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Abstract 

The premise that mature visual function depends upon the nature of visual 

experience during development is based primarily on experiments showing that visual 

deprivation during a 'critical' period early in life causes abnormalities in visual cortex 

and an enduring loss of spatial vision (amblyopia). There is, however, little evidence that 

early visual experience actually enables mature vision. Experiments in this thesis 

provide such evidence. The measurement of optomotor responses daily from eye 

opening permanently enhances optomotor sensitivity and the perception of visual motion. 

The plasticity allowing this enhancement is transient and peaks in efficacy before the 

start of the classical 'critical 'period for ocular dominance plasticity. The enhancement is 

dependent upon optomotor responses generated by the movement of high spatial 

frequency visual stimuli, and is mediated by the visual cortex. These studies show that a 

form of experience-dependent plasticity, distinct from that of the critical period, enables 

mature motion vision. 
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Chapter 1-Introduction 

A fundamental feature of the mammalian brain is its ability to change adaptively. 

This neural plasticity is present throughout life (Bower, 1990); however, adaptive 

plasticity is particularly prevalent during neural development (Knudsen, 2004). One of 

the clearest examples of this developmental plasticity is found in the mammalian visual 

system, where abnormal visual experience only during a "critical" period early in life can 

permanently alter the structure and function of the visual cortex (Wiesel & Hubel, 

1963b). There are however, a number of unanswered questions regarding the function 

and timing of developmental visual cortex plasticity. For example, that the deprivation of 

normal experience during the critical period causes a loss of normal function has been 

interpreted as meaning that normal experience during a critical period enables normal 

function. However, there is no direct evidence for this interpretation; it is equally 

possible that deprivation in and of it self causes the loss of function. Another, is that the 

critical period does not begin until well after functional vision has been established at 

eye-opening and the purpose of this delay has not been identified. The hypothesis 

underlying the experiments in this thesis is that a period of enabling visual plasticity is 

present before the critical period. The results of experiments presented in this thesis will 

support this hypothesis by showing that transient visuomotor experience between eye-

opening and the start of the critical period permanently enhances motion vision. 

Chapter 1 will provide the historical background of the thesis experiments. First, 

the classic critical period will be introduced and discussed. This will include a 

description of the physiological and anatomical changes that occur in the visual system in 
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response to various forms of visual deprivation. Two hypothetical accounts of what is 

occurring in the brain between eye-opening and onset of the critical period will also be 

introduced. One will postulate that a "pre-critical" period exists that sets the stage for 

visual plasticity that is restricted to the critical period. The other will postulate that a 

period of plasticity distinct from that of the critical period is present. 

Chapter 2 will initiate the description of experiments related to the thesis. In it, a 

novel behavioural task for measuring optomotor sensitivity in rats will be introduced. In 

addition, the optomotor thresholds of adult and developing animals will be characterized. 

In the course of these experiments, an experience-dependent enhancement of vision was 

found during the period from eye-opening to the onset of the critical period. In chapter 3, 

the temporal expression and experiential control of this novel period of plasticity was 

characterized in a series of experiments. Finally, chapter 4 will discuss the implications 

of this novel "critical" period for visual motion plasticity, and will provide a hypothesis 

for its function. 

1.1 Critical period 

The mammalian visual system emerged as a major model system for 

investigating the anatomical, physiological and behavioural substrates of developmental 

neural plasticity due to the pioneering work of Hubel and Wiesel in the 1960's. They 

discovered that visual deprivation in frontal-eyed animals only during a "critical" period 

early in life could permanently alter the structure and physiology of the visual cortex. 

Because these alterations were accompanied by a permanent reduction of vision through 

the deprived eye(s) (Dews & Wiesel, 1970), understanding the nature of critical period 
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plasticity is thought to be a key to understanding the basis of human amblyopia (Odom, 

1983). 

1.1.1 Effects of monocular deprivation 

Although a number of manipulations of visual experience have been used to study 

critical period plasticity, monocular deprivation (MD) has become the archetypal 

experimental manipulation because it is simple and yields reproducible results. MD 

involves suturing one eye shut; a treatment that dramatically reduces the amount of light 

entering the eye as well as information through the entire spatial frequency range. MD 

during the critical period causes a number of abnormalities in the visual system. 

Significant changes in the functioning of structures upstream of the visual cortex have not 

been observed following critical period MD; the physiological properties of the retina of 

the sutured eye (Wiesel & Hubel, 1963b; Sherman & Stone, 1973) and of cells in the 

lateral geniculate nucleus (LGN) both appear normal (Wiesel & Hubel, 1963b). Thus, 

the causes of the amblyopia cannot be attributed to deficits in visual processing between 

the eye and the LGN. The major alterations that occur as a result of MD are in the 

geniculocortical system. For example, it has been shown in cats that during normal 

visual experience the inputs from the LGN enter layer IV of primary visual cortex (VI) 

and the axonal terminals form stripes as they connect with cortical neurons (Hubel & 

Wiesel, 1962; Hubel & Wiesel, 1963a). These stripes are formed by the segregation of 

visual inputs into alternating bands dominated by either the left or the right eye to form 

the characteristic ocular dominance columns (ODC). It is known that these ODC's are 

affected by MD. Following MD during the critical period the ODC stripes corresponding 
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to the sutured eye are narrower than normal, whereas the stripes corresponding to the 

non-deprived eye are wider than normal (Hubel et al., 1975). That is, input coming from 

the part of the LGN that relays information from the closed eye is now smaller relative to 

the inputs from the open eye. 

The physiological properties of cells in binocular VI are also changed, including 

that there is a large shift in cortical ocular dominance. OD refers to the response 

properties of cells in visual cortex, which can have input from one or both eyes. During 

visual stimulation, each cell responds preferentially to one eye or equally to both eyes. 

Under normal circumstances, the representation of the responses forms the characteristic 

ocular dominance distribution. This representation is significantly altered by MD; there 

is an increase in the number of cells responding to the open eye and a reduction in the 

number of cells responding to the closed eye (Wiesel & Hubel, 1963c; Wiesel & Hubel, 

1963b; Hubel et al, 1975). Stimulation of the open eye will lead to responses from an 

increased number of cells, meaning an OD shift toward the non-deprived eye has 

occurred. The alteration in the physiological properties of the cells causes the deprived 

eye to be virtually disconnected from the visual cortex, resulting in a loss of binocularity. 

Thus, the lack of normal visual experience during development results in a permanent 

alteration in the structure and physiology of the visual cortex (Hubel & Wiesel, 1970). 

As mentioned earlier, these alterations in structure and function following critical period 

MD are also accompanied by an enduring loss of visual acuity, termed amblyopia or 

blunt vision (Wiesel & Hubel, 1963b; Dews & Wiesel, 1970; Muir & Mitchell, 1973). 
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1.1.2 Effects of other alterations of form vision 

Although MD during the critical period produces severe visual deficits, other, 

more specific, forms of visual deprivation during the critical period also have lingering 

effects on the visual system. For example, deprivation of specifically oriented visual 

stimuli produces permanent effects on orientation sensitivity. Orientation sensitivity 

refers to the responsivity of cells to lines of light at a particular orientation, with each 

orientation being represented roughly equally throughout visual cortex. However, kittens 

reared during the critical period in an environment of stripes of one orientation, have 

abnormalities in the representation of other orientations (Blakemore & Cooper, 1970; 

Hirsch & Spinelli, 1970) and a reduction in the number of cells that responded to 

binocular inputs (Blasdel et al., 1977). In addition, these animals showed behavioural 

deficits in detecting the orientation of lines that they were deprived of during 

development (Muir & Mitchell, 1975). 

Specifically reducing the spatial frequency of stimuli in one eye during the critical 

period with a diffusing lens also results in permanent alterations in visual function. This 

includes severe amblyopia when measured on a grating acuity task, paralleled by a 

decrease in binocularly innervated neurons and a shift in ocular dominance toward the 

non-deprived eye (Smith et ah, 1980; Maguire et al, 1982). Similarly, reducing the 

optical quality of the eye during the critical period by chronically atropinizing one eye 

causes a decrease in contrast sensitivity at all spatial frequencies, as well as a decrease in 

responsivity of cortical cells to high spatial frequency stimulation and a shift in ocular 

dominance (Kiorpes et al., 1987; Hendrickson et al., 1987; Movshon et al., 1987). These 

deprivations reduce the spatial frequency of the information without reducing the amount 

5 



of light entering the eye, indicating that the change in spatial frequency alone is 

responsible for the enduring loss of visual acuity. 

Strabismus or squint is another form of visual deprivation that affects visual 

development (Hubel & Wiesel, 1965). Strabismus is the abnormal alignment of the eyes 

and can be induced by surgically cutting the muscles that control the movement of the 

eyes or by placing goggles containing prisms over the eyes so that one is deviated relative 

to the another. Both alterations cause cells in VI to lose binocularity (Van Sluyters & 

Levitt, 1980) and result in a permanent loss of visual acuity. Strabismus does not reduce 

the amount of light entering the eye because the eye is not occluded, nor does it reduce 

the spatial frequency of the visual stimuli because the optical resolution is normal. 

Therefore, the OD shift that is observed is a direct result of competitive interactions 

based on the misalignment of the eyes. 

1.1.3 Effects of motion deprivation 

The deprivation of form vision during the critical period, as outlined above, has 

significant negative effects on visual cortex function. Visual processing for motion is a 

distinct category of visual function that is affected by visual deprivation. For example, 

deprivation during the critical period of specific visual stimuli moving in a specific 

direction, produces permanent effects on the direction selectivity of cortical neurons. 

Direction selectivity is the tuning of cells to respond to visual stimuli moving in a 

particular direction. Cats reared during the critical period in an environment containing 

visual stimuli moving in only one direction show an increase in the percentage of cells 

preferring that direction (Cynader et al, 1975; Daw & Wyatt, 1976). In addition cats 
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raised in a stroboscopically-illuminated environment where they experience no moving 

stimuli have also demonstrated deficits in motion vision (Cynader et al., 1976; Kennedy 

& Orban, 1983). Animals deprived of visual motion by a flickering strobe light had very 

few cells in visual cortex that were direction selective and any that were did not respond 

to higher stimulus velocities. The cortical cells of animals reared in a normally lit 

environment, have direction selectivity and respond to high velocities. These findings 

indicate that "motion" vision, like "form" vision, can be altered by deprivation during 

development. To this point, however, the effects of deprivation of visual motion on 

behavioural measures of motion vision have not been reported. 

1.1.4 Rodents as models of visual deprivation 

Although the most popular models for studying developmental visual plasticity 

have traditionally been cats, monkeys and ferrets, experiments using other mammals have 

shown that the timing of the critical period is species dependent (cats: P21-P270, Hubel 

& Wiesel, 1970; Daw et al, 1992; ferrets: P33-P60, Issaetal., 1999; mice: P19-P40, 

Gordon & Stryker, 1996; rats: P19-P50, Guire et al., 1999). However, the effects of MD 

during the critical period result in similar physiological and behavioural deficits in other 

mammals (ferrets, Issa et al., 1999; rabbits, Van Sluyters & Stewart, 1974; mice, Gordon 

& Stryker, 1996; rats, Fagiolini et al., 1994). This similarity in effects is due in large part 

to the fundamental features of the visual system that are shared by most mammals. 

Rodents have not been popular models of vision, in part due to the lateral position 

of their eyes, which makes the binocular field of vision relatively small (~40 degrees in 

rats; Cowey & Franzini, 1979) compared to frontal eyed animals, such as humans (-120 
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degrees; Wandell, 1995). In rats this laterality means -90-97% (Grieve, 2005) of the 

efferents from the retina to the LGN project to the contralateral hemisphere and the 

binocular VI makes up -1/4 of primary visual cortex (Paxinos and Watson, 1998; Sefton 

and Dreher, 1995). In addition, the orderly arrangement of columns of neurons (ODC's), 

thought by some to be a fundamental organizing principle of mammalian brains, do not 

exist in rodents. This has lead some to conclude that rats, and rodents in general, have 

fundamentally different visual systems than frontal eyed animals. However, studies have 

shown the grey squirrel to have acuity comparable to cats even though these rodents lack 

the columnar organization of higher mammals (Van Hooser et al., 2005). Moreover, half 

of the neurons in primary visual cortex of rats respond optimally to drifting stimuli rather 

than flashing uniform field stimuli (Girman et al, 1999) and most cells (-93%) in VI 

have orientation tuning; of these 59% show a directional preference. This shows that 

cells in VI of these animals are highly specific and that a columnar arrangement is not 

necessary for visual function. Rats and mice also have several advantages over the more 

conventional animals used in studying vision. For example, the invention of tasks for 

quantifying rodent vision makes behavioural measures much easier to obtain, and MD 

during the critical period for both mice and rats results in amblyopia (Prusky et al., 

2000c; Prusky & Douglas, 2003). In addition, genetic manipulations are more inducible 

in rats and mice than in cats or monkeys, which may be important for identifying many of 

the neural substrates and molecular mechanisms of critical period plasticity. This makes 

rodents important and useful in examining critical periods and plasticity. 
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1.2 Deprivation effects versus enabling effects 

In characterizing the properties of the critical period, researchers have relied 

primarily on deprivation studies. Though deprivation effects such as those induced by 

MD or orientation and direction deprivation demonstrate the negative implications of 

being deprived of 'normal' visual experience, they do not in and of themselves show that 

normal experience during a critical period enables the appropriate function. For example, 

it is known that MD during the critical period causes the deprived eye to be amblyopic 

and that this was thought to be due to an OD shift away from the deprived eye, but 

shifting OD back to a normal distribution does not alleviate the amblyopia (Murphy & 

Mitchell, 1986; Murphy & Mitchell, 1987). This implies that the deprivation is having 

numerous negative effects during the critical period and that a normal OD distribution 

does not necessarily enable normal function. An extreme interpretation of the critical 

period is that it has nothing to do with enabling vision, but rather, is only sensitive to 

deprivation effects; that is, normal visual function may be present from birth and requires 

no environmental stimuli to shape the neural circuits needed for normal vision. This is 

not likely to be the case, but inferences made about the effects of visual deprivation, say 

little about normal vision. 

The inability of deprivation studies to fully explain how normal vision is enabled 

compels the use of other methods to study visual development. One alternative is to use 

enriched visual experience to enable vision, but few examples of this have been reported. 

One example of this is experiments in which enhanced acuity was found in mice reared in 

"enriched" housing conditions (Prusky et al, 2000; Cancedda et al., 2004). However, the 

increase in acuity was small (-18%) when compared with the large loss in acuity 
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produced by most rodent deprivation experiments (~40%). In addition, these studies did 

not restrict enrichment to the critical period, and the enhancement may simply have been 

the result of overcoming the deprived rearing conditions in standard cages. Though 

inconclusive, these experiments do provide some evidence of enabling function, but 

nevertheless, demonstration of this phenomenon is rare. 

The lack of evidence for the enabling effect of visual function during 

development, may be due in part to the resolution limit set by the eyes; a value that can 

be estimated using the Nyquist limit (Hirsch & Curcio, 1989). This theoretical value is 

determined by the optics of the eye and the photoreceptor packing density. Acuity 

measures, dependent on visual cortex, often yield values close to the Nyquist limit and 

may not provide appropriate head room to observe an enabling response. For example in 

MD experiments, the large reduction of acuity through the deprived eye is not mirrored 

by an enhancement of acuity through the open eye (Prusky & Douglas, 2003), even 

though there is an ocular dominance shift toward this eye. That is, functional changes 

may be taking place in visual system circuits representing the non-deprived eye, however, 

resolution limits set by the eye preclude measuring these changes using behavioural 

methods. Therefore, to see an enabling effect on behavioural function, one would need to 

investigate a visual function that has capacity for a detectable increase in ability without 

encroaching on the Nyquist limit, and thus, eliminating this 'ceiling' effect. 

