
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2013

Distributed spatial query processing and optimization

Farruque, Nawshad

Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, 2013

http://hdl.handle.net/10133/3563

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185289651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DISTRIBUTED SPATIAL QUERY PROCESSING AND OPTIMIZATION

NAWSHAD FARRUQUE
Bachelor of Science, Islamic University of Technology, 2009

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Nawshad Farruque, 2013

I dedicate this thesis to my parents.

iii

Abstract

Applications exist today that require the management of distributed spatial data. Since

spatial data is more complex than non-spatial data, performing queries on it requires more

local processing (i.e. CPU and I/O) time. Also, due to geographical distribution, data

transmission costs must be considered. To reduce these costs, one can employ a distributed

spatial semijoin as it eliminates unnecessary objects before their transmission to other sites

and the query site.

Most existing work propose different representations of the distributed spatial semi-

join between two sites only, with very few works exploring its use for processing a query

involving more than two sites. In this thesis, we propose both new approaches for repre-

senting the spatial semijoin in a distributed setting, and their use for processing a distributed

query consisting of any number of sites. Two strategies are proposed for compactly rep-

resenting the spatial semijoin that reduce both the data transmission and local processing

(CPU+I/O) costs when applied in a distributed spatial query. A Global Encompassing Min-

imum Bounding Rectangle (GEMBR) is utilized, which is partitioned, mapped and applied

in two different ways to approximate the objects in a spatial joining attribute. The first is

partition indices, while the second is a bit array representation. Then each spatial semi-

join is applied in a multi-site distributed spatial query processing strategy. In addition, the

two-site spatial semijoin is extended to handle multiple sites so that we have a benchmark

strategy for comparison purposes.

We have tested the query processing algorithms for four sites, which are a part of an

actual working distributed system. The algorithms are compared with respect to data trans-

mission cost, CPU time, I/O time and false positive results. The algorithms are superior in

many cases at optimizing the above criteria. The bit array representation, which is called

Bloom Filter Based Spatial Semijoin (BFSJ), is evaluated with respect to different filter

iv

factors and found that the optimized algorithms perform significantly better than the Dis-

tributed Naı̈ve Spatial Semijoin strategy when synthetic data was used. Also the Partition

and Mapping Based Spatial Semijoin (PMSJ) is 1.38 times faster than BFSJ with respect

to processing cost while the BFSJ has a tranmission cost gain of 1.12 over PMSJ. Both

algorithms are 18 times faster and have six times less transmission cost than Distributed

Naı̈ve Spatial Semijoin (NSPJ). Finally, it is also observed that with the increase of hash

functions and filter factor the false positive percentage increases.

v

Acknowledgments

I am greatly indebted to Dr. Wendy Osborn for all her useful comments, help and the re-

search directions that she provided, through out my two years journey of pursuing Master’s

(Thesis) degree in Computer Science from the Department of Mathematics and Computer

Science at The University of Lethbridge. I am also grateful to my committee members,

Dr. Yllias Chali and Dr. Kien Tran, for providing me with their invaluable comments and

advice. I would like to express my gratitude to the School of Graduate Studies of the Uni-

versity of Lethbridge for all the financial resources they provided to support this research.

I want to thank my friends and all the internet communities, which were beside me while

I was implementing my research work. I am greatly moved to see the amount of patience

shown and support given by my family during my stay at Canada. In closing, I want to say

that, I am so fortunate to be a part of this research, since research is a complete collaboration

among the smart minds, which gives ample opportunity to learn, to shape our imagination,

to increase our knowledge and to contribute in the greater research community.

Also, we are grateful to WestGrid and Compute Canada- Calcul Canada (www.westgrid.ca)

for the use of their resources.

vi

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments vi

Table of Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 3
2.1 Distributed Database System . 4
2.2 Spatial Data . 7
2.3 Distributed Spatial Database and Query Processing 7

2.3.1 Spatial Join and Semijoin . 8
2.3.2 Example . 9
2.3.3 Bloom Filter . 11

2.4 Spatial Query Processing Strategies . 13
2.4.1 Index Based Approaches . 13
2.4.2 Non-Indexed Based Approaches for Spatial Join 19
2.4.3 Parallel Processing Based Approach for Spatial Join 23
2.4.4 Distributed Spatial Semijoins . 28
2.4.5 Summary . 31

3 GEMBR Partitioning and Mapping 32
3.1 GEMBR Calculation . 32
3.2 GEMBR Partitioning and Mapping . 36

3.2.1 Corner Cases . 40

4 Query Processing Strategies 42
4.1 Geometric Space Partition and Mapping Based Spatial Semijoin (PMSJ) . . 42
4.2 Bloom Filter Based Spatial Semijoin (BFSJ) 46
4.3 Distributed Naı̈ve Spatial Semijoin (NSPJ) 51

vii

5 Experimental Evaluations 52
5.1 Preliminaries . 52
5.2 Results using Synthetic Data . 53

5.2.1 Transmission Cost . 54
5.2.2 Processing Time . 56
5.2.3 False Positive Comparison . 57

5.3 Results using Sequoia Data . 59
5.4 Number of Hash Functions vs Percentage of False Positives 61

6 Conclusion 63
6.1 Future Work . 63

7 Appendix 64

Bibliography 75

viii

List of Tables

5.1 Sequoia Results - Polygon Datasets . 60
5.2 Sequoia Results - Polygon and Islands Datasets 60

ix

List of Figures

2.1 Central Database on the Network [15] . 4
2.2 DDMS Environment [15] . 5
2.3 Peer-to-peer Database Architecture [15] 6
2.4 FARM and DISEASE MAP Relation Attributes and Their Size [18] 10
2.5 Bloom Filter Example . 12
2.6 Demonstrating the Two Relations and Their Join Index [18] 14
2.7 SpatialJoin1 Algorithm [7] . 16
2.8 Depicting the Plane Sweep Algorithm(left), the Rectangle Co-ordinates to

be Used(right) [3] . 19
2.9 Array of Sorted Rectangles in A∪B After Sorting 19
2.10 Universe and Partitions [17] . 21
2.11 Task Assignment of Different Processors [8] 25
2.12 Local Buffer Only [8] . 25
2.13 Example for Static Round-robin Assignment [8] 26
2.14 E1 Overlaps E2, e1 Includes e2 [8] . 29

3.1 GEMBR Partitioning at Client Sites . 33
3.2 Extracting LEMBR Coordinates . 34
3.3 GEMBR Calculation, Partitioning and Mapping Example 35
3.4 Partitioned GEMBRs at Each Site . 35
3.5 Mapping Objects MBRs on Partitioned GEMBR at Each Site 36
3.6 Creation of Partitions . 37

4.1 Sending Partition Indices to Query Site . 43
4.2 Calculating and Transmission of Common Partition Indices 44
4.3 Object Transmission to Query Site . 45
4.4 Mapping Partition Indices to Bloom Filter 47
4.5 Calculating and Transmission of Common Bloom filter 48
4.6 Bloom Bit to Partition Index Mapping and Object Transmission to Query

Site . 49

5.1 Processing Time and Transmission Cost for 30×30 Partitions 55
5.2 Processing Time and Transmission Cost for 60×60 Partitions 55
5.3 Processing Time and Transmission Cost for 90×90 Partitions 56
5.4 False Positives Comparison for 30×30 Partitions 58
5.5 False Positives Comparison for 60×60 Partitions 58
5.6 False Positive Comparison for 90×90 Partitions 59
5.7 False Positive Comparison for Different Number of Hash Functions with

Bloom filer Factor 1.5 . 62
5.8 False Positive Comparison for Different Number of Hash Functions with

Bloom filer Factor 3 . 62

x

Chapter 1

Introduction

Nowadays, professionals from different application domains around the world must deal

with the management and analysis of spatial data that is geographically distributed. One

such application domain is in the area of emergency and disaster management. One ex-

ample of a distributed disaster management application is for earthquake detection across

many Canadian cities at risk, which are geographically distributed [1]. Another example is

a distributed emergency management system for Australia [11]. In both cases, it is identi-

fied that distributing and storing the associated spatial data locally (as opposed to managing

it centrally) will contribute greatly to real-time response in emergency situations. There-

fore, spatial data has become an integral part of the world, and storing and querying it has

become an important research subject.

Research in distributed spatial query processing and optimization has focused on dif-

ferent distributed spatial data operations and distributed query optimization techniques to

reduce the data transmission cost, CPU time and/or I/O time [20]. Approaches for process-

ing distributed relational (e.g.alphanumeric) queries mostly focused on reducing the cost

of data transmission, while considering the CPU and I/O time to be negligible [2, 6, 15].

However, due to the complex nature of spatial data, CPU and I/O costs must also be taken

into consideration [20].

Most research in distributed spatial query processing explore the optimization of spa-

tial operators, such as the spatial join or semijoin, in a distributed environment. Existing

approaches can be grouped into distributed spatial join based approaches [12], distributed

spatial semijoin-based approaches on a two-site or simulated multi-site system [13, 22, 14],

and distributed Bloom filter approaches [24]. However, very few explore the use of these

operators for processing a distributed spatial query that involves more than two sites. Ex-

1

ceptions to this [24, 14] use a simulated distributed environment or a parallel environment

for evaluation.

Therefore, we explore new optimizations of the spatial semijoin in a distributed envi-

ronment, and their use in a multi-site query processing strategy. Two strategies are proposed

for compactly representing the spatial semijoin that reduce both the data transmission and

local processing (CPU+I/O) costs when applied in a distributed spatial query. They utilize

a Global Encompassing Minimum Bounding Rectangle (GEMBR), which is partitioned,

mapped and applied in two different ways to approximate the objects in a spatial joining

attribute. The first is partition indices, while the second is a Bloom filter [5, 9] repre-

sentation. Then each spatial semijoin is applied in a multi-site distributed spatial query

processing strategy. In addition, the two-site spatial semijoin proposed in [22] is extended

for multiple sites so that we have a benchmark strategy for comparison purposes.

We evaluate our query processing strategies in an actual (i.e. not simulated on one

machine) distributed system, and show how both approaches outperform the extended spa-

tial semijoin based strategy with respect of processing time and data transmission cost. In

addition, the optimized approaches are compared with respect to data transmission cost,

processing time and false positive rates.

The remainder of this thesis proceeds as follows. Chapter 2 summarizes works in other

areas that are referenced by related work and used by our strategies. Chapter 3 presents the

core strategies, which are the GEMBR calculation, partitioning and mapping, that are used

by two of the proposed query processing strategies. Chapter 4 presents the strategies for

distributed spatial query processing. Chapter 5 presents the performance evaluation of the

strategies. Finally, Chapter 6 concludes the thesis and presents future research directions

and Chapter 7 (Appendix) includes all the pseudocode of my thesis.

