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Abstract

Segmentation is an indispensable step in the field of Music Information Retrieval (MIR).

Segmentation refers to the splitting of a music piece into significant sections. Classically

there has been a great deal of attention focused on various issues of segmentation, such

as: perceptual segmentation vs. computational segmentation, segmentation evaluations,

segmentation algorithms, etc.

In this thesis, we conduct a series of perceptual experiments which challenge several of

the traditional assumptions with respect to segmentation. Identifying some deficiencies in

the current segmentation evaluation methods, we present a novel standardized evaluation

approach which considers segmentation as a supportive step towards feature extraction in

the MIR process. Furthermore, we propose a simple but effective segmentation algorithm

and evaluate it utilizing our evaluation approach.
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Chapter 1

Introduction

1.1 Music Information Retrieval

With the recent advent of digital distribution, the size of music collections has grown at an

exponential rate. This has led to a call for the ability to index, organize, search and navigate

music libraries in novel ways. It is to address this call that the area of Music Information

Retrieval (MIR, for short) has been introduced. MIR is a multidisciplinary area, bringing

together primarily the fields of computer science, musicology, and psychology. The general

purpose of MIR is to develop techniques and systems which help facilitate and promote

the creation and experience of music. This general purpose engenders a wide variety of

problems in MIR.

1.1.1 Problems in MIR

Due to the multidisciplinary nature of MIR, problems in the area can range from social to

artistic to purely computational. However, the scope of our work pertains primarily to those

problems which are faced by the computational aspect of MIR. In this section we discuss

a selection of some prominent problems from a computational aspect in MIR to provide a

generalized sense of the area and its challenges.

One of the traditional problems in MIR is genre classification. Genre classification

is the problem of automatically separating musical pieces into different groups such that

each group uniformly represents a genre. One of the greatest challenges facing genre clas-

sification is the subjectivity of the definitions of different genres [6]. Solutions, such as

multi-genre labelling, are current attempts to tackle this issue. While the definitions sur-
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rounding genres may be highly controversial, their ubiquitous use in the music industry, as

a method of categorization, provides impetus for research efforts towards automatic genre

classification. For an extensive survey on the genre classification problem see Scaringella

et al. [49].

One of the more interesting and mainstream problems in MIR is music retrieval. The

concept of music retrieval is to recover a specific piece of music based on a query piece,

which can either be a short sample recording of the original or someone’s attempt to repli-

cate the original through alternative means, e.g., humming. The main challenge in music

retrieval is the development of accurate representations of both the original and the query

piece such that either one is easily identified by the other. One such system is proposed

by McNab et al. [41]. Shazam [50] is a popular music-retrieval application for mobile

devices. By recording a short piece of music, Shazam searches through its database and

returns the most likely title and author of that piece. With a claimed user base of over

75 million, Shazam is an excellent example of the viability and importance of the music

retrieval problem.

Music recommendation services are becoming more and more prevalent on the Internet.

Generally they are structured to find songs which are, in some way, similar to an input

song. The greatest challenge in music recommendation is to develop similarity metrics

between songs. The most common approach for developing similarities is through so-

called collaborative filtering [27]. The general concept behind collaborative filtering is

to develop relationships between items which have been associated a certain number of

times by other users. The relationship between these items can then be used as a form of

similarity metric. Apple Genius Sidebar, a recommendation service in Apple iTunes [4],

is based on collaborative filtering. Genius Sidebar recommends music to a user based on

relationships found between her/his library and the libraries of others’. Other methods,

such as the one proposed in [14], have been developed which use content analysis of music

2



itself instead of collaborative filtering.

Playlist generation is the problem of developing a list of music based on a user’s prefer-

ences. Much like music recommendation, it faces challenges of developing similarity met-

rics and typically resorts to techniques like collaborative filtering. Apple Genius Playlist [4]

works in a similar manner to Apple Genius Sidebar. However, instead of recommending

the music which a user does not yet own through collaborative filtering with other music

libraries, it discovers and develops the relationships among the music within the user’s cur-

rent library. Through these relationships it is able to create a playlist for the user which

has a reasonable recommendation quality. For further discussions on playlist generation,

see [5].

The development of new approaches for visualizing and navigating music [16] is also

an interesting challenge in MIR. A popular approach is to create visual topographic self-

organizing maps of music which allow users to explore their libraries in multiple dimen-

sions. This perspective highlights new relationships which may not have been apparent to

users through a conventional metadata view (see below for more discussions on metadata).

One of the greatest challenges to this approach is the selection of dimensions on which to

base the topographical map.

For other problems and results in MIR, the interested reader is referred to [16].

1.2 MIR Systems

MIR systems are generally of two types: meta-based and content-based. Meta-based MIR

systems use the extraneously attached data, i.e., metadata, such as Title, Genre, or Author

of a song, to search for connections and further information in a music collection. Due

to the limited amounts of metadata incorporated into the standard forms of music storage,

such as MP3 [28], and the uncertain quality associated with that metadata, meta-based
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systems have a lower potential and are less reliable than their alternative. Content-based

MIR systems, on the other hand, attempt to extract some representative information directly

from the content of the music itself. For this reason, content-based systems provide greater

potential towards the continued development of novel approaches to MIR problems. It is

within the constraints of these content-based systems on which we will focus throughout

the remainder of this thesis.

Content-based MIR systems face the onerous challenges of dealing with audio signal

processing as an initial step towards developing any kind of usable representative informa-

tion. For this reason many of the techniques used are paralleled with the field of speech

recognition [16]. The dominant methodology is to break up an audio signal into short

meaningful sections and then extract some defining representational features for each of

them. These representations can then be used for higher level processes, such as searching

or classification.

Speech recognition systems break a signal up into individual words then develop a

text version, transforming the problem into the text retrieval domain. Unfortunately, for

MIR, the problem is more complex. Music contains critical non-verbal information which

must be captured and represented in some manner. It is this additional requirement which

presents unique challenges defining content-based MIR systems.

Most content-based MIR systems follow a similar work flow to that outlined in Fig-

ure 1.1. The sequential nature of this work flow makes each step heavily dependant on

those that precede it. This dependence intrinsically contributes to the definition of each

step’s purpose. That is, each step is intended to augment the functionality of the next in

some significant manner. Initially, various operations must occur, such as decoding, to

transform the music data into a format which is efficient for processing. This step is called

pre-processing. The next step is to separate the music data into smaller meaningful sec-

tions or segments; this step is called segmentation. The feature extraction step, as explained
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Figure 1.1: The flow of the standard content-based MIR process.

above, creates some representative characterization of each segment such that it can be ef-

fectively used for some higher level process. These higher level processes range from genre

classification to playlist generation, as aforementioned.

1.3 Segmentation

This thesis focuses primarily on the step of segmentation in the MIR work flow. Generally

speaking, segmentation is the problem of separating a music piece into smaller meaningful

sections or segments such that they can be individually processed.

As Bruderer [12] puts it, segmentation is highly related to the Gestalt Principles of

Proximity and Similarity: objects which are close temporally and appear similar tend to

be grouped. Typically each individual segment is subject to the feature extraction process

to create a representation for itself. The outputs from the feature extraction process over

several segments usually becomes a usable representation of the original piece for high
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level tasks. The feature extraction process tends to be composed of some form of aggregate

statistic. Therefore, extracting them from smaller self-similar segments will achieve a better

representation quality than simply extracting them over the entire piece.

The challenge of segmentation is how to best select locations on which to separate

a music piece to increase the representational accuracy of the feature extraction process.

Since segmentation is the main focus in this thesis, we will discuss more on the algorithmic

approaches to it in Chapter 4.

1.4 Some Issues Related to Segmentation

One incipient issue with the development of an segmentation algorithm is the confusion

and ambiguity in the definitions of the term. This confusion has stemmed from three main

areas of uncertainty: the definition of structure in music, the scale of segmentation, and the

ultimate objective of segmentation.

The first cause of ambiguity around segmentation is the definition of musical structure.

Segmentation is classically defined towards two different purposes, and quite often the two

are used interchangeably. The first definition is for the purpose of discovering musical

structure and the second is in order to group similar elements such that extracted statistics

can be of maximum representational quality. These two definitions can be distinct, or the

same, dependent on the subjectivity of the notion of musical structure. From a classical per-

spective, musical structure defines sections of music, like intro, verse, chorus, and outro.

The ability to discover these musical sections automatically would provide several key ad-

vantages to MIR and much work has been done towards this goal [8, 36, 51]. However,

from a data driven perspective, musical structure relates to the notion of the Gestalt Prin-

ciples of Proximity and Similarity [12] previously mentioned. The disjunctive relationship

between these two definitions causes a great deal of contention. It is clear, however, that
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this second definition is the one which will stipulate segments for maximizing the quality

of the statistic extracted during the feature extraction process. Therefore, in our thesis we

make use of this second definition.

The second issue contributing to the confusion around segmentation is the notion of

its scale. Some [33, 42] make distinction between short-term and long-term segmentation.

However, this distinction is rarely explicitly defined. Short-term segmentation involves

segmenting at levels of high granularity and usually results in hundreds or thousands of

segments for an entire song. Short-term segments are often called frames and are typically

of a fixed length. It has been argued that using arbitrary fixed lengths can cause less accu-

rate partitioning [42]. A variety of solutions have been proposed to compensate for this is-

sue, ranging from overlapping frames to complex approaches such as onset-detection [32].

Long-term segmentation, on the other hand, attempts to create segments which cover a

large portion of an entire song, separating it into usable sections for the feature extraction

process. This thesis will differ between short-term segmentation and long-term segmenta-

tion by calling them framing and segmentation respectively.

The third, and in many ways the most critical, issue, on which confusion has arisen, is

the conflicting ultimate objectives of segmentation. One of the greatest challenges in the

development of segmentation algorithms is the generation of ground truth: a base set of

data which is used to determine the accuracy of an algorithm. Ground truth is, by defini-

tion, equivalent to the desired output of an algorithm, and therefore, an inherent statement

on the objective of that algorithm. In terms of a segmentation algorithm, its ground truth

is commonly acquired through manually annotated segmentation based on human percep-

tion [22, 30, 31, 43, 44, 55]. Therefore, the objective of these segmentation algorithms is

to simulate perceptual segmentation. However, this objective may be contentious to that

defined by the MIR process: to provide self-similar segments, as explained above, from

which the feature extraction process will return higher quality statistics. Whether or not an
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Figure 1.2: The relationship between perception and computation for segmentation and
feature extraction.

exploitable relationship exists between perceptual segmentation and the quality of features

which are to be extracted is, to the best of our knowledge, unknown. It is the purpose of

this thesis to address this third issue of segmentation.

1.5 Our Contributions

As explained above, in terms of the objective of segmentation, there are two separate ap-

proaches in the current literature. We discuss the first approach below.

The first approach, simulating human perception of structure through segmentation, is

shown in Figure 1.2. From the figure, the purpose of a segmentation is towards simulating

perceptual structure and the feature extraction process is to simulate what is called the

perceptual surface features.

The predominant justification for feature extractions in MIR is their ability to model the

psychoacoustic features, i.e., pitch, timbre, loudness or beat [15]1 These psychoacoustic

features are known as the perceptual surface features of music. The intuition behind this is

to create a representation of a song which accurately models human perception.

1Psychoacoustics is the study of how humans perceive sound and the relationships between their percep-
tions and the actual sound itself [15].
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Simulating human perception at this level (i.e., the perceptual level in Figure 1.2), to

create an MIR system which is more acclimatized to its users, makes sense. Therefore,

it also appears reasonable that simulating human perception at other stages in the MIR

process will only further contribute to accommodating its users. For this reason, simulating

human perception of structure through segmentation presents itself as an enlightened idea.

However, simulating perceptual structure through segmentation might actually detract

from the quality of the feature extraction process. The dependent relationship between

segmentation and feature extraction, due to the sequential nature of the MIR work flow,

implies that the two should be considered as an inseparable process. While it is probably

true that the perceptual structure of music is, in fact, based around some mixture of per-

ceptual surface features, this relationship is yet undiscovered. We show this situation in

Figure 1.2.

Our work in this thesis will look into whether this relationship, if any, exists to support

the use of perceptual segmentation as a model for perceptual surface features. Furthermore,

we will investigate whether or not using perceptual segmentation directly detracts from the

quality of the feature extraction process.

Another drawback of using segmentation to simulate human perception is the chal-

lenge as how to evaluate its quality. This has led to the current and most prevalent method

of segmentation evaluation in the literature, which is based on conducting human-involved

experiments. The limitations of this method are vast. Primary among those limitations is

the human-related cost in time with respect to the amount of data obtained. A typical ex-

periment using this method could only involve 10 to 15 songs. Besides, in order to increase

the number of songs, one often has to sacrifice the experiment quality by decreasing the

number of human subjects assessing each song. A second limitation of human-involved

experiments in this evaluation method is that the results are subjective and non-repeatable.

That is, the ambiguity of what constitutes a good segmentation leads to highly variable
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conclusions. The inability to repeat experiments which are expected to produce identical

results means that comparisons between experiments are challenging.

The second approach to segmentation is to consider it from a computational standpoint.

From this perspective, the burden of simulating human perception is left to the feature

extraction step. This approach is less popular but can provide fast, objective, repeatable

methods of segmentation evaluation. Previous works making use of this approach have

involved testing the accuracy of high-level tasks, such as classification, based on variations

of segmentation algorithms.

However, involving high-level tasks in order to evaluate a segmentation algorithm can

introduce more complexities and bias. Therefore, there is a need for a different and ob-

jective measure by which to design and evaluate segmentation algorithms. In our work,

we propose and study a novel approach to the evaluation of segmentation from a computa-

tional standpoint, which does not rely on the use of any high-level task and, furthermore,

stimulates a new but straightforward segmentation algorithm.

1.6 Outline

For the purposes of this thesis we divide our review of related works into each chapter

separately in order to enhance the uniformity and clarity of our presentation. Several key

related works are repetitively references over the chapters; however, their discussion in

each chapter comes from the perspective directly supporting the theme of that chapter.

In Chapter 2 we conduct a series of descriptive perceptual segmentation experiments

which promote our understanding of human perception through segmentation. Similar to

previous studies, we ask human subjects to listen to a selection of music and mark locations

they perceive as having significant changes. However, unlike previous works, they do this

based on one surface feature at a time. We also ask them to segment using the method in
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the previous works. That is, based on their perception of structural change. From these

results we attempt to analyze if there is an exploitable relationship between perceptual

surface of music and the perceptual structure. The results are used to support our work in

the following chapters.