The visuomotor system holds potential as a visual function that could provide the 

necessary head room to induce and observe a large enabling effect. Studies in cats 

(Grasse & Cynader, 1984), rabbits (Soodak & Simpson, 1988) and rats (Schmidt et al., 

1993) have shown that receptive fields of cells in the subcortical nuclei that control 
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optomotor responses are generally larger than those of the visual cortex, meaning these 

cells respond to stimuli at a lower spatial frequency than the limit of the retina and 

cortical neurons. Our lab recently developed an optomotor task for rodents that enables 

the measurement of spatial thresholds. I will show that this task can be used in rats, and 

that the thresholds obtained are lower than those predicted by the Nyquist limit. 

1.3 Visual development preceding the critical period 

Since deprivation has been shown to affect visual structure and function only 

during the critical period, the vast majority of vision scientists have concluded that the 

visual system is plastic, only during this period of time. However, the delayed start of the 

critical period poses a question: why does it start days or weeks (species specific) after 

eye-opening? Two hypotheses have been proposed to account for this long delay and 

will be discussed here. 

1.3.1 Precritcal period 

One hypothesis for the late onset of the classic critical period for OD plasticity is 

the existence of a "precritical" period (Feller & Scanziani, 2005). This period acts as a 

sort of preparatory time for the plasticity that will occur and is defined as the time from 

when thalamic axons enter into layer 4 of VI (before eye-opening) up to the onset of the 

critical period. It was previously thought that ODC's could not be identified until the 

onset of the critical period (LeVay et al, 1980); however more recent anatomical and 

physiological evidence indicates that there are functional ODC's arising days to weeks 

before the beginning of the critical period (Gordon & Stryker, 1996; Crair et al, 1998; 
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Issa et al, 1999; Crair et al, 2001). It is thought that this period in time is crucial to the 

occurrence of novel experience-dependent plasticity during the critical period. 

Studies during the precritical period have primarily focused on the nature of the 

plasticity, specifically, activity-dependent and activity-independent ocular dominance 

map formation. Activity-dependent modes consist of spontaneous and visually evoked 

activity within the visual system during the precritical period. In mice, spontaneous 

retinal waves have been suggested to be crucial for normal segregation of 

retinogeniculate axons in the dorsal LGN (dLGN) (Grubb et al., 2003), however, a 

distinct effect of this activity on ODC formation has not been proven. A study by 

Crowley and Katz (2000) on ferrets showed that neither monocular nor binocular 

enucleations at any time during the precritical period altered how thalamocortical axons 

segregated into ODC. This suggests that neither visually evoked nor spontaneous retinal 

activity is required for ODC formation. Although no activity-independent mode has been 

identified, it has been hypothesized that cells projecting from particular parts of the retina 

to the dLGN carry markers (Herrera et al, 2003; Feldheim et ah, 1998) that may be 

conveyed to thalamocortical axons to form appropriate eye-specific segregations in the 

cortex (Feller & Scanziani, 2005). Conclusions drawn from studies of the precritical 

period suggest that it may be a time during which gross map formation occurs, while the 

critical period may be the time of map refinement. 

The exact reason why there is a transition from a precritical period to a critical 

period is unknown. However, one hypothesis suggests that a transition in the level of 

cortical inhibition is involved. Studies using GAD65 (GABAergic enzyme contributing 

to GABA production) knockout mice have shown that no OD shift occurs in response to 
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MD, but if GABA receptor function is enhanced by a modulator such as benzodiazepine, 

a normal OD shift occurs (Fagiolini & Hensch, 2000). Moreover, normal mice given a 

benzodiazepine before the start of the critical period will trigger its onset as well as an 

earlier closure (Iwai et al., 2003). Finally, mice with a mutated al subunit of the GABA 

receptor cannot have the critical period induced by benzodiazepines, suggesting the 

subunits importance in the transition period (Fagiolini et al., 2004). Inhibition due to 

GABA release seems to be necessary for critical period plasticity. The cellular 

mechanisms as to how GABA induces the critical period remain a mystery for now. It is 

interesting to note that administration of GABA into VI of aging rhesus monkeys causes 

the cells to have response properties similar to young animals (Leventhal et al., 2003), 

again suggesting the importance of GABA in initiating visual plasticity. 

Though the existence of a precritical period is conceivable from the research 

described in the preceding studies, it still may not explain why the critical period starts 

well after eye-opening. Because both activity-dependent and independent processes can 

be eliminated without having a major effect on the anatomy and physiology of visual 

cortex, the precritical period does not seem to be defined by cortical plasticity; rather, the 

changes that occur are already genetically determined. If the period from eye-opening to 

the onset of the critical period has any plasticity associated with it, then it must be for 

some other visual function. 

1.3.2 Motion vision critical period 

The alternative hypothesis for the existence of a delay between eye-opening and 

the start of the critical period is that a period of experience-dependent plasticity for a 
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function other than spatial vision exists during that time. Motion vision is a good 

candidate for this unaccounted plasticity because deprivation studies have indicated that 

it may have a critical period that slightly precedes the classic critical period for OD (Daw 

& Wyatt, 1976). In addition, motion vision is one of the fundamental processing streams 

between the retina and visual cortex and is conserved through the evolution of nearly all 

animals. 

The visual perception of movement is important to a large number of species. 

Indeed, even organisms without vision usually have sensors to detect movement. In terms 

of evolutionary theory, the detection of motion plays a vital role in the survival of 

animals: they must be good at perceiving movement of predators and of likely prey. An 

inability to do this would result in disaster and it is often more important to detect 

immediately that something has moved rather than to know what that something is (or 

even in which precise direction it has moved). Sekuler (1975) proposes that: 

"During evolution, motion perception was probably shaped by selective pressures 

that were stronger and more direct than those shaping other aspects of vision... 

As a result of such selective pressures, our visual systems contain neural 

mechanisms specialized for the analysis of motion (p385)." 

During development, the same theory would hold true, in that having poor perception for 

fine detail would not be as detrimental to survival as having poor motion perception. 

My hypothesis as to why the critical period begins well after eye-opening is that 

this period represents a previously overlooked critical period for visual motion during 

which 'normal' visual motion experience is essential for the development of the systems 

necessary for the detection of moving stimuli. As was discussed earlier, studies 
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depriving animals of motion in all but one direction during the critical period causes a 

change in the electrophysiological properties of cells in VI (Cynader et ah, 1975; Daw & 

Wyatt, 1976). Daw and Wyatt (1976) were the first to propose that the peak of the 

critical period for direction deprivation occurs earlier than the peak of the critical period 

for monocular deprivation. Using cats, littermates were matched so that one received 

direction deprivation while the other received monocular deprivation at 2 V2 weeks of age 

(Daw et al., 1978). At 5 weeks of age the drum direction was reversed for the direction 

deprivation animals, while a reverse eye-lid suture was given to the monocular 

deprivation animals. Electrophysiological recordings from visual cortex were then made 

at some age after 4 months. The majority of cells in the monocular deprived animals 

were driven by the eye that was open last (i.e., open after 5 weeks). In the case of 

directional deprivation, the majority of the cells preferred movement in the first direction 

of exposure (i.e., the direction before 5 weeks of age). This indicates that the critical 

period for form vision must extend further into development than that for motion vision. 

The development of the LGN may provide further evidence to support the 

existence of an early critical period for motion. In the LGN of monkeys and cats, the 

parvocellular layers are made up of X-like cells, while the magnocellular layers are made 

up of Y-like cells (Dreher et al., 1976). In rodents and often in cats, these cells are 

referred to as beta and alpha, respectively. X-cells convey high spatial frequency 

information at lower temporal frequencies (fine detail; i.e., spatial vision), while Y-cells 

generally convey low spatial frequency information at high temporal frequencies (i.e., 

moving stimuli) (Lachica & Casagrande, 1988). In primates, the axonal arbors from cells 

in the magnocellular layer mature before axonal arbors originating in the parvocellular 
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layer (Lachica & Casagrande, 1988). Furthermore, during development Y arbors are 

smaller than adult size while X arbors are larger (Sur et al, 1984). MD prevents the 

rapid growth of Y arbors, which in turn prevents the pruning of X arbors (Garraghty et 

al, 1986). Thus, the development of cells conveying motion information to the cortex 

influences the cells for other cortical visual functions. This suggests that the critical 

period for direction deprivation may precede the critical period for MD effects because of 

the differential development of the cell types conveying the appropriate information. 

Although previous work has suggested that motion vision plasticity precedes OD 

plasticity (Daw et al, 1978), these studies were based on deprivation effects rather than 

normal development or enabling effects. In addition, the actual timing of this critical 

period for motion deprivation was not well defined and was shown to largely overlap the 

critical period for MD effects. Also, there was little stimulus control in these direction 

deprivation experiments, and enhancement effects are hard to detect because the 

measurements made were based on cellular recordings. For example, an enhancement 

effect seen through increased firing strength or synaptic efficacy may not be evident and 

easily distinguishable from background noise or variability in recordings. Moreover, 

these studies were conducted at a cellular level rather than a systems level and no 

behavioural studies were conducted. Even a slight change in the way cortical cells react 

may lead to larger changes in the behavioural output of the whole system. 

A distinct form of developmental plasticity that governs motion vision may differ 

from that of spatial vision. Further evidence for this hypothesis is that the visual motion 

system appears to be relatively spared in amblyopia (Kubova et al, 1996), and MD after 

the critical period enhances visuomotor function (Prusky et al, 2005 (in preparation); 
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Douglas et al, 2004). In addition, a reduction of visuomotor function has not been found 

that accompanies cellular changes resulting from MD. Based on these results, I 

hypothesize that developmental plasticity for motion vision precedes that for spatial 

vision, and that the plasticity is characterized by an experience-dependent enhancement 

of function following visual motion experience, rather than a reduction of function 

following visual deprivation. 

If an enhancement of visuomotor function is present, there are several criteria that 

must be satisfied to identify the plastic change as an enabling effect. First, there can be 

no evidence of a deprivation effect, that is, there can be no decrease in visual thresholds 

due to early visual motion experience. Next, only one modality of vision can be affected, 

meaning only motion vision can show the enabling of function. Also, the effect must be 

large. Deprivation studies have shown large decreases in the electrophysiological 

properties of cells and the effects on behaviour are often severe. To be considered an 

enabling effect, the enhancement must be at least of the same magnitude as the changes 

measured in deprivation experiments. In addition, the enabling effect must be the result 

of only visuomotor experience. Enrichment of any other form of vision will bring into 

question how and why the enabling of motion vision occurred. The results of 

experiments in this thesis will satisfy all of these criteria. 

In order to conduct these studies, a novel behavioural task called OptoMotry was 

employed. This task takes advantage of the optomotor response of the rat, which is used 

here as a model of motion vision development. The reflexive nature of the optomotor 

response required no training to complete the task, allowed testing from the day of eye-

opening and made it possible to obtain daily measures of visuomotor thresholds in adult 
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and developing animals. During the characterization of the optomotor responses, an early 

critical period for the enabling of visuomotor function was identified. The temporal 

timeframe, experiential control and neural substrates of the enabling plasticity were then 

characterized. 
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Chapter 2-Characterization of the optomotor response in naive Long-Evans hooded 

rats 

Behavioral measures of visual thresholds are critical for assessing the usefulness 

of genetic, pharmacological and physiological manipulations of the visual system. There 

has been a long tradition, dating back to Lashley and his jumping stand (1930), of 

devising appetitive reinforcement-based perceptual tests of vision for laboratory rodents. 

However, apparent limitations in the ability of these animals to learn and perform the 

tasks, and the time commitment necessary to generate thresholds have limited their 

usefulness. Another approach has been to measure the optokinetic responses of rats and 

mice to track stimuli rotating around animals on a mechanically controlled drum (Cowey 

& Franzini, 1979). Durational measures of tracking (i.e. time tracking a stimulus per 

minute) can be generated relatively rapidly with this methodology, but the use of 

mechanical control systems has made generating visuospatial thresholds (acuity and 

contrast sensitivity) somewhat impractical. Though these durational measures may have 

some value they fail to quantify the actual visuomotor capabilities of an animal. Our lab 

has developed highly efficient variations of both the appetitive reinforcement-based 

perceptual tests and optokinetic tests that can rapidly and reliably measure visual acuity 

and contrast sensitivity of rats. As will be shown here, each task measures a different 

aspect of retinal output and provides the opportunity to test each eye independently. 
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2.1 Visual Water Task 

The Visual Water Task (VWT; Prusky et al, 2000a), is a visual perception task in 

which rodents discriminate between two computer-generated stimuli (i.e. for spatial 

vision, a sinusoidal grating and a grey of the same mean luminance) (figure 1). Animals 

are placed into one end of a water-filled tank that has two computer monitors facing into 

arms at the opposite end. An invisible platform is placed just below the water's surface 

under the reinforced (+) stimulus and animals are rewarded for locating this stimulus by 

swimming to the platform and escaping from the water. Rats can readily learn salient 

discriminations and perform them near 100% accuracy. Spatial visual thresholds are 

determined by increasing the spatial frequency or lowering the contrast of a grating over 

trials (for an in depth task and testing description see chapter 3). Using this task it has 

been shown that pigmented rats have an acuity of about 1.0 c/d (Prusky et al, 2000a) and 

a peak contrast sensitivity of 25 at a spatial frequency of 0.2 c/d (McGill et al, 2004); that 

there are strain differences in acuity (Prusky et al, 2002); that visual deprivation during 

the 'critical' period for ocular dominance plasticity (Gordon & Stryker, 1996; Fagiolini et 

al, 1994) can induce amblyopia (Prusky et al, 2000c; Prusky & Douglas, 2003); that 

enriched visual experience during development can enhance adult vision (Prusky et al, 

2000); and that changes in acuity can affect performance in a memory task (Prusky et al, 

2000b). Being non-invasive, the VWT has proved useful in longitudinal studies of intact 

(McGill et al, 2004) and retinal-transplanted RCS rats (McGill et al., 2004a). Other 

visual capabilities such as orientation discrimination (Bowden et al, 2002), motion 

coherence (Neve et al, 2002) and visual memory (Prusky et al, 2004) have also been 

measured with the system. In addition to the water providing non-appetitive motivation, it 
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also enables the independent testing of the two eyes: The vision through one eye can be 

temporarily blocked, simply by placing a small cone-shaped occluder over it just before 

the animal is placed in the water. On land a rat would immediately remove such an 

occluder, but they tolerate it while swimming. This independent testing allows for within 

animal control. 

However, the VWT has a major limitation: although it enables the efficient 

measurement of perceptual thresholds, it requires about two weeks to train an animal and 

determine a single threshold. Although, this is still faster than systems that do not use 

escape from the water as the motivator, the task cannot be used to study fast changing 

phenomena such as those that occur during early development, or during pharmacological 

manipulations. It is also impractical to screen large numbers of animals rapidly. Finally, 

young animals often lack both the cognitive and physical abilities to complete the task, 

making measurements through early development impossible. Consequently, a novel 

method to measure optomotor thresholds in rats was developed, and it is this approach 

that was the subject of the experiments reported in this chapter. 

2.2 Optokinetic measures of vision 

Optokinetic stimulation produced by rotating large drums around an animal have 

been utilized in a wide variety of species (cats: Evinger & Fuchs, 1978; rabbits: Fuller, 

1987; human: Nieberding, 1979; monkey: Cohen et al, 1973). The moving, full-field 

stimulus invokes slow eye and head movements in the direction of rotation, as well as a 

feeling of self-motion (Fuller, 1985). With prolonged rotation the compensatory slow eye 

movements are interrupted by quick repositioning fast phases, or saccades in the opposite 
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direction. The eye movements form the characteristic optokinetic nystagmus (OKN) 

while the less-well studied head movements are often called optomotor tracking. 

