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“Stress is an aspect of our daily lives and conversations and yet there is considerable 
ambiguity in the meaning of this word.” 
 
Bruce S. McEwen, 2000.  
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Thesis Abstract 
 
 
Stress is one of the most critical influences on behavior, performance and disease. 
Recent findings from our laboratory have shown that stress represents a major 
modulator of motor function in the intact and damaged brain. The mechanisms by 
which stress and stress hormones affect motor system function, however, have not yet 
been determined. The objective of this thesis was to determine the route of action of 
stress and stress hormones on the motor system in a rat model. The first experiment 
investigates whether corticosterone is involved in mediating stress-induced motor 
impairments. The second experiment compares the role of glucocorticoid and 
mineralocorticoid receptors in regard to modulating the motor response to stress. The 
third experiment determines the differential effects of stress on motor function in 
males and females. The final experiment systematically describes changes in neuronal 
cell signaling that affect normal function of motor areas. The results indicate that 
disturbance of fine motor control by stress is not associated with stress hormone 
increases. Furthermore, it is modulated through the glucocorticoid and 
mineralocorticoid receptors. Stress differentially impairs motor function in males and 
females. These changes in motor behaviour could possibly be the result of changes in 
neuronal cell signaling within the motor system. This research provides new insights 
into physiological influences in motor system function and disorders of the motor 
system. 
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1. Introduction 
 
1.1. Introduction to the thesis  
 
 Previous studies have shown that exposure to stress can impair both skilled and 

unskilled motor function (Metz et al., 2001, 2005; Metz, 2007). The mechanisms by 

which stress and stress hormones affect motor system function, however, have not yet 

been determined . The purpose of this thesis is to elaborate the route of action of stress 

and stress hormones on the motor system in a rodent model. The following seven 

sections comprise the introduction portion of the thesis. The first section defines the 

term stress and describes associated physiological responses. The second section 

emphasizes the role of mineralocorticoid and glucocorticoid receptors in the stress 

response. The third section will discuss the impact of mineralocorticoid and 

glucocorticoid receptors on motor system function. The fourth section will elaborate 

on the phenomenon of neuronal plasticity, plastic changes and changes in morphology 

in response to stress. The fifth section discusses modeling stress in the rodent. The 

sixth section describes behavioural test strategies in rats used to assess changes in 

movement abilities in response to stress. The final section of the introduction outlines 

the experiments described in this thesis. 

 
1.2. Introduction to Stress 
  
 The stress response consists of a complex set of behavioural, physiological and 

biochemical reactions that serve to re-establish homeostasis (Selye, 1976; Sapolsky, 

1992; Lopez et al., 1999; Pedersen et al., 2001). A stressor, such as writing a final exam, 

initiates the stress response, which includes the activation of the hypothalamic-pituitary- 

adrenal (HPA) axis (Figure 1). The HPA axis serves as a monitor of demands in the 
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environment and begins in the brain with the hypothalamus, which releases 

corticotrophin releasing factor (CRF; Akil et al., 1999). CRF in turn stimulates the 

anterior pituitary, which in response releases adrenocorticotropic hormone (ACTH). The 

end-product of the HPA axis is the release of stress hormones also referred to as 

glucocorticoids (GCs), which are released by the adrenal gland once it has been 

stimulated by the release of ACTH  (McEwen, 2000). GCs are present in all living 

organisms and are a type of steroid hormone, which exert effects on multiple target 

tissues (Sapolsky, 1992). In humans the main GC is cortisol and in rats it is 

corticosterone (CORT; Akil et al., 1999; Sapolsky, 2000). Regulation of the HPA axis 

occurs through negative feedback (Sapolsky, 1992; Baccan et al., 2004). 

 The sympathetic-adrenomedullary (SAM) system is the second component of the 

endocrine reaction to stress. The SAM system is a component of the sympathetic division 

of the autonomic nervous system, which causes a release of epinephrine. The increased 

levels of epinephrine facilitate the rapid mobilization of other systems during the stress 

response.  
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Figure 1. Hypothalamic-pituitary-adrenal (HPA) axis activated during the stress response 
to a stressful event (e.g., writing a final exam). The hypothalamus is stimulated by a 
stressful event to release CRF, which in turn stimulates the anterior pituitary to secrete 
ACTH. ACTH stimulates the adrenal glands to release GCs (e.g., CORT). Increased 
levels of GCs work through negative feedback mechanisms to turn off the HPA axis.  
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Stress can have both beneficial and devastating effects on behaviour. It has been 

suggested that the effects of stress depend on the stressor’s strength and duration 

(McEwen and Sapolsky, 1995). Previous work has shown that it can improve or impair 

performance in learning tasks (Selye, 1976; Sapolsky, 1992; McEwen and Sapolsky, 

1995; Albeck et al., 1997; McEwen, 2000; Gunnar and Quevedo, 2007). The beneficial 

responses include energy diversion to the areas in the body needed to escape the stressful 

situation (Sapolsky et al., 2000). The negative consequences of stress include impairment 

in cognitive function such as spatial abilities, specifically impairments in learning seen in 

the water maze task (Holscher, 1999). Previous research has also shown a decrease in 

exploratory behaviour in animals exposed to chronic stress (Berridge and Dunn, 1989). 

Recent research in our laboratory has revealed that chronic stress causes impairments in 

skilled and non-skilled motor function in intact rats (Metz et al., 2001, 2005; Metz, 

2007). For example, animals exposed to oral CORT treatment, cold swim or restraint 

stress show poorer performance on the skilled reaching task when compared to baseline 

performance (Metz et al., 2005).  

The negative effects associated with stress are mainly linked to chronic activation 

of the stress response, which in turn has been linked to disease. The body’s response to 

stress not only involves the brain but also endocrine, autonomic and immunological 

systems. There is an overall weakening of the system during chronic stress, making it 

more prone to disease (Selye, 1976; Sapolsky, 1992; Albeck et al., 1997; Lopez et al., 

1999; Gunnar and Quevedo, 2007; Metz, 2007). For example, previous studies have 

shown that GCs impair the capacity of nervous tissue to recover from injury by reducing 

cell function, plasticity and ability for regrowth (Selye, 1976; Sapolsky, 1992; Albeck et 
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al., 1997; Gunnar and Quevedo, 2007; Metz, 2007). GCs bind to the glucocorticoid and 

mineralocorticoid receptors in the brain, which help facilitate subsequent molecular 

actions (de Kloet et al., 1999). . 

 
1.3. Corticosteriod Receptor Systems 
 

There are two types of receptors that GCs bind to in the brain. The first is the 

mineralocorticoid (type-I) receptor and the second is the glucocorticoid (type-II) receptor. 

Both receptors are members of a super-family of ligand-regulated transcription factors, 

which mediate slow genomic actions and are necessary for maintenance of homeostasis 

(Meaney et al., 1996; Lupien and McEwen, 1997). The receptors reside in a complex 

containing heat shock proteins, which is located in the cytoplasm of the cell (Akil et al., 

1999). Once the ligand has bound to the receptor, the whole complex will move into the 

nucleus of the cell and begin interactions with deoxyribonucleic acid (DNA). The 

interactions include interfering with transcription rates and translation of messenger 

ribonucleic acid (mRNA) into proteins (Sapolsky, 1992; Lupien and McEwen, 1997; Akil 

et al., 1999; Baccon et al., 2004).  

 
Mineralocorticoid Receptor 
 

Mineralocorticoid (MR) or type-I receptors bind to endogenous CORT with high 

affinity (de Kloet et al., 1999). Aldosterone also binds to the MR and is involved in 

conserving sodium, secreting potassium and modulating blood pressure (Quinn and 

Willams, 1998). The regulatory function of MR can be blocked by specific antagonists 

including RU-28318 (spironolactone) and RU-40555 (de Kloet et al., 1999, 2005). 

Within the central nervous system MRs can be found in high density within the 
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hippocampus, lateral septum and medial amgydala. They are expressed less densely in 

other brain regions, such as the cerebellar cortex, brain stem, spinal cord and pituitary 

(Ahima and Harlan, 1990; Ahima et al., 1991; Spencer et al. 1995; Joels et al., 2004). 

Within the cell MR is loosely bound to the nuclear membrane (Sapolsky, 1992). Previous 

research has shown that the MR is involved in mediating various behaviours including 

spatial navigation and anxiety (Korte et al., 1995).  

 
Glucocorticoid Receptor 
 

Glucocorticoid (GR) or type-II receptors bind CORT with a lower affinity when 

compared to MR (de Kloet et al., 1999).  Thus, GRs are activated mainly by high CORT 

levels (Baccan et al., 2004). GRs are found in nearly all cell types throughout the central 

nervous system and peripheral nervous system. GRs are located in both neurons and glial 

cells within the motor cortex, cerebellum, hippocampus, striatum, amygdala and thalamus 

(Ahima and Harlan, 1990; Sapolsky, 1992; Pedersen et al., 2001; Pace and Spencer, 

2005). The function of GRs has in part been determined by using antagonists, for 

example RU-486 (mifepristone), which exerts activity at two levels of receptor action. 

First, it reduces the amount of GR converted to the DNA-binding state (Beck et al., 

1993). Then, it abolishes down-stream events involving interaction of the DNA-bound 

receptor with the transcription complex (Beck et al., 1993). 

Furthermore, GRs have been proposed to be involved in the consolidation process 

of learning and memory (Korte et al., 1995). Recent studies have suggested that the GRs 

participate in the stress response along with MRs (Feldman and Weidenfeld, 1999). 

A combination of GR and MR antagonism prior to stress exposure causes no 

increase in circulating CORT levels of animals, indicating that acting together both the 
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MR and GR play a role in negative feedback within the HPA axis (Feldman and 

Weidenfeld, 1999; Moldow et al., 2005).  Since the MR and GR have different affinities 

for GCs, it has been hypothesized that they could possibly play different roles in HPA 

axis regulation and facilitates the regulation of each other (Sapolsky, 1992; Spencer et al., 

1998). Because MR and GR have been found in the motor system (Ahima and Harlan, 

1990), they could potentially modulate the motor response to stress. 

 
1.4. Introduction to Motor System 
 

The motor system includes a number of brain structures that are responsible for 

coordinating motor functions (Kaas, 1991; Thach, 1999; Ghez and Kraksauer, 2000). The 

motor system is organized hierarchically and begins with the cortex with outputs to the 

brain stem and to the spinal cord (Ghez and Kraksauer, 2000). Each component of the 

hierarchy contains differential concentrations of MRs and GRs (Ahima et al., 1990, 

1991). The motor cortex is involved in executive function of movement. Interestingly, 

GRs have been shown to be present in the motor cortex (Ahima et al., 1990). The cortex 

communicates with the brain stem and spinal cord to control complex voluntary 

movements (Thach, 1999; Ghez and Krakauer, 2000). GRs and MRs are also present in 

the brain stem (Ahima et al., 1990, 1991). The brain stem contains two main systems, the 

medial and the lateral pathways. The medial pathway provides basic postural control and 

influences the motor neurons that innervate axial and proximal muscles. The lateral 

pathway is concerned with goal-directed limb movements, such as reaching.  

The motor neurons in the spinal cord are primarily responsible for execution of 

movement, such as skilled movements and communication with muscles (Ghez and 

Kraksauer, 2000). A study by Marlier et al. (1995) showed that GRs are present in high 
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density within the spinal cord. Another study by Ahima et al. (1991) showed that the 

spinal cord also has MRs. Although the function of human and rodent motor systems is 

well-defined, it can change quite rapidly as a result of neuronal plasticity (Kaas, 1991; 

Kolb and Whishaw, 1998).    

 

1.5. The Phenomenon of Plasticity  
 

Brain plasticity refers to the brains’ ability to change in response to environmental 

influences or injury (Kolb and Whishaw, 1998). Experiences such as stress, environment, 

drugs and learning are catalysts for brain plasticity in human and rodent (Kolb and 

Whishaw, 1998; Weiller and Rijntjes, 1999). Neuronal plasticity is reflected by change in 

molecular processes, cellular function, and changes at the behavioural level. For example, 

at the molecular level there might be differences in the expression of neurotrophic factors 

(Pham et al., 2002), which is reflected at the behavioural level as improvements in motor 

tasks after injury. These improvements can be attributed to recovery or compensation 

(Kaas, 1991; Kolb and Whishaw, 1998).  

If a stressor lasts for weeks, the brain copes by adaptive plasticity. This includes 

changes in hormone secretion that alter levels of local neurotransmitters, which then 

produce structural as well as functional changes in the central nervous system (McEwen, 

2000; Radley et al., 2005; Riva, 2005; Steckler, 2005). Structural changes can also occur, 

which results in altered neuronal activity or vice versa (Sandi, 2004). A study by Suanada 

et al. (2000) revealed that chronic exposure to restraint stress causes atrophy of apical 

dendrites and alterations in density of dendritic spines in the hippocampus. Another study 

found shortening of apical dendrites within the hippocampus (Sandi, 2004). Neurogenesis 
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in the hippocampus can be abolished by both acute and chronic stress (McEwen, 2000).  

Lastly, an example of how molecular processes can affect neuronal plasticity is by 

modulating protein production. For example, Thome et al. (1999) have demonstrated that 

exposure to stress leads to reduced expression of synaptophysin but increased expression 

of synaptotagmin in the hippocampus. Both proteins are integral to the synaptic vesicle 

membrane and required for vesicle fusion and neurotransmitter release. It has been 

hypothesized that the differential regulation of synaptic vesicle proteins could be 

involved in the morphological and behavioural changes observed after stress exposure 

(Thome et al., 2001). This phenomenon could thus also account for motor impairments 

caused by stress. 

Exposure to chronic stress has been suggested to lead to detrimental effects on the 

brain. For instance, animals exposed to chronic stress have shown neuronal structural 

remodeling and cell death in the hippocampus, amygdala and the prefrontal cortex 

(Suanada et al., 2000; Bogolepov et al., 2001; Joels et al., 2004; de Kloet et al., 2005; 

Froc and Christie, 2005). Within the sensorimotor cortex Bogolepov et al. (2001) showed 

cortical cell death after exposure to emotional stress and suggested that it is most likely 

due to ischemia-like mechanisms. Smith et al. (2008) have shown that exposure to stress 

exaggerates cell death in the substantia nigra in the 6-hydroxydopamine rat model of 

Parkinson’s disease (Figure 2). One mechanism of cell death might be related to long-

term potentiation (LTP). Specifically, an electrophysiological study by Sandi (2004) 

showed that long-term stress impairs LTP, which can be translated into disturbances of 

neural function. Another study has shown that CRF has depressant-like actions in 

thesensorimotor cortex in vivo (Froc and Christie, 2005). The findings of stress-induced 
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changes, however, might also depend on many variables, including the model of stress 

used (Sapolsky, 1992). 

 

1.6. Modeling Stress in the Rodent 

Understanding the mechanisms underlying stress-induced disturbances will allow 

for improved clinical therapies and treatments (Tamashiro et al., 2005). Therefore, 

laboratory animal models have been used for a number of years to examine the 

behavioural and physiological responses to stress. Some examples of stress paradigms 

used in the laboratory include restraint, social, predator smell, forced swim, foot shock, 

noise and light or cold swim stress (Katz et al., 1981; Metz et al., 2005; Tamashiro et al., 

2005; Zhao et al., 2007). Rodent models of stress are widely used in the laboratory in part 

because of their relatively short lifespan, enabling investigators to conduct longitudinal 

studies in a short time, in addition to conducting studies at critical periods such as 

neonatal or adolescent stages (Tamashiro et al., 2005). Stress treatments in animals 

usually occur in random order to reduce predictability, or daily in a predictable way for 

varied durations. Most commonly, two key time points, acute and chronic stress, are 

compared to parallel human stress conditions in the investigation of behavioural and 

physiological changes (Metz et al., 2005; Tamashiro et al., 2005). 

The experiments described in this thesis will use three stressors, restraint and cold 

swim stress, in addition to administering CORT orally to mimic the main physiological 

correlate of stress. The duration of these treatments is classified as chronic, since 

treatments took place daily for 15 days. 
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Figure 2. Triple-labeled sections of the rat substantia nigra seven days after unilateral 6-
hydroxydopamine lesion. Red cells labeled with glial fibrillary acidic protein, blue cells 
labeled with tyrosine hydroxylase and green cells labeled with Fluoro-Jade. Note the 
decrease in tyrosine hydroxylase-positive cells and increase in Fluoro-Jade-positive cells 
in animals exposed to stress. Modified from Smith et al. (2008).  
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1.7. Behavioural Responses to Stress 
 

As discussed previously, there are several ways that stress can directly or 

indirectly influence behaviour. There are a variety of behavioural tests available for 

testing stress-induced changes in sensorimotor function in rats. During the course of the 

experiments for this thesis, three main behavioural tests were utilized, based on earlier 

studies. The single pellet reaching task and ladder rung walking task test skilled motor 

function in rodents (Whishaw, 2000; Metz and Whishaw, 2000). Furthermore, the open 

field task was used, which represents, a standard measurement of exploratory activity that 

is commonly used in stress research (Roth, 1979; Sousa et al., 2006). 