In Chapter 3, we propose and study a novel evaluation approach for segmentation al-

gorithms. It is intended to be objective and independent, and, as such, we hope to advance

towards better quality segmentation algorithms. In our approach, we attempt to measure

the information loss between an original song and the representation of it made by a seg-

mentation algorithm. The segmentation algorithm is then held against the benchmark of

simply partitioning the song into standard equal sized segments. This evaluation approach

relies on the assumption that an intelligent segmentation algorithm should make better se-

lections than an equidistant selection which is naive of the underlying data in the song. The

amount of improvement of the segmentation algorithm over the equidistant segmentation

is considered the measure of quality for that algorithm. Furthermore, we use the perceptual

segments from our work in Chapter 2 to test if using perceptual segmentation detracts from

the quality of feature extraction.

In Chapter 4, we propose a greedy merge-based segmentation algorithm and evaluate it

using our approach described in Chapter 3. Our segmentation algorithm is feature-based,

in that it makes its selections based on a supplied feature function and is intended then to

select segments for maximizing the representation quality of that feature. Our segmentation

algorithm not only selects segmentation locations but also returns the extracted feature as

part of the same process. Though the merge selection for our algorithm is greedy, it is

extendible in such a way as to allow for simple implementation of much more intelligent

heuristics.

In Chapter 5, we present our conclusion and some discussions which include limitations

and some future work.
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In Appendix A, we discuss the software developed for our perceptual experiments in

Chapter 2. Developed in Java, the software includes user tracking, a simple MP3 player, a

segmentation selection recorder, and randomized instruction delivery, along with a simple

graphical user interface.

In Appendix B, we introduce a framework, Content-based Audio and Music Extraction

Library (CAMEL for short), to allow for fast and easy development of segmentation algo-

rithms in C++. The framework is designed around concepts of simplicity and ease of use.

Though there are several other frameworks available for use in MIR, most are developed

towards providing platforms for high-level functionality, such as visualization, classifica-

tion, etc. Because of this, other frameworks tend to be unnecessarily large and complex

for our purposes. CAMEL implements a core group of the most popular feature extraction

algorithms with a simple programming interface.
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Chapter 2

Psychoacoustic Feature Based Perceptual Segmentation

2.1 Introduction

The most prominent MIR feature extraction functions are developed towards simulating a

specific psychoacoustic feature of the human auditory system. These psychoacoustic fea-

tures include pitch, timbre, loudness, and beat [15] and are called the surface features of

music, as introduced in Chapter 1. In the previous works, segmentation algorithms are eval-

uated by their ability to model the perceptual structure of music: segments of music which

are perceptually meaningful to the human listener. Perceptual segmentation is understood

as the process to understand perceptual structure of music.

In this chapter we conduct a descriptive study in attempts to explore any relationship

between the surface features and perceptual structure of music. Our experiment design

models those of previous works as a means for generating ground truth (See Chapter 1.)

towards segmentation evaluation. We extend the previous experiments by asking subjects

to discern events not only at a structural level but also for the individual surface features.

From our results, we attempt to analyze how the interplay of surface features affects the

perceptions of structure. 1

As identified by one early psychological work [17], perceptual segment boundaries 2

tend to occur at places other than rests, i.e., the starts and stops in a music piece. This in-

dicates that a mixture of change in the surface features of music defines the boundaries

in perceptual music structure. Many previous studies attempting to develop automatic

segmentation algorithms have noted that a lack of knowledge into the importance of the

1This chapter is an extended version of our work in [9].
2Note that we often use the term segment in reference to a segment boundary since the former can be

represented by the latter and vice versa.
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individual surface features limited their ability to develop better algorithms [31, 55].

Furthermore, the evaluation of these segmentation algorithms is dependent on an as-

sumption that there exists a relationship between these surface features and perceptual

structure, as explained in Chapter 1. As aforementioned, it is the purpose of this chap-

ter to explore this relationship.

This chapter is structured as follows. In Section 2.2, we review some of the previous

relevant works in perceptual segmentation experiments on music. Section 2.3 describes the

preparation of our experiment, including the description of the subjects, the music used,

the experiment environment, etc. We present our results in Section 2.4 and analyze them in

Section 2.5. Section 2.6 summarizes the chapter along with some discussions.

2.2 Related Works

Krumhansl [33] conducts a perceptual study investigating the relationship between musical

ideas and perceptual segmentation. The term musical idea is introduced and utilized to

identify any position which includes a change in features of rhythm, pitch, register and

dynamics. Note that musical idea introduced is strongly related to the notion of musical

surface features, as mentioned above.

As a result of this work, it is discovered that there exist significant correlations between

perceptual segmentation and musical ideas. This supports the assumption to some extent

that perceptual structure is defined by changes in perceptual surface. However, Krumhansl

notes that, in music, there exist more musical ideas than segments. As such, it is apparent

that changes in musical ideas do not automatically denote a perceptual segment. Therefore,

either individual musical ideas have varied amounts of importance or some combination of

change over them must occur to determine a segmentation event.

Most perceptual segmentation experiments are conducted with the assumption that a
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larger number of subjects selecting relatively the same position for a segment boundary

increases the likelihood of that position being a good segment boundary. Bruderer [12]

attempts to verify this assumption of correlation between the number of segment bound-

ary indications by subjects and the saliency (or perceptual importance) of the boundary.

To accomplish this, two perceptual experiments are conducted. The first, similar to pre-

vious perceptual segmentation experiments, asks subjects to split music into meaningful

segments. The second experiment asks subjects to rate the saliency of the splits (the seg-

ment boundaries) produced in the first experiment. Bruderer finds that there is, in fact, a

correlation between subject agreement on a segment boundary and its saliency.

However, because every position, when selected as a segment boundary, has some de-

gree of saliency, it is concluded that, at least in terms of perception, “segments are not just

Boolean truths but rather are represented by positions and their associated saliencies.”

The majority of previous works on developing segmentation algorithms have, as a

means of developing ground truth for segmentation evaluation, also run perceptual seg-

mentation experiments [22, 30, 31, 43, 44, 55]. In order to present greater depth on their

algorithms, discussions of the perceptual segmentation experiments are typically limited.

Despite the limited amount of analysis on the perceptual segmentation experiments, several

of these works have yielded key results.

In their early work in the area, Tzanetakis and Cook [55] discover that humans are con-

sistent in their selection of segments. However, they extend this discovery by identifying

a need to understand how each statistical feature, which represents some surface feature,

should be weighted to better simulate human perception of music. Jian et al. [31] also

distinguish the issue of selecting weights for statistic features as critical and, as a result,

develop an individualistic feature weighting system to compensate for the lack of under-

standing in weighting. These works exemplify the need for further understanding into the

relationship between the perceptual segmentation and the perceptual surface of music.
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Conventionally, these studies ask subjects to segment music according to their own

understanding of what a meaningful segment is. Our work, however, invites subjects to

segment on individual surface features for comparisons against the more conventional per-

ceptual segmentation. This will enable us to analyse perceptual segmentation in such a way

as to reveal more insight into the relationship between perceptual surface and perceptual

structure. To the best of our knowledge, there has been no previous study towards this end.

2.3 Experiment Setup

2.3.1 Human Subjects

For our experiments we select a total of 67 subjects, where 16 are male and 51 are female.

The ages range from 17 to 54 years and have a mean of 23.1 years.

The musical skill of subjects is tracked as a self-reported judgement on a scale of 1 to 5.

The exact definitions of the scale are reported in Table 2.1, where each number represents

a distinct increase in exposure to music.

While musical skill has been repeatedly [12, 33] shown not to have any effect on sub-

jects’ abilities to select salient segments, we collect this information to show that our sub-

ject pool is unbiased. In our analysis, we find that the majority (∼50%) of subjects claim to

have a skill level of 3 while very few claim to have a level of 1 or 5. Therefore, the musical

skill of our subjects mimics the behaviour of a normal distribution, which is desirable when

conducting statistical experiments over a population.

We select the four aforementioned surface features, i.e., pitch (P), timbre (T), loud-

ness (L), beat (B) and one additional feature, global(G). The feature global defines the

generalized structural segmentation of music wherein subjects are asked to find meaning-
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Level Skills Description
1 Just Never played or studied music

listens to any degree. Only experienced
music through listening.

2 Played Casually played an instrument
some or tried to learn on its own

but have never taken lessons.
3 Took Took some lessons and learned

lessons the basics of an instrument
(including singing) or played
in a casual band regularly for
some period of time.

4 Trained Specialised and excelled in
musician an instrument or played

professionally.
5 Music Educated in music theory.

major

Table 2.1: Music skill levels and definitions.

ful positions of change.3 For the full definition of each of the five (5) features used see

Table 2.2.

We select a collection of eight (8) songs (to be discussed further in Section 2.3.2) for

our experiments. However, to avoid over-training effects, subjects are only asked to listen

to each song once, and, each time, for a different feature.

This follows the within-subject experiment design suggested by Levitin [15]. Within-

subject experiments require that subjects take part in each of the different situations instead

of splitting them into isolated groups. It is important to have at least 5-10 sets of unique

data for each situation. For our experiment setup, since each subject only listens to each of

the eight songs once, it takes five (5) subjects to create a single complete set of data, i.e.,

for each song for all the five features. On average there are 13.7 subjects participating in

each song-feature test case. The numbers of subjects for each pair is reported in Table 2.3.

3We use the term global in our discussions to avoid preconception and confusion caused by the word
“structure”, as discussed in Chapter 1.
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Instruction Label Instruction Text Common Boundary Cue Descriptions
Pitch Pitch is the property of Melody, Tone, Jump/Fall in

a sound that allows the Register, Key.
construction of melodies

Timbre Timbre is a measure of Instrument, Voice, Mood/Feeling,
tone quality or colour Texture.

Loudness Loudness is the feature of Volume, Level, Stops/Starts,
a sound that is the primary Dynamic.
psychological correlate of
physical strength.

Beat Beat is a measure of Tempo, Speed, Pace, Rhythm
rhythmic periodicity

Global Typically associated as the Phrase, Part, Section,
beginning of a new idea of Verse, and Theme.
of the music or a significant
change to the sound.

Table 2.2: The description for each feature. Cue descriptions are from [12].

The subjects are instructed not to feel pressured to make selections if they feel that none

exists. In such a case, those subjects are not to mark any segment selections and will not

be counted as participating in that song-feature pair.

ID P T L B G Avg
Jaz 14 14 11 17 12 13.6
Pop 16 16 17 15 13 15.4
Eth 12 15 12 14 16 13.8
HaR 12 12 16 13 14 13.4
Ele 15 9 13 12 14 12.6
Cla 17 13 15 11 14 14
Pun 13 14 14 12 12 13
Roc 14 17 13 12 13 13.8
Avg 14.13 13.75 13.88 13.25 13.5

Table 2.3: The number of subjects participating for each song and each feature.
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2.3.2 Stimuli

The songs are a selection of eight (8) full polyphonic pieces (see Table 2.4) taken from

the MIREX genre classification competition library which can be freely found on the web-

site [19]. According to Bruderer [12], polyphony should have little effect on subjects’

abilities to make quality segment selections.

To compensate for the facts, (1) that different styles of music might be more complex

for subjects to identify structure in (as identified by Bruderer [12]), and (2) that musical

styles might affect relationships between musical surface and structure, each song is se-

lected as a subjectively representative of different genre of music.4 As a result of this

representativeness and for the sake of convenience, we hereby refer to songs by the genres

they represent.

ID Song Title Artist Album Genre Length
Jaz Needs a Scott Steps Jazz 5:27

Bridge Hill
Pop Nocturne The West Nocturne Pop 5:16

Exit
Eth Didar Kourosh Peacefull Ethnic 3:42

Zolidar Planet
HaR Release Spinecar Passive Hard Rock 4:11

Aggressive
Ele Bass Domased Return Back Electronic 5:32

Vibrations
Cla Albinoni Le Per Monsieur Classical 2:23

Serenissima Pisendel
Pun Perfect Electric Listen Up, Punk 3:57

Crime Frankenstein Baby!
Roc The Best Tom Paul I Was King Rock 3:14

In Me

Table 2.4: The songs selected and their associated genres and lengths.

4While genre has been identified as a weak representation for classification of music [6], we do not intend
our results to divulge information regarding the individual genres themselves. Rather, we use genre labels to
show the non-uniformity in the musical styles of the songs we have selected.
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2.3.3 Apparatus

Over-the-ear headphones are used in order to counter for reverberation and noise pollution,

as identified in [15]. Subjects are instructed to adjust the volume to a comfortable level

before beginning the experiment. The experiments are conducted on a custom-made Java

program which provides the definition for the current feature the subjects are to listen for

(as per Table 2.2), the standard music player controls, and a segmentation marking button.

At no time does the program return additional auditory feedback or any extent of extraneous

visual feedback, to minimize distractions. For a full description of the program developed

for our perceptual experiments, including screenshots, see Appendix A.

2.3.4 Procedure

The subjects are instructed to divide a song into smaller meaningful pieces (as per Brud-

erer [12]) based on a specific feature of music. They are explicitly told that there are no

correct answers and everything is purely based on their own perception. They are also in-

structed not to feel pressured for time. At the beginning of each song a subject is presented

a set of instructions that they are meant to read before listening. These instructions present a

description of the feature for which they are currently listening. Furthermore, these instruc-

tions should help counter audio fatigue and the carry-over effect (i.e., the mood created by

listening to some audio carries over to the next and can affect the subject’s perception) as

suggested by Levitin [15]. The subject is then instructed to hit a button each time that s/he

believes a significant change has occurred according to the current feature. The instructions

presented include the most common cue descriptions discovered for each psychoacoustic

feature as discovered by Bruderer [12] and reported in Table 2.2.

The segmentation data for all subjects is then compiled into a master data file. Subjects’
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segments which coexist within a given amount of time difference, called a window (to be

discussed shortly), are considered to be in agreement. Bruderer [12] shows that a high

level of agreement within a window corresponds to a strong correlation to the saliency of a

segment.

The size of an “optimal” window depends on the song and the feature currently selected.

Krumhansl [33] uses a window size of 2 beats while Bruderer [12] cites that an “optimal”

window size of 1.25 seconds was “in the same range as the one used in the majority of

previous studies.” A study by Bharucha and Stoeckig [10] finds that a reaction time of

half (0.5) to one (1) second is needed to identify a single-note change. However, marking

structural segments in polyphonic music is a far more complex task. To compensate for

polyphony, other experiments [12] ask subjects to listen to the music ahead of time to

create a measure of musical expectancy and lower the reaction time.

