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ABSTRACT 

 
Rangelands are an important resource to Alberta.  Due to their size, mapping 

rangeland features is difficult.  However, the use of aerial and satellite data for mapping 

has increased the area that can be studied at one time.  The recent success in applying 

hyperspectral data to vegetation mapping has shown promise in rangeland classification.  

However, classification mapping of hyperspectral data requires existing data for input 

into classification algorithms.  The research reported in this thesis focused on acquiring a 

seasonal inventory of in-situ reflectance spectra of rangeland plant species (endmembers) 

and comparing them to evaluate their separability as an indicator of their suitability for 

hyperspectral image classification analysis.  The goals of this research also included 

determining the separability of species endmembers at different times of the growing 

season.   

In 2008, reflectance spectra were collected for three shrub species (Artemisia 

cana, Symphoricarpos occidentalis, and Rosa acicularis), five rangeland grass species 

native to southern Alberta (Koeleria gracilis, Stipa comata, Bouteloua gracilis, 

Agropyron smithii, Festuca idahoensis) and one invasive grass species (Agropyron 

cristatum).   A spectral library, built using the SPECCHIO spectral database software, 

was populated using these spectroradiometric measurements with a focus on vegetation 

spectra.   

Average endmembers of plant spectra acquired during the peak of sample 

greenness were compared using three separability measures –  normalized Euclidean 

distance (NED), correlation separability measure (CSM) and Modified Spectral Angle 

Mapper (MSAM) – to establish the degree to which the species were separable.  Results 
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were normalized to values between 0 and 1 and values above the established thresholds 

indicate that the species were not separable .  The endmembers for Agropyron cristatum, 

Agropyron smithii, and Rosa acicularis were not separable using CSM (threshold = 

0.992) or MSAM (threshold = 0.970).  NED (threshold = 0.950) was best able to separate 

species endmembers. 

Using reflectance data collected throughout the summer and fall, species 

endmembers obtained within two-week periods were analyzed using NED to plot their 

separability.  As expected, separability of sample species changed as they progressed 

through their individual phenological patterns.  Spectra collected during different solar 

zenith angles were compared to see if they affected the separability measures.  Sample 

species endmembers were generally separable using NED during the periods in which 

they were measured and compared.  However, Koeleria gracilis and Festuca idahoensis 

endmembers were inseparable from June to mid-August when measurements were taken 

at solar zenith angles between 25° – 30° and 45° – 60°.  However, between 30° and 45°, 

Bouteloua gracilis and Festuca idahoensis endmembers, normally separable during other 

solar zenith angles, became spectrally similar during the same sampling period. 

Findings suggest that the choice of separability measures is an important factor 

when analyzing hyperspectral data.  The differences observed in the separability results 

over time also suggest that the consideration of phenological patterns in planning data 

acquisition for rangeland classification mapping has a high level of importance. 
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1. INTRODUCTION 

Rangelands are an important contributor to Alberta’s economy and to its 

environmental health.  Approximately 95,500 km2, or 16%, of Alberta’s land area is 

made up of rangeland (Castelli et al., 2005).  One of the most important uses of Alberta’s 

rangelands is by ranchers for feeding their livestock.  Ranching in Alberta is a $30 billion 

industry1 and up to 20% of the feed used for livestock comes from using rangeland areas 

for grazing.  While providing feed to domestic livestock is important for Alberta’s 

economy, rangelands also host a diverse collection of native plant and animal life 

(Mitchell and Somoliak, 1971; Owens and Myres, 1973; Olsen, 1994).  A variety of 

unique plant and animal species live in Alberta’s rangelands, including some that are 

endangered: the burrowing owl (Speotyto cunicularia), the peregrine falcon (Falco 

peregrinus), big sagebrush (Artemisia tridentata), and stiff yellow paintbrush (Castilleja 

septentrionalis) for example.  The health of rangelands is important as it affects the 

ecological and economic well being of the plants, animals, and economies that depend on 

its sustainable management.   

Maps are an invaluable source of information when it comes to planning for the 

future of rangeland areas.  Mapping large areas, such as rangelands, is both costly and 

time-consuming (Booth and Tueller, 2003; Ustin et al., 2004; Marsett et al., 2006).  One 

tool that has shown a degree of success in mapping large areas is remote sensing, which 

is the gathering of information about a target of interest without being in physical contact.  

Remotely sensed data can be acquired as digital images of the Earth’s surface using 

sensors, mounted on a satellite or an airplane, that measure the intensity of reflected solar 

                                                 
1 “Why Conserve Rangelands: Economic Vitality.”  Southern Alberta Land Trust Society.  Accessed 25 

July, 2010http://www.salts-landtrust.org 
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radiation.  Since the images are of a large area and are acquired from low Earth orbit, 

species identification is more difficult using these data than it would be on the ground.  

On top of the difficulty of telling species apart, plants are living organisms that react to 

their environment and are subject to changes in their physical appearance and to patterns 

of growth and spread as they compete and interact with each other.  When mapping 

vegetation, rangeland managers (ranchers, parks stewards, conservation groups, etc.) are 

often interested in detecting the presence of one or more specific plant species.  These 

species may include invasive plants (Underwood et al., 2003; Lawrence et al., 2006), 

native plants used for grazing (Marsett et al., 2006), and/or indicator species (Rosentreter, 

2001; Hunt et al., 2003). 

Invasive plant species are those coming from outside the local environment and 

are often introduced by human activities.  If the plants are aggressive enough, they can 

quickly replace the plants that are native to the area, disrupting the diversity of the native 

plant population.  Changes made to the plant population also affect native animal 

populations as food and shelter can become scarce  (Sutter and Brigham, 1998; Heidinga 

and Wilson, 2002). 

Indicator plant species are plants that are useful for gathering information about 

other aspects of an environment.  One example of an indicator is sagebrush (of genus 

Artemesia), where its presence signals a specific climate, soil type and depth, and 

suggests what other plant or animal species are likely to be found in the vicinity 

(Rosentreter, 2001).  If indicator species are detectable in an area, more data become 

available to profile that area, saving some of the time and resources required for field 
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campaigns that provide the same information (Dickinson and Dodd, 1976; Rosentreter, 

2001). 

 The research conducted for this thesis was focussed on separating plant species by 

their reflectance.  Reflectance data from a selection of plant species common to Southern 

Alberta were collected.  The ability to distinguish between sample species reflectances 

was determined.  The ability to differentiate between species using reflectance data 

gathered in the field may be useful in developing methods of rangeland monitoring and 

research using large-area hyperspectral data sets. 

 

1.1 Background 

Remote sensing has enhanced the ability to study vegetation by providing a 

synoptic view of the target of interest.  Data acquired may give insight to the target 

vegetation’s health and abundance, as well as information about the physical 

surroundings that may be contributing to its overall condition, including litter content and 

species encroachment (Asner and Lobell, 2000; Dennison and Roberts, 2003; Bennouna 

et al., 2004; Kuemmerle et al., 2006; Cheng et al., 2007).   

Rangelands are an important part of the environment as they reduce soil erosion 

by capturing and retaining moisture in their roots, sustain animal life by providing food 

and shelter, and act as ecological buffer zones (Lund, 2007).  Rangelands are also vital to 

human activities. For example, 70% of the food consumed by domesticated grazing 

animals worldwide comes from rangelands.   

Hunt et al. (2003) describe rangelands as areas of non-forested, native vegetation 

and highlight grasslands, savannas, and shrublands as examples.  James et al. (2003) 
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stated that most rangeland areas are part of arid and semiarid environments and, 

therefore, are very sensitive to climatic and anthropogenic influences.  They mention that 

there is a lack of commonly accepted methods of monitoring rangelands.  Without 

common guidelines rangeland managers are left to their own arbitrary and subjective 

operation of stewardships and application of environmental protocols (James et al., 2003; 

West, 2003). 

 

1.2 Range Management 

Range management is the planning and application of land use policies and 

practices specifically for improving the health and productivity of rangeland areas 

(Dyksterhuis, 1955; Stoddart, 1967).  Management groups may work toward policies that 

have preservationist or conservationist goals or may lean toward modification of the land 

to increase its productivity or promote other uses on it (Smyth and Dumanski, 1993).  

When creating policies aimed at achieving their goals, management groups often turn to 

scientific research.  In policy development, scientific researchers contribute to the areas 

of problem identification, strategy formulation in problem solving, setting standards and 

implementing policy, and monitoring and evaluating existing strategies (Norse and 

Tschirley, 2000).  Information is needed to properly implement each step toward the 

creation of new, and the evolution of existing, policies.  There are a number of important 

topics in which policies are being developed and in which rangeland composition and 

health play a large role (Rasmussen and Brunson, 1996; Pyke and Herrick, 2003).   

Optimal management of rangeland systems has been a goal of conservation 

groups, researchers, and producers for a number of years (Stoddart, 1967), prompting 
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research in ecosystem modeling (Hanson et al., 1988; Welk, 2004).  Hunt et al. (2003) 

provided an overview of the potential impacts that remote sensing technologies can have 

on range management, including estimating biomass production, land cover monitoring, 

invasive species detection, and gauging the susceptibility of land to erosion.  Modeling 

using remote sensing products and tools has been introduced to rangeland managers to 

assist them in decision making (Butterfield and Malstrom, 2006; Marsett et al., 2006).  In 

some cases the use of remote sensing products has resulted in more productive and 

healthier vegetation.  For example, Butterfield and Malmstrom (2006) introduced the use 

of Landsat data to assist in land management decisions and weed control for livestock 

grazing operations.  As a result, the larger operations saw a considerable improvement in 

their ability to control weeds, which led to an increase in forage quality.   

Improvements to rangeland management practices have required researching and 

developing new monitoring methods in order to track rangeland dynamics.  Knapp  et al. 

(1990) compared large-scale aerial photographs to ground-based measurements of 

vegetation cover.  They found that false-colour infrared photographs were better than 

true-colour photographs for identifying trees and cactus, and resulted in a more accurate 

vegetation inventory of the Organ Pipe Cactus National Monument.  Moreover, Harris et 

al. (2003) successfully combined multispectral, hyperspectral and geographic information 

system (GIS) data to monitor grazing gradients for an area of rangeland.   

 

1.2.1 Invasive Species 

Invasive plants are introduced in a number of ways, including agricultural 

practices, establishing transportation corridors and unintended transmission through 
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travel.  Once an invasive species is established in an area, it may expand geographically 

to new areas, carried by animals or the wind.  The introduction of a new species to an 

area can have lasting effects.  When left unchecked, (by controlled grazing and other 

practices) invasive plants can overrun a native population (Ogden and Rejmanek, 2005), 

thus reducing the diversity of plant life which then affects animal life due to decreased 

availability of food and/or cover (Sutter and Brigham, 1998). 

Invasive species have been found to negatively affect a region’s agricultural 

economy as well.  One of the main issues of importance to rangeland managers is the 

ability to detect the presence and extent of invasive plant species so that they can be 

controlled.  A study using data collected in the 1990s found that yellow star thistle 

(Centaurea solstitialis), an invasive plant in Idaho, was estimated to have cost that state’s 

economy approximately $12.7 million per year (Julia et al., 2007).  On the United States 

Department of Agriculture website, a document from the Maine Department of 

Environmental Protection introduces the problems of invasive plant species in the United 

States and Canada, specifically citing the hundreds of thousands of dollars spent annually 

by a handful of states to control invasive plant populations2.  It is estimated that damages 

and losses caused by invasive plant species in the U.S. alone total approximately $137 

billion per year (Pimentel et al., 2002).   

