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Abstract

This study seeks to design algorithms that may be used to determine if a given lattice is

a good approximation to a given rigid protein structure. Ideal lattice models discovered

using our techniques may then be used in algorithms for protein folding and inverse protein

folding.

In this study we develop methods based on dynamic programming and branch and bound

in an effort to identify “ideal” lattice models. To further our understanding of the concepts

behind the methods we have utilized a simple cubic lattice for our analysis. The algorithms

may be adapted to work on any lattice. We describe two algorithms. One for aligning the

protein backbone to the lattice as a walk. This algorithm runs in polynomial time. The sec-

ond algorithm for aligning a protein backbone as a path to the lattice. Both the algorithms

seek to minimize the CRMS deviation of the alignment. The second problem was recently

shown to be NP-Complete, hence it is highly unlikely that an efficient algorithm exists. The

first algorithm gives a lower bound on the optimal solution to the second problem, and can

be used in a branch and bound procedure. Further, we perform an empirical evaluation of

our algorithm on proteins from the Protein Data Bank (PDB).
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n
(1)
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√√√√∑
n−1
i=1 ∑

n
j=i+1(d(pi, p j)−d(qi,q j))2

n(n−1)
2

(2)
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A contact map is a graph, G := (V,E), with vertex set of integers (V = 1, . . . ,N) and an
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Chapter 1

Introduction

In 1928, Scottish scientist Alexander Fleming noticed a halo of growth inhibition on a

Staphylococcus plate culture. Isolating this region and purifying a culture he discovered it

to be Penicillium notatum which he called penicillin. More than a decade later, penicillin

was first used on a human patient with successful results thereby solidifying its prominence

in history.

The above is an example of the efforts related to drug discovery and design. Although not

confined to the past century, there have been significant advancements during the past 100

years. Advancements in chemistry, biochemistry, pharmacology, genetics and microbiol-

ogy have each played a role in this process.

Crucial to the process of drug design is an understanding of the underlying issues related

to an illness or disease. Illnesses or diseases may be caused by either external factors such

as infectious agents and microscopic organisms which may include bacteria, viruses and

protozoans or by internal causes that may include hereditary abnormalities and congenital

diseases. A large number of ailments are caused by a combination of both internal and

external factors. Understanding how these factors interact and by what processes is of

great importance.

Advances in molecular genetics have revealed that many diseases stem from specific pro-

tein defects. Included in the list of these diseases are muscular dystrophy, cystic fibrosis,

malaria, anthrax, HIV, herpes simplex and herpes complex, Alzheimer’s, Huntington’s,

Lou Gehrig’s disease (ALS), Parkinson’s, many cancers and cancer-related disorders. Also
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included are the prion diseases such as Alpers syndrome, Kuru, Fatal Familial Insom-

nia (FFI), Gerstmann-Straussler-Scheinker syndrome (GSS) and Creutzfeld-Jacob disease

(CJD) which is the human counterpart of bovine spongiform encephalopathy (BSE) often

referred to as Mad Cow disease. Therefore being able to understand the precise nature of

the underpinning factors and design drugs specific to these factors is of great importance.

To date a substantial amount of work has focused on the study of proteins. This includes

an analysis of the proteins structure from a linear arrangement of their base molecules to

that of multiple domains of three-dimensional structure. It is known that a protein sequence

will fold to a unique native conformation (minimal free energy state) very quickly and that

the three-dimensional structure of the native conformation will dictate the function of the

protein [1, 2]. Substantial advances have been made, however the exact mechanism by

which a protein folds to a specific conformation is not clear.

1.1 Proteins - What are they?

Proteins are vital biological molecules that underpin every aspect of biological activity,

through the expression of the genetic information contained in a cell’s DNA [3, 4]. This

becomes particularly important in areas such as medicine where protein structure and func-

tion have great effect. In fact, molecular research over the years has revealed that numerous

diseases stem from specific protein defects, such as cystic fibrosis, influenza, sickle cell

anemia, HIV and cancer [4].

Proteins are the most abundant macromolecule in a cell each performing their own specific

functions directly related to each individual protein’s native conformation. This conforma-

tion is the minimum energy state, also referred to as the ground state [5]. Subsequently an
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Secondary protein structure
occurs when the sequence of amino 
acids are linked by hydrogen bonds

Tertiary protein structure
occurs when certain attractions are present 
between alpha helices and pleated sheets

Quaternary protein structure
is a protein consisting of more 
than one amino acid chain

Primary protein structure
is a sequence of a chain of amino acids

Alpha helix

Pleated sheet

Pleated sheet

Amino Acids

Alpha helix

Figure 1.1: Four level structural hierarchy of a protein.

understanding of the relationship between structure and function is crucial.

The structure of a protein is organized in a hierarchy of four levels [Figure 1.1]: primary,

secondary, tertiary and quaternary structure. Each level is uniquely important and when

combined yields an all-encompassing view of the protein.

The primary structure consists of a two-dimensional linear arrangement of amino acid

residues assembled together in a polypeptide chain [4]. Amino acids are the building blocks

of proteins, each block a translation of a 3-codon segment of messenger RNA. A codon (3-

codon) is a grouping of three RNA base pairs that encode one of the 20 possible amino

acids. A polypeptide chain is a sequence of different amino acids held together by covalent

peptide bonds. The peptide group (defined by the three atoms Cα−C−N) of each amino

acid forms the backbone of the peptide chain. Cα refers to the first carbon in each amino

acids peptide group that attaches to the functional group (responsible for the characteristic
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Figure 1.2: Polypeptide backbone demonstrating the location and rotational direction of a
peptide groups torsion angles: φ and ψ

chemical reaction). A peptide groups structure is both rigid and planar as demonstrated by

Linus Pauling in the 1930s and 1940s [6]. This finding lead to the identification of torsion

angles that specify a polypeptides backbone conformation. Torsion angles [Figure 1.2] are

angles of rotation about the Cα −N bond(φ) and the Cα −C bond(ψ). These angles are

sterically constrained thereby limiting the backbones conformational range [6]. The degree

of the φ and ψ angles characterize the secondary structures in the three-dimensional protein

structure.

Primary structure leads to the secondary structure. The secondary structure is characterized

by the local conformation of the polypeptide chain or the spatial arrangement of amino acid

residues [4]. There are three basic units of secondary structure: the α helix, the β strand and

turns. Each of these units is held together with hydrogen bonds. The right-handed α helix

[Figure 1.3] is probably the best known and most identifiable unit of secondary structure,

accounting for over 30 percent of all residues in globular proteins [4]. The values of φ and

ψ in the α helix allow the backbone atoms to pack close together with few unfavourable

contacts in order to form hydrogen bonds. There is another more rare helical structure

associated with the α helix known as the 310 helix. This 310 helix is a smaller more compact

4



Figure 1.3: Left figure displays a ball and stick model of a α helix as viewed from the top.
The right figure a side view with ribbon representation included.

structure found in proteins where the regular α helix is distorted.

The β strand like the α helix is a helical structure. However, its arrangement is extremely

elongated compared to the α helix with two residues per turn compared to the 3.6 residues

per turn of the α helix [4]. β strands [Figure 1.4] are harder to recognize and individually

not stable primarily due to a lack of local stabilizing interactions. Stability increases when

a number of strands connect using hydrogen bonds forming a β sheet. A sheet can be either

parallel or anti-parallel depending on the arrangement of the β strands in the sheet. In a

number of proteins β strands associate spectacularly into extensive curved sheets known as

β barrels [4].