2

Chapter 2

Background

With recent advances in communication and information technology, there grew a huge ne-

cessity for storing large volume of spatial data, and for performing fast and efficient queries

on them. For example in a Geographical Information System (GIS), a map is represented

using geometric objects, such as points, line and polygons. This chapter will cover a selec-

tion of spatial query processing and optimization approaches found in the literature. First, a

brief introduction on distributed databases, spatial data, distributed spatial database, spatial

query processing and optimization is given. Then some detailed explanation on indexed,

non-indexed, parallel and distributed spatial joining techniques are presented. Finally, a

summary on limitation of the approach is given.

Ozsu and Valduriez [20] defined a distributed computing system as, “A number of au-

tonomous processing elements, which are not necessarily homogenous, that are intercon-

nected by a computer network and that co-operate in performing their assigned tasks”.

Therefore, each processing element in a distributed computing system, is a computing de-

vice that can execute a program on its own as well as work together with other devices to

solve a problem. There are various reasons for using distributed systems, such as [15]:

1. A business is operating its units at different sites.

2. Distributed systems can offer an improved user response time over a centralized sys-

tem.

3. Many recent technologies are inherently distributed, such as E-commerce websites,

news on demand, and medical imaging.

4. A big task can be divided into smaller tasks, and each can be done simultaneously

3

Figure 2.1: Central Database on the Network [15]

by different processors thus processing the whole task. This divide and conquer

approach can be used to solve many large computing problems in a time and cost

effective manner, because building a huge multiprocessor system is much more costly

than building a system having many, simpler processors that are interconnected by a

network.

2.1 Distributed Database System

A Distributed Database System (DDBS) is a collection of multiple, logically interrelated

databases distributed over a computer network [15]. A distributed database management

system (DDBMS) manages the DDBS. Also, it makes the distribution of data transparent

to the users. The data in a DDBS are structured and can be accessible through a common

interface. The users can interact with the distributed database without having any prior

knowledge of the distribution of data. There is a clear distinction between a networked

centralized database system and a DDBS. The former consists of different sites that are

4

Figure 2.2: DDMS Environment [15]

connected through a network though only one site manages a database which is accessed

by all other sites. In the latter, all sites manage a subset of the database. Figure 2.1 depicts

a centralized database, which is in site 5 and accessed remotely by other sites 1, 2, 3 and 4.

On the other hand, 2.2 depicts the distributed database where each site contains a subset of

the entire database.

Depending on how to separate functionality and data representation among different

processes, there are three types of DDBS architecture [15]:

1. Peer-to-peer distributed system

2. Client server system

3. Distributed multi-database system (MDBS).

Our work utilizes a form of a peer-to-peer distributed system. This will be summarized

next.

5

Figure 2.3: Peer-to-peer Database Architecture [15]

In a peer-to-peer distributed system architecture [15], the physical data organization

on each machine is different. For this reason, an internal schema definition of each site

is needed, which is called a Local Internal Schema (LIS). To handle replication and frag-

mentation [20], the local organization of data at each site is described using a third layer

named a Local Conceptual Schema (LCS). The enterprise view of the data is described

by the Global Conceptual Schema (GCS), which is global because it describes the log-

ical structure of data from all sites. The Global Conceptual Schema is the union of all

Local Conceptual Schemas. User applications and user accounts are supported by the Ex-

ternal Schema (ES), which is defined as the upper layer of the GCS. This model is an

extension of the ANSI/SPARC architecture [15], which provides data independence. Lo-

cation and replication transparency are supported by the LCS and GCS, while network

transparency is supported by the GCS. The DDBMS translates a global queries into local

queries, each of which are executed by local DDBMS components that communicate with

6

one another. Global mappings are performed by the Global Directory/Dictionary among

the local databases and local mapping by the Local Directory/Dictionary among the local

database instances. Local database management components are integrated into Global

Database by means of global DBMS functions. Local conceptual schemas are mappings of

the global schema onto each site. Figure 2.3 depicts such a system.

2.2 Spatial Data

Spatial data [20] is a kind of data that has a specific location in n-dimensional space, and is

expressed in respect to a spatial frame of reference. Examples include surface of the earth,

a silicon chip and the human body. Point, lines and rectangles are examples of spatial data.

Spatial data can be used for representing real life data. For example, spatial data can be

used to represent different geographical objects such as rivers (as polygons), buildings (as

points) and roads (as lines).

The database that is tailored for storing spatial data is called a spatial database. A

spatial database management system is used to manage this data, which provides a better

user interface to the data and answers user queries in a very efficient manner.

2.3 Distributed Spatial Database and Query Processing

A distributed spatial database [22] consists of multiple spatial databases that are scattered

over a computer network. It is a combination of the idea of a spatial database and distributed

database. Distributed spatial query processing involves querying on spatial data which are

scattered in distributed servers (i.e. located in different physical locations).

Distributed spatial query processing incurs several costs [20]. CPU costs include the

processing needed to calculate the Minimum Bounded Rectangles (MBRs, which is de-

7

fined in the next section) of the spatial objects and also the geometric operations on them,

like intersection, containment and adjacency. More processing needed by the processors

indicates more CPU cost. I/O cost generally refers to the number of transfers of a page

from/to external memory [19]. Data transmission costs refers the size of the data that is

sent to and from the servers.

2.3.1 Spatial Join and Semijoin

Two spatial operators utilized in distributed spatial query processing are the spatial join and

spatial semijoin [20]. The spatial join is used to combine two or more spatial datasets with

respect to a spatial predicate. The predicate can be a combination of directional distance

and topological spatial relations. An example is finding out the intersection between two

polygons in a map, where the polygon represents the extent of something (such as disease,

natural calamity, etc.). In the case of a non-spatial join, the joining attribute must be of

the same type, where for a spatial join, the join attribute can be of different types. Gener-

ally, the objects in a spatial attribute are represented by its Minimum Bounded Rectangles

(MBR) instead of the objects themselves. A Minimum Bounded Rectangle (MBR) is an

approximation of an exact polygon, which is used for reducing the CPU and I/O cost in the

filter step (see below) in spatial databases.

There are two steps in spatial joining. These steps are as follows [20]: 1) filter step

and 2) refine step. In the filter step, the spatial join is performed with approximations of

the spatial joining attributes. The objects that will participate in the join are approximated

with their MBRs. It is computationally cheaper to compute intersection or other spatial

operations between the query region and the MBR, than with any other arbitrary, irregularly

shaped spatial object. It has been seen that if the query region is a rectangle, then at most

four computations are needed to determine whether the two rectangles intersect or not

8

[18]. The filter step results in only the candidates which satisfy the original query. Since

some of the candidates may not be the part of the final result, the result of the filter step

is processed using exact geometries in the refine step. Though this is a computationally

expensive process, the filter step reduces much of its burden.

The spatial semijoin [22] is based on the semijoin [15]. This operator can in many

instances reduce the transmission cost of data transfer. The spatial semijoin reduces the

transmission cost mainly by:

1. Transferring only the spatial joining attribute and primary key from Site 1 to Site 2,

2. Performing the spatial join of the joining attributes from Site 1 with relation at Site 2

and

3. Transferring only the relevant tuples from Site 2 to Site 1, which are joined with the

relation at Site 1.

2.3.2 Example

Distributed spatial query processing including CPU, I/O and transmission cost factors il-

lustrated by the following example summarized from Shekhar and Chawla [20]. Suppose

an insurance company is trying to find out the amount of damage that occurred from crop

diseases for farmers in a country where all farms have been affected by various crop dis-

eases. Also, suppose that the reimbursement of the insurance company depends on the type

of disease that occurred. The insurance company has access to the FARM database which is

maintained by the country registrars office, and also to the DISEASE MAP database where

digital maps of disease spread are maintained by the Department of Agriculture. Instead of

obtaining all the necessary data from the two different databases, it can be assumed that the

database of the insurance company is a part of a distributed database in which the databases

9

Figure 2.4: FARM and DISEASE MAP Relation Attributes and Their Size [18]

of the two government agencies reside as well. Figure 2.4 depicts the two relations. The

insurance company is looking for an answer to the following query:

SELECT F.FID, D.DISEASE NAME

FROM FARM F, DISEASE MAP D

WHERE Intersects(F.FARM BOUNDARY,D.DISEASE BOUNDARY)

If using as spatial join, the query can be processed in three different ways:

1. The FARM relation can be transferred to the site of the DISEASE MAP relation, with

the result sent to the insurance company. This will incur a data transmission cost of

(10+10+2000+16) = 2,036,000 bytes.

2. The DISEASE MAP relation can be transferred to the site of FARM relation, with

the result sent to the insurance company.

3. Both the FARM and DISEASE MAP relation can be sent to the insurance companys

database. Although the CPU and I/O costs will not be affected by any of the three

choices, the transmission cost will because in each case the query plan is the same

but the physical location of the respective databases is not the same.

If a spatial semijoin is used, then the query can be processed in the following way:

1. FID and FARM MBR of the relation FARM are projected out and transferred to the

site of DISEASE MAP. The number of byte transferred is (10+16)*1000=26,000

10

Bytes. There are a total 1000 tuples in the FARM relation.

2. The FARM relation is joined with the DISEASE MAP relation on FARM MBR and

D MBR attribute. It is assumed that 10 tuples of DISEASE MAP are selected by this

spatial join operation. All 10 tuples are then transferred back to the site containing the

FARM relation. A total of (10+20+2000+16)∗10 = 20,460 Bytes are transferred.

3. Join the 10 DISEASE MAP tuples with the FARM Relation on the FARM relation

site. It is assumed that all the farms are affected by some diseases. All 1000 tu-

ples consisting of FID, OWNER NAME, DISEASE NAME are sent to the insurance

companys site which results in transferring (10+10+20)∗1000 = 40000 bytes.

As seen earlier when processing the query using the spatial join, 2,036,000 bytes are

sent instead of only 26,600+20,460 = 46,460 bytes, which is almost 90% less.

2.3.3 Bloom Filter

The Bloom filter [5] is an array of m bits which can be used to compactly represent a set of

n items and used for membership queries. In the context of query processing, a Bloom filter

of m bits can be used to represent a set of n distinct attribute values. Given all m bits initially

set to 0, for each attribute value in S, the Bloom filter uses k independent hash functions,

each with the range {1,2,,m} to produce addresses for k Bloom filter locations and to

set the bit at each address to 1. To check if an attribute value x is member of set S then x

is sent to the same hash functions to re-produce the addresses. If the bits at the reproduced

addresses are set to 1, the x is a potential member of S. For example, in the Figure 2.5,

we can see that hash function h maps the two members of set S, a and b, to bloom filter

indices 1,7 and 4,8 respectively(i.e. the corresponding bits are set to 1). Now, if we want to

test whether value, t is the member of the set, it is passed through the same hash function.