 The single pellet reaching task has the advantage of providing both a quantitative 

and qualitative measure of fine motor performance in rats (Whishaw et al., 1992a; 

Whishaw et al., 1992b; Whishaw, 2000).  In this task, a laboratory rat reaches for a single 

piece of food. The entire reach sequence can be subdivided into eleven stereotypical 

movement components (Metz and Whishaw, 2000). These movement components can be 

evaluated using a scale adapted from a movement notion that expresses the limbs as axes 

and documents movement by observing change in the limb and body axes (Eshkol and 

Wachmann, 1958). Notably, the reaching movement involved in the single pellet 

reaching task is similar to reaching in humans (Eshkol and Wachmann, 1958; Whishaw et 

al., 1992a; Whishaw et al., 1992b) 

 The ladder rung walking task provides both a quantitative and qualitative measure 

of skilled walking in rodents (Metz and Whishaw, 2002). Animals are trained to walk 

across a horizontal ladder, which has rungs set in an irregular pattern. The numbers of 
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errors are counted (quantitative), as well as scores of how the animal places its limbs on 

the rungs (qualitative; Metz and Whishaw, 2000).  

 The open field task is a standard test used to measure exploratory activity. It is 

one of the standard tests used to assess activity after animals are exposed to stress (Roth 

and Katz, 1979). The animals avoid novel and potentially dangerous environments and 

explore new situations with respect to availability of food. Thus, this test reflects a 

measurement of anxiety in laboratory rodents (Sousa et al., 2006).  

 In addition to behavioural tests, blood samples were collected to analyze for 

corticosterone and glucose concentrations. Corticosterone concentrations were 

determined to confirm whether treatments led to elevation of stress hormone levels (Metz 

et al., 2005). Blood glucose levels were determined since stress has been linked to 

alterations in glucose levels (Pederson et al., 2001; Bates et al., 2007; Garcia-Bueno et 

al., 2007). Decreases in glucose utilization within the brain have been shown in animals 

exposed to stress (Garcia-Bueno et al., 2007), whereas cells within the periphery require 

increased levels of glucose when responding to a stressor (Sapolsky, 1992).   

 
1.8. Introduction to Experiments 
 

The main purpose of this thesis was to elaborate the route of action of stress and 

stress hormones on the motor system in the rodent model. This thesis contains four 

chapters each of which addresses specific aspects of stress-induced modulation of motor 

function. The four questions that these chapters address are the following.  (1) Does the 

severity of motor impairment during stress correlate with circulating levels of 

corticosterone? This objective is to examine the dose-response relationship of the level 

of stress hormones with the degree of motor impairment by detailed qualitative and 
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quantitative behavioural analysis. (2) Does stress exert its detrimental effect on motor 

function mainly via action on the glucocorticoid receptor (GR) or the 

mineralocorticoid receptor (MR)? While previous data pointed out that corticosterone 

mediates at least some of the effects of stress on the motor system, it needs to be 

determined if these effects are mediated by its main receptor, GR, or possibly by MR. 

The objective will be investigated by using GR and MR agonists to activate and 

antagonists to block the function of these receptors. (3) Are there sex differences in the 

effects of stress on motor system function? This objective is to investigate the 

interaction of stress and stress hormones with sex hormones by exploring possible sex 

differences in the susceptibility of the motor system to the influence of stress. (4) What 

are the effects of restraint stress on cell signaling proteins? The objective is to 

investigate changes in apoptotic cell signaling proteins in areas of the brain involved in 

motor function using neurochemical techniques.  

 

Thesis Hypothesis 

The stress response activates a number of systems within the body to release 

different hormones, which in turn have varying effects on the central nervous system. 

The system then interprets and integrates these signals to formulate a behavioural 

response. Recent studies suggest that there are multiple contributors to the behavioural 

effects of stress, however, the role of most of these individual factors has not been 

determined yet. Nevertheless, it is accepted that corticosterone represents a key player in 

the rodent stress response and thus it is a prime candidate to initiate a line of research into 

the mechanisms of stress-induced motor impairment. Therefore, the guiding hypothesis 
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for this thesis is that other receptors and routes than traditionally described are 

involved in modulating motor performance after exposure to stress. 
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2.  Experiment 1 

Elevated Corticosterone Levels Are Not Associated with Stress-Induced Motor 

Disturbances 

 

Abstract 

Chronic stress has been shown to alter behaviour in both humans and rodents. For 

example, previous studies have shown that chronic stress can impair skilled motor 

function in animals. The stress response is defined by an increase in stress hormones, 

cortisol in humans and corticosterone (CORT) in rodents, both secreted by adrenal 

glands. CORT can cross the blood brain barrier easily to regulate homeostasis. The 

purpose of this study was to quantitatively investigate the relationship between 

circulating CORT and performance of skilled motor function in animals exposed to three 

different stress manipulations. Male and female rats were trained in skilled reaching and 

ladder rung tasks. Once baseline measurements were completed, rats underwent daily 

sessions of either swimming in 5˚C cold water, restraint stress, or oral CORT treatment. 

Manipulations lasted for 15 days and animals were tested in the skilled reaching task 

daily and twice in the ladder rung walking task. Blood samples were collected during 

baseline and on day 15 of manipulations. The results showed that successful reaching 

decreases in animals exposed to swim and restraint. Animals administered oral CORT 

showed a significant increase in circulating plasma CORT concentration but no decrease 

in skilled reaching success. Correlation analysis revealed a negative relationship between 

plasma CORT concentration and ladder rung walking score in swim stress animals, as 

well as reaching success in restrained animals. The results from this study suggest that 
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CORT is not the main factor mediating loss of skilled motor function after stress. 

Therefore, other endocrine and psychological factors maybe involved in modulating 

skilled motor function in response to stress.  

 

Introduction 

  Stress is one of the most critical influences on behaviour, performance and 

disease (Selye, 1976). The stress response has been characterized by an increase in 

circulating stress hormones, which are referred to as glucocorticoids (GCs), 

specifically cortisol in humans and CORT in rodents (Lucas et al., 2007). CORT is 

released when the hypothalamic-pituitary-adrenal (HPA) axis is activated. The adrenal 

glands release CORT into the blood and the effects of this hormone are widespread, 

and include actions on the brain (Dronjak et al., 2004). CORT crosses the blood brain 

barrier easily and binds to two types of receptors, the mineralocorticoid and 

glucocorticoid receptors. Once bound, CORT coordinates the organism’s ability to 

cope with stress by diverting energy supplies to challenged tissues. In addition, CORT 

promotes the interpretation of information and the discontinuation of behaviour that is 

no longer needed (de Kloet et al., 1999).  The release of CORT is controlled by the 

HPA axis, which also stops its release of CORT through a negative feedback 

mechanism (de Kloet et al., 2005). 

  The dose-response relationship between the severity of the stressor and the 

magnitude of the stress response has led to the conclusion that the HPA axis is able to 

distinguish between stressors of different severity and durations (Sapolsky, 1992; 

Dayas et al., 2001; Metz et al., 2005). It still remains to be determined if CORT is the 

main mediator of the behavioural changes in response to stress. 
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  Current evidence suggests that stress alters emotion, cognitive and motor 

function (McEwen and Sapolsky, 1995; Metz et al., 2001, 2005). Previous work has 

shown that increases in CORT cause impairments in skilled and non-skilled motor 

function, including performance in a reaching task (Metz et al., 2001, 2005). 

However, it still remains unclear if these impairments are mediated by CORT. The 

objective of the present study was to investigate whether CORT is a modulator of the 

motor impairments seen after exposure to stress. Cold swim stress, restraint stress and 

CORT treatment were used to investigate the relationship of circulating plasma CORT 

to performance in skilled motor function, such as the skilled reaching and skilled 

walking tasks.  

 

Materials and Methods 

Subjects 

Subjects were 18 male and 48 female adult Long-Evans Hooded rats, raised at the 

University of Lethbridge vivarium and weighing 280-600g at the beginning of the 

experiments. The animals were housed in groups of two or three in standard 

polycarbonate shoebox cages (45.5 x 25.5 x 20 cm) on corn cob bedding (Bed O Cobs 

1/8’). The light cycle was 12:12h with lights on at 07:30 h. The housing room was 

maintained at a temperature of 20˚C and 30% relative humidity. 

 Prior to the experiments, rats were food deprived to 95% of their initial body 

weight to encourage participation in the reaching task. Supplementary food was given 

daily in their home cages five hours after behavioural testing to maintain body weight. 
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Water was available ad libitum. The animal experiments were approved by the University 

of Lethbridge Animals Welfare Committee. 

 

Experimental Design 

Animals were trained and tested in a skilled reaching task and a ladder rung task 

(Figure 3; 4A; 5A). Then they were assigned to one of three experimental groups: swim 

stress (n=5), restraint stress (n=47) and 5 mg oral CORT treatment (n=14). The stress-

inducing procedures and CORT treatments were performed daily at the same time of day 

over a period of 15 days, during which animals were tested daily in the skilled reaching 

task. Ladder rung testing occurred before manipulations and on day 14 of daily 

treatments. Blood samples were collected at two time points during the experiments; on 

baseline and on day 15 of stress or CORT treatment. Blood was collected at either 10 min 

or 60 min after exposure to restraint stress to determine short-term changes in CORT 

levels. 

 

Physiological Manipulation  

Swim Stress. Animals were individually placed in a bucket filled with ice-cold 

water (5˚C) for 5 min (Armario et al., 1987, 1995). The water was deep enough so that 

the animals’ feet or tail did not have contact with the bottom. After swimming, animals 

were dried with a towel and returned to their home cage, which was placed on a heating 

pad. 
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Figure 3. Time chart illustrating the order of manipulations and tests. Training and 
testing included skilled reaching and skilled walking performance. Blood sample 
collection took place before physiological manipulation commenced and on day 15 of 
physiological manipulations. 
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Restraint Stress. Animals were placed in a transparent Plexiglas container (5 cm 

inner diameter) for a period of 20 min each day (Garcia et al., 2000; Faraday, 2002; 

Mercier et al., 2003). The container had perforated ends to allow ventilation. The 

container maintained the animals in a standing position without compression of the body.  

CORT Administration. One group of animals received 5 mg of oral CORT 

(Sigma, Oakville, ON) treatment. Administration of 5 mg of oral CORT was previously 

shown to cause impairments in motor function (Metz et al., 2005). The CORT was 

administered once daily mixed with cookie crumbs, water and peanut oil for 

consumption. 

 

Behavioural Testing and Analysis 

Skilled Reaching Task 

Skilled Reaching Task Apparatus. The reaching box was made of clear Plexiglas 

(40 x 45 cm and 13.1 cm wide). Animals were trained to extend their forelimbs to reach 

for food pellets through a 1.3 cm wide vertical opening in the middle of the front wall 

(Figure 4A). The vertical opening extended from the floor to a height of 15 cm. To hold 

the food pellet, a 2 cm wide by 4 cm long shelf was positioned outside the front wall of 

the box. The shelf was mounted 4 cm above the floor. Food pellets (45 mg banana 

flavoured Dustless Precision Pellets, Bioserv Inc., Frenchtown, NJ) were placed in one of 

two small indentations on the shelf. The indentations, each 5 mm in diameter and 1.5 mm 

deep, were 2 cm away from the inside wall of the box and were centered on the edges of 

the slit through which the rats reached (Metz and Whishaw, 2000).  
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Training and Testing. Once rats began to reach for food, food was placed in the 

indentation contralateral to the limb that the rat used for reaching. Between individual 

reaching movements, rats were required to leave the food aperture and walk to the rear of 

the box in order to reposition themselves prior to the next reach. Each training and testing 

session required the rats to reach for 20 food pellets. Reaching performance was scored 

by counting misses and successful reaches (Metz and Whishaw, 2000). An ‘attempt’ was 

defined as a repeated forelimb movement towards the pellet and obtaining the pellet after 

more than one reach. A ‘success’ was recorded if an animal grasped a food pellet on the 

first attempt and withdrew the paw with the pellet through the slit to consume it (Metz 

and Whishaw, 2002a). A ‘miss’ was recorded if an animal touched and missed the pellet 

using more than one attempt to grasp it. Additionally, if the animal lost the pellet in the 

cage after grasping it, a ‘drop’ was scored. Percent reaching success was calculated by 

counting the number of successful reaches divided by the number of pellets given in each 

session (20) multiplied by 100. Typical success rates at baseline were approximately 

50%. 

 

Skilled Walking Task 

Ladder Rung Walking Task Apparatus. The apparatus was made of two side walls 

(1 m long and 20 cm high) of clear Plexiglas with metal rungs (3 mm in diameter), 

inserted at random distances ranging from 1 to 5 cm to create a floor (Metz and 

Whishaw, 2000; Figure 5A). The irregular pattern was used to maintain the difficulty of 

the task in repeated test sessions. The apparatus was elevated 30 cm above the ground 

with a neutral start box and the animals’ home cage at the end. 
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Figure 4. Skilled reaching task. (A) Photograph illustrating the skilled reaching task in 
which animals are required to grasp and obtain food pellets. Mean percent success of 
animals before (Base) and after (Chronic) exposure to swim stress (n=5). (B), restraint 
stress (n=47). (C) and oral CORT administration (n=14). (D). Note the significant 
decreases in percent success of animals exposed to swim and restraint stress. 
Significances are given as comparison to baseline values. * p<0.05, *** p<0.001. 
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Training and Testing. Animals were trained in five trials. Each trial required an 

animal to cross the length of the ladder to reach the home cage placed at the end of the 

apparatus. One training session was administered, with the baseline test session on the 

following day. One test session was performed at baseline and chronic time points. Each 

test session consisted of three trials during which the animals’ performance was 

videotaped. 

Video Taping and Analysis. The ladder rung walking performance was video-

recorded from a lateral perspective (Metz and Whishaw, 2002b). The camera was 

positioned at a slight ventral angle, so that both sides and the paw positions could be 

recorded simultaneously from a ventral view. The tapes were analyzed frame-by-frame 

for quantitative and qualitative analysis.  

Quantitative analysis was based on the number of errors in each crossing. Based 

on the limb placement scoring system (see below), an error was defined as each limb 

placement that involved missing the rung or slipping off the rung (score of 0, 1 or 2 

points according to the scale). The mean number of errors per step of each fore- and hind 

limb was calculated and averaged for three trials.  

The qualitative analysis of forelimb and hind limb placements was performed 

using a foot fault scoring system developed earlier (Metz and Whishaw, 2002b; Figure 

5E). Consecutive steps were analyzed, excluding the last step before a pause and the first 

step after a pause. The last stepping cycle at the end of the ladder rung apparatus was also 

excluded from scoring. Limb placement was scored by categorizing the placement of the 

limb on a rung and the limb protrusion between rungs when a miss occurred by using a 7-

catergory scale (Metz and Whishaw, 2002b). A score of 0 indicates a total miss and was 
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given when the limb completely missed the rung. A score of 1 point indicates a deep slip, 

as the limb was initially placed on the rung, but then slipped off when weight bearing and 

caused the limb to fall in-between rungs. A score of 2 indicates a slight slip, as the limb 

was placed on a rung, but slipped off when weight bearing without causing a fall that 

interrupted walking. A score of 3 indicates a replacement, as the limb was placed on a 

rung, but withdrawn before weight bearing and placed on another rung. A score of 4 

indicates a correction, with the limb aiming for one rung, but it was then placed on 

another rung without touching the first one. Alternatively, a score of 4 was given when 

the limb was repositioned on the same rung. A score of 5 indicates a partial placement, as 

the limb was placed on the rung with either the wrist or digits of the forelimb or the heel 

and toes of the hind limb. A score of 6 indicates a correct placement with the mid-portion 

of the palm weight bearing (Metz and Whishaw, 2002b).  

  An error was counted when animals missed a rung or slipped off (error scores of 

0,1 and 2). Percent error was calculated by dividing the number of errors by total number 

of steps and multiplying by 100. The number of foot placement errors was calculated as a 

percentage of the total number of steps in a respective trial.  
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Figure 5. Skilled walking task. (A) Photograph illustrating the skilled walking apparatus 
in which animals are required to walk across a horizontal ladder. Mean Total Movement 
Score of animals before (Base) and after (Chronic) exposure to swim stress (B), restraint 
stress (C), and oral CORT administration (D). (E) Photograph illustrating an animal 
making an error while crossing the apparatus. Mean percent error of animals before 
(Base) and after (Chronic) exposure to swim stress (F), restraint stress (G), and oral 
CORT administration (H). Note the significant decrease in the total movement score and 
significant increase in the percent error of animals exposed to restraint stress. 
Significances are given as comparison to baseline values. * p<0.05. 
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Blood Sample Collection 

Rats were individually transported to the surgical suite and immediately put under 

4% isoflurane anesthesia. Anesthesia was maintained for approximately 5 min in which 

1.0 ml of blood was collected from the tail vein. Blood was sampled using a heparinized 

butterfly catheter. The blood was transferred to centrifuge tubes, and plasma was 

obtained by centrifugation at 10,000 g for 8 min. The samples were stored at -20°C. 

Plasma CORT concentrations were determined by radioimmunassay using commercial 

kits (Coat-A-Count, Diagnostic Products Corp., Los Angeles, CA; Ishida et al., 2003). 

 

Statistical Analysis 

Statistical Analysis was performed using a StatView software package (Version 

4.5, Abacus Concepts, Inc., CA, USA, 1996). The blood sample, skilled reaching and 

skilled walking data were subject to ANOVA and paired t-tests. In addition, significant 

data are presented in bivariate plots displaying the relationship between two variables 

(CORT concentration and behaviour). Regression lines and Pearson’s correlation 

coefficients were calculated. A p-value of less than 0.05 was chosen as the significance 

level for all statistical analyses. All data are presented as mean + standard error. 

 

Results 

Skilled Reaching Task 

Reaching success is shown in Figure 4. Figure 4B illustrates the reaching success 

before and during exposure to swim stress. Animals had a significantly lower percent 

success at the chronic testing time point (28.7+5.3%) when compared to baseline test 
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time point (50+2.6%; t(4)=-6.19, p<0.05).  Furthermore, restraint stress significantly 

decreased the reaching success rate by half when compared to baseline (Figure 5C; 

t(44)=-5.95, p<0.001). Figure 5D shows percent success in animals exposed to CORT. 

