofS_75 plants were compared to 

the PofC. Intriguingly, when the G2 progeny of salt treated plants were compared to G2 

PofC plants, no significant difference was found, although the trend toward an increase 
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was noticed (Figure 3.2.2). The elevated spontaneous RR observed in the G1 progeny of 

salt treated plants greatly decreased when these plants were propagated into the next 

generation. The spontaneous RRs in the G2 PofS_25 and PofS_75 plants remained 1.4- 

and 1.3-fold higher as compared to the G2 PofC progeny (Figure 3.2.2). 

Furthermore, RRs remained different if G1 PofC and PofS plants were grown in 

media supplemented with NaCl in the same amounts that were used to obtain PofS plants 

(Figure 3.2.3). RRs increased by 2.6- and 4.7-fold in PofC plants exposed to 25 mM and 

75 mM, respectively. In contrast, RRs increased by 23.2-fold in PofS_25 plants exposed 

to 25 mM and by 19.6-fold in PofS_75 plants exposed to 75 mM NaCl (Figure 3.2.3).  
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Figure 3.2.2. Spontaneous recombination rates in a parental line and the G1 and G2 

progenies of control and salt treated plants 
Plants were grown on solid MS medium for 3 weeks. The data represent three independent experiments. 
For each independent experiment, each data point was replicated twice, and each progeny was generated 
using at least 100 plants. Values represent mean ± s.d. Asterisks shows a statistically significant difference 
compared to PofC plants. Student’s t-test: α=0.05, t=2.45. ANOVA: P<0.1. 
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Figure 3.2.3. Spontaneous and stress-induced recombination rates in the G1 

progeny of control and salt-treated plants 
Plants were grown for 3 weeks on solid MS medium without NaCl (PofC, PofS_25 and PofS_75), and in 
the presence of 25 mM (PofC and PofS_25) and 75 mM (PofC and PofS_75) NaCl. Two experiments were 
performed. For each independent experiment, each data point was replicated three times, and each progeny 
was generated using at least 100 plants. Values represent mean ± s.d. Asterisks show a statistically 
significant difference compared to PofC plants, with the Student’s t-test at α=0.05 of t=2.17 and t=2.78 for 
plants grown on MS medium control and in 25 or 75 mM NaCl, respectively. ANOVA: for plants grown on 
MS medium control, in 25 and 75 mM NaCl, P<0.05. 
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3.2.2.2. The elevated recombination rate in the G1 progeny of salt treated 

plants is mediated by up-regulated AtRad51 transcription and down-regulated 

AtKu70 transcription 

The elevated RR in the progeny of salt-stressed plants could be due to the higher 

level of strand breaks or due to the more frequent involvement of HR enzymes in the 

repair of generated strand breaks. To reveal the possible nature of this phenomenon, we 

have determined the level of DSBs as a main substrate for HR. To our surprise, the level 

of DNA DSBs was comparable between PofC and PofS plants (Table 3.3.2). In contrast, 

the semi-quantitative Real Time PCR analysis showed a significant 17% increase in the 

transcriptional activity of the AtRad51 gene in PofS_25 plants as compared to PofC 

plants (Student’s t-test, α=0.05). Moreover, a significant 9% decline in the transcriptional 

activity of the AtKu70 gene was also observed in PofS plants (Student’s t-test, α=0.05) 

(Table 3.3.2). Hence, the elevated spontaneous RR observed in PofS plants was possibly 

due to a partial shift in DNA repair gene expression, which was inherited by the G1 

progeny. 
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Table 3.2.2. The number of DNA double strand breaks (DPM 3H) and the 

transcriptional activity of AtRad51 and AtKu70 in the G1 progeny of stressed plants 

 DPM 3H, 
E+03 Fold AtRad51 

related to Ubiquitin Fold AtKu70 
related to Ubiquitin Fold 

PofC 33.04±0.71 a 1 0.577±0.016 b 1 0.666±0.015 a 1 

PofS_25 33.85±1.00 a 1.02 0.676±0.018 a 1.17 0.608±0.013 b 0.91 

PofS_75  31.77±0.74 a 0.96 0.635±0.002 ab 1.1 0.635±0.009 b 0.91 

 
Tissues were prepared from A. thaliana plants germinated and grown for 3 weeks on solid MS medium. At 
least two independent measurements were conducted for each data point. Values represent mean ± s.e. 
Values that are not connected by the same letter are significantly different. Student’s t-test at α=0.05 was 
t=1.99, t=3.18, t=2.45 for DSBs, AtRad51, AtKu70, respectively. ANOVA: for DSBs, P>0.1; for AtRad51, 
P<0.05; for AtKu70, P<0.05. A fold difference was calculated by relating data from PofS_25 and PofS_75 
plants to data from PofC plants. 
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3.2.3. Plant adaptation to stress  
Elevated spontaneous and stress-induced RRs displayed by PofS could produce a 

potential benefit to plants, if they are exposed to genotoxic stresses resulting in extensive 

DNA damage. Next, we tested this hypothesis by growing G1 and G2 plants in the 

presence of high concentrations of NaCl and MMS; the latter is a well-known DNA 

damaging agent.  

 

3.2.3.1. Acquired tolerance to NaCl stress in the progeny of salt treated 

plants correlates with high recombination rates 

Consistently with our previous findings, G1 PofS plants grown under high salt 

conditions displayed higher stress-induced RRs, as compared to PofC (Student’s t-test, 

α=0.05) (Figure 3.2.4). The diminishing differences in RR induction observed among the 

G2 progenies were consistent with the previously shown reversion of elevated 

spontaneous RR in G2 PofS plants (Figure 3.2.2). In fact, all the G2 plants, except 

PofS_25 grown in 100 mM (Student’s t-test, α=0.1), had insignificantly higher stress-

induced RRs (Figure 3.2.3). A less pronounced response of G2 PofS plants to stress 

suggests that they have partially lost their ability to respond to stress. 

The elevated activity of HR can positively contribute to stress-induced DSB 

repair. This potentially could increase stress tolerance. To test this hypothesis, we 

analyzed the sensitivity of PofC and PofS plants to NaCl stress. Both G1 progenies of salt 

treated plants exhibited higher tolerance to salt stress, as reflected by increased 

germination rates in G1 progenies grown in media with the NaCl concentration over 100 

mM (Figure 3.2.5A, B). Germination rate was measured twice, at 9 and 18 dpg. At 9 dpg, 

germination was not observed on plates with 175 and 200 mM NaCl. At this time point, 
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the most pronounced and statistically significant differences between PofC and either of 

PofS groups were observed in plants grown in 125 (Student’s t-test, α=0.05) and 150 mM 

NaCl (Figure 3.2.5A, C). At 18 dpg, germination was observed in all groups (Figure 

3.2.5B). At this time point, statistically significant differences between PofC and PofS 

groups were observed for 125 (Student’s t-test, α=0.05) and 150 mM (Student’s t-test, 

α=0.1) (Figure 3.2.5B). Importantly, the germination rate of G1 PofS_25 plants remained 

significantly higher, if germinated in the presence of NaCl in concentrations as high as 

200 mM (Student’s t-test, α=0.05) (Figure 3.2.5B). It is noteworthy that stress tolerance 

of the G2 progeny diminished dramatically (Figure 3.2.5D). 
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Figure 3.2.4. Increased recombination rates in the progeny of salt-treated plants 

grown in media supplemented with NaCl 
The figure shows a fold increase of RR in in PofS_25 and PofS_75 plants in comparison to PofC. Plants 
were grown on standard MS medium and on MS medium supplemented with 100 and 150 mM NaCl. Three 
independent experiments, each containing two replicates, were performed, and data were averaged. Values 
represent mean ± s.d. Asterisks show a statistically significant difference as compared to PofC plants. One 
asterisk shows the Student’s t-test at α=0.05 of t=2.07, t=2.06, t=2.05 for PofS_25 G1 plants grown in 0 
mM NaCl, PofS_25 and PofS_75 G1 plants grown in 100 or 150mM, respectively. Two asterisks show the 
Student’s t-test at α=0.1 of t=1.71 for PofS_25 G2 plants grown in 100 mM NaCl. ANOVA: P<0.1, 
P<0.05 and P<0.1 for plants grown in 0 mM, 100 mM and 150 mM NaCl, respectively. 
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Figure 3.2.5. Acquired salt stress tolerance in the progeny of salt-treated plants 
A and B – Germination rates in PofC, PofS_25 and PofS_75 plants germinated and grown on solid MS 
medium supplemented with 0 – 200 mM NaCl. Germination was scored twice, on 9th (A) and 18th (B) day 
post germination. Two independent experiments were performed. Values (percent of the total number of 
seeds plated) represent mean ± s.e. Asterisks show a statistically significant difference compared to PofC 
plants. One asterisk shows the Student’s t-test at α=0.05 of t=2.45 for PofS_25 and PofS_75 plants grown 
in 125 mM and for PofS_25 plants grown in 200 mM NaCl. Two asterisks show the Student’s t-test at 
α=0.1 of t=1.94 for PofS_25 and PofS_75 plants grown in 150 mM NaCl. ANOVA: for plants grown in 
125 mM NaCl, P<0.05; and in 150 mM NaCl, P<0.1. C – Phenotype of the G1 progeny plants germinated 
and grown on solid MS medium supplemented with 125 and 150 mM NaCl, respectively. Pictures were 
taken on the 9th day post germination. D – A phenotype of G1 and G2 plants grown in 150 mM NaCl. 
Pictures were taken on the 22nd day post germination. 
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3.2.3.2. Acquired tolerance to MMS stress in the progeny of salt treated 

plants correlates with high recombination rates 

To investigate the extent of acquired elevated tolerance to stress, we germinated 

and grew G1 and G2 plants in the presence of high concentrations of MMS, a substance 

known to generate DSBs. Overall, PofS plants responded to MMS in the same manner as 

for high NaCl concentrations stress. The stress-induced RR was significantly higher in 

both G1 PofS plants grown in the presence of 140 ppm MMS (Student’s t-test, α=0.1) 

and G1 PofS_75 plants exposed to 100 ppm MMS (Student’s t-test, α=0.05) (Figure 

3.2.6). Similarly to high salt stress, the difference in the stress-induced RR diminished in 

the G2 generation between PofC and PofS plants (Figure 3.2.6). 

As described above, acquired tolerance to high salt stress in PofS plants was 

similar to that observed to MMS stress (Figure 3.2.7). PofS plants grown in the presence 

of various concentrations of MMS displayed more resistant phenotypes as compared to 

PofC plants (Figure 3.2.7A). Both PofS groups had a better developed root system and 

more leaves per plant on average. In fact, on the 16th dpg, there was a 1.6-fold difference 

between G1 PofS_75 and PofC plants grown in 100 ppm MMS (Student’s t-test, α=0.05) 

(Figure 3.2.7B). Similarly, 30-day old G1 PofS_25 (Student’s t-test, α=0.05) and 

PofS_75 (Student’s t-test, α=0.1) plants grown in the presence of 150 ppm MMS had 

longer roots than PofC plants by factors of 2.2 and 1.8, respectively (Figure 3.2.7A, C). 

Additionally, a significant 2.0-fold difference in root length was found between PofS_75 

and PofC G1 plants grown in 130 ppm MMS (Student’s t-test, α=0.05) (Figure 3.2.7A, 

C). In general, these findings suggest that G1 progenies of salt treated plants acquired a 

broad genotoxic stress tolerance not restricted to NaCl.
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Figure 3.2.6. Increased recombination rates in the progeny of salt-treated plants 

grown in media supplemented with MMS 
The figure shows a fold increase of RR in in PofS_25 and PofS_75 plants in comparison to PofC. Plants 
were grown on standard MS medium and on MS medium supplemented with 100 and 140 ppm MMS. 
Three independent experiments, each containing two replicates, were performed, and data were averaged. 
Values represent mean ± s.d. Asterisks show a statistically significant difference compared to the PofC 
plants. One asterisk shows the Student’s t-test at α=0.05 of t=2.18 and t=2.16 for PofS_75 G1 plants 
grown in 0 ppm MMS and 100 ppm MMS, respectively. Two asterisks show the Student’s t-test at α=0.1 
of t=1.70 and t=1.75 for PofS_25 and PofS_75 G1 plants grown in 140 ppm MMS, respectively. ANOVA: 
P<0.05, P<0.1 and P<0.1 for plants grown in 0 ppm, 100 ppm and 140 ppm MMS, respectively. 
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Figure 3.2.7. Acquired tolerance to MMS stress in the G1 progeny of salt-treated 

plants  
A – A phenotypic appearance of the G1 progeny of salt-treated plants germinated on solid MS medium and 
then transplanted for growth on solid MS medium supplemented with 0, 100, 130 and 150 ppm of MMS; 
pictures were taken on the 30th day post germination. B – The number of leaves per single plant in the G1 
progeny of control and salt-treated plants grown on solid MS medium and on MS medium supplemented 
with 100 ppm of MMS. Leaves were counted on the 16th day post germination. Two independent 
experiments were performed. Values represent mean ± s.e. Asterisks show a statistically significant 
difference in the PofC plants. Student’s t-test, α=0.05, t=2.18. ANOVA: for plants grown in 100 ppm 
MMS, P<0.05. C – The average root length in the G1 progeny of control and salt-treated plants grown on 
solid MS medium and on MS medium supplemented with various concentrations of MMS. Roots were 
measured on the 30th day post germination. Two independent experiments were performed. Values 
represent mean ± s.e. Asterisks show a statistically significant difference compared to the PofC plants. One 
asterisk shows the Student’s t-test at α=0.05 of t=2.45 for PofS_75 G1 plants grown in 130 ppm MMS and 
PofS_25 G1 plants grown in 150 ppm MMS. Two asterisks show the Student’s t-test at α=0.1 of t=1.94 for 
PofS_75 G1 plants grown in 150 ppm MMS. ANOVA: P<0.05 and P<0.1 for plants grown in 130 ppm 
and 150 ppm MMS, respectively.  
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3.2.4. Genome-wide and locus-specific changes in DNA methylation in 

the progeny of salt treated plants 

Our results demonstrate that exposure of plants to stress can generate a signal 

capable of changing HRF in the next after stress generation. Interestingly, when the G1 

PofS plants are propagated into the G2 generation without stress exposure, the elevated 

spontaneous RR reverts back to the level close to the one observed in control PofC plants. 

Similarly, acquired tolerance of G1 PofS plants to NaCl and MMS stresses diminishes in 

the G2 generation. Overall, these findings may suggest the epigenetic nature of the 

adaptation to the stress.  

Changes in global genome methylation may represent one of the primary signs 

indicating the occurrence of epigenetic DNA modifications (reviewed in Boyko and 

Kovalchuk, 2008a). Indeed, we found that PofS plants have hypermethylated genomes, as 

compared to PofC plants. There was a significant 7% decrease in the number of 

unmethylated cytosines found in PofS_25 plants (Student’s t-test, α=0.05) (Figure 

3.2.8A). At the same time, the methylation status of G2 PofS plants had a tendency to 

return to a methylation level found in PofC (Figure 3.2.8A). 

Methylation at repetitive elements is usually rather high. Changes in their 

methylation status would influence global genome methylation. To analyze whether an 

increase in global genome methylation observed in G1 PofS plants was paralleled by 

changes in repetitive element methylation, we compared a methylation pattern of 

centromeric repeats in the G1 and G2 generation of PofC and PofS plants. Overall, no 

significant difference among these groups was found, which indicates that changes in 

DNA methylation were targeted to other than centromeric repeat regions of the genome 
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(Figure 3.2.8B). These regions could include coding sequences; and their epigenetic 

modification could promote plant adaptation to stress and an elevated HR response 

observed in the G1 progeny. 

To investigate whether changes in DNA methylation were directed to coding 

sequences, we analysed the methylation status at the promoter of the AtAct2 gene using 

the COBRA analysis. The AtAct2 gene was chosen as a representative for a group of 

housekeeping genes. Additionally, to insure that the increased activity of HR observed in 

PofS plants was not due to methylation of a transgene locus that was lower than in PofC, 

we performed the COBRA analysis of promoter and coding regions of the GUS 

transgene.  

We found that the AtAct2 gene promoter in PofS_25 plants was hypermethylated 

as compared to a PofC group. A nearly complete restriction digestion of PCR product 

corresponding to the AtAct2 promoter in PofS plants by the HpyCH4IV enzyme 

demonstrated the higher number of methylated CpG sites present at this locus in the 

progeny of stressed plants (Figure 3.2.9A). The percentage of methylated cytosines was 

higher in the G1 PofS_25 plants, as compared to the G1 PofC plants, 66.8% and 50.5%, 

respectively (Student’s t-test, α=0.05) (Figure 3.2.9A, D). Importantly, we observed a 

reduced and insignificant difference in CpG sites methylation between PofC and PofS_25 

plants in the G2 generation (Figure 3.2.9A, D).  

