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Abstract

An orthogonal design of order n and type (sy,...,S¢), denoted OD(n; si,...,S),

is a square matrix X of order n with entries from {0, +x,...,+x,}, where the z;,’s

4
Jj=1

are commuting variables, that satisfies X X' = (Z sj:c]?> I,,, where X' denotes the
transpose of X, and I, is the identity matrix of order n.

An asymptotic existence of orthogonal designs is shown. More precisely, for any
(-tuple (51, e ,55) of positive integers, there exists an integer N = N(sl, cee 34) such
that for each n > N, there is an OD(Q”(Sl + o4 sp); 278y, 2”3g). This result
of Chapter 5 complements a result of Peter Eades et al. which in turn implies that
if the positive integers sq, s9,..., s, are all highly divisible by 2, then there is a full
orthogonal design of type (sl, So,. .. ,sz).

Some new classes of orthogonal designs related to weighing matrices are obtained
in Chapter 3.

In Chapter 4, we deal with product designs and amicable orthogonal designs, and
a construction method is presented.

Signed group orthogonal designs, a natural extension of orthogonal designs, are in-
troduced in Chapter 6. Furthermore, an asymptotic existence of signed group orthog-

onal designs is obtained and applied to show the asymptotic existence of orthogonal

designs.
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Chapter 1

Introduction and statement of

results

A complex orthogonal design of order n and type (si, ..., s¢), denoted COD(n; sq,. .., S¢),
is a square matrix X of order n with entries from {0, €21, ..., e}, where the x;’s

are commuting variables and €; € {£1, £i} for each j, that satisfies

l
7=1

where X* denotes the conjugate transpose of X, and I, is the identity matrix of
order n. A complex orthogonal design (COD) in which €; € {£1} for all j is called an
orthogonal design, denoted OD(n; s1,...,S¢). An orthogonal design (OD) in which
there is no zero entry is called a full OD.

COD’s and OD’s have many applications in space-time block codes [47], wireless
network connections [26], quadratic forms [45, 52], and they also have applications in
electronics engineering [37].

A Hadamard matriz of order n is a square {£1}-matrix H of order n such that

HH' = nl,, where H' is the transpose of H. Equating all variables to 1 in any full
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OD results in a Hadamard matrix.

Hadamard matrices were first studied by Sylvester in 1867 under the name of
anallagmatic pavement 26 years before Hadamard considered them in 1893 [20]. It is
conjectured that a Hadamard matrix of order 4n exists for each n > 1 [39]. Hadamard
matrices are well known up to order 668. Hadi Kharaghani and Behruz Tayfeh-Rezaie
in [31] constructed a Hadamard matrix of order 428.

A Weighing matriz of order n and weight k is a square {0, +1}-matrix W of order
n such that WW*' = kI,,. Equating all variables to 1 in any OD of order n results in a
weighing matrix of order n and weight k, denoted W (n, k), where k is the number of
+1 in each row (column) of the weighing matrix. It is conjectured that there exists
a W(4t, k) for each 1 < k < 4t [18].

Hadamard matrices and weighing matrices have applications in balanced incom-
plete block designs [21], tournaments [41], codes, graphs and statistics [2, 27, 34].

The credit for the consideration of asymptotic existence results should be given to
Seberry [18, 50] for her fundamental approach in showing that for each positive integer
p, there is a Hadamard matrix of order 2"p for each n > 2log,(p—3). Two of Seberry’s
students, Peter Robinson [43] and Peter Eades [13], did extensive work on ODs in their
Ph.D. theses and made significant advances towards showing the asymptotic existence
of a number of ODs. The work of Warren Wolfe [53] provided enough ammunition to
other researchers to pursue a different approach to the asymptotic existence of ODs.
There are now a number of asymptotic existence results for orthogonal designs and
thus Hadamard matrices [5, 7, 9, 10, 11, 15, 24].

It was shown [18, 40] that the number of variables in an OD of order n = 2%, b

odd, cannot exceed p(n) (Radon’s number), where p(n) is defined as follows:

p(n) :=8c+2% where a=4c+d, 0<d<4.



A rational family of order n and type (si,...,Sg), where the s;’s are positive ra-

tional numbers, is a collection of k rational matrices of order n, Ay, ..., A, satisfying
o A AL =1, 1 <i<Ek;

Peter Eades [14], Daniel Shapiro [45] and Warren Wolfe [52, 53] made a connection
between quadratic forms over rational numbers and orthogonal designs, and they

obtained some non-existence results for orthogonal designs.

Theorem 1.1 (Rational Family Theorem [45, 53]). Suppose that n = 2°b where b is
odd. Then there is a rational family of type (s1, S2, ..., 8.) and order n if and only if
(1) u < p(n),

(1) there is a u x 2* rational matriz P such that PP' = diag(si, so, ..., S4).

The conditions (i) and (i7) are called the algebraic necessary conditions for the
existence of orthogonal designs. By numerical evidence, it is conjectured that if n is
sufficiently larger than s; + so + - - - + s, then the algebraic necessary conditions (7)

and (ii) are sufficient for existence of ODs of order n and type (s1, Sg, ..., Sy).

Conjecture 1.2 (Asymptotic Sufficiency Conjecture [13]). Suppose that « is a non-
negative integer and s, So, . .., S, are positive integers such that u < p(2%) and there
is a u X 2% rational matriz P such that PP' = diag(sy, Sa,...,84). Then there is an

integer N such that for each n > N, there is an

OD(QO‘n; S1, 89, ... ,su).

The case a = 0 of this conjecture first was proved by Geramita and Wallis [17].
The cases o« = 1,2,3 was proved by Eades [13]. We discuss these cases by slightly

different methods in Chapter 3.



Throughout this thesis, we use the notation wu) to show that u repeats k times.
It is shown in Theorem 3.7 that if k£ cannot be written as the sum of three in-
teger squares, then there does not exist any skew-symmetric W (4n, k), for any odd
number n. Then by using Lemma 3.13, which indicates the existence of symmetric
OD(Z"?; 1(k)) for any positive integer k, it is shown in Theorem 3.18 that if k is
a square, then there is an integer N = N(k) such that for each n > N there is a

symmetric W (n, k). We prove Theorems 3.19 and 3.22 by slightly different methods:

e Suppose that k = k% + k2, where k; and ky are two nonzero integers. Then there

is an integer N = N (k) such that for each n > N there is an OD (2n; ki, k2).

e Suppose that k = kI + k3 + k3 + k2, where ki, ko, k3 and k, are nonzero integers.
Then there is an integer N = N(k) such that for each n > N there is an
OD(4n; k3 k3 k3, ki)

In Corollary 3.21, it is shown that if d is an integer square, then there exists an integer
N = N(d) such that for each n > N, there is a skew-symmetric W (2n, d).

In Corollary 3.25, it is shown that if d is the sum of three integer squares, then there
exists an integer N = N(d) such that for each n > N, there is a skew-symmetric
W(4n,d).

In Corollary 3.26, it is shown that if d is any positive integer, then there exists an
integer N = N(d) such that for each n > N, there is a skew-symmetric W (8n, d).

Corollaries 3.21, 3.25 and 3.26 are improvements to the results that Eades in [13]

obtained.
Suppose that A is an OD(n; a1y .. ,ak) on variables x1,...,x;, and B is an
OD (n; bi,y... ,bt) on variables ¥, . .., yr, where the two sets of variables are disjoint.

Then (A; B) are called an amicable orthogonal design, denoted

AOD(n; al,...,ak;bl,---,bt),

4



if AB' = BA.

Let M; be an OD(n; ai, . .. ,ar) on variables x1, ..., x,, My be an OD(n; bi,... ,bs)
on variables y1,...,ys, and N be an OD (n; Cly. .. ,ct) on variables zq, ..., z;, where
the three sets of variables are disjoint. Then (Mj; My; N) is called a product design
of type (a1, ...,a;;b1,...,bs;c1,...¢) and order n if the following conditions hold:

(1) M;*x N = Myx N =0 ( *is the entrywise multiplication),

(i1) M;+ N and My + N are orthogonal designs, and

(12) My ML = My M.

We denote this product design by PD(n; A1y...,Cp; by, b ... ,ct).

Product designs were first introduced by Robinson [43]. They are useful to con-

struct full orthogonal designs with maximum number of variables for some orders and

types.

In Theorem 4.5, we show that there does not exist any

PD(n; 1,1,1; 1,1,1; n—3)

for all n > 12. However, Robinson in [43] showed that for each n, n € {4,8,12}, there
is a PD(n; 1,1,1; 1,1,1; n— 3). Then we extend PD(n; 1,1,1; 1,1,1; n— 3) for
the cases n = 8 and n = 12 to construct new full amicable orthogonal designs with
maximum number of variables in some small orders. The methods are slightly similar
to [23]. Some of these amicable orthogonal designs are displayed in Appendix.

In Construction 4.14, we show that there exist

AOD(16; 2,2,2,10; 2,2,2,10) and AOD(24; 2,2,2,18; 2,2,2,18),



and consequently, we find an infinite class of full amicable orthogonal designs:

AOD(Q”; 205%,10,10,5-22,...,5- 2", 2?3—)3,5-2"—3>, n> 4,

AOD<2"-3; 2r,2,18,18,9-2%,...,9. 2" %, 2?3;2,9-2"—2), n> 3.

Conjecture 1.3 (see [29]). There is a full (non-zero entries) OD (22"“_1; a... ,a)

in 22 variables for each n > 1.

Only case n = 1 of this conjecture is known, i.e, OD (8; 1(8)). In the last section
of Chapter 4, using a slightly different method from [29], we show that there exist full
amicable orthogonal designs in 16 variables of order 2°, and so an OD(2'7; 2?16)).

The following general construction method is shown in [13, 15].

Theorem 1.4. Suppose that r and n are positive integers, by, bs,... by are pow-
ers of 2, and there is an orthogonal design of type (b1, bs, ..., bs) and order 2'n. If
51,89, ..., 8y are positive integers with sum 2¢(by + by + -+ - +by) for some d > 0, then

there is an integer N such that for each a > N, there is an
OD (2“+d+rn; 2%51,2%89, ..., 2asu).

In Chapter 5, we prove the above theorem without requiring the existence of an
orthogonal design of type (b1, bs,...,b;) and order 2"n.

In Proposition 5.2, we show that for any given sequence of positive integers

(b,a1,as, ...,a), there exists a full COD of type (2m 1y, 2™ - 2‘(2), S, 2m 2‘85),
where m = 4k + b+ 2 if b is even, and m = 4k + b+ 1 if b is odd.
In Theorem 5.7, we prove that for any ¢-tuple (sy,...,s,) of positive integers,



there is an integer N = N(s1, ..., sy) such that for each n > N, there is an

OD(Q"(sl + -+ sg); 27 31,...,2”s€>.

In Theorem 5.11, we also show that for any s-tuple (uy,us, . . ., us) and any t-tuple
(v1,v9,...,1v;) of positive integers, there are integers h, hy, hy and N such that there
exists an

AOD (2”h; onthigy, o onthiyognthey oo 2"+h2vt>,

for each n > N.

Robert Craigen introduced and studied signed group Hadamard matrices exten-
sively in [5, 8]. Ivan Livinskyi [38], following Craigen’s lead, studied and provided a
better estimate for the asymptotic existence of signed group Hadamard matrices and
consequently improved the asymptotic existence of Hadamard matrices.

In Chapter 6, in order to improve these results, we introduce and study signed
group orthogonal designs. The main results include a method for finding signed
group orthogonal designs for any k-tuple of positive integers, and then an applica-
tion to obtain orthogonal designs from signed group orthogonal designs. Therefore,
we show that for any k-tuple (ul, e ,uk) of positive integers, there is a circulant
quasisymmetric signed group orthogonal design of order 4(u1 4+ -+ uk) and type

(4u1, . 4uk) for some signed group S that admits a remrep of degree 2", where
k k

Z og(u;) +8k+2orn < — Zlog u;) + 10k + 2.
Then se Theorem 6.26 which descrlbes a method to obtain orthogonal designs
from signed group orthogonal designs to find some other bounds for the asymptotic
existence of orthogonal designs, namely, for any k-tuple (ul, e ,uk) of positive in-

tegers, there is an integer N such that for each n > N, there is a full OD of type



k k
3 1
(2"uy, ..., 2"uy), where n < B E log(u;) + 8k +4 or n < R E log(u;) + 10k + 4
i=1

i=1

(see Definitions 6.1, 6.3, 6.4, 6.5 and 6.8 for more details).

In the last section of Chapter 6, we show that for each n > 2, there is a signed
group orthogonal design of order 2" and type (1(2n)), and then in Theorem 6.49, we
show that if r is a Golay number and ki, ks, ..., kon-s_; are complex Golay num-
bers, n > 2, then there is a complex orthogor31a1 design of order 29m and type

an—3_1

(2q, 20y 291 72q+1k2n73_1), where m = 2 Z ki+r+1landg=2""14+n—1.
j=1



Chapter 2

Preliminaries

The definitions, theorems and statements of this chapter can be all found in [18, 43,

53].

2.1 Weighing matrices

Definition 2.1. A Hadamard matrixz of order n is a square matrix H of order n with
entries from {£1} such that HH"' = nl,, where H' is the transpose of H, and I, is
the identity matrix of order n.

A weighing matriz of weight k and order n, denoted W (n, k), is a square matrix W

of order n with entries from {0, 41} such that WW* = kI,,.
Remark 2.2. If n = k, then a W(n,n) is literally a Hadamard matrix.

Proposition 2.3 ([18]). If there exists a W (n, k) for some odd n, then k must be an

mnteger square.

Proof. Suppose that n is an odd number and W is a W (n, k). We have WW*' = kI,,,
therefore det(WW)? = k™. Since n is odd, we conclude that k must be an integer

square. [



The following two lemmas are well known from linear algebra [36].
Lemma 2.4. The eigenvalues of a symmetric matriz with real entries are real.

Proof. Let A be a symmetric matrix and A be an eigenvalue of A. Then there is a

nonzero vector x such that Az = Az. We have

Azt = (Ax)" = (Ax)”

= "A"

The last equality holds because A is symmetric and has real entries. Therefore,

¥z = x* Ar = \a*z. Hence \||z||? = A||x||%. Since # # 0, A = X. Thus, \ is real. [

Lemma 2.5. The eigenvalues of a skew-symmetric matriz with real entries are of the

form +1b, where b is a real number.

Proof. Suppose that B is a skew-symmetric matrix with eigenvalue A. Then there is

a nonzero vector z such that Bx = Az. We have

Az* = (Az)" = (Bx)”

The last equality follows from the fact that B is skew-symmetric with real entries.
So, A\z*x = —x*Bx = —Az*z. Since x # 0, A+ X = 0. Therefore, A = ib, for some

real number b. O

Lemma 2.6 ([18]). The absolute values of the eigenvalues of a weighing matriz

W(n, k) are Vk.

10



Proof. Let A be an eigenvalue of W = W (n, k). So, Wz = Az for some x # 0. Thus,
Mot = (\r)* = (Wa)* = 2" W'

Multiplying W from the left to the above equality and using W'W = kI,,, one con-
cludes A\z*W = kz* and so A\e*Wa = ka*z. Hence, AMa*z = ka*z. Since z # 0,
k = |\]?. Therefore, || = Vk. O

2.2 Orthogonal designs

Definition 2.7. A complex orthogonal design (COD) of order n and type (sq, ..., S¢),
denoted COD(n; s1,...,S), is amatrix X with entries from {0, e;x1, . . ., €z}, where

the z,;’s are commuting variables and €; € {£1, £i} for each j, that satisfies

l
7=1

where X* denotes the conjugate transpose of X and I, is the identity matrix of order
n. A complex orthogonal design in which €; € {#1} for all j is called an orthogonal
design (OD), denoted OD(n; si,...,5:). An orthogonal design in which there is no

zero entry is called a full OD.

The domain of variables in this work are taken in R, and they are assumed to be

commuting.

Example 2.8. It can be seen that the following matrices are OD (4; 1,1,1, 1) and

CcOoD (6; 1, 5), respectively,

11



i.’ﬂl i) i) i) T i)

I ) T3 Ty ) i[L‘l To —To —T2 T

—T9 I T4 —I3 To i) z'xl Ty —T9 —XT2
Y

—X3 —XT4 T i) Ty —XT2 i) 121 To —XT2

— T4 T3 —XT2 il Ty —To —T2 ) i[El T

To Tog —X2 —XT9 i) il’l

Remark 2.9. Equating all variables to 1 in any full OD results in a Hadamard
matrix.
Equating all variables to 1 in any OD of order n results a weighing matrix W (n, k),

where £ is the number of nonzero entries in each row (column) of the weighing matrix.

Definition 2.10. The Hadamard product of two m x n matrices A = [a;;] and B =
b;;], denoted A * B, is an m X n matrix computed via entrywise multiplication of A
and B, i.e, Ax B = [a;;b;j]. A and B are called disjoint if Ax B = 0. Pairwise disjoint

matrices such that their sum has no zero entries are called supplementary.

Proposition 2.11 ([18]). A necessary and sufficient condition that there exists an
OD(n; ul,...,uk) is that there exists a family {A, ..., Ax} of pairwise disjoint
square matrices of order n with entries from {0, 41} satisfying

(1) A;is a W(n,u;), 1 <1<k,

(i1) AjAL = —A; AL, 1<i#j<k.

Definition 2.12 ([18]). A rational family of order n and type (s, ..., sk), where the
s;’s are positive rational numbers, is a collection of k rational matrices of order n,
Ay, ..., Ay, satistying

(i) A;AL = s;1,, 1 <1<k,

12



(i) AAL = —A;AL 1<i#j<k.

Theorem 2.13 ([18, 40]). The mazimum number of variables in an orthogonal design

of order n = 2%b, b odd, is p(n) = 8c+ 2%, where a = 4c+d, 0 < d < 4. p(n) is called

Radon’s number.

Example 2.14. The maximum number of variables in orthogonal designs of order 2,

4, 8,16, 32, 64, and 128 are 2, 4, 8, 9, 10, 12, and 16, respectively.

Definition 2.15. The Kronecker product of two matrices A = [a;;] and B of orders

m x n and r X s, respectively, is denoted by A ® B, and it is the matrix of order

mr x ns defined by

CLHB CngB

A9 B — anB  axnB

A1 B Am2 B

CLlnB
aan

A B

The direct sum of A and B is denoted by A @& B, and it is the matrix of order

(m+ 1) X (n+ s) which is defined as follows

A 0
A® B = ,

0 B

where 0 represents a zero matrix of appropriate size.

Lemma 2.16 ([36]). Suppose that A, B,C, D and L are matrices of orders m X n,

rxs, nxp,sxtandaxf, respectively. Then

(i) (A+B)QL=A®RL+B®L if (m,n)=(rs),
(1)) (A® B)(C® D)= AC ® BD of order mr x pt,

(it1) (A® B)! = A' @ B,

13



(iv) (A@ B)'=A'® B,

2.3 Type 1 and type 2 matrices

Definition 2.17 ([18]). Suppose that G is an additive abelian group of order n, with
elements ordered ¢y, ..., g,. Let ¥ and ¢ be two functions from G to a commutative
ring. The square matrices C' = [¢;;] and B = [b;;] of order n are called type 1 and

type 2 matrices, respectively, if ¢;; = ¥(g; — ¢;) and b;; = ©(g; + g;).

Example 2.18. Consider G = Z/77Z with elements

90:07 91:17 92:2, 93:37 g4:47 95:57 96:6

Let 1 and ¢ be the inclusion maps from G to the commutative ring Z/7Z.
If ¢;;j = g; — ¢g; and b;; = g; + g; reduced modulus 7, 0 < 4,7 < 6, then the matrix

C = [ci;] is a type 1 matrix, and the matrix B = [b;;] is a type 2 matrix displayed as

follows:
01 23 45 6 01 23 45 6
0f0 1 2 3 4 5 6 0f0 1 2 3 4 5 6
16 01 2 3 4 5 11 23 45 6 0
215 6 0 1 2 3 4 212 3 4 5 6 0 1

C=3l456 012 3 and B=3[3 4 5 6 0 1 2| (21
43 4 5 6 0 1 2 414 5 6 01 2 3
512 3 45 6 0 1 515 6 01 2 3 4
61 2 3 4 5 6 0 66 01 2 3 4 5

Definition 2.19 ([1]). Suppose that ¢ is an odd prime power. The quadratic character

14



of GF(q) ( the Galois field of order ¢) is defined by

0 if x=0,
x(r) =4 1 if zis a quadratic residue,

—1 otherwise.