Chronic CORT caused moderate reduction of reaching success.  

 

Ladder Rung Walking Task 

Number of Placement Errors. Swim stress animals had no change from baseline 

to the chronic stress testing time point (Figure 5F). Restraint animals made significantly 

more errors at the chronic testing time point when compared to baseline testing (Figure 

5H; t(43)=2.389, p<0.05). Animals administered CORT had no changes in the number of 

errors from baseline to chronic treatment (Figure 5G). 

Foot Fault Scoring. Animals exposed to swim stress had no change in their total 

movement score (Figure 5B). Restraint exposed animals had a significantly lower total 

movement score during the chronic testing time point when compared to baseline testing 

(Figure 5C; t(44)=-0.596, p<0.05). Animals administered CORT had no change in their 

total movement score (Figure 5D). 

 

Blood sample Analysis. 

 Circulating plasma CORT levels are illustrated in Figure 6. No changes in CORT 

levels were observed when baseline and chronic stress samples were compared for swim 

stress (Figure 6A) or restraint stress (Figure 6B). The CORT-treated animals had 

significantly higher plasma circulating CORT concentration after chronic treatment 

(539.4 + 38.3) when compared to baseline (368.6 + 28.9; Figure 6C; t(9)=-4.374, 
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p<0.05). No difference in plasma CORT concentration was observed between 10 min 

collection and 60 min time points. 

 

Correlation Analysis 

Circulating plasma CORT concentrations underwent correlation analysis with 

behavioural results (skilled reaching or walking) to determine whether the concentration 

of circulating CORT was influential on behavioural outcome. Table 1 and Figure 7 

highlight the main relationships. 

Effects of Circulating CORT on Skilled Reaching. There was no relationship 

between restraint or swim stress and reaching success. Oral CORT administration and 

percent success were negatively correlated (r=-0.623, p<0.05), indicating that animals 

with higher plasma CORT levels had lower reaching success.  

Effect of circulating CORT on the Number of Errors in Skilled Walking. There 

was no correlation between circulating CORT levels and number of errors in any of the 

groups.  

Effect of Circulating CORT on Total Movement Score in Skilled Walking. 

Animals exposed to both swim stress and oral CORT treatments did not have a 

significant relationship with total movement score. Animals exposed to restraint stress 

had a negative relationship between total movement score and circulating CORT levels 

(r=-0.286, p<0.01).  
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Figure 6. Plasma CORT levels. Mean CORT concentration of animals before (Base) and 
after (Chronic) exposure to swim stress (A), to restraint stress (B), and oral CORT (C). 
Note the significant increase in CORT concentration in animals administered CORT. 
Significances are given as comparison to baseline values. **p<0.01. 
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Figure 7.  Scatter plots of correlation results. (A) Correlation of CORT concentration and 
percent success in the skilled reaching task after CORT treatment. (B) Correlation of 
CORT concentration and total movement score after exposure to restraint stress. Note 
that the higher CORT concentrations are significantly related to decreased success rates 
and lower movement scores.  
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Table 1. Comparison of correlation between circulating plasma CORT and skilled motor 
function. Significant correlations are identified in table. X indicates no relationship. 
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Discussion 

  The objective of this study was to investigate whether endogenous CORT 

serves as the main modulator of motor impairments in response to stress. The study 

used two models of stress and oral CORT treatment. Animals exposed to swim and 

restraint stress had a significant decrease in the number of pellets that they obtained 

successfully. Skilled walking in restraint stress-treated animals was also impaired, 

however, this stressor did not result in CORT elevation. Although animals treated with 

oral CORT showed no impairments in skilled movement performance, these animals 

had elevated CORT levels and revealed a negative significant relationship with 

reaching success. A significant negative correlation between restraint stress and 

skilled walking movement score was also observed.   

The present study found that both swim and restraint stress caused a significant 

decrease in skilled reaching success while only restraint stress caused a significant 

decrease in skilled walking. Restraint stress is referred to as a relatively mild stress, since 

it mainly represents a psychological stressor, while cold swim stress is often thought to 

be a moderate stress (Dronjak et al., 2004). The difference in the severity of stress could 

serve as a possible explanation for the differences in skilled motor impairments. Work by 

Lucas et al. (2007) has shown that restraint stress exerts effects on neurochemcial 

markers of the motivational system in the rats’ midbrain, specifically the dopamine 

transporter and dopamine receptors. In addition, another study by Kawahara et al. (1999) 

showed that mesocortical dopamine release is stimulated by the locus coeruleus during 

the experience of hemodynamic or emotional stress. Dopamine is a key neurotransmitter 

that is involved in motor function, as shown by the progressive loss of dopamine that 
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leads to dysfunction in Parkinson’s disease (Liss and Roeper, 2007). Exposure to stress 

has been suggested to change dopamine properties, which may lead to the motor 

impairments seen in response to stress (Liss and Roeper, 2007; Metz, 2007).  

In this study, circulating plasma CORT levels were not significantly elevated in 

swim stress or restraint-treated animals, whereas CORT concentrations were significantly 

elevated in animals treated with CORT. Although the classic concept of stress has been 

based on an increase in stress hormones, recent findings have suggested  that an elevation 

in CORT may not be the single component causing behavioural alterations in response to 

stress (Smagin et al., 2001; Lucas et al., 2007). Studies have shown that swim and 

restraint stress cause changes in other components of the stress response, such as 

increased levels of CRF (Smagin et al., 2001; Dronjak et al., 2004). Furthermore, the 

motor impairments may also be due to activation of the mineralocorticoid receptor (MR), 

since CORT binds to the receptor and recent data has suggested that MRs participate in 

the stress response (Pace and Spencer, 2005).  

 The data from this experiment suggest that chronic swim and restraint stress does 

not lead to elevated circulating plasma CORT. A study done by Rodgers et al. (1999) 

showed an insignificant relationship between elevated plasma CORT levels and duration 

of time spent in the closed arms of an elevated plus maze, suggesting that circulating 

plasma CORT concentrations are not related to behavioural changes. However, the study 

by Rodgers et al. (1999) found a significant positive correlation between risk assessment 

behaviour and CORT levels. Risk assessment in rats can be measured by how many times 

the rats explore the open arms of an elevated plus maze (Rodgers et al., 1999).  

Specifically, both rats and mice had higher circulating plasma CORT concentrations 
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when they navigated through an elevated plus maze. The elevated plus maze is widely 

used to study anxiety-related processes, which are often associated with a stress response 

(Rodgers et al., 1999; Benabid et al., 2007; Metz, 2007). As mentioned previously, Metz 

(2007) suggests that the anxiety associated with the stress response maybe linked to the 

skilled motor impairments observed after exposure to stress. Previous work by Metz et al. 

(2005) has shown that administration of diazepam, an anxiolytic drug, significantly 

improves skilled motor behaviour and significantly decreases plasma circulating CORT 

concentrations. Therefore, it can be suggested that increased anxiety associated stress 

modulates the motor impairments seen after exposure to swim and restraint stress. 

Exposure to chronic stress in particular has been shown to cause major changes in 

animal behaviours, such as learned helplessness. Learned helplessness usually occurs as a 

result of exposure to uncontrollable stress and is associated with decreases in behavioural 

function (Shors, 2004; Henn and Vollmayr, 2005; Greenwood and Fleshner, 2008; Wood 

et al., 2008). Learned helplessness was first observed by a group of psychologists at the 

University of Pennsylvania that noticed experience of stress can impede the ability to 

learn new tasks (Shors, 2004). In addition, these animals exhibited symptoms such as 

sleep and eating disturbances, ulcers and decreased immune functions, leading to the 

suggestion that learned helplessness is an analog of human depression  (Shors, 2004; 

Greenwood and Fleshner, 2008). Learned helplessness could possibly help explain the 

motor impairments associated with exposure to stress described in this thesis. 

Many of the behavioural changes in stressed rats might be related to alterations in 

transmitter systems or other endocrine variables. For instance, levels of expression of 

gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, and related receptors 
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were found to be affected by exposure to stress (Doherty and Gratton, 2007; Skillbeck et 

al., 2008). Furthermore, changes to GABA receptor activity after exposure to restraint 

and swim stress were shown to be dependent on sex (Skill beck et al., 2008; Zheng et al., 

2007). A study by Doherty et al. (2008) indicated that GABA regulates the release of 

dopamine within the nucleus accumbens after exposure to stress. At the molecular level, 

the GABA A receptor has been suggested to regulate phosphorylation of proteins 

involved in cell signaling in both the hippocampus and prefrontal cortex, after exposure 

to stress (Zheng et al., 2007). 

Aside from providing interesting implications of the effects of stress in motor 

system function, the present study also had a number of limitations. Firstly, the 

assessments made in the present study might have overlooked some possible sex 

differences. Previous works has shown that stress exerts differential effects on male and 

female Long-Evans rats (Faraday et al., 2002). Sex differences might depend on stressor 

type and interval, as well as on the kind of behavioural test used. A separate comparison 

of male versus female rats in the present study might have provided further insight into 

the effect of stress on motor performance. Secondly, the present study used a relatively 

small number of animals in the swim stress group (n=5), whereas the restraint stress and 

oral CORT administration groups had a larger group size (n=10).  A follow-up study to 

increase the number of animals in the swim stress group might enhance the statistical 

power in order to detect more subtle differences between groups. 
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Conclusion   

The present study extends the current knowledge of mechanisms that cause motor 

disruptions after exposure to stress. The results suggest that elevated CORT levels are not 

associated with the motor impairments caused by stress. Increased anxiety might lead to 

direct GC actions on the motor system as well as indirect effects by affecting non-motor 

areas that might modulate motor function. 
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3. Experiment 2 

Blocking Glucocorticoid and Mineralocorticoid Receptors Neutralizes Motor 

Function Impairment Associated With Stress 

 

Abstract 

Stress is one of the most critical influences on behaviour and performance. Most 

research has focused on the effects of stress on limbic system functions, including 

learning and memory, however, recent findings have shown that stress also is a potent 

modulator of motor control. For instance, stress can impair skilled and non-skilled 

movements in intact rats. The mechanisms by which stress and stress hormones exert 

these effects, however, have not been determined yet. Previous studies have suggested 

that the glucocorticoid receptor (GR) plays a major role in mediating the stress response, 

however, recent studies have shown the mineralocorticoid receptor (MR) may participate 

in stress-induced motor impairments. The purpose of this study was to compare the role 

of GR and MR in stress-associated disruption of motor function in a rat model of stress. 

Five groups of male and female rats were tested in a skilled reaching task daily 

throughout the treatment period. The first group was tested on the skilled reaching task 

and in an open field while administered agonists for MR (aldosterone; 500 ug/kg) or GR 

(dexamethasone; 750 ug/kg) p.o. each for 3 days. The remaining four groups received 

daily treatments of either restraint stress or oral corticosterone for 14 days. On day 1 and 

day 13 and 14 of either treatment, rats were administered antagonists for either GR (RU-

486, mifepristone; 50 mg/kg) or MR (RU-28318, spironolactone; 100 mg/kg) p.o. While 

both acute and chronic stress and corticosterone treatments reduced skilled reaching 
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success, administration of both the GR and MR antagonists neutralized these effects by 

protecting skilled reaching success. In addition, administration of aldosterone and 

dexamethasone caused a significant decrease in the success rate of animals when 

compared to baseline testing. There was no difference between male and female rats in 

the response to any of the treatments. These observations suggest that both GR and MR 

activation plays a central role in modulating motor system function. 

 

Introduction 

One of the main features of the stress response has been characterized as an 

increase in circulating glucocorticoid (GC) levels (Seyle, 1976; de Kloet et al., 1999). 

GCs include the main stress hormone in humans, cortisol, and corticosterone (CORT) in 

rodents. GCs readily cross the blood brain barrier and affect the central nervous system 

by binding to two types of receptors, the high-affinity mineralocorticoid or type 1 

receptor (MR) and the low affinity glucocorticoid or type 2 receptor (GR; de Kloet et al., 

1999; de Kloet et al., 2005). 

The MR has a ten-fold higher binding affinity for GCs as compared to the GR 

(Moirmoto et al., 1996; Spencer et al., 1998; de Kloet et al., 1999; Rogerson and Fuller, 

2000). Thus, the MR is mainly involved in binding GCs during non-stress conditions 

(Cole et al., 2000; Pace and Spencer, 2005). For example, low levels of GCs act via MR 

to maintain low basal activity of the hypothalamo-pituitary-adrenocortical (HPA) axis 

(Pace and Spencer, 2005). Recent findings, however, suggest that the MR may also 

become activated during a stressor challenge. The classical notion suggests that the MR is 

not activated during the stress response as MRs become saturated during basal CORT 
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levels (Smythe et al., 1997; Spencer et al., 1998; Pace and Spencer, 2005; Derijk et al., 

2006). In this case GRs, but not MRs, would become activated when CORT is elevated. 

A recent study by Pace and Spencer (2005), however, indicated that MR mediates 

negative feedback to downregulate HPA axis activity in response to a mild stressor, but 

not in response to a moderate stressor, such as restraint. Accordingly, using restraint 

stress Cole et al. (2000) showed that an MR antagonist does not alter CORT secretion, 

whereas a GR antagonist was found to modulate CORT secretion in animals exposed to 

restraint. Based on rates of MR and GR occupancy, Spencer et al. (1998) concluded that 

MR activation is critical in facilitating GR-dependent regulation of HPA axis activity 

when GC levels are high. Furthermore, MRs have been suggested to be involved in 

identifiying stress severity during onset of the stress response, yet the role of MR in 

feedback inhibition of the HPA axis still remains unclear (de Kloet et al., 2005).  

GRs, which have a lower affinity for GCs than MR, are thought to be mainly 

activated when GC levels are elevated. GRs constrain HPA axis activity during and after 

presentation of stressors via negative feedback in order to downregulate GC secretion  

(Spencer et al., 1998; Bamberger et al., 1996; Bauchman et al., 2003). Thus, blocking the 

GR may abolish a rise in CORT levels in response to stress (Moldow et al., 2005). 

Because of the prominent role of GR in the stress response, it is generally believed that 

stress-induced behavioural changes are mainly mediated by this receptor. Behavioural 

alterations associated with chronic stress include altered sensory function (Swiergiel et 

al., 2007), diminished learning and memory (Holscher, 1999), anxiety and depression 

(Pohl et al., 2007), and motor function (Metz et al., 2001, 2005). 
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Recent evidence suggest that both GR and MR play a role in normal HPA axis 

functioning and behaviour (Devenport et al., 1990). For example, studies have confirmed 

a role for MR in stress-associated emotional changes. Smythe et al. (1997) showed that 

blocking hippocampal MR can alleviate CORT-induced anxiety in the Black-White box 

task, indicating that MRs are directly involved in anxiety. The differential role for GR 

and MR in behaviour, however, has not been analyzed in other behavioural paradigms. 

While most previous studies comparing the function of GR and MR focused on 

the limbic system, the present study extends these studies to elaborate the role of GR and 

MR in affecting motor system function. The study compared the effects of GR and MR 

activation on motor performance, and blocking GR and MR function during the response 

to acute and chronic restraint stress, and supplemental CORT treatment. Animals were 

tested in skilled reaching and exploration of an open field. The results revealed that acute 

and chronic treatment with either MR or GR blocks motor impairments observed in 

animals exposed to restraint stress or oral CORT administration. Activation of the MR or 

GR causes similar motor impairments seen in animals exposed to restraint stress and oral 

CORT administration.   

 

Materials and Methods  

Subjects 

Subjects were 64 adult male and 64 adult female Long-Evans hooded rats, raised 

at the University of Lethbridge vivarium and weighing 250-600g at the beginning of the 

experiment. Animals were initially housed in groups of two or three in shoebox cages 
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under a 12:12 h light/dark cycle with light starting at 07:30 h. The housing room was 

maintained at a room temperature of 20°C and 30% relative humidity. 

 Prior to the experiment, rats were food deprived to 95% of their initial body 

weight to encourage participation in the reaching task. To maintain body weight, 

supplementary food was given daily in their home cages five hours after behavioural 

testing was completed. Animals were weighed daily before testing commenced. Water 

was available ad libitum. The animal experiment was performed according to the 

standards set by the Canadian Council of Animal Care. 

 

Experimental Design  

Testing and training of the animals was performed during the light phase of the 

cycle each day. Figure 8 illustrates the time course of manipulations and behavioural 

assessments. Two experiments were performed, each involving animals pre-trained in the 

skilled reaching task. Baseline measurements began after 21 days of daily training and 

were taken on 5 consecutive days. Video recordings of skilled reaching and open field 

exploration were taken the day before the onset of stress (baseline). Experiment 1 

investigated the effects of GR and MR activation on motor performance (Figure 8A). 

Animals were administered either a selective MR agonist (aldosterone; 10 males, 10 

females) or a selective GR agonist (dexamethasone; 10 males, 10 females). Video 

recordings of skilled reaching and open field were taken the day before the administration 

of the drugs. Animals were administered aldosterone from day 6 to day 8 of testing. On 

day 6 and 7 video recordings of skilled reaching and open field were taken. On day 8 

blood samples were collected. From day 9 to 15, animals were given a treatment break 
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during which their reaching success remained at baseline levels. Animals were then 

administered dexamethasone from day 16 to 18. On day 16 and 17 video recordings of 

skilled reaching and open field were taken. On day 18 blood samples were collected 

again. 

