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ABSTRACT 
On Non-Vanishing of Certain L-Functions 

Shahab Shahabi 
Depar tment of Mathemat ics and Computer Science 

University of Lethbridge 
M. Sc. Thesis , 2003 

This thesis presents the following: 

(i) A detailed exposition of Rankin's classical work on the convolution of two mod
ular L-functions is given; 

(ii) Let S be the class of Dirichlet series with Euler product on Re(s) > 1 that can 
be continued analytically to Re(s) = 1 with a possible pole at s = 1. For F, G 6 <S, 
let F 0 G be the Euler product convolution of F and G. Assuming the existence of 
analytic continuation for certain Dirichlet series and some other conditions, it is proved 
that F (g> G is non-vanishing on the line Re(s) = 1; 

(iii) Let TN be the set of newforms of weight 2 and level N. For / € TN, let 
L(sym 2 / , s) be the associated symmetric square L-function. Let So = cr0 + it0 with 
1 — < GQ < 1. It is proved that 

Cs^N1-' < # { / € FN; L(sym 2 / , s0) ? 0} 

for prime iV large enough. Here e > 0 and C S 0 ) £ is a constant depending only on s0 and 
e. 
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N O T A T I O N S 

f(x) <C g(x) or f(x) = 0(g(x)) if there exists a constant C such that \f(x)\ < Cg(x) 
fix) 

fix) ~ g(x) as x —> +00 if lim = 1 
z->+oo p(x) 

C(s): the Riemann zeta-function; page 2. 
a Dirichlet character; page 2. 

g.c.d.(a, 6): the greatest common divisor of a and b; page 2. 
Xo: the trivial character; page 3. 
Lx(s): the Dirichlet .L-function associated to a character x; page 3. 
ir(x): number of primes < x; page 3. 
r(s): the gamma-function; page 4. 

the classical theta-function; page 4. 
A(s) := 7T-!r (f) C(s); page 4. 
H: the upper half-plane; page 6. 
GL\ (E): the multiplicative group of 2 x 2 matrices with real entries and positive 
determinant; page 6. 

EP: HUQLKoo}; Page 6-
the stroke operator; page 6. 

T = SL2 (Z): the multiplicative group of 2 x 2 matrices with integer entries and 
determinant 1; page 6. 
qM :=e M • p a g e 7. 
a /(n) : the n-th Fourier coefficient of a cusp form / ; page 7. 
r0(iV): the subgroup of T = SX 2 (Z) consists of matrices ( a i ? ) 2 x 2 in which a2\ is 
divisible by N; page 7. 
Mk(N): the space of modular forms of weight k and level iV; page 7. 
Sk(N): the space of cusp forms of weight k and level TV; page 7. 
(/, 5): the Petersson inner product of / and g in Sk(N); page 8. 
D0(N): a fundamental domain for r0(AT); page 8. 
e[z) := e 2 ? n z ; page 8. 
Lf(s): the L-function associated to a cusp form / ; page 8. 
a/(n): the n-th normalized Fourier coefficient of a cusp form / ; page 8. 
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W^: the Atkin-Lehner involution; page 8. 
S£(N): the ( -1 ) 2-eigenspace of WN in Sk(N); page 9. 
S^(N): the (-l)l + 1 -eigenspace of WN in Sk(N); page 9. 
A/( s) : = (^)~'r(s)L/(s);page 9. 
LftX(s): the twisted L-function associated to / and x; page 9. 
a \ b: a divides b; page 10. 
a\b: a does not divide 6; page 10. 
Tp {p\ N), Uq (q \ N): the Hecke operators; page 10. 
d(n): the number of positive divisors of n; page 11. 
ep and ep (p \ N): roots of the quadratic equation 1 — aj(p)x + x2 = 0; page 11. 
Sfd(N): the space of oldforms of weight k and level iV; page 12. 
Sk

ew(N): the space of newforms of weight k and level N; page 12. 
TN'. the set of normalized newforms of weight k and level N; page 12. 
A(z) = e27riz n l̂i (1 —

 e

2 7 r m 2 ) 2 4

: the discriminant function; page 13. 
E(z,s): the Epstein zeta-function; page 17. 
6(a;) = Q(z,tu): the theta-function; page 18. 
/ : the Fourier transform of / ; page 18. 
\A\: the determinant of a matrix A; page 19. 
d i a g [ a i , a n ] : the diagonal matrix with entries c t i , a n on its main diagonal; page 

L ( / x g,s): the Rankin-Selberg convolution; pages 12 and 24. 
L ( / <S> g,s): the modified Rankin-Selberg convolution; page 24. 
CN(S)' the Riemann zeta-function with the Euler p-factors corresponding to p \ N 
removed; page 24. 

Too: the stabilizer of oo under the action of F on upper half-plane; page 26. 
T: a set of representatives for right cosets of in T0(N); page 27. 
/i(n): the Mobius function; page 28. 

19. 
J: the Jacobian matrix; page 19. 

S(f,9) :=yk-2f(z)g(z); page 23. 



= ( ^ r ( s ) r ( s + k - !)Civ(2s)L(/ x 5 , S ) ; page 30. 
L(sym 2 / , s): the symmetric square L-function associated to a normalized eigenform 
/ ; page 35. 
L ^ s y m 2 , * ) := TT'IT (*±1) V (*±*p±) F (*±*) ; page 36. 
A(sym 2 / , s) := A^Lo^sym 2 , s)L(sym 2 / , s); page 36. 
S: the Selberg class; page 38. 
aF(n): the n-th coefficient of the Dirichlet series F(s); page 38. 
bp(pk)- the pk-ih coefficient in the p-factor of the Euler product of F(s); page 38. 
S: the class of Dirichlet series defined in Section 3.2; page 38. 
F(s) := F(s); page 39. 
(F <g> G)(s): the Euler product convolution of F and G; page 39. 
L(F <g> G, s): the L-convolution of F and G; page 54. 
L(f,s): the formal L-series attached to an arithmetic function / ( n ) ; page 55. 
(/ * 9){n)'- the Dirichlet convolution of two arithmetic functions / ( n ) and g(n); 
page 55. 
f^g(s)ds: the contour integral; page 61. 
w / : = *̂ Sjr ( /> / ) ; P a S e 68. 
5 m n : the Kronecker symbol; page 69. 
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Chapter 1 

Introduction and Statement of 
Results 

An L-function is, informally, a Dirichlet series XmLi a n n ~ s that extends analytically 
to the whole complex plane and satisfies a certain symmetric relation (i.e., functional 
equation). The study of these complex functions is intimately related to some im
portant problems in arithmetic and geometry. In particular, the investigation of the 
zeros of L-functions has played a significant role in the development of modern number 
theory. 

In the first section of this chapter we give a brief historical account of the non-
vanishing of L-functions and the close connection of these functions with classical 
distribution problems in number theory. Through this we try to provide enough moti
vation for the reader to follow the subject. Since our focus in this thesis is mostly on 
the non-vanishing of L-functions associated to modular forms, a summary of the basic 
definitions and results in the subject of modular forms is given in Section 1.2. Section 
1.3 is devoted to a summary of the main results of this thesis. 

1.1 Riemann Zeta-Function and Dirichlet L-Functions 

The proof of infiniteness of primes goes back to Euclid's time. However, it was Euler 
who, for the first time, studied this discretely natured problem by continuous tools. To 
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do this he introduced the zeta-function 
oo 1 

n" 
71 = 1 

for the real variable s > 1. 
Euler observed that this function has a product representation in the form of 

c(S)= n ( I - P - R 1 

p prime 

for s > 1. Such a product is called an Euler product. By taking the logarithm of both 
sides of this product, applying the expansion 

OO £ 

- L O G ( I - Z ) = Z ) Y . 

fc=I 

and using the divergence of the harmonic series, Euler showed that 

H M ( y — + y - V ) = +00. 
\ p ^ p k>2 ^ / 

He argued that since the second sum is convergent for s = 1, then 

lim ( — ) = +00. 
S - N + \ ^ ps 

\p prime / 

This proves the existence of an infinite number of primes, and proves further that the 
series YlpP1 diverges. 

After Euler it was Dirichlet who made major progress in this subject. His investi
gation in the problem of distribution of primes in arithmetic progressions led him to 
the notion of a character x, which now bears his name. 

A Dirichlet character x (mod b), is a complex function defined on integers such 
that for any m and n, 

(i) x ( M N ) = xHxWi 
(ii) x{n + b) = x(ra); 
(iii) x(n) ^ 0 if and only if g . c .d . (N , b) = l . 1 

1 G . C . D . ( A , b) STANDS FOR THE GREATEST C O M M O N DIVISOR OF a AND b. 
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If x(n) — 1 for any n with g.c.d.(n, b) = 1, then x is called the trivial character (mod 
b) and it is denoted by %o-

Dirichlet realized that in order to study the distribution of primes in an arithmetic 
progression with common ratio 6, one needs to consider the following infinite series 

71=1 

for s > 1. This is known as a Dirichlet L-function. It turned out that for any x-, Lx(s) 
has the following Euler product 

Lx(s) = i[(i~x(p)p-r1, 
p 

and for any nontrivial character x, Lx(s) has a finite value at s = 1. By using these facts 
about Lx(s), Dirichlet proved that there are infinitely many primes in an arithmetic 
progression a, a + b, a + 26, • • •, when g.c.d.(a, b) — 1. The central idea in the proof 
of Dirichlet's Theorem is that for any character x Xo, 

It is accurate to say that this is the first non-vanishing theorem of this type in the 
history of number theory. 

In 1859, twenty years after Dirichlet's work, Riemann published a short and very 
inspiring article about the problem of the distribution of prime numbers and its con
nection with the zeta-function. More than half a century ago, Legendre and Gauss 
independently conjectured that the number of primes in the interval [1, x], for large 

x 
x, behaves like . More precisely, if we define 

log a; 

n(x) = L 
p PRIME 

then 
lim = 1. 

X—HX X 

This is the celebrated Prime Number Theorem. Note that log here stands for natural 
logarithm. 
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In his paper, unlike Euler and Dirichlet, Riemann considered £(s) as a complex 
variable function. Today, this function in called the Riemann zeta-function. In this 
seminal paper, known as Riemann's Memoir, he outlined a project to prove the Prime 
Number Theorem. Riemann first started with the definition of the gamma-function at 

s 
point - , 

r - = / e-Hl-'dt. 

Using the change of variable t \-¥ 7rn2x, multiplying both sides by 7r 2 / 1 s and taking 
sum over n's, for Re(s) > 1, he arrived at 

poo / 0 0 \ 

r (|) c(s) = jf ( x f - 1 £ e - - dx. (1.1) 

Then he utilized the classical theta-function 
0 0 

9{x) = e~™2x-
n=—oo 

It was proved by Jacobi that 9{x) has the following transformation property, 

9 (^j = x1* 9{x) 

valid for x > 0. 
Riemann applied this property of 9(x) in (1.1) to derive the following integral 

representation for the zeta-function, 

9{x) - 1 
where LO(X) = . From this he concluded that the zeta-function extends ana
lytically to the whole complex plane, except for a simple pole at point s = 1. He also 
proved that the zeta-function satisfies the following functional equation 

A ( s ) = A ( l - s ) (1.2) 

where 

A(s) = 7 r - § r ( | ) c ( s ) . 
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In the rest of his paper, Riemann made six conjectures, some about concrete proper
ties of C(s), and others relating the zeta-function to the distribution of prime numbers. 
By the late nineteenth century, four of these conjectures were proved, and as a result, 
the proof of the Prime Number Theorem was established. 

The Prime Number Theorem can be considered as a prototype example that de
scribes the connection between the distribution problems arising in number theory and 
the non-vanishing of various L-functions of number theory. One of the main steps in 
the proof of the Prime Number Theorem by Hadamard and de la Vallee Poussin in 
1896 was the fact that £(s) has no zeros on the line Re(s) = 1. It is not difficult to 
prove that the Prime Number Theorem implies the non-vanishing of ((s) on the line 
Re(s) = 1. The question arises whether the Prime Number Theorem can be proved 
using just the fact that £(s) has no zeros on the line Re(s) = 1. This was answered 
affirmatively around 1930 by the work of Wiener using Fourier analysis. So one can say 
that the Prime Number Theorem is equivalent to the non-vanishing of the Riemann 
zeta-function on the line Re(s) = 1. 

The Riemann conjecture about the place of zeros of the Riemann zeta-function is in 
fact much stronger. This deep conjecture, known as the Riemann Hypothesis, asserts 
that apart from the trivial simple zeros at points s — 0, —2, —4, • • •, all the other zeros 
of lie on the vertical line Re(s) = | . The proof of this conjecture would result 
in the Prime Number Theorem with the best possible error term. More precisely, 
assuming the Riemann Hypothesis, one can show that there is a constant C, such that 
for large x, 

\ir(x) — : 1 < Cx^ log 2 x. 
logx 

The functional equation for Dirichlet L-functions was first given by Hurwitz in 1882, 
although he confined himself to real characters. For a general non-trivial character %> 
one can prove that Lx(s) has an analytic continuation to the whole complex plane, and 
it satisfies a certain functional equation. A similar statement is true for L X o ( s ) . The 
only difference in this case is that LXo(s) has a simple pole at point s = 1. 
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1.2 Modular Forms 

In this section we recall those basic definitions and fundamental results about modular 
forms and related topics that we will use in this thesis. As we do not give any proofs 
here, this section will be very concise. The interested reader can consult [11] or [21] 
for details. 

1.2.1 Basic Definitions 
Let H denote the upper half-plane 

Let GXj (R) be the multiplicative group of 2 x 2 matrices with real entries and positive 
determinant. Then CrX^(R) acts on H as a group of analytic functions 

Let H* denote the union of H and the rational numbers Q together with a symbol oo 
(or zoo). The rational numbers together with oo are called cusps. 

Let / be an analytic function on H and k a positive integer. For 

Sometimes, we simply write /|7 for /|FC7- Note that (/|7)|c = flyer. 

Let T = SL2(Z) be the multiplicative group of 2 x 2 matrices with integer entries 
and determinant 1 and let V be a subgroup of finite index of it. Suppose / is an 
analytic function on H such that f\j = f for all 7 € V. Since T' has finite index, 

H = {z = x + iy : x eR, y > 0}. 

define the stroke operator "|^" as 
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for some positive integer M. Hence f(z + M) = f(z) for all z G H. So / can be 
expressed as a function of qM = e ^ , which we will denote by / . More precisely, there 
is a function / such that 

/(*) = KQM). 

