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Abstract

Stars form in cold and dense regions of the interstellar medium where Rayleigh scattering

heavily attenuates short wavelength radiation but allows long wavelength radiation to es-

cape. Long-wavelength radiation from star forming regions, after travelling many lightyears

to reach us, is absorbed by the water vapour in the Earth’s atmosphere before it can reach

ground-based telescopes. Thus, prior to the far-infrared space telescope, Herschel, our view

of the submillimeter universe was through very narrow spectral windows that are only ac-

cessible from high mountain sites. Herschel, with its three instruments, was designed to

operate in the far-infrared and observe radiation from star forming regions. Unlike ground

based telescopes, Herschel has provided the first unfettered access to the entire far-infrared

electromagnetic spectrum.

In this work, I have analyzed Herschel observations of three starless cores (L1521E,

L1521F and L1689B), one Class 0 protostar (IRAS16293-2422) and one Class I protostar

(Elias 29). These observations were obtained with the Spectral and Photometric Imag-

ing Receiver (SPIRE) photometer and spectrometer. The measured low-spectral resolution

spectra of starless cores have been used to obtain more accurate spectral energy distribu-

tions (SEDs) which have enabled the calculation of dust temperatures, emissivity spectral

indices, and masses associated with these cores.

The map-making capability of the SPIRE instrument provided fully sampled spec-

tral maps of IRAS16293-2422 and Elias 29. A wealth of molecular line emission was detected

from both protostars. These include 12CO, 13CO, C18O, C i, H2O, HCO+ and CS. Integrated
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line intensity maps show that both line and continuum emission from IRAS16293-2422 orig-

inate from a compact region surrounding the protobinary system. An SED constructed

from flux density points obtained with various instruments has been fitted with radiative

transfer models to obtain physical parameters associated with IRAS16293-2422. Integrated

line intensity maps for Elias 29 have confirmed the previously reported result that there

are three components along the line of sight. The spatial extent of molecular emission from

these sources is an important constraint in radiative transfer models that are used to better

understand the physical conditions in the early stages of star formation.

Far-infrared broadband observations of starless cores, Class 0 and Class I protostars

obtained with the Herschel -SPIRE instrument have provided for the first time the ability to

study the first stages of star formation. Continuum observations of starless cores have been

used to construct SEDs from which more accurate dust temperatures and emissivity indices

have been derived. Fully Nyquist sampled observations have been used to study the spatial

extent of dust and line emission from Class 0 and Class I protostars.
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Thesis Format

This thesis uses the following conventions:

Equations Equation units are included in square brackets after the equation (e.g., [km/s]

indicates that an equation has units of kilometres per second). If the units of a numbered

equation are not given the equation is unitless.

Units An attempt has been made to use SI units and constants. There are exceptions

where non-SI units are more commonly used in this field. One example of this is the use of

cm−1 (wavenumber) for frequency. Another exception is the units used for angles. Radians

(rad.), degrees (deg./◦), arcminutes (′), and arcseconds (′′) will all be used depending on the

context of the discussion. If the unit of an angle is not stated in an equation, and the angular

units do not cancel out, the angle is assumed to be in radians. Standard astronomical units

such as the AU (1 AU = 1.495 ×1013 m), parsec (1 pc = 3.086 ×1018 cm), Solar mass (1

M�= 1.989 ×1033 g), Solar luminosity (1 L�=3.826 ×1026 W) and Jansky (1 Jy = 10−26

W/m2/Hz) will also be used.
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Chapter 1

Introduction

1.1 Overview

Stars are the building blocks of galaxies. Most of the visible light we see in the sky

at night comes from stars. Leblanc (e.g. LeBlanc, 2011) defines a star as a self-gravitating

celestial object in which there is, or there once was (in the case of dead stars), sustained ther-

monuclear fusion of hydrogen in their core. How stars form is a question many astronomers

are working hard to answer. In order to answer this question we have to focus on what fills

the space between stars: interstellar gas and dust, cosmic rays, electromagnetic radiation,

magnetic fields, gravitational fields and dark matter (e.g. Draine, 2010). Interstellar dust

is comprised of small-sized solid particles (∼ 1 µm). Interstellar gas is comprised of ions,

atoms and molecules in gas phase which are usually far from thermodynamic equilibrium.

Gas collisions establish Maxwell-Boltzmann velocity distributions. Because of this, the tem-

perature normally used to describe interstellar gas is ‘kinetic temperature’, the temperature

at which gas particles in thermal equilibrium would have the observed Maxwell-Boltzmann
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velocity distribution.

Stars are born in dense and cold regions of the Interstellar Medium (ISM) (Shu

et al., 1987). There is a series of phases a star has to pass through after its birth from these

dense clouds of gas and dust until it dies (Ward-Thompson, 2011). During its lifetime, a star

influences its surrounding environment differently depending on its mass and luminosity. It

heats up the surrounding material and sweeps up gas by stellar winds and outflows triggering

the formation of new stars and/or dispersing surrounding clouds that might have collapsed

to form stars. At the end of its life, a star undergoes a series of stages of mass-loss to become

a giant or super-giant. High-mass stars – those with mass greater than eight times the mass

of the sun (M�) – undergo a violent mass-loss phase which results in supernova. During

these mass-loss stages the ISM is enriched with heavy elements. These heavy elements

provide a unique mechanism that can cool the ISM to form new stars and are the basis for

the formation of metal-rich planets like the Earth. Star formation is therefore an important

area of research in astrophysics.

Advances in our understanding of the process of star formation are intimately

related to such fields as the formation of planetary systems, stellar evolution and energetics of

the interstellar gas and dust. The currently accepted theory of star formation is not definitive

due to the complexity of the physical processes involved. Although our understanding of

the basic physical laws and processes involved are well advanced, we still lack a detailed

understanding of how these processes interact to form stars. A challenge in star formation

research is the vast length scales involved – from parsec scales in molecular clouds down to

solar radii scales – which demands high spatial resolution.
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In order to answer questions surrounding the formation of stars, one has to study

their birth place: the cold and dense clouds of gas and dust dispersed throughout galaxies.

Unfortunately the large amounts of gas and dust obscure our view of the processes taking

place at the centre of a cloud until the already formed star is able to blow away all the

surrounding layers of gas and dust. The short wavelength radiation emitted by the hot

nuclei of clouds is absorbed by dust particles and reemitted as long wavelength far-infrared

light. The Earth’s atmosphere is, however, opaque to this part of the electromagnetic

spectrum. The water vapour in the atmosphere absorbs the faint radiation from the star-

forming regions making it impossible to observe in certain wavebands. This problem is

solved by using space borne instruments like the European Space Agency (ESA)’s Herschel

Space Observatory (Herschel) launched on the 14th of May 2009 (Pilbratt et al., 2010).

Herschel was designed to cover the far-infrared region of the electromagnetic spec-

trum using three instruments: the Spectral and Photometric Imaging Receiver Array (SPIRE)

(Griffin et al., 2010), the Photodetecting Array Camera and Spectrometer (PACS) (Poglitsch

et al., 2010) and the Heterodyne Instrument for the Far Infrared (HIFI) (de Graauw et al.,

2010). SPIRE consists of a two-band imaging Fourier transform spectrometer (iFTS) and a

three-band photometer. With its 3.5 m diameter passively cooled primary mirror, Herschel

provides a major advance in spatial resolution. Diameters of the first infrared telescopes,

Infrared Astronomical Satellite (IRAS ) (Neugebauer et al., 1984) and Infrared Space Ob-

servatory (ISO) (Kessler et al., 1996), were limited to 60 cm due to the requirement to

place the entire telescope in a cryostat. Before Herschel ran out of cooling cryogens on

the 29th of April 2013, its three instruments had made over 37,000 successful observations
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in about 23,500 hours covering almost 10% of the sky (http://herschel.esac.esa.int/

esupport/index.php?_m=news&_a=viewnews&newsid=156). In this thesis, I will present re-

sults obtained from analyzing Herschel observations of a sample of star forming regions.

More information about Herschel will be provided in Chapter 3.

1.2 The Interstellar Medium

As stated in the previous section, the ISM is composed of gas and dust. Hydrogen

and Helium are the most abundant gas components in the ISM, constituting 70% and 28%

by mass respectively (Yamada & Winnewisser, 2011). The remaining 2% comes from heavy

elements – elements with mass greater than that of Helium. It is thought that 1% of the

mass of the ISM is in the form of dust particles.

1.2.1 Interstellar gas

The ISM of the Milky Way Galaxy is dynamic and has a wide range of temperatures

and densities as shown in Table 1.1. The densities of the different phases of the ISM in the

table are given as hydrogen number densities (nH) for the simple reason that hydrogen is the

most abundant element in the Universe. A brief overview of the different phases of the ISM

will be provided below. A more detailed description is given by Draine (2010) and Tielens

(2005).

Coronal gas (or Hot Ionized Medium (HIM)) is high temperature gas that has

been shock-heated by blast waves from supernova explosions. The gas has been collisionally

ionized and is traced by X-ray emission and UV absorption lines of highly ionized species

http://herschel.esac.esa.int/esupport/index.php?_m=news&_a=viewnews&newsid=156
http://herschel.esac.esa.int/esupport/index.php?_m=news&_a=viewnews&newsid=156
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Table 1.1: The different phases of interstellar gas (Draine, 2010). [H i: atomic hydrogen,

H ii: ionized hydrogen]

Phase Temperature (K) nH (cm−3)

Coronal gas (HIM) 105-106 ∼0.04

H ii gas 104 0.3-104

Warm H i (WNM) ∼5000 0.6

Cool H i (CNM) ∼100 30

Diffuse H2 ∼50 ∼100

Dense H2 10-50 103-106

Cool stellar outflows 50-103 1-106

such as O iv, Nv, Svi and O iv. H ii gas regions are those in which hydrogen has been

photoionized by hot massive O-type stars. When the photoionized gas is a relatively dense

cloud close to the star, the ionized gas is referred to as an H ii region and when it is lower

density inter cloud material, it is referred to as a diffuse H ii region (or Warm Ionized

Medium (WIM)). H ii gas can be traced by the Hα recombination line, optical and UV ionic

absorption lines against background sources and by the dispersion of pulsar signals passing

through the WIM (Tielens, 2005).

The warm H i (or Warm Neutral Medium (WNM)) and cold H i (or Cold Neutral

Medium (CNM)) constitute the neutral phase of the ISM. The WNM and CNM consists of

atomic gas heated to T ∼ 103.7 K and T ∼100 K, respectively. They can both be traced

by the H i 21 cm line in both emission and absorption and also in optical and UV atomic
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absorption lines of various elements towards bright background stars.

Diffuse and dense H2 regions together constitute the molecular phase of the ISM.

The diffuse H2 regions have relatively large densities and column densities to allow the

existence of H2 molecules in cloud interiors through self-shielding and can be traced by

the H i 21 cm line in emission and absorption, the CO 2.6 mm emission and optical/UV

absorption lines. Dense H2 regions are dark gravitationally bound clouds which block most

of the optical radiation from background sources. They can be observed through CO line

emission, dust continuum emission and C i fine structure line emission. In these dense "dark"

and cold regions, the dust is usually coated with ice mantles consisting of H2O, CO and other

molecules. Even though these regions are referred to as dense (nH ∼ 103 – 106 cm−3), their

gas pressures are lower than can be achieved using state-of-the-art vacuum pumps1. It is in

these dense H2 regions that stars are born.

The last phase of the ISM in Table 1.1 is the cool stellar outflows. These come

from evolved stars which are in the process of losing mass. A combination of high mass-loss

rates of 10−4 M�yr−1 and low outflow velocities (. 30 kms−1) leads to high density (nH ∼1

– 106 cm−3) outflows and high temperatures (T ∼ 50 – 103 K).

1.2.2 Interstellar dust

Even though interstellar dust makes up only 1% by mass of the ISM, it plays a

major role in the chemical evolution of the ISM and hence the formation of stars. It is

now known that the formation of H2 molecules is made possible through the catalyzing
1The Varian TPS Compact Portable Pumping system in one of our labs pumps down to 10−10 torr ∼

1011 molecules cm−3(1 torr = 101.325/760 kPa). This converts to a number density at 300 K of P/(kT ) ∼
108 cm−3.
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effect of dust grains (Tielens, 2005). The topic of grain surface chemistry is discussed in

detail by Tielens (2005). We can infer the physical conditions of interstellar dust through its

interaction with electromagnetic radiation. Observed effects include wavelength dependent

attenuation of star light due to absorption and scattering by dust particles in the wavelength

region between 0.1 and 20 µm. Other effects include the polarization dependent attenuation

of star light and thermal emission from dust at wavelengths between the submillimeter and

2 µm.

Even though a model to describe the observed data from interstellar grains has not

yet been found, models assuming the composition of dust grains to consist of amorphous

silicates and carbonaceous materials have been widely accepted. An example of a successful

two component model is that of Mathis et al (Mathis et al., 1977), which assumes silicate

and graphite spheres with power law size distributions of the form n(a) ∝ a−3.5 for 0.005 µm

< a < 0.25 µm where a is the radius. Polycyclic Aromatic Hydrocarbon (PAH) have been

added to form three-component models (e.g. Draine & Li, 2007; Draine & Fraisse, 2009).

PAH molecules are composed of carbon atoms arranged into planar hexagonal rings with

hydrogen atoms at the boundaries. PAH molecules containing up to hundreds of atoms have

been observed. The three-component models have been successful in reproducing observed

dust extinction curves.

Big interstellar dust grains (a = 0.01 – 0.1 µm) (Compiègne et al., 2008) exhibit

very small temperature fluctuations after absorbing star light. They then re-radiate the light

as continuum emission in the infrared and submillimeter wavelengths. Very small grains (a

= 0.001 – 0.01 µm) exhibit large temperature fluctuations and emit most of their radiation
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in the near and mid-infrared wavelengths (25 – 60 µm). Vibrational relaxation of Far Ultra-

violet (FUV)-pumped PAH molecules (a = 0.0004 – 0.001 µm) result in emission features

at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 µm (Draine, 2010).

1.3 Present understanding of the earliest stages of star forma-

tion

In this section I present the currently accepted theory of formation of low- to

intermediate-mass (M? ≤ 8 M�) stars. Observations of star forming regions at infrared,

millimetre and radio wavelengths, together with theoretical models have led to an improve-

ment of our understanding of the formation of stars. It is commonly accepted that the

evolution of stars begins with density enhancements of the interstellar medium to form cen-

trally concentrated cores (e.g. Lada, 1991; Shu et al., 1993; Andre et al., 1993). Gravity

causes the core to collapse, forming an infall region feeding a central protostar and a sur-

rounding disk supported by centripetal forces. During collapse, excess angular momentum is

dissipated from the system by bipolar outflows (e.g. Shu et al., 1987). The envelope, whose

radius is initially about 1000 astronomical unit (AU) or more contains most of the mass,

but as the system evolves, most of the material settles into the disk and some is accreted by

the central protostar. Eventually, the envelope is depleted of material and is blown away by

the powerful stellar outflows leaving behind a young star and a surrounding disk of approx-

imately 100 AU from which planets are believed to form. Figure 1.1 shows the six stages in

the formation of low-mass stars. Each stage will be described in the following sections.
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Figure 1.1: A schematic view of the different stages in the formation of stars. Adapted from

(Jonkheid, 2006)

1.3.1 Molecular Clouds to Clumps

Stars form through gravitational collapse of cold and dense phases of the ISM

(mostly in Giant Molecular Clouds (GMCs)). Molecular clouds are obscured in the optical

region of the electromagnetic spectrum, but can be observed in the far-infrared and sub-

millimeter wavelengths. The processes that cause local density enhancements in molecular

clouds are not observable because of the small spatial scales involved, and therefore are not

well understood. It is thought that density enhancements may be a result of turbulence,
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shocks from colliding clouds, shockwaves from supernova and expanding HII regions. A local

density enhancement as shown in Figure 1.1(a) has a relatively large gravitational field than

the surrounding regions and will therefore grow by accreting more material. A GMC may

have numerous local density enhancement regions, some of which end up forming clumps.

Clumps or starless cores are objects with no evidence of embedded protostars that maybe

gravitationally bound (e.g. Bodenheimer, 2011).

1.3.2 Clumps to Protostars

Under suitable conditions, starless cores may undergo collapse. The Virial Theo-

rem, a theorem that considers the energy balance in an isolated cloud that is in equilibrium,

states that, when a cloud collapses, half of the gravitational energy released will go into heat-

ing the collapsing material while the other half is radiated away (Ward-Thompson, 2011).

The temperature at the centre of the cloud will continue to rise as material keeps falling

inwards such that the peak of emission falls in the far-infrared region of the electromagnetic

spectrum. Objects that show presence of submillimeter or infrared sources are referred to as

protostars. Figure 1.1(b), (c), (d) and (e) shows the four classes of protostars. The classifi-

cation is based on the spectral slope (or spectral index), α, of their continuum spectra (see

spectral energy distribution (SED) on the bottom right corner of each diagram in Figure

1.1) between 2 and 20 µm (Lada & Wilking, 1984; Lada, 1987).

α =
d log(λFλ)

d log(λ)
. (1.1)

Low-mass protostars (M . 3 M�) are classified according to their ratio of observed ground-

based flux densities in the atmospheric windows at 2.2 µm (K band) and 10 µm (N band)
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(Draine, 2010):

αK,N =
[log[(λFλ)10 µm − log[(λFλ)2.2 µm]

log(10/2.2)
. (1.2)

For a reason why these infrared astronomical bands are important, interested readers are

referred to Burke & Graham-Smith (2010).

Class 0 protostars have sizes of about 104 AU and they are heavily obscured such

that their spectral energy distribution peaks in the far-infrared region (λ > 100 µm). These

objects may be deeply obscured and may not be visible in the K and N bands. A larger

fraction of their luminosity comes from accretion from their envelopes. Typical ages of Class

0 protostars are in the range 1 – 3 × 104 yr.

Class I protostars are characterized by αK,N > 0. This corresponds to blackbodies

having temperatures of T < 870K. Class I protostars are surrounded by a disc and circum-

stellar envelope with combined mass a few tens of solar masses. The planar structure is

caused by the initial angular momentum of the cloud due to its rotation around its centre of

mass. As collapse continues and in order to conserve angular momentum, the rotation speed

of the protostar increases, material falls toward the orbital plane and excess angular mo-

mentum is dissipated by bipolar outflows. Some bipolar outflows are highly collimated while

others have wide opening angles. The interaction of bipolar outflows with the surrounding

envelopes causes shock fronts that generate enough heat to allow excitation of rotational

transitions of molecules. A larger fraction of the luminosity of Class I protostars is due to

accretion from their disks and envelopes. Typical ages of Class I protostars are in the range

1 × 105 – 2 × 105 yr.

Class II protostars are characterized by -1.5 < αK,N < 0. This corresponds to
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blackbodies having temperatures of 870 K < T < 1540 K. Class II protostars have a circum-

stellar disk from which they are accreting material but have no envelope. Typical ages of

Class II protostars are in the range 105 – 106 yr. Class II protostars are also called Classical

T Tauri stars, a name that comes after the prototype discovered at optical wavelengths.

Class III protostars are characterized by αK,N < -1.5. This corresponds to black-

bodies having temperatures of T > 1540 K. Class III protostars are still undergoing grav-

itational contraction. At this stage planets have started forming in the disks and so these

objects either have little or no evidence of an accretion disk. Typical ages of Class III

protostars are in the range 106 – 107 yr.

1.3.3 Protostars to Main Sequence stars

As the collapse of the core continues, the temperature increases to high values

such that the pressure generated is able to halt core collapse. The maximum temperature

reached is dependent on the initial mass of the clump and is a deciding factor whether or

not the protostar becomes a main-sequence star. If the maximum temperature reached is

lower than that required to ignite the burning of hydrogen in the core, the protostar becomes

a brown dwarf which then slowly cools down. In the meantime some material in the disk

starts gathering to form planetesimals. If the temperature is high enough to ignite hydrogen

fusion, then the protostar becomes a star. The stellar winds from the young star will then

blow away the gas and dust in the disk (Figure 1.1(g)) leaving behind the more massive

planetesimals which will go on to form planets (Figure 1.1(f)).
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1.4 A condition for the collapse of molecular clouds: the Jeans

Mass

A molecular cloud that is gravitationally unstable will collapse and form a star. In

order to calculate the conditions necessary for gravitational instability, consider an infinite

static three-dimensional medium with a uniform density ρ0 (Ward-Thompson, 2011). The

sound speed in the medium cs is assumed to be uniform and isothermal. A small spherical

portion of this medium whose radius is r may become slightly more dense that the sur-

rounding medium due to random statistical fluctuations. It can be shown that for such a

spherical portion to continue becoming denser and condense, the radius of the sphere, r, has

to be greater than

RJ =
cs

(Gρ0)1/2
, (1.3)

where G is the gravitational constant. If the molecular cloud is assumed to behave as an

ideal gas at temperature T, then the sound speed, cs, is given by

cs =

√
kT

µmH
, (1.4)

where, mH is the mass of a hydrogen atom and µ is the mean molecular weight of the gas.

RJ is called the Jeans length. The mass associated with the Jeans length is called the Jeans

mass and is given by

MJ =
4

3
πρ0R

3
J =

4πc3
s

3(G3ρ0)1/2
(1.5)

The Jeans mass is the minimum mass required for a uniform density region to collapse.

A uniform density region whose mass is greater than the Jeans mass is said to be Jeans

unstable and will collapse to form a star. A region whose mass is less than the Jeans mass
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is not gravitationally bound and will eventually disperse.

1.5 Thesis Summary

This thesis is organized as follows. Chapter 2 discusses the theory required to

understand observations of star-forming regions. It is in this chapter that the interaction

of electromagnetic radiation with interstellar gas and dust is provided. The propagation of

electromagnetic radiation in the interstellar medium is also discussed.

Chapter 3 discusses the derivation of the wavelength dependent beam profile of

the SPIRE iFTS. The SPIRE iFTS beam profile was derived by fitting Hermite-Gaussian

functions to raster observations of Neptune and Uranus. This was my main contribution to

the SPIRE iFTS calibration team. For the past three years, more than 50 % of my time

was spent on the characterization of the SPIRE iFTS beam profile and assessing its impact

on the observed data.

The application of the beam profile to the calibration of the SPIRE iFTS data is

discussed in Chapter 4. Knowledge of the beam profile is important to properly calibrate

astronomical sources whose spatial extent falls between that of point-like and extended

sources.

Chapters 5 to 7 will discuss SPIRE iFTS observations of sources that fall within

the first three phases of star formation as provided in Figure 1.1. Results from analyzing

data from three starless cores (L1521E, L1521F and L1689B) are discussed in Chapter 5. In

Chapter 6, observations of IRAS16293, a Class 0 protostar are discussed. This is followed

by a discussion of a Class I protostar Elias 29 in Chapter 7.
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A summary of the thesis and recommendations for future work are provided in

Chapter 8.
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Chapter 2

Probing star formation

The only way of probing physical properties of star forming regions is by observing

electromagnetic radiation that these regions emit. There are two types of radiation from

star-forming regions, continuum and line radiation. Continuum radiation is distributed

over a wide range of frequencies whereas line radiation peaks at specific frequencies. This

Chapter will focus on the elementary processes involved in the absorption and emission of

electromagnetic radiation by atoms and molecules leading to line radiation and emission

by dust particles leading to continuum radiation. The propagation of radiation through

absorbing and emitting media will also be described. A more detailed description of the

theory presented in this Chapter can be found in Draine (2010); Tielens (2005); Yamada &

Winnewisser (2011); Ward-Thompson (2011) and Rybicki & Lightman (2008).
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2.1 Einstein coefficients

When a ray passes through a medium, its specific intensity Iν (in Wm−2Hz−1sr−1)

can change as the medium absorbs or emits energy. Figure 2.1 shows a two-level system often

used to show that energy can be absorbed or added to the ray by processes of spontaneous

and stimulated emission.

Nu

Nl

Eu

El

Eu

Bluū Bulū AulEu - El=hν

Spontaneous
Emission

Stimulated
Emission

Absorption

Figure 2.1: The absorption and emission of radiation in a two-level system. The correspond-

ing Einstein A- and B-coefficients are labeled. ū = 4πĪ/c is the mean energy density of the

radiation field and Ī is the mean intensity given by Ī =
∫∞

0 Iνφ(ν)dν.

The system consists of gas atoms with discrete energy levels Eu with density Nu

and El with density Nl. According to Einstein, a system in a lower state El will get excited
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by absorption of photons of frequency

ν =
Eu − El

h
[Hz], (2.1)

where h is Planck’s constant. A system in an excited state will spontaneously emit photons

of frequency ν with a certain probability Aul to return to lower level El. Aul is known as

the Einstein A-coefficient. The number of spontaneous transitions per unit time per unit

volume is NuAul. For a single transition, each atom or molecule will contribute an energy

hν distributed over a 4π solid angle. The emission coefficient jν of the medium is defined

as the energy emitted in a certain frequency range, per unit time, per unit volume, per unit

solid angle, i.e.

jν =
hν

4π
NuAulφ(ν) [Wm−3Hz−1sr−1], (2.2)

where φ(ν) is the spectral line profile function describing the emitted line. φ(ν) is peaked

and normalized such that
∫ ∞

0
φ(ν)dν = 1. (2.3)

The absorption coefficient αν of the medium is defined as the energy absorbed from the ray

in a certain frequency range, per unit time, per unit volume, per unit solid angle, i.e.

αν =
hν

4π
NlBluφ(ν) [m−1], (2.4)

assuming that absorption is described with the same line profile function as that for emis-

sion. Blu is the Einstein B-coefficient. If we incorporate stimulated emission as negative

absorption, Equation (2.4) becomes

αν =
hν

4π
(NlBlu −NuBul)φ(ν) [m−1], (2.5)
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2.2 Radiative transfer

The term radiative transfer refers to the manner in which radiation from a source

interacts with the medium through which it propagates before reaching the observer. Sup-

pose radiation enters a medium of length S at s=0 and emerges at s=S with intensity Iν(S)

as shown in Figure 2.2. The change in the intensity of the radiation as it passes though the

medium can be described using the equation of radiative transfer

dIν(s) = −αν(s)Iνds+ jν(s)ds [Wm−2Hz−1sr−1], (2.6)

where αν(s) is the absorption coefficient at frequency ν in m−1 and jν(s) is the emissivity (or

emission coefficient) at frequency ν in Wm−3Hz−1sr−1. The first term on the right hand side

of Equation (2.6) represents the attenuation of the intensity due to the effective absorption

and the second term represents the increase in intensity due to spontaneous emission in the

medium.