Experiment 2 investigated the role of GR and MR in mediating stress-induced 

disturbance of motor function (Figure 8B). Animals were divided into six groups, each 

with an equal number of male and female rats: Restraint and GR antagonist RU-486 

(n=20); Restraint Stress and MR antagonist RU-28318 (n=20); CORT and GR antagonist 

RU-486 (n=20); CORT and MR antagonist RU-28318 (n=20); Restraint only (n=20); 

CORT only (n=8). All animals were exposed to 14 days of physiological manipulations 

(restraint or CORT treatment). On day 18 and 19, skilled reaching and open field tasks 

were video recorded. On day 20, of treatment, blood samples were collected.  

 

Physiological Manipulations 

Restraint Stress. Animals were placed in a transparent Plexiglas container (5 cm 

inner diameter) for a period of 20 min. each day (Garcia et al., 2000; Faraday, 2002; 

Mercier et al., 2003). The container had perforated ends to allow for ventilation. The 

container maintained the animals in a standing position without compression of the body.  

Oral CORT Administration. Animals received 5 mg of oral CORT treatment 

(Sigma-Aldrich, Canada). The CORT was administered at the same time of day mixed 

with cookie crumbs, water and oil for consumption. 
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Figure 8. Time chart illustrating the order of manipulations and behavioural tests. (A) 
Exp. 1: MR and GR agonist treatments. Skilled reaching and open field activity 
performance were assessed prior to treatment (baseline). Animals were administered the 
MR agonist on day 8 to 10. Video recordings of skilled reaching and open field were 
taken on day 8 and 9. Animals were tested on skilled reaching from day 1 to 17. The GR 
agonist was administered from day 18 to 19. Video recordings of skilled reaching and 
open field were taken on day 18 and 19. Blood samples for glucose assessments were 
collected on day 7, 10 and 20. (B) Exp. 2: Restraint and CORT treatment with GR and 
MR antagonist treatment. Skilled reaching and open field activity were assessed from 
video recordings prior to (baseline) and at chronic time points. GR or MR antagonists 
were administered on day 1, 13 and 14 of restraint or CORT treatment. Blood samples for 
glucose measurements were collected at baseline and chronic testing time points.   
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Oral GR and MR Antagonist and Agonist Drug Administration. Animals received 

oral treatment of the GR antagonist, RU-486 (mifepristone; Sigma-Aldrich, Canada) 50 

mg/kg 22 hours prior to testing (Kurgers et al., 2006). The MR antagonist, RU-28318 

(spironolactone; Sigma-Aldrich, Canada) was given at 100 mg/kg one hour prior to 

testing (Cole et al., 2000; Pace and Spencer, 2005). The MR agonist, aldosterone (Sigma-

Aldrich, Canada) was administered at 500 µg/kg one hour prior to testing (Devenport and 

Thomas, 1990). The GR agonist, dexamethasone (Sigma-Aldrich, Canada) was given at 

750 µg/kg one hour prior to testing (Ginsberg et al., 2006). All drug doses and times 

administered were used in rats previously (Krugers et al., 2006; Cole et al., 2000; Pace 

and Spencer, 2005; Devenport and Thomas, 1990; Ginsberg et al., 2006). In these studies, 

the reported doses led to reproducible physiological changes. The drugs were 

administered at the same time of day and mixed with cookie crumbs, water and oil for 

consumption. 

 

Behavioural Testing and Analysis 

Skilled Reaching Task 

Skilled Reaching Task Apparatus. The reaching box was made of clear Plexiglas 

(40 x 45 cm and 13.1 cm wide). Animals were trained to extend a forelimb to reach for 

food pellets through a 1.3 cm wide vertical opening in the middle of the front wall 

(Figure 9A). The vertical opening extended from the floor to a height of 15 cm. To hold 

the food pellet, a 2 cm wide by 4 cm long shelf was positioned outside the front wall of 

the box. The shelf was mounted 4 cm above the floor. Food pellets (45 mg banana 

flavored Dustless Precision Pellets, Bioserv Inc., Frenchtown, NJ) were placed in one of 
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two small indentions on the shelf. The indentations, each 5 mm in diameter and 1.5 mm 

deep, were 2 cm away from the inside wall of the box and were centered on the edges of 

the slit through which the rats reached (Metz and Whishaw, 2000).  

Training and Testing. Once rats began to reach for food, food pellets were placed 

individually in the indentation contralateral to the limb which the rat used for reaching. 

Between individual reaching movements, rats were required to leave the food aperture 

and walk to the rear of the box in order to reposition themselves prior to the next reach. 

Each training and testing session required the rats to reach for 20 food pellets. Reaching 

performance was scored by counting misses and successful reaches for each limb (Metz 

and Whishaw, 2000). An ‘attempt’ was defined as a forelimb movement towards the 

pellet. A ‘success’ was recorded if an animal grasped a food pellet on the first attempt 

and withdrew the paw with the pellet through the slit to consume the food (Metz and 

Whishaw, 2002a). A ‘miss’ was recorded if an animal touched and missed the pellet 

using more than one attempt to grasp it. A ‘drop’ was scored if the animal lost the pellet 

in the cage after grasping it. Percent reaching success was calculated by counting the 

number of successful reaches divided by the number of pellets given in each session (20) 

multiplied by 100. 

Video Taping and Analysis. On the last day of baseline, and chronic drug 

treatment sessions, the animals’ performance was video recorded from a frontal view for 

qualitative movement analysis. The rating of the reaching movements was performed 

from the videotapes by frame-by-frame inspection. The first three successful reaches 

were scored. Movements were analyzed using a framework derived from the Eshkol-

Wachman movement notation which allows analysis of the relations and changes of 
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relations between parts of the body and limbs (Eshkol & Wachmann, 1958). The 

following movement components of reaching were analyzed from a frontal view 

(Whishaw and Pellis, 1999; Metz and Whishaw, 2000; Whishaw, 2000): (1) Orient: the 

head is oriented towards the target and the snout is inserted through the slit to locate the 

pellet. (2) Limb lift: the mass of the body weight is shifted to the hind limbs, and the hind 

limbs are aligned with the body and parallel to each other. The forelimb is lifted so that 

the digits are aligned with the midline of the body. (3) Digits close: the palm is partially 

supinated and approaches the midline of the body; the digits are semi-flexed. (4) Aim: the 

elbow comes in to the body with a shoulder movement while the digits retain their 

position on the midline of the body. (5) Advance: the elbow is positioned in a narrow 

angle to the body; the forelimb moves forward and is directed to the target. The head and 

the upper body are raised and the weight is shifted to the front. This movement is 

accompanied by a moderate lateral body movement towards the reaching limb. (6) Digits 

open: the digits are opened by a discrete limb movement; the palm is not fully pronated. 

(7) Pronation: the elbow adducts and is pronated over the target in an arpeggio 

movement. (8) Grasp: the arm remains still, while the digits close and then the paw is 

lifted holding the food pellet. (9) Supination I: the elbow is adducted and the palm is 

supinated by approximately 90°. (10) Supination II: The palm is supinated to present the 

food pellet to the mouth. The head drops to the level of the paws and the rat sits back on 

the haunches. (11) Release: the food pellet is released into the mouth by opening the 

digits. 

For each of the eleven movement components, a score of 0 was given when the 

movement was absent, a score of 0.5 was given if the movement was present but 
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abnormal, and a score of 1 was given if the movement was normal (Metz and Whishaw, 

2000). 

 

Open Field Task 

Open Field Apparatus. The open field box, measuring 100 x 100 x 18 cm, was 

made of opaque black Plexiglas. The bottom of the box was divided into 16 zones (22 x 

22 cm) using white masking tape. 

Testing. Each rat was individually placed in the middle of the open field box and 

video recorded for 5 min with a camera mounted above open field. After testing of each 

rat was completed, the floor of the box was cleaned with a disinfectant. 

 Video Taping and Analysis. Video recordings were scored for activity (number of 

fields entered), number of rears, novel fields entered and % time spent in the center and 

outside fields. Entered fields were scored when more than 50% of the animal’s body 

crossed a subdivision of the open field. 

 

Video Recording Procedures 

Videotaping in all tasks was performed using a Sony ZR70 portable digital video 

camera. The shutter speed was set at 1/1000s. Tapes were analyzed frame-by-frame on a 

Sony Mini DV player. The testing setup was illuminated by a white light source (Lowel 

Inc.). In addition, the skilled reaching apparatus was also illuminated by a two-arm cold 

light source (Zeiss KL 1500, Carl Zeiss Inc., Jena, Germany). 
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Blood Glucose Analysis 

Rats were anesthetized using 4% isoflurane. Anesthesia was maintained for 5 

minutes in which 1.0 ml of blood was collected from the tail vein. An Ascensia Breeze 

Blood Glucose Meter (Bayer, Toronto, ON) was used to analyze glucose levels in 

animals. 

 

Statistical Analysis 

The statistical analysis was performed using a SPSS software package 11.5 (SPSS 

Inc., IL, 2002). The results were subject to analysis of variance (ANOVA) for repeated 

measurements across testing sessions and for overall sex differences. Comparisons of 

means and variances between and among groups were performed using unpaired t-tests, 

and paired t-tests for within-subject comparison. In all statistical analyses, a p-value of 

less than or equal to 0.05 was considered significant. All data are presented as mean +/- 

standard error of the mean (SEM). 

 

Results 
 
Skilled Reaching Success 

There was no significant difference between males and females in any of the 

seven groups. During baseline testing animals obtained approximately 9 out of 20 pellets, 

resulting in a 46.6 + 2.51% success rate. 

MR and GR Agonist. There was no significant difference between animals over 

the testing days (F(1,10)=1.01, p=0.490). Animals had a significantly lower success rate 

on day 6 and 7 of MR agonist administration compared to the last day of baseline (Figure 
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9B; t(19)=10.667, p<0.001; t(19)=3.290, p<0.001). Animals treated with GR agonist had 

a significantly lower success rate on days 16 and 17 when compared to day 15 

(t(19)=10.338, p<0.001; t(19)=16.884, p<0.001, respectively). 

Stress and MR or GR Antagonist. There was no overall difference between testing 

days for either the MR or GR antagonists (F(1,17)=25.56, p=0.35; F(1,12)=0.481, 

p=0.872, respectively). Animals in both restraint groups had a 10% reduction in reaching 

success on day 1 of stress and GR or MR antagonist treatment when compared to the last 

day of baseline testing (t(22)=2.176, p<0.05; t(26)= 3.144, p<0.01, respectively). On 

stress day 2 animals administered the GR antagonist had a 20% lower success rate when 

compared to day 1 of stress and drug treatment (t(22)=7.780, p<0.001). On day 13 and 14 

of chronic stress and GR or MR antagonist treatment animals had doubled their success 

rate when compared to day 12 of restraint stress (t(22)=-6.362, p<0.001; t(22)=-8.894, 

p<0.001; t(26)=-8.30, p< 0.001; t(26)=9.15, p<0.001, respectively). There was an overall 

significant difference between MR antagonist animals when compared to stress controls 

(F(1,45)=25.56, p<0.001). GR antagonist treated animals had a trend for an overall 

difference when compared stress controls (F(1,41)=3.260, p=0.078). On day 6, 18 and 19 

of stress and MR or GR antagonist treatment animals had a significantly higher percent 

success rate when compared to stress controls (Figure 9C; t(40)=9.086, p<0.001; 

t(45)=6.935, p<0.001; t(40)=2.652, p<0.05; t(45)=3.551, p<0.001; t(40)=4.747, p<0.001; 

t(45)=5.615, p<0.001, respectively). 

 CORT Treatment and MR or GR Antagonist. There was no overall difference 

between testing days for either the MR or GR antagonists (F(1,16)=0.405, p=0.0914; 

F(1,15)=2.404, p=0.061, respectively). Animals had a significantly lower success rate on 
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day 1 of CORT and MR antagonist treatment when compared to baseline (data not 

shown; t(24)=2.125, p<0.05). Animals on day 1 of CORT and GR or MR antagonist 

treatment had significantly higher success rates when compared to day two of CORT 

treatment only (t(25)=5.997, p<0.001; t(24)=2.125, p<0.05, respectively). There was an 

overall difference between stress and MR or GR antagonist when compared to CORT 

controls animals (F(1,32)=12.98, p<0.01; F(1,32)=29.78, p<0.001, respectively).  On day 

1,13 and 14 of CORT and MR or GR antagonist treatment animals had a significantly 

higher success rate when compared to CORT control animals (Figure 9D; t(32)=4.291, 

p<0.001; t(32)=4.866, p<0.001; t(32)=6.619, p<0.001; t(32)=6.461, p<0.01; t(32)=4.847, 

p<0.001; t(32)=3.829, p<0.001, respectively). 

 

Skilled Reaching Number of Attempts 

There was no significant statistical difference between males and females in any 

of the groups. Therefore, male and female animals were grouped together. 

MR and GR Agonist. There was no overall difference between testing days 

(F(1,10)=0.657, p=0.731). Animals administered either MR or GR agonist made 

significantly more attempts to obtain pellets on the first day of drug administration when 

compared to baseline values (Figure 10A; t(19)=-11.816, p<0.001; t(19)=-4.865, p< 

0.001, respectively)  

 Stress and MR or GR Antagonist. There was no overall difference between 

testing days (F(1,17)=1.18, p=0.37; F(1,11)=0.263, p=0.98, respectively). Animals 

administered either the GR or MR antagonist made significantly more attempts to obtain 

pellets on day 2 of stress when compared to day 1 of stress and GR antagonist (Figure 
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10A; t(22)=-6.794, p<0.001; t(26)=-3.138, p<0.01, respectively). Animals made 

significantly less attempts on day 13 and day 14 of chronic stress and GR or MR 

antagonist treatment when compared to day 12 of stress (t(22)=6.471, p<0.001; 

t(22)=7.232, p<0.001; t(26)=6.499, p<0.001; t(26)=7.605, p<0.001, respectively). 

Animals made significantly less attempts on day 14 of chronic stress and MR antagonist 

treatment when compared to animals on day 1 of acute stress and MR antagonist 

treatment (12 + 0.63; t(26)=2.678, p<0.05). There was a trend for overall significant 

difference between animals administered MR antagonist animals compared to stress 

controls (F(1,41)=3.67,  p=0.062). Animals administered GR antagonist had no overall 

difference when compared to controls (F(1,40)=0.882, p=0.353). On day 1,13 and 14 of 

stress and GR or MR antagonist treatment animals made significantly less attempts when 

compared to stress controls (Figure 10B; t(41)=-8.548, p<0.001; t(45)=5.745, p<0.001; 

t(41)=-2.093, p<0.05; t(45)=-3.326, p<0.01; t(41)=-4.192, p<0.001; t(45)=-5.535, 

p<0.001, respectively). 
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Figure 9. Quantitative skilled reaching performance. (A) Photograph illustrating the 
skilled reaching task in which rats were required to grasp and retrieve individual food 
pellets. (B) Daily percent success of animals treated with MR and GR agonist. Note the 
significant reduction in percent success on Day 6 and 7 of MR agonist treatment and Day 
16 and 17 of GR agonist treatment when compared to last day of training. Daily percent 
success of animals administered either MR or GR antagonist exposed to restraint stress 
(C) and oral CORT administration (D). Note the significant enhancement in percent 
success of GR or MR antagonist treated animals compared to controls on Day 1, 18 and 
19. Dollar signs ($) indicate significances between the last day of training and MR or GR 
agonist treatment days. Asterisks (*) indicate significances between MR and control 
animals. Number signs (#) indicate significances between GR and control animals. * 
p<0.05; *** p<0.001, unpaired t-test comparison between animals, respectively. 
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CORT Treatment and MR or GR Antagonist. There was no overall difference 

between testing days for either the MR or GR antagonists (F(1,16)=0.389, p=0.923; 

F(1,15)=1.59, p=0.202, respectively). Animals made significantly more attempts on day 1 

of acute CORT treatment and MR antagonist when compared to day two of CORT 

treatment only (t(25)=-4.010, p<0.001; t(25)=-3.536, p<0.01, respectively). Animals 

made significantly less attempts on day 13 and 14 of chronic CORT treatment and GR or 

MR antagonist when compared to day 12 of CORT treatment only (t(25)=8.092, p<0.001; 

t(25)=8.005, p<0.001; t(25)=8.411, p<0.001; t(25)=9.369, p<0.001,  respectively). There 

was an overall difference between animals administered MR or GR antagonists when 

compared to controls (F(1,32)=6.84, p<0.05; F(1,32)=8.25, p<0.01, respectively). On day 

1, 13 and 14 of CORT and MR or GR antagonist treatment animals made significantly 

less attempts when compared to CORT controls (Figure 10C; t(32)=-4.334, p<0.001; 

t(32)=-5.246, p<0.001; t(32)=-6.869, p<0.001; t(32)=-6.512 p<0.001; t(32)=-5.9038, 

p<0.001; t(32)=-4.130, p<0.001, respectively).  
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Figure 10.  Number of attempts to grasp a single food pellet. Number of attempts of 
animals administered MR (ALDO, aldosterone) and GR agonist (DEX, dexamethasone 
;A). Note the significant increases in the number of attempts on days 8, 9, 18 and 19 of 
drug treatment when compared to training days. Number of attempts of animals 
administered MR and GR antagonist exposed to restraint stress (B) and oral CORT 
administration(C). Note the significant reductions in the number of attempts on days 1, 
13 and 14 of drug treatment when compared to control animals. Dollar signs ($) indicate 
significant differences between the last day of training and MR or GR agonist treatment 
days. Asterisks (*) indicate significant differences between MR and control animals. 
Number signs (#) indicate significance in comparisons between GR and control animals. 
* p<0.05; *** p<0.001, unpaired t-test comparison between drug administered animals or 
training days. 
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Skilled Reaching Movement Score 

 MR and GR Agonist. Animals administered the MR agonist had a significantly 

digits open movement score when compared to animals administered the GR agonist 

t(17)=-2.170, p<0.05). In addition there was an overall sex difference during all three 

testing time points in the aim movement component of animals administered MR agonist. 