In contrast, no significant difference between PofC and PofS plants in the number 

of methylated CpG sites was found at the GUS promoter and GUS coding loci (Figure 

3.2.9B, C). This demonstrated that the elevated HRF observed in PofS plants was not 

caused by changes in methylation in the reporter transgene sequence. 
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Figure 3.2.8. Global genome methylation and methylation of pericentromeric 

regions in the G1 and G2 progenies of salt-exposed plants  
A – Decrease in the total number of unmethylated cytosines in the genome of 1 and G2 PofS plants as 
compared to the respective PofC plants. The number of unmethylated cytosines in PofC and P2ofC was 
standardized to 1.0. Global genome methylation in the progeny of salt-treated plants (PofS_25, P2ofS_25, 
PofS_75 and P2ofS_75) shows an increase in methylation in folds as related to the respective PofC plants. 
The assay was repeated three times, and readings were taken at least twice per each reaction. Values 
represent the mean ± s.d. Asterisks show a statistically significant difference compared to PofC plants. 
Student’s t-test: α=0.05, t=2.31. ANOVA: P<0.05. B – The level of DNA methylation at pericentromeric 
regions of all five chromosomes remained unchanged, as shown using the Southern blot analysis of 
genomic DNA digested with the methylation sensitive HpaII enzyme and hybridized to 180 bp centromeric 
repeat sequence. 
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Figure 3.2.9. Locus-specific DNA methylation analysis of the G1 and G2 progenies 

of salt-exposed plants  
A, B,  and C – Gel images show the HpyCH4IV restriction enzyme digestion of PCR fragments 
representing AtAct2 promoter, GUS promoter and GUS coding sequences, respectively. The amount of 
remaining undigested product reflects the number of non-methylated CpG sites within a sequence of 
interest. Arrows point at undigested PCR product; circles indicate the almost complete digestion of AtAct2 
promoter PCR product in PofS_25 and P2ofS_25 plants. D – Percent of methylated CpG sites of the total 
number of CpG sites (methylated and non-methylated) available within the 5’UTR of AtAct2 sequence. The 
percent of methylated CpG sites was determined by relating the intensity of a 551 nt restriction fragment to 
the total intensity of DNA bands (the remaining undigested PCR product and two bands resulted from 
restriction with HpyCH4IV). The higher intensity of a 551 nt fragment reflects the higher number of 
HpyCH4IV recognition sites that were methylated prior to bisulphite conversion and remained unchanged. 
DNA samples from three independent experiments were analyzed, and restriction analysis was replicated 
twice. Values represent the mean ± s.d. Asterisks show a statistically significant difference compared to the 
PofC plants. Student’s t-test: α=0.05, t=2.78. ANOVA: for the G1 progeny P<0.05. 
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3.3. DISCUSSION 

In this study, we analyzed the influence of salt stress on plant genome stability 

and investigated the impact of stress exposure on the development of stress tolerance. We 

have found that a) NaCl results in a dose dependent RR increase; b) exposure to 25-75 

mM NaCl leads to a 15-20% increase of DSBs; c) salt exposure leads to an increase in 

AtRad51 and decrease in AtKu70 transcriptional activity; d) the progeny of salt exposed 

plants have an elevated RR that correlates with an increase in the AtRad51 transcription; 

e) the progeny of salt exposed plants have higher tolerance to salt stress and to MMS; f) 

the progeny of salt treated plants have a modified DNA methylation pattern, which 

suggests an epigenetic nature of a signal that changes HR; g) a signal that changes HR is 

stress-inducible and capable of transmission to the next generation. 

 

3.3.1. Effects of salt stress on genome stability  

In our study, we estimated possible genotoxic effects of salt exposure on plants. 

One of the earliest reports by Puchta et al. (1995) suggested that plant exposure to salt is 

potentially genotoxic. Exposure of plants to 100 mM NaCl resulted in a 2.2 – 2.7 increase 

in HRF. Unfortunately, the authors did not analyze a range of concentrations that changes 

HRF, and they did not uncover possible mechanisms of recombination induction. In 

contrast, our work showed that exposure to NaCl concentrations as low as 25 mM 

increased recombination.  

One of the possible mechanisms of an increase in RR is an elevated level of DNA 

damage caused by salt stress. Osmotic and ionic stresses that result from exposure to 

NaCl are complemented with secondary oxidative stress (Niu et al., 1995, Zhu et al., 
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1997, Hasewaga et al., 2000, Zhu, 2000) that leads to the accumulation of a wide range 

of ROS including hydrogen peroxide, hydroxyl radicals, superoxide anion radicals, and 

singlet oxygen (Smirnoff, 1998; Bartels, 2001; Apel and Hirt, 2004). The accumulation 

of ROS affects DNA integrity and generates a number of different DNA lesions including 

DNA DSBs (Breimer, 1990; Chatgilialoglu and O‘Neill, 2001) that can be lethal to a cell 

(Evans et al., 1993). Our experiments showed a significant increase in the level of DSBs 

in plants grown in 25 – 100 mM NaCl. A higher level of DSBs resulted in a higher RR. 

Intriguingly, increased ROS production triggered by salt stress may also have a positive 

impact on plant salt tolerance induction via mediation of mRNA stability for SOS1-like 

genes that are crucial for the ion homeostasis maintenance under salt stress (Chung et al., 

2008).  

Homologous recombination is one of two major DSB repair pathways, with NHEJ 

being a major alternative mechanism (Salomon and Puchta, 1998; Kirik et al., 2000). 

Cells can choose one of these two pathways based on a variety of factors including repair 

template availability, cell cycle phases, proliferation rate, and cell type-specific functions 

(reviewed in Shrivastav et al., 2008). Since we did not find a drastic increase in the level 

of strand breaks, we hypothesized that exposure to NaCl leads to an increase in RR via 

differential regulation of NHEJ and HR pathways. As there was no comparable system 

similar to the GUS-based transgenic recombination assay for scoring NHEJ events, we 

used a semi-quantitative Real Time PCR approach to compare transcriptional activity of 

two DNA repair genes, AtRad51 and AtKu70, which function exclusively in HR and 

NHEJ repair (Sonoda et al., 2006). These genes are plant homologues of yeast RAD51 

(Doutriaux et al., 1998) and KU70 (Tamura et al., 2002). Rad51 plays a critical role in 
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HR via the formation of a Rad51/ssDNA nucleofilament from 3’ overhangs of DSB and 

promotion of strand exchange reactions (Bleuyard et al., 2006 and references therein). 

Ku70 forms a heterodimer with Ku80. The KU heterodimer represents a part of DNA-PK 

and binds various types of DNA ends, including single-stranded gaps. It also helps 

protect them and forms a bridge between two ends of a break, thereby contributing to 

their juxtaposition (Bleuyard et al., 2006 and references therein). Consequently, both 

Rad51 and Ku70 proteins are critical for HR and NHEJ repair pathways (Gorbunova and 

Levy, 1999; Ray and Langer, 2002). 

Previous studies demonstrated the existence of correlation between levels of DNA 

damage such as DSBs and expression of DSB repair enzymes (Kovalchuk et al., 2004b; 

Boyko et al., 2006d). Indeed, we found the steady state RNA level of AtRad51 increased 

by 30% in plants exposed to 100 mM NaCl. In contrast, the AtKu70 RNA level was 

reduced by 5-10%, suggesting that there indeed was a shift in strand break repair towards 

HR. Stress regulation of DSB repair balance in plants represents a novel finding. 

Importantly, exposure to radiation was reported to cause similar up-regulation of HR 

proteins (as the one reported here) and down-regulation of NHEJ proteins in mice 

(Kovalchuk et al., 2004b; Koturbash et al., 2006).  

Our findings partially supported the suggestion made by Ray and Langer (2002) 

that a higher activity of HR requires low levels of NHEJ proteins. Studies of meiotic mice 

cells (Goedecke et al., 1999) and meiosis-competent yeast cells (Valencia et al., 2001) 

indicated that a low activity of NHEJ is necessary for HR to occur. Moreover, a shift 

from NHEJ toward HR during transition from G1 to S/G2 phase of the cell cycle is 

accompanied by increased RAD51 expression in mammals (Chen et al., 1997). Enhanced 
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HR activity observed during the early neural development in mice may be mediated via 

active suppression of NHEJ (Orii et al., 2006).  

To date, it is not clear what mechanisms regulate a choice of a pathway to be used 

for generated DSB repair. The presence of DNA-PKcs in higher eukaryotes may play a 

critical role in NHEJ regulation and can account for its prevalence over HR (reviewed in 

Shrivastav et al., 2008). A distinctly different role of HR in DSB repair in yeast and 

higher eukaryotes may also reflect their differences in genome size and coding sequence 

content (Beaton and Cavalier-Smith, 1999). Finding of a homologous repair template in 

large genomes may represent a significant challenge for the DNA repair machinery 

(Sonoda et al., 2001; Sonoda et al., 2006). In fact, the selection of a wrong repair 

template may result in gene translocation or duplication events, and may generate large-

scale deletions, if intrachromosomal recombination occurs within a DNA region 

containing multiple repeats (Swoboda, et al., 1994; Orel et. al., 2003; Dudas and 

Chovanec, 2004; Puchta, 2005). Hence, taking into consideration a large amount of 

repetitive DNA present in the plant genome (Flavell, 1985), using HR as a dominant 

mode of DNA repair may pose a threat to genome stability. In contrast, the high content 

of non-coding DNA found in higher eukaryote genomes allows an easy accommodation 

of mistakes generated by the NHEJ pathway.  
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3.3.2. Transgenerational effects of salt stress 

Several recent reports demonstrated that the progeny of plants exposed to 

pathogen (Boyko et al., 2007) or UV-C (Molinier et al., 2006) stresses display the 

elevated spontaneous HRF. To study the possible transgenerational influence of salt 

stress on genome stability of the immediate progeny of salt exposed plants, we analyzed 

the progenies of 25 and 75 mM treated plants (PofS_25 and PofS_75, respectively) and 

compared them to the progeny of untreated control plants (PofC). The G1 and G2 

PofS_25, PofS_75 and PofC plants grown without NaCl showed no difference in the 

level of DSBs. Similarly, no difference was observed in the plant phenotype. This 

indicated that low salt stress conditions applied to the paternal generation did not result in 

significant physiological changes in their progeny.  

Genome stability was changed and appeared to be different between the G1 PofC 

and PofS plants. A strong increase in RR in PofS plants as compared to PofC plants was 

observed in the G1 generation, suggesting that exposure to stress can modify the 

spontaneous RR in a single generation. In contrast, the spontaneous RR of the G2 plants 

progeny of the G1 PofS plants grown and propagated under normal conditions had 

reverted back to the level found in control PofC plants. This may indicate that the 

maintenance of heritable changes in RR requires certain stress-induced signals. These 

signals may establish a new inherited gene regulation pattern that defines the elevated 

level of HR. Consequently, removal of stress eliminates these signals and causes this 

pattern to revert to normal conditions, thus returning RR back to normal in the G2 

generation.  
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To reveal molecular mechanisms leading to the increased HRF, we analyzed 

steady state RNA levels of the AtRad51 and AtKu70 genes. We found that the increased 

RR was mirrored at a molecular level by higher transcriptional activity of AtRad51 and 

lower transcriptional activity of AtKu70 in PofS plants. This was consistent with previous 

studies of Goedecke et al. (1999), Valencia et al. (2001) and Orii et al. (2006). They 

indicated that low activity of the NHEJ pathway is an important determinant for high 

levels of HR. Besides, the modification of DSB repair enzyme expression and the shift in 

DSB repair toward NHEJ was reported before. It was found that HR was 

developmentally regulated. HRF decreased gradually, while the level of breaks remained 

unchanged in growing Arabidopsis plants (Boyko et al., 2006d). Overall, it can be 

hypothesized that salt stress produced an opposite shift in DSB repair, from NHEJ 

towards HR. This shift was inherited by the progeny.  

However, our data contradict the study of Molinier et al. (2006) that demonstrated 

a continuous HRF increase in at least four generations following a single exposure to 

stress. A biological meaning of a persistent HR increase in the absence of stress exposure 

remains unclear. It is possible that UV-C, an artificial environmental stress factor, 

triggered a response different from that in plants exposed to natural stresses like 

temperature, light or salinity. In contrast, our study used salinity, a natural environmental 

stress. Plants exposed to NaCl could reveal responses normally triggered by stress 

exposure.   
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3.3.3. Plant adaptation to stress  

An increase in the spontaneous RR in PofS plants might reflect other major 

changes in these plants. It can be hypothesized that a salt stress-induced shift in DSB 

repair from NHEJ towards HR is a part of an adaptation process (Rocha et al., 2002; 

Molinier et al., 2006). DSB repair via the NHEJ pathway generates deletions and 

insertions of various sizes (Gorbunova and Levy, 1997). It can be assumed that even a 

small shift in the balance would increase the number of breaks repaired via HR and thus 

decrease the number of deletions/insertions upon NHEJ repair. Hence, it is possible that a 

higher contribution of HR to DSB repair may lead to an increased plant tolerance to 

genotoxic stresses. 

To test this hypothesis, we analyzed the response of PofS plants to the same 

(NaCl) or different stresses (MMS). Importantly, we found that PofS_25 and PofS_75 

plants exhibited similar elevated tolerance to both stresses. Increased plant stress 

tolerance was correlated with increased RRs. The G1 PofS plants germinated better on 

media containing high concentrations of NaCl, and they formed longer roots when 

exposed to MMS. Our data were consistent with previous reports that demonstrated 

stress-mediated fast acclimation to drought, cold and freezing, high temperature, high 

light and UV-B radiation stresses (reviewed in Chalker-Scott and Scott, 2004; Turunen 

and Latola, 2005; Caldwell et al., 2007). Our observations are further supported by 

studies of Blödner et al. (2007). They demonstrated that plants growing under low 

temperatures can increase tolerance of their immediate progeny to chilling and freezing 

conditions. Moreover, Boyko et al. observed the delayed appearance of disease 
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symptoms in the progeny of pathogen-challenged plants infected with a virus (Boyko et 

al., data not published).  

Co-tolerance to two different stresses observed in PofS plants is consistent with 

Levitt’s theory of stress cross-protection (Levitt, 1980), which suggests that plant 

exposure to one type of stress can result in acquired tolerance to another stress to which 

this plant had no previous exposure. Indeed, exposure to UV-B can increase plant 

tolerance to subsequent freezing (Dunning et al., 1994; Richer and Hoddinott, 1997; 

Binder and L’-Hirondelle, 1999; Mendez et al., 1999; Chalker-Scott and Scott, 2004), 

high temperatures (Teklemariam and Blake, 2003), drought and high light (Poulson et al., 

2002). It can also increase a plant’s defenses against insect herbivory (Roberts and Paul, 

2006) and fungal attack (Raviv and Antignus, 2004). Both NaCl and MMS increase the 

level of DNA DSBs, suggesting that an elevated activity of the HR machinery can play 

an active role in the formation of elevated tolerance to these stresses.  

Importantly, acquired stress tolerance that was observed in the G1 PofS plants 

diminished in the G2 generation, in which reversion of the spontaneous RR to PofC 

levels was observed. This supports the idea that there is a link between the elevated 

spontaneous RR and stress tolerance in G1 PofS plants. Furthermore, decreased acquired 

stress tolerance in the G2 plants demonstrates that the establishment of prolonged 

tolerance requires more than one generation of stress exposure. This hypothesis is 

consistent with the high metabolic cost required for the maintenance of new gene 

expression patterns conferring resistance to stress (Thomashow, 1999; Cook et al., 2004; 

Kaplan et al., 2004; Larkindale et al., 2005; Kotak et al., 2007; Zhu et al., 2007a). 

Overall, the development of acquired tolerance by the progeny of plants exposed to a 
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certain stress may represent an important stress tolerance mechanism in plants as 

sedentary organisms.  
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3.3.4. Genome-wide and locus-specific changes in DNA methylation in 

the progeny of salt treated plants 

Our study demonstrated that plant exposure to stress results in producing a certain 

signal that can be transmitted to the next generation and change a gene regulation pattern 

leading to an increased HRF and acquired tolerance to stress. Reversion of these changes 

upon growing and propagation of the G1 progenies in the absence of stress suggests the 

epigenetic nature of the signal that mediated the establishment of the aforementioned 

changes. Indeed, Molinier et al. (2006) crossed stressed plants with non-stressed plants 

and found that all progeny plants had higher HRF, which supported the hypothesis of an 

epigenetic regulation of stress response. 

