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Abstract  
 

     The functional roles of the two universally conserved bacterial GTPases, HflX 

and YchF, are poorly understood. Both proteins associate with 70S ribosomes as 

well as 30S and 50S ribosomal subunits. Understanding exactly how HflX and 

YchF interact with the ribosome and nucleotides will be important for the 

discovery of the in vivo relevant ribosomal complex.  Presented in this thesis, is 

the development of a fluorescence-based system that can be used to monitor the 

association of HflX to 70S, 50S and 30S. Additionally, as HflX lacks the canonical 

glutamine that is required for the hydrolysis of GTP and ATP, an examination into 

how HflX hydrolyzes purine nucleotides was conducted.  Furthermore, nucleotide 

association and dissociation rate constants were determined in the presence of 

ribosomes for YchF and in the presence and absence of antibiotics for HflX.  The 

results presented here provide additional insight into the enzymatic properties of 

HflX and YchF.        
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Chapter 1 -   
 
Introduction 
 
1.1 Translation 
 
     Protein biosynthesis is a highly conserved, complex process, and as such the 

target of numerous clinically relevant antibiotics. Although protein synthesis in 

prokaryotes and eukaryotes is very similar, the proteins and nucleic acids 

involved in the process in both domains of life differ significantly between them, 

which allow antibiotics to target bacteria specifically (1). Even though the 

chemical reaction linking two amino acid residues together to form a peptide 

bond is relatively simple, over a hundred different proteins and ribonucleic acids 

(RNA) participate in this highly accurate translational process (2,3). Ribosomes 

are the site of protein synthesis and have an extensive functional life cycle 

starting from their formation in a cell to their degradation upon completing their 

role in translation (4).  Initially, the two subunits comprising the ribosome must be 

assembled from proteins and RNA and matured via modification to their amino 

acids and bases, respectively (3). During ribosome biogenesis in prokaryotes, 

ribosomal RNA (rRNA) is processed and modified, ribosomal proteins and metal 

ions bind in a particular manner and conformational changes of regions of the 

complex take place to accommodate the final formation of a 70S ribosome (3).  

RNA chaperones catalyze the ribosome assembly process primarily by 

interacting with ribosomal RNA to assist it in adopting its correct fold (5). Initiation 

factors (IF1, IF2 and IF3) form a functional 70S bacterial ribosome from the 30S 

and 50S ribosomal subunits allowing for the genetic information encoded in 
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messenger RNA (mRNA) molecules to be translated in the presence of initiator 

transfer RNA (tRNA) (Figure 1.1.1) (6).  The prokaryotic ribosome is comprised 

of three tRNA binding sites: the A-site which can accommodate aminoacylated 

tRNA molecules, the P-site which holds the peptidyl-tRNA and the E-site which is 

the final location of accommodation on the ribosome for deacylated-tRNA prior to 

their release back into the cell (Figure 1.1.1) (7).  The growing polypeptide is 

formed within the ribosome in conjunction with the actions of elongation factors 

(EF-Tu and EF-G) (Figure 1.1.1) (8).  EF-Tu catalyzes the delivery of aminoacyl-

tRNA to the A-site of the ribosome while the subsequent translocation of peptidyl-

tRNA from the A-site to the P-site and deacylated tRNA from the P-site to the E-

site is accelerated by EF-G (Figure 1.1.1) (8).  Once a completed polypeptide 

has been released from the peptidyl-tRNA in the P-site, EF-G and ribosome 

recycling factor (RRF) can rapidly dissociate the bacterial ribosome into its 

ribosomal subunits allowing for their recycling and use in the synthesis of another 

protein or their degradation (Figure 1.1.1) (9,10).   
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Figure 1.1.1 Schematic overview of the translation cycle in prokaryotes. 
Initiation factors bring the two ribosomal subunits together with initiator tRNA 

(pink) and mRNA to form a 70S initiation complex.  Formation of a polypeptide 
takes place during successive elongation steps. Elongation factors bearing 

aminoacyl-tRNA add to a growing peptidyl-tRNA (pink and green).  Termination 
of translation results in the release of the nascent polypeptide and eventual 

recycling of the 50S and 30S. 
    