For the above reasons, when collecting and analyzing the results in our experiments,

we evaluate all window sizes from one (1) to three (3) seconds, with each second divided

into units of hundredths. Agreement among segment selections is calculated for each song-

feature pair. The window size resulting in maximum agreement while minimizing the

number of required windows is selected to report as “optimal”. By this method, we have

a variable “optimal” size and number of segments for each song-feature pair. Segments

with less than 1/3 agreement among all subjects are ignored as noise. The window sizes

for all song-feature pairs are reported in Table 2.5 and the respective numbers of windows

are shown in Table 2.6.
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ID P T L B G Avg
Eth 158 100 247 126 200 166
Jaz 296 124 253 259 257 238
HaR 100 100 166 129 212 141
Ele 100 178 223 119 189 162
Cla 192 174 276 196 252 218
Pop 182 283 223 113 100 180
Pun 184 179 122 100 100 137
Roc 121 228 100 187 100 147
Avg 167 171 201 154 176

Table 2.5: The window size used for each song-feature pair in hundredths of a second.

ID P T L B G Avg
Eth 32 9 4 11 11 13.4
Jaz 24 11 9 18 10 14.4
HaR 14 21 18 15 11 15.8
Ele 23 23 20 21 19 21.2
Cla 13 10 8 6 7 8.8
Pop 14 15 19 11 16 15
Pun 16 18 13 11 13 14.2
Roc 12 10 8 8 6 8.8
Avg 18.5 14.63 12.38 12.63 11.63

Table 2.6: The number of windows as used for each song-feature pair.
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2.4 Experiment Results

2.4.1 Segment Saliency

Saliency of a segment for each song-feature pair is calculated as the average agreement

over it. To calculate saliency, we slide a window of a given size across a list of the subjects’

segments for a song-feature pair. The window which contains the maximum number of

selections is declared a segment. The saliency of a segment is then calculated by the number

of selections in that window divided by the total number of subjects participating in testing

that song-feature pair. In the situation where a single subject has multiple selections falling

within a single window, only one of them is counted.

Since saliency and agreement are highly correlated [12], we use saliency to describe

both. The saliency for all the song-feature pairs from our experiments is reported in Ta-

ble 2.7 and their analysis is described in Section 2.5.

Figure 2.1: The agreement of selections by the 14 subjects over a Rock song using a win-
dow of 1 second.
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As an example, the segmentation of a Rock song for the feature global is shown in

Figure 2.1. It is obvious that there are six (6) salient segments selected above the noise

threshold set at four (4).

ID P T L B G Avg
Eth 0.5 0.69 0.64 0.57 0.62 0.60
Jaz 0.5 0.51 0.58 0.48 0.52 0.52
HaR 0.45 0.55 0.6 0.6 0.61 0.56
Ele 0.57 0.67 0.58 0.58 0.72 0.62
Cla 0.45 0.43 0.58 0.42 0.5 0.48
Pop 0.59 0.72 0.58 0.53 0.63 0.61
Pun 0.5 0.56 0.55 0.52 0.65 0.56
Roc 0.46 0.61 0.59 0.65 0.7 0.60
Avg 0.50 0.59 0.59 0.54 0.62

Table 2.7: The average saliency over all segments in each song-feature pair.

2.4.2 Feature Correlation

In order to calculate the correlation between our perceptual song-feature pairs, we create a

correlation function. Our function matches the closest segments between two song-feature

pairs, within a given window. We then weigh their difference in position against their

combined saliency to create a correlation value.

Let A[i] denote the i-th segment for a given song A under a feature. Function S(·)

returns the saliency of a given segment, function P(·) returns the position (in hundredths of

seconds) of a given segment in a song, and function M(A[i],B) returns the index of the best

matched segment in song B for i-segment in song A. With these functions, given two songs

A and B, we calculate the weight between the i-th segment in A and B using:

Wt(A[i],B) = S(A[i])+S(B[M(A[i],B)]) (2.1)
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Note it may be possible that there is no segment in B matching the i-th segment in A. In

this situation the second part of the weight calculation returns 0.

For the i-th segment in song A we need to calculate the correlation based on position

such that a larger distance between A and B on the i-th segment corresponds to a smaller

positional correlation (PC for short). This is accomplished using function

PC(A[i],B) = (w− | P(A[i])−P(B[M(A[i],B)]) |) (2.2)

For our experiments we set window size w to be three (3) seconds since it is the maxi-

mum size tested. In the case where no matching segment is found in B for A[i], PC(·) returns

0. From this, we calculate a saliency-weighted one way correlation (OWC for short) from

A to B using function:

OWC(A,B) =
1
n

n

∑
i=0

(Wt(A[i],B)∗PC(A[i],B)). (2.3)

This calculates the distance between two songs in terms of their segments’ saliency,

where n is the number of salient segments in song A. It is obvious that OWC(A,A) achieves

the maximum.

We then calculate our total correlation between a particular song-feature pair for songs

A and B.

Correl(A,B) = 1/2
(

OWC(A,B)
OWC(A,A)

+
OWC(B,A)
OWC(B,B)

)
(2.4)

For each song we calculate the correlations among features. Through these correlations,

we are looking for a consistent pattern over the various genres such that we can exploit

it for development of segmentation evaluations. The results are collected and reported in

Table 2.8 for Ethnic, Table 2.9 for Jazz, Table 2.10 for Hard Rock, Table 2.11 for Electronic,
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Table 2.12 for Classical, Table 2.13 for Pop, Table 2.14 for Punk, and Table 2.15 for Rock.

We also report the average of these tables in Table 2.16. These results are analysed in

Section 2.5.4.

2.5 Experiment Analysis

2.5.1 Window Sizes

As previously mentioned, we define the window to be the area in which subjects have se-

lected segments that are considered to represent a single position within the music. The

sizes of these windows are dynamically allocated based on a function of maximizing per-

ceptual segment saliency while minimizing the number of segments. This means that each

song has a variable “optimal” window size. From these window sizes, reported in Ta-

ble 2.5, we observe certain patterns. One of the most interesting patterns is that the faster

beat songs (such as Punk, Rock, Hard Rock) have lower average window sizes while the

slower beat songs (such as Classical and Jazz) have larger windows. This confirms the

assumption made by Krumhansl [33] that feature beat is used to determine window size.

Observing the data column-wise allows us to analyze it from a feature perspective.

It is interesting to note that, on average, feature beat has the smallest window size while

feature loudness has the largest. This may have something to do with the reaction times and

expectancy in people over different kinds of features as how they pertain to music structure.

It is also observed that our “optimal” window sizes tend to be high with comparison to

the previous related works. This difference can be accounted for based on the comparative

complexity of our problem or the lack of musical expectancy in our subjects which existed

in many of the previous works.
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2.5.2 Number of Segments

Once an “optimal” window size is selected, it determines the number of perceptual seg-

ments that are to be counted for a given song-feature pair. Therefore, the number of seg-

ments for each song-feature pair is variable, and as such, produces some interesting results.

From Table 2.6, we observe that feature pitch has the highest number of average segments.

This confirms the assumption that, perceptually, feature pitch changes far more often than

other features, such as feature beat. It can also be observed that the lowest number of

segments occurs, on average, for feature global. As explained above, it is assumed that a

mixture of the other features must change in order to define a perceived change in feature

global. Alternatively, the ambiguity of the definition for feature global could also explain

the low count. However, the saliency of feature global, to be discussed below, refutes this.

Observing the data from a song perspective, we find that the slower Classical song has

the least number of segments on average while the faster Electronic song has the highest.

This is a direct result of the window sizes being correlated with feature beat as explained

in Section 2.5.1. It is surprising however that the Rock song has equally as few segments

on average as the Classical song. Perhaps this is due to the clearly defined stereotypical

structure of the Rock song contributing to musical expectancy.

With respect to individual interesting song-feature pairs, we observe that there is an

especially low number of segments recorded for feature beat with respect to the Classical

song. This result is especially interesting because we find in Table 2.12 that beat is one

of the most important features for defining perceptual structure (feature global) for that

song. Another interesting result from the number of segments in Table 2.6 is that the least

number of segments occurs in loudness with respect to the Jazz song but the most number

of segments occurs in feature pitch with respect to the same song. This may have something

to do with the high amount of variations and complexities in the Jazz song.
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2.5.3 Segment Saliency

The saliency of a segment is the number of subject selections made within that window di-

vided by the number of subjects participating in the song-feature pair. Because this value is

dynamic for each segment we average it for all salient segments (that is, segments which are

above our noise threshold) and report it for each song-feature pair in Table 2.7. These re-

sults give us a rough concept of the quality of our segments, as explained by Bruderer [12].

From a song perspective, we notice the Classical and Jazz songs have the lowest average

saliency. This observation could be explained because of the weakly identifiable structures

or variability and complexity inherent in the styles of music. To support this, the highest

saliency is found among those songs which are of highly predictable perceptual structure,

such as the one in the Rock, Pop, and Electronic songs.

In terms of features, it is interesting to see that the highest saliency is associated with the

ambiguously defined feature global. Recall the definition of feature global in Section 2.3.1.

This lends support to the notion that a consistent and definable perceptual structure does

exist. However, this does not mean that such a structure can be defined by any single

function. It is also interesting to note that feature timbre has the next highest saliency. This

is consistent with much of our following results where feature timbre is the most relevant

feature, on average, for determining perceptual structure. Feature pitch has the lowest

saliency and subjects are noted to have commonly claimed that it is the most challenging

of the five features on which to identify structure.

2.5.4 Feature Correlation

We also look at the data in more detail for each song. For each of the songs, we can see the

relationships among the various features. We expect that a certain amount of correlation
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should exist between any feature pairs. However, in our results there are certain cases

which are more interesting, and in this section we attempt to highlight them. Ultimately,

we hope to find a set of consistent relationships among our results such that we can define

a correlation between perceptual surface and structure of music.

P T L B G
P 1 0.81 0.86 0.66 0.71
T 0.81 1 0.72 0.74 0.73
L 0.86 0.72 1 0.73 0.68
B 0.66 0.74 0.73 1 0.61
G 0.71 0.73 0.68 0.61 1

Table 2.8: The correlation matrix of features for genre Ethnic.

From Table 2.8, we see a high correlation between features of loudness and pitch, fol-

lowed closely by a high correlation between features timbre and pitch. However, there is a

low correlation between feature pitch and feature beat. This probably explains the slightly

lower correlation between features of pitch and global.

Despite this, it makes sense that feature pitch would be important as it is the main

element in the melodic-based music used for the Ethnic song. We find that feature timbre,

closely followed by feature pitch, contributes the most to the perceptual structure of Ethnic

music.

P T L B G
P 1 0.54 0.52 0.43 0.49
T 0.54 1 0.63 0.58 0.59
L 0.52 0.63 1 0.46 0.55
B 0.43 0.58 0.46 1 0.50
G 0.49 0.59 0.55 0.50 1

Table 2.9: The correlation matrix of features for genre Jazz.

In Table 2.9, we show our results for the Jazz song. Here, feature timbre correlates

highest to defining perceptual structure of music. Timbre is a measurement of sound texture

29



and, since the Jazz song bases its structure around changes in instruments, it makes sense

that feature timbre would have a high level of precedence when it comes to describing

perceptual structure. We also find that feature timbre correlates highest towards the other

features, highlighting its importance in determining their roles as well.

P T L B G
P 1 0.80 0.74 0.71 0.75
T 0.80 1 0.86 0.77 0.82
L 0.74 0.86 1 0.76 0.78
B 0.71 0.77 0.76 1 0.70
G 0.75 0.8 0.78 0.70 1

Table 2.10: The correlation matrix for genre Hard Rock.

For the song representing Hard Rock, our results in Table 2.10 show that feature timbre

once again presents the highest correlations to all other features. This is especially true

with its correlation to feature loudness. This finding seems practical since our Hard Rock

song is defined by its loudness and texture. The overall perceptual structure of our Hard

Rock song seems to be most heavily correlated with feature timbre, closely followed by

feature loudness.

P T L B G
P 1 0.70 0.64 0.69 0.73
T 0.70 1 0.70 0.72 0.75
L 0.64 0.70 1 0.75 0.72
B 0.69 0.72 0.75 1 0.78
G 0.73 0.75 0.72 0.78 1

Table 2.11: The correlation matrix for genre Electronic.

As would be expected from our Electronic song, we find that its perceptual structure

is correlated with feature beat. In Table 2.11, we can see that feature beat also correlates

highly to the song’s features of loudness and timbre. Only feature pitch is slightly more
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correlated with other features than beat. Secondary to feature beat we find that feature

timbre once again defines perceptual structure in our Electronic song.

P T L B G
P 1 0.74 0.53 0.62 0.49
T 0.74 1 0.69 0.59 0.52
L 0.53 0.69 1 0.70 0.52
B 0.62 0.59 0.70 1 0.62
G 0.49 0.52 0.52 0.62 1

Table 2.12: The correlation matrix for genre Classical.

From Table 2.12, we find it interesting that the Classical song has its perceptual struc-

ture most heavily correlated with feature beat. This is especially interesting, if we consider

that feature beat has so few perceptual segments for the Classical song. There is also a high

correlation between feature pitch and feature timbre as well as between feature loudness

and feature timbre. This reliance on feature timbre is understandable since our Classical

song has its structure based in the addition of new instruments or changes in the texture and

loudness.

P T L B G
P 1 0.68 0.76 0.84 0.77
T 0.68 1 0.75 0.85 0.79
L 0.76 0.75 1 0.86 0.83
B 0.84 0.85 0.86 1 0.90
G 0.77 0.79 0.83 0.90 1

Table 2.13: The correlation matrix for genre Pop.

As we might expect, as shown in Table 2.13, our Pop song’s perceptual structure is,

by far, most heavily correlated to feature beat. In fact, according to the table, all features

are heavily correlated to beat. This tells us that the perceptual structure based on any other

features is largely controlled in some way by feature beat. Feature beat is followed by

feature loudness in high correlation to perceptual structure.
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P T L B G
P 1 0.61 0.65 0.71 0.62
T 0.61 1 0.75 0.76 0.83
L 0.65 0.75 1 0.68 0.74
B 0.71 0.76 0.68 1 0.79
G 0.62 0.83 0.74 0.79 1

Table 2.14: The correlation matrix for genre Punk.

In Table 2.14 we show our results for our Punk song. Again, we find that feature

timbre is the highest correlated to feature global. This result is followed closely by a high

correlation of feature beat to feature global. We also note that there is a strong inter-

correlation between features of timbre, loudness, and beat. However, of great interest is the

unique relationship between feature pitch and feature beat as shown in the table.

P T L B G
P 1 0.65 0.70 0.47 0.59
T 0.65 1 0.69 0.63 0.69
L 0.70 0.69 1 0.69 0.66
B 0.47 0.63 0.69 1 0.66
G 0.59 0.69 0.66 0.66 1

Table 2.15: The correlation matrix for genre Rock.

With respect to our Rock song in Table 2.15, we observe that all features tend to corre-

late to feature loudness. As is the common case, however, we find that feature timbre is the

most predominant feature when it comes to correlations to feature global.