Turns have the universal role of enabling the polypeptide to change direction and in some

cases to reverse on itself [4]. Studies have revealed as many as 10 different conformations

on the basis of number of residues making the turn and the degrees of φ and ψ associated

with the central residues. Common turns include the γ turn, characterized by the residue in

the middle of the turn not participating in hydrogen bonding, and the β turn in which the

two middle residues are never involved in hydrogen bonding [4].

These structural units, although common, are not found in all proteins together. In fact,
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Figure 1.4: Left figure displays a β sheet composed of single β strands [7]. Sheets can
create more complex structures such as β barrels as seen in the right figure.

proteins are divided into structural classes based on the composition of their secondary

structures. There are four different structural classes of proteins characterized by the inclu-

sion or exclusion of α helices and β strands. These four classes are: all-α, all-β, (α + β)

and α/β [8, 9].

The tertiary structure represents the overall three-dimensional structure, or the fold, of the

polypeptide chain. It is the spatial arrangement of the protein formed by specific stabilizing

interactions. A stable tertiary fold relies on a number of different interactions characterized

by their relative strength and frequency. These interactions include: disulfide bridges, ion

pair interactions, hydrogen bonds, van der Waal forces and hydrophobic interactions.

In 1990, Dill [10] proposed that an understanding of the dominant forces involved in the

structure of proteins would further our understanding of proteins. Basing his findings on

the criteria that the dominant force must explain why a folded state is advantageous and

adheres to reversibility, Dill concluded that hydrophobic interactions were the dominant

force. Interactions such as van der Waals and hydrogen bonds were crucial to prevent-

ing the protein from denaturing (unfolding), however, they lacked an explanation for the

folded states advantage [10]. Though the dominant force, hydrophobic interactions, cannot
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be solely responsible for determining a proteins native structure, it can ‘select’ a relatively

small number of conformations from which the native structure is determined by the bal-

ance of all interactions [10].

For larger proteins the tertiary structure may be organized around more than one structural

unit. Each unit is called a domain, which is defined as a region or regions of a polypeptide

that fold independently and possess a hydrophobic core [11].

Quaternary structure explains the existence of more than one polypeptide chain found in

many proteins. It is similar to tertiary structure in that it utilizes the same interaction forces

as tertiary structure. It differs, however, in that the interactions occur between one or more

polypeptide chain often referred to as subunits [4].

Experimentally we are able to denature proteins and study their primary structure. Using

X-ray crystallography we can study the three-dimensional structure of the protein [12].

What we are not able to establish is exactly what it is that causes the protein to fold and

why the protein folds into the conformation it does.

The protein folding problem seeks to determine the native conformation of a protein given

its linear arrangement. The inverse protein folding problem is the problem of protein de-

sign. Given a specific three-dimensional conformation the question is to determine a linear

sequence that will create this unique structure. The inverse protein folding problem has

great potential as a tool in drug design as not only could it provide a first approximation of

a primary amino acid sequence for a target protein [5]; it could also help in the engineering

of known protein secondary structures with the potential for drug delivery [13].
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1.2 Protein Folding

Protein folding is a rapid biochemical reaction. The three-dimensional structure of a protein

dictates the function of the protein. The computational difficulty stems from the fact that

there are an exponentially large number of possible structural conformations and numerous

criteria which may determine correct folds [14]. The difficulty is compounded further as

numerous proteins, each with differing amino acid sequences, have nearly identical struc-

tural conformations. The converse is true as well.

Numerous techniques have been used to study protein folding. These include experimental,

theoretical, imaging and computational approaches. A recent experimental method [15] in-

volves rapidly triggering the folding of a sample of unfolded proteins, and observing the

resulting dynamics. Theoretical methods involve the calculation of protein energy land-

scapes. The energy landscape of a protein is the variation of its free energy as a function of

its conformation, due to the peptide interactions. Imaging techniques involve the use of X-

ray crystallography and NMR. These methods are both lengthy and complicated. Finally,

there are computational methods that employ simulations of protein folding to determine

the native conformation.

An exponentially large number of possible conformations create difficulties in simulations.

However, the use of lattice models allow for a finite, yet exponentially large number of pos-

sible conformations [16] thereby reducing the search space of all possible conformations.

The question is, which is the right lattice model to use, and how do you know? Suitabil-

ity of lattice models for protein folding is often determined using distance measurements

known as CRMS and DRMS and is the object of study in this thesis.
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1.3 Inverse Protein Folding

Inverse protein folding seeks to determine a protein’s amino acid sequence based on a

desired native conformation. A ‘good’ target sequence is the desired outcome of the inverse

protein folding model, and is the one whose native conformation has the lowest accessible

free energy and the lowest accessible free energy fold is unique [17]. Determination of a

good target sequence is of concern in modern drug design.

Known techniques and models used in the study of protein folding have been incorporated

in the search for good target sequences [18, 19, 10, 20, 21, 22, 23, 24, 25, 26, 27, 5, 14, 28,

16, 29, 30, 13].

Current theoretical approaches focus on local and global interactions. Local interaction

studies include the intrinsic propensities of residues to form helices and turns [31, 32,

5]. De novo studies of global forces include hydrophobic interactions, conformational

freedoms of the sequence chain and steric restrictions imposed by excluded volumes on

the sequence chain [5, 17]. Computational models include the use of ‘on-lattice’ and ‘off-

lattice’ models.

1.4 Protein Analysis

Understanding the relationship between the amino acid sequence and three-dimensional

native conformation of a protein is essential to understanding biological processes [25].

The protein folding, and inverse protein folding problems as mentioned above focus on

this. Each problem can be formulated as a search for the native conformation, the confor-

mation with the minimal free energy. However, finding the unique native conformation out
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of the enormous number of possible existing conformations presents huge combinatorial

problem in structural and sequence space [25, 33]. This issue was first articulated in the

1960s by Levinthal and has become known as the ‘Levinthal paradox’ [26]. Amino acid

sequences must also satisfy two requirements; a thermodynamic requirement in which the

sequence must have a unique folded conformation, that is stable and corresponds to the

native structure, and a kinetic requirement whereby the denatured polypeptide chain can

fold into the native conformation under the appropriate solution conditions [33].

Even with the simplified models and restrictions imposed on protein folding models, it

has been shown that the problem is NP-complete [3]. This implies that it is unlikely a

polynomial time algorithm exists to solve the protein folding problem.

Despite the hardness, the search for practical algorithms remains the driving force behind

numerous studies [16, 10, 25, 34, 35].

Three methods have been introduced to overcome Levinthal’s paradox, and for the demon-

stration of mechanisms employed in folding [25, 33]. The first method is a computation

procedure that utilizes empirical information on protein structures [25]. Protein structures

are compared through structural similarity and homology. The second method is based on

a global search for the minimum energy state. The energy function can be simplified either

by performing a search of an approximate solution or by replacing and modifying the po-

tential energy function itself [25]. Incorporation of mean field theory has been utilized as

well. The last method drastically reduces the dimension of the problem through a reduction

in structure space [25].