There is little information on the extent of the impacts that invasive species have 

on Alberta’s economy.  However, the Public Lands and Forests Division of Alberta alone 

spends between $350,000 and $500,000 per year on controlling invasive species in 

forests and rangeland areas.  Other interested parties, such as the Alberta Association of 

                                                 
2 “Costs of Invasive Species.”  Maine Department of Environmental Protection.  Accessed May 4, 2010: 

http://www.maine.gov/dep/blwq/topic/invasives/invcost.pdf 
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Agricultural Fieldmen, have expressed concern over the current lack of control of 

invasive species populations due to a lack of resources (McClay et al., 2004).  Some 

problem species in Alberta’s rangelands include: crested wheatgrass (Agropyron 

cristatum), downy brome (Bromus tectorum), purple loosestrife (Lythrum salicaria), 

Russian thistle (Salsola pestifer), and leafy spurge (Euphorbia esula). 

Hyperspectral imagery has been used to detect invasive plants with a high 

accuracy in a number of cases (Underwood et al., 2003; Lass et al., 2005; Lawrence et 

al., 2006).  A method was developed to detect and monitor Chinese tallow (Triadica 

sebifera), an invasive plant to Louisiana, using sub-pixel modeling of hyperspectral 

image data from the Hyperion sensor (Ramsey et al., 2005).  Spectral unmixing results 

using the Compact Airborne Spectrographic Imager 2 (CASI-2) data showed an ability to 

consistently estimate and map yellow star-thistle populations on a regional scale in 

California (Miao et al., 2006).  Cheng et al. (2007) used the Minimum Noise Transform 

(MNT; Green et al., 1988) and Spectral Angle Mapper (SAM; Kruse et al., 1993) to 

analyze Airborne Visible and Infra-Red Imaging Spectrometer (AVARIS; Clark et al., 

1995) imagery and were successful in identifying kudzu (Pueraria montana) in Georgia.   

 

1.3 Remote Sensing 

Remotely sensed data about the Earth’s surface are acquired using an active or a 

passive means (Jensen, 2007).  Active remote sensing involves sending electromagnetic 

energy from a source and measuring a return signal.  RADAR, which uses microwave 

energy, is an example of an active sensor.  Passive remote sensing measures 

electromagnetic energy that is either emitted or reflected from a target.  Optical sensors 
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are passive sensors that measure radiation in the visible to near infra-red (VNIR; 350 nm 

– 1000 nm) and short-wave infra-red (SWIR; 1000 nm – 2500 nm) ranges of the 

electromagnetic spectrum.  The data are used to produce a digital image where each pixel 

is assigned the measured values from a specific area of the target surface.  

Optical remote sensors are further classified by the size and number of 

wavelength ranges (bands) the electromagnetic spectrum their detectors measure and 

whether the bands are contiguous.  Multispectral sensors use a few wide bands (3 or more 

bands 60 nm wide or more per band), which are not contiguous.  Hyperspectral sensors 

have many narrow bands (a few hundred bands approximately 10 nm wide), which are 

contiguous (Jensen, 2007).  For each pixel in an acquired digital image there is a set of 

values from the bands detected by the sensor used.   

Optical sensors measure radiance, but surface reflectance is used for more reliable 

and repeatable results when analyzing target characteristics.  Reflectance (r) is obtained 

by dividing radiance (L) by the magnitude of incident radiation, or irradiance (I) (Price, 

1994) 

I
Lr = .      (1) 

A graphical profile of target reflectance is created when the band values of a pixel 

are plotted.  This is called a spectral signature or target spectrum.  Multispectral sensor 

data will produce a spectral signature with very little detail while hyperspectral sensor 

data will result in a spectral signature with a high degree of detail (Jensen, 2007).  Thus, 

when hyperspectral data is plotted, unique features in the spectrum are distinguishable 

and may be used as diagnostic features when comparing different target spectra.  Figure 
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1.1 shows the difference between the spectral signatures produced using multispectral 

and hyperspectral data.  Figure 1.2 is a simplified visualization of how hyperspectral data 

is acquired.  

As rangelands often contain a large number of plant species, hyperspectral data 

holds more promising for accurate species mapping (Parker Williams and Hunt, 2004; 

Hutto et al., 2006; Cheng et al., 2007).  Hyperspectral remote sensing technologies are 

useful for mapping because they can accurately classify a variety of targets in a mixed 

target setting, such as rangelands (Hirano et al., 2003; Hunt et al., 2003; Underwood et 

al., 2003).  Through continued research and development of technologies and analysis 

methods, hyperspectral remote sensing may become an integral part of invasive species 

monitoring in rangelands. 

 

 

Figure 1.1: Comparison of spectra acquired with the multispectral sensor, Thematic 
Mapper (TM) on Landsat 5 (top), hyperspectral sensor AVIRIS (middle) and a laboratory 

measurement (bottom) (Chevrel, 2002). 
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Remotely sensed data are also collected in-situ at ground level using sensors that 

can be carried by a person or mounted on a vehicle such as a boom truck.  In-situ means 

“in place” and, thus, implies that measurements and data are collected at the target site.  

Sensors used for in-situ data collection may include imaging sensors that collect images 

like those collected by sensors on board an aircraft or a spacecraft.  They may also 

consist of spot measurements, which do not create an image, but merely a 

spectroradiometric measurement in the sensor’s field-of-view (FOV).   

 

 

Figure 1.2:  A simplified description of a hyperspectral image (Text modified from 
Jensen, 2007). 
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Hyperspectral data must be calibrated from raw digital counts to radiance and then 

combined with irradiance data to generate reflectance spectra at the sensor (Jensen, 

2007).  Computation of reflectance at the surface requires correcting for the effects of the 

atmosphere as well as the slope and aspect of the target area.  The difference emerges 

with higher spectral resolution and band contiguity offered by hyperspectral sensors.  

While they allow greater flexibility in data analysis, they also require a more 

comprehensive approach to collect and interpret the data that are produced (Kerekes and 

Baum, 2003; Jensen, 2007).   

The use of hyperspectral sensors, such as AVIRIS and Hyperion on the Earth 

Observing-1 (EO-1) satellite, is helping to improve the accuracy of land cover 

identification and discrimination (Underwood et al., 2003).  This higher level of spectral 

detail has allowed scientists to accurately detect specific species in areas of mixed 

vegetation.  For example, AVIRIS has been used in determining differences in plant 

species found in California’s chaparral communities (Dennison and Roberts, 2003) and 

detecting leafy spurge cover in Wyoming (Hunt and Parker Williams, 2006).  Mirik et al. 

(2005a and b) used Probe-1 hyperspectral imagery to estimate biomass and nutritional 

values of forage in Yellowstone National Park, Wyoming. 

 
1.3 Spectroradiometer 

Spectroradiometers are instruments which are specially designed to measure radiant 

energy (radiance and irradiance).  As hyperspectral imaging is still at an experimental 

stage when applied to Earth imaging, the data produced are often validated using 

measurements from a non-imaging ground-based spectroradiometer.  Figure 1.1 also 

illustrates the high level of detail in spectra measured using a laboratory 
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spectroradiometer (Chevrel, 2002).  Because conditions of data collection were different 

(e.g. illumination, sensor movement and stability, target to sensor distance, influence of 

adjacent targets) some spectrum features may differ, even while measuring the same 

target material.  However, the diagnostic features are still present which will allow an 

accurate classification of the target material. 

Portable or field spectroradiometers have made spectral data collection in the field 

a much easier process and have allowed for a higher degree of control over how a target 

is measured, especially when measurement of a specific, single target is desired 

(Shibayama et al., 1986).  For example, these instruments have been used to determine 

water quality in rice paddies in Japan (Shibayama et al., 1993) and testing measurement 

methods for acquiring endmember data associated with crop cover (Peddle and Smith, 

2005).  Field spectroradiometers have been used from short distances of a few 

centimetres to longer distances of a few meters.  For example, Zhang et al. (2005) 

measured lichens using the bare end of the fibre of an ASD FieldSpec FR which was 

centered one centimetre from the target.  Price (1994) used a boom truck with a cherry-

picker to raise a spectroradiometer to heights between 7 m – 10 m to measure crops for 

endmember production.  The versatility of field spectroradiometers has also allowed them 

to be used as components of other devices employed in remote sensing applications.  An 

example is the integrating of a field spectroradiometer with a portable goniometer for 

measuring bidirectional reflectance in field operations (Coburn and Peddle, 2006; Coburn 

and Noble, 2009). 
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1.4 Endmembers 

Pixel values in remotely sensed airborne and satellite image data are the results of 

radiance from multiple components.  The term endmember is used to describe the 

reflectance spectrum representing a unique scene component (Bateson and Curtiss, 1996; 

Tompkins et al., 1997).  Henceforth in this thesis, “spectrum” and “spectra” will refer to 

a reflectance spectrum and to reflectance spectra, respectively. 

Pixels are frequently extracted from airborne and satellite images for use as 

endmembers and the rest of the image is classified based on these endmember pixels.  

However, the lower the spatial resolution of satellite imagery, the less likely a pixel is to 

be made up of a single component since the pixel encompasses a larger area.  The use of 

a single pixel to generate an endmember does not truly conform to the theoretical 

definition of an endmember due to the likelihood that the pixels are still mixtures, 

whereas a true endmember would be the reflectance spectrum of a single component and 

not a mixture (Tompkins et al., 1997).   

Spectroradiometer data are also used in developing endmembers.  Spectra are taken 

from samples of scene components in a laboratory setting or in-situ, a specific mineral or 

tree species for example, and stored together in a library (Roberts et al., 1998; Peddle and 

Smith, 2005; Zhang et al., 2005).  The library is then usable with hyperspectral 

classifiers, such as spectral mixture analysis, to estimate sub-pixel quantities of the 

endmembers included in the analysis. 

The majority of plants undergo seasonal and imposed changes: they flower, get 

eaten, get harvested, senesce, lose leaves, etc.  Logically, a plant should have at least two 

endmembers to classify it, one for the stage at which it is fully green and one for the fully 
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senesced stage.  If using field endmembers, flowers or fruits on the plant may require a 

third endmember (Price, 1994). 

There are other inputs to consider when thinking about target separability.  Target 

structure can have a significant effect on reflectance spectra (e.g., light transmission 

through or shadow from the target’s own leaves, moisture content, etc.) to the point 

where two different species have reflectance spectra with so few differences as to make 

them spectrally inseparable, opening the way to ambiguous classification (Price, 1994). 

The definition for a true endmember is highly unlikely to be satisfied when 

considering vegetation as a target.  Vegetation endmembers are capable of evolving along 

with the conditions that affect the reflectance spectrum of a plant at any given time 

(Price, 1994; Dennison and Roberts, 2003).  

 

1.5 Spectral Mixture Analysis 

Spectral mixture analysis (SMA), or spectral unmixing, has been used successfully 

in different vegetation mapping applications, such as mapping stress caused by lack of 

moisture in wheat crops (Lelong et al., 1998), detection of invasive species (Parker 

Williams and Hunt, 2004) and wetland monitoring (Schmid et al., 2004).  SMA is often 

used in the interpretation of hyperspectral data, which estimates the fractional abundances 

of a target material within a pixel.  This is based on the concept of linear mixing in digital 

imaging; the spectral signature of a pixel is most often the amalgamation of the 

reflectance spectra of two or more components within the area that the pixel represents.  