It is well known that x is a multiplicative function and x(—1) = (—1)@=1/2 (see
[49]). Consider g1, ..., g, are the ordered elements of GF(g). Then the square matrix
Q) = [gi;] of order ¢ defined by ¢;; = x(g; — ¢;) is a type 1 matrix, and it is called the

Jacobsthal matrix [1].

Theorem 2.20 ([18]). Suppose Q is a Jacobsthal matriz as in Definition 2.19. Then
(1) QJ =JQ =0,
(i) Q' = (1)« V/2Q,
(111) QQ' = ql — J.

Proof. 1t is well known (see [49]) that half of the non-zero elements of GF(q) are
quadratic residues or squares and half of them are quadratic non-residues or non-

squares, thus (i) follows. Since

g = x(9: — 9;) = X(=1)x(g; — g:) = (=1) /gy,
one has Q' = (—1)@1/2Q. To see the last part, one observes that, for each b # 0,

Y. xax(a+b)= Y x(1+ba)

a€GF(q) aeGi)(q)
= Y xl@= > xla)—x(1)=-1L
a€GF(q) a€EGF(q)
a#1l

15



Corollary 2.21 (Paley [18]). Suppose that e is the 1 X q vector of all ones and let

0 e
(—1)a=D2et @

If ¢ = 3 (mod 4), then W + 1,41 forms a Hadamard matriz of order ¢ + 1, and if
g =1 (mod 4), then

Wl W—=1I14

W -1, —W =11,

forms a Hadamard matriz of order 2(q+ 1).
Example 2.22. Consider GF(7). It can be seen that 1,2 and 4 are square in GF(7).

Replacing these numbers by 1 and the numbers 3,5,6 by —1 (denoted by —) in the

matrix C, (2.1), one gets the following matrix.

(0011 - 1 — -]
- 011 - 1 —
- — 011 -1
Q=11 - — 0 1 1 —
-1 - =0 1 1
1 — 1 — — 0 1
11 -1 - =0

From Corollary 2.21, since 7 = 3 (mod 4), W + I3 gives the following Hadamard

matrix of order 8.

16



(1111111 1]
-~ 111 -1 — —
- - 111 — 1 -
PR I B N
-1 - — 1 1 1 —
- -1 - -1 1 1
-1 -1 - — 1 1
-1 1 - 1 - — 1|

Lemma 2.23 ([18]). Suppose that G is an additive abelian group of order n with
elements ordered g1, . .., g,. Let ¢, and ¢ be functions from G to some commutative
ring R. Define n x n matrices A = [a;;], C = [c;;] and B = [b;] by a;; = ¢(9; — 9:),
cij = U(g; — gi) and bi; = p(g; + g:), respectively. Then

(i) B'=B,

(1) AC = CA,

(iii) CB! = BC!,

Proof. Part (i) is trivial because b;; = ¢(g; + gi) = ¢(9i + g;) = bji. To see part (ii)

one observes that

(AC)y; =Y ol — g:)v(g; —t)

teG

=Y _olg; = hu(h =) (putting h = g; + g; — t)
heG

= Z Y(h — gi)o(g; — h) (because R is commutative)
heG
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Finally, for part (i7i),

CBt Zwt_gz g]+t)

teG

—Zw (h—g;)e(g;i +h) (putting h = g; +t — ¢;)
heG

= Z (g + h)Y(h — g;) (because R is commutative)
heG

= (BC")jj.
]

Definition 2.24. Let A = (ai,...,a,). The square matrix C' = [¢;;] of order n is
called circulant if ¢;j = a;_;;1, denoted circ (al, e ,an), where j —1i is reduced modulo
n.

The square matrix B = [b;;] of order n is called back-circulant if b;; = a;4;_1, denoted

backcirc (al, e ,an), where 7 + j — 2 is reduced modulo n.

Remark 2.25. (i) Any type 1 matrix defined on Z/nZ (with its standard ordering)

is circulant because

cij =9 —i)=v(F—i+1-1)=crjip.

(77) Any type 2 matrix defined on Z/nZ (with its standard ordering) is back-circulant

because
bij = oli+j)=pli+j—1+1)= b1itj1-
Using the properties of type 1 and type 2 matrices in Lemma 2.23 combined with

Remark 2.25, one has the following.

Corollary 2.26 ([18]). Suppose that A and C are circulant matrices of order n and

B is a back-circulant matriz of order n. Then
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(i) B=B,
(ii) AC =CA,
(iii) BCt = CB.

Definition 2.27. A set Q of commuting matrices with AB' = B'A for all A, B € Q

is called a set of near type 1 matrices [23].

Example 2.28. The set of order one matrices in a single variable, and the set of

oy
order two circulant or negacirculant matrices in two variables, , are sets of

near type 1 matrices.

2.4 Autocorrelation functions

Definition 2.29 ([18]). The non-periodic autocorrelation function of a (0,=£1, +i)-

sequence A = (ay,...,a,) is defined by

n—j
‘  aiga if j=0,1,2,...,n—1
NA(]) = i=1

0 j>n
where a; denotes the complex conjugate of a;.

Aset {A1, Ag, ..., A} of (0, £1, £i)-sequences (not necessarily of the same length)

is said to have zero autocorrelation with weight w if
Na,(5) + Nag(4) + -+ + Na, (5)

is zero for all 7 > 0, and is w for j = 0. Sequences having zero autocorrelation are

called complementary.
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Example 2.30. Let A = (1,1,—) and B = (1,4,1). Then Ns(0) = Np(0) = 3,
N4(1) = Np(1) =0, N4(2) = —1 and Np(2) = 1. Thus, A and B are complementary

with weight 6.

Definition 2.31 ([18]). For j = 0,1,2,...,n—1, the periodic autocorrelation function

of a (0, %1, £i)-sequence A = (ay,...,a,) is defined by

Pa(j) == aia,
=1

where 7 + j — 1 is reduced modulo n.

Lemma 2.32 ([18]). Let A = (a1, a9, ...,a,) be a (0,%1, £i)-sequence. Then for all
7=0,1,...,n—1,

Pa(j) = Na(j) + Nag(n — j),
where Agr = (ay, ..., as,a1), the reverse of sequence A.

Remark 2.33. Lemma 2.32 implies that (0,+1, £i)-sequences of the same length
with zero autocorrelation have also zero periodic autocorrelation. But the reverse is
not true. As an example, the sequences A = (1,7) and B = (1,4) have zero periodic

autocorrelation; however, they do not have zero autocorrelation as
Ns(1) + Np(l) =i +1i=2i #0.

Definition 2.34 ([18]). Let A = (x1,...,x,) be a sequence of commuting variables.

Then the non-periodic autocorrelation function of A is defined by

n—j
, Y wga i j=0,1,2,....n—1
Na(j) == =
0 i>n

20



A set {Ay, Ag, ..., As} of sequences involving commuting variables (not necessarily of

the same length) is said to have zero autocorrelation with weight w if

Nay(7) + Nay () + -+ Na, ()

is zero for all 7 > 0, and is w for 57 = 0. Sequences involving commuting variables

that have zero autocorrelation are also called complementary.

Definition 2.35. Two complementary (+1)-sequences are called Golay sequences.
Two complementary (+z, +y)-sequences of length ¢ are called a Golay pair of length

¢ in two variables z and y.

Example 2.36. The sequences A; = (z,y) and B; = (z, —y) form a Golay pair of
length 2 in two variables z and y. We will use the Golay pair (A;; By) in Chapter 5,
Lemma 5.1.

The sequences Ay = (z,y) and By = (y, —z) form a Golay pair of length 2 in two

variables = and y. We will use the Golay pair (As; By) in Chapter 6, Lemma 6.6.

Definition 2.37. A square matrix C' is called Hermitian if C' = C*, where C* is the

conjugate transpose of C.

2.5 Amicable and anti-amicable matrices

Definition 2.38 ([18]). Two real matrices A and B are called amicable if AB* = BA".
They are called anti-amicable if AB* = —BA®.

Two complex matrices C' and D are called complex amicable if CD* = DC*.

They are called complex anti-amicable it CD* = —DC™.

Let M be an OD(n; Cly ..., ck) on variables x1, ..., x;, and N be an OD(n; dy, ... ,dm)

on variables ¥, ..., ymn, where the two sets of variables are disjoint. Then (M; N) is
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called an amicable orthogonal design, denoted
AOD(n; Cly s C; dy, ... ,dm),

if MN'* = NM*. (M; N) is called anti-amicable if MN' = —NM".
Let X be a COD(n; cl,. .. ,ck) on variables x1, ..., x;, and Y be aC’OD(n; dy,. .. ,dm)
on variables ¥, ..., yn, where the two sets of variables are disjoint. Then (X;Y) is

called a complex amicable orthogonal design, denoted
AC’OD(n; Clyeo oy C; dyy ... ,dm),

it XY* =YX

01 1 0 0 1
Example 2.39. Let P := , Q= , R = , and I be the

10 0 -1 -1 0

identity matrix of order 2. Then
PQ'= —QP', RI'=—IR" PR'=RP" PI'=1IP' QI'=1Q" RQ'=QR"

Throughout this work P, @), R and I are these 2 by 2 matrices.

a b c d
Example 2.40. It can be seen that the matrices and form

b —a —d c
an AOD(2; 1,1; 1, 1), and the following matrices form an AOD(4; 1,1,2; 1,1, 2),

a b ¢ ¢ e f g g
b a ¢ —c f —e g —g
c ¢ —a —b ’ —-g —g [ e

| ¢ —c b —a | -9 g e —f |
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Theorem 2.41 (W. Wolfe [53]). If (A; B) is an amicable orthogonal design in order
n = 2%, b odd, then the total number of variables in A and B is less than or equal

to 2a + 2, and this bound is achieved for all values of n.

Theorem 2.42 (see [18]). For each positive integer n, there is a set

A= {In,Al,AQ, o ,A,,(n)_l}

of pairwise disjoint anti-amicable signed permutation matrices of order n, and equiv-

alently there is an OD (n; 1(p(n))), where p(n) is Radon’s number.

Theorem 2.43 (W. Wolfe [53]). Given an integer n = 2°d, where d is odd and s > 1,
there exist sets A = {Al, . ,As+1} and B = {Bl, e Bs+1} of signed permutation
matrices of order n such that

(1) A consists of pairwise anti-amicable, mutually disjoint matrices,

(17) B consists of pairwise anti-amicable, mutually disjoint matrices,

(¢3i) for each i and j, A; and B; are amicable.

Proof. For each k, 2 <k <s+1, let
Ay = <®f:1]) oI, A= (@f;ff) ®R® (@f:kP> ® 1,

and

B = (@ P)ely B= (@) eQe (oL, Pl

where P, (), R, I are the same 2 by 2 matrices as in Example 2.39, and I; is the
identity matrix of order d. Then the matrices A; and B; (1 < i < s+ 1) satisfy the

three properties (7), (ii) and (7). O
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2.6 Product designs

Definition 2.44 (P. Robinson [43]). Let M; be an OD(n; ai,...,a,) on vari-
ables x1,...,x,, My be an OD(n; bl,...,bs) on variables yi,...,ys, and N be an
oD (n; Cly.. ., ct) on variables z1, ..., z;, where the three sets of variables are disjoint.
Then (My; My; N) is called a product design of type (aq,...,a.;b1,...,bs;c1,...¢;) and
order n if the following conditions hold:

(1) M;y*xN = Myx N =0,

(i1) M;+ N and My + N are orthogonal designs, and

(113) My ML = MyMY.
We denote this product design by PD(n; A1y.nnyCp; by, bgs ... ,ct).

Example 2.45. It can be verified that (M;; Ms; N) is a PD(4; 1,1,1; 1,1, 1; 1),

where
0O b ¢ d 0 e f g a 0 0 O
- 0 d —c —e 0 —g f 0 a 0O
M1 = s M2 = and N =
—c —d 0 b —f g 0 —e 0 0 a O
—d ¢ —=b 0 —g —f e 0 00 0 a

The following theorem of Peter Robinson [43] shows how to construct orthogonal

designs by combining amicable orthogonal designs and product designs.

Theorem 2.46 (P. Robinson [43]). Suppose that (S;yR + P) is an

AOD(m; UL, ...y Uj; v,wl,...,wk),

where R is a W(m,v) and P is an OD(m; wl,...,wk). Let (My; Ma; N) be a
PD(n; ai,...,0a,; bi,..., b; cl,...,ct). Also, let b,c,u,w be the sums of the b;’s,

¢;’s, u;’s and w;’s, respectively. Then there are
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: val,...,var,wbl,...,wbs,ucl,...,uct),
; val,...,var,wbl,...,wbs,ulc,...,ujc),
; val,...,var,wlb,...,wkb,ucl,...,uct),

; val,...,var,wlb,...,wkb,ulc,...,ujc).
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Chapter 3

Asymptotic existence of weighing

matrices

Peter Eades in his Ph.D. thesis showed some existence results for weighing matrices.
He showed that when the order of orthogonal designs and weighing matrices are much
larger than the number of nonzero entries in each row, the necessary conditions for
existence of orthogonal designs and weighing matrices are also sufficient. In this chap-
ter, we show some non-existence results on weighing matrices and some asymptotic
results for existence of weighing matrices. Our main references in this chapter are

[13] and [18].

3.1 Non-existence results for weighing matrices

Theorem 3.1 ([5]). There does not exist any symmetric weighing matriz with zero

diagonal of odd order.

Proof. Suppose that W = W (n, k),n odd, is a symmetric weighing matrix with zero
diagonal. From Linear Algebra, tr(W) = Z A, where \,’s are eigenvalues of W. By

t=1
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Lemma 2.4 and 2.6, since A\, = £V/k,

tr(W) = z”: A = eVE.

t=1

Since n is odd, ¢ must be odd and therefore nonzero, but, by assumption, tr(W) = 0,

which is a contradiction.

Theorem 3.2 ([5]). There is no skew-symmetric weighing matriz of odd order.

Proof. Assume that W = W(n, k) is a skew-symmetric weighing matrix of odd order.

From Lemma 2.5 and 2.6, eigenvalues of W are in form +iv/k. Therefore,
tr(W) = > A = civk
t=1

Since n is odd, ¢ must be odd and so nonzero, but since W is skew-symmetric,

tr(17') = 0 which is a contradiction. O

Next, we show that if n is any odd number and k cannot be written as the sum
of three integer squares, then there is no skew-symmetric weighing matrix W (4n, k).

The following well known results, due to Gauss, are taken from [44].

Theorem 3.3 ([44]). A positive integer can be written as the sum of three integer

squares if and only if it is not of the form 4°(8k +7), where £,k > 0.

Lemma 3.4 ([44]). A positive integer is the sum of three rational squares if and only

if it is the sum of three integer squares.

Proof. Suppose that a positive integer n is the sum of three rational squares. Reducing

the three rational numbers to the same denominator, one may write

m’n = o® + > + 7,
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where «, 3 and v are integers. Suppose that n cannot be written as the sum of three
integer squares. From Theorem 3.3, there exist nonnegative integers k, ¢ such that
n = 4°(8k + 7). One may write m as 2"(2s + 1), for some nonnegative integers r, s.

2
Thus, m? = 47(4(s> + 5) + 1) = 47(8b+ 1), where b= > 1>

is a nonnegative integer,
and so

m®n = 48k 4+ 7)(8b 4 1) = 4" (8¢ + 7),

where ¢ = 8kb+k+T7b. This is a contradiction because by Theorem 3.3, m?n cannot be
written as the sum of three integer squares, whereas by assumption m?n = o+ 3?++2.

Therefore, the result follows. O

Theorem 3.5 (D. Shapiro [45]). There is a rational family in order n = 2™t, t odd,
of type (s1,...,sk) if and only if there is a rational family of the same type in order

2m,

Lemma 3.6 (Geramita-Wallis [18]). A necessary and sufficient condition that there

be a rational family of type [1, k] in order 4 is that k be a sum of three rational squares.

Proof. Suppose that {A, B} is a rational family of type [1, k] in order 4. Then

{I = A'A, D = A'B } is also a rational family of the same type and order. Thus
D = —D! and DD! = kI. Since D is skew-symmetric, the diagonal of D is zero, so k
is a sum of three rational squares.

Now let k = a? + b + ¢?, where a,b and c are rational numbers. If we let

0 a b ¢
—a 0 —c b
D= ,
b ¢ 0 —a
—c —=b a 0
then {I, D} is a rational family of type [1, k] and order 4. O
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We use Lemmas 3.6 and 3.4 and Theorem 3.5 to prove the following nonexistence

result.

Theorem 3.7. Suppose that positive integer k cannot be written as the sum of three
integer squares. Then there does not exist a skew-symmetric W (4n, k), for any odd

number n.

Proof. 1f there is a skew-symmetric W = W (4n, k) for some odd number n, then
{I4,, W} is a rational family of type [1, k] and order 4n. Thus, by Theorem 3.5, there
is a rational family of type [1, k] and order 4. Lemmas 3.4 and 3.6 imply that & must

be the sum of three integer squares. O]

3.2 Asymptotic existence of weighing matrices

The following lemma, due to Sylvester, is known [46].

Lemma 3.8. Let x and y be two relatively prime positive integers. Then every integer

N > zy can be written in the form ax + by, where a and b are nonnegative integers.

Proof. Let N be an integer greater than or equal to zy. Since z and y are relatively

prime, there are integers ¢ and d such that cx + dy = N (see [44]). So,
(c+jy)r+(d—jr)y =N,

where 7 € Z. One can choose j such that 0 < ¢+ jy < y — 1. For such j, we let

a = c+jy and b = d — jx. The condition N > xy implies that b must be positive. []

The following lemma shows how to construct orthogonal designs of higher orders

by using two orthogonal designs of the same types but different orders.
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Lemma 3.9 ([18]). Suppose that there are O D (nl; U, ... ,um) and OD (ng; U, ... ,um).
Let h = ged(ng,ng). Then there is an integer N such that for each t > N, there is an
OD(ht; Up, . .- ,um).

n n
Proof. Let x = # and y = f Then x and y are relatively prime. Let N = zy, and

t be a positive integer > N. By Lemma 3.8, there are nonnegative integers a and b
such that t = ax+ by. Since there exist OD (nl; Uy, . .. ,um) and OD (nz; Uy, . .. ,um),
there are families {Al, - ,Am} of order n, and {Bl, . ,Bm} of order ny satisfying

the conditions in Propostion 2.11. We define the family
{(ln@ A ®L,®B),...,(la® Ay ® I, @ By) }

of order an; + bny, = ht. It can be seen that this family satisfies the conditions of

Proposition 2.11, therefore it makes an OD (ht; Uy, ... ,um). O

Corollary 3.10. If the first two OD’s in Lemma 3.9 are symmetric, then there is an

integer N such that for allt > N, there is a symmetric OD (ht; Up,y - - - ,um).

Proof. Same argument as proof of Lemma 3.9. Note that
(A@B)@ (Co D)) = (A'® BY) @ (Ct @ DY),

]

Theorem 3.11 (Seberry-Whiteman [51]). Let g be a prime power. Then there is a

circulant W (¢* + ¢ + 1, ¢?).

Corollary 3.12 ([13, 18]). Suppose that q is a prime power and c is any positive

integer. Then there is a circulant V[/(c(q2 +q+1), q2).
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Proof. Let ¢ be a fixed positive integer. From Theorem 3.11, we know that there

exists a circulant I/V(q2 +q+ 1,q2). Suppose that the first row of this matrix is

(a1,a2,...,ag24q41)- Let
¢°+q+1

5o
i=1
Thus, ¢()¢(671) = ¢2, where £ is a primitive root of unity and £9°+¢+! = 1. For
1<j<c(g®>+q+1) define

bj = ¢ ,

0 otherwise

ar;y j=1 (mod c)

where [z] is the smallest integer greater than or equal to x.
We show that if W = circ(by, ba, . . ., begz1q+1)), then Wis a W (c(¢* + ¢+ 1), ¢?).