Changes in DNA methylation represent one of the primary mechanisms for 

epigenetic regulation (reviewed in Boyko and Kovalchuk, 2008a). Furthermore, DNA 

methylation can be actively modified in response to stress (Steward et al., 2000; 

Henderson and Dean, 2004; Wada et al., 2004; Dyachenko et al., 2006), using various 

smRNA molecules as a guiding force for various DNA modifying enzymes (Bender 

2004; Matzke et al., 2004; Chan et al., 2006). In fact, a number of smRNAs reported to 

date were shown to be regulated by a broad range of abiotic stresses including 

mechanical stress, dehydration, salinity, cold, abscisic acid and nutrient deprivation 

(Sunkar and Zhu, 2004; Borsani et al., 2005; Lu et al., 2005; reviewed in Sunkar et al., 

2007). This might allow directing methylation to specific loci by producing stress-

specific smRNAs (Matzke et al., 2007). The resulting stress-induced changes in a pattern 

of DNA methylation may have an important adaptive function. Dyachenko et al. (2006) 

demonstrated that increased methylation in satellite DNA of common ice plants exposed 
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to high salinity conditions resulted in a switch-over from C3-photosynthesis to C4-type 

carbon dioxide assimilation. In yet another report, an age-dependent increase in 

methylation was shown to confer resistance to the blight pathogen X. oryzae in rice (Sha 

et al., 2005). 

We hypothesized that stress-generated signals might establish a new DNA 

methylation pattern in plant reproductive tissue. Such changes should thus be reflected in 

the next generation resulting in elevated RR and stress tolerance. Indeed, we found that 

genomes of G1 PofS plants were hypermethylated compared to PofC plants. Importantly, 

the most significant methylation difference found in G1 PofS plants correlated with the 

highest spontaneous RR and tolerance to salt stress observed among the G1 progenies. 

Consistently with our hypothesis, the difference in methylation patterns decreased in the 

G2 generation obtained from the G1 nonexposed plants. It is noteworthy that no 

significant difference was found in methylation patterns at pericentromeric regions, 

which might indicate that changes in DNA methylation occurred primarily within coding 

or other repetitive sequences.  

The hypermethylation status of the G1 PofS plants was confirmed by analyzing 

the methylation level of actin gene loci; the most pronounced difference was observed in 

the G1 PofS_25 plants. Taking into consideration an inverse correlation between HRF 

and the methylation status of a given locus (Bassing et al., 2002; Wada et al., 2004), 

increased methylation at the actin2 gene locus may represent a protective mechanism that 

prevents extensive rearrangements from occurring at housekeeping gene loci (Rizwana 

and Hahn, 1999). Importantly, similar changes in methylation patterns were observed in 

the progeny of virus infected plants (Boyko et al., 2007). This demonstrated that the 
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elevated spontaneous RR correlated with increased methylation at the actin gene locus in 

the progeny of virus infected tobacco plants. In contrast to the actin gene locus, the R-

gene-like loci were hypomethylated and displayed an increased frequency of 

rearrangements (Boyko et al., 2007). Considering that the R-gene-like loci carry 

homology to the N-gene which was absent in plants used for infection, it was suggested 

that locus-specific changes in methylation and rearrangements could be a plant strategy 

of creating an active R-gene. Studies of Meyers et al. (2005) suggested that the evolution 

of plant R-genes involved gene duplication and recombination events. Hence, it is 

possible that the elevated spontaneous RR observed in PofS plants also represented one 

of the early responses involved in stress-directed genome evolution. 

Finally, to insure that an increase in RR was not due to changes in the methylation 

status at a transgene locus, we analyzed methylation at GUS promoter and GUS coding 

regions. No significant difference was found among progenies, suggesting that the 

increased HRF was not caused by changes in methylation of a reporter transgene. These 

data also support a previously published report which suggested that changes in the 

epigenetic status of the transgene are not responsible for a transgenerational increase in 

HRF (Molinier et al., 2006). Overall, our findings support the epigenetic nature of a 

signal that mediated inheritance of a high somatic HRF and development of stress 

tolerance by the progeny of stress treated plants. 
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3.4. SUMMARY 

Our study demonstrated that continuous exposure to even low concentrations of 

NaCl can trigger substantial changes in plant genome stability, including an increased 

level of DNA DSBs and an elevated frequency of genome rearrangements. Our data 

represent a novel finding that the balance of DSB repair in plants can be controlled by 

stress; and it complements recent reports demonstrating that changes in the balance 

between HR and NHEJ under physiological conditions can be mediated via modification 

of the activity of factors involved in DSB repair. 

Our study provided evidence that the effect of salt stress on plants is not restricted 

to the exposed generation, and it can result in the elevated spontaneous RR in the 

progeny. A strong increase in RR in the G1 PofS plants suggests that exposure to stress 

can modify the spontaneous RR in a single generation. Furthermore, growing and 

propagating the G1 PofS progenies in the absence of stress changed the elevated 

spontaneous RR in the G2 generation back to a level of control plants. These findings 

suggest the existence of a certain stress-inducible signal that may establish a new 

heritable gene regulation pattern defining an elevated level of HRF.  

We found that plants exposed to stress can establish a memory of stress exposure, 

leading to acquired tolerance of their progeny to the same or different stress. We believe 

that the establishment of stress memory is epigenetically mediated. Changes in a 

methylation pattern in the progeny of plants exposed to salt correlated with increased 

spontaneous and stress-induced RRs and elevated tolerance to NaCl and MMS.  

A stress-induced shift in DSB repair from NHEJ toward HR can be seen as a part 

of an adaptation process, since higher fidelity of HR repair may be advantageous for 
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plants experiencing genotoxic stress. Besides, an increased frequency of rearrangements 

may represent one of the early responses involved in stress-directed genome evolution, as 

it was recently described for the progeny of plants challenged with a pathogen. Overall, 

our findings support the epigenetic nature of a stress-induced signal mediating the 

establishment of stress memory and inheritance of the elevated HRF. This can represent 

an important stress tolerance mechanism employed by plants.  



 131 

3.5. FUTURE DIRECTIONS 

Our study demonstrated that plant exposure to salt stress results in a heritable 

increase in HRF that is mediated by a stress-induced signal that has an epigenetic nature. 

It would be important to reveal the molecular nature of this signal and demonstrate the 

importance of gene-specific epigenetic changes in the establishment of acquired tolerance 

to stress and the elevated spontaneous RR observed in the progeny of stress treated 

plants. 

We believe that the establishment of sequence-specific changes in DNA 

methylation and their inheritance by progenies can be at least partially mediated by 

smRNAs. It would be interesting to conduct similar experiments using plants impaired in 

various aspects of smRNA biogenesis. In addition, using single, double and triple 

Arabidopsis dicer mutants could help to elucidate what part of the smRNA biogenesis 

pathway is involved in producing transgenerational changes in genome stability and 

stress tolerance. Besides, extracting a smRNA fraction from stress treated plants and 

injecting it into control plants could be a fast and simple way to confirm the importance 

of stress-induced smRNAs in this process. 

Furthermore, it is important to correlate elevated tolerance to stress observed in 

the progeny of stress exposed plants with changes in methylation and expression of genes 

involved in the development of salt tolerance. This could be achieved by direct bisulfite 

sequencing of loci of interest followed by the comparison of analyzed sequences between 

PofC and PofS plants. Alternatively, the ChIP-on-chip analysis can be applied here to 

perform the genome-wide methylation analysis. 
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Exploring transgenerational effects of other stresses and comparing them with the 

effect of salt stress described here could help to reveal major mechanisms triggering 

memory of stress and leading to stress adaptation in plants. 
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4. EFFECTS OF AMMONIUM NITRATE  

ON THE FREQUENCY OF AGROBACTERIUM-

MEDIATED TRANSFORMATION  

IN NICOTIANA TABACUM 



 134 

4.1. MATERIALS AND METHODS 

4.1.1. Plant cultivation 

In the current work, Nicotiana tabacum cultivar Big Havana wild type plants and 

transgenic A. thaliana line #11 plants were used. All plants were obtained from Friedrich 

Miescher Institute (Basel, Switzerland) and were previously described (Swoboda, et al., 

1994; Ilnytskyy, et al., 2004).  

 

4.1.1.1. Growing Arabidopsis plants for recombination analysis  

Arabidopsis seeds were surface-sterilized, grown and harvested as previously 

described (see Section 3.1.1.1. Growing Arabidopsis plants for salt stress experiments). 

Surface-sterilized seeds were plated on control or modified solid MS medium containing 

various quantities of ammonium nitrate (Table 4.1.1).  

 

4.1.1.2. Growing N. tabacum plants for transformation experiments 

4.1.1.2.1. Growing N. tabacum plants for transformation with a 35S::GUS T-

DNA construct 

Seeds of wild type N. tabacum cultivar Big Havana were surface-sterilized with 

1% sodium hypochloride, 0.05% Tween-80 solution for 3 min and then rinsed twice with 

sterile distilled water for 5 min each. Next, seeds were placed in 100 mm Petri dishes on 

sterile Whatman paper submersed in 4 ml of control or modified liquid MS medium 

containing various quantities of ammonium nitrate (Table 4.1.2). Following that, seeds 

were transferred to a growth chamber (Enconair, Winnipeg, MB, Canada) for 

germination. Once germinated, wild type plants were grown for one week at 22 °C /18 



 135 

°C, 16/8 hours light/dark regime under high light conditions (32.8 µEm-2s-1) with light 

provided by Octron T8 Fluorescent bulbs (Sylvania, Mississauga, ON, Canada), and a 

constant humidity of 65%. One week old seedlings were harvested from Petri dishes for 

transformation with Agrobacterium. 

 

4.1.1.2.2. Growing N. tabacum plants for transformation with a N::LUC T-

DNA construct 

Seeds of wild type N. tabacum cultivar Big Havana were surface-sterilized and 

grown as previously described (see Section 4.1.1.2.1. Growing N. tabacum plants for 

transformation with a 35S::GUS T-DNA construct). Surface-sterilized seeds were placed 

in 100 mm Petri dishes on sterile Whatman paper submersed in 4 ml of control or 

modified liquid MS medium containing various quantities of ammonium nitrate (Table 

4.1.2).  

Three to five one week old N. tabacum wild type plants were transferred to a 

single sterile 250 ml glass flask containing 15 ml of sterile control or modified liquid MS 

medium. Next, flasks were installed on an orbital shaker, and plants were continuously 

grown under the aforementioned growth conditions at 50 – 75 rpm. The growth medium 

was replaced weekly with 25 ml of fresh medium. Three weeks later, plants were 

removed from flasks, and 2-3 pairs of fully developed 2-4 cm long fresh leaves were 

harvested (cut from plants) for transformation with Agrobacterium. 

Following transformation, regenerated transgenic plants were grown and 

propagated on soil into the next generation using the same growth conditions as described 

for Arabidopsis (see Section 3.1.1.1. Growing Arabidopsis plants for salt stress 
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experiments). Once transformants became well-developed on soil, plant leaf tissues were 

harvested and snap frozen for further analysis.  
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Table 4.1.1. Various modifications of chemical composition of standard solid MS 

medium for studying the effect of ammonium nitrate on recombination in 

Arabidopsis 

MS macro 
components 

Final 
concentrations in  

MS medium, 
mM 

NH4NO3 gradient, 
all final concentrations listed in mM 

Control NH4NO3 
0.3x 

NH4NO3 
1x 

NH4NO3 
2.5x 

NH4NO3 
5x 

NH4NO3 20.6 6.18 20.6 51.5 103 
KNO3 18.8 - - - - 
CaCl2 3 3 3 3 3 

MgSO4 1.5 1.5 1.5 1.5 1.5 
KH2PO4 1.25 1.25 1.25 1.25 1.25 
K2SO4 - 9.4 9.4 9.4 9.4 
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Table 4.1.2. Various modifications of chemical composition of standard liquid MS 

medium for studying the effect of ammonium nitrate on transformation efficiency in 

N. tabacum 

MS macro 
components 

Final 
concentrations in  

MS medium, 
mM 

Experimental media compositions, 
all final concentrations listed in mM 

NH4NO3 
0.3x 

NH4NO3 
1x 

NH4NO3 
2x 

NH4NO3 
3x 

NH4NO3 
5x 

NH4NO3 20.6 6.18 20.6 41.2 61.8 103 
KNO3 18.8 - - - - - 
CaCl2 3 3 3 3 3 3 

MgSO4 1.5 1.5 1.5 1.5 1.5 1.5 
KH2PO4 1.25 1.25 1.25 1.25 1.25 1.25 

K2SO4 - 9.4 9.4 9.4 9.4 9.4 
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4.1.2. Composition of experimental MS medium for testing effects of 

ammonium nitrate on transformation efficiency  

The effect of various chemicals on HRF was tested using Arabidopsis line #11 

plants that carried in the genome a GUS-based recombination substrate (Swoboda, et al., 

1994; Ilnytskyy, et al., 2004). This experimental system allowed the identification of 

ammonium nitrate as the best candidate for N. tabacum transformation.  

 

4.1.2.1. Growing Arabidopsis plants for recombination analysis  

Pilot trials were performed with Arabidopsis line #11 plants germinated and 

grown on control or modified solid MS medium containing various amounts of 

ammonium nitrate (Table 4.1.1). To get ammonium nitrate as a single source of nitrogen 

in the medium, potassium nitrate originally present in MS medium was substituted with 

potassium sulfate (Table 4.1.1). The effect of potassium sulfate on HRF was shown to be 

negligible (Boyko and Kovalchuk, 2008b). Standard solid MS medium (Murashige and 

Skoog, 1962) was used as a control. Following 3 weeks, plants were harvested for 

histochemical staining, and HRF was calculated.  

 

4.1.2.2. Growing N. tabacum plants for transformation experiments with a N::LUC 

T-DNA construct 

For transformation experiments, wild type N. tabacum plants were germinated and 

grown in control or modified liquid MS medium supplemented with various quantities of 

ammonium nitrate (Table 4.1.2). To get ammonium nitrate as a single source of nitrogen 

in the medium, potassium nitrate originally present in MS medium was substituted with 
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potassium sulfate (Table 4.1.2). Modified MS medium containing 20.6 mM of 

ammonium nitrate (the amount naturally present in standard MS medium) (Murashige 

and Skoog, 1962) was used as a control (Table 4.1.2). Once grown (on the cotyledons or 

fully developed leaf stages), plants were used for transformation with Agrobacterium. 
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4.1.3. Detection and analysis of homologous recombination events in 

Arabidopsis 

Detection and analysis of HR was performed as previously described (see Section 

3.1.2. Detection and analysis of homologous recombination events in Arabidopsis). 
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4.1.4. Visualization of the luciferase reporter gene activity in N. tabacum  

Constitutive expression of the luciferase gene in stable transformants regenerated 

from tobacco leaves that were transformed with a N::LUC T-DNA construct was 

visualized using a CCD camera (Gloor Instruments; Basel, Switzerland). When 

transplanted to soil, regenerated plants were topically treated with a 0.5 mM beetle 

luciferine (Promega), a 0.05% Tween-80 solution and incubated in the dark for 30-45 

min. Following incubation, plants were photographed using a CCD camera. Plants 

containing the luciferase gene were able to cleave the luciferine. This resulted in the 

ATP-dependent production of light. 
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4.1.5. Agrobacterium-mediated gene transfer to Nicotiana tabacum  

4.1.5.1. Agrobacterium strains used in experiments 

Two Agrobacterium GV3101 strains used for transformation were obtained from 

Friedrich Miescher Institute (Basel, Switzerland). One strain carried T-DNA containing 

the active GUS gene driven by the 35S CaMV promoter and the barnase gene as a 

herbicide resistance marker. Another strain carried a T-DNA cassette containing the 

active luciferase (LUC) gene driven by the N-gene promoter and the hph gene that 

confers resistance to antibiotic hygromycin as a selection marker. The 35S driven GUS 

containing T-DNA construct was used to analyze efficiency of transient and stable 

transformation. The N-gene promoter driven LUC containing a T-DNA construct was 

used for stable transformation analysis only. All antibiotics and plant hormones used in 

the experiments were ordered from Sigma. 

 

4.1.5.2. Bacteria culture 

Two Agrobacterium GV3101 strains were streaked on plates containing a solid 

YEP medium (An et al., 1988) supplemented with antibiotics. The following antibiotics 

were used for the GUS strain: spectinomycin (50 mg/ml), rifampicin (25 mg/ml) and 

gentamicin (25 mg/ml). For the LUC strain we used kanamycin (50 mg/ml), rifampicin 

(25 mg/ml) and gentamicin (25 mg/ml), respectively. The plates were incubated at 28 °C 

overnight, and then, a single colony was used to start a small 3 ml liquid culture (YEP 

supplemented with aforementioned antibiotics). The bacterial culture was incubated 

overnight at 28 °C and 190-200 rpm, and then it was used to inoculate the main 150 ml 

culture that was grown overnight under the same conditions. The next day, bacteria were 
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harvested (5000 rpm, 5 min) and resuspended in ½ stringency liquid standard MS 

medium (Murashige and Skoog, 1962) to a final optical density of 0.6 measured at 600 

nm. The resulting bacterial suspension was supplemented with 100 mM acetosyringone 

(Sigma) solution at a final concentration of 100 µM and then incubated for at least 30 

min to stimulate bacteria. Following incubation with acetosyringone, bacteria were used 

for transformation.  