Although a minimal set of factors that participate in protein synthesis under ideal 

conditions is known, the question remains as to whether additional factors are 

necessary for the function of protein synthesis machinery during periods of 

cellular stress (i.e, heat, pH, nutrient and antibiotics).  Universally conserved yet 

uncharacterized guanosine triphosphatases (GTPases) from the same 

superfamily as the canonical translation factors (EF-Tu, EF-G and IF2) such as 

HflX and YchF have been hypothesized to aid in efficient protein biosynthesis 

during these conditions.  
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1.2 Antibiotics 
 
     Antibiotics target almost every stage during protein synthesis.  Visualization of 

the majority of the classes of antibiotics on the ribosome has been achieved by 

X-ray crystallography and NMR spectroscopy revealing that most of them target 

the functional centers predominantly consisting of ribosomal RNA (11,12). Highly 

conserved regions across all domains of life, the decoding centre on the small 

ribosomal subunit, the peptidyl-transferase centre (PTC) and the peptide exit 

tunnel (PET) on the large ribosomal subunit are common binding sites for drugs 

(11,12).  Bacterial resistance to translation-inhibiting antibiotics can be 

accomplished through a variety of mechanisms.  Modification of drugs, export of 

antibiotics from the cell, antibiotic degradation and/or mutations to nucleotides or 

ribosomal proteins are all successful mechanisms of resistance (13).  Inhibitors 

of bacterial protein synthesis inhibit bacterial growth, and therefore are 

characterized as bacteriostatic not bacteriocidal (14).  The antibiotics of interest 

in this thesis primarily target the elongation cycle of translation.  Aminoglycosides 

possess the ability to stimulate misreading, or in other words, increase the 

chance of misincorporation of incorrect amino acids into the growing polypeptide 

chain.  Paromomycin, a representative antibiotic of this class, promotes the 

binding and even accommodation of near-cognate aminoacyl-tRNA whereas 

streptomycin causes the rate at which cognate and near-cognate aminoacyl-

tRNAs bind to the ribosome to become similar increasing the frequency of 

misincorporation (15-17).  Regardless of their exact impact on amino acid 
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incorporation, all aminoglycosides interact with helix 44 of the 30S ribosomal 

subunit, which constitutes the decoding center (Figure 1.2.1) (18).   

 

 

 

 

 

 
 

 
Figure 1.2.1 Cartoon representation of the Thermus Thermophilus 30S 

ribosomal subunit (PDB ID: 1IBK, 1FJG) highlighting the binding sites of 
aminoglycoside antibiotics.  Spectinomycin, streptomycin and paromomycin 
(purple spheres) are shown bound to the decoding centre of the ribosome in 

relation to helix 44 (green sticks). 
 
The main function of the ribosome is to catalyze peptide-bond formation at the 

peptidyl-transferase centre.  The transfer of the growing polypeptide chain on 

peptidyl-tRNA in the P-site of the ribosome to the amino acid on the tRNA in the 

A-site is an irreversible reaction.  If misincorporation occurs, the growing chain 

should be aborted and translation of that particular mRNA restarted (19,20).  