There are two mixing models used when analysing remotely sensed data: linear mixing 

and non-linear mixing.  When treating a spectrum as a linear mixture, it is regarded as the 
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combination of direct reflectances from the components found within the view area as 

well as an error term.   

Accordingly a linear mixture is mathematically described as follows:   

∑
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if      and 0 ≤  fi ≤ 1,    (3)

 

 Rb is the total pixel reflectance in a band (b), firbi represents the reflectance (rb) of 

component (endmember) i taking up a fraction (fi) of the pixel, m is the total number of 

components and eb is the error term (Staenz et al., 1999).  Equation 3 represents a 

constrained linear model.  Non-linear unmixing is less straight-forward as the concept 

rests upon radiated energy taking an indirect route before being measured at the sensor 

(Borel and Gerstl, 1994) or sub-pixel components with a spectral response having a 

disproportionate effect on pixel values (Foody et al., 1997).  Due to the difficulties 

encountered when a non-linear model is employed, linear unmixing is widely used as it is 

much easier to compute and provides accuracies that are adequate in many applications 

(Dennison and Roberts, 2003). 

Rangeland areas have proven to be difficult to monitor as they are often highly 

variable in the types and species of vegetation covering a given area.  This difficulty 

extends to the use of remotely sensed data to identify endmembers within a pixel (Asner 

et al., 2000; Asner and Heidebrecht, 2002).  SMA assumes that all materials have unique 

spectral characteristics and, thus, a specific spectroradiometric response.  Classification is 

further complicated when one or more components (such as vegetation) can have several 
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possible spectroradiometric responses resulting from structural and/or chemical changes 

within the target, such as plant growth or senescence (Shaw and Burke, 2003).  

Therefore, more than one endmember should be collected for these materials in order to 

properly account for different reflectances from the same component types. 

 

1.6 Spectral Library 

The information included in data collected for land cover studies ranges from 

spectral measurement files to manual measurements to digital photographs of collection 

sites.  It is necessary to develop a method of storing these data in a way that is both 

efficient and easy to use.  In the remote sensing and spectroscopy community, digital 

libraries are created to store and organize spectral data, in a way similar to a database and 

are also referred to as spectral databases (Hueni et al., 2007).  These data may be spectra 

collected from naturally occurring samples (in-situ) and from samples prepared and 

measured in a laboratory setting, as well as endmembers derived from imagery.   

Although the libraries are similar in their organizational use to a database, not all have the 

functionality of a database as is discussed at the end of this sub-section. 

One of the most extensive spectral libraries open for public use is the United 

States Geological Survey (USGS) spectral library (Clark et al., 2007).  As the entries in 

this library are often used in unmixing exercises, much research has gone into acquiring 

pure endmember spectra and their associated metadata for a number of natural and man-

made substances.  Metadata additions include digital images, coordinates of sample 

location, chemical formulas (for mineral samples), and measurement environment (for 

vegetation samples).  The online USGS spectral library includes spectra, ASCII files 
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listing reflectances, and metadata describing the samples and sampling methods; a few 

samples include digital photographs.  However, as large as the online USGS library is, its 

main focus is on mineral spectra; the section containing vegetation spectra is populated 

by only a few examples of vegetation spectra. Moreover, the online USGS library is 

inconvenient to use as it requires manual searching for desired targets within an extensive 

listing of all available spectra. 

Other publicly available spectral libraries found online include the ASTER Spectral 

Library3 (Hook, 1998) and a spectral library hosted by the Mars Space Flight Facility 

(MSFF) at Arizona State University (ASU)4 specifically intended for endmembers found 

in the Martian landscape.  Both of these libraries also focus on mineral spectra, 

containing little or no spectral information on plants.  These examples illustrate the need 

for extensive research and development of spectral libraries dedicated to the collection of 

data for use in vegetation studies.  Creating a spectral library database specifically for 

vegetation spectra would be a more difficult process than it is to build one for minerals as 

plants undergo physical changes in response to changes in local weather and as they age 

(Ustin et al., 2004).  To account for the condition of vegetation at the time of data 

acquisition, increased attention to metadata, such as recent precipitation or other weather 

events, may be necessary to fully explain the spectral responses of samples.  To properly 

represent the variation in plant spectra, more measurements would be required to produce 

endmembers for individual species at different phenological stages (Dennison and 

Roberts, 2003).   

                                                 
3 Hook, S.J. (1998).  “Aster Spectral Library.”  Retrieved March 4, 2010 from http://speclib.jpl.nasa.gov/. 
4 "Spectral Library: Version 1.0."   Retrieved March 4, 2010 from http://speclib.asu.edu/. 
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If researchers cannot find the data they need from one of these online sources, the 

next alternative is to build their own library.  The University of Zurich has developed a 

spectral library program called SPECCHIO using Java and MySQL (Hueni et al., 2009).  

SPECCHIO can be accessed online and a user can extract data from an existing library or 

build their own library with their own collection of data.  As SPECCHIO is built on a 

database platform, it includes database functionality allowing automated data queries as 

well as the ability to perform a handful of simple adjustment calculations, such as tha 

application of reference panel coefficients. 

 

1.7 Phenology 

Plant phenology is the study of the lifecycle of vegetation.  Contributors to the 

phenological process include available moisture and nutrients, sunlight and temperature, 

and plant age (Dickinson and Dodd, 1976).  In their research, Dickinson and Dodd (1976) 

found that, although there are some species that can be grouped together in a similar 

phenological sequence, there are many that cannot be easily grouped, having a variety of 

responses to changes in local climate and nutrient availabilities.  These changes also 

affect the attributes of plant spectra over the course of the plant’s growth and senescence 

stages.  Figure 1.3 is an example of this change typical in vegetation. 

Studies investigating methods for vegetation monitoring strongly suggest the 

importance of including plant phenology as an integral classification parameter.  

Vanamburg et al. (2006) tested the effects of phenology on the estimation of green 

biomass from images taken using a digital camera.  They found that the omission of 
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phenological interaction in their classification model resulted in significantly less 

accurate biomass estimations. 

 

Figure 1.3: Changes to blue grama reflectance spectra as a result of its phenological 
progression.  The green peak (530 nm) and the chlorophyll absorption trough (670 nm) 

are lost as the plant senesces and reflectance increases across all portions of the 
spectrum.  Also visible is the appearance and increase of the cellulose and lignin 

absorption feature around 2100 nm, resultant of decreased plant moisture. 

As the phenological stages of a plant do not follow a rigid schedule, differing 

stages of the same plant type exhibiting different spectral properties may be present in the 

same image.  It is then logical that integrating endmembers that appropriately reflect the 

phenological stage of targeted vegetation in an analysis would result in a more effective 

classification model.  Dennison and Roberts (2003) explored the effects of phenology on 

mapping chaparral in southern California, using imagery from five different dates in 

order to recognize where patterns of class confusion change over time.  By introducing 

Lignin and cellulose 
absorption feature 

Chlorophyll absorption 
feature 
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multi-temporal data to the classification model, a greater amount of land cover area was 

classified with up to 90% accuracy.  The images used by Dennison and Roberts were 

spread over five years with one image per year.  Although the image data were from 

different years, there were two images obtained in May, one obtained in June, and two in 

September.  Even with the split in years, the differences caused by the phenological 

stages for each month are visible in the endmembers extracted from each image.  

Classification using SMA may be confused by the apparent spectral similarity 

between plant types during certain periods when attempting to classify vegetated areas.  

However, the introduction of a time series to the process allows plant phenology 

information to lessen the confusion of plant type in a classification model as certain 

plants grow and senesce differently in relation to each other (Dickinson and Dodd, 1976; 

Dennison and Roberts, 2003; Karnieli, 2003; Delalieux et al., 2009).   

 

1.8 Objectives 

The objectives of this thesis were to collect data for the establishment of a spectral 

library and to assess the separability of some of the more prominent rangeland plant 

species common to southern Alberta based on in-situ measurements of their reflectance 

characteristics.  In assessing the separability of rangeland species, the species samples 

were compared at the peak of the season (when all the plants were green).  Samples taken 

throughout the season were then compared to discover what effect phenology would play 

on the ability to separate them by their reflectances.  The separability of scene 

components is a necessary step in designing a method to distinguish and map rangeland 
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using multispectral and hyperspectral imagery alike.  In this case, the focus is on species 

separability using hyperspectral data. 

 

1.9 Hypotheses 

There are two main hypotheses tested in this thesis.  The first is that sample species 

of rangeland plants are separable by reflectance spectra from data collected in-situ.  The 

second is that the phenological characteristics of rangeland species can help reduce 

confusion when classifying rangeland plant species. 
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2. METHOD  

2.1 Species Selection 

 Information about the grasses existing in southern Alberta was found using field 

guides produced by Alberta Sustainable Resource Development (ASRD) (Adams et al., 

2003 and 2004).  These guides list all native plant species and their abundances within 

the mixed-grass (40 survey areas) and foothills fescue (30 survey areas) regions of 

Alberta.  Species to be considered for this study were chosen based on the frequency with 

which they appeared at the ASRD survey sites and their abundances at those sites.  Nine 

rangeland plant species were studied for this thesis including western wheatgrass 

(Agropyron smithii), blue grama (Bouteloua gracilis), Idaho fescue (Festuca idahoensis), 

June grass (Koeleria gracilis), needle-and-thread grass (Stipa comata), silver sagebrush 

(Artemisia cana), snowberry (Symphoricarpos occidentalis), wild rose (Rosa acicularis), 

and crested wheatgrass (Agropyron cristatum).  While the others are native to Southern 

Alberta, crested wheatgrass is a wide-spread invasive species and has been the subject of 

other studies focused on invasive species detection (Heidinga and Wilson, 2002; Zhou, 

2007) and was chosen for separability comparison. 

There were three sample species measured at three study areas.  Sample 

photographs of the plant species chosen are given in Figure 2.1.  A summary of 

measurements with all dates, solar zenith angle ranges, and comments can be consulted in 

Appendix A. 
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Figure 2.1: The nine plant species studied for this thesis include a. Agropyron smithii 
(western wheatgrass), b. Bouteloua gracilis (blue grama), c. Festuca idahoensis (Idaho 
fescue) d. Koeleria gracilis (June grass), e. Stipa comata (needle-and-thread grass), f. 

Agropyron cristatum (crested wheatgrass, an invasive species), g. Artemisia cana (silver 
sagebrush), h. Symphoricarpos occidentalis (snowberry), and i. Rosa acicularis (wild 

rose).  Images photographed from overhead (length of black bars to lower right of 
images represents 10 cm) except b and d which were photographed to detail seed heads. 

2.2 Study Area 

The sites chosen for measurement purposes included one area containing planted native 

grass plots under the care of the Agriculture and Agri-Food Canada’s Lethbridge 

Research Centre (LRC; 49°41'45.29"N, 112°45'57.65"W), another area containing 

planted native grass plots formerly used by the Lethbridge College (LC; 49°42'5.17"N, 

112°44'14.67"W), and a third site containing growths of the three shrubs close to the Galt 

Museum in Lethbridge (49°41'33.12"N, 112°50'51.67"W) (Figure 2.2).  The general soil 

type for the area encompassing the study areas is Dark Brown Chernozemic with a clay 

loam texture. 
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Figure 2.2: Locations of sample sites used for collection of spectra in the vincinity of 
Lethbridge, Alberta. 