Restricted state models as well as the introduction of lattice models reduce the number of

possible conformations from infinite possibilities to one of finite [16]. Studies combining

methods two and three have been appearing with greater frequency over the years with
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positive results.

1.4.1 Structure and Sequence

A protein’s biological function is characterized by its three-dimensional structure. There-

fore through the comparison of known to unknown proteins we may be able determine

possible structural characteristics of the unknown proteins. There are a number of differ-

ent approaches including sequence alignment, structure alignment and contact map overlap

[36, 3, 37, 38].

In 1994, Thompson et al [38] introduced CLUSTAL-W an algorithm for progressive mul-

tiple sequence alignment. Multiple sequence alignment is a technique used to: (i) identify

highly conserved patterns in protein families; (ii) identify the homology between new and

existing sequences, and; (iii) identify the prediction of protein secondary and tertiary struc-

ture. It is a modified version of pairwise alignment that detects weak similarities’ common

to biologically related sequences [39].

Structural alignment compares the three-dimensional structure of a known protein to that

of an unknown protein. To date there are a large number of known protein structures listed

in the Protein Data Bank [40]. When a new protein is crystallized, structural comparison

of the unknown structure to the known structures is undertaken in the hopes of determining

a class for the protein, or rather a plausible function for the protein.

In 2004, Kolodny, Koehl and Levitt [37] reported on a comprehensive evaluation they per-

formed on six publicly available structural alignment methods. Methods evaluated rep-

resented two general strategies for finding good alignments. Group one represented by
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STRUCTAL, LSQMAN and SSM, search for transformations that optimally position the

two structures with respect to one another. Group two represented by SSAP, DALI and

CE directly search for a good alignment [37]. Scores for good alignments vary from

one method to another, therefore, the perceived performance of each method is subjective.

Comparison was made using analysis of geometric match measures and through compari-

son of receiver operating cost (ROC) curves based on a CATH gold standard.

They developed their own method for finding the best alignment, however, they did con-

clude that the evaluation of structural alignment methods should be done through alignment

comparison rather than the ranking of methods and ROC curves. ROC curves are of limited

value because the disadvantages outweigh the advantages. These curves may seem reason-

able due to the use of a gold standard however this standard is based on a classification

rather than a direct reflection of the similarity measure. In this case, the classification is

converted to binary, thereby allowing only two levels of similarity. This introduces noise

whereas a scale of similarity is far richer. ROC curves also do not detect if one method

does better than another.

Building on the methods of structural and sequence alignment is a method known as a

contact map overlap. A contact map is a graph whose vertices are protein residues and

whose vertex set is linearly ordered to represent the backbone of a polypeptide chain. Edges

between vertices are defined when the distance between two residues in the native state is

below a prescribed threshold.

The contact map overlap problem (CMO), seeks to evaluate the similarity of the native state

of two proteins based on the similarity of their contact maps. Given two folded proteins, an

alignment is sought which specifies residues considered to be equivalent in the two proteins.

The goal of CMO is to find the alignment that highlights the largest set of common contacts.
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1 2 3 4 5 6 7 8 9 10

a b c d e f g h i

Figure 1.5: Given two subsets, S = {3,4,5,6,7,8,9,10} and S′= {a,b,c,d,e,f,g,h,i}, an align-
ment which preserves the greatest number of similar contacts (edges) is (3,a), (4,b), (5,c),
(6,e), (7,f), (8,g), (9,h), (10,i); the maximum overlap between the two contact maps is 4 [3]

The value of an alignment is determined based on the number of residue pairs in contact in

one protein and aligned with residue pairs also in contact in the second.

CMO is the following optimization problem: Given two contact maps ([n],E) and ([m],E′),

find an order-preserving bijection (1-1 mapping), χ, between two subsets S ⊆ {1, . . . ,n}

and S′ ⊆ {1, . . . ,m} with | S | = | S′ |, such that the number of edges is preserved by the

bijection, that is | {(u,v) ∈ E : u,v ∈ S, [χ(u),χ(v)] ∈ E′} |, is as large as possible [3]. An

example can be found in Figure 1.5.

As stated in [3], it is intuitively clear and widely accepted that contact maps of proteins are

far from arbitrary collections of edges, since they have a specialized structure reflecting the

geometry of proteins. Therefore, to capture a proteins structure a special class of contact

maps is required.

In 2002, Goldman [3] presented polynomial-time algorithms for computing the contact
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overlap of special classes of two contact maps. Contact maps are derived from self-avoiding

walks on a 2-dimensional lattice, and the special class of contact maps are stack, queue or

staircase, as defined next. Define a stack to be a contact map ([n], E) such that if (i,j),

(k, l) ∈ E then either: (a) one of the intervals (i,j) or (k,l) contains the other, (b) they are

disjoint, or (c) they overlap at an endpoint. A queue is defined as a contact map ([n],E) such

that if (i,j), (k, l) ∈ E then neither of the intervals [i, j] and [k, l] contains the other unless

they share an endpoint. A staircase is a queue consisting of sets of intervals such that all

intervals in a set have more than one point intersecting. They proposed a 3-approximation

algorithm with O(n6) running time to compute the maximum contact overlap of two contact

maps, one of which is a staircase. A recursive dynamic program is used to compute the

contact map overlap. The contact map overlap problem is NP-hard in general as established

by Goldman [3]. For other NP results see the paper by Hart and Newman [41] and Berger

and Leighton [42].

1.4.2 Energetics

The energy based approach to protein structure prediction is the study of the kinetics of

the system in which the goal is to determine the structure with minimum free-energy [43].

Refolding of denatured protein into a biologically active form takes an average of 1 msec

to 100 seconds [43]. This time-frame is too short for an exhaustive random search for

the minimum free-energy structure to be conducted [43]. In 1992, Leopold et al [44]

introduced a model of a convergent kinetic pathway, or ‘folding funnel’ which explained

the use of a broader landscape whereby large numbers of pathways and intermediates are

utilized during a fold, rather than the use of a single mechanism. Therefore to understand

protein folding, and in particular the pathway involved, it is necessary to determine the
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structure and energetics of not only the initial unfolded state but all intermediate states, the

final folded states and the transition states occurring along this pathway [4].

A selection of the methods, used in the past decade, incorporate folding based on internal

interactions, molecular dynamics, Monte Carlo, self consistent field theory and self consis-

tent mean field theory [19, 10, 15, 25, 45, 28, 46, 33]. Monte Carlo simulations were used

by Gutin et al [15] in 1995 in their fast fold method and by Šali et al [34] in 1994 in their

study of the kinetics of protein folding.

Self-consistent-field-optimization (SCF) [47] was utilized by Reva et al [28, 46] first in

1996 and later in 1998. In the first study SCF-optimization was used to minimize the pro-

tein chain molecules ‘energy’. Later in 1998 SCF-optimization was used on a combined

pseudoenergy energy function which includes both the potential energy and geometric con-

straint terms. From this Reva et al [46] were able to reproduce off-lattice structures with

minimal errors in geometry and energetics.

The Hydrophobic-Polar (HP) model was introduced by Dill [19] as a method of reducing

the complexity of the protein folding problem. Amino acid residues of the primary se-

quence are characterized as either hydrophobic (H) or polar (P) monomers. A fold relies

only on the interactions of these classes, thereby decreasing the complexity of the problem.