Females had a significantly lower score when compared to males (F(1,14) = 16.243, 

p<0.01). 

Stress and MR or GR Antagonist. There was no overall difference between males 

and females administered the GR or MR antagonist, so male and female animals were 

grouped together. There was no difference between the GR antagonist and stress controls 

in the total movement score at the baseline and chronic time points. Animals 

administered the MR antagonist had a higher total movement score than stress controls 

(t(48)=5.036, p<0.001). Animals exposed to chronic stress and GR antagonist had 

significantly higher pronation movement score when compared to baseline (t(21)=-3.505, 

p<0.01). Animals administered the GR antagonist had a significantly higher baseline 

release movement score when compared to animals exposed to chronic restraint stress 

(Figure 11A; t(21)=2.625, p<0.05). Animals administered GR antagonist had a higher 

pronation movement score when compared to stress controls (t(40)=2.626, p<0.05). 

Animals administered GR or MR  antagonist had a significantly higher grasp, supination 

I and supination II score when compared to stress controls (Figure 11B; t(39)=3.263, 

p<0.01; t(48)=4.305, p<0.001; t(40)=4.436, p<0.001; t(48)=3.565, p<0.001; t(48)=3.553, 

p<0.01; t(40)=4.436, p<0.001, respectively). 
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CORT Treatment and MR or GR Antagonist. There was no difference in males 

and females, therefore they were grouped together. Animals administered the GR 

antagonist had a significantly higher movement score when compared to baseline (t(25)=-

4.608, p<0.001). No difference was observed in MR antagonist-treated animals. Animals 

administered the GR antagonist had a significantly higher total movement score when 

compared to CORT controls (t(26)=3.569, p<0.01). Both GR or MR antagonist 

administration caused elevation in orient, digits close and grasp movement scores when 

compared to CORT controls (Figure 11C; t(26)=2.703, p<0.05; t(32)=2.768, p< 0.01; 

t(26)=2.793,  p<0.05; t(32)=0.049, p<0.05; t(26)=3.133, p<0.01; t(32)=2.131, p<0.05, 

respectively). In contrast, only the GR antagonist led to elevation of digits open scores, 

while MR antagonist reduced these scores (t(26)=2.530, p<0.05; t(32)=2.063,  p<0.05). 

Animals administered the GR antagonist had significantly higher pronation and 

supination II movement scores when compared to CORT controls (t(26)=2.725, p<0.05; 

t(26)= 2.126, p<0.05, respectively).  

 

Open Field 

MR and GR Agonist. There was no significant sex difference in animals 

administered either GR or MR antagonist. Animals were significantly more active when 

administered either the MR or GR agonist compared to baseline testing (t(19)=-4.183, p 

<0.01; t(18)=-5.397, p<0.001; respectively). Animals administered the MR (30.4 + 1.04) 

and GR (31.7 + 1.4) agonist made significantly more rears when compared to baseline 

(21.2 + 1.8; t(18)=-5.235, p<0.001; t(18)=-5.186, p<0.001, respectively).   
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Figure 11. Qualitative skilled reaching performance. (A) Photographs of reaching 
movement components. Movement score for animals exposed to chronic restraint stress 
(B) and chronic CORT (C). Note that animals administered either GR or MR antagonist 
had a significantly higher movement score when compared to controls. Asterisks indicate 
significant differences between MR or GR and control animals. * p<0.05; *** p<0.001, 
unpaired t-test. 
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Stress and MR or GR Antagonist. There was an overall significant sex difference 

between the males and females in animals administered the GR antagonist 

(F(1,21)=11.536, p<0.01). There were no sex or group differences in activity or novel 

fields entered. Females reared significantly more after chronic restraint stress when 

compared to baseline (Figure 12; t(11)=-2.984, p<0.05). Males had a trend for rearing 

more often after chronic stress when compared to baseline (t(10)=-1.848, p=0.094). The 

MR group made significantly more rears when compared to baseline (t(25)=-2.937, 

p<0.01). Animals administered GR or MR antagonist made significantly more rears than 

stress control animals (t(41) = 2.286, p<0.05; t(44) = 3.164, p<0.01, respectively). 

Males spent less time in the center field during baseline when compared to the 

chronic drug and stress testing time point (t(10)=2.332, p<0.05). After chronic stress, the 

MR group spent significantly less time in the center fields when compared to baseline 

(t(25)=3.94, p<0.01). 

Males spent significantly more time in the outside fields during the chronic 

restraint stress and GR antagonist testing time point when compared to baseline (t(10)=-

2.332, p<0.05). There was no difference in the percent of time spent in the outside fields 

of females administered the GR antagonist during both testing sessions. Animals tested at 

the chronic restraint stress and MR antagonist time point spent significantly more time in 

the outside fields when compared to the baseline (t(25)=-3.944, p<0.01). 
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Figure 12. Number of rears after chronic restraint and CORT treatment in open field at 
chronic restraint and CORT treatment. Note that animals in both stress and GR or MR 
antagonist groups made significantly more rears when compared to restraint controls. 
Note that CORT and GR antagonist animals made significantly more rears when 
compared to CORT controls. * p <0.05; ** p <0.01, unpaired t-test comparison between 
chronic drug administered testing time point and control animals. 
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CORT Treatment and MR or GR Antagonist. There was no significant difference 

between males and females administered either the GR or MR antagonist. Animals were 

significantly less active after chronic GR antagonist and CORT treatment when compared 

to baseline (t(25)=2.170, p<0.05). Animals treated with MR antagonist made 

significantly less rears at the chronic CORT time point when compared to baseline 

(Figure 12; t(24)=-2.88, p<0.05). Animals administered the MR antagonist made 

significantly more rears when compared to CORT controls (t(31)=3.134, p<0.01). 

 

Glucose Measurements 

MR and GR Agonist. There was an overall significant sex difference (F(1, 

18)=5.421, p<0.05). Females had significantly lower blood glucose concentration at the 

GR agonist collection time point when compared to baseline (t(9)=2.417, p<0.05).  

Stress and MR or GR Antagonist. There was a significant sex difference in 

animals administered the GR antagonist (F(1,21)=5.507, p<0.05). Males had significantly 

higher blood glucose concentrations when compared to females during the chronic testing 

time point (t(21)=2.15, p<0.05). Animals administered the MR antagonist had a 

significantly higher blood glucose concentration at the chronic stress and drug 

administration time point when compared to baseline (t(26)=2.135, p<0.05).  

CORT Treatment and MR or GR Antagonist. There was no sex difference or 

difference between time points for animals administered the GR antagonist. Animals had 

a significantly lower blood glucose concentration at MR antagonist and chronic CORT 

treatment when compared to baseline (t(25)=2.793, p<0.05).  
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Discussion 

The aim of this study was to investigate whether the GR or MR are involved in 

modulating skilled motor function and stress-induced motor impairments. Administration 

of the GR or MR antagonists after acute and chronic restraint stress or CORT 

administration significantly improved reaching success while at the same time decreasing 

the number of attempts made to obtain pellets. Increases in vertical activity were 

observed after either GR or MR antagonist administration. The open field data suggest 

that the GR and MR antagonists did not completely eliminate the behavioural response 

associated with exposure to restraint stress or elevated levels of CORT. Furthermore, 

animals administered either GR or MR agonist showed decreases in reaching success and 

increases in the number of attempts. MR and GR agonist-treated animals were also more 

active in the open field in terms of rearing. Thus, both GR and MR activation can mimic 

some of the effects of stress on skilled and non-skilled motor function. These findings 

indicate a role for both GR and MR in modulating motor function during HPA axis 

activation.  

 Previous work has suggested that the GR modulates the behavioural response to 

stress, since it binds to CORT when elevated, whereas the role of the MR in the stress 

response remains less clear (de Kloet et al., 1999; Spencer et al., 1998; Meldow et al., 

2005). Recently Pace and Spencer (2005) and Derijk et al. (2006) have shown that the 

MR participates in behavioural changes in animals exposed to stress. Specifically, Pace 

and Spencer (2005) showed that blocking the MR prior to exposure to restraint stress 

facilitates increases in CORT release. Derijk et al. (2006) studied a polymorphism in the 

MR and found that human individuals with the MR180V variant had enhanced cortisol 
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release after experience of psychological stress. The present study found that animals 

administered the MR antagonist during acute and chronic stress and CORT treatment 

perform significantly better when compared to controls. This adds to the considerable 

amount of evidence suggesting that MRs participate in the stress response (Smythe et al., 

1997; Cole et al., 2000; Pace and Spencer, 2005; Derijk et al., 2006).  

The present study shows that activation of both GR and MR can cause skilled 

motor impairments. Animals administered either the MR or GR agonists showed a 

behavioural response comparable to that displayed by animals that underwent restraint 

stress-or CORT-treatment. GR and MR activation can mimic the decreased success rate 

and increased number of attempts in skilled reaching that was also found in stress or 

CORT treated animals (Metz et al., 2005). A study by Devenport et al. (1990) showed 

that GR and MR activation causes an increase in weight gain, similar to what is seen in  

animals with elevated CORT levels. The results of this study suggest that both the GR 

and MR are involved in modulating skilled motor function in response to restraint stress 

and elevated CORT levels. 

 Blocking the GR has been suggested to be an effective therapy for individuals 

affected by stress-related disorders (Belanoff et al., 2002; Metz et al., 2007). Blocking the 

GR has been proven beneficial for depression or to alleviate neurodegenerative events 

after brain lesion (Belanoff et al., 2001; Young et al., 2004 Simpson et al., 2005; Krugers 

et al., 2006). Specifically, treatment with RU-486 in individuals with psychotic 

depression can restore cognitive impairments (DeBattista et al., 2006). In Alzheimer’s 

disease, administration of RU-486 can slow the cognitive decline (Belanoff et al., 2002). 

This study and previous studies have identified that the MR participates in the stress 
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response, and therefore it can be hypothesized that blocking both the GR and MR may 

prove to be more effective for stress-related disorders and neurodegenerative diseases 

(Fledman and Weidenfeld, 1999).  

 

Conclusion 

 In conclusion, the present study demonstrates that both the MR and GR are 

involved in the modulation of the motor function in response to stress. Thus, the present 

study revises the classic notion that the GR is the key player in mediating behavioural 

outcome after exposure to stress (de Kloet, 1999). The present data demonstrate that both 

the MR and GR play an equal role in modulating motor function in response to stress. 
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4.  Experiment 3 

Sex Differences in Skilled Movement in Response to Restraint Stress and During 

Recovery from Stress 

 
Abstract 

Sex differences exist in both skilled movement and cognitive tasks. These variations have 

been thought to arise from fundamental differences between males and females to 

accomplish a goal. Stress has previously been shown to have a negative influence on 

skilled movement in rats. The purpose of this study was to investigate sex differences of 

skilled motor function in response to stress. Males and females rats were trained and then 

tested on the skilled reaching and skilled walking task. Both groups of animals were then 

exposed to a fourteen day-stress period. Daily testing continued for 21 days after 

exposure to stress. Open field analysis and blood sample collection took place before, 

during and after the stress period. Observations showed that females performed 

significantly better on the skilled reaching task than males during the stress period, 

however, no sex difference was observed in skilled walking. Further analysis during the 

post-stress testing time point revealed a sex difference in the skilled reaching. The results 

indicate sex differences in skilled reaching in response to stress, as well as the recovery 

period after stress. Skilled walking was not influenced.  

 

Introduction  

The behaviour in males and females can differ considerably. For example, sex 

differences have been found in motor performance, including limb and body movements 

(Field and Pellis, 1998). Previous studies have shown sex differences in hind limb use 
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during vertical exploration (Field et al., 2006) and sexually dimorphic postural 

adjustments during skilled reaching (Field and Whishaw, 2005). It has been hypothesized 

that these different postural strategies are related to differential exposure to gonadal 

hormones in the perinatal period (Field et al., 2000). 

In addition to behavioural performance, males and females also show differences 

in their response to experience. For example, sex differences in sensitivity to stress have 

been documented in many animal species, including rats. Depending on the variables 

measured, male and female rats show divergent sensitivity to stress in cognitive function 

and open field locomotion (Faraday, 2002; Luine, 2002; Mashoodh et al., 2008). In 

general, male rats seem more prone to stress-induced disturbance of memory function 

(Luine, 2002). So far, sex differences in response to stress in motor function are limited 

to assessment of locomotion in an open field. Acute stress causes a decrease in locomotor 

activity in an open field in males, while females seem to be less sensitive (Haleem et al., 

1988; Faraday, 2002). In addition, locomotor effects of stress depend on rat strain with 

Long-Evans rats being less sensitive than other strains (Faraday, 2002). 

The sexually dimorphic behaviour during stress has been related to fundamental 

physiological differences between males and females. For example, a study in humans by 

Frankenhaeuser et al. (1976) found that males secreted higher levels of adrenaline when 

compared to females of the same age while exposed to the same stressor. In addition, 

estrogens enhance the glucocorticoid response to acute stress (Figueiredo et al., 2007). 

Sex differences in response to stress in rats have also been identified (Haleem et al., 

1988; Campbell et al., 2003). Female rats are thought to present with generally higher 

basal levels of circulating corticosterone than males (Michaelis et al., 2001). Carey et al. 



 67 

(1995) have shown that activity of the hypothalamic-pituitary-adrenal (HPA) axis in 

female rats depends upon the respective stage during estrous cycle. These physiological 

differences may result in differential responses when a stressor is presented. For instance, 

exposure to repeated restraint stress leads to decreases in body weight of male rats but not 

female rats (Faraday, 2002). 

Sexual dimorphism in the physiological status might also play a role in 

behavioural responses to stress. Stress is a potent influence on normal performance of 

both skilled and unskilled movement (Metz et al., 2001, 2005; Metz, 2007). With regard 

to sex differences in both motor performance and the stress response, it is reasonable to 

expect that gender and stress represent interacting factors to affect motor system function 

(Haleem et al., 1998; Faraday, 2002; Figueiredo et al., 2002). This assumption is 

supported by previous research demonstrating sex differences in response to stress when 

performing cognitive tasks or during exploration of an open field (Haleem et al., 1988; 

Bowman et al., 2003). 

The purpose of the present study was to expand previous research by exploring 

possible sex differences in the susceptibility of the motor system to the influence of stress 

in rat. The rats’ performance was tested in skilled reaching and skilled walking tasks, 

which represent highly sensitive tasks to display slight aberrations in distal limb use and 

bodily adjustments (Field and Whishaw, 2005; Metz et al., 2005; Field et al., 2006). 

Recovery from acute stress was assessed by comparing reaching performance at 10 min 

versus 60 min after restraint stress, and recovery from chronic stress was tested after 

cessation of the chronic stress period. The observations revealed a moderate influence of 

acute and chronic stress on quantitative and qualitative aspects of reaching in male and 
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female rats. Most interestingly, the largest sex differences were found in the course of 

recovery after the cessation of stress.  

 

Materials and Methods  

Subjects 

Subjects were 10 female and 10 male adult Long-Evans hooded rats, raised at the 

University of Lethbridge vivarium and weighing 250-600g at the beginning of the 

experiment. A male died in the middle of the experiment, his data was included in 

statistical analysis up to his death, as it did not differ significantly from other males. 

Animals were housed in groups of two or three in shoebox cages under a 12:12 h 

light/dark cycle with light starting at 07:30 h. The housing room was maintained at a 

room temperature of 20°C and 30% relative humidity. 

 Prior to the experiment, rats were food deprived to 95% of their initial body 

weight to encourage participation in the reaching task. To maintain body weight, 

supplementary food was given daily in their home cages five hours after behavioural 

testing was completed. Once animals acquired the reaching task, they were allowed to 

gain weight, which did not compromise their continued participation in this task. Animals 

were weighed daily before and during behavioural testing. Water was available ad 

libitum. The experiment was performed according to the standards set by the Canadian 

Council of Animal Care.  
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Experimental Design  

Testing and training of the animals was performed during the light phase of the 

cycle each day at the same time. Figure 13 illustrates the time course of manipulations 

and behavioural measurements. Rats were initially trained in the skilled reaching and 

ladder rung walking tasks. Twenty-one days later, baseline measurements for the skilled 

reaching task were taken from the last 5 days of training. Skilled reaching and ladder 

rung walking was video recorded and open field baseline measurements were taken the 

last two days prior to the onset of stress (Baseline). All animals were exposed to 14 days 

of daily restraint stress. To compare for post-stress intervals, half the animals were tested 

10 minutes after stress and the other half, 60 min after stress. Chronic stress video 

recordings of reaching and ladder rung walking were taken and open field activity was 

measured at the end of this interval (Chronic Stress). Animals were then tested for 21 

days after cessation of the stress period (Post-stress). Post-stress testing was terminated 

when stable asymptotic reaching success rates were observed. At the end of this interval 

animals were again video recorded in skilled reaching and ladder rung walking 

performance and open field activity was measured. Blood samples were collected to 

analyze for CORT concentration at 1) baseline, 2) day 15 of stress (Chronic Stress) and 

3) day 21 of post-stress (Post-stress). In addition, blood glucose concentrations were 

taken at same time points. 
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Figure 13. Time chart illustrating the order of manipulations and behavioural tests. 
Training and testing included the pellet-reaching task. Skilled reaching, skilled walking 
and open field activity performance were assessed from video recordings collected before 
the stress treatment (baseline), at chronic stress and chronic post-stress time points. Blood 
samples for corticosterone and glucose analyses were collected at baseline, chronic stress 
and chronic post-stress time points as indicated. 
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Restraint Stress 

Animals were placed individually in custom-made transparent Plexiglas 

containers (5 cm inner diameter) for a period of 20 min each day (Garcia et al., 2000; 

Faraday, 2002; Mercier et al., 2003). The container had perforated ends to allow for 

ventilation. The container maintained the animals in a standing position with slight 

compression of the body. 