During the elongation cycle, the nascent polypeptide emerges from a tunnel 

within the large ribosomal subunit (21).  The walls of this tunnel can make 

contact with the growing polypeptide chain and in turn, regulate the translation 

process and assist in the initial folding process (22). A number of antibiotics 

target the A-site of the PTC or the tunnel region adjacent to the PTC.  The mode 

of action of these antibiotics can differ significantly.  Puromycin, for example acts 

as a mimic of the 3’-end of aminoacyl-tRNA accepting the growing polypeptide 
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resulting in premature termination, as the structural differences between 

puromycin and peptidyl-tRNA make the antibiotic incapable of reacting with the 

incoming aminoacyl-tRNA (13).  Chloramphenicol is a broad-spectrum antibiotic 

that achieves its widespread inhibition of bacterial translation by binding to the 

ribosome in a location where the aminoacyl moiety of aminoacyl-tRNA would be 

positioned, thereby interfering with peptide-bond formation in an aminoacyl-tRNA 

specific manner (Figure 1.2.2) (11).  Amino acid residues that are bulky and 

contain aromatic side chains appear to be capable of displacing chloramphenicol 

from its binding site (23).  Interestingly, additional binding sites for 

chloramphenicol have been reported and overlap with the ribosome exit tunnel 

(Figure 1.2.2) (24).  A class of antibiotics that has an overlapping binding site 

with chloramphenicol are the lincosamides, which include lincomycin and its 

derivative, clindamycin (Figure 1.2.2).  Lincosamides are capable of blocking 

aminoacyl-tRNA from the ribosome while simultaneously blocking the ribosomal 

exit tunnel (11).  Macrolide antibiotics primarily target the tunnel region adjacent 

to the PTC (Figure 1.2.2) (25).  The macrolides in clinical use include 

erythromycin and azithromycin (25).  Obstruction of the ribosomal exit tunnel only 

allows for the synthesis of short oligopeptides, ultimately resulting in the release 

of peptidyl-tRNA from the ribosome (26).  Finally, there are a few antibiotics that 

block the translocation of tRNA through the ribosome by either blocking the 

association of translation factors to the ribosome such as thiostrepton (27) or 

stabilizing ratcheted conformations of the ribosome in which tRNA exists in a 

hybrid state, spanning both the P and E sites, like viomycin (13).  The binding 
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site of viomycin has been hypothesized to closely overlap the binding sites of 

aminoglycoside antibiotics. 

 
Figure 1.2.2 Cartoon representation of the Deinococcus radiodurans 50S 
ribosomal subunit  (PDB ID: 3CF5, 1JZY, 1JZX, 1KO1, 1NWY) highlighting 
the binding sites of antibiotics targeting the PTC, tunnel adjacent to the 
PTC or translation factors. Chloramphenicol and clindamycin (red spheres) 

along with azithromycin and erythromycin (cyan spheres) are shown bound to the 
PTC and peptide exit tunnel (PET) region of the ribosome.  Thiostrepton is 

represented as orange spheres. 
 
Although the binding sites of inhibitors of protein synthesis have been elucidated 

on the prokaryotic ribosome, a complete understanding of all the modes of action 

for most of these antibiotics remains to be discovered.  Questions as to how 

these antibiotics influence protein synthesis during cellular stress conditions, 

affect protein factors such as HflX or YchF whose functions have yet to be 

discovered, or interfere with communicating conformational changes to the 

ribosome as a whole have yet to be fully answered.  Increasing evidence that 

antibiotics can have multiple binding sites on the 70S ribosome suggest as 

bacteria develop resistance to currently available drugs, a detailed knowledge of 

the mechanisms of antibiotic action in vivo will be key to use preexisting 

antibiotics in novel ways and to design new antibiotics with new targets.   



	
  
	
  

8 

1.3 GTPases 

     The GTPase superfamily of proteins exists in all three domains of life: 

prokaryotes, eukaryotes and archaea (28,29).  The functions of these enzymes 

are to regulate a range of cellular processes such as protein synthesis, cell 

cycling and differentiation, and the sorting and amplification of cellular signals 