 

4.1.5.3. Transformation of N. tabacum plants with a 35S::GUS T-DNA construct 

Traces of a growth medium were removed via blotting of one-week old 

cotyledons on sterile filter paper. Next, cotyledons were submersed into a resuspended 

Agrobacterium culture and vacuum-infiltrated for 10 min under sterile conditions. Once 

infiltrated, they were blotted dry and placed upside-down in solid standard MS medium 

(Murashige and Skoog, 1962); there they were incubated for 3 days. Incubation was done 

in the dark at 22 °C. Next, cotyledons were removed from plates, well rinsed with sterile 

distilled water, and blotted dry. At this stage, they were either harvested for histochemical 

staining for the evaluation of transient transformation efficiency, or transferred to solid 

MS medium (Murashige and Skoog, 1962) containing IAA (0.8 mg/L) kinetin (2 mg/L) 

for calli induction and regeneration and a combination of ticarcillin (100 mg/L) with 

potassium clavulanate (3 mg/L) to control Agrobacterium growth. Active selection 

conditions were achieved by supplementing the regeneration medium with 

phosphinothricin (PPT) (5 mg/L). The efficiency of transient transformation was 

evaluated based on GUS expression, visualized using a previously described 

histochemical staining procedure (see Section 3.1.2.2. Visualization of homologous 
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recombination events using the GUS gene activity). Stable integration events were PCR-

confirmed using the following primers for the GUS gene, forward primer: 5’-

CAGACTCAGACTAAGCAGGTG-3’ and reverse primer: 5’-

GATCAATTCCACAGTTTTCGCG-3’.  

 

4.1.5.4. Transformation of N. tabacum plants with a N::LUC T-DNA construct 

To remove traces of a growth medium, leaves were blotted on sterile filter paper 

and then submersed into a Petri dish laid out with Whatman paper and containing 

resuspended Agrobacterium. Once upside-down and completely submersed, the leaf 

surface was incised using a sharp surgical blade. Incisions were made in parallel to side 

veins. The distance between two parallel incisions was 5 – 7 mm. The main vein and leaf 

margins were left intact. When cutting was completed, leaves were allowed to be 

submersed for 10 min, then they were blotted dry and placed upside-down in solid 

standard MS medium (Murashige and Skoog, 1962). After 3 days of incubation in the 

dark at 22 °C, leaves were removed from plates, well rinsed with sterile distilled water, 

blotted dry, and transferred to solid standard MS medium (Murashige and Skoog, 1962) 

containing IAA (0.8 mg/L), kinetin (2 mg/L) for calli induction and regeneration, and the 

combination of ticarcillin (100 mg/L) with potassium clavulanate (3 mg/L) to control 

Agrobacterium growth. Selection conditions were obtained by supplementing a 

regeneration medium with hygromycin (25 mg/L). Non-selective conditions were used 

for studying effects of ammonium nitrate on calli regeneration efficiency.  

Following 3 – 4 weeks on callus inducing medium, developed shoots were 

excised from calli and transferred to the root inducing solid standard MS medium 
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(Murashige and Skoog, 1962) containing NAA (0.5 mg/L), ticarcillin (100 mg/L) and 

potassium clavulanate (3 mg/L). After 1 – 2 weeks of root induction, plantlets were 

transplanted to soil and checked for luciferase gene expression using a CCD camera as 

previously described (see Section 4.1.4. Visualization of the luciferase reporter gene 

activity in N. tabacum). Luciferase gene expressing plants were counted as stable 

transformants, and their number was related to the total number of incisions made in leaf 

during transformation to obtain a stable transformation frequency (STF). Shoots 

produced on callus inducing medium were scored, and their number was related to the 

total number of incisions made in leaf during transformation to obtain a callus 

regeneration efficiency (CRE).  

 

4.1.5.5. T-DNA segregation analysis 

Seeds of self-pollinated transgenic N. tabacum plants regenerated after 

Agrobacterium transformation with a N::LUC T-DNA containing construct were 

germinated and grown for 3 weeks in solid standard MS medium (Murashige and Skoog, 

1962) containing hygromycin (25 mg/L). Each plate contained wild type and hygromycin 

positive plants for a negative and positive control, respectively. Following 3 weeks, 

plants showing an antibiotic resistance phenotype were scored, and a segregation ratio 

was calculated. Statistical significance of calculated segregation ratios was confirmed 

using Chi square statistic with α=0.05. 
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4.1.6. Description of molecular techniques and assays used for analysis 

4.1.6.1. Total DNA preparation 

Total genomic DNA was prepared and analyzed as previously described (see 

Section 3.1.5.1. Total DNA, RNA and cDNA preparations).  

 

4.1.6.2. DSB measurement (the ROPS assay) 

Quantification of 3’OH DNA breaks was performed as previously described (see 

Section 3.1.5.3. DSB measurement (the ROPS assay).  

 

4.1.6.3. Cloning DNA sequences flanking T-DNA insertions in transgenic N. tabacum 

plants 

Cloning DNA sequences flanking T-DNA insertions was done by using an 

improved PCR-Walking technique (Siebert et al., 1995; Cottage et al., 2001). The 

technique is based on ligation of specially designed asymmetric adapters to the ends of 

DNA fragments generated by digestion of genomic DNA with blunt-end yielding 

endonucleases. Following adaptor ligation, DNA was used as a template for PCR using 

an adaptor and gene specific primers allowing the amplification of unknown genomic 

regions flanking a T-DNA insertion site. The presence of an amine group on the exposed 

3’end of the adaptor prevents non-specific amplification between adaptor-specific 

primers. Following the first PCR, the second PCR round was performed using a set of 

nested primers; diluted product of the first PCR was used as a template. The resulting 

PCR products could be cloned and sequenced.  

Total genomic DNA (2.5 µg) extracted from N. tabacum plants that carry T-DNA 
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insertions in unknown locations was digested with 80 units of restriction endonuclease 

overnight at 37 °C. The DraI (New England Biolabs) enzyme was used for restriction 

digestion of DNA samples for cloning left T-DNA border flanking sequences. Following 

digestion, samples were extracted with an equal volume of chloroform-isoamyl alcohol 

(24:1 v/v), ethanol precipitated and resuspended in 20 µl of sterile distilled water. Ten µl 

of the genomic DNA digest was ligated to 1 µl of annealed adaptors using 10 units of T4 

DNA ligase (New England Biolabs) and 1x T4 DNA ligase buffer (New England 

Biolabs) in a final volume of 20 µl. Adaptor sequences, adaptor annealing conditions and 

the sequence of adaptor-specific primers were previously described (Siebert et al., 1995; 

Cottage et al., 2001). Following heat inactivation of ligase at 65 °C for 10 min, a 180 µl 

volume of TE buffer was added to the ligation mix completing an adaptor library.  

Primary PCR amplification was performed using 1 µl of adaptor library as a 

template, an adaptor- and T-DNA-specific primer for 35 cycles. The second PCR was 

performed using 1 µl of diluted (1:100) primary PCR as a template, an adaptor- and T-

DNA-nested primer for 20 cycles. Both primary and secondary PCR were done using 

0.63 units of Takara Ex Taq™ DNA Polymerase (Takara Bio USA), 1x Ex Taq™ Buffer 

(contains 2 mM MgCl2) (Takara Bio USA), dNTP Mixture (2.5 mM each dNTP) (Takara 

Bio USA) and 10 pmol of each primer in a final volume of 25 µl. Cycle parameters were 

as follows: 2 min of initial denaturation followed by a cycle event of denaturation at 94 

°C for 30 s, annealing at 60 °C for 30 s, elongation at 68 °C for 4 min, and a final 

extension for 10 min. The sequence of the T-DNA specific-nested primer pair was as 

follows: T-DNA left border specific primer 5’-

TACGAGGTCGCCAACATCTTCTTCTG-3’ and T-DNA left border nested primer 5’-
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GCGTATATGCTCCGCATTGGTCTTGA-3’. PCR products were cloned into a pGEM-

T easy vector (pGEM-T easy vector system I, Promega) and sequenced. Resulting 

sequences were compared to the original T-DNA sequence for detection of possible 

alterations in a transgene sequence. The cloned genomic DNA sequences were used for 

searching possible matches in the National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and the Tobacco Genome Initiative (TGI) 

(http://tgi.ncsu.edu/) genome databases, thereby allowing the identification of T-DNA 

integration sites in the N. tabacum genome. 

 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi�
http://tgi.ncsu.edu/�
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4.1.7. Statistical treatment of data 

The statistical analysis of the data was performed as previously described (see Section 

3.1.6. Statistical treatment of data).  
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4.2. RESULTS 

4.2.1. Selection of growth medium components influencing homologous 

recombination frequency 

In our study, we attempted to manipulate the host before transformation to 

increase its susceptibility to Agrobacterium infection. This would result in the higher 

number of stable transformants being produced during a single round of transformation. 

The main emphasis was on the use of various modified growth medium compositions that 

would not affect host physiology negatively but could result in an increased activity of 

HR at the time of transformation. Our pilot experiments indicated that changing a final 

concentration of several macrosalts present in the standard MS medium originally 

(Murashige and Skoog, 1962) could drastically affect the HRF in plants (Boyko A, MSc 

Thesis, 2004). Based on these preliminary data, we selected ammonium nitrate as the best 

candidate for growth medium modification experiments.  

 

4.2.1.1. High concentrations of ammonium nitrate increase recombination 

rates in Arabidopsis 

Transgenic Arabidopsis line #11 plants represent a sensitive and reliable system 

that allows the measurement of the effects of various factors on HRF (Ilnytskyy, et al., 

2004). We used this transgenic line for the evaluation of ammonium nitrate effects on 

HRF. We germinated and grew Arabidopsis plants on solid control or modified MS 

medium in the presence of various quantities of ammonium nitrate. To have ammonium 

nitrate as a single source of nitrogen in all modified media, we substituted potassium 
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nitrate for potassium sulfate (Table 4.1.1). The control medium composition was not 

changed. 

Our results demonstrated that increasing the concentration of ammonium nitrate in 

the growth medium can significantly increase RR in Arabidopsis. The presence of 51.5 

and 94 mM ammonium nitrate comprising 250 and 500% of its amount in standard MS 

medium (Murashige and Skoog, 1962) resulted in 2.2- and 4.1-fold increases of RR, as 

compared to plants grown on control unmodified MS medium (Student’s t-test, α=0.05) 

(Figure 4.2.1). Consistently, a depletion of ammonium nitrate in the growth medium to 

30% of its concentration in the control medium decreased the RR by a factor of 1.3 

(Figure 4.2.1). Importantly, only a minor difference of 9% was observed during a 

comparison of RRs between plants grown in modified medium containing 20.6 mM of 

ammonium nitrate and control plants (Figure 4.2.1) This suggests that a substitution of 

potassium nitrate for potassium sulfate in all modified media did not significantly affect 

the RR. Overall, a strong positive correlation between RR and the amount of ammonium 

nitrate present in a growth medium was found (r=0.99, P<0.05). 

It is noteworthy that plants grown in the medium containing 2.5x ammonium 

nitrate look healthier, grew better and showed a higher chlorophyll content (Figure 4.2.2). 

In contrast, plants grown in the medium containing 5x ammonium nitrate displayed 

growth inhibition and showed a lower chlorophyll content (Figure 4.2.2). This indicated a 

negative effect of 103 mM ammonium nitrate on plant physiology, and suggested that 

active concentrations of this chemical should be within a range of 41.2 and 61.8 mM. 

These concentrations were 2.0- and 3.0-fold higher as compared with the concentration of 

ammonium nitrate in control MS medium.  
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Figure 4.2.1. Recombination rates in Arabidopsis plants grown on solid MS medium 

supplemented with various amounts of ammonium nitrate 
RRs were measured in plants germinated and grown for 3 weeks on MS medium (control) and modified 
medium containing 6.18 (0.3x), 20.6 (1x), 51.5 (2.5x) and 103 (5x) mM ammonium nitrate. ‘x’ – stands for 
a concentration of ammonium nitrate in standard MS medium. Two independent experiments were 
performed. Values represent the mean ± s.d. Asterisks show a statistically significant difference as 
compared with control MS medium. Student’s t-test: α=0.05, t=2.57. ANOVA: P<0.05. 
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Figure 4.2.2. Phenotypic appearance of Arabidopsis plants grown on solid MS 

medium supplemented with various amounts of ammonium nitrate 
A, B, C, D and E – Arabidopsis plants germinated and grown for 3 weeks on MS medium (control) and 
modified medium containing 6.18 (0.3x), 20.6 (1x), 51.5 (2.5x) and 103 (5x) mM of ammonium nitrate. ‘x’ 
– stands for a concentration of ammonium nitrate in standard MS medium. 
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4.2.1.2. High concentrations of ammonium nitrate do not increase DNA 

double strand breaks 

A dose-dependent increase of RR observed in plants grown in the presence of 

high amounts of ammonium nitrate can be due to a higher level of DNA DSBs. It also 

can reflect a higher involvement of HR enzymes in strand break repair. To investigate a 

possible genotoxic effect of growth media enriched in ammonium nitrate, we measured 

DSB levels in plants grown on modified solid MS medium containing 20.6, 41.2 and 61.8 

mM ammonium nitrate. Importantly, we found no significant differences in strand break 

levels in plants grown in the presence of 20.6 and 41.2 mM (Figure 4.2.3). Moreover, a 

significant (Student’s t-test, α=0.05) 1.2-fold decrease in the number of DSBs was found, 

while comparing plants grown in 61.8 mM with those grown in 20.6 mM (Figure 4.2.3). 

Overall, our data supported a positive effect of ammonium nitrate on the HR activity, and 

confirmed that the presence of this chemical in plant growth medium has no DNA 

damaging effect.  
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Figure 4.2.3. Levels of DNA double strand breaks in N. tabacum plants grown on 

solid MS medium supplemented with various amounts of ammonium nitrate 
The figure shows DSB levels (radioactive counts, DPM 3H) in plants germinated and grown for 4 weeks in 
the presence of 20.6 (1x), 41.2 (2x) and 61.8 (3x) mM ammonium nitrate. The higher the radioactive count, 
the more DSBs are present in the genome. ‘x’ – stands for a concentration of ammonium nitrate in standard 
MS medium. Two independent experiments were performed, and radioactivity of each sample was counted 
twice. Values represent the mean ± s.d. Asterisks show a statistically significant difference compared with 
control 20.6 mM (1x) medium. Student’s t-test, α=0.05, t=2.05. 
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4.2.2. Effects of ammonium nitrate on Agrobacterium-mediated 

transient transformation of N. tabacum 

Our previous experiments demonstrated that enrichment of a plant growth 

medium with ammonium nitrate to a level of 200 or 300% of its original concentration 

has a positive effect on HR and does not exert a negative influence on plant physiology in 

general. Next, we investigated whether an increase in RR can improve the efficiency of 

plant genetic transformation with Agrobacterium. We evaluated the efficiency of 

transient plant transformation using plants grown in media enriched with ammonium 

nitrate. Overall, we found a significant difference in GUS transgene expression levels in 

plants derived from various growth media. The highest GUS expression was observed in 

plants grown in the medium containing 61.8 mM ammonium nitrate (Figure 4.2.4). 

Consistently, the second highest GUS expression was found in plants grown in the 

presence of 41.2 mM ammonium nitrate (Figure 4.2.4). Finally, plants grown in the 

presence of 20.6 mM ammonium nitrate displayed the lowest transgene expression, 

indicating that enrichment of a growth medium with ammonium nitrate could improve 

the transformation efficiency (Figure 4.2.4). 
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Figure 4.2.4. The efficiency of transient transformation of N. tabacum plants grown 

in liquid MS medium supplemented with various quantities of ammonium nitrate 
A, B and C – GUS expression in transiently transformed tobacco seedlings germinated and grown in the 
medium supplemented with 20.6 (1x), 41.2 (2x) and 61.8 (3x) mM ammonium nitrate. ‘x’ – stands for a 
concentration of ammonium nitrate in standard MS medium. N. tabacum plants were transformed with 
Agrobacterium T-DNA containing the GUS reporter gene under control of the 35S CaMV promoter. 
Transient transformation efficiency was evaluated on the 3rd day after a transformation event. Three 
independent experiments were performed. D – Head-to-head comparison of GUS expression in transformed 
plants grown in the presence of different quantities of ammonium nitrate before transformation.  
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4.2.3. Effects of ammonium nitrate on stable Agrobacterium-mediated 

transformation of N. tabacum 

Since a high content of ammonium nitrate resulted in an increase in transient plant 

transformation, we hypothesized that it could also increase stable transformation. To 

elucidate the role of ammonium nitrate for the improvement of plant transformation 

efficiency, we used media containing 6.18, 20.6 (control), 41.2, 61.8 and 103 mM 

ammonium nitrate.  

We found that enrichment of growth media with ammonium nitrate before 

transformation with Agrobacterium significantly increased CRE (Figure 4.2.5A). 