To see this, let
c(q®+q+1)

Z bjyj.
j=1

So,
a*+q+1 a°+q+1
w(y) _ Z aiyc(z—l)—l-l _ yl—c Z aiycz.
=1 =1

Since ¢(&)p(€71) = ¢2, for all & such that £ =1 (E)Y(E1) = ¢2, for all £ such

that £9°t7t1 = 1. Applying the finite Parseval relation

c(q?+q+1) 1 c(q®+q+1)
bzbz r = T 5 . aN oIk jra
2 b = G Z [e(e)Pe

where i +r — 1 is reduced modulo ¢(¢* + q + 1), for r = 0 gives

clq®+q+1)

Z b= q+q+1)<c<q2+q+1)q2):q2’
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c(q?+q+1)
and for 1 <r < ec(¢®? +q+1) -1, Z bib;y, = 0. Therefore, W is a circulant
i=1

W (elg®> +q+1),¢%). O

The next lemma shows how to make a symmetric orthogonal design to be used

for Theorem 3.18.
Lemma 3.13. Let k be a positive integer. Then there exists a symmetric OD (2'“; 1(k)).

Proof. Define Ay = @ _ Pandfor2 <n <k, A, = @"210Q®F _ P, where P and
() are the same matrices as in Example 2.39. It can be directly verified that the family
{Aq,..., Ay} of order 2F satisfies the conditions of Proposition 2.11, and therefore it

makes a symmetric OD (2"’ : 1(k)). Note that P, and I are symmetric. n
Theorem 3.14 (P. J. Robinson [43]). All OD(2%; 1,1,a,b,c) exist, where
a+b+c=2"—2andt > 3.

We prove the following well known lemma by giving a proof which is different
from the proof in [18].
Lemma 3.15. For any sequence (kl, ko, k3, k4) of positive integers, there is a positive

integer d such that there is a skew-symmetric OD (Qd; ki, ko, k3, k4).

Proof. Let t; and t, be the smallest positive integers such that 1 + k; + ky < 28
and 1 + k3 + k4 < 22, By Theorem 3.14, there are A = OD(Z“; 1,k1,k2) and
B = OD(QtZ; 1,k3,k:4). Without loss of generality, assume that {Igtl,Al,AQ} and
{IQQ, By, Bg} are two families corresponding to A and B satisfying the conditions of

Proposition 2.11. It can be directly verified that the family
{Im QA QP, I, @Ay @ P, By ® Iyn @ Q, By ® Ipn ®Q}

of four skew-symmetric matrices satisfies all conditions of Proposition 2.11, and so it

makes a skew-symmetric OD (2t1+t2“; ki, ko, ks, k4). O

32



Corollary 3.16 ([18]). Given any sequence (kl, ko, ks, k:4) of positive integers, there

exists a positive integer d such that there is an OD (2d; 1, ki, ko, k3, k4).
The following theorem was first proved by Geramita and Wallis [18].

Theorem 3.17 (Geramita and Wallis [18]). Suppose that k is a square. Then there

is an integer N = N(k) such that for each n > N, there is a W(n, k).

We use a slightly different method to the proof of Theorem 3.17 to give a proof

of the following improved result.

Theorem 3.18. Suppose that k is a square. Then there is an integer N = N (k) such

that for each n > N, there is a symmetric W(n, k).

m

Proof. Assume that k = qu , where ¢; is either 1 or a prime power. By Theorem
i=1

3.11, for each 7 there exists a circulant W; = VV(qZ2 +q +1, qf) Let

W =&, W;R.

m

It can be seen that W is a symmetric W (H(qf +q¢+1), H qf) :

i=1 i=1
m

Thus, there is an odd number ¢ = 1_[(97@2 + ¢; + 1) such that there is a symmetric
W (t, k). Moreover, from Lemma 3.13,zﬁlere exists a symmetric OD (2]“; 1(k)) and so
a symmetric W (2% k). Now since ¢ is odd, ged(2¥,¢) = 1. Corollary 3.10 implies
that there is a positive integer N = N (k) such that for each n > N, there exists a

symmetric W (n, k). O
We prove the following theorem by a slightly different method to the proof that
first was given by Eades [13].

Theorem 3.19. Suppose that k = ki + k3, where ki and ky are two nonzero inte-
gers. Then there is an integer N = N (k) such that for each n > N, there is an
OD(Qn; kf,k;)
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m

Proof. For j = 1,2, let kf = quj, where ¢;; is either 1 or a prime power. For each
i=1

1, 1 <i<m,let b = lcm{qfl + g1+ 1,¢% + qin + 1}. From Corollary 3.12, for each

J»J = 1,2, and each 7, 1 < i < m, there exists a circulant W;; = W(bl-, qu) It can be

seen that the following 2¢ X 2¢ matrix is an OD (2q; k3, k%),

xR, Wi R; y @ Wig

Yy @ity Wis  —z @2, WaR;

where R; is the back diagonal matrix of order b;, and ¢ = H b; is an odd number.
i=1
From Theorem 3.14, one can choose the smallest positive integer k such that

there is an OD(2%; ki, k%). Since ged(2¢,2%) = 2, Lemma 3.9 implies that there is

an integer N = N (k) such that for each n > N, there is an OD(2n; ki, k3). O

Using Theorem 3.19, we prove the following two corollaries given by Eades [13].

Corollary 3.20. Suppose that k is the sum of two nonzero integer squares. Then

there is an integer N = N(k) such that for each n > N, there is a W(2n, k).

Proof. Let k = k¥ + k3, where k; and ks are integers. From Theorem 3.19, there is
an integer N = N (k) such that for any n > N, there is an OD(2n; k7, k3), and so a

W(2n, k). O

Corollary 3.21. Suppose that d is an integer square. Then there exists an integer

N = N(d) such that for each n > N, there is a skew-symmetric W (2n,d).

Proof. Suppose that d = a%. Let k; = 1 and ky = a. By Theorem 3.19, there exists
an integer N = N(d) such that for each n > N, there is an OD (Qn; 1, d), and so a

skew-symmetric W (2n, d). O

We Use a different method to show Theorem 3.22 and consequently Corollaries

3.24, 3.25 and 3.26 first proven by Eades [13].
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Theorem 3.22. Suppose that k = ki + k3 + k3 + k%, where ki, ko, ks and ky are
nonzero integers. Then there is an integer N = N (k) such that for each n > N, there

is an OD(4n; ki, k3, k3, k3).

Proof. Assume that k = k? + k3 + k2 + k? and ky, ke, k3 and k, are nonzero integers.

Let k;JQ = quj, where g;; is either 1 or a prime power. For each ¢, 1 < i < m, let
i=1

b; = lcm{q?j +qjj+1; j=1,2, 3,4}. From Corollary 3.12, for each j, 1 < j < 4, and

each i, 1 < i < m, there exists a circulant W;; = W(b;, qu) Putting
A= WaR;, B=®~L Wy, C=&~LWs, D=L Wy,
in the following array (Goethals-Seidel [19]) gives an OD(4q; k3, k3, k3, k3),

TA yB 2C" uD
—yB A uD! —z2C"
—2C —uD? A yB!

—uD 20t —yB! zA

where g = H b; which is an odd number.
i=1
By Lemma 3.15, there is an OD (2% k%, k3, k3, k) for some suitable integer d > 2.
Since for d > 2, ged(4q,2¢) = 4, Lemma 3.9 implies that there is an integer N = N (k)

such that for each n > N, there is an OD (4n; ki, k3, k2, k). O

Remark 3.23. If some of the k;’s are zero in Theorem 3.22, then consider the circu-

lant zero matrices.

Corollary 3.24. Suppose that d is any positive integer. Then there is an integer
N = N(d) such that for each n > N, there is a W (4n,d).
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Proof. Tt is a well known theorem of Lagrange [25] that every positive integer can
be written in the sum of four integer squares. Let d = k% + k3 + k2 + k%. From
Theorem 3.22; there is an integer N = N(k) such that for each n > N, there is an

OD(4n; ki, k3, k3, k?), and therefore a W (4n, d). O

Corollary 3.25. Suppose that d is the sum of three integer squares. Then there exists

an integer N = N(d) such that for each n > N, there is a skew-symmetric W(4n, d).

Proof. Consider d = a® + b* + 2, for some integers a,b and c. Substituting k; = a,
ko = b, k3 = ¢ and ky = 1 in Theorem 3.22 gives the result. Note that the existence

of an OD(n; 1, h) is equivalent to existence of a skew-symmetric W (n, h). ]

Corollary 3.26. Suppose that d is any positive integer. Then there exists an integer

N = N(d) such that for each n > N, there is a skew-symmetric W (8n,d).

Proof. By Lagrange’s theorem [49], one can write d = k? + k3 + k2 + k3, where k;’s are
nonnegative integers. Let A, B,C and D be the same matrices as in Theorem 3.22.
It can be seen that the following matrix gives an OD(8¢; 1, k7, k3, k3, ki), where g is

obtained as in Theorem 3.22, and is an odd number:

TA yB 2C' uD  wl, 0 0 0
—yB xA uD' —zC' 0 wl, 0 0

—2C —uD' zA  yB 0 0 wl, 0

—uD 2C' —yB' zA 0 0 0 wli,

wl, 0 0 0 —zA yB" z2C' uD!
0 wl, 0 0 —yB' —xzA uD —zC

0 0 wl, 0 —z2C" —uD —zA yB
0 0 0 wl, —uD' 2C —yB —zA

From Corollary 3.16, there is an OD(2% 1,k%, k3, k2, k%) for some suitable integer
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d > 3. Since for d > 3, ged(8¢,29) = 8, Lemma 3.9 implies that there is an integer
N = N(d) such that for any n > N, there is an OD(8n; 1,k}, k3,k3,k3), and so a
skew-symmetric W (8n, d).

O

Example 3.27. Suppose that k = 92. Let ky = 2, ks = 4, k3 = 6 and k4 = 6 in
Theorem 3.22. Also, let q11 =2, g =1, qu =4, g =1, 3 =2, 3 =3, qua =2
and gg4 = 3. Then by = LCM{7,21,7,7} = 21, and by = LCM{3, 3,13,13} = 39.

By Theorem 3.22, there is an OD(4 - 21 -39; 22 42,6% 6?). From Lemma 3.15,
there is an OD(2'%; 22 4%, 6?,62). Thus, N(92) < 2% .3%.7-13, and so for each

n > N(92), there are a W (4n,92) and a skew-symmetric W (8n, 92).
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Chapter 4

Some notes on amicable orthogonal

designs

4.1 A non-existence result for product designs

Peter J. Robinson [43] showed that there exist product designs PD (4; 1,1,1; 1,1, 1; 1),
PD(8; 1,1,1; 1,1,1; 5) and PD(12; 1,1,1; 1,1,1; 9). In this section, we will show
that there does not exist any PD(n; ,1,1; 1,1,1; n— 3) for all n > 12. In doing

so, we first mention the following well known theorems.

Theorem 4.1 (see [49]). Suppose that a, o', b and ¢ are nonzero p-adic numbers and
p is a prime number. Define (a,b),, the p-adic Hilbert symbol, to be 1 if there are
p-adic numbers x and y such that ax® + by* = 1, and —1 otherwise. Then

() (a,0)p = (b;a)p, (a,c?), =1,

(i7) (a,—a),=1, (a,1—a), =1,

(iid) (ad’,)p = (a,b)p(a’, b)p,
and if p # 2, then

(iv) (r,8), =1 if r and s are relatively prime to p,
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(v) (r,p)p, = (r/p), the Legendre symbol, if r and p are relatively prime,

(vi) (p,p)p = (=1/p),

where r and s are positive integers.

Theorem 4.2 (Shapiro [18, 45]). There is a rational family of type (si1,...,S9) in

order 16 if and only if Sp(s1,...,589) := H(Si’ sj)p = 1 for every prime p.

i<j
Theorem 4.3 (Robinson [42]). There does not exist any OD(n; 1),n —5) for

n > 40.

Theorem 4.4 (Kharaghani and Tayfeh-Rezaie [30]). There is a full OD(32; 1), u, . .., uk)
if and only if (uy,...,ux) =(9,9,9) or (9,18) or (12,15) or (27).

Theorem 4.5. There does not exist any PD (n; 1,1,1; 1,1,1; n— 3) for allm > 12.

Proof. 1f there exists a PD (n; 1,1,1; 1,1, 1; n—3) for some n > 20, then by Theorem
2.46 and AOD (2; 1,1; 1, 1), there is an OD (Qn; L), 2n—6) which contradicts Theo-
rem 4.3. Clearly, there are no PD(n; 1,1,1; 1,1, 1; n—S) forn = 13,14,15,17,18, 19.

If n = 16, then there is an OD(32; 1(6),26) which is impossible by Theorem
4.4. Now suppose that there is a PD(ZO; 1,1,1; 1,1,1; 17). Using Theorem 2.46
and AOD(4; 1,1,2; 1,1,2), there is an OD(80;1,1,1,3,3,3,17,17,34). From Theo-
rem 3.5, there is a rational family in order 16 and type (1,1,1,3,3,3,17,17,34). By
Theorem 4.1, Si7(1,1,1,3,3,3,17,17,34) = —1. This contradicts Theorem 4.2. m

4.2 Some full amicable orthogonal designs

We apply techniques similar to those used in [18, 23] to obtain some classes of full

amicable orthogonal designs.

39



Construction 4.6. Suppose that Ay, Ay, B,C, D, E, F, G are square matrices of order

n. Let ) -
O D BC O 0 0 0

D 0 -CB O 0 0 0

B -C 0D O 0 0 0

C B -D 00O 0 0 0
Mlz )
O 0 00 0-D B C

O 0 0 0D 0 -C B

0 0 0 0B -C 0 -D

0 0 0o o0C B D 0]
[ 0 G E F O 0 0 0]
_G F -E 0 0 0 0

E F 0-G 0 0 0 0
F-EG 00 0 0 0

M2: )
0O 00 00 -E F G

0O 00 O0OE 0 G —F

O 00 OF G 0 E
0 00 0G -F -E 0
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A0 0 0 A —A A A
0 A 0 0 A A A —A
0 0 —A 0 —A —A A —A
0 0 0 —A —-A A A A

=
|
=
|
=
=
o
=
o
o

A A A A 0 0 —A; 0

fori =1,2. Now suppose that matrices Ay, Ay, B,C, D, E, F and G which are pairwise
amicable (not necessary orthogonal designs), and satisfy the following properties

(i) 5A,AL + BB+ CC'+ DD" = kI,

(it) 5AAL + EE" + FF' + GG' = s1,,.
Then the following matrices may be used to construct a disjoint amicable orthogonal

design of order 16mn :

U:N1®I+M1®Q, V:N2®P+M2®Rt, (41)

where P,Q, R and I are 2 X 2 matrices described in Example 2.39.

To see this, one observes that Ny Nt = NoN{, My Mt = MyM{ and fori,j € {1,2},
M;N} = —NiM;. Also, matrices I and Q) are disjoint with matrices P and R, while
matrices My and My are disjoint with matrices Ny and Ns.

Assume that the matrices Ay, Ay, B,C, D, E,F and G are full (no zero entries)
pairwise amicable, and H is a Hadamard matriz of order 2. Then the following

matrices may be used to construct a full amicable orthogonal design of order 16n :

Uy =N, @ H+ My®QH, Vy=N,®PH+ M,® R'H. (4.2)
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Example 4.7. Consider A; = backcirc(z, —b,b), Ay = circ(—d, d, d), B = circ(b, b, b),
C = circ(—a, b, b), D = circ(a, b,b), E = circ(d, d,d), F = circ(—c,d,d) and
G = circ(e,d,d). It can be seen that the conditions of Construction 4.6 hold, and

therefore matrices in (4.2) are AOD (48; 4,10, 34; 4, 44). See Appendix, page 106.

Construction 4.8. Suppose that Ay, Ay, B,C, D, E, F, G are square matrices of order

n. Let
| B C D 0 0 O 0 0 0 0 0 0_

-C B 0 —-D 0 0 0 0 0 0 0

-D 0 B C 0 O 0 0 0 0 0 0
0 D -C B 0 0 0 0 0 0 0 0
0 O 0 0 B C D 0 0 O 0 0

My — 0 0 0 0 -C B 0 —-D 0 0 0 0 |

0 O 0 0 -D 0 B C 0 O 0 0
0 0 0 0 0 D —-C B 0 0 0 0
0 0 0 0 0 O 0 0 B C D 0
0 0 0 0 O 0 0 -C B -D
0 0 0 0 0 O 0 0O -D 0 B
0 O 0 0 0 O 0 0 0 D -C B
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0

0 -G 0

-F

-G F FE

0

0

G FE

F

0 G —-F

0

0 0 —-F

0

G —-FE -—-F

0

0 -FE -G 0

0

0 -G —-FE

—-F

My

-Ai A A A A

A;

-A;, —A A A A A

— A,

—Ai A A A A —A

A

0

A A A A A A A

A;

—A; A A A

0

—A; —Ai A4

Ai

—Ap A A A A

A;

—Ai A A A

Ai

A —A A A

A;

A A —A —A —Ar —A A

Ai

1,2. Suppose matrices Ay, As, B,C, D, E, F and G are pairwise amicable (not

fora
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necessarily orthogonal designs) and satisfy the following properties :

(i) 9A4,AL + BB'+CC"'+ DD" = ul,,

(ii) 9A AL + EE' + FF' + GG' = vl,,.
Then, as in Construction 4.6, the matrices U and V' in (4.1) along with these new
matrices, My, M,, N1, Na, form a disjoint amicable orthogonal design of order
24n. Also, matrices Uy and Vi in (4.2) along with these new matrices, My, M,
N1, No, form a full amicable orthogonal design of order 24n, provided the matrices

A1, A, B,C, D, E,F and G in this construction are full and pairwise amicable.

Example 4.9. Suppose that A; = backcirc(x, —b,b), Ay = cire(—d, d, d),

B = circ(b, b, b), C' = cire(b,b,b), D = circ(b, b,b), E = circ(d,d,d), F = circ(d, d,d)
and G = circ(d, d, d). Then they satisfy all conditions in Construction 4.8, and there-
fore matrices Uy and Vy in (4.2) form an AOD (72; 18, 54; 72).

Example 4.10. Suppose that A; = backcirc(a, —a, —a, a, —a, a,a),

Ay = cire(e, —c, —c, ¢, —c, ¢, c), B = circ(b, a,a,a,a,a,a), C = circ(=b,a,a,a,a,a,a),
D = circ(a, —a,—a,a,—a,a,a), E = circ(d,c,c,c,c,c,c), F = circ(—d, ¢, c,c,c,c,c)
and G = circ(e, —c, —¢, ¢, —¢, ¢, c¢). It can be directly verified that Construction 4.8

forms an AOD(168; 4,164; 4,164).

Remark 4.11. If we replace matrices Ay, B,C, D, E, F and G by variables in Con-
structions 4.6 and 4.8, then matrices M, M, and N; will construct product designs

PD(8 1,1,1; 1,1,1; 5) and PD(12; 1,1,1; 1,1,1; 9), respectively.
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4.3 An infinite class of full amicable orthogonal
designs

The following theorem is an application to an algebraic result that Kawada and

Iwahori obtained in [28].

Theorem 4.12 (see [18]). Suppose that (A; B) is an amicable orthogonal design of
order n. Let t be the number of variables in B and py(n) be the number of variables

in A. Also, n = 2%%0d, where 0 < b < 4 and d is an odd number. Then
pi(n) <8a—t+46+1,

where the values of & are given in the following table :

b 0 |1(2]3
t=0(mod4)| 0O | 1|37
t=1(mod4)| 1 |2|3]5
t=2 (mod4) | —-1|3|4]|5
t=3 (mod4) | —-1|1[5]6

Theorem 4.13 (see [53]). Suppose there is an AOD (n; Up, U, . . .y Uy VY, Vo, . . ,vs).