Since contact between any two non-consecutive hydrophobic monomers reduces the free

energy of the resulting molecule, a protein is assumed to reach the native state when the

number of contacts between non-consecutive hydrophobic monomers is maximized.

The last of the three methods deals with the reduction in conformational space. Models in

this category focus on reduction through restriction of possible conformations. This can be

done through the incorporation of lattice models, off-lattice models [14] and by restricting

[48] the proteins secondary structures from the native conformation.
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1.4.3 Lattice Models

For our purpose a lattice is a two- or three-dimensional array of regularly spaced points.

Lattice models have been used extensively in protein folding for a number of years now,

however it may be conjectured that lattice underpinnings in folding came as the result

of the pioneering work of Levitt and Warshel who in the 1970s marked the beginning of

physically based models in the studies of protein folding [49]. Advantages associated with

lattice models are clear. They allow for an efficient sampling of conformational space, yet

restrict the overall size of conformation space.

There are two types of lattice model simulations, with two distinct objectives. Simulations

geared towards understanding the physics of protein folding, and those geared towards

realistic folding of proteins, and are parameterized using real proteins as templates [49].

A key feature of the type one lattice model is its simplicity [49]. These models are not

designed for real proteins, thus tests on these models have been limited to the studies of

general features of protein folding [49]. Nevertheless, a good deal can be learned from the

studies. These include the work of Dill et al [20] and Duan et al [49] who emphasized the

importance of hydrophobic interactions, or those of Bryngelson et al [43] who postulated

that proteins have a funnel-like energy landscape with minimal “frustration”. Other studies

include the works of Gutin et al [15], Koehl et al [25], Park and Levitt [14], Sanchez et al

[33] and Yue et al [17, 50].

Lattice models of type two are more complex. Because the residue-level representations

are applied to real proteins, that have a large number of energy minima as compared to the

simplified type one models, their energy surface can no longer be described exactly [49].

They can however be used for exhaustive search of protein sequences, and do impose a
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restriction on the number of possible conformations due to pair-wise interactions between

nearest neighbors [49]. Given the simplicity and success of these models, a number of

studies have been conducted using these models, including studies by Park and Levitt [14],

Rykunov and Reva [16] and Mead et al [5] who not only use these models, but also test to

see which lattice is the best lattice for protein folding studies.

In 1995, Park and Levitt [14] developed an algorithm that could be applied to any lattice

model in hopes of determining the relationship of a models “complexity” (number of con-

formations) to its accuracy (preservation of protein geometry). This algorithm allows fitting

of both on- and off-lattice models to the X-ray coordinates of a large database of proteins,

analyzing the relationship in both a global and local sense. They discovered that less com-

plex models that take into account the uneven distribution of residue conformations can be

as accurate as models of higher complexity. Therefore, they argued that low complexity

off-lattice models would be more appropriate for protein structure prediction than higher

complexity lattice models [14]. With this in mind they presented a set of optimized 4-state

models that could reproduce the backbone structure accurately in both a global and local

sense.

Experimental runs were performed on a set of lattice models of varying complexity and

deviations as determined by a coordinate root mean square (CRMS) were recorded. Anal-

ysis demonstrated that increasing model complexity above a certain point would yield little

improvement in the accuracy. They found the accuracy of fit to follow a simple law [14]:

(CRMS) ∝ (Complexity)−1/2

Accuracy measures observed include: (1) the preservation of native contacts between

residues, and (2) the preservation of a large proportion of the native secondary structure.
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In general, higher complexity (more conformations allowed) equates to greater preserva-

tion. However, in actuality preservation of the secondary structures varied substantially

because of the composition of structures present. In some low-complexity models one

of the secondary structures was preserved more than the others and vice versa with more

complex models [14]. Low-complexity models were able to reproduce the important char-

acteristics of tertiary structure, native contacts, secondary structure and CRMS deviation,

giving Park and Levitt a basis for their optimized 4-state models.

That same year, Rykunov et al [16] proposed a novel algorithm based on dynamic pro-

gramming that could be applied to any three-dimensional lattice producing lattice models

having minimal RMS deviations from the actual folds. Their model sought to minimize

the error function (difference between the coordinates of the protein chain and the lattice

model) while satisfying the conditions of chain connectivity and self-avoidance [16]. The

algorithm builds a self-avoiding walk by testing a large number of lattice-protein orienta-

tions and selecting the best one based on that orientations error function. The model with

the minimum error function is best.

Since then, Reva et al [51] have revisited the problem twice. First, with a modification to

lattice and algorithm for the inclusion of sidechains and then with the incorporation of self-

consistent mean field theory which guaranteed the absence of self-crossings in the model

chain thereby producing self-avoiding walks [28]. However, due to the complexity of the

models, the largest protein that the algorithms could handle was limited to approximately

247 residues.

In 2005, building on the work of Park and Levitt [14], Mead et al [5] proposed a novel algo-

rithm to test for an ideal lattice that could be used in the study of inverse protein folding. In

this thesis we study the problem of determining ideal lattices [14], those that best approx-
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imate the rigid protein backbone when residues are placed on the vertices. This problem

is of interest because it arises in the context of protein folding and inverse protein folding

algorithms that use lattice models. We focus on the simple cubic lattice and on a coordinate

root mean square (CRMS) distance measure for determining suitability.

Two algorithms are presented: the first algorithm computes an optimal non-self-avoiding

walk (walk henceforth) to embed a protein to a lattice. Dynamic programming is used to

determine the best walk. Branch and bound techniques are utilized to help prune a large

number of possible invalid walks and considerably speed up the algorithm. The algorithm

is fast and as yet does not suffer from any size restrictions. Tests have been performed on

approximately 3704 protein structures (obtained from PDB), some containing greater than

1000 residues.

The second algorithm computes an approximate self-avoiding walk of a protein. The prob-

lem of computing the self-avoiding walk that minimizes CRMS deviation was recently

shown to be NP-complete [35]. Once again the protein is mapped to the lattice and an ap-

proximate path is determined using dynamic programming. Branch and bound techniques

are investigated so as to prune the vast number of possible non optimal conformations.

The condition of self-avoidance makes the process considerably more difficult. Results are

compared to those of the walk algorithm.

The remainder of the thesis is organized as follows: it contains three chapters, repectively

on the algorithms designed, experimentation and discussion, and open problems discovered

through our research. In the first chapter we present algorithms for the determination of

ideal lattices [14] (those that best approximate the rigid protein backbone when residues

are placed on the vertices). The second chapter addresses our findings and the last chapter,

new questions that are open for further study.
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Chapter 2

Algorithms

It is a fact that the quality of the protein structure predicted depends on the lattice model

used. What constitutes a good lattice model is still being debated. With this in mind,

Park and Levitt [14] have indicated that there are three basic criteria that hold merit in

determination of a good model: (1) the preservation of a protein’s native contacts; (2)

a measure such as CRMS to judge a model’s accuracy, and; (3) a large proportion of a

protein’s native secondary structure should be preserved.

The build-up algorithm developed in 1995 by Park and Levitt [14] can be applied to any

lattice model. As mentioned previously, the algorithm allows for the fitting of both on-

and off-lattice models to the X-ray coordinates of the Cα of a large database of proteins.