(28,29). The proliferation of cancers can be directly related to the action or 

mutation of GTPases and the downstream effects on their respective cellular 

roles (28,30).  Interestingly, it has been proposed that all GTPases emerged from 

a single common ancestor despite their diversity in function (28,29). A striking 

similarity of sequence motifs, overall structure and general mechanism of action 

has been maintained throughout all domains of life. Simplified, GTPases can be 

considered as molecular switches that exist in two states, active and inactive 

(29).  When a GTPase is not bound to any nucleotides it is inactive until it binds 

guanosine triphosphate (GTP) and undergoes a conformational change to 

become active (Figure 1.3.1) (28,29).  The cellular effect of the enzyme can often 

be linked to the hydrolysis of GTP to guanosine diphosphate (GDP), resulting in 

the GTPase to return to its inactive, empty or apo state (Figure 1.3.1) (28,29).  In 

this way, the GTPases act as timed switches that can be fine-tuned to regulate 

downstream cellular processes.  However, external factors can influence the 

functional cycle of GTPases by either accelerating the hydrolysis step as 

GTPase activating proteins (GAPs) or behaving as guanine nucleotide exchange 

factors (GEFs) facilitating the exchange of GDP for GTP (Figure 1.3.1) (28,29).  
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Figure 1.3.1 Schematic representation of the GTPase cycle.  A GTPase is 
considered active (green circle) when bound to the triphosphate form of 

guanosine.  Upon hydrolysis, GTPases are inactive (red hexagons) when bound 
to no substrate or guanosine diphosphate (28,29). 

 
The specificity of these enzymes for guanine nucleotides is due to a defined fold 

that is invariant among all living organisms (31,32).  All GTPases are comprised 

of a G-domain, but often these proteins contain extensions to the amino and/or 

carboxy termini that result in their differentiated cellular roles (33).  Although the 

particular sequence of the G-domain can greatly vary among the GTPase 

superfamily, several motifs of highly conserved amino acids exist that are 

responsible for the interaction of the factor with guanine nucleotides and mediate 

the association of any effectors that can modulate the GTPase cycle.  Five 

sequence motifs have been identified to define the G-domain of GTPases: G1, 

G2, G3, G4 and G5 (28,29).  The G1 or Walker A (GXXXXGK(S/T)) motif,  

provides several residues that interact with the phosphates and stabilize the 

interaction of the GTPase with bound nucleotide (29).  This structural element 

termed the phosphate binding loop (P-loop) is one of the most common protein 

folds and can be found in almost 20% of all cellular gene products, making the 

GTPase superfamily part of the P-loop NTPase class (34).  Immediately following 
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the P-loop is the G2 region also termed Switch I for its changes in conformation 

depending on the presence of GTP or GDP.  Although it is difficult to predict 

Switch I at the sequence level, what is known is that the orientation of a critical 

threonine residue within this motif is sensitive to the binding of GTP, coordinating 

the positioning of a magnesium ion that is essential for hydrolysis (28,35).  The 

G3 or Walker B (DXXG) motif contains aspartate and glycine residues that are 

required for the coordination of the magnesium via a water molecule and the 

formation of a hydrogen bond with the γ-phosphate of GTP, respectively (35).  

The G3 motif is also referred to as Switch II as it can undergo extensive 

conformational changes whether it is in its GDP or GTP-bound forms.  The last 

two motifs, G4 and G5, are primarily responsible for further stabilizing the 

nucleotide by the GTPase.  G4 in particular, consists of four hydrophobic or 

nonpolar residues followed by the conserved sequence motif, (N/T)(K/Q)XD, 

which is capable of forming hydrogen bonds with groups on the guanine ring of 

the nucleotide (28).  G5, providing only one additional contact with the guanosine 

nucleotide, cannot be easily identified in all GTPases yet like G4 greatly 

enhances the specificity of the protein for guanine nucleotides (28).  Motifs G1 

through G4 are the most general characteristics of the GTPase superfamily with 

further classification of this group resulting in two separate classes based on 

overall cellular function and conservation of G4: the translation factor (TRAFAC) 

and signal recognition particle MinD and BioD (SIMIBI) GTPases (34).  The 

translation factor related class (TRAFAC) of GTPases not only includes classical 

translation factors such as EF-Tu and EF-G but also the closely related and 
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mostly eukaryotic Ras-like superfamily of proteins (34).   The smaller SIMIBI 

class on the other hand, is constituted primarily by the signal recognition particle 

GTPases, MinD/Mrp and BioD-related superfamilies (34).  There are many 

ATPases in the SIMIBI class of GTPases as one of the differentiating factors 

between the SIMIBI and the TRAFAC class is less conservation in the G4 motif 

(34).    