Then for each t > 1, there is an
AOD <2tn; Uy, ur, 2uq, . ., 2 g, 2, L, 20, 200y, 20, ,2tvs>.

Construction 4.14. Replacing Ay, B, C, D, Ay, E, F and G by variables in Con-

structions 4.6 and 4.8, respectively, one obtains

AOD(16; 2,2,2,10; 2,2,2,10) and AOD(24; 2,2,2,18; 2,2,2,18).
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Applying Theorem 4.13 for these amicable orthogonal designs, one obtains an in-

finite class of full amicable orthogonal designs :
AOD(Q"; 2053,10,10,5 - 2%, 5- 2" 2?3;3,5.2"*3), n> 4

AOD(2”~3; 21%,18,18,9-2%,...,9. 2" %, 2’(13*)2,9.2"*2) n> 3.

Example 4.15. From Construction 4.14, we obtain

(i) AOD(24; 2,2,2,18; 2,2,2,18),

(1) AOD(48; 4,4,4,18,18; 4,4,4,36),

(vi1) AOD(96; 8,8,8,18,18,36; 8,8,8, 72).
See Appendix, pages 104, 107 and 108. According to Theorem 4.12, these amicable
orthogonal designs have taken the maximum number of variables.

We also display the following amicable orthogonal designs in Appendix, pages 103
and 105 :

AOD(16; 2,2,2,10; 2,2,2,10) and AOD(32; 4,4,4,10,10; 4,4,4,20).

4.4 Amicable full orthogonal designs in 16 vari-
ables

Lemma 4.16. There exists an AOD (29; 2?8); 2?8)).

Proof. Suppose that A = {Ay,...,As} and B = {By,..., Bg} are two sets of signed

permutation matrices of order 27 satisfying conditions (i), (i4) and (iii) of Theorem
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2.43. Let H be a Hadamard matrix of order 27. For each 1 < j < 4, let

1 1
X; = §$2j—1(A2j—1 — Ag;) H + 52 (Agj1 + Agj) H
and
1 1
Y; = §y2j—1(B2j—1 - B2J)H + Y2 (B2J'—1 + BQJ')H‘

Note that for 1 < i # j < 4, XZ-X; = —X; X! and Y;th = -Y;Y! For1<i,j <4,
XY} =Y;X}. Also, for each 1 < j < 4,

XX =2%(a3,_ +a3) Iy and Y;Y] =20(y3,_, +u3;) Lor.
Let

C=II®X1+IPRXo+PRI®Xs+P®P®X,,

D=1I®1I®Y ) +IPQY,+PRI®Y; + PR P XY,

8
It can be directly verified that CC* = ( 6Zx >]29 DD' = (262%2)]29 and
i= i=1

8

1
CD! = DC". Therefore, C' and D are an AO (29, ) O
Theorem 4.17. There is an OD(2'; 2‘(316)).

Proof. Let C' and D be the matrices constructed in the proof of Lemma 4.16. Then

¢ D 10. 96
isan OD (2 2(16)) ]

D —C

According to Theorems 2.41 and 4.12, there does not exist any AOD (25, 2?8); 2?8));

however, it is not known whether or not there exists an AOD(27; 2‘(l %)’ 2‘(*8))
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Chapter 5

Asymptotic existence of orthogonal

designs

We need the following well known lemma from [23] for our main construction.

Lemma 5.1. For any positive integer n, there is a Golay pair of length 2" in two

variables each appearing 2"~ times in each of sequences.

Proof. Consider n = 1. The sequences A; = (z,y) and By = (z, —y) of commuting
variables x and y is a Golay pair of length 2 in two variables in which each variable
appears one time in A; and B;. Let A,_; and B,_; be a Golay pair of length 27!

in two variables each appearing 2”2 times in both A,_; and B,_;. Then
An = (An—b Bn—l) and B, = (An—la _Bn—l)

form a Golay pair of length 2" in two variables as desired, where (A, B) means the

sequence A followed by the sequence B.
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5.1 Asymptotic existence of orthogonal designs

Following similar techniques in [23], we have the following proposition.

Proposition 5.2. For any given sequence of positive integers (b,ay,as, .. .,ax), there
exists a full COD of type (2m 1), 2™ - 2‘&), S, 2m 2‘(12)), where m =4k +b+ 2 if b

1s even, and m =4k + b+ 1 if b is odd.

Proof. Let (b,ay,as,...,a;) be a sequence of positive integers. We distinguish two
cases:

b .

27 y; and z;, 1 < j < k are
commuting variables. In the end of proof, we will replace these variables by the near

Case 1. b is even. Suppose that x;, 0 < @ <

type 1 matrices of order 2. For each j, 1 < j <k, let G;; and Gj, be a Golay pair in

y; and z; of lengths 2%. Let

j—1
s1=0 and s;=2) 2", 2<j<k+1. (5.1)

r=1

b
Let d = 5 + sg+1 and consider

My = cire(Oa), 2o, 0g—1)), My = cire(z1, 024-1)), (5.2)
. b
M,, = circ(0g_1y, Tn, O@d—n)) 2<h< 3
For each j, 1 < j <k, define
Nyj_q = cu"c( G, 0 (2d—%—s j_2aj)>, Nyj = circ(O(%ﬂﬁQaj), Gjo, O(Qd_%_sjﬂ)).

Let m =4k +b+ 2 and let A = {Al, e ,Am} be the collection of mutually disjoint

anti-amicable signed permutation matrices of order 2™~! constructed in Theorem
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2.43, and suppose H is a Hadamard matrix of order 2™, Let

C = 5(Mo+ M) @ A H + 5 (Mo — M) © A H (5.3)

(M + M) © AH + 5 (My = Mf) @ AH

N o —

+

1 1
+ <(Mh + M) ® §<A2h+1 + Agnio) H + i (M), — M) © §(A2h+1 - A2h+2)H>

>
2 Mwwv
[N}

+

J

1 1
((Nj + N;) 029 §(A2j+b+1 + A2j+b+2)H + i(Nj — th) ® §<A2j+b+1 — A2j+b+2)H)a

1

We show that

CC* = 2w ymg. (5.4)

U S t t t t t t
where w = —zoxy+ 217 + 1275+ - -+:133:L‘Q+2a1y1y1+2“1z121+- 2%y 2% 22
2

To this end, we first note that each of the sets

(My+ M), (M —M)

N | —

X .
{5 (Mo +5), 5 (Mo — 0,
{(Mn+0p), (N + ND); 2§h§g, 1<) < 2%}

and
{i(Mn = Mp), i(N; = NY); 2§h§g, 1< < 2%}

consist of mutually disjoint Hermitian circulant matrices. Moreover, for u = 0, 1, we

have
(M, + M) (M, + M) + ;l(Mu — M) (M, — MY = 2t I

| =
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b
and for each h, 2 < h < 3

(Mot ME) (M 33)' + (My— M) (M~

Also, for each j, 1 < j <k, we have

2j

M}tl)t = 4.Z'h.flj’2[2d.

2j

S (Nt NN+ N (N = N (N = VD)) =2 30 (NN + NI,

r=2j—1

r=2j—1

— 2aj+2 (yjy]t + ZjZ;‘)I2d-

b 1
Note that for each j, 3 < j < 3 + 2k + 1, the matrices §(A2j,1 + Agj)H and

1
2
of mutually anti-amicable matrices, the set

—( 2j—1 —A2j>H are disjoint with 0, &1 entries. Furthermore, since the set A consists

{AlH, AyH, AsH, A,H, 1(142]-,1 + A )H (3<j< g Yok 4 1)}

2

b
consists of mutually anti-amicable matrices. Since for each 7, 3 <7 < 3 + 2k + 1,

(Agj,1 + Agj) (Agj,1 + AQj)tIQm—l

1 1 o gm-
<§(A2j71 + A2j)H) (5(1423‘71 + A2J)H> =
- 2m_2]2m71 y
the validity of equation (5.4) follows.
In the equation (5.4), if we replace the zq by
—
ap B b o !
aby | 2<h< g they; by |0
—bBh an —5§- a;
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1 <7 <k, then the matrix C' will be a full COD of type

(27 1,27 -2

m' ag
L2 2 )

(4)

where the a, 3, ay’s, Bi’s, of’s, B’s, f’s and 3]s are variables.

Case 2. bis odd. Consider the following circulant matrices of order 2d+ 1, where
b—1

d= —5 TSk with the same s,’s as in equation (5.1),

M1 = CiI’C(l’l, O(Qd)),

[\
IN
>
IN
S
+
—_

Mj, = cire(0g—1), Tn, O@d—h+1))

M ‘

For each 1 < j < k, assume

2

Ny;_q = circ <O<b+1+sj) G, O(2d—b21—sj—2“j)>’
N2j = circ <O<b;1+sj'+2aj) y Gj27 0(2db218j+1)> .
The rest of proof is similar to Case 1, and so m = 4k + b+ 1. O]

Corollary 5.3. Let (b,ay,as,...,a;) be a sequence of positive integers and let
k

0/ =b+ 42 2%, Then for every £ > (', there is a

=1

COD(QW; 2™ 1, 27 24,27 2‘;;;)),

where m < 4k + b + 2.

Proof. In the proof of Proposition 5.2, depending on ¢, we may add an appropriate
amount of zeros to the circulant matrices in Case 1 or Case 2 as the same way as

we add the z;’s in (5.2) to obtain circulant matrices of order ¢. The rest of proof is
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similar. It can be seen that m < 4k + b+ 2. O

Let (uq,...,us) be an f-tuple of positive integers and suppose 2 is the largest
power of 2 appearing in the binary expansions of u;, i = 1,2,...,¢. Using the binary

expansion of each wu;, one can write

U1 1
U2 2

=FE : (5.5)
Uy Qt

where E = [e;;] is the unique ¢ x (£ + 1) matrix with 0 and 1 entries. We call £ the
binary matriz corresponding to the (-tuple (uy, ..., uy).

For simplicity and in order to make the first column of the binary matrix F
nonzero, in Lemma 5.4 and Corollary 5.5, we assume that the (-tuples of positive

integers have at least one odd element. Then we show Lemma 5.6.

Lemma 5.4. Suppose that (ui, ..., u;) is an {-tuple of positive integers such that at
least one of the u;’s is odd. Then there is an integer m = m(uy,...,up) such that
there is a

COD(Qm(ul e g); 2™, 2mu£>.

Proof. Let (uq,...,up) be an (-tuple of positive integers such that at least one of u;’s

is odd, and let d = uy + - -+ + up. We form the ¢ x (t + 1) binary matrix £ = [e;;]

corresponding to the (-tuple (uq,...,uy), where t is the largest exponent appearing
in the binary expansions of u;, i = 1,2,...,¢. Let
¢
Yi—-1 = Zeij, 1 S] St—l—l (56)

i=1
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We may use the following algorithm:

k=t~ = L%J, (|z] is the floor of ) (5.7)

while £ >0 do
{ﬁk = (mod 4);
k:=k—1;

Ve = V& + 2B%k+1;

if £#0 then
i-13)
k - 4 )
else
’Y;g = Vks }

Now we apply Proposition 5.2 to the sequence ('y(’), Ly, 2 .. ,t(%)). Thus, there

%)

is an integer m, such that there is a

m . om m m 2 m
COD(27d; 2™ 1, 2" - 2aag), 27 gy, 2" - 20y, (5.8)

t t
Indeed, if v is even or odd, then we take m = 42%-4—76—1—2 orm = 42%’-—1—7{]—1—1,
j=1 j=1
respectively. Note that the algorithm (5.7) breaks the binary expansion of the /(-
tuple (ug,...,us) such that we can use Proposition 5.2. Therefore, the elements
of the (-tuple (uq,...,us) can be obtained by adding the elements of the sequence
(1%), 25 2?475), ey 224%)) in a suitable way. Thus, equating variables in the COD

(5.8) in an appropriate way, we obtain a COD (de; 2™ Uy, . .. ,2mu€>. ]

Corollary 5.5. Let (uq,...,up) be an {-tuple of positive integers such that at least

one of u;’s is odd, and let d = uy + -+ + ug. Then for d > d, there is an integer
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m = m(uy,...,us) such that there is a
COD <2md'; 2"y, . .. ,Qmu£>.

Proof. We use Corollary 5.3 instead of Proposition 5.2 in the proof of Lemma 5.4.

m
Lemma 5.6. For any (-tuple (si1,...,8¢) of positive integers, there is an integer
r=r(s1,...,80) such that there is a
COD(ZT(Sl + -+ Se>; 2r81, ey 2T85>.
Proof. Suppose that (si,...,s,) is an (-tuple of positive integers and let
(81,...,85) :2q(u1,...,u5), (59)

where ¢ is a unique nonnegative integer such that one of u;’s is odd. By Lemma 5.4,

there is an integer m = m(uy, ..., u,) such that there is a
COD <2m(u1 + - Fug); 2™y, .. ,Qmug).
Now if m > ¢, then we choose r = m — ¢, and if m < ¢, then A® H is a
COD(2q(u1 + - Fuy); 2%y, ... ,2%4) = COD(sl + o+ Sp; 81, ,55>,

where H is a Hadamard matrix of order 297, and therefore we may choose r = 0. [

We now show an asymptotic existence result for ODs. In Chapter 6, we also give

some other bounds for N in the following theorem by a different method.
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Theorem 5.7. For any (-tuple (s1,...,s¢) of positive integers, there is an integer

N = N(s1,...,8¢) such that for each n > N there is an
OD(Q”(Sl + -+ Sg); 2”81, e 2”54).

Proof. Let (s1,...,s) be a f-tuple of positive integers. From Lemma 5.6, there is an

integer r = r(s1,...,S¢) such that there is a
COD <2T(81 + - Fs0); 27sg, . ,27"Sg>.

Let A be the above COD. We may write A as X + ¢Y, where X and Y are disjoint

and amicable matrices such that X X? +YY?! = AA*. It can be seen that

11 11
B= ® X + QY
1 -1 11
is an
OD (2’”*1(51 oty 27y, 2 sy ,27“+1sg>. (5.10)

We choose N = r + 1, and so for each n > N, the Kronecker product of a Hadamard

matrix of order 2"V with the OD (5.10) gives us an
OD <2"(31 + -+ s0); 2781, ,2”3g>.

O

Example 5.8. Consider the 5-tuple (8,12, 20, 68, 136). Write this as 2%(2, 3,5, 17, 34).
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Apply the equation (5.5) to (2,3,5,17,34) as follows:

- - - - 1

2 010000
2

3 1100 00
22

) =11 01000
23

17 1 00 010
24

34 01 0001
L . L J 25

From equation (5.6), we have 79 = 3,71 = 3,72 = 1,73 = 0,74 = 1 and 75 = 1. If
we apply the algorithm (5.7), then we find v, = 5,7 = 1,7, = 1,7, = 1,7, = 0 and
vt = 0. Apply Proposition 5.2 to the sequence (b, a1, as,a3) = (5,1,2,3). Since b is
odd, we use Case 2 of Proposition 5.2, and so m = 4 x 34+ 5+ 1 = 18. Therefore,

there is a
COD(2-61; 2%+ 1(5),2'% - 204, 2" - 23,219 23, ).
By equating variables, we obtain a
COD<218-61; 916.8 916,12 9216.90 216.68 216-136>.

Example 5.9. We apply the equation (5.5) to the 4-tuple (1,5,7,17). Thus,

-4 21
1 100 00
2
D 10100
= 22
7 11100
23
17 1 00 01
L . L J 24
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From equation (5.6), we have 79 = 4,71 = 1,72 = 2,73 = 0,74 = 1. Now if we apply
the algorithm (5.7), then we find v, = 6, = 1,7, = 1,74 = 0,+, = 0. So, we apply
Proposition 5.2 to the sequence (b, a1, as) = (6,1, 2). Since b is even, we use Case 1 of

Proposition 5.2, and so m =4 x 2+ 6 + 2 = 16. Thus, there is a
16 an. ol6 16 16 o2
COD(2':30; 2'%- 1,20+ 2(,),2'% - 23 ).
By equating variables we obtain a

COD (216 .30, 216.1 216.5 916.7 916, 17).

5.2 Asymptotic existence of amicable orthogonal
designs

We now include an asymptotic existence result for amicable ODs by following similar

techniques in [23].

Lemma 5.10. If there is an AC’OD(n; Uy oy Ug; ULy ,vt), then there is an
AOD(2n; 2u1, ..., 2ug; 2vq, ... ,2’Ut).

Proof. Suppose that (X;Y) is a complex amicable OD. We may write X = A + B

and Y = C +iD, where A and B (C and D) are disjoint and amicable matrices

0 1
such that AA* + BBt = XX* and CC* + DD! = YY*. Let R = and

-1 0
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H = . Since (X;Y) is a complex amicable OD,
1 -1

ACt + BD! :C’At+DBt, AD! — BC* = CB! — DA®.
Let XX =AQRH+B®HandY' =C® RH+ D ® H. Then

X'Y"=2(AC'+BD") @ I +2(AD' — BC') @ R

V'X"=2(CA'+ DB") @ I +2(CB' — DA") ® R.

Therefore (X’;Y”) is an amicable OD as desired. O

Theorem 5.11. For any two sequences (uy, us, ..., us) and (v1, v, ...,v;) of positive

integers, there are integers h, hy, ho and N such that there exists an
AOD(Q”h- grthiy o gnthiy L ognthay 2”+h2vt)

for eachn > N.

Proof. Suppose that (uy,us, ..., us) and (vy,vs, ..., v;) are two sequences of positive
integers. Let (uy,...,us) =29 (u},...,u.) and (vq,...,v)) = 22(v],...,v)), where ¢
and ¢, are the unique integers such that at least one of u;’s and one of v;’s is odd.

Let u}f + -+ -+ u, = ¢ and v] + -+ + v; = co. We may use the algorithm (5.7)

in the proof of Lemma 5.4 for sequences (u}, ..., u.) and (v],...,v};) to get sequences

? s

(byay,as,...,a;) and (5, a1, o, ..., ) of positive integers, respectively.
¢

k
We have ¢; = b+ 4 Z 2% and ¢y = [+ 42 2% . Without loss of generality assume
i=1 i=1

that ¢; > c9, and b and [ are even. Let m = maaj{4k +b+2,40+ 5+ 2}.
Suppose that A = {Al,...,Am} and B = {Bl,...,Bm} are the same set of
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matrices of order 2”71 as in Theorem 2.43.

Apply Proposition 5.2 to the sequence (b, aq,as,...,ax) by using the set A. Thus
there is a COD, C, of order 2™¢; and type <2m 1), 2™ - 28), S, 2m 2?4“)).
Apply Corollary 5.3 to the sequence (3, ay, ag, ..., ap) by using the set B. It can be
seen that there is a COD, D, of order 2™¢; and type (2’” 1), 2™ - 2(“41), S, 2m 2%).
Note that ¢; > c¢.

Since the circulant matrices used to construct C' and D in (5.3) are Hermitian of

order ¢; and AiB§ = B;Al for 1 <i,5 <m, (C;D) is an

290k oMy 9T 9

a m «
o 220

<4>> :

ACOD (2%er; 27135, 2™ - 20} .

Equating variables in C' and D in an appropriate way, we obtain an
ACOD <2mcl; 2™uy, ., 2™l 2™ 2mv£>,
and so by Lemma 5.10, there exists an
AOD <2m’c1; LTI TR L ,2m’v;), (5.11)

where m' = m + 1.

Now if g1 = ¢o = 0, then we choose h = ¢, hy = ho = 0 and N = m/. If
g1 < ga < m/, then we choose h = ¢1, hy = —q1, hs = —¢» and N = m/. For cases
g < m' < g and m' < ¢ < ¢, the Kronecker product of a Hadamard matrix of

order 292~™ with amicable orthogonal designs (5.11) implies h = 2%¢;, hy = ¢ — @1

and hy = N = 0. Therefore, there exists an

AOD (2”h; onthigy, o onthiy s gnthey, o 2"+h2vt>,
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for each n > N.
If § and b are not both even, then we may use Case 2 in Proposition 5.2 with the

same argument. ]

Example 5.12. Let (uq, ug, us, ug, us) = (8,12, 20,68, 136) and (v, v, v3,v4) = (1,5,7,17)
be the sequences in Examples 5.8 and 5.9. We have (u], ub, us, v}, ut) = (2,3,5,17,34),
(v], vh,v5,v)) = (1,5,7,17), ¢1 =2, g2 =0, ¢; =61 and ¢ = 30.