The algorithm is brute force and does not guarantee that a globally optimal fit will be

found. Because of the prohibitive runtime of the algorithm on larger structures, shorter

peptides were used to test the quality of fit. One hundred segments, 12-residues long, were

randomly selected and all the possible conformations were enumerated using an optimized

4-state model that found an optimal fit. These segments were then used for the usual build

up procedure with each of the models and compared to the optimal. Structures much larger

than 12-residues long were found to have too many conformations therefore there was no

way of knowing how close they were to the exact optimum [14].

The algorithm proposed in 1995 by Rykunov et al [16] mentioned previously is based on

dynamic programming, can be applied to any lattice model and is able to find self-avoiding

walks with minimum error function. Unfortunately, the algorithm does not guarantee self-

avoidance in all the runs. This is because the basic design of their algorithm is that of
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a walk. To address this they incorporated a couple of methods which help avoid self-

crossings. Method one employed the addition of an approximated ‘steric repulsion’ of

links into their error function. Repulsion only minimally improved avoidance, therefore

Rykunov et al [16] proposed a second method. In this method, they searched through

multiple (93 = 729) lattice protein orientations in an effort to find the best self-avoiding

model. Orientations searched corresponded to rotations by 0◦, . . . ,80◦ over each of three

Euler angles. Self-avoiding walks were found on proteins of length no greater than 107

residues.

The two algorithms in this thesis are also based on dynamic programming and like Rykunov

et al [16], can in theory be applied to any lattice to determine lattice models having min-

imal CRMS deviations from the actual folds. Unlike Rykunov et al [16] these algorithms

incorporate branch and bound techniques to prune invalid conformations thereby increas-

ing the efficiency. Further more our objective function is considerably simpler, and relies

on the study of Mead et al [5]. The first algorithm, does not guarantee self-avoidance

and determines the optimal fit (one with minimum CRMS deviation). In the second algo-

rithm, the path guarantees self-avoidance, a problem shown to be NP-complete [35] (it is

highly unlikely that a polynomial time algorithm for the problem exists). We use dynamic

programming with branch and bound, but due to combinatorial explosion, we are unable

to compute optimal solutions to many of the protein samples. Given the hardness of the

problem, we evaluate the performance ratio of a greedy algorithm as there are no known

approximation algorithms. Empirically, we establish that the greedy algorithm computes

paths that have CRMS value 1.56 times that of the optimal CRMS on average. A theoretical

analysis of the greedy remains an open and interesting problem.

21



2.1 Dynamic Programming

Dynamic programming is a recursive technique, similar to the divide and conquer method

that solves problems by combining the solutions with subproblems [52]. Dynamic pro-

gramming, however, differs from the divide and conquer method in that it solves every

subproblem just once and saves its answer in a table, thereby avoiding repetitive calcula-

tions every time a subproblem arises [52].

Dynamic programming has a rich history. It has been successfully applied to problems such

as assembly line scheduling, matrix chain multiplication, contact map overlap and global

sequence alignment to name a few [52].

Dynamic programming can be summarized as follows:

1. Establish a recursive property based on the ‘principle of optimality’, that describes

the optimal solution to the problem in terms of the optimal solution to the subprob-

lems.

2. Solve the problems in a bottom up fashion, i.e., compute optimal solutions to the

smaller sized problems first, and use these solutions to compute the solution to the

larger problem.

2.2 Branch and Bound

Many algorithms involve exhaustive procedures in that they choose between a number of

alternatives during each iteration. Depending on the branching factor of the search tree

the total number of possible alternatives can be huge thereby consuming large amounts of
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time and memory. Being able to prune the branches of the search tree that do not lead to

the solution would be advantageous. This is precisely what branch and bound attempts to

accomplish.

Branch and bound is implemented via the introduction of a test at each alternative. If

the process passes the test the alternative is included for subsequent testing in following

iterations. If the process does not pass the test then this alternative is skipped. A common

type of test involves the use of upper and lower bounds. Consider a minimization problem.

If the value of the current partial solution plus ‘some’ lower bound on the value of the

remaining subproblem is greater than an upper bound on the value of the optimal solution

to the problem, then the current partial solution need not be explored further. Hence the

node associated with the current partial solution in the search tree can be fathomed.

2.3 Walk

Our study examines the 3-D structure of protein backbones, adhering to the characteristics

verified by Mead et al, [5], (i.e., the distance between two consecutive amino acid residues

is 1 unit, and the distance between any two non-consecutive amino acid residues is at least

1 unit). The protein chain we denote P and the number of amino acid residues in P by n.

Also given is a simple cubic lattice L.

Let f : P → L be a mapping such that consecutive residues in P are mapped to consec-

utive vertices in L. Our objective is to find a mapping f such that the CRMS-deviation

of the model from the actual 3-D structure is minimized. CRMS deviation is given by:√
∑p∈P d2(p, f (p))

n .1 The minimum CRMS value referred to in this section we obtain by min-

1d2 is the square of the distance.
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imizing the term ∑p∈P d2(p, f (p)), is denoted c∗. Note, any two residues pi, p j may map

to the same vertex v ∈ L. Therefore, f does not guarantee a self-avoiding walk.

We denote the total number of vertices in the lattice by |L| and neighbors of a given vertex

v ∈ L we denote N(v).

2.3.1 Dynamic Programming Algorithm

Let C be a |L| × n matrix, whose entry C[v, j] is the cost of the optimal solution that maps

the first j residues and ends in v. The walk fixes protein residues p1, . . . , p j on L, subject

to the constraint that protein p1 is mapped to a fixed vertex v1 ∈ L, and p j is mapped to

vertex v. By definition, c∗=minv∈L{C[v,n]}. Entries in C can be computed using dynamic

programming in O(|L|n) time, as shown below.

All entries in C are initialized to +∞, followed by assigning: C[v,1]=d2(v1, p1). Subsequent

entries are computed column by column according to the following rule:

C[v, j] = minu∈N(v){C[u, j−1]+d2(v, p j)} (2.1)

Efficiency can be improved by incorporation of a candidate list. If for all vertices u ∈ N(v),

C[u, j− 1] is +∞, the evaluation of equation 2.1 for entry C[v, j] is ignored. A candidate

list maintains elements C[v, j−1] from iteration j−1 with a finite value. We update C[v, j]

only if v ∈ N(u), and u is in the candidate list, and C[u, j−1]+d(v, p j) < C[v, j].

Theorem 1 The dynamic programming algorithm correctly computes the walk, starting at

a fixed vertex v1, with minimum CRMS value in O(|L|n) time and O(|L|) space.
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Proof Correctness proof is by induction.

• Base Case, n=1: The algorithm maps p1 to v1 with minimal CRMS. Therefore the

base case holds.

• Induction Hypothesis, n=k-1: The algorithm correctly computes entries C[u,k−

1], i.e. the cheapest cost walk starting at v1 and ending in u that maps residues

p1, . . . , pk−1.