Transforming plants grown in 41.2 and 61.8 mM ammonium nitrate resulted in CRE that 

was 1.9- and 2.7-fold higher than that of plants grown in the presence of 20.6 mM 

ammonium nitrate (Student’s t-test, α=0.05) (Figure 4.2.5A, B, C). In contrast to its 

positive effect on RR, the presence of 103 mM ammonium nitrate in the growth medium 

inhibited CRE which constituted 46% of CRE in plant tissues obtained from control 

medium (Student’s t-test, α=0.05) (Figure 4.2.5A). Inhibition of CRE was consistent with 

a previously observed negative effect that very high concentrations of this chemical had 

on plant physiology. Finally, a depletion of ammonium nitrate in the growth medium had 

an insignificant effect on CRE, suggesting that the decreased HR activity does not affect 

overall transformation efficiency (Figure 4.2.5A). Importantly, increasing the amount of 

ammonium nitrate from 41.2 to 61.8 mM resulted in a significant 1.5-fold increase of 

CRE (Student’s t-test, α=0.05). This was consistent with a previously observed dose-

dependent increase of RR (Figure 4.2.5A, B, C). Overall, a strong positive correlation 
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between CRE and a concentration of ammonium nitrate in the medium was observed 

(r=0.96, P<0.05). 

Consistent with its positive effect on CRE, a high content of ammonium nitrate 

also stimulated STF (Figure 4.2.6A, B, C). The presence of 41.2 and 61.8 mM 

ammonium nitrate in media led to a significant 1.7- (Student’s t-test, α=0.1) and 2.5-fold 

(Student’s t-test, α=0.05) increase in the number of transgenic plants obtained in a single 

round of transformation, as compared to control media containing 20.6 mM ammonium 

nitrate (Figure 4.2.6A). Similarly to its effect on CRE, exposure to 103 mM ammonium 

nitrate drastically reduced STF: it comprised 38% of STF observed in plant tissues 

obtained from control medium (Student’s t-test, α=0.05) (Figure 4.2.6A). A decrease in 

the concentration of ammonium nitrate to 6.18 mM had no significant effect on STF 

(Figure 4.2.6A). Importantly, a comparison of STF between tissues obtained from plants 

grown in the presence of 41.2 and 61.8 mM ammonium nitrate yielded a significant 1.5-

fold difference (Student’s t-test, α=0.05) (Figure 4.2.6A). Overall, a strong positive 

correlation between STF and ammonium nitrate concentration in the medium was 

observed (r=0.97, P<0.05).  
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Figure 4.2.5. Callus regeneration efficiency in N. tabacum plants grown in liquid MS 

medium supplemented with various amounts of ammonium nitrate 
A – Leaf tissues for transformation with Agrobacterium were harvested from N. tabacum plants grown in 
ammonium nitrate-modified liquid MS. ‘x’ – stands for a concentration of ammonium nitrate in standard 
MS medium. Calli were regenerated under selective conditions (hygromycin, 25 mg/L). Callus regeneration 
efficiency (CRE) represents the total number of calli (transgenic and non-transgenic) regenerated per single 
incision made in a leaf during transformation. CRE of plants grown in the presence of 20.6 mM (1x) 
ammonium nitrate was standardized to 1.0. CRE of plants grown in other types of growth medium shows 
fold changes in CRE as related to the medium containing 20.6 mM (1x) ammonium nitrate. Five 
independent experiments were performed using two T-DNA constructs carrying different reporter and 
selection marker genes (GUS and barnase genes, luciferase and hph genes, respectively). Values represent 
the mean ± s.d. Asterisks show a statistically significant difference as compared to control 20.6 mM (1x) 
medium. Student’s t-test, α=0.05, t=2.26. † - shows a statistically significant difference compared with 
41.2 mM (2x) ammonium nitrate containing medium. Student’s t-test, α=0.05, t=2.26. ANOVA: P<0.01. 
B and C – Representative pictures showing a difference in callus regeneration efficiency in host tissues 
grown in the presence of 20.6 (1x) and 61.8 mM (3x) ammonium nitrate.  
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Figure 4.2.6. Stable transformation frequency in N. tabacum plants grown in liquid 

MS medium supplemented with various concentrations of ammonium nitrate 
A – Leaf tissues for transformation with Agrobacterium were harvested from N. tabacum plants grown in 
modified liquid MS medium in the presence of various concentrations of ammonium nitrate. ‘x’ – stands 
for a concentration of ammonium nitrate in standard MS medium. Stable transformation frequency (STF) 
represents the total number of transgenic plants (expressing GUS or luciferase gene) regenerated per single 
incision made in a leaf during transformation. STF in plants grown in the presence of 20.6 mM (1x) 
ammonium nitrate was standardized to 1.0. STF in plants grown in other types of growth medium shows 
fold changes as related to the medium containing 20.6 mM (1x) ammonium nitrate. Five independent 
experiments were performed using two T-DNA constructs carrying different reporter and selection marker 
genes (GUS and barnase genes, luciferase and hph genes, respectively). Values represent the mean ± s.d. 
Asterisks show a statistically significant difference compared with control 20.6 mM (1x) medium. One 
asterisk – Student’s t-test, α=0.05: for the medium containing 61.8 mM (3x) and 103 mM (5x) ammonium 
nitrate, t=2.26. Two asterisks – Student’s t-test, α=0.1: for the medium containing 41.2 mM (2x) 
ammonium nitrate, t=1.83. † - shows a statistically significant difference compared with the medium 
containing 41.2 mM (2x) ammonium nitrate. Student’s t-test, α=0.1, t=1.83. ANOVA: P<0.01. B – 
Regenerated plants grown in the root inducing medium before being transplanted to soil, and before 
conducting a reporter gene expression test. C – a luciferase gene expression test in regenerated plants 
transplanted to soil (red color indicates transgene expression). 
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4.2.4. Comparing the effects of ammonium nitrate on callus 

regeneration and frequency of stable T-DNA integration events in N. 

tabacum 

A positive effect of ammonium nitrate on the total number of stable transformants 

could be either due to an enhanced callus regeneration capacity or a higher frequency of 

transgene integrations. Previous experiments did not allow us to distinguish between 

these two effects, since active selection conditions were used. To differentiate between 

the effects of ammonium nitrate on the callus regeneration capacity and transgene 

integration frequency, we regenerated transformed plants under non-selective conditions. 

This allowed for equal survival of both transgenic and non-transgenic calli.  

The absence of selection pressure greatly increased the total number of 

regenerated plants. However, no drastic difference was observed in the number of calli 

regenerated from transformed leaves harvested from plants grown in the presence of 

various concentrations of ammonium nitrate (Table 4.2.1). Growth media containing 41.2 

and 61.8 mM ammonium nitrate yielded CRE that was 9 and 18% of that yielded from 

the control medium containing 20.6 mM (Table 4.2.1). Lowering the ammonium nitrate 

concentration to 6.18 mM decreased CRE by 11% only (Table 4.2.1). Overall, the data 

suggested a negligible influence of ammonium nitrate on a callus regeneration capacity of 

plant material used for transformation. 

In contrast to a negligible effect on CRE, high concentrations of ammonium 

nitrate greatly increased the frequency of transgene integration events, as reflected by the 

increased STF (Table 4.2.1). The presence of 41.2 and 61.8 mM ammonium nitrate 

resulted in STF that was 212 and 316% of that obtained from plants grown in 20.6 mM 
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(Table 4.2.1). Consistently with previous experiments, the depletion of ammonium nitrate 

to 6.18 mM led to a minor 27% reduction of STF (Table 4.2.1). These findings are also 

consistent with the data on the influence of high concentrations of ammonium nitrate on 

HRF. 
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Table 4.2.1. Callus regeneration efficiency (CRE) and stable transformation 

frequency (STF) in N. tabacum plants grown in liquid MS medium supplemented 

with various amounts of ammonium nitrate, transformed with a LUC-containing T-

DNA construct and regenerated under non-selective conditions 

Type of 
growth 
medium 

Number 
of 

incisions 
made 

The total 
number of 

calli 
regenerated 

Number 
of transgenic 
(LUC "+") 

calli 
regenerated 

CRE CRE, 
fold STF STF, 

fold 

NH4NO3 
6.18 mM 

(0.3x) 
205 483 11 2.36 0.89 0.05 0.73 

NH4NO3 
20.6 mM 

(1x) 
190 503 14 2.65 1.00 0.07 1.00 

NH4NO3 
41.2 mM 

(2x) 
173 498 27 2.88 1.09 0.16 2.12 

NH4NO3 
61.8 mM 

(3x) 
193 602 45 3.12 1.18 0.23 3.16 

 
Leaf tissues for transformation with Agrobacterium were harvested from N. tabacum plants grown in 
modified liquid MS medium supplemented with various amounts of ammonium nitrate. ‘x’ – stands for a 
concentration of ammonium nitrate in standard MS medium. Transformed tobacco leaves were regenerated 
under non-selective conditions, equally allowing for surviving of transgenic and non-transgenic calli. 
Callus regeneration efficiency (CRE) represents the total number of calli regenerated (transgenic and non-
transgenic) per single incision made in leaf disks during transformation. Stable transformation frequency 
(STF) represents the total number of transgenic luciferase gene expressing calli regenerated per single 
incision made in leaf disks. Fold was calculated by relating the data from plants grown in the medium 
containing 6.18 (0.3x), 41.2 (2x) and 61.8 (3x) mM ammonium nitrate to the data from the medium 
containing 20.6 mM (1x) ammonium nitrate. 
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4.2.5. Segregation analysis  

Higher transformation efficiency could be associated with an increase in the 

number of simultaneous integration events targeted to various genomic loci. In general, 

single copy and single locus T-DNA integration events can be considered as a perfect 

transformation outcome. To compare the number of genomic loci targeted by integration 

events in plants grown in the presence of a standard and increased amount of ammonium 

nitrate, we performed segregation analysis of the T1 progeny of self-pollinated T0 plants 

(Figure 4.2.7). 

Segregation analysis showed that most integration events are single locus 

integration events (Figure 4.2.7A). A comparison between 1x and higher concentrations 

of ammonium nitrate did not show any changes in the percentage of plants with single 

locus T-DNA integration events (Figure 4.2.7A). This suggests that increased 

transformation efficiency was achieved without compromising the quality of transgenic 

plants produced.  
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Figure 4.2.7. The number of genomic loci containing integrated T-DNA, as 

determined using segregation analysis of the T1 progeny of self-pollinated tobacco 

plants  
A – The number of genomic loci containing integrated T-DNA, as determined by segregation analysis of 
the T1 progeny of transformed plants grown in medium containing 20.6 (1x), 61.8 (2x) and 103 (3x) mM 
ammonium nitrate before transformation. ‘x’ – stands for a concentration of ammonium nitrate in standard 
MS medium. The total number of integration events (transgenic plants) obtained from each treatment was 
taken to be 100%. Segregation analysis was performed on solid MS medium supplemented with 
hygromycin (25 mg/L). Each plate contained wild type and hygromycin positive plants for a negative and 
positive control, respectively. A segregation ratio was calculated based on antibiotic resistant phenotypes at 
3 weeks post germination. Three independent experiments were performed. Values represent the mean ± 
s.e. The statistical significance of segregation ratios calculated was confirmed using the Chi square statistic 
for α=0.05. B – Antibiotic resistant and sensitive phenotypes of T1 plants grown in MS medium containing 
hygromycin (25 mg/L); “+” and “-“ – stand for positive (hygromycin resistant) and negative (wild type) 
selection controls, respectively. 

0%

20%

40%

60%

80%

100%

NH4NO3
20.6 mM (1x)

NH4NO3
61.8 mM (3x)

NH4NO3
103 mM (5x)

P
er

ce
nt

ag
e 

of
 T

0 
pl

an
ts

1 locus

2 loci

3 loci

A 

+ 
– 

B 

 NH4NO3 NH4NO3 NH4NO3 



 168 

4.2.6. Sequence analysis of T-DNA/plant DNA junctions 

Transgene integration in the plant genome is frequently associated with 

modifications in transgene and genomic DNA. This could affect transgene expression and 

change the overall performance of genetically modified plants. Since a majority of T-

DNA sequence truncations occur within the left T-DNA border (Kim et al., 2007), we 

analysed intactness of left T-DNA border/plant DNA junctions. Considering that during 

T-DNA processing from a Ti plasmid, it is being nicked by the VirD2 protein between 

nucleotides 3 and 4 (Kim et al., 2007), intact integration events should contain the T-

DNA left border sequence starting from nucleotide 4. A majority of the left border T-

DNA/plant DNA junctions analysed had T-DNA truncations, varying in size from 1 to 

295 nucleotides (Table 4.2.2). The analysis of T-DNA integration events in transformants 

derived from plants grown in the medium containing 20.6 mM ammonium nitrate showed 

that 40% of junctions analyzed have 0 – 10 nt truncations, 20% have 11 – 100 nt 

truncations, and the remaining 40% have 200 – 300 nt truncations. Similarly, 

transformants obtained from plants grown in the medium containing 61.8 mM 

ammonium nitrate showed that 50% of junctions have 0 – 10 nt truncations, and 50% 

have 200 – 300 nt truncations. Overall, the average truncation size was comparable 

between these two media, and consisted of 143 and 125 nt for media containing 61.8 and 

20.6 mM ammonium nitrate, respectively. Finally, using plant DNA sequences flanking 

the T-DNA left border, we were able to identify transgene integration sites. All 

integration events analysed were targeted to coding DNA sequences. In summary, high 

concentrations of ammonium nitrate resulted in higher STF and a quality of transgene 

integration that could be compared to that of plants from control medium.  
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Table 4.2.2. Summary of sequence analysis of T-DNA/plant DNA junctions 

Tobacco Genome
Initiative (TGI) 

database
NCBI genome database

CHO_SL007xj04f1.
ab1 Identities = 
20/26 (76%)

gb|AY570725.1| Nicotiana tabacum trehalose-phosphate 
phosphatase mRNA Identities = 447/448 (99%), Gaps = 
1/448 (0%)

CHO_SL014xc18f1.
ab1 Identities = 
16/20 (80%)

gb|AY619947.1| Nicotiana tabacum ADH-like UDP-
glucose dehydrogenase mRNA Identities = 654/656 
(99%), Gaps = 1/656 (0%)

1x7
3 : 1

(χ2 =0.237)
273

CHO_SL005xo17f1.
ab1 Identities = 
24/27 (88%)

dbj|D85912.1| TOBTCAP Nicotiana tabacum mRNA for 
cytosolic ascorbate peroxidase Identities = 267/271 (98%), 
Gaps = 3/271 (1%)

gb|AF154640.1| Nicotiana tabacum clone PR15 mRNA 
sequence Identities = 392/398 (98%)

gb|U60490.1| NTU60490 Nicotiana tabacum actin 
(Tob71) pseudogene, partial sequence Identities = 233/236 
(98%), Gaps = 0/236 (0%)

CHO_SL003xe01f1.
ab1 Identities = 
25/32 (78%)

gb|DQ021457.1| Nicotiana langsdorffii x Nicotiana 
sanderae clone 051E09 beta-amylase 1 (BAM1) mRNA 
Identities = 678/716 (94%), Gaps = /716 (0%)

CHO_SL024xd22f1
.ab1 Identities = 
31/42 (73%)

gb|AF401689.1| Nicotiana tabacum genomic sequence and 
retrotransposon Tnt1 s11tr long terminal repeat Identities = 
85/85 (100%), Gaps = 0/85 (0%)

gb|AF154641.1| Nicotiana tabacum clone PR16 mRNA 
sequence Identities = 372/438 (84%), Gaps = 14/438 (3%)

gb|AF440271.1| Nicotiana tabacum aquaporin (NtPIP1;1) 
mRNA Identities = 166/198 (83%), Gaps = 8/198 (4%)

N
H

4N
O

3 2
0.