2.5.5 Averaged Correlations

In our quest to find a unifying function by which to relate the various perceptual surface

features and perceptual structure, we aggregate the data in the tables from the previous

section. This result is reported in Table 2.16, where we find feature timbre is the most
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highly correlated surface feature when it comes to perceptual structure. It also seems clear

that features timbre, loudness, and beat are all highly correlated to one another. Feature

pitch, on the other hand, seems to be the least relevant towards perceptual structure in the

average case. However, we note that feature pitch is important in some specific styles of

music, such as Ethnic and also is independent from the other features, making it equally

interesting.

P T L B G
P 1 0.69 0.67 0.64 0.64
T 0.69 1 0.72 0.70 0.72
L 0.67 0.72 1 0.70 0.68
B 0.64 0.70 0.70 1 0.70
G 0.64 0.72 0.68 0.70 1

Table 2.16: The correlation matrix for all features for all genres.

2.6 Summary and Discussions

Many of the results found in our experiments coincide with our intuition. For example, the

driving perceptual feature of Electronic and Pop is beat. Such results in turn give support

our experiments.

In our analysis, we have found that, when determining window sizes in order to group

subjects’ perceptual segments, the amount of time needed is variable, dependent on the

feature and style of the music. In the general case, it appears that, the faster the beat

the smaller the window size that is needed. As a result of this, we also observe that the

number of segments tends to increase with the speed of the beat. From these results we

conclude that feature beat plays a dominant role in the development of window size when

perceptually segmenting musical data. This also implies that human reaction time, which

is closely related to window size, is somehow linked to the beat of the music.
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From our saliency of subjects segment selections, we observe that feature global main-

tains the greatest amount of agreement but also tends to have the lowest number of seg-

ments. This tells us that subjects have a much easier and more consistent time recognizing

the general structure of music without considering other individual surface features. We

further note that among the surface features, timbre has the highest saliency while feature

pitch has the lowest. This means that the structure of music is easiest to recognize per-

ceptually in terms of feature timbre and is the most challenging in terms of feature pitch.

Perceptual structure is also better recognized in styles of music which have straightforward

and predictable forms, such as Pop or Rock. For styles of music which are more variable

and complex in form, such as our Jazz and Classical song, we find subjects have a greater

challenge.

In support of using human experimentation for segmentation evaluation we have found

that subjects are able to consistently discern perceptual structure in music, especially in its

generalized global form. However, there is no apparent individual pattern which carries

over between the feature correlation tables for all styles of music. Therefore, we can only

take conclusions from the aggregated cases. That is, on average, feature timbre appears to

have the greatest association with perceptual structure.

However, it would be naive to ignore some specific results, which show that certain

styles of music are not perceptually represented in terms of feature timbre. For example,

in terms of the Electronic song, its perceptual structure is better defined by surface features

beat and loudness.

Therefore, it does not appear that there is any single exploitable relationship between

the psychoacoustic surface features and the structures of music. Such a relationship seems

to be variable, dependent upon musical style. Therefore, we find no apparent justification

for deriving a correlation between the segmentation towards perceptual structure and the

feature extraction towards perceptual surface, as shown in Figure 1.2.
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While using human perception as a framework for ground truth might be the classical

option, contrary to the study by Martin et al. [39], it is not necessarily the desirable solu-

tion when it comes to segmentation. Until an exploitable relationship between perceptual

surface and structure can be found, we cannot claim that segmentation, which simulates

perceptual structure, is advantageous in terms of supporting feature extraction, which sim-

ulates surface features.

For this reason, a new method is required to evaluate segmentation based on their effects

on feature extraction. This is the purpose of the next chapter in this thesis.
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Chapter 3

An Objective Evaluation of Segmentation Quality

3.1 Introduction

Segmentation is the process of separating a music piece into self-similar segments such that

high quality representative statistics can be extracted from them, as introduced in Chapter 1.

Traditionally, the evaluation of segmentation algorithms has relied on human perceptual

experiments in which subjects are asked to segment music based on their own perception

of the musical structure.

Jensen [30] states that segmentation has an “inherent perceptual and subjective nature”.

However, as explained by Tichy [53], human experimentation should only be used when

the implication of insights to be gained outweighs the costs of human-involved studies.

In the case of perceptual segmentation, any insights of a music piece can only come at a

perceptual level, which may not reflect an understanding of the music data itself. The costs

associated with human experimentation as a means to generate adequate ground truth for

segmentation are enormous. The primary cost is the time expense in terms of the labour

intensive task. This cost is, furthermore, unreasonable relative to the size and quality of the

result obtained. Due to the multitude of limitations in human experimentation, it is more

desirable to seek alternative approaches for evaluating segmentation algorithms.

In this chapter, we will propose a novel and objective approach for evaluating segmen-

tations. The effectiveness of our approach is demonstrated through experiments. The merit

of our approach rests on allowing segmentations to be evaluated against an objective and

independent ground truth instead of human perception.

The chapter is organized as follows. In Section 3.2, we will review related works in

the area. Section 3.3 further discusses the current challenges we face when evaluating seg-
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mentations. Section 3.4 introduces our objective approach to the problem. In Section 3.5,

we will set up our experiments to support the effectiveness of our approach. Section 3.6

reports our results and provides analysis. Finally, Section 3.7 summarizes our work with

discussions and future work.

3.2 Related Works

3.2.1 Automatic Segmentation

Most proposed segmentation algorithms are modelled around the detection of “significant”

local changes. The basic structure of this approach can be outlined in a series of steps.

First the data is cut into frames, i.e., small units of equal length (or dynamic if short-

term segmentation is used). A set of features are then extracted from each frame, which

are then used to measure the difference between adjacent frames. After that, locations

of maximal changes are considered “good” for segmentation. Variations of the approach

usually consider different features to be extracted and the detection methods of changes.

Tzanetakis and Cook [55]1 develop an automatic segmentation algorithm following this

general method. Features including Spectral Centroid, Spectral Flux, Zero Crossing Rate,

and Root Mean Squared Energy are considered and represented as feature vectors. Using

the derivative of the distance function between the feature vectors over adjacent segments,

top-k segments are selected. Although it is claimed that the approach is not modelled

based on the human auditory system, the segmentation quality is evaluated against a per-

ceptual segmentation experiment. Jian et al. [31] follow a similar approach but use features

of roughness, periodicity pitch and loudness. Unlike the work in [55], Jian et al. use a

1As mentioned in Section 1.6 we use many references repetitively. However, each use concentrates on a
perspective which supports the theme of the chapter in which it resides.
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ranking algorithm to seek locations of individual features where maximal changes occur.

Segmentation evaluation is also done against a manual perceptual experiment.

Foote’s work in [22] describes an algorithm which uses a similarity matrix between

adjacent frames in the FFT log magnitude spectrum [38]. It uses a kernel to find a measure

of self-similarity and cross similarity within the matrix. The difference between these sim-

ilarities gives a novelty score. The locations corresponding to the extremes of the novelty

scores are used for segmentation. The work does not report any measurement of segmen-

tation accuracy. Both Peiszer et al. [43] and Ong [42] design experiments using similar

approaches as above and, in addition, they both use perceptual segmentation experiments

for evaluation. Other approaches can be found in [30, 57] and are discussed in greater detail

in Chapter 4.

3.2.2 Perceptual Segmentation Experiments

Krumhansl [33] conducts an experiment showing how subjects relate perceptual segmenta-

tion to musical ideas. Musical ideas are defined to be changes in a combination of rhythm,

pitch, register, and dynamics. It is found that there is a strong correlation between percep-

tual segmentation and musical ideas and, in general, the former is a subset of the latter.

Bruderer [12] shows the long-held assumption that a strong agreement among percep-

tual segments correlates to a strong perceptual saliency of those segments. It is also shown

that there is little relation between a subject’s musical skills and her/his ability to pinpoint

salient segments.

Our perceptual segmentation experiments in Chapter 2 show, among other things, that

the number of segments, the size of agreement window, and the saliency of segments vary

greatly based on musical styles and features used.
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3.2.3 MIR Benchmarks

Due to the concerns that research in MIR is not objective in its current state, Downie [18]

organises an MIR/MDL evaluation project, calling for the need for standardized collections

of music and retrieval metrics. Various criteria and approaches are proposed and discussed,

such as developing a benchmark collection of music data for experimentation [24, 45, 46].

While such a benchmark would greatly help the task of evaluating segmentations, it is ex-

tremely challenging to compose a collection which is universally available and holistically

representative of music. As noted by Tichy [53], the ultimate subjectivity of collection

composition makes it inherently the weakest part of any benchmark. Furthermore, the de-

velopment of a standardized collection does not inherently derive a standardized method of

segmentation evaluation.

Abdallah et al. [1] use a measure of evaluation based on comparisons between segmen-

tations annotated by human experts and those from their segmentation algorithm. The com-

parison is formed through a directional Hamming distance between segments by matching

best candidates, or segments with maximum overlap. The sum of the differences between

each of the matched segments creates the directional Hamming distance between them

which is then normalized to the length of the overall track. By generating the matching

from the two different directions, that is, matching the ground truth to their algorithm’s

output and vice versa, they are able to generate both measures of the missing boundaries

and of extra boundaries.

In addition, the same work [1] proposes a second method which calculates an information-

theoretic measure over the same ground truth. It accomplishes this measure by assigning

labels to each segment in the ground truth and its algorithm’s output. In one direction, by

calculating the conditional entropy from the ground truth to their algorithm’s output, the

work obtains a measure of the amount of segments missing in the output. From the other
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direction, calculating the conditional entropy from its algorithm’s output onto the ground

truth, it generates a measure of the number of extra segments in its output. It also points out

some limitations of basing the segmentation evaluation method on ground truth developed

by a human expert. Specifically, “the expert’s segmentation should not be taken as Platonic

truth: equally valid segmentations, depending on the application, can be formed at greatly

different time scales; in addition, in real music there is often a degree of ambiguity as to

the exact point of transition between one segment and the next: an ambiguity which was

not reflected in the expert’s judgement.”

Lukashevich [37] extends the information-theoretic method described by Abdallah et

al. [1] for the evaluation of segmentation algorithms. The proposed method generates two

scores called “over-segmentation” and “under-segmentation”, which map the false posi-

tives and negatives that occur during the matching between automatic segmentations and

human segmentations. The scores are normalized to show whether the matching is per-

fect or not. Lukashevich addresses and attempts to handle the limitation of using the pure

conditional entropies, which returns a non-negative score with an unrestricted maximum,

making comparison of scores between songs meaningless. To compensate, Lukashevich

normalizes the conditional entropies by the maximal conditional entropy for a song under

question.

Lukashevich’s work [37] is unique in its sole purpose of standardizing a method of eval-

uation for segmentation. However, it is still dependent on the weakness of human subjec-

tive segmentations. Lukashevich states that, like the one in Abdallah et al. [1], the ground

truth for his method is annotated by an “expert” instead of using a perceptual segmentation

study. However, he does not mention what defines an “expert.” Several works [11, 12, 33]

have shown that human skill level with music has little or no influence on their ability to

select consistent and accurate perceptual segmentations. As such, there is little difference

between using human experts or experimentation (involving multiple subjects) to generate
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ground truth. As explained by Bigand and Poulin-Charronnat [11],the extensive exposure

to music in everyday life has transformed non musicians to become “experienced listeners”

who are not so different from musically trained listeners. In addition, Tichy [53] outlines

the dangers of using experts over experimentation, specifically citing that it is unscientific

to rely on ”so-called experts who fail to support their assertions with evidence.”

To the best of our knowledge, no standardized approach, which is not based on gener-

ated ground truth via human perception, either from experts or experimentation, has been

proposed for evaluating segmentation algorithms.

3.3 Issues Related to Current Segmentation Evaluations

A key challenge to segmentation is an unbiased evaluation method by which segmentation

quality can be measured and compared. Qualitative evaluation is difficult [22, 54], due to

the plethora of data sets, features selected, and various parameters. As stated by Lukashe-

vich [37], the evaluation of “song segmentation algorithms is not a trivial task” and “there

is no commonly established standard way of performing a segmentation evaluation.”

3.3.1 Perception-Based Evaluations

In this section we discuss the potential deficiencies of the previous segmentation evaluation

approaches, where evaluations are conducted through perceptual studies, i.e., subjects are

asked to manually annotate a set of music for comparative purposes. It is for these reasons

that the costs of human perceptual studies outweigh the potential insight and ground truth

provided by them.
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Reaction Time

The first issue stems from a subject’s reaction time, which varies from one to the next. In

perceptual segmentation experiments, subjects are asked to select positions in time which

represent accurate segment boundaries. This presents a challenge in aggregating the se-

lections of multiple subjects down to a single usable set of “ground truth.” The prominent

solution involves finding areas of dense annotations by subjects and considering those as

the selected segments. This, in itself, creates further complexities, such as the definition of

a reasonable size to allow for annotation area (also known as window size, as discussed in

Chapter 2). Bharucha [10] tests the reaction times of subjects on individual pitch changes

and finds that an average of 0.5 seconds is needed before reaction. On real-world poly-

phonic music, such a reaction time would be slower on average. As explained in Chapter 2,

the size of a window for annotation area changes with each individual music piece and

with different surface features. Differences in window size will dramatically change the

segmentation accuracy.

Subjectivity

The second issue in terms of perceptual segmentation studies is the subjectivity of music

structures. The correlation between the perceptual structure of music and the actual data

itself is far from being explored. There have been several studies which relate specific

statistical features to surface features, for example, Mel Frequency Cepstral Coefficients

(MFCCs) to Timber [7] or Spectral Energy Flux to Beat [2]. However, no study has conclu-

sively reported a single representation which completely expresses the human perception

of music and we believe it is unlikely that any such representation exists.

Furthermore, subjects in perceptual experiments are often challenged with the concept
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of what determines a segment position. Typically a description is provided to guide sub-

jects. However, these descriptions are either too generic, leading to ambiguity, or too spe-

cific, resulting in findings which have been predetermined and therefore are an unscientific

selections.

Subjects’ Background

The third issue facing the use of perceptual segmentation as ground truth is the inability

to control many factors influencing each subject’s selections. Subjects’ exposure to music,

musical tastes, age, gender, environment, etc. can all have possible effects on their selec-

tions. To our knowledge, no study has been conducted as how to control these factors or to

measure their effects on perceptual segmentation quality.

Dataset

A fourth issue is the data size and selection involved. Perceptual studies are time intensive

and, as such, are extremely difficult to perform over data sets with sizes that are statistically

significant. One solution to this is to merge results from multiple perceptual studies, as the

one in [43]. However, merging experiments conducted in different environments and under

differing conditions can lead to complications. Data selection is further worsened by a

variety of issues as outlined by Downie [18], such as legal issues, coverage, infrastructure,

etc.