     The number and variety of eukaryotic GTPases is astounding, ranging from 

the Ras family of small GTPases (Ras, Rho, ARF, Rab and Ran) playing a role in 

growth, differentiation and vesicular transport, to the cell signaling heterotrimeric 

G-proteins (36).  In bacteria, the number of GTPases is considerably smaller, 

with only eight proteins being universally conserved.  These factors include EF-

G, EF-Tu and IF2, which are involved in protein synthesis; FtsY and Ffh, which 

are signaling proteins and finally the enzymes with poorly understood functions, 

HflX, YchF and YihA (29).  The three translation factors are the most 

comprehensively studied GTPases and as described previously have been 

shown to act on the ribosome during its functional cycle.  Belonging to the Era 

group, YihA has not been well studied but other related GTPases of this cluster 

have shown roles requiring an interaction with RNA (29).  Homologs of YihA in 

yeast have been implicated to be essential for large ribosomal subunit maturation 

and stability (37). Similarly for the FtsY/Ffh subfamily, either an interaction with 

the ribosome or RNA is necessary for the delivery of proteins to the bacterial 

plasma membrane (29).  Not surprisingly, an interaction with the ribosome and 

ribosomal RNA has been observed with HflX and YchF (members of the Obg 
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group), making it even more imperative to understand the cellular roles of these 

remaining universally conserved GTPases.   

     For Ras and Rho, their associated GAPs have a major role in the GTP 

hydrolysis reaction, introducing a catalytic residue, most often an arginine into 

the active site of GTPases stimulating GTP hydrolysis by stabilizing the transition 

state of the reaction (38). However, for the translation factors EF-G and EF-Tu, 

the ribosome does not contribute an arginine residue in particular, to enhance the 

rate of GTP hydrolysis (38).  Instead, a glutamine residue in the GTPase 

positions a water molecule for a nucleophilic attack on the γ-phosphate of GTP 

speeding up the hydrolysis reaction (39).   Recently, variations to this mode of 

stimulation of intrinsic GTP hydrolysis have been discovered (39). In these 

GTPases of which HflX and YchF are included, the catalytic glutamine is 

substituted with a hydrophobic amino acid underlining the importance of 

elucidating how these unique universally conserved GTPases interact with 

guanine nucleotides and the role of the ribosome as an effector molecule. The 

similarities and differences between the molecular mechanisms and downstream 

cellular effects of these prokaryotic GTPases, HflX and YchF will not only allow 

scientists to marvel at the natural design of enzymes but can eventually lead 

scientists to rationally designing proteins and perhaps even novel targets for 

antibiotics.   
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1.4 HflX  
 
      Protein products from the hflA and hflB loci with roles in the lytic and 

lysogeny cycle of bacteriophage lambda were discovered upon examination of 

the Escherichia coli genome (40,41).  Three genes make up the hflA locus: hflX, 

hflK and hflC.  The hflB locus gives rise to the ATP-dependent metalloprotease 

HflB, which has been shown to push E. coli towards the lytic pathway (40,41).  