The function / is analytic in the punctured disc 0 < \qM\ < 1. If / extends to a 
meromorphic (resp. an analytic) function at the origin, we say, by abuse of language, 
that / is meromorphic (resp. analytic) at infinity. This means that / has a Laurent 
expansion in the punctured unit disc. Therefore, / has a Fourier expansion at infinity 
in the form of 

00 

f(z) = f{qM) = XI Mn)«&> QM = e^r 
where a/(n) = 0 for all n < n 0 (no £ Z) if / is meromorphic at infinity; and df(n) = 0 
for all n < 0 if / is analytic at infinity. We say that / vanishes at infinity if a / (n) = 0 
for all n < 0. 

Let a G T. Then a~lT'a also has finite index in T and {f\cr)\y = f\a for all 
7 G <j_1r'cr. So f\a also has a Fourier expansion at infinity. We say that / is analytic 
at the cusps if f\a is analytic at infinity for all a G T. We say that / vanishes at the 
cusps if / | a vanishes at infinity for all a G T. 

Now for N > 1, let 

r0(AO = | ^ G 5L 2 (Z ) ; c = 0 (mod TV) 

Note that r0(iV) is of finite index in F. 
A modular form of weight k and level N is an analytic function / on EI such that 
(%>/|7 = / f o r a l l 7 G r 0 ( i V ) ; 

(ii) f is analytic at the cusps. 
Such a modular form is called a cusp form if it vanishes at the cusps. 

The modular forms of weight k and level N form a finite dimensional vector space 
Mfc(TV) and this has a subspace Sk(N) consisting of cusp forms. Note that since (Q-1 )̂ 
is the same as Q °) in T0(N), (%) shows that Mk(N) = {0} if k is odd. So from now 
on we assume that k is even. 
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Also, one can define an inner product called Petersson inner product on Sk(N) by 

kdxdy 
(f,g)= II f(z)g(z)yk 

J JDn(N) ' / > » ( . v ) ' y2 

where Dq(N) is a closed simply connected region in EI with the following two properties: 
(i) For any z G M there is a 7 € r0(IV) and a z\ G Dq(N) such that z = 7(21); 
(ii) If z\ = 7(̂ 2) where zi, z2 G D0(N) and 7 G r0(AQ, then z i and z 2 are on the 

boundary of Dq(N). Dq(N) is called a fundamental domain for RO(IV). 

1.2.2 L-FUNCTION OF A CUSP FORM 

Let / G Sk(N). Since (J \) G r0(IV), the Fourier expansion of / at infinity is in the 
form of 

CO 

f(z) = J2^f(n)e(nz), e(z) = e2™. 
n=l 

Attached to / , we define the L-function associated to f by the Dirichlet series 

af(n) 

n" 
n—l 

where a/(n) = f ° r n = 1, 2,3, • • • . 

It can be shown that Lf(s) represents an analytic function for Re(s) > 1. This is 
a consequence of the fact that for any e > 0, a/(n) = 0(ne)2 (see Theorem 1.4). 

Let 

w,= {* - 1 

\N 0 
This is not an element of T unless N = 1. However, 

^R0(IV)H/-1 = RO(IV). 

Moreover, /IW;2, = / • WN is called the Atkin-Lehner involution. Note that since 

/ h-> f\WN defines a self-inverse linear operator on Sk{N), it decomposes the space of 
2 T h i s m e a n s t h a t t h e r e e x i s t s a c o n s t a n t C s u c h t h a t | a / ( n ) | < Cne. 
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cusp forms Sk(N) to two complementary subspaces corresponding to the eigenvalues 
± 1 . Set 

S+(N) = {feSk(N); / | W w = ( - l ) t / } , 

Sk-(N) = {feSk(N); / | W W = ( - 1 ) * + 1 / } , 

and notice that Sk(N) = S£(N) ©(N). The following Theorem of Hecke guarantees 
the analytic continuation of Lf(s) for / G 5^ (AT). 

Theorem 1.1 (Hecke) Let f G S^N). Then Lf(s) extends to an entire function 

and A / ( s ) = F(s)Lf(s) satisfies the following functional equation 

A / ( s ) = ± A / ( l - s ) . 

The root number of I//(s) is the sign appearing in the functional equation of Lf(s). 

Corollary 1.2 Let f G Sk(N). Then Lf(s) extends to an entire function. 

N o t e Our definition of S£(N) and Sj^(N) is slightly different from the conventional 
ones that denote them as subspaces corresponding to the eigenvalues + 1 and —1 for 
operator WN, so for | odd, our S^{N) is the conventional S^(N). In our notation 
Sk(N) is the set of cusp forms whose L-functions have root number ± 1 , respectively. 

Let % be a Dirichlet character (mod q). The twisted L-function associated to / G 
Sk(N) and x is defined by the absolutely convergent series 

Lf,x(s) = 
fl/(n)x(") 

n=l 

for Re(s) > 1. One can show that if x is primitive3, then 

fx(z) = J^a/WxHe2 

is a cusp form of weight k and level q2N. So in this case, the twisted L-function is the 
same as the L-function associated to the cusp form fx, and hence it has an analytic 
continuation to the whole complex plane. 

3 This means that the period of \ is exactly q. 
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1.2.3 Hecke O p e r a t o r s 

Let / G Mk(N). Let p and q be primes such that p \ N and q \ N.4 The Hecke 
operators Tp and Uq are defined by 

f \Tp=p 5 - i 

f\Uq = q* 

We can show that f \ Tp, f \ Uq are also modular forms of weight k and level JV, and 
furthermore they are cusp forms if / is a cusp form. 

Let / G Sk(N). We will say that / is an eigenform if / is an eigenvector for all 
the Hecke operators {Tp (p \ N), Uq (q \ N)}. The following theorem gives the main 
property of eigenforms. 

Theorem 1.3 (Hecke) The following conditions are equivalent. 
(i) f is an eigenform and a / ( l ) = 1. 
(ii) Coefficients a /(n) satisfy the following three properties: 

(a) They are multiplicative, i.e., i/g.c.d.(m, n) = 1, then a j (mn) = a/(m)a^(n) ; 
(b)Forq\N, af(ql) = af(q)1; 
(c) Forp\N, af(pl) = af(p)af(p1-1) - af{pl~2). 

(iii) Lf(s) has a product of the form 

g\N p\N 

which converges absolutely for Re(s) > 1. 

We call the product given in part (iii) of the above theorem an Euler product. Also 
any / satisfying the above equivalent conditions is called a normalized eigenform. It 
can be proved that if / is an eigenform, then 0 / ( 1 ) ^ 0. So we can always assume that 
an eigenform / is normalized. 

4 H e r e a | 6 m e a n s t h a t a i s a d i v i s o r o f b a n d a \ b m e a n s t h a t a i s n o t a d i v i s o r o f b. 
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The coefficients of modular forms satisfy some important inequalities. The following 
statement, known as the Ramanujan-Petersson Conjecture, gives the best possible 
bounds for the coefficients of cusp forms. 

Theorem 1.4 (Del igne) (i) If f is a normalized eigenform, then 

1̂ /(̂ )1 < d{n) 
where d(n) is the number of the divisors of n. 

(ii) If f is a cusp form, then for any e > 0, 

af(n) ^ n£-5 

Now suppose / is an eigenform. From the above inequality it follows that if p \ N, 
then af(p) can be written in the form of 

af(p) = ep + ep 

where e p e C and \ep\ = 1. In fact, ep and ep are the roots of the quadratic equation 
1 — af(p)x + x2 = 0. 

Corollary 1.5 If f is a normalized eigenform, then its L-function has the following 
Euler product, valid for Re(s) > 1, 

LA*) = - af(p)P-rl Ui1 - "Pp~T\i - w r 1 -
p\N p\N 

Inspired by the above theorems we may think of finding a basis for Sk(N) consisting 
of eigenforms for all the operators {Tp (p \ N), Uq (q | N), WN}. We can show that 
there exists a basis for Sk{N) consisting of eigenforms for all the operators {Tp (p \ 
N)} and the operator WN (see [5], Lemma 27). The existence of such a basis is the 
consequence of the fact that {Tp (p\ N), WN} form a commuting family of Hermitian 
linear operators (with respect to the Petersson inner product) and therefore from a 
theorem of linear algebra (see [8], p. 207, Theorem 8) the space of cusp forms is 
diagonalizable under these operators. Unfortunately the operators {Uq (q \ N)} are not 

5a,f(n) <C ne means that there exists a constant C > 0 such that |a/(n)| < Cne. 
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Hermitian for Sk(N) and we can not diagonalize Sk(N) with respect to the operators 
{Tp (p\ N), Uq (q | TV), WN}. However, we may find such a basis for a certain subspace 

It can be proved that the Fourier coefficient a/(n) of a normalized eigenform / is 
real. This is a consequence of the fact that the operators {Tp (p \ TV)} are Hermitian, 
and the fact that the coefficients af(q) (q | TV) are real (see [5], p. 147, Theorem 3). 

1.2.4 O l d f o r m s a n d N e w f o r m s 

In [5] Atkin and Lehner constructed a subspace of Sk(N) that is diagonalizable under 
the operators {Tp (p \ TV), Uq (q | TV), WN}. More precisely, they showed that there 
exists a subspace of Sk(N) whose eigenspaces with respect to the Hecke operators 
{Tp (p \ TV)} are one dimensional. We call such a property, for a subspace of Sk(N), 
"multiplicity one". Now since the operators {Uq (q \ TV), WN} commute with the 
operators {Tp (p \ TV)}, an eigenform for the operators {Tp (p \ TV)} is an eigenform for 
the operators {Uq (q | TV), WN} too. 

Let TV' | TV (TV' ^ TV) and suppose that the {gi} is a basis consisting of eigenforms 
for the operators {Tp (p \ TV')}. It can be proved that if d is any divisor of -j^ then 

We call Sfcld(TV) the space of oldforms. Its orthogonal complement under the Peters-
son inner product is denoted by Slew(N) and the eigenforms in this space are called 
newforms. So we have 

Since the space of newforms has multiplicity one, the set of normalized newforms of 
weight k and level TV is uniquely determined. We denote it by T^. From the above 
discussion it is clear that if / e TN, Lf(s) satisfies a functional equation and has an 
Euler product on the half-plane Re(s) > 1. 

ofSk(N). 

9i{dz) e Sk(N). Set 

<old (TV) - span <̂  gi{dz) : for any TV' | TV (TV' / TV), d 

Sk{N) = SfA{N)®Sl™{N). 
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1.3 This Thesis 
The second chapter of this thesis gives a detailed exposition of Rankin's classical work 

on the convolution of two modular L-functions. For the modular L-functions Lf(s) = 

£~=i af{n)n-s and Lg(s) = ^=1 s(n)n~S> l e t 

j(t \ ^ a / ( n K ( n ) L(fxg,s) = ^ >Jy 

This is called the Rankin-Selberg convolution of Ly(s) and Lg(s). In [19] Rankin estab
lished the analytic continuation and the functional equation of L ( / x g,s). A detailed 
proof of Rankin's Theorem is given in Chapter 2 (see Theorem 2.12). 

Rankin's Theorem has numerous number theoretic applications. In [18], Rankin 
used this theorem to prove the non-vanishing of the modular L-function associated to 
the discriminant function 

00 

A(*) = e2niz - e

2™*)24 

N=L 

on the line Re(s) = 1. In fact, Rankin's argument establishes the non-vanishing of 
L-functions associated to eigenforms for the points on the line Re(s) = 1, except the 
point s = 1. In [17], Ogg proved that the same result is true for s = 1. Moreover, he 
showed that if {/, g) = 0, then L ( / x g, 1) / 0. 

In Chapter 3, inspired by Ogg's theorem on non-vanishing of Rankin-Selberg con
volutions at the point s = 1, we prove two general non-vanishing theorems for the 
convolution of two general Dirichlet series. One of the main themes of Chapter 3 is 
that the existence of analytic continuation for certain Dirichlet series is closely related 
to the problem of non-vanishing of L-functions on the line Re(s) = 1. To describe our 
results, we need the following four definitions. 

(i) Let S denote the class of Dirichlet series F(s) = Y^Li aF(n)n~s with the following 
properties: 

(a) For Re(s) > 1, F(s) has the Euler product 
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(b) For any e > 0, aF(n) = 0 ( n e ) ; 
(c) F(s) has an analytic continuation to the line Re(s) = 1, except for a possible 

pole at s = 1. 

(ii) For F G 5, we define 

(wj For F £ <S and cr0 < 1> we s a Y F is <8>-simple in Re(s) > a$ (resp. i?e(s) > o"o), 
if F (g> F has an analytic continuation to Re(s) > GQ (resp. Re(s) > cr0), except for a 
possible simple pole at s = 1. 

Section 3.3 deals with the non-vanishing of the Euler product convolution F <g> G 
on the line Re(s) = 1 (s ^ 1). We prove the following. 

Theorem 3.10 Let F, G G S be ®-simple in Re(s) > 1 and let t ^ 0. Then 

In Section 3.4 we derive a similar non-vanishing result for s = 1. We prove the 
following. 

Theorem 3.15 Let uo < 1, and assume the following: 
(i) F <g> Fane? G ® G can be extended analytically to the half-plane Re(s) > a0, 

except for a (possible) simple pole at s — 1; 
(ii) F <g) G has an analytic continuation to the half-plane Re(s) > OQ; 
(iii) At least one of F®F, G®G, or F®G has zeros in the half-plane Re(s) > a0. 

Then ( F ® G ) ( 1 ) ^ 0. 

We will see that the non-vanishing of various L-functions of number theory will be 
simple consequences of these theorems. In particular, these results establish the non-
vanishing of Lf(s), LfiX(s) and L(f x g, s) on the line Re(s) = 1. We also observe that , 

n=l 

(Hi) For F, G G <S, the Euler product convolution of F and G is defined as 

(i) {F®F)(l + it)=£0. 
(ii) If F = F , G = G, and if F ® G has an analytic continuation to the line 

Re(s) = 1, then ( F <g> G)(l + it) ^ 0. 
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for a non-real character the non-vanishing of Lx(s) on the line Re(s) = 1 (s 7̂  1) 
does not follow from Theorem 3.10. In order to deal with this problem, in Section 3.5, 
inspired by a theorem of Ingham [9], we prove a general non-vanishing theorem for the 
Dirichlet series with completely multiplicative coefficients. More precisely, we prove 
the following. 

Theorem 3.22 Let F, G G S be two Dirichlet series with completely multiplicative 
coefficients. Also assume the following: 

(i) F and G are ^-simple in Re(s) > \; 
(ii) F ®G has an analytic continuation to Re(s) > |; 
(iii) (F <g> G) <g> (F <g> G) is analytic for Re(s) > 1 and has a pole at s = 1. 

Then, (F <g> G)( l + it) ^ 0 for all t. 