The LRC and LC sites were both located on open prairie land.  However, the 

presence of rangeland grasses at the sites was obviously planned and the ground was 

cultivated and seeded to raise the grasses of interest to the institution’s purpose.   
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Although these sites were chosen because they had, at one time, been planted as 

homogeneous plots, the LC site (Figure 2.3) had not been tended in a number of years, 

and the more aggressive plants had spread throughout all of the plots.  The LRC site 

(Figure 2.4) was still tended and minimal encroachment had occurred.  As there had been 

encroachments of other plant species into the plots, spectra were measured from single 

plants or small bunches to reduce the influence of the other plant species. 

 

 
 

Figure 2.3: LC study area. 

The plants at the Galt site were naturally occurring (Figure 2.5).  The site was 30 

m to the west of the Galt Museum building.  As a result, some morning measurements 

could not be completed in the fall as the building blocked the sun at the time. 
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Figure 2.4: Looking north-east and east respectively on LRC study plots showing (a) the 
Idaho fescue plot,(b) western wheatgrass plot), and (c) blue grama (the black bar 

represents 10 cm ground distance). 

 
 

Figure 2.5: The Galt site, showing some silver sagebrush branches in the foreground and 
snowberry bushes. 
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2.3 Materials and Measurement Method 

2.3.1 Equipment and Software 

The Analytical Spectral Devices FieldSpec 3 (ASD, 2007), as shown in Figure 

2.6, was used to collect the spectra of the sampled plants.  The instrument’s FOV was 

circular, simplifying the initial placement of the assembly for measuring an area with as 

little background (soil) as possible within the FOV.  It has a wavelength range of 350 nm 

to 2500 nm and a spectral resolution of 3 nm in the VNIR portion of the spectrum and 10 

nm in the SWIR portion.  Reference measurements of reflected irradiance were collected 

using a SpectralonTM sintered polytetrafluoroethylene (PTFE) reference panel to estimate 

downwelling irradiance and convert the target radiance to reflectance (Figure 2.7). 

 
 

Figure 2.6: The ASD FieldSpec 3 was used for all field measurements. It features 
wireless communication with controlling laptop, fibre optic cable directly integrated with 

the sensor, and a 25º FOV (may be modified using different foreoptics). 
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Figure 2.7: A SpectralonTM  panel measurement was collected before and after each 
measurement interval, which took place at predetermined times based on the solar zenith 

angle. 

 

To account for changes in solar position and intensity, and to determine if these 

changes had a significant effect on the results of the separability measures used, 

measurements were made at pre-determined solar zenith angles.  Sample measurement 

occurred when the solar zenith angle was a multiple of five over the duration of a field 

visit.  In order to measure at the chosen angles, the times that they occurred were required 

for each day of sample measurement.   

Time of day information for pre-determined solar zenith angles was calculated 

using the Sun Position Calculator (SPC) version 1.2 as shown in Figure 2.8 (Volkan-

Kasco and Neda, 2003).  Results were checked for accuracy against the National Oceanic 
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and Atmospheric Administration (NOAA) Sun Position Calculator (NSPC; Cornwall et 

al., 2008).  The SPC would not have been necessary if the NSPC had the ability to 

calculate the time of day from a given solar zenith angle, but it was only programmed to 

use the day and time as input to calculate the solar zenith.  Adjustments were made to any 

differences between the two results with a bias toward the NSPC as it has been 

continually maintained and updated.  Measurement times were rounded to the nearest 

minute.  Accuracy of calculated solar zenith times was also verified at random intervals 

using the clinometer functionality of a Brunton Eclipse 8099 compass.  Clinometer 

accuracy was ±3˚ of slope. 

Solar azimuth would also influence spectral readings by altering the amount and 

distribution of shadow that the sample casts on itself.  However, as similar effects would 

also be introduced with sample movement by winds between and during spectral captures 

and as incoming solar energy is more greatly affected by solar zenith angle, the solar 

azimuth was disregarded. 

For collecting in-situ spectral measurements, the ASD was carried on a backpack 

with the fibre inserted in the pistol grip, which was mounted on a tripod.  Depending on 

the FOV of the foreoptic, and the basal area of the sample, the tripod height was adjusted 

to maximize the fraction of the target plant while maintaining a minimum amount of 

background material (soil) within the FOV, which resulted in different distances from 

canopy to foreoptic.  Hence, the distance from canopy to foreoptic at each sample was 

measured and recorded (Table 2.1) and the FOV at the canopy (CFOV) was calculated.  

The ground to foreoptic distance was kept the same within each species group (for 

example the same tripod height was used for all measurements of blue grama grass) to 
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keep the same ground FOV (GFOV).   Some of the CFOV sizes (Table 2.1) seemed to be 

on the small side.  However, lighting and shade visible in subsets of the sample images 

used for unmixing (Chapter 3.2) were good approximations of sample conditions 

observed in the field. 

 

 

Figure 2.8: Sun Position Calculator (SPC) interface used to determine measurement 
times.  The desired solar zenith angle is entered in the "Horizon's angle" area (along with 

Date, Time zone, Latitude and Longitude, etc.).  The times are printed in the "Results” 
box (not corrected and corrected for refraction).  In this example, on July 27, 2008, a 

solar zenith angle of 55° takes place at 10:38 and 18:24. 
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Table 2.1: Rangeland species used for this study, FOV foreoptic used (in brackets), 
distance to the target and the resulting CFOV. 

 
  Distance to target (cm)  CFOV diameter (cm) 

Target name (FOV) 
Sample 

1 
Sample 

2 
Sample 

3  Sample 1 Sample 2  Sample 3

Western wheatgrass (8°)  22  23  ‐‐  9.8  10.2  ‐‐ 
Crested wheatgrass (8°)  30  38  39  13.3  16.8  17.3 
Blue grama (8°)  27  27  28  12.0  12.0  12.4 
June grass (8°)  37  41  40  16.4  18.2  17.7 
Idaho fescue (8°)  19  21  20  8.4  9.3  8.9 
Needle‐and‐thread (8°)  45  40  ‐‐  20.0  17.7  ‐‐ 
Snowberry (25°)  16  34  26  7.1  15.1  11.5 
Silver sagebrush (25°)  27  23  17  12.0  10.2  7.5 
Wild rose (25°)  14  ‐‐  ‐‐  6.2  ‐‐  ‐‐ 

 

As each site held a number of samples, it was necessary to move the instrument 

between samples to get a measurement for each predetermined solar zenith at each 

sample.  To reduce the error introduced by the rotation through samples, 25-cm spikes 

were marked with surveyor’s tape and driven into the ground at the points where the 

tripod feet rested after its height and positioning were established and remained until the 

end of the season (Figure 2.9).  The length of the tripod legs and the height of the centre 

column were also determined and remained constant for each sample site.  Thus, the 

tripod could be set up multiple times throughout the season to measure the same GFOV 

area for each sample.   
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Figure 2.9: Example of the tripod and optical assembly set-up. 
  

2.3.2 Sampling Procedure 

At the commencement of the data collection period, samples were identified and 

marked with survey flags.  Each sample was prepared by removing all vegetation not of 

the same species as well as all senesced material in and around the sample (Figure 2.10).  

Throughout the remainder of the season, any new growth not immediately attached to the 

sample was removed before measuring, and the samples were allowed to senesce and the 

senesced material was left intact. 

Marked spikes for consistent 
tripod placement, tripod feet 
are placed on the heads of the 
spikes 

Optical assembly handgrip 
(no optics pictured) 

Tripod with position settings 
locked for consistency 

Sensor height adjusted for 
minimum background effects to 
maximize sample purity 

Homogenous land cover, Blue 
grama 
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Figure 2.10: June grass after all other vegetation and litter is cleared in preparation for 
measurement.  The circled area represents the CFOV.  Being sample 1, the CFOV is  

16.4 cm in diameter (Table 2.1). 

As the objective was to measure all plants as closely to the calculated times as 

possible, a specific route of travel was established to move the equipment between each 

sample site as quickly as possible.  A reference spectrum (reflected irradiance) was 

obtained using a SpectralonTM near-Lambertian reference panel as the target before and 

after a cycle of measurements.  At each sample site, the tripod with foreoptic was placed 

on the position marked by the spike heads.  The instrument arm holding the foreoptic was 

adjusted and levelled using the built-in level on the pistol grip so that the measurements 

were made at nadir.  Five spectral readings were taken at each sample location as there 

was often a breeze that would move the grass/shrub during measurement, effectively 

10 cm 
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adding an averaging effect to the measurements.  The distance from the foreoptic to the 

target canopy was measured and recorded (Table 2.1).  After the five spectra were 

collected a photograph was taken of the sample site.  The camera was positioned to centre 

the lens on the vertical axis of the foreoptic cable.  The tripod assembly was then 

removed for an unobstructed view of the sample from nadir and a photo was taken with 

its corresponding image identification number (ID) manually recorded with the five 

spectrum IDs.  The equipment was then moved to the next sample spot.  After each cycle 

of measurements another reading of the SpectralonTM panel was taken.  One cycle 

normally took approximately 20 minutes. 

The 8° FOV foreoptic was used for the grass samples and the bare fibre (25° 

FOV) for the shrub samples.  The foreoptic was used on grass samples as its smaller 

GFOV allowed measurement from above the canopy without capturing too much of the 

surrounding vegetation and soil.  The bare fibre was used to measure the shrubs as they 

covered enough ground that the larger angle FOV did not pose a problem with including 

unwanted components.   

Data collection was only carried out on days with less than 10% cloud cover, 

totalling 18 days.  As only one study area could be covered in a day, the field collection 

days had to be divided between the three locations.  Accordingly, each area was visited at 

least five times throughout the field season from June 27 to November 10, 2008.   

The GFOVs were calculated using references in the photographs such as the 

distance between the marked spikes, upon which the tripod legs were positioned, or the 

distance across the head of one spike (where only one was visible in the photo) (Figure 

2.11).  These reference distances were recorded for each site.  In later trips to the field 
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sites, photographs were taken at the samples with a tape measure clearly visible as a 

reference.  Using these references, the pixel distance in the photographs was calculated 

and also used to mark the edges of the GFOV within the images.  Image distances were 

then converted to pixel distances using the ENVI measurement tool.  Thus, reference 

distances not orthogonal to the pixel alignment were automatically calculated in fractions 

of pixels. 

 
 
Figure 2.11: Photo of sample containing reference marks of spike heads (circled) to the 

left and right of the sample marked with strips of surveyor’s tape. 
 

In most cases, the centre of each photo coincided with the centre of the GFOV.  

To find the edges of the GFOV, each GFOV radius (Table 2.1) was measured from the 

centre of the image using the ENVI measurement tool.  The center of the GFOV was also 

verifiable in some of the images using measurements from the spike heads to the GFOV 

center.  Other points of reference found in the images were also employed in a similar 

manner to verify that the calculated GFOV had acceptable accuracy and to better 



 

36 

calculate it in the earlier photographs for comparison with the later ones.  The FOV at the 

canopy level was calculated for shrub samples, since the ground could not be seen.  

Accordingly, the GFOV is equivalent to the canopy FOV of the shrub samples. 