Although HflB along with the membrane proteins HflK and HflC form a protease 

complex, an associated role of HflX in the lambda lysogeny cycle has not been 

discovered (40,41).  Present in most prokaryotes, archaea and eukaryotes, the 

hflX gene has been identified to possess a GTP-binding motif (41).  The hflA loci 

is located on a superoperon wherein seven genes are alternatively cotranscribed 

from two heat shock promoters Eσ70 and Eσ32 (42).  Interestingly, the hflA region 

appears to only be transcribed with the promoters that are upstream of the hfq 

gene, whose corresponding protein regulates the levels of mRNA under stress 

conditions (42).  Under optimal growth conditions, the expression of hflX is low, 

but expression levels have been shown to increase upon subjection to heat 

shock (43).  Deletion of hflX in many bacterial species has no distinctive 

phenotype, suggesting that although HflX is universally conserved, it is not 

essential under optimal conditions.  As a role of HflX in the lysogenic frequency 

of bacteriophage lambda has been dismissed (44), the cellular function of the 

protein remains unknown.  
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1.4.1 Structure of HflX 

     Crystal structures of HflX in its nucleotide free and GDP bound states have 

been obtained from the hypothermophilic archaeon Sulfolobus solfataricus (S. 

solfataricus) (45). HflX is a two-domain protein consisting of a canonical C-

terminal GTPase domain (G-domain) preceded by a unique N-terminal HflX 

domain (Figure 1.4.1.1) (45).  Homologs of HflX from other organisms such as E. 

coli also contain a poorly conserved C-terminal extension of approximately 50 

amino acids.  Characteristic for the TRAFAC related class of P-loop GTPases, 

HflX possesses the five-nucleotide binding motifs, G1 through G5 (Figure 

1.4.1.1).  The G domain forms a four-stranded parallel β-sheet that is surrounded 

by two α-helices (Figure 1.4.1.1).  Another two α-helices comprise an anti-

parallel coiled coil structure that connects the two domains (Figure 1.4.1.1).  

These helices contain numerous positively charged residues contributing to a 

patch of positive charge on the surface of HflX that has been speculated to bind 

nucleic acids (45).  An extensive interaction surface between the HflX and G-

domains can be observed within the archael crystal structures.  One of the 

helices in the HflX domain interacts with the P-loop and Switch II of the G-domain 

through hydrogen bond and salt bridge interactions (Figure 1.4.1.1) (45).  

Residues involved in these domain interactions are conserved within the HflX 

family of proteins suggesting that contact between domains is an important 

feature of HflX function (46).  
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Figure 1.4.1.1 Homology model of E. coli HflX based on the crystal structure 
from S. solfataricus (PDB 2QTF). The G1 motif is visible in red, G3 is featured 

in green and G4 is shown in blue. 
 
1.4.2. The Nucleotide Hydrolysis Activity of HflX   

     HflX from Escherichia coli has been shown to exhibit both GTPase and 

ATPase activity (42,47).  Out of the core group of eight universally conserved 

GTPases, only YchF, another member of the Obg-HflX superfamily, which 

possesses an altered G4 motif, displays a high affinity for adenine nucleotides.  

Interestingly, the G4 motif of HflX corresponds well to the consensus sequence 

derived from other P-loop GTPases.  HflX can bind and hydrolyze both purine 

nucleotides but based on the determined nucleotide affinities, HflX prefers 

guanine nucleotides under cellular purine nucleotide concentrations (47).  The 

guanosine-bound form of the protein will constitute 80% of all cellular HflX (47).  

Another feature of HflX is that it is a member of the hydrophobic amino acid 

substituted HAS-GTPase class wherein the catalytic glutamine residue found 

adjacent to the G3 motif is substituted with a phenylalanine (48,49).  This raises 

the question as to the mechanism of both GTP and ATP hydrolysis by HflX.  HflX 

does contain two asparagine residues in its G1 motif that recently have been 

linked to the coordination of a potassium ion by other GTPases (48,49). The 
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presence of potassium will force Switch I to adopt a conformation in which it sits 

directly on top of the nucleotide binding site, acting as a GTPase activating 

element similar to the arginine finger found in canonical GTPases (48,49).  

However, a GTPase or ATPase activity that is dependent on potassium has not 

been observed for HflX so far (44). It is therefore still unclear what further 

requirements beyond the conservation of these elements are necessary to 

regulate and accomplish efficient purine nucleotide hydrolysis by HflX alone and 

in the presence of ribosomes.   