Note that this theorem will imply the non-vanishing of Lx(s) on the line Re(s) = 1 
(s^l). 

Chapter 4 is related to the symmetric square L-function associated to a newform / 
of level N defined by 

L ( s y m 2 / , s ) = ^ £ ( / x / , S ) . 

The non-vanishing of L(sym 2 / , s) inside the critical strip (i.e., the strip 0 < Re(s) < 1) 
is the main focus of this chapter. More specifically, we are interested in the following 
problem. 

Prob lem Let SQ be a point inside the critical strip and J-^ be the set of normalized 
newforms of weight k and level N. Then, what can we say about the 

# { / G j f 7 V : L ( s y m 2 / , S o ) ^ 0 } 

for large TV? 

This is a challenging problem. The Generalized Riemann Hypothesis predicts that for 
all / G TN and | < Re(s0) < 1, L ( s y m 2 / , s0) ^ 0. However, we are very far from 
a proof of this conjecture. Probably the most interesting known result related to the 
above problem is a result of Kohnen and Sengupta [12]. They prove that for any given 
s 0 inside the critical strip, we can find an integer A;0 such that, for all k > k0, there 
exists a newform / for which L(sym 2 / , s0) ^ 0. This is a nice result, however, it does 
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not directly address the above problem, since in our case the weight is fixed while 
Kohnen and Sengupta vary the weights. 

In the final chapter of this thesis, we prove a partial result related to the above 
mentioned problem. More precisely, for a fixed point so inside the strip 1 — ^ < 
Re(s) < 1, we find a lower bound in terms of prime N for the number of weight 2 
newforms / for which L(sym 2 f,s0) ^ 0. The main step in the proof of such a result is 
establishing an upper bound for the mean values of the symmetric square L-functions 
in the critical strip. 

From now on let J7^ be the set of newforms of weight 2 and prime level TV. In 
Section 4.4, we derive an upper bound for the following mean square of symmetric 
square L-functions 

| L ( s y m 2 / , * 0 ) | 2 . 

In [10], Iwaniec and Michel proved such an upper bound in the case of Re(s0) = | . We 
closely follow their approach, and show that a similar result is true for a point inside 
the critical strip. We prove the following. 

Theorem 4.1 Let s0 be a point in the strip | < <r0 = Re(s0) < 1. Then, 

| i ( s y m 2 / , 5 o ) | 2 « k o | 9 + " i V 1 + e 

for any e > 0. The implied constant depends only on e. 

In Section 4.5, we combine this theorem with a known result about the values of 
the symmetric square L-functions on average to find a lower bound in terms of TV for 
the number of newforms / for which L(sym 2 / , s0). We have the following. 

Theorem 4.10 Let N be a prime number and let s 0 = Co + ito with 1 — ^ < a0 < 1. 
Then for any e > 0, there are positive constants CSo>e and C's € (depending only on So 
and e), such that for any prime N > C's t , there exist at least CSo>eN1~e newforms f 
of weight 2 and level N for which L(sym 2 / , s0) =̂ 0. 

F ina l l y , t he f o l l ow ing w i l l be a s imple co ro l l a ry o f our resul t . 

Corollary 4.11 For any s0 = a0 + it0 with 1 — ^ < a0 < 1, there are infinitely many 
symmetric square L-functions associated to newforms f such that L(sym 2 / , so) ^ 0. 
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Chapter 2 

Rankin-Selberg Convolution 

In 1939 Rankin published two papers about modular forms and the behavior of their 
coefficients ([18], [19]). These papers have played a very influential role in the history 
of modular forms. In his second paper, he introduced the notion of the convolution of 
two L-functions associated to modular forms, known as Rankin-Selberg convolution. 
The main goal of this chapter is to give an exposition of Rankin's work. Section 2.2 
is devoted to this. In order to study the Rankin-Selberg convolution, we need some 
basic properties of the Epstein zeta-function. We will discuss these properties in the 
first section. Also in the last section we will introduce the symmetric square L-function 
associated to an eigenform, as we need it in the final chapter of this thesis. 

2.1 Epstein Zeta-Function 

In this section we introduce the Epstein zeta-function and will establish its basic prop
erties. We will use these results in the next section. Our account will be brief. 

Definit ion 2.1 For any z = x + iy G H and for s = a + it G C ; we define the Epstein 
zeta-function by 

where the dash means that m and n run through all integer pairs except (0, 0). 
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It can be proved that for any z 6 H, the above double series is absolutely and 
uniformly convergent in the half-plane Re(s) > 1, and therefore E(z,s) is an analytic 
function of s on this half-plane (see [4], p. 7). 

Our goal here is to prove that the Epstein zeta-function has an analytic continuation 
and it satisfies a functional equation. Both of these statements are consequences of the 
transformation property of the following theta-function. 

Definit ion 2.2 For co > 0 and z = x + iy G H, the theta-function Q(u) is defined by 
the following infinite sum 

@(u) = Q(z,UJ) — exp | \mz + n | 2 | . 

Here dash has the same meaning as in the definition of E(z,s). 

The first target here is to establish the transformation property of 0(a>). To do 
this, first we recall some facts about the Fourier transform. For simplicity, we set 
e(z) = e2wiz. 

Definit ion 2.3 Let f : R n —> C be bounded, smooth (i.e., all partial derivatives exist 
and are continuous), and rapidly decreasing (i.e., for any N, \x.\Nf(x.) tends to zero 
when |x| goes to infinity). The Fourier transform of f is defined by 

/(y)=L e(-xV)/(x)d> 

Here, x = ( x l t x n ) \ y = (yx,yny, x*y = '^fxjyj, |x| = ( x * x ) 2 , dx = J^dxj 

and "t" stands for transposition. 

It can be proved that for / ( x ) = e _ 7 r x ' x we have f = f (see [11], p. 83). Recall that 
throughout this chapter a; is a positive real number. 

L e m m a 2.4 Let A be a real symmetric matrix of size n with positive eigenvalues, and 
let 

g(x) = e ( -cox Ax J = e 
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Then we have 

Here, \A\ is the determinant of A. 

Proof By the principal axis theorem (see [8], p. 323, Theorem 4), there exists an 
orthogonal matrix U such that 

A = U'DU 

where D = diag[AI,A„] is a diagonal matrix and AJ's are the eigenvalues of A. Let 

B = diag[\/AI', \/K]U = (6Y)NXN-

B is invertible and A = BlB. Consider the change of variable u = cu^Bx, and let 
v = oo" 2 (£?*)_1y. We have the following 

u * u = WX'AX, v*v = — yM_1y, x'y = u*v. 
CO 

Also for the Jacobian matrix J we have 

du 
J = { 

and therefore 

dxjJnxn V J n * n 

du = \J\dx — w*\B\dx = to*\A\*dx. 

Applying this change of variable in the Fourier transform of g yields 

g(y) = f e(-x*y)e-WAxrfx 
JW1 

( \ — 
- V / e ( - u * v ) e - 7 r u t u d u 
uj JW1 

\A\-* I - I 2
 e ' ^ v 

to 

= \A\-U-) e-^tA'^. 
T \ 2 

The proof is complete. • 
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Propos i t ion 2.5 The theta-function Q(to) satisfies the following transformation prop
erty 

i + e(o;) = - ( i + e [ -

Proof In Lemma 2.4 put 

A= y y 
X 1 
y y 

where z = x + iy € H. A has positive eigenvalues and we have 

\ y y I 
and so 

5(x) = c - W A t = e- 1 S t | x i * + * a | a , 

S( y ) = -E—Y'A-^Y = I e-^l2/i-J/2 2| 2_ 
a; a; 

By applying the Poisson summation formula, i.e., 

meZ2 meZ2 

(see [11], p. 83), we have 

E -^-\mz+n\2 1 -^-\m-nz\2 

e y '
 1 = — y e 

m,n ^ m,n 
or 

i + e(w) = - ( i + e ( -

The proof is complete. • 

In the sequel, we also need to know how Q(u) behaves at infinity. It can be proved 
that 0(u>) has exponential decay. More precisely, by approximation methods, one can 
show that for — 1 < Re(z) < 1, 

6(u;) < (1 + UJ~1 + y^uj-2 + y - 2 a ; - 2 j ( e ~ 2 +e J . (2.1) 

(See [19], p. 359, Lemma 3). 

Now we are ready to prove the main result of this section. 
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Propos i t ion 2.6 (%) The Epstein zeta-function can be analytically continued to the 
whole complex plane, except for a simple pole at s = 1 with residue —. 

y 
(ii) Put 

Z(z,8)=(jJ ST(s)E(z,s). 

We have the following integral representation for £(z, s) 

poo 1 
£{z,s)= 9 ( w ) ( u s - 1 + w > + 1 

Jl s \ s ~ 1) 

and so, £(z,s) is analytic everywhere, except for simple poles at s = 0,1 with residue 
1. 

(iii) £(z, s) is unchanged under the replacing of s by 1 — s. This means that 

^{z,s)=i{z,l~s). 

In other words, the Epstein zeta-function satisfies the following functional equation 

^ \(s)E(z,s)=(^y 1T(l-s)E(z,l-s). 

Proof For Re(s) > 0, we have 

poo 
r(s) = / e~uus-xdu. 

Jo 

We apply the change of variable u (->• ^\mz + n\2uj, to get 

T(s) = S \mz + n\2s jT e'T V" 1^, 

or 
n^ ,mz + n\-2sT(s) = / e^l""^ V" 1^. 

Jo 
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This implies 

az,s) = ST(s)E(z,s) 

s 
7T 
y J \mz + n\2s 

' ' m,n 1 ' 

s)\mz + n\ 2 s 

y, m,n x 

/ exp < — — \mz + n\2 , ojs~lduj. 
t ^ o I y 

Now note that the inequality (2.1) allows us to interchange the order of summation 
and integration. So 

€(z,s) = J exp | — — \mz + n | 2 | uo^duj 

poo 
= / © ( a ; ) ^ " 1 ^ ./o 

pi poo 

= J Q(uj)ujs-lduj + y © ( a ; ) ^ " 1 ^ . 

Changing variable u (->• ^ and applying the transformation property of Proposition 
2.5 yield 

e(w)w , - 1 dw + y {w (1 +9 (o ; ) ) - 1} f^J do; 

/

oo />oo >-oo 

0 ( w ) a ; s - 1 d a ; + / 0(a;)u;- se/a; + / {UJ~S - U J - s ~ 1 ) du 
= y Q(u)(u^+u-')du; + ^ - - . (2.2) 

Note that the inequality (2.1) also shows that 

/

oo 

leCo;)̂ *-1 +o;-a)| 
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du. 

After expanding the right-hand side, we come to a finite sum of integrals in the form 
of 

/

oo 

e~a"ujbduj 

where a G R+ and b G K. Since these integrals are convergent, the first summand on 
the right-hand side of (2.2) is an entire function of s. This proves (ii). 

The identity (2.2) also proves (iii), because the right-hand side of (2.2) is invariant 
under the replacing of s with 1 — s. 

To prove (i), note that by (ii) the only possible poles for E(z, s) are s — 0 ,1 . At 
s = 0 since both F(s) and £(z, s) have simple poles with residue 1, E(z, s) is analytic 
and E(z,0) = 1. At s = 1, T(s) has a value of 1 and £(z,s) has a simple pole with 

7T 
residue 1. Therefore E(z,s) has a simple pole with residue —. 

y 
This completes the proof. • 

2.2 Rankin-Selberg Convolution 

Let z = x + iy be a point in the upper half-plane Bt, and let s = a + it be a point in 
the complex plane C. Let 

oo 

n=l 

and 
oo 

27RMZ 
5 ( z ) = ] T a 9 ( n ) e ^ 

n = l 

be cusp forms of weight k and level N. We set 

Recall that for Re(s) > 1, the L-functions attached to / and g are defined by 

af(n) 
Lf(s) = E 
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and 

ns 

n-l 

where 

af(n) = - ^ h r , ag{n) = 
n 2 n 2 

for n = 1,2,3, • • • . 

Definit ion 2.7 The Rankin-Selberg convolution of Lf(s) and Lg(s) is defined by 

n=l 

The modified Rankin-Selberg convolution of Lf(s) and Lg(s) is defined by 

L(f <8>g,8) = (N(2s)L(f xg,s) = (N(2s) £ aJ^M 
n = l 

where (N(S) = / — = I [ ( 1 ) is the Riemann zeta-function with the 
t-^ ns 1 ;- L V Vs) 
n=l J » I \ r / 
n=l PJ-JV 

g.c.D.(n,JV)=L 1 

Euler p-factors corresponding to p | N removed. 

The main goal of this section is to study the analytic properties of L(f x g,s). We 
will see that the analytic continuation and the functional equation of the Epstein zeta-
function E(z, s) will result in the analytic continuation and the functional equation for 
the Rankin-Selberg convolution L(f x g,s). 

In Proposition 2.9 we will relate the Rankin-Selberg convolution L(f x g, s) to a 
double integral on a certain region of the upper half-plane. To do this we need the 
following lemma. 

Lemma 2.8 For any fixed y > 0, 

J a f{z)g{z)dx = J2af(n)ag(n) e-4nny 
n = l 
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Proof We have 

.1 / OO 00 

/2 f(z)g{z)dx = f2 ( JT hi(m)e2*im{x+iy)£ a g ( r a ) e

2 ™ ( * + < y ) j dx 
J~\ " 2 \ r o = l n = l / 

f\ ( 0 0 00 \ 

\ m = l n = l / 

Interchanging the order of summation and integration yields 

/

I oo oo / « i ^ 

2 f(z)gjz)dx = fl/MS)6"^1" / i e 2 ^ { m - " ) x ^ 
" I m = l n = l \ 2 

o o 
n = l 

The proof is complete. • 

Propos i t ion 2.9 For Re(s) > 1 we have the following integral representation for the 
Rankin-Selberg convolution L(f x g, s) 

(A^)-s-k+lr(s + k-l)L(fxg,s) = jj^k'2f{z)gj£)dxdy 

= JJsys$(f,g)dxdy 

where S is the strip \x\ < \ and y > 0. 

Proof We have 

(4Tr)-s-k+1r(s + k-l)L(fxg,s) = ( 4 7 r ) - s - f c + 1 r ( S + ifc-l)E-G / ( n ) a f l ( n ) 

n = l 

oo 

ra=l 

Note that by the change of variable 1Anny, T(s + k — 1) can be written as 
/•oo 

r(s + k - 1) = (47rn) s + f c - 1 / e-4™yys+k~2dy. 
Jo >o 
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So 
0 0 f />O0 "\ 

(4n)-s-k+lr(s + k-l)L(fxg,s) = £ \&f(n)ag(n) ^ e- 4™V +^ 2] ^ 
/•OO ( O° 1 

= Jo ys+k-2\^af(n)a9(n)e-^ny\dy. 