To summarize, as noted by Futrelle [24], an unbiased approach is necessary, such that

different segmentations can be evaluated objectively.
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3.3.2 Classification-Based Evaluation

A second and less common approach for evaluating the quality of a segmentation is through

genre classification. The idea is that a better segmentation algorithm will lead to a higher

genre classification accuracy. This assumes that genre is an objective measure through

which musical classification can be used as a metric. The fallacies of this assumption, how-

ever, are discussed at length in [6] and are directly tested in our work [48]. In essence, genre

classification is a purely perceptual and subjective activity and, as such, no true ground truth

(that is, ground truth which has high agreement) can be achieved. Furthermore, there is no

evidence that increasing accuracy in classification will have any correlation to an increase

in accuracy in other unrelated high-level tasks, such as Music Retrieval.

3.4 An Objective Approach for Segmentation Evaluation

The basis of our approach is that the purpose of segmentation is to maximize a feature-

based representation of an original music piece. Therefore, simulation of human perceptual

structure is not the objective of segmentation, eliminating the need for human experimen-

tation. Note that the importance of maintaining the human perceptual element when ana-

lyzing music is not lost here. But we are shifting the psychoacoustic burden to the feature

extraction step. That is, we are representing human perception of music only through the

feature extraction process.

A simple and naive way of segmenting a music piece is through the process of static

segmentation, i.e., each segment is of a uniform size and the entire piece is divided into

equal portions. Any other segmentation methods2 should at least result in a better repre-

sentation than the static counterpart because of the latter’s naivety towards the data. How-

2For the purpose of this thesis we call them dynamic segmentations
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ever, this does not necessarily mean that a dynamic segmentation is guaranteed to always

perform better. It is theoretically possible that a static segmentation could be “optimal” for

a particular music piece.

Our approach uses static segmentation as a basis for comparison, measuring improve-

ment as a metric for evaluating the quality of a segmentation. This allows us to make

comparisons which always use the same feature extraction functions and the same music

pieces. Furthermore, this approach allows us to easily make comparisons between ex-

periments of different segmentations, which is an acknowledged [37] limitation of other

evaluation methods.

Our approach to evaluating segmentation quality is designed with the following criteria

in mind.

1. Algorithm independence - In order to have a fair evaluation of various segmenta-

tion algorithms, it is desirable that one have a uniform basis for comparison. This

basis needs to be well understood and easily implemented. In this way, for any com-

parison with others’ algorithms, one only needs to implement its own segmentation

algorithm. Therefore, we do not need to compare two segmentation algorithms di-

rectly in order to evaluate them.

2. Evaluation objectivity - Objectively evaluate whether a segmentation increases the

feature-based representativeness accuracy of a music piece.

3. Data independence - Evaluation is not dependent on any specific data set of mu-

sic. Ideally, comparisons between experiments would take place on identical data

sets. However, this can lead to a training bias effect. An evaluation method should

allow for approximate comparison between experiments conducted using different

data sets. Furthermore, the evaluation method itself should not be dependent on the

style of music being used. That is, there should be no inherent requirement in the
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evaluation method that the music have specific qualities, such as “semantically dis-

tinguishable and repeated parts” as expected in [37]. Requirements such as these

limit the usability of an evaluation approach.

4. Feature flexibility - An unbiased evaluation approach should not depend on any spe-

cific feature extraction to be used and should work in any domain of representation,

including statistic, spectral, peak, etc. However, it should be noted that comparisons

made between segmentation algorithms can only work if they are performed using

the same set of features.

In the following discussions, we refer to the diagram of our approach shown in Fig-

ure 3.1.

Figure 3.1: The structure of our evaluation approach.

3.4.1 Original Representation

Given a music piece, comparing the distance from any representation resulting from a

segmentation to its original data implies that we must first describe the original by the

same features. Many feature extractions, such as the one for MFCCs (which involves the
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data from the frequency domain of the given music piece), requires a certain number of data

points from the music piece as the input. Therefore, to create an accurate representation

of the original under which all features can be calculated, we must first partition the data

points from the original music piece into frames of a particular small size. The frame

size must be small enough such that it is insignificant to the sampling rate of the time

domain. We can then extract a feature value for each frame to create a representation of

the original. For the purposes of this thesis, we call these original frames collectively the

original representation for the given music piece.

3.4.2 Comparing against Original Representation

To compare the segment selections from a segmentation with the original representation,

we adopt a simple scoring method.

The objective of the scoring is to measure the distance between a segmentation and the

original. To do so we must guarantee that every part of the original is measured against the

appropriate part of the representation created from the segmentation.

Suppose that we want to evaluate a segmentation for song S on feature f , which is of k

dimensions.

We represent S, through the segmentation algorithm, by S = {S0, S1, · · · , Si, · · · , Sm−1,

Sm}. For each segment selection Si , we apply feature function f on it. For the original

representation of S, we denote it by F = {F0, F1, · · · , Fj, · · · , Fn−1, Fn}. For each original

frame Fj which overlaps with segment Si, we apply feature function f on it.

Consider the Euclidean distance between f (Fj) and f (Si). If Si does not completely

cover Fj, i.e., Fj starts before Si or Fj ends after Si, then we need to multiply the distance

by the percentage that frame Fj is covered. We sum up the distance between selection

segment Si and each frame Fj covered by Si and denote it as D(i, j).
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This summed score over all segment selections is the distance between the original

representation and the given segmentation. The smaller the score, the better the segment

selection.

Figure 3.2: Comparison of a segmentation selection to the original representation (framed).

For example, in Figure 3.2 we denote the start position and end position of frame Fj as

js and je, respectively. We also denote the start position of segment Si with is. To evaluate

the distance between the individual frame Fj and segment Si we can use the Euclidean

distance function:

Eu(Si,Fj) =

√√√√k−1

∑
p=0

( f (Si)p− f (Fj)p)
2 (3.1)

If Fj is not completely covered by Si we must weigh its importance against the percentage

of it covered by Si. To do this we calculate a weighting function:

Wt(Si,Fj) =
je− is
je− js

(3.2)

Note that in Figure 3.2 that the first portion of Fj not covered by Si is in fact covered by the

previous Si−1. However, because its evaluation over the end of the segment Si−1 instead of

the start, its function Wt = (i−1)e− js
je− js

instead, where (i−1)e = is.

If Fj is completely covered by Si then Wt(i, j) = 1. After we have calculated the weight
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we multiply it by the distance to get a weighted distance score which is then summed into

the total distance score between the two representations:

D(Si,F) =
l−1

∑
j=0

Wt(Si,Fj)∗Eu(Si,Fj) (3.3)

where l is the number of frames which are covered by segment Si.

For the entire song S, its distance to the original representation F can now be calculated

using the following equation:

DS(S,F) =
m−1

∑
i=0

D(Si,F) (3.4)

Normalisation of DS is not possible due to our inability to construct a maximum dis-

similarity in a feature space f from the original representation F .

3.4.3 Static Segmentation vs. Dynamic Segmentation

Comparison between a dynamic segmentation and a static segmentation over feature f is

now, given Section 3.4.2, simple, as shown in Figure 3.1.

For a music piece, we must first create a static segmentation which has the same number

of segments as the one output from the dynamic segmentation. We then calculate the

distance, denoted by H, between the static segmentation and the original representation by

following the steps in Section 3.4.2. We do the same for the distance, denoted by C, for

the dynamic segmentation and the original representation. If C ≥ H, then the difference

indicator di = −1 ∗ (1− (H/C)). Otherwise, di = 1− (C/H). It is easy to see that di ∈

[−1,1]. The rational for this difference indicator is, if the dynamic segmentation results in

a distance far away from the original representation, with respect to the static segmentation,

di approaches −1, and conversely, di approaches 1.
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Finally, since we should repeat the above process over multiple music pieces, we aver-

age the difference indicator, for feature f , over all of them. This capability, to summarize

the segmentation score over multiple music pieces, is something other methods have had

difficulty addressing as discussed in [37].

Because the static segmentation and dynamic segmentation are conducted on the same

music piece, using the same number of segments and the same feature function, the com-

parison between them is objective.

3.5 Experiment Setup

In order to show the effectiveness of our objective segmentation evaluation approach, we

have designed some experiments. Chapter 4 provides complementary experiments as well.

For our experiments, a frame size of 512 is used as a parameter to obtain the original

representation. This size is selected due to its conventional use in calculating the frequency

domain for a given music piece in the literature and since our original data is sampled at a

rate of 44100Hz, this size is quite small in comparison.

We use the process described in Section 3.4 to compare the segment selections from our

perceptual segmentation study in Chapter 2. Recall that the study asks subjects to segment

music based on different surface features including Pitch, Timbre, Loudness, Beat as well

as the perceptual recognition of music structure global. In the following, we collectively

call them surface features, for the sake of convenience.

3.5.1 Dataset

For our experiments we use eight (8) polyphonic songs. They are selected as subjectively

representatives of the different genres available in the MIREX genre classification compe-
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tition library which is available online [19]. The songs are shown in Table 2.4. Our results

have no bearing or reliance on the genres themselves. Rather, we use the term genre here

to simply show that we are not picking homogeneous data. For the sake of convenience,

we use the genre categorization of the songs as their identifiers for the remainder of the

chapter.

3.5.2 Statistical Features

The features are extracted from the eight songs using our MIR framework CAMEL, which

is further described in Appendix B. These features are Spectral Centroid (SC), Spectral

Irregularity J (SI), Spectral Flatness (SF), Spectral Tonality (ST), Spectral Slope (SSl),

Spectral Spread (SSp), Spectral Rolloff (SR), Spectral Loudness (SL), Spectral Sharpness

(SSh), and Mel-frequency Cepstral Coefficients (M).

3.6 Results and Analysis

3.6.1 Comparisons

The experiment on the subjects perceptual segments follows the steps outlined in Sec-

tion 3.4. However, since subjects are not segmenting on specific statistical features but

rather on surface features, as explained in Chapter 2, we extract all of the statistical fea-

tures for each surface feature and report three (3) different results. The first result is the

case where we use the best statistical feature for the song-surface feature pair and is re-

ported in Table 3.1. The second case is where we use the worst statistical feature for the

song-surface feature pair and is reported in Table 3.3. The third case is the average over all

surface features for each of the song-statistical feature pairs and is reported in Table 3.5.
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For the best and worst cases we also report which feature is used in Table 3.2 and Table 3.4

respectively.

3.6.2 Analysis

The Best Case

Jaz Pop Eth HaR Ele Cla Pun Roc Avg
Pitch 50 9 2 -2 48 3 7 18 17
Timbre 23 13 9 -4 50 4 4 10 13
Loudness 29 12 -10 -5 50 16 9 13 14
Beat 35 5 -4 -4 47 1 3 1 10
Global 45 8 -2 -4 52 10 1 1 14
Avg 36 9 -1 -4 49 7 5 9 14

Table 3.1: The best case difference indicator, as a percentage, between the static and per-
ceptual segmentation.

Jaz Pop Eth HaR Ele Cla Pun Roc
Pitch SSl SF SI SSh SI SSh M SSh
Timbre SSl ST SSh SSh SSl SSh M SSh
Loudness SSl ST SSh SR SSl SSh M SL
Beat SSl SSp SSh SC SSl SSh SR SR
Global SSl SC SI SC SSl SSh M SSp

Table 3.2: The features used to represent each of the surface features for each song in the
best case.

In Table 3.1, we note several different interesting observations. The lowest score for

the perceptual segmentation is on the Ethnic-loudness pair. For this pair, even with the best

case feature of Spectral Sharpness (SSh) being extracted, as shown in Table 3.2, the static

segmentation had 10% better in difference indicator. On the other hand, we can see in

Table 3.1, perceptual segmentation performs quite well for the Electronic song in general
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and specifically so for feature global. For this pair, using spectral slope (SSl), as shown in

Table 3.2, the perceptual segmentation improves 52%, as shown in Table 3.1, against the

static segmentation.

From the best case difference indicator in Table 3.1, we can see that the average over

all the songs is only a 14% improvement over static segmentation. This amount of im-

provement is not significant enough to claim that it is a result of anything more than noise.

In certain cases, that is, for specific songs and specific features, we can see that human

subjects actually do quite well. However, these specific cases do not justify using human

perception as an evaluation method. That is, designing an evaluation method around spe-

cific musical styles or features would violate the requirements of data independence and

feature flexibility outlined in Section 3.4.

Overall, even in the best case, human perceptual segmentation does not reflect a signif-

icant improvement over just statically apportioned segments which have a much lower cost

to be created and evaluated.

The Worst Case

Jaz Pop Eth HaR Ele Cla Pun Roc Avg
Pitch -2 -70 -47 -100 -27 -96 -19 -21 -48
Timbre -6 -66 -50 -100 -34 -89 -20 -32 -50
Loudness 0 -79 -67 -100 -33 -88 -18 -29 -52
Beat -8 -67 -59 -100 -36 -99 -17 -44 -54
Global -6 -63 -58 -100 -32 -93 -19 -38 -51
Avg -4 -69 -56 -100 -32 -93 -19 -33 -51

Table 3.3: The worst case difference indicator, as a percentage, between the static and
subjects segmentation selection.

It is interesting to note that, for the worst case, the perceptual segmentation scores
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Jaz Pop Eth HaR Ele Cla Pun Roc
Pitch SR SI SF SI SF SI SSl SI
Timbre SR SI ST SI ST SI SSl SI
Loudness SR SI SF SI SF SI SSl SI
Beat SR SI SF SI ST SI SSl SI
Global SR SI SF SI ST SI SSl SI

Table 3.4: The features used to represent each of the surface features for each song in the
worst case.

severely low for the Hard Rock and Classical songs for all the surface features (close to

-100%), as shown in Table 3.3. Furthermore, for both of these songs spectral irregularity

(SI) is selected as the worst representative statistical feature across all surface features, as

shown in Table 3.4.

Clearly, selecting the wrong statistical feature to represent a surface feature will result

in poor representation. However, the extent of the improvement of the static segmentation

over the perceptual segmentation in these cases is a prime case for the need in understanding

the relationship between statistical features and surface features. This is further exemplified

by the fact that spectral irregularity (SI) is selected as the best statistical feature to represent

Electronic for pitch, as shown in Table 3.2, giving a 48% positive improvement over static

segmentation in Table 3.1. Clearly the best feature to use is dynamic and is based on the

styles of music and the surface features which we are trying to represent.

From Table 3.3, we can see that there is a rather highly negative difference indicator on

average for the worst case from a perceptual stand point.