Apply Proposition 5.2 to the sequences
(b,ay,a9,a3) = (5,1,2,3) and (B4 c1 —co, 1, 0,) = (64 31,1,2).

We may choose m = maa:{4 3+b+1,4-2+ 08+ 2} = maa:{l& 16} = 18. Thus,

there exists an

ACOD (218 L6152 15,218 200,218 22, 218 98, 218 1) 9189, 218 2@),
and so there exists an

AOD (2615 2%+ 1(5),21% - 209, 20 28,217 201 210 1,27+ 24,217 -2 ).
Equating variables, we obtain an
AOD (219 61; 219.92219.3 9195 919,17 919.34. 9191 9195 919 7 919 17).

Since ¢ < ¢; < 19, we choose N =19, h = 61,h; = —2, ho = 0, and therefore for all

n > 19, there exists an

AOD (2“ 61; 272.8,972.12, 972,90, 2" 2.68,2"2.136; 2".1,2".5, 2".7,2". 17) .
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Example 5.13. Consider 3-tuples (1,1,1) and (1,1,1). Let M; = circ(zy,0,0),
My = cire(0, x2,0), Ny = circ(y1,0,0), No = (0,99,0) and let A = {A;, As, A3z, Ay}
and B = {By, By, B3, B4} be the sets of signed permutation matrices of order 23
satisfying the conditions (i), (i¢) and (ii7) in Theorem 2.43. Suppose that H is a

Hadamard matrix of order 23. Then

C = S(Mi+ M) ® AH + 5 (M — M) © A,H

E

2
1 1

+ (Ma + Mg) @ 5 (Ag + Au) H + (M — My) @ 2 (A3 — As)H

and
1 7
D=2 (Ni+Nj) @ BiH + (N = Nj) @ BoH
1 . 1
+ (N2 + Ng) ® o (Bs + Ba) H +i(N> = N3) ® o (Bs — Ba)H
a a b ¢ d d e f
after replacing x; = , Tg = , Y1 = , Yo =
—a a —c b —d d —f e
0 0
and 0 = form an ACOD(2*-3; 24,2%,2%; 24 2% 2%) and so from Lemma
0 0

5.10, one obtains an

AOD(2°-3; 2°,2°,2% 2°,2°,2°).
We display this amicable orthogonal design in Appendix, page 110.

Remark 5.14. Applying Proposition 5.2 to the 6-tuple (1,1,1,1,1,1), there is a

D

COD(28-6; 2?6)), and so an OD(2°-6; 2?6)). However, in Example 5.13,

D —-C
is an OD(Z5 - 6; 2?6)).
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Chapter 6

Signed group orthogonal designs

and their applications

6.1 Signed groups and remreps

Robert Craigen introduced and studied signed group Hadamard matrices in [5, 8]. In

this section, we start by the definition of signed groups.

Definition 6.1 ([5]). A signed group S is a group with a distinguished central element
of order two. We denote the unit of a group as 1 and the distinguished central element
of order two as -1. In every signed group, the set {1, —1} is a normal subgroup, and
we call the number of elements in the quotient group S/ < — 1> the order of signed
group S. Thus, a signed group of order n is a group of order 2n.

A signed group 7' is called a signed subgroup of a signed group S, if T' is a subgroup of
S and the distinguished central elements of S and T" coincide. We denote this relation
by T < S . If T < S and T # S, then T is a proper signed subgroup, and we denote
it by T < S.

Example 6.2. Here are some important examples of signed groups:
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(1) The trivial signed group Sg = {1, —1} which is a signed group of order one.
(it) The complex signed group S¢ = (i; i* = —1) = {£1, +i} is a signed group
of order two.

(#77) The Quaternion signed group, Sp, is a signed group of order 4,
So=(j.k; j°=K =—1,jk =—kj) = { £1,+j, +k, £jk}.

(iv) The set of all monomial {0, £1}-matrices of order n, SP,, forms a group of

order 2"n! and a signed group of order 2" !n/!.

Definition 6.3 ([5]). Let S and T be two signed groups. A signed group homomor-
phism ¢ : S — T is a map with the following properties

(1) ¢(ab) = p(a)p(b) for all a,b e S,

(17) p(—1) = —1.
An isomorphism of signed groups is a homomorphism having an inverse map, which
is also a signed group homomorphism. A remrep (real monomial representation) is a

signed group homomorphism 7 : S — SP,. A faithful remrep is a one to one remrep.

Let R be a ring which has a unit 1g, and let S be a signed group with distinguished

central element —1g. Then the signed group ring, R|[S], is defined as follows

n

R[S| = {Zrisi; ri€R, s € P},

=1

where P is a set of coset representatives of S modulus <— 1 S> and forr € R, s € P, we
make the identification —rs = r(—s). Addition is defined termwise, and multiplication
is defined by linear extension. As an example 7151 (728 + r383) = 71725152 + 11735153,
where r; € Rand s; € P, 1 <1 < 3.

In this work, we choose R = R. Suppose that x € R[S]. Then x = Z r:8;, where
i=1
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r; € R, s; € P. The conjugation of x, denoted 7, is defined as 7 := irisil. Clearly,
the conjugation is an involution, i.e., T = z for all z € R[S], ané:;c_y = gz for all
x,y € R[S]. As an example, m = V257 4+ 3(jk)' = —V/2j — 3jk, where
J. k € So.

For an m x n matrix A = [a;;] with entries in R[S] define its adjoint as an n x m

matrix A* = A' = [@ji].

Definition 6.4. Let S be a signed group, and let A = [a;;] be a square matrix such
that a;; € {O, elxl,...,ekxk}, where ¢, € S and x, is a variable, 1 < ¢ < k. For
each a;; = ey or 0, let @;; = €y or 0, and |a;;| = |exy| = 20 or 0. We define

abs(A) := [|a;;|]. We call A quasisymmetric, if
abs(A) = abs(A"),

where A* = [a;;]. Also, A is called normal if AA* = A*A.
The support of A (see [5]) is defined by

supp(A) := {positions of all nonzero entries of A}.

Definition 6.5. Suppose that A = (al, as, ..., an) and B = (bl, bo, ... ,bn) are two
sequences with elements from {O, €171, - - -, ekxk}, where the z;’s are variables and
e, € S (1 < k < n) for some signed group S. We use Ap to denote the se-
quence whose elements are those of A, conjugated and in reverse order (see [6]),

le., Az = (an, . ,62,61). We say A is quasireverse to B if abs(Ag) = abs(B).
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A circulant matrix C' = circ (al, gy ... ,an) can be written as
C=al,+aU+-+a,U" ",

where U = circ (O, 1,0,... ,O). Therefore, any two circulant matrices of order n with

commuting entries commute. If C' = circ (al, ag, . .. ,an), then C* = circ (51, Upy - - - ,62).
Suppose that A and B are two sequences of length n such that A is quasireverse

to B.

Let D = circ(O(a+1),A,O(2b+1),B,O(a)), where a and b are nonnegative integers and

let m = 2a + 2b+ 2n + 2. Then D* = circ(0at1), Bz, O@p+1), A Oa)) and
abs(D) = abs(D").

Hence, D is a quasisymmetric circulant matrix of order m.

Lemma 6.6. For every positive integer of the form 2", there is a Golay pair (A; B)
of length 2™ in two variables such that each variable appears 2"~* times in A and B.

Moreover, A is quasireverse to B.

Proof. The proof is similar to the proof of Lemma 5.1. The only difference is that

the initial Golay sequences are A; = (z,y) and By = (y, —x). ]

Theorem 6.7. Suppose that A is an m X n and B is an n X r matrices with entries

in the signed group ring R|G|. Then (AB)* = B*A*.

Proof. We must show that (AB)[i,j] = (B*A*)[i,j] for any fixed 1 < i < r and

1 <37 <m. We have
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(AB)"[i,j] = (AB)[j,1]

3

Alj, k| Bk, 1]

e
Il
=

[J, k1B, i]

Il
NE
N

b
Il
—

|
M:

Blk,iAlj, K]
= S B, KAk
— (B )l

6.2 Signed group orthogonal designs

Definition 6.8. A signed group orthogonal design, SOD, of type (ul, e ,uk), where
uq, ..., U are positive integers, and of order n, is a square matrix X of order n with
entries from {0, €121, ..., 2k}, where the z;’s are variables and ¢; € S, 1 < j <k,

for some signed group 5, that satisfies

k
XX* = ( > ux2> 1.
=1

We denote it by SOD(n; Uy, ... ,uk).

Equating all variables to 1 in any SOD of order n, results a signed group weighing
matriz of order n and weight w which is denoted by SW (n,w), where w is the number

of nonzero entries in each row (column) of the SOD.
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We call a SOD with no zero entries a full SOD. Equating all variables to 1 in any full
SOD of order n results a signed group Hadamard matriz of order n which is denoted
by SH(n,S).

Craigen [5] proved the following fundamental theorem and applied it to demon-
strate a novel and new method for the asymptotic existence of signed group Hadamard

matrices and consequently Hadamard matrices.

Theorem 6.9. For any odd positive integer p, there exists a circulant

SH(Qp, SP22N(17)71) .

Remark 6.10. A signed group orthogonal design over the Quaternion signed group
Sq is called a Quaternion orthogonal design, QOD.

A signed group orthogonal design over the complex signed group Sc is called a com-
plex orthogonal design, COD.

A signed group orthogonal design over the trivial signed group Sk is called an orthog-

onal design, OD.
Lemma 6.11. Every SW(n,w) over a finite signed group is normal.

Proof. Suppose that WW* = wl,, where the entries in W belong to a signed group
S of order m. We show that WW* = W*W. The space of all square matrices of order
n with entries in R[S] has the standard basis with mn? elements over the field R.

Thus, there exists an integer u such that

W+ W24 -+ e, W" =0,

where ¢, # 0, and ¢; € R (1 < i < u). Multiplying the above equality from the right
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by (W*)ufl’
aw(W*)' 2 + cqu(W*)" 2 4« + cu" "W = 0.
Hence W is a polynomial in W*, and so WW* = W*WV. O

Theorem 6.12. A necessary and sufficient condition that there is a SOD (n; Uy, . .. ,uk)
over a signed group S, is that there exists a family {Aq,. .., Ax} of pairwise disjoint

square matrices of order n with entries from {0, S} satisfying

AAT = — A A3, 1<i#j<k. (6.2)

Proof. Suppose that there is a A = SOD (n; U, . .. ,uk) over a signed group S. One

can write

where the A;’s are square matrices of order n with entries from {0,S}. Since the

entries in A are linear monomials in the x;, the A;’s are disjoint. Since A is a SOD,

k
AAT = (Zumf) L, (6.4)
i=1

and so by using (6.3),
ko ok k
i=1 j=it+1 i=1

In the above equality, for each 1 <¢ <k, let z; =1 and z; =0 for all 1 < j <k and
J # 1, to get (6.1) and therefore (6.2).

On the other hand, if {A;,..., Ay} are pairwise disjoint square matrices of order
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n with entries from {0, S} which satisfy (6.1) and (6.2), then the left hand side of the

equality (6.5) gives us (6.4). O

Remark 6.13. Equation (6.4) implies Equations (6.1) and (6.2). Multiply Equation
(6.2) from the left by A; and then from the right by A; to get AJA; = —AjA; for

1 <i # 5 < k. Therefore, by Lemma 6.11,

kook k
AA=23AA + -+ 2 AL Ay + Z Z vz (A7 Ay + ATA;) = (Z uw?) I,.
i=1

i=1 j=i+1

Thus, AA* = A*A. It means that every signed group orthogonal design over a finite

signed group is normal.
As a corollary to Theorem 6.12, we refer the reader to Proposition 2.11.

Lemma 6.14 ([8]). Suppose that A is a SOD over a signed group S. Then
(1) Permutations of the rows or columns of A do not affect the orthogonality of A.
(13) Multiplication of each row or column of A by an element in S do not affect

the orthogonality of A.
The following lemma is shown in [5].
Lemma 6.15. There does not exist any full SOD of order n > 1, if n is odd.

Proof. Assume that there is a full SOD of order n > 1 over a signed group S. Equating
all variables to 1 in the SOD, one obtains a SH(n,S) = [h|};—,. From part (i) of
Lemma 6.14, we may multiply each column of the SH(n,.S), from the right, by the
inverse of corresponding entry of its first row, hy;, to get an equivalent SH (n, S) with
the first row all 1 (see [5, 6] for the definition of equivalence). By orthogonality of the
rows of the SH(n,S), the number of occurrences of a given element s € S in each
subsequent row must be equal to the number of occurrences of —s. Therefore, n has

to be even. 0
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Lemma 6.16. There ezists no SOD(6; 3,3) and no SOD(6; 2,2,2).

Proof. To show that there is no SOD(6; 3,3), it suffices to prove that there is no
SW(6,3). Assume that A is a SW(6,3) over a signed group S. From Lemma 6.14,
we may permute the rows and columns of A to obtain

* x x 0 0 0

*

Ay =

Using orthogonality of the first and second rows and also the first and second columns
of Ay as in the proof of Lemma 6.15 and permuting the rows and columns of Ay, one

obtains

x x x 0 0 0
* x 0 % 0 0
* 0
0 =%
0 0

00

Finally, as in the proof of Lemma 6.15, orthogonality of the first and second rows

with the third row of A, forces As to be of the form
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* x x 0 0 0
* x 0 x 0 0
x 0 x x 00

&
I

which contradicts orthogonality of the fifth and sixth columns of A,. Therefore, there
is no SOD(6; 3,3).
Now suppose that B is a SOD(6; 2,2,2) over a signed group S. By Lemma 6.14,

if we permute the rows and columns of B, then we get one of the following forms:

enna €2a €13 €14b €15¢ €6 Y@ yi2a vzb yub msc e
€210 €220 €30 €24h  €25¢ €6C Y214 Y22G Y23C  Y21C  Yasb  Yoeb
€310 €32D €33¢ €3y €350 €360 or Y31b Y32b y33a Y344 Y35C Y36C
enb €b eg3c e essa egpa Yarb  ya2b a3 yaaC yasa yasa ’
€51C €52C €530 €540 €550 €56 V51C Y52C V53@ Ysad Ys5h Yseb

i €61C €62C €630 €aa  €gsb  €gpb | i Y61C  Ve2C¢ Ye3b  Veab Yesa Yesa |

where €;;,7; € S, 1 < 1,5 < 6. For the left matrix, consider €;; = €15 = 1, so as
in the proof of Lemma 6.15, orthogonality of the first row with the second and third
rows forces €21 to be —eyp and €37 to be —ez9. Thus, the second and third rows will
not be orthogonal, which is a contradiction.

For the right matrix, consider v9; = 792 = 1, so as in the proof of Lemma 6.15,
orthogonality of the second row with the third and sixth rows forces v3; to be —7s9
and g, to be —yg2. Thus, the third and sixth rows will not be orthogonal, which is
a contradiction. Thus, there is no SOD(6; 2,2,2). ]
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From Lemmas 6.15 and 6.16, we know that there do not exist SOD(S; 1,1, 1),
SOD(G; 2,2,2) and SOD(9; 3,3,3). However, in the next section, we show that
there exists a S OD(lQ; 4,4, 4) over some signed group. We will also show that for
any k-tuple (ul, . ,uk) of positive integers, there exists a SOD(4u; duq, . .. ,4uk)

over some signed group, where u = uy + - - - + .

6.3 Real and complex Golay pairs in two variables

Two complementary (£1)-sequences are called Golay sequences or a Golay pair. The
length of a Golay sequence is called a Golay number. We denote the set of all pairs
of Golay sequences of length ¢ by GP({). As an example, GP(1) has four pairs which
are pairs of real units. GP(2) has eight pairs which can be obtained from the pair
A = (1,1) and B = (1, —) by replacing, reversing, or negating one of the sequences

(see [8, 38]). Consider the following sequences:

Al - (17 ]-7 ) ]-7 ) 17 Ty T ]-7 1)7 Bl - (17 17 ) 17 17 17 ]-7 17 B _)7 (66>
AQ = (17171717_71717_7_7]-7_717_717_7_717_7]-71717_7_717]-71>7 (67)
B2 = (171717]-7_7]-7]-a_7_717_7]-717]-7]-a]-7_7]-7_7_7_7]-717_7_7_>'

Then the pair (A;; By) is a Golay pair of length 10, and the pair (Ag; By) is a Golay

pair of length 26.

Definition 6.17. The Kronecker product of two sequences A = (al, as, . .. ,an) and

B = (bl, bo, ... ,bm) is denoted by A ® B, and it is defined as follows

AR B = (alB,agB,...,anB)

= (albl, albg, ce ,Cllbm, Clgbl, agbg, ce ,agbm, e ,&nbl, aan, c. ,anbm).
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The following theorem, described by Turyn [48], shows how a Golay pair of length

mn can be constructed from Golay pairs of lengths m and n.

Theorem 6.18. If (A; B) is a Golay pair of length m and (C; D) is a Golay pair of

length n, then
1 1 1 1
§(A+B)®C+§(A—B)®D§; §(A+B)®D—§(A—B)®C§

1s a Golay pair of length mn.

By using this theorem, all numbers of the form 2°10°26¢ are Golay numbers.
These are the only Golay numbers found until 2013. All Golay numbers up to 100
were considered in [3]. In [16], it is shown that no Golay number is divisible by a
number congruent to 3 modulo 4.

We denote by GP(n;x,y), the set of all Golay pairs of length n such that each
Golay pair has two variables x and y in such away that each variable appears g times
in each of the sequences of the Golay pair, and also one sequence is quasireverse to
the other. As an example, (4; B) € GP(2;z,y), where A = (z,y) and B = (y, —x).

We distinguish between the definition of GP(n; z,y) and GP(1;z,y). Soif A = (z)
and B = (y), then we say (A; B) € GP(1;x,y).

The Golay pairs of lengths 10 and 26 in (6.6) and (6.7) have the nice property
that £(A; + B;) is quasireverse to 3(A; — B;), j = 1,2. We may modify Theorem

6.18 to show the following Theorem.

Theorem 6.19. Suppose that (C; D) is a Golay pair of length n in two variables.
Then

1 1 1 1
(§(A+B)®C+§(A—B)®DR; 5(A+B)®D—5(,41—B)®(JR)
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is a Golay pair of length mn in two variables, where A and B are one of the followings
em=2 A= (1,1) and B=(1,—),
e m=10, A= A; and B = By in (6.6),
e m =26, A=Ay and B = By in (6.7).

Example 6.20. Suppose that (A;; By) and (Ag; By) are the Golay pairs in (6.6) and
(6.7), and C' = (z) and D = (y). Also, let A3 = (1,1) and B3 = (1,—). For j = 1,2, 3,

let

1
Cjzﬁ(Aj+B)®C+ (A B;) ® Dy,

1
D; = E(Aj +B,)®D — E(Aj — B;) ® Cg.
Therefore,

= (v,2,—x T, =Y, =y, 9,9), D= (4,9, —v,y, 2,9, 2,2, —x, —x),

= (v, 22,0, —2, 2,8, —T, =T, 8, =, T, =Y, T, =Y, =Y Y, =Y, U Y, Ys =Y =Y, ¥, U5 Y)

Yo Us Us Yy =Y Us Us =Yy —Ys Y =Y, Ys T, Yy T, Ty =, T, =T, =T, =, T, T, =T, =&, =),
y),  Ds=(y,—x).

=
= (=,

We observe that for j = 1,2,3, abs(Cj5) = abs(D;). Thus, (Cy; D1) € GP(10;z,y),
(Cy; D) € GP(26;x,y) and (Cs; D3) € GP(2;2,y).

Using Theorem 6.19 and induction with the initial Golay pairs (C;; D;), j = 1,2, 3,

in the above example, one has the following.