Although these behaviors are reflex-like and thus no training is needed to observe them 

reliably, they have proved much more useful in investigating the motor control aspects of 

the behavior than evaluating vision. This again is due in part to the inability to quantify 

real visual thresholds. Measuring visual thresholds with a conventional OKN drum is 

difficult because the stimulus pattern on a mechanical optokinetic drum is not easily 

changed (e.g. Coffey et al, 2002; Schmucker et al, 2005). Moreover, the animals must 

be restrained to some extent so that their eyes remain at the center of the drum (Thomas 

et al, 2004). As has been shown in a recent report (Prusky et al, 2004a), both of these 

disadvantages can be obviated by replacing the mechanical drum with a virtual-reality 

cylinder. Being computer-generated, the spatial frequency, contrast, and velocity of the 

stimulus pattern can be changed instantaneously. Furthermore, by monitoring the position 

of a freely-moving animal inside the system with a camera, the drum can be kept centered 

on the head. It is not necessary to restrain the animal. Using such a virtual optomotor 

system (VOS) with rats, an acuity and or contrast sensitivity measure can be obtained 

within a few minutes. This makes it practical to test larger groups of animals and in so 

doing, obtain behavioural visual thresholds for each animal daily. 

2.3 Measurement differences between the VWT and the VOS 

The VWT and the VOS do not yield completely equivalent results: the visual 

acuity of rats measured with the VOS is consistently lower than that measured in the 

VWT. As will been shown in this chapter, the lower optomotor acuities probably reflect 
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the properties of the retinal efferents to subcortical structures. In contrast, because visual 

cortex lesions and early visual deprivation both reduce acuity thresholds measured with 

the VWT, the VWT seems to be most sensitive to what is being conveyed by the 

geniculo-cortical pathways (Prusky et al, 2000c; Prusky & Douglas, 2004a). 

In conducting these characterization studies on adult animals' asymmetrical 

tracking at the highest spatial frequencies, near the acuity threshold, was observed. That 

is, an animal would track reliably in one direction but not the other. Consequently, one 

might hypothesize that differences seen with the different directions actually reflected the 

different acuities of the two eyes. This is plausible as a similar pattern has been reported 

with optokinetic nystagmus (OKN) in which each eye drives a different direction of the 

slow phase eye movements (Hobbelen & Collewijn, 1971; Grusser-Cornehls & Bohm, 

1988; Harvey et al, 1997). Although the neural mechanisms underlying head tracking are 

not as well understood as they are for OKN, undoubtedly, there is a large commonality. If 

each eye could be tested with a different direction of visual motion without having to use 

occluders, suturing an eye shut, or restricting the movement of the animal, this would be 

very useful as it would allow within-animal controls in many experiments. It would also 

have implications for identifying the central pathways conveying the visual information, 

and hence for the retinal sources. 

This study characterizes the optomotor capabilities of adult and developing Long-

Evans rats. To conduct these experiments a novel task called OptoMotry is used to 

generate and quantify the optomotor thresholds of these animals. In addition, the 

experiments provide evidence that the optomotor head response is, in fact, due to activity 
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in crossed subcortical pathways, and that the thalamocortical pathway normally has little 

or no role. 

Methods 

Animals 

The animals were housed and handled with the authorization of the Canadian 

Council on Animals Care (CCAC) and supervision of the animal care committee at the 

University of Lethbridge. 

Sixteen Long-Evans (LE) hooded rats were used in this study. All rats were bred 

from stock originally obtained from Charles River and raised in the Canadian Centre for 

Behavioural Neuroscience (CCBN) vivarium. For the duration of the experiment, all 

animals were housed in Plexiglas cages (35cm L x 20cm W x 13cm H) in a room with an 

ambient temperature of 21° C, 35% relative humidity and on a 12/12 light/dark schedule. 

Food and water were available ad libitum. Pups used were weaned at 21 days of age, at 

which time the males and females were separated and housed under identical conditions. 

Visual Optomotor Apparatus: OptoMotry 

OptoMotry has been described in detail previously (Prusky et al., 2004; Douglas 

et al, 2005) (figure 2a). A virtual cylinder consisting of vertical sine wave gratings was 

projected onto four VGA computer monitors (19 in. VGA; ViewSonic E90F) arranged in 

a square around a testing arena made up of a Plexiglas box (46 cm L x 46 cm W x 73 cm 

H). A rectangular hole (36.5 cm W x 27.5 cm H) was cut into each side of the box and 

the computer monitors were placed against the side to project the image into the testing 
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arena. On the bottom of the apparatus there is a mirror reflecting up and a hole was cut in 

the middle through which a bolt was placed and held in position with a nut. On top of the 

bolt, approximately in the middle of the arena, was a Plexiglas platform that could be 

changed in order to accommodate different sized animals. A mirror with a large access 

hole (diameter, 28 cm) cut in it was placed on top of the apparatus and reflected back 

down into the testing arena. A hinged lid enclosed the top of the apparatus. A firewire 

camera (iBot; www.orangemicro.com) was placed over a hole in the center of the lid and 

faced down into the apparatus. The whole arena was placed on the floor in a dark, quiet 

room. 

The virtual cylinder was projected onto the monitors (figure 2B) using a computer 

program (OptoMotry; CerebralMechanics, Lethbridge, Alberta, Canada) which drove 

video cards (ATI Radeon 7000 Mac Edition; Markham, Ontario) installed in a dual 

processor G4 computer (Power Macintosh; Apple Computer Corporation). The screen 

light levels (black mean, 0.0103 cd/m2; white mean, 92.9975 cd/m2) were measured using 

a light meter (model LS-110; Minolta, Osaka, Japan). The visual stimuli was projected 

onto the monitors and from the perspective of the platform appeared as a virtual 3D 

cylinder. The computer program was used to control the spatial frequency, contrast, 

direction and speed of the stimulus. The camera allowed an observer to view live video 

feedback from the testing arena onto a fifth monitor. A crosshair, controlled by the 

observer, was always placed over the rats head in order to keep the virtual cylinder at a 

constant distance from the animal, which allowed for the spatial frequency of the grating 

to be "clamped" (figure 2C). 
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Behavioural testing using OptoMotry 

At the beginning of each testing session the computer program was started and the 

platform was centered in the apparatus. The rat was then placed on the platform and 

allowed to freely move. The lid of the box was shut to enclose the testing arena. The 

crosshair was then placed over the animals head and the sine wave grating was then 

turned on and rotated at a constant rotation (12 deg/sec). When a grating perceptible to 

the rat was projected onto the screens the animal would generally stop moving its body, 

plant its feet and reflexively rotate its head in the same direction and at the same 

approximate speed as the gratings (figure 2D). An observer watching the live video feed 

was able to assess whether or not the animal rotated its head in response to the moving 

stimulus. This was done by observing the animals head movement in response to the 

grating against the arms of the stationary crosshair. 

If at anytime the animal jumped or slipped off the platform, the uniform grey 

screen was turned on and animals were placed back onto the platform. Before initial 

testing animals were habituated by gentle handling and placement on the platform for a 

few minutes. The rats were generally tested in the first few hours of the light cycle, 

normally for 10-40 minutes. Whenever possible, the experimenter was blind to previous 

results, as well as the treatment and age of the animals. 

Determination of visual thresholds using OptoMotry 

When measuring grating acuity, testing always began with a grey stimulus 

projected onto all four monitors, at which point the rat was placed on the platform and the 

lid was closed. The rats were generally very active for a few moments, but soon came to 
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be nearly still. Then the grey stimulus was replaced by a low spatial frequency (~0.1 c/d) 

sine wave grating (100% contrast) of the same mean luminance as the uniform grey 

stimulus and moving at a constant rotational velocity (12 deg/sec) in one direction. The 

behaviour of the animal was assessed for a few seconds and then the observer made a 

determination of head tracking, at which point the grey screen was projected back onto 

the screens. The spatial frequency of the gratings was adjusted using a method of limits 

staircase procedure. If the animal did not respond, the experimenter chose "No" and the 

spatial frequency automatically decreased, however, if the animal tracked the stimulus 

the experimenter chose "Yes" and the spatial frequency increased. The spatial frequency 

of the grating was increased until the rat no longer rotated its head in response to the 

grating stimulus. The highest spatial frequency to which the animal responded was 

recorded as the visual threshold. This process was then done for the other direction of 

rotation in the same animal and thus a value for each direction was obtained. 

Occasionally, during testing, sudden changes in luminance, direction of rotation, taps on 

the lid or squeaking noises were required to induce the animal to stop moving, thus 

causing the animal to look in the direction of the screens and to facilitate more rapid 

testing. 

A contrast sensitivity function was also recorded using a similar procedure to that 

described above. Once a grating acuity threshold was determined, contrast threshold 

points were identified between 0.031 and 0.400 c/d (0.031, 0.064, 0.092, 0.103, 0.119, 

0.167, 0.272, 0.400 c/d). At each spatial frequency the contrast was decreased using the 

same staircase method until the contrast threshold was reached. The threshold at each 

spatial frequency was then calculated as a Michelson contrast from the screen luminances 
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(maximum - minimum)/(maximum + minimum). The contrast sensitivity (the reciprocal 

of the threshold) was then plotted against spatial frequency on a log-log graph. 

Optomotor thresholds of Long-Evans hooded rats 

Visuomotor acuity and contrast sensitivity thresholds of adult rats (N=6, -150-

270 days of age) were measured in OptoMotry (apparatus described above). For each 

value obtained, measurements were made on two successive days to verify the results. 

Upon completion of the initial optomotor characterization, the animals received 

temporary eye sutures (procedure described below). To determine the role of primary 

visual cortex in the optomotor response sequential unilateral primary visual cortex lesions 

(procedure described below) were done on two separate days in order to create a 

complete bilateral lesion (same animals as used above, N=6). Following each lesion, 

optomotor thresholds were measured. Another group of four adult animals were tested 

and then received one time bilateral primary visual cortex lesions followed by post

surgical measurements of their optomotor thresholds again until no further change 

occurred. 

Due to the reflexive nature of the optomotor response and because the response is 

present from eye-opening, the visual thresholds of developing animals could be 

measured. To determine how the development of visuomotor function progressed, rats 

(N=6) were measured in OptoMotry from the day of eye-opening (PI 5). Pups were 

removed from their home cage and tested daily from P15-P30 and then periodically into 

adulthood. Testing commenced within two hours after eye-opening and was repeated at 

the same time of day for the subsequent testing sessions. Upon completion of testing 

28 



each day (approximately 30-40 minutes per animal) pups were returned to their home 

cage. 

Eye sutures 

Monocular testing was done using the classic method of briefly suturing one eye 

shut. Animals were anesthetized with inhaled Isoflurane (induction at 5%, maintenance 

at 2-4% evaporated in 1-1.5 1/min O2). Animals were then taped down and immobilized 

under a dissecting microscope with the eye to be closed facing up. A topical antibacterial 

ophthalmic agent (Vetropolycin) was applied to the eye and the area around the eye was 

washed with saline and wiped with dilute Hibitane and 70% ethanol. The eye was sewn 

shut with a single mattress stitch (6.0 silk) placed below the eyelid margin and a 

significant distance from the pupil. The knot was sealed with cyanoacrylate glue and the 

animals were injected with an analgesic (Buprenorphine; 5 mg/kg). Animals recovered 

on a warm pad and were returned to their home cages once they were alert, mobile and 

eating and drinking. The typical procedure typically lasted approximately 5 minutes. 

Following testing, animals were re-anesthetized and prepared for surgery in the same way 

as described above and sutures were removed using forceps and iris scissors. The eyes 

were then flushed with sterile saline and Vetropolycin was applied to the eye and a post

surgical analgesic was administered. Control animals were treated in the same way, but 

sutures were not used. Acuity and contrast sensitivity was measured 1 -2 hours before 

surgery, 1 -2 hours following the eye suture and again within a couple hours following the 

removal of the suture. 
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Primary visual cortex lesions 

Animals were anesthetized and maintained with inhaled Isoflurane (induction at 

5%, maintenance at 2-4% evaporated in 1-1.5 1/min O2). The animals were then placed in 

a stereotaxic frame and a topical antibacterial ophthalmic agent (Vetropolycin) was 

applied to the eyes. The top of the head was then washed with saline and wiped with 

dilute Hibitane and 70% ethanol. A midline incision was made and the scalp was 

retracted to expose the skull. A dental drill was then used to remove a rectangular 

portion of skull above primary visual cortex (6-12 mm posterior to bregma and 1-3 mm 

from the midline) as identified by Paxinos and Watson (1998). The dura was resected 

and the area was aspirated down to the white matter. The incision was then closed with 

sutures and the animals were given an analgesic (5 mg/kg Buprenorphine). More 

analgesic was administered as needed. Animals were allowed to recover on a warm 

heating pad and then returned to their home cage once they were mobile, alert and eating 

and drinking. In one experiment the lesion was a complete bilateral removal, while in 

another there was a sequential unilateral removal over a period of time resulting in a 

complete bilateral removal. 

Post-surgical testing 

All post-surgical testing was done using the optomotor task and so was not 

physically demanding on the animals. Testing commenced 3 days following surgery and 

all animals performed well without any lingering side effects aside from the expected 

visual deficits. 
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Once testing was completed, lesioned animals were sacrificed to verify the lesion 

location and size. The rats were anesthetized and then perfused with cold buffered saline 

and buffered 4% paraformaldehyde. The brains were removed and digital pictures of the 

dorsal surface were taken for quantification. The surface features of the brain and the 

lesion boundaries were then traced and fiducial landmarks were then used to estimate the 

borders of striate cortex according to stereotaxic coordinates (Paxinos & Watson, 1998; 

Sefton & Dreher, 1995), which were then superimposed on the illustration of each 

animal's brain. 

Statistical analysis 

Repeated measures analyses of variance (ANOVA) were used to examine the 

acuity of the rats over time throughout the course of the experiments. The probability 

level at which the null hypothesis was rejected is represented by p; statistical significance 

was atp<0.05. 

Results 

All the animals were able to track a perceivable stimulus at every age tested. All 

animals learned to remain on the platform throughout the testing session during which 

accurate and consistent visual thresholds were obtained. 

Visuomotor thresholds of Long-Evans rats 

In the initial phase of this experiment the acuity and contrast sensitivity of naive 

adult animals was measured. Figure 3A compares the optomotor acuity values with those 
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obtained from the VWT. The optomotor acuities (0.54 c/d; SEM=0.0026) were -47% 

lower than those measured using the VWT. Long-Evans rats typically have a VWT 

acuity close to 1.0 c/d (Prusky et al, 2000). Figure 3B shows a typical contrast 

sensitivity curve for Long-Evans rats using the optokinetic system. Data from McGill et 

al (2004) are also plotted to show that the two tasks yield different contrast sensitivity 

curves. In the VWT the peak of the curve is at ~0.2 c/d, while in OptoMotry we find that 

the peak has shifted down to a lower spatial frequency of -0.1 c/d. However, OptoMotry 

yields higher contrast sensitivity values than the VWT, 35 and 25 at the peaks, 

respectively. Contrast sensitivity in the optomotor system is shifted towards lower spatial 

frequencies compared to the VWT. 

Dependence on direction 

In figure 3, the direction of rotation was ignored, but as was previously 

mentioned in the optomotor task description we have the ability to control the direction of 

cylinder rotation. In fact, we often saw small differences in both contrast and acuity 

thresholds: near threshold an animal would track in one direction, but not the other. 

Figure 4 shows an analysis of the variability in acuity measures. There was a range of 

about 0.02 c/d between animals. This corresponds to a difference of 7 cycles around the 

whole drum. The acuities tended to be correlated such that an animal with higher than 

average acuity with clockwise (CW) motion would also have a high acuity when the 

rotation was counterclockwise (CCW). However, the acuities were rarely identical, and 

moreover, the differences between the directions of motion were consistent. As shown in 

figure 4, the average difference between the two directions measured in each animal was 
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approximately 2 times greater than the average difference in the same direction when 

measured on successive days. Thus, the difference in direction is not likely due to 

measurement error and is due to threshold differences between the eyes of each 

individual animal. 