This result, along with the ones from our best case in Table 3.1, shows that there are

indeed certain statistical features which better represent specific surface features. However,

as described in the results from the experiments in Chapter 2, the surface features that are

important to human perception of structure are different from one song to the next. This

means that there is no way to know which surface feature would be significant to which
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music style and therefore which statistical feature to use for simulating human perception.

As such, this means that we do not have any prior knowledge which would allow for the

avoidance of these worst case scenarios. Again, this supports the notion that using human

perception as a method of evaluation for segmentation is not desirable.

The Average Case

Jaz Pop Eth HaR Ele Cla Pun Roc Avg
SC -2 6 -7 -5 -3 -8 1 1 -2
SI 32 -69 -8 -100 41 -93 -4 -33 -40
SF 6 9 -51 -40 -32 -1 1 -4 -14
ST 6 9 -51 -40 -32 -1 1 -4 -14
SSl 36 -61 -51 -94 49 -4 -19 -22 -25
SSp -2 6 -7 -5 -3 -8 1 1 -2
SR -4 5 -9 -6 -4 -7 4 2 -3
SL 8 -3 -6 -12 -2 3 -9 4 -2
SSh 7 2 -2 -9 -1 7 -8 7 0
M 5 3 -49 -38 -23 -1 5 0 -12
Avg 9 -9 -24 -35 -1 -15 -3 -5 -10

Table 3.5: The average over all surface features for each statistical feature, as a percentage,
between the static and subject segmentation selection.

As can be seen from Table 3.5, the overall perceptual segmentation comes out to be 10%

worse than the static segmentation. We believe that this falls within a threshold which is so

close to the static segmentation that it can be simply explained by noise. Therefore, on this

basis alone, we can see that there is no significant advantage to involving human perception

for evaluating segmentation algorithms, at least towards the purpose of maximizing the

representational quality of the feature extraction process.

Finally, it is important to note that significant and consistent improvement in the dif-

ference indicator can exist given that the segmentation is coming from a segmentation
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algorithm which is based on the inherent characteristics of music data. We will propose a

new segmentation algorithm and test our evaluation approach using it in Chapter 4.

3.7 Summary and Discussions

In this chapter we describe a novel approach by which segmentations can be objectively

evaluated without the need of either human music experts or perceptual experiments. We

show that perceptual segmentation is questionable for measuring segmentation accuracy

and that, with respect to our evaluations perceptual segmentation, is not a good indicator of

representational quality.

We find that there is some variation in the results if we use different individual statistical

features to represent the surface features of music. This lends support to the idea that some

statistical features are designed towards simulating individual surface features.

However, from our results we have found the output to be consistent regardless of the

statistical features used. We find that the quality of perceptual segmentation is similar to

the quality of static segmentation when it comes to the purpose of creating a representation

of the original music piece. It is highly probable that the number of segments used is of

more importance than the segment selections themselves.

That is, if you are making segment selections which are not directly based on the char-

acteristics of music data, such as in the case of static segmentation, then the number of

segments you decide to use has greater impact than the segment positions you choose.

While there is some loose relationship between the music data and human perception

on it, it appears as though that the relationship is dependent on specific features and songs

and it is challenging to know it before hand. Therefore, human perceptual segmentation

pseudo-approximates a static segmentation, supporting the need for a different approach to

segmentation evaluation.
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Note, however, that this may not be true for segmentations which are based on the

characteristics of music data, as will be seen in Chapter 4.

To further this work, previous common segmentation approaches should be imple-

mented and analyzed using our evaluation approach. In addition, experiments are under

way to examine the effectiveness of our evaluation approach through high-level MIR tasks,

such as classification.
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Chapter 4

Segmentation Towards Facilitating Feature Extraction

4.1 Introduction

“Segmentation,”, as Ong [42] describes it, “which facilitates partitioning audio streams into

short regions for further analysis, is an indispensable process”. This clearly highlights that

segmentation is a key step in the MIR process, as shown in Figure 1.1.

West and Cox [57] find that using a dynamic segmentation (See Chapter 3.) increases

the classification accuracy over using static segmentation. This confirms that the quality of

a segmentation directly influences the quality of the feature extraction process, and thereby

any further analysis. An ideal segmentation would separate the music data into highly

self-similar segments such that any feature extraction process which follows would then

hopefully return a maximum representation.

As Bruderer [12] puts it, segmentation is highly related to the Gestalt Rules of Proxim-

ity and Similarity (See Chapter 1.). An essential notion in its description of is how elements

“appear” similar. This similarity is relative to the feature extraction process. That is, ele-

ments which appear similar according to one aggregate function may not do so according

to another. Therefore, any segmentation algorithm should depend highly on the feature

extraction process which it is intended to precede.

Many previous approaches to segmentation limit themselves to specific feature sets

for their algorithm design. This has led to a series of results, which in essence, employ

similar algorithmic techniques but just by using different feature sets [22, 31, 43, 55]. This

search for the best mix of features in a segmentation process has developed around the lack

of knowledge into the relationship between surface and statistical features, as outlined in

Chapter 2. Without that understanding, the segmentation problem becomes combinatorial
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and therefore futile. Furthermore, it is often the purpose of these algorithms to construct a

segmentation based on one particular feature set. It is claimed that such a segmentation can

also be used for extraction purposes of other features [42]. Without an appropriate study

into the relationships between the features used in the segmentation and the other features

to be extracted, this claim needs further verification.

In addition, the evaluation of any segmentation algorithm is an integral part of the al-

gorithm’s goal. It is a common practice to use perceptual segmentation experiments to

evaluate the quality of segmentation algorithms [30, 31, 34, 42, 55]. Previous segmenta-

tion algorithms have been designed and implemented towards simulating human perceptual

segmentation. However, the relationship between perceptual segmentation and the compu-

tational representation is unexplored, and, as explained in Chapter 2, there is some evidence

that the two are entirely disjunct. Note, however, that this does not imply that the psycho-

logical aspects of music should be ignored. Rather, this is exactly the purpose of the feature

extraction step of the MIR process. A segmentation algorithm based on an individual fea-

ture encodes the psychoacoustic properties of that feature. By leaving the psychological

aspects of music to the feature extraction process, a segmentation algorithm can focus on

its singular goal of maximizing the quality of that feature’s representation. This relieves a

segmentation algorithm from having to deal with the complexities introduced due to simu-

lating perceptual structure and exploring the relationship between perceptual structure and

perceptual surface, as seen in Figure 1.2.

In this chapter, we attempt to design a segmentation algorithm towards this new descrip-

tion of desirability. That is, a segmentation algorithm which maximizes the representative

quality of the feature extraction process. To this end, we have two criterion for our segmen-

tation algorithm: it should be feature independent and feature-based. The former occurs

when our algorithm can be used with any feature extraction function, while the latter is an

algorithm which can use the supplied feature to perform its operations. To evaluate our
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algorithm we use the objective approach for evaluating segmentation algorithms outlined

in Chapter 3.

This chapter is organized as follows. Section 4.2 discusses related works in the area.

Section 4.3 looks at our algorithm in detail and its justifications. Section 4.4 describes any

parameters and customizations which are required to reproduce our results. Section 4.5

evaluates our algorithm and provides some analysis. Finally, Section 4.6 contains a sum-

mary and some discussions.

4.2 Related Works

Most segmentation algorithms are based on the notion of finding locations of significant

changes. This is achieved by first splitting the audio waveform into frames: small sections

of equal distance. Frames are usually very small and as such little representative quality

is lost in using them. From these frames a variety of features are extracted and a distance

between adjacent frames over the features is calculated. Using these distances, it is typi-

cally determined that “good” segments are those locations which are maximal in distance

between neighbouring frames.

Tzanetakis and Cook [55] develop such an algorithm. They use Spectral Centroid,

Spectral Flux, Zero Crossing Rate, and Root Mean Squared Energy as features, to deter-

mine distance. They then use the derivative of the distance function to discover locations of

maximal changes and use a simple heuristic to select which of these are to be used as seg-

mentation locations. In order to evaluate their accuracy, they use a perceptual segmentation

experiment and compare the distances between perceptual segmentation points against the

algorithmic ones. As explained above, the limitations of this approach are characterized

by its dependence on a set of specific features as well as its evaluation being based on the

quality of perceptual segmentations.
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Jian et al. [31] design a very similar algorithm to Tzanetakis and Cook’s. However,

Jian et al. attempt to develop their algorithm such that it models human perception. They

use features of Roughness (a measure of spectral frequency distribution), Periodicity Pitch,

and Loudness to characterize the psychoacoustic relationship to computational representa-

tion and develop distances. Distances are measured by two functions, the variance between

neighbouring frames, and the difference in feature values between frames. A weighted

aggregation of these two distances are then used to create a score for each feature indepen-

dently. A ranking algorithm then considers the scores looking for the high scores among

them. In essence, a maximal score among any individual quality corresponds to a seg-

mentation point. The evaluation method used is identical to the one in [55]. However, the

accuracies between the experiments cannot be compared since they are performed on dif-

ferent data sets. It is important to note that Jian et al. stumble onto the idea that each feature

needed to be considered independently for segmentation. However, since their method is

designed towards human perception, the selection of specific features and therefore depen-

dence on them is critical to their design.

A slightly different approach is to develop a self-similarity matrix between frames and

their neighbours. Foote [22] proposes such an approach. Foote creates a self-similarity

matrix in the Fast Fourier Transform Log Magnitude domain [38] of each frame. He then

finds a measure of self- and cross-similarity within and between neighbouring frames. The

difference between the two is used to create a novelty score. The points representing the

extremes of these novelty scores are selected as segmentation locations. No evaluation of

accuracy is described in the work.

Peiszer et al. [43] develop an approach which uses the algorithm designed by Foote [22].

Peiszer et al. extract features Spectrogram, Mel-Frequency Cepstral Coefficients (MFCCs),

Rhythm Patterns, Statistical Spectrum Descriptors and Constant Q Transform. Evaluation

is done against a large collection of perceptual studies from other works.
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Jensen [30] also proposes a method using local self-similarity matrices. He uses fea-

tures of Spectral Flux, Perceptual Linear Predictor and Chroma to represent psychoacous-

tic perceptions of Rhythm, Timbre, and Harmony respectively. To detect differences be-

tween neighbouring matrices a shortest path algorithm is used. Again, his results are eval-

uated against a selection of perceptual segmentations.

Ong [42] also uses self-similarity matrices over features of MFCCs and Subband En-

ergy to determine candidate segmentation locations. Other features are then used to narrow

down the exact locations for segmentation. Evaluation is reported by a comparison to man-

ually labelled boundaries. The relationship between the features used to develop candidates

and final locations is not explored.

West and Cox [57] propose a method of using an onset detection function which at-

tempts to locate segments by finding locations at which the function surpasses a dynamic

threshold. In essence, their method incrementally slides a window along the data and cal-

culates the function value for that window. They test a variety of onset functions and report

that the best results are returned from Entropy, Spectral Centroid, Energy and Phase based

functions. They manually annotate a series of songs to create a training set. Using this

as a ground truth, they then use exhaustive parameter optimization, to adjust the thresh-

old and onset detection function window size. Evaluation is done slightly differently in

the work, where they use a decision tree classification to evaluate the genre of the music

samples and report the overall classification accuracy against other segmentation methods’.

While this method of evaluation is more objective from a computational standpoint, as it

evaluates directly the ultimate goal of the entire MIR process, it is still problematic. The

most prominent of the problems is that the genre ground truth used is subjective and cannot

stand alone as a model for objective evaluation. In [6], Aucouturier discusses the failures

of using genre and our work [48] directly tests those failures. Similar to other works, West

and Cox’s work is dependent on certain features. Specifically, the Mel-Frequency scale and
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Octave scale are used for integration of the spectral bands.

Levy and Sandler [34] describe a method by which a semi-supervised Hidden Markov

model can be used to develop a segmentation algorithm. Once again the evaluation is con-

ducted against perceptual segmentations. They point out, though, that the segmentation

selection depends on the relationship between the features and the music used. Further-

more, they find that segment selections regularly occur at locations that do not accord with

the perceptual ground truth.

The issues with all of these methods are in their lack of feature-independent and feature-

based algorithms. That is, they are dependent on a specific set of features. Furthermore,

these methods are developed towards evaluations which are not objective and, for the most

part, have no bearing on the ultimate goal of segmentation. In this chapter, we attempt to

develop an algorithm which is both feature-based and feature-independent. Furthermore,

Our algorithm is designed towards the goal of maximising the representative quality of

extracted features.

4.3 A Merge-based Greedy Segmentation Algorithm

Our segmentation algorithm is to merge the steps of feature extraction and segmentation

into one. This means, the algorithm described here needs to be run separately for each

feature. The output from the segmentation step includes both the segmentation positions

and the extracted features.

Before presenting our algorithm, some notation is in order. For the inputs to the algo-

rithm, we denote, by S, the music piece we are going to segment. Note that S is already

in its Pulse Code Modulation (PCM) format. Let |S| denote the number of data sample

points in S. Since our segmentation is feature-based, we denote the feature to be used in

the algorithm as F .
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The initial segment length is denoted as L and has an initial value of 512 (For the reasons

for this, refer to Section 4.4.). Thus, initially, the number of segments is n = |S|/L. The

segments are maintained in a singly linked list. In each element of the list, field s points to

the segment, i.e., the set of sample data points in the segment, field f v contains that vector

or scalar value of feature F calculated from the data points in that segment, and field next

points to the next element in the list. In order to traverse the list, the first element is pointed

by pointer H. The output of our algorithm is a set of N segments in song S based on feature

F . N is a parameter that will be further discussed in our experiments. The entire algorithm

is outlined below.

A feature-based greedy segmentation algorithm

1. P = H;
2. while (P 6= null) { /* Calculate the feature for each segment */
3. P→ f v = F(P−> S)

4. P = P→ next;
5. }
6. n = |S|/L

7. while (n 6= N) { /* Until we only have the requested N segments left */
8. P = H;
9. dmin = a very large number;
10. while (P→ next 6= null) { /* Find the minimum distance between neighbours */
11. d = Dist(P→ f v,P→ next→ f v);
12. If d < dmin {
13. Let M = P; /* Remember P as M for merging later */
14. dmin = d;
15. }
16. P = P→ next;
17. }
18. Append the data points pointed by /* Merge the min distance neighbouring segments */
19. M→ next→ s into the one by M→ s;
20. Delete M→ next by setting
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21. M→ next = M→ next→ next;
22 Recalculate M→ f v;
23. n = n−1;
24. }

Simply put, our algorithm begins by separating the data into a large number of small

frames and extracting a feature over each. We then iteratively find the two neighbouring

frames which are most similar in their feature representation and merge them, extracting a

new feature for that frame. We do this process until the number of frames is reduced to the

number of requested segments. The end results is N segments, each of which is represented

by a feature vector.