Spectral measurements were started during the time of peak greenness in the 

growing season.  Soil spectra were taken at each site for use as endmembers in the 

classification analyses of the sample plants. 

Other spectra were taken for inclusion in the spectral library as time and 

measurement conditions permitted, including other plant species, some plant mixtures, 

soils, and some completely shaded portion of the samples mentioned.  Some of the targets 

included were downy brome (Bromus tectorum), a thistle (species not identified), foxtail 

(Hordeum jubatum), green needle grass (Stipa viridula), a red shale walking path, and 

grass mixtures. 

 

2.4 Spectral Database 

The spectral database program SPECCHIO (Hueni et al., 2009) was chosen as the 

storage database for the collected sample spectra.  SPECCHIO was developed by the 

Remote Sensing Laboratory at the University of Zurich.  Its functions are programmed 

using the Java language, and it employs MySQL as the storage database.  SPECCHIO 

provides the primary function of data storage, but adds to that function a more dynamic 

platform allowing for further analysis of the data it contains.  The features that take 

advantage of the more dynamic database include data plotting, application of reference 

panel coefficients for corrections, and automatic generation of metadata (including sun 

angle calculation).  Further improvements include the ability of SPECCHIO to read 
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spectral information saved in the file types used by some of the different brands of 

spectroradiometers.  Moreover, it allows for data to be imported from certain types of text 

files (.csv for example) following a specified format. 

 

2.4.1 Database Organization 

The SPECCHIO database required a degree of preparation before populating the 

database.  A hierarchy of folders was created to efficiently organize the spectra collected 

with the ASD.  The hierarchy used a species-date-sample structure (Figure 2.12).  This 

seemed to provide the most user-friendly organization of the data as a species type would 

likely be the most common discriminating factor.  SPECCHIO was then set to read in the 

data from the file structure making up the hierarchy. 

 

Figure 2.12: The organization of the database file structure for a specific land cover 
type, species, date, sample and individual spectrum. 
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With data read into the SPECCHIO structure there remained a number of items to 

be entered manually as they were not recordable by the ASD.  These ancillary data 

included sample type, sample coordinates, illumination type, and instrument used.  In a 

next step, the digital photographs of the samples were matched to the spectra.  To save 

space, only one image was used per sample per collection day. 

SPECCHIO includes the ability to apply certain corrections or adjustments to 

metadata for all spectra or for specified groups.  Applied to these data were two of these 

adjustments.  In a first step, as the program expects temporal information in Coordinated 

Universal Time (UTC), there is a function included to adjust the time stamp originating 

with the instrument used during data collection.  This was used to align the data 

collection times to UTC.  Secondly, the program was able to calculate the solar zenith 

angle for each measurement (which confirmed the time-of-day calculations made when 

planning the field measurements). 

 

2.5 Endmember Creation 

There was some deliberation on the question of how endmembers in this study 

should be defined as discussed in Chapter 1.5.  However, to satisfactorily test the 

hypothesis that phenological data could assist with separability of rangeland species, it 

seemed most logical to get spectra from the same plant samples throughout the season in 

order to obtain a more realistic data set to illustrate phenological progression.  This meant 

that plant structure would remain intact and would change as the plants matured. 

The data resulting from all of the components of the target plant were treated as 

the endmember for that species.  However, since the measurements were conducted in 
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situ to include the structural properties of each sample species, there existed spaces 

between leaves and stems where other target materials such as soil may have contributed 

to the spectral signature of a species sample.  Also, there were two endmembers desired 

for each plant – green and fully senesced.  Having these two extremes as endmembers is 

necessary for spectral mixture modeling and analysis.  Some of the measurements taken 

for green vegetation were carried out a little late in their phenological cycle, resulting in 

the presence of a few senesced components in the FOV.  This was minimized by 

removing as much of the senesced plant and litter as possible from in and around the 

samples before measurement commenced on the first day at each site.  

Photographs of the measurements were then analyzed to calculate the fractions of 

the individual components within the GFOV.  Spectra were adjusted to isolate green 

endmembers by subtracting the effect of the background soil component (covered in 

Chapter 2.5.1).  Only four samples had fully senesced before the arrival of the year’s first 

snow covered all of the sample sites. 

Since the averages of species spectra were compared, statistical confidence levels 

were calculated to ascertain whether the mean spectra used were within the error ranges 

of the each species group.  The range of the confidence interval gives an estimate of the 

upper and lower limits for where the actual mean might be.  Using the statistical 

computing package, [R]5, 0.95 and 0.99 confidence intervals, upper and lower limits were 

calculated for the mean reflectance at each spectral wavelength for each species for each 

day of measurement.  Accordingly, the average of the confidence intervals of the 

reflectances at each wavelength was calculated for the various measurements, providing 

                                                 
5 The R Project for Statistical Computing, www.r-project.org. 
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one confidence interval per wavelength per species reflectance mean.  Finally, the 

average confidence intervals of reflectances of all wavelengths for each species 

reflectance mean were calculated, resulting in a single confidence interval for each of the 

nine species. 

 

2.5.1 Digital Image Classification 

The classification of digital images was carried out using the ITT Corporation6 

digital image analysis software, ENVI.  Circular subsets reflecting the sensor GFOV were 

extracted from the photographs of measured samples.  Using the Support Vector Machine 

(SVM; Brown et al., 1999) classifier – a learning machine classifier in which input 

vectors are mapped in a non-linear, high-dimensional space (Cortes and Vapnik, 1995) – 

the image subsets were classified into the two categories of soil and vegetation. 

As the area in the subsets to be classified was circular, areas of no data existed in 

the corners of the ENVI image window and were masked for the image classification.  

The percentage cover of each class was used as the background fraction in unmixing the 

background reflectance from the original reflectance (sspecies) according to the following 

unmixing equation: 

( )
species

soilsoil
species f

sfS
s

−
= ,   (4) 

where S is the sample reflectance, ( )soilsoil sf  is the contribution of the soil reflectance 

and speciesf is the fraction taken up by the sample species.  Classification accuracy was 

                                                 
6 Formerly International Telephone and Telegraph 
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completed by comparing known regions of interest (ROIs) with the classification results 

in a confusion matrix. 

 

2.5.2 Spectra Pre-processing 

For storage in the SPECCHIO spectral library, the collected spectra were 

translated into ASCII text file format using the ASD desktop software, ViewSpec Pro.  

Reflectance data were retrieved from the spectral library using SPECCHIO’s query 

function.  Spectra were imported into Microsoft Excel to be sorted, averaged and 

corrected.  These data were then prepared for unmixing and similarity measure 

calculations by appending all data into a single text file.  The text files were required for 

input in the calculations, which were completed using the [R] statistical program 

(Venables and Smith, 2009).  

 Spectrum averages were calculated from the reflectance data and each average 

was labelled with the site ID, date, raw spectrum numbers and solar zenith angles.  The 

average was calculated for every instance of the five spectra collected per sample per 

measurement cycle.  Reflectance spectra were adjusted using wavelength-specific 

correction coefficients based on the reflectance levels of the SpectralonTM panel 

(Labshere, 2007).   

As the solar zenith angle changed from < 1° over the duration of measurements 

taken at solar noon to < 3° during the first and last measurement cycles of a day, the 

spectra collected were adjusted to compensate for this effect.  The difference between 

start time and finish time reference spectra acquisitions was determined for each 
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measurement cycle.  Assuming a linear rate of change, a temporal adjustment coefficient 

(TAC) was calculated as follows:  

startend

startsm

tt
tt

TAC
−
−

= .    (5) 

where (tend – tstart) is the time the measurement cycle took to complete and (tsm – tstart) is 

the time difference from the starting reference panel measurement to when the sample 

was measured.   

The new coefficients were then used to adjust the spectra taken during the interval 

times as follows: 

( ) TACssss pepssmf ×−+=
rrrr     (6) 

where fsr
 
is the resulting reflectance spectrum, smsr

 
is the sample spectrum, and 

( )peps ss rr
−

 
is the difference between the cycle start and end reference measurements.

 

Some of the spectra displayed a noticeable jump at 1000 nm, which is where the 

break between the VNIR and the SWIR 1 sensors occurs.  The amplitude of the jump was 

inconsistent in its value from one spectrum to the next and raised concerns over the 

accuracy of any future analyses involving these data.  To ensure that the spectra were 

more consistent, the data were adjusted to negate the difference in amplitude occurring at 

1000 nm.  Simply moving one side or the other of an affected spectrum often resulted in 

negative reflectances. 

To limit the frequency of negative values resulting from this adjustment, the 

spectrum values in the 350 nm-1000 nm range and the spectrum values beyond 1000 nm 

were moved half the difference toward each other, eliminating the difference in 
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amplitude while limiting the number of spectra with negative reflectance values (Figure 

2.13).  Spectra that ended up with negative values were removed from the data set. 

 

Figure 2.13: Example of jump in spectra at 1000 nm between the VNIR and SWIR 
sensors (in blue) and the result of its adjustment (in red). 

2.6 Separability Analysis of Green Plant Spectra 

Data from the first measurement day at each study site were used to compare 

green plant reflectance spectra as they were relatively free of senescent portions and, 

thus, were most representative of “pure” endmembers for green plants.  Three similarity 

measures were used – Euclidean distance, spectral angle mapper, and correlation – to test 

the prepared spectra for separability between samples of the same and differing species. 
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2.6.1 Euclidian Distance 

The Euclidean distance is the calculation of a straight-line distance between two 

points on a plane using the horizontal and vertical differences between their coordinates.  

This measure is often used to illustrate differences in multiple data series (Yool et al., 

1997).  As described by Danielsson (1980), the Euclidean distance, de, is calculated using 

the following equation:  

( ) ( )( ) ( ) ( )22,,, ikhjkjihde −+−= ,    (7) 

where (h,i) and (j,k) are coordinate pairs. 

The results were then normalized by dividing each value by the maximum value 

of all the distances calculated.  This ensured that the resulting values were between 0 and 

1 to be comparable with the results from the two other measures used and is referred to as 

the Normalized Euclidean Distance (NED) for the duration of the thesis.   

 

2.6.2 Correlation Similarity Measure 

 The correlation similarity measure (CSM) is used for describing the similarity 

between two spectra and is based on Pearson’s correlation coefficient calculation as 

presented in Staenz et al. (1999) by: 

( )( )
2__

1/ ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −= rtnrtnMCSM σσ ,             (8) 

where n is the number of wavelength bands used in the comparison, 
_
r and 

_
t  are the 

means of the reflectance values of a reference species (r) and a test species (t), 

respectively, σt and σr are the corresponding standard deviations of the means.  M is the 

sum of products of each spectral band b in the two spectra and can be written as follows: 
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∑
=

=
n

b
bbM

1
r t .     (9) 

The result is a value between 0 and 1, where 1 is an exact match between the 

reference and the test spectra and 0 indicates no match at all.  

 

2.6.3 Spectral Angle Mapper 

The spectral angle mapper (SAM; Kruse et al., 1993) rapidly maps the similarity 

of the spectra from an image to a reference spectrum.  The equation uses n-dimensional 

vectors of each spectrum to calculate the angle between the lines drawn through each 

point (reflectance at each band) and the origin in the n-dimensional space.  This measure 

can be calculated by the following formula: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑∑
==

−

n

b
b

n

b
b rt

MSAM

1

2

1

2

1cos .     (10) 

The result of this measure is an angle in radians.  When the angle is calculated using 

SAM, the smaller the angle at the origin is, the closer the match is between the reference 

spectrum and the spectrum to be compared.  This measure is often used in spectral 

similarity measures because it is not affected by changes in intensity (Park et al., 2007).   