Equation (2.6) can be simplified by introducing two new quantities. The first is

optical depth, τν defined by

dτν(s) = αν(s)ds, (2.7)

such that the optical depth at a point l along the line of sight is given by

τν(s) =

∫ s′=l

s′=0
αν(s′)ds′. (2.8)

The optical depth measures distances through the medium in units of the local mean free
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Iν(0)

Iν(τν)

τʹ′+dτʹ′

s+ds
s

τʹ′0

S

0

τν

☀

Figure 2.2: A ray traveling through an optically active medium.

path. The second new quantity is the source function, Sν defined as

Sν =
jν
αν

[Wm−2Hz−1sr−1]. (2.9)

The radiative transfer equation can now be written in the form

dIν(τν) = −Iν(τν)dτν + Sν(τν)dτν [Wm−2Hz−1sr−1]. (2.10)

Equation (2.10) can be integrated by making use of the integrating factor, eτ , to obtain the

equation of radiative transfer in integral form:

Iν(τν) = Iν(0)e−τν +

∫ τ
′
ν=τν

τ ′ν=0
e−(τν−τ

′
ν)Sν(τ

′
ν)dτ

′
ν [Wm−2Hz−1sr−1]. (2.11)

The first term on the right hand side of Equation (2.11) is the background intensity Iν(0)

attenuated by the optical depth τν to the required point and the second term represents
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emission from all infinitesimal elements of the medium between τ
′
ν = 0 and τ

′
ν = τν each

one attenuated by the intervening optical depth τν − τ ′ν . If we consider an infinite slab of

uniform medium (dIν/dτν = 0) whose energy levels have been populated according to a

single excitation temperature Tex, the radiation field within the slab (Iν) would be given by

the Planck function Bν(Tex). Equation (2.10) now becomes

dIν(τν) = 0 = −Bν(Tex)dτν + Sνdτν [Wm−2Hz−1sr−1], (2.12)

and so Sν = Bν(Tex). The emissivity and attenuation coefficient must therefore satisfy

Kirchhoff’s Law:

jν = ανBν(Tex) [Wm−3Hz−1sr−1], (2.13)

where Bν(T ) is the Planck function:

Bν(Tex) =
2hν3

c2

1

ehν/kTex − 1
[Wm−2Hz−1sr−1], (2.14)

jν and αν are now independent of the geometry of the radiating medium (i.e. the source

is much larger than the telescope beam) and depend only on the local properties of the

medium. Substituting Bν(Tex) for Sν in Equation (2.11) and integrating we obtain:

Iν(τν) = Iν(0)e−τν +Bν(Tex)(1− e−τν ) [Wm−2Hz−1sr−1]. (2.15)

If emission from the background is negligible compared to emission from the medium then

the measured intensity is given by

Iν(τν) = Bν(Tex)(1− e−τν ) [Wm−2Hz−1sr−1]. (2.16)

We now apply Equation (2.16) to two extreme cases usually encountered in observational

astronomy: optically thin and optically thick emission.
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Optically thin emission: In this case τν � 1 and the observer receives emission from

right through the medium

Iν(τν) ' Bν(Tex)τν [Wm−2Hz−1sr−1]. (2.17)

Optically thick emission: In this case τν � 1 and the observer receives emission from a

thin layer at the front of the medium

Iν(τν) ' Bν(Tex) [Wm−2Hz−1sr−1]. (2.18)

2.3 Continuum component

The FIR continuum emission by dust is the major coolant of molecular clouds.

Equation (2.16) is important when studying emission from dust. This is because emission

from dust dominates over emission from the background. Replacing Tex with dust temper-

ature Td we obtain

Iν(τν) = Bν(Td)(1− e−τν ) [Wm−2Hz−1sr−1], (2.19)

which is the equation of a greybody. The optical depth τν has the form

τν =

(
ν

νc

)β
=

(
λc
λ

)β
, (2.20)

where β is the dust emissivity index (1 ≤ β ≤ 2) and νc (λc) is the critical frequency

(wavelength) at which the optical depth is unity. The dust temperature and emissivity index

can be obtained from fitting measured spectral energy distributions (SEDs) with Equation
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2.19. The total dust mass Md in a cloud can be calculated by first considering a single

spherical grain of radius a (surface area = 4πa2), density ρd and mass md (= 4πa3ρd/3)

at a temperature Td. If the emission efficiency of the grain at frequency ν is Qν , then its

monochromatic luminosity, Lν , is given by

Lν = 4πa2QνπBν(Td) [W Hz−1]. (2.21)

The number of dust particles in the cloud is given by

Nd =
Md

md
=

Md

(4πa3ρd/3)
. (2.22)

If the cloud subtends a solid angle Ω at the observer who is at a distance d and if the column

density of dust grains is nd = Nd/(d
2Ω), then the optical depth is given by

τν = πa2ndQν =
3MdQν
4aρdd2Ω

. (2.23)

Assuming the emission from dust grains is optically thin, the flux density measured by an

observer at a distance d is given by

Fν =
NdLν
4πd2

=
3MdQνBν(Td)

4aρdd2
[Wm−2Hz−1]. (2.24)

The total mass of the dust is then obtained from

Md =
4aρdd

2Fν
3QνBν(Td)

=
d2Fν

κνBν(Td)
[g], (2.25)

where κν = 3Qν/4aρd [cm2/g] is the emissivity of the dust at frequency ν.

In order to obtain a general equation for all optical depths, we rewrite Equation

(2.19) in terms of flux, to obtain

Fν(τν) = ΩBν(Td)(1− e−τν ) = ΩBν(Td)

[
1− exp

(
− 3MdQν

4aρdd2Ω

)]
[Wm−2Hz−1]. (2.26)
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Rearranging Equation (2.26) we obtain the dust mass as

Md =
d2Ω

κν
ln

[
1−

(
Fν

ΩBν(Td)

)]
[g], (2.27)

which gives Equation (2.25) if the dust emission is optically thin (τν � 1). From this section

we see that the observed continuum emission helps us constrain the dust temperature, the

emissivity index and the dust mass (see Chapter 5).

2.4 Emission line component

A collapsing molecular cloud reaches hydrostatic equilibrium as the gravitational

energy is converted to thermal energy. For collapse to continue, the cloud must cool by

emitting radiation. This can be achieved through fine structure lines of OI, CI, CII and

through rotational lines of molecules like CO, H2O (e.g. Kaufman et al., 1999; Tielens, 2005;

Herbst & van Dishoeck, 2009). Both CI and CO have lines in the Spectral and Photometric

Imaging Receiver Array (SPIRE) imaging Fourier transform spectrometer (iFTS) band and

will be used as examples in the following discussion. The measured line observations are

compared with radiative transfer models to obtain column densities (abundances) of emitting

species. From these abundances, physical conditions such as temperature and density of the

emitting regions can be constrained.

2.4.1 Atomic lines

The gas phase of the Interstellar Medium (ISM) cools mainly by atomic fine struc-

ture lines. We use the Russel-Sanders coupling scheme (Tielens, 2005; Yamada & Win-

newisser, 2011) to characterize the energy levels of atoms. In the scheme, the coupling of
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the orbital angular momenta of all electrons in the atom results in a total angular momentum

L given by

L =
N∑

i

li, (2.28)

The coupling of the spin angular momenta of all electrons in the atom results in a total

electron spin S given by

S =

N∑

i

si, (2.29)

The total angular momentum J is defined as J = L + S. The electronic configurations

(or electronic terms) of atoms are characterized by L, S and J as 2S+1XJ where X = S,

P, D (for L = 1, 2, 3). 2S + 1 is the spin multiplicity. The fine structure lines of carbon

are discussed here since they fall within the frequency range covered by the SPIRE iFTS

and have been observed in the Class 0 and Class I sources discussed in Chapters 6 and 7

respectively. The electronic configuration of carbon is 1s22s22p2. Using the Pauli principle,

we can see that there are three possible terms: 1S, 1D and 3P. The 3P state is a triplet with

three fine structure components 3P0, 3P1 and 3P2 corresponding to J = 0, 1 and 2. The fine

structure transitions 3P1 – 3P0 and 3P2 – 3P1 are observed in the SPIRE iFTS band at 492

and 809 GHz respectively. They provide information on the intermediate regions between

atomic and molecular gas (Tielens, 2005).

2.4.2 Molecular lines

The rotational energy levels of molecules are characterized by the rotational quan-

tum number J . The energy levels of diatomic and linear molecules can be described by
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those allowed for a rigid rotor, i.e.

EJ =
h2

8π2I
J(J + 1) = BhcJ(J + 1), J = 0, 1, 2, 3, ... (2.30)

where B is the rotational constant given by

B =
h

8π2cI
[m−1], (2.31)

h is the Planck constant, c is the speed of light (in ms−1). I is the moment of inertia of the

molecule given by

I =
∑

i

mir
2
i [kg m2], (2.32)

where mi is the mass of atom i at a distance ri from the centre of mass. The most common

rotational transitions are the electric dipole transitions obeying the selection rule ∆J = ±1.

The frequency at which a transition can occur is given by

ν =
EJ+1 − EJ

h
= 2Bc(J + 1) [s−1] (2.33)

Equation (2.33) tells us that the rotational lines of a linear molecule like CO are evenly

spaced in the frequency domain. A discussion of two molecules of interest (CO and H2O) is

provided in the following two subsections.

Carbon monoxide (CO)

CO is the second most abundant molecule in the Universe after hydrogen and

its rotational levels are populated mainly by collisions with H2. H2, the most abundant

molecule in the Universe does not have a permanent dipole moment and so its electric

dipole transitions are forbidden. Therefore CO, instead of H2 is widely used as a tracer of
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molecular gas (e.g. Tennyson, 2010; Ward-Thompson, 2011). The SPIRE iFTS was designed

to cover CO rotational transitions from J=4–3 to J=13–12. The CO isotopologues (13C16O,

12C17O and 12C18O) are less abundant and therefore tend to be optically thin and so have

been used to estimate the total CO and H2 column densities assuming typical [CO/13CO]

and [CO/C18O] abundance ratios (e.g. Wilson & Rood, 1994; Bolatto et al., 2013).

Water (H2O)

Water is an asymmetric rotor. Its energy levels are characterized by an irregular

set of energy levels characterized by quantum numbers JK−1 ,K+1 . The two hydrogen atoms

of the water molecule can have their nuclear spins either parallel leading to a nuclear spin

of 1 or antiparallel leading to a nuclear spin of 0. The parallel spin state is referred to as

ortho and has an even value of K−1 +K+1 while the antiparallel spin state is referred to as

para and has an odd value of K−1 +K+1. The nuclear spin states do not change in radiative

transitions and so ortho-H2O and para-H2O behave like separate species.

The many rotational transitions of water in the far-infrared and sub millimetre

wavelengths make it one of the most important coolants of molecular clouds and provide

important diagnostics for understanding the early stages of star formation.

2.4.3 Rotational diagrams

Rotational diagrams (Goldsmith & Langer, 1999) are based on multi-line observa-

tions of a single atomic or molecular species covering a range of upper level energies. The

method assumes that the molecule is in local thermodynamic equilibrium (LTE), i.e., the

density is large enough that the excitation is mostly caused by collisions. In this case the
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level populations of a molecule can be characterized by a single excitation temperature (Tex)

described by the Boltzmann distribution

Nu

gu
=
Ntot

Qex
e−Eu/kTex [cm−2], (2.34)

where Nu is the column density in the upper state, Ntot is the total column density summed

over all states, gu is the statistical weight of the upper level given by 2Ju+1, Eu is the

energy of the upper state, Qex is the partition function given by Qex = kTex/hcB. k is the

Boltzmann constant, h is the Planck constant, c is the speed of light and B is the rotational

constant of the molecular species being considered. The method also assumes that the

emission is homogeneous and fills the telescope beam and that the lines are optically thin.

The column density for each line is given by

Nu

gu
=

4πIν
hνulAulgu

=
4π

hνulAulgu

∫
Iνdν [cm−2], (2.35)

where Iu =
∫
Iνdν is the line flux in Wcm−2sr−1. Combining Equations (2.34) and (2.35)

and applying natural logarithms on both sides we obtain

ln

(
4π

hνulAulgu

∫
Iνdν

)
= − 1

Tex

Eu

k
+ ln

Nex

Qex
. (2.36)

The excitation temperature is obtained by plotting a graph of ln (Nu/gu) versus (Eu/k) and

using a linear fit. The obtained excitation (rotational) temperature will be used to calculate

the partition function which then enables calculation of the column density from the y-

intercept. If all the assumptions stated above are valid, then the temperatures obtained by

this method are trustworthy, but column depth effects and non-uniform beam filling affect

the derived column densities. In order to calculate the total amount of matter in a cloud,



2.4. EMISSION LINE COMPONENT 29

N(CO) should be converted to the column abundance of hydrogen, N(H2). A conversion

factor of N(CO)/N(H2) = 10−4 (Wilson & Rood, 1994; van Dishoeck et al., 1995) is usually

used. When using 13CO the conversion factor 12C/13C = 65 derived for nearby (<500 pc)

molecular clouds (Langer & Penzias, 1993) is used.

2.4.4 Non-LTE models

For many regions in the ISM, the density is too low to attain LTE and so the

contribution of radiative decay exceeds that of collisional de-excitation. This leads to ex-

citation temperatures lower than the kinetic temperatures. A commonly used Non-LTE

model, RADEX (van der Tak et al., 2007), uses both collisional and radiative processes to

calculate level populations of molecules. The collision rates between upper levels u and lower

levels l are usually designated Cul and Clu. The rate of collisions is given by

Cul = ncolγul and Clu = ncolγlu, (2.37)

where γul(γlu) is the downward (upward) collisional rate coefficient (in cm3s−1) and ncol is

the number density of the collision partner. RADEX assumes statistical equilibrium

dnu

dt
=

N∑

l 6=u
nlPlu − nu

N∑

l 6=u
Pul = Fu − nuDu = 0 [cm−3s−1], (2.38)

where

Pul =





Aul +Bulū+ Cul (u > l)

Bulū+ Cul (u < l)

. (2.39)

Pul and Plu are the destruction and formation rate coefficients respectively, nu is the number

density for level u and Cul is the sum over all collision partners of the rates of inelastic,

collision-induced transitions u→ l. Fu [cm−3s−1] and Du [s−1] are the state-specific rates of
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Table 2.1: Critical densities (ncrit) and upper energy levels (Eup) for a sample of cooling lines

in the cold, dense ISM (Lequeux et al., 2005). Collision partners are hydrogen molecules.

Species Transition ncrit [cm−3] Eup [K]

CO J → 1− 0 3×103 5.53

J → 2− 1 1×104 16.6

J → 3− 2 5×104 33.2

C i 3P1-3P0 0.5×103 23.6

C i 3P2-3P1 1.0×103 62.5

formation and destruction respectively. An important parameter useful in solving the above

equilibrium equation is the critical density, ncrit, the density at which the radiative decay

rate is equal to the collisional de-excitation rate. In the optically thin limit (no radiation

trapping), ncrit is defined as

ncrit =
Aul

γul
[cm−3]. (2.40)

ncrit is directly proportional to ν3 and therefore increases with the energy of transitions.

This relationship is important in constraining number densities of detected molecules and

transitions. Table 2.1 shows the critical densities (ncrit) and upper energy levels (Eup) for

some of the major cooling lines in the cold, dense ISM.
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2.5 Conclusion

This chapter has introduced the processes that lead to emission and absorption of

radiation by dust, atoms and molecules. How the radiation propagates from regions where

it is emitted to the observer has also been discussed. The examples given in this chapter

are those of atoms and molecules whose emission lines fall in the SPIRE iFTS bands. This

was carried out to set the stage for a more detailed discussion of the measured spectral lines

and dust SEDs in the following three chapters.
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Chapter 3

The beam profile for the

Herschel-SPIRE iFTS

3.1 Overview

Flux calibration is one of the most important steps in astronomical data analysis.

The measured spectral images are impacted by the wavelength dependent beam profile and

source extent. It is therefore important to understand the beam profile of the instrument

used in obtaining the data. In this chapter the derivation of the beam profile for the Spectral

and Photometric Imaging Receiver Array (SPIRE) imaging Fourier transform spectrometer

(iFTS) is discussed. A paper describing this work has been published in the refereed lit-

erature and is attached as Appendix A. In this chapter I will describe in more detail the

steps taken to derive the beam profile, material that will be used in subsequent chapters

into context. The importance of the beam profile of an instrument and its derivation are
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described in Section 3.2. The reduction of SPIRE iFTS observations is described in section

3.3. Section 3.4 discusses how the calibration of point and extended sources observed with

the SPIRE iFTS is carried out. Sections 3.5 and 3.6 describe the functions used to approx-

imate the SPIRE iFTS beam profile and the algorithm developed to obtain the best fit of

the functions to the measured data. The main results are presented in Section 3.7.

3.2 Introduction

The role of the primary mirror of a telescope is to provide directionality by focusing

electromagnetic radiation from a particular astronomical source onto the instruments and

detectors. To calibrate the measured signals, the response of the instrument to a point source

as a function of angle should be known. This response is usually referred to as the Point

spread function (PSF) or beam profile of the instrument. The response of the instrument to

a source of any size is then a convolution of the instrument PSF with the source structure.

A bright and isolated point source should be used in the measurement of the instrument

beam. This is equivalent to convolving a delta function with the telescope beam. Using

a bright and isolated point source ensures that all the measured flux originates from that

single object and is contained in the beam shape.

Obtaining the data used to derive the beam profile is achieved by scanning the

telescope in a raster pattern around the point source. The measured flux will be highest

when the point source is at the centre of the instrument beam. The flux decreases as the

telescope is moved away from the point source. The two-dimensional distribution of light in

the telescope focal plane is what is called the instrument PSF or beam profile.
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Most of the data used in this thesis were obtained using the SPIRE iFTS. A brief

description of the SPIRE iFTS is provided in the paper (Makiwa et al., 2013). For a more

detailed description of the instrument, the reader is referred to Griffin et al. (2010). The

beam profile of the SPIRE iFTS was derived from raster observations of Neptune and Uranus

which are described in detail in the paper in Appendix A. The observations were processed

as described in the following section.

3.3 Data reduction

The Neptune and Uranus raster observations were processed using the Herschel

Interactive Processing Environment (HIPE) data pipeline version 7 (Ott, 2010)1. A complete

description of the SPIRE spectrometer pipeline is provided by Fulton et al. (2013). A block

diagram of the SPIRE iFTS data processing pipeline is shown in Figure 3.1. It contains

processing modules commonly used to process iFTS data, such as phase correction and

Fourier transformation.

The Level-0 product contains raw telemetry data as measured by the instrument.

The data are organized into the spectrometer detector timeline (SDT), spectrometer mecha-

nism timeline (SMECT), the nominal housekeeping timeline (NHKT) and the SPIRE point-

ing product (SPP). Modules common to the Photometer and Spectrometer are applied to

the data to yield Level-0.5 products. These initial processing steps convert the raw samples

for all the spectrometer detectors into root mean square (RMS) voltage timelines and store

them into the Level-0.5 SDT product.
1HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of Euro-

pean Space Agency (ESA), the National Aeronautics and Space Administration (NASA) Herschel Science
Center, and the Heterodyne Instrument for the Far Infrared (HIFI), SPIRE and SPIRE consortia.
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Figure 3.1: The SPIRE iFTS data processing block diagram obtained from Fulton et al.

(2013).
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The Modify Timelines portion of the the SPIRE Spectrometer building block

pipeline performs time domain operations on the spectrometer detector samples. The first

operation is first level deglitching where glitches due to cosmic ray hits and other impulse-like

events are removed. Processes such as detector non-linearity correction, clipping correction

and time domain phase correction are applied in this portion of the pipeline. The pipeline

then uses the SMECT, NHKT, SPP and calibration products to create interferograms which

are available as Level-1 products. The interferograms are then transformed into spectra

which are also saved as Level-1 products. This stage involves using an extended source for

which the low emissivity Herschel primary mirror provides a reference point. The spectral

intensities are converted from quantities with units of Volts/GHz to brightness quantities

with units of Wm−2Hz−1sr−1 appropriate for sources uniformly extended in the beam.

The final stages of the processing involve converting the Level-1 spectra into a set

of Level-2 spectral products depending on the type of observation. The Level-2 products for

all raster and jiggle mapping observations are spectral data cubes with two regularly spaced

spatial dimensions and one spectral dimension per pixel in units of Wm−2Hz−1sr−1. The

Level-2 products for single pointing sparse sampling observations are point source spectra for

the two central detectors (SLWC3 and SSWD4) in units of Jy (1 Jy = 10−26 Wm−2Hz−1).

Converting from Wm−2Hz−1sr−1 to Jy is achieved by applying point source calibration

products derived using Uranus observations and models.

Since the raster and cross-scan observations of Neptune and Uranus used in the

derivation of the SPIRE iFTS beam profiles were obtained in a special engineering mode

where the spacecraft pointing (rather than the beam steering mirror position) was varied to
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obtain a map, the data required specialized processing, in which, in addition to all of the

processes described above the motion of the planet needs to be taken into account and no

gridding was applied to the data.

3.4 Point and extended source calibration of the SPIRE iFTS

The processing of the SPIRE iFTS observations has been described in Section 3.3.

This section will present how the flux calibration of extended and point sources observed

with the SPIRE iFTS is achieved. This is described in detail by Fulton et al. (2013), Wu

et al. (2013) and Swinyard et al. (2014).

3.4.1 Extended-source calibration

Extended-source calibration is suitable only for uniformly extended sources, those

where the solid angle of the source light distribution profile, Ωsource, is much larger than that

of the SPIRE iFTS beam, Ωbeam, at a particular frequency. It is based on observations of

a dark region of the sky, i.e. where the detectors are only receiving thermal radiation from

the Herschel telescope and SPIRE instrument. The calibration uses models of the telescope

and instrument emission constructed using onboard temperature sensors and the telescope

mirror emissivity as measured on the ground (Fischer et al., 2004). The relative spectral

response function (RSRF) of the telescope Rtel is defined as

Rtel =
(Vdark −MinstRinst)

Mtel

[
V GHz−1

W m−2 sr−1 Hz−1

]
(3.1)

where Vdark (in V GHz−1) is the voltage density when observing the dark sky, Rinst is the

RSRF of the instrument, Mtel and Minst (both in Wm−2Hz−1sr−1) are the intensities from
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the telescope and instrument calculated based on measured temperatures. Rtel is used to

convert the observed source voltage density, Vobs (in V GHz−1) to surface brightness Iext.

Iext =
(Vobs −MinstRinst)

Rtel
−Mtel [W m−2 sr−1 Hz−1] (3.2)

3.4.2 Point-source calibration

Point source calibration is only suitable when the observed source is point-like. It

uses the point-source calibration factor, Cpoint, in steradians (sr),

Cpoint =
Muranus

Iuranus
[sr], (3.3)

to convert Iext into flux density, Fpoint

Fpoint = Iext Cpoint Jy], (3.4)

where Muranus is the modelled flux density spectrum of Uranus. Iuranus is the Level-1 data

from the SPIRE observation of Uranus.

3.5 Point spread functions

A uniformly illuminated circular aperture produces a diffraction pattern with a

bright spot at the centre and concentric rings. The diffraction pattern, characterized by

the size of the aperture and the wavelength of the electromagnetic radiation illuminating

the circular aperture is called an Airy pattern. The peak of the Airy rings falls rather

slowly to zero with increasing distance from the centre. In order to describe the spotsize, a
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Figure 3.2: 2-D Airy and Gaussian profiles. The Airy profile was generated using an aperture

of diameter 3.0 m and at a wavelength of 667 µm. The Gaussian profile has a FWHM of

30′′.

commonly used method is to ignore the relatively small outer rings of the Airy pattern and

approximate the central lobe with a Gaussian profile. Using Gaussian profiles enables more

detailed analysis such as deconvolution techniques to be applied in a more robust fashion.

Another advantage of approximating the beam as Gaussian is that detectors of narrowband

instruments that operate in the far-infrared and at radio wavelengths employ single-mode

feed-horns whose fundamental mode is Gaussian. Figure 3.2 shows the structure of both

Airy and Gaussian profiles.

Multi-moded feed-horns used with broadband instruments have complex beam

shapes. Their beam profiles are sometimes represented by Hermite-Gaussian beam pro-

files (Martin & Bowen, 1993). In order to derive the beam profile for the SPIRE iFTS the

measured data were first fitted with Airy and Gaussian PSFs. However, it has been known

that the beam is neither Gaussian nor Airy because of the complex nature of the SPIRE
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iFTS optical system. We then used Hermite-Gaussian PSFs to describe the beam as stated

in our paper. Brief descriptions of Airy and Gaussian PSFs that we used are provided below.

Hermite-Gaussian PSF are described in our paper.

3.5.1 Airy function

Telescopes have a circular aperture. The resultant intensity, I(θ), due to diffraction

of radiation from a circular aperture of radius, a, is given by

I(θ)

I(0)
=

[
2J1(ka sin θ)

ka sin θ

]2

, (3.5)

where J1 is the Bessel function of the first kind of order one, k = 2π/λ is the propagation

number and θ is the angle between the axis of the circular aperture and the line from the

centre of aperture to point (x,y) on the detector plane. Equation (3.5) is called an Airy

function. In order to facilitate the fitting of the Airy function to measured data, Equation

(3.5) are expressed in a suitable form as described below. The first minimum for Airy profiles

occurs at ∼ 1.22λ/D (=1.22λ/2a) where D is the diameter of the aperture. Using the small

angle approximation, Equation (3.5) becomes

I(θ)

I(0)
=

[
2J1(kaθ)

kaθ

]2

, (3.6)

The half maximum for the central Airy disc, the point where

[
J1(kaθ)

kaθ

]2

=
1

8
, (3.7)

occurs when kaθ = 1.61633. The Full Width Half Maximum (FWHM) is therefore given by

2π

λ
aθFWHM = 2× 1.61633. (3.8)
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Substituting 2× 1.61633/θFWHM for ka and rearranging Equation (3.6) we obtain

I(θY, θZ)

I(θY0, θZ0)
=




2J1

(
3.232660

√(
θY−θY0
θFWHM,Y

)2
+
(

θZ−θZ0
θFWHM,Z

)2
)

(
3.232660

√(
θY−θY0
θFWHM,Y

)2
+
(

θZ−θZ0
θFWHM,Z

)2
)




2

, (3.9)

where (θY0,θZ0) and (θY,θZ) are the position of Neptune and any other position on the

detector plane respectively. Equation (3.9) is in the appropriate form for use in minimization

procedures.

3.5.2 Gaussian function

Paraxial waves - waves whose wavefront normals make small angles with the optical

axis - must satisfy the paraxial Helmholtz equation:

∇2
TA− j2k

∂A

∂z
= 0, (3.10)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator and A(r) is the complex

envelope of the wave. r =
√
x2 + y2 is the radial distance from the direction of propagation

(the z axis).

One of the most important solutions of the paraxial Helmholtz equation is the

Gaussian beam which is described by the function,

I(x, y)

I(x0, y0)
= exp

(
−
[

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

])
, (3.11)

where I(x, y) and I(x0, y0) are the intensity values at points (x, y) and (x0, y0) respectively.

(x0, y0) is the point at which the intensity peak occurs. σx and σy are related to the Full

Width Half maximum as FWHM = 2
√

2 ln 2 σ. The PSFs represented by Equations (3.9)
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and (3.11) should be normalized such that:

A

∫ ∫
I(x, y)

I(x0, y0)
dxdy =

∫ ∫
Ψ(x, y)dxdy = 1, (3.12)

where A is a normalizing factor and Ψ(x, y) is the normalized PSF.

3.6 Minimization

To derive the SPIRE beam profile at each wavelength, the procedure started with

an assumed analytical function and performed minimization of the residuals until the best

fit was obtained. An Interactive Data Language (IDL) programming script, which uses the

Levenberg-Markwardt algorithm to solve least squares problems (Markwardt, 2009), was

developed. The first step in the fitting process is to read the 3-D data cubes (2 spatial and 1

spectral dimensions) into IDL. The flux values and their errors were calculated using HIPE

as described in Section 3.3. The IDL script then fits the functions described in Section 3.5

while comparing the resulting reduced χ2 (χ2
R) values. For the case of Hermite-Gaussian

functions we started by fitting the first six modes. The solution that gave lowest χ2
R with the

fewest number of beam mode terms was selected. The results are presented in the following

section.

3.7 Results

Since the SPIRE iFTS detectors are feed-horn coupled and the feed-horns are

multi-moded, it was decided that the PSFs that would best represent the iFTS beam were

the Hermite-Gaussian functions. As is expected, the results from fitting Hermite-Gaussian
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PSFs to the data agree very well with those from fitting a pure Gaussian in wavelength

regions where the feed horns are expected to be single moded. The results obtained from

fitting Hermite-Gaussian functions are described in detail in our paper (Appendix A). The

results are presented such that one can reconstruct the wavelength dependent SPIRE iFTS

beam. Figure 3.3 shows the results of the fitting performed at 317.5 µm (944 GHz). At this

wavelength, the fitting returned a χ2
R of 0.7. The analysis showed that there is no significant

improvement in the χ2
R from including terms higher than the zeroeth order function (i.e. pure

Gaussian) for the spectrometer short wavelength (SSW) band. In contrast, the spectrometer

long wavelength (SLW) band requires the first three radially symmetric basis functions.