11

Figure 2.5: Bloom Filter Example

Suppose the hash function calculates for t the indices 1 and 6, since index 6 is set to 0, t is

not the member of set S.

However, because hash functions produce collisions, there is a certain probability of

false positives occurring, which means that an attribute value can pass the Bloom filter test

and not actually exist in S.

The false positive rate is quantified in [9] as the following. Given that hash functions

are random and all attribute values in S have been processed, the probability of a bit being

still 0 is:

pzero =
(

1− 1
m

)kn

≈ 1− e−
kn
m

Hence, the probability of false positives occurring is [9]:

perror = (1− pzero) =

(
1−
(

1− 1
m

)kn
)k

≈
(

1− e−
kn
m

)k

12

It is found that perror is minimum [9] when

k =
m
n

ln2

So in our Bloom Filter Based Spatial Semi-join algorithm (BFSJ, see Chapter 4) to get

the least possible false positive we have assumed the bloom bit factor or m
n is 1.5 and hence

the number of hash functions required is approximately 1.

2.4 Spatial Query Processing Strategies

There are many centralized and distributed spatial joining algorithms, which can be grouped

as indexed based, non-indexed based, parallel, and distributed spatial semijoin. A selection

of the state-of-the-art algorithm from each of these types that are found in the literature are

summarized below.

2.4.1 Index Based Approaches

Index based spatial joining means joining two relations, where either or both of them has

an index on their joining attribute.

Join Index Based Spatial Join

Shekhar et al. [18] proposed a graph partition based approach for optimizing the index

based spatial join. They mainly worked on the join index data structure. Pages are grouped

using global clustering methods so that the number of redundant page accesses is reduced.

The authors stated that previously proposed heuristics for global clustering generally group

13

Figure 2.6: Demonstrating the Two Relations and Their Join Index [18]

pages of a single table by using either global sorting or incremental clustering method.

Therefore, they introduced two new heuristic approaches: 1) global clustering of group

pages in both tables and 2) global clustering of the pages of a single table using join index

information. For clustering, the authors used a graph partitioning approach.

A join index is a data structure which is used to store partially materialized relation-

ships in order to speed-up online query processing. It is a bipartite graph of the pairs of

surrogates, where each pair of surrogates identifies tuples that participate in a join. For an

example, relations R and S are joined on attribute R.Aand S.B. The join index is defined as

J1=(ri,s j)|F(riA,s jB), where F is the join predicate and ri and s j are the surrogates from R

and S respectively.

Figure 2.6 illustrates an example join index of the Facility and Forest Stand relation-

ships, where the join index contains the tuple IDs which matches with the join predicate.

This join index is further described by a bipartite graph, G= {V1,V2,E}, where V1 contains

the tuple IDs of relation R, V2 contains the tuple IDs of relation S and edge set E contains

an edge(vr,vs) for every pair of surrogates in the join index. Similarly the authors proposed

a Page Connectivity Graph(PCG) as Bg = {V1,V2,E}, where V1 and V2 are the set of pages

from relation R and relation S respectively and edge E represents the connectivity in which

14

there is at least one pair of surrogates between the two pages.

Using their join index, the authors define the optimization problem as:

“Given a page connectivity graph PCG = (V,E), representing the join index and a buffer

size of B ≤ V , find out a page access sequence, to minimize the number of page accesses,

such that the pages in buffer is not more than B” [18].

To solve this problem the authors present two types of Heuristic methods namely Asym-

metric Graph Partitioning approach (AGP) and Symmetric Graph Partitioning (SGP) ap-

proach. AGP clusters pages of relation R based on their interaction with the pages of

relation S. Redundant I/O of page p of relation S can be reduced if many pages of R are

edge connected with p. It can be kept in memory, when reading p first time. The SGP uses

a min cut node partitioning approach to cluster the nodes from both relations from their

page connectivity graph. A min cut node partition of a graph G=(V,E) is a partition of the

node set V into disjoint subsets, while minimizing the number of edges whose end nodes

are in different partitions. The CPU cost is fixed since the relations size does not change.

The I/O cost depends on the sequence of the access of pages. The PCG is used to determine

a schedule of optimal page accesses.

In their paper the authors showed that AGP and SGP out performed existing sort-based

and graph-based heuristics. They used the Sequoia [21] data sets for evaluating their strate-

gies. They successfully showed how their algorithms work to resolve the optimization

problem by finding the sequence of page accesses that minimize redundant I/O access.

Spatial joins using R-tree

Brinkhoff et al. [7] proposed efficient spatial join techniques that use the R-tree [10], and

particularly the R*-tree [4]. They presented an efficient variant of R*-tree algorithm which

has reduced CPU and I/O.

15

Figure 2.7: SpatialJoin1 Algorithm [7]

The R*-tree [4] is the efficient variant of the R-tree [10] which has more sophisticated

insertion and deletion methods. It uses a B+ tree like structure used for hierarchically

storing multidimensional objects (or MBRs) and the regions of space that contain them. In

an R-Tree, a non-leaf node consists of entries of (ref,rect) where ref refers to a subtree and

rect is the MBR that contains all rectangles in the subtree. In leaf node, ref refers to the

spatial object record in the database and rect is the MBR for the spatial object. A common

feature of the R-tree is as follows: because rectangles of different nodes can overlap the

same region of space, a search may traverse multiple paths which results in bad query

performance.

The authors proposed several spatial join algorithms, named as SpatialJoin1 (SJ1), Spa-

tialJoin2 (SJ2), SpatialJoin3 (SJ3), SpatialJoin4 (SJ4), SpatialJoin5 (SJ5). The description

of each is given below.

SpatialJoin1(SJ1). Given two R*-trees of equal height R and S, the SJ1 algorithm

compares all pairs of rectangles from R and S for overlap. The algorithm traverses both

trees from the top down in a recursive manner. If a pair of rectangles do not overlap, then

none in their respective sub trees will overlap. The algorithm is depicted in the Figure 2.7.

To minimize I/O and increase main memory operations, the authors proposed the use

of two buffers:

16

1. the path buffer, which consists of the nodes on a path which was last accessed and

2. the least recent used (LRU) buffer, used for the single nodes instead of a path of

nodes.

The authors performed experiments on SJ1 for different LRU buffer and page sizes. They

found that the best overall performance with respect to execution time is achieved when

the page size is 1-2 KB and the buffer size is 0-512 KB. They also found that the spatial

join is slightly I/O bound for the page size of 1KB, and becomes more CPU bound with

the increase in page size. Therefore, the authors considered a number of approaches for

improving the CPU and I/O costs.

SpatialJoin2(SJ2). In the SJ2 algorithm, the authors focus on reducing CPU costs by

restricting the search space. They achieved this by reducing the number of floating point

comparisons that occur between each pair of selected nodes. They only considered two

non-leaf node entries ER and ES that fulfill the condition ER.rect ∩ES.rect 6= φ. Then, the

SJ1 algorithm is invoked using ER.ref and ES.ref as input.

A performance comparison between SJ1 and SJ2 showed that the number of compari-

son between them decreases super linearly with the increase of the page size.

SpatialJoin3(SJ3). In the SJ3 algorithm, the entries of both R-trees are sorted according

to their spatial location in the data space. Then, the plane sweep algorithm [3] is applied

to compute the desired pairs of the intersecting entries. The authors found that sorting the

entries as soon as they are fetched in the buffer can give better CPU time in both cases

when search space is restricted and not restricted.

SpatialJoin4(SJ4). To solve the problem of increased I/O by reading the same page

more than one time, which occurred in SJ3 algorithm, the SJ4 algorithm uses local plane

sweep order with pinning. First a pair of entries from indexes R and S is determined using

a local plane sweep algorithm [20]. Once the processing of the corresponding sub-trees

17

ER.ref and ES.ref is done, the degree of the rectangles for both of the entries is computed.

The degree of a rectangle from R is the number of intersections between the rectangles of R

with all the unprocessed rectangles of S. Then the pages with the highest degree are pinned

into the buffer. Lastly the join is done between those pinned pages with all other pages.

SpatialJoin5(SJ5). SJ5 reduces I/O by using Z-order [16] spatial sorting of node entries.

The basic idea behind Z-order is to decompose the total data space into cells of equal size

and provide an ordering on this set of cells. First, the intersection between the rectangles of

one node and the rectangles of all other nodes is computed. Then, the resulting rectangles

are Z-order sorted according to the spatial location of their centers.

The authors found the following in their performance evaluation. The local plane sweep

order approach used in SJ3 has more performance gain than pinning of pages in SJ4 when

the buffer is small. With the buffer size of 512KB, the I/O performance is nearly the same.

Because the CPU performance of both approaches is the same, SJ4 is found to be clearly

better than SJ3. For a smaller size of buffer SJ5 is slightly better than SJ4, for larger buffer

it is vice versa. But, local Z-order calculation needs CPU time which is not compensated

with the little I/O gain. SJ4 needs 45% less disk accesses than SJ1. With the smaller buffer

by a factor 3 to 6, SJ4 achieves the same I/O performance as SJ1. Finally, the SJ4 seemed

to be the most efficient algorithm with respect to performance gain because it has improved

performance gain than SJ1 and SJ3.Its I/O performance is almost the same as SJ5, though

the preprocessing step for SJ5 is higher than SJ4.

The authors successfully showed the basic algorithm and its enhancement through I/O

and CPU time tuning using various heuristics. In the future they are hoping to exploit

spatial joins using parallel R*-tree in parallel machines.

18

Figure 2.8: Depicting the Plane Sweep Algorithm(left), the Rectangle Co-ordinates to be
Used(right) [3]

Figure 2.9: Array of Sorted Rectangles in A∪B After Sorting

2.4.2 Non-Indexed Based Approaches for Spatial Join

Non-indexed based spatial joining means joining two relations, where neither of them has

an index on its joining attribute.

Plane Sweep Approach to Spatial Join

In [20], a plane sweep approach is proposed for determining spatial join. For example,

given two sets of MBRs named A and B, where A={A1,A2,A3} and B={B1,B2,B3}, each

rectangle is defined by its lower-left-corner (R.xl,R.yl) and upper-right-corner (R.xu,R.yu).

This is depicted in the right side image of 2.8. All the rectangles in A and B are sorted

according to their lower-left-corners and the following sorted array A∪B, depicted in 2.9,

can be found.

The plane sweeping algorithm is applied as follows [20]:

1. The sweep line, which is perpendicular to the x axis, is moved from left to right and

stopped at the first entry of A∪B. This is the rectangle A with the smallest R.xl value.

19

In this example (see Figure 2.8) it is A1.

2. The sorted list of rectangles of B is traversed until the first rectangle of B having

B.xl > A1.xu is found. Here, it is B3. So at this point the intersection set between

[A1.xl, A1.xu] and [B1.xl, B1.xu] will be non empty which implies A1 and B1 can

be a candidate set for overlap.