Corollary 6.21. The set GP(n;x,y) is not empty for each n = 2%10°26¢, where a, b

and ¢ are non-negative integers.
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Two complementary (£1,+i)-sequences are called complex Golay sequences or a
complex Golay pair. The length of a complex Golay sequence is called a complex Golay
number. We denote the set of all pairs of Golay sequences of length ¢ by CGP(¢).

If (A; B) is a complex Golay pair, then (zA;zB) is called a complex Golay pair in
one variable, where x is a variable. The following complex Golay sequences of length

p are known.

p= 2 A=(1,1), B=(1,-),
p=3; A= (1,1,-), By =(1,i,1),
p= b Ay = (i,i,1,—,1), By=(i,1,1,i,—),
p=11; Az = (1,4, —,1,—,4,i,—,4,4,1),

B3 = (17 17575757 17 17i7 ) 17 _)7
p:137 A4:(171717i7_717173717_71757i)7

B4 = (177;7 BEREE) _7?:7 R 17 1757 ) 175)7

Complex Golay sequences of lengths 11 and 13 were found in [6, 22]. We extended

the group {£1, £i} to the group of eighth roots of unity, i.e,
S = {e%; 0<k<8, kisan integer},

and by an exhaustive computer search could not find any Golay sequences over S of
lengths 7 and 9.
Some constructions that work for Golay sequences can be generalized to the com-

plex case.

Theorem 6.22 ([4]). If (A; B) is a complex Golay pair of length m and (C; D) is a
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complex Golay pair of length n, then
((AeC, B Dg); (A@D, ~BoCy))
is a complex Golay pair of length 2mn. Moreover, if A and B are real, then
1 1 1 1

1s a complex Golay pair of length mn.

Craigen, Holzmann and Kharaghani in [6] showed that if ¢g; and go are complex
Golay numbers and ¢ is a Golay number, then gg;g» is a complex Golay number.

Using this, they showed the following theorem.

Theorem 6.23. All numbers of the form m = 2¢743%5¢11913° are complex Golay
numbers, where a,b,c,d,e and u are non-negative integers such that v < ¢ + e and

b+c+d+e<a+2u+1.

By an exhaustive computer search in [6], they could also show that there is no
complex Golay pair of lengths 7,9,15,17,19 and 21. However, other complex Golay
numbers may exist.

We use CGP(n; z,y) to denote the set of all complex Golay pairs of length n such
that each pair has two variables z and y such that each variable appears g times in
each sequence of the complex Golay pair, and also one sequence is quasireverse to the
other. CGP(n;z,y) is well defined when n > 1 is an even number. From Theorem

6.22, we have the following.

Lemma 6.24. Assume that (A; B) is a complex Golay pair of length m. Then

((xA, yB); (yA, —:EB)) is a complex Golay pair of length 2m in variables x and y.
From Theorem 6.23 and Lemma 6.24, we have the following result.
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Corollary 6.25. The set CGP(n;z,y) is not empty for each n = 2¢+u+13b5¢11413¢
where a,b,c,d, e and u are non-negative integers such thatb+c+d+e <a+2u+1

and u < c-+e.

6.4 Some applications of signed group orthogonal
designs

In this section, we adapt the methods of I. Livinsky [38] to obtain generalizations
and improvements of his results about Hadamard matrices in the much more general
setting of orthogonal designs.

Suppose that we have a remrep m : S — SP,,. We extend this remrep to a ring

homomorphism 7 : R[S] — M,,[R] linearly by
7T(T’181 + -+ Tnsn) = 7’17'('(81) + -+ Tnﬂ'(sn>.

Since for every matrix A € SP,, we have A~ = A! for every s € S we have
7(5) = 7(s)™' = 7(s)". In the following Theorem, we show how one can obtain OD’s

from SOD’s by using remreps.

Theorem 6.26. Suppose that there exists a SOD(n; Uy, . .. ,uk) for some signed
group S equipped with a remrep ™ of degree m, where m is the order of a Hadamard

matriz. Then there is an OD (mn; muq, . .. ,muk).

Proof. Suppose there exists a SOD (n; Uy, ... ,uk) for some signed group S. By The-

orem 6.12, there are pairwise disjoint matrices Ay, ..., Ay of order n with entries in
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{0, S} such that

ALAL = unly, 1<a<k, (6.8)

AgAy = — A A%, 1<a#B<k (6.9)

Let 7: S — SP,, be a remrep of degree m, and H be a Hadamard matrix of degree

m. Also, for each 1 < a <k, let

By Proposition 2.11, it is sufficient to show that B,’s are pairwise disjoint matrices

of order mn, with {0, £1} entries such that

BoB!. = mug Ly, 1<a<k, (6.10)

B.Bj = —BsBY,, 1<a#pB<k (6.11)

Since A,’s are pairwise disjoint, so are B,’s. Let ] < a # < kand 1<1i,5 <n.

Then

(BuBY)[i,j] =Y m(Auli, k) HH'7 (As[j, k))

- m7r< i Auli, k|| ,k])

— m7r< (A4a42) i, j]) (6.12)
= mw(( — AgAY) [i,j]) from (6.9)

- —mw((AﬁAZ)[i, j]) (6.13)



On the other hand, similarly,

:m7T< i Agli, kAL ,k])
- mw((ABAZ)[i, j]). (6.14)

Thus, (6.13) and (6.14) are equal, which proves (6.11). If « = § in (6.12), then for

1<4,j<n,
(BaBL)lirj] = m ((AaA2) (i, 1)
= mﬂ(%jua.lg) from (6.8)
= myijua]my
where v;; = 1 if 4 = j, and 0 otherwise. Whence (6.10) follows. O

Corollary 6.27. If there is a COD (n; Uy, ... ,uk), then there is an OD (Qn; 21, ..., 2uk).

Proof. A COD (n; Uy, ... ,uk) can be viewed as a SOD (n; Uy, . .. ,uk) over the com-

plex signed group Sc. It can be seen that 7 : S¢ — SP, defined by

11— R=

is a remrep of degree 2, and so by Theorem 6.26, there exists an O D (2n; 21, ..., 2uk).
O
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Corollary 6.28. If there is a QOD (n; Uy, ... ,uk), then there is an OD (4n; duq, . .. ,4uk).

Proof. A QOD(n; ul,...,uk) can be viewed as a SOD(n; ul,...,uk) over the

Quaternion signed group Sg. It can be seen that 7 : Sg — SPy defined by

0 0 10 0 0 0 1

0 0 01 00 — 0
j— R, = and k—PQRR= )

— 0 00 01 00

0 — 00 -0 0 0

is a remrep of degree 4, and so by Theorem 6.26, there exists an OD (4n; duq, .. ., 4uk).
m

Following similar techniques in [5, 7, 38|, we have the following Lemma.

Lemma 6.29. Suppose that A and B are two disjoint circulant matrices of order d
with entries from {0, €121, . .. ,ekxk}, where the xy’s are variables, ¢, € S (1 < { < k)
for A and ¢, € Z(S), the center of S, (1 < { < k) for B. Also, assume A is normal.
If

A+ B A-B

A*—B* —A*— B*
then CC* = C*C = 2I, ® (AA* + BB*).
Moreover, if A and B are both quasisymmetric and S has a faithful remrep of degree m,
then there exists a circulant quasisymmetric normal matrix D of order d with entries
from {O, €1T, ... ,ekxk} and the same support as A+ B such that DD* = AA*+ BB,
where €, € S" (1 <€ < k), and S" > S is a signed group having a faithful remrep of

degree 2m.

Proof. 1t may be verified directly that CC* = C*C = 2I, ® (AA* + BB*). To find

matrix D, first reorder the rows and columns of C' to get matrix D, which is a
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partitioned matrix of order 2d into 2 x 2 blocks whose entries are the (i, j), (i +d, j),
(1,7 + d) and (i + d,j + d) entries of C, 1 <4, j < d. Applying the same reordering
to 21, ® (AA* + BB*), one obtains (AA* + BB*) ® 2[,. Since A and B are disjoint

and quasisymmetric, each non-zero block of Dy will have one of the following forms

€T; €;T; €T, —€6X;
or ,
Gjl'i —Ejl'i Ej.ZCi Ej.l’i
1 1
where ¢, € S. Multiplying Dy on the right by %Id ® yields a matrix Dy of
1 —
order 2d with entries from {O, €121, . .. ,ekxk} whose non-zero 2 x 2 blocks have one

of the forms A;x; or B;x;, where

A= oo  Bi= ", (6.15)

and such that D, D} = DiD; = (AA* 4+ BB*) ® I. The A;’s and B;’s in (6.15) form

another signed group, S’. Now matrices of the form

eR Iy = , €€58,

form a signed subgroup of S” which is isomorphic to S. Therefore, one can identify
this signed subgroup with S itself and consider S’ as an extension of S. Replacing
every 2 x 2 block of D; which is one the forms in (6.15) or zero with corresponding
cx;, € € S or zero, gives the required matrix D. Note that we identify e ® I, € '
with € € S.

Now if 7 : S — SP < SP,, is a faithful remrep of degree m, then it can be
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verified directly that the map ' : S" — SP;,, < SPs,, which is uniquely defined by

€; 0 7T<€i) Om 0 €; Om 77-(61')
0 € 0 m(€5) e 0 ()  Om

is a faithful remrep of degree 2m, where 0,, denotes the zero matrix of order m.
Finally, since A and B are circulant, C' consists of four circulant blocks, so Dy and
D are block-circulant with block size 2x2; whence D is circulant and quasisymmetric.

O

We now use Lemma 6.29, and follow similar techniques in [5, 38] to show the

following Theorem.

Theorem 6.30. Suppose that By, ..., B, are disjoint quasisymmetric circulant ma-
trices of order d with entries from {0, E1X71, . .. ,ek:ck}, where €y € Sc, and the x;’s are

variables (1 < ¢ < k), such that

k
B\B; + -+ BB} = (ZW?) I,
(=1

where the up’s are positive integers. Then there exists a quasisymmetric circulant

SOD (d; Uy, . . . ,uk) for a signed group S that admits a faithful remrep of degree 2™.

Proof. Sc has a faithful remrep 7 : S¢ — SP; < SP, of degree 2 uniquely determined
by 7(i) = R, where SP, = <R; R? = —]>. Applying Lemma 6.29 to matrices B,
and Bj, one obtains a quasisymmetric normal circulant matrix A; of order d with
entries from {O, egl)xl, . ,elgl)xk}, where eél) € 51 (1 < ¢ < k) such that S; > S¢ is a
signed group with a faithful remrep of degree 22. Also, A A} = BB} + B, Bj. Since
supp(A;) is the union of supp(B;) and supp(Bs), A4, is disjoint from Bs, ..., B,.

Suppose that one has constructed a circulant quasisymmetric normal matrix A,
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of order d with entries from {O,egr)xl, e eg)xk}, where €/ € S, (1 < ¢ < k) such
that S, > S,_; is a signed group with a faithful remrep 7, : S, = SP;,,, < SPors1 of

degree 27!, Moreover, A, is disjoint from B,,,..., B, and
AA =B\ B+ + BB .

By the assumption, B, 5 is a quasisymmetric normal circulant matrix with entries
from {0, €11, ..., ekxk}, where ¢, € S¢ (1 < ¢ < k). One can view the ¢,’s as elements
in Z (Sr) because we identified these elements as blocks £y ® R and £lyr+1 in
the proof of Lemma 6.29 which commute with 7, (ey)), 1 < ¢ < k. Therefore, by
Lemma 6.29, there is a quasisymmetric normal circulant matrix A,,; with entries
from {O,GY—H)Il, e ,e,(fﬂ)xk}, where egrﬂ) € Sr11 (1 <0< k) such that S, > S,

is a signed group with a faithful remrep of degree 2"*2. Also,
ATHA:H = ATA: + Br+QB:+2 = BlBT +et Br+1B:+1 + BT+2B:+27

and by the same argument A, is disjoint from B3, ..., B,.
Applying this procedure n — 2 times, there is a quasisymmetric normal circulant

matrix A,,_; of order d such that
k
Ay 1 Af  =BBi +---+ B,B} = (wa?) Ly,
=1
which is a circulant quasisymmetric SOD (d; Up,y - - ,uk) with the signed group

S=5,.1>8,_0>---> 8¢ that admits a faithful remrep of degree 2". O

Remark 6.31. The circulant matrices in Theorem 6.30 are taken on the abelian
signed group Sc; however, if the signed group is not abelian, the circulant matrices

that obtain from Lemma 6.29 do not necessarily commute, and Theorem 6.30 may
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fail. As an example, if By = circ(j,0) and By = circ(0, k), where j, k € Sp, then since

jk = —kj, B1 By # By B;. Therefore, Lemma 6.29 does not apply in this case.

Theorem 6.32. Suppose that By, ..., B, are disjoint quasisymmetric circulant ma-
trices of order d with entries from {O, E1X7, ... ,ek:ck}, where €, € Sg, and the x,’s are

variables (1 < € < k), such that

k
B\Bj +---+ B,B = (ZW?) I,
(=1

where the uy’s are positive integers. Then there exists a circulant quasisymmetric
SOD(d; ul,...,uk) for a signed group S that admits a faithful remrep of degree

on-t

Proof. Similar to the proof of Theorem 6.30, but in here since Sg has the trivial

remrep of degree 1, the final signed group S will have a remrep of degree 2=, [

Example 6.33. We explain how to use Theorem 6.32 to find a SOD(12; 4,4, 4) for
a signed group S that admits a remrep of degree 8. Consider the following disjoint
quasisymmetric circulant matrices of order 12:

By = cire(a,0,0,0,0,0,a,0,0,0,0,0),

B, = cire(0,0,0,4,0,0,0,0,0,—a,0,0),

Bj = cire(0,b,¢,0,0,0,0,0,0,0,c,—b),

By = circ(0,0,0,0,¢,—b,0,—b, —c,0,0,0).

Thus, BiB; 4+ B2Bj + B3Bj + ByBj = (4a* + 4b* + 4¢?) I15. Apply Lemma 6.29

to By and Bs to get a quasisymmetric normal circulant matrix of order 12:

Ay = cire(1a, 0,0, 6a,0,0,1a,0,0, —da,0,0),
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where ¢ is in the signed group of order 2:
Si=(-1,6; 6*=1)

which admits a remrep of degree 2 uniquely determined by 1 — I, and 6 — P. Since
By and B, are complementary, it follows that A; AT = 4a>I}5.
Applying Lemma 6.29 again to A; and Bj, there is a quasisymmetric normal

circulant matrix of order 12:
Al - CiI'C(lCL, Vlbﬂ 2C; 3@, 07 07 ]_CL, Oa Oa —73a, 720G, _’71b)7

where 71,72, 73 belong to the signed group of order 23:

Sy = <71,72,73; N=—n==1 ab=-fa af¢ {71,72,73}>,

with a remrep of degree 4 which is uniquely determined by
N—>PRL, 2—>RRL, 13—>Q&®P.

Note that A, is not a SOD because B, By and Bs are not complementary.
Finally, apply Lemma 6.29 to As and B, to get a quasisymmetric normal circulant

matrix of order 12:
Az = Circ(la, €1b, €ac, €3a, €4, —€sh, la, —esb, —e4c, —€3a, €3¢, —elb),
where €, 1 < j <5 belong to the signed group of order 2°:

. _ 2 2 2 _ _ _ .
S - <€17€27637€47€57 61 - _62 - 63 - 64 - _65 - 17 O{B - —ﬁOZ, 067/8 € {61762763764765}>7



with a remrep of degree 8 which is uniquely determined by
€1 — Q®P®]2, €o — Q®R®IQ7 €3 — Q@Q@P, €4 — P®]2®IQ, €5 — R®_[2®]2

Therefore, As is a quasisymmetric circulant .S OD(12; 4,4, 4). By Theorem 6.26, there
isan OD(8-12; 8-4,8-4,8-4).

For u a positive integer, denote by fc(u) the least number of complex Golay
numbers that add up to u. Let £c(0) = 0. Also, denote by #'c(u) the least number of
complex Golay numbers in two variables that add up to w. Indeed, ¢'c(2u) < lc(u).
Note that Lemma 6.24 insures the existence of a complex Golay pair in two variables
of length 2m if there exists a complex Golay pair of length m.

In the following lemma, we show how to use complex Golay pair and complex

Golay pairs in two variables to construct SODs.

Lemma 6.34. Let (1, Uiy, Vg, Wi, W, ..., Wy, wt) be a sequence of positive integers,

where 1 < vy < --- < v, and let

q t
1+ng+22w5 = u.
p=1 5=1
Then there exists a full circulant quasisymmetric
SOD (4u; 4,4vy, ..., 4vg, 4wy, dwy, . .., 4w, 4w
for some signed group S that admits a remrep of degree 2™, where

n<2+ 22(1:60(05) + 2260(@05).

B=1 0=1

Proof. For each 3,1 < 8 < ¢, and each o, 1 < a < le(vg), let (A[Oé,vﬁ]; B[Oé,l)g]) be
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a complex Golay pair in one variable, zg, of length V]a,vs]. From the definition of

£e(vg)
lc(vg), for each B, 1 < B <, Z Ve, vg] = vg. Let
a=1
a—1 B8—1
Sla, B = Vli,vg] + > _v;
i=1 j=1

Also, for each 6, 1 < <t, and each v, 1 <y < 'c(2wy), let (C’[% ws]; D[%wg])

be a complex Golay pair of length Wy, w;s] in two variables ys and zs. From the
' c(2wg)

definition of ¢'¢(2ws), for each §, 1 <6 <, Z Wy, ws] = 2ws. Let
y=1

y—1 0—1
= ZW[Z',UJ(;] +22wj-
i=1 j=1

For each 5, 1 < 8 < ¢, and each a, 1 < a < lc(vg), and for each ¢, 1 <5<t

and each v, 1 < v < '¢(2ws), the following are n = 2 + 2260 vg) + QZE c(2wy)

=1 5=1
circulant matrices of order 4wu:

M, :circ<x, Ou-1), @, 0(2u_1)>,
M, :circ<0(u), —x, O@u-1), T, O(u,1)>,
Xap =CirC(0<S[a,m+1)a Alor, vg], Ogu—2sja+1,8-1), Bla, vgl, 0<S[a,m>>7
Yo = 01rc<0 2u—S[a+1,8])> —Bla, vg, 0(25(a,81+1) Alev, vg], 0(2”LL—S[cv+1,,8]—1)>7
Zys = Cer<0 (w8 ya41)s ClY, wsl, Ou—20-25+1,8-1), D[V, ws), O(U+S’['y,5])>7

Ts —Cer(U qu—v—5'[+10)), —Dy,ws], O@siiy.420+1), Cl, ws], O(Zu—v—S/[’y—f—l,é]—l))-

It can be directly seen that the above circulant matrices are disjoint and quasisym-

metric such that
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q tc(vg) t Vc(2ws)

2
> MM+ (XapXis+ YapYis) + > > (ZsZ25 + TosTsy)

-
Il
—
@
Il
—
2
I
—

q ¢
- 4(;1;2 + Z (vpay) + Z (wsys + w[;zg))Llu.

B=1 =1

Thus, by Theorem 6.30, there exists a full circulant quasisymmetric
SOD(4u; 4,4vy, ..., 4vg, 4wy, 4wy, . .., 4wy, 4wt)
for a signed group S which admits a remrep of degree 2", where

q 4 q t
n=2+2 ch(vg) +2 ZE'C(ZU}(;) <242 Zﬁc(vﬁ) +2 Z le(ws).
B=1 =1 B=1 s5=1

]

Example 6.35. Consider the 4-tuple (1,v1,v9,v3) = (1,5,7,17). By Lemma 6.34,

there is a circulant quasisymmetric
SOD(4-30; 4-1,4-5,4-7,4-17),

which admits a remrep of degree 2", where n = 2 + 20c(5) + 20c(7) + 20c(17) =

24244+ 4 =12. By Theorem 6.26, there is an
OD(2'-30; 2" -1,2" 5,21 . 72" .17).