To check the relationship between the direction of rotation and each eye, one eye 

on the same rats used previously was sutured shut, and measured their acuity through the 

open eye. When the left eye was closed there was no tracking at any frequency with CW 

stimulus motion, and thus, we could not measure acuity (figure 5). When the motion was 

reversed to the CCW direction, tracking was normal and acuities were identical to those 

seen in the same direction when both eyes had been open. The complementary pattern 

happened when the right eye was closed. Thus for each eye, motion in the temporal-to-

nasal direction evokes tracking, whereas, motion in the nasal-to-temporal direction does 

not. 

Effects of cortical lesions 

The role of the cortex in visuomotor thresholds was examined by making lesions 

of primary visual cortex. Four animals were given bilateral VI lesions and then tested 3 

days later. There was an initial small recovery over the first 3 days of testing which then 

leveled off at 0.523 c/d (SEM=0.0008) resulting in a small loss in optomotor sensitivity 

(F(i,6)=107.556,/K0.0001) (figure 6A). The lesions were large with most of VI having 

been removed (figure 6B). To then confirm these results, sequential VI lesions were 

made on six animals. Unilateral lesions of the right VI were made first. Figure 6C 

shows that there was a small decrease in acuity on the day after surgery. There was some 
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recovery over the next two weeks to 0.535 c/d (SEM^O.003) which was slightly lower 

(pO.OOOl) then pre-surgery thresholds of 0.543 c/d (SEM=0.006). This was true 

whether the motion was driving the tracking through the ipsilateral or contralateral eye: 

both directions were basically unaffected. Removing the left VI six days later, to make 

the combined lesion bilateral, again had only a very small effect dropping the acuities 

down to 0.522 c/d (SEM=0.004) (F (i2,i30)=l3.3,/?<0.0001). As can be seen from the 

superimposed brain traces (figure 6D), the cortical lesions were large, with most of 

primary visual cortex being removed, however, some lesions also extended into 

extrastriate areas. 

Development of the optomotor response 

The visuomotor sensitivity of rats on PI 5 was 0.261 c/d (SEM=0.006) and 

increased (F ( 1 9 iioo) =5383.823, p<0.0001) until P25 at which point thresholds leveled out 

and did not change after P27 into adulthood (figure 7A). Acuity reached a final adult 

value of 0.865 c/d (SEM=0.00138). The contrast sensitivity also changed with the peak 

of the curve at 0.103 c/d increasing from 5.024 (SEM-0.149) on P15 to 33.567 

(SEM=0.605) in adulthood (figure 7B). The contrast sensitivity curve measured as adults 

was similar to naive animals (reported previously in figure 3B); however, the points after 

the peak of the curve did differ with the developmental group having lower values. 

Contrast sensitivity of each spatial frequency channel (see Appendix A) increased until 

about the same age, but the development of each one was slightly different with some of 

them being grouped into "families" based on profile similarity. 
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Summary 

These results demonstrate that the virtual optokinetic system works well for 

assessing visuomotor thresholds in rats. It provides a pure measure of the capability of 

subcortical retinal efferents, and independent testing of the two eyes is possible simply by 

controlling the direction of rotation. This task can also be used to test animals from eye-

opening; however, the optomotor thresholds obtained from these animals differ from 

experimentally naive animals measured as adults. This finding warrants further 

examination and will be discussed in detail in chapter 3. 

Eye-specific tests 

The complete asymmetry in tracking allows independent testing of the two eyes. 

Because only temporal-to-nasal motion was effective through each eye (figure 5), CW 

movement will drive the tracking through the left eye and CCW motion will drive 

tracking through the right eye. This has also been reported by Thomas et al. (2004), and 

is not surprising, if as is argued below, the behaviour is solely due to crossed subcortical 

projections from the eyes. A similar pattern has been seen in optokinetic eye movements 

in rabbits (Hobbelen & Collewijn, 1971) and rats (Harvey et al, 1997). The usefulness 

of this asymmetry is hard to overestimate as it facilitates experiments in which one eye is 

treated and then compared with the other eye in the same animal. Such within-animal 

controls are powerful as they will allow manipulations in one eye or one hemisphere of 

the brain to be directly compared to the opposite side of the animal. These comparisons 

will be free of many of the confounding variables that often accompany research 

involving control animals. 
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Role of the cortex 

Cortical lesions had no effect on optomotor thresholds suggesting that the acuity 

and contrast thresholds reflect the properties of retinal afferents to subcortical structures 

like the Accessory Optic System (AOS). Cortical lesions also have no effect on OKN 

eye movements (Hobbelen & Collewijn, 1971; Harvey et al, 1997), again suggesting the 

two components of gaze stabilization share a common pathway. There is anatomical and 

physiological evidence in rats for cortical projections to the AOS (Takada et al, 1987; 

Giolli et al, 1988; Schmidt et al, 1993), but these do not seem to be necessary for 

producing the thresholds measured from our rats. In cats and monkeys, OKN is seen in 

both directions with monocular viewing conditions, and cortical lesions abolish the 

ipsilateral tracking. Thus, while there is a small ipsilateral projection in rats from each 

eye to the cortex, it does not seem sufficient to confer binocularity to the rat optokinetic 

system. 

If the cortex plays no role in the visual tracking in our task, then the question 

arises as to what the cortical projections to the AOS do. Miles (1998) has proposed that 

the cortical pathway is primarily there to cope with translational movements that change 

the distance to an attended optic flow field. From this point of view, the rotational 

stimuli used here are not those that would engage the cortical pathway. This is especially 

true given the practice of keeping the virtual cylinder centered on the head. Here a model 

is proposed (figure 8) in which efferents from each eye project to the visual cortex and 

the AOS, but cortical projections to the AOS do not contribute to the visuomotor 

response. Rather the response is mediated solely by the direct projections from the retina 

to the AOS and on to motor nuclei. 
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Visual pathways 

The term "acuity" has been used to refer to the maximum spatial frequency that 

evoked an optomotor response. The values so obtained are lower than those seen in rats 

in the Visual Water Task (VWT). It is unlikely that this is because the optomotor task is 

inherently less sensitive. As shown in figure 3B, the estimates of contrast sensitivities 

using VOS were equal to or higher than those we have measured previously using the 

VWT (McGill et al., 2004). The contrast sensitivities were also shifted toward the lower 

frequencies. While in part this is due to the VWT not being able to display a sufficient 

number of grating cycles at the lowest frequencies, the shift may reflect an overall lower 

spatial frequency bandwidth for the circuitry driving the optomotor responses. This is 

consistent with the notion that the head-tracking is driven by the same subcortical visual 

pathways as optokinetic eye movements. The Nucleus of the Optic Track (NOT) and the 

Dorsal Terminal Nucleus (DTN) of the AOS are the nuclei concerned with horizontal 

tracking (Schiffe/a/., 1988; Hoffmann, 1989; Ilg & Hoffmann, 1996). The spatial 

frequency tuning of cells in these nuclei have not been determined, but they have large 

receptive fields, etc (Hoffmann & Distler 1989), which is consistent with a lower spatial 

frequency preference. This suggests that while the VOS accurately measures the visual 

capabilities of the direct subcortical afferents, it may not be sensitive enough to detect 

small decreases in acuity of the eye. A one diopter blur, for example, might not be 

detectable. However, results from our lab have shown that the acuities measured in 

dystrophic Royal College of Surgeons (RCS) rats with degenerating retinas, decrease in a 

similar way in the VOS compared to the VWT (McGill et al, 2005). This indicates that 

the VOS is able to detect small changes in acuity of the eye. For now, the VWT is 
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probably the best option for testing the highest spatial frequencies, but ways of engaging 

the cortical circuitry to be able to test the higher spatial frequencies in the VOS are being 

explored (Douglas et al, 2004). 
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Chapter 3-Characterization of a critical period for visuomotor sensitivity 

3.1 Behavioural measures of visual development 

Determining visual thresholds in animals using behavioural measures has proven 

difficult. This is particularly true in rodents because they develop rapidly and at younger 

ages, they lack the cognitive faculties necessary to complete many of the tasks used. 

With that said, the visuomotor task that was described in the previous chapter was 

developed, in part, to allow for the quantitative characterization of rodent vision during 

development. This task takes advantage of a reflexive optomotor response and requires 

no training; that is, even developing animals have an observable optomotor response, 

regardless of their level of cognition. Thus, optomotor sensitivity and contrast sensitivity 

can be tested from the day of eye-opening and any day there after. Equally important to 

being able to measure thresholds in young animals is the ability to obtain acuity and 

contrast sensitivity measurements on sequential days, allowing one to detect 

developmental changes on a daily basis in a rapidly changing animal. As mentioned in 

the previous chapter, this has been one of the limitations of the VWT, in which the 

earliest threshold ever obtained was at P30 and at least a week is needed to obtain another 

threshold (McGill et ah, 2004). With the visuomotor task one can now rapidly measure 

visual thresholds each day from eye-opening (Prusky et al., 2004). This daily testing will 

allow one to detect minor changes in thresholds from day-to-day, making it very effective 

at quantifying visual thresholds during development. 

The inability to measure vision behaviourally in developing animals has left the 

question unanswered as to why the classic critical period for ocular dominance plasticity 
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does not begin until P21 (Fagiolini et al., 1994). As was discussed previously, some 

have hypothesized that this is a pre-critical period, in which the brain prepares for the 

upcoming OD critical period (Feller & Scanziani, 2005; Crowley & Katz, 2002; Crair et 

ah, 2001). There is substantial evidence for this argument, however, it does not rule out 

the possibility of there being a period that is important for the development of some other 

visual function. 

A finding that supports the theory of having multiple critical periods comes from 

experiments manipulating visual motion. Daw and colleagues have identified a critical 

period for directional deprivation that overlaps the critical period for monocular 

deprivation (Daw & Wyatt, 1976; Berman & Daw, 1977; Daw et al, 1978). These two 

incidences of plasticity are similar, but the critical period for directional deprivation 

occurs slightly before the period for monocular deprivation. This finding provides the 

most compelling evidence for the argument that there may be a critical period for visual 

motion that precedes the classic critical period of ocular dominance. However, the lack 

of stimulus control in these direction deprivation experiments poses some questions. For 

example, can an enhancement effect rather than a deprivation effect be induced under the 

appropriate circumstances? After characterizing the development of the optomotor 

response in the previous chapter, it was obvious that animals tested in OptoMotry from 

eye-opening had higher optomotor sensitivities than naive adult animals. This finding 

indicates that a critical period for visuomotor function exists before the onset of the 

classic critical period, and that this visuomotor critical period is characterized by an 

enhancement, rather than a loss of function. Another question then arises: what aspect of 

visual motion is altered, that is, does the critical period for motion plasticity apply to both 
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visuomotor and perceptual function? In this chapter we characterize the visuomotor 

critical period and show this to also be a critical period for perceptual motion vision. 

3.2 Neural substrates 

The neural substrates that underlie the enhancement of visuomotor function were 

unknown and required investigation. Plasticity for the increase in visuomotor acuity is 

likely limited to either the AOS or the cortex. As was described previously, the cortex 

does have connections to the subcortical nuclei (Takada et al, 1987; Giolli et al, 1988; 

Schmidt et al, 1993); however, results in the previous chapter indicate that this 

connection does not contribute to the visuomotor responses of naive adult animals. In 

terms of plasticity in the subcortical nuclei, studies have shown that the DTN of cats 

reared in the dark respond preferentially to slower velocities of movement, and the OD 

distribution of the DTN and the NOT is almost completely monocular (Grasse & 

Cynader, 1986; Sengpiel et al, 1990). However, these changes in the response properties 

of the nuclei involved in the optomotor response may not be due to direct input from the 

retina, rather the cortical input onto these nuclei may alter their electrophysiological 

properties (Grasse et al, 1984). This is supported by the fact that decortications in cats 

have essentially the same effects on the optomotor nuclei as dark rearing and monocular 

deprivation (Grasse & Cynader, 1987). The experiments described above suggest that the 

cortex is the structure where most of the plasticity occurs and then has downstream 

effects through the connection with the subcortical nuclei. Though this work was done in 

cats, which are known to require cortical input onto the subcortical optomotor nuclei, 

giving rats moving stimuli experience may make the cortico-subcortical pathway 
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necessary in these animals, also. As will be shown here, removal of VI in rats tested 

from eye-opening will have an effect on optomotor tracking in much the same way that 

VI lesions affect OKN in cats and primates. 

3.3 Stimulus control 

In measuring the optomotor response, one is measuring the motor output of the 

behaviour based on sensory input. Rather than quantifying visual thresholds, most 

studies using the optokinetic drum have quantified OKN in terms of velocity (Fuller, 

1987) or VOR gain (Haddad et al., 1980). This has made OKN and head tracking tasks 

more useful at measuring the motor component of the behaviour rather than vision. Thus, 

an optomotor enhancement in acuity may only be an enhancement in the motor output, 

with no change in the receptive field properties of cells receiving sensory input through 

vision. The inability to have a high degree of control over the stimulus in previous 

experiments makes it difficult to determine visual capabilities and is partly responsible 

for motor function being the focus of most of the previous research. In OptoMotry, the 

ability to control all aspects of the stimulus allows one to quantify the motor aspect of the 

head tracking response (i.e., time tracking), but more importantly the control allows for 

the characterization of actual visual threshold (i.e., optomotor sensitivity). The stimulus 

control in OptoMotry will allow one to determine what behaviour is being enhanced in 

animals tested from eye-opening; that is, the motor output may simply be more 

responsive, with no increase in sensory function, or there may be an increase in the 

visuomotor thresholds as a result of increased experience. 
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3.4 Perception of visual motion 

From the previous research discussed, it seems unlikely that the plasticity for 

visuomotor function takes place in the subcortical nuclei that control the head tracking 

response. It is more plausible that this plasticity takes place in the visual cortex, a 

structure that is known to possess the ability to undergo remarkable adaptive changes. 

The cortical projection to the AOS may be activated resulting in information being sent 

from the cortex to the AOS, or alternatively, the cortex itself may undergo changes that 

lead to enhanced motion perception abilities. In rats, it is known that cells in the cortex 

are highly orientation selective (~93%), and of these, more than half are either direction 

specific or preferential (Girman et ah, 1999). This makes rats good at perceiving moving 

stimuli. Moreover, it has been shown that deprivation during the critical period can affect 

the response properties of cells responding to visual motion (Cynader et al., 1975; Daw & 

Wyatt, 1976). Knowing that the visual cortex possesses such motion processing abilities 

and that the most probable origin of plasticity lies in the cortex, it is likely that an 

enhancement in visuomotor function is accompanied and even caused by an enhancement 

in motion perception. That is, the visuomotor enhancement may be the result of an 

enhancement in motion perception at the level of the cortex due to an alteration in the 

receptive field properties of cortical cells sensitive to visual motion. This change in 

cortical function may then have downstream effects on the optomotor nuclei, resulting in 

an enhancement of visual motion function as a whole. 

The rationale for this work is that the characterization of optomotor thresholds in 

developing animals (previous chapter) provided the first daily behavioural measures of 

vision in rats. Thresholds from animals measured daily from eye-opening were found to 
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be higher than experimentally naive animals not tested until adulthood. From these 

results we have hypothesized that a critical period for motion vision precedes the "classic 

critical period" for plasticity as a result of visual deprivation. Moreover, this plasticity is 

characterized by an enhancement of function through increased experience rather than a 

loss of function by deprivation. The new critical period was characterized using two 

behavioural tasks to test visual thresholds in visuomotor and perceptual paradigms. In 

doing so, we characterized a period of plasticity for visual motion and identified some of 

the neural substrates necessary for the development enhancement observed in animals 

tested daily from eye-opening in OptoMotry. 

Methods 

Animals 

Animals were housed and handled with the authorization of the Canadian Council 

on Animals Care (CCAC) and supervision of the animal care committee at the University 

of Lethbridge. 