3. Next, the intersection set between [A1.yl, A1.yu] and [B1.yl, B1.yu] is checked. If it

is found non-empty, then A1 and B1 do overlapped. So (A1, B1) is added to the join

result. A1 is removed from the set A∪B, because there is no possibility of it being a

part of any future overlaps.

4. The sweep line is moved further across the A∪B set until it reaches the next rectangle

entry. This is rectangle B1 in the example.

5. Process (2) and (3) is repeated. When A∪B is empty, the process is stopped.

The plane sweep approach results in (A1, B1), (A2, B1), (A2, B2), and (A3, B2) as can-

didate pairs for the refinement step. In the refinement step these pairs are checked against

the exact spatial objects. Some pairs may be eliminated at this stage if exact geometry

computation results that there is no overlap.

Partition Based Spatial Merge Join

Patel and Dewitt [17] proposed the PBSM algorithm, which partitions the relations into dis-

joint subsets and joins them using a plane sweeping technique [20]. They also presented an

empirical performance comparison between the PBSM algorithm, the index based nested

loop join and the SJ1 algorithm [7].

The PBSM algorithm implements the filter and refinement step in the following manner.

20

Figure 2.10: Universe and Partitions [17]

For the filter step, two relations -Rkp, Skp- are formed, the superscript kp means key-

pointer, which contain (MBR, OID) pair from relation R and S, where OID is a unique

identifier for each of the spatial objects. Then, if both Rkp and Skp fit in main memory, a

plane sweeping technique is used to find all pairs of Rkp and Skp records that have overlap-

ping MBRs. Finally, for those matching pairs, the OID information is extracted, and this

OID pair is the final output.

If Rkp and Skp are too big to fit in main memory, then the universe that covers relations

R and S is divided into disjoint partitions, and all (MBR, OID) pairs in Rkp, Skp are mapped

to the partitions that the MBR overlaps.

Figure 2.10 shows an example of an MBR that overlaps both partitions 0 and 2. So

the (MBR, OID) pair is inserted into both partitions. After R and S are partitioned, the

algorithm joins the partitions using plane sweeping technique on each partition pair of Rkp

and Skp.

Since the partitioning in the filter step may insert a tuple into multiple partitions, there

21

could be duplicates in the joined relation. The refinement step eliminates these duplicate

(MBR, OID) pairs and examines the actual R and S tuples from the relations to determine

if the actual objects satisfy the joining condition.

A performance comparison among PBSM, indexed nested loop join and SJ1 [7] showed

that PBSM is more efficient than the other algorithms when either of the relations has

no index on it or an index exists on the smaller input. The algorithm SJ1 [7] has better

performance when the larger input has an index on it, or if both the inputs have a pre-existed

index. The authors expect that they will be able to implement their PBSM algorithm in a

parallel environment where de-clustering spatial data is a concern.

SSSJ Algorithm

Arge et al. [3] have proposed a spatial join algorithm called SSSJ that combines a dis-

tribution sweeping technique and main memory plane sweeping. They compared their

algorithm with the PBSM algorithm and found that their algorithm is more efficient than

the typical PBSM algorithm. In the SSSJ algorithm an initial sorting on the spatial objects

is done on the vertical axis. Then, a distribution sweeping technique is applied to parti-

tion the input into some vertical strips so that each partition fits into main memory. Then,

each partition is brought into main memory for further processing by the algorithm. In this

algorithm, partitioning is done along only one axis, which is one enhancement over other

similar algorithms. Another enhancement according to the authors is, replication does not

occur in their algorithm. Their experiment showed that the SSSJ algorithm performs 25%

faster than a typical implementation of PBSM [17], though 10% slower than the improved

version of PBSM.

According to the authors, if the data is well behaved [3] then the SSSJ Algorithm gives

better performance than any other algorithms. If not, then the PBSM algorithm performs

22

equivalent to the simple sweeping algorithm as it is susceptible to skewed data. In this case,

SSSJ achieves optimal worst case bound.

Planning for Distributed Spatial Query Optimization Using Fil-

ters

Tripathy et al. [23] mainly focused on a tree-based representation and optimization of a

query execution plan, called the Spatial Object Algebra (SOA) tree. They proposed an

architecture of a query optimizer where the optimized SOA tree is generated by the Object

Query Language (OQL) parser from the Structured Query Language (SQL) statement and

passed to query optimizer for optimization.

Demonstrating by using an example mixed query which consists of several types of

queries, such as containment, adjacency, range and intersection, the authors derived several

strategies of optimizing the SOA tree for their query, where they mainly focused on pushing

down the operations which are costly, pushing up the operations which are important for

join processing in a distributed environment, and the separation of filter and refinement

steps in a spatial join.

2.4.3 Parallel Processing Based Approach for Spatial Join

Parallel processing involves partitioning a process into multiple parts and allocating them to

different processors, each of which can process the parts independently and thus complete

the whole process. In a parallel approach, the node of the two R-trees taking part in a

spatial join are processed in a parallel fashion to improve computation time.

23

Parallel processing of spatial join using R-trees

Brinkhoff et al. [8] proposed an R-tree based parallel spatial join algorithm for a parallel

platform with shared virtual memory. This algorithm has three main phases: task creation,

task assignment and parallel task execution.

To reduce the CPU and I/O time, the three phases are designed so that the spatial lo-

cality of the spatial objects is preserved. Dynamic load balancing is maintained by further

partitioning the tasks and assigning them to the idle processors. The authors investigated

the parallelism of the join algorithm for two main reasons [8]:

1. The sequential join algorithm cannot provide better response time than parallel ones

in a multi user environment.

2. Spatial join processing works on a large amount of data and therefore incurs huge

computational cost.

The authors identify most important design concern of this algorithm as how to dis-

tribute tasks in different processors.

First Approach. The authors first proposed a join algorithm which has no synchro-

nization and communication cost, which focused on reducing the CPU and I/O costs for

it.

First, a set of tasks are created. Each task involves performing the sequential algorithm

on a pair of sub trees. This phase is performed sequentially in one processor. Second, each

task is assigned to a processor, which joins the sub-trees of its task independently from the

other processors without any communication taking place among them.

Tasks are assigned to processors by using a local plane sweep order technique. The

number of the intersecting MBRs of the root of the participating R*-tree is m and n is the

number of processors. The authors assume that m is greater than n. If not, then the MBRs

24

Figure 2.11: Task Assignment of Different Processors [8]

Figure 2.12: Local Buffer Only [8]

that belong to the next lower level nodes are considered. First, tasks are identified using

the local plane sweep order. Next, the first m%n number of processors receive
⌈m

n

⌉
pairs

of subtrees and the rest receive
⌊m

n

⌋
pairs of subtrees according to the local plane sweep

order. Figure 2.11 illustrates the total design, where m=5 and n=3.

The first approach has the following limitations:

1. As the processors do not communicate with each other, there may be situations when

same sub-tree needs to be fetched. For example in Figure 2.11, P1 and P2 are as-

signed with same sub-tree b. This results in a higher I/O cost.

2. Each task of the workload may not have same execution time, which causes imbal-

25

Figure 2.13: Example for Static Round-robin Assignment [8]

anced workloads.

Second Approach. The authors improved their first algorithm by adding synchroniza-

tion and communication with reduced CPU and I/O cost. To address the issue of multiple

fetches of the same subtree, the authors add a global buffer. The global buffer consists of

the contents of all local buffers. The access to the global buffer is managed by a Shared

Virtual Memory (SVM) manager. The main advantage of it is avoiding an extra look up in

the secondary storage, which results in reduced I/O cost.

Task assignment works as follows. First, the m intersecting pairs of MBRs are identified

using the local plane sweeping technique [3]. Then instead of assigning adjacent sub-trees

in one processor, they are assigned in a processor in a round robin fashion using the local

plane sweep order. An example is depicted in Figure 2.13. In order to distribute tasks more

evenly, the authors proposed a technique where the last two consecutive tasks are kept in a

queue called a task queue without processing them. As soon as any processor has finished

executing their task, one from the task queue is assigned to it.

So the authors also proposed a task reassignment system where as soon as a processor

finishes its task and there is no other task in the task queue, it offers help to the other pro-

cessors that are still working. A working processor divides its work load in two parts. One

26

part is done by the processor itself, and the other part is re-assigned to the idle processor(s).

In order to choose a processor to help, each active processor reports the number of non-

processed tasks. The processor having the highest number of non-processed task is chosen

as the buddy processor for an idle processor.

The authors evaluated their strategies using a multiprocessor machine having 24 pro-

cessors. They achieved a linear speed up close to n, where n is the number of disks where

the data is stored. The speed up was 22.6 for 24 processors. In the future they hope to

investigate distributed spatial join processing using a shared-nothing architecture.

BR-tree

Hua et al. [24] proposed a new spatial index structure and a general parallel spatial query

processing strategy that uses it. The BR-tree is an R-tree, which includes Bloom filters on

every node that handle exact-match object queries. The leaf-node Bloom filters are created

from the leaf node objects, while the non-leaf-level filters are created from its MBRs.

Given a BR-tree at every site in the distributed spatial database, their approach is to

distribute replicas of all BR-tree root nodes at all sites. Any MBR which is qualified by

a root node is transmitted to the BR-tree that contains the original root node for further

processing. An evaluation of the BR-tree query processing strategy showed that in terms

of query accuracy, average latency, message overhead and memory space, it outperformed

other existing structures.

27

2.4.4 Distributed Spatial Semijoins

Original Approach

Tan et al. [22] proposed a spatial semijoin algorithm for use in the distributed spatial

database.

The authors state that the transmission cost of a large spatial object is high, but its pro-

cessing cost is significantly higher. Therefore, the distributed spatial semijoin algorithm

considers both the transmission and local processing costs when used for processing a dis-

tributed spatial query. R and S are two spatial relations residing in two different sites, Rsite

and Ssite respectively. The result of the join is produced at site Ssite. The spatial semijoin

needs to be enhanced to eliminate the following anomalies found in spatial databases [22]:

1. A typical semijoin analyses the distinct values of the joining attribute of R and S

for reducing transmission cost from one site to another. For a large spatial database

where there are a huge number of spatial objects even this process incurs high trans-

mission cost. Also, it is likely that fewer duplicates among objects will exist.

2. Performing different operations on the spatial relations such as intersection, contain-

ment adjacency is more expensive than comparing two numbers or strings.

They proposed that the MBRs of the spatial objects can be used which conserves the

relationship between objects, and simplifies spatial operations. They also proposed a map-

ping function that maps the distributed spatial semijoin operator to a weaker relationship

operator. For example, if e1 and e2 are two polygons which intersect each other, then their

respective approximations, which are two bounding rectangles also intersect each other.