Now by applying Lemma 2.8 we get 

(An)-s-k+1T(s + k-l)L(fxg,s) = J™ ys+k~2 f(z)gjzjdx^ dy 

= JJsys+k-2f(z)gJzjdxdy 

= JJ^ysS{f,g)dxdy. 

This completes the proof. • 

Our next step is to rewrite the double integral in the statement of the previous 
proposition as a new integral on a fundamental domain for V0(N). 

Lemma 2.10 We have 

// ysS(f,g)dxdy= // y'6(f,g)FN(z, s)dxdy 
JJs JJD0{N) 

where 

fn(Z,S) = i + y , £ 

00 00 

\mNz + n | 2 s 

771=1 n=—00 1 1 

g.c.d.(n,mN) = l 

and D0(N) is a fundamental domain for FQ(N). 

Proof Let 

^ = {7 € T : 700 = 00} = J ̂  J J j : 6 e Z 

TOO is a subgroup of T and it is clear that the strip S = {(x, y) : \x\ < |, y > 0} is a 
fundamental domain for TOO. For any two matrices 7 = ( " ^) and 7'=(",' in G L 2 ( Z ) , 
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the right cosets and are equal if and only if (c,d) = ±(c',d'). So the right 
cosets of Too in T0(N) are in one to one correspondence with the pairs (c, d). Therefore 
we can choose a set of representative T for the right cosets of in Tq(N) as follows: 

T = {(0,1)} U {(c, d): c>0, N\c, (c, d) = l}. 

We claim that for any pair (c, d) in T, there is a unique transformation 

az\ + b 
cz\ + d 

that maps Dq(N) into S. This is true for the pair (0,1). For other pairs in T , note 
that since oo G D0(N), 

a 
c 

This shows that c > 2; and since ad — be = 1, equality holds only ifc = 2 , a = ± l . We 
consider two cases. 

= |7c,d(oo)| < 

which 

If c > 2, then there is exactly one solution in a, b of the equation ad — be = 1 for 
a 

< - . Since jcdD0(N) has the unique cusp - in S, and this cusp is not on 
2 ' c c 

either of the lines \x\ = | , the whole of %tdDo{N) lies in S 
If c = 2, then a = ± 1 . Suppose that , for example, 7 ^ takes 00 to the cusp —| 

and takes D0(N) into S. Then the transformation %td(z\) + 1 has the same c, d and 
maps Dq(N) outside S (touching the line x = | ) , and therefore corresponds to the 
other solution. Hence exactly one of the transformations %td{zi) or %,d{zi) + 1 has the 
desired property. The claim is proved. 

This shows that the strip S can be written as the disjoint union of 7C )dD0(./V)'s 

S= |J 7MA)(AO-
(c,d)eT 

Therefore, we have 

// ysHf, g)dxdy = £ // ysS(f, g)dxdy. 
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Now let z\ = x\ + iy\. Changing variable Z\ >-» z — — 1 ~*~ yields 
cz\ + a 

ysv~{f,g)dxdy = Y (i—^TZm) Kfi9)te\dy\ 
JJs {c,d)eTJjD°W \ \ c z i + d \ J 

= if \yW,9) Y) 1 ^ — - t j ^ - J dxidyi 

By considering the definition of T in the last integral, we have 

// ysS(f, g)dxdy = [[ ys8{f, g) \ 1 + £ V ] J l 9 c ) dxdy 
d\2s 

N\c g . c . d . ( d , c ) = l 

= // ysS{f,g)FN(z,s)dxdy. 
J JDn(N) 'Do(N) 

The proof is complete. • 

Now we will show that FN(z, s) has a representation in terms of the Epstein zeta-
function. First we recall the definition of the Mobius function. 

The Mobius function fj,(n) is defined by 

1 if n = 1 

Mn) = { ( - l ) r tin=piP2---pr,Pi^Pj 
0 otherwise. 

L e m m a 2.11 We have 

2(N(2s)FN(z,S) = Y ^ E ( ^ z , s ) . 
d\N 

Proof The idea is to evaluate the double sum 

s= y 1 

^ \mNz + n | 2 s 

g .c .d . (n ,JV)= l 

in two different ways. 
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On one hand we have 
oo oo 

N 2 S ^ A^/ \mNz + n\2s 

n=l M= — OO N=—OO 1 1 

G.C.D.(N,JV)=L m^O G.C.D.(N,JV)=L 
OO oo 

\mNz + n\2s 

m=L n=—oo 1 1 

oo oo oo ^ 
= 2CV(2S) + 2 £ £ £ 

IMIVZ + n\2s 

k—l M=L N=-OO I I G.C.D. (n,m)=k 

Note that since g.c.d.(n, A7) = 1, then g.c.d.(n, m) = g.c.d.(n,ffliV). So 
oo oo oo 1 

5 = 2 M 2 S ) + 2 £ £ E ^ ^ p l 
fc=L m=L N=-OO I • G.C.D.(N,MJV)=fc 

OO oo 1 

= 2C„(2S)+2C„(23)E E ^J^f, 
m—1 n=-oo 1 ' G.C.D.(N,MJV)=L 

= 2^(25)^(^,5). 

On the other hand by applying the classical identity 

E ^ ) = ( 1 i f n = 1 

^ 0 otherwise 
d\n \ 

(see [15], Exercise 1.1.1), we have 

n 
where ni = —. So 

a 

^ ] \mNz + n\2s ^ ^ 
m,n ^ 1 d|g.c.d.(n,JV) 

= £ w ) £ \ m N z + n i d \ i s 
d\N K m,n 1 1 1 

s = v - ( / v . ( r i ) ^ / 1 \ 

d|jV V. m,ni 1 a 1 J d|JV 

AT 
i d2s " \~d E { ^ i - ^ 
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This completes the proof. • 

We are ready to prove the main result of this chapter. 

Theorem 2.12 (Rankin) The Rankin-Selberg convolution L(f x g, s) has the follow
ing properties: 

(i) The series 
af(n)ag(n) 

n" 

is absolutely and uniformly convergent for Re(s) > 1. 
(ii) L(f x g, s) has a meromorphic continuation to the whole complex plane. 
(iii) L(f x g, s) is analytic at s = 1 if (/, g) = 0. Otherwise, it has a simple pole at 

point s = 1 with the residue 

12(4 7 r) f c - 1 

r — N(k - 1) 

12 (47r) f c " 1 

• l l p i i v l 1 _ p) J JD0{N) 

(iv) Let 

L(f <8>g,s)= (N(2s)L(f xg,s) = (N(2s) £ ajM^M 
be the modified Rankin-Selberg convolution and for Re(s) > \, let 

= T(s)T(s + k-l)L(f®g,s) 

T(s)T(s + k-l)CN(2s)L(f xg,s). 
1«r ^ ~2S 

Z7T 

Then both L(f <g) g, s) and $ (s ) are entire functions if (/, g) = 0. Otherwise, they are 
analytic everywhere except that L(f <g> g, s) has a simple pole at point s = 1 and $ ( s ) 
has simple poles at points s = 0 and 1. 

(v) If N = 1, then the function $(s) is invariant under the replacing of s by 1 — s, 
i.e., 

$(s) = $(1 - s). 
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Proof (i) Suppose that a = Re(s) > 1 4- 5 > 1. By Deligne's bound (see Theorem 
1.4), we know that |a / (n) | , \ag(n)\ <C n6^. So, 

E 
n = l 

af{n)ag(n) 
0 0 (5/2 

n = l 
oo 

< 

E n"-

00 ^ 

Ê T+572 
n = l 

< + 0 0 . 

This completes the proof of (%). 

(ii) & (iv) By Proposition 2.9 and Lemma 2.10, we have 

$(S) = (^=j R ( # + T-I)L(/0 J L () 

27T ^ " 2 S 

R(a)Civ(2A) (47r)s+fc-1 J J ysS(f, g)dxdy 

= (47T)*-1 ( - ) R(S)Civ(2S) / / y'S(f,g)FN(z1s)dxdy. 
'£>o(JV) 

Applying Lemma 2.11 in the previous integral yields 

Finally by (2.2), we obtain 

" ^ / / w ' " ' > g ( ^ ' ) ) * * 

jrn o JJDO(N) \ JI ) 

(47T) 
2 ^ 
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Note that by (2.1), the integral in the first summand of the right-hand side of (2.3) is 
dominated by a finite sum of integrals of the form 

/ / VXHf, 9) ( e-au,uJbdco] dxdy 
JJD0(N) \JI J 

for A 6 R. These integrals are all convergent, because / and g vanish at all the cusps 
of DQ(N). Therefore the first summand in 2.3 is an entire function of s. This proves 
(ii) and (iv). 

(iii) If we multiply both sides of (2.3) by s — 1 and then let s —> 1 + , we get 
- 2 s 

Jim (s - 1) (Jj!=) T(s)T(s + k - l)(N(2s)L(f x g, s) 

E ^ r / / *(f>9)dxdy 
a JJDn(N) 

5-41 + 

( 4 7 T ) * - 1 

2 ^ " J J D O W 

and therefore 

r = Res(L(/ x g,s),l) 

This completes the proof of part (iii). 

(v) Let N = 1. We can simplify (2.3) to 

= JJ x (*{f,9) © H K 1 + """)) dxdydco 

(4 7 r) f c - 1 

+ / / S(f,g)dxdy. 
J J DM 2s(s - 1) JJDoii) 

At a glance we realize that the right-hand side of this equality is invariant under the 
replacing of s with 1 — s. Therefore 

$(s) = $ (1 - s). 

In other words, L(f x g, s) satisfies the following functional equation 

(27r)- 2T(S)r(S + k — l)CN(2s)L(f x g, s) 

= (27r)2-2r(l - 5)r(* - s)(N(2 - 2s)L(f xg,l- s). 

The proof of the theorem is complete. • 
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In the rest of this section, we will study the Euler product of the Rankin-Selberg 
convolution of two modular L-functions. Let f(z) = Y^=iaf(n)e2mnz ^ e a C U S P f ° r m 

for T0(N), and let Lj(s) = YlnLi af(n)n~s
 r j e ̂ s associated L-function. From Theorem 

1.3, we know that L/(s) has an Euler product if and only if f(z) be an eigenform. 
The next proposition will establish the Euler product of the modified Rankin-Selberg 
convolution of the modular L-functions associated to two eigenforms / and g. To derive 
the desired Euler product we need the following lemma. 

L e m m a 2.13 Let f and g be two normalized eigenforms in To(N), and let 

LM=n c 1 -
 at(p)p~sYi

 n c 1 - ̂ T1
 ( i - *pp~Ti 

p\N p\N 

and 

l9(S) = n C1 - aMp~sYl Hi1 - ^ " T 1 ( i - tpp-sYl 

p\N p\N 

be their associated L-functions, where ep+ep = o,f(p), 5p-\-Sp = ag(p) and \ep\ = \SP\ = 1. 
Then, for Re(s) > 1 and p\ N', we have the following identity 

af(Pk)a9(Pk) 

k=0 P 

= (1 - tpSpP s) 1 (1 - ep6pp s) 1 ( l - ep5pp s) 1 ( l - ep6pp s) 1 . 

Proof Let p \ N. We recall that the coefficients af(n) and ag(n) satisfy the following: 

a/(P*) = a/(p)a/(P*_1) - a/(P*"2)» 

a»(P*) = (̂PKCP*-1) - %(/"2)-

Applying the above identities repeatedly yields 

af(pk)a9(pk) ~ afWaftf-^agWagtf-1) + (af(p)2 + ag(p)2 - 2) af(pk-2)ag(pk-2) 

-af(p)af(pk-3)a9(p)ag(pk-*) + af{pk-')ag(pk-') = 0. (2.4) 
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Also by using the above relations between the coefficients a/(p), ag(p) and the complex 
units ep, 8P, we have 

(1 - ep5pp-s) (1 - ep5pp-s) (1 - ep8pp-s) (1 - ep5pp-s) 

= 1 - af(p)ag(p)p-s + {af(p)2 + ag(p)2 - 2) p~2s - af(p)ag(p)p-3s + p~As. (2.5) 

Putt ing together (2.4) and (2.5), and following a tedious calculation, we arrive at 

(1 - ep5pp-°) (1 - e,6pp-) ( l - ep8pp-s) ( l - i ^ p - ) £ a ^ < ^ 
fc=0 P 

pzs 

which is equivalent to the statement of the lemma. 
This completes the proof. • 

Propos i t ion 2.14 The modified Rankin-Selberg convolution of the modular L-functions 
associated to two normalized eigenforms f and g has the following Euler product 

L(f®g,s) = J\(l-af{p)ag(p)p-s)~l 

p\N 

x II i 1 ~ EP5pP~S)~l i 1 - CPTIPP'8)'1 (! - tpSpP'8)'1 ( l - tpbpP~s)~l • 
p\N 

Proof First of all we recall that the coefficients of eigenforms are multiplicative and 
real (see Subsection 1.2.3). So we have 

L(f®g,s) = (N(2s) H (£ 
af(pk)ag(pk) 

all primes \ f c = 0 P 

For p | N, since aj(pk) = aj(p)k and ag(pk) = ag(p)k, we have 

y> a/(p*K(p*) = af{p)ka9(p)k 

k=0
 y

 k=0 Y 

= (1 - af(p)ag(p)p-s)~1. 

Using this and applying the previous lemma, we attain the result. • 
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2.3 Symmetric Square L-Function 

The following lemma gives a new representation for the Rankin-Selberg convolution 
L(f x / , s) of the modular L-function associated to an eigenform / with itself. 

Lemma 2.15 Let f be an eigenform of weight k and level N. Then, 

af(n2) 
L(fxf,s) = c;N(s)J2 

Proof On one hand, by the definition of 

n = l 

oo 

M«)= E n° 
n=l 

g .c .d . (n ,JV)= l 

we have 

n° *—' n" 
n=l n=l 

where b{n) = £ af 

d\n 
g .c .d . (d ,JV)=l 

On the other hand, we have 

(af(n)f = £ af (^\ 
din. \ / d\n 

g . c . d . ( d , A O = l 

(see [11], p. 163, Proposition 39). This completes the proof. • 

Inspired by the previous lemma, we define the main object of this section. 

Definition 2.16 Let f be a normalized eigenform of weight k and level N. For 
Re(s) > 1, the symmetric square L-function L(sym 2 / , s) associated to f is defined 
by 

L(sym

2f,s) = (N(2s)f2°^. 
n = l 
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Lemma 2.15 shows that the symmetric square L-function satisfies the following 

Gv(5)L(sym2 / , s) = (N(2s)L(f xf,s) = L(f ®f,s). 