It can be seen that our algorithm is straightforward and easy to implement, which lets

us focus more on its evaluation. To do this, the naive way would be to implement the algo-

rithms described in Section 4.2 for comparison. However, doing so would open ourselves

to criticism, such as biased implementation, biased data set selection, etc.

To this end, we evaluate our segmentation algorithm against the evaluation approach

described in Chapter 3. Recall, from that chapter, that we compare the perceptual segmen-

tation from Chapter 2 with static segmentation and find that the former bears no significant

improvement over the latter. For this reason, our algorithm needs only to show some sig-

nificant improvement in order to surpass perceptual segmentation.

4.4 Experiment Setup

The only parameter which is needed for the setup of this algorithm is the number of result-

ing segments, described as N in the previous section. Because of this we run our experiment

for all numbers of segments between six (6) and fifty (50), resulting in 45 trials. We have
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chosen this range of numbers because it represents the general range of the numbers of seg-

ments selected by subjects during the perceptual study. C++ Audio and Music Extraction

Library (CAMEL for short.) is used as a framework for the development of our algorithm

and is further explained in Appendix B.

The data set used was a selection of eight (8) songs from the MIREX genre classifica-

tion data set. Each song was selected as a representative of a completely different genre

and style. All the music is freely available online [19]. The songs used are reported in

Table 2.4. Note that our work here is not intended to make any statement, or give any in-

sight, into the specific genres. Rather we use genre as a method of showing that our data is

representative of variable styles of music.

The features extracted are Spectral Centroid(SC), Spectral Irregularity J (SI), Spectral

Flatness (SF), Spectral Tonality (ST), Spectral Slope (SSl), Spectral Spread (SSp), Spec-

tral Rolloff (SR), Spectral Loudness (SL), Spectral Sharpness (SSh), and Mel-frequency

Cepstral Coefficients (M). It is important to note that we also experimented with several

basic statical features as well, including Standard Deviation, Zero Crossing Rate, and Root

Mean Squared Energy. We will discuss more on them in Section 4.5. For convenience, the

features used are referred to by their identifiers.

Our evaluation approach is based on the notion that any dynamic segmentation algo-

rithm should at least return a better representation than a static segmentation algorithm, as

discussed in Chapter 3. That is, if we are to simply use segments of equal length to divide

a song, such that we have the same number of segments as the output of our dynamic seg-

mentation, the dynamic segmentation should maintain, in general, a smaller distance (as

shown by the distance indicator in Chapter 3) from the original representation.

We report two sets of results in the following order: (1) The results showing how often

our segmentation is better than the static segmentation throughout the 45 trials in Table 4.1;

and (2) The difference indicators showing how much better or worse our segmentation
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performs than the static one, averaged over the 45 trials for each feature and each song in

Table 4.2. We discuss these results below.

4.5 Results and Analysis

Jaz Pop Eth HaR Ele Cla Pun Roc Avg
SC 2 29 96 100 100 87 91 100 76
SI 100 100 100 100 100 100 100 100 100
SF 0 7 100 100 100 58 100 100 71
ST 0 16 100 100 100 56 100 100 72
SSl 100 100 100 100 100 89 100 100 99
SSp 2 29 96 100 100 87 93 100 76
SR 22 2 100 100 100 7 0 100 54
SL 64 7 100 100 98 78 100 100 81
SSh 38 4 100 100 53 100 100 100 74
M 64 44 100 100 100 100 100 100 89
Avg 39 33 99 100 95 76 88 100 79

Table 4.1: The percentage of times, over 45 trials, that our greedy segmentation performs
better than static segmentation.

The cross cell between Classical with SSp in Table 4.1 shows us that, over the 45

trials, our greedy segmentation algorithm performs better 87% of them. Table 4.2 reports

accuracies over several trials, however, the averaged values making up these accuracies can

be misleading. Therefore, Table 4.1 is useful as a measure of consistency in our algorithms

performance.

From Table 4.1, our greedy merging algorithm is better than the static segmentation

79% of the time. Note that the results over a song are generally more consistent than over

a feature. That is, if one feature scores low on a song, then most features score low on

it. This shows that there exist certain situations in which our greedy approach makes bad

decisions. A better heuristic could lead us to a solution around these decisions. However,
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even for those songs which return generally low results, some features score well, implying

that there are certain features, for example, SSl, for which our algorithm is well suited.

Jaz Pop Eth HaR Ele Cla Pun Roc Avg
SC -1 -7 8 8 5 3 9 58 10
SI 98 82 92 97 61 89 100 92 89
SF -5 -4 63 73 35 17 26 49 32
ST -5 -4 63 73 35 5 26 49 30
SSl 73 70 81 86 46 34 94 84 71
SSp -1 -7 8 8 4 3 14 6 4
SR 0 -1 8 6 3 -3 -2 3 2
SL 1 -4 15 21 5 64 10 10 15
SSh -1 -7 12 20 1 10 9 7 6
M -1 -1 68 64 35 12 24 41 30
Avg 2 1 42 45 23 17 29 40 25

Table 4.2: The percentage of error from static segmentation (difference indicator) that out
greedy merge based segmentation selection achieved for each feature against each song.

In Table 4.2 we report the average difference indicator between our algorithm and static

segmentation over the 45 trials. For example, looking at the intersection between the Ethnic

column and the SSl row shows us an averaged difference measure of 81%. This result

indicates that for this particular song-feature pair the algorithm performs quite well.

On average, according to Table 4.2, our segmentation performs 25% better than the

static one. This performance is measured in terms of the difference indicator described in

Chapter 3. It is interesting to note that our algorithm never returns highly negative results

(close to -100 in terms of percentage). The results are either very positive, slightly positive

or slightly negative. From a graphical standpoint, we find either our segmentation does

significantly better or it tends to follow the same pattern as the static one. Examples of

these cases can be seen in Figure 4.1 and Figure 4.2 respectively. This behaviour indicates

that there is indeed a potential for selecting better quality segmentation points and that in

the majority of cases a greedy selection is, in the worst case, in the same relative range as
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Figure 4.1: The results of the Rock song for MFCC’s. Note the positive difference indicator
in performance by the greedy segmentation.

using static segmentation.

We also have run the experiment on several time-domain statistical features, such as

standard deviation. The tendency for those features replicates the same representative qual-

ity as the static segmentation as seen in Figure 4.3. For this reason we do not report those

results here as they do not provide any interesting numeric information and have little effect

on our overall evaluation.

4.6 Summary and Discussions

In this chapter, we have introduced a new approach to segmentation. This approach is based

on a different goal than previous works in MIR: to maximize representation quality and not

to mimic human perception.

Our segmentation algorithm described is a simple, greedy merge-based algorithm. The
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Figure 4.2: The results of the Ethnic song for Spectral Spread. Note the tendency of the
dynamic selection to mimic closely the static segmentation.

Figure 4.3: The results of Punk song for Standard Deviation. Note the tendency of the
dynamic selection to follow the static segmentation.
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experimental results show it performs, in general, significantly better than its static coun-

terpart. This level of improvement is significant enough to allow us to conclude that it is

a better result than the perceptual segmentations developed in Chapter 2 and evaluated in

Chapter 3.

Having said that, this result does not actually imply that our algorithm is in fact better

than those outlined in Section 4.2. Until those algorithms are specifically experimented

against our evaluation approach from Chapter 3, we cannot make any conclusive compar-

isons.

It is important to note that our algorithm is easily modified to make more intelligent

decisions by simply replacing the greedy selection with the one that uses a better heuristic

(per Lines (12) - (15) in the algorithm). Furthermore the simplicity is one of the merits of

our algorithm.

We also find that for time-domain statistical features the tendency is to closely model

the behaviour of the static segmentation. We attribute this to one of the two following

situations. (1) The greedy heuristic somehow consistently makes poor choices whenever

it comes to time-domain statistical features; and, alternatively, (2) it seems more likely

that time-domain statistical features are less reliant on the position of segments as much

as the number of segments. If the latter situation is affirmative, then selection of “good”

segmentation positions for these features may as well be based on the static segmentation.

Further investigations into this result could be interesting and necessary.

A secondary result to the findings in this chapter is that using a data-based segmentation

algorithm can in fact return a consistent and significant improvement against the evaluation

approach described in Chapter 3. As such, this should be the motivation for other novel

algorithms to be designed and tested.
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Chapter 5

Conclusion

5.1 Summary

In Chapter 2, we describe a series of human perceptual experiments in which we attempt to

discover the relationship between what is defined as the perceptual surface and perceptual

structure of music. The discovery of this relationship is essential for the continued use of

human perception for evaluation of segmentation algorithms. From this experiment we find

many interesting results about human perceptual segmentation. However, we have found

that the relationship between perceptual surface and structure is variable, dependent on

particular musical styles. For this reason, we conclude from Chapter 2 that a new approach

for segmentation evaluation would be desirable.

In Chapter 3 we propose a novel approach to the evaluation of segmentation algorithms.

Most previous methods of segmentation evaluation have been based on either human ex-

perts or perceptual experiments. However our approach does not rely on either. Our ap-

proach is based around maximizing the representational quality of specific features which

are meant to be extracted from the music itself. To test the validity of our approach, we

apply it directly to the results of our perceptual experiment from Chapter 2. From this com-

parison we find some support for our claims that human perception has little or no relation

towards improving the quality of features extracted. However, we acknowledge that by

redefining the evaluation for segmentation algorithms, we have inherently redefined their

goal as well. For this reason we conclude from Chapter 3 that new approaches to segmen-

tation are necessary, as well as the need for a re-evaluation of the previous methods.

In Chapter 4, we propose a novel segmentation algorithm and evaluate it against our

approach outlined in Chapter 3. Our approach is a greedy merge-based algorithm which
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shows significant improvements over the static segmentation. These improvements sup-

port the claim that intelligent segmentation algorithms do exist and provide higher quality

feature representation. Our algorithm is easily extendible towards using more intelligent se-

lection heuristics which could increase the improvements against the evaluation approach.

In summary, we attempt to take segmentation of music, a key step in the MIR process,

in a new direction. We show through experiments that the base assumption of traditional

segmentation algorithms, that is segmentation is a method of simulating human percep-

tion of structure, detracts from the quality of the sequential MIR process. For this reason,

we propose that segmentation should be evaluated by its ability to maximize the repre-

sentational quality of the feature extraction process. In doing so, we have redesigned the

ultimate goals of segmentation algorithms. This goal has allowed us to develop a new,

objective evaluation approach against which segmentation algorithms can be held. Further-

more we have designed a simple, yet effective, segmentation algorithm which is focused

towards our new definition of “optimality”.

5.2 Limitations and Future Work

There are several limitations to the work presented in this thesis. The first is the limited

size of the data set used in the perceptual experiments. While the number of songs used

in Chapter 2 is within the same range of several other similar works’, it is by no means

statistically representative of all music. We attempt to increase the representational quality

of our work in Chapter 2 by selecting music from a variety of styles. However, it is possible

that, with greater amounts of music, we may have been able to identify some patterns which

would change our conclusions.

A second limitation is the use of the same minimal data set for evaluation of our seg-

mentation algorithm in Chapter 4. It would be a more significant result to show how our
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algorithm is evaluated against a larger corpus of music. But due to time constraints, we

are unable to do so. However, using only this limited set of music allowed us to compare

our results more directly against the perceptual experiment, showing that a segmentation

selection based on the data has significant improvements over selections which are naive

or, as in the case of the perceptual segments, are relatively naive to that data.

A third identified limitation pertains to the testing of the evaluation approach outlined

in Chapter 3. Though we are currently conducting more experiments, it would be ben-

eficial to include results which show a direct correlation between increased accuracy in

the evaluation approach and increased accuracy in various high-level MIR tasks, such as

classification. At this time, preliminary results towards this end are supportive.

Perhaps the most obvious limitation of this thesis is the lack of perceptual representa-

tion of structure in the development of segmentation algorithms. The results in Chapter 2

show that the assumption, that a direct relationship exists between perceptual surface and

structure, is unlikely. However it does not disprove anything. It is possible that simulat-

ing perceptual structure in conjunction with perceptual surface may create a representation

which is superior for many high-level MIR tasks. For the area of MIR, the answer to this

possibility is fundamentally important.

A final limitation to be addressed here is the notion of perception versus cognition. It is

possible that our ideas of perceptual surface and perceptual structure may actually be linked

to the separation between human perception of sound and human cognition of music. This

distinction is of high importance to developing better models of representation for MIR

systems and much work in this area is still needed.

Much of the necessary future work which follows this thesis is to address the limitations

which have been identified above. Certainly the results from this work are incentive enough

to promote further investigation into the methodology by which segmentation algorithms

are developed and analyzed.
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In terms of extending the results in Chapter 2, more work needs to be done in testing

the relationship between perceptual surface and structure. If a generalized mapping can

be found between them, it would be of great benefit to the MIR community. With respect

to our novel evaluation approach outlined in Chapter 3, further work is required into the

justification of its use. While our results seem to suggest that current evaluation approaches

are subjective and limited, we do not claim that ours is in any way optimal and we fully

recommend further attempts towards developing better ones. A great deal of future work

needs to be done with respect to segmentation algorithms, such as the one we propose in

Chapter 4. Specifically, a comprehensive survey and comparison of current methodologies

would be highly benificial. In terms of our own algorithm, it would be of great interest to

replace the greedy selection heuristic with one which is more intelligent.
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Appendix A

Perceptual Segmentation Software

A.1 Introduction

In this appendix, we describe the software developed in order to assist in the perceptual

segmentation experiment conducted in Chapter 2. In essence, we have a selection of mu-

sic data on which we want subjects to select locations of significant change according to

specific psychoacoustic features. For example, given a song, we might ask a subject to

mark every location they believe the beat of the song to change in some significant man-

ner. Therefore, for each song which is presented to the subject, they are also presented

with instructions outlining which psychoacoustic feature on which they are to make their

segmentation selections.

A.2 Design

The first principle of designing software for perceptual experiments it to make it as simple

as possible for a subject to use. This limits the amount of distractions and extraneous

stimuli that might affect subjects. For this reason our software is made with every attempt

towards a minimal user interface. Because the experiment we conduct is based on audio

perception, no other auditory stimuli is presented to the subject at any time, other than the

music on which is being tested. Visual feed backs are also kept to a minimum and only

provided for reasons of intuitive user control. No extraneous information is presented to the

subject, such as visualization of the music waveform or other such stimuli in most media

players, which may have unforeseen effects on subjects.

Our software is developed using Sun Java SE in JDK version 6 [52]. To assist our
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work with audio files, we use JLayer version 1.0 [29], which is a Java library that decodes,

converts, and plays MP3’s. It is released under the GNU Lesser General Public Licence

(LGPL) and as such is free for use and revisions.