Seventy-two Long-Evans hooded rats were used in these studies. All rats were 

bred from stock originally obtained from Charles River and raised in the Canadian Centre 

for Behavioural Neuroscience vivarium. Animals were housed in Plexiglas cages (35cm 

L x 20cm W x 13cm H) in a room with an ambient temperature of 21° C, 35% relative 

humidity and on a 12/12 light/dark schedule. Food and water were available ad libitum. 

Pups used were weaned at 21 days of age, at which time the males and females were 

separated and housed under identical conditions. 

44 



Experiments in this chapter used the same basic techniques that were described in 

chapter 2 to quantify the optomotor thresholds of animals in OptoMotry. However, the 

experiments that will be described in the following required some small procedural 

alterations. Also included is a description of the VWT and experiments utilizing this 

behavioural apparatus. 

Visuomotor thresholds of developing animals: Within-Utter testing 

To determine how the development of visuomotor function progressed, rats were 

measured in OptoMotry either from the day of eye-opening (PI 5, N=6), from P25 (N=6) 

or on single days between PI5 and P25 (N=4 on each day). Pups were removed from 

their home cages daily and tested. Upon eye-opening, testing commenced within two 

hours and was repeated at the same time of day for the subsequent testing sessions. After 

completion of testing each day (approximately 30-40 minutes per animal) rat pups were 

returned to their home cages. 

The effect of visual cortex lesions on the optomotor response 

The effect of primary visual cortex lesions on animals tested daily from eye-

opening (PI5) was determined. Animals (N=4) with enhanced acuities (-0.86 c/d; 

compared to experimentally naive animals reported in previous chapter, -0.54 c/d) 

received bilateral VI lesions as adults. Experimentally naive adult animals (N=4) that 

were not enhanced also received bilateral lesions (chapter 2, figure 6A). In addition, the 

effect of unilateral lesions done in a sequential manner was also investigated. Adult 

animals (N=5) that were tested in OptoMotry from eye-opening into adulthood were 

45 



lesioned (animals tested from P15 in chapter 2). VI lesions of the right hemisphere were 

followed by optomotor testing. Subsequent lesions of left VI were then done and 

followed by optomotor testing. This methodology was similar to that done in chapter 2 

on naive animals (figure 6B). 

To determine the effect that lesions would have on the development of the 

optomotor response, rat pups (N=l 1) received bilateral VI lesion the day before eye-

opening (P14). To control for the effect of visuomotor testing from P15-P25, some 

animals (N=6) began testing the day after the lesion when they opened their eyes (PI5), 

while the other lesioned animals (N=5) did not begin until P25. All animals were tested 

until P30. 

Aspirate VI lesions 

Animals were anesthetized and maintained with inhaled Isoflurane (induction at 

5%, maintenance at 2-4% evaporated in 1-1.5 1/min O2). The animals were then placed in 

a stereotaxic frame and a topical antibacterial ophthalmic agent (Vetropolycin) was 

applied to the eyes. The top of the head was then washed with saline and wiped with 

dilute Hibitane and 70% ethanol. A midline incision was made and the scalp was 

retracted to expose the skull. A dental drill was then used to remove a rectangular 

portion of skull above primary visual cortex (6-12 mm posterior to bregma and 1-3 mm 

from the midline) as identified by Paxinos and Watson (2000). The dura was resected 

and the area was aspirated down to the white matter. The incision was then closed with 

sutures and the animals were given an analgesic (5 mg/kg Buprenorphine). Animals were 

allowed to recover on a warm heating pad and then returned to their home cage once they 
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were mobile, alert and eating and drinking. Depending on the experiment, the lesion was 

either a bilateral lesion or sequential unilateral lesion first done on the right side of the 

brain and upon completion of the testing the surgery was repeated for the left side of the 

brain. 

Post-surgical testing 

All post-surgical testing was done using the optomotor task and was not 

physically demanding on the animals. Testing commenced 3 days following surgery in 

adult animals and the day after in young animals. All animals performed well without 

any lingering side effects aside from the obvious visual deficits. 

Once testing was completed, lesioned animals were sacrificed to verify the lesion 

location and size. Rats were anesthetized and then perfused with cold buffered saline and 

buffered 4% paraformaldehyde. The brains were removed and digital pictures of the 

dorsal surface were taken for quantification. The surface features of the brain and the 

lesion boundaries were then traced and fiducial landmarks were then used to estimate the 

borders of striate cortex according to stereotaxic coordinates (Paxinos and Watson, 1998; 

Sefton and Dreher, 1995), which were then superimposed on the illustration of each 

animal's brain. 

Experiential control of enhancement 

First, it was investigated if experiencing moving gratings was required to produce 

the visuomotor enhancement or if exposure to the task and a static stimulus produced the 

same effect. Animals (N=8) were tested from the day of eye opening (PI 5). An animal 
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was placed in the apparatus and optomotor thresholds were measured in the normal 

manner with moving gratings. A computer program recorded all of the commands that it 

was given by the experimenter (i.e., change in spatial frequency or direction, grey screen, 

etc.). Following the characterization, a yoke control animal of the same age and litter 

was placed in the apparatus. The previous stimuli were then played back to the animal. 

Yoked animals were shown the same gratings, grey screens and other stimuli in the exact 

same order and time scale as the previous animal, however, the gratings were not 

moving. This procedure was done everyday until P25 at which time optomotor 

sensitivity and contrast sensitivity was measured in the usual manner until P30. 

Then, the spatial frequency necessary to produce an optomotor enhancement was 

determined. First, animals (N=4) were exposed to a low spatial frequency grating from 

the day of eye-opening until P25 and then tested in the normal manner until P30. 

Animals were placed in the task and a moving grating of 0.031 c/d was projected on the 

monitors. This spatial frequency was chosen to provide enough sine waves on each 

screen and because it is the lowest contrast sensitivity point we measure in the contrast 

sensitivity function. In a complementary experiment, animals (N=4) were exposed to a 

high spatial frequency stimulus from the day of eye-opening and then tested in the normal 

manner until P30. The spatial frequency used was 0.831 c/d, which was slightly lower 

than the optomotor sensitivity measured in optomotor enhanced animals. During the 

exposure period (P15-P24) a testing session lasted 25-30 minutes for both groups, a 

duration similar to normal animals tested in the usual manner. 

Then, an experiment similar to the one performed by Daw and Wyatt (1976) was 

completed; we evaluated the effect of testing rats in one direction. In chapter 2 it was 
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shown that only temporal-to-nasal motion relative to an eye will stimulate an optomotor 

response, thus allowing for within animal controls. Therefore, animals (N=4) were tested 

from the day of eye opening, but only one direction was used (2 in the CW direction and 

2 in the CCW direction). Animals were tested until P25 and then optomotor thresholds in 

both directions were measured everyday until P30. Thresholds were tested twice per 

session as to control for the amount of time in the apparatus. 

Testing visual perception using the Visual Water Task 

To test the effect that early optomotor experience has on visual perception, the 

VWT was used. Rats were tested in OptoMotry (from P15, N=6 or from P25, N=6) until 

P30 and then began training in the VWT at P40. 

The Visual Water Task 

The Visual Water Task (Prusky et al, 2000) (figure 1) consists of a trapezoidal-

shaped (140 cm L x 80 cm W x 25 cm W x 55 cm H) tank filled with tap water (22 °C) to 

a depth of 15 cm. The 80 cm end of the pool is made of transparent Plexiglas while the 

rest of the pool consists of stainless steel. Extending out 46 cm from the transparent end 

is a midline barrier (40 cm H), which creates a Y-maze shape. Placed at the end of one 

arm is a submersed Plexiglas platform (37 cm L x 13 cm W x 14 cm H). From the 

viewing position of the animal the platform can not be seen. Two computer monitors (17 

in.VGA; ViewSonic E70F) sit side-by-side at the transparent end, each facing into one 

arm of the pool. The water level is located at the bottom of the viewable area of the 

screens. Light levels (black mean, 0.0445 cd/m2; white mean, 55.35 cd/m2) were taken 
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using a light meter (model LS-110; Minolta, Osaka, Japan) positioned at the end of the 

barrier. The monitors are controlled by a PCI video card (RADEON 7000 MAC Edition; 

Markham, Ontario) installed in an Apple Macintosh computer (PowerPC G4; 400 MHz). 

The gamma response is measured (Monitor Spyder, OptiCAL; ColorVision) for each 

monitor and is used to linearize the video output to the screens. A computer program 

(Vista®; CerebralMechanics, Lethbridge, Alberta, Canada) was used to generate and 

control the stimuli, as well as record the results of each trial by input from the observer 

through a remote control box. A positive stimulus (+; reinforced by escape from the 

water) was displayed on one screen and a negative stimulus (-; non-reinforced by not 

escaping from the water) was displayed on the other. The hidden platform was always 

located underneath the screened with the + stimulus. 

Training and behavioural testing using the Visual Water Task 

This task takes advantage of the rat's natural ability to swim and their instinctive 

response to escape from water. Escape is paired with the platform that is placed directly 

under the + stimulus. The divider in the pool serves as the choice point and sets the 

spatial frequency for the animals to view. 

At the start of training, a full-length divider was placed in the pool so that animals 

could swim on only in one side of the pool, the end of which had the escape platform 

associated with the + stimulus. For the four experiments completed in this study the + 

stimulus changed each time, but the animals were effectively able to discriminate it from 

the - stimulus. The animals were released in the pool from the narrow end and became 

effective swimmers over a couple of trials by swimming to the stimulus end of the pool. 
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It was also important for them to know they could escape and to swim in that general 

direction. Next, a short barrier (23 cm) was put in place and the animals now had to 

discriminate between the + and - stimuli both of the same mean luminance. The location 

of the correct stimulus was alternated between the left (L) and right (R) screen in order to 

associate the correct stimulus with the escape platform. A correct response occurred only 

if the animals swam into the arm of the maze that contained the + stimulus and climbed 

onto the escape platform; an incorrect response occurred if the animals swam into the arm 

containing the - stimulus. Once animals performed near perfectly on the task (90% 

correct or better), a 46 cm barrier was put in place and training continued. At this point, 

the alternating stimulus side of L and R was replaced with a LRLLRLRR sequence, 

which we have found that rats are unable to memorize. This process was done until the 

animals could complete the task to near perfection (90% correct or better over at least 30-

40 trials). 

Determination of visual thresholds using the Visual Water Task 

In the first phase of the experiment, animals were trained to distinguish a sine-

wave grating from grey (figure 14A). A low spatial frequency (0.100 c/d), vertical sine 

wave grating (+ stimulus; 100% contrast) was displayed on one monitor and a uniform 

grey (- stimulus) of the same mean luminance was displayed on the other monitor. A 

method-of-limits procedure was used to test the threshold by incrementally changing the 

spatial frequency of the sine wave gratings within a block of trials until the animals 

performance fell below our 70% performance criterion. On each trial, if the animal made 

a correct choice, then the spatial frequency was increased by one cycle, a procedure 
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which was repeated through the low spatial frequencies, thus minimizing the number of 

trials away from the threshold. If the animal made an incorrect choice then a test ensued 

in which the animal had to get 3 trials correct in a row or 7 out of a block of 10. This 

procedure lasted about XA way through the projected range to threshold. Then until about 

3 / 4 the way through, the number of correct trials needed to advance went to 3 in a row and 

then 5 until threshold and if the animal got one wrong in either case they had to get 5 in a 

row correct or 7 out of 10. An initial threshold was found, but to verify this and also to 

increase the number of trials, the spatial frequency was decreased 3-4 steps (i.e., one step 

is equal to a block of trials at one spatial frequency) and the experimental procedure was 

repeated. The performance at each spatial frequency was averaged and a frequency-of-

seeing curve was plotted for each animal. The point at which the curve intersected 70% 

was reported as the grating acuity for the animal. All rats were run as a group completing 

10-20 trials per session, which lasted 30-60 minutes. No more than two sessions 

occurred daily and were separated by at least 1 hour. All testing was done in a dark 

room. 

Next, animals were trained to discriminate between two identical sine wave 

gratings (100% contrast) of the same mean luminance, moving in the opposite direction 

of one another (figure 14C) at 12°/sec. Rats were trained so that the rightward moving 

grating was the + stimulus and leftward was the - stimulus. With the exception of the 

change in stimulus, the animals completed all aspects of training in exactly the same 

manner as was already described. Due to the previous training, only 40-60 trials were 

required to perform the task to near perfection, at which point thresholds could be 

measured. During the testing phase the spatial frequency of both screens remained 
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identical; therefore they were increased and decreased exactly the same amount 

depending on the outcome of a trial. The testing procedure and criterion remained the 

same as in the previous experiment and frequency-of-seeing curves were again generated. 

The following two experiments relied on the same basic procedures described in 

the previous two experiments; however, the stimulus was changed from sine wave 

gratings to dots. First, dot coherence thresholds were measured. Dot kinematograms, 

consisting of looping 24 frame movies, were computed separately for each monitor 

before each trial, and then played continuously until the end of a trial. Each frame had 62 

randomly positioned white dots that covered about 20% of the screen. The dots were 2.3° 

in diameter, a size that previous research in our lab confirmed was readily visible, and 

had a luminance of 90 cd/m2 (background was 2 cd/m2). Dots could move in random 

directions with a step size of 2.0°, a frame duration of 35 ms, and a lifetime of 424 ms. 

The dots were projected on both screens and moved in opposite directions (figure 15A). 

Due to the previous training the rightward stimulus was again the + stimulus. Animals 

began at 100% coherence, which was decreased on successful trials using the same 

method of limits described above. Dots on each screen began moving in the same 

direction, but over trials the proportion of dots moving horizontal was reduced so that 

most moved in random directions. 

In an alteration to the dot coherence experiment, dot size thresholds were 

measured. 2.3° dots, moving with 100% coherence, with a step size of 2.0°, a frame 

duration of 35 ms, and a lifetime of 424 ms were used. Animals were trained to 

discriminate between dots moving to the right (+) and dots moving to the left (-), with 

high accuracy (figure 15C). The size of the dots was then reduced, again using the 
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method of limits procedure, until the minimum dot size at which animals could 

discriminate the direction of motion at 70% accuracy, was identified. In both dot 

experiments, rats only required 40-60 trials in the training phase to be able to begin 

testing. 

Statistical analysis 

Repeated measures analyses of variance (ANOVA) were used to examine the 

acuity of the rats over time throughout the course of the experiments. Student's Mest was 

used to compare VWT thresholds between animals with or without an optomotor 

enhancement. The probability level at which the null hypothesis was rejected is 

represented by p; statistical significance was at /K0 . 05 . 

Results 

Within-Utter visuomotor experience versus naive animals 

After characterizing the developmental group (chapter 2), it became evident that 

animals tested from eye-opening had much higher acuities than experimentally naive 

animals. Based on this evidence a within-litter study was done: half the litter was tested 

from eye-opening (PI 5) while the other half began testing at P25. Acuity of animals 

tested from PI5 significantly increased (F(i5 i 8o)=5004.741,p<0.0001) to an enhanced 

level by P25 and plateaued at 0.843 c/d as adults (figure 9A). P25 was chosen as the age 

to begin testing the control animals because that was the point at which the acuity of the 

initial development group had leveled out. Animals that began testing on P25 had 

acuities of 0.531 c/d (SEM=0.001), which changed slightly (F (5,3o)=7.364, /T=0.0001) the 
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next day, but then remained unchanged until P30 (figure 9A). The animals tested from 

eye-opening had significantly enhanced acuities (F(i,60)=47916.622,/7<0.000T) relative to 

the P25 animals, which did not differ (/^/=-1.814,/?=0.1295) from the adult animals 

discussed in chapter 2 (figures 3 and 5). 