Therefore, for the 4-tuple (1,5,7,17), we found an integer m, m = 14, such that there
is an OD(2m -30; 2m . 1,2™.5,2™.7,2™. 17). In Example 5.9, it can be seen that

m = 17.
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Example 6.36. Let (1, w;, wy, wy, we, ws, ws, wy, wy) = (1,3,3,5,5,11,11,13,13). By

Lemma 6.34, there is a circulant quasisymmetric
SOD(4 +65; 4-1,4-3(2),4-502),4-11(2),4- 13(2)),

which admits a remrep of degree 2", where n = 2+20c(3)+20c(5)+20c(11)+20c(13) =

10. By Theorem 6.26, there is an
OD(22-65; 212:1,2'2 35,212 5,212 11(5),2'2 - 13(3) ),

Remark 6.37. Applying Proposition 5.2 to any sequence (b, A, ... ,ak) of positive
integers, gives a full orthogonal design of type

(27 1220y, 2m - 20),

where m = 4k + b+ 2 if b is odd, and m = 4k + b+ 3 if b is even.

For the sequence (1(1;), 2%, ce 2%), if we use Golay pairs constructed in Lemma 6.6
in the proof of Lemma 6.34, and apply Theorem 6.26, then we obtain the same m.
As an example, for the 3-tuple (1,1, 1) both methods give OD (25 237 25.1,25.1,2°- 1).
See Examples 5.13 and 6.33. Note that for Golay pairs, the degree of the remrep in
Lemma 6.34 would be 2"~! not 2". Using Golay pairs, we apply Lemma 6.34 to the
6-tuple (1,1,1,1,1,1). So, by Theorem 6.26, there is an OD (2% - 6; 2° - 1(5)).
However, in Example 5.13, using amicable orthogonal designs, we showed that there

is an OD(2°-6; 2°- 1)).

Theorem 6.38. Suppose that (ul, Us, . . . ,uk) is a k-tuple of positive integers and let
u + -+ up = u. Assume j is such that le(u;) — be(u; — 1) is mazimum possible.

Then there is a full circulant quasisymmetric
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SOD (4u; duq, duo, . . . ,4uk)

for some signed group S that admits a remrep of degree 2™, where

k
n=2+2lc(u; —1)+2 Zﬁc(ui).
=
Proof. Apply Lemma 6.34 to the (k + 1)-tuple (1, ULy ooy Ui, Uy — 1 Ujy, - ,uk).

]

For u a positive integer, denote by ¢r(u), the least number of Golay numbers that
add up to u. Let ¢r(0) = 0.

Using Golay pairs, we have a similar result to Theorem 6.38.

Corollary 6.39. Suppose that (ul, U, . . . ,uk) is a k-tuple of positive integers and let
Uy + -+ up = u. Assume j is such that le(uj) — le(u; — 1) is mazimum possible.

Then there exists a full circulant quasisymmetric
SOD(4u; duqy, dusg, . . . ,4uk)
for some signed group S that admits a remrep of degree 2", where

k
n=2+2r(u;—1)+2 Zﬁr(ui).
i=1
i#]
We define log 0 = 0, and whenever we write log a, we mean log, a.
Let sr(n) be the smallest positive integer that is not the sum of at most n Golay
numbers of the form 2%10°26¢, where a,b and ¢ are nonnegative integers. Also, let

gr(n) be the greatest Golay number of the same form not exceeding sr(n).
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The following table is obtained by Ivan Livinskyi [38].

n sr(n) gr(n)

2 7 4

3 39 32

4 199 160

) 11999 10816

6 637399 562432

7| 233963479 | 224972800

Let u be a positive integer. We follow a similar technique in [38] to obtain upper

bounds for ¢r(u) and fc(u). Writing the expansion of u to the base gr(n), one gets
u=ag+ a (gr(n)) + as (gr(n))2 + ot agy, (gr(n))m,

where 0 < a; < gr(n) (0 <i < m) and m = [log,,(, u|. Since each a; (0 < i < m)
is sum of at most n Golay numbers, v is a sum of at most nLloggr(n) uJ + n Golay
numbers. Therefore,

lr(u) < n“oggr(n) u| +n.

3
As an example, (r(u) < 3|loggu| + 3 < R logu + 3. If one takes the base gr(7),

then a better bound for ¢r(u) is obtained, i.e,
Or(u) < 7| 1ogggugraseo t| + 7 < 0.2525logu + 7.

To get a better upper bound for the degree of remrep for any k-tuple (ul, U, . . ., uk)
of positive integers, from now on, we assume that ¢r(u;) — ¢r(u; — 1) is greater than
or equal to fr(u;) — r(u; — 1) for all 2 <7 < k.

For any k-tuple (ul, U, . .. ,uk) of positive integers, write the expansion of u;’s
to the base gr(7), to obtain the following upper bound for the degree of remrep in

Corollary 6.39.
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Corollary 6.40. Suppose that (ul, U, . . . ,uk) 15 a k-tuple of positive integers and let

Uy + -+ - - + up = u. Then there is a full circulant quasisymmetric
SOD (4u; 4uy,dus, . .., du)
for some signed group S that admits a remrep of degree 2"~', where

n < 0.505log(uy — 1) +0.505 > " log(u;) + 14k + 2.

=2

By a computer search, each positive integer u is presented as sum of at most
3[10g226 uJ + 4 complex Golay numbers of the form mentioned in Theorem 6.23 [38].

Thus

1 3
le(u) < 3{% log uJ +4 < 26 log u + 4. (6.16)

Using this and Theorem 6.38, one has the following upper bound for the degree of

remrep.

Corollary 6.41. Suppose that (ul, U, . . . ,uk) is a k-tuple of positive integers and let

uy + - - - + up = u. Then there is a full circulant quasisymmetric
SOD(4u; 4duy, dus, . . . ,4uk)
for some signed group S that admits a remrep of degree 2", where
n < i1og(u1 -1) +—Zlog (u;) + 8k + 2.
13

Remark 6.42. One may present any given k-tuple (ul, U, .« . . ,uk) of positive integers

as a (k+1)-tuple (1,u; — 1,us, ..., uy), and then sort its elements to get the (k+ 1)-
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tuple (1,1}1, ey Vg, W, W, - ,wt,wt), where 1 < vy < --- < v, Thus, from Theorem

6.38,

q t
n=2+ 2280(1}@-) + QZﬁc(wj)
— =
3 t
<924 = = : .
2 t7 Z log(v;) 13 ; log(w;) + 8(q + 1)

By Theorem 6.26 and Corollary 6.41, we obtain another bound for the asymptotic

existence of orthogonal designs.

Theorem 6.43. Suppose that (ul, Ug, . . . ,uk) 15 a k-tuple of positive integers and let

uy + - -+ up = u. Then for each n > N there is an
OD (2"u; 2"uq, . .. ,2"uk),

3
where N < —310g(u1—1 —I——Zlog w;) + 8k + 4.

Ivan Livinskyi in [38] used complex Golay, Base, Normal and other sequences (see

[12, 32, 33, 35]) to show that each positive integer u can be presented as sum of
< Llogu+s (6.17)
s < g logu .

pairs (Aglu]; Bilu]) for 1 < k < s such that Ay[u] and By[u] have the same length for

each k, 1 < k < s, with elements from {£1,+i}, and the set

{Am¢3m¢uw&m3&mﬁ (6.18)

is a set of complex complementary sequences with weight 2u. In the following theorem,

we use this set of complex complementary sequences.
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Theorem 6.44. Suppose that (1)1,1}2, e ,vk) 1s a k-tuple of positive integers and let

vy + -+ v, =v. Then for each n > N, there is an
OD(2"v; 2"vy,...,2"y),

k
1 1
where N < R log(vy — 1) + R iz_;log(vi) + 10k + 4.

Proof. Suppose (vl, Vo, ... ,vk) is a k-tuple of positive integer. Let vy + -+ + v = v.
For simplicity, we assume that u; = vy — 1 and u; = v; for 2 <7 < k.

For each 8, 1 < B < k, let {Aifug], Bi[ug, ..., As,ug), Bs,[us]} be a set of
complex complementary sequences with weight 2ug such that for each o, 1 < o < s,

A, [ug) and B,lug] have the same length, Vo, ug]. From (6.17), for each 5,1 < g < k,
1
sg < 0 log ug + 5. (6.19)

Suppose that x and g, 1 < 8 < k are variables. Let M; = Circ($, O20—1)s T, O(gv,l))
and My = circ(O(U), -z, O@u-1), T, 0(v—1))~ For each 8, 1 < B < k, and each «,

I <a<sg,let

Xap = CirC(O(s[a76]+1), rpAalugl, 0(4v—25[a+1,8]-1)> 25 Baug), O(S[aﬁ])>a

Yo = Circ<0(2075[a+1,5})7 —x3Ba[ugl, O@siag+1), TaAalugl, O(2va[a+1,ﬁ]fl)>a

a—1 b
where S[1,1] = 0 and Sfa,b] = ZZV[j,ui], forl1<b<kand1l<a<s,+1
j=1 i=1
It can be seen that the above circulant matrices are disjoint and quasisymmetric

of order 4v such that

B

2 k  ss
SOMM; + 303 (KapXis + YasVa) =422 + Y (usa?) ) L.
=1

B=1 a=1 B=1
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Thus, by Theorem 6.30, there exists a full circulant quasisymmetric

SOD(4U; 4,4uq, . .. ,4uk)

k

for a signed group S which admits a remrep of degree 2™, where m = 2 + 2 Z 58.
p=1
By Theorem 6.26 and the upper bounds for the sg’s, (6.19), there exists an

OD(2"v; 2", 2"uy, ..., 2"uy,),

and so there exists an

OD(2"v; 2"0n, ..., 2"0y),

k
1 1
where n < R log(vy — 1) + R Z log(v;) + 10k + 4. O

i=2
Example 6.45. Let p be a prime number. Consider the 1-tuple (p). By Theorem

1
6.44, for each n > R log(p — 1) + 14, there is a Hadamard matrix of order 2"p.

In the next example, we modify Theorem 6.44, and decrease the bound in Example
p—1

1 1
6.45 from R log(p —1) + 14 to = log + 13. The latter bound is obtained first by

5
Ivan Livinskyi [38].

-1
pT)’ where p is prime. Let

{Al[v],Bl [v],..., Asv], Bs [v]} be a set of complex complementary sequences with

Example 6.46. Consider the 2-tuple (1,v) = (1,

total weight p — 1, where s < 10 logv 4+ 5 and for each a, 1 < a < s, the lengths
A,[v] and B,[v] are the same and equal to some integer /.

Let M, = Circ(:zc, O(gp_l)) and My = CirC(O(p), x, 0(p_1)). Also, for 1 < a < s, let

Xa ZCiTC<0(sa+1), 21 A[v], O2p-28,,1-1), T1Ba[v], 0(5(1)),

Ya = Circ<0(p—5a+1)7 _‘rlBa[U]; O(ZSa-‘rl)a ZUlAa[U], 0(p—Sa+1—1)>7
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B—1

where x and x; are variables, S; = 0 and Sz = Zﬁi for 2 < g < s+ 1. It can be
i=1

seen that the above circulant matrices are quasisymmetric matrices of order 2p such

that

2 s
SOMM; + (KXo X+ YY) = (20 + (29 — 2)m1) Iy,

i=1 a=1

By Theorem 6.30, there is a SOD (2p; 2,2p — 2) for a signed group S which admits

1
a remrep of degree 2", where n = 2 + 25 < R log b + 12. Therefore, by Theorem
6.26, there is an

OD <2n+1p; 2. 9,2"(2p — 2)),

and by equating variables in the above OD, one concludes that there is a Hadamard

1
P~ 19

1
matrix of order 2"*1p, for each n > s log

6.5 Signed group orthogonal designs of order 2"
and an application to the construction of or-
thogonal designs

In the previous section, SODs obtain over signed groups that were inductively gener-

ated. In this section, we make SODs over specific signed groups.

Theorem 6.47. There s a SOD(Q”; ]_(Qn)) over a signed group S that admits a

1

remrep of degree 2271, n > 2.

Proof. Let m = 22"'~1. Tt can be seen that p(m) = 2, for n > 2. By Theorem 2.42,
there is a set A = {[m, A, Ag, . ,Ap(m)_l} of pairwise disjoint anti-amicable signed

permutation matrices of order m. Let T' = <A1, e ,Ap(m)_1>. Clearly, T' is a signed
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subgroup of SP,,. Let

S = <sl, ey Sp(m)—1; s2 = —1, Sa455 = —835a, 1 < a# < plm) — 1>. (6.20)

Let m: S — T be a map defined by 7(s,) = A, for 1 < a < p(m) — 1. It can be
seen that 7 is a remrep of degree m.

Let B = {BO, By, ..., an,l} be a set of supplementary matrices which obtain by
n times the Kronecker product of I and P. It is easy to see that the matrices in the

set B are pairwise amicable of order 2". Therefore,
D = LC()BO + 81%131 + -+ SQn,l%Qn,lBQn,lj

is a SOD (2”; 1(2n)) over the signed group S admitting the remrep 7, where the x;’s

are variables. ]

Example 6.48. We show that there is a SOD (23; 1(23)) over a signed group S that

admits a remrep of degree 23. Let

By=I®I®]I, B,=I®PQ®P,
B=I®I®P, Bs=P®RI®P,
Bo=1®P®I, Bi=P®P®I,
Bs=P®I®I, B;,=P®P®P.

7
Let S be the signed group in (6.20), m = 8. It can be seen that D = xoBo—i—Z $;%; B;

i=1
is the desired SOD, where the z;’s are variables.

Following similar techniques in [29], we show the following theorem.
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Theorem 6.49. Suppose that r is a Golay number, and ky, ko, . .., kon—3_1 are complex
231

Golay numbers, where n > 2. Let m = 2 Z kj 4+ 1+ 1. Then there is a
j=1

COD <2qm; 99 94y 90H1L ,2q+1k2n73_1),

where g = 2" +n — 1.

Proof. Let n be a positive integer greater than 2. Suppose that H is a Hadamard

matrix of order 2%, (A4; B) is a Golay pair of length r, and (CY); DW) is a complex
2n=3-1
Golay pair of length k; (1 <G <3 1). Let m =2 Z k; +r 4 1. Consider the
j=1
following 2" 2-dimensional row vectors:

E = (y, z,CW, ... ,:1727173_10(2”73_1), ZA, x2n73_1C(ﬁ2n73_1), e ,xlc'(ﬁl)),
F—

(y, 21 DY, wpua  DFTY 2B, xznfs_lD%nig_l), . 7$1D%)>7

where the x;’s, y and z are variables. Let e be the 2" 2?-dimensional column vector
of ones. For each j, 1 < j < 272 let E; and F; be the circulant matrices of order
m whose first rows are the j-th rows of e ® H and eF' ® H, respectively, where ®
is entrywise multiplication (note that eF and eF are matrices of order 2”2 whose

entries are sequences). It can be verified that

on—2 on—3_1
> (E;E; + FjFy) =2"" <y2 +ra?+2 ) ijg) L, (6.21)
j=1 J=1

' .
see [20]. For each j, 1 < j < 2°°% let B} = (B, + E}), B} = %(Ej ~ E)),

| .
Fj = J(F;+ F}) and F} = L(F—Fy).

\)
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Now it can be seen that the set
_ / " / " / " / ", . n—2
Q_{Ej—Ej,Ej+Ej,Fj—Fj,ﬁg+ﬂ, 1<j<?2 }

consists of 2" Hermitian circulant matrices. Moreover,

2ﬂ,—2

3 ((E;. — E!)(E, - E)" + (B, + E')(E, + E!)"

J=1

H(F = F)E =B + (B + E)E + F))

2n72

=2} (B + BP + 17+ FP?)
j=1

2n—2
]' * * * *
=52 (B + B = (B = B} + (B + B = (Fy — F))
j=1
2n—2
=2Y (EE; + F;F}) from (6.21)
j=1

231
=2" (y2 +r22+2 Z kzjx?) I,.
j=1

From Theorem 6.47, there is a SOD (2”; 1(2n)) over a signed group S that admits

a remrep of degree 22" ~!. By Theorem 6.26, there is an OD (2q; 2?;,:)1’1), where

g = 2""!' 4+ n—1. Replacing variables in this OD by the Hermitian circulant matrices

in the set €2, we obtain the desired COD. O

Example 6.50. Using Theorem 6.49, we show that there is a
COD(2'-31; 2" . 1,2' . 8,2 . 22).

Let e be the 4-dimensional column vector of all ones, (A; B) be a Golay pair of length
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8, and (C; D) be a complex Golay pair of length 11 as follow:

A = (]-7 17 17 ] 17 1a T 1)7

B = (17 17 1a Ty Ty T 1a _)7

C: (17i7_717_7i757_7i7i71)a D= (17175azaga1717i _717_)7

1 1 1 1
1 - 1 —
Let £ = (y,xC, ZA, a:C’E), F = (y,:cD,zB,wDﬁ) and H =
1 1 - —
1 - — 1
We have
y xC zA 20y y xD 2B Dy
y —xC zA —axCy y —xD 2B —xDx
eEOH = f and eFOH = r
y 2C —zA —xCj y D —zB —xDg
y —xC —zA zCx y —xD —zB 2Dy
Let
E, = circ(y, xC, zA, .TCE), F = circ(y, xD, zB, a:DE),
Ey = circ(y, —xC, ZA, —xC’E), = circ(y, —xD, 2B, —xDﬁ),
E; = Circ(y, xC, —2zA, —JICE), F3; = circ(y, xD,—zB, —:z:DE),
Ey= circ(y, —xC, —2zA, xC’E), Fy= circ(y, —xD,—2B, .TDE).

From each of E; and F; (1 < j < 4), we obtain two Hermitian circulant matrices.

As an example Fj3 is the circulant matrix with the following first row:

(y, @, i@, &, 2, 2,00, 10, 2,10, 10, 0, 2, 2, 2, 2, 2, 2, %, 2, L, 12, iT, T, 1T, 1, T, L, T, i1, T),
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where v means —u. The following rows are the first rows of the supplementary

1 :
Hermitian circulant matrices E} = §(E3 + E}) and Ef = %(E;g — E%), respectively:
(y7 0(11)7 2, 07 2, 07 07 Z, 07 ) 0(11))7

(0, 1T, T,1T,12,12, T, x, 1T, T, x,1x,0,12,0,12,12,0,12, 0,12, x, x, 1x, T, , 12,12, 1T, X, zx).

Therefore, £ + EY and E} — EY are the desired two Hermitian circulant matrices
obtained from FEj3. Continuing this process, we find 16 complementary Hermitian cir-
culant matrices of order 31. Replacing these matrices with variables in OD (2"; 2{16))

obtained from Theorem 6.47 and 6.26, we find a
COD(2'-31; 2" . 1,2' . 8,2 - 22).