Our perceptual segmentation is developed in terms of a general Model-View-Controller

design, where the front-end graphical user interface (GUI) is separated from its back-end

logic and data. Two GUI’s are developed, one for logging in and creation of subject user

and the other for the perceptual software itself. Screenshots of each of the GUI’s can be

seen below in Figures A.1 and A.2, respectively. For each component in the GUI (See

below.), such as a button or a text box, a listener object in the Controller is designed to take

appropriate actions when activated. Activation takes place by the objects themselves at the

View level. The Model layer handles the loading and playback of music, as well as the

creation, and the edition of segments and user accounts.

The software is written to be dynamic to the content of a local folder structure. In this

folder structure, there exist three separate subfolders. The first manages the music data

and any music files which are added to this directory will be automatically added to the

list of music being evaluated in our experiments. Similarly, the second folder manages the

instruction files, which are simple text files outlining the psychological features and their

associated instructions. Finally the third directory manages the subjects’ output segments,

storing the appropriate information for each song/instruction pair as created by subject.

User account information is also stored in this third directory.

A.3 Functionality

The functionality of our software is outlined in this section in reference to the numerically

highlighted screenshots.

For our user account management section of the software, we only offer the ability to
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Figure A.1: A screenshot of the logon and user account GUI for our perceptual segmenta-
tion software with numerically highlighted functionality.

create new subjects, or for subjects to logon on to previously created accounts. Both of

these functions are provided via the single GUI demonstrated by Figure A.1.

For the purposes of logging on, a subject is only expected to enter a user name, into

the text field (9), which she/he has previously created, and hit the Logon Button (3). If any

errors occur, such as an unknown user name is entered, then the instruction label (1) will

change accordingly.

For a first-time subject, she/he is required to enter a new user name, in the text field (9),

to select a skill level, from the radio button (5), enter a user number (4), and hit the Create

button (6). Again if any error occurs, such as a pre-existing user name being entered, then

the instruction label (1) will change accordingly.

Note that the user number is given to the subject when s/he signs up for the study and has

two purposes: to maintain an ethical separation between the subject’s activity and her/his

identity and to select the order in which the music and instructions are presented to her/him.

That is, since the experiment follows a within-subject design as described in Chapter 2,
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each subject is presented with a different, pseudo-random set of music and instructions.

We use pseudo-random here because we hope to obtain a somewhat uniform distribution

of results over the various combinations of music and perceptual features paired together.

For a further definition of the various skill levels, as presented to subjects,see Table 2.1 in

Chapter 2.

The main window of our software, as seen in Figure A.2, is designed to present the

subject with all of the information which she/he requires for the testing. There are three

main sections to the window, each with its own unified purpose and functionality.

Figure A.2: A screenshot of the main player and segmenter GUI for our perceptual seg-
mentation software with numerically highlighted functionality.

The first section, as seen at the top of Figure A.2, is the instructions section. As ex-
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plained above, we test subjects on one of five different surface features. Each time the

subject selects a new song to listen to she/he is presented with a pseudo-random set of

instructions to accompany that piece of music in this section. Reading these instructions

gives the subject a pause between each song, which should help to counter-act the carry-

over effects as suggested in [15]. The instruction text, seen in text field (2), informs the

subject on details of the current action. The instructions include a definition and provide a

list of common descriptors for the feature s/he is listening for, as per Bruderer’s work [12].

The second section in the middle of Figure A.2 is the basic music player interface.

The songs are presented to the subject in a pseudo-random order such that they only are

presented with each song once and each subject listens to all the songs in the experiment.

However the order in which each subject is presented with the songs is completely random.

This prevents any bias in our results which might be caused by subjects listening to the

music in a specific order. While this section of the interface is far more complex than the

rest, because of the popularity of digital music players, the controls are familiar enough

with the majority of subjects such that their existence should not affect their abilities. The

basic controls provided are the Previous Song Button (3), Next Song Button (5), Play But-

ton (6), Pause Button (7), Stop Button (8) and the Position Slider (9). In addition to these

buttons, we also present the subject with the Current Song Information in text field (4) and

the Current Position Time Readout in text field (10).

The third section at the bottom portion in Figure A.2 is the segmentation controls.

Because these controls are most foreign to the subjects, we have made them sparsely posi-

tioned and much more clearly defined. The Add Segment Button (11) will add the current

position of the slider to the History list (12) in milliseconds. This tells us the rough position

of where the subject believes the segment to belong to. Due to subject’s reaction time, a

variance of around 1-3 seconds is expected/allowed for positional accuracy, as described

in Chapter 2. Because of this variance we do not need to compensate for any delay in
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registering time in our software. The Segment History List (12) shows a list of segments

(sorted) that the subject has selected for this song/instruction pair. A subject can select the

items here for deletion (13) or to use them as a start position (14). Starting from a segment

position means that we move the slider (9) to that position and continue playback from

there.

Finally we provide a Save & Exit Button (15) to give the subject a chance to save the

currently open song/instruction segment information when s/he exits the software.
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Appendix B

CAMEL: Content-based Audio and Music Extraction
Library

B.1 Introduction

In order to assist in our experiments in Chapters 3 and 4 we need a lightweight, easy to use,

and flexible set of software tools for content-based audio and music analysis. Specifically,

we need a software environment in which we could quickly develop and test various pieces

of custom code. For this reason we develop a low-level MIR framework. In this appendix,

we introduce a framework of Content-based Audio and Music Extraction Library (CAMEL

for short)1, which is our own implementation of a collection of feature extraction and seg-

mentation algorithms with a focus towards rapid implementation and experimentation of

audio analysis algorithms. It is designed to be heavily modular, making the addition of new

features or segmentation algorithms extremely easy.

B.2 Related Works

There are several other pre-existing MIR frameworks available [3, 13, 20, 40, 56]. How-

ever, as they are typically developed to accommodate specific works and then later added

upon, these frameworks tend to be highly complex with minimal documented or commu-

nity support. For this reason, making customizations within them is highly challenging.

Often these previous frameworks tend to sacrifice simplicity in exchange for an extensive

breadth of capabilities. These capabilities create a greater amount of overhead and call for

a need for a great depth of domain knowledge into their design before they can be used to

1The appendix is a brief summary of our work in [47]
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fulfil even simple research needs. For these reasons, we find it to be more effective, for

our purposes, to implement our own framework, on which we could assure ourselves of the

productivity and quality of our research.

B.3 Design Considerations

In terms of developing a framework which would best facilitate the specific needs of our

work, several key considerations are in order.

1. Easy to use - Our primary design concern is simplicity. We design CAMEL to be

easily understood by any users, thus allowing for rapid development despite a users

background. As described by Futrelle et al. [25], MIR is a heavily interdisciplinary

area, and therefore needs tools which are developed for use without a specific set of

domain knowledge.

2. Extendible - It is important to us that CAMEL be easily extendible. This allows

for quick development and testing of various custom functionality. For example,

the evaluation approach outlined in Chapter 3 is designed using CAMEL as a basis.

To allow for extendability, CAMEL is written in C++ as a set of modular objects,

making it easy to add or replace an existing functionality with new ones.

3. Lightweight and Portable - To maintain the simplicity of working with CAMEL and

to allow it to be used on an individual component basis, the amount of extrane-

ous code and external dependencies is minimized. The only external dependency

CAMEL has is the FFTW [23] library for calculating the frequency domain of the

audio signals in an efficient manner.
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B.4 Implementation

In order to provide simple, accessible, content-based MIR functionality, CAMEL is de-

signed around a series of modularized objects. The flow of work for these objects can be

seen in Figure B.1. Each individual object is further described in this section.

Figure B.1: The flow diagram of CAMEL.

B.4.1 fileVector

The fileVector object is a template class developed to associate itself with a pulse-code

modulation (PCM) format audio file. The values of the PCM audio file are then added into

a vector for efficient access by higher level objects. The resulting vector is offered as a

public accessor back to the instantiating object.
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B.4.2 featureExtract

The bulk of the work done in CAMEL happens at the level of the featureExtract object.

When instantiating a featureExtract object, a user only needs to set the file name of a

PCM formatted audio file, the requested feature for extraction, and a start and end position

within the audio from which to return the value. Once these parameters have been set, the

complexities of the feature extraction process are entirely handled by the featureExtract

object, as shown in Figure B.2. The featureExtract object is dependent on the existence of

the fileVector object.

Figure B.2: A flow diagram the featureExtract object in CAMEL.

Dependent on the requested feature, the featureExtract object selects the appropriate

domain function for that feature. Each domains provides a different set of data on which

features can be extracted, essentially each is a transformation of the original data by some

function.

There are several different domains in which a feature extraction function might work.
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Many feature extraction functions are designed to work in a specific domain. However

particular ones, such as statistical functions, can be applied to multiple different domains.

In CAMEL we implement the Time Domain, Frequency Domain, Peak Domain, and Har-

monic Domain. The Time Domain is simply the original PCM values which represent the

amplitude value of the signal sampled at a specific rate (for example 44100.0 Hz) over

time. The Frequency Domain is a Fourier Transformation over the Time Domain, giving us

a representation of magnitude versus frequency values. In CAMEL the Fourier transform

is provided through the use of the FFTW Library [23]. The Peak Domain is an evaluation

of the Frequency Domain (actually of a spectrum of the Frequency Domain, as to be ex-

plained below), where only values of frequency peaks which surpass a threshold are kept,

with some transformation according to neighbouring values. Finally, the Harmonic Do-

main keeps only values of the Peak Domain which are harmonics: whole number multiples

(within some threshold of tolerance) of the fundamental frequency of the Time Domain.

Once the frequency domain has been calculated via a Fourier Transform, it can be

converted into one of several spectrums via spectral functions. We implement four such

functions: the Magnitude Spectrum, Log Magnitude Spectrum, Power Spectrum and Log

Power Spectrum. Again this selection is handled within the featureExtract object, though

it can be customised through a settings file, as described below.

When a start and end position are set within the featureExtract object, the values be-

tween them are separated into groups called windows. It is from these windows that the

feature will ultimately be extracted. Once a window of values has been collected from the

fileVector object and they have been transformed by the appropriate domain function, we

then apply a windowing function. Windowing functions weigh the importance of values at

different locations within the window by different amounts. We implement eight (8) such

functions: Rectangular Window, Hann Window, Hamming Window, Bartlett Window, Tri-

angular Window, Bartlett-Hann Window, Blackman Window, and Blackman-Harris Win-
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dow.

Once we have a window of values in our specific domain, including any spectrum and

window functions that are to be applied, we can then calculate the specific feature function

on that window. In CAMEL we implement 32 such functions. Each of theses functions

has been tested for correctness against the output of several other frameworks’. Note that

for the more common functions we do not provide any explanation here and for the more

complex functions we cite further reading.

Several simple statistical features are implemented in CAMEL, including: Mean, Vari-

ance, Standard Deviation, Average Deviation, Skewness and Kurtosis. Further to these sta-

tistical features, we implement Zero Crossing Rate (ZCR) which represents the frequency

at which the signal crosses over from positive to negative or vice versa. ZCR has been

associated with several different aspects of music including the dominant frequency [16].

Another statistical feature available in CAMEL is the Root Mean Squared Energy, which

has been attributed as a good indication of loudness as well as a good statistic on which to

conduct high-level MIR tasks such as segmentation [16]. Non-Zero Count is a statistical

feature implemented in CAMEL which is a simple measure of audio content versus silence.

Finally, for statistical features, CAMEL implements Fundamental Frequency, which has

been attributed to pitch detection in music. For a detailed description of pitch detection and

the implementation of Fundamental Frequency see [26].

In terms of spectral features, CAMEL implements several different features which are

basic descriptions of the spectral shape or distribution of the audio. These spectral fea-

tures include: Spectral Centroid, Spectral Variance, Spectral Standard Deviation, Spectral

Average Deviation, Spectral Skewness, Spectral Kurtosis, Spectral Irregularity K, Spectral

Irregularity J, Spectral Flatness, Spectral Tonality, Spectral Min, Spectral Max, Spectral

Crest, Spectral Slope, Spectral Spread and Spectral Rolloff. In addition to these more basic

spectral features we also implement several more challenging features. Spectral Loudness
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and Spectral Sharpness for instance are calculated over the Bark Bands and is a measure

of brightness and noisiness respectively. Mel Frequency Ceptral Coefficients (MFCCs) are

one of the most popular features used in MIR. The idea behind MFCC’s is to bin frequen-

cies into groups based on the Mel Scale. The Mel Scale attempts to simulates the changes

in human perception of sound as frequency changes. A good discussion on MFCCs can

found in [35] and our implementation is based on the description in [21]. Bark Bands is an-

other highly popular feature function that separates the audio source into a series of bands

which correspond to the psychological bands of hearing. The Bark scale is proposed by

Zwicker [58].

For the Peak Domain the only feature which CAMEL includes at this time is Peak

Inharmonicity, which is a measurement of the types of tones within the audio. As for the

Harmonic Domain, we implement the Harmonic Odd Even Ratio, which is essentially a

fraction between the two types of harmonics.

B.4.3 segmenter

The segmenter object provides a simple interface to gain a representation of an audio file.

Simply by providing the file name of a PCM formatted audio file, the features which you

wish to extract, and a segmentation method to use, the segmenter object will return a rep-

resentation of the audio file in those features for each of the calculated segments. For

segmentation functions in CAMEL, we implement two basic algorithms. The first is static

segmentation, which divides the audio source up into segments of equal length. The sec-

ond algorithm is described in detail in Chapter 4. Both algorithms take, as a parameter,

the number of segments which the user wants in return. Any settings required in order for

the operation of the segmentation object can be configured in the settings file as described

below.
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B.4.4 configFile

If a user wishes to select a custom domain or windowing function to be used or to set

any of the multitude of variable parameters which are associated with many of the feature

extraction or segmentation functions, she/he can do so in a settings file. However, if the

user does not have the specific knowledge required to understand such settings, the settings

are set to their popular defaulted values. The configFile class reads in these settings from

the settings file and provides them to the other objects when they are necessary.

B.5 Summary

In this appendix, we have introduced our content-based MIR framework CAMEL for

feature extraction and segmentation. Unlike many of the other frameworks in the area,

CAMEL is designed around simplicity of use and extendability. It is lightweight and

portable and includes a number of the current popular functions.

Future versions of CAMEL will include separating the various functionalities of the

current featureExtract object into their own objects. Also we hope to add implementations

of several more key features in the MIR area such that we can enhance the uniqueness of

CAMEL. Improvements to the runtime of several of the features is also currently under way.

Another aspect of CAMEL we hope to include in later versions is its ability to use other

forms of aggregation, beyond average, over the windows. Finally, we plan to implement

several other segmentation algorithms and add them to CAMEL in the near future.
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