6 
m

M
 (1

x)

1

274
1x15
3 : 1

(χ2 =0.000)

1x19
3 : 1

(χ2 =0.067)

7

G
ro

w
th

m
ed

iu
m

1x12
3 : 1

(χ2 =0.070)
68

CHO_SL021xd14f1
.ab1 Identities = 
19/25 (76%)

CHO_SL025xo05f1.
ab1 Identities = 
12/12 (100%)

1x2
 3 : 1

(χ2 =0.041)

Genomic DNA sequence flanking T-DNA left borderT-DNA left 
border
deletion 
size, nt

Transgenic 
line

and T1 
segregation 

ratio
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Table 4.2.2. Summary of sequence analysis of T-DNA/plant DNA junctions 

(continued) 

Tobacco Genome
Initiative (TGI) 

database
NCBI genome database

gb|U89604.1| NTU89604 Nicotiana tabacum 
SAR8.2m mRNA Identities = 470/484 (97%), Gaps = 
5/484 (1%)

dbj|AB040408.1| Nicotiana tabacum EIG-B39 
mRNA for elicitor inducible protein Identities = 
458/468 (97%), Gaps = 1/468 (0%)

4
CHO_SL026xo23f1.
ab1 Identities = 
72/120 (60%)

gb|AY962601.1| Nicotiana tabacum nucleoside 
diphosphate kinase mRNA Identities = 307/327 
(93%), Gaps = 6/327 (1%)

274
CHO_SL004xp03f1
.ab1 Identities = 
33/46 (71%)

gb|AF159699.1| AF159699 Nicotiana tabacum 
putative host factor mRNA Identities = 440/472 
(93%), Gaps = 7/472 (1%)

3x90
3 : 1

(χ2 =0.224)
0

CHO_SL024xf07f1.
ab1 Identities = 
30/39 (76%)

emb|X66942.1| NTPRB1B N.tabacum prb-1b gene 
Identities = 37/37 (100%), Gaps = 0/37 (0%)

CHO_SL011xb21f2
.ab1 Identities = 
119/195 (61%)

3x20
3 : 1

(χ2 =0.007)
295
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and T1 
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T-DNA left 
border
deletion 
size, nt

Genomic DNA sequence flanking T-DNA left border

 
 
Sequences of N. tabacum genomic DNA flanking the left border of T-DNA insertion and the T-DNA part 
adjacent to its left border were cloned and sequenced. The cloned sequence of the T-DNA left border was 
compared with the original T-DNA sequence, allowing for detection of small deletions and truncations 
within the original left border site. The cloned tobacco genomic DNA sequence flanking the T-DNA left 
border was used to localize T-DNA insertion sites using Tobacco Genome Initiative (TGI) and National 
Center for Biotechnology Information (NCBI) databases. Cloned tobacco DNA sequences were used to 
find matches in the TGI database; matching sequences from the TGI database were used to identify 
integration sites using the NCBI genome database. 
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4.3. DISCUSSION 

In this study, we analyzed effects of high concentrations of ammonium nitrate in a 

growth medium on the HR activity and evaluated the influence of this chemical on stable 

transformation efficiency with Agrobacterium. We have found that a) the presence of 

ammonium nitrate results in a dose-dependent increase in RR; b) elevated concentrations 

of ammonium nitrate have a positive effect on plant growth and phenotypic appearance; 

c) exposure to high concentrations of ammonium nitrate does not increase DSB levels in 

plants; d) exposure of plants to high concentrations of ammonium nitrate increases the 

frequency of transient transformation with Agrobacterium; e) plants grown on media 

enriched with ammonium nitrate before transformation exhibit significantly increased  

CRE and STF; f) a positive effect of ammonium nitrate on plant transformation is mainly 

mediated via an increased frequency of transgene integrations in the host genome; g) 

plants regenerated from ammonium nitrate-rich media exhibit normal segregation and 

transgene integration patterns.  

 

4.3.1. Ammonium nitrate increases recombination rate and decreases 

the level of DNA double strand breaks 

One of the ways to improve transformation efficiency is to make the host more 

susceptible to T-DNA integrations. Since T-DNA integration in the plant genome is 

highly dependent on the activity of host DNA repair factors (Citovsky et al., 2007), we 

hypothesized that growing plants under conditions inducing the HR activity before 

transformation could improve transformation efficiency. The main emphasis was made 
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on the selection of growth media compositions and factors that could significantly 

increase HRF without affecting host physiology negatively.  

Nitrogen is one of the major macronutrients necessary for plant growth and 

development. Plants can uptake nitrogen from media predominantly in the form of NH4
+ 

and NO3
- ions. The uptake of these two ions is under control of systemic signals related 

to the total nitrogen status in a whole plant (Ruffel et al., 2008). However, the presence of 

NO3
- ions usually results in higher levels of nitrogen intake and consequently a higher 

total nitrogen content in plants, compared to the presence of NH4
+ ions (Ruffel et al., 

2008). Our preliminary experiments demonstrated that the depletion of ammonium nitrate 

in a growth medium has the most pronounced effect on HRF.  

To study the effect of high ammonium nitrate concentrations in plant growth 

media on the HR activity, we supplemented MS medium with various amounts of this 

chemical. Our data revealed a strong positive correlation between the amount of 

ammonium nitrate present in the medium and RR in plants. Furthermore, consistently 

with the important role ammonium nitrate plays in plant metabolism, development and 

nutrition intake (Crawford, 1995; Stitt, 1999; Miller et al., 2007), increased 

concentrations of ammonium nitrate improved plant growth. It is also possible that a 

positive effect on plant physiology was mainly mediated by NO3
- ions that are known to 

stimulate lateral root growth, root initiation and elongation (Forde, 2002a, 2002b). 

Similarly, NO3
- ions not only induce factors involved in NO3

- assimilation but also 

positively regulate enzymes of the pentose phosphate pathway and carboxylic acid 

metabolism (Ruffel et al., 2008).  
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Effects of inorganic nitrogen sources on the DNA repair activity still remain 

unclear in contrast to their well-documented influence on plant physiology. It is 

noteworthy that recent studies demonstrated a link between the activity of human Rad51 

and ammonium-sulphate concentrations at a molecular level (Sigurdsson et al., 2001; Liu 

et al., 2004b; Shim et al., 2006). Ammonium-based salts were shown to induce 

conformational changes in hRad51 leading to an increase in its activity and therefore 

promoting recombination (Sigurdsson et al., 2001; Liu et al., 2004b; Shim et al., 2006). 

In this study, we hypothesised that ions of both NH4
+ and NO3

- positively influence the 

HR activity and plant growth, thus leading to growth- and recombination-stimulating 

effects. Consistently with this idea, the transition from moderate to high concentrations of 

ammonium nitrate in media significantly inhibited plant growth, but it still resulted in an 

increase of HRF. A depletion of ammonium nitrate in growth media led to drastic 

changes in plant appearance, but in contrast, only a minor decline in HRF was observed.  

A positive dose-dependent effect of increased ammonium nitrate concentrations 

on HRF could result from elevated DNA damage caused by high salt concentrations. To 

check this possibility, we measured DNA DSB levels in plants grown in media enriched 

with ammonium nitrate. No significant increase in the DSB level was found, suggesting 

that it was not DNA damage that increased HR. Intriguingly, a medium containing 61.8 

mM ammonium nitrate yielded larger plants with a significantly lower level of DNA 

DSBs as compared to plants obtained from control medium. These combined data allow 

us to speculate that ammonium nitrate can directly stimulate the activity of plant factors 

involved in the HR DNA repair pathway. 
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Pre-treatment of plants with higher concentrations of ammonium nitrate before 

transformation represents a promising strategy for the improvement of transformation. 

The fact that we could identify an active concentration range that did not lead to 

increased DNA damage makes the application of ammonium nitrate a more favourable 

factor, compared to other factors that may increase DNA damage. Finally, using 

conditions promoting HRF could substantially improve genetic engineering and allow the 

development of GT technology in plants (Vergunst and Hooykaas, 1999; Puchta 2002; 

Reiss 2003; Hanin and Paszkowski, 2003; Lida and Terada, 2004).  
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4.3.2. Effects of ammonium nitrate on callus regeneration and 

frequency of transgene integration events during Agrobacterium-

mediated plant transformation 

During the past decade, Agrobacterium-mediated genetic transformation became 

one of the most favourable tools used for plant transgenesis. However, the improvement 

of efficiency and precision of transgene integration is still necessary. A high dependence 

of Agrobacterium on host replication, transcription and DNA repair factors during T-

DNA integration suggests that manipulating the activity of DSB repair pathways could 

help solve these problems. A majority of DSBs and T-DNA integration events are 

processed via NHEJ which affects intactness of integrated transgene sequences 

(Gorbunova and Levy, 1999; Puchta, 2005). Increasing the typically low activity of HR 

could possibly allow a better quality of integration events as well as generation of site-

specific insertions and GT (Vergunst and Hooykaas, 1999; Puchta 2002; Reiss 2003).  

In our study, we tested whether ammonium nitrate enrichment of growth medium 

could increase the frequency of stable transformation events. The preliminary evaluation 

of ammonium nitrate effects on plant transformation showed an increase in transient 

transformation efficiency.  

However, transient transformation does not reflect the actual number of 

integration events, since both integrated and non-integrated T-DNA sequences present in 

the host nucleus can be expressed (Janssen and Gardner, 1989). Thus, we conducted a 

series of experiments directed toward regeneration of plants containing stable integration 

events in the genome. Our studies demonstrated that growing plants on media enriched 

with ammonium nitrate before transformation can significantly improve the total number 
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of regenerated calli and plants containing stable integration events. Our findings were 

consistent with recent reports indicating a positive effect of increased HRF on plant 

transformation (Shaked et al., 2005). Indeed, expression of the yeast RAD54 gene 

involved in the HR repair pathway increased the GT frequency in plants by one to two 

orders of magnitude (Shaked et al., 2005). Similarly, hypersusceptibility of Arabidopsis 

fas1 and fas2 mutants to Agrobacterium transformation was attributed to enhanced 

transcription of the AtRad51 and AtRad54 genes (Endo et al., 2006). In addition, growing 

wheat calli on a medium containing niacinamide, a PARP inhibitor, for four days just 

before bombardment significantly increased the number of low-copy transgene 

integration events (De Block et al., 1997). Since PARP facilitates the NHEJ repair 

pathway, an inhibitor promotes the HR pathway. 

The increased number of transgenic plants obtained from modified media can be 

due to increased regeneration capacity of plant tissues derived from growth media 

enriched with ammonium nitrate. Alternatively, it is possible that ammonium nitrate 

promotes transgene integration. To compare the effect of ammonium nitrate on these two 

parameters separately, we regenerated plants under non-selective conditions. This 

experiment allowed us to conclude that ammonium nitrate basically enhanced the 

frequency of transgene integrations. Its effect on tissue regeneration was minor.  

It is noteworthy that a number of reports suggest a positive effect of elevated 

concentrations of ammonium nitrate on SE. Similarly to our study, Choi et al. (1998) 

compared the effects of five different macrosalts present in standard MS medium 

(Murashige and Skoog, 1962) on the frequency of somatic embryo formation, and they 

found that an increased concentration of ammonium nitrate was the most effective for SE. 
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In fact, the concentration of ammonium nitrate (Choi et al., 1998) that resulted in the best 

embryo response was similar to that which resulted in the highest STF in our experiment. 

Consistently, Menke-Milczarek and Zimny (2001) proposed a similar concentration of 

ammonium nitrate as an optimal one for enhancing wheat SE. Furthermore, He et al. 

(1989) compared effects of concentrations of each of five MS macrosalts on the induction 

and morphology of embryogenic callus from immature embryo of wheat and found that 

elevated levels of ammonium nitrate were very effective for callus induction. Similarly, 

doubling the concentration of all MS salts in the induction medium led to a significant 

enhancement of regeneration frequency in wheat scutella (Maës et al., 1996). 

Importantly, using compounds containing ammonium (Rijven, 1958; Halperin, 1966; 

Walker and Sato; 1981; He et al., 1989; Choi et al., 1998; Menke-Milczarek and Zimny, 

2001) and nitrate (Choi et al., 1998; Kothari et al., 2004; Menke-Milczarek and Zimny, 

2001) as a source of inorganic nitrogen in the medium appeared to be highly effective for 

SE.  

In our studies, we applied a different approach. We used ammonium nitrate only 

before transformation rather than for regeneration of embryos. A minor stimulating 

influence of ammonium nitrate on CRE was observed in the experiment in which calli 

were regenerated under non-selective conditions. This may be due to residual effects 

caused by the presence of an increased amount of ammonium nitrate in growth media 

used before transformation.  

Considering an important role of nitrogen for plant growth and development, the 

following model explaining effects of ammonium nitrate on plant transformation with 

Agrobacterium can be proposed. The long-distance nitrogen signalling hypothesis of 
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Forde and Sakakibara suggests that nitrogen is transduced to cytokinin via the enhanced 

isopentenyltransferase (ipt) activity in the roots and is translocated up the shoot with the 

subsequent promotion of leaf/bud outgrowth (Cline et al., 2006). Indeed, nitrogen-

dependent accumulation of cytokinins and stimulating effects of nitrogen fertilization on 

plant growth are well-documented, and they are consistent with plant phenotypes 

observed in our study. Takei et al. (2001) demonstrated that after four hours of nitrogen 

resupply, the levels of cytokinins in maize leaves significantly increase and remain 

elevated for at least 24 hours. Stimulation of cell division by cytokinins increases the 

number of cells entering the S/G2 phase of the cell cycle, thus promoting higher 

expression of HR proteins such as Rad51 (Chen et al., 1997). Moreover, it is still possible 

that elevated levels of ammonium nitrate can also directly stimulate the Rad51 activity in 

plants via an unknown mechanism in a similar manner to that previously described for 

human Rad51 (Sigurdsson et al., 2001; Liu et al., 2004b; Shim et al., 2006).  

Furthermore, cells undergoing active division are more likely to be targeted by a 

stable T-DNA integration event. Indeed, an absolute requirement for the S-phase for 

transfer and/or T-DNA integration in Petunia hybrida was previously demonstrated 

(Villemont et al., 1997). Similarly, transformation of synchronized tobacco protoplasts 

during S–M phase resulted in increased recovery of selection-resistant colonies (Meyer et 

al., 1985; Okada et al., 1986). An important role of active cell division in plant 

transformation was also supported by higher transformation efficiency observed in maize 

cells expressing a modified version of the viral replication-associated protein (RepA) that 

stimulates cell division (Gordon-Kamm et al., 2002). It can thus be hypothesized that 
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effects of ammonium nitrate on plant transformation are based on its combined influence 

on HR activity and cell division.  

Despite the remaining ambiguity surrounding the nature of ammonium nitrate 

mediated effects on plant transformation, it is clear that an increase in concentration of 

this chemical in growth media can lead to a significant improvement of transformation 

efficiency. Furthermore, the quality of integration events in plants regenerated from 

media with high ammonium nitrate concentrations was comparable with that from control 

media. All cloned T-DNA insertions were found within gene coding regions, which is 

consistent with the analysis of T-DNA integration sites performed by Alonso et al. 

(2003). Since we used active selection conditions in our experiments, we can not exclude 

that plants with T-DNA insertions in loci with low transcriptional activity were lost 

during selection (Francis and Spiker, 2005; Kim et al., 2007). To summarize, our study 

allowed us to develop the plant growth medium composition that enhances HRF and 

improves the frequency of transgene integration in the plant genome (Boyko and 

Kovalchuk, US Patent No. 11/466184).  
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4.4. SUMMARY 

Our study demonstrated a great potential to manipulate growth media composition 

for improving plant transformation efficiency with Agrobacterium. Our approach was 

based on using a well-described transgenic plant system to evaluate the genotoxic 

influence of various chemical compounds present in the plant growth environment. This 

system made it possible to identify chemicals which can increase HRF.  

The low activity of HR in plant cells represents one of the major obstacles in the 

improvement of plant transformation quality and development of efficient GT protocols. 

We hypothesized that activation of host DNA repair factors should increase the frequency 

of transgene integration.  

Our data demonstrated that an increased amount of ammonium nitrate in growth 

medium can substantially increase the activity of HR. Ammonium nitrate represents one 

of the macrosalts originally present in the growth medium, and increasing its 

concentration within physiological limits can enhance plant growth and metabolism. The 

application of this chemical does not increase DSB levels in the plant genome. Moreover, 

induction of HRF by high concentrations of ammonium nitrate can significantly reduce 

levels of DNA damage and thus improve the quality of plant material used for 

transformation with Agrobacterium. 

Transformation of plant tissues derived from plants grown in media enriched in 

ammonium nitrate yields the higher number of regenerated calli and increases a total 

yield of stable transformants obtained in a single transformation round. This 

improvement was primarily due to an increased frequency of stable transgene 

integrations in the host genome. However, a minor positive influence of this chemical on 
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callus regeneration was also observed. The quality of integration events was comparable 

between control and ‘ammonium nitrate enriched’ transformations.  

Overall, the developed composition of plant growth medium enhances HRF and 

improves a total transformation yield without negatively affecting plant physiology. 

However, the mechanism of action of ammonium nitrate still remains to be specified. 
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4.5. FUTURE DIRECTIONS 

Our study demonstrated that manipulating the amount of ammonium nitrate 

present in growth media can improve the efficiency of Agrobacterium-mediated genetic 

transformation. Considering that ammonium nitrate is one of five macrosalts present in 

standard growth medium, it is important to determine what other factors normally present 

in growth medium are critical for efficient plant transformation. This knowledge could 

help us develop an optimal growth medium for enhancing plant transformation, improve 

transformation of recalcitrant species, and thus reduce total costs required for plant 

transgenesis.  

Each plant species, cultivar and even plant tissue, has its own unique set of 

requirements for various salts and their amounts. With that in mind, further studies 

should be directed to the development of individualized growth media promoting T-DNA 

integration and SE in various economically important crops. This strategy represents a 

better alternative to the use of a common growth medium composition. 