This thing is illustrated in Figure 2.14. As it is more convenient to calculate the intersec-

tion between two rectangles than between two polygons, sending only the lower left and

28

Figure 2.14: E1 Overlaps E2, e1 Includes e2 [8]

upper right vertices of those rectangles is lower in transmission cost than sending many

vertices of the polygons.

Using the weaker relationship, the resultant query consists of all records from R that

may participate in the final result. Since the weaker relationship operator is used the re-

sult set may contain some unnecessary results which they call false drops. Therefore, a

refinement step is also needed.

Through their performance evaluation, the authors find that semijoin algorithms re-

duced the cost of evaluating a join in most cases. For the R-tree based approximation of

objects, they found that for the Geographic information Systems (GIS) applications, a large

number of approximations is preferred while for Land Information System (LIS) applica-

tions, a smaller number of approximation provides better performance. They also found

that, index nested loop join is preferred over R-Tree based indexing if the index needs

to be constructed as R-tree construction is expensive. In addition, locational key based

algorithms, do not lead to significant performance gains, but do perform better on LIS

applications, over GIS applications.

29

The authors identify the following research directions. 1) Minimize the high CPU cost

from R Tree based joining algorithms, 2) Evaluating buffering techniques, and 3) Exam-

ining the performance of locational key based algorithms by applying approximation with

them.

Optimizing Distributed Spatial Semijoin

Karam and Petry [13] proposed a distributed spatial semijoin operator that takes MBRs

from different levels of the R-tree, instead of from the same level or the leaf level of the

tree. A performance comparison versus the traditional distributed spatial join shows that

with respect to data transmission cost, their semijoin is superior when applied to real world

data.

Distributed Spatial Query Optimization Over Multiple-Sites

Osborn and Zaamout [14] proposed a general distributed query processing strategy that uti-

lizes MBR-based distributed spatial semijoins, and worked for queries that involved more

than two sites. The strategy transmits the smaller spatial attributes to the sites that contain

larger relations. After the semijoin is performed on those sites, only the identifiers are then

transmitted back to the originating (smaller) sites, and all qualifying tuples are sent to the

query site for the final spatial join. An evaluation of their strategy with two-, four-, and

six-site queries on a simulated distributed database, found that the strategy achieves lower

data transmission costs.

In addition, Osborn and Zaamout [25] proposed a strategy for optimizing distributed

spatial semijoin which they call “restricted strategy”. Instead of sending all the MBRs, they

sent only the group approximations of them, which is an improvement upon the strategy

30

mentioned in [14], as it reduces CPU and transmission costs.

2.4.5 Summary

All the approaches dicussed above have one or more of the following limitations: 1) the

algorithms were designed for only two sites, 2) the algorithms which were designed for

more than two sites are only simulated on one machine or on local cluster environment,

3) there were no attempts made to compare the algorithms with the real world Distributed

Naı̈ve Spatial Semijoin, 4) there was lack of consideration of all of the vital cost factors

(i.e. CPU, I/O and transmission cost).

31

Chapter 3

GEMBR Partitioning and Mapping

This chapter presents the core algorithms, which are used by the compact representations of

the distributed semijoins. The first is the calculation of a Global Encompassing Minimum

Bounded Rectangle (GEMBR) using the GEMBR Calculation Algorithm. After calcula-

tion, the GEMBR is partitioned and all the object MBRs are mapped onto it using the

GEMBR Partitioning and Mapping Algorithm. The GEMBR will contain all the objects

MBRs from all the relations of all sites.

3.1 GEMBR Calculation

The Global Encompassing MBR (GEMBR) is the spatial extent of all objects that exist

across all sites in the distributed spatial database. Figure 3.1 shows the overall sequence of

steps for calculating the GEMBR. The steps for the GEMBR calculation algorithm are as

follows:

1. The lower left and upper right coordinates (i.e. (lx, ly) and (hx,hy) respectively)

of the Local Encompassing MBRs (LEMBR) are obtained at each site. A Local

Encompassing MBR (LEMBR) is the spatial extent of all spatial objects (or their

MBRs) that exist at one site. If an R-tree exists at a site, this LEMBR can be extracted

from the root node of the tree. This is shown in Figure 3.2.

2. Next, the GEMBR is calculated as follows. The LEMBRs from each of the sites are

sent to a query site. All the (lx, ly,hx,hy) values of all the LEMBRs are divided into

four sets: lx, ly, hx, and hy and each set is sorted. From these ordered sets, the lowest

(lx, ly) and the highest (hx,hy) coordinates are identified. These are the resulting

32

Figure 3.1: GEMBR Partitioning at Client Sites

GEMBR coordinates, which are sent to each of the sites in parallel This is shown in

Figure 3.1

For example, suppose we have four LEMBRs from four sites having the following

(lx, ly,hx,hy) coordinates: (0,0,4,2), (1,1,6,3), (2,2,8,4) and (3,3,10,5). Now, if

we sort all the values in the lx set in ascending order we find following values: 0, 1,

2 and 3. We take the first value, (i.e. 0) as the minimum lx value among all values in

the lx set. Likewise, we also find ly, hx and hy values as 0, 10 and 5 respectively. So,

the final GEMBR coordinate (Lx,Ly,Hx,Hy) is (0,0,10,5). This example is shown

in Figure 3.3.

3. Then, the GEMBR is partitioned at each of the sites. Using the partition information

33

Figure 3.2: Extracting LEMBR Coordinates

n sent by the query site, the copy of the GEMBR at each client site is partitioned

into n× n partitions, and indexed from lower left corner to upper right corner using

positive integer i, where 0 ≤ i ≤ n×n, which we call partition indices. Currently, the

partition information n is a constant value, which is stored at the query site, or can be

provided by the user when specifying a query. This is shown in Figure 3.4.

4. Finally the object MBRs at each client site are then mapped onto the partitioned

GEMBR. If an R-tree is used, the object MBRs can be obtained from its leaf nodes,

which results in lower I/O costs. This is shown in Figure 3.5

34

Figure 3.3: GEMBR Calculation, Partitioning and Mapping Example

Figure 3.4: Partitioned GEMBRs at Each Site

35

Figure 3.5: Mapping Objects MBRs on Partitioned GEMBR at Each Site

The partition and mapping algorithm, which is briefly described in Steps 3 and 4 above

is described in more detail in the next section.

3.2 GEMBR Partitioning and Mapping

After the GEMBR is calculated and transmitted to each site, the following GEMBR par-

titioning and mapping algorithm is carried out on each site in parallel to partition the

GEMBR space and map the local object MBRs to the local GEMBR copy. The steps

for this are as follows:

1. First, the GEMBR space is partitioned into n partitions along the x axis and n parti-

tions along the y axis. Therefore, the total number of GEMBR partitions, #partitions,

is n×n. The length of each partition along the x axis and y axis is calculated.

36

Algorithm: Create_Partitions

Input:
GEMBR Lx, Ly, Hx, Hy
num_partitions_along_each_axis n

Output:
holder_array[nxn]

partition_index= 0

ly = Ly

while ly <= Hy

lx = Lx

while lx <= Hx

lx’ = lx
ly’ = ly
hx’ = lx + partition_length(n, abs(Hx - Lx))
hy’ = ly + partition_length(n, abs(Hy - Ly))

holder_array[partition_index]
= (lx’, ly’, hx’, hy’)

partition_index ++

lx += partition_length(n, abs(Hx - Lx))

end while

ly += partition_length(n, abs(Hy - Ly))

end while

return holder_array

Figure 3.6: Creation of Partitions

37

Referring to the GEMBR example shown in Figure 3.3, where the GEMBR has the

lower coordinate (Lx = 0,Ly = 0) and upper coordinate (Hx = 10,Hy = 5). Also,

assume that the number of specified partitions n along an axis is 5. We need to create

5× 5 = 25 partitions. Therefore, the length of each partition along x axis is 2, and

along the y axis is 1.

2. Next, the coordinates (lx′, ly′,hx′,hy′) for each partition is calculated using the al-

gorithm in Figure 3.6. The process proceeds through the partitions in row-major

order, starting from the lower left-hand corner (Lx,Ly) to the top right-hand corner

(Hx,Hy) of the GEMBR. After each partition is calculated, it is stored in an array,

which is called partition coordinates holder array (or holder array for short). The

index values for the holder array will serve as the partition identifiers later on.

Referring back to Figure 3.3, the lower left partition is calculated first (i.e lx′ = 0,

ly′= 0, hx′= 2, hy′= 1), followed by the next partition (i.e. lx′= 2, ly′= 0, hx′= 4,

hy′ = 1), and proceeding towards the upper right-hand partition, in row-major order.

3. Next, the object MBRs are mapped onto the local copy of the GEMBR. First, for

each object MBR, the GEMBR partition (or subset of partitions, which we will call

the GEMBR subregion) that encompass the object are calculated. Because an object

can overlap more than one partition, this step determines the entire region covered

by the subset of partitions that contain an object.

For each object MBR, its lower left coordinate (lx, ly) and upper right coordinate

(hx,hy), are tested against the lower left-hand and upper right-hand coordinates of

each of the partitions, starting from the lower left-hand partition 0 and proceeding in

row-major order to up the upper right-hand parition. If the lower coordinate (lx, ly)

is inside any partition, or on either of the partition coordinates (lx′,ly′) or (hx′,hy′),

the lower left coordinates of a partition (lx′, ly′) is recorded as the lower left-hand

38

coordinate of the GEMBR subregion that encloses the object MBR. Similarly, the

upper right coordinates (hx′,hy′) of a partition are recorded as the upper right-hand

coordinate of the GEMBR subregion if it contains the upper right (hx,hy) coordinate

of an object MBR.

Referring back to the example in Figure 3.3, suppose we test the lower left coordi-

nates (lx, ly) of MBR 0 and find they are inside the lower left (lx′ = 0, ly′ = 0) and

upper right (hx′ = 1,hy′ = 2) coordinates of partition 0 (i.e. its (lx′, ly′) ≤ (lx, ly) ≤

(hx′,hy′)). We record (lx′ = 0,ly′ = 0) from partition 0 as the lower left-hand co-

ordinate of the GEMBR sub region containing MBR 0. Then we check the upper

right coordinate (hx,hy) of MBR 0 and find that it falls inside partition 1. We record

as the upper right-hand coordinate of the GEMBR subregion the upper right hand

coordinate(hx′ = 4 and hy′ = 1) from partition 1. Therefore, these lower left-hand

and upper right-hand coordinates define the subregion of partitions that MBR 0 en-

compasses. For MBR 4, its lower left corner lies in between the lower left and upper

right corners of partition 7 and similarly its upper left corner is situated inside parti-

tion 18. Hence, all the partitions within the range of the lower left corner of partition

7 and upper right corner of partition 18 defines the GEMBR subregion for MBR 4.