There was also a significant difference in contrast sensitivity between the PI5 and 

P25 groups (F(i ;80)-342.375,/K0.0001) when compared as adults (figure 9B), however, it 

was far less pronounced than observed for acuity. Upon inspection of the contrast 

sensitivity curves for the two groups the points up to and including the peak (0.031, 

0.064, 0.092 and 0.103 c/d) appeared similar while the points after (0.119, 0.167, 0.272 

and 0.400 c/d) appeared to be different. Statistical analysis revealed that there was no 

difference (F(i;40)=0.415,/?=0.5233) at spatial frequencies below the peak or at it, 

however, sensitivities at spatial frequencies above the peak were significantly lower for 

the PI5 group (F(i;40)=2683.221,/?<0.0001), with the PI 5 animals having lower values at 

all points. 

Visuomotor critical period plasticity 

Using P25 as the cutoff for the visuomotor plasticity that has been described, the 

effect of only one day of testing was determined. After one initial day of optomotor 

testing (either PI5, 17, 18, 19, 20, 21, 23), animals were retested everyday from P25-P30. 

Animals exposed to the stimulus once all had significantly enhanced acuities over 

animals that were not tested for the first time until P25 (figure 10) (F(9,36f=2448.709, 

;?<0.0001). Acuity at every age tested, except for P23 (p=0.1648), was significantly 

higher than naive adult animals. The acuity of animals not tested until P25 and adults did 
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not differ (p=0.0552). All values were lower than those for 'normal' enhanced animals. 

Visuomotor sensitivity peaked in animals tested on P19 and the curve for all days was 

skewed towards younger animals with almost all of the plasticity over by P23. 

Effect of cortical lesions on optomotor enhancement 

Following bilateral lesions the optomotor sensitivity of animals tested from PI 5 

dropped from 0.855 c/d (SEM=0.00087) to 0.500 c/d (SEM=0.0031) 3 days after surgery 

and there was a slight recovery over the next 2 weeks to 0.511 c/d (SEM=0.0015; 

F(6,42)=7399.88,/?<0.0001) (figure 11A). The acuity of naive animals following bilateral 

lesions was virtually unchanged (chapter 2; figure 6A). All values for bilateral lesions 

were significantly different from one another (F(3 ii2f=23934.14,p<0.0001), but the only 

large effect occurred in the enhanced group where removing the cortex resulted in 

thresholds similar to those of naive animals. 

Animals used in the initial developmental characterization study (figure 8) 

described earlier in this chapter were used for the sequential removal of VI in adult 

animals. The pre-lesion acuity of these animals was 0.865 c/d (SEM=0.0014) in the C W 

direction and 0.863 c/d (SEM=0.00074) in the CCW direction (figure 11C). Removal of 

right hemisphere VI initially brought the CW and CCW direction down to 0.187 c/d 

(SEM=0.030) and 0.335 c/d (SEM=0.015), respectively. This was followed by a partial 

recovery of function over the next 7 weeks to values of 0.624 c/d (SEM=0.003) in the 

CW direction and 0.638 c/d (SEM=0.004) in the CCW direction. When the bilateral 

lesion was then completed by a lesion to left VI, acuities initially dropped to 0.501 c/d 

(SEM=0.007) CW and 0.496 c/d (SEM=0.005) CCW, followed by a slight recovery of 
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function by 4 weeks post-surgery to 0.514 c/d (SEM=0.004) CW and 0.508 c/d 

(SEM=0.005) CCW. These final acuity values were significantly different from the pre-

lesion acuity (F(3 ii8)-4049.93,/?<0.0001), but not different from naive animals (chapter 2; 

figure 6) that received the same lesions (p=0.0629). 

Bilateral removal of VI the day before eye-opening had a similar effect to 

bilateral VI removal in adulthood. Acuity of lesioned animals that began testing on PI 5 

was significantly different from a normal developmentally enhanced group on every day 

from P15-P30 (F ( U 60)=1420.722,p<0.0001) and reached an optomotor sensitivity 

threshold of 0.525 c/d (SEM-0.002) (figure 12A). Lesioned animals tested from PI5 did 

not differ (p=0.6066) from lesioned animals that began testing at P25 (0.524 c/d; 

SEM=0.002). At P25-P30 both groups of lesioned animals were significantly lower than 

intact animals tested from P15 (0.853 c/d; SEM=0.001) and only slightly lower 

(F (3 ;84)=36102.488, pO.OOOl) than an intact group that started testing at P25 (0.541 c/d; 

SEM=0.001). 

Experiential control of optomotor enhancement 

Static stimulus exposure 

All animals that received the moving stimulus were able to track from P15 and 

had enhanced thresholds similar to those of other visuomotor enhanced animals reported 

previously. The average acuity of the enhanced animals was 0.852 c/d (SEM=0.003), 

while the sensitivity of the animals receiving the static grating stimulation was 0.564 c/d 

(SEM=0.003) (figure 13). As adults the two groups were significantly different 
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(t(3)=\ 66.277, /F=<0.0001), and the static group was slightly higher than naive animals 

tested previously (^=8.051, p=0.0040). 

High/low spatial frequency exposure 

From the day of eye-opening all animals exposed to a low spatial frequency 

grating (0.031 c/d) actively tracked the stimulus, while animals exposed to a high spatial 

frequency (0.831 c/d) never tracked the stimulus. Both groups had thresholds higher than 

animals that were naive at P25 or adults, however, they were lower than normal enhanced 

animals (F(3,i6)=5074.019,p<0.0001). All groups were significantly different from each 

other. At P30 (figure 13) the low and high spatial frequency exposure groups had 

thresholds of 0.654 c/d (SEM=0.002) and 0.710 c/d (SEM=0.002), respectively, values 

that had not changed from P25 (F (5,i8)=1.618,/j=0.2058 and F ( 5 rig) !=0.843,p=0.5369, 

respectively). 

One direction exposure 

The acuity in the direction that animals were exposed to from eye-opening 

continued to change (F(i5>48)=5368.654,/?<0.0001) until ~P27 and reached a maximum 

threshold of 0.819 c/d (SEM=0.004) at P30 (figure 13B). When compared to normal 

enhanced animals, the acuity of rats exposed in one direction were significantly lower on 

all days from eye-opening to P30 (F (i 5 ;i28) =14.725, j?<0.0001), although the difference 

was not large. Thresholds measured through the eye corresponding to the deprived 

direction were 0.560 c/d (SEM=0.002) at P25 and increased to 0.576 c/d (SEM=0.002) 

by P30. At P30 the acuity of the deprived direction was significantly lower than that of 
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normal animals tested from PI 5 and acuities in the exposed direction, but was higher than 

a naive group (F(3.96)=25970.407,/7<0.0001). 

The effect of optomotor experience on visual perception: Visual Water Task 

Training 

All rats learned to associate swimming to the platform with escape from the pool. 

Approximately 100 trials were needed for the animals to reach 90% accuracy over 40 

trials on the first task, while subsequent tasks required less training. All animals learned 

to grasp the end of the divider and inspect both screens before making a choice. 

'Static' grating acuity 

In the first experiment with the stimulus being grey vs. grating (figure 14A) both 

groups performed the task with near perfection up to a spatial frequency of -0.8 c/d. 

Around this point both groups began to make errors, although they remained above the 

70% criterion until about 0.95 c/d. The acuity of the group tested from PI 5 was 0.965 c/d 

(SEM=0.068), while the acuity of the P25 group was 0.953 c/d (SEM=0.034) (figure 

14B). The acuities between the groups did not differ significantly (^5/=0.153,/?=0.884) 

(figure 14B). The values from both groups were similar to what have been reported 

previously (Dean, 1981a; Prusky et al, 2000a). 

'Moving' grating acuity 

Due to the previous training in the VWT, animals were quickly able to learn to 

discriminate between gratings moving in opposite directions (figure 14C). The PI5 

group performed at near perfection to about 0.65 c/d, while the P25 animals began 
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making errors around 0.45 c/d. The P15 animals had an acuity of 0.735 c/d (SEM=0.041) 

while the P25 group acuity was 0.512 c/d (SEM=0.021). Animals tested in OptoMotry 

from eye-opening were significantly better at detecting moving gratings than animals not 

tested until P25 (^=5.646, p=0.002) (figure 14D). 

Dot motion coherence threshold 

Changing the stimulus from gratings to dots required some training, but all 

animals were able to learn the task. Both groups were able to perform the task at near 

perfection until about 40% coherence. At this point the animals began to make errors, 

but remained above criterion until approximately 25% coherence. Coherence thresholds 

of animals tested in OptoMotry from eye-opening was 24.5% (SEM=1.45), while the 

threshold for the P25 group was 23.7% (SEM=0.955). There was no significant 

difference between the two groups (^=0.605, p=0.571) (figure 15B). 

Dot motion size threshold 

This task was learned easily because of its similarity to the previous dot 

coherence experiment. Animals tested in OptoMotry from eye-opening performed to 

near perfection to dot sizes of ~0.1°, but the performance of the P25 animals began 

falling off at 0.4°. The enhanced group was able to discriminate the two stimuli down to 

a dot size of 0.075° (SEM=0.011), while the P25 group had a threshold dot size of 0.353° 

(SEM=0.015). Animals tested from eye-opening were able to detect a significantly 

smaller dot size than animals not tested until P25 (^5;=15.03,^=0.00002) (figure 15D). 
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Summary 

Characterization of a visuomotor critical period 

The results show that a form of experience-dependent plasticity, distinct from the 

critical period, exists and allows for the enhancement of motion vision. During the 

course of characterizing the optomotor response in the previous chapter it became evident 

that animals tested from eye-opening in OptoMotry had higher optomotor acuities than 

experimentally naive animals measured for the first time as adults. A within-litter 

experiment in this chapter confirmed that animals tested from P15 reach higher 

thresholds than animals that begin testing at P25; in fact we saw a 38% higher optomotor 

acuity in the experienced animals. This is the first significant evidence for an 

enhancement of function by visual experience. Also, these studies provide some of the 

first behavioural measures of vision in developing rats. Using a virtual optomotor task 

one can measure effectively the visuomotor sensitivity of rats from the day of eye-

opening and detect developmental changes during that time. This has long been a 

limitation of behavioural vision tasks and even electrophysiological tasks often require 

the use of different animals on subsequent days of testing due to their invasive nature. 

These previous tasks would not allow for the identification of an enhancement effect 

caused by numerous sessions of visual experience such as those done here. 

In regards to contrast sensitivity, there was no effect of the early testing at the 

spatial frequencies measured up to and including the peak of the curve (0.1 c/d), 

however, at the higher spatial frequencies animals tested from P25 had better contrast 

sensitivity. Though the curves differed slightly, both had the characteristic inverted "U"-

shaped function that has been shown previously by others (Keller et al., 2000; McGill et 
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al, 2004a). In measuring the two groups, we often observed a behaviour termed "anti-

tracking" in animals tested from eye-opening, but not in littermates tested from P25. 

When gratings were placed on the monitors, the animals would briefly track it and then 

switch directions so that they were moving their head in the opposite direction of the 

gratings. This behaviour occurred intermittently while measuring acuity, but became 

much more frequent while measuring contrast sensitivity at spatial frequencies higher 

than the peak of the curve. This behaviour began at ~P20 and continued into adulthood. 

The points at which anti-tracking most occurred corresponded to the points of the 

contrast sensitivity function where the animals tested from P25 had higher values; that is, 

the anti-tracking may account for the difference in contrast sensitivity that was observed. 

The cause of the behaviour is unknown, but will be investigated in the future. Due to the 

small effect of the early testing on contrast sensitivity, optomotor sensitivity will be 

focused on for the remainder of this thesis. 

Upon further inspection of the "critical" period for the enhancement of optomotor 

sensitivity, it was found to have the same characteristics as that of other critical periods. 

That is, there is a transient period of plasticity that allows for an alteration in function 

depending on the visual environment (e.g. Hubel et al., 1977, Blakemore & Van Sluyters, 

1974). The majority of the plasticity occurred before the peak at PI 9. These temporal 

properties suggest that the period of optomotor plasticity is distinct from the critical 

period for MD, which does not start until P21 and has a peak in plasticity at ~P30 (Guire 

et al., 1999), and provides evidence to support the existence of a critical period for 

motion vision (Daw & Wyatt, 1976) being distinct from that of the critical period for 

form vision. Though these results are similar, they have one major difference in that 
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there is an enhancement of motion vision, rather than a loss of visual function. This 

difference is likely due to the difference between the nature of the visual behaviour that 

was tested here compared to the visual functions that have been measured in previous 

deprivation experiments. Regardless of that fact, only deprivation effects have been 

induced during the critical period of OD plasticity and such a distinct critical period for 

any visual function has not been identified until now. 

Role of the cortex 

It has been previously shown that OKN (Harvey et al., 1997) and head tracking 

(chapter 2; Douglas et al, 2005) in rats is not effected by cortical lesions. However, 

removal of VI in animals with visuomotor experience from eye-opening or before eye-

opening results in a loss of visual acuity from enhanced levels or a lack of enhancement, 

respectively. The effects these lesions have on enhanced animals are similar to those 

shown for cats and monkeys, where a loss in OKN is caused by cortical lesions (Flandrin 

et al., 1992; Segraves et al., 1987). This similarity in effects suggests that the enhanced 

acuity in developmentally exposed rats may be caused by a conferral of cortical control 

over the visuomotor system, as it is in cats and monkeys for OKN. As was described in 

the previous chapter, there is a cortical projection to the AOS, but it is thought to have no 

effect on the thresholds produced by the subcortical circuitry. The lesion experiments 

done here provide significant evidence that early testing may involve this cortical 

projection, thus sending information concerning motion to the subcortical nuclei involved 

in the optomotor response. The cortico-subcortical projection to the AOS seems to 

convey high spatial frequency information to the subcortical circuitry, while efferents 
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from the retina convey only low spatial frequency information. Without early exposure 

only low spatial frequency information from the retina reaches the subcortical structures, 

therefore, naive adult animals have lower optomotor thresholds, such as those reported in 

chapter 2. 

The partial recovery in function following sequential unilateral lesions of animals 

tested from P15 is similar to previous results (Strong et al., 1984) in cats and provides 

more evidence to support the similarity between head tracking in optomotor enhanced 

rats and OKN in cats and monkeys. The similarity in results also indicates that the 

enhancement in function is due to an alteration in the visual cortex. Cats given unilateral 

visual cortex lesions have deficits in both directions of OKN, particularly toward the side 

of the lesion. This loss is much like the one reported in this current work with rats where 

there was an initial drop of optomotor sensitivity in both directions, particularly in the 

direction that corresponded to the side of the lesion (i.e., a left VI lesion leads to a lower 

sensitivity in the CCW direction and right VI lesions cause a reduction in the CW 

direction). Moreover, following a unilateral VI lesion in cats, there is a recovery of OKN 

in both directions in a sort of 'balancing' that reduces the asymmetry (Strong et al., 

1984). This balancing was also shown in our results and suggests that a single 

hemisphere can partially mediate the optomotor response in both directions when animals 

are exposed to motion stimuli from eye-opening. 

Experiential control 

In previous experiments involving motion, the effects have been induced by 

deprivation (Cynader et ah, 1975; Daw & Wyatt, 1976). However, stimulus control was 

64 



generally limited to the direction of rotation, the speed of rotation and only one spatial 

frequency was used during the exposure period. Also, the behavioural visual thresholds 

that resulted from this exposure were not measured. Using the optomotor system 

developed here, the stimulus can now be controlled to a greater extent, in particular the 

spatial frequency. 

OKN drums have been more effective at testing the motor aspect of optomotor 

responses (Collewijn, 1977; Marlinsky & Kroller, 2000), however, due to the high degree 

of stimulus control, OptoMotry can be used to quantify both the motor and sensory 

(Douglas et al, 2005) portion of the behaviour. The thresholds obtained from animals 

exposed to a low spatial frequency that they always actively tracked from P15-P25, 

indicate that the motor aspect of the behaviour is necessary, but not sufficient to create a 

maximal enhancement in acuity. Conversely, exposure to a high spatial frequency that 

the animals had never actively tracked, resulted in higher thresholds, but again the 

maximal effect was not obtained. Though no tracking of the high spatial frequency 

stimulus occurred, the animals were probably still able to perceive the stimulus without 

producing any motor output. This perception could have happened at the level of the 

cortex where higher spatial frequency information is processed and then passed on to the 

subcortical structures through the cortical-subcortical projection, as suggested above. 