This identity, together with Theorem 2.12, establishes a meromorphic continuation of 
L(sym 2 / , s) to C. In 1975 Shimura [22] proved that the symmetric square L-function 
in fact has an analytic continuation to the whole complex plane. 

The value of L(sym 2 / , s) at s — 1 is of special interest. By part (iii) of Theorem 
2.12 and calculating the residue of (N{S) at s = 1, one can deduce that , 

The other important fact about the symmetric square L-function is that for square-
free AT, it satisfies a functional equation. Let 

Wsym2,.) = ( — J R ( — j — J R ( — ) , 

and let 

A(sym 2 / , s) = A ^ L ^ y m 2 , s)L(sym 2 / , s). 

Then the symmetric square L-function satisfies the functional equation 

A(sym 2 / , s) = A(sym 2 / , 1 - s). (2.7) 

In fact this functional equation can be derived from the functional equation for L(f <g> 
f,s) and the functional equation (1.2). In part (v) of Theorem 2.12, we established 
the functional equation of L(f <g> / , s) for N = 1. For square-free N, the proof of 
the functional equation of L ( / <g) g,s), and consequently the functional equation of 
L ( s y m 2 / , s), is due to Ogg (see [17], Theorem 6, p. 311). 
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Chapter 3 

Non-Vanishing on the Line Re(s) — 1 

3.1 Introduction 

Let / and g be two eigenforms with respect to the family of the Hecke operators for 
ro(7V) (see Subsection 1.2.3). Let L/(s) = Y^=i o-f(n)n~s and Lg(s) = Yl^Li a 9(/"i)n~ s 

be the L-functions associated to / and g, respectively. Let 

be the modified Rankin-Selberg convolution of L/(s) and Lg(s). Let (/, g) denote the 
Petersson inner product of / and g. In [17] (Theorem 4) the following is proved: 

In this chapter we prove similar non-vanishing results for a certain family of Dirichlet 
series and their convolutions. The non-vanishing of many classical L-functions will be 
simple corollaries of our general theorems. Also as a consequence of our theorems, we 
will be able to extend Ogg's theorem to the line Re(s) = 1. We start by introducing 
an important family of Dirichlet series. 

3.2 A Class of Dirichlet Series 

In 1989, Selberg [20] considered a certain class of Dirichlet series and announced a 
series of deep conjectures regarding the elements of that class. 

n = l 

Theorem 3.1 (Ogg) / / (/, g) = 0, then L(f ® g,l) ? 0. 
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Definit ion 3.2 The Selberg class S is the family of functions F(s) of a complex vari
able s satisfying the following properties: 

(i) (Dirichlet Series): for Re(s) > 1, 

m = E aF(n) 
ns 

n=l 

where aF(l) = 1; 
(ii) (Analytic Continuation): for some integer m > 0, (s — l)mF(s) extends to an 

entire function of finite order; 
(iii) (Functional Equation): there are numbers Q > 0, on > 0, rj € C with Re(ri) > 

0 so that 
d 

$(s) = Qsl[r{als + ri)F(s) 
4 = 1 

satisfies the functional equation 

$(s) = w$(l - s) 

where w is a complex number with \w\ — 1 and $(s) = 
(iv) (Euler Product): for Re(s) > 1, 

F ( S ) = n e x p E 
bF(pk) 

where bF(pk) = 0(pke) for some 6 < 1/2; 

(v) (Ramanujan Hypothesis): for any fixed e > 0, 

aF(n) = 0(n£) 

where the implied constant may depend upon e. 

In our theorems, we only need to consider Dirichlet series that satisfy conditions 
similar to (ii), (iv) and (v). More precisely, we consider the following class. 

Definit ion 3.3 The class S is the family of Dirichlet series F(s) = Yl^=iaF{n)n~s 

(Re(s) > 1) satisfying the following properties: 
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(a) For Re(s) > I, we have 

p \k-l y 

(b) For any fixed e > 0, 
aF(n) = 0(ne) 

where the implied constant may depend upon t. 
(c) F(s) has an analytic continuation to the line Re(s) = \, except for a possible 

pole at point s — 1. 

For F G «S, we write 

n=l p \k=l y 

Note that if F is analytic in a region A, then F is analytic in the region A — {s : s £ A}. 
So, if A be a symmetric region with respect to the real axis (the case that we are dealing 
with in this chapter), then the analyticity domain of F and F are the same. Also note 
that if F be the analytic continuation of / in a symmetric region, then F will be the 
analytic continuation of / . 

We continue by denning a convolution operation on S. 

Definit ion 3.4 For F, G G S, the Euler product convolution of F and G is defined as 

pk ( F ® G ) ( . ) = n « p f f : ^ o ^ ) ' 

L e m m a 3.5 For F, G in S, (F <g> G)(s) is convergent for Re(s) > 1. 

Proo f First we show that |O.F (« ) | < c(e)n e implies 

B y t a k i n g l o g a r i t h m i c der iva t i ve o f b o t h sides of 

n = l p \k=l F 
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we come to 
F'(s) _^kbF{pk)\ogp 
F(s) ~ p ,ks 

By cross multiplying and using the formula F'(s) = — YlnLi
 aF^a

l0g"i w e get 

aF(n) logn = ̂  JMPOM Ĵ) log p. 

In particular for n = pk we have 

fc&F(p*) logp = kaF{pk) logp - E ^ ' ^ ( ^ ) a ^ ( P f c ~ J ) l o § P 
jfe-i 

or 

kbF(pk) = kaF(pk) - £ ^(P^CP*-'). 
3=1 

We prove (3.1) by induction on k. For A; = 1 we have aF(p) — bF(p) and (3.1) is 
clear. Now suppose that (3.1) holds for all j < k — 1. We have 

k - l 

k\bF(pk)\ < c(e)^ + Eil^(^')|c(e)pMe 

3=1 

{ k-l 

k + X>' - 1) 

< c(e)pke(2k - 1). 

This proves (3.1) for any p and k. 
Now we prove the lemma. Suppose that a = Re(s) > 1 + 3e. By the inequality 

\ez\ < e'zl and by (3.1) we have 

exp I E 
k=l 

kbF(pk)bG(pk) 

p ks < e x p l £ ; 

( oo 

k=l 

k\bF(pk)\\bG(pk)\\ 

pka J 
(2* - Ifp^/k 

P ka 

Replacing 2k — 1 by 2k and using the expansion 

z2 z3 

log(l - Z ) = Z + - + j + (3.2) 
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valid for \z\ < 1, we get 

H E kbF(pk)bG(p><) 

v f c = l p ,fcs 

00 ^ 

« e x P l E i : 
4 

A; VPCT_2<\ 
- l 

1 -
p ,cr-2e 

Since a — 2e > 1 + e > 1, the series ^_ 2 f is convergent. Therefore the product 
V 

l ip — p"-2C ) is also convergent, and nonzero (see [1], p. 191). This implies that 

i ( ^ G ) ( S ) i « n ( i - ^ ) < CO. 

The proof is complete. • 
In the following lemma we will show that C(s), Lx(s), L/ (s) , LftX(s) and L(f®g, s) 

(for normalized eigenforms / and g) are all in S. Note that the conditions (b) and (c) 
in the definition of S are clearly satisfied for these Dirichlet series, so we only need to 
check the condition (a) for them. Furthermore, we will establish the basic properties 
of the Euler product convolution. 

Lemma 3.6 (i) ((s) is in S, and for any F in S, we have 

(F®()(s) = F(s). 

(ii) For F in S , we have 
((®F)(s) = F(s). 

(iii) If x is a Dirichlet character (mod q), then Lx(s) is in S, and 

(Lx®Lx)(s) = (q(s). 

(iv) Let f be a normalized eigenform in Sk{N). Then Lf(s) is in S, and 

(Lf®Lx)(s) = Lfx(s). 

(v) For any two normalized eigenforms f and g in Sk(N), (Lf®Lg)(s) is in S, and 

(Lf®Lg)(s) = L(f®g,s). 
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Proof (i) By using the expansion (3.2), we get 

= n ^ H ) ) 

This shows that ((s) is in S. For F € <S, we have 

= i W x : ^ ' 
F ( S ) . 

fn^ Similarly we have 

p \k-l P 

= F(s). 

(iii) Similar to (i), by using (3.2) and for Re(s) > 1, we have 

p 

This proves that Lx(s) is in <S. Moreover, 

X(p)k/k 

k=i p k S 

oo 

Il e xp E NKS 

Ijk 

p\q \k=l *; 

CM-
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(iv) Lf is in <S, since by Corollary 1.5, we have 

p\N p\N 

p|JV \ f c = l ^ / p\N \k=l ^ 

We have 

p|AT \k=l y / p\N \k=l y 

Also note that since ay(n) and x(n) a r e multiplicative, 

If jo I JV, the corresponding p-factor for (Lf ® Lx)(s) is 

pk 

and the corresponding p-factor for LfyX(s) is also 

g ^ w = ( 1 _ a / W _ ( p ) p _ r l 

Now suppose that p \ N. To prove that the corresponding p-factors in the Euler 
products of (Lf ® Lx)(s) and LfjX(s) are equal, we need to prove that 

(^ (4 + 4)xiP)k/k\ = af(pk)x(P)k 

" I / J pks J / J pks 
\k=l y / k=0 F 

These two quantities are equal if and only if the following equality holds 

af(pk)x(p)k 

(i - ePx(p)p-srl(i - hxip)p-'rl = E inks 
k=0 Y 
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or 

(1 - af(p)x(P)p-S + X(P)2P-2S) E a f { p k ) X { p ) k = 1. 
fc=0 Y 

After expanding, the left-hand side becomes 

af{pk)x{p)h y> af{p)af{pk)x(p)k+1 y> af(pk)x{p)k+2 

2s vks Z-E j)(k+l)s 2s v ( k + 2 ) s 
k=0

 y
 k=0

 F
 k=0 Y 

or 

1 a/(p)x(p) a/(p)x(p) ( a / ( P f c + 2 ) - Q / ( p ) Q / ( p f c + 1 ) + Q / ( / ) ) x ( p ) f c + 2 

which is clearly equal to 1. Therefore (L/ % Lx)(s) = ^f,x(s)-

(v) On one hand, from part (iv), we have 

M . ) - n « p ( £ ^ ) n « p ( £ ^ 
and 

« . ) - n - p ( f : ^ ) n - p ( f : ^ ) 
p\N \k=l y / p\N \k=l F J 

So, we have 

( W ) W . n ^ ( f a M y ^ ) n « p ( f : w + ^ + < ) / t 

p\N \k=l y / p\N \k=l V 

p\N 

x J](l - e/^-^-^l - ep6pp-)-\l - lp5pp-s)-l{\ - ep5pp-s)~l 

p\N 
This shows that (Lf <g> Lg)(s) is in S. 

On the other hand, from Proposition 2.14 we know that 

L(f®g,s) = n ( 1 - a / ( P ) f l » P ~ T 1 

x H(l - ep5pp-s)-\l ~ e^p-1)-1^ - ep5pp-s)-\l - t&p-)-1 

p\N 
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Thus, (Lf®Lg)(s) = L(f®g,s). 

This completes the proof. • 

3.3 Mertens's Method 

As we mentioned in Section 1.1, the main step in the proof of the Prime Number 
Theorem is establishing the non-vanishing of the Riemann zeta-function on the line 
Re(s) = 1. This fact was proved by Hadamard and de la Vallee Poussin in 1896. In 1898 
Mertens gave a simpler proof for this fact. Mertens's proof depends upon the choice 
of a suitable trigonometric inequality. This line of proof is adaptable for establishing 
the non-vanishing of various L-functions. In [18], Rankin used this method to prove 
the non-vanishing of L/(s) on the line Re(s) = 1, s ^ 1, where / is an eigenform for 
r 0 ( A r ) . The proof of the following lemma, due to K. Murty [16], which is similar to 
the Mertens's proof, depends on a certain trigonometric inequality. 

Lemma 3.7 Let f(s) be a complex function satisfying the following: 
(i) f(s) is analytic in Re(s) > 1 and non-zero there; 
(ii) l og / ( s ) can be written as a Dirichlet series 

with bn > 0 for Re(s) > 1; 
(iii) On the line Re(s) = 1, f(s) is analytic except for a pole of order e > 0 at 

s = 1. 
Then, if f(s) has a zero on the line Re(s) — 1, the order of that zero is bounded by -. 

Proof Suppose / has a zero at point l + it0 (to ^ 0) of order k > | . Then e < 2k — 1. 
Now consider the function 

n = l 

g(s) = f(s)2k+1f(s + it0)4kf(s + 2tt0)4k-2 •••f(s + 2kit0)2. 

g(s) is analytic for Re(s) > 1 and vanishes at s = 1 as 

(4k)k - (2k + l)e > Ak2 - (2k + l)(2k - 1) - 1. 
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Note that for Re(s) > 1, 

oo , / 2k 
On 

\ogg{s) = £ -M 2* + 1 + 2 J2(2k + 1 - j>-«*° 
n = l \ j = l 

Now let = t0 logn. Then for s = a > 1, 

l o g g e r ) | = fle(logc,(o-)) 
, , 2FC 

Or, E -7 2A; + 1 + 2 j ] ( 2 ^ + 1 - j) cos j6n 

n = l \ j=l 

Applying the trigonometric identity 

2k / k 
2A; + 1 + 2 E ( 2 & + 1 - J ) c o s j 0 = l + 2^cosje 

3=1 \ j=i 

in the previous equality yields 

OO 

iogi^)i = E^ 1 + 2 E C O S ^ 
n = l \ j=l J 

Hence, log|̂ (a)| > 0 for a > 1, i.e., \g(cr) \ > 1. So 

0 = | < 7 ( l ) l = lim |0(a) | > 1, 
<T-»1 + 

which is a contradiction. 
The proof is complete. • 

Corollary 3.8 (i) C(l + it) ^ 0 /or t ^ 0. 
(nj For any Dirichlet character x (mod q), Lx(l + it) ^ 0 /or t ^ 0. 
(iii) Ifx is complex (i.e., x ^ X.), Lx(l) ^ 0. 

Proof (i) We know that ((s) has an analytic continuation to the whole complex 
plane, except for a simple pole at s = 1 (see Section 1.1) and is nonzero for Re(s) > 1. 
Also by (3.2), we have 

oo 

iogc(*) = EE=-
p k=l F 
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Therefore, by Lemma 3.7, we are done. 
(ii) Consider the following product 

x 
f(s) has an analytic continuation to the whole complex plane, except for a simple pole 
at s = 1 (which comes from L x o ( s ) ) , and is nonzero for Re(s) > 1. Now by applying 
the orthogonality relations for characters (mod q), i.e., 

This is a Dirichlet series with non-negative coefficients. Thus, by Lemma 3.7, f(l+it) ^ 
0 for t ^ 0. This proves (ii). 