4. For the identification of partitions overlapped by an object, we take each object MBR

and traverse through the holder array in row major order and determine if any of the

corner points of that MBR space(i.e. either the lower left or upper right) fall in

between any of the lower and upper coordinates for a partition. If the lower left

coordinates of an MBR falls inside a the lower left and upper right coordinates of a

partition, we record lower left coordinates for that partition in an array named gembr

subregion array. The same test is performed for the upper right coordinates of an

object MBR and the upper right coordinate component of gembr subregion array

39

is updated. Therefore, all the partitions which have their lower left and upper right

corners in between the lower and upper coordinates of the gembr subregion array

for the object MBR make up the GEMBR subregion and the partition indices of

those partitions are returned. Referring back to Figure 3.3, MBR 0 is mapped into

partitions 0 and 1. MBR 2 is mapped into partition 8, MBR 4 to partitions 7, 8, 12,

13, 17 and 18, MBR 5 to partitions 13, 14, 18 and 19, MBR 6 to partitions 18, 19, 23

and 24, MBR 7 to partitions 20 and 21 and MBR 8 to partitions 22 and 23. Finally

the set of unique partition indices returned by all the object MBRs are saved for final

mapping.

3.2.1 Corner Cases

The four corner cases (i.e. where an object has its lower left or upper right coordinates

exactly on the any two corner points of a partition) is discussed in more detail here. Corner

cases are critical as each has a varied number of qualified partitions which changes de-

pending on the case. For all the examples discussed below please refer to Figure 3.3. For

example, MBR 6 is located in the upper right corner of partition 18. According to the algo-

rithm, the gembr subregion array is first updated by the lower left coordinates of partition

18 as the lower left coordinates of MBR 6 resides between the lower left and upper right

coordinates of partition 18. Through out the traversal, the lower left coordinates are not

updated as they are not inside any of the partitions from 19 to 24. On the other hand the

upper right corner of MBR 6 resides in partitions 18, 19, 23 and 24. When the algorithm

passes through partition 19, the array is updated for the second time with the upper right

coordinates. This array is updated two more times with the upper right coordinates of par-

tition 23 and 24 respectively. Finally, we have the final array which consists of the lower

left and upper right coordinates of partition 18 and partition 24 respectively. Therefore, for

40

MBR 6 the partitions 18,19,23 and 24 are returned.

For MBR 8, which is at the lower left corner of partition 22, identifies partitions 22 and

23. Initially, its lower left coordinates falls inside partition 17, and its upper left coordinate

falls inside partition 23. But with further traversal, the coordinates are updated, and finally

the gembr subregion array holds the lower left and upper right coordinates of partition 22

and 23. Similarly MBR 3 falls inside the lower left corner of partition 11, and overlaps

partition 11. Our last such case MBR 1 overlaps partitions 2 and 7 following the same

procedure.

41

Chapter 4

Query Processing Strategies

In the following section, three distributed query processing algorithms are proposed, two

of which utilize our compact representations of the distributed spatial semijoin:

1. Geometric Space Partition and Mapping Based Spatial Semijoin (PMSJ),

2. Bloom Filter Based Spatial Semijoin (BFSJ), and

3. Distributed Naı̈ve Spatial Semijoin (NSPJ).

The algorithms are designed to work for any number of sites.

Among the sites, one is designated as the query site where the user issues a query. All

other sites are the client sites which process a portion of the user query using data that is

stored locally. All the processes initiate at each site at the same time when the user issues

query from query site. In the user query, the user states the number of partitions n along an

axis of the GEMBR for both algorithms. For the BFSJ algorithm, the bloom filter factor

and number of hash functions are also stated.

4.1 Geometric Space Partition and Mapping Based Spa-

tial Semijoin (PMSJ)

The first algorithm, PMSJ, represents a semijoin by utilizing the partition indices represen-

tation of the GEMBR from all participating sites. PMSJ comprised of the following steps:

1. On each client site, the partition indices are obtained from the GEMBR Calculation,

42

Figure 4.1: Sending Partition Indices to Query Site

43

Figure 4.2: Calculating and Transmission of Common Partition Indices

44

Figure 4.3: Object Transmission to Query Site

45

Partition and Mapping algorithms, and duplicates are removed before transmission

to the query site. This is shown in Figure 4.1.

2. At the query site, the set of common partition indices is calculated. A partition index

is added to this set only if it was sent from every client site (i.e. at every client site,

the partition contained one or more objects). Then, the final set of common indices

are sent back to each client site. This is shown in Figure 4.2.

3. On each client site, all the tuple ids of the corresponding object MBRs that reside in

the partitions contained in the set of common partition indices are retrieved. Finally,

on each client site, for each qualifying tuple id, the corresponding exact spatial object

is retrieved and sent to the query site for the refinement step. This is depicted in

Figure 4.3. Note that in Figure 4.3 each spatial object is represented with its tuple

id due to limited space in the diagram - however, it is the objects that are being

transmitted to the query site.

4.2 Bloom Filter Based Spatial Semijoin (BFSJ)

The Bloom Filter Based Spatial Semijoin (BFSJ) creates and uses Bloom filter based rep-

resentations of the GEMBRs from all participating sites for semijoin processing. The steps

for BFSJ are as follows:

1. According to the query information, which consist of the number of the partitions

along each axis n, the number of hash functions k and the Bloom filter factor B f

specified by the user from the query site, the size of the Bloom filter is calculated at

each of the client sites based on following formula: Bs = B f × (n×n). Then, all the

Bloom filters are initialized to all 0s.

46

Figure 4.4: Mapping Partition Indices to Bloom Filter

47

Figure 4.5: Calculating and Transmission of Common Bloom filter

48

Figure 4.6: Bloom Bit to Partition Index Mapping and Object Transmission to Query Site

49

2. The Bloom filter representations of the partition indices from each site are con-

structed and sent to the query site. Bloom filter creation is done by a module called

the Bloom Filter Processor. For this, the Bloom Filter Processor takes the set of

partition indices that are returned from the GEMBR Calculation, Partitioning and

Mapping functions, and sends it to the hash functions. The hash functions calculate

and return the corresponding Bloom filter indices, which are then set to 1. This is

shown in Figure 4.4.

3. At the query site, the Intersected Bloom Filter Processor module finds the common

Bloom filter by performing a bit-wise intersection of all Bloom filters in order to

find out the common Bloom bits from all the Bloom bits representations and send

the common or intersected bloom bits to each of the client sites. This is depicted in

Figure 4.5.

4. At each of the client sites the common Bloom filter bits are sent to the Bloom Bits

to Index Mapper module, which maps the Bloom filter bits to the corresponding

partition indices. This is done by taking each of the partition indices and if it is

found to be 1 in the Bloom filter (after being hashed by all the hash functions), it is

kept. These partition indices become the common partition indices. This is shown in

Figure 4.6.

5. Next, at each client site, all the tuple ids of the corresponding object MBRs that

reside in the partitions contained in the set of common partition indices are retrieved.

Finally, on each client site, for each qualifying tuple id, the corresponding exact

spatial object are retrieved and sent to the query site for the refinement step. This is

also depicted in Figure 4.6. Note that in Figure 4.6 each spatial object is represented

with its tuple id due to limited space in the diagram - however, it is the objects that

are being transmitted to the query site.

50

4.3 Distributed Naı̈ve Spatial Semijoin (NSPJ)

The Distributed Naı̈ve Spatial Semijoin (NSPJ) algorithm is an extension of [22] for more

than two sites. We use this as a benchmark strategy for comparison purposes. The steps for

this algorithm are as follows:

1. All the object MBRs at each client site are sent to the query site. If the spatial

relation at a client site is indexed by an R-tree, then the object MBRs can be obtained

by scanning the leaf nodes of the R-tree.

2. At the query site, all object MBRs from all sites are checked for overlap. This is done

by testing every set of object MBRs across all spatial attributes that are transmitted

to the query site.

3. The qualifying object MBRs from step 2 are sent to all the client sites. Their cor-

responding tuple ids are extracted. Then, all the qualifying exact spatial objects for

those tuple ids are sent to the query site for the refinement step.

51

Chapter 5

Experimental Evaluations

In this chapter the performance evaluation of the BFSJ, PMSJ and NSPJ strategies is pre-

sented. The first goal is to compare the BFSJ and PMSJ strategies against the NSPJ strategy

with respect to processing and data transmission costs. The second goal is to compare the

BFSJ and PMSJ strategies with respect to false drops. The third goal is to compare differ-

ent BFSJ algorithms having different number of hash functions and Bloom filter factors. In

addition, all four strategies are evaluated in a real life multi-site environment where other

proposed approaches only consider two sites or a simulated multi-site environment when

processing a distributed query.

5.1 Preliminaries

The algorithms are implemented in a four node peer-to-peer distributed system1. The nodes

are situated in four geographically scattered locations. Our query site is located at the

University of British Columbia, and the client sites are located at the University of Victoria,

Simon Fraser University and the University of Alberta.

The evaluation was carried out with both synthetic data that was generated randomly2,

and with real data that was obtained from the Sequoia 2000 benchmark [21]. Synthetic data

was utilized so that results and trends could be determined for specified numbers of tuples

and a random data distribution. In addition, it is important to show how the algorithms

perform with real-world data.

Each relation is indexed on its spatial attribute with an R-tree3. In addition, a parallel

1Westgrid, www.westgrid.ca
2Generator created by Marc Moreau, The University of Lethbridge
3R-tree code obtained from www.rtreeportal.org.

52

distributed shell (PDSH) utility4 was used for co-ordinating the overall spatial semijoin

process in parallel at each client site, as soon as the user issues the query from the query

site. All algorithms are implemented in C++, and total process to be carried out in the

distributed environment is organized with the help of Bash shell scripting.

The BFSJ, PMSJ and NSPJ algorithms are compared with respect to the processing

(CPU+I/O) time and data transmission cost. The CPU+IO time is measured in seconds,

while the data transmission cost is measured in the number of KiloBytes that are transmitted

over the network. BFSJ and PMSJ algorithms are compared based on the percentage of

false positives. As the NSPJ uses the object MBRs directly for overlap checking, it does

not produce any false positive result in the filter stage. Therefore, the percentage of the

false positives is calculated only for BFSJ and PMSJ. The percentage of false positives is

calculated based on the following formula:

f =
#TuplesBFSJorPMSJ −#TuplesNSPJ

#TuplesBFSJorPMSJ
×100

In addition, the BFSJ algorithm is evaluated using up to 10 hashfunctions with different

Bloom filter factors.