Our transformation experiments generated a large number of integration events 

that require further characterization. The analysis of intactness of T-DNA/plant DNA 

junctions that we started in this study should be continued to get a final conclusion about 

the effects of the newly developed medium on the quality of transgene integration. 

Moreover, the stability of transgene expression in generated transgenic lines should be 

monitored for at least several generations to determine if silencing of T-DNA insertions 

can occur. Besides, some recent reports have generated controversy regarding either 

preferential or non-specific T-DNA integration into transcriptionally active loci of the 
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host genome. It might be of keen interest to determine and compare integration sites in 

the transformants obtained under selective and non-selective conditions. 

Further studies should be directed to elucidating mechanisms that mediate 

ammonium nitrate’s influence on HR. This could help us gain a better understanding of 

plant physiological aspects necessary for efficient genetic transformation, and thus 

indicate what other factors or conditions can be successfully applied for plant 

transgenesis. 

It would be interesting to test whether the effects of ammonium nitrate on plant 

transformation are mediated by the influence of high concentrations of ammonium nitrate 

on both the HR activity and cell division. This would require: to measure cytokinin levels 

in leaves, to conduct the flow-cytometric analysis of nuclear DNA content for 

determining a prevalent phase of the cell cycle, and to determine the activity of major HR 

proteins that can be involved in transgene integration. Overall, the knowledge obtained 

will be beneficial for both theoretical and applied sciences, specifically for plant 

transgenesis.  
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5. PROSPECTS FOR APPLICATION OF 

POTASSIUM CHLORIDE AND  

RARE EARTH ELEMENTS TO IMPROVE 

PLANT TRANSFORMATION 
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5.1. MATERIALS AND METHODS 

5.1.1. Plant cultivation 

In the current work, Nicotiana tabacum cultivar Big Havana wild type plants, 

transgenic Nicotiana tabacum line #LU2, and transgenic A. thaliana line #11 plants were 

used. All plants were obtained from Friedrich Miescher Institute (Basel, Switzerland) and 

were previously described (Swoboda, et al., 1994; Gorbunova et al., 2000; Ilnytskyy, et 

al., 2004).  

 

5.1.1.1. Growing Arabidopsis plants for recombination analysis  

Arabidopsis seeds were surface-sterilized, grown and harvested as previously 

described (see Section 3.1.1.1. Growing Arabidopsis plants for salt stress experiments). 

Surface-sterilized seeds were plated on control or modified solid MS medium containing 

various quantities of potassium chloride (Table 5.1.1).  

 

5.1.1.2. Growing N. tabacum plants for recombination analysis 

Seeds of transgenic N. tabacum line #LU2 plants were surface-sterilized and 

grown as previously described (see Section 4.1.1.2.1. Growing N. tabacum plants for 

transformation with a 35S::GUS T-DNA construct). Surface sterilized seeds were plated 

on control or modified solid MS medium containing various quantities of cerium (III) 

and/or lanthanum (III) chlorides, two rare earth elements chosen for the experiment.  

 

 

 



 186 

5.1.1.3. Growing N. tabacum plants for transformation experiments with a N::LUC 

T-DNA construct 

Seeds of wild type N. tabacum plants were surface sterilized, grown and harvested 

as previously described (see Section 4.1.1.2.2. Growing N. tabacum plants for 

transformation with a N::LUC T-DNA construct). Surface sterilized seeds were grown in 

control or modified liquid MS medium containing various quantities of potassium or 

cerium (III) chlorides (Table 5.1.2). 
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Table 5.1.1. Various modifications of chemical composition of standard solid MS 

medium for studying the effect of potassium chloride on recombination in 

Arabidopsis  

MS macro 
components 

Final 
concentrations in  

MS medium, 
mM 

KCl gradient, 
all final concentrations listed in mM 

Control KCl 1x KCl 2.5 KCl 5x 

NH4NO3 20.6 41.2 41.2 41.2 
KNO3 18.8 - - - 
CaCl2 3 3 3 3 

MgSO4 1.5 1.5 1.5 1.5 
KH2PO4 1.25 - - - 

KCl - 18.8 47 94 
NH4H2PO4 - 1.25 1.25 1.25 
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Table 5.1.2. Various modifications of chemical composition of standard liquid MS 

medium for studying the effect of potassium and cerium (III) chlorides on 

transformation efficiency in N. tabacum and comparing it with the effect of 

ammonium nitrate 

MS macro 
components 

Final 
concentrations in  

MS medium, 
mM 

Experimental media compositions, 
all final concentrations listed in mM 

NH4NO3 
1x 

NH4NO3 
2x 

NH4NO3 
3x 

CeCl3 
0.3 

CeCl3 
1.0 

KCl 
50 

NH4NO3 20.6 20.6 41.2 61.8 20.6 20.6 20.6 
KNO3 18.8 - - - - - - 
CaCl2 3 3 3 3 3 3 3 

MgSO4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
KH2PO4 1.25 1.25 1.25 1.25 1.25 1.25 1.25 

K2SO4 - 9.4 9.4 9.4 9.4 9.4 9.4 
KCl - - - - - - 50 

CeCl3 - - - - 0.0003 0.001 - 
 

 



 189 

5.1.2. Composition of experimental MS medium for testing effects of 

potassium chloride and rare earth elements on transformation 

efficiency  

The effect of various chemicals on HRF was tested using transgenic Arabidopsis 

line #11 (Swoboda, et al., 1994; Ilnytskyy, et al., 2004) and N. tabacum line #LU2 

(Gorbunova et al., 2000; Ilnytskyy, et al., 2004) plants that carried in their genome a 

GUS- and LUC-based recombination substrate, respectively. Based on our previous 

studies on salt stress in plants (Boyko and Kovalchuk, 2008b), we introduced potassium 

chloride as another possible candidate for transformation experiments. Although previous 

studies showed a dramatic increase in HRF in plants exposed to NaCl, we substituted Na+ 

with K+ to avoid well documented toxic effects of Na+ (Hasewaga et al., 2000; Zhu, 

2000, 2002). The Cl- ion was retained, as it was reported to be a major factor that 

increased HRF under salt stress (Boyko and Kovalchuk, 2008b). Additionally, we tested 

the effects of two rare earth elements, cerium (III) and lanthanum (III) chlorides, which 

were reported to have a positive influence on nitrogen metabolism, plant growth and 

differentiation (Wang, 1988; Dong et al., 1992; Bai and Ma, 1993; Chen et al., 1999; 

Fashui et al., 2002; Weiping et al., 2003). Using this experimental system, we have 

selected potassium and cerium (III) chlorides as potential candidates for N. tabacum 

transformation.  
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5.1.2.1. Composition of experimental MS medium for testing effects of potassium 

chloride on recombination  

Pilot trials were performed with Arabidopsis line #11 plants germinated and 

grown on control or modified solid MS medium containing various amounts of potassium 

chloride (Table 5.1.1). To get potassium chloride as a single source of potassium in the 

medium, potassium nitrate and potassium dihydrogenphosphate that were originally 

present in standard MS medium were replaced by ammonium dihydrogenphosphate. To 

compensate a total loss of nitrate, the concentration of ammonium nitrate was increased 

proportionally (Table 5.1.1). Standard solid MS medium (Murashige and Skoog, 1962) 

was used as a control. Following 3 weeks, plants were harvested for histochemical 

staining, and HRF was calculated.  

 

5.1.2.2. Composition of experimental MS medium for testing effects of rare earth 

elements on recombination  

Pilot trials were performed with N. tabacum line #LU2 plants germinated and 

grown on standard solid MS medium (Murashige and Skoog, 1962) supplemented with 

0.1, 0.3, 1.0, 3.0 and 5.0 µM of either cerium (III) or lanthanum (III) chlorides, or both 

salts simultaneously. Standard solid MS medium (Murashige and Skoog, 1962) was used 

as a control. Following 4 weeks since germination, HR events were detected and scored 

using a CCD camera. 
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5.1.2.3. Composition of experimental MS medium for testing effects of potassium 

and cerium (III) chlorides on transformation in N. tabacum plants 

For transformation experiments, wild type N. tabacum plants were germinated and 

grown in control or modified liquid MS medium supplemented with various quantities of 

potassium or cerium (III) chlorides (Table 5.1.2). To compare the effect of these two salts 

with that of ammonium nitrate, plants germinated and grown in modified liquid MS 

medium supplemented with 20.6, 41.2 and 61.8 mM of ammonium nitrate were used 

(Table 5.1.2). To get ammonium nitrate as a single source of nitrogen in the medium, 

potassium nitrate that was originally present in standard MS medium was substituted for 

potassium sulfate (Table 5.1.2). Modified MS medium containing 20.6 mM of 

ammonium nitrate, an amount that is naturally present in standard MS medium 

(Murashige and Skoog, 1962) was used as a control (Table 5.1.2). Once grown (at a fully 

developed leaf stage), plants were used for transformation with Agrobacterium. 
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5.1.3. Detection and analysis of homologous recombination events  

5.1.3.1. Detection of homologous recombination events in Arabidopsis  

Detection and analysis of HR events in transgenic A. thaliana line #11 was 

performed as previously described (see Section 3.1.2.1. Detection of homologous 

recombination events). 

 

5.1.3.2. Detection of homologous recombination events in N. tabacum  

N. tabacum line #LU2 transgenic plants carried a luciferase based substrate for 

HR which consisted of two overlapping truncated non-functional copies of the luciferase 

gene cloned in direct orientation under the 35S CaMV promoter (Gorbunova et al., 2000; 

Ilnytskyy, et al., 2004) (Figure 5.1.1A). Repair of DSBs in a region of homology via HR 

results in a recombination event that restores the reporter gene, thereby activating the 

luciferase gene (Figure 5.1.1B). 

 

5.1.3.3. Visualization of homologous recombination events 

5.1.3.3.1. Visualization of the GUS gene activity 

Recombination events that yielded an intact functional copy of the GUS gene 

were visualized using a previously described procedure (see Section 3.1.2.2. 

Visualization of homologous recombination events using the GUS gene activity)  

 

5.1.3.3.2. Visualization of the LUC gene activity 

Recombination events occurring in N. tabacum line #LU2 plants that yielded a 

functional copy of the luciferase gene were visualized using a CCD camera (Gloor 
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Instruments; Basel, Switzerland) as previously described (see Section 4.1.4. Visualization 

of the luciferase reporter gene activity in N. tabacum). Cells containing the recombined 

functional LUC gene were able to cleave luciferine resulting in the ATP-dependent 

production of light. Superimposing a light-exposed image (5 s exposure under white 

light) on two dark-exposed images (10 min exposure with no background light to 

distinguish luciferase expressing cells) using the AnaliSIS program (Soft Imaging 

Systems, Muntser, Germany) allowed the detection of recombination events (Figure 

5.1.1B).  

 

5.1.3.4. Calculating recombination rates and frequency of homologous 

recombination 

HRF and RR were calculated for Arabidopsis line #11 and Nicotiana tabacum 

line #LU2 plants as previously described (see Section 3.1.2.3. Calculating recombination 

rate and frequency of homologous recombination).  
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Figure 5.1.1. Detection of recombination events in N. tabacum line #LU2 plants  
A – the structure of the LUC-based reporter construct cloned in direct orientation. The construct served as a 
substrate for somatic HR; B – detection of recombination events using a CCD camera (an arrow indicates 
recombination event in leaf tissues). 
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5.1.4. Visualization of the luciferase reporter gene activity in N. tabacum  

Constitutive expression of the luciferase gene in stable transformants regenerated 

from tobacco leaves that were transformed by a N::LUC T-DNA construct was visualized 

as previously described (see Section 4.1.4. Visualization of the luciferase reporter gene 

activity in N. tabacum). 
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5.1.5. Agrobacterium-mediated gene transfer to Nicotiana tabacum  

5.1.5.1. Agrobacterium strain used in experiments 

The Agrobacterium GV3101 strain used for transformation was obtained from 

Friedrich Miescher Institute (Basel, Switzerland). The strain carried a T-DNA cassette 

containing the active luciferase gene driven by the N-gene promoter and the hph gene 

that confers resistance to antibiotic hygromycin as a selection marker. All antibiotics and 

plant hormones used in experiments were ordered from Sigma. 

 

5.1.5.2. Bacteria culture 

Agrobacterium was cultured and prepared for transformation as previously 

described (see Section 4.1.5.2. Bacteria culture), using the following antibiotics: 

kanamycin (50 mg/ml), rifampicin (25 mg/ml) and gentamicin (25 mg/ml).  

 

5.1.5.3. Transformation of N. tabacum plant with a N::LUC T-DNA construct 

Transformation of plant leaf tissues with Agrobacterium was carried out using a 

previously described procedure (see Section 4.1.5.4. Transformation of N. tabacum plant 

with a N::LUC T-DNA construct). Callus regeneration was done under active selection 

conditions using hygromycin (25 mg/L). The composition of callus and root inducing 

media, growth conditions and the calculation of CRE and STE were previously described 

(see Section 4.1.5.4. Transformation of N. tabacum plants with a N::LUC T-DNA 

construct). 
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5.1.6. Description of molecular techniques and assays used for analysis 

5.1.6.1. Total DNA preparation 

Total genomic DNA was prepared and analyzed as previously described (see 

Section 3.1.5.1. Total DNA, RNA and cDNA preparations).  
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5.1.7. Statistical treatment of data 

Statistical analysis of the data was performed as previously described (see Section 

3.1.6. Statistical treatment of data).  
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5.2. RESULTS 

5.2.1. Selection of chemicals that can increase the frequency of 

homologous recombination while being present in growth medium  

We evaluated the possibility of application of two distinct classes of chemical 

compounds, chlorides and rare earth elements, for the improvement of plant 

transformation. The first class was chosen based on our previous studies that 

demonstrated an increase of RR by chloride ions (Boyko and Kovalchuk, 2008b). The 

second class has a well-documented positive effect on plant growth and is known to 

enhance nitrogen metabolism (Wang, 1988; Dong et al., 1992; Bai and Ma, 1993; Chen 

et al., 1999; Fashui et al., 2002; Weiping et al., 2003). The first class includes potassium 

chloride, whereas the second class includes cerium (III) and lanthanum (III) chlorides. 

 

5.2.1.1. High concentrations of potassium chloride increase recombination 

rates in Arabidopsis 

First, we analyzed whether exposure to potassium chloride can increase HRF. 

Transgenic Arabidopsis line #11 plants were germinated and grown on solid MS media 

modified with various concentrations of potassium chloride. To get potassium chloride as 

a single source of potassium in all modified media, we omitted potassium nitrate and 

substituted potassium dihydrogenphosphate for ammonium dihydrogenphosphate (Table 

5.1.1). Since our previous studies and published reports demonstrated that the total nitrate 

content in media is of great importance for plant transformation and SE (Choi et al., 

1998; Kothari et al., 2004; Menke-Milczarek and Zimny, 2001), we adjusted the 
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concentration of ammonium nitrate to compensate for the total loss of nitrates in the 

media (Table 5.1.1). The composition of the control medium was not changed. 

Our results demonstrated that the presence of potassium chloride in the growth 

medium significantly increased RR (Figure 5.2.1). The presence of 18.8 mM potassium 

chloride which corresponded to the amount of potassium present in standard MS medium 

resulted in a 9.3-fold increase in RR as compared to control MS medium (Student’s t-test, 

α=0.05) (Figure 5.2.1). Consistently, supplementation of the growth medium with 47 and 

94 mM potassium chloride led to a 15.4- and 19.2-fold increase in RR, as compared to 

plants grown on MS medium (Student’s t-test, α=0.05) (Figure 5.2.1). Overall, a strong 

positive correlation between the amount of potassium chloride present in growth media 

and RR was observed (r=0.93, P<0.05).  
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Figure 5.2.1. Recombination rates in Arabidopsis plants grown on solid MS medium 

supplemented with various amounts of potassium chloride 
Recombination rates were measured in plants germinated and grown for 3 weeks on solid MS medium 
(control) or modified medium containing 18.8 (1x), 47 (2x) and 94 (5x) mM potassium chloride. ‘x’ – 
stands for the concentration of potassium in standard MS medium. Two independent experiments were 
performed. Values represent the mean ± s.d. Asterisks show a statistically significant difference as 
compared to control MS medium. Student’s t-test, α=0.05, t=2.78. ANOVA: P<0.05. 
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5.2.1.2. The presence of rare earth elements increases the frequency of 

homologous recombination in N. tabacum 

Effects of rare earth elements on induction of HR was analyzed using transgenic 

N. tabacum line #LU2 plants (Ilnytskyy, et al., 2004). Plants were germinated on solid 

MS medium supplemented with different concentrations of cerium (III) and lanthanum 

(III) chlorides, or a combination of both elements. Standard MS medium was used as a 

control. 