Thus, giving the sensory system visual experience is also important to produce the 

maximal enhancement of acuity. These results again suggests that the cortex is involved 

in the optomotor enhancement because the rats most likely began perceiving the high 

spatial frequency stimuli part way through development due to cortical maturation and 

the cortex's ability to discriminate high spatial frequency information. With that said, 
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obtaining threshold values of ~0.85 requires animals experience high spatial frequency, 

moving stimuli that generates optomotor head tracking. 

In an alteration to the direction deprivation experiments done by Daw and 

colleagues (1976), exposure to gratings moving in one direction from P15-P25 does not 

result in a deprivation effect when measured at the level of behaviour. Though our 

animals were only deprived of one direction of movement for the duration of the testing 

session, rather than all of development, exposure in the other direction was enough to 

induce a large enhancement in optomotor sensitivity. Upon measuring thresholds at P25, 

the acuity measured through the eye corresponding to temporal-to-nasal drum rotation 

was enhanced to near its maximum, while acuity through the other eye was enhanced 

only slightly above that of naive animals. These results give further validity for the 

application of this system to do within-animal controls. The fact that maximal acuity was 

not reached in one direction and was higher than that of naive animals in the other, 

suggests that the visual input from the retina to the cortex is not completely crossed. It is 

possible that the small ipsilateral projection from each eye to the visual cortex (Grieve, 

2005) accounts for the sub-maximal thresholds. For example, when exposing animals in 

the CW direction, acuity through the left eye is being tested, and in this case enhanced. 

That means that the right visual cortex is undergoing some change to cause the 

enhancement, however, some of the projections from the left eye are going to the left 

visual cortex. Also, because the optomotor response is not being driven by the right eye, 

no enhancement of function is occurring in the left visual cortex, but left VI is receiving 

some projections from the ipsilateral eye. This partial crossing suggests that exposure 
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must occur in both directions of rotation and that the ipsilateral projection is necessary for 

maximal acuity to be reached. 

Enhanced motion perception 

Due to the existence of a cortical projection to the subcortical nuclei and because 

lesions cause a loss of enhancement, it is plausible that cortical changes due to early 

optomotor experience, may also have led to enhanced visual perception, a cortically 

mediated ability. As might be expected, there was no enhancement in the ability to detect 

static gratings. However, when the task was altered to become a moving grating 

discrimination task, the animals tested from eye-opening in OptoMotry were able to 

discriminate a higher spatial frequency moving stimulus than their littermates. This 

increase in moving grating perception provided the first evidence that the optomotor 

enhancement originally described was in fact an enhancement in the ability to detect 

motion as a whole, independent of whether it is of subcortical or cortical origins. 

With the previous finding in mind, motion detection was also assessed in a dot 

motion coherence task. It has become common to use dynamically moving random dot 

patterns (or kinematograms) to assess visual motion, as they enable the study of motion 

perception in the absence of positional or form cues (Nakayama & Tyler, 1981). 

Perceptual mechanisms that can detect common motion of many elements have been 

identified in humans and other primates (Braddick, 1974; Morgan & Ward, 1980; 

Williams & Sekular, 1984) and localized to extrastriate cortex (Newsome & Pare, 1988; 

Baker et ah, 1991). In order to complete the task, animals must rely on the motion of all 

the dots (global motion) rather than just single dots that may be moving randomly. Here, 
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we found no difference in the ability of animals to detect global motion (dot motion 

coherence). From this it can be inferred that the enhancement in perception must be 

specific to the stimulus, most likely of a high spatial frequency nature. When the dot size 

was then reduced, the animals with early optomotor experience were able to detect a 

smaller dot size down to something resembling static on a TV screen. Thus, the ability to 

respond to high spatial frequency moving information was enhanced in a perception task 

much like it was in the optomotor task. 

The identification of a critical period for motion vision is important to the 

understanding of the visual system. Within the classic critical period multiple periods of 

plasticity have already been identified with small differences in the timing and effects 

that the visual environment can have during those times. The plasticity for motion vision 

described here is another one of these periods; however, it was quantified through an 

enabling effect, in contrast to the deprivation effects that characterize all of the other 

plastic periods. It also appears to occur much earlier than any other period previously 

described. The enhancement of both visuomotor function and motion perception 

provides evidence that the cortex is conveying information to the subcortical structures, 

most likely concerning high spatial frequency information. If this plasticity was limited 

to the nuclei of the AOS, then removal of the cortex would have had no effect. 

Moreover, the perception of motion stimuli would not be enhanced if the changes that 

took place were not associated with visual cortex. This makes this critical period for 

motion vision a distinct critical period from those previously described in deprivation 

studies. 
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Chapter 4-Discussion 

The experiments presented in the preceding chapters have shown that a novel task 

for testing optomotor responses, known as OptoMotry, is effective at measuring 

visuomotor thresholds in rats daily from eye-opening. During the course of this work, a 

critical period for the development of visuomotor sensitivity was characterized which 

precedes the classic critical period for the negative effects of visual deprivation on visual 

cortex function. This period of enhancement required that animals experience high 

spatial frequency moving stimuli that generate optomotor head tracking, and was also 

shown to be dependent on visual cortex. The enhancement in visuomotor function was 

also accompanied by an enhancement in the sensitivity of visual motion perception, as 

demonstrated in experiments utilizing the Visual Water Task. The ability of transient 

visual experience from eye-opening to permanently enhance visual function is novel, and 

indicates that a previously undetected form of visual system plasticity is present from 

eye-opening, well before the classic critical period. 

4.1 Enabling of visual function through experience 

Virtually all previous research reporting developmental plasticity in the visual 

system has used visual deprivation as the experimental variable (i.e. MD, induced blur or 

strabismus, one orientation and one direction rearing). The loss of function as the result 

of visual deprivation during the classic critical period, has generally been interpreted as 

meaning that the missing visual experience normally enables function. Since visual 

deprivation before the critical period does not result in an OD shift or a loss of visual 
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acuity, most researchers have concluded that there is not significant enabling plasticity 

outside of the critical period. The experiments in this thesis, show that the period of time 

from eye-opening to the onset of the classic critical period is in fact a period of 

significant visual plasticity. The plasticity, however, is in the visual motion system, 

rather than the form vision system, and is characterized by an enhancement, rather than a 

loss of function. Visuomotor testing during this new critical period could have at least 

two effects on the motion vision system. First, it may allow an animal to overcome the 

effects of existing deprivation; that is, normal cage reared animals may be deprived of 

visual experience and testing replaces the missing experience. Alternatively, visuomotor 

experience may provide a 'super-normal" experience that results in higher thresholds 

than would be observed under other circumstances. The enhancement would then be 

considered an experience-dependent enabling of function. These possibilities will be 

discussed in the following sections. 

4.1.1 Overcoming visual deprivation? 

Rats reared in standard laboratory housing spend nearly all of their lives in 

relatively small cages. These conditions are not normal and rats in the wild are likely to 

be exposed to more moving visual stimuli during development, both self induced and 

environmentally derived. Therefore, the enhancement of motion vision as a result of 

optomotor testing from eye-opening, may be the result of replacing visual motion 

experience that it is being deprived under our laboratories cage rearing conditions. To test 

this hypothesis, more naturalistic forms of visual stimulation could be administered from 

eye-opening to P25 and the effect of that experience measured. Examples of this may 
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include enriched rearing through complex housing, and/or open field experiences where 

animals are placed on a table in a room with a variety of moving visual cues and where 

animals can move more freely than in a cage. 

Numerous studies have shown that rearing animals in an enriched environment 

can lead to changes in dendritic arborization, spine density and synapses per neuron (in 

the cortex, hippocampus and cerebellum) (Rosenzweig, 1966; Greenough and Volkmar, 

1973; Renner and Rosenzweig, 1987; Rampon et al, 2000; Kolb, 1995). These 

morphological changes are associated with improved learning and memory, enhanced 

neural plasticity (reviewed in van Praag et al, 2000) and reorganization of cortical 

somatosensory maps (Polley et al, 2004). Fewer studies have found an effect of 

enriched housing on the visual system; although, enrichment has been shown to increase 

dendritic branching in visual cortex (Kolb & Gibb, 1991) and postweaning environmental 

enrichment prevents the adverse effects of dark rearing on rats (Bartoletti et al, 2004), 

while enrichment from birth in mice causes conspicuous acceleration of visual system 

development at behavioural (Prusky et al., 2000), electrophysiological, and cellular levels 

(Cancedda et al, 2004). It is possible that the enhancement reported in these experiments 

is related to the transient enhancement of motion vision described in this thesis. 

However, because animals were enriched from birth through to young adulthood, the 

above enrichment studies did not restrict the novel experience to the period between eye-

opening and P25; therefore, the specific time during which the enhancement occurred is 

unknown. Furthermore, static visual acuity was measured, not visuomotor or perceptual 

visual motion thresholds; the measures of vision that were enhanced in my experiments. 

The enhancement described in this thesis is restricted to the period from eye-opening to 
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P25 and results only in an enhancement of motion vision (static acuity in animals tested 

form eye-opening was not different than experimentally naive animals). Preliminary 

results from our lab, however, show that neither enrichment by continuous complex 

housing or daily open field experience, from P15-P25, result in an enhancement of visual 

motion function (Prusky & Secretan, in preparation). This suggests that the enhancement 

of motion vision driven by optomotor testing from P15-P25 is not simply overcoming an 

inherent deprivation of visual motion experience in cage rearing conditions. 

4.1.2 Enabling visual function? 

A second possibility is that the enhancement in visuomotor sensitivity is a true 

enabling of function. This enabling may be in response to a "super-normal" experience. 

That is, the stimulation provided through optomotor testing may not be "normal", but 

rather abnormal experience that takes advantage of visuomotor plasticity that is present 

only after eye-opening. Supporting evidence for this hypothesis is present in the 

experiments reported in this thesis. First, not testing the animal or not moving the 

cylinder in optomotor task from P15-P25 results in the same visuomotor sensitivity (0.53 

c/d). In addition, testing the animals in only one direction in the testing arena provided 

moving stimuli, but only enhanced the animals' vision in one direction (figure 13). In 

other words, the eye corresponding to the non-tested direction experienced moving 

stimuli of all moving spatial frequencies and contrast, but still its vision was not 

dramatically enhanced. These data, together with those showing the stimulus specificity 

of the enhancement, indicate that the enhancement of visuomotor sensitivity from PI 5-

P25 is the result of driving specific optomotor circuitry. This interpretation is confirmed 
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by preliminary experiments from our lab showing that BD from P15-P25 results in 

normal (0.530 c/d) visuomotor sensitivity (Prusky & Tschetter, in preparation). If 

removing normal experience with BD does not result in a loss of function, it makes the 

enhancement of function observed with testing with both eyes open from P15-P25 stand 

out clearly as a dramatic enhancement. The plasticity observed in the above experiments 

also stands in stark contrast to that identified during the classic critical period. The 

observation of plasticity during the critical period is based exclusively on the negative 

effects of deprivation, whereas, in the present experiments deprivation (or null testing) 

result in no negative effects; the plasticity is the result of an enhancement of function. 

If enabling plasticity is present in the visual system at eye-opening, it is likely that 

that plasticity depends on the visual cortex (figure 11). The specific role of this cortically 

mediated function is not clear at this time. Clearly, cage reared animals have functional 

optomotor responses, but those responses are tuned to low spatial frequencies (i.e., those 

below 0.53 c/d). This low spatial frequency tuning characteristic of subcortical 

optomotor circuitry (Grasse & Cynader, 1984; Soodak & Simpson, 1988; Schmidt et ah, 

1993), is ideal for stabilizing the retinal image of the animals' general environment an 

animal is in and is purely reflexive. In addition, that removal of visual cortex before 

testing is initiated at PI5 results in no enhancement, indicates that this subcortical 

circuitry has little experience-dependent plasticity. That the higher spatial frequency 

optomotor responses observed following visuomotor testing from P15-P25 require an 

intact visual cortex suggests that the plasticity in visuomotor function resides within the 

cortex. This cortex mediated plasticity for visual motion may account for the 

enhancement in visuomotor sensitivity, and may have at least two functions. First, the 
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enhancement may be an extension of the subcortical responses that animals already have; 

that is, high spatial frequency input to the subcortical nuclei results in the same reflexive 

stabilizing response, but now this also occurs in response to high spatial frequency 

information. However, these reflexive responses to high spatial frequency information 

may cause the animal to be somewhat hypersensitive; that is, an animal would respond to 

much more information than is necessary to stabilize the visual scene, which would likely 

be detrimental to their survival. The second possibility is that the enhanced response is 

not reflexive, but rather voluntary. Voluntary control would mean that an animal can 

control its responses to high spatial frequency moving information. Therefore, anything 

above normal thresholds of cage reared animals (-0.53 c/d) would be a voluntary 

response. We could not distinguish between voluntary and involuntary responses in these 

studies, but future experiments will address this. 

4.2 Mechanisms of plasticity 

The cellular mechanisms by which plasticity in the critical period for motion 

vision occurs in general, is unknown. It is clear that the visual cortex is involved in some 

way, but the actual cellular changes that take place were not the focus of experiments 

detailed here. Though plasticity during the classic critical period is not completely 

understood, many of the necessary cellular and molecular changes are known and may 

share some commonality with the mechanisms involved in the critical period of motion 

plasticity. 

74 



4.2.1 Possible molecular mechanisms 

Several molecules and receptors have been identified as being involved in the 

changes that take place during the classic critical period of heightened cellular plasticity. 

For example, blocking the N-methyl-D-asparate (NMDA) receptor or altering its subunit 

makeup is known to prevent plasticity from occurring (Bear et al., 1990; Carmignoto & 

Vicini, 1992; Flint et al, 1997; Roberts et al, 1998; Roberts & Ramoa, 1999). Also, the 

increased expression of neurotrophins, in particular brain-derived neurotrophic factor 

(BDNF), have been shown to accelerate both the development of visual acuity and the 

time course of ocular dominance and synaptic plasticity (Berardi et al, 1994; Cabelli et 

al, 1997; Huang et al, 1999). In addition, gamma aminobutyric acid (GABA) inhibition 

is thought to be important in determining the onset of the critical period; antagonists or 

mutations of the GABA receptor result in a loss of plasticity (Fagiolini & Hensch, 2000). 

That the plasticity described in this thesis is experience-dependent, suggests that the 

mechanism of plasticity for visual motion may be similar to those of the classic critical 

period discussed above. However, cellular changes during the classic critical period are 

caused by deprivation rather than increased experience, and result in a loss of function 

rather than an enhancement of function, and occur later in development than the critical 

period for visual motion described in this work. The behavioural consequences and 

temporal differences in the plasticity between the classic critical period and the visual 

motion critical period, combined with a lack of research identifying the mechanism of 

visual motion plasticity, makes it impossible to conclusively determine the neural 

substrates of the changes observed here, and will require future research. 
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4.2.2 Proposed models of enhancement 

Though the cellular changes that take place during the enhancement of 

visuomotor sensitivity are not known, models of this enhancement can be proposed 

(figure 17). Experiments in this thesis have shown that an intact cortex is necessary for 

both the development and maintenance of the enhancement, indicating that the cortex is 

involved in the responses generated. However, it is not clear where the changes occur 

that lead to this enhancement in visuomotor function. There are two probable locations 

for these changes: either the synapses of cortical connection onto the subcortical 

structures are strengthened and activated, or the plasticity occurs in the visual cortex, 

which has downstream effects on the subcortical circuitry. It is also possible that both 

occur. Both hypotheses are discussed below. 