 

Behavioural Testing and Analysis 

Skilled Reaching Task 

Skilled Reaching Task Apparatus. The reaching boxes were made of clear 

Plexiglas (40 x 45 cm and 13.1 cm wide). Animals extended their forelimbs to reach for 

food pellets through a 1.3 cm wide vertical opening in the middle of the front wall 

(Figure 15A). The vertical opening extended from the floor to a height of 15 cm. To hold 

the food pellet, a 2 cm wide by 4 cm long shelf was positioned outside the front wall of 

the box. The shelf was mounted 4 cm above the floor. Food pellets (45 mg banana 

flavored Dustless Precision Pellets, Bio-Serv Inc., Frenchtown, NJ) were placed in one of 

two small indentions on the shelf. The indentations, each 5 mm in diameter and 1.5 mm 

deep, were 2 cm away from the inside wall of the box and were centered on the edges of 

the slit through which the rats reached (Metz and Whishaw, 2000).  

Training and Testing. Once rats began to reach for food, food was placed in the 

indentation contralateral to the limb that the rat used for reaching. Between individual 

reaching movements, rats were required to leave the food aperture and walk to the rear 

end of the box in order to reposition themselves prior to the next reach. Each training and 
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testing session required the rats to reach for 20 food pellets. Reaching performance was 

scored by counting misses and successful reaches for each limb (Metz and Whishaw, 

2000). An ‘attempt’ was defined as a repeated forelimb movement towards the pellet and 

obtaining the pellet after more than one reach. A ‘success’ was recorded if an animal 

grasped a food pellet on the first attempt and withdrew the paw with the pellet through 

the slit to consume the food. A ‘miss’ was recorded if an animal touched and missed the 

pellet using more than one attempt to grasp it (Metz and Whishaw, 2002a). Additionally, 

if the animal lost the pellet in the cage after grasping it, a ‘drop’ was scored. Percent 

reaching success was calculated by counting the number of successful reaches divided by 

the number of pellets given in each session (20) multiplied by 100. 

Video Taping and Analysis. On the last day of baseline, stress, and post-stress test 

sessions, the animals’ performance was video recorded from a frontal view for qualitative 

movement analysis. The rating of the reaching movements was performed from the 

videotapes by frame-by-frame inspection. The first three successful reaches were scored. 

Movements were analyzed using a framework derived from the Eshkol-Wachman 

movement notation which allows analysis of the relations and changes of relation 

between parts of the body and limbs (Eshkol and Wachmann, 1958). The following 

movement components of reaching were analyzed from a frontal view (Whishaw and 

Pellis, 1990; Metz and Whishaw, 2000; Whishaw, 2000): (1) Orient: the head is oriented 

towards the target and the snout is inserted through the slit to locate the pellet. (2) Limb 

lift: the mass of the body weight is shifted to the hind limbs, and the hind limbs are 

aligned with the body and parallel to each other. The forelimb is lifted so that the digits 

are aligned with the midline of the body. (3) Digits close: the palm is partially supinated 



 73 

and approaches the midline of the body; the digits are semi-flexed. (4) Aim: the elbow 

comes in to the body with a shoulder movement while the digits retain their position on 

the midline of the body. (5) Advance: the elbow is positioned in a narrow angle to the 

body; the forelimb moves forward and is directed to the target. The head and the upper 

body are raised and the weight is shifted to the front. This movement is accompanied by a 

moderate lateral body movement towards the reaching limb. (6) Digits open: the digits 

are opened by a discrete limb movement; the palm is not fully pronated. (7) Pronation: 

the elbow adducts and is pronated over the target in an arpeggio movement. (8) Grasp: 

the arm remains still, while the digits close and then the paw is lifted holding the food 

pellet. (9) Supination I: the elbow is adducted and the palm is supinated by approximately 

90°. (10) Supination II: The palm is supinated to present the food pellet to the mouth. The 

head drops to the level of the paws and the rat sits back on it haunches. (11) Release: the 

food pellet is released into the mouth by opening the digits. To enhance the resolution for 

correlation analysis, each of the individual subcomponents was also rated using a 

previously described 35-point scale (Metz and Whishaw, 2000) 

For each of the eleven movement components, a score of 0 was given when the 

movement was absent, a score of 0.5 was given if the movement was present but 

abnormal, and a score of 1 was given if the movement was normal (Metz and Whishaw, 

2000). 

 

Skilled Walking Task 

Ladder Rung Walking Task Apparatus. The horizontal ladder was made of two 

side-walls (1 m long and 20 cm high) of clear Plexiglas with metal rungs (3 mm in 
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diameter), inserted at random distances ranging from 1 to 5 cm to create a floor (Figure 

16A; Metz and Whishaw, 2002b). The irregular pattern was used to maintain the 

difficulty of the task in repeated test sessions. The ladder was elevated 30 cm above 

ground with a neutral start box and the animals’ home cage at the end. 

Training and Testing. Animals were trained in the ladder rung walking task in 

five trials. Each trial required the animal to cross the length of the ladder to reach the 

home cage placed at the end of the apparatus. One training session was administered, 

with the baseline test session on the following day. One test session was performed at 

baseline, pre-lesion and post-lesion time points. Each test session consisted of 3 trials 

during which the animals’ performance was videotaped. 

Video Taping and Analysis. The ladder rung walking performance was video-

recorded from a lateral perspective (Metz and Whishaw, 2002b). The camera was 

positioned at a slight ventral angle, so that both sides and the paw positions could be 

recorded simultaneously from a ventral view. The tapes were analyzed frame-by-frame 

for quantitative and qualitative analysis. Quantitative analysis was based on the number 

of errors in each crossing. Based on the limb placement scoring system (see below), an 

error was defined as a limb placement that involved missing the rung or slipping off the 

rung (score of 0, 1 or 2 points according to the scale). The mean number of errors per step 

of each fore- and hind limb was calculated and averaged for three trials. The errors for 

the contralateral fore- and hind limbs were averaged and expressed as percent errors per 

total number of steps. 

The qualitative analysis of forelimb and hind limb placements was performed 

using the foot fault scoring system developed earlier (Metz and Whishaw, 2002b). 
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Consecutive steps were analyzed, excluding the last step before a pause and the first step 

after a pause. The last stepping cycle at the end of the ladder rung apparatus was also 

excluded from scoring. Limb placement was scored by categorizing the placement of the 

limb on a rung and the limb protrusion between rungs when a miss occurred by using a 7-

catergory scale (Metz and Whishaw, 2002b). (1) Total miss: the limb completely misses 

the rung (0 point). (2) Deep slip: the limb is initially placed on a rung, but then slips off 

when weight bearing and causes the limb to fall in-between rungs (1 point). (3) Slight 

slip: the limb is placed on a rung, but slips off when weight bearing without causing a fall 

that interrupts walking (2 points). (4) Replacement: the limb is placed on a rung, but 

withdraws before weight bearing and is placed on another rung (3 points). (5) Correction: 

the limb aiming for one rung is placed on another rung without touching the first one (4 

points). Alternatively, the limb is repositioned on the same rung. (6) Partial placement: 

the limb is placed on the rung with either the wrist or digits of the forelimb or the heel 

and toes of the hind limb (5 points). (7) Correct placement: a correct placement with the 

mid-portion of the palm weight bearing (6 points) (Metz and Whishaw, 2002b). 

 An error was counted when an animal missed a rung or slipped off (error scores 

of 0,1 and 2). Percent error was calculated by dividing the number of errors by total 

number of steps. The number of foot placement errors was calculated as a percentage of 

the total number of steps made in a respective trial. 
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Open Field Task 

Open Field Apparatus. The open field box, measuring 100 x 100 x 18 cm, was 

made of opaque black Plexiglas. The bottom of the box was divided into 16 zones (22 x 

22 cm) using white masking tape (Figure 17A). 

Testing. Each rat was individually placed in the middle of the open field box and 

video recorded for 5 min. After testing of each rat was completed, the floor of the box 

was cleaned with soap. 

 Video Taping and Analysis. Video recordings were scored for activity (total 

number of fields entered), number of novel fields entered, and % time spent in the center 

and outside fields. Entered fields were scored when more than 50% of the animal’s body 

crossed a subdivision of the open field. 

 

Video Recording Procedures 

Videotaping in all tasks was performed using a Sony ZR70 portable digital video 

camera. The shutter speed was set at 1/500s. Tapes were analyzed frame-by-frame on a 

Sony Mini DV player. The testing setup was illuminated by a white light source. In 

addition, the skilled reaching apparatus was also illuminated by a one-arm cold light 

source (Schott, Jena, Germany). 

 

Blood Sampling 

Rats were anesthetized using 4% isoflurane. Anesthesia was maintained for 5 

minutes in which 1.0 ml of blood was collected from the tail vein. The blood was 

transferred to centrifuge tubes and plasma was obtained by centrifugation at 10,000 rpm 
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for 8 min. The samples were stored at -20°C. Plasma corticosterone levels were 

determined by a radioimmunoassay (RIA) kit for corticosterone (Coat-A-Count, 

Diagnostic Products Corp., Los Angeles, CA; Ishida et al., 2003) and by enzyme linked 

immunosorbent assay (ELISA; Kavushansky and Richter-Levin, 2006). 

 

Glucose Measurements 

Glucose samples were collected after blood sample collection occurred. An 

Ascensia Breeze Blood Glucose Meter (Bayer, Toronto, ON) was used to collect blood 

and analyze glucose levels.  

 

Statistical Analysis 

Statistical analysis was performed using a SPSS software package 11.5 (SPSS 

Inc., Chicago, IL, 2002). The results were subject to analysis of variance (ANOVA) for 

repeated measures across testing sessions. Comparisons of means and variances between 

groups were performed using unpaired t-tests, and paired t-tests were used for within-

subject comparison. In all statistical analyses, a p-value of less than or equal to 0.05 was 

considered significant. All data are presented as mean +/- standard error of the mean 

(S.E.M.). 

 

Results 

Skilled  Reaching 

Reaching Success. During baseline reaching both males and females obtained 10 

out of 20 pellets successfully, resulting in a 55.61+1.61% success rate (Figure 14B). 
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There was no significant difference in success rate between males and females at this 

time. Because there was no difference in reaching success between animals that were 

tested either 10 or 60 min after stress, these two groups were combined for further 

analysis. 

Both males and females had significantly lower reaching success on the first day 

of stress when compared to the last day of baseline (t(8)=6.63, p<0.001; t(9)=9.22, 

p<0.01). Throughout the 14-day stress period females (20.96+1.79%) generally obtained 

significantly more pellets successfully when compared to males [14.14+1.18%; 

F(1,17)=7.23, p<0.05]. On day 14 of restraint stress females had a significantly higher 

reaching success (30.0+3.50%) than males [17.5+3.24%; t(17)=6.48, p<0.05]. 

Furthermore, during the post-stress period females had an overall significantly higher 

reaching success (36.98+2.47%) than males [21.10+1.69%; F(1,17)=11.78, p<0.01]. In 

addition, both females (45.50+6.56%) and males (29.89+2.61%) had significantly lower 

reaching success on the last day of post-stress when compared to the last day of baseline 

testing (t(18)=4.34, p<0.0001). Testing was terminated when no further improvements 

were recorded for seven days on day 21 post-stress. 

Number of Attempts. There was no overall sex difference in the number of 

attempts between female and male rats at the baseline testing session. Overall, animals 

made more attempts at acute and chronic stress time points when compared to baseline 

[t(18)=-6.45, p<0.001; t(18)=-8.32, p<0.001, respectively; Figure 14C]. Furthermore, 

animals made less attempts during the post-stress interval when compared to the acute 

and chronic stress time points (t(18)=4.26, p<0.001; t(18)=4.11, p<0.001, respectively; 
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Figure 14C). However, overall animals still made significantly more attempts post-stress 

when compared to baseline (t(18) =-2.59, p<0.05). 

There was a significant sex difference during the restraint stress interval 

(F(1,18)=4.71, p<0.05). Specifically, females (14.1+0.93%) made fewer attempts when 

compared to males (16.5+0.50%) on day 6 and 12 of stress exposure (t(18)=-2.344, 

p<0.05; t(18)=2.26, p<0.05, respectively; Figure 14D). During the post-stress interval an 

overall significant sex difference was also present F(1,18)=14.26, p<0.01). For instance, 

on the last day of post-stress testing females made significantly less attempts (10.5+1.22)  

when compared to males (13+0.54; t(18)=2.44, p<0.05; Figure 14D).  

Reaching Movement Score. Animals had significantly lower movement scores at 

chronic testing when compared to baseline (t(19)=6.46, p<0.001). Males had an overall 

significantly higher qualitative score when compared to females (F(1,17)=5.35, p<0.05; 

Figure 15). There was no difference between males and females at specific time points or 

between time points, however. 
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Figure 14.  Quantitative skilled reaching performance before, during and after restraint 
stress. (A) Photograph illustrating skilled reaching task in which rats were required to 
grasp and retrieve individual food pellets. (B) Time course of reaching success. There 
was a significant reduction in percent success from last day of baseline testing to first day 
of stress. Also note significant sex differences during stress and during the post-stress 
testing periods. (C) Overall number of attempts to grasp a single food pellet during stress 
in males and females combined. Note that acute (day 1) and chronic stress (day 14) 
caused a significant increase in the numbers of attempts when compared to baseline. (D) 
Time course of number of attempts in male versus female rats. Note significant sex 
differences throughout the stress and post-stress test time points. Asterisks indicate 
significance levels: * p<0.05; *** p<0.001, unpaired t-test comparison between males 
and females (B, D) and paired t-test comparison between animals at baseline and chronic 
stress testing time point (C). $$$ p<0.001, paired t-test between last day of baseline 
testing and first day of stress (B). 
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Figure 15. Qualitative skilled reaching performance. Reaching movement score assessed 
by the detailed 35-point scale before (baseline) and after 14 days (chronic) of restraint 
stress. Note that males had a trend for higher overall movement score. Asterisks indicate 
significance levels: * p<0.05, ANOVA comparing male and female movement scores.  
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Skilled Walking 

Number of Placement Errors. During the baseline testing session males 

(3.72+1.08) made more than twice as many errors in than females [1.49+0.71; t(38)= 

1.887, p = 0.076; Figure 16B]. This difference in percentage of errors, however, was not 

significant. This trend disappeared at both the chronic stress and post-stress testing time 

points. 

Foot Fault Scoring. There were no differences in movement scores between 

males and females at baseline, chronic stress or post-stress test sessions. There was, 

however, a significant difference in movement scores in animals tested 10 and 60 min 

after stress at the chronic stress time point (F(1,35)=6.66, p<0.05). Animals tested 10 

minutes after restraint stress had significantly higher movement scores when compared to 

animals tested 60 minutes after stress (t(38)=-2.145, p<0.02; Figure 16C). 

 

Open Field Activity 

There was an overall difference between males and females during both baseline 

and chronic stress sessions [(F(1,18)=4.85, p<0.05; F(1,18)=7.13, p<0.05, respectively]. 

In these sessions, female rats showed greater vertical activity than males (baseline t(18)=-

2.83, p<0.05; chronic stress t(18)=-2.17, p<0.05; Figure 17B). 
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Figure 16. Skilled walking task. (A) Photograph illustrating a rat crossing the ladder rung 
walking apparatus. (B) Number of errors at baseline. There was a trend of higher error 
numbers in male rats as compared to females. (C) Movement score at chronic stress time 
point. Note animals tested 10 minutes after stress have a significantly higher movement 
score than animals tested 60 min after stress. Asterisks indicate significance levels: * 
p<0.05, unpaired t-test comparison between 10 and 60 minute groups. 
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Figure 17. Open field activity measurement. (A) Picture illustrating the open field task. 
(B) Number of rears in an open field. Note the significantly increased number of rears in 
at baseline and after 14 days of restraint stress. Asterisks indicate significance level: * 
p<0.05, unpaired t-test comparison between males and females. 
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Corticosterone Levels 

CORT levels in males and females were significantly different at baseline (Figure 

18A). Males had significantly higher CORT concentrations than females (t(18)=2.21, 

p<0.05). At the chronic stress time point this difference had disappeared. Variance at the 

chronic stress time point increased when compared to baseline data, the increase in 

variance may have hid any difference between and within groups. Females had 

significantly higher CORT levels than males at the post-stress collection time point 

(t(16)=-3.458, p<0.003). 

 

Glucose Measurements 

There was no sex difference in glucose measurements taken at baseline and 

chronic stress time points. The post-stress measurement revealed that males had higher 

glucose concentrations than females (t(17)=-2.48, p<0.05; Figure 18B). 