(iii) Suppose that for a complex character Xi, LXl(l) = 0. Thus, LXl(1) = 0. Since 
Xi Xi-, a n d since all factors Lx(s) of f(s) are analytic at s = 1 except LXo(s), we 
conclude that f(s) is in fact analytic at s = 1 and / ( l ) = 0. This violates the statement 
of the Lemma 3.7. 
The proof is complete. • 

Definition 3.9 For F £ S and O~Q < 1, we say F is ®-simple in Re(s) > OQ (resp. 
Re(s) >o~o), if F <g> F has an analytic continuation to Re(s) > OQ (resp. Re(s) > a0), 
except for a possible simple pole at s = 1. 

The following theorem is the main result of this section. 

Theorem 3.10 Let F, G e S be ®-simple in Re(s) > 1 and t ^ 0. Then 

(see [15], Exercise 2.2.9), and for Re(s) > 1, we have 

log / ( s ) = Y,\ogLx(s) 
X 

(i) (F®F)(l + it) ^ 0. 
(ii) If F — F, G — G, and if F ® G has an analytic continuation to the line 

Re(s) = I, then (F ®G)(l + it) ^ 0. 
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Proof (i) Let f(s) = (F <g> F)(s). We have 

*/<•> - E E f f 
P fc=I F 

Zs n s ' 
71=1 

with c(n) > 0. So, / ( s ) satisfies the conditions of Lemma 3.7 with e = 1. Therefore, the 
order of the vanishing of f(s) at point l + i t is < | . This means that (F®F)(l+it) ^ 0. 

(ii) Let 
/ ( s ) = (F ® F ) ( s ) ( ( F (g. G) ( S ) ) 2 (G ® G)(s). 

Since for t ^ 0, all the factors of / ( s ) have finite values at point 1 + it, in order to 
prove that (F ® + it) 7^ 0, it suffices to show that / ( l + it) 0. Note that 

p k = l ^ p fc=l y p k=l y 

= ^^k{bF(pk) + bG(pk))2 

Zs Zs yks 
p fc=l F 

00 / \ 

n = l 

with c(n) > 0. So, / ( s ) satisfies the conditions of Lemma 3.7 with e < 2, and therefore, 
the order of the vanishing of f(s) at point l + it is < 1. Now suppose that / ( l + it) = 0. 
Thus, 

(F ®F)(1 + it) ((F ® G)( l + i t ) ) 2 (G <g> G)( l + it) = 0. 

Since by part (i), (F <g> F ) ( l + it) ^ 0 and (G ® G)( l + it) ^ 0, it follows that 
(F ® G)( l + it) = 0. This is a contradiction; otherwise, the order of the vanishing of 
f(s) at point l + i t should be 2. 
This completes the proof. • 

Corollary 3.11 If F = F e S is analytic and ^-simple in Re(s) > 1, then F ( l + i t ) ^ 
0 fort^ 0. 
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Proof This is a simple consequence of part (ii) of the previous theorem with G(s) = 

coo. • 

Corollary 3.12 Let f e Sk(N) be an eigenform for T0(N), let x be a real character 
(mod q) and let t / 0. Then 

(i) Lx(l + it)^0 and Lf(l + it) ^ 0. 
(it) Lf,x(l + it)^0. 
(iii) L(f <g> / , 1 + it) ^ 0 and L(sym 2 / , 1 + it) ^ 0. 

(iv) Suppose g € Sk(N) is also an eigenform for T0(N). If (f,g) = 0, then L(f <g> 

g, l + it)^ 0. 

Proof Without loss of generality, we can assume that / is normalized. 
(i) Since Lx(s) (x ^ Xo) and Lf(s) are analytic on the line Re(s) = 1, by the 

previous corollary, we have the desired result. Note that if x = Xo, since (LXo eg) 
Lxo)is) =

 Tlp|g(l ~~ P~S)C(S), t n e result is clear by part (i) of Theorem 3.10 . 

(ii) We know that Lf(s) and Lx(s) are in S. Since LjtX(s) is the L-function associ
ated to a cusp form (see Subsection 1.2.2), so LftX(s) is analytic on the line Re(s) = 1. 
Therefore, by part (iv) of Lemma 3.6 and part (ii) of Theorem 3.10, 

L / ; X ( 1 + it) = (Lf ® L x ) ( l + it) ^ 0. 

(iii) Since Lf(s) £ S has all the necessary conditions, by part (i) of Theorem 3.10, 
we have 

L(f ®f,l + it) = (Lf ® Lf)(l + it) ^ 0. 

Also, since L(f®f, s) = (N(2s)L(sym2 /, s), we have the desired result for L(sym 2 / , s). 

(iv) Recall that the coefficients of eigenforms are real (see Subsection 1.2.3). If 
(f,g) — 0) by Theorem 2.12, we know that L(f ® g,s) is actually an entire function. 
Therefore, by part (ii) of Theorem 3.10, L(f ® g, 1 + it) ^ 0. 
This completes the proof. • 

3.4 Landau's Theorem 
In the previous section we proved a general non-vanishing result on the line Re(s) = 1 
when s ^ 1. In this section, we consider the non-vanishing problem for s = 1. To do 
this, our basic ingredient is the following lemma. 
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Lemma 3.13 (Landau) A Dirichlet series with non-negative coefficients has a sin
gularity at its abscissa of convergence. 

Proof Let a0 be the abscissa of convergence for the Dirichlet series 

a(n) /w = E 
n = l 

and suppose that a(n) > 0. If / is not singular at a0, then there is a power series 
representation for / 

k\ 
k=0 

for \s — o~\\ < e, where o\ — e < o~o < o~\. Now for o\ — e < a < o\ we have 

J^a> = Is—fci—(^-^i) 

_ y(-i)fc/(fc)K), 
Since o\ > a, by the well-known formula for the successive derivatives of a convergent 
Dirichlet series, we can write 

= zJ^bj— E—^-fc=0 \ n = l 
oo oo / x / / \ . \fc = EE a(n) ((ai - a ) l ogn ) 

fc=0 n = l 
However, since the last double series has non-negative terms, we are allowed to inter
change the order of summation to get 

= L b r L ^ 
n=l \ fe=0 

a(n) E 
n = l 

a(n) 
n° E a{n) 
„a ' 

n = l 
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which is a contradiction with our assumption that cr0 is the abscissa of convergence of 
the series. 
This completes the proof. • 

Corollary 3.14 Let f(s) be a complex function that satisfies the following: 
(i) f(s) is analytic on the half-plane Re(s) > O~Q; 
(ii) l og / ( s ) has a representation in terms of a Dirichlet series with non-negative 

coefficients on the half-plane Re(s) > o~\ (o~\ > o~o). 
Then f(s) ^ 0 for Re(s) > a0. 

Proof Let o~2 be the largest real zero of / (aQ < <T 2 < o\). Since log / ( s ) = Yl^Li ̂  
for Re(s) > o\ (c(n) > 0), and since log / ( s ) is analytic in a neighbourhood of the 
segment er2 < cr < o~i, then by the previous lemma, we have 

n=l 

for Re(s) > cr2. Thus, 

l o g | / ( a ) | = i?e(log/(o-)) 

= l o g / ( a ) 
OO / x 

n = l 

for a > CT2. Therefore, |/(o~)| > 1 for a > a 2 . This contradicts the assumption 
/(cr 2) = 0, and therefore / has no real zero o > <r0. So log / ( s ) is analytic on the 
interval (o"o, o"i], and Lemma 3.13 in fact shows that l og / ( s ) exists and is analytic for 
Re(s) > cr0. This means that f(s) is non-zero for Re(s) > a0. 

The proof is complete. • 

Here, we prove the main result of this section. 

Theorem 3.15 Let o~0 < 1, and assume the following: 

(i) F and G (as elements of S) are ®-simple in Re(s) > a0; 
(ii) F ® G has an analytic continuation to the half-plane Re(s) > o~o; 
(iii) At least one of F®F, G®G, or F®G has zeros in the half-plane Re(s) > GQ. 

Then (F®G){1) ^ 0. 
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Proof Suppose that (F ® G)(l) = 0, and let 

f(s) = {F®F){s) (F®G)(s) (F®G)(s) (G®G){s). 

First of all note that F ® G is analytic for Re(s) > a0. Since (F ® G)(l) = 0, then 
(F eg) G)(l) = 0, and since s = 1 is a pole of order < 1 for both F eg) F and G eg) G, we 
conclude that / ( s ) is analytic at point s = 1, and therefore, analytic for Re(s) > OQ. 
Now note that for Re(s) > 1, 

" * / M = E E ^ ^ + E E 
p k=l ^ p k=l ^ 

oo 
*&F(P*)&G(P*) , ^ ^ k\bG(pk)\2 

P 

fc|&F(p*)+Mp*)|2 

p fc=l F p fc=l ^ 

EE 
P jt=i ^ 
OO / x 

E a(n) 

where a(n) > 0. So, / ( s ) satisfies the conditions of the Corollary 3.14 with = 1, 
and therefore, f(s) ^ 0 for Re(s) > O~Q. This contradicts our assumption in (iii). 
The proof is complete. • 

Corollary 3.16 Let F 6 S be analytic and ®-simple in Re(s) > \, then F(l) ^ 0. 

Proof Let G(s) = C(s). Note that F ® G = F and G = G. Also notice that C(s) 
has zeros in the half-plane i?e(s) > 1/2. Thus, all the conditions of the Theorem 3.15 
are met with a0 < \. Therefore, F(l) = (F ® G)( l ) ^ 0. • 

Corollary 3.17 Let f,g G Sk(N) be eigenforms for VQ(N), and let x be a Dirichlet 
character (mod q). Then 

(i)Ifx¥=Xo, then Lx(l) ? 0. 
(ii) Lf(l) ± 0. 
^ L / ) X ( 1 ) ^ 0 . 

(iv) U (/, 5) = 0, t/ten L ( / ® </, 1) ^ 0. 
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Proof (i) By part (iii) of Lemma 3.6, we have 

(Lx®Lx)(s) = Cq(s). 

This shows that Lx(s) satisfies the conditions in Corollary 3.16, and therefore Lx(l) / 
0. 

(ii) By part (v) of Lemma 3.6, we have 

This and Theorem 2.12 imply that L/(s) is cg>-simple in Re(s) > 1/2. So by Corollary 
3.16 we are done. 

(iii) Note that (Lx cg> Lx)(s) and (Lf cg> Lf)(s) can be extended analytically to the 
whole complex plane, except for a simple pole at s = 1. Also by part (iv) of Lemma 
3.6, we have 

We know that L / ) X E Sk(q2N) (see Subsection 1.2.2). So, (Lf cg> Lx)(s) has an analytic 
continuation to the whole complex plane. Also note that (Lx <g> Lx)(s) = (q(s) has in 
fact infinitely many zeros (see [7], p. 97). So all the conditions of Theorem 3.15 are 
met and therefore, I / / , x ( l ) = (Lf eg) Lx)(l) ^ 0. 

(iv) Similar to the proof of part (iii), we can show that the conditions (i) and (ii) of 
Theorem 3.15 are satisfied. The result will be obtained if we only show that L(f ® g, s) 
has a zero in the complex plane. By (2.3), if (/, g) = 0, then 

3.5 Ingham's Proof 
In the previous section we studied the non-vanishing of certain Dirichlet series at point 
s = 1. Comparing the different methods we have applied in Sections 3.3 and 3.4, one 

(Lf®Lf)(s) = L(f®f,s). 

Lf,x(s) = (Lf®Lx)(s)-

is analytic at s — 0. Since T(s) has a pole at s — 0, then L(f <g> g, 0) = 0. 
This completes the proof. • 
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realizes that the non-vanishing problem at point s = 1 has a distinct nature, and it 
seems that Landau's Theorem cannot be applied to prove non-vanishing results for 
other points on the line Re(s) = 1. However, in this section, we will show that for 
Dirichlet series with completely multiplicative coefficients, one can apply the technique 
employed in the previous section to prove a non-vanishing result on the line Re(s) = 1. 
Our result is a generalization of Ingham's proof of the non-vanishing of the Riemann 
zeta-function on the line Re(s) = 1 [9]. To do this, we start with the following defini
tions. 

Definit ion 3.18 Let F,G € S. Then the L-convolution1 of F and G is defined by 

aF(n)aG(n) 
L(F eg) G, s) = ]T 

n = l n" 

An arithmetic function f(n) is called multiplicative (resp. completely multiplicative) 
if / ( l ) = 1 and f(mn) = f(m)f(n) for all m and n with g.c.d.(m,n) = 1 (resp. for 
all m, n). 

L e m m a 3.19 For F,G G S with completely multiplicative coefficients, 

L(F eg) G, s) = {F®G)(s). 

Proof We have 

L(F®G,s) = 
aF(n)aG(n) 

n=l 

n E 
p y fc=o 

a-F{p)k (og(P)) 

p ks I 
= Yl (! - aF{p)aG{p)p ') 

JJEXP E 
k=l P ks 

J 
= (F®G)(s). 

1 W e have chosen this name to distinguish this convolution from the Rankin-Selberg convolution. 

Note that F(s) and G(s) are not necessarily modular L-functions. 
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The last equality is true since 

= n ( t a-fk 

p \fc=0 Y 

= Hil-aMp-*)-1 

aF(p)k/k 
fc=I p 

and similarly 
T T F aG(p)k/k 

The proof is complete. • 

Definit ion 3.20 7/ f(n) is an arithmetic function, the formal L-series attached to 
f(n) is defined by 

71 = 1 

If g(n) is also an arithmetic function, the Dirichlet convolution of f(n) and g(n) is 
defined by 

(f*g)(n) = J2f(d)g(^). 
d\n 

It can be shown that the Dirichlet convolution of two multiplicative arithmetic functions 
is multiplicative (see [3], Theorem 2.14, p. 35). The following identity of formal L-
series, due to J. Borwein and Choi [6], will be fundamental in the proof of the main 
result of this section. 

L e m m a 3.21 Let f\, f2, g\, g2 be completely multiplicative arithmetic functions. Then 
we have 

( / I * gi)(n)(f2 * gj)(n) = L(fxf2, s)L(g1g2, s)L(f1g2, s)L(f2gx,s) 
^ ns L(fxf2gxg2,2s) 

55 



Proof We only need to prove that the corresponding p-factors in the Euler product 
of both sides are equal. 