Staenz et al. (1999) also described modifying the results of the spectral angle 

mapper (MSAM) to form an output between 0 and 1 in order to be comparable to the 

results of the CSM as follows: 

π
SAMMSAM 21−= .      (11) 
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  The results were output to a table for plotting purposes.  The plots are important 

as a visual illustration of separability. 

 

2.7 Separability Analysis Incorporating Phenology 

The NED measure was then used to compare the spectra measured during the 

remainder of the growing season.  A separability analysis was carried out for samples 

collected within two weeks of each other in an attempt to minimize the possibility of a 

high degree of phenological change between sample dates.  Where sample days were 

more than two weeks apart and missing species for comparison, or where the two-week 

comparison times overlapped, a day was shared (Table 2.2). 

The species reflectance spectra collected may have differed as a result of being 

measured during different solar zenith angles.  In response to this possibility, steps were 

taken to ensure that only data collected during the same solar zenith angle range were 

compared to each other.  Spectra were divided into comparison groups made up of 

measurements collected within a range of 10˚ solar zenith angle.  As a check, these 

groups were applied in 5˚ overlap every five degrees of change in solar zenith angle.  

This meant, for example, that a spectrum collected at a solar zenith angle of 47˚ was used 

when comparing spectra collected between 40˚-50˚ and between 45˚-55˚ solar zenith 

angle range. 
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3. RESULTS 

3.1 Collected Spectra and Spectral Library 

The total number of spectra, including target species and soil, collected during the 

field campaigns was just over 4000.  Table 3.1 gives the upper and lower limits of error 

for each species from the mean measurement used in each case.  Both 0.95 and 0.99 

confidence levels were calculated along with the average reflectance value for each 

species spectrum. 

Table 3.1: Confidence levels of sample spectra collected in the field.  This table shows 
the differences above and below the sample means. ‘N’ is the number of bands used, and 

‘n’ is the total number of measurements for each species. 
 

Spectral Confidence Interval (0.95) Confidence Interval (0.99) 
N = 1625 Mean Upper Lower Upper Lower 

Blue grama  
(n=926) 

0.1914 0.0073 0.0074 0.009 0.010 

Crested wheatgrass 
(n=915) 

0.2490 0.0167 0.0028 0.019 0.022 

June grass 
(n=730) 

0.1989 0.0004 0.0230 0.018 0.009 

Needle‐and‐thread 
(n=721) 

0.2035 0.0306 0.0539 0.006 0.026 

Idaho fescue 
(n=1021) 

0.1918 0.0166 0.0168 0.019 0.006 

Western 
wheatgrass (n=671) 

0.2041 0.0148 0.0057 0.070 0.014 

Snowberry  
(n=645) 

0.2463 0.0633 0.0211 0.027 0.058 

Silver sagebrush 
(n=773) 

0.2231 0.0126 0.0127 0.016 0.017 

Wild rose  
(n=311) 

0.2381 0.0091 0.0092 0.012 0.012 

 

The data collected in the field were stored in the SPECCHIO database in the raw 

file format produced by the ASD.  SPECCHIO automatically extracted such data as 

spectral values and capture date and time (Figure 3.1).  A small area showing the plotted 
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spectral profile was generated.  The database included areas where other information was 

entered manually including, for example, ground coordinates (Figure 3.1), digital 

photographs of samples, and the instrument used (Figure 3.2).  Other data included (not 

shown) were sensor zenith angle and sensor height above target.   

 

 
 

Figure 3.1: Detail of the SPECCHIO data input form.  Shown are date and location 
information along with a plot of the sample reflectance. 
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Figure 3.2: Detail of the SPECCHIO metadata form showing areas for sample name, 
information about the sensor used and a picture of a sample. 

 

3.2 Classification of Digital Images 

The SVM classification map results, of which some examples are given in Figure 

3.3, were used to extract the soil fractions from the digital photographs for each of the 

measured spectra.  An assessment of the classification results showed an average 98.59% 

overall accuracy achieved (Table 3.2).   
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Table 3.2: Confusion between the classes of vegetation and background using the SVM 
classifier. 

 

As mentioned, soil measurements were collected at the sample sites for use as 

endmembers.  After image classification, the soil fraction was used with the collected soil 

endmembers to calculate the amount of influence soil had on the sample spectra.  Using 

the unmixing formula in Equation 2, the reflectance spectra were unmixed to produce 

plant and soil fractions.  After unmixing, the plant fraction showed an increase in 

reflectance values of up to 2% from the sample spectra.  The only exception was crested 

wheatgrass, where a difference in amplitude of 10% was observed in the near infra-red 

(NIR) spectrum range.  It was in the NIR that the greatest difference in reflectance 

amplitude took place.  In any of the soil extraction results there were no changes to 

spectral shape that could be perceived. 
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a.     b.  

c.     d.  

e.      f.  

g.     h.  

i.  

Figure 3.3: Classification examples using the SVM classification: a. silver sagebrush, b. 
blue grama, c. snowberry, d. wild rose, e. crested wheatgrass, f. June grass, g. needle-

and-thread, h. western wheatgrass, i. Idaho fescue.  Image pairs show the FOV from the 
sensor foreoptic on the left and the classification maps of the FOV on the right, where 

blue is vegetation, green is background material (soil), and red is mask. 
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3.3 Species Endmember Separability 

Figure 3.4 shows a comparison of the species endmembers that were derived for 

and included in the study.  For convenience in analysis procedures, species names were 

abbreviated (Table 3.3).  

 
 

Figure 3.4: Comparison of endmembers derived from the averages of spectral 
reflectances (species n values in Table 3.1). 

The three measures – CSM, MSAM and NED – were used and compared to study their 

sensitivity to spectral differences when comparing rangeland plants, i.e. what the 

difference was between the results.  Also, the three separability measures allowed cross-

checking of the results to make sure that separability results were consistent.  All 
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measurements made throughout the day were used to calculate the average spectral curve 

for each species.  The separability test results indicated that the solar zenith angle did not 

significantly affect the ability to identify multiple reflectances from the same species as 

being from the same species. 

Table 3.3: Name abbreviations used for identifying species in separability plots. 

Abbreviation  Common Name  Latin Name 

BG blue grama  Bouteloua gracilis 
IF Idaho fescue  Festuca idahoensis 
JG June grass  Koeleria gracilis 
NT needle‐and‐thread  Stipa comata 

WW western wheatgrass  Agropyron smithii 
CW crested wheatgrass  Agropyron cristatum 
SB snowberry  Symphoricarpos occidentalis 
SS silver sagebrush  Artemisia cana 
WR wild rose  Rosa acicularis 

 

In general, all three separability measures returned the same results in relation to 

separability between species.  CSM was able to separate the different species, but 

required a comparatively high threshold of 0.992 (Figure 3.5).  MSAM had a lower 

threshold of separability of 0.970 (Figure 3.6).  NED separated the sample spectra with a 

similar separability threshold of 0.950 (Figure 3.7).  0.99 confidence limits for the mean 

spectra used are included as vertical error bars in Figures 3.5-3.7. 

Comparisons are presented in columns (Figures 3.5-3.7).  The symbol for the 

reference species, the one being compared to all others, is found at the bottom of the 

column (on the x-axis) with its abbreviation identifier.  The symbol is also found at the 

top of the column with a value of 1, signifying an exact match.  The symbols for the 

species being compared are arranged along the column.  The greater the distance of a 
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symbol from 1, the more separable its represented species is from the reference species.  

Error bars represent the upper and lower confidence limits calculated for each species 

(0.99 confidence).  Species symbols are offset horizontally for clarity. 

 

Figure 3.5: CSM separability analysis results.  Error bars reflect the average degree of 
error calculated for the mean of each species spectrum at a confidence level of p=0.99.  

The dotted line indicates the threshold of separability.   

Of significant concern were the confidence intervals as shown in Figures 3.5, 3.6 

and 3.7 as the actual mean may be anywhere in the range of the intervals.  As seen in the 

case of CSM (Figure 3.5), the confidence intervals have a lot of overlap between species.  

Moreover, species endmembers are also quite close to the separability threshold line, 

which in turn is quite close to 1, which is an exact match.  While CSM and MSAM 

returned the same general patterns of separability (Figures 3.5-3.7), NED outputs 

different results (Figure 3.7).  Using NED, all but two of the species endmembers tested 

were clearly separable from each other. 
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Figure 3.6: MSAM Separability analysis results.  Error bars reflect the average degree of 
error calculated for the mean of each species spectrum at a confidence level of p=0.99. 
The dotted line indicates the threshold of separability.  According to MSAM, wild rose 
(white triangle), western wheatgrass (black triangle) and crested wheatgrass (the ‘X’) 

spectra are similar to each other. 

Assuming that plant structure plays a significant role in canopy spectral response 

and, therefore, spectral separability of plants, the apparent similarity of western 

wheatgrass and crested wheatgrass with the wild rose shrub was an unexpected result.  

While there is a similarity in the shapes of the spectra for these plants, there are definite 

differences in reflectance amplitude in the VNIR (Figure 3.8). 
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Figure 3.7: NED separability analysis results.  Error bars reflect the average degree of 
error calculated for the mean of each species spectrum at a confidence level of p=0.99.  
The dotted line indicates the threshold of separability.  NED shows a different ability to 

separate species spectra, only two shrubs are similar: snowberry (white square) and wild 
rose (white triangle). 

Data gathered from samples of needle-and-thread were inconsistent.  During 

initial separability tests where the solar zenith angle was included as a factor, needle-and-

thread was separable from all of the other sampled species and approximately 50% of the 

time, from itself.  None of the other species shared this result. 
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Figure 3.8: Comparison of the spectral response curves of wild rose, western 
wheatgrass, and crested wheatgrass.  There is a clear similarity visible in the shape of 

the spectra.  Thus separability must reside in amplitude of reflectance values. 

 
3.4 Role of Phenology 

Plant phenology is affected by a number of inputs.  These include soil moisture, 

temperature, and sunlight, among other things.  Lethbridge gets an average of 138 mm of 

rain from May through July, with most of it falling in June.  The spring and summer of 

2008 was wetter than normal, receiving 239 mm of rain over the three month period.  The 

historical average daily temperatures for the same three month period (15°C) were also 

exceeded by 2008’s three-month average of 21.5°C.  Because of the higher-than-average 

conditions, it was generally observed that plants in the area stayed green longer than 

usual.  Thus, the phenological timing of the sample species was altered in the same way. 

Possibly as a result of the conditions discussed, only three grasses were 

completely senesced by the end of the season: blue grama, Idaho fescue, and crested 

wheatgrass.  The other grasses and the shrubs sampled retained a large portion of green 
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plant matter further into the fall and were not fully senesced when snowfall began.  

However, the leaves of the shrub wild rose did take on a more reddish hue towards the 

end of the season.   

Comparison of spectra using NED showed Idaho fescue, June grass and blue 

grama to be similar (Figure 3.9).  Later on, the spectra of crested wheatgrass began to 

resemble these three native grasses.  The samples of these species then became separable 

later in the season.   

 

Figure 3.9: A summary of the separability of the species in the early stages of 
measurement at the highest solar zenith.  The x-axis shows reference species symbols.  