Remark 6.51. Replacing the 16 complementary Hermitian circulant matrices in the

above example with variables in OD (2! 2?16)) obtained in Theorem 4.17, we get a

COD(2'7-31; 2'9.1,2'9.8,2'.22).
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AOD(96; 8,8,8,18,18,36;8, 8,8, 72) as constructed in Construction 4.14.
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aayyaaZTaagjyaaxrraayyaaTaayyaarxzcccccccchbbbbbbbbaayyaaZiddddddddaayyaarraayyaaZTaagyyaarraajyaaxre
aayyaaZraayyaarTaayyaaxraayyaaxrTcccccccebbbbbbbbaayyaazarddddddddaayyaaxTaayyaaZraayyaaraayyaaxrT

aaTraayyaaxrTaayyaaraayyaaZraayyddddddddaazTaayybbbbbbbbéccccecCecaaZraayyaaZraayyaaZraayyaarTaayy
zraayyaaZTaayyaaiTaayyaazzaayyaaddddddddiTaayyaabbbbbbbbeccéeccérraayyaarxaayyaarraayyaaZaayyaa
rTaayyaaZzraagyyaaZzraayyaaxaayyaaddddddddTrzaayyaabbbbbbbbécccéccérTaayyaarTaayyaarTaayyaaZraayyaa
aayyaaZTaayyaarzraayyaarzaayyaaZzddddddddaayyaaxzxbbbbbbbbcecccccéccaayyaaZZaayyaaZTaayyaaZaagyaare
aayyaaZzraagyyaaxTaayyaaxaayyaaZrzddddddddaayyaaxzzbbbbbbbbéccccéccaayyaaZraayyaaZraayyaaZraayyaaxrT
yyaarzraayyaaZTaayyaaZaayyaarczaaddddddddyyaazzaabbbbbbbbcceccccecyyaarraayyaarraayyaarraayyaaTaa

gyaaxrTaayyaaTraayyaaZraayyaaraaddddddddyyaazrzaabbbbbbbbcccccccéecyyaarTaayyaarTaayyaaraayyaaZraa

bb
bb
bb

aarZaayyaarTaayyaaZraayyaaZraayyaarzaayyddddddddccccccecbbbbbbbbaaZzraayyaarTaayyaaraayyaarradayy

TTaajyaaZTaafyaaxzraayyaarcraayyaazaayyaaddddddddééccccccbbbbbbbbrraayyaaZZaaygyaaZZTaayyaaZTaagjyaa

TraayyaaZraayyaadzrTaayyaazrTaayyaaZzaayyaaddddddddcecccccecbbbbbbbbrzaayyaazxa

YyyaarraayyaaTraayyaa

aagjaarraagjjaarcaayyaataayyaaiiaagyaarxddddddddécééccecbbbbbbbbaayyaaZTaajjaarcaajyaarraafyjaare
aayyaarTaayyaarTaayyaaZzaayyaaZraayyaarddddddddcccecceccbbbbbbbbaayyjaaZraayyaarTaayyaarTaayyaaxrT
yyaaZTaayyaaTTaayyaarraayyaarraayyaaZZaaddddddddcccceccecbbbbbbbbygyaarraayyaaZTaayyaaZTaayyaaZTaa

yyaaZraayyaaZraayyaarTaayyaaxrTaayyaaZxzaaddddddddcécceccccbbbbbbbbyyaarTaayyaaZrzaayyaaZraayyaaraa

aaTraayyaarTaayyaalraayyaalraayyaalraayyaaraayyaaraayyaaraayybbbbbbbbcccccécécddddddddaaZxaayy
rraayyaaZaagyaarraayyaarraayyaarraayyaarraayyaataayyaatTaayyaabbbbbbbbeeccccceddddddddaezaayyaa

rTaayyaaZraayyaaxrTaayyaaxrTaayyaaraayyaaraayyaaTraayyaaZrzaayyaabbbbbbbbéccéccceddddddddrzTaayyaa
aayyaaZTaayyaarzraayyaaTaayyaaZTaayyaaZTaayyaaZaayyaarczaayyaarxzbbbbbbbbecccceccddddddddaayyaazs
aayyaaZraayyaaxrTaayyaaZraayyaaraayyaairaayyaaTraayyaaraayyaarzbbbbbbbbécéccecceddddddd yyaazTxw
gyaarraayyaaZTaayyaarraajyaarraagyyaarraayyaarcraayyaaiaayyaazzaabbbbbbbbeccceéccceddddddd Txzxraa
yyaarZTaayyaaTraayyaarTaayyaaraayyaaraayyaacraayyaatraayyaatxaabbbbbbbbeccccccceddddddd T

aarzaayyaarraayyaaiaayjaarraayyaaiaajjaarraayyaarraayyaal
aarTaayyaarrTaayyaalraayyaarraayyaarraayyaarTaayyaarraayyaarraayycccccecccbbbbbbbd
ZTaaPyaaZTaafyaaxrraayyaalaayyaarraayyaaTaayjaalTaayyaarraayyaaccccccccbbbbbbbbrraayya
ZrxaayyaaZraayyaarTaayyaalraayyaarTaayyaaraayyaaZraayyaarTaayyaaccccccccbbbbbbbb a
aagyyaaxrraayyaarraayyaalTaayyaarraayyaalTaayyaarraayyaarraayyaaccccccccbbbbbbbbaayyaaz
aajyaaxrTaagjyaaxrTaayyaaTraayyaaraayyaairaayyaacraayyaaraayyaarccccccccbbbbbbbbaayyaaZxdddddddd
yyaaTZaayyaaTZaayyaarraayyaaTaayyaarraayyaaTaayyaaTaayyaarxaaccccceccbbbbbbbbyyaaxrxzaadddddddd
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aaTraayyaarTaayyaaraayyaaraayyaaraayyaaraayyaaraayyaaZraayyddddddddaarTaayybbbbbbbbécccécece
rraayyaaZZTaayyaaTaaygaaTaayyaaTaayyaarzaayyaaaayyaarzaayyaaddddddddZTaayyaabbbbbbbbecccccece
rxTaayyaaZraayyaaZraayyaaZraayyaaZraayyaaraayyaaTraayyaaraayyaaddddddddzraayyaabbbbbbbbcccécece
aayyaaZfrTaagjyaaxrraayyaarraayyaarcraayyaarraayyaaiaayyaarczaayyaaddddddddaayyaaxzxzbbbbb ccccEcec
aayyaaZraayyaarTaayyaaraayyaaraayyaaraayyaaZraayyaaraayyaaZxddddddddaayyaaxzbbbbb cccececee
gyaarraayyaaZTaayyaaZTaayyaaTrTaayyaaZraayyaarcraayyaaZraayyaarczaaddddddddyyaazzaabbbbb ccceécccce
gyaarTaayyaaTraayyaaTraayyaaraayyaa aayya TaayyaaZzraayya addddddddyyaazxzaabb cceécecce
aarraayyaarraayyaarraayyaaTTaay aarraayyaal gaazzraayydddddddde cccbbbbbbbb
aarTadyyaarTaayyaarTaayyaaZraayyaaZraayyaaZraayyaaZraayyaaZraayyaazaayyddddddddccccececbbbbbbbb
TTaayyaaZTaayyaaZTaayyaarraayyaarraayyaarraayyaarraayyaarraayyaarZaayyaaddddddddccccececbbbbb
TrxaayyaaZraayyaaZraayyaarTaayyaarTaayyaarTaayyaarTaayyaaraayyaaTraayyaaddddddddccccceccbbbbdb
aagyyaarraayyaarraayyaarraayyaaZraayyaaTaayyaaZraayyaaZraayyaaZaayyaarxcddddddddecccccccbbbbb
aayyaaxrTaagyyaaxrTaayyaarTaayyaalraayyaairaacyyaairaayyaaZraayyaaZraayyaarTddddddddccceccccbbbbb
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eeeeeeeeffffffffg95999G9hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
eeceeceeeffffffffgg99999ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
eceeeeeeffffffffg999999ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ceeeceeeffffffff995999Gghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
eeeeeeeeffffffffg999999ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
eceeeeeeffffffffg99999gghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
eceeeeeeffffffffg9999ggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ceeeeeeeffffffffagaggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeéeeeehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeeeeeehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
frffffffeeéecéeehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeeeeeehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeeeeéehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeeeceeehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffELffffeeéeeeceehhhhhhhhgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ffffffffeeeececeehhhhhhhhgggggaggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
G9395959hhhhhhhheéecececffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
g99999999hhhhhhhheeeeeeeeffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
g999999ghhhhhhhheéeececeeeffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
999999gghhhhhhhhéeeeeeeeffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9999999ghhhhhhhheéeeeceeffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
99993ggghhhhhhhheeéeceeeffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
g99999gghhhhhhhheéeeeeceffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
99939999hhhhhhhhéeeeceeceef fffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggagffffffffeeceéecehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggggffffffffeeeeeeceehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhgggggaggfffffffféeeeeeéeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggggffffffffeeeeéeeceehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggggffffffffeeeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggggffffffffeeeeee€ehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhggggggggffffffffeeeceeeéehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhh3gagggagffffffffeeceééeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffggggggggéeeeeéeeéehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffggggggggeeeceeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffggg99999géeeeéeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffgg99999gecéeeceeéehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffggggggggeéeeeeéeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffggggggggeeeceeééeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffgg9999g9éeceeeééehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ffffffffgg99ggaggeceeéeeechhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggagg fLffffffhhhhhhhheéeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggffffffffhhhhhhhheeeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggffffffffhhhhhhhheeééeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggfLffffffhhhhhhhheéeéeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggffffffffhhhhhhhheéeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggffffffffhhhhhhhheeéeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggg fLffffffhhhhhhhheééeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggaggffffffffhhhhhhhheééeeceeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeeeeehhhhhhhhffffffffgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeeeeehhhhhhhhffffffffgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhéeeeeeeehhhhhhhhffffffffg999999ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeéeeeeehhhhhhhhffffffffg9gg99gghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhéeeéeeeeehhhhhhhhffffffffgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeeeéehhhhhhhhffffffffgggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhéeeéeeeehhhhhhhhffffffffg99999G9hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeeeeehhhhhhhhffffffffggggaggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheéececeeggggigaaffFffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh e €99999999fLffLLfffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 999 ffLLffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhe 999ffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhee 9999ffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhéeeeeeeeggggggggfffLffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeéee€ggggggggffLLffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhééeceeeeegggggggaffffffffhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeceeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeeeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeeeeeef fffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeeeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeceeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeeeeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggeeceeeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhggggggggéeceeeeeffffffffhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheéeeeeeegggggggghhhhhhhhffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeeeeeegggggggghhhhhhhhffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeéeeeeegggggggghhhhhhhhffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhééeeeéeegggggggghhhhhhhh ffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheéeeééeeegggggggghhhhhhhhffffffLf
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeéeeeeegggggggghhhhhhhhffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeéeeee€gggggggghhhhhhhhffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhééeeeceeegggggggghhhhhhhh ffffffff
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffhhhhhhhhggggggggecececee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffhhhhhhhhggggggggeeeeeeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ffffffffhhhhhhhhggggggggeeeeceeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ffffffffhhhhhhhhggggggggeéeeeeeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffhhhhhhhhggggggggeéeceeeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffhhhhhhhhggggggggeeeeeecee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ffffffffhhhhhhhhggggggggeeeeeeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ffffffffhhhhhhhhggggggggéeeeeeee
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeceee€e€gggggggyg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeeeeeeeegggggggg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeéeeeeeegggggggg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeceeeeecegggggggg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffe€e€€e€egggg99ggg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeeeeeeeegggggggg
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhffffffffeéeeeee€gggggggy
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhfffffffféceeececeggdgigag
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AOD (96; 32,32,32; 32,32, 32) as constructed in Example 5.13.

a@adadadadadadadaadaaaaadaaaa bbbbbbbbbbbbcece cbbbbbbbbb bbbccecccececcccccceccce
a I_)Qbbl_)bbl_)bbl_)béécccccccccccccébl_)bbbbl_)bl_) bbbcccecécccccceccccee
a bbbbbbbbbbbbceccccccccéceccccccbbbbbbbbb bbbécccécécccéccccecec
a bbbbbbbbbbbbeccccecccccececcccccbbbbbbbbb bbbccéecccceccccccce
a bbbbbbbbbbbbbbbbecccecccéceccceccecbbbbbbbbb bbbeécccécccceccceccce
aaaaaaaa abbbbbbbbbbbbbbbbcccccccccececcecccbbbbbbbbb bbbccccececceccecccecce
aaaaaaad abbbbbbbbbbbbbbbbéccccécecccceccccccbbbbbbbbb bbbécccccécécccecccee
aaaaaaaa abbbbbbbbbbbbbbbbcccccecccceccccccbbbbbbbbbbbbbbbbeccceéecccececcceccecee
aaaaaaaaa abbbbbbbbbbbbbbbbcccccccceccceccecccbbbbbbbbb bbbcccccccccccccccc
aaaaaaad abbbbbbbbbbbbbbbbd cbbbbbbbbb bbbcccccccccccce
aaaaaaaa abbbbbbbbbbbbbbbb cbbbbbbbbb blgl}ccccccccccccc
ﬁ&aafzE.aaaa&aaaaaaaaaaaaaaaaaaaa&bbbblgblgbbbbblgblgb cbbbbbbbbdb bbbceccce
ada&aa&adadaaaaaaaaaaaaaaaaaaaa&bbbbbbl}bbbbbl)blgb cbbbbbbbbb bbbccc
aaadaaaaaaaaaaadaadad abbbbbbbbbbbbbbbb ccbbbbbbbbbd bbbeéccce
aaaaaaaaaaaaaaaadd aabbbbbbbbbbbbbbbb cccbbbbbbbbb bbbeccce
aaaaaaaaaaaaaaaadaaaaaaaaaaaaaaabbbbbbbbbbbbbbbb cccccccccbbbbbbbbb bbbecccce

aa aa 666.6uaa&a&a&aﬁ.aﬁa&aaa&écéccccccé bbbbbbbbccécccccce cccbbbbb b
aa a bbbbbbbbecccccecce cccbbbbb bb
aa bbbbbbbbcécéccceccccecccceccbbbbb bb
aa bbbbbbbbéccccecccccecccccbbbbb bb
aa bbbb bbbbbbbbcccecéceccccceccecbbbbb bb
aa bbbb bbbbbbbbcéccccececccccccccbbbbb bb
aa bbbb bbbbbbbbcccccccecccccecccbbbbb bb
aa bbbb bbbbbbbbcécccececccécecccceccbbbbdb bb
aa “bbbb bbbbbbbbcccccccccccccecccbbbbb bb
aa bbbb bbbbbbbbéccécccececéececccecbbbbdb bb
aaaaadaaaaaaaaaaaaaadaaaaaaaaaaaaaaacccccccecccecccccebbbb bbbbbbbbécccécceccccccceccbbbbb bb
aaadaadaaaaaaaaadadaaaaaaaaaaaaaaaccccccccceccceccccbbbbbbbbbbbbbbbbéceccccecéececececccbbbbb bb
aaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaccccccccecccccccbbbbbbbbbbbbbbbbéccccecceccéececcececbbbbb bb
aaaaaaaaaaadaacaaaaaaaaaaaaaaaaaaaccccccccccccececbbbbbbbbbbbbbbbbecccccéccececceccceccbbbbb bb
aaaaaaaaaaaaaaaaadaaaaaaaaaaaaaacccccecccecccecceccbbbbbbbbbbbbbbbbéccecccececccececccecccbbbbb bb
adadaaadadaaaaaaadaaaaadaaaaaaaaaccccccccccecceccccbbbbbbbbbbbbbbbbec ccccccccccbbbbdb bb
bbbbbbbbbbb bbbéccécécécéccéeccécececccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabb bbbbbbbbbbbccécéccéeccéceccccecccce
bbbbbbbbbbb bbbccccécécécécccccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa bbbbbbbbbbbeccececcceccccccecece
bbbbbbbbbbb bbbécceééccecccééeccecccaaaaaaaaaaaaadaaaaaaaaaaaaaaadaada bbbbbbbbbbbcceccccécccecceccecce
bbbbbbbbbbb bbbcceéccéceccééeccccécaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa bbbbbbbbbbbécéccccecccecccceccece
bbbbbbbbbbb bbbeécccccccceccecéececaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbeccccccccecccccccece
bbbbbbbbbbb bbbcccéccécéeécccéecccecccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbéccécceccececceecee
bbbbbbbbbbb bbbéccccccecccécéecccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbccccccceéccccccce
bbbbbbbbbbbbbbbbcccéciécececéiececcccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbécccccécececcccce
bbbbbbbbbbbbbbbbcccccécéceccccéctaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaabbbbbbbbbbb bbccccécéccecccececce
bbbbbbbbbbbbbbbbccceéécccéccecccecccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbceéccceccceeéccecce
bbbbbbbbbbbbbbbbccécéccéCececccéccéccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbceccéécccececcceccccece
bbbbbbbbbbbbbbbbccccccécceccéccccéeccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbcecéccecccceécccecce
bbbbbl}bbbbbbbbbbcccEEEEEcccEEEEEa&aZL&u&ada&aa&u&aa&&aa&ﬁaa&&aaﬁ&bbbblgbbbbbb bbcécccecccccccececcee
bbbbbbbbbbbbbbbbec aaa aaa a a bbbbbbbbbbb bbccccécéececcceccecce
bbbbbbbbbbbbbbbbe cééccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb bbécccééccceécccccce
bbbbbbbbbbbbbbbbec cécccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbecccéccecéececcccccee
cécécccecéccececceh bbbbbaaaaaaaaaaaaaaaaadadaadaaaaaaaaaaccccccececcecccccbbbbbbbbbbbbbbbb
cccéccccccccecccecedb bbbbbaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccecceccccccceccbbbbbbbbbbbbbbbb
cccccccéccccecceceb bbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccccccccceccceccbbbbbbbbbbbbbbbb
ccécccccécccceccceceh bbbbaaaaaaaaaaadaaadaaaaaaaaaaaaaaaaaaccccccccccccccecbbbbbbbbbbbbbbbb
cccecCcecccecécccecech bbbbaaaaaaaaaaadaaaaaaadaaaaaaaaaadaaaaccccce cccccecccbbbbbbbbbbbbbbbb
cécéccececcéccecccecechb bbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccéccccccceccceccbbbbbbbbbbbbbbbb
ccécéccecccccecceceb bbbbaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaccccccccccccccccbbbbbbbbbbbbbbbb
cécccccécccccccecbbbbbbbbbbbb bbbbaaaaaaaaaaaadaaaadaaaaaaaaaaaaaaccccccceccccceccccbbbbbbbbbbbbbbbb
cccccccccccccecebb bbbbaaaaaaaaaaaaaaaaaaaaaaaaaaad c bbbbbbbbbbbbbbbb
ccccceccecececccecebdb bbbbaaaaaaaaaaaaaaaaacaaaaaaaaaa bbbbbbbbbbbbbbbb
ccécccécececcccececcececbb bbbbaaaaaaaaaaaaaaaaaaaaaaaadaaa bbbbbbbbbbbbbbbb
ccceécccccccccececccbb bbbbaﬁaaaaaaaaaaaaaaaaaaaaaaaati&aaadEccEEE(;CE(;CEEECcébljbbbl}lgljblgbl}l}blg
ccécccececcécceccceebb bbbbaaaaaaaaaaaaadaaa aaaaaaccccccceccccccceccbbbbbbbbbbbbbbbb
ccceccecceéceccececcecebb bbbbaaaaaaaaaaaaaaaad aaaaaaccccccccccccccccbbbbbbbbbbbbbbbb
ccceécccéccceccceecbb bbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccccccccccccccbbbbbbbbbbbbbbbb
ccécccccceccccccebb bbbbaaaaaaaaadaaaadaaaaaaaaaadaaaaaaaacccccccccccecccccbbbbbbbbbbbbbbbb
bbb bbbbbbbbbbbcec ccccbbbbbbbbbbbbbbbbéccccéccceccecéecccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadad
bbbbbbbbbbbbbbbbccccccccceccceccecbbbbbbbbbbbbbbbbecccececcecécééecceccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbccccccccccececcccbbbbbbbbbbbbbbbbécccéccecccéecccctaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaad
bbbbbbbbbbbbbbbbccceccccécccceccccbbbbbbbbbbbbbbbbcececciécéececéééecceccéecaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaada
bbbbbbbbbbbbbbbbcccccccccececceccccbbbbbbbbbbbbbbbbécéccecccececcecéecccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbécccccececcceccecccbbbbbbbbbbbbbbbbécécecéécéecéecéecccaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaad
bbbbbbbbbbbbbbbbecccecccceccccccccbbbbbbbbbbbbbbbbéccceceéceccecééceccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbcccccccccccccceccbbbbbbbbbbbbbbbbécccéccecceécecccccaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaad
bbbbbbbbbbbbbbbbccccéccccecceccecccbbbbbbbbbbbbbbbbecccececicecéeccececéecaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbl}lglgbblgbbbbébbl}céccccccccccccccl}l}bblgbbl}lglgbblgbbl}cccéiééiccccccccaaaaaaaaaaaaaaaaaaaaaaaaaaﬁa&aad
blgbbbbljbb@bbbblgbccéééccEccéééceébbbbbblgblgbblgbblgbccccc aaaaaa
bbbbbbbbbbbbbbbbccccceccceccccceccchbbbbbbbbbbbbbbbb aaadaad
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