First suppose that / , 7̂  gi (i = 1,2). Since both and f2*g2 are multiplicative, 

the left-hand side has an Euler product with the p-factor 

r , s ^ (/L*GL)(PFC)(/2*</-2)(PFC) 
kpM = 2 s • 

fc=o y 

Also since all functions /I/2, #152 ,/I#2 ,/251 and f\f2g\g2 are completely multiplica
tive, the following fraction is the corresponding p-factor in the Euler product of the 
right-hand side 

P N = 1 - (fif2gi92)(p)p'2s 

( P ) [ S ) (1 - (fif2)(P)p-s)(l ~ (9192)(P)P-S)(1 - (h92)(p)p-s)(l - (f29r)(P)p-s)' 

Now by using the following elementary identity 
_ab 1 cd ad bc_ , nUrflT2 
l-abx ' 1-cdx 1-adx 1-bcx 1 UUCUX 

(a — c)(b — d) (1 — abx)(l — cdx)(l — adx)(l — bcx) 

and the fact that 

which comes from the complete multiplicativity, we have 

oo 

L(r)(*) = J2^*9i)(pk)(f2*92)(pk)p-ks 

k=Q 

= (h(p)k+1 - 9i(p)k+l)(f2(p)k+1 ~ 92{p)k+l)-k. 
^ (h(p) - 9i(p))(f2(P) - 92(P)) P 

fc=0 

Efc°lo{(/I/2)(P)FC+1 + (9i92)(p)k+l - (fi92)(p)k+l - (f29i)(p)k+1}p-ks 

(flip) - gi(pW*(p) - M) 
( / l /2) (p) I (9i32)(p) ( / i92) (p) ( /2g i ) (p ) 

l - ( / l / 2 ) ( p ) p ~ 3 ^ l - ( 3 l 3 2 ) ( p ) p - 3 l-(fl92){p)p-* l - ( / 2 9 l ) ( p ) P ~ 3 

(flip) - 9i(p))(f2(p) - M) 
l-(hf29i92)(p)p-2s 

(I - (hf2)(p)p-s)(i - (gm)(p)p-s)(i - (fi92)(p)p-s)(i - (f29i)(p)p~s) 
R(p)(s). 
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Now suppose that fx = gx and f2 7̂  g2. The proof is similar to the previous case. 
The only difference is that this time one has to use the identity 

( l -gfrx) 2 ~ (i-adx)2 _ 1 - a2bdx2 

b-d ~ {l-abx)2(l-adx)2' 

Note that this also covers the case fx 7̂  gx, f2 = g2. 
Finally, if /1 = g\, f2 = 52, one needs to employ the identity 

1 + abx _ 1 — a2b2x2 

(1 - abxf ~ (1 - a t e ) 4 ' 

This completes the proof. • 

We are ready to state and prove the main result of this section. 

Theorem 3.22 Let F, G £ S be two Dirichlet series with completely multiplicative 
coefficients. Also assume the following: 

(i) F and G are ®-simple in Re(s) > \; 
(ii) F ®G has an analytic continuation to Re(s) > \; 
(iii) [F CB> G) <8> (F (G> G) is analytic for Re(s) > 1 and has a pole at s — 1. 

Then, (F <G> G)( l + it) ^ 0 for all t. 

Proof Let 

n = l n = l 

and suppose that (F CG> G)( l + it0) = 0 for a real t0. Let 

fi(n) = aF(n)n lt°, f2(n) = aF(n)nlto, gx{n) = aG(n), g2(n) = aG(n), 

and for Re(s) > 1, consider the following Dirichlet series 

n n 
n=l n=l 

Since fx and f2 are completely multiplicative, by Lemma 3.19 we have 

\aF(n)\2 

L(hf2,s) = £ 
n=l 

= L(F®F,s) 

= (F®F){s). 
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Similarly, we can derive the following 

L{gi92,s) = (G®G)( s ) , L{fld2,s) = (F®G){s + itQ), L(f29l,s) = (G®F)(s-it0), 

and 

Hfihgm,2s) = [(F ® G) ® (F ® G)] (2s). 

So, by Lemma 3.21 and for Re(s) > 1, we have 
(F ® F)(s)(G ® G) ( s ) (F ® G)(s + i* 0)(G ® F ) ( s - itQ) 

[ ( F ® G ) ® ( F ® G ) ] (2S) 

Now by assumption of ( F ® G)( l + i t 0 ) = 0 we have in fact the analyticity of f(s) for 
Re(s) > | , and since the coefficients in the series are non-negative, by Lemma 3.13 the 
Dirichlet series representing f(s) is convergent for Re(s) > | . So, for n > 0, we have 

v 7 n = l 

L(/l*2L)(«)|2

 > H 

n$+r> 

However, since ( F ® G) ® ( F ® G) has a pole at s — 1, 

[(F ® G) ® ( F ® G)] 2̂ Q + 77^ = [(F ® G) ® ( F ® G)] (1 + 2rj) -+ oo 

as —> 0 + . This shows that 

which is a contradiction. 
This completes the proof. • 

By choosing G(s) = C(s) in the previous theorem, we have 

Corollary 3.23 Let F € S be analytic in Re(s) > \ and assume that ( F ® F)(s) is 
analytic in Re(s) > \, except for a simple pole at s = 1. If the coefficients of F are 
completely multiplicative, then F ( l + it) ^ 0, for all t £ R. 

Note that the non-vanishing of Lx(s) (x ^ Xo) on the line Re(s) = 1, is a simple 
consequence of this corollary. 
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Chapter 4 

Non-Vanishing of Symmetric 
Square //-Functions Inside the 
Critical Strip 

4.1 Introduction 

Studying the non-vanishing properties of L-functions inside the critical strip (i.e., 0 < 
Re(s) < 1) is much more difficult than investigating the non-vanishing of L-functions 
at the edge of the critical strip (i.e., Re(s) = 1). The Generalized Riemann Hypothesis 
asserts that all L-functions should be non-vanishing on the strip | < Re(s) < 1. 
However, we are very far from a proof of this conjecture. Even in the case of the 
Riemann zeta-function, the current techniques of analytic number theory fail to prove 
the non-vanishing of the zeta-function on a narrow strip adjacent to the line Re(s) = 1. 
Nevertheless, there are results that establish the non-vanishing for infinite families of 
L-functions. To prove such results, one should study the asymptotic behavior of the 
values of L-functions on average. 

In this chapter we prove a non-vanishing theorem for the symmetric square L-
functions associated to newforms of weight 2 and prime level N. The main step in the 
proof of our result is establishing an upper bound for the mean values of the symmetric 
square L-functions in the critical strip. 
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4.2 An Upper Bound for the Mean Square 
Let be the set of newforms of weight 2 and prime level N and let L(sym 2 / , s) 
denote the symmetric square L-function associated to the newform / (see Section 2.3 
and Subsection 1.2.4 for definitions). For a fixed point So inside the critical strip, we 
derive an upper bound for the following mean square of symmetric square L-functions 

£ |L ( sym 2 / , *o ) | 2 . 

In [10], Iwaniec and Michel proved such an upper bound in the case of Re(so) = | . We 
closely follow their approach, and show that a similar result is true for a point inside 
the critical strip. The main result of this chapter is the following. 

Theorem 4.1 Let so be a point in the strip | < GQ = Re(so) < 1. Then, 

X) | ^ ( s y m 2 / , S o ) | 2 « | S o | 9 + ? A r ^ 

for any e > 0. The implied constant depends only on e. 

To prove this theorem, we need several lemmas. The next section is devoted to the 
proof of these necessary lemmas. 

4.3 Lemmas 
We start by finding a representation for L(sym 2 / , s 0 ) as a sum of two absolutely conver
gent series. Recall that L Q O ( sym 2 , s) is the product of gamma-factors in the functional 
equation of the symmetric square L-functions (see Section 2.3). 

L e m m a 4.2 Let A > 2 be an integer and let G(s) — cos • F°r anV so w^h 
0 < Re(s0) < 1, we have 

i(sym2So) = E ^lVn Q + £(SO) £ AG> ̂  (») 
n=l n = l 
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where 
rr i \ f n l ,LOO(sym2,s0 + s) _sds 

J(2) L o o ( s y m 2 , s 0 ) s 

and e(s0) = Af1_2SO£OO(sym2,1 - s0)/Loo(sym2, s 0 ) . #ere ; 

/ g(s)ds := lim / g(c + it)idt. 
J{c) T^+oo J_T 

Proof By starting with the first sum in the right-hand side of the statement and 
using the definition of Vso(y), we have 

Now by using the definitions of L(sym 2 / , s 0 ) and A(sym 2 / , s 0 ) (see Section 2.3); and 
using the functional equation (2.7), we obtain 

Y^a/(rc2) (n\ = f r ( \ N^L^jsym2, s 0 + s)L(sym 2 / , s 0 + s) 1 ds 
^ n*> s° \n) J{2)

 [ S ) /.OO(sym2,s0) IVS« S 

f A ( s y m 2 / , s 0 + s) 1 ds 
. / ( 2 )

 { S ) L o o ( s y m 2 , s 0 ) N>° s 

I 
J(2' 

C A(sym2 / , 1 - s 0 - s) 1 ds 
'(2) L o o ( s y m 2 , s 0 ) Nso s ' 

Moving the line of integration to (—2) yields 

Y^af(n2)v (n\ _ r / m A ( s y m 2 / , l - s 0 ) 1 ^ N*° KSOIATJ U W r fsvm2.SN) TV' 
n = l 

n s 0

 b0\NJ
 W

 Loo(sym2,s0) IVS° 
+ f C(c) A ^ s y m 2 / > 1 ~ g o ~ g ) 1 d s 

J(-2) L o o ( s y m 2 , s 0 ) iV*° s 

-Ltont/,«)+[ G(.)A (77''7''-' ) ^ 
•/(-2) Loo(sym2,50) N 0 s 
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NOW BY APPLYING THE CHANGE OF VARIABLE S i ->- —u, WE GET 

^ n°° 80 \NJ W U ; 7(2)

 V ' ZUSYM2,̂ ) N°° -u 

= L(SYM2/,S0) 
Loo(sym 2,1 - s0 + s)£(sym 2 / , 1 - s0 + a) ^ ^ ^ d a 

(2) L o o ( s y m 2 , s 0 ) s" 
- / G(s) 

J(2) 

By changing the order of addition and integration in the above equality, the second 
summand of the right-hand side becomes 

^ 1 - 2 , 0 ^oo(sym 2 , l - so) af(n2) 
L o o ( s y m 2 , s 0 ) ^ nl~s» 

/" L o o ( s y m 2 , l - g 0 + g) (NY ds 
X / £(S)—R-? 2~I CJV(2 - 2s 0 + 2s) I — ) —, 

7(2) / ^ ( s y m 2 , 1 - s 0 ) s 

which is equal to 

n = l 

This completes the proof. • 

In the sequel we need the following fact about the gamma-function, known as 
Stirling's formula. In any vertical strip \a\ < a, 

| I > + it)\ = v^E-H*! + R T)) 

where r(a, £) -> 0 as |i | —> oo (see [15], Exercise 6.3.15). 

In the next lemma we study the growth of VSQ (y). 

Lemma 4.3 For any y > 0, and any SQ = CT0 + Ho with | < GQ < 1, we have 

(i)VS0(y)<d(N)\s0\lAy-A. 

(ii) VS0(y) < d(N) (max{y*, y*} + l ) . 
- A 

(iii) VS0(y) « d(N) ( 1 + T f̂) l0§ (2 + I) 
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(iv) For j > 0, let VJ(j\y) denote the j-th derivative of VSo(y) with respect to y. 
Then, 

VW(y)<Zd(N)y-t [l + 
so 2 

log 2 + -
y 

Here, d(N) stands for the number of divisors of N. 

Proof (i) By shifting the line of integration to (A), and by using the definition of 
the integral, we have 

so (y) = / GOO 
J (A) 

L^sym2, s + sQ _sds 
— - — — ^ ( N ( 2 S + 2s0)y s— 

(A) Loo(sym2,s0) s 

/

+ 0 0 

G(A + it) -oo Loo(sym2, A + it + a0 + it0) 
Loo(sym2,<70 + ito) 

CJV(2A + 2it + 2a0 + 2it0)y -A-it idt 
A + it' 

For the zeta-factor CN(S) in (4.1), we have the following estimation 

((2A + 2oo + 2it + 2it0) 
|Cjv(2(̂ 4-a0) + 2z(t + t0))| = 

< 
rj (1 — p - ( 2 A + 2 < 7 0 + 2 J T + 2 I T O ) ) _ 1 

C(2A) | l - p-(2A+2a<>+'2it+2it°) p\N 

« +p-{2A+2ao)) 
p\N 

< n( i + i ) 
< d(N). 

By applying Stirling's formula for Loo-factor in (4.1), we have 

Loo(sym2, (A + a0) + i(t + tQ)) 

Lootsym2,̂  + it0) 
T - F (I4+OR N +IT+ITN )p^+O-O+I*+ITN + 1̂2p̂  A+(70+IT+TTO+2^ 

^ - § (O-N +»TN) p + ITO+1 ^ 2 p +»*O + 2 j 

(4.1) 
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^ Ê (M-|T+TO|) 

= [ e S f 1*1(1̂1-11+̂1) 

t + t0 

3<r0 + l 
2 t + t0 

to 2 

M 
2 

3crn + l 
2 

*0 2t 0 

2 
i M 

2 

< M 2
 0 (Mo) 

where <?(£, s 0 ) has exponential decay when \t\ —> oo. 
Applying the above estimates in (4.1) yields 

/

+ 0 O 

\G(A + it)\\s0\3-g(t,s0)d(N)-
-oo 

dt 
VA2 +t2 

< d(N)\s0\^y-A. 
-OO 

, 3 A 

This proves part (i). 

(ii) Shifting the line of integration to (—|), and calculating the residues at s = 0 
and s = \ — s 0 yield 

We show that each summand of the above equality is bounded by a constant multiple 
of 

d(iV) ^max{y^, y^} + lj . 
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For the first summand in (4.2), since | < a0 < 1, we have 

\CN(2S0)\ 
IC(2*O)| 

< 

nPlN(i - p-2s°r 

C ( 2 a 0 ) N I ( l - P - 2 S ° ) 
p\N 

W P\N 

< d(N) 

< d(N) (max{y^, y?} + l ) . 

For the second summand in (4.2), we observe the following: 

^ (sym2,1) <C 1; —L-< 1; TT (1 - - ) < d(N); 

and 

Now using the definition of cos z = 

= ya° 2 < M A X { F , y*} + l. 

eiz + e-iz 
for large t0, we have 

LOO (sym 2 , s 0 ) 

Putt ing these together, we have 

| E S ( < R O + I T O ) + E - S ( O - O + I * O ) | - 3 ^ 1 

3w 
e " 4 

E - ^ L * O | 

|e 4>I (e e 4A )L 
- 3 A 

< 1. 