Generally, the errors from fitting the SLW data are larger than for the SSW data.

This is due to the additional higher order terms being fitted. The errors from the fitting

of the waist radius are less than 2% whilst the errors for the coefficients, cn increase with

n up to 20% for certain wavelengths. This increase in uncertainty arises when the power

assigned to higher order terms in the fitting process becomes comparable to the noise level

in the data.

Figure 3.4 shows the FWHM (solid curve) determined from the reconstructed com-

posite beam compared to that expected from diffraction theory (dashed line). The long-

wavelength end of each SPIRE iFTS band agrees well with diffraction theory as expected

since the beam is single-moded in these regions and this approximates well to a Gaussian.

However, the beam shows an increasing deviation from diffraction theory as the number of

modes increases. The fitting was also applied to a few selected off-centre detectors. The

results show that all of the well characterized detectors exhibit a similar mode structure
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Figure 3.3: Surface plots obtained from fitting Neptune data at 317.5 µm (944 GHz), the

short wavelength end of the SSW band. The top row shows the raw data (left), fitted data

(center) and the difference (right). The bottom row shows a decomposition of the fitted

data (top center) into the first three modes. See Appendix A for further details.
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Figure 3.4: The measured FWHM of the central detectors (SLWC3 and SSWD4) compared

with diffraction theory. The gray band represents the 3σ errors in the measured FWHM.

The thick vertical lines indicate the cut-on wavelengths for the different feed-horn modes.

The expected number of modes present in these regions are also indicated. See Appendix A

for further details.
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allowing a mean profile to be adopted.

3.8 Conclusions

Flux calibration is one of the most important steps in astronomical data analysis.

The measured spectra are impacted by the wavelength dependent beam profile and the

source extent. In this Chapter we describe the steps followed in the determination of the

SPIRE iFTS beam profile. Because the SPIRE iFTS optical components are undersized

and the detectors are feed-horn-coupled, the beam profile exhibits a complex dependence

on wavelength as the multi-moded feed-horns allow different modes to be enabled at certain

wavelengths in the SPIRE iFTS band. All of the well characterized detectors exhibit the

same mode structure. In order to simplify the analysis of mapping observations the beam

profiles for the centre detectors have been taken as representative of the rest of the detectors.

While allowing for six basis functions, we conclude that the SSW band is best

represented by a Gaussian beam which is well behaved in deconvolution applications, whereas

the SLW band is more complex with at least three terms identified. The final number of

terms was determined after comparing the rms values of the residuals of the fit. Tables of

the final wavelength dependent beam parameters are provided in the paper in Appendix A.

These profiles have now been adopted by the SPIRE team and have been incorporated in

the HIPE processing pipeline.
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Chapter 4

Applications of the beam profile

4.1 Overview

Astronomical objects have varying sizes and shapes. This makes it difficult to de-

sign a single data reduction and calibration scheme that can be applied to observations of

all astronomical objects. The standard data reduction pipeline for the Spectral and Pho-

tometric Imaging Receiver Array (SPIRE) imaging Fourier transform spectrometer (iFTS)

was designed to work for two extreme cases of objects: those whose spatial extent is much

smaller than the smallest beam and those whose spatial extent is larger than the largest

beam. Neither of the calibration schemes is suitable for sources whose spatial extent falls

in between the two extremes. In this chapter, the use of the SPIRE iFTS beam profile

in correcting spectra for “semi-extended sources” is discussed. A tool developed to carry

out this correction has been presented by Wu et al. (2013). Following the introduction in

Section 4.2, Section 4.3 discusses the derivation for the correction required for sparsely sam-

pled observations of sources whose spatial extent is neither point-like nor extended. The
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importance of the beam profile in the comparison of mapping observations obtained with

different instruments is discussed in Section 4.4.1.

4.2 Introduction

Accurate calibration of astronomical observations is crucial in the correct inter-

pretation of the respective data. It is therefore common practise to calibrate astronomical

observations using sources whose flux densities are well known, or can be well modelled.

For the Herschel Space Observatory (Herschel), brighter point-like sources like Neptune and

Uranus are used for this purpose. Calibrating extended sources requires regions in space with

uniform flux density distributions and much larger than the instrument beam size. No such

sources exist and so Herschel uses the telescope itself as a calibrator. Calibration schemes

derived this way are limited to those sources with the same spatial extent as the standards.

In order to calibrate sources whose spatial extent falls within the extremes mentioned above,

knowledge of the SPIRE iFTS beam and the spatial intensity distribution of each source are

required. The aim is to calculate beam filling factors which are then used to scale up point-

source calibrated flux densities (in Jy) or scale down extended-source calibrated brightness

values (in W m−2 Hz−1 sr−1). From here onwards sources that are neither point-like nor

extended will be referred to as “semi-extended sources”.

One of the challenges with astronomical sources is that they have different shapes

and structure and so their flux density distributions within a representative source diameter

is not uniform. The “SemiExtendedCorrector” tool in the Herschel Interactive Processing
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Environment (HIPE)1 uses an empirical correction factor required to fix the gap in the

overlap region between the spectrometer short wavelength (SSW) and spectrometer long

wavelength (SLW) bands to estimate the true source size. In order to do this, the tool uses

the SPIRE iFTS beam profiles derived in Chapter 3. Currently the tool can only be used

to correct point-source calibrated spectra of semi-extended sources.

4.3 Correction for semi-extended source distribution in sparse

sampled observations

A large gap and a difference in slope between the SSW and SLW spectra in the

overlap region is an indicator that the observation has not correctly taken into account the

source size. This is a result of the fact that the beam size for the SLW detectors is almost

twice as large as that for the SSW detectors in the overlap region. Figure 4.1 shows the

impact of assuming extended- and point-source calibration for an instrument similar to the

SPIRE iFTS when viewing a greybody of temperature 15 K and dust emissivity index of

1.45 and where the source size is 50′′ (top row), 25′′ (centre row) and 15′′ (bottom row),

respectively. To simplify the problem, it is assumed that the instrument has a constant

beam size of 19′′ in the SSW and 35′′ in the SLW bands, respectively. In each case, the left

column shows the brightness expected from the greybody. The middle column shows the

spectra produced when using extended-source calibration. The right-most column shows

the spectra produced when using point-source calibration.
1HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of Euro-

pean Space Agency (ESA), the National Aeronautics and Space Administration (NASA) Herschel Science
Center, and the Heterodyne Instrument for the Far Infrared (HIFI), SPIRE and SPIRE consortia.
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Figure 4.1: The impact of assuming extended- and point-source calibration for an instrument

similar to the SPIRE iFTS when viewing a greybody of temperature 15 K and dust emissivity

index of 1.45 and where the source size is 50′′ (top row), 25′′ (centre row) and 15′′ (bottom

row), respectively. It is assumed that the instrument has a constant beam size of 19′′ in the

SSW and 35′′ in the SLW bands, respectively. See text for a description of the figures.
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In the top row, the source size is 50′′, which is bigger than the beam sizes for both

the SSW and SLW. Since in this case the source will appear extended to both beams, it is

appropriate to use the extended source calibration which yields the continuous spectrum as

is shown in the top centre figure. However, if the point source calibration was used it would

lead to a large gap in the overlap region as shown in the top right figure.

In the centre row, the source size is 25′′, which is bigger than the beam size for

SSW but smaller than that for SLW. Since in this case the source is extended to SSW and

point-like to SLW, it is appropriate to use extended source calibration for SSW and point-

source calibration for SLW. In the centre figure, the spectrum shown in red is correct, while

the blue spectrum is not. In the right figure, the blue spectrum is correct while the red one

is not.

In the bottom row, a source size of 15′′ has been assumed. This is smaller than

both the SSW and SLW beams. The source appears as a point source to both SSW and

SLW and so applying extended-source calibration (centre figure) is not appropriate for both

bands. As is expected, applying point-source calibration (bottom right figure) results in a

continuous spectrum.

Figure 4.1 shows that important information on the source size is conveyed by

studying the overlap region between the SSW and SLW bands. The gap is large when an

observation of an extended source is point-source calibrated (top right figure). In this case

the larger SLW beam measures more flux than the smaller SSW beam. The gap is smaller

for a source size that is extended in the SSW band but point-like in the SLW band (right

figure in the centre row). Applying extended-source calibration to an observation of a source
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that is extended in the SSW band but point-like in the SLW band (centre figure in the center

row) results in a gap where the SLW spectrum is lower than the SSW spectrum.

To illustrate the impact of this on SPIRE iFTS observations of astronomical

sources, Figure 4.2 shows measured spectra of three sources of increasing sizes processed

with both the extended- and point-source calibration. Figure 4.2 (a) and (d) show the

spectra for CRL 618, a point source. CRL 618 is a carbon-rich bipolar Proto-Planetary

Nebula (PPN) found at a distance d = 0.9 kpc (Tafoya et al., 2013). Applying point-source

calibration to the CRL 618 observation produces a reasonable match between the SSW and

SLW spectra while applying extended-source calibration leads to a gap and a difference in

slope in the overlap region between the SSW and SLW spectra (see bottom row of Figure

4.1). Since the source is point-like, division of the observed flux densities by the beam solid

angle leads to larger brightness values for the SSW band than that for the SLW band.

Figure 4.2(c) and (f) show the spectra for the Orion Bar, an extended source. Orion

is a nearby (d ∼ 414 pc) Giant Molecular Cloud (GMC) active in star formation (Draine,

2010). A reasonable match between the SSW and SLW spectra for Orion is obtained by

applying extended-source calibration while applying point-source calibration leads to lower

flux densities for the SSW band where the beam is smaller (see top row of Figure 4.1). The

measured flux densities are directly proportional to the size of the beam. Figure 4.2(b) and

(e) show the spectra for M83, a semi-extended source. M83 is a barred spiral galaxy found

at a distance d ∼ 4.5 Mpc (Thim et al., 2003). Neither of the two calibration schemes work

for M83 (see centre row of Figure 4.1).

In order to recover the flux density that reached the bolometers, it is necessary to
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Figure 4.2: Spectra from sources with increasing source size (left to right: CRL 618, M83

and Orion bar). Top row: spectra processed with the extended-source calibration. Bottom

row: spectra processed with the point-source calibration. The flux density and brightness

are in normalized units. Figure taken from Wu et al. (2013).
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calculate a conversion factor, Cs, similar to Cpoint in Equation 3.3. Cs can be expressed as

(Wu et al., 2013)

Cs =
Ms

Iext
[sr], (4.1)

where Ms is the true integrated flux density of the source and Iext is the surface brightness

in W m−2 Hz−1 sr−1. The flux density (in Jy) for the semi-extended source, Fs can then be

obtained from

Fs = Fpoint
Cs

Cpoint
[Jy], (4.2)

In order to calculate Cs, knowledge of the beam profile, Ψν(θ, φ), is required. We also need to

assume a dimensionless source light distribution, Sν(θ, φ). These two quantities are related

to the solid angles of the source, Ωsource, and of the beam, Ωbeam, by

Ωbeam(ν) =

∫∫

2π

Ψν(θ, φ)dΩ [sr], (4.3)

Ωsource(ν) =

∫∫

2π

Sν(θ, φ)dΩ [sr], (4.4)

where spherical polar cordinates (θ,φ) have been used to denote positions in a small region

of the sky. Ms is related to Sν(θ, φ) by

Ms = M0

∫∫

beam

Sν(θ, φ)dΩ = M0Ωsource(ν) [Jy], (4.5)

where M0 (in MJy sr−1) is the average surface brightness of the source. An illustration of

how the signal from a source, Ms, is changed by the telescope and by the instruments using

the telescope beam before reaching the bolometers is shown in Figure 4.3 (Wu et al., 2013).

ηf , the efficiency with which the source couples to the telescope is defined as (Ulich & Haas,
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Figure 4.3: Illustration of how the signal from the source is changed by the telescope and

by instruments using the telescope beam before reaching the bolometers. Figure taken from

(Wu et al., 2013).
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1976; Kutner & Ulich, 1981):

ηf(ν,Ωsource) =

∫∫
2π

Ψν(θ − θ0, φ− φ0)Sν(θ, φ)dΩ

∫∫
2π

Ψν(θ, φ)dΩ
, (4.6)

where (θ0,φ0) is the position of the centre of the beam on the sky. ηc is an empirically

derived factor introduced to take into account additional effects that Equation (4.6) does

not take into account. One such effect is the unknown coupling of the beam profiles to the

source distribution. For a point-source, ηc(ν,Ωpoint) = 1. Treating the total source and

beam separately, we can express Iext as2.

Iext = M0
ηc(ν,Ωbeam)

ηc(ν,Ωsource)
ηf(ν,Ωsource) [W m−2 Hz−1 sr−1], (4.7)

Equation (4.1) can be written as

Cs =
M0

Iext
Ωsource =

ηc(ν,Ωsource)

ηc(ν,Ωbeam)

Ωsource

ηf(ν,Ωsource)
[sr], (4.8)

It can be shown that Equation (4.8) can be reduced to

Cext = Ωsource [sr], (4.9)

and

Cpoint =
Ωbeam(ν)

ηc(ν,Ωbeam)
[sr], (4.10)

for the case of extended- and point-like sources respectively. Now we can correct the spectra

calibrated using either the extended- or point- source flux calibration using

Fs =





Iext
ηc(ν,Ωsource)

ηc(ν,Ωbeam)

Ωsource

ηf(ν,Ωsource)
[Jy]

Fpointηc(ν,Ωsource)
Ωsource

ηf(ν,Ωsource)Ωbeam
[Jy]

(4.11)

2The following logic is used. For a uniformly extended source, Iext = ηcηfM0 = M0. Since ηf(ν,Ωsource)
= 1 for extended sources, we must have ηc = ηc(ν,Ωbeam)/ηc(ν,Ωsource) = 1. If ηc(ν,Ωsource) is known, then
the true source intensity of a source whose size is smaller than the beam can be calculated using Equation
4.7.
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The “SemiExtendedCorrector” tool is based on Equation (4.11). Figure 4.4 shows the spectra

for three starless cores that have been corrected using this tool. These sources are studied in

detail in Chapter 5. The top and middle rows show plots for L1521E and L1521F respectively.

The bottom row shows plots for L1689B. The left column shows the spectra for each source

before and after correction with the “SemiExtendedCorrector” tool and the right column

shows the correction required for each source.

Application of the “SemiExtendedCorrector” tool to point-source calibrated spec-

tra for L1521E, L1521F and L1689B returned angular source sizes of 74′′, 52′′ and 33′′,

respectively. Since the SPIRE iFTS beam ranges from 16 – 20′′ in the SSW band and from

31 – 43′′ in the SLW band, the derived source sizes for the starless cores show that L1521E

and L1521F are extended sources for both bands while L1689B is an extended source for

the SSW band but a point source for the SLW band.

4.4 Comparing images observed with different PSFs

4.4.1 Mapping observations

SPIRE iFTS Mapping observations with either intermediate (1 beam spacing) or

full (1/2 beam spacing) spatial sampling are processed using the “Spectrometer Mapping

user pipeline”. Full (Nyquist) sampling is achieved by moving the beam steering mirror in a

16-point jiggle pattern. The calibration of each jiggle position is carried out independently

before the detector data are resampled onto regular spatial grids with pixel sizes of 9.5′′ for

SSW and 17.5′′ for SLW. The World Coordinate System (WCS) for the two spectral data

cubes are different. In order to perform combined analysis of the two data cubes, the pipeline
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Figure 4.4: Left column: the point-source calibrated SPIRE FTS spectra for L1521E, L1521F

and L1689B before (dashed lines) and after (solid lines) correction with the “SemiExtended-

Corrector” tool. Right column: The wavelength dependent scaling factor required to fix the

gap between the SSW and SLW spectra for each source. The angular source sizes returned

by the the “SemiExtendedCorrector” tool is shown on the subtitle of each plot.
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has to be adjusted so that the detector data for both SSW and SLW are transformed onto

the same WCS and the pixel sizes are the same.

In Chapter 3, it was shown that the beam size of the SPIRE iFTS is wavelength

dependent. This variation in beam size has to be taken into account when comparing the

SSW and SLW data cubes. This is achieved using the “convolution projection task” in HIPE.

The frequency dependent convolution kernel used by this task is Gaussian. While the Point

spread function (PSF) for the SSW band is Gaussian, that for the SLW band is not. It

consists of Hermite-Gaussian modes and so care must be taken when interpreting SPIRE

iFTS maps convolved with the simple Gaussian.

4.4.2 Map convolution

Convolving spectral images obtained at different wavelengths to a common beam is

necessary in the correct interpretation of the data. Convolution is also used when comparing

images taken with different instruments having different PSFs. The process transforms

images taken with instruments whose PSFs are smaller into a larger PSF. A brief discussion

of the importance of map convolution is provided below. Interested readers are referred to

a paper by Aniano et al. (2011) for a detailed discussion of the topic. The paper describes

the generation of convolution kernels for the cameras (photometers) of various ground and

space-based observatories.

As defined in Chapter 3, the PSF of an instrument, Ψ(x, y, x′, y′), gives the mea-

sured intensity at (x, y) produced by a point source with unit flux at the point (x′, y′). The

cartesian coordinates (x, y) and (x′, y′) represent the position of a small region of the sky



4.4. COMPARING IMAGES OBSERVED WITH DIFFERENT PSFS 60

and source position respectively. This definition ensures that the PSF is normalized as

∫ ∫
Ψ(x, y, x′, y′)dxdy = 1 (4.12)

If the PSF is constant across the field of view (FOV) of the instrument, then Ψ(x, y, x′, y′)

= Ψ(x− x′, y − y′) = Ψ. The instrument measures an image I(x, y) which is a convolution

of the source S(x, y) with the PSF:

I(x, y) =

∫ ∫
S(x′, y′)Ψ(x− x′, y − y′)dx′dy′ = (S ∗Ψ)(x, y) (4.13)

If the PSF of the instrument is wavelength dependent as is the case for the SPIRE iFTS,

images of the same source observed at two different wavelengths, λA and λB cannot be

compared to each other unless the image obtained with higher spatial resolution is degraded

to match the spatial resolution of the other. Suppose the PSFs at λA and λB are ψA and

ψB respectively. In order to transform the image observed at wavelength λA into an image

corresponding to the PSF at λB the convolution kernel must be known. The convolution

kernel KAB that transforms an image obtained at λA into an image corresponding to that

observed at λB should satisfy:

IB(x, y) =

∫ ∫
IA(x′, y′)KAB(x− x′, y − y′)dx′dy′ = (IA ∗KAB)(x, y) (4.14)

where IA and IB are the images observed at λA and λB respectively. In the discussion above

the instrument beam has been assumed to be radially symmetric. If the instrument beam is

not radially symmetric then a different PSF is required for each orientation of the detector

array.

Equation (4.14) can be written as

ΨB = (ΨA ∗KAB) (4.15)
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Taking the 2-D Fourier transform of Equation (4.15) we obtain

F (ΨB) = F (ΨA ∗KAB) = F (ΨA)×F (KAB) (4.16)

Equation (4.16) can be inverted to obtain

KAB = F−1

(
F (ΨB)× 1

F (ΨA)

)
, (4.17)

where F and F−1 are the Fourier transform and inverse Fourier transform, respectively. A

condition for the existence of the kernel is that the Fourier components for which F (ΨA) =

0 should satisfy F (ΨB) = 0 implying that the PSF at λA should be narrower than that at

λB.

Since the Fourier transform for a Gaussian kernel is also Gaussian, Gaussian kernels

are easy to work with and thus find frequent use in this application. The Full Width

Half Maximum (FWHM) of the Gaussian kernel (FWHMKAB ) is the quadrature difference

between the FWHM of ΨA (FWHMΨA) and that for ΨB (FWHMΨB ):

FWHMKAB =
√
FWHM2

ΨB
− FWHM2

ΨA
. (4.18)

Equation (4.17) is intractable for more complex PSFs such as the Hermite-Gaussian functions

used to describe the SPIRE iFTS beam. There is therefore no analytical solution and we

have to resort to numerical methods such as the Maximum Entropy (Gull & Skilling, 1984)

and the CLEAN algorithm (Högbom, 1974).

Figures 4.5 and 4.6 show two example cases of what happens to the SPIRE FTS

spectral data cubes when convolved to a beam of 43′′ using a Gaussian kernel3. Figure

4.5 shows a mosaic plot of spectra from a SPIRE FTS fully sampled mapping observation
3The maximum FWHM of the beam for the SLW detectors is 43′′.
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of IRAS16293-2422. IRAS16293-2422 was first discovered in a survey undertaken by the

Infrared Astronomical Satellite (IRAS ) at 25, 60 and 100 µm (e.g. Walker et al., 1986). It was

later classified as a Class 0 protostar by Andre et al. (1993). In the plot, the right ascension

(RA) is on the horizontal axis and increases from right to left, while the declination (Dec) is

on the vertical axis and increases from bottom to top. Each box on the plot corresponds to

a pixel on the spectral map and has a size of 17.5′′×17.5′′. The spectra before convolution

are shown in blue while those after convolving the whole map to 43′′ are shown in red.

The discontinuity seen in the SSW and SLW spectra for pixel (5,3) is an example

of the phenomena seen in the centre figures of the middle and bottom rows of Figure 4.1.

This is an indication that the source size for IRAS16293-2422 is less than the largest beam

for the SPIRE iFTS. The data presented in Figure 4.5 are analyzed in detail in Chapter

6 where it has been shown that the continuum and line emission from IRAS16293-2422

are compact (∼15′′). Thus, IRAS16293-2422 will be point-like to both the SSW and SLW

bands. Convolving the map to 43′′ does not correct for the spatial extent of continuum

emission. Clearly, the beam and source size play an important role in the interpretation of

the measured spectra.

Figure 4.6 shows a mosaic plot of spectra from a mapping observation of Elias

29. Elias 29 was first discovered in the infrared survey performed using the Caltech 0.6 m

telescope on Mount Wilson (Elias, 1978a). It was classified as a Class I protostar by Wilking

et al. (1989). In the plot, the pixel size, the RA and Dec are the same as those described

above for IRAS16293-2422. The spectra before convolution are shown in blue while those

after convolving the whole map to 43′′ are shown in red. In this plot it can be seen that this
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Figure 4.5: Mosiac plot of IRAS16293 spectral data cubes observed with the SPIRE FTS,

before (blue) and after (red) convolving to a beam of 43′′. The map pixels corresponding

to the spectra in each box are shown on the top left corner. There are many pixels where

the signal is so faint that it can hardly be seen. The observation was processed using

extended-source calibration.
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Figure 4.6: Mosiac plot of Elias 29 spectral data cubes observed with the SPIRE FTS, before

(blue) and after (red) convolving to a beam of 43′′. The map pixels corresponding to the

spectra in each box are shown on the top left corner. The observation was processed using

extended-source calibration.
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region is quite complex. Line emission is not as extended as continuum emission. However,

it can be seen that both continuum and line emission for pixel (4,3) are significantly brighter

which shows evidence of a source that is compact and hotter than its surroundings.

The discontinuity seen in the SSW and SLW spectra for pixel (4,3) is an example of

the phenomena seen in the centre figure of the middle row of Figure 4.1. This is an indication

that Elias 29 appears as an extended-source in the SSW band but as a point-source in the

SLW band. The data presented in Figure 4.6 has been analyzed in detail in Chapter 7

where it has been shown that the continuum emission from Elias 29 is compact (∼22′′).

Convolving the spectral data cubes to 43′′ works well in correcting the continuum from the

effect of source coupling to the wavelength dependent beam profiles but does not work for

line emission. Again it is clear that the beam profile and source extent should be taken into

account when interpreting measured spectra from the SPIRE Fourier transform spectrometer

(FTS). A method of solving this problem for the brightest pixels is to process the spectra

for those pixels using the point-source calibration and using the “SemiExtendedCorrector”

tool to correct for source spatial extent. This will be described in Chapter 6.

4.5 Conclusion

In this chapter, the importance of the beam profile of an instrument in the calibra-

tion of observed data has been presented. The standard SPIRE iFTS pipeline is applicable

only to point-like and fully extended sources. The “SemiExtendedCorrector” tool has been

developed to correct spectra for semi-extended sources calibrated using the point-source flux

calibration scheme. The tool estimates the source size using the gap in the overlap region
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between the SSW and SLW bands and the beam profiles derived in Chapter 3. The impor-

tance of the beam profile in comparing images obtained with instruments having different

PSFs through convolution has also been discussed. Observations of the three starless cores

(L1521E, L1521F and L1689B), a Class 0 protostar (IRAS16293-2422) and a Class I proto-

star (Elias 29) used as examples in this chapter have been analyzed in detail in Chapters 5,

6 and 7, respectively.
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Chapter 5

Pre-stellar Cores: L1521E, L1521F

and L1689B

5.1 Overview

Studying starless cores provides us with knowledge about the initial conditions of

star formation. Starless cores that are close to and will go through gravitational collapse are

called pre-stellar cores. In this Chapter, an analysis of three pre-stellar cores (Lynds 1521E,

1521F and 1689B hereafter abbreviated as L1521E, L1521F and L1689B) observed with

the Spectral and Photometric Imaging Receiver Array (SPIRE) imaging Fourier transform

spectrometer (iFTS) is presented. Section 5.2 provides a general introduction to starless

cores. Section 5.3 discusses what we currently know about the three starless cores studied

in this chapter. A discussion of details concerning the SPIRE iFTS observations of these

cores is provided in Section 5.4. The results are presented in Section 5.5. A discussion of
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the results is provided in Section 5.6.

5.2 Introduction

It has been known for almost three decades now, that stars form in cold (T <

10 K), dense (nH2 & 105 cm−3)1 and quiescent regions of molecular clouds (e.g. Myers &

Benson, 1983; Beichman et al., 1986; Benson & Myers, 1989) called dense cores. Evidence for

this hypothesis was provided by the association of dense cores to young stars in the Infrared

Astronomical Satellite (IRAS ) catalogue. The lack of any sign of protostellar activity such

as infrared sources or bipolar outflows in dense cores led them to be designated “starless”

cores. The study of starless cores provides us with a chance to probe the initial conditions

of star formation.

Dense cores are favourable for the formation of molecules such as H2, CO and com-

plex carbon bearing species (Herbst & van Dishoeck, 2009). The most abundant molecule

in starless cores is H2, a homo-nuclear molecule. Because of its symmetry, H2 does not have

an electric dipole moment but has weak electric quadrupole transitions between rotational

or ro-vibrational levels making it difficult to observe in the quiescent molecular clouds. Af-

ter H2 the next abundant molecule is CO, a hetero-nuclear molecule. Although ∼10−4 less

abundant than H2, CO is the most important molecule used to study the distribution of

molecular gas.

Two methods of probing the cold dense molecular clouds are by studying their

emission and absorption line spectroscopy which provides information about the chemistry
1nH2 is the molecular hydrogen number density in cm−3 while NH2 is the molecular hydrogen column

density in cm−2.
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of these regions and by studying thermal (continuum) emission which provides information

about the dust. The interpretation of spectral lines is affected by the freezing of CO and

other C-bearing molecules onto dust grains (e.g. Caselli et al., 1999; Tafalla et al., 2002).

The “freeze-out” increases toward the centres of starless cores where the temperatures are

significantly lower. The outer layers of cores are heated by the interstellar radiation field

(ISRF) creating an environment where molecules can exist in the gaseous phase.

Studying starless cores using continuum emission is currently accomplished by

using spectral energy distributions (SEDs) constructed from a small number of data points

(3 or greater) extracted from photometers on ground- and space- based observatories (e.g.

Ward-Thompson et al., 2002; Kirk et al., 2007; Schnee et al., 2007). The SED of a particular

core is used to derive the dust temperature, emissivity spectral index, column density and

dust mass in the core. Schnee et al. (2007) show that in order to accurately derive core

parameters from maps obtained at three wavelengths, the noise and calibration errors should

be . 2%. Errors in the derivation of core parameters are however reduced if one uses four

or more maps observed at different wavelengths. Photometric observations of starless cores

with the Herschel Space Observatory (Herschel) (Pilbratt et al., 2010) have added six more

data points to the SEDs and in addition the spectroscopic capabilities of the SPIRE iFTS

in the 447-1545 GHz frequency range with a spectral resolution2 of 24.9 GHz is equivalent

to adding 45 more points.