5.2 Results using Synthetic Data

For this set of tests, each client site contains five spatial relations that contain 2000, 4000,

6000, 8000 and 10,000 tuples respectively. Every spatial relation contains one spatial at-

tribute, which consists of 10-unit by 10-unit squares. For each relation, a space size of
√

#tuples∗10 units is used to contain all randomly generated squares.

The comparison of processing time (PT items in each legend) and average transmission

4PDSH utility obtained from code.google.com/p/pdsh

53

cost (TC items in each legend) is shown for 30x30, 60x60 and 90x90 partitions in Figures

5.1, 5.2, and 5.3 respectively. The false positive percentage comparison is shown in Figures

5.4, 5.5 and 5.6 for the same partitions. From the figures, we observe a common trend of

increasing transmission cost, and increasing processing time, and decreasing false positive

percentages with the increase in the number of partitions.

5.2.1 Transmission Cost

The average transmission cost in KiloBytes(KB) (the “inefficiency index” measure for

transmission cost, as displayed in the Figures) of data transmitted from client sites to query

site and vice-versa is calculated in parallel. This data is plotted against the number of tu-

ples in the figures. By comparing the three algorithms, it is found that the PMSJ and BFSJ

algorithm outperforms NSPJ algorithm by a factor of approximately six on average with

respect to transmission cost. For example, in Figure 5.3, a significant difference is found in

transmission costs between both the BFSJ and PMSJ algorithms and the NSPJ algorithm.

This cost for NSPJ is very high with respect to number of tuples when compared to BFSJ

and PMSJ. This observation is true as well for Figures 5.1 and 5.2. The reason is that more

compact approximations of MBRs are sent to the query site from the local sites in the al-

gorithms, where in NSPJ the actual MBR approximations of the spatial objects are sent.

The transmission cost is further reduced by only sending unique partition indices which are

covered by object MBRs on a client site to the query site for semijoin processing or to the

Bloom filter processor for Bloom filter creation.

We also compare both the BFSJ and PMSJ algorithms and observe that these algorithms

perform very closely, with BFSJ having a transmission time gain of approximately 1.12

over PMSJ. This is due to sending Bloom filters, which only contain boolean values and

are more compact than the partition indices. This is seen in Figure 5.1 for 30×30 partitions

54

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

30x30 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Figure 5.1: Processing Time and Transmission Cost for 30×30 Partitions

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

60x60 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Figure 5.2: Processing Time and Transmission Cost for 60×60 Partitions

55

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

90x90 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Figure 5.3: Processing Time and Transmission Cost for 90×90 Partitions

where both strategies are equal, and in Figures 5.2 and 5.3 respectively where we can

see a little performance gain of BFSJ over PMSJ for 60× 60 and 90× 90 partitions. The

overall transmission cost increases linearly with the increase of the number of partitions

(e.g. transmission cost increases roughly 1.9 times when partition number increases three

times) and number of tuples (e.g. transmission cost increases 3.3 times when number of

tuples increases five times) in BFSJ and PMSJ. This happens due to the fact that more

partitions results in more data transmission. This is observed in Figures 5.1, 5.2 and 5.3.

5.2.2 Processing Time

For processing time, the amount of time the algorithms execute in seconds (the “ineffi-

ciency index” measure for processing cost, as displayed in the Figures), which includes

both the CPU and the I/O time. This is plotted against the number of tuples. Both BFSJ

56

and PMSJ are on average 18 times faster than NSPJ for 30×30, 60×60 and 90×90 par-

titions in Figures 5.1, 5.2 and 5.3 respectively. For example, Figure 5.1 shows that there

is a significant difference between BFSJ, PMSJ and NSPJ. This is because in the BFSJ

and PMSJ algorithms, more compact representations are utilized for semijoin processing,

which are only integers or boolean values, while in NSPJ the actual object MBRs are uti-

lized, which ultimately incurs extra CPU time.

The performance gain of PMSJ over BFSJ, is approximately on average 1.38. This

is because there is extra processing for creating and setting bits in the Bloom filters, and

remapping partition indices from the Bloom filters. This observation is consistent for both

60×60 and 90×90 partitions. The increase of the processing time is linear with respect to

the increase in number of partitions, as the semijoin operates on more data. For example,

if we increase the number of partition three times, the increase of processing time is 2.9

times. This is also observed in the Figures 5.1, 5.2 and 5.3.

5.2.3 False Positive Comparison

With respect to the false positive percentages, the difference between BFSJ and PMSJ is

more prominent with the increase in number of partitions. For example, there is a tie

between PMSJ and BFSJ in case of 30× 30 partitions, which is depicted in Figure 5.4.

However, the superiority of PMSJ becomes significant when the number of partitions in-

creases as depicted in Figure 5.5 and Figure 5.6. PMSJ always outperforms BFSJ by a

factor of 1.02 on average. With the increased number of partitions, the increase in the false

positive percentage is linear with a gain of 1.02 (which means the false positive percentage

decreases) on average for both of the PBSJ and BFSJ algorithms, which is also observed

in all the three Figures. With more partitions we obtain a more accurate mapping of object

MBRs in the GEMBR and thus the false positive percentage decreases.

57

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a

ls
e

 P
o

s
it

iv
e

 %

Tuples

30x30 partitions

PMSJ

BFSJ

Figure 5.4: False Positives Comparison for 30×30 Partitions

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a

ls
e

 P
o

s
it

iv
e

 %

Tuples

60x60 Partitions

PMSJ

BFSJ

Figure 5.5: False Positives Comparison for 60×60 Partitions

58

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a

ls
e

 P
o

s
it

iv
e

 %

Tuples

90x90 partitions

PMSJ

BFSJ

Figure 5.6: False Positive Comparison for 90×90 Partitions

PMSJ predominates in this case because, BFSJ takes the partition indices as its input

so it has at least the false positive percentage as the PMSJ along with the false positive hits

of its own.

5.3 Results using Sequoia Data

For these tests, MBRs are created from the polygons of the Sequoia 2000 benchmark data

set [21]. The polygon set consists of landuse polygons (58586 MBRs) and islands, which

represent “holes” in the landuse polygons (21021 MBRs). Two tests are performed with

these data sets. For the first test, the algorithm is evaluated by placing the islands dataset

at one site, and spliting the landuse dataset into two sets (48778 MBRs and 9808 MBRs)

to place at the remaining two sites. Two tests are run, using 90x90 and 300x300 partitions

respectively. For the second test, the landuse polygon set is split into three sets

59

#partitions strategy Processing Time (s) Transmission Cost (kb) FP Rate (%)
PMSJ 15 264 79.51

90 x 90 BFSJ 17 275 80.31
NSPJ 2040 2865 ——
PMSJ 128 149 63.57

300 x 300 BFSJ 139 178 69.64
NSPJ 2040 2865 ——

Table 5.1: Sequoia Results - Polygon Datasets

#partitions strategy Processing Time (s) Transmission Cost (kb) FP Rate (%)
PMSJ 33 355 84.04

90 x 90 BFSJ 40 373 84.80
NSPJ 1009 3879 ——
PMSJ 216 186 69.46

300 x 300 BFSJ 226 232 75.60
NSPJ 1009 3879 ——

Table 5.2: Sequoia Results - Polygon and Islands Datasets

- 28728, 9808 and 20050 MBRs respectively - one per site. Again, we executed each

algorithm twice - for 90x90 and 300x300 partitions. Tables 5.1 and 5.2 gives the results

of this evaluation. We find that both the PMSJ and BFSJ algorithms achieve significantly

lower transmission costs than the NSPJ algorithm. However, the percentage of false posi-

tives is very high for both the PMSJ and BFSJ algorithms. This is due to MBRs polygons

across multiple sites that are close in proximity but do not overlap. Due to the close prox-

imity, the MBRs would appear in the same partition and be transmitted to the query site.

Therefore, our algorithms, although shown to perform very well on our synthetic data sets,

would benefit further by adapting to the distribution of the object sets across all sites.

60

5.4 Number of Hash Functions vs Percentage of False Pos-

itives

The BFSJ algorithm was executed for up to 10 hash functions with Bloom filter factors 1.5

and 3 to observe how false positive percentage changes. A common trend of increasing

false positive percentage is observed with the increased number of hash functions. How-

ever, the false positive percentage begin to plateau when 7 or more hash functions are used.

This is depicted in Figure 5.7 and 5.8.

61

Figure 5.7: False Positive Comparison for Different Number of Hash Functions with Bloom
filer Factor 1.5

Figure 5.8: False Positive Comparison for Different Number of Hash Functions with Bloom
filer Factor 3

62

Chapter 6

Conclusion

In this thesis, two representations are proposed for the spatial semijoin and their use in

multiple-site distributed query processing strategies. To further reduce the data transmis-

sion and processing costs, the geometric representation of object MBRs is converted to

simple integers or binary bits. The algorithms were evaluated in a real life peer-to-peer dis-

tributed system with both synthetic and real data sets. The optimized algorithms perform

significantly better than the Distributed Naı̈ve Spatial Semijoin strategy when synthetic data

was used. PMSJ is 1.38 times faster than BFSJ in respect to processing cost while BFSJ

has a tranmission cost gain of 1.12 over PMSJ. Both the algorithms are 18 times faster and

have six times less transmission cost than NSPJ. It is also observed that with the increase

of hash functions and Bloom filter factor the false positive percentage rises.

6.1 Future Work

In the future, we are looking towards testing our system against a larger number of dis-

tributed nodes. In addition, given the results from the Sequoia 2000 polygon sets, we will

consider data distribution in order to lower the false positive rate that occurs with certain

data distributions. We are also looking for improved strategies for partitioning the GEMBR

space to gain improvements in processing speed. In addition, we will explore more com-

pact representations of the object MBRs for efficient semijoin processing. We are also

looking towards implementing some parallel processing strategies to see if these are effi-

cient. Finally, we will test our BFSJ algorithm by using different types of hash functions

and number of bloom filters and analyze the performance.