 

Body Weight 

Male and female rats had similar body weights in baseline and during the chronic 

stress period. During the post-stress period, however, males and females were 

significantly different (F(1,17)= 5.96, p<0.05). Males had higher weights for two weeks 

during three-week post-stress testing.  
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Figure 18. (A) Plasma CORT (A) and glucose (B) concentrations prior to stress 
(baseline) and after 15 days of daily exposure to restraint stress. Glucose levels are also 
shown for 21 days post-stress. Note that males had significantly higher CORT. Asterisks 
indicate significant levels: * p<0.05, unpaired t-test at post-stress between males and 
females.  
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Discussion 

The objective of this study was to compare the effects of stress on motor function 

in male and female Long-Evans rats. The experiment utilized a standard stress model and 

a high-resolution behavioural test battery to obtain quantitative and qualitative measures 

of fine motor performance. The behavioural test battery revealed that males and females 

exposed to restraint stress for 14 days were impaired at both skilled and non-skilled 

motor performance. Sex differences in stress sensitivity were observed in skilled reaching 

and vertical exploration of an open field, but not in skilled walking. Interestingly, sex 

differences were observed in the recovery from stress-induced motor disturbances in 

skilled reaching. While males showed generally reduced reaching accuracy and needed 

more attempts to grasp a pellet, they also recovered more slowly from stress-induced 

impairments. 

The present stress-induced alterations in skilled limb use resemble those described 

earlier (Metz et al., 2005; Metz, 2007). Acute and chronic restraint stress lead to 

reduction in reaching success along with an increase in number of attempts needed to 

grasp a pellet. These findings indicate reduced accuracy of skilled movements in animals 

exposed to stress. Previous work has shown that an increase in the number of attempts 

and a decrease in percent success are both sufficient indicators of behavioural impairment 

in response to restraint stress (Metz et al., 2005). The absence of a significant plasma 

corticosterone elevation during chronic restraint stress also is in line with previous work 

(Metz et al., 2005) suggesting that stress-induced motor impairments might be 

independent of corticosterone. Although the absence of upregulated hypothalamic-

pituitary-adrenal (HPA) axis activity might be interpreted as habituation (Pitman et al., 
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1998; Armario et al., 1990), stress-associated emotional responses, including anxiety and 

associated changes in serotonergic activity, might explain the present findings (Dalla et 

al., 2005; Metz et al., 2005). 

Although there was a trend for female rats to acquire the reaching task faster than 

males, there was no sex difference in baseline overall reaching success and the number of 

attempts made. By contrast, the exposure to chronic restraint stress uncovered sex 

differences in these parameters. While on the first day of stress both sexes were equally 

impaired, as exposure to stress progressed females began to improve more steadily than 

males so that success rates and number of attempts started to diverge. These data are in 

contrast to reports of adult female Wistar rats showing greater locomotor effects and 

physiological susceptibility to chronic mild stress, such as restraint (Dalla et al., 2005). 

This discrepancy might derive from strain-dependent behavioural and physiological 

differences. Locomotor activity in Long-Evans females has been described as more stable 

than male activity (Faraday, 2002). Nevertheless, the present findings of impaired 

reaching success in both genders emphasize the sensitivity of the skilled reaching task to 

detect stress-induced motor disturbance. Furthermore, changes in stress-exposed rats 

might be task-specific. The narrow opening of the skilled pellet reaching apparatus 

restricts the degree of freedom in movements and so the use of compensatory adjustments 

is relatively limited. Thus, decreased success rates and increased reaching attempts might 

directly reflect deviations in limb trajectories or body position in front of the opening 

(Kirkland et al., 2008). Lastly, as indicated by baseline measures, the difference in stress-

induced male performance is independent of elevated corticosterone levels. This finding 

is also supported by absent effects of the post-stress testing. In neither males nor females 
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did earlier testing after the stress session (i.e., 10 minutes instead of 60) cause a larger 

movement deficit. Males, however, might have experienced greater difficulty habituating 

to the disturbing effects of chronic stress and so did not develop successful compensatory 

movement strategies. This might be indicated by their rather preserved qualitative 

movement patterns compared to females. Females showed a lower reaching movement 

score than males, which might reflect deviations in the original movement pattern in 

order to develop adaptive compensatory strategies, which were generally more successful 

than male ones. This relationship might explain the observation that higher success rates 

in females were accompanied by lower movement scores. 

Compared to skilled limb use, the stress regimen used in the present study had a 

less pronounced effect on gross movement and motor activity. Open field exploratory 

activity is thought to serve as indicator of stress-associated emotional reactivity (Levine 

et al., 1967; Crawley, 1985). There is a large variety in the effects of stress on locomotor 

activity described in the literature. While an acute stressor might produce hyperactivity, 

as reflected by elevated horizontal and vertical activity (Windle et al., 1997), it can at the 

same time also reduce exploration of male rats (Faraday, 2002). The present findings 

show that females perform significantly more rears than males during both baseline and 

after chronic stress. Thus, our findings are in accordance with the literature describing 

that chronic stress does not alter open field exploration in neither male nor female Long-

Evans rats (Faraday, 2002). Recovery from stress, in turn, led to disappearance of this 

difference, although a trend still existed. 

A particularly interesting finding of the present study is the observation of sex 

differences in the recovery from stress. Recovery from an acute stress session was usually 
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not affected by sex, however, the results in skilled walking indicate that restraint stress 

exerts its effects slowly i.e., 60 min after the stress session, at a time when the peak of 

corticosterone elevation passed. Again, this observation supports the notion that stress 

might affect motor system function independently of elevated corticosterone levels. The 

largest difference between males and females in recovery, however, was seen after the 

chronic stress period. Animals tested after being exposed to chronic restraint stress 

showed an asymptotic increase in success rates up to two weeks. Both males and females 

did not reach the baseline success rate, and males reached lower success rates than 

females. These findings are in line with observations that exposure to chronic restraint 

stress cannot be reversed. For example, a study by Vyas et al. (2004) found that animals 

exposed chronic restraint for three weeks still showed enhanced anxiety three weeks after 

cessation of stress. In contrast, stress-induced expression of polysialylated neural cell 

adhesion molecule is lost six weeks after chronic stress (Pham et al., 2003). Although 

many morphological changes persist after stress, some such as apical dendritic retraction 

may be reversed within three weeks after stress (Radley et al., 2005). The post-stress 

testing period revealed that skilled motor impairments can partially be reversed, however, 

motor performance did reach asymptotic limits. 

The present data demonstrate that acute and chronic stress is associated with 

characteristic motor impairments depending on gender. It is generally believed that 

females react more robustly to stress, both behaviourally and physiologically (Faraday, 

2002; Kandandrea et al., 2002; Mashoodh et al., 2008). HPA axis activity occurs as a 

function of ovarian cycle stage. For example, females have a stronger reaction to a 

stressor during the proestrus stage of the estrous cycle (Carey et al., 1995; Marcondes et 
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al., 1996; Young et al., 2001; Figueiredo et al., 2007). Many studies have concluded that 

estrogen is the key factor for sex differences in response to stress (Salicioni et al., 1993; 

Handa et al., 1994; Redei et al., 1994; Carey et al., 1995; Conrad et al., 2005). For 

example, a previous study found that estradiol treatment, the major female estrogen, in 

ovariectomized rats leads to increase in HPA axis response (Young et al., 2001) and 

enhanced CORT responses to restraint stress (Figeiredo et al., 2007). Interestingly, 

female rats show characteristic regional changes in glucocorticoid receptor densities after 

exposure to stress in various brain areas, including hippocampus.  Therefore, females are 

able to regulate the severity of their stress responses (Kandandrea et al., 2000, 2002). 

Sex differences like the ones described here have also been found in a number of 

other behavioural parameters. The literature suggests major sex differences in stress 

effects on cognition and emotion (Pare et al., 1999; Conrad et al., 2004; Renard et al., 

2005). For example, acute stress has been shown to impair spatial memory in males but 

not females (Conrad et al., 2004). In fact, acute stress might even facilitate memory 

processes regardless of their stage in estrous cycle (Conrad et al., 2004). Interestingly, 

Pare et al. (1999) proposed that males are more susceptible to acute stress whereas 

females are more susceptible to chronic stress. Furthermore, under certain circumstances, 

males and females might even respond in opposite directions to similar experiences. For 

instance, in response to one acute stressful experience, male rats acquire an associative 

learning task faster (Shors et al., 1992; Shors, 2001), whereas female rats exposed to the 

same stimulus are learning impaired and show fewer conditioned responses (Wood and 

Shors, 1998; Shors et al., 1998; Wood et al., 2001). 

 



 92 

Conclusion 

The present study is the first to extend previous studies to the motor system. Our 

findings show that movement performance in both male and female rats is disturbed by 

acute and chronic stress, although different aspects of movement are affected. The test 

battery allowed the separation of discrete movement alterations that are characteristic for 

either male or female rat. Movement patterns and recovery from stress indicate that males 

or females might be equally susceptible to stress, however, they use different strategies to 

overcome stress-induced motor disturbance. While male rats prefer to use original 

movement patterns, females tend to modify these patterns in order to increase reaching 

success. This strategy proves more effective in the recovery from stress in that females 

show faster improvements. 
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4. Experiment 4 

Restraint Stress Impairs Skilled Motor Function by Disrupting Cell Signaling in 

Motor Circuits  

 

Abstract 

Stress and stress hormones represent potent modulators of motor system function and 

disease. It can be hypothesized that stress affects motor function and recovery after lesion 

by interfering with intracellular signaling cascades. Previous studies have shown that the 

stress response influences regulation of neuronal cell signaling pathways, including 

neuronal growth and synaptic transmission by regulating the transcription factor 

proliferating cells nuclear antigen (PCNA), the protein kinase phosphatidyl inositol-3 

kinase (PI3-K), mitogen activated protein kinase or extracellular regulated kinases 

(MEK1, MEK2), and protein kinase B (AKT). These pathways are vital for maintaining 

cellular integrity and cell survival. The objective of this study was to determine 

interactions of chronic stress with cell signaling pathways in the motor system. Groups of 

adult female rats were exposed to restraint stress daily for two weeks. Cerebellar, striatal 

and brain stem tissue from one hemisphere of stress-exposed and control animals were 

then analyzed for protein levels of PCNA, PI3-K, MEK1, MEK2, and AKT using 

immunoblot techniques. Samples were corrected for loading using Actin and films were 

analyzed by densitometry. The analysis revealed that in the cerebellum, restraint stress 

upregulated PI3-K and downregulated AKT and PCNA expression. In the striatum, PI3-

K expression was downregulated and MEK1, MEK2 expression was upregulated after 

exposure to restraint stress. In the brain stem AKT, MEK1, MEK2 and PCNA expression 
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were upregulated after exposure to restraint stress. Upregulation of these proteins might 

represent a neuroprotective response to excessive levels of glucocorticoids, whereas 

downregulation might compromise neuronal function and survival. These observations 

suggest that chronic stress changes the profile of protein expression patterns and pathway 

function in the motor system, which parallels with disrupted movement performance. 

 

Introduction 

 The stress response involves the activation of the hypothalamic-pituitary-adrenal 

(HPA) axis, which then causes the release of glucocorticoids (GCs), such as 

corticosterone. Stress hormones readily cross the blood brain barrier and bind to receptors 

in the cytoplasm of neurons in the central nervous system. The receptor ligand complex 

then moves to the nucleus of the cell, where it affects transcription and translation (Cole 

et al., 2000; Bale and Vale, 2004; Rogerson et al., 2004). Exposure to stress can modulate 

these processes by changing the function of neuronal signaling pathways (Shen et al., 

2004; Suenaga et al., 2004; Yang et al., 2004; Sabban et al., 2006). Furthermore, stress 

and GCs have been suggested to regulate cell survival (Joels et al., 2004; Sandi, 2004), 

most likely via regulating intracellular signaling pathways (Shen et al., 2004; Imbe et al., 

2005; Herbert et al., 2005). Some of the key proteins involved in cell survival are the 

protein kinase phosphatidyl inositol-3 (PI3-K), protein kinase B (AKT), mitogen 

extracellular kinases (MEK1, MEK2), and proliferating cells nuclear antigen (PCNA). 

All these proteins have been previously shown to be a part of an interconnected pathway 

that is crucial for neuronal survival (Silasi et al., 2004).  
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PI3-K and AKT have been shown to play a role in neuronal growth, maintenance, 

synaptic plasticity and memory function (Zundel and Giaccia, 1998; Sweatt, 2001; Frebel 

and Wises, 2006; Mayford, 2007). PI3-K is activated by a number of signals, including 

growth factors, and then in turn it activates AKT (Philpott er al., 1997; Zundel and 

Gaccia, 1998). PI3-K and AKT have been linked to anti-apoptotic effects. For example, a 

study by Philpott et al. (1997) showed that overexpression of both PI3-K and AKT block 

cell death. Activation of AKT has also been shown to promote cell survival by 

inactivating apoptotic proteins (Chen et al., 1998).  

MEK1, MEK2 are members of the mitogen activated protein kinase (MAPK) 

family and are controlled by second messengers in the central nervous system (Grewal et 

al., 1999). These proteins are involved in regulating the activity of transcription factors, 

synaptic plasticity, learning, cell proliferation, differentiation and apoptosis (Grewal et 

al., 1999; Li et al., 2003; Pan et al., 2006; Zebisch et al., 2007). The MAPK family is also 

involved in regulating transcription factors that control immediate early genes, one of 

which is c-fos (Li et al., 2003). Levels of c-fos in neurons are disrupted in animals 

exposed to stress (Melia et al., 1994; Stamp and Herbert, 2001; Skorzewska et al., 2006). 

PCNA, on the other hand, is involved in cell cycle progression, deoxyribonucleic acid 

(DNA) replication and repair (Xu and Morris, 1999). PCNA is activated by DNA damage 

and cooperates with protein 53 (p53), another cell signaling protein, to inhibit DNA 

replication while DNA repair proceeds (Xu and Morris, 1999; Karuppayil et al., 1998). 

Previous studies assessing the effects of stress on cell signaling have revealed alterations 

in the above-mentioned cell signaling proteins (Philpott et al., 1997; Aundel and Giaccia, 

1998; Sweatt, 2001; Yong Lee et al., 2006). For example, Yong Lee et al. (2006) showed 
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that exposure to restraint stress causes a 13-fold increase in MEK1, MEK2 and a 7-fold 

increase in AKT. Changes in expression of PCNA have been found in animals exposed to 

restraint stress (Tsuchiya and Hori, 1999). Restraint stress serves as a common model of 

mild to moderate stress in rodents (Metz et al., 2005).  

Previous studies have shown that restraint stress leads to disrupted motor control 

(Metz et al., 2005) and exaggerated cell death in areas of the motor system (Smith et al., 

2008). The mechanism of this phenomenon is unclear, however, the present study seeks 

to provide new insight to the intracellular changes in the motor system in response to 

stress. The purpose of this study was to determine the interaction of chronic restraint 

stress with neuronal cell signaling in the motor system. Expression of PI3-K, AKT, 

MEK1, MEK2, and PCNA proteins in the cerebellum, striatum and brain stem were 

assessed in rats exposed to chronic restraint stress. The results indicate that restraint stress 

causes changes in cell signaling pathways in the motor system.   

 

Materials and Method 

Subjects 

Subjects were 16 female adult Long-Evans Hooded rats, raised at the University 

of Lethbridge vivarium and weighing 250-350 g at the beginning of the experiments. We 

have previously demonstrated motor impairments in female rats after exposure to 

restraint stress (Metz et al., 2005). The animals were housed in groups of two in standard 

polycarbonate shoebox cages (45.5 x 25.5 x 20 cm) on corn cob bedding (Bed O Cobs 

1/8’). The light cycle was 12:12h with lights on at 07:30 h. The housing room was 

maintained at a temperature of 20˚C and 30% relative humidity. Food and water was 
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available ad libitum. The animal experiment was approved by the University of 

Lethbridge Animals Welfare Committee. 

 

Experimental Design 

Animals were divided into two groups, restraint stress (n=8) and non-stress 

controls (n=8). The stress-inducing procedures were performed daily at the same time of 

day over a period of 14 days. Blood samples and glucose were collected at the of the 

stress period (Figure 20). 

 

Stress Procedure 

Animals were placed in a transparent Plexiglas container (5 cm inner diameter) 

for a period of 20 min each day (Garcia et al., 2000; Faraday, 2002; Mercier et al., 2003). 

The container had perforated ends to allow for ventilation. The container maintained the 

animals in a standing position without compression of the body. 

 

Blood Sampling 

Blood samples were collected at the chronic stress time point. The rats were 

anesthetized using 4% isoflurane. Anesthesia was maintained for 5 minutes in which 

1.0ml of blood was collected from the tail vein. An Ascensia Breeze Blood Glucose 

Meter (Bayer, Toronto, ON) was used to collect blood and analyze glucose levels in 

animals. The remaining blood was transferred to centrifuge tubes and plasma was 

obtained by centrifugation at 10,000 rpm for 8 min. The samples were stored at -20°C. 
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Plasma corticosterone levels were determined by enzyme linked immunosorbent assay 

(ELISA; Kavushansky and Richter-Levin, 2006). 