Herschel was designed to cover the far-infrared region of the electromagnetic spec-

trum using three instruments: SPIRE (Griffin et al., 2010), the Photodetecting Array Cam-
2SPIRE iFTS observations were carried out at three spectral resolutions: low resolution (∆σ = 0.83

cm−1), medium resolution (∆σ = 0.24 cm−1) and high resolution (∆σ = 0.398 cm−1)
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era and Spectrometer (PACS) (Poglitsch et al., 2010) and the Heterodyne Instrument for

the Far Infrared (HIFI) (de Graauw et al., 2010). SPIRE consists of a two-band iFTS and a

three-band photometer. The two SPIRE iFTS bands are the spectrometer short wavelength

(SSW) array which consists of 37 feed-horn coupled detectors and covers wavelengths from

194–313 µm (1545–958 GHz) and the spectrometer long wavelength (SLW) array which con-

sists of 19 feed-horn coupled detectors and covers wavelengths from 303–671 µm (990–447

GHz). The photometer operates at the photometer short wavelength (PSW), photometer

medium wavelength (PMW) and photometer long wavelength (PLW) ranges centred at 250

µm (1199 GHz), 350 µm (857 GHz) and 500 µm (600 GHz) respectively.

In this chapter results obtained from the Herschel SPIRE continuum observations

of three starless cores (L1521E, L1521F and L1689B) are reported. The Herschel SPIRE

instruments measure near the peak of dust emission from these cold sources and has provided

the first accurate view of the SEDs from which trustworthy dust temperatures and emissivity

spectral indices are derived.

5.3 Background of sources

5.3.1 L1521E

L1521E is found in the Taurus star-forming region at a distance of d=140 pc

(Loinard et al., 2005; Torres et al., 2007). It is a triple-lobed pre-stellar core situated at

the south-eastern end of the L1521 filament. Models by Tafalla & Santiago (2004) have

shown that L1521E has no C18O depletion. Their models also derive an unusually low

N2H+ abundance. This suggests that L1521E recently contracted to its present density and
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is therefore an extremely young starless core with age ≤ 1.5×105 yr. A modified blackbody

fit to the L1521E SED with a fixed dust emissivity index (β = 2) has resulted in a dust

temperature of 8.1 ± 0.4 K (Kirk et al., 2007). The derived core radius and mass of L1521E

traced by H13CO+are 0.031 pc and 2.4 M� respectively (Hirota et al., 2002). The H2 number

density measured at the peak position is nH2 = (1.3–5.6)×105 cm−3.

5.3.2 L1521F

L1521F (a.k.a. MC27; Codella et al. 1997; Onishi et al. 1999; Lee et al. 2001) is

also found in the Taurus star-forming region. L1521F appears isolated with a strong central

condensation as shown from the 160 µm Spitzer map presented by Kirk et al. (2007). It is a

dense starless core harbouring a low luminosity (L = 0.05 L�) object L1521F-IRS (Bourke

et al., 2006). Due to its low luminosity, L1521F did not appear in the IRAS catalogue

(Beichman et al., 1986; Benson & Myers, 1989; Codella et al., 1997) but was observed by

the Spitzer Space Telescope (Terebey et al., 2006; Bourke et al., 2006). L1521F-IRS together

with L1544 (Crapsi et al., 2005) are the best examples of evolved starless cores. Kirk et al.

(2005) obtained a dust temperature of 9 ± 2 K, a mass of 0.4 ± 0.1 M� and a column

density, NH2 , of the order of 1×1023 cm−2 with a typical uncertainity of 20–30 %.

In their mapping surveys of Taurus, Onishi et al. (1999) argued that the high

central density (∼106 cm−3) and infall asymmetry seen in the H13CO+ (3-2) lines from

L1521F indicate that the core is in its earliest stages of gravitational collapse with a free-fall

timescale of 103 to 104 yr. Besides the high central density and infall asymmetry, L1521F

also shows molecular depletion and enhanced deuterium fractionation (Crapsi et al., 2004;

Shinnaga et al., 2004). There has been no clear evidence of bipolar outflows from L1521F
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but the spatially compact (<30′′) line wings seen in H13CO+ (3-2) lines (Onishi et al.,

1999) suggest that this may be due to outflow emission similar to that seen from L1014-IRS

(Huard et al., 2006). A well-defined bipolar scattered light nebula seen at short wavelengths

(<5 µm) also provides evidence for the presence of molecular outflows similar to those from

low-mass protostars (Bourke et al., 2006).

5.3.3 L1689B

L1689B is found in the Ophiuchus star-forming region at a distance of d=120 pc

(Loinard et al., 2008; Lombardi et al., 2008). Millimeter and mid-infrared maps of L1689B

have shown that it is a sharp-edged core, elongated in the north-south direction. A modified

blackbody fit to the L1689B SED with a fixed dust emissivity index (β = 2) has resulted

in a dust temperature of 11 ± 2 K (Kirk et al., 2007). For this source, Kirk et al. (2005)

derived a core mass of 0.4 ± 0.1 M� and a column density, NH2 , of 5×1022 cm−2, again

with a typical uncertainty of 20-30 %.

5.4 Observations and data reduction

5.4.1 Herschel-SPIRE photometer observations

SPIRE Photometer maps of the starless cores (L1521E, L1521F and L1689B) were

obtained as part of the Gould Belt guaranteed time key programmes for the study of star

formation (André et al., 2010) using the SPIRE and PACS photometers on Herschel . Large

area observations of the L1688 cloud in the rho Ophiuchus star forming region and the

L1521 cloud in the Taurus star forming region were obtained. Two cross scans (Observation
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Identification Number (OBSID) = 1342205093 and 1342205094 for L1688 and OBSID =

1342190616 and 1342202090 for L1521) were obtained. The publicly available SPIRE pho-

tometer cross-scan observations for each cloud were downloaded, reprocessed and merged

using the Herschel Interactive Processing Environment (HIPE)3 version 11 (Ott, 2010).

5.4.2 Herschel-SPIRE spectrometer observations

The starless cores (L1521E, L1521F and L1689B) were observed as part of the

“Evolution of Interstellar dust” key program under the ISM Specialist Astronomy Group

(SAG4) (Abergel et al., 2010) using the SPIRE spectrometer on board Herschel . These ob-

jects were observed in sparse sampling mode. The L1521E observation (OBSID:1342191211)

was centred at α2000 = 4h29m14.2s, δ2000 = 26◦15′10.0′′. The L1521F observation (OB-

SID:1342191208) was centred at α2000 = 4h28m39.8s, δ2000 = 26◦52′33.9′′ and the L1689B ob-

servation (OBSID:1342191221) was centred at α2000 = 16h34m48.3s, δ2000 = −24◦38′03.1′′.

These source positions are slightly offset from the positions listed in Table 2 of Kirk et al.

(2007). The SPIRE iFTS data were also reduced using HIPE version 11.

The calibration of the SPIRE iFTS is achieved using solar system objects and

other astronomical targets as outlined by Swinyard et al. (2010, 2014). As was mentioned in

Chapter 4, the standard data reduction pipeline for the SPIRE iFTS was designed to work for

two extreme cases of objects: those whose spatial extent is smaller than the beam and those

whose spatial extent is much larger than the beam. The calibration scheme for the former

is referred to as point-source calibration and that for the later is referred to as extended-
3HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA,

the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia.
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source calibration. All sparse sampled SPIRE iFTS observations are processed using the

“Spectrometer Single Pointing user pipeline” which applies point source flux calibration.

Since continuum emission from the sample of starless cores studied in this thesis is not

point-like, the resultant spectra have a large gap between the overlap region.

The “SemiExtendedCorrector” tool (Wu et al., 2013) (see Chapter 4) was used to

correct for source spatial extent. The derived effective Full Width Half Maximum (FWHM)

source sizes are 74′′, 33′′ and 52′′ which correspond to source diameters of 0.050, 0.022 and

0.030 pc for L1521E, L1521F and L1689B respectively. These source sizes are in agreement

with those derived by Kirk et al. (2005).

5.5 Results

5.5.1 Far-infrared photometry

To place results from this work in context, the SPIRE spectroscopic and photomet-

ric data have been combined with other photometry data from ground and space instruments.

A brief introduction of these instruments is provided below.

The Multiband Imaging Photometer for Spitzer (MIPS) (Rieke et al., 2004) is a

far-infrared camera on the Spitzer Space Telescope (Spitzer) (Werner et al., 2004). Spitzer ,

an 85 cm diameter cryogenically cooled telescope was designed to operate from 3 to 160 µm.

MIPS covered three wavebands at 24, 70 and 160 µm with telescope-limited resolutions of 6′′,

18′′ and 40′′ respectively. Although Spitzer ran out of its on-board supply of liquid cryogens

in May 2009, its Infrared Array Camera (IRAC) which provides some of the photometry

data used in this chapter continues to be used in the Spitzer Warm Mission phase.
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The Submillimeter Common-User Bolometer Array (SCUBA) (Holland et al., 1999)

operated on the James Clerk Maxwell Telescope (JCMT) before it was retired in 2005. It

consisted of the Short-Wave (SW) array with 91 pixels operating in the 450 µm atmospheric

transmission window and the Long-Wave (LW) array with 37 pixels operating at 850 µm.

The source positions for the three sources studied in this thesis have been listed

in Table 5.1. The main challenge faced when comparing data from ground and space based

instruments was background subtraction. The challenge in comparing data from MIPS and

SCUBA is that, unlike Spitzer that is sensitive to the entire dynamic range and spatial scale

of the source emission, the JCMT has a chopping secondary mirror that is used to reject

bright atmospheric emission (Kirk et al., 2007). As a result, the flux density values from

SCUBA are only reliable for small scale spatial features and will underestimate large scale

emission. Flux density values observed with the larger SPIRE beam are therefore expected

to be greater than those from SCUBA.

In order to compare flux density values from MIPS and SCUBA, Kirk et al. (2007)

had to subtract a large background from the Spitzer data integrated from a 150′′ size aper-

ture. This method has its own challenges in that different ways of obtaining the background

lead to different results since the cores are usually not found in isolation and are not sym-

metrical in shape. To illustrate this point, Table 5.1 shows flux density values from the

PSW band of the SPIRE photometer obtained using the “annularSkyAperturePhotometry”

task in HIPE from an annular aperture of size 150′′. Source positions listed are those from

Kirk et al. (2007) since they are closer to the peak of the continuum emission than the iFTS

pointings. For this reason, all photometric flux density values recorded from here onwards
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Table 5.1: Flux density values for L1521E, L1521F and L1689B obtained from the PSW

map using annular sky apertures of different inner and outer radii. The first three columns

list the source names and the corresponding RA and Dec. The fourth and fifth columns list

the background subtracted flux densities obtained by using inner/outer radii of 400′′/450′′

and 100′′/120′′ respectively, from which it can be seen that flux densities for these sources

clearly depend on what region is used for background subtraction.

Source RA Dec S250

(2000) (2000) 400/450 100/120
(h m s) (◦ ′ ′′) (Jy) (Jy)

L1521E 04 29 13.6 26 14 05 32(6) 21(5)
L1521F 04 28 39.2 26 51 36 59(8) 33(6)
L1689B 16 34 48.2 -24 38 04 119(11) 52(7)

were obtained from annular sky apertures centred at these positions.

The background was calculated by varying the inner and outer radii of the annular

sky aperture. Using inner and outer radii of 400′′ and 450′′ respectively resulted in flux

density values that are almost twice those obtained from inner and outer radii of 100′′ and

120′′ respectively. The respective inner and outer radii of 400′′ and 450′′ appear to be

suitable for the calculation of the background since they are far enough from all the three

cores studied here. These radii were used to calculate backgrounds and the obtained SPIRE

photometer flux density values are recorded in Tables 5.2, 5.3 and 5.4.

Table 5.2 shows photometer data points for L1521E obtained at various wave-

lengths. Columns 4 and 5 lists the instrument beam and aperture size over which the flux

is measured. Most of the the flux densities were obtained from a aperture of size 150′′. The

only exception is that of flux densities from IRAC shown in Table 5.3. These were obtained
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Table 5.2: Photometer flux values for L1521E. The first three columns show the wavelength,

observed flux (F ) and errors (∆F ). Errors include statistical measurement errors and uncer-

tainties in the absolute calibration. Columns 4 and 5 show the beam sizes for the instrument

(θbeam) used to obtain the data (column 5) and the size of the aperture (θaperture) over which

the flux is measured. Columns 6 and 7 show the instrument used to obtain the data and

the reference from which the data were taken. Refs.–(1) Kirk et al. (2007); (2) this work.

λ [µm] F [mJy] ∆F [mJy] θbeam[′′] θaperture[′′] Instrument Ref.
24 <2.6 – 5.7 150 MIPS 1
70 <67 – 17 150 MIPS 1
160 660 230 40 150 MIPS 1
250 32022 5700 17.6 150 SPIRE 2
350 25454 5000 23.9 150 SPIRE 2
450 4000 1400 7.8 150 SCUBA 1
500 12505 3500 35.2 150 SPIRE 2
850 1400 200 13.8 150 SCUBA 1

with a small size aperture.

5.5.2 Morphology of far-infrared emission

Figure 5.1 shows the SPIRE photometer maps for each of the three sources with

each map measuring 6′×6′ and centred on the source. For each source, the far-infrared

images show that there is a similarity in the diffuse emission, evidence that the 250, 350 and

500 µm wavelengths are tracing the same dust component. All sources are extended with

respect to the largest SPIRE photometer spatial resolution of 38.2′′ = 5350 AU = 0.026 pc

at 500 µm and at a distance of 140 pc.
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Table 5.3: Photometer flux values for L1521F. The first three columns show the wavelength,

observed flux (F ) and errors (∆F ). Errors include statistical measurement errors and uncer-

tainties in the absolute calibration. Columns 4 and 5 show the beam sizes for the instrument

(θbeam) used to obtain the data (column 5) and the size of the aperture (θaperture) over which

the flux is measured. Columns 6 and 7 show the instrument used to obtain the data and

the reference from which the data were taken. Refs.–(1) Bourke et al. (2006); (2) Kirk et al.

(2007); (3) this work.

λ [µm] F [mJy] ∆F [mJy] θbeam[′′] θaperture[′′] Instrument Ref.
3.6 0.42 0.06 1.7 1.7 IRAC 1
4.5 0.54 0.08 1.7 1.7 IRAC 1
5.8 0.34 0.05 1.9 1.9 IRAC 1
8.0 0.45 0.07 2.0 2.0 IRAC 1
24 35 4 5.7 150 MIPS 2
70 290 60 17 150 MIPS 2
160 4400 900 40 150 MIPS 2
250 59161 7700 17.6 150 SPIRE 3
350 55519 7500 23.9 150 SPIRE 3
450 12000 4000 7.8 150 SCUBA 2
500 29305 5400 35.2 150 SPIRE 3
850 3200 400 13.8 150 SCUBA 2
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Figure 5.1: The SPIRE PSW (250 µm), PMW (350 µm) and PLW (500 µm) maps for

L1521E, L1521F and L1689B. Contours are shown at 10, 20, 30, 40 and 50% of the peak in

each map. The contour at 10% for L1689B falls outside the map. The circle at the bottom

left corner of each map represents the photometer beam size at that wavelength. A scale

bar is shown at the bottom right corner of each plot. The maps show that all three sources

are quite extended and have different shapes.
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Table 5.4: Photometer flux values for L1689B. The first three columns show the wavelength,

observed flux (F ) and errors (∆F ). Errors include statistical measurement errors and uncer-

tainties in the absolute calibration. Columns 4 and 5 show the beam sizes for the instrument

(θbeam) used to obtain the data (column 5) and the size of the aperture (θaperture) over which

the flux is measured. Columns 6 and 7 show the instrument used to obtain the data and

the reference from which the data were taken. Refs.–(1) Kirk et al. (2007); (2) this work.

λ [µm] F [mJy] ∆F [mJy] θbeam[′′] θaperture[′′] Instrument Ref.
24 <15 – 5.7 150 MIPS 1
70 <330 – 17 150 MIPS 1
160 35000 7000 40 150 MIPS 1
250 118615 11000 17.6 150 SPIRE 2
350 77540 8800 23.9 150 SPIRE 2
450 18000 6000 7.8 150 SCUBA 1
500 34597 5900 35.2 150 SPIRE 2
850 3100 400 13.8 150 SCUBA 1

5.5.3 Analysis of SEDs

In the limit of small optical depth, emission from dust particles can be described

using a modified blackbody (Equation 2.17):

Fν = τνBν(Td)Ω = µmHNHκνBν(Td)Ω [Jy] (5.1)

where Fν is the flux density per beam in Jy (1 Jy=1×10−26 W m−2 Hz−1) and Bν(Td) is

the Planck blackbody function at the dust temperature, Td. Bν(Td) is given by

Bν(Td) =
2hν3

c2

1

exp (hν/kTd)− 1
[W m−2 Hz−1 sr−1], (5.2)
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τν is the optical depth. τν can be expressed in terms of the specific opacity κν (in cm2 g−1),

the density of the gas-dust mixture ρ, and the path length L by (Smith, 2004; Irwin, 2007)

τν = κνρL (5.3)

= κνµmHNH (5.4)

= σνNH. (5.5)

κν is the emissivity of the dust (specific opacity) at frequency ν:

κν = κ230

( ν

230 GHz

)β
[cm2 g−1]. (5.6)

µ ( = 1.38) is the mean molecular weight of interstellar material in a molecular cloud per

hydrogen atom, mH is the mass of the hydrogen atom, NH is the hydrogen column density4,

Ω is the beam solid angle and σν is the dust absorption cross section in units of cm2 per H

atom. h is the Planck constant, k is the Boltzmann constant, c is the speed of light, κ230 =

0.009 cm2/g is the emissivity of dust grains at a frequency of 230 GHz and a gas density of

106 cm−3 (Ossenkopf & Henning, 1994) and β is the dust emissivity index.

Equation 5.1 can be expressed as

Fν = µmHNHΩκνBν(Td) =
Md

d2
κνBν(Td) = constant× κνBν(Td), (5.7)

which shows that fitting a greybody function to the SEDs returns a constant that contains

information about the dust mass and molecular hydrogen column density. The gas mass

MH is subsequently obtained by assuming a gas-to-dust ratio of 100.

The data in Tables 5.2, 5.3 and 5.4 was used to construct SEDs shown in Figures

5.2, 5.3 and 5.4. The data from Kirk et al. (2007) and that from the SPIRE iFTS and
4It is often assumed that in these dense and cold environments all the gas exists in molecular form and

so NH ≈ 2NH2
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photometer were fit separately with a single greybody function (Equation 5.1). Flux density

values obtained at wavelengths shorter than 100 µm were not considered in the fitting since

they do not appear to be coming from regions where the dust is cold and some in Table 5.3

were obtained using a smaller aperture.

As was mentioned before, the SPIRE iFTS spectra were obtained with a wavelength

dependent beam. The point-source calibrated spectra were then corrected for source extent

using the semi-extended corrector tool (Wu et al., 2013). Since the derived source sizes are

less than the aperture size used to obtain the photometric points, it was found necessary

to scale the SPIRE iFTS spectra by the appropriate ratio of aperture areas (150/(source

size)2). For the case of L1521E, the derived source size was 74′′. The SPIRE iFTS spectra

was therefore multiplied by (150/74)2 = 4.11. After this scaling, the resulting spectrum

matches well with flux densities from the SPIRE photometer. However, for L1521F and

L1689B, it was discovered that the expected scaling factors of 21 and 8, respectively, were

too large. A factor of 4.11 was required to scale both spectra. Multiplying the SPIRE iFTS

spectrum with the ratio of aperture areas assumes that the sources are uniformly extended

which is not the case for the starless cores in our sample. This explains why the required

scaling factors for L1521F and L1689B are less than expected.

Another reason why flux densities from the SPIRE iFTS are scaled to those for the

photometer and not the other way round is that whereas the beam profile for the SPIRE

iFTS is wavelength dependent and multi-moded, that for the photometer is single moded

and well defined (SPIRE Observers Manual, 2011). Furthermore, the photometer band is

well known. This makes flux densities from the photometer more reliable.
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The fitting was carried out by fixing all the parameters in Equation (5.1) except β

and Td. In each plot the SPIRE iFTS spectrum is shown as a solid blue line. The diamond

points represent flux densities from the SPIRE photometer. Flux densities from Spitzer and

SCUBA (Kirk et al., 2007) are represented with red symbols (squares and ‘pins’). Although

they are upper limits, the ‘pins’, are not useful constraints and so were not taken into account

during fitting. The results derived from the fits are summarized in Table 5.5. Also shown in

Table 5.5 are the calculated Jeans masses of the three cores. Assuming a gas to dust ratio

of 100 it is clear that all three cores are Jeans unstable and so will collapse to form stars.

It is important to note that SEDs from Spitzer and SCUBA always fall below those

from SPIRE data. The reason for that is in the way SCUBA operates which results in it

underestimating flux densities on large spatial scales. This was explained in Section 5.5.1.

In order to compare SCUBA and Spitzer data, Kirk et al. (2007) had to process the Spitzer

data in a way to remove the effective background emission. The current best estimate in

combining data from Spitzer and SCUBA which is to subtract a large background from the

Spitzer data results in lower flux densities.

5.6 Discussion

5.6.1 L1521E

Fitting to the L1521E SED from SPIRE iFTS and photometer flux densities re-

sulted in a temperature and dust emissivity index of 11.1 ± 0.2 K and 2.2 ∓ 0.1 respectively.

Fitting to the SED from SCUBA and background subtracted Spitzer flux density points re-

sulted in a temperature and dust emissivity index of 9.0 ± 0.2 K and 1.5 ∓ 0.2 respectively.
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Figure 5.2: Spectral energy distribution for L1521E. The open diamonds and the blue spec-

trum represent flux densities from the SPIRE FTS and photometer respectively, while the

red squares and pins represent flux densities from Spitzer and SCUBA (Kirk et al., 2007).

The pins represent upper limits. The greybody fit to the SPIRE data is shown as a black

dashed line while the fit to Spitzer and SCUBA data is shown as a red dashed line. The

disparity between the SPIRE data and that from Spitzer and SCUBA is due to how SCUBA

operates and also due to the way in which Kirk et al. (2007) processed the Spitzer data to

remove the effective background emission as is explained in Section 5.5.1. The analysis by

Kirk et al. (2007) underestimates the flux densities.
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Figure 5.3: Spectral energy distribution for L1521F. The open diamonds and the blue spec-

trum represent flux densities from the SPIRE FTS and photometer respectively, while the

red squares represent flux densities from Spitzer and SCUBA (Kirk et al., 2007). The grey-

body fit to the SPIRE data is shown as a black dashed line while the fit to Spitzer and

SCUBA data is shown as a red dashed line. The disparity between the SPIRE data and

that from Spitzer and SCUBA is due to how SCUBA operates and also due to the way

in which Kirk et al. (2007) processed the Spitzer data to remove the effective background

emission as is explained in Section 5.5.1. The analysis by Kirk et al. (2007) underestimates

the flux densities.
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Figure 5.4: Spectral energy distribution for L1689B. The open diamonds and the blue

spectrum represent flux densities from the SPIRE FTS and photometer respectively, while

the red squares and pins represent flux densities from Spitzer and SCUBA (Kirk et al., 2007).

The pins represent upper limits. The greybody fit to the SPIRE data is shown as a black

dashed line while the fit to Spitzer and SCUBA data is shown as a red dashed line. The

disparity between the SPIRE data and that from Spitzer and SCUBA is due to how SCUBA

operates and also due to the way in which Kirk et al. (2007) processed the Spitzer data to

remove the effective background emission as is explained in Section 5.5.1. The analysis by

Kirk et al. (2007) underestimates the flux densities.
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Table 5.5: Results obtained from fitting greybody functions to the SEDs for L1521E, L1521F

and L1689B. The first two rows list the temperature and dust emissivity indices obtained

from fitting SPIRE FTS and photometer data (column A: this work) and from other instru-

ments (column B; Kirk et al., 2007). The third and fourth rows list the wavelengths and

optical depths at which the peak of the SEDs occur. The fifth and sixth rows list the masses

and H column densities of the cores. The last row lists the Jeans masses calculated using

the recorded temperatures and column densities.

L1521E L1521F L1689B

A B A B A B

T [K] 11.1(0.2) 9.0(0.2) 15.9(0.2) 9.9(0.1) 15.0(0.2) 14.7(0.2)

β 2.2(0.1) 1.5(0.2) 0.9(0.1) 1.7(0.2) 1.5(0.1) 1.5(0.1)

λpeak [µm] 250 360 240 310 220 220

τλpeak [×10−3] 44(6) 9(2) 20(1) 25(5) 46(4) 14(2)

Md [M�] 0.44(0.02) 0.5(0.1) 1.74(0.02) 0.8(0.2) 1.34(0.02) 0.39(0.03)

NH [× 1022 cm−2] 5.6(0.2) 6(1) 21.9(0.3) 10(3) 16.9(0.3) 5.0(0.4)

MJ [M�] 1.4 0.8 1.0
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The temperature derived from SPIRE data is slightly greater than that reported by Kirk

et al. (2007) obtained by fixing the dust emissivity index to 2. The degeneracy between Td

and β results in a decrease in Td as β is increased and vice versa. In the case of L1521E,

it was noted that Td derived in this work is high even though the derived β is greater than

2. The small difference between the temperatures obtained from fitting to the SCUBA and

background subtracted Spitzer data is also due to the fact that in this work, the fitting was

carried out by taking β as a free parameter whereas it was fixed to 2 in Kirk et al. (2007).

As is expected, the fitting to the SEDs from SCUBA and Spitzer carried out in

this work resulted in the same wavelength (λpeak= 360 µm) for the peak of emission as

that reported by Kirk et al. (2007). The SED from SPIRE data were peaked at a shorter

wavelength of λpeak= 250 µm.

The derived optical depths are� 1 as is expected in these cold and dense environ-

ments. The derived dust masses from the two data sets (Md = 0.44 ± 0.02 M� and 0.5 ±

0.1 M�) are in agreement with each other. The column densities (NH2 = 5.6 ± 0.2 × 1022

cm−2 and 6 ± 1 × 1022 cm−2) are also in agreement. Using the derived core diameter of

0.05 pc, the derived column density can be converted to a density of nH2 = 3.9 ± 0.6 × 105

cm−3 which is in the range of nH2 = 1.3 – 5.6 × 105 cm−3 derived by Hirota et al. (2002).

5.6.2 L1521F

There is a largest discrepancy in the derived temperature and dust emissivity in-

dices for L1521F. Fitting to the SPIRE SED results in a temperature of 15.9 ± 0.2 K and

a dust emissivity index of 0.9 ∓ 0.1 while fitting to the SED from SCUBA and Spitzer

data results in a lower temperature of 9.9 ± 0.1 K and a dust emissivity index of 1.7 ∓
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0.2. The temperature derived from the SPIRE data is also greater than that derived by

Kirk et al. (2007) which was obtained by keeping the dust emissivity index constant at 2.

Using the same dust emissivity index of 2 when fitting to the SPIRE data results in a lower

dust temperature of 12 K, almost consistent with 9 ± 2 K derived by Kirk et al. (2005).

Although the evidence is not totally compelling, tantalizingly, the higher temperature from

the SPIRE data could be explained by the existence of the protostar in the L1521F core as

reported by Bourke et al. (2006).

The fitting to SCUBA and Spitzer SED resulted in the same λpeak (= 360 µm) as

that reported in Kirk et al. (2007). However, fitting to the SPIRE SED resulted in λpeak =

240 µm. The derived optical depths are in agreement. The differences in the derived tem-

peratures and dust emissivity indices resulted in dust masses and column densities derived

from SPIRE SED that are almost twice those from SCUBA and Spitzer SED. The derived

mass and column density from SPIRE data are 1.74 ± 0.02 M� and 21.9 ± 0.3 × 1022 cm−2.