63

Chapter 7

Appendix

Algorithm: distance

Input: lower_coordinate,upper_coordinate

Output: absolute distance between lower and upper coordinates

return absolute(upper_coordinate-lower_coordinate)

Algorithm: partition_length

Input: lower coordinate, upper_coordinate,

no_of_partitions

#lower and upper coodinates are in the same dimension

Output: length of each partitions

return

distance(lower_coordinate,upper_coordinate)/no_of_partitions

Algorithm: partition_function

Input: Global_Encompassing_MBR_Coordinates, no_of_partitions

Output: Coordinates of all respective partitions

partition_length_along_x_axis

<-partition_length(distance(lx,hx),no_of_partitions)

partition_length_along_y_axis

<-partition_length(distance(ly,hy),no_of_partitions)

64

#save all the lower and upper coordinates of each partitions in

#partition coodinates array whose index is the number

#of partitions

Algorithm: inside(coordinates_for_object_1,

coordinates_for_object_2)

Output: true or false

if(lx_of_object_1<=hx_of_object_2

and lx_of_object_1>=lx_of_object_2)

and (ly_of_object_1<=hy_of_object_2

and ly_of_object_1>=ly_of_object_2)

and (hx_of_object_1<=hx_of_object_2

and hx_of_object_1>=lx_of_object_2)

and (hy_of_object_1<=hy_of_object_2

and hy_of_object_1>=ly_of_object_2)

then

return true

else

return false

end if

Algorithm: mapping_indices_and_tuple_ids

Input: all_leaf_node_coordinates,

global_encompassing_mbr_coordinates,

no_of_partitions

Output: mapped_indices_and_ids

65

partitions_coordinates<-partition_function

(global_encompassing_mbr,

no_of_partitions)

for each leaf_node_coordinates belongs to

all_leaf_node_coordinates

for each partition_coordinates

if (inside(lower_coordinates_of_leaf_node,

partitions_coordinates))

then

lower_coordinates_for_starting_partition

<-x_y_coordinates_of_lower_partition

end if

if (inside(upper_coordinates_of_leaf_node,

partitions_coordinates))

then

upper_coordinates_for_ending_partition

<-x_y_coordinates_of_upper_partition

end if

end for

end for

for each partitions_coordinates

if(inside(partitions_coordinates,focused_partitions

(lower_coordinates_for_starting_partition,

66

upper_coordinates_for_ending_partition))

mapped_indices_and_ids_vector.push(indices,

tuple_ids)

end if

end for

return mapped_indices_and_ids_vector

Algorithm: return_indices_with_multiple_entries

Input: all_indices_file

Output: only indices which are common in all the files

for each i belongs to number_of_indices in all_indices_file

if (index_element[i+1]==index_element[i])

then

value++

if(value==number_of_sites-1)

then

return index_element[i]

end if

else

return -1

value=0

end if

end for

67

Algorithm: extract_tuple_ids_from_common_indices

Input: common_indices_file,

mapped_local_indices_and_tuple_ids_file

Output: All the tuple_ids that satisfies join condition

for each elements of common_indices_file

for each elements of

mapped_local_indices_and_tuple_ids_file

if (common_indices_file_index==

mapped_local_indices_and_tuple_ids_file_index)

qualified_tuple_ids_vector<- respective_tuple_id

end if

end for

end for

return qualified_tuple_ids_vector

Algorithm: extract_leaf_node_MBR_coordinates

Input: rtree_file

Output: leaf_node_MBR_Coordinates_and_IDs

#Extracted Highest(Root) Level Node Informations

#using the command line tools sed and awk.

Algorithm: calculate_local_encompassing_MBR

Input: rtree_file

Output: local_encompassing_MBR

68

#Extracted only the root level coordinates using

#command line tools

#each lx,ly,hx,hy is pushed to local_encompassing_MBR

#vector

for each lx belongs to all lx_of_the_root_level_nodes

local_encompassing_MBR<-min(lx)

end for

for each ly belongs to all ly_of_the_root_level_nodes

local_encompassing_MBR<-min(ly)

end for

for each hx belongs to all hx_of_the_root_level_nodes

local_encompassing_MBR<-max(hx)

end for

for each hy belongs to all hy_of_the_root_level_nodes

local_encompassing_MBR<-min(hy)

end for

return local_encompassing_MBR

Algorithm: global_encompassing_MBR

69

Input: concatanated local_encomapassing_MBR_files

Output: global_encompassing_MBR

return calculate_local_encompassing_MBR

(concatenated local_encomapassing_MBR_files)

Algorithm: file_to_vector

Input: any text file

Output: vector

for each line belongs to text file

vector<-read each line

end for

return vector

Algorithm: PMSJ_BFSJ_Algorithm

Input: partition_info_file,rtree_file

Output: joined_tuple_ids

#Query Site Processing: send partition_info file

#which contains how many partitions, to all the

#sites parallely and ensure the starting of the process

#at each site at the same time.

send_file_to_local_sites_parallely(partition_info_file)

70

#pdsh is used for sending files parallely

#Local Sites Processing:Upon arrival of partition_info

#the partition_based_spatial_join processing starts

local_encompassing_MBR_file

<-calculate_local_encompassing_MBR(rtree_file)

#send local encompassing MBR files from each

#site to Query Site

send_files_to_query_site(local_encompassing_MBR_file)

#scp is used for that

#In the Query Site calculate_global_encompassing_MBR using the

#following way

global_encompassing_MBR_file

<-calculate_global_encompassing_MBR

(local_encompassing_MBR_files)

send_file_to_local_sites_parallely

(global_encompassing_MBR_file)

#At each local site the following funtion is called and

#output is saved in a file

71

all_leaf_node_coordinates_file

<-extract_leaf_node_MBR_coordinates(rtree_file)

all_leaf_node_coordinates

<-file_to_vector(all_leaf_node_coordinates_file)

global_encompassing_mbr

<-file_to_vector(global_encompassing_MBR_file)

no_of_partitions

<-file_to_vector(partition_info_file)

mapped_local_indices_and_tuple_ids_file

<-mapping_indices_and_tuple_ids(all_leaf_node_coordinates,

global_encompassing_mbr_coordinates,

no_of_partitions)

#send the unique indices of each site to query site

local_unique_indices_file

<-unique_indices_only(mapped_local_indices_and_tuple_ids_file)

#PMSJ specific operations

#send the unique indices only

send_files_to_query_site(local_unique_indices_file)

#find out the common indices from each files of each sites

#at query site

all_indices_file

72

<-sort_and_concatenate_file(mapped_local_indices_file)

#used unix command line tools cat and sort -u

common_indices_file

<-return_indices_with_multiple_entries(all_indices_file)

#send common indices to all the sites

send_file_to_local_sites_parallely(common_indices_file)

local_tuple_ids_file

<-extract_tuple_ids_from_common_indices

(common_indices_file,

mapped_local_indices_and_tuple_ids_file)

send_files_to_query_site(local_tuple_ids_file)

#BFSJ specific operations

#used unix command line tools for this,sort -u and

#cut to send the unique indices only

bloom_filter_vector

<-bloom_filter_processor

(local_unique_indices_file,

no_of_hash_functions,

no_of_bloom_bits)

send_bloom_filter_to_query_site(bloom_filter_vector)

intersect_bloom_filters(all_bloom_filter_files)

73

#all_bloom_filter_files is created by concatenating

#bloom filter

#files from different sites.This function outputs the

#intersected_bloom_filter_file to be sent to local sites.

send_files_to_local_site(intersected_bloom_filter_file)

#parallely sent using pdsh.

bloom_filter_to_index_mapper(intersected_bloom_filter_file)

#This function outputs the file named final_indices_file

#which contains the indices which qualifies to be true for

#certain bloom filter bit position.

local_tuple_ids_file

<-extract_tuple_ids_from_common_indices

(final_indices_file,

mapped_local_indices_and_tuple_ids_file)

send_files_to_query_site(local_tuple_ids_file)

74

Bibliography

[1] R. Abdalla and V. Tao. Integrated distributed GIS approach for earthquake disaster
modeling and visualization. In Geo-Information for Disaster Management, pages
1183–1192. Springer, 2005.

[2] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for distributed
queries. IEEE Transactions on Software Engineering, 9(1):57–68, 1983.

[3] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J.S. Vitter. Scalable sweeping-
based spatial join. In Proceedings of the 24th International Conference on Very Large
Data Bases, 1998.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient
and robust access method for points and rectangles. In Hector Garcia-Molina and
H. V. Jagadish, editors, Proceedings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, Atlantic City, NJ, May 23-25, 1990, pages 322–331.
ACM Press, 1990.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7):422–426, July 1970.

[6] P. Bodorik, J. S. Riordon, and J. S. Pyra. Deciding on correct distributed query pro-
cessing. IEEE Transactions on Knowledge and Data Engineering, 4(3):253–265,
1992.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins us-
ing r-trees. In Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, pages 237–246, New York, NY, USA, 1993. ACM.

[8] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel processing of spatial joins using
R-trees. In Proceedings of the 12th International Conference on Data Engineering,
1996.

[9] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. In
Internet Mathematics, pages 636–646, 2002.

[10] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD international conference on Management of data, pages
47–57, 1984.

[11] T. Hunter. A distributed spatial data library for emergency management. In Geo-
Information for Disaster Management, pages 733–750. Springer, 2005.

[12] M.-S. Kang, S.-K. Ko, K. Koh, and Y.-C. Choy. A parallel spatial join processing for
distributed spatial databases. In Proceedings of the 5th International Conference on
Flexible Query Answering Systems, pages 212–225, 2002.

75

[13] O. Karam and F. Petry. Optimizing distributed spatial joins using R-trees. In Pro-
ceedings of the 43rd ACM Southeast Conference, 2006.

[14] W. Osborn and S. Zaamout. Multiple-site distributed spatial query optimization us-
ing spatial semijoins. In Proceedings of the 10th International Baltic Conference on
Databases and Information Systems - Local Proceedings, pages 11–19, 2012.

[15] M.T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Springer,
2011.

[16] D.J. Maguire D.W. Rhind P.A. Longley, M.F. Goodchild. Geographical Information
Systems Principles, Technical Issues, Management Issues and Applications. Wiley,
1999.

[17] J.M. Patel and D.J. DeWitt. Partition based spatial-merge join. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data, pages 259–
270, 1996.

[18] S. Ravada, S. Shekhar, C.-T. Lu, and S. Chawla. Optimizing join index based join
processing: A graph partitioning approach. In SRDS, pages 302–308, 1998.

[19] H. Samet. The design and analysis of spatial data structures. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1990.

[20] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, New Jersey,
2003.

[21] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000 storage
benchmark. SIGMOD Record, 22(2), 1993.

[22] K.-L. Tan, B.C. Ooi, and D.J. Abel. Exploiting spatial indexes for semijoin-based
join processing in distributed spatial databases. IEEE Transactions on Knowledge
and Data Engineering, 12(6), 2000.

[23] A. Tripathy, L. Mishra, and P.K. Patra. An efficient approach for distributed spatial
query optimization using filters. In Proccedings of the 3rd Intenational Conference
on Advanced Computer Theory and Engineering (ICACTE 2010), 2010.

[24] Hua Y, B. Xiao, and J. Wang. Br-tree: A scalable prototype for supporting multiple
queries of multidimensional data. IEEE Transactions on Computers, 58(12):1585–
1598, 2009.

[25] S. Zaamout and W. Osborn. A strategy for optimizing a multi-site query in a dis-
tributed spatial database. In Proceedings of the 12th International Conference on Web
and Wireless Geographical Information Systems, W2GIS’13, pages 16–24, Berlin,
Heidelberg, 2013. Springer-Verlag.

76