 

Western Immunoblot  

Western blotting for P13, AKT, MEK1-2 and PCNA was conducted on tissue 

obtained from the cerebellum, striatum and brain stem. Tissue samples from left 

hemispheres were sonicated in a 500 or 1000µL mixture of 50 mM Tris, 150 mM NaCl, 

protease inhibitor cocktail and sodium dodecyl sulfate (SDS), boiled for 5 minutes and 

then centrifuged for 10 minutes. Small aliquots (25 µL) were used for protein 

quantification using Bradford assay reagents from (Bio-Rad, Hercules, CA). Equal 

amounts of proteins (22 µg) were separated by SDS-polyacrylamide electrophoresis 

(PAGE) in slab gels of 10% polyacrylamide. Gels were stained for Coomassie to confirm 

successful movement of proteins through the gel and were transferred to the 

nitrocellulose membranes. Membranes were incubated with antibodies against PCNA 

(1:700, Santa Cruz Biotechnologies, Santa Cruz, CA), Anti-P13 Kinase p8 (1:2000, 

Upstate Cell Signaling Solutions, Temecula, CA), MEK1, MEK2 (1:1000, Cell Signaling 

Technology, Danvers, MA) and AKT (1:750, Cell Signaling Technology, Danvers, MA).  
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Figure 20. Time chart illustrating the order of experimental manipulations. Blood 
samples for corticosterone analysis and blood glucose were collected from control and 
stress animals on day 14 of stress (chronic stress). 
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Antibody binding was revealed by incubation with secondary peroxidase-conjugated 

antibody (1:5000, Jackson Immunoresearch, West Grove, PA) and ECL Plus 

immunblotting detection system (Amersham, Baie d'Urfé, QC). Chemiluminescence was 

detected by Biomax MR film (Kodak, Rochester, NY). Signals were quantified by NIH 

Image analysis software (Version 1.63, National Institutes of Health, Bethesda, MA) 

using density measurement. Band analysis was corrected for background and normalized 

to beta-Actin (1:1000, Cell Signaling, Cambridge, Technology, Danvers, MA). 

 

Statistical Analysis 

The statistical analysis was performed using SPSS software package 11.5 (SPSS 

Inc., IL, 2002). The results were subject to analysis of comparisons of means. Variances 

between and among groups were performed using unpaired t-tests. In all statistical 

analyses, a p-value of less than or equal to 0.05 was considered significant. All data are 

presented as mean +/- standard error of the mean (SEM). 

 

Results 

Blood Sample Analysis 

Animals in the restraint stress group (1096.2 + 326.3 ng/mL) showed a trend for 

increased plasma circulating CORT concentration when compared to controls (1075.2 + 

177.1 ng/mL). 
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Glucose Analysis 

 Animals in the restraint stress group (4.88+0.34 ng/mol) had no changes in blood 

glucose concentrations (ng/mol) when compared to controls (4.51+0.16 ng/mol). 

 

Western Immunoblot Analysis 

Phosphatidyl inositol-3-kinase (PI3-K). There was a trend for upregulation of 

P13-K protein expression in the cerebellum of animals exposed to restraint stress when 

compared to controls (t(10)=-1.21, p=0.25; Figure 21A). In the striatum PI3-K expression 

showed a trend for decreased expression after stress when compared to controls 

(t(12)=0.86, p=0.41). PI3-K expression in the brain stem was not altered by restraint 

stress (t(14)=-0.12, p=0.91). 

Protein Kinase B (AKT). AKT expression in animals exposed to stress was 

showed a trend for downregulation by one-third when compared to controls within the 

cerebellum (t(9)=0.71, p=0.49; Figure 21B). A trend for downregulation of AKT 

expression was observed in the striatum (t(12)=0.11, p=0.91). AKT expression in the 

brain stem was upregulated by three quarters in restraint stressed animals when compared 

to non-stress controls (t(10)=-1.60, p=0.14; Figure 21C). 

Mitogen activated protein kinase (MEK1, MEK2).  A trend was observed for 

down-regulation of MEK1, MEK2 in the cerebellum and upregulation in the striatum and 

brain stem (t(13)=0.13, p=0.9; t(10)=-0.48, p=0.65; t(14)=-0.3, p=0.78). 

Proliferating cells nuclear antigen (PCNA). There was a trend for downregulation 

of PCNA in the cerebellum (t(10)=0.27, p=0.79) and upregulation in the brain stem 

(t(10)=-0.45, p=0.67). 
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Discussion 

 The aim of this study was to investigate the neuronal cell signaling pathways in 

the motor system of rats exposed to chronic restraint stress. Proteins evaluated included 

PI3-K, AKT, MEK1, MEK2 and PCNA. PI3-K protein expression was upregulated in the 

cerebellum, whereas it was downregulated in the striatum. AKT protein expression was 

upregulated in both the cerebellum and brain stem. No changes in MEK1, MEK2 and 

PCNA were observed. No difference in CORT concentration or blood glucose was 

observed. 

Repeated exposure to restraint stress can lead to habituation and learned 

helplessness (Kant et al., 1985; Pitman et al., 1988; Armario et al., 1990; Wood et al., 

2008). Habituation might be responsible for the lack of elevated CORT. Pitman et al. 

(1988) showed that 60 minutes of restraint stress for more than 7 days caused a decrease 

in circulating plasma CORT, however, habituation was not observed prior to 7 days of 

the stress treatment. Furthermore, habituation to chronic restraint stress was evident in 

this study by absence of elevated blood glucose in stress animals. A previous study by 

Volchegorskii et al. (2003) showed that only four exposures to restraint stress caused 

significant decreases in blood glucose. Even unpredictable stress such as chronic variable 

stress causes significant decreases in blood glucose concentrations (Tauchi et al., 2007), 

while stress usually is thought to result in elevated blood glucose concentrations. 

Habituation to the daily exposure to stress may explain why no changes in MEK1, MEK2 

and PCNA protein expression were observed. Aside from these findings chronic restraint 

has been shown to affect motor system function (Metz et al. 2001, 2005). Thus, although 
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physiological habituation might occur, the motor system remains chronically affected by 

stress. 

The response to stress depends on its duration and severity (Sapolsky, 1992). 

Exposure to chronic stress has been shown to cause cell death in numerous regions of the 

brain (Hebert et al., 2005; Kavushanky and Richter-Levin, 2006; Kwon et al., 2006). The 

data from this experiment provides evidence that changes in cell signaling patterns may 

occur in motor areas after chronic exposure to restraint stress, which could be the cause 

for behavioural impairments such as disturbed skilled limb use (Metz et al., 2005). In 

addition, the data from this experiment may also help explain the stress-induced 

exaggeration of cell death observed in motor areas stressing the rat model of Parkinson’s 

disease (Smith et al., 2008). Furthermore, Yang et al. (2004) has shown that injections of 

MEK1, MEK 2 inhibitors reversed the effects of stress within the hippocampus. At the 

present it remains unknown which targets of PI3-K, AKT, MEK1, MEK 2 and PCNA 

mediate stress effects, however, previous work has helped piece together the puzzle of 

how all the proteins interact (Yang et al., 2004; New et al., 2007).  

The present data showed upregulation of PI3-K expression in the cerebellum. PI3-

K is activated by growth factors, such as brain derived neurotrophic factor (BDNF; Yang 

et al., 2004). BDNF expression was shown to increase significantly in animals exposed to 

stress for a possible compensatory response to preserve homeostasis or as a form of 

neuronal plasticity in response to stressful stimuli (Yang et al., 2004; Hetman et al., 1999, 

Yuan et al., 1997; Lin and Thiele, 2007). Enhanced upregulation of PI3-K expression 

therefore may indicate that protective mechanisms are increased in response  
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Figure 21. Protein expression of PI3-K in cerebellum and AKT in cerebellum and brain 
stem. (A) PI3-K protein expression of control and restraint stress animals in the 
cerebellum. Representative bands from each group shown below the x-axis. Note the 
increase in PI3-K protein expression of stress-treated animals. (B) AKT protein 
expression in the cerebellum of control and stress animals. Representative bands from 
each group shown below the x-axis. Note the decrease in AKT protein expression of 
stress treated animals. (C) AKT protein expression of control and restraint stress animals 
in the brain stem of control and stress animals. Representative bands from each group 
shown below the x-axis. Note the increase in AKT protein expression in stress treated 
animals.  
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to stress. AKT and PI3-K are closely linked, however, a parallel upregulation of AKT 

expression within the cerebellum was not observed. A possible explanation for this 

discrepancy is that there maybe another signaling pathway, in addition to PI3-K, that 

regulates AKT protein expression (New et al., 2007; Vauzour et al., 2007). AKT has been 

shown to be integral to the PI3-K pathway, however activation of AKT is accomplished 

by a number of extracellular signals, such as G-protein coupled receptors and integrin and 

growth factor receptor/tyrosine kinase super families (New et al., 2007). Lastly, dominant 

negative forms of AKT have been shown to trigger apoptosis (New et al., 2007). Previous 

studies investigating cell signaling changes in response to stress have shown significant 

alterations in MEK1, MEK2 protein expression. For example, Shen et al. (2004) showed 

enhanced phosphorylation of the MAPK family, which includes MEK1 and MEK2, in 

animals exposed to swim stress. In turn, blocking MEK1 or MEK2 activation completely 

impedes the effects of stress (Shen et al., 2004). Our present study did not show any 

changes in MEK1, MEK2 in the motor system. 

 The limitation of this study was its focus on total protein expression. It is possible 

that assessment of the phosphorylated stage of these proteins might have revealed a 

different pattern of expression. Phosphorylated proteins represent the activated form of 

the signaling cascade components (Barford et al., 1998) and as such might have been 

more informative to gain insights into motor system function. Previous studies have 

shown that stress causes significant changes in phosphorylated protein expression, 

specifically of MEK1,2 and cyclic- responsive element-binding protein (CREB; Cai et 
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al., 2007; Luo et al., 2005; Shen et al., 2004). Investigation of the phosphorylated stage of 

these proteins therefore remains an interesting task for future studies.   

 

Conclusion  

The present study is the first to describe changes in intracellular signaling 

pathways in the motor system of rats exposed to stress. The evaluation of cell signaling 

proteins revealed that chronic restraint stress induces differential protein expression. 

Upregulation of proteins may lead to protective mechanisms, however, downregulation 

may inhibit normal cellular function leading to cell death. The observations from this 

study describe intracellular changes, which may underlie the previously described motor 

impairments.  
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6. Discussion 
 
6.1. Summary of Results 
 
 This thesis described the route of action of stress and stress hormones on the motor 

system in a rat model. The main findings and conclusions of the four experiments 

described in this thesis are as follows. Chapter 2 outlined the correlation relationship 

between circulating plasma CORT concentrations from three physiological 

manipulations (swim stress, restraint stress and oral CORT administration) and 

performance on skilled reaching and walking. The findings from chapter 2 suggest 

that CORT is not the main factor modulating motor function in response to stress. 

  In Chapter 3 investigated the role of MR and GR in modulating motor behaviour 

in response to acute and chronic restraint stress and oral CORT treatment. The 

experiment revealed that both receptors are involved in modulating the skilled motor 

impairment observed previously in animals exposed to stress and treated with oral 

CORT. 

 In Chapter 4, the effects of 14 days of restraint stress and 21 days of recovery 

from stress were assessed in male and female rats. We observed significant sexual 

dimorphisms in the skilled reaching task during stress and post-stress time points that 

males and females performed significantly different to restraint Chapter 5 systematically 

investigated and described changes in cell signaling pathways within the motor system 

after chronic exposure to stress. We found that exposure to chronic restraint stress affects 

neuronal functioning in the cerebellum, striatum and brain stem. 
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6.2. Review of Stress 

Stress is one of the most critical influences on behaviour (Seyle, 1976). A 

substantial amount of research has investigated the effects of stress on limbic system 

functions, for example cognition (Holscher, 1999). Recent findings have also shown that 

stress is a modulator of motor function, both non-skilled and skilled (Metz et al., 2001, 

2005; Metz, 2007; Kirkland et al., 2008). Although these behavioural effects of stress on 

motor function have been thoroughly investigated, the mechanism causing the 

behavioural impairments had not been determined yet. The results from this thesis 

present the first evidence of direct interaction of stress and motor system function.  

 Within the motor system, specifically the striatum, cerebellum, basal ganglia and 

motor cortex, there is a high density of GR (Ahima and Harlan, 1990). The increased 

density of these receptors suggests that the motor system is susceptible to the effects of 

GCs (Metz, 2007). Previous studies have shown that acute stress causes hyperactivity, 

whereas chronic stress exposure causes decreases in activity levels of animals in the open 

field task (Roth and Katz, 1979).  Recently, our laboratory has shown that stress causes 

impairments in skilled motor function. For example, animals exposed to restraint stress 

obtain significantly fewer pellets successfully when compared to baseline performance 

(Metz et al., 2005). Furthermore, animals exposed to restraint stress tested on the skilled 

walking task make significantly more errors when compared to non-stress controls (Metz 

et al., 2005). The mechanism through which stress modulates these motor behaviours 

remains unknown. The experiments in this thesis focused on investigating how stress and 

stress hormones may influence motor function.  
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6.4. Significance of Results  
  
  One of the hallmarks of the stress response is an increase in CORT (McEwen, 

2000; Pedersen et al., 2001; Lucas et al., 2007). Therefore, CORT has been suggested to 

modulate motor function in response to stress (Metz et al., 2001). However, through 

correlation studies in Chapter 2, we have shown that CORT does not directly modulate 

motor function in response to stress. Furthermore, previous data have suggested that other 

hormones or neurotransmitters may potentially modulate the motor response to stress 

(Kawahara et al., 1999; Lucas et al., 2007). For example, Lucas et al. (2007) showed that 

repeated restraint stress causes increases in the dopamine transporter and dopamine D2 

receptor in striatal subregions. Dopamine is involved in motor function and could 

therefore lead to disruptions in dopamine after exposure to stress (Dunn and File, 1983; 

Abercombie et al., 1989; Moghaddam, 1993). There are two receptors in the brain that 

bind to the stress hormone, both of these receptors have differential affinities and are 

therefore proposed to bind to different levels of corticosterone or cortisol (de Kloet et al., 

1999, 2005).  

The MR has been described previously to bind during phases of basal levels of 

CORT (de Kloet et al., 1999). Recent evidence, however, has suggested that MR 

participates in the stress response (Smythe et al., 1997; Spencer et al., 1998; Cole et al., 

2000; Pace and Spencer, 2005; Dejrik et al., 2006). In Chapter 3, we have showed that 

both GR and MR are involved in modulating the motor response to stress. The results 

from this thesis in addition to previous studies support the theory that both the MR and 

the GR participate in the stress response (Smythe et al., 1997; Spencer et al., 1998; Cole 

et al., 2000; Pace and Spencer, 2005; Derijk et al., 2006). This novel theory requires 
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further investigation to determine details of the pathway how the MR is involved in the 

stress response. Pace and Spencer (2005) suggests that the receptor is involved in both 

mediating and turning off the stress response, whereas Derijk et al. (2006) suggested that 

the MR modulates the cognitive process when GCs are increased. Modulation of 

apoptosis and neurogenesis by administering drugs that interfere with MR and GR 

binding may represent an effective therapy for limiting the negative consequences 

associated with chronic stress (Lucassen et al., 2006). 

 

6.5. Clinical Relevance and Future Direction 

 Exposure to chronic stress has been suggested to increase an individual’s 

vulnerability to diseases (Selye, 1976). Gaining further understanding of how stress 

modulates behaviour, specifically motor function, will help identifying effective therapies 

for stress-related motor disorders. For example, a recent study from our laboratory has 

shown that stress accelerates motor impairments in rodents in the animal model of 

Parkinson’s disease, which involves unilateral injections of 6-hydroxydopamine (Smith et 

al., 2008). Another example by Kirkland et al. (2008) shows that stress prior to a motor 

cortex lesion diminishes the ability for animals to compensate in the skilled reaching task 

after the lesion. In addition post-lesion restraint stress caused a larger lesion volume in 

the brain. The increase in lesion volume could be due to increased levels of glutamate 

release associated with stress (Madrigal et al., 2003; Kirkland et al., 2008). Blocking the 

receptors involved in modulating motor function after exposure to stress could potentially 

serve as an effective therapy for reducing acceleration of either Parkinson’s disease and 
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stroke-related symptoms and then be translated to humans affected with the disease 

(Smith et al., 2002; Kirkland et al., 2008; Smith et al., 2008). 

Currently, glucocorticoid receptor blockers are being used to help treat 

individuals with depression (Belanoff et al 2001; DeBattista et al., 2006). A study by 

Belanoff et al. (2002) describes a study that administered a glucocorticoid receptor 

antagonist to individuals suffering from Alzheimer’s disease and found that the drug 

slowed the progression of cognitive impairments seen in affected individuals. The cell 

signaling changes described in chapter 5 within motor areas can lead to the development 

of drugs to reverse the cellular changes that are induced by stress. 

Preventing chronic exposure to stress is important in order to increase health in 

individuals (Keegan, 2003). A study by Underdown et al. (2006) showed that massage in 

babies six months or younger caused a beneficial impact on the number of hormones 

controlling stress. A similar result was seen in a study by Bost and Wallis (2006), where 

15 min weekly massages were found to reduce psychological stress levels in nurses. 

Taking steps to prevent stress may help decrease the risk of negative effects that have 

been outlined in this thesis and previous studies. 

 
6.6. Thesis Summary 
 
 Recent findings from our laboratory have shown that stress represents a major 

modulator of motor function in the intact and damaged brain. The purpose of this 

thesis was to investigate mechanisms by which stress and stress hormones affect 

motor system function. The results of the experiments indicate that corticosterone may 

not control the impairments observed in motor function, however, both the MR and 

GR do modulate the motor response. The general conclusion from the four 
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experiments described in this thesis is that stress acts via a number of different 

pathways and activates a number of hormones, which impair motor function. There 

are also implications from the experiments that stress works through different 

mechanisms in males and females. Lastly, the behavioural impairments described in 

this thesis are possibly the result of the changes in cell signaling pathway function 

within the motor system.  
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