(The full series of plots may be found in Appendix B.) 

Two of the factors of most value to finding separability of the measured plant 

spectra are the change over time of the chlorophyll absorption feature (660 nm) and 

changes in the spectral response in the SWIR, especially in the cellulose/lignin absorption 

area around the 2100 nm band.  Figure 3.10 shows the phenological effects on reflectance 
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at the chlorophyll absorption band, 660 nm, and the cellulose/lignin absorption band, 

2100 nm, of these four plants through the season.  The plots in this figure exhibit the 

requirement of multiple bands when looking for features that contribute to the ability to 

spectrally separate vegetation.  For example, June grass remains extremely close to blue 

grama in the chlorophyll absorption feature (660nm) over the season.  However, its 

reflectance at 2100 nm becomes more significant as a separating feature.  Judging by 

their progression, all four grasses seemed to be the most separable by the latter end of 

July. 

Crested wheatgrass, western wheatgrass and wild rose endmembers were not 

separable using MSAM and CSM (Figures 3.5 and 3.6).  Continuing with reflectance data 

averages using all solar zenith angle measurements, isolating a phenological window 

where differences may be found was still possible, using reflectance values in the SWIR.  

Where these species only vary in amplitude at 660 nm by less than 5% throughout the 

season, a larger difference is apparent in the 2100 nm band (Figures 3.11 a and b).  The 

amplitude change at 300908 in Figure 3.11 b suggests the importance of phenological 

timing when separating vegetation spectra, along with the inclusion of SWIR bands in the 

analysis.  Contrary to the results of the first analysis, crested wheatgrass, western 

wheatgrass, and wild rose are separable using data from the same range of solar zenith 

angles.   
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Figure 3.10: Comparison of band amplitudes of blue grama, Idaho fescue, June grass, 
and crested wheatgrass at (a.) 660 nm and at (b.) 2100 nm. The intervals along the x-axis 
reflect dates (ddmmyy) on which the samples were measured. These two examples show 

the importance of using SWIR2 bands in species separability as senescence starts to 
affect reflectance. 

 
The month of September showed the highest capability of the separability 

measures to distinguish between species.  Everything was separable using NED except 

for blue grama and crested wheatgrass, which by this point were both completely 
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senesced (Figure 3.12).  Although plant spectra were collected in late October and early 

November, they were not used as not all species could be included.  Only one to two 

measurements were obtained per sample, and tripod set-up spikes were either removed or 

buried at the Galt site as they could not be located.  

 

 

Figure 3.11: Comparing band amplitude over time of wild rose, western wheatgrass, and 
crested wheatgrass at (a) 660 nm and (b) 2100 nm which both show similar spectral 

responses.  The intervals along the x-axis reflect dates (ddmmyy) on which the samples 
were measured. 
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Silver sagebrush and snowberry were found to be spectrally separable from all 

sample species throughout the measurement period.  The silver sagebrush spectral curve 

showed a greater amplitude in the visible range on either side of the green peak.  

Snowberry had a much higher reflectance in the NIR than any of the other species.   

 

Figure 3.12: Separability of the grass species toward the end of the measuring period.  
As it is late in the season, some previously separable species are no longer separable due 

to increasing similarity in the latter stages of senescence. 
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4. DISCUSSION  

4.1 Endmembers 

The definition of an endmember is a cause for debate.  There are different factors 

to consider in its definition.  One that affected how endmembers were defined for this 

thesis was whether physical structure is important, leading to the question of shadows: 

whether an endmember can include the shadow that comes with leaving the structure 

intact, or if it is better to use a flat sample with minimal shadow for one endmember and 

assign another endmember for shadow.  Another factor is the scale at which endmembers 

are measured, or what the sensor “sees”, for example, considering the endmembers 

collected at ground level for this thesis versus those extracted as pixels from an AVIRIS 

image.  The two may or may not be interchangeable.  It was in thinking about how a 

sensor, such as AVIRIS, “sees” vegetation targets in their natural setting that the decision 

was made to measure the plant samples in-situ. 

 

4.2 Performance of Separability Measures 

Van der Meer (2006) tested the performances of SAM and Euclidean distance as 

measures of separability and found that there was little difference between them.  The 

results in this thesis did not agree with his findings as the pattern of the plotted 

separability values between the SAM and NED showed a different result in separability 

patterns; i.e., species similar to one measure, were separable by the other (Figures 3.6 and 

3.7).  CSM did not perform as a useful method of testing the separability of rangeland 

species due to its comparatively narrow spread between an exact match and the 

separability threshold. 
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4.3 Spectral Separability 

These results have yet to be tested with image data.  However, some of the 

endmembers collected during the fieldwork for this thesis were employed in a 

preliminary study that looked at endmembers derived with different methods and the 

resulting accuracy of image classifications involving these different generated 

endmembers7.  Laboratory measurements of leaves, endmembers generated with canopy 

models, and in-situ endmembers from this thesis were compared in the study.  Shrubs, 

litter, green and yellow grasses, and soil endmembers were used to classify a Compact 

High Resolution Imaging Spectrometer (CHRIS)8 hyperspectral image.  The results were 

then compared to fractional cover estimates made in the field using a Daubenmire frame 

(Bonham et al., 2004).  The preliminary study concluded that all of these methods for 

endmember derivation had a low rate of agreement with the fractional cover estimates 

when used to classify a CHRIS hyperspectral image.  The in-situ endmembers achieved 

the lowest accuracies.  However, it should be noted that the accuracy of cover estimation 

using a Daubenmire frame is subject to the abilities of the person doing the estimation.  

Another factor of concern in this case is the difference in scale.  The frame covered an 

area of 0.2 m x 0.5 m, while a CHRIS pixel (in this case) covered an area of 34 m x 34 m. 

Despite the results from the preliminary study, the apparent ability to distinguish 

plant species using endmembers from in-situ measurements is promising for future 

studies and applications.  One item to note is that the CHRIS sensor is limited to the 

                                                 
7 Rochdi, N. (2009). Monitoring Rangeland Community/Health Using Multispectral and Hyperspectral 

Data. Unpublished Presentation. Alberta Terrestrial Imaging Corporation. 
8 Compact High Resolution Imaging Spectrometer (CHRIS) is an instrument on board the PRoject for On-

Board Autonomy (Proba) satellite. 
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VNIR spectral range.  The results of this thesis suggest that the separation of plant 

species based on spectral response is possible.  Since the results from the CHRIS image 

analysis differ, separability may be dependent on spectral responses in the SWIR bands, 

as well as those in the VNIR. 

With further research, the ability to locate troublesome populations of invasive 

weeds may be improved, saving resources usually spent on invasive species detection by 

municipal and state/provincial and federal governments.  More detailed information on 

plant populations (percent coverage) may improve the ability to map or monitor carbon 

uptake and/or releases by rangelands.  Incorporating these results into larger scale 

operations may require refinement of the separability analysis procedure.  Possible 

avenues toward a usable method might include further investigations into the abilities of 

separability measures (those discussed in this thesis and/or others) to achieve similar 

results using the spectral band configurations of available and/or upcoming hyperspectral 

sensor data, such as AVIRIS, Hyperion, or Environmental Mapping and Analysis 

Program (EnMAP; Stuffler et al., 2007).  Thus, it is possible to create a practical and 

usable commercial product. 

The observation of western wheatgrass, crested wheatgrass, and wild rose 

suggests a spectral similarity between these wheatgrasses and wild rose. This is 

interesting in the fact that the wheatgrasses have a growth structure that is completely 

different from the shrub, wild rose.  The results point to the possibility that, in some 

cases, targets of differing structure may have quite similar reflectance properties.  Price 

(1994) came to the same conclusion while conducting an experiment on spectral 
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signature uniqueness, stating that some spectral reflectances were likely governed by 

small physical and chemical characteristics, including plant structure and water content. 

 The separability of all plant samples and silver sagebrush is likely due to the 

differences visible in both their colour and their structure.  As both are shrubs, their 

differences from grass species in texture, structure and leaf shape and size would be 

expected to contribute towards their spectral separability.  In detail, silver sagebrush has a 

paler leaf appearance than all of the other plants sampled.  Its leaves also have hairs on 

them that reduce the amount of sunlight reaching the leaf, thereby reducing the total 

irradiance that may be reflected (Jensen, 2007).  Snowberry, on the other hand, has broad 

leaves, which would also reflect solar radiation in a different pattern than grass leaves.   

The confusion achieved by CSM and MSAM of two of the native species, western 

wheatgrass and wild rose, with an introduced species, crested wheatgrass, predicts similar 

complications in invasive species classifications that employ only one image (one 

acquisition date).  As was shown in the results, the separability of these three plants 

became more pronounced over time.  This supports the need for research into phenology 

patterns before an image is acquired or purchased to ensure an accurate classification 

result. 

The result of MSAM spread the species further away from the separability 

threshold in plotting the calculated separability.  This accomplished two things: the 

separability threshold moved further away from 1 and the confidence intervals have less 

overlap across species.  NED spreads the species even further away from the separability 

threshold. 
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4.4 Phenology 

 Dickenson and Dodd (1976) grouped rangeland species according to similarities 

in their phenological patterns (Table 4.1).  This knowledge may improve analyses of 

rangeland species by providing a guide to help estimate the best time to separate one 

species from the rest in a field operation. 

Table 4.1: Phenology grouping of rangeland species and their indicators (two of which 
were sampled in this study) (from Dickenson and Dodd, 1976). 

  

 The non-separability of the grasses, June grass and Idaho fescue, may have been 

aided by the observed similarity in growth structure as both plants grow in clumps.  

crested wheatgrass was also observed to grow in clumps, but larger ones than June grass 

and Idaho fescue.  Structural similarities cannot explain the initial similarity of blue 

grama to June grass and Idaho fescue.  blue grama was observed growing in a more 

carpet-like pattern and has a more slender leaf.  However, the changes undergone by 

these plants, as observed in this study, suggest that they will be separable late in the 

growing season.  



 

69 

 Since the plants sampled seemed more separable as they senesced, it is likely that 

the best time to achieve a satisfactory result from a classification point-of-view is later in 

their phenological cycle.  As this cycle is dependent on changing growing conditions, 

more research would be required to narrow the window in which data should be acquired.  

More research akin to that of Dickenson and Dodd (1976) would provide valuable 

information for classification studies where phenology may be a concern. 
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 5. CONCLUSIONS 

The use of remote sensing technology in discriminating specific plant species is 

useful in monitoring rangeland health for planning and improvement in both economic 

and social uses.  Applications that require discrimination of rangeland areas are often in 

need of appropriate data for accurate classifications.  When classifying using 

hyperspectral remotely sensed data, endmembers are required for estimating the 

abundances of target materials within a scene.  Hyperspectral image analysis methods 

that use a collection of endmembers, such as SMA, can give accurate quantitative results 

describing how much of a certain component exists in a pixel.  A spectral library is often 

employed to provide efficient access to endmembers, but must be built using spectra 

collected from samples of the target being detected. 

The thesis goals were to collect in-situ data to obtain plant species reflectances for 

the creation of endmember spectra, test the separability of the species endmembers 

during peak greenness, and to test the effects of phenology on the separability of the 

collected sample spectra.  Nine plant species were investigated, eight of which were 

native to Southern Alberta, western wheatgrass, blue grama, Idaho fescue, June grass, 

needle-and-thread grass, silver sagebrush, snowberry, and wild rose.  The remaining 

species sampled was crested wheatgrass, an invasive species.  Reflectance data were 

generated from irradiance and radiance data using an ASD FieldSpec 3 field 

spectroradiometer over the course of the summer and fall of 2008.  Over 4000 spectra 

were collected for the creation of endmembers and for separability comparison. 