• Induction Step, n=k: By definition a walk that fixes protein residues p1, . . . , pk−1 to

L will map pk−1 to u ∈ N(v). If we assume an optimal solution where pk maps to v,

then pk−1 will map to u ∈ N(v). If the CRMS value of C[v,k−1] is not minimal for

the mapping of p1, . . . , pk−1 beginning at v1 then there is a contradiction. Therefore,

by induction we have shown equation 2.1 computes correctly C[v, pk].

Running time of the walk algorithm is proportional to the entries in C, O(|L|n). Values in

C are computed by column via information stored in the j−1 column, therefore, only two

columns of C need to be stored. Thus O(|L|) space is sufficient.

Next we show how we can further speed up the algorithm using a branch and bound pro-

cedure. Utilizing branch and bound techniques we were able to greatly reduce the run-

ning time from hours to under 20 minutes on protein structures with approximately 1000

residues on a Celeron 1.3Ghz machine with 256MB of RAM.

Let LB be an array of size n, whose ith entry LB[i] is a lower bound on the optimal solution

to the subproblem determined by residues pi+1, . . . , pn of f , LB[1]≤ c∗. Two different runs

of the algorithm are performed. In the first run, an upperbound constructed using a greedy

algorithm is used. For the second run, UB equals the CRMS value computed in the first run,
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and CL is initialized with a list of possible vertices where the first protein residue can reside

in the optimal solution. This will be expounded on later in this section. A few methods for

computing the LB will be illustrated in the next subsection.

If

minu∈N(v){C[u, j−1]+d2(v, p j)}+LB[ j +1]≥UB (2.2)

then in any optimal solution residue p j is ignored and will not be mapped to vertex v.

Subsequently C[v, p j] is set to +∞, i.e., C[v, p j] is not added to the candidate list in iteration

j.

We also note that in the optimal solution, residue p1 is assigned to one of the vertices in a

circle of size atmost R2, where R2 = UB−LB[1], centered around p1.

Assume that p1 is mapped to v outside of the circle (radius R2), then

CRMS ≥ R2 +LB[1]≥UB−LB[1]+LB[1]≥UB (2.3)

Thus choosing some vertex v outside of R2 is ill-advised.

Remark: Note that this dynamic programming algorithm will not minimize the DRMS

value, as the objective function is not “separable”. For example, let us look at a protein of

four residues. Let residues be p1, p2, p3, p4. The DRMS for the subproblem with first three

residues is x = (d(p1, p2)−d(v1,v2))2 +(d(p1, p3)−d(v1,v3))2 +(d(p3, p2)−d(v3,v2))2,

where vi is the lattice point where residue pi is placed in the lattice. Note that the DRMS

for the four residues cannot be written as x + y, where y does not share any term with x.

This separation is necessary for the optimality of the solution constructed by the dynamic

program.

26



2.3.2 Upper Bound

For our upper bound value we used the CRMS value of a walk determined by means of

a greedy algorithm. Greedy algorithms solve problems by selecting the locally optimal

choice at each stage.

In each iteration, the six possible lattice points are mapped to the protein point under

consideration. The square of the Euclidean distance for each mapping is calculated and

summed with the previous CRMS value. The mapping with the minimal total CRMS value

is saved and the algorithm proceeds to the next iteration. This algorithm is very fast and

through our experiments has proven to be quite accurate at times.

2.3.3 Lower Bound

The lower bound value is added to the CRMS value of the current iteration and the sum

is compared to the upper bound. If the sum of the CRMS value and lower bound to the

subproblem remaining is greater than the upper bound the lattice point is pruned. Deter-

mination of a good lower bound is crucial. If the lower bound is too small, there may be

too many possibilities tested and the algorithm will suffer. Therefore, finding a tight lower

bound (as close to the optimal solution) as possible is important.

Recall that the ith entry in the lower bound array is a lower bound on the CRMS value of

the optimal solution to the subproblem given by residues pi+1, . . . , pn. We calculate a lower

bound array based on different distance matrices. These ideas are from Mead et al [5]. The

first distance array is created by calculating the minimum distance of the protein point to

its closest lattice point. The second distance array stores in positions i and i+1 (for odd i)
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the smallest sum of distances that map residues pi, pi+1 to an edge in the lattice.

The lower bound is computed based on the parity of the subproblem from the two previous

arrays. If the subproblem has even number of residues then the lower bound is obtained

by summing up the (respective) values in the second array. If the number of residues is

odd then for the first residue we use the value from the first array, and for the remaining

residues we sum up the (respective) values in the second array.

2.3.4 SC Lattice

We have tested our algorithm on simple cubic (SC) lattice. Other promising lattices include

the face centered cubic (FCC) lattice and the extended face centered cubic (eFCC) lattice

[5]. The walk algorithm can be modified to compute optimal solutions for different lattices

as well, albeit with additional programming effort. Our choice of SC lattice was based on

the previous studies of Park et al [14], Mead et al [5] and Rykunov et al [16] who deter-

mined that lattices having uniform edges of length 3.8 Å, periodic regular structure, and

predominant angles of 90◦ and 120◦ degrees would represent protein structure relatively

closely.

2.4 Path

The algorithm for computing paths with minimum CRMS value, as with the walk algo-

rithm, utilizes dynamic programming and branch and bound techniques. The algorithm

is in many respects, near identical to the walk algorithm, however, it does include some

28



important functional changes. Recall that a path differs from a walk, in that the mapping

must now be self-avoiding. No vertex is used more than once in each path. This simple

restriction makes the resulting problem NP-complete [35].

The path algorithm, like the walk algorithm, seeks a minimal CRMS deviation mapping of

protein structure. We initialize the path by mapping the first protein residue p1 to a fixed

vertex v1. Later, we consider different starting vertices v ∈ L for v1.

Let Tk be the set of all paths of length k, stored in a candidate list array, denoted CL. We

obtain paths of length k + 1 from Tk in iteration k + 1, as well as the associated CRMS

values. Note that the total number of possible paths of length k is exponential in k.

Branch and bound can be applied to the algorithm to improve the efficiency. Upper bound

(UB) is determined using a greedy path algorithm. Lower bound (LB) may be determined

via three methods described below.

2.4.1 Upper Bound

Taking a page from the walk algorithm, a greedy algorithm for the path has been used to

determine the upper bound. The greedy algorithm for the path is very similar to that of the

greedy algorithm for the walk except the check for self-avoidance. No lattice vertex can be

visited more than once, therefore, a test must be performed during each iteration. A hash

table is used to store each of the vertices added for quick access later.

During each iteration, there are six possible vertices that can be used to extend the path.

Each vertex is tested to see if it has been previously visited. Vertices visited previously are

ignored. All remaining vertices are tested for extension of the path. The extension with the
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minimum CRMS value is added to the path and the vertex is added to the hash table, the

algorithm proceeds to the next iteration. Vertex coordinates make up the key for the hash

table. This algorithm is very fast and is somewhat accurate as observed empirically. Note

that this algorithm need not necessarily find a path that maps all the residues in the protein.

2.4.2 Lower Bound

Let Bi be a bipartite graph whose vertices are the vertices in L, and the residues pi, . . . , pn

in protein P. All the edges are of type (v, p j) where v∈ L and p j≥i ∈ P. The weight on edge

(v, p j) is d2(v, p j). The number of edges in B are |L|(n− i+1). A minimum weight perfect

matching in Bi is a lower bound on the subproblem determined by residues pi, . . . , pn.