Those from SCUBA and Spitzer SED were 0.8±0.2 M� and 10 ± 2 × 1022 cm−2. The mass

derived from SPIRE data is lower and falls just outside the error range of Md = 2.6 ± 0.8

M� derived by Kirk et al. (2005) in a 150′′ aperture. The derived column density in this

work is almost twice as large as 10 ± 3 × 1022 cm−2 reported by Kirk et al. (2005).

5.6.3 L1689B

Values for the dust temperatures and emissivity indices for L1689B obtained using

the two data sets were consistent. Fitting to the SPIRE SED results in a temperature of

15.0 ± 0.2 K and a dust emissivity index of 1.5 ∓ 0.1 consistent with a temperature of 14.7

± 0.2 K and a dust emissivity index of 1.5 ∓ 0.1 obtained from fitting to the SED from
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SCUBA and Spitzer data. Dust temperatures derived in this work are comparable to but

slightly greater than 11 ± 2 K derived by Kirk et al. (2005) obtained by keeping the dust

emissivity index constant at 2. Keeping the dust emissivity index constant at 2 when fitting

to the SPIRE data lowers the dust temperature to 11.4 K which is consistent with their

value.

The same wavelength for the peak of the SEDs was obtained in this work. The

derived value of λpeak = 220 µm is slightly less than that reported by Kirk et al. (2007). As

is the case for the other two cores discussed above, the derived optical column depths are

comparable and � 1. Fitting to the SPIRE SED resulted in a mass of 1.34 ± 0.02 M� and

a column density of 16.9 ± 0.3 × 1022 cm−2. The calculated mass and column density from

fitting to the SCUBA and Spitzer SED are 0.39 ± 0.03 M� and 5.0 ± 0.4 × 1022 cm−2.

While the mass calculated from fitting to the SPIRE data is close to 1.4 M� reported by

Kirk et al. (2005), the column density from this work is twice as large.

5.7 Conclusion

In this chapter, results from fitting greybody functions to SEDs constructed from

two sets of data have been compared. SEDs for three starless cores were constructed from

SPIRE photometer data and low-spectral resolution spectra obtained using the SPIRE iFTS.

Results have been compared with SEDs from data previously published by Kirk et al. (2007).

In this work, the fitting was performed by keeping both the dust temperature and emissivity

spectral index as free parameters whereas Kirk et al. (2007) fixed the emissivity spectral

index at 2. The flux densities from the SPIRE instruments and those reported in Kirk
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et al. (2007) are inconsistent. The reason for this is that prior to Herschel , SEDs were

constructed by combining data from different ground- and space-based instruments having

different beams, each sensitive to structure on a different scale. In order to combine data

from different instruments, Kirk et al. (2007) had to use different assumptions about the

spatial extent of the sources. This was challenging and results in lower flux densities than

reported in this thesis for the SPIRE iFTS.

For the first time, Herschel provides a unique facility that is not affected by the

Earth’s atmosphere and that has a cooled primary mirror to minimize background emission.

The SPIRE photometer and spectrometer use the same telescope and provide internally

consistent results and furthermore measure near the peak of emission of these cold sources.

Herschel has thus removed the ambiguity of combining SCUBA and Spitzer flux densities

which are lie far from the peak of emission. This has led to more accurate values of dust

emissivity index and temperature from which more accurate core masses have been calcu-

lated. For all the three sources analyzed, there is emission at lower wavelengths that cannot

be fit with a single greybody function. Detailed radiative transfer modelling is required to

explain this emission. The more accurate core properties derived from this work will improve

radiative transfer models of starless and pre-stellar cores.
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Chapter 6

Class 0 Protostar: IRAS16293-2422

6.1 Overview

A collapsing pre-stellar core develops into a Class 0 protostar (see Section 1.4). One

of the characteristics of protostars is that they often exhibit bipolar outflows. The change

in the physical and chemical properties of the parent cloud induced by bipolar outflows

(e.g. Pineda et al., 2008; Friesen et al., 2010) can be studied using continuum and line

emission. This chapter will focus on Spectral and Photometric Imaging Receiver Array

(SPIRE) imaging Fourier transform spectrometer (iFTS) and photometer observations of

IRAS16293-2422, a well studied Class 0 protostar. Section 6.2 provides an introduction to

Class 0 sources and what information about these sources one can obtain from SPIRE iFTS

and photometer observations. Our current understanding of IRAS16293-2422 is presented

in Section 6.3. The details concerning the SPIRE iFTS observations of IRAS16293-2422 and

data reduction are discussed in Section 6.4. The results are presented in Section 6.5.
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6.2 Introduction

Class 0 protostars are surrounded and obscured by cold and dense envelopes making

them observable only at millimetre and far-infrared wavelengths. The inner regions of the

cold envelopes are heated by the central forming star raising the temperatures to enable

evaporation of ice mantles of dust grains. Molecules such as CO and H2O are released

back into the gas phase where they can be detected by their rotational emission lines. It is

also well known that these deeply embedded protostars have high velocity outflows which

supports the thesis that outflow and infall motions happen simultaneously (Bachiller, 1996).

Molecules such as water and CO also form in regions where bipolar outflows and

winds from protostars meet with the surrounding material in envelopes (Kaufman & Neufeld,

1996). Molecular line emission is therefore used to trace outflowing gas. An interesting

example is how CO has been used to trace the red and blue shifted lobes of a Class 0

protostar IRAS 20386+6751 (Bachiller et al., 2001). IRAS 20386+6751 is found in the

L1157 molecular cloud and is one of the most illustrative cases of bipolar outflows (Bachiller

et al., 2001). The basic theoretical concepts of these outflows are well understood but further

observations are required to understand how the flows are driven (Bjerkeli et al., 2009). A

challenge in the interpretation of observations of protostars is in the characterization of

their lines of sight. In addition to emission from gas and ices in the envelopes and disks of

protostars there might be emission from quiescent foreground material.

The results from the analysis of observations of IRAS-16293-2422 (hereafter referred

to as IRAS16293), obtained using the SPIRE iFTS on board the Herschel Space Observatory

(Herschel) (Griffin et al., 2010; Pilbratt et al., 2010), are presented in this chapter. The
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SPIRE iFTS covers frequencies from ∼450 to 1550 GHz. This spectral band covers a number

of emission lines from CO, C i, H2O and HCO+ enabling us to study molecular outflows

and inner regions of envelopes. However, the large beam of the SPIRE iFTS (Makiwa

et al., 2013) does not provide sufficient spatial resolution to distinguish emission from the

envelope, outflows and the central forming star. The largest SPIRE iFTS beam is 43′′ which

corresponds to ∼ 5160 astronomical unit (AU) (=0.025 pc) at the distance of 120 pc.

6.3 Source Background

IRAS16293 is a solar-type Class 0 protostar with a luminosity of 22 L� (Crimier

et al., 2010) found in the L1689N molecular cloud in the nearby ρ Ophiuchus star forming

region. The distance to the ρ Ophiuchus star forming region has previously been considered

to be 160 pc (Whittet, 1974) but has recently been revised to 120 pc (Knude & Hog, 1998;

Loinard et al., 2008; Lombardi et al., 2008). In this chapter we use the revised distance of

120 pc. Figure 6.1 shows images of IRAS16293 obtained at 450 and 850 µm. The images

from the Submillimeter Common-User Bolometer Array (SCUBA) observations obtained in

August 1999 are publicly available on the James Clerk Maxwell Telescope (JCMT) archive.

Our current understanding of IRAS16293 is that it is a low-mass protobinary sys-

tem (Mundy et al., 1986) deeply embedded in a 2 M� envelope of size . 1500 AU with

a bolometric luminosity of 22 L� (Crimier et al., 2010). The two sources inside the enve-

lope – source A which is located South-East (α2000 = 16h32m22.85s, δ2000 = −24◦28′35.5′′)

with a mass of ∼ 0.6 M� and source B located North-West (α2000 = 16h32m22.6s, δ2000 =

−24◦28′33′′) with a mass of ∼ 0.9 M� – are separated by about 4′′ corresponding to a dis-
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Figure 6.1: Images of IRAS16293 at 450 and 850 µm obtained with SCUBA in August 1999.

The size of the beam and a linear scale are shown on the bottom left and right corners of

each plot respectively. The intensity scale is in mJy/beam. The contours closest to the

brightest point in each map are at half of the peak intensity and decrease by half going

outwards.

tance of about 480 AU in the plane of the sky (Wootten, 1989; Mundy et al., 1992). Figure

6.2 shows a high spatial resolution image of IRAS16293 from the Atacama Large Millimeter

Array (ALMA) showing the two protostars (A and B) and directions of the two outflows

from source A (Loinard et al., 2013). Source A is more complex with two centimetre sources

(A1 and A2) and two submillimeter sources (Aa and Ab) having been detected towards it

(Wootten, 1989; Chandler et al., 2005; Walker et al., 1993). No substructure has been de-

tected for source B at these wavelengths. Stark et al. (2004) have suggested that source B is

a young T Tauri star1 but recent high spectral resolution and high sensitivity observations
1A T Tauri star is at a later evolutionary stage than a Class 0 protostar.
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Figure 6.2: The image of IRAS16293 at 0.45 mm from ALMA. Sources A and B together

with two outflow directions from source A (Mizuno et al., 1990) are labeled. Also shown

are the submillimeter peaks Aa and Ab from (Chandler et al., 2005) and centimetre sources

A1 and A2. Contours run from 0.2 to 4 Jy beam−1 in steps of 0.2 Jy beam−1. The circle

at the bottom right corner represents the synthesized beam (0.32′′ × 0.18′′; -69◦). Figure

taken from Loinard et al. (2013).
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obtained with the ALMA interferometer rules out this possibility (Pineda et al., 2012).

IRAS16293 has a rich chemistry, with hot-core-like (hot-corino) properties at small

scales (∼ 100 AU) (e.g. Ceccarelli et al., 1998; Caux et al., 2011; Coutens, A. et al., 2012;

Pineda et al., 2012). Zhou (1995) has claimed that infall and outflow occur simultaneously

in IRAS16293 and this agrees well with the general paradigm of star formation. Figure

6.1 shows that the outflows of IRAS16293 have a quadrupolar shape suggesting that the

individual outflows of source A and source B are perpendicular (Walker et al., 1988; Mizuno

et al., 1990; Walker et al., 1993).

6.4 Observations and data reduction

6.4.1 Herschel-SPIRE photometer observations

SPIRE Photometer maps of IRAS16293 were obtained as part of the Gould Belt

guaranteed time key programmes for the study of star formation (André et al., 2010). Using

the SPIRE and Photodetecting Array Camera and Spectrometer (PACS) photometers, a

large area observation of the L1689 star forming cloud in the ρ Ophiuchus star forming region

was obtained. The SPIRE photometer operates at the photometer short wavelength (PSW),

photometer medium wavelength (PMW) and photometer long wavelength (PLW) ranges

centred at 250 µm (1199 GHz), 350 µm (857 GHz) and 500 µm (600 GHz) respectively. Two

cross scans (Observation Identification Numbers (OBSIDs) = 1342205093 and 1342205094)

were obtained. The two observations were processed using Herschel Interactive Processing

Environment (HIPE) version 11 (HIPE, Ott 2010)2 and merged using a Photometer Merging
2HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of Euro-

pean Space Agency (ESA), the National Aeronautics and Space Administration (NASA) Herschel Science
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script.

6.4.2 Herschel-SPIRE spectrometer observations

The Class 0 protostar IRAS16293 was observed as part of the "Evolution of Inter-

stellar dust" key program under the Interstellar Medium (ISM) Specialist Astronomy Group

(SAG4) (Abergel et al., 2010) using the SPIRE spectrometer on board the Herschel Space

Observatory. The spectrometer operates at the spectrometer short wavelength (SSW) and

the spectrometer long wavelength (SLW) covering wavelengths from 194-331 µm (1546 to

906 GHz) and 303-671 µm (989 to 447 GHz) respectively. The observations can be carried

out in the high ∼1.2 GHz) spectral resolution (HR) and low ∼25 GHz) spectral resolu-

tion (LR) modes. Our observation was carried out on Operational Day 494 (OD494: 20

September 2010) and the OBSID is 1342204898.

We obtained a fully sampled spectral map of IRAS16293 centred on α2000 =

16h32m23.0s, δ2000 = −24◦28′33.0′′ and measuring an area of ∼3′×3′. To achieve fully

Nyquist sampled images, the beam steering mirror of the SPIRE iFTS is moved in a 16-

point jiggle resulting in a beam spacing of 9.5′′ and 17.5′′ for SSW and SLW respectively.

Figure 6.3 shows the actual positions observed on the sky for the IRAS16293 fully sampled

observation for SSW (black squares) and SLW (white circles). The centre of the SSW map

is not well sampled because the interferogram from some of the detectors pointings close to

the peak of emission were saturated at the point of zero optical path difference. Efforts to

correct for the saturation of the detectors have not been successful. The observation had

13 scans in high and low spectral resolution (4 scans in HR and 9 scans in LR) mode for

Center, and the Heterodyne Instrument for the Far Infrared (HIFI), SPIRE and SPIRE consortia.
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Figure 6.3: Actual positions observed on the sky for the IRAS16293 fully sampled FTS

observation over-plotted on the 350 µm SPIRE photometer map. Pointings for the SSW

detectors are represented by black squares while pointings for SLW detectors are represented

by white circles. The green diamond represents the brightest point on the SPIRE photometer

maps (to be shown in Figure 6.7). The plus signs labelled A and B represent the positions

for IRAS16293A and IRAS16293B. The large and small circles on the bottom left and right

sides of the image represent the largest and smallest FTS beams. Contours are at 30, 25,

20, 15, 12.5, 10 and 6.25 % of the peak flux.

a total integration time of 11491 s. The observation was processed using the Spectrometer

Mapping Pipeline in HIPE version 11.
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6.4.3 Map making

The standard Spectrometer Mapping Pipeline in HIPE version 11 uses a simple

algorithm to regrid measured detector data into spectral data cubes with square pixels of

sizes 9.5′′ and 17.5′′ for SSW and SLW respectively. In order to make a fair comparison

of SSW and SLW spectra, they should be presented with the same pixel sizes and World

Coordinate System (WCS). The size of the pixels was therefore fixed to half the SLW beam

(17.5′′) with the brightest pixels (position determined from SPIRE photometer maps at 250

µm) centred on α2000 = 16h32m23.09s, δ2000 = −24◦28′36.66′′ for both SSW and SLW maps.

During the processing, we noticed that the shape of the spectra for semi-extended sources

changes with the size of the pixels. This is due to the averaging of spectra coming from

different regions of the same source. This problem can be solved by reducing the size of

pixels. However, it is not possible to obtain information for pixels smaller than the Nyquist

sampling and so the algorithm returns no values.

Since IRAS16293 is not uniformly extended, the processed spectra have a discon-

tinuity in the overlap region between the SSW and SLW bands as shown in Figure 6.4. Ap-

plying point-source calibration to the spectral data cubes is also not useful since IRAS16293

is not a point source. Each box in Figure 6.4 represents a 17.5′′ ×17.5′′ pixel on the SSW

and SLW spectral maps. The right ascension (RA) is on the horizontal axis and increases

from right to left. The declination (Dec) is on the vertical axis and increases from bottom

to top. A zoom-in of spectra for pixels close to the peak of emission is shown in Figure 6.5.

The brightest pixel (pixel 5,3) shows a mismatch in the slopes for SSW and SLW spectra.

In an attempt to correct for the mismatch in the slopes of the spectra and the
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Figure 6.4: The combined SSW (red) and SLW (blue) spectra for all the pixels on the

observed IRAS16293 maps. The map pixels corresponding to the spectra in each box are

shown on the top left corner. There are many pixels where the signal is too faint to be seen.
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Figure 6.5: The combined SSW (red) and SLW (blue) spectra for pixels close to the peak of

emission (Figure 6.4). The map pixels corresponding to the spectra in each box are shown

on the top left corner.
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gap in the overlap band, the maps were convolved to a common beam using beam profiles

derived by Makiwa et al. (2013). A Gaussian kernel whose width is a quadrature difference

between the maximum SPIRE iFTS beam and the beam at each frequency was used. This

method does not resolve the discontinuity seen in the overlap region of SSW and SLW as

was shown in Section 4.4.2. The SPIRE iFTS beam can be described by a 2-D Gaussian

function in the SSW band and by complex 2-D Hermite-Gaussian functions in the SLW

band. Therefore considering the SPIRE iFTS beam as Gaussian is expected to work only

for the SSW band but not for the SLW band. A numerical method to properly convolve

SPIRE iFTS and photometer maps to a common beam has been developed by Ayasso et al.

(in prep) and is currently undergoing tests.

6.4.4 Line fitting

As stated before, the output spectra from HIPE sometimes exhibit a large mis-

match in the overlap region between the SSW and SLW bands. In order to extract line

information, the spectra for the brightest pixels in both bands were extracted from the

maps and reprocessed using the point source flux calibration script. The point source cali-

brated spectra are represented by red lines in the top panel of Figure 6.6. The semi-extended

corrector tool (Wu et al., 2013), was used to correct spectra from effects introduced by point

source flux calibration. As described in Chapter 4, the tool uses the overlap region between

the SSW and SLW bands and knowledge of the SPIRE iFTS beam profile (Makiwa et al.,

2013) to estimate source extent and make a correction to the spectra. The source size re-

quired to correct for the gap between the SSW and SLW spectra was 15′′ which corresponds

to a source diameter of 1800 AU. This is in agreement with the envelope size of 1500 AU
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Figure 6.6: Top row: The spectrum for the brightest pixel of the IRAS16293 spectral map

calibrated as a point source (red) and after correcting for source extent (blue). Bottom

rows: Magnified sections of the corrected spectrum. Superimposed on the continuum is line

emission of which the brightest lines belong to the 12CO ladder.
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reported by Crimier et al. (2010) and with the extent seen in the SCUBA 450 µm maps

(Figure 6.1). The corrected spectra are represented by blue lines in the top row of Figure

6.6. The plots in the bottom rows show the spectrum corrected for source extent divided

into four regions to reveal the spectral lines and the predominantly sinc instrumental line

profile. All identified lines are labelled and listed in Table 6.1. Line fitting was then carried

out using the Spectrometer Line Fitting tool in HIPE.

In order to investigate the spatial extent of line emission, the Spectrometer Line

Fitting tool was modified to loop through all the pixels in the maps transformed onto the

same WCS as described in Section 6.4.3. The Spectrometer Line Fitting tool extracts the

spectrum at a specified pixel, corrects it to the local standard of rest (LSR) frame using

the satellite radial velocity, fits a polynomial to the continuum and uses user defined line

positions to fit sinc profiles to the unapodized spectra. If the user enters the redshift and

velocity of the source, the rest frequencies are shifted appropriately before line fitting. The

user can also change the degree of the polynomial to be fit to the continuum. The results from

the fit include the central frequency, amplitude and line width from which the integrated

line fluxes can be calculated. At present the line width of the sinc profiles is fixed at 0.377

GHz (=1.1845/π GHz) and efforts are underway to set the line width as a free parameter.

In this case, fixing the line width is appropriate since the lines are intrinsically narrower

than 1 GHz.
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Figure 6.7: The SPIRE Photometer images of the region surrounding IRAS16293. On the

left is the PSW image observed at 250 µm. At the centre is the PMW image observed at

350 µm and on the right side is the PLW image observed at 500 µm. The beam size in each

spectral band is represented by the hatched circles on the bottom left corner of each image.

A scale bar is shown on the bottom right corner of each image. Contours are at 10, 15, 20,

25, 30 and 50 % of the peak flux value in each map. This same region measuring ∼ 3′× 3′

(21600 AU × 21600 AU) was observed by the FTS in the full sampling mode.

6.5 Results

6.5.1 SPIRE photometer maps of IRAS16293

Figure 6.7 shows maps of IRAS16293 obtained with the SPIRE photometer. The

photometer beam is shown on the bottom left corner of each map. Some bright pixels in the

PSW map have been clipped. This is similar to what was seen for the centre detector in the

SSW band of the iFTS. The same region was observed by the iFTS in the full sampling mode.

The contour lines show that the source size compares to the beam size. The protobinary

system, separated by ∼4′′ cannot be resolved by the SPIRE photometer. The maps confirm
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that the protobinary system is closer to being a point source than being a fully extended

source. In order to calibrate sources like IRAS16293, one has to consider the source spatial

extent.

6.5.2 Line detections

We detect a wealth of molecular line emission from IRAS16293. The vertical

coloured lines in Figure 6.6 show the different transitions from CO (red), 13CO (green),

C18O (magenta), C i (grey), H2O (blue), HCO+ (orange) and CS (cyan). The results from

line fitting are presented in Table 6.1. The upper level energies, Eup, for each transition are

listed. The H2O 202-111 line appears in both the SSW and SLW bands. For this line, the

recorded line flux value was obtained by fitting the SSW band which is less noisy.

Table 6.1: Line flux values for the brightest pixel on the IRAS16293 spectral data cubes.

Species Transition νrest Eup

∫
Fνdν

∫
Fνdυ

[GHz] [K] [10−17W m−2] [103Jy km s−1]
12CO 4-3 461.0 55.3 75.2±6.1 49.4±4.0

5-4 576.3 83.0 91.0±6.0 47.9±3.2
6-5 691.5 116.2 112.9±6.0 49.5±2.6
7-6 806.7 154.9 173.6±6.0 65.2±2.3
8-7 921.8 199.1 254.2±6.0 83.6±2.0
9-8 1036.9 248.9 240.4±6.4 70.3±1.9
10-9 1152.0 304.2 314.4±8.8 82.7±2.3
11-10 1267.0 365.0 342.5±6.3 81.9±1.5
12-11 1382.0 431.3 355.8±6.3 78.0±1.4
13-12 1496.9 503.1 432.9±6.4 87.6±1.3

13CO 5-4 550.9 79.3 16.9±6.0 9.3±3.3
6-5 661.1 111.1 17.4±6.0 8.0±2.8
7-6 771.2 148.1 23.1±6.0 9.1±2.4

Continued on next page
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Table 6.1 – continued from previous page
Species Transition νrest Eup

∫
Fνdν

∫
Fνdυ

[GHz] [K] [10−17W m−2] [103Jy km s−1]
8-7 881.3 190.4 28.7±6.0 9.9±2.1
9-8 991.3 237.9 30.3±6.5 9.3±2.0
10-9 1101.3 290.8 17.9±6.4 4.9±1.8
11-10 1211.3 348.9 25.0±6.3 6.3±1.6
12-11 1321.3 412.3 21.0±6.4 4.8±1.5
13-12 1431.2 481.0 16.9±6.3 3.6±1.3

[C I ] 3P1-3P0 492.2 23.6 8.9±6.0 5.5±2.8
3P2-3P1 809.3 62.5 7.6±6.0 3.7±2.8

H2O 110-101 556.9 61.0 18.2±6.1 9.9±3.3
211-202 752.0 137.0 36.3±6.0 14.6±2.4
202-111 987.9 100.8 73.9±6.0 22.7±1.8
312-303 1097.4 249.4 55.5±6.4 15.3±1.8
111-000 1113.3 53.4 76.5±6.4 20.8±1.7
312-221 1153.1 249.4 99.3±8.0 26.1±2.1
321-312 1162.9 305.2 53.5±6.3 13.9±1.6
220-211 1228.8 195.9 29.4±6.3 7.3±1.6

HCO+ 6-5 535.1 89.8 14.3±6.0 8.0±3.4
7-6 624.2 119.8 13.4±6.0 6.5±2.9
8-7 713.3 154.1 11.1±6.0 4.7±2.5
9-8 802.5 192.6 28.8±6.0 10.9±2.3
10-9 891.6 235.4 14.6±6.0 5.0±2.0
11-10 980.6 282.4 24.7±6.3 7.6±1.9
12-11 1069.7 333.8 14.8±6.2 4.2±1.8
13-12 1158.7 389.4 23.3±6.3 6.1±1.6
14-13 1247.7 449.3 43.1±6.2 10.5±1.5

Notes: The rest frequencies (νrest) and upper level energies (Eup) were obtained from the

JPL database (Pickett et al. (1998), http://spec.jpl.nasa.gov/). The 1σ uncertainties in the

table are from line fitting and do not include those related to absolute calibration, which

are ∼ 7% for the mapping mode (Swinyard et al., 2014). Converting from W m−2 to Jy km

s−1 was achieved using
∫
Fνdυ (Jy km s−1) =

∫
Fνdν (W m−2) × 0.3 × 1023 ν−1

GHz.
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Figure 6.8 shows the 12CO and 13CO rotational diagrams (Section 2.4.3) for IRAS16293.

The rotational temperatures were derived by fitting a line to the integrated line intensities,

with the slope of the line being equal to 1/Trot. Clearly, data for 12CO cannot be fit by a

single temperature, and so the Jup ≤6 and Jup >6 lines were fit separately. Data for 13CO

was fit with a single temperature. The selection of the breakpoint in fitting two components

to the 12CO rotational diagrams is arbitrary and so has an effect on the final results.

The derived temperatures from the 12CO line fluxes are Trot = 36 K for Eup ≤

116.2 K and 153 K for Eup > 116.2 K. The fit to the 13CO data produced a rotational

temperature Trot = 86 K. The lower temperature Jup ≤6 12CO transitions are tracing

the colder outer layers of the envelope. The higher 12CO transitions originate from inner

regions of the envelope and disk of the protobinary system. These regions are heated by

the central forming star. The less optically thick 13CO lines seem to originate from inner

regions of the envelope, at least further than the lowest J 12CO ones with Trot = 36 K.

However, it is well understood that optical depth effects and varying temperature regimes

makes intepreting results from rotation diagrams quite challenging. Fortunately, the Fourier

transform spectrometer (FTS) also measured isotopic lines, like 13CO, which are generally

optically thin.

6.5.3 Spatial distribution of lines

In this section, the spatial distribution of emission lines detected in the spectral

cube of IRAS16293 are discussed. The maps were constructed using Level-2 data cubes

transformed onto the same WCS and no convolution was carried out. In order to make a

fair comparison of the transitions at different frequencies, source extent and the wavelength
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Figure 6.8: Rotational diagram for 12CO (blue circle points and solid line) and 13CO (black

square points and dashed line) in IRAS16293. Error bars include errors from fitting and the

7% calibration uncertainty (Swinyard et al., 2014). Solid lines indicate the best linear fit to

selected data points.
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dependent SPIRE iFTS beam should be taken into account.

Carbon Monoxide

Figure 6.9 shows line intensity maps for all 10 12CO transitions measured in the

SPIRE band. Since Full Width Half Maximum (FWHM) is a measure of source size, the

first contour on the maps was set at 50%. However, since the region of emission is greater

than one pixel for only the first two transitions that we detect, there is no 50% contour on

the maps for transitions above J = 5 – 4. Maps for lines in the SSW band only show the

contour at 10% (and at 20% in the case of the J = 9 – 8 transition).

These line intensity maps together with photometer maps show that the gas and

dust in IRAS16293 are both resolved. It is clearly seen that the low-J transitions which

trace cold gas are extended and high-J transitions which are susceptible to opacity effects

originate from a compact region. 13CO maps shown in Figure 6.10 also show the same trend.

While this may be considered as evidence that the different transitions are tracing different

regions of IRAS16293, it could also be due to beam dilution since the beam sizes for the

SLW band are much larger than those for the SSW band.