Our results demonstrated that supplementation of growth medium with cerium 

(III) or lanthanum (III) chloride leads to a gradual increase of HRF (Figure 5.2.2). The 

highest HRF was observed in plants grown in the medium supplemented with 1.0 µM of 

either one of these two elements. The 2.8- and 2.7-fold differences for cerium and 

lanthanum, respectively, were statistically significant (Student’s t-test, α=0.05) (Figure 

5.2.2). In contrast, concentrations of rare earth elements that were higher than 1.0 µM 

resulted in a decline of HRF (Figure 5.2.2).  

Simultaneous delivery of these two elements to growth media yielded a similar 

response pattern. The highest HRF was found in plants grown in the presence of both 1.0 

µM cerium (III) and 1.0 µM lanthanum (III) chlorides (Student’s t-test, α=0.05) (Figure 

5.2.2). Interestingly, simultaneous delivery of 1.0 µM cerium and lanthanum resulted in 

HRF that was 1.4-fold higher, if compared to media containing 1.0 µM of either one of 

these two elements (Figure 5.2.2). These findings indicate that simultaneous application 

of various chemicals may result in the formation of an additive positive effect on HRF.  
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Figure 5.2.2. Homologous recombination frequency in N. tabacum plants grown on 

solid MS medium supplemented with various amounts of cerium (III) and 

lanthanum (III) chlorides  
HRF was measured in plants germinated and grown for 4 weeks on solid MS medium (control) or MS 
medium supplemented with 0.1, 0.3, 1.0, 2.0 and 3.0 µM either cerium (III) or lanthanum (III) chlorides, or 
in the presence of both elements. Three independent experiments were performed. Values represent the 
mean ± s.d. Asterisks show a statistically significant difference as compared to control MS medium. One 
asterisk shows the Student’s t-test at α=0.05 of t=2.45 for 0.1 µM cerium (III) chloride and for 1 µM 
cerium (III), lanthanum (III) chlorides and combination of both. Two asterisks show the Student’s t-test at 
α=0.1 of t=1.94 for 3 µM lanthanum (III) chloride.  
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5.2.2. Preliminary assessment of the influence of potassium and cerium 

(III) chlorides on callus regeneration and the frequency of stable T-

DNA integrations in N. tabacum 

To provide a preliminary assessment of effects of potassium chloride and rare 

earth elements on stable plant transformation, we performed a pilot experiment on 

genetic transformation of plants grown in media supplemented with potassium or cerium 

(III) chloride. To compare their effects on CRE and STF with those previously described 

for ammonium nitrate, we also included growth media modified in their ammonium 

nitrate content (Table 5.1.2). The concentration of ammonium nitrate of 20.6 mM was 

used as a control. 

Consistently with previous experiments, growing plants in 41.2 and 61.8 mM 

ammonium nitrate increased the total number of regenerated calli by 3.9- and 7.5-fold, 

respectively (Figure 5.2.3). Moreover, the presence of 50 mM potassium chloride 

contributed to an increase in callus regeneration by factor of 5.9; and the presence of 0.1 

and 1.0 µM cerium (III) improved callus regeneration by 2.1- and 3.2-fold, respectively 

(Figure 5.2.3). 

The positive influence of these chemicals on plant transformation was further 

confirmed by the analysis of stable transformants. In brief, the difference between control 

media and media containing 50 mM potassium or 1.0 µM cerium (III) chloride remained 

unchanged and amounted to 5.9- and 3.1-fold, respectively (Figure 5.2.4). The presence 

of 41.2 and 61.8 mM ammonium nitrate in media increased the total number of stable 

transformants by 3.8- and 6.7-fold, respectively (Figure 5.2.4). The difference between 

media containing 0.1 and 1.0 µM cerium (III) chloride remained unaffected at 1.6-fold 
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(Figure 5.2.4). Overall, our data support the idea that the application of potassium 

chloride and rare earth elements in growth media improves plant transformation 

efficiency. 
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Figure 5.2.3. Callus regeneration efficiency in N. tabacum plants grown in liquid MS 

medium supplemented with various amounts of ammonium nitrate, cerium (III) and 

potassium chlorides   
Plants grown in the presence of different amounts of ammonium nitrate (20.6 (1x), 41.2 (2x) and 61.8 (3x) 
mM) were used for transformation with luciferase gene containing a T-DNA construct. To compare the 
effect of cerium (III) and potassium chlorides on callus regeneration efficiency, plants were grown in 1x 
liquid medium containing 20.6 (1x) mM ammonium nitrate and either cerium (III) (0.1 or 1.0 µM) or 
potassium chloride (50 mM). ‘x’ – stands for the concentration of ammonium nitrate in standard MS 
medium. Calli were regenerated under selective conditions (hygromycin, 25 mg/L). 
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Figure 5.2.4. Efficiency of stable transformation of N. tabacum plants grown in 

liquid MS medium supplemented with various amounts of ammonium nitrate, 

cerium (III) and potassium chlorides  
Plants grown in the presence of different amounts of ammonium nitrate (20.6, 41.2 and 61.8 mM) in liquid 
medium were used for transformation with luciferase gene containing a T-DNA construct. To compare the 
effect of cerium (III) and potassium chlorides on stable transformation efficiency, plants were grown in 1x 
liquid medium containing 20.6 mM ammonium nitrate and either cerium (III) (0.1 or 1.0 µM) or potassium 
chloride (50 mM). ‘x’ – stands for the concentration of ammonium nitrate in standard MS medium. Calli 
were regenerated under selective conditions (hygromycin, 25 mg/L). Stable transformation events were 
confirmed via luciferase gene expression.  
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5.3. DISCUSSION 

In this study, we analyzed the effect of high concentrations of potassium chloride 

and the presence of rare earth elements in growth media on the activity of HR. A 

preliminary evaluation of their role in plant transformation with Agrobacterium was 

performed. We found that: a) supplementation of plant growth media with potassium 

chloride results in a dose-dependent increase of HRF; b) application of two rare earth 

elements, cerium and lanthanum, can increase HRF; c) growing plants in media 

supplemented with potassium or cerium (III) chloride before transformation can increase 

the frequency of T-DNA integration in the plant genome. 

 

5.3.1. High concentrations of potassium chloride increase recombination 

rates in Arabidopsis 

Our previous studies of the effects of salt stress on the plant genome demonstrated 

that the presence of sodium chloride in growth media can significantly increase RR in 

plants (Boyko et al., 2008; Boyko and Kovalchuk, 2008b). This suggests the possibility 

of using this chemical for increasing HRF in plants before transformation with 

Agrobacterium. Unfortunately, high concentrations of sodium chloride result in a 

significant increase in the level of DSBs, therefore limiting the application of this 

chemical to relatively low concentrations. Furthermore, elevated levels of Na+ ions in 

media are toxic to plants and result in ionic stress (Hasewaga et al., 2000; Zhu, 2000, 

2002). The role of Na+ ions in HR induction is negligible. In contrast, Cl- ions mediate an 

increase in RR under salt stress conditions (Boyko and Kovalchuk, 2008b).  
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We hypothesized that delivering Cl- ions with other cations to growth media could 

increase HRF without triggering an ionic stress response. K+ is a natural candidate to use, 

since it is normally present in high concentrations in growth media in the form of 

potassium nitrate (Murashige and Skoog, 1962).  

Our data supported a hypothesis as to an important role of Cl- ions in increasing 

RR. Exposure to potassium chloride resulted in a dose-dependent increase in RR. 

Unfortunately, the mechanism behind the effect of Cl- ions on RR is unclear and still 

remains to be specified. Since both control and modified media contained the same 

concentration of K+ ions, it can be suggested that the effect of potassium chloride on HR 

was mediated by Cl- ions. Indeed, it was previously reported that a genotoxic aspect of 

salt stress is Cl- - dependent (Boyko and Kovalchuk, 2008b).  

These data strongly support the use of potassium chloride in growth media for 

enhancing HRF and improving plant transformation. Importantly, the effectiveness of 

such an approach was successfully demonstrated for ammonium nitrate, one of five MS 

macrosalts that are normally present in standard MS medium.  
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5.3.2. The presence of rare earth elements increases the frequency of 

homologous recombination in N. tabacum 

Our previous studies demonstrated that enrichment of growth media with 

ammonium nitrate has a significant positive influence on HRF and can improve 

efficiency of Agrobacterium-mediated plant transformation. We believe that these 

influences can at least be partially mediated by a positive effect of enhanced nitrogen 

metabolism on plant growth and development (Forde, 2002a, 2002b; Ruffel et al., 2008). 

We hypothesized that the use of microelements inducing nitrogen metabolism and 

increasing its assimilation could have a similar positive impact on plant transformation. 

Based on results reported by several independent studies, we selected two rare earth 

elements, cerium and lanthanum, for our experiments. The presence of these elements in 

growth media was shown to stimulate nitrogen metabolism, plant growth and 

differentiation (Wang, 1988; Dong et al., 1992; Bai and Ma, 1993; Chen et al., 1999; 

Fashui et al., 2002; Weiping et al., 2003). 

Our data demonstrate a novel finding that the presence of rare earth elements in 

plant growth environment can increase HRF. Furthermore, these findings are consistent 

with our hypothesis and support a hypothetical link between nitrogen metabolism and HR 

activity. Both rare earth elements analyzed in the experiments resulted in a similar dose-

dependent increase of HRF. However, in contrast to ammonium nitrate and potassium 

chloride analyzed before, the effect was not linear, and a slight deviation from an optimal 

concentration usually resulted in a substantial decline of HR activity. Interestingly, the 

simultaneous presence of these two elements in media led to a higher increase of HRF, as 
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compared to media with only one element being present. This finding suggests that the 

application of several rare earth elements might be beneficial for an increase of HRF. 

The mechanism of a HRF increase caused by the presence of rare earth elements 

remains to be determined. To our knowledge, our findings represent the first report 

demonstrating the influence of cerium (III) and lanthanum (III) chlorides on the activity 

of the DNA repair pathway. We can hypothesize that this effect was mediated by 

enhanced nitrogen metabolism which increased the rate of cell division resulting in a 

higher activity of HR proteins. Importantly, correlations between nitrogen metabolism 

and cell division (Takei et al., 2001) and increased expression of a HR protein during 

transition to S/G2 phase of the cell cycle (Chen et al., 1997) were reported. Overall, 

further studies are needed to elucidate the exact mechanism of the rare earth elements’ 

influence on HRF in plants.  

Since chemicals that increased HRF were also shown to improve plant 

transformation, we hypothesized that cerium (III) chloride would also improve 

transformation. 
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5.3.3. Preliminary assessment of potassium and cerium (III) chlorides 

effects on callus regeneration and the frequency of stable T-DNA 

integrations in N. tabacum 

It was previously demonstrated that the activity of host DNA repair proteins plays 

a critical role during T-DNA integration. In fact, it has been shown that simultaneous 

inactivation of HR and NHEJ pathways by mutations in RAD52 and KU70 genes 

completely inhibits T-DNA integration in yeast (van Attikum and Hooykaas, 2003). We 

hypothesized that an increase of HRF in plants before a transformation event should 

increase the frequency of stable transgene integration. Importantly, this hypothesis was 

consistent with our previous data demonstrating that high ammonium nitrate 

concentrations in growth media could increase HRF and significantly improve the 

transformation yield. Overall, our study provided a preliminary assessment of potassium 

and cerium (III) chlorides effects on Agrobacterium-mediated transformation efficiency 

in plants. 

Our results confirmed the hypothesis and demonstrated a positive effect of these 

two chemicals on plant transformation. This effect was reflected in the higher number of 

calli and stable transformants obtained from plants grown in media containing potassium 

or cerium (III) chlorides before transformation. Using potassium chloride for the 

improvement of stable transformation resulted in an effect similar to that of ammonium 

nitrate. Unfortunately, strong genotoxicity of Cl- ions places a limitation on the 

application of very high concentrations of this chemical in media (Boyko and Kovalchuk, 

2008b). However, we believe that relatively low concentrations of potassium chloride can 
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be effectively applied, in combination with other factors, for the improvement of 

transformation efficiency.  

Moreover, even very low concentrations of cerium (III) chloride in media were 

shown to be effective for the improvement of transformation. This implies that cerium 

can be used simultaneously with other chemicals, like ammonium nitrate, to potentiate 

their effect on plant transformation. Manipulation of the amount of macrosalts in growth 

media has its own physical and physiological limit: very high salt concentrations depress 

the water potential of media and are usually toxic to plants. In contrast, using cerium in 

combination with ammonium nitrate or potassium chloride could potentiate the effect of 

these macrosalts, thus making it possible to achieve maximum transformation efficiency 

without applying these salts in amounts that exceed plant physiological limits.  

It is noteworthy that previous reports demonstrated that even very small quantities 

of different microelements in growth media could significantly improve SE. 

Supplementing standard MS medium with higher quantities of cupric sulphate promoted 

tissue regeneration on callus induction and plant regeneration media (Kothari, et al., 

2004). Similarly, zinc sulphate was shown to be essential for regeneration and proper 

growth of shoots (Kothari, et al., 2004). In contrast, media devoid of zinc sulphate 

enhanced regenerative callus formation (He et al., 1991; Kothari, et al., 2004). Silver 

nitrate in media improved the total embryo yield in anther culture in Brassica (Dias and 

Martins, 1999; Sahrawat, et al., 2003). Finally, supplementation of a regeneration 

medium with spermidine significantly improved the recovery of wheat transformants 

(Khanna and Daggard, 2003).  
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Overall, in our study we described preliminary characterization of two distinct 

groups of chemicals, namely chlorides and rare earth elements, and their effect on HR 

and plant transformation. The data obtained demonstrated that all tested chemicals have 

the potential for being applied during plant transformation. We also think that the 

simultaneous application of different transformation-enhancing chemicals in growth 

media could result in potentiating their effect on transformation efficiency. From this 

viewpoint, rare earth elements represent the most likely candidates for potentiating the 

influence of other macrosalts on Agrobacterium-mediated genetic transformation. 
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5.4. SUMMARY 

Our study has provided a preliminary evaluation of the application of Cl- ions and 

rare earth elements for the improvement of plant transformation. Supplementing plant 

growth media with potassium chloride, cerium and lanthanum proved to be a very 

efficient technique. These chemicals could significantly increase HRF, the total number 

of regenerated calli as well as plants containing stable T-DNA integration events.  

However, genotoxicity of high Cl- ions concentrations limits the application of 

high potassium chloride concentrations in media. We believe that low concentrations of 

this chemical can be applied to potentiate the effect of other factors that increase HRF. 

On the contrary, rare earth elements do not exert a negative impact on plant physiology. 

Moreover, they have a well-documented positive effect on plant growth and nitrogen 

metabolism, which, combined with a very low range of their active concentrations, makes 

rare earth elements an effective microsupplement for enhancing effects of other 

macrosalts on HRF and plant transformation. Furthermore, using these elements help 

achieve the maximum transformation efficiency without the application of macrosalts, 

such as ammonium nitrate or potassium chloride, in amounts that exceed plant 

physiological limits. 

Overall, further studies will be needed to complete the characterisation of 

potassium, cerium (III) and lanthanum (III) chlorides’ effects on the HR activity and 

plant transformation with Agrobacterium. A preliminary assessment of their application 

in growth media for the improvement of plant transformation performed in our study 

provides significant support for continuing research along this line.  
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5.5. FUTURE DIRECTIONS 

Our study has demonstrated that manipulating the host growth medium for 

improving Agrobacterium genetic transformation is not restricted to chemicals normally 

available in standard growth medium. A number of other factors exhibiting similar 

influences can be suggested. A preliminary evaluation of potassium chloride and two rare 

earth elements performed in this study should be continued. It should include the analysis 

of intactness of T-DNA/plant DNA junctions, T-DNA integration sites, inheritance of 

integration events and stability of their expression. 

Our study has revealed that a combined usage of several chemical factors in plant 

growth media can potentiate their effect on HRF and plant transformation. In future 

studies, special emphasis should be made on the application of rare earth elements for 

this purpose. These chemicals can be used in plant growth media as important 

microsupplements due to their positive effect on plant growth and nitrogen metabolism. 

Further research should be conducted to investigate effects of a simultaneous application 

of these elements in combination with high amounts of ammonium nitrate in media. The 

mechanisms mediating an increase of HRF by rare earth elements observed in our study 

should be further determined and described. 

Finally, it would be important to determine the concentration range of Cl- ions that 

can increase HRF without exerting a significant genotoxic influence on plants. This 

would allow the use of potassium chloride in growth media for enhancing HR and 

therefore plant transformation. It would be interesting to elucidate a combined application 

of potassium chloride and ammonium nitrate or cerium (III) chloride in growth media. 
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Overall, it is necessary to search for other chemical factors and physical 

conditions that will enhance HR and improve plant transformation. The transgenic plant 

system described in our study can be efficiently used for this purpose. Gaining 

knowledge of a spectrum of factors and conditions that control the efficiency of 

Agrobacterium-mediated plant transformation could help us reach a better understanding 

of genetic transformation mechanisms and facilitate the development of successful plant 

transformation protocols. 
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