A good lower bound, LB may also be found by computing the minimum cost (optimal

solution) walk, Wi, to a subproblem determined by residues pi, . . . , pn.

Let D be a distance array, such that the ith entry in D is the distance of the closest lattice

vertex v to protein residue pi. Let DD be a double distance array, which stores the smallest

distance that maps residues pi and pi+1 to an edge in the lattice. Subject to the parity of i

a lower bound, LB may be determined, such that LB[i] is the cost of mapping pi+1, . . . , pn.

LB[i] is determined via one of two equations dependent on (n) mod 2. For values equal to

0:

LB[i] = LB[i+1]+D[i+1] (2.4)

else

LB[i] = LB[i+2]+DD[i+1] (2.5)
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At present, the lower bound method, described in the previous paragraph, is in use in both

the walk and the path algorithms. The second method is a good choice for lower bound

calculations, however, as currently coded it is inefficient to use, as we require n− 1 calls.

Determination of n− 1 walks especially if n is large takes a substantial amount of time,

making this method infeasible. Method one has not been evaluated for the path algorithm.

2.4.3 Path Algorithm

Each iteration of the path algorithm modifies a hash table and creates a new candidate list.

The hash table stores the CRMS value, the current path, the nodes visited and the length of

the path. The candidate list is created for each next possible vertex, that could be used to

extend the current path, without violating the condition of self-avoidance. These vertices

are tested and pruned using branch and bound limiting the size of the candidate list in the

next iteration. Unfortunately, due to the nature of the problem even with pruning there are

far too many possibilities to be searched efficiently.

During each iteration, the path algorithm can add at most six vertices to the candidate list

for each vertex in the candidate list. To reduce the combinatorial explosion a new vertex is

added to the candidate list with some predefined probability, if the size of the candidate list

is above a certain threshold.

Use of randomization allows for the total number of paths to be reduced. In iteration k,

viable paths of length k determined from Tk−1 are added to the candidate list if a random

number generated is greater than some threshold. The threshold value is h/x, where h is

some constant and x is the number of viable paths that may be added to the candidate list.

Random selection is only performed if the candidate list is greater than some multiple of 2.
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Unlike the walk algorithm, the path stored in the hash table is composed of the three-

dimensional coordinates of each node. Memory requirements are increased. By storing all

of the nodes in the path we are able to test for self-avoidance. There is some duplication of

data, as the path is stored both in an array and a hash table. The array is used in lieu of a

traceback procedure and the hash table for a quick reference for self-avoidance testing.

The simple cubic (SC) lattice is used again in testing of the path algorithm. Like the walk

it is theoretically plausible for any lattice to be used in the algorithm, as shown in [14, 5].
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Chapter 3

Results and Discussion

In this study, we developed new algorithms to improve on the work of Park and Levitt

[14]; Rykunov [16], and Reva [28]. Our approach allows for improvement in the speed and

size of proteins, that the algorithm can handle. We have been able to work with proteins

consisting of over 1000 residues as compared to the 753 residues of Park and Levitt [14]

and 445 of Rykunov and Reva [51] when it comes to computing optimal walks. Like

Rykunov and Reva [51] we used dynamic programming in an algorithm not much different

than their own. However, we used branch and bound methods to improve the running time

and space of the algorithm. Like Rykunov and Reva [16] we have two algorithm, a walk

algorithm that does not guarantee self-avoidance and a path algorithm that does.

The walk algorithm is polynomial in the worst case and produces an optimal solution,

however, as mentioned above it does not guarantee self-avoidance. Due to the recent NP-

completeness result [35], it seems highly improbable that a polynomial time algorithm

exists for computing paths that minimize the CRMS value. In addition we compared the

quality of a greedy solution, using the CRMS value of the walk as a lower bound on the

optimal solution to the path problem. The empirical evidence suggests that the greedy

algorithm is quite good.

Even though we evaluated our algorithms only on a simple cubic (SC) lattice, with modifi-

cations we found that the algorithms can be used for any other lattice.

To represent naturally occurring protein structures, we selected the same subset of 3704

PDB protein structures used by Mead et al [5]. Of this subset, a large portion have multiple
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subchains. For our analysis a subchain was defined as any polypeptide chain. We treat each

subchain separately in our experiments. The separation of the subchains of 3704 protein

structures yields a final set of approximately 8236 protein structures. The basis for the

selection and utilization of this set follows from the selection criteria of Mead et al [5].

3.1 Walk

The walk algorithm described in Chapter 3 is polynomial and ensures that a globally op-

timal fit is found. Incorporation of branch and bound techniques significantly reduces the

running time. Runs on the dataset were performed without any difficulties.

3.1.1 Results and Analysis

Results were based on a simple cubic lattice with a spacing of 3.8 Å. Validity was assured

through a comparison of analysis data to the findings of Park et al [14] and Mead et al [5].

Experimental results for the set of 8236 PDB protein structures were recorded in output

files. The output files contained the PDB identifier of the protein structure, the CRMS

value and size of the protein sample. All the output files for the set were collated for

analysis.

Analysis of the output data includes a histogram comparing the frequency of the CRMS

values, a plot of protein size vs CRMS value distribution and calculation of the mean and

standard deviation for the CRMS value. Ideally, the CRMS value should not depend on the

number of residues in the protein.
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Figure 3.1: Shows a plot of the number of protein residues (size of protein) verses the
CRMS value, sorted by increasing order of the number of residues.2

Figure 3.1 indicates that the proteins length and CRMS values are not dependent on one

another. Had the values been dependent on one another, we would expect to see larger

CRMS values associated with larger protein structures. However, as seen in Figure 3.1

this is not the case. CRMS values are closely related regardless of the size of the protein

structure, and seem to get smaller with an increase in the number of residues.

Further analysis of the data through a histogram of CRMS frequency further substantiated

the walk algorithm’s performance. Results of the histogram are displayed in Figure 3.2.

Once again results are based on a simple cubic lattice.

As seen in Figure 3.2 the greatest frequency of the CRMS data is found close to the 0.75

mark. With a second large selection of frequencies around the 0.90 mark.

2A comment of Dr. Bhattacharya revealed that two outliers were not corrected for inclusion of subchains
resulting in an error, values have been recalculated and the figure changed to reflect this.
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Figure 3.2: Histogram of the CRMS values from the 8236 subset of PDB protein structures

The results not only demonstrate the validity of the performance of the walk algorithm we

also confirm previous findings that substantiate the use of cubic lattice’s to approximate

known protein structures. Previous findings include those obtained in 1995 by Park and

Levitt [14] and those of Mead et al [5] in 2005.

Park and Levitt’s [14] build-up algorithm developed in 1995 was designed to fit arbitrary

models to X-ray structures. In order to test the accuracy with which the models could

represent each member of their database of proteins. Models of varying complexity were

considered and tested. As we discussed previously, analysis of their tests revealed that

increasing model complexity above a certain point, yields little improvement in accuracy.

Therefore lower complexity models with good accuracy, like the simple cubic lattice, are

acceptable for representing protein structures.