The brighter and more extended emission from the lower transitions make it diffi-

cult to see elongated emission in the North-West direction. There is stronger evidence for

elongated emission in the higher 12CO transitions. The maps for lower 12CO transitions

peak at a position that is to the west of the peak position for higher 12CO and all 13CO

transitions. Only five 13CO transitions (four in SLW and one in SSW) were detected. The

higher transitions in the band were faint and the fit returned integrated line intensities of

the same order as the noise level.
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Figure 6.9: 12CO (J = 4 – 3 to 13 – 12) integrated line intensity maps for IRAS16293. The

units for the colour bars are Wm−2sr−1. The circle on the bottom right corner represents the

SPIRE iFTS beam at each 12CO transition. Contours are at 10, 20, 30, 40 and 50% of the

peak flux in each map. In this figure, it is clearly seen that emission from low-J transitions

which probe cold gas is extended and that from high-J transitions which are less susceptible

to opacity effects is point-like.
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Figure 6.10: 13CO (J=5-4 to 9-8) integrated line intensity maps for IRAS16293. The units

for the colour bars are Wm−2sr−1. The circle on the bottom right corner represents the

SPIRE iFTS beam at each 13CO transition. Contours are at 10, 20, 30 and 40% of the peak

flux value in each map. In this figure, it is clearly seen that emission from low-J transitions

which probe cold gas is extended and that from high-J transitions, which are less susceptible

to opacity effects, is more point-like.
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Neutral carbon

Figure 6.11 shows intensity maps for the two C i transitions in the SPIRE iFTS

band. The map for the 3P1 – 3P0 transition peaks at the same position as the higher

12CO transitions. 3P2-3P1 emission appears to be much more extended than the 3P1-3P0

transition. A likely reason for this difference is that the 3P2 – 3P1 line is blended with an

often strong 12CO J = 7 – 6 line making it a challenge to extract more accurate integrated

line intensities. To illustrate this point, Figure 6.12 shows the region of the spectrum where

the 12CO J = 7 – 6 and 3P2 – 3P1 lines are found. The measured spectrum is shown in blue

while the best fit to all lines in the spectrum is shown in black. The two sinc profiles shifted

from the zero line show the fit to the 12CO J = 7 – 6 line (green) and the fit to the 3P2 –

3P1 line (red). When the 3P2 – 3P1 line is faint the uncertainty in the derived parameters

for this line increases. Thus caution should be exercised in interpreting the C i 3P2 – 3P1

map for IRAS16293 where the line emission is weak.

Water

Absorption of radiation by water vapour in the Earth’s atmosphere make measure-

ments of water with ground-based telescopes impossible. A total of nine water lines shown

in Table 6.1 have been observed in the SPIRE FTS spectrum for IRAS16293. Line intensity

maps for eight of the water lines are shown in Figure 6.11. Of all the water emission lines

detected, emission from the ground state transition (110-101) which occurs at 557 GHz is the

most extended. This line has been observed in a number of Class 0 and I protostars with

HIFI (de Graauw et al., 2010) on Herschel as part of the Water in star-forming regions with
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Figure 6.11: C i (3P1 – 3P0 and 3P2 – 3P1) integrated line intensity maps for IRAS16293. The

units for the colour bars are Wm−2sr−1. The circle on the bottom right corner represents the

SPIRE iFTS beam at each C i transition. Contours are at 20, 30 and 40% of the peak flux

value in each map. In this figure, it is clearly seen that emission from 3P1 – 3P0 transition

is point-like suggesting that it originates from the envelope + disk system of IRAS16293.

Emission from the 3P2 – 3P1 transition is quite extended. However, the uncertainties in the

integrated line intensities for the 3P2 – 3P1 line are larger since the line is blended with an

often strong 12CO J = 7 – 6 line.
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Figure 6.12: Line fitting for the blended 12CO J = 7 – 6 and C i 3P2 – 3P1 lines. The

continuum subtracted spectrum is shown in blue and the total fit to all identified lines in

the spectrum is in black. The fit to the 12CO J = 7 – 6 line is shown in green and that to

the C i 3P2 – 3P1 line is shown in red. For clarity, the fits to the 12CO J = 7 – 6 and C i

3P2 – 3P1 lines have been shifted from the zero line.
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Herschel (WISH) program (Kristensen et al., 2012).

The high spectral resolution HIFI instrument has detected absorption and emission

lines of water from IRAS16293 that are a mixture of emission and absorption (Emmanuel

Caux, private communication). This structure is completely diluted in our low spatial

resolution SPIRE iFTS spectra. This makes modelling of the water lines from our results

more challenging. However, when combined with spectrally resolved lines from HIFI, our

maps provide the spatial extent that help in constraining radiative transfer models.

Water is directly associated with the emergence of life on Earth and the search

for it in space has become one of the key priorities in our search for habitable exosolar

planets. The water observed in protostars will probably go into the protoplanetary disks

and ultimately end up on comets and eventually on planets.

HCO+

Figure 6.14 shows the intensity maps for HCO+. The emission is peaks at the

location of IRAS16293 just like in other molecular line emission maps discussed above. The

intensity map for the 713 GHz HCO+ 8-7 emission line appears more confined and its peak

intensity is greater than that for higher transitions of the same molecule. This is not physical

and might be due to problems in the linefitting. HCO+ emission lines have been detected

in the envelopes of a number of low-mass Young Stellar Objectss (YSOs) (Gregersen et al.,

1997). The 357 GHz HCO+ 4-3 emission line (not in the SPIRE band) is less optically thick

than the 557 GHz 110-101 water line and therefore has been used as a tracer of the collapse

structure of YSOs (Gregersen et al., 1997).
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Figure 6.13: H2O integrated line intensity maps for IRAS16293. The units for the colour

bars are Wm−2sr−1. The circle on the bottom right corner represents the SPIRE iFTS beam

at each H2O transition. Contours are at 10, 20, 30 and 40% of the peak flux value in each

map. It is clearly seen that emission from water is point-like suggesting it originates from

the envelope + disk system.
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Figure 6.14: HCO+ integrated line intensity maps for IRAS16293. The units for the colour

bars are Wm−2sr−1. The circle on the bottom right corner represents the SPIRE iFTS beam

at each HCO+ transition. Contours are at 20, 30 and 40% of the peak flux value in each

map. The figure shows that emission from HCO+ is also point-like.
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6.5.4 SED of IRAS16293

Figure 6.15 shows the spectral energy distribution (SED) for IRAS16293. In order

to construct the SED, we obtained data from many ground- and space-based instruments

(see Table 6.2). Converting the data to a common beam is a challenge. Fortunately, in

the case of IRAS16293, the source size is ∼ 15′′ which is smaller than any of the apertures

used in extracting the photometer flux values. The spectrum for IRAS16293 obtained by

the Infrared Space Observatory (ISO) long wavelength spectrometer (LWS) was binned into

ten data points, each one representing one detector (Correia et al., 2004). These were then

entered into Table 6.2 as if they were photometric data points. The UKT14 data points were

obtained from Sandell (1994). There is good agreement between the SPIRE iFTS spectral

data and the flux values from other instruments.

The black diamond shaped points in Figure 6.15 represent flux values from the

various instruments. Spectra from the SPIRE iFTS are shown in blue. The black dashed

line shows the best greybody fit to the data (see Section 2.3). The derived dust temperature

and emissivity index are Tdust = 27.8 ± 0.3 K and β = 1.45 ∓ 0.01. Although the data is

fit well at longer wavelengths, the fit does not represent the data well at wavelengths ≤ 100

µm. As was seen in Figure 6.9 where emission from low-J 12CO transitions is more extended

than that for high-J transitions, this further confirms that the next level in understanding

IRAS16293 is to use models that take into account various temperature and density regimes.

The above method of fitting a greybody to the SED assumes that the source can be

described by a single temperature and a uniform density. However, it is known that beside

the evolutionary state of the object, various parameters like viewing angle have an effect
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Table 6.2: Photometer flux values for IRAS16293. The first three columns show the wave-

length, observed flux (F ) and errors (∆F ). Errors include statistical measurement errors

and uncertainties in the absolute calibration. Columns 4 and 5 show the beam sizes for

the instrument (θbeam) used to obtain the data and the size of the aperture (θaperture) over

which the flux is measured. Columns 6 and 7 show the photometer used to obtain the data

and the reference from which the data was taken. Refs.–(1) Correia et al. (2004); (2) IRAS

Point Source Catalogue ; (3) Sandell (1994); (4) Walker et al. (1990); (5) Spitzer catalogue;

(6) Crimier et al. (2010); (7) Saraceno et al. (1996).

λ [µm] F [mJy] ∆F [mJy] θbeam[′′] θaperture[′′] Instrument Ref.
23.7 0.6 0.1 6.0 80 MIPS 5
25 1.8 0.7 80.0 80 IRAS 2,6
50 150 45 80 80 ISO-LWS 1
60 255 122 160.0 80 IRAS 2,6
60 350 105 80 80 ISO-LWS 1
70 640 196 80 80 ISO-LWS 1
80 940 282 80 80 ISO-LWS 1
90 1180 354 80 80 ISO-LWS 1
100 1032.0 412 237.0 80 IRAS 2,6
100 1320 396 80 80 ISO-LWS 1
125 1590 477 80 80 ISO-LWS 1
150 1590 477 80 80 ISO-LWS 1
175 1360 408 80 80 ISO-LWS 1
190 1100 330 80 80 ISO-LWS 1
250 645 25 17.6 80 SPIRE 1
350 368 19 23.9 80 SPIRE 1
350 235 19 19.5 19.5 UKT14 3
350 500 250 9.0 19.5 UKT14 3
450 270 108 7.8 40 SCUBA 6
450 119 11 18.5 18.5 UKT14 3
500 129 11 35.2 80 SPIRE 1
750 28.1 1.5 17.5 17.5 UKT14 3
800 18.5 0.5 13.5 13.5 UKT14 3
800 21.1 0.5 17.5 17.5 UKT14 3
850 20.2 8.0 14.5 40 SCUBA 1
850 17.3 0.9 17.5 17.5 UKT14 3
1100 8.4 0.3 17.5 18.5 UKT14 3
1300 6.97 2.24 30.0 NRAO 4
1300 6.4 2.6 22.0 22 UKT14 3
2000 2.4 0.2 27 27 UKT14 3
2730 0.55 0.08 60.0 NRAO 4
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Figure 6.15: Spectral energy distribution for IRAS16293. The solid blue line shows the

SPIRE FTS spectra (SSW and SLW) and the black diamond points with error bars are flux

densities from other instruments. The dashed line is the best greybody fit to all the data in

Table 6.2.
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on the observed SED. In order to fit the data accurately and derive these parameters, the

SED is fitted with precomputed two-dimensional (2D) radiative transfer models of Robitaille

et al. (2007). Robitaille et al. (2007) have computed over 20 000 YSO models, with SEDs

computed at ten viewing angles. The models span a large range of evolutionary stages, stellar

masses, disk masses, envelope masses and envelope infall rates to mention just a few. Figure

6.16 shows the best fit radiative transfer model to the IRAS16293 SED in bright colors with

different colours representing different apertures. The faded colours show subsequent good

fits. The data are well fit and a summary of the results is provided in Table 6.3. We obtain

a total luminosity of 28.9 L�. This is in agreement with 29.3 L� obtained by Walker et al.

(1990) and with 27 L� obtained by Mundy et al. (1986).

Another interesting result from our model is that at the centre of IRAS16293 is a

3 × 103 yr 0.63 M� star whose photosphere has a temperature of 3785 K. Results from high

spatial resolution interferometric observations of radio and millimetre continuum emission

have showed that IRAS16293 is a binary protostar (Mundy et al., 1986) with a total mass

of 1.5 M� which is greater than the mass that we obtain here. Our model results also show

that the star is surrounded by a 6910 AU envelope whose mass is 9.76 M�. This is also

outside the circumstellar mass range of 0.9-6 M� estimated by Mundy et al. (1986). We

obtain a high accretion rate of Ṁ = 1.85 × 10−4 M�/yr. This is even higher than a value of

Ṁ = 5 × 10−5 M�/yr obtained from radiative transfer modelling by Schöier et al. (2002).
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Figure 6.16: Best fit model SED for IRAS16293 obtained from fitting the photometer data

in Table 6.2 with precomputed two-dimensional (2D) radiative transfer models of Robitaille

et al. (2007). The filled circles show the input fluxes. The brightest colored lines show the

best fit, with each color representing a different aperture. The faded colors show subsequent

good fits. The dashed line shows the stellar photosphere corresponding to the central source

of the best fitting model, as it would look in the absence of circumstellar dust (but including

interstellar extinction).
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Table 6.3: Parameters from the best fit SED model of IRAS16293.

Item Value
Stellar age [yr] 2.99 × 103

Stellar mass [M�] 0.63
Stellar radius [R�] 7.82
Stellar temperature [K] 3785
Envelope accretion rate [M�/yr] 1.85 × 10−4

Envelope outer radius [AU] 6.91 × 103

Envelope cavity angle [degrees] 10.0
Envelope inner radius [Rsub] 1.00
Disk mass [M�] 6.87 × 10−2

Disk outer radius [AU] 11.6
Disk inner radius [Rsub] 1.00
Disk inner radius [AU] 0.341
Disk scaleheight factor 0.719
Disk flaring power 1.079
Disk accretion alpha 3.40 × 10−2

Envelope cavity density [cgs] 2.20 × 10−20

Ambient density [cgs] 4.05 × 10−22

Disk accretion rate [M�/yr] 7.89 × 10−6

Av [circumstellar] [mag] 1.30 × 103

Total luminosity [L�] 28.9
Disk scaleheight at 100AU 5.55
Envelope mass [M�] 9.76
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6.6 Conclusion

Results from SPIRE observations of IRAS16293 have been presented. SPIRE pho-

tometric data have been combined with data from other instruments to provide an SED

with better spectral coverage. The iFTS spectra are in agreement with photometric data.

The physical structure of IRAS16293 has been derived by fitting the SEDs with radiative

transfer models developed by Robitaille et al. (2007). The results are in agreement with pre-

vious studies by other authors. The stellar age and mass of the protobinary system are ∼3

× 103 yr and 0.63 M� respectively. IRAS16293 has a disk of mass 0.07 M�and is accreting

material from a ∼ 9000 AU radius envelope at a rate of 1.85 M�/yr. The total luminosity

of the system is 28.9 L�.

A wealth of molecular line emission from 12CO, 13CO, C18O, C i, H2O, HCO+ and

CS has been detected. This is the first time 12CO, 13CO emission lines from Eup ∼ 50-500 K

have been observed from IRAS16293. We have also been able to determine the spatial extent

of the line emission. It is now possible to determine the chemical properties of IRAS16293

using detailed radiative transfer modelling of the observed molecular line emissions.
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Chapter 7

Class I Protostar: EL29

7.1 Overview

The previous chapter described observations of a Class 0 protostar IRAS16293-

2422. As the envelope of a Class 0 protostar is depleted of material due to accretion onto

the protostar, the peak of the spectral energy distribution (SED) continues its shift towards

Ultra-violet (UV) wavelengths (see Figure 1.1). The object develops into a Class I proto-

star. This chapter will focus on Spectral and Photometric Imaging Receiver Array (SPIRE)

imaging Fourier transform spectrometer (iFTS) observations of Elias 29, a Class I protostar.

Section 7.2 provides an introduction to Class I protostars and what information about these

protostars can be obtained from SPIRE iFTS observations. Our current understanding of

Elias 29 is presented in Section 7.3. The details concerning the SPIRE iFTS observations

of Elias 29 and data reduction are discussed in Section 7.4. The results are presented in

Section 7.5.



7.2. INTRODUCTION TO CLASS I PROTOSTARS 128

7.2 Introduction to Class I protostars

As discussed in previous chapters, the formation of low-mass stars begins with the

gravitational collapse of dense and cold clouds of gas, dust and ices referred to as pre-stellar

or starless cores (Beichman et al., 1986). Due to their low temperatures (T∼10 – 15K), pre-

stellar cores can only be studied at far-infrared and sub-millimeter wavelengths. At these

low temperatures molecules like CO and H2O are frozen onto dust particles in the form of

ice mantles. The collapse of a pre-stellar core leads to the formation of a Class 0 protostar

characterized by a central hot object that is surrounded by a disk and an envelope.

As collapse proceeds, more material from the envelope settles onto the disk from

where it is accreted onto the central object. The protostar enters a Class I stage when

the envelope has been depleted enough to allow near-infrared radiation to escape from the

central core. At this stage the temperature of the central object has increased to above 100K

allowing the ice mantles within the inner parts of the disk to evaporate releasing water and

other molecules into the gaseous phase (Ceccarelli et al., 1996; Fraser et al., 2001). Molecular

gases are also formed in regions where bipolar outflows and winds from protostars meet with

surrounding material in envelopes (Kaufman & Neufeld, 1996). Bombardment by cosmic

rays and ultraviolet irradiation also play a part in returning molecules to the gas phase (e.g.

Tielens & Charnley, 1997; van Dishoeck & Blake, 1998). Molecular species therefore play an

important part in the evolution of stars and their study allows us to probe the environmental

properties of the regions in which they exist. The Herschel Space Observatory (Herschel)

has enabled us to probe star forming regions by studying their dust and molecular emission

at the far-infrared wavelengths.
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This chapter presents recent observations of a young protostar, Elias 29, carried

out with the SPIRE iFTS onboard Herschel . We obtained spectral maps of the Elias 29

region measuring ∼3′′× 3′′.

7.3 Source Background

Elias 29, also called WL 15, YLW 7 (Elias, 1978b; Wilking & Lada, 1983; Young

et al., 1986) is a Class I protostar found in the ρ Ophiuchus cloud complex. Elias 29 has a

bolometric luminosity (Lbol) of 26 L� (Bontemps et al., 2001). Its accretion luminosity has

been determined by Muzerolle et al. (1998) using the Brγ emission line to be ∼ 15 – 18 L�.

The relatively short distance, d ∼ 120 (Loinard et al., 2008; Lombardi et al., 2008) to the

ρ Ophiuchus cloud complex makes it an important astronomical region for studies aimed at

answering various questions related to the formation of stars.

Elias 29 has been extensively studied by Boogert et al. (2000, 2002) and Cecca-

relli et al. (2002), who have identified three emission components in addition to the central

object. They used heterodyne spectral line observations carried out with the Digital Auto-

correlation Spectrometer (DAS) and acousto-optical spectrometer (AOS) back ends on the

James Clerk Maxwell Telescope (JCMT) and Caltech Submillimeter Observatory (CSO)1

(Carlstrom et al., 1994) and the autocorrelator backend on the National Radio Astronomy

Observatory (NRAO) (User’s Manual for the NRAO 12 M Millimeter-wave Telescope, Kitt

Peak, Arizona, 2000). They also constructed a SED for Elias 29 using spectra obtained

with the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS) and long
1The JCMT and CSO can be used as an interferometer (Carlstrom et al., 1994) but in this case the

telescopes were used separately.



7.3. SOURCE BACKGROUND 130

wavelength spectrometer (LWS) instruments covering wavelengths from 2.4 – 45 µm and 45

– 195 µm, respectively and whose apertures had sizes of 25′′ and 80′′ respectively (Kessler

et al., 1996). From their line observations, they identified emission components at velocities

of υLSR = 2.7 km s−1 and υLSR = 3.8 km s−1 and associated them with cold foreground

clouds. A third emission component with a velocity of υLSR = 5.0 km s−1 was associated

with the dense ridge of HCO+-rich material (see Figure 7.1) to which most of the nearby

sources belong. Using interferometric observations of the 13CO J = 1 – 0 obtained with the

Owens Valley Radio Observatory (OVRO) millimeter array (Padin et al., 1991), an enve-

lope/disk system centred on Elias 29, but deeply embedded within the ridge and having the

same rest velocity as that of the ridge, was resolved.

The outflows of the Elias 29 region have been reported by Bontemps et al. (1996),

Khanzadyan et al. (2004), Ybarra et al. (2006) and Bussmann et al. (2007). A blue-shifted

component with a velocity of VLSR = - 4 – 1 km s−1 and a redshifted component with a

velocity of VLSR = 7 – 12 km s−1 have been identified and attributed to Elias 29 (Bontemps

et al., 1996). Outflows from a nearby protostar LFAM have also been discovered in the

same region. These contributions from nearby sources make analyzing data from Elias 29

challenging. Figure 7.2 shows the S-shaped symmetry of the outflow from Elias 29 traced

by the H2 emission (Ybarra et al., 2006) observed using the Persson’s Auxiliary Nasmyth

Infrared Camera (PANIC) on the Baade 6.5 m telescope at Las Campanas Observatory

(Martini et al., 2004). In this image, the blue-shifted and red-shifted lobes point towards

the northwest and southeast, respectively.

Ceccarelli et al. (2002) have analyzed 13CO J = 6→ 5 and J ≥15 transitions from
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Figure 7.1: Overlay of IRAM 30 m 1.3 mm continuum map (gray scale and two white

contours; Motte et al. (1998)) and integrated CSO HCO+ emission (black contours) of Elias

29. White contours are at 7 and 14 σ, with σ = 10 mJy per 15′′ beam2, and
∫
TMBdυ =

1.1, 1.6, ..., 4.6 K kms−1 for HCO+ 3-2 (σ=0.2 K kms−1). Figure taken from Boogert et al.

(2002).

observations of Elias 29 obtained with the JCMT and ISO SWS respectively. They found

evidence of a super-heated surface disk layer and derived a gas temperature and mass similar

to that found in Herbig AeBe stars (Thi et al., 2001). They speculate that the super-heated
2σ is the standard deviation of the noise in the measure signal.



7.3. SOURCE BACKGROUND 132

Figure 7.2: Narrowband images of Elias 29 obtained with PANIC showing offsets from

α2000 = 16h27m09.43s, δ2000 = −24◦37′18.7′′. (a) Elias 29 observed through the narrowband

H2 filter with PANIC. (b) Elias 29 imaged with the Brγ filter with PANIC (Martini et al.,

2004); contour levels are at 3, 5, 10, 20, 50 and 500 σ. (c) Pure H2 emission line image of

Elias 29, obtained by subtracting the Brγ image from the PANIC H2 filter image with the

Brγ 10σ contour superposed. The pure H2 emission objects labeled 1, 2a, 2b, 3a, and 3b

are discussed in Ybarra et al. (2006). In these images, North is up and East is on the left.

Figure taken from Ybarra et al. (2006).
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gas may be partly caused by the high energy UV and X-ray radiation from the central hot

object. Their analysis suggests that Elias 29 could be a transition object between class I

and class II or a deeply embedded Herbig AeBe star. The reason why Elias 29 does not

appear as a T Tauri or Herbig AeBe star (optically visible) has been attributed, by Boogert

et al. (2002), to a column of foreground clouds which have a high visual extinction. The

measured flat SED of Elias 29 between 10 and 200 µm has been attributed to the disk that

is thought to be oriented at angles less than 60◦. This is in agreement with the speculation

that Elias 29 could be a T Tauri or Herbir AeBe star.

Elias 29 has also recently been observed by the Photodetecting Array Camera and

Spectrometer (PACS) (Poglitsch et al., 2010) on Herschel under the Dust, Ice and Gas in

Time (DIGIT) key program (Green et al., 2013). PACS covers wavelengths from 55 to 210

µm and therefore covers 12CO rotational lines from J=14-13 up to J=40-39. These highly

excited CO emission lines are thought to originate from hot shocked gas (Green et al., 2013).

From a sample of 30 Class 0 and Class I protostars, Elias 29 had the richest spectrum. These

authors also used SEDs constructed with photometry data from Two Micron All Sky Survey

(2MASS) (Skrutskie et al., 2006), Spitzer Space Telescope (Spitzer) – Infrared Array Camera

(IRAC), Infrared Astronomical Satellite (IRAS ) (Werner et al., 2004), ISO and Spitzer –

Multiband Imaging Photometer for Spitzer (MIPS) to calculate new bolometric luminosities

for their sample observations. They obtained Lbol ∼ 20.1 L� for Elias 29 which is lower than

26 L� reported by (Bontemps et al., 2001). A reason for this could be that (Green et al.,

2013) used few photometric points on their SED compared to the broadband ISO spectrum

used by (Bontemps et al., 2001). A rotational diagram of the 12CO lines observed by PACS
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showed the presence of two temperature components of Trot = 423 ± 63 K and Trot = 690

± 129 K.

7.4 Observations and data reduction

7.4.1 Herschel-SPIRE photometer observations

SPIRE Photometer maps of Elias 29 were obtained as part of the Gould Belt

guaranteed time key programmes for the study of star formation (André et al., 2010). Using

the SPIRE and PACS photometers, a large area observation of the L1688 star forming

cloud in the ρ Ophiuchus star forming region was obtained. Two cross scans (Observation

Identification Numbers (OBSIDs) = 1342205093 and 1342205094) were obtained. The two

observations were processed using the Herschel Interactive Processing Environment (HIPE)3

version 11 and merged using the “Photometer Merging script” also found in HIPE.

7.4.2 Herschel-SPIRE spectrometer observations

Elias 29 was observed with the SPIRE iFTS as part of the "Evolution of Interstellar

dust" key program under the Interstellar Medium (ISM) Specialist Astronomy Group (SAG4,

Abergel et al. (2010)). Fully sampled maps of Elias 29 centred on α2000 = 16h27m09.3s,

δ2000 = −24◦37′01.1′′ were obtained. The observation had a total of 13 scans in high and

low resolution (4 scans in HR and 9 scans in LR) mode for a total integration time of 11491

s. The data were reduced using the “Spectrometer Mapping Pipeline” also in HIPE version

11.
3HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of Euro-

pean Space Agency (ESA), the National Aeronautics and Space Administration (NASA) Herschel Science
Center, and the Heterodyne Instrument for the Far Infrared (HIFI), SPIRE and SPIRE consortia.
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7.4.3 Map making

The same procedure as that described for IRAS16293-2422 in Section 6.4.3 was

followed during map making for Elias 29 data cubes. The size of the pixels was fixed to

half the spectrometer long wavelength (SLW) beam (17.5′′) with the brightest pixels centred

on α2000 = 16h27m09.46s, δ2000 = −24◦37′24.12′′ for both spectrometer short wavelength

(SSW) and SLW maps. This position is the brightest pixel in the SPIRE 250 µm photometer

map of Elias 29.

Figure 7.3 shows a mosaic plot of all the spectra on the measured data cubes.

Each box in the figure represents a 17.5′′ ×17.5′′ pixel on the SSW and SLW spectral maps.

The right ascension (RA) is on the horizontal axis and increases from right to left. The

declination (Dec) is on the vertical axis and increases from bottom to top. A zoom-in of

spectra for pixels close to the peak of emission is shown in Figure 7.4.

7.4.4 Line fitting

In order to extract line information, the spectra for the brightest pixels in both

SSW and SLW bands were extracted from the maps and reprocessed using the “pointsource-

conversion” task in HIPE. The point source calibrated spectra were then corrected for source

spatial extent. This was achieved using the semi-extended corrector tool (Wu et al., 2013).

The source size required to correct for the gap in the overlap region of SSW and SLW was

22′′ which corresponds to a source diameter of 2640 astronomical unit (AU). This is com-

parable to a Full Width Half Maximum (FWHM) of ∼17′′ obtained from 1.3 mm maps by

Andre & Montmerle (1994). The top panel of Figure 7.5 shows the point source calibrated
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Figure 7.3: The combined SSW (red) and SLW (blue) spectra for all the pixels on the

observed Elias 29 maps. The map pixels corresponding to the spectra in each box are shown

on the top left corner.
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Figure 7.4: The combined SSW (red) and SLW (blue) spectra for pixels close to the peak of

emission (Figure 7.3). The map pixels corresponding to the spectra in each box are shown

on the top left corner.
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spectra before (red lines) and after (blue lines) correcting for spatial extent. The plots in

the bottom rows show the spectrum corrected for source extent divided into four regions

to reveal the spectral lines and the sinc instrumental line profile. All identified lines are

labelled and listed in Table 7.1. For this spectrum, line fitting was carried out using the

“Spectrometer Line Fitting” tool in HIPE.

In order to investigate the spatial extent of line emission in Elias 29, the “Spectrom-

eter Line Fitting” tool was modified to loop through all the pixels in the maps transformed

onto the same World Coordinate System (WCS) as described in Section 7.4.3.