As was previously described, there is anatomical and physiological evidence in 

rats for cortical projections to the AOS (Takada et al, 1987; Giolli et al, 1988; Schmidt 

et al, 1993), but the exact function of this connection is unknown. It has been proposed 

that the cortical pathway is primarily there to cope with translational movements that 

change the distance to an attended optic flow field (Miles, 1998). However, because the 

enhancement of visuomotor sensitivity depends on cortex and this cortico-subcortical 

connection is the only one, then the function of the cortical projection may be to convey 

information to the AOS pertaining to high spatial frequencies. This transfer of high 

spatial frequency information is possible because the receptive fields of cortical cells are 

smaller than those of the subcortical nuclei, allowing for higher resolving power in the 

cortex (Schmidt et al, 1993). Though cortical input was not confirmed in my 

experiments, presumably it is present in all the rats tested. Therefore, one possible site 
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for the cellular changes that occur during the motion vision plasticity may be at the 

synapses between the cortical projection and the nuclei of the AOS. That is, the increase 

in visuomotor experience may result in a strengthening of the synapses. This alteration in 

synapses may allow for the normal resolving power of the cortex to influence the 

subcortical nuclei that generate the optomotor response. However, experiments using the 

VWT showed that the perception of motion is also enhanced in animals with optomotor 

experience from eye-opening. That the VWT is sensitive to alterations of cortical 

function, such as lesions and ocular dominance shifts as a result of MD (Prusky et al., 

2000c; Prusky & Douglas, 2003; Prusky & Douglas, 2004a), suggests that the 

enhancement in motion vision occurs at the level of the cortex. If visual cortex was 

unchanged in animals tested from eye-opening, then they would likely show no 

enhancement in motion perception, there would be no difference in the receptive field 

size of cells in visual cortex between enhanced and naive animals, and thus, they would 

have equal motion grating acuity (see figure 14). 

The second possible location of plasticity for visual motion is the cortex. As 

described above, there is an enhancement in motion perception due to early optomotor 

experience that may result from alterations in cortical function. In addition, cells in 

primary visual cortex in rats have been shown to have very good motion and directional 

tuning (Girman et al., 1999), allowing for processing of high spatial frequency moving 

information. This high spatial frequency information may be projected through the 

cortical input onto the NOT and DTN of the AOS. The cortical projection is known to 

originate from VI and extrastriate area V2 (Schmidt et al., 1993), which coupled with the 

evidence described above, supports the hypothesis that the cortex is the major site of 
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visual motion plasticity. This plasticity likely results in even better motion and direction 

tuning of cells in the cortex, and may also cause responses to higher spatial frequency 

moving stimuli than normal cage reared animals would demonstrate. The cellular 

changes that may occur in the cortex likely do so in different circuitry and at a different 

time than the ocular dominance alterations due to deprivation during the classic critical 

period because static acuity was not affected by visuomotor experience. That lesions of 

VI abolished the visuomotor enhancement in animals that experienced moving stimuli, 

suggests that the high spatial frequency processing done by VI must move downstream 

directly to the subcortical circuitry or other cortical centers. Extrastriate area V2 may be 

a site of plasticity because that is where part of the cortico-subcortical projection 

originates. The anterolateral (AL) visual area is also a possible substrate because it has 

been shown to respond to visual motion (Montero & Jian, 1995). 

4.3 Final comments 

In summary, the results of these studies provide the first substantial evidence for 

an experience-dependent enabling of visual function during development. This enabling 

effect is due to increased optomotor experience from eye-opening to P25 and is likely 

caused by changes in cortical function. These changes characterize a novel critical period 

for visual motion that precedes the classic critical period for deprivation effects. 

Characterization of this novel critical period will provide researchers with another 

instance of plasticity to explore, and one that is easily inducible in a short time. It is 

important that the anatomical, physiological and behavioural consequences of this 
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plasticity be quantified. In a system thought to be well understood, relative to the rest of 

the brain, this finding shows that there is much that is yet to be discovered. 
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Figure 1. The Visual Water Task. Apparatus consists of a trapezoidal-shaped tank with a 
midline divider at the wide end, creating a maze with a stem and two arms. Computer 
monitors located outside of the maze project into each arm through a clear wall. A 
reinforced (+) stimulus (i.e. sine wave grating) is displayed on one monitor, and a non-
reinforced stimulus (-; i.e. grey) is displayed on the other. The tank is filled with water to 
a shallow depth and a platform is hidden under the surface of the water, directly below 
the + stimulus. Animals are trained to swim from the narrow end of the pool toward the 
monitors. If they choose the arm displaying the + stimulus, they can escape from the 
water rapidly; if they choose the arm displaying the - stimulus they are forced to swim 
longer. An imaginary plane defined by the end of the divider, determines whether 
responses are correct or incorrect. Animals learn to swim to the end of the divider and 
view each stimulus separately, before making a choice. See text for details. 
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Figure 2. Virtual optomotor system (OptoMotry). A. 3D cutaway of the apparatus 
viewed from the side. A testing arena is framed by four computer monitors; one on each 
wall, with mirrors on the floor and ceiling. An untrained rat is placed on a platform in the 
middle of the arena. A video camera images the arena from above. B. Virtual view of the 
apparatus and visual stimulus from above. A virtual cylinder painted with a sine wave 
grating is drawn on monitors and is projected to surround the animal. C. Spatial 
frequency control. The head of the animal is tracked in real time, enabling the cylinder to 
be centered at the viewing position, thereby 'clamping' the spatial frequency of the 
grating. D. When the cylinder is rotated, rats track (dotted arrow) the gratings with 
reflexive head and neck movements. Adapted from SFN poster, Douglas et al, 2004 and 
Douglas etal, 2005. 
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Figure 3. Visual thresholds obtained in the Visual Water Task and OptoMotry differ. A. 
Acuity measured in the Visual Water Task (dashed bar; (Prusky et al, 2000a)) is higher 
then that obtained in OptoMotry (solid bar). B. Peak contrast sensitivity measured with 
the Visual Water Task (dashed line; McGill et al., 2004a) is lower than that obtained with 
OptoMotry (solid line) and the curve is shifted to higher spatial frequencies. SEM is 
plotted as a vertical line on the OptoMotry bar (A) and is smaller than the symbols on the 
contrast sensitivity plot (B). See text for details. 
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Retest Direction 

Figure 4. Differences in optomotor thresholds obtained for each direction of drum 
rotation. The average variation in the measurement of acuity from day-to-day (Retest) 
was small. Acuity measurements of both directions (Direction) of drum rotation on any 
given day revealed an asymmetry in thresholds. That is, an animal would consistently 
have a higher threshold in one direction. Because the variation from day-to-day (Retest) 
is smaller than the direction asymmetry (Direction), this difference is not likely due to 
measurement error. SEM is plotted as a vertical line on the bar. See text for details. 
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Figure 5. Measurable thresholds depend on the direction of rotation of the virtual drum, 
and eye. When both eyes are open (white bars) animals track in both directions 
(Clockwise & Counter-Clockwise). When the right eye is temporarily sutured closed, 
tracking occurs only in the clockwise direction (black bar). When the left eye is 
temporarily sutured closed, tracking occurs only in the counter-clockwise direction (grey 
bar). Thus, tracking occurs only in response to drum rotation in the temporal-to-nasal 
direction relative to the eye. Visual thresholds through each eye can then be measured 
independently simply by controlling the rotation direction. SEM is plotted as vertical 
lines on each bar. See text for details. 
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Figure 6. Optomotor responses in experimentally naive rats depend on subcortical 
circuitry. A. Bilateral primary visual cortex lesions had little effect on the acuity of 
either eye. Dotted line represents the day of surgery. B. Traces of brains from animals 
in A superimposed on one another revealed that lesions were large and that little primary 
visual cortex remained intact. Dashed line represents the boundaries of primary visual 
cortex (Paxinos and Watscm, 1998). Vertical calibration bar is 1 cm. C. Bilateral 
primary visual cortex lesions done in a sequential manner on experimentally naive 
animals had little effect on the acuity of either eye. D. Traces of brains from animals in 
C showed that visual cortex lesions were virtually complete. SEM bars are plotted for 
both scatter plots, but are smaller than the symbols. See text for details. 
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Figure 7. Development of optomotor sensitivity from P15 in Long-Evans rats. A. 
Acuity increased from P15 until P25 where it reached a plateau and remained unchanged 
thereafter. As adults (-80 days) the acuity of animals tested from P15 was higher than 
that of experimentally naive animals tested for the first time in adulthood (dashed line 
represents acuity from figure 3A). B. Contrast sensitivity increased at all spatial 
frequencies after PI 5. SEM is plotted, but is smaller than the symbols. See text for 
details. 
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Figure 8. Model of optomotor response in experimentally naive adult rats. Visual 
thresholds reflect the properties of the retinal efferents (red arrows) to subcortical 
structures (open circle), such as the nucleus of the optic tract (NOT) and the accessory 
optic system (AOS). Although visual cortex receives a large input from the contralateral 
eye (large blue arrow) and a small input from the ipsilateral eye (small blue arrow), 
efferents from the cortex to subcortical structures (green arrows) do not contribute to the 
visuomotor response. Adapted from SFN poster, Douglas et ah, 2004. 
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Figure 9. Experience-dependent enhancement of acuity from P15-P25 measured in a 
"within-litter" design. A. Measuring optomotor sensitivity daily from PI5 (P15->) 
enhanced acuity significantly over littermates that began testing at P25 (P25->). P25-> 
animals did not differ from experimentally naive adults (dotted line; value from figure 
3A). B. Testing from eye-opening had only a small effect of contrast sensitivity. SEM 
is plotted, but is smaller than the symbols. See text for details. 
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Figure 10. Profile of plasticity for optomotor enhancement. Animals were tested on only 
a single day between P15-P25 (P15, P17, P18, P19, P20, P21 and P23) and then 
measured daily after P25. Testing on P19 produced the largest enhancement in acuity (as 
measured on P30) accounting for - 2 5 % of that obtained from testing each day from PI 5-
P25 (0.86 c/d; from figure 9A). The plasticity is transient and is skewed toward younger 
ages. Values obtained by testing at P25 only did not differ from experimentally naive 
animals (Adult; value from figure 3A). SEM is plotted as vertical lines on each bar. See 
text for details. 
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Figure 11. Enhancement of optomotor sensitivity is dependent upon primary visual 
cortex. A. Bilateral primary visual cortex lesions in animals tested in OptoMotry from 
PI5 resulted in a large decrease in acuity through both eyes. Dotted line represents day 
of surgery. B. Traces of brains from animals in A superimposed on one another revealed 
that lesions were large and that little primary visual cortex remained intact. Dashed line 
represents the boundaries of primary visual cortex (Paxinos and Watson, 1998). Vertical 
calibration bar is 1 cm. C. Unilateral lesions of primary visual cortex made in sequence 
on animals tested from PI5 resulted in a large decrease in acuity through both eyes. The 
dotted lines represent the two lesions. Unilateral lesions of right primary visual cortex 
resulted in a loss of acuity through both eyes. Acuity through the left eye was initially 
more affected than the right eye, but both recovered to the same intermediate values after 
35 days. A subsequent lesion of left primary visual cortex resulted in a symmetric loss of 
acuity through both eyes to near experimentally naive thresholds (refer to figure 3A). 
SEM bars are plotted but are smaller than most of the symbols. D. Traces of brains from 
animals in C showed that visual cortex lesions were virtually complete. See text for 
details. 
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Figure 12. Bilateral primary visual cortex lesions the day before eye-opening (P14) block 
the characteristic enhancement of optomotor sensitivity. A. Following bilateral lesions 
animals were tested daily from eye-opening (P15->; open squares) or from P25 (P25->; 
solid triangles). Acuity did not differ between the lesion groups and was similar to intact 
naive animals (dotted line is representative of P25-> trace from figure 8A). Dashed line 
is a trace from enhanced animals tested daily from PI 5 (P15-> from figure 8A). SEM is 
plotted but is smaller than the plotting symbols. B. Traces of brains from animals in A 
showed that visual cortex lesions were large and were centered in visual cortex. Dashed 
line represents the boundaries of primary visual cortex (Paxinos and Watson, 1998). 
Vertical calibration bar is 1 cm. See text for details. 
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Figure 13. Experiential control of optomotor enhancement. A. Maximal optomotor 
enhancement resulting from daily testing from P15-P25 requires exposure to moving high 
spatial frequency stimuli that evoke tracking. Daily P15-P24 exposure to a high SPF 
(High) moving stimulus (0.83 c/d) that never generated tracking, or to a constant low SPF 
(Low) stimulus (0.03 c/d) that always generated tracking, did not result in maximal 
enhancement (P15->; trace from figure 8A). Experiencing stationary stimuli from PI 5-
P25 (Static) resulted in only a small enhancement over animals not tested until P25 (P25-
>; threshold from figure 8A). Values plotted are from P30. SEM is plotted as vertical 
lines on each bar. B. Testing of each eye independently allows for within-animal control 
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of enhancement. Daily P15-P24 testing in one direction (open diamonds) resulted in near 
maximal enhancement (dashed line is P15-> trace from figure 8A) in the tested direction, 
and only a small enhancement (filled diamonds) in the non-tested direction (dotted line is 
P25-> trace from figure 8A). SEM is plotted, but is smaller than the symbols. See text 
for details. 
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Figure 14. Testing the optomotor response from P15-P25 enhances motion perception. 
A. Static grey versus grating discrimination. The spatial frequency of a sine wave 
grating (+ stimulus) was increased until animals could no longer discriminate it from grey 
(- stimulus). B. Perception of static stimuli (A) is not enhanced by optomotor 
enhancement. Acuity of rats with optomotor experience from P15 (P15->) did not differ 
from that of animals with experience from P25 (P25->). C. Moving grating 
discrimination. The spatial frequency of identical sine wave gratings was increased until 
animals could no longer discriminate rightward moving (+ stimulus) from leftward 
moving (- stimulus) stimuli. D. P15-> rats were significantly superior to animals 
without the enhancement (P25->) at discriminating the spatial frequency of moving 
gratings (C). SEM is plotted as vertical lines on each bar. See text for details. 
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Figure 15. Perception of dot motion coherence. A. The coherence of identical dot 
kinematograms was decreased until animals could no longer discriminate rightward 
moving (+ stimulus) from leftward moving (- stimulus) stimuli. B. There was no 
difference in coherence thresholds between P15-> and P25-> animals when large dots 
(2.3°) were used. C. Animals discriminated between equal sized dots moving in the 
rightward (+ stimulus) and leftward (- stimulus) directions at 100% coherence. The size 
of the dots was decreased until animals could no longer discriminate between the screens. 
D. P15-> animals could discriminate significantly smaller dots than P25-> animals. 
SEM is plotted as vertical lines on each bar. See text for details. 
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Figure 16. Model of the optomotor response in animals with enhanced acuity. Visual 
thresholds obtained from experienced animals with enhanced acuities reflect the 
properties of the retinal efferents (red arrows) and cortical projections (green arrows) to 
subcortical structures (open circle; NOT & AOS) unlike naive animals where the cortico-
subcortical projection has no effect on optomotor sensitivity (Refer to figure 8). Adapted 
from SFN poster, Douglas et al, 2005. 
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Visual Cortex B 

Figure 17. Possible sites of plasticity for visual motion enhancement. Plasticity may 
occur where the cortical input (green arrow) synapses onto the nuclei of the subcortical 
circuitry responsible for generating the optomotor response (site indicated by 'A'). The 
second location of plasticity may be in the cortex (site indicated by 'B'), which then has 
downstream effects on the subcortical nuclei. Alterations at either, or both sites, may 
result in enhanced responses to high spatial frequency moving stimuli. See text for 
details. 
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Appendix A. Contrast Sensitivity of developing Long-Evans rats over time. At all 
spatial frequencies tested the contrast sensitivity increased from eye-opening to ~P30 and 
remained unchanged into adulthood. Differential development of several spatial 
frequency channels occurred, some of which were similar. Values within the box 
represent the spatial frequency corresponding to each symbol and line. SEM is plotted, 
but is smaller than the symbols. See text for details. 
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