Later in 2005, Mead et al [5] building on the work of Park and Levitt [14] developed their

own novel algorithm to test for an ideal lattice that could be used in the study of inverse

protein folding. They performed a three-step analysis, on a number of different lattice mod-
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els, testing alignments based on CRMS, a relative all-to-all coordinate root mean square

(DRMS), and an angle root mean square deviation (ARMS). Their investigation coincided

with Park and Levitt [14] demonstrating that cubic lattices work well in approximating

known protein structures.

Our findings show that the results (CRMS values computed) of Mead et al [5] are quite

close to the optimal, as they are close to the lower bound given by our algorithm.

Mead et al’s [5] data is based on an edge length 3.8 Å, whereas ours is on length 1. There-

fore, prior to comparison with our mean of 0.721 their CRMS mean must first be divided

by 3.8 Å. Mead et al [5] reported a mean CRMS value of 2.7579 for the simple cubic lat-

tice. Modifying this value for length 1 produces a CRMS mean of 0.726, whereas the mean

CRMS value for the walk is 0.721. The mean CRMS values for our algorithms differs by

3 decimal places. Such a small difference in CRMS mean shows that the optimal walk is

an excellent lower bound for the path. Using this evidence, we hypothesize that if the path

algorithm uses a lower bound (in branch and bound) based on walks then the running time

should be ‘reasonable’ in practice due to search space reduction. However, to compute the

lower bound array for proteins of size 1000, we would require 1000 invocations of the walk

algorithm. This translates into a total time of approximately 20× 1000 = 20000
60 = 333.3̄

hours or close to 14 days on a 1.3 GHz machine. It was for this reason that we decided to

use a different lower bound (one that could be computed a lot faster) in our experiments for

the path algorithm.

The preceding discussion also illustrates the need for an incremental algorithm for comput-

ing lower bounds based on walk. An interesting theoretical question that remains open.
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3.2 Path

The path problem was recently shown to be NP-complete [35]. Therefore, a polynomial

algorithm to calculate the optimal path is highly unlikely. Chapter 3 describes a dynamic

programming algorithm that may be used to find an approximate solution to the path. How-

ever, due to the complexity of the problem, restrictions have been imposed on the dataset

and results on a greedy path algorithm have been included.

3.2.1 Results and Analysis

To test the efficiency and accuracy of the path algorithm we used the same subset of 8236

protein structures as discussed in the walk. Experimental results obtained from the samples

are based on a simple cubic lattice satisfying chain connectivity and the constraint that no

vertex may be used more than once in each path. Validity of our results is compared against

results for the walk algorithm and the data of Park et al [14] and Mead et al [5].

Our analysis of the path algorithm on the protein data subset has shown that it is very dif-

ficult to build self-avoiding walks. Due to combinatorial explosion, memory requirements

are too great to complete experimental runs. Candidate list sizes quickly expanded into the

millions as compared to candidate list sizes of approximately 14125 and 24410 as recorded

by the walk on the largest of the protein samples. To reduce the search space protein struc-

tures were split into sections approximately 80-120 residues long and further modifications

were made to the algorithm.

We incorporated a probability screening procedure to reduce the number of possible paths.

We randomly selected a subset of 363 protein structures from the original 8236 protein
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Figure 3.3: Minimum CRMS value over all subchains in a protein, obtained from path
algorithm runs on a subset of 363 protein structures. Proteins are split into subchains of
length no greater than 100 residues and the minimum CRMS value over all subchains is
reported.

structures. Incremental adjustments to the probability function were performed and tested

against the subset. We were able to produce results for a small portion of the subset,

however we were not able to produce consistent results across the entire subset.

Based on the performance of the set of runs we questioned the effectiveness of the lower

bounds used in the branch and bound procedure.

Using the path algorithm with a modified lower bound function we tested each protein

structure in the subset of 363 structures. Runs finished with a 60% success rate and an

average CRMS value of 0.99.

Results of these runs are represented in Figures 3.3, 3.4 and 3.5. Note that the sample

protein structure is split into smaller sizes as reflected in Figures 3.3 and 3.4. The split

protein structure is then run as separate subchains and their individual values are recorded.
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Figure 3.4: Maximum CRMS value over all subchains in a protein, obtained from path
algorithm runs on a subset of 363 protein structures. Proteins are split into subchains of
length no greater than 100 residues and the maximum CRMS value over all subchains is
reported.

Figure 3.5: Mean CRMS value over all subchains in a protein, obtained from path algorithm
runs on a subset of 363 protein structures. Proteins are split into subchains of length no
greater than 100 residues and the average CRMS value over all subchains is reported.
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Figure 3.6: Shows a plot of the number of protein residues versus the CRMS value, sorted
in the increasing order of the number of residues. 2

Figure 3.3 shows the minimum values of the collection of subchains. Figure 3.4 shows the

maximum values.

The mean CRMS values for the runs is shown in Figure 3.5. This data represents an aver-

aging of a split protein structure therefore the CRMS average will deviate from runs based

on original protein structures. Figure 3.6 displays the results of the walk algorithm on the

subset of 363 protein structures.

From these results, I am able to demonstrate that the algorithm is able to produce viable

results. However, it should be noted that the success rate for the runs is low, and it is not

able to handle large proteins.

Recent findings of Maňuch et al [35] account for the difficulties encountered. For now, it

remains an interesting problem to design approximation algorithms with guaranteed worst

case performance ratio.
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Figure 3.7: A plot of the number of residues versus the CRMS value, sorted in the increas-
ing order of number of residues.

As one can see we were not able to produce any substantial results for our dynamic pro-

gramming algorithm. We did, however, have a working greedy algorithm for the path

problem that was producing results. As such we proceeded with a full experimental run on

the original 8236 PDB protein structures.

We observed a 99% success rate for the greedy path algorithm and a mean CRMS value of

1.13 (Figure 3.7), that is 1.56 times that of the optimal CRMS on average. Based on these

findings I surmise that for the majority of runs the greedy path algorithm makes a good

upper bound.

There is room for improvement in determining a better upper bound. Determination of

the efficacy of the branch and bound procedure with the lower bounds based on bipartite

matchings and walks remains an interesting problem. Given that walks give a ‘good’ lower

bound on paths, we hypothesize that the branch and bound will be effective.
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Chapter 4

Open Problems

In particular we describe four interesting research questions.

Results showed that an optimal walk is an excellent lower bound for the path. Using this

evidence, we can hypothesize that if a path algorithm uses a lower bound based on walks,

the running time should be ‘reasonable’ in practice. However due to the time required to

compute the lower bound array for proteins of significant size this model becomes infea-

sible. Development of an incremental algorithm for computing the lower bounds based on

the walk algorithm would be of great value.

We were not able to produce any substantial results for our dynamic programming algo-

rithm (for the path problem). Viablity of the results depended on the upper and lower

bounds used in branch and bound. Based on the success rate of our experiments there is

room for improvement in determining better upper and lower bounds. Determining other

efficiently computable ‘good’ lower bounds remains an interesting open problem.

We established that the greedy path algorithm computes paths that have a CRMS value 1.56

times that of the optimal CRMS on average with a 99% success rate. A theoretical analysis

of the greedy remains an open and interesting problem.

Recent findings of Maňuch et al [35] have shown the path problem to be NP-complete,

therefore it is highly unlikely that a polynomial time algorithm for the problem exists. An

interesting problem involves the design of approximation algorithms with guaranteed worst

case performance ratio.
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