7.5 Results

7.5.1 Photometer maps of Elias 29

Figure 7.6 shows the SPIRE photometer maps of the region surrounding Elias 29.

The map shows a ridge running from North-West to South-East. The protostar LFAM 26

and protostellar condensation E-MM5 shown on the map are two of the many sources found

along the ridge. A fully sampled spectral map of the region enclosed by the black square

was obtained with the SPIRE iFTS.

7.5.2 Line detections and rotational diagrams

The spectrum of Elias 29 shown in Figure 7.5 shows a number of lines from 12CO

(red), 13CO (green), C i (grey) and H2O (blue). Results from line fitting are presented

in Table 7.1 which also shows the rest frequencies and upper level energies Eup for each

transition.
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Figure 7.5: Top panel: the spectrum for the brightest pixel of the Elias 29 spectral map

calibrated as a point source (red) and after correcting for source extent (blue). Bottom

panels: magnified sections of the corrected spectrum. Superposed on the continuum is line

emission of which the brightest lines belong to the 12CO ladder.
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Figure 7.6: The SPIRE Photometer images of the region surrounding Elias 29. SPIRE iFTS

spectral maps were obtained for the region inside the black square measuring 3′× 3′ (∼21600

AU × 21600 AU). On the left is the photometer long wavelength image observed at 500 µm.

At the centre is the PMW image observed at 350 µm and on the right side is the PSW image

observed at 250 µm. The colour scales for all three images have been fixed at 0-30 Jy/beam

for ease of comparison. All images show a ridge running from the North West to South East

of the image. Contour lines are at 40, 30, 25, 20, 15, 12.5, 10, 6.25% of the maximum flux

for each image.
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Table 7.1: Line flux values for the brightest pixel of the Elias 29 spectral data cubes.

Species Transition νrest Eup

∫
Fνdν

∫
Fνdυ

[GHz] [K] [10−17W m−2] [103Jy km s−1]
12CO 4-3 461.0 55.3 30.3±1.2 19.7±0.8

5-4 576.3 83.0 31.4±1.2 16.3±0.6
6-5 691.5 116.2 38.7±1.2 16.8±0.5
7-6 806.7 154.9 75.8±1.2 28.2±0.5
8-7 921.8 199.1 108.5±1.2 35.3±0.4
9-8 1036.9 248.9 146.8±2.2 42.5±0.6

10-9 1152.0 304.2 166.7±2.2 43.4±0.6
11-10 1267.0 365.0 174.4±2.2 41.3±0.5
12-11 1382.0 431.3 191.9±2.2 41.7±0.6
13-12 1496.9 503.1 182.7±2.2 36.6±0.4

13CO 5-4 550.9 79.3 9.0±1.2 4.9±0.7
6-5 661.1 111.1 6.3±1.2 2.8±0.5
7-6 771.2 148.1 6.6±1.2 2.6±0.5
8-7 881.3 190.4 5.5±1.2 1.9±0.4
9-8 991.3 237.9 6.4±2.2 1.9±0.7

10-9 1101.3 290.8 9.3±2.2 2.5±0.6
11-10 1211.3 348.9 15.2±2.2 3.8±0.5
12-11 1321.3 412.3 10.9±2.2 2.5±0.5
13-12 1431.2 481.0 16.1±2.2 3.4±0.5

[C i ] 3P1-3P0 492.2 23.6 11.1±1.2 6.8±0.7
3P2-3P1 809.3 62.5 15.9±1.2 5.9±0.5

H2O 110-101 556.9 61.0 3.3±1.2 1.8±0.7
211-202 752.0 137.0 3.5±1.2 1.4±0.5
202-111 987.9 100.8 16.1±2.2 4.9±0.7
312-303 1097.4 249.4 12.5±2.2 3.4±0.6
111-000 1113.3 53.4 16.1±2.2 4.3±0.6
220-211 1228.8 195.9 6.3±2.2 1.5±0.5

Notes: The rest frequencies (νrest) and upper level energies (Eup) were obtained from the

JPL database (http://spec.jpl.nasa.gov/). The 1σ uncertainties in the table are from line

fitting and do not include those related to absolute calibration, which are ∼ 7% for the

mapping mode (Swinyard et al., 2014). Converting from W m−2 to Jy km s−1 was achieved

using
∫
Fνdυ (Jy km s−1) =

∫
Fνdν (W m−2) × 0.3 × 1023 ν−1

GHz.
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A simple way of extracting the gas temperature and column abundance is rota-

tional diagram analysis (Goldsmith & Langer, 1999). Using rotational diagrams is based on

assumptions that the medium is isothermal, in local thermodynamic equilibrium, is opti-

cally thin and fills the beam. Figure 7.7 shows the 12CO and 13CO rotational diagrams for

Elias 29. The rotational temperatures were derived by fitting a line to the integrated line

intensities, with the slope of the line being equal to 1/Trot. Clearly, data for each molecule

cannot be fitted by a single temperature, and so for 12CO the Jup ≤ 6 and Jup > 6 lines

were fit separately, while for 13CO the Jup ≤ 8 and Jup > 8 lines were also fit separately.

The rotational temperature obtained from low- and high-J 12CO lines are Trot = 33 K and

Trot =154 K respectively. The rotational temperature obtained from low- and high-J 13CO

lines are Trot = 39 K and Trot =230 K respectively. These results are consistent with the

presence of many components along the line of sight as will be discussed in the following

section.

7.5.3 Spatial distribution of lines

One of the advantages of the SPIRE iFTS is its capability to map large regions of

space in a relatively short period of time enabling the study of spatial extent of line and

continuum emission. A mosaic plot of all the spectra on the observed data cubes for the

region surrounding Elias 29 has already been presented in Figure 7.3. It shows that the

dust is relatively extended throughout the field of view. There is evidence of hot gas at the

position of Elias 29 (pixel (4,3) and a few surrounding pixels). Line emission is confined to

the position of Elias 29 and along the ridge running from north-west to south-east. A closer

look at the spectra for pixel (4,3) shows that there is a discontinuity in the continuum and in
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Figure 7.7: Rotational diagram for 12CO (blue square point and solid line) and 13CO (red

circle point and dashed line) in Elias 29. Errors bars include errors from fitting and the

6% calibration uncertainty (Swinyard et al., 2014). Solid and dashed lines indicate the best

linear fit to data points for 12CO and 13CO, respectively.
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the line peaks between the SSW and SLW bands. This is due to the differences in the SSW

and SLW beam sizes and also to the fact that line emission is not as extended as that of the

continuum. This discussion will now be continued using integrated line intensity maps. It

is important to note that the integrated line intensity maps presented in this section were

derived from spectral data cubes produced as described in Section 7.4.3. The integrated line

intensity maps were not convolved to the same beam due to challenges discussed in Chapter

4 and so the comparison of maps for different transitions should be carried out with caution.

Carbon Monoxide

Figure 7.8 shows the CO integrated line intensity maps for all the ten CO lines

identified in the spectrum for Elias 29. Low-J transitions are much more extended that

high-J transitions, providing evidence that the CO lines are tracing different components

of the region surrounding Elias 29, in agreement with Boogert et al. (2002). The low-J

transitions are tracing the much more extended foreground clouds which are thought to be

associated with the ρ Ophiuchus cloud complex. The ridge, elongated in the north west

- south east direction and reported to be rich in HCO+ is clearly seen in the mid-J 12CO

transitions. The envelope + disk system is seen as a confined source at high-J transitions. It

is clear that 12CO is optically thick and this needs to be taken into account when modelling

emission from Elias 29.

Figure 7.9 shows the 13CO integrated line intensity maps for four transitions in

which reasonable maps could be obtained. Although we identified nine 13CO lines in the

spectrum for the brightest point, emission from high-J 13CO transitions are close to the

noise level and the maps are not trustworthy. The maps shown indicate that emission from
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Figure 7.8: 12CO (J=4-3 to 13-12) integrated line intensity maps for Elias 29. The units

for the colour bar are W m−2 sr−1. The circle on the bottom right corner represents the

SPIRE iFTS beam at each 12CO transition. Contours are shown at 40 and 30% of the peak

flux value in each map. In this figure, it is clearly seen that emission from low-J transitions

which probe cold gas is extended and that from high-J transitions which are less susceptible

to opacity effects is point-like. The lines trace different components of the region around

Elias 29.
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Figure 7.9: 13CO (J=4-3 to 13-12) integrated line intensity maps for Elias 29. The units for

the colour bar are W m−2 sr−1. The circle on the bottom right corner represents the SPIRE

iFTS beam at each 13CO transition. Contours are shown at 40 and 30% of the peak flux

value in each map. In this figure, it is seen that emission from 13CO is probing the ridge.

low-J transitions is more extended compared to that for high-J transitions. The dense ridge

can be seen in maps for the lower three transitions. Based on these results, 12CO and 13CO

should be taken as separate tracers.

Neutral carbon

Figure 7.10 shows C i (3P1-3P0 and 3P2-3P1) integrated line intensity maps. One of

the striking features from the C i fine-structure emission maps is that they are as extended

as the continuum. These lines play an important role in the cooling of the ISM and originate
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Figure 7.10: C i (3P1-3P0 and 3P2-3P1) integrated line intensity maps for Elias 29. The units

for the colour bar are W m−2 sr−1. The circle on the bottom right corner represents the

SPIRE iFTS beam at each C i transition. Contours are shown at 40 and 30% of the peak

flux value in each map. This figure shows that C i is more extended suggesting it originates

from foreground clouds.

from an intermediate region between atomic and molecular gas (Tielens, 2005). This suggests

that the observed extended emission from C i could be coming from the foreground clouds.

Measurements of line of sight rest velocities of the C i lines from high spectral resolution

observations are required to confirm the origin of these emission lines.

Water

Five water lines shown in Table 7.1 have been observed in the SPIRE SSW and

SLW bands. This is not the first time water has been detected from Elias 29. Boogert et al.
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(2000) detected hot water vapour (Tex > 300 K) at high abundances on scales a few hundred

AU. Figure 7.11 shows the integrated line intensity maps for water. Emission from water is

not structured at all. However, the pixel located at the position of Elias 29 is bright in all

maps suggesting that emission from water is associated with the envelope + disk system.

This supports results from Boogert et al. (2000) that water emission is confined to a few

hundred AU.

The 557 GHz 110-101 water line has been observed in a number of Class 0 and I

protostars with the HIFI instrument (de Graauw et al., 2010) on Herschel as part of the

Water in star-forming regions with Herschel (WISH) program (Kristensen et al., 2012). It

has been shown that the lines are complex and rich in various dynamic components. The

regular and inverse P-Cygni profiles in observations of Class 0 and I protostars indicate

the presence of simultaneous expansion and infall, respectively. The SPIRE iFTS does not

have sufficiently high spectral resolution to spectrally resolve the line features. However,

the detection of water is itself a key result as this water may end up in oceans on planetary

systems formed as the objects evolve to become “solar-type” main-sequence stars.

7.5.4 SED of Elias 29

Figure 7.12 shows the broadband dust continuum SED of Elias 29 constructed from

spectra obtained using ISO (SWS and LWS instruments) covering wavelengths from 2.4 to

195 µm and using SPIRE iFTS covering wavelengths from 194 to 671 µm. The ISO spectra

were originally published by Boogert et al. (2002). Our SPIRE iFTS spectrum provides

confirmation that the drop-off of the SED is around 200 µm. Fitting a greybody function

to the SPIRE iFTS spectrum, with a fixed dust emissivity index (β = 2) results in a dust
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Figure 7.11: H2O integrated line intensity maps for Elias 29. The units for the colour bar

are W m−2 sr−1. The circle on the bottom right corner represents the SPIRE iFTS beam

at each H2O transition. Contours are shown at 40 and 30% of the peak flux value in each

map. This figure shows that emission from water is not structured. The pixel located at the

position of Elias 29 is bright in all maps suggesting that emission from water is associated

with the envelope + disk system.
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Figure 7.12: The SED of Elias 29 constructed using spectra from ISO and SPIRE FTS

instruments. The SED is almost flat between the 4 to 200 µm band. It then falls off in a

region where there are strong CO emission lines.

temperature of 22 ± 1K. This is slightly greater but close to a value of 19 K reported by

Boogert et al. (2002) for the foreground clouds.
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7.6 Conclusion

Integrated line intensity maps for 12CO and 13CO have have confirmed that there

are three components in the observed region of Elias 29. Emission from low-J transitions

originates from an extended region and is associated with foreground clouds. A ridge, elon-

gated in the north west - south east direction is seen in the emission from mid-J transitions.

The high-J transitions originate from a confined region that is associated with the envelope

+ disk system. The presence of a number of components in the line of sight has also been

confirmed by a rotation diagram which shows that both 12CO and 13CO integrated line

intensities cannot be fit with single temperature lines. The rotation diagram approach uses

the assumption that the medium is isothermal and in thermodynamic equilibrium. It is

clear that this assumption is not met and so more detailed modelling of the emitting region

is required.

Although the integrated line intensity maps for water do not show any structure,

they are interesting in that there is relatively strong emission from the envelope + disk

system. This is the first time that integrated line intensity maps for C i have been shown for

Elias 29. The emission is more extended suggesting that it originates from the foreground

clouds.

The results presented in this chapter will help future research to constrain radiative

transfer models for Elias 29.



152

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has presented Herschel -SPIRE observations of astronomical objects

that belong to the earliest stages of stellar evolution. The study of these objects helps us

better understand the processes involved in the formation of stars. This is the first time

these objects have been observed with a broadband instrument working in the far-infrared

region of the electromagnetic spectrum.

An introduction to the thesis was provided in Chapter 1 where a discussion of the

ISM and our current understanding of the initial stages of stellar evolution were presented.

It has been known for almost three decades now that the process of star formation begins

with density enhancements of the ISM leading to the formation of centrally concentrated

cores, which we refer to as “starless cores”. The study of starless cores offers an opportunity

to better understand the basic principles and evolution of star formation physics. A core

that is gravitationally unstable collapses to form a Class 0 protostar, which then evolves to
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become a Class I protostar. The evolution sequence proceeds as discussed in Chapter 1. In

this thesis I have only discussed SPIRE iFTS observations of three starless cores, one Class

0 protostar and one Class I protostar. I have combined these SPIRE iFTS observations

with observations from a variety of other facility instruments including the Submillimeter

Common-User Bolometer Array (SCUBA) on the JCMT and MIPS together with IRAC on

Spitzer .

The theoretical background required to understand observations of astronomical

objects has been presented in Chapter 2. The chapter focused primarily on the elementary

processes involved in the absorption and emission of electromagnetic radiation. Absorption

and emission by atoms and molecules leads to line radiation and that by dust particles lead

to continuum radiation. The propagation of this radiation through absorbing and emitting

media has also been discussed. Example cases given in the chapter were based on molecules

that have emission lines in the SPIRE band and have been identified in the SPIRE iFTS

spectra for Class 0 and Class I protostars discussed in the later chapters of the thesis.

Chapters 3 and 4 present my contribution to the calibration of the SPIRE iFTS.

Chapter 3 describes the derivation of the beam profile for the SPIRE iFTS. A discussion of

the data reduction pipeline for the SPIRE iFTS is presented in Sections 3.3 and 3.4. Chapter

4 discusses applications of the beam profiles derived in Chapter 3. One of the applications is

the correction of point-source calibrated observations of semi-extended sources. The other

application discussed is the convolution of maps observed with instruments having different

Point spread functions (PSFs) to a common beam for more meaningful comparison and

interpretation.
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Chapter 5 presents the analysis of SPIRE iFTS observations of three starless cores,

L1521E, L1521F and L1689B. This is the first time the broadband far-infrared spectra of a

starless core has been observed. Prior to Herschel , these objects were studied using SEDs

derived from ∼3 –5 photometric points. Our SPIRE iFTS observations helped constrain the

peak of the SEDs and, therefore the dust temperature and emissivity indices for these cores.

The dust masses and column densities for the cores were also derived.

Chapter 6 presented the results derived from observations of IRAS16293-2422, a

Class 0 protostar. A wealth of molecular line emission from 12CO, 13CO, C18O, C i, H2O,

HCO+ and CS was detected. We obtained spectral maps of IRAS16293-2422 which enabled

study of the spatial extent of line emission. Combining these observations with those from

other instruments, an SED was constructed enabling the derivation of dust temperature and

emissivity index.

Chapter 7 presents results from the SPIRE iFTS mapping observations of Elias 29,

a Class I protostar. The spectra were rich with emission lines from 12CO, 13CO, C i and

H2O. Integrated line intensities were derived from the brightest pixel on the spectral maps.

Integrated line intensity maps from the detected emission lines confirm the presence of three

components along the line of sight: foreground clouds, the ridge and envelope + disk system.

The spatial extent of line emission can now be used together with high resolution spectral

line information from instruments like the Herschel HIFI to derive physical properties of

Elias 29.
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8.2 Future Work

For the SPIRE iFTS sparsely sampled observations of pre-stellar cores (Chapter

5), there is a spectrum for almost each of the bolometers in the SSW and SLW bands. There

are only two bolometers in the SSW band that are not functional. In this thesis, I only used

spectra from the central bolometers in both bands. Further study will investigate the use of

spectra from unvignetted and co-aligned bolometers in the construction of SEDs that can

be used to study the spatial distribution of dust temperature and emissivity index.

Information about the spatial extent of line emission provided by the mapping

observations is a useful constraint to radiative transfer models. Further study of IRAS16293

and Elias 29 (Chapters 6 and 7) will involve using the spatial extent of line emission from

this work together with high resolution spectra from instruments like HIFI and Atacama

Large Millimeter Array (ALMA) to constrain radiative transfer models. The Line Modeling

Engine (LIME) (Brinch & Hogerheijde, 2010) and 1D radiative transfer code DUSTY (Ivezic

& Elitzur, 1997) can now be used to derive the dust temperature and density profiles of these

protostars.

This work, along with the proposed future study will serve to increase our knowl-

edge of the physics of star formation.
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Appendix A

The beam profile for the SPIRE FTS

Originally published in Applied Optics, 52, 3864-3875 (2013)
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One of the instruments on board the Herschel Space Observatory is the
Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a
Fourier transform spectrometer with feed-horn coupled bolometers to provide
imaging spectroscopy. To interpret the resultant spectral images requires
knowledge of the wavelength dependent beam, which in the case of SPIRE is
complicated by the use of multi-moded feed-horns. In this paper we describe a
series of observations and the analysis conducted to determine the wavelength
dependence of the SPIRE spectrometer beam profile. c⃝ 2013 Optical Society
of America

OCIS codes: 350.6090, 120.6085, 350.1260, 120.6200

1. Introduction

It is now known that approximately half of the radiant energy emitted by the universe occurs
in the infrared spectral range [1]. Most of the infrared wavelength region is inaccessible from
the ground primarily due to absorption by the Earth’s atmosphere, which necessitates the
use of space borne instrumentation. Moreover, to minimize the effects of thermal emission
from the infrared instruments themselves, which would otherwise dominate the weak astro-
nomical signal, instruments must be cooled, often to liquid helium temperatures. In the first
infrared space telescopes (Infrared Astronomical Satellite (IRAS) [2], Infrared Space Obser-
vatory (ISO) [3]) this was achieved by placing the entire telescope in a cryostat, limiting
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the diameters of primary mirrors to 60 cm. While these pioneering missions provided our
first view of the far-infrared universe their small aperture resulted in relatively low angular
resolution.

On May 14, 2009, the European Space Agency launched the Herschel Space Observatory [4]
which, with its 3.5 m diameter passively cooled primary mirror, provides a major advance
in spatial resolution. Herschel is the largest infrared space telescope to-date and is designed
to provide unfettered access to the far-infrared region by means of three instruments which
are themselves cooled to ≤ 4 K by an on board supply of liquid helium.

One of Herschel’s instruments is the Spectral and Photometric Imaging Receiver (SPIRE)
[5]. SPIRE is comprised of a three-band imaging photometer and a two-band imaging Fourier
Transform Spectrometer (FTS). The SPIRE FTS uses feed-horn coupled spider-web bolome-
ters that are cooled to ≈ 300 mK [6], to provide imaging spectroscopy over the range from
194 to 671 µm.

A feature common to all interferometers is that they have two input and two output
ports. In the case of the SPIRE FTS, one input views the astronomical source while the
other views an internal blackbody calibration source. The two complementary output ports
feed the Short Wavelength (SSW) array which consists of 37 detectors and covers wavelengths
from 194-313 µm and the Long Wavelength (SLW) array which consists of 19 detectors and
covers wavelengths from 303-671 µm.

A schematic view of the SPIRE FTS detectors is shown in Figure 1 [7]. The detector arrays
themselves consist of hexagonally close-packed feed-horn-coupled spider-web bolometers [6].
Each feed-horn consists of a conical concentrator in front of a circular waveguide (see Section
2). The feed-horns for each array are optimized for the two spectral bands. Since the spectral
ranges are too broad to be covered by a feed-horn coupled waveguide operating in a single
mode, the waveguides propagate different transverse electric (TE) and transverse magnetic
(TM) modes [8–10] as a function of wavelength. The cut-off frequency for each mode is
dependent on the diameter of the waveguide. In this paper we examine the effect of this
“multi-moded" response, as modified by the SPIRE optics, on the effective beam size of
the SPIRE instrument. We present the wavelength dependent SPIRE FTS beam profile
determined from raster observations of Neptune and Uranus, which, as will be shown, are
good approximations to point sources.

2. Optical design of the Herschel-SPIRE FTS

In order to place the results presented in this paper in context, a brief review of the Herschel-
SPIRE spectrometer is presented below. For more detailed information the reader is referred
to papers by Dohlen et al. [11], Griffin et al. [12] and Naylor et al. [13].

Herschel is a classical Cassegrain telescope with the primary mirror having a diameter of

2

158



Fig. 1. A schematic view of the SPIRE FTS detector arrays and the spacecraft
(Y,Z) coordinate system. The circles represent feed-horns for each detector.
Circles shaded in blue represent SSW and SLW detectors that have the max-
imum overlap on the sky. The two empty spaces on the SSW array represent
dead detectors. The 2.6′ unvignetted field of view for each detector array is
delineated by a red dashed line. The rightmost figure shows the overlap on the
sky of the SSW (blue circles) and SLW (red circles) detector arrays with circle
sizes corresponding to a representative full width half maximum (FWHM) of
the beam.

3.5 m and an “undersized" secondary mirror yielding an effective primary aperture of 3.29
m. The Herschel primary mirror was designed to have a fast f-ratio (f/0.5) to fit within
the envelope of the launch vehicle. The resulting focal ratio of the Herschel telescope is
f/8.68 [11,12] which produces a curved focal surface at the entrance to the spectrometer.

Figure 2 shows the optical design of the SPIRE instrument [11, 12]. The photometer and
spectrometer are mounted on opposite sides of a common optical bench. A mirror directs
light from the telescope to either instrument. Before the beam reaches the FTS it passes
through an undersized cold pupil stop located between the pick-off mirror and the input
fold mirror. This pupil stop helps to minimize stray light from reaching the detectors. The
SPIRE FTS is of the Mach-Zehnder configuration [13] which employs collimating mirrors
within arms of the interferometer to control beam divergence and minimize the volume
occupied. The beam enters the FTS through one of the input ports. A thermal calibration
source is placed at the pupil image of the second input port. The source was designed such
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that its temperature and emissivity could be adjusted to match the background emission
from the telescope and thus reduce the interferogram modulation at zero path difference
albeit at the cost of additional photon noise. However, three months after launch, during the
commissioning phase of Herschel, it was found that the emissivity of the telescope was so
low that the calibration source was not required.

Herchel focal
surface

M3
M5

Beam
divider

Beam
divider

Focal
planes

Pupil

Output relay

Moving roof-top mirrors

Camera Collimator
Pick-off mirror Input relay

Input fold mirror

M4

Calibrator

Fig. 2. The ray diagram of the SPIRE FTS. The design was constrained by the
requirement to fit the instrument into the available space. For further details,
the reader is refered to Griffin et al. [12].

Upon entering the FTS, the beam is brought to an intermediate focus just after the first
intensity beam divider. It is then collimated and directed to the roof-top mirrors which
create the optical path difference between the two interferometer beams. The SPIRE FTS
can be operated at three spectral resolutions (Low, Medium and High Resolutions with
designations LR, MR and HR respectively) corresponding to ∆σ=0.83, 0.24 and 0.0398 cm−1

respectively [7]. These resolutions were specifically chosen to match the science programs.
From the roof-top mirrors, the beam is directed to the camera mirrors producing an image
just before the second intensity beam divider. Finally, relay mirrors reimage the beam onto
the feed-horns of the detector arrays.

Conical feed-horns, shown in Figure 3, are used to couple the large telescope beam onto
the individual detectors. The feed-horns are hexagonally close-packed (Figure 1) and were
chosen to have a center to center spacing of 2Fλ (where F is the final focal ratio), which was
a compromise between increased individual detector sensitivity and spatial sampling. The
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Fig. 3. The SPIRE feed-horn and cavity design. [9]. The metalized silicon
nitride web absorber is located at the center of the integrating cavity, a distance
of λ/4 below the front, and above the bottom surfaces.

feed-horns are terminated in circular wave-guides which are followed by integrating cavities.
The bolometer itself is located at the center of the integrating cavity with a spacing of λ/2

between the front and rear surfaces of the cavity.

3. Observations

The wavelength dependent beam profile can be determined by obtaining a spectrum at
each spatial position as a point source is raster scanned across the field of view of the
spectrometer. Neptune and Uranus, both good approximations of point sources were used
for this purpose; Neptune and Uranus having average diameters of 2.3′′ and 3.5′′ respectively,
small when compared to the minimum predicted pre-launch beam sizes (17" for SSW and
30" for SLW [7]). Moreover, Neptune and Uranus are bright in the infrared, which leads to
a high signal-to-noise ratio in measurements. The observation details are shown in Table
1. Herschel observations are classed according to the operational day on which they were
taken (e.g. OD1234 for operational day 1234). The Neptune observation on OD210 consisted
of medium spectral resolution (△σ = 0.24 cm−1) FTS scans with two repetitions (i.e. 4
interferograms) per raster position, which yielded spectra with typical peak signal-to-noise
ratios of ∼700 and ∼900 for SLW and SSW, respectively. The duration of the observation
was 4.8 hours. The relative signal values and their errors were calculated using the Herschel
Interactive Processing Environment (HIPE) data pipeline version 7 [14].
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Table 1. Observation details of the data used to determine the SPIRE beam
profile. [OD: Operational Day from the launch of the telescope, OBSID: OB-
Servation IDentification number, Res: Spectral Resolution, LR: Low resolution,
MR: Medium resolution, HR: High resolution, Reps: Number of repetitions,
DOO: Duration of Observation, SS is the source size at the time of observa-
tion. More information about some of these parameters can be obtained from
the SPIRE Observer’s Manual [7].]

Source OD OBSID Res Reps DOO Raster grid size Step size SS
(s) (′′) (′′)

Neptune 210 0x50002990 MR 2 17260 90′′x90′′ 9 2.24
742 0x5000AD8A LR 6 20983 84′′x84′′ 7 2.26

Uranus 410 0x500055D6 MR 2 16528 70′′x70′′ 7 3.50
767 0x5000B216 HR 4 17036 Cross (90′′) 7.5 3.46
767 0x5000B217 HR 4 17036 Cross (90′′) 7.5 3.46

The underlying processing of bolometer signals has not changed in more recent versions of
HIPE and so updated processing would not change the results presented here (which depend
only on the relative signal level between different raster positions). Since this observation
was done in a special engineering mode where the spacecraft pointing (rather than the beam
steering mirror position) was varied to obtain a map, the data required specialized processing.
The data were produced in the form of a 3-D cube with two angular coordinates (RA and
Dec) and one spectral coordinate, resulting in a complete SPIRE FTS spectrum at each of
the points on the 11x11 (90′′x90′′) raster grid. Figure 4 shows the raster grid in the equatorial
coordinate system (left) and in the spacecraft coordinate frame (right), which are related
through a rotation matrix determined from the orientation of the spacecraft at the time of
observation. The Neptune OD742 and Uranus OD410 observations have similar but smaller
raster grids and different step sizes (see Table 1). The time required to measure the beam
profile of all pixels in the arrays was prohibitive. For this reason the last two observations
of Uranus were cross-rasters centered on two off-center detectors (SLWC2 for 0x5000B216
and SLWC4 for 0x5000B217). This produced two one-dimensional cuts of length 90′′ along
each of the two angular coordinates to allow us to investigate the beam profile of some of
the other detectors and to verify that they were in good agreement with the center detectors
in each array. In this paper we present the analysis of the Neptune OD210 observation,
which has the largest raster grid and therefore enabled us to explore contributions from
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Fig. 4. The raster grid for the Neptune OD210 observation, corrected for proper
motion of the planet, before (left) and after (right) rotation for alignment with
the spacecraft Y and Z axes. Neptune was close to the center of the grid during
the observation.

the wings of the beam profile. We also present the results from cross-raster observations of
Uranus obtained on OD767. All of the other observations have been analyzed and confirm
the results presented in this paper.