A spectral library database was created using the SPECCHIO program developed 

at the University of Zurich.  It was populated using the plant sample spectra collected 
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during this research.  The SPECCHIO spectral library proved to be easy to use after the 

initial set up, the most time consuming process being the initial organization of spectra 

into a suitable hierarchy.  The data hierarchy needs to be detailed enough to effectively 

use the metadata entry required by SPECCHIO.  However, it may easily become too 

detailed and inefficient if the user is not careful.  If data need to be changed in the 

hierarchical structure, the changes are only made to the file tree in the operating system’s 

explorer window, which can be read by SPECCHIO again.  

Plant spectra extracted from the spectral database were used to create species 

endmembers.  These were then tested for separability from each other using the 

separability measures NED, MSAM, and CSM.  All measures produced very similar 

results, the only difference between them being the difference between the threshold of 

separability and zero separability.  The greatest spread between zero separability and the 

threshold of separability was achieved using the NED. 

Given the results of the species endmember separability tests, the first hypothesis, 

that green plant species are spectrally separable, is partially accepted.  All but three of the 

species sampled were spectrally separable.  The finding that crested wheatgrass, western 

wheatgrass, and wild rose were not separable affirms that endmembers of different plant 

species can, in fact, appear quite similar. 

 Since the senescent patterns of the plants sampled differed in their timing, the data 

collected from them suggest that they are more separable by their spectral characteristics 

during specific times in the growing season.  The data also suggest that the differences 

between some species become more apparent later in the season.  The second hypothesis, 

that phenological analysis can improve the ability to separate rangeland plant species, is 
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also accepted as species separability based on reflectance was observed to fluctuate 

throughout the growing season. 

 Preliminary results of a comparison of endmembers collected and/or created using 

different methods suggest that endmembers collected in-situ may be of limited reliability 

when used for classifying a hyperspectral image.  Further research in this direction would 

produce a sounder conclusion. 
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6. FUTURE OUTLOOK 

Hyperspectral remote sensing has been in use in land cover studies for a number 

of years.  Practical operational availability is only just beginning with the scheduled 

launches of space borne sensor platforms such as Germany’s EnMAP and Italy’s 

PRISMA (PRecursore IperSpettrale della Missione Applicativa; Labate et al., 2009).  As 

space borne hyperspectral technologies improve in spatial and spectral resolution, the 

quality of analyses performed using these and airborne sensors should improve.  With a 

greater availability of data from space borne sensors and with the larger coverage (over 

that of airborne sensors), it is likely that hyperspectral remote sensing will become a 

more affordable data source than it currently is.  Affordability and availability, coupled 

with the ability to separate plant species in a highly variable vegetation cover 

environment (e.g., rangelands), hyperspectral image analysis may prove to be a more 

labour- and cost-efficient mapping method than manual techniques, increasing the 

accuracy and efficiency of monitoring programs. 

Development of endmember collection is as important a requirement for 

hyperspectral analysis as the improvement of sensor and detector performance.  Some 

possible directions might be the development of a standardized file format for 

spectroradiometer data output, research into the question of scale differences between 

field measurements and image data, and further research on defining what a vegetation 

endmember is.  The latter is the most difficult.  The definition of a vegetation endmember 

will need to take into account such questions as what is seen by sensors, how important 

structure is, and whether it is better to model or measure.  Phenological characteristics 

and timing will also be important to improving analysis of vegetation using hyperspectral 
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data.  Building on the amount of data already available will likely be another important 

undertaking for a good deal of time.   

The functionality and intuitive design of the SPECCHIO database allows for an 

easy-to-use system for spectral data storage.  SPECCHIO offers a few basic analysis tools 

to its users.  However, future iterations of this program or the creation of other libraries 

are sure to include more analysis options along with the database itself.  Another 

possibility that would increase efficiency in data storage and analysis might be a fusion of 

a spectral library database with powerful image analysis software such as ENVI.  Such a 

partnership would increase efficiency by reducing or eliminating some of the issues that 

are currently encountered in the use of two separate programs, such as compatibility and 

data transfers.   
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APPENDICES 

Appendix A: Summary of Field Measurements 

 

Summary of 2008 Field Measurements     

Date 
and 

Location 

Species Sampled  Solar Zenith 
Range 

(degrees) 

Sky Condition  Remarks 

Jun‐27  Western wheatgrass  27‐45  clear 

LRC  Blue grama     

  Idaho fescue     

  

Jun‐28  Crested wheatgrass  27‐45  clear 

LC  June grass     

  Needle‐and‐thread     

  

Jul‐08  Snowberry  30‐50  clear 

Galt  Silver sagebrush     

  Wild rose     

Instrumentment problems 
during measurements at 14:36      
Perceived general brightness 
variations despite cloudless sky 

Jul‐14  Snowberry  29‐45  clear 

Galt  Silver sagebrush     

  Wild rose     

Light breeze increasing to light 
wind in the afternoon 

Jul‐17  Western wheatgrass  29‐50  <10% cloud 

LRC  Blue grama     

  Idaho fescue     

Breezes in morning, some 
clouds moved in toward 
afternoon, then dispersed 

Jul‐21  Crested wheatgrass  30‐45  clear 

LC  June grass     

  Needle‐and‐thread     

Windy enough to that plants 
were laying over in morning, 
decreasing in afternoon 

Jul‐25  Western wheatgrass  30‐50  clear 

LRC  Blue grama     

  Idaho fescue     

  

Aug‐12  Crested wheatgrass  35‐50  clear 

LC  June grass    haze 

  Needle‐and‐thread     

Clear in the morning, haze 
moving in early afternoon, 
measurements ceased 

Aug‐15  Snowberry  36‐50  clear 

Galt  Silver sagebrush     

  Wild rose     

AM measurements rejected: 
wrong foreoptic used 
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Summary of 2008 Field Measurements (cont'd)     
Date 

(Location) 
Species Sampled  Solar Zenith 

Range 
(degrees) 

Sky Condition  Remarks 

Sep‐16  Crested wheatgrass  48‐60  clear 
LRC and LC  June grass     

  Needle‐and‐thread     

LC plots measured in the 
morning 

  Western wheatgrass    haze 

  Blue grama     

  Idaho fescue     

Attempted measurement of LRC 
plots in the afternoon, ceased 
due to haze 

Sep‐18  Western wheatgrass  48‐60  clear 

LRC  Blue grama     

  Idaho fescue     

  

Sep‐26  Snowberry  51‐65  clear 

Galt  Silver sagebrush     

  Wild rose     

Afternoon only 

Sep‐29  Snowberry  52‐65  clear 

Galt  Silver sagebrush     

  Wild rose     

Samples shaded by museum 
during first measurement 
interval 

Sep‐30  Crested wheatgrass  52‐65  clear 

LC  June grass    breeze 

  Needle‐and‐thread     

Light breeze in the morning 

Oct‐01  Western wheatgrass  53‐65  clear 

LRC  Blue grama     

  Idaho fescue     

Idaho fescue completely 
senesced 

Oct‐27  Crested wheatgrass  63‐70  clear 

LC  June grass     

  Needle‐and‐thread     

Light wind bringing haze in 
morning, ceased measurements 
after first two intervals 

Nov‐10  Western wheatgrass  77  clear 

LRC and LC  Blue grama    windy 

  June grass  77   

  Needle‐and‐thread     

Western wheatgrass and blue 
grama completely senesced 
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Appendix B: Separability Over Time: Normalized Euclidean Distance Plots 

 

This appendix contains scatter plots which illustrate the separability between the sample 

species over time.  Each species has been assigned a marker shape and colour to aid in reading 

the plots.  The symbols along the X-axis represent the species being compared against, or the 

reference species.  Separability is then illustrated along the numbered columns, the further away 

a marker from the base species symbol at the bottom of the column, the more separable it is from 

the base species.  For example, in column 1 of the first plot (Appendix Figure 1) the diamond 

(blue grama) is the reference species, from which the separability of the others is being 

measured.  The short dash (wild rose) at the bottom of the column labelled IF is the most 

separable from the square (Idaho fescue) at the top while the asterisk (June grass) is the least 

separable.  In fact, since the asterisk (June grass) is above the Separability Threshold (dotted 

line), it is considered to be spectrally similar to the square (Idaho fescue). 

The dotted line in each plot is set at 0.95, which is the separability threshold calculated 

for the NED results.  Thus, any symbol found below this line signifies that that species was 

found to be spectrally separable from the base species in the same column.  

The series names are read as [species][illumination zenith]_[date].  The species 

abbreviations of their common names and their Latin names are listed in Appendix Table 1.  

Reading series name example:  BG2030_0717 reads as blue grama grass (BG), measured 

between 20° and 30° sun zenith angle (2030) on July 17 (0717).  All measurements were taken in 

the year 2008.   

These plots also track the impact of solar zenith angle on species separability.  As Price 

(1994) pointed out, physical structure can have an impact on plant spectra.  As the solar zenith 
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angle changes, differences in illumination direction and intensity cause changes in the amounts 

of sun-lit and shaded areas on the plant.  The effect on separability can be seen in Appendix 

Figures 1 – 6.  In Appendix Figures 1 and 2 (the lowest solar zenith angles measured), and in 

Appendix Figures 5 and 6 (the highest solar zenith angles measured), Idaho fescue and June 

grass spectra are similar.  In Appendix Figures 3 and 4 blue grama is similar to Idaho fescue and 

June grass, respectively.  It would appear, then, that the solar zenith angle does have an effect on 

separability when plant structure is left intact during measurement.  Appendix Figures 7 – 12 and 

13 – 15 display a similar case: a majority of the plots showing good separability between species 

interrupted by three instances of plant spectra being similar.  From Appendix Figure 16 to 17 

there is a decrease in the degree of species separability through the remainder of the season since 

the vegetation becomes more senescent. All of the appendix figures depict species separability 

for the time periods that they represent. 

 

Appendix Table 1 (a copy of Table 3.3): Abbreviations used for identifying species in 
separability plots.  Provided for ease of reference when using the Appendix Figures. 

 
Abbreviation  Common Name  Latin Name 

BG Blue grama  Bouteloua gracilis 
IF Idaho fescue  Festuca idahoensis 
JG June grass  Koeleria gracilis 
NT needle‐and‐thread  Stipa comata 

WW western wheatgrass  Agropyron smithii 
CW crested wheatgrass  Agropyron cristatum 
SB snowberry  Symphoricarpos occidentalis 
SS silver sagebrush  Artemisia cana 
WR Wild rose  Rosa acicularis 
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Appendix Figure 1 

 
Appendix Figure 2 
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Appendix Figure 3 

 
Appendix Figure 4 
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Appendix Figure 5 

 
Appendix Figure 6 
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Appendix Figure 7 

 
Appendix Figure 8 
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Appendix Figure 9 

 
Appendix Figure 10 
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Appendix Figure 11 

Appendix Figure 12 
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Appendix Figure 13 

 
Appendix Figure 14 
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Appendix Figure 15 

 
Appendix Figure 16 
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Appendix Figure 17 

 