FL|L„^.L)F!LN/1,I 
L o o ( s y m 2 , s 0 ) | - s 0 V P 

<d (7V) (max-f^, + 
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The estimation of the integral 

f ni ^ o o ( s y m 2 , s + s 0 ) , , _sds 
/ G\s>~T~( 2—r-Civ(2s + 2s 0)y s— 

L o o ( s y m 2 , s 0 ) s 

f+°° 1 ^ L o o (sym 2 , - i + it + CT0 + &o) . , x i i d * 
J _ o o 2 L o o (sym 2, a 0 + »*o) -5+** 

in (4.2), is very similar to the one which we had in part (i). The main difference is 

that this time we have to estimate the zeta-function inside the critical strip. By the 

classical inequality 

COO = OFT*) 
for a = Re(s) > \ and large t (see [15], Exercise 4.2.4), since ^ < 2<7 0 — 1 < 1, we 

Z 

obtain 

L o o ( s y m 2 , s 0 ) s 

< d{N) (max{y*, y^} + l j . 

This completes the proof of part (ii). 

(iii) If y is large, log(2 4- ^) is bounded (for example, by log3). Also 

\ - A / \ — A 

1 1 3 I 1 3 
POP / V IS012 

So, we can replace the upper bound in (i) by (iii). If y is near to 0, the upper bound 
is justified since (1 H — y - j ) ~ A is bounded by 1, and max{y^, ya} + 1 is bounded by 

log(2 + i ) . This completes the proof of part (iii). 

(iv) Let 
/ x n l ^ o o ( s y m 2 , s + s 0 ) , , 1 

9 " ( S ' S O ) = G ( S ) MSYM^,) C " ( 2 S + 2 S O ) ? 
We have 

vso(y) = 
1(2) 

Vso(v) = / 9N(s,s0)y sds. 
J(2) 
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Now we prove, by induction, that for any n > 0, 

V £ n ) ( i / ) = ( - 1 ) V B / Pn(s)gN(s,s0)y-sds (4.3) 
J (2) 

where Pn(s) is a polynomial of degree n, and for any n, 

P „ + i ( s ) = ( s + n ) P n ( s ) . 

For n = 0 the statement is true with PQ(S) = 1. Assuming (4.3) and taking derivatives, 
we get 

V£+1){V) = -n{-l)ny-n-1 I Pn(s)gN(s,s0)y-sds 
J (2) 

- (-l)ny-n f sPn(s)gN(s,s0)y's-1ds 
J(2) 

= ( - l ) n + 1 j / - n - 1 / (s + n)Pn(s)gN(s,s0)y-sds 
J{2) 

= ( - l ^ y - W [ Pn+l(s)gN(S:s0)y-sdS. 
J (2) 

Now similar to the proof of the previous parts, one can show that 

Vjp(y) « d(N)y-'(l + ^ T ) - A l o g ( 2 + - ) . 

The implied constant depends upon N, s0 and j . 

The proof of the lemma is complete. • 

In the proof of our main theorem we need a smooth partition of unity. The next 
lemma will guarantee the existence of such a partition. 

Lemma 4.4 There exists a non-negative C°° function h with support [1, 2], such that 
for any x > 0, 

oo 

fc——OO 
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Proof We know that there is an absolutely increasing and C°° function h:[l,y/2)^ 
[0, 1] such that 

h(l) = 0, h(V2) = 1, h'(l) = h'{V2) = 0. 

We extend the domain of h to [\/2, 2] by setting 

h(x) = 1 - h(-~=) 

where x G [y/2, 2]. For x G K \ [1, 2] we put h(x) = 0. It is apparent that h is 
non-negative, smooth on R, and that for any 1 < t < \ /2 , 

h(t) + h(V2t) = 1. (4.4) 

We claim that h satisfies the desired identity. To do this, first notice that for any x > 0, 
n ( n + 1 ) 

there is a unique n G Z such that 2 2 < x < 2 2 . Note that 

( X \ k k+2 

—J ^ 0 2 2 < x < 2 2 /c = n - 1, n. 
Therefore, by (4.4), we have 

oo 

E / l ( ^ 2 - ) = M ^ i ) 7 ^ ) + M ^ ) = i -

k=—oo 

The proof is complete. • 

In the proof of Theorem 4.1, we need some facts from the theory of modular forms. 
We start by the following definition. 

Definit ion 4.5 For a cusp form f G Sk(N) of weight k and level N, let 

where (/, /) stands for the Petersson inner product. 

The next two lemmas give estimates for the values of tOf. 

L e m m a 4.6 For a newform f G S2(N), we have 

cof < AT(logiV)3. 
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Proof By (2.6) and for k = 2, we have 

W / = ^ L ( s y m 2 / ' 1 ) " 

By applying the Phragmen-Lindelof theorem for L ( s y m 2 / , s), and for Re(s) = 1 (see 

[13], p. 336), 

L ( s y m 2 / , l ) « ( l o g i V ) 3 . 

This completes the proof. • 

L e m m a 4.7 We have 

E ujl = 1 + 0{N-*). 

Proof Let a/(n) denote the n-th normalized Fourier coefficient of / . We have, 

E w = 4 " + 0 ( r ! l ! - , - i ( " , ' " ) ) ! l / i 5 ) 
(see [14], Proposition 1). Here 

. 1 if m = n 
Omn ~ \ 

0 if m j=- n 

is the Kronecker symbol. Putting m = n = 1 in the above formula implies the result. 
The proof is complete. • 

4.4 The Proof 

To start the proof of our main theorem, we need one more ingredient. The proof of 
the following theorem is very long and technical. So, we only state it without proof. 

T h e o r e m 4.8 Let So be a point inside the critical strip. Also let g be a smooth function 
with support [1, 2] satisfying 

g{j\x) < |s0P 

for any j > 0. For X > 1 we define the partial sums 

Sf(X) = ^af(n2)g(^) 
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and their mean square 

s(x)= E ^IS/POL2. 

Then we have 

S{X) < Isof+'iNXYiN^X2 + X) 

for any e > 0. The implied constant depends only on e. 

Proof See [10], Theorem 5.1. 

We are ready to prove the main theorem of this chapter. 

• 

Proof of Theorem 4.1 Let e be the reciprocal of a natural number bigger than 2 and 
2 

let A — 3 + - . It is plain that 
e 

, 1 A + e 
AeN, 0 < e < - , - ^ = 1 + 6 . 

Now write L(sym 2 / , s 0 ) = Lx(f, sQ) + L 2 ( / , sQ) + L 3 ( / , s 0 ) + L*(f, s 0 ) , where 

Li(f,s0)= E 

, 2 

Q/(̂ 2) 
0 (JV) ' 

so 

LOOLSYM2 S O ) ^—' N1_S° VAT/ > (sym 2, s 0 ) 

x4(/,,O) = ^ £ ° ; ( T \ 1 " R ) 

Loo (sym 2, s 0 ) 
I s nl-s0

 Vl~s° \ n ) 

Our first goal is to estimate the L;( / , s 0 ) 's . We start with L 2 ( / , s 0 ) . By Deligne's 
bound (see Theorem 1.4), and part (iii) of Lemma 4.3, 

\L2(f,s0)\ j2 a f ^ y f 

i>N1+* 
nso 30 (n) 

< E 
« E 

I°/("2)I 
nao SO 

n>N1+' na0 (KOLUFK 
log 2 + 

N 

n 
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Since ^ ~*~ \ = 1 + e, we have 
A-2 

n>Nl+e <==> ^ > (n2Ne)* 

By using the classical inequality 

d(n) < ns 

for any 5 > 0 (see [15], Exercise 1.3.2), and by ignoring \s0\% in the denominator, we 
get 

n£ 1 
7~n} 

< d ( 7 V ) | S O I F A Y — — 

L2(f,s0) « d(N)\s0\l* Yl ^ ( h 

< 

d(JV)ls 0 |2-

d(N)\s0\§' 

n>N1+e 

E 
n>Af!+ e 

1 
2 + ( T 0 - e 

(4.5) 

With a similar argument we attain 

M / , S 0 ) < 

d(N)N 1 - 2 < t 0 

d(N)N 

LOO (sym 2 ,1 - S O ) 
LOO (sym 2 , s 0 ) 

| L - S O | 3 ' 

l-2<7O 

7VE 
|1 - S 0 | (4.6) 

This is true, since by Stirling's formula, the ratio of the LOO-factors is bounded. 
To estimate LI(/, s 0 ) , we first rewrite it as a new sum involving the function h in 

Lemma 4.4. For simplicity, we use X for 2 f c / 2 . Using the main identity for h in Lemma 
4.4, we have 

af(n2). 
Li(f, S O ) E 

n<Nl+e 

E 
ns0 

- V . so 

af(n2) 

fc=—OO 

E E 
n<Nl+t A; 

Q/(̂ 2) 
N 5 0 SO 
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In the last equality, since one sum is finite, we can interchange the order of the addition. 
Note that the support of h is [1, 2], so, we can assume that X < n < 2X. Also, since 
n > 1, k is in fact > — 1. Therefore, 

M / . s . ) = £ £ . ^ ( ^ ( 1 ) 
fc>-L X<n<X 

( 

where 

£ 
fc>-I 

= £ 
k>-l 

SO) = 

log (2 + f ) 2 . 

\ - A „*N

 K*O E 
V D (JV)( l + ̂ ) \ g ( 2 + $ ) * < " < 2 * 

d(iV) log (2 + $ ) _ / n \ 
- i 2^ M N ^ - J 

A > l + X \ X<n<2X 

d(N) ( 1 + X log (2 + f ) 
-̂ "S°̂ O ( ) h(x). 

\ N\S0\1 ; 

To be consistent with the notations of Theorem 4.8, we put 

So, 

Sf(X) = Y,af{n2)g(^). 

( f , _ s r D(JV) log ( 2 + $ ) $ , ( * ) 

fc>-I 1 + ^ 

In a similar fashion 

L3(f, SO) = A ^ ^ Q Q ^ 2 ^ 1 - ^ ) £ D W L0S (2 + ?) 5 / W 
Loo (sym 2, s 0 ) 

fc>-I 1 + r 

By the Cauchy-Schwarz inequality 

|L(sym 2 / , 3 0 ) |' ££»(/, SO) < 4 
I=L 

SO 
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So, we have 

« E ^ IM / , SO)L2 + X>7%(/. ̂ O)|2 + E>J1|L3(/, S0)L2 + E ^ I W , S0)|2. 
/ / / / 

Now we estimate the above four sums. For the first sum, by applying the Cauchy-
Schwarz inequality, we deduce 

EW/ | L i ( / , s 0 ) | 2 = EW/ 

« E^_1 

£ 
fc>-i 

d(JV)log (2 + %)Sf{X) 

1 + x 
N\s0\i 

Xs" 

( \ 
V d 2 ( iV) log 2 (2 + f ) | J* 
2s / \ 2.4 .Z^ X2(T° 

* > - l ^ 1 + 

2 

X fc>-l 

7 

' (1 -i * \2A A s X2a° 

(4.7) 

It can be shown that the function g{x) satisfies the conditions of Theorem 4.8. More
over, note that the conditions n < N1+e and X < n < 2X imply that 

- 1 < k < 2(1 + c ) log 2iV. 

So, by applying the result of Theorem 4.8 in (4.7), we deduce 

E ^ I M J W I 2 « dHmN^Y^l^iNXYiN-'X' + X) 
f k>-l 

< |SO|3+£iVe- (4.8) 

Here we are using the fact that | < cr0 < 1. For convenience, whenever it is necessary, 
we replace a constant multiple of e with e. 
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Also note that (4.5) and Lemma 4.7 imply 

d 2 ( i V ) k o | 3 ^ 
- W 2s"f 

f 

< \s0\3AN~e 

< \s0\3ANe. (4.9) 

In a similar fashion we derive the following inequalities 

X^IM / .ao)! 2 « | l - s 0 | 3 + e i V 2 - 4 - + £ 

< |s 0 | 3 + e AT £ , (4.10) 

and 

E a ; 7 1 | L 4 ( / ) S o ) | 2 < \so\3AN*. (4.11) 
/ 

Considering (4.8), (4.9), (4.10) and (4.11), we arrive at 

E a ; / - 1 | L ( s y m 2 / , s 0 ) | 2 « k o | 3 y l i V £ . 

Finally, by using the upper bound of Lemma 4.6, cof < N1+e, we conclude that 

£ \L(sym2 f,s0)\2 = £ a ^ l ^ s y m 2 / , s0)\2 

« N^Yl ^ l ^ y m 2 f,s0)\2 

< \s0\3AN1+£ = \so\9+^N1+£. 

T h e p r o o f is now comple te . • 
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4.5 A Non-Vanishing Result 

In this final section, we show how the combination of the main result of this chapter 
(Theorem 4.1) with a known theorem about the values of the symmetric square L-
functions on average will lead to a non-vanishing result. In [2], Akbary proved the 
following. 

T h e o r e m 4.9 Let N be prime, then there exists C > 0 such that for any s0 = a0 + it0 

with 1 — < Re(s) < 1, we have 

Msym2 /, *o) = C(l + «o)Civ(2s0)^- + O ( j r ( ^ ) | 2 | r ( ^ 

where the implied constant depends only on O~Q. 

Proof See [2], Theorem 1 and formula (9). • 

By using this theorem, we can prove the following. 

T h e o r e m 4.10 Let N be a prime number and let so = oo + Uq with 1 — ^ < <To < 1. 
Then for any e > 0, there are positive constants CSo,£ and C's e (depending only on s0 

and e), such that for any prime N > C'SQ£, there exist at least CS0!eN1'e newforms f 
of weight 2 and level N for which L(sym 2 / , s 0 ) 7^ 0. 

Proof By the asymptotic formula of Theorem 4.9, and by Cauchy-Schwarz inequality 
we can write 

N < Y L(sym2 /> so) 
fe^N 

Thus, 

< # {/ G TN : L(sym 2 / , s0) ± 0} Y |L(sym 2 / , s 0 ) | s 

« # {/ G FN : L(sym 2 / , s 0 ) ^ 0} \sa\ZANl+e. 

# {/ G FN : L(sym 2 / , s0) + 0} » — p N x ~ \ 

The proof is complete. • 
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Finally we present a non-vanishing corollary of our theorem. 

Corollary 4.11 For any s0 = cr0 + UQ with 1 — ^ < a 0 < 1, there are infinitely many 
symmetric square L-functions associated to newforms f such that L(sym 2 / , SQ) ^ 0. 

Proof Note that there are infinitely many (large) primes. So, applying the previous 
theorem for newforms of different levels corresponding to different primes yields the 
result. 
This completes the proof. • 
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