1.4.3 Hypotheses as to the Functional Role of HflX 

     Mounting evidence suggests a role for HflX during protein synthesis 

(44,47,50,51).  In Chlamydophila pneumonia, S. solfataricus and E. coli, HflX has 

been shown to associate with 50S ribosomal subunits, in both the guanosine 

diphosphate and guanosine triphosphate states (44,51,52).  The GTPase activity 

of HflX is not only stimulated by 50S ribosomal subunits but also by 70S 

ribosomes (47,53).  Furthermore, electrophoretic mobility shift assays (EMSA) 

have revealed an interaction between ribosomal RNA, both the 23S and 16S, 

and HflX in different nucleotide bound states (51).  Most recently, the ribosomes 

and ribosomal subunits from E. coli were shown to interact with HflX but only the 

50S and 70S stabilize the binding of GTP and induce a structurally distinct form 

of HflX that is hypothesized to be the protein’s “GTPase activated” state (50).  

Based on these findings, the functionally relevant state of HflX in vivo is in 

complex with the ribosome and tightly bound to GTP (50).  A minimal 

mechanistic model for the interaction of the ribosome with HflX has been 
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proposed (Figure 1.4.3.1) (50).  It is proposed that in its GDP-bound state HflX 

binds to the ribosome, exchanges the diphosphate form of guanosine for GTP, 

and hydrolyzes the triphosphate form (Figure 1.4.3.1).   

 
 
 
 
 
 
 
 
 
Figure 1.4.3.1 Minimal mechanistic model of HflX.  HflX (purple and black) in 

its GDP-bound form will be found bound to 70S ribosomes (grey).  Upon 
dissociation of GDP, HflX will bind GTP and adopt a closed, GTPase-activated 

conformation on the 70S ribosome, allowing GTP hydrolysis to take place. 
 
HflX remains bound to ribosomal particles during its entire functional cycle 

therefore some signal, unknown at this time, must exist within the cell or 

originating from the ribosome to regulate not only the release of HflX but also to 

regulate the hydrolysis of GTP.  It has not yet been determined whether this 

signal originates from the ribosome itself or from an additional factor.  However, 

the fact that antibiotics such as chloramphenicol can affect ribosome stimulated 

GTP hydrolysis hints at ribosomal regulation (47,50).  Increasing evidence 

supports a role of HflX during translation, however the stage during protein 

synthesis remains to be discovered.       
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1.5 YchF 

     In the genomes of many bacterial species the ychF gene is located next to the 

gene encoding for peptidyl-tRNA hydrolase, pth (54).  The role of peptidyl-tRNA 

hydrolase in the cell is to cleave the ester bond between the growing polypeptide 

and tRNA to recycle peptidyl-tRNAs from stalled ribosomes and ensure the 

continuation of translation (55).  Northern-blot experiments have demonstrated 

that pth and ychF are cotranscribed in a bicistronic transcript and further 

evidence of related functions can be inferred from their similar phylogenetic 

patterns (54).  In Escherichia coli, downregulation of ychF has been observed as 

a response to DNA damage (56).  Treatment of E. coli cells with the potent DNA 

crosslinker mitomycin C produced an expression profile for ychF that closely 

correlated with genes related to protein biosynthesis, in particular ribosomal 

protein genes (56).  Down regulation of both ribosomal proteins and YchF might 

serve as an indicator that these important molecules elicit similar responses to 

conditions of stress.  YchF has been shown to be essential in Staphylococcus 

aureus (57) whereas in E. coli, deletion of the ychF gene results in growth 

retardation and at elevated temperatures, filamentation (58).  The human 

homolog (hOLA1) has been found to be overexpressed in a variety of cancers 

ranging from colon to ovary, lung and stomach (59).  hOLA1 has also been 

implicated in centrosome regulation with the breast and ovarian cancer specific 

tumor suppressor, BRCA1 (60). In E