4. Hermite-Gaussian functions

End-to-end modeling of a complex optical system such as the SPIRE FTS, which includes
18 mirrors, 2 beamsplitters, several filters, a dichroic, a lens and an undersized pupil stop,
is impractical. Moreover, some clipping of the divergent beam in the two arms of the FTS is
inevitable since the location of the intermediate pupil image changes as the interferometer is
scanned. Thus, even though the feed-horn modes themselves are well known [9], we cannot
apply time reversal of the instrument beam from first principles.

In order to derive the SPIRE FTS beam, a linear superposition of Hermite-Gaussian func-
tions was fitted to the data. The Hermite-Gaussian functions form a complete set of solutions
to the paraxial Helmholtz equation [15, 16]. Another set of solutions which could have been
used are Laguerre-Gaussian functions. We chose Hermite-Gaussian over Laguerre-Gaussian
decomposition because it would be more instructive to reference the Cartesian frame of
the instrument should clear asymmetries be present. Hermite-Gaussian basis functions are
commonly used to describe systems with rectangular symmetry and are computationally
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convenient. The decomposition adapted here should not be taken as directly representing
the expected TE and TM modes but as a convenient mathematical representation.

The solutions of the Helmholtz equation represent the electromagnetic field and so the ex-
pression of the resulting intensity due to a superposition of Hermite-Gaussian basis functions
is non-trivial. While we did explore contributions for individual basis functions, the experi-
mental errors on the measurements prevented us from being able to confirm any asymmetries.
As a result the final analysis assumed radially symmetric basis functions. The intensity dis-
tribution in the beam, S(r, λ), was expressed as [15,16],

S(r, λ) =
∞∑

n=0

cn(λ)|φn(r, λ)|2. (1)

where cn(λ) are the coefficients which indicate the intensity contribution from each basis
function of order n. r =

√
x2 + y2 where x and y are orthogonal angular coordinates. φn(r, λ)

are the radial basis functions of order n and are given by the product of a Gaussian function
and a Hermite polynomial:

φn(r, λ) =
(

2

π

)1/4

· 1√
w0(λ)

· 1√
2n · n!

· Hn

(√
2

r

w0(λ)

)
e−r2/w2

0(λ). (2)

φn(r, λ) has been normalized such that
∫+∞
−∞ |φn(r, λ)|2dr = 1. w0(λ) is the beam waist

radius. For a Gaussian beam, w0(λ) is related to the full width half maximum (FWHM)
by w0(λ) =FWHM/

√
2 ln 2. The relationship is more complex for a multi-moded beam.

Hn

(√
2 r2

w0(λ)

)
are the Hermite polynomials of order n, the first three of which are given by

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2. (3)

To derive the analytical form of the SPIRE beam profile, the 2-D data at each wavelength
was fitted using the first six terms of Equation (1) to extract optimum values of cn and w0.
The solution that gave lowest reduced chi-square, χ2

R, with the least number of terms was
selected.

5. The effect of finite source size

The relatively small angular sizes of Neptune (diameter=2.3′′) and Uranus (diameter=3.5′′),
when compared to the expected beam sizes for both SSW (∼ 19′′) and SLW (∼35′′) bands,
is expected to incur negligible error. To confirm this we compared the convolution of the
reconstructed beam and a cylinder representing the size of the Neptune disc with the raw
data, and minimized the residuals. Table 2 shows a comparison of resulting beam widths,
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Table 2. A comparison of the waist radii for the beam profile at a few frequen-
cies in the SPIRE SSW band before and after correcting for the finite size of
Neptune. The average errors for the uncorrected and corrected values are ±
0.06′′ and ± 0.18′′ respectively.

Frequency (GHz) Uncorrected w0(′′) Corrected w0(′′)

1349 14.43 14.34
1379 14.40 14.44
1409 14.27 14.22
1439 14.18 14.28
1469 14.06 13.98
1499 14.15 14.05

w0, with and without the correction for the effect of the finite size of the planet. Values
shown here are for the shortest wavelength (highest frequency) end of the SSW band where
the effect is expected to be greatest. The effect, predicted to be 1.1 %, is dominated by the
errors from the fitting process (∼ ± 2 %) and justifies our assumption that Neptune is a
point source in the determination of the beam profile.

6. Results

6.A. Center detectors

The results from fitting the radially symmetric basis functions (Equation (1)) are presented
in the Appendix (Tables 3 and 4). With these results, one can reconstruct the wavelength
dependent SPIRE FTS beam. The analysis showed that there is no significant improvement
in the χ2

R from including terms higher than the zeroeth order function (i.e. pure Gaussian)
for the SSW band. In contrast, the SLW band requires the first three radially symmetric
basis functions. Generally, the errors from fitting the SLW data are larger than for the SSW
data. This is due to the additional higher order terms being fitted. The errors from the fitting
of the waist radius are less than 2 % whilst the errors for the coefficients, cn increase with
n up to 20 % for certain wavelengths. This increase in uncertainty arises when the power
assigned to higher order terms in the fitting process becomes comparable to the noise level
in the data. Figures 5 and 6 show the results of the fitting performed at the edges of the
SLW wavelength band; at 317.5 µm (944 GHz) and at 645.2 µm (464 GHz) respectively. At
these wavelengths, the fitting returned χ2

R values of 0.7 and 0.02, respectively.
Figure 7 shows the FWHM (solid curve) determined from the reconstructed composite
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Fig. 5. Surface plots obtained from fitting Neptune data at 317.5 µm (944
GHz), the short wavelength end of the SLW band. The top row shows the
raw data (left), fitted data (center) and the difference (right). The bottom
row shows a decomposition of the fitted data (top center) into the first three
modes.
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Fig. 6. Surface plots obtained from fitting Neptune OD210 data at 645.2 µm
(464 GHz), the long wavelength end of the SLW band. The format of this
figure is the same as that of Figure 5.

beam compared to that expected from diffraction theory (dashed line). The longer wavelength
end of each SPIRE FTS band agrees well with diffraction theory. This is due to the fact
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Fig. 7. The measured FWHM of the central detectors (SLWC3 and SSWD4)
compared with diffraction theory. The gray band represents the 3σ errors in
the measured FWHM. The thick vertical lines indicate the cut-on wavelengths
for the different feed-horn modes. The expected number of modes present in
these regions are also indicated.

that the beam is single-moded in these regions. As expected, the beam shows an increasing
deviation from diffraction theory as the number of modes increases.

6.B. Off-center detectors

Unfortunately, time precluded scanning Neptune over all of the detectors. While we lack
complete spatial coverage for most of the off-center detectors, fitting was attempted on the
partial data available. This allows us to comment on the variation in beam profile from
one detector to another. The results are presented in Figures 8 and 9. In general, there is
good agreement between different detectors. However, in the longer wavelength region of the
SLW band (above 570 µm), there is a large spread in the FWHM. This is the region where
the beam is large and so a large part of the profile fell outside the measured grid leading
to fitting results with a larger χ2

R value. An example of the fitting procedure applied to a
detector where the peak of the measured signal lay close to the edge of the raster grid is
shown in Figure 8. At this wavelength, the fit gave a χ2

R value of 1.0.
It was therefore not meaningful to average the results and provide the SPIRE FTS users

with a single set of parameters for the beam. We therefore recommend taking the beam profile
for the center detectors provided in the Appendix as representative of other detectors. It can
be seen that the FWHM for SSWE4 is slightly shifted from the other detectors. This may
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be due to a manufacturing variance as each waveguide was custom made. There is however
no clear confirmation in the manufacturing record for the feed-horns that this might be the
case [17]. Figure 10 shows the FWHM obtained from fitting the Uranus OD767 cross-raster
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Fig. 8. Surface plots obtained from fitting Neptune OD210 data for detector
SLWC2 at 317.5 µm (944 GHz) showing that the peak of the profile is close
to the edge of the measured grid. The format of this figure is the same as that
of Figure 5.

Fig. 9. The measured FWHM for selected off-center detectors. The grey band
represents the standard deviation from the mean (not shown here) of the
FWHM for all detectors shown.
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Fig. 10. The measured FWHM for selected off-center detectors from the Uranus
cross-raster observations. The plot appears noisy since the observations were
done in high spectral resolution. The gray band represents the mean 3σ errors
in the measured FWHM.

observations with radially symmetric functions of the same form as Equation (1) for the
four detectors on which the observations were centered. These results are in agreement with
those for the center detectors presented in Figure 7. Moreover, since these observations were
obtained at high spectral resolution, they serve to show that the derived beam parameters
do not change significantly from medium to high spectral resolution.

7. Applications

In order to extract the maximum information from the spectral images obtained with the
SPIRE FTS, it is important to take into account the effects of beam variation with wave-
length. The efficiency with which the different feed-horn modes couple to the incoming
radiation pattern from a source of finite size is dependent on source distribution [18–20] and
so impacts the intepretation of measured flux values. The calibration of sources can be di-
vided into three main categories: point like, semi-extended and extended sources. Point-like
sources are defined as those with a size much smaller than the beam at all wavelengths.
Extended sources have a source distribution much wider than the beam at all wavelengths.
Semi-extended sources are found in-between these extremes. They partially fill the beam and
their flux calibration is usually difficult since it requires prior knowledge of source extent and
distribution.

The observed images represent a convolution of the source, be it point-like or extended,
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and instrument point spread function (PSF). In many cases, facility instruments at major ob-
servatories have sufficiently small bandwidth that the variation of beam size with wavelength
is generally insignificant. The trend to increase the bandwidth of instruments (for example
the SPIRE FTS) means that an understanding of the beam profile is essential, not only to
compare observations at different wavelengths within the SPIRE band, but also to compare
the SPIRE results with those obtained with different instruments operating on different tele-
scopes. The accurate wavelength dependent beam profile for the SPIRE FTS described in
this paper can be used to explore deconvolution techniques such as the Maximum Entropy
method [21], with the goal of improving the spatial resolution of spectral images [22, 23].
Conversely, knowledge of the beam profile can be used to convolve the SPIRE FTS data
to a common beam size. Finally, the beam profile can be used to calculate the coupling
integral with a model source distribution to disentangle the effects of source extent from the
measured spectrum [20].

8. Summary and Conclusions

Flux calibration is one of the most important steps in astronomical data analysis. The
measured spectra are impacted by the wavelength dependent beam profile and the source
extent. In this paper we describe the steps followed in the determination of the SPIRE FTS
beam profile. Because the SPIRE FTS optical components are undersized and the detectors
are feed-horn-coupled, the beam profile exhibits a complex dependence on wavelength as
the multi-moded feed-horns allow different modes to be enabled at certain wavelengths in
the SPIRE band. All of the well characterized detectors exhibit the same mode structure.
In order to simplify the analysis of mapping observations where the spatial extent of the
source is provided by off-center detectors, the beam profiles for the center detectors can be
taken as representative of the rest of the detectors. While allowing for six basis functions, we
conclude that the SSW band is best represented by a Gaussian beam which is well behaved
in deconvolution applications, whereas the SLW band is more complex with at least three
terms identified. The final number of terms was determined after comparing the rms values
of the residuals of the fit. Tables of the final wavelength dependent beam parameters are
provided in the Appendix.
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Appendix

This appendix contains the wavelength dependent beam parameters required for reconstruc-
tion of the SPIRE FTS beam. There are two tables, one for each of the SPIRE FTS bands.
The FWHM values provided in the tables were determined from the reconstructed beams
and do not imply the beam is Gaussian throughout the wavelength range. The wavelength
dependent beam can be reconstructed using Equations (1), (2) and (3) and the parameters
given in this Appendix. The following example shows how to calculate the area normalized
beam at a wavelength of 317.5 µm (944 GHz).

S(r, 944GHz) = 0.533

[(
2

π

)1/4

· 1√
18.72

· 1√
20 · 0!

· (1) · e−r2/18.722

]2

+0.355

[(
2

π

)1/4

· 1√
18.72

· 1√
21 · 1!

·
(
2
√

2
r

18.72

)
· e−r2/18.722

]2

+0.112

[(
2

π

)1/4

· 1√
18.72

· 1√
22 · 2!

·
(
4(

√
2

r

18.72
)2 − 2

)
· e−r2/18.722

]2

.(4)

The radial distance r (in arcseconds) is calculated from the center of a 2-D array generated
by the user.

Table 3: Parameters required to generate the SPIRE FTS
SLW beam profiles using Equation (1). These parameters
were derived from the central detector, SLWC3. [f : fre-
quency; w0: waist radius; △w0: error in w0; cn: coefficients
of Hermite-Gaussian terms; △cn: error in cn, FWHM:Full
Width at Half Maximum; △ FWHM: error in FWHM.]

f w0 △ w0 c0 △ c0 c1 △ c1 c2 △ c2 FWHM △ FWHM
(GHz) (′′) (′′) (′′) (′′)

442 24.01 0.55 0.643 0.021 0.192 0.013 0.164 0.016 39.5 0.3
449 24.68 0.43 0.642 0.015 0.219 0.008 0.139 0.012 42.3 0.3
457 24.90 0.34 0.646 0.012 0.230 0.006 0.125 0.009 43.1 0.2
464 24.80 0.32 0.652 0.011 0.231 0.005 0.116 0.008 42.7 0.2
472 24.45 0.32 0.659 0.012 0.228 0.005 0.112 0.008 41.6 0.3
479 23.91 0.32 0.663 0.012 0.224 0.005 0.112 0.008 40.4 0.3
487 23.31 0.30 0.662 0.011 0.222 0.005 0.116 0.008 39.3 0.2
494 22.79 0.28 0.657 0.011 0.221 0.005 0.121 0.008 38.6 0.2

Continued on next page
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Table 3 – continued from previous page

f w0 △ w0 c0 △ c0 c1 △ c1 c2 △ c2 FWHM △ FWHM
(GHz) (′′) (′′) (′′) (′′)

502 22.44 0.26 0.652 0.011 0.223 0.005 0.125 0.008 38.2 0.2
509 22.24 0.26 0.650 0.010 0.226 0.005 0.124 0.008 38.1 0.2
517 22.12 0.26 0.653 0.011 0.230 0.005 0.118 0.008 38.0 0.2
524 21.98 0.29 0.659 0.012 0.233 0.005 0.108 0.009 37.6 0.2
532 21.78 0.34 0.666 0.014 0.237 0.006 0.097 0.010 37.2 0.3
539 21.52 0.36 0.669 0.015 0.241 0.006 0.090 0.011 36.8 0.3
547 21.25 0.36 0.668 0.015 0.245 0.006 0.088 0.011 36.5 0.3
554 21.01 0.33 0.664 0.014 0.247 0.006 0.089 0.010 36.3 0.3
562 20.82 0.32 0.662 0.014 0.248 0.006 0.090 0.010 36.1 0.3
569 20.68 0.31 0.663 0.014 0.247 0.006 0.090 0.010 35.7 0.3
577 20.55 0.31 0.669 0.014 0.244 0.006 0.087 0.010 35.3 0.3
584 20.44 0.33 0.676 0.015 0.241 0.006 0.082 0.010 34.7 0.3
592 20.35 0.36 0.682 0.016 0.240 0.006 0.078 0.011 34.4 0.3
599 20.29 0.36 0.684 0.016 0.241 0.007 0.075 0.011 34.2 0.3
607 20.23 0.36 0.684 0.016 0.242 0.006 0.074 0.011 34.2 0.3
614 20.14 0.36 0.683 0.016 0.244 0.006 0.073 0.011 34.1 0.3
622 20.01 0.36 0.682 0.017 0.246 0.007 0.072 0.011 34.0 0.3
629 19.81 0.36 0.683 0.017 0.247 0.007 0.070 0.011 33.7 0.3
637 19.60 0.35 0.683 0.016 0.248 0.006 0.069 0.011 33.3 0.3
644 19.41 0.33 0.684 0.016 0.248 0.006 0.068 0.010 33.0 0.3
652 19.30 0.31 0.684 0.015 0.247 0.006 0.069 0.010 32.7 0.3
659 19.26 0.30 0.685 0.015 0.244 0.006 0.070 0.009 32.6 0.3
667 19.21 0.30 0.687 0.014 0.243 0.006 0.071 0.009 32.4 0.3
674 19.10 0.30 0.688 0.015 0.241 0.006 0.071 0.009 32.1 0.3
682 18.90 0.32 0.689 0.016 0.241 0.006 0.069 0.010 31.8 0.3
689 18.68 0.33 0.691 0.016 0.242 0.007 0.067 0.010 31.4 0.3
697 18.58 0.33 0.694 0.017 0.242 0.007 0.063 0.010 31.1 0.3
704 18.73 0.34 0.702 0.017 0.239 0.007 0.059 0.010 31.1 0.3
712 19.23 0.36 0.715 0.018 0.232 0.008 0.053 0.010 31.4 0.4
719 19.99 0.41 0.729 0.019 0.223 0.008 0.048 0.011 32.0 0.4
726 20.73 0.43 0.734 0.019 0.218 0.009 0.048 0.011 32.9 0.4
734 21.18 0.41 0.725 0.018 0.221 0.008 0.054 0.010 34.0 0.4
741 21.34 0.38 0.710 0.016 0.229 0.006 0.061 0.010 34.9 0.4

Continued on next page

20

176



Table 3 – continued from previous page

f w0 △ w0 c0 △ c0 c1 △ c1 c2 △ c2 FWHM △ FWHM
(GHz) (′′) (′′) (′′) (′′)

749 21.33 0.35 0.699 0.015 0.236 0.006 0.065 0.009 35.4 0.3
756 21.22 0.33 0.694 0.014 0.239 0.005 0.067 0.009 35.4 0.3
764 21.08 0.32 0.693 0.014 0.241 0.005 0.066 0.009 35.3 0.3
771 20.95 0.32 0.693 0.014 0.242 0.005 0.065 0.009 35.2 0.3
779 20.85 0.32 0.690 0.014 0.245 0.005 0.065 0.009 35.2 0.3
786 20.75 0.32 0.683 0.014 0.250 0.005 0.067 0.009 35.4 0.3
794 20.63 0.31 0.673 0.014 0.257 0.005 0.070 0.009 35.7 0.3
801 20.46 0.29 0.661 0.013 0.264 0.005 0.075 0.009 36.0 0.3
809 20.28 0.27 0.651 0.012 0.269 0.005 0.080 0.009 36.2 0.2
816 20.09 0.25 0.644 0.011 0.273 0.005 0.084 0.008 36.2 0.2
824 19.94 0.24 0.638 0.011 0.275 0.004 0.087 0.008 36.3 0.2
831 19.82 0.23 0.632 0.011 0.278 0.004 0.090 0.008 36.3 0.2
839 19.74 0.23 0.627 0.011 0.281 0.004 0.092 0.008 36.5 0.2
846 19.65 0.23 0.621 0.011 0.286 0.005 0.093 0.008 36.7 0.2
854 19.54 0.23 0.616 0.011 0.290 0.005 0.094 0.009 36.8 0.2
861 19.38 0.23 0.612 0.011 0.293 0.005 0.094 0.009 36.7 0.2
869 19.21 0.22 0.609 0.011 0.296 0.005 0.095 0.009 36.6 0.2
876 19.05 0.21 0.605 0.011 0.299 0.005 0.097 0.008 36.5 0.2
884 18.94 0.20 0.597 0.010 0.303 0.004 0.099 0.008 36.7 0.2
891 18.88 0.20 0.585 0.010 0.311 0.005 0.104 0.008 37.3 0.2
899 18.87 0.19 0.567 0.010 0.323 0.005 0.110 0.008 38.2 0.1
906 18.88 0.19 0.549 0.010 0.336 0.005 0.115 0.008 39.3 0.1
914 18.88 0.19 0.536 0.010 0.346 0.005 0.118 0.009 40.0 0.1
921 18.86 0.19 0.531 0.010 0.351 0.005 0.118 0.009 40.2 0.2
929 18.82 0.19 0.533 0.010 0.352 0.005 0.116 0.009 40.1 0.2
936 18.78 0.20 0.535 0.010 0.352 0.005 0.113 0.009 39.9 0.2
944 18.72 0.20 0.533 0.010 0.355 0.005 0.112 0.009 39.9 0.2
951 18.65 0.20 0.524 0.011 0.362 0.005 0.113 0.010 40.2 0.2
959 18.57 0.21 0.510 0.011 0.373 0.006 0.117 0.010 40.7 0.2
966 18.50 0.20 0.496 0.011 0.383 0.006 0.121 0.010 41.3 0.2
974 18.47 0.19 0.489 0.010 0.388 0.006 0.123 0.010 41.6 0.2
981 18.48 0.18 0.492 0.010 0.386 0.005 0.123 0.009 41.5 0.2
989 18.54 0.17 0.501 0.009 0.379 0.005 0.120 0.008 41.1 0.1
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Table 4: Parameters required to generate the SPIRE FTS
SSW beam profile using Equation (1). These parameters
were derived from the central detector, SSWD4. [f : fre-
quency; w0: waist radius; △w0: error in w0; cn: coefficients
of Hermite-Gaussian terms; △cn: error in cn, FWHM:Full
Width at Half Maximum; △ FWHM: error in FWHM.]

f (GHz) w0(′′) △ w0(′′) c0 △ c0 FWHM(′′) △ FWHM(′′)

936 17.36 0.27 1.000 0.016 20.4 0.3
944 17.35 0.16 1.000 0.010 20.4 0.2
951 17.34 0.13 1.000 0.008 20.4 0.2
959 17.28 0.12 1.000 0.007 20.3 0.1
966 17.17 0.12 1.000 0.007 20.2 0.1
974 17.01 0.12 1.000 0.007 20.0 0.1
981 16.83 0.12 1.000 0.007 19.8 0.1
989 16.65 0.12 1.000 0.007 19.6 0.1
996 16.53 0.12 1.000 0.007 19.5 0.1
1004 16.47 0.12 1.000 0.007 19.4 0.1
1011 16.45 0.12 1.000 0.007 19.4 0.1
1019 16.42 0.11 1.000 0.007 19.3 0.1
1026 16.35 0.11 1.000 0.007 19.2 0.1
1034 16.23 0.11 1.000 0.007 19.1 0.1
1041 16.08 0.11 1.000 0.007 18.9 0.1
1049 15.94 0.11 1.000 0.007 18.8 0.1
1056 15.84 0.11 1.000 0.007 18.6 0.1
1064 15.78 0.11 1.000 0.007 18.6 0.1
1071 15.74 0.11 1.000 0.007 18.5 0.1
1079 15.68 0.10 1.000 0.007 18.5 0.1
1086 15.60 0.10 1.000 0.007 18.4 0.1
1094 15.49 0.10 1.000 0.007 18.2 0.1
1101 15.37 0.10 1.000 0.007 18.1 0.1
1109 15.27 0.10 1.000 0.007 18.0 0.1
1116 15.20 0.10 1.000 0.007 17.9 0.1
1124 15.15 0.10 1.000 0.007 17.8 0.1

Continued on next page
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Table 4 – continued from previous page

f (GHz) w0(′′) △ w0(′′) c0 △ c0 FWHM(′′) △ FWHM(′′)

1131 15.09 0.09 1.000 0.007 17.8 0.1
1139 15.02 0.09 1.000 0.007 17.7 0.1
1146 14.93 0.09 1.000 0.007 17.6 0.1
1154 14.84 0.09 1.000 0.007 17.5 0.1
1161 14.76 0.09 1.000 0.007 17.4 0.1
1169 14.71 0.09 1.000 0.007 17.3 0.1
1176 14.67 0.09 1.000 0.007 17.3 0.1
1184 14.63 0.09 1.000 0.007 17.2 0.1
1191 14.55 0.08 1.000 0.006 17.1 0.1
1199 14.45 0.08 1.000 0.006 17.0 0.1
1206 14.35 0.08 1.000 0.006 16.9 0.1
1214 14.29 0.08 1.000 0.006 16.8 0.1
1221 14.31 0.08 1.000 0.006 16.8 0.1
1229 14.40 0.08 1.000 0.006 17.0 0.1
1236 14.53 0.07 1.000 0.006 17.1 0.1
1244 14.64 0.07 1.000 0.005 17.2 0.1
1251 14.71 0.07 1.000 0.005 17.3 0.1
1259 14.71 0.07 1.000 0.005 17.3 0.1
1266 14.68 0.07 1.000 0.005 17.3 0.1
1274 14.65 0.07 1.000 0.005 17.2 0.1
1281 14.63 0.07 1.000 0.005 17.2 0.1
1289 14.63 0.07 1.000 0.005 17.2 0.1
1296 14.64 0.07 1.000 0.005 17.2 0.1
1304 14.63 0.07 1.000 0.005 17.2 0.1
1311 14.59 0.07 1.000 0.005 17.2 0.1
1319 14.53 0.07 1.000 0.005 17.1 0.1
1326 14.47 0.07 1.000 0.005 17.0 0.1
1334 14.43 0.07 1.000 0.005 17.0 0.1
1341 14.42 0.07 1.000 0.005 17.0 0.1
1349 14.43 0.07 1.000 0.005 17.0 0.1
1356 14.44 0.07 1.000 0.005 17.0 0.1
1364 14.45 0.07 1.000 0.005 17.0 0.1
1371 14.43 0.06 1.000 0.005 17.0 0.1
1379 14.40 0.06 1.000 0.005 17.0 0.1

Continued on next page
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Table 4 – continued from previous page

f (GHz) w0(′′) △ w0(′′) c0 △ c0 FWHM(′′) △ FWHM(′′)

1386 14.37 0.06 1.000 0.005 16.9 0.1
1394 14.33 0.06 1.000 0.005 16.9 0.1
1401 14.30 0.06 1.000 0.005 16.8 0.1
1409 14.27 0.06 1.000 0.005 16.8 0.1
1416 14.24 0.06 1.000 0.005 16.8 0.1
1424 14.22 0.06 1.000 0.005 16.7 0.1
1431 14.21 0.06 1.000 0.005 16.7 0.1
1439 14.18 0.06 1.000 0.005 16.7 0.1
1446 14.16 0.06 1.000 0.005 16.7 0.1
1453 14.13 0.06 1.000 0.005 16.6 0.1
1461 14.09 0.06 1.000 0.005 16.6 0.1
1468 14.06 0.06 1.000 0.005 16.6 0.1
1476 14.06 0.06 1.000 0.005 16.5 0.1
1483 14.07 0.06 1.000 0.005 16.6 0.1
1491 14.11 0.06 1.000 0.005 16.6 0.1
1498 14.15 0.06 1.000 0.005 16.7 0.1
1506 14.16 0.06 1.000 0.005 16.7 0.1
1513 14.14 0.06 1.000 0.005 16.6 0.1
1521 14.10 0.06 1.000 0.005 16.6 0.1
1528 14.07 0.06 1.000 0.005 16.6 0.1
1536 14.11 0.06 1.000 0.005 16.6 0.1
1543 14.26 0.07 1.000 0.005 16.8 0.1
1551 14.56 0.07 1.000 0.005 17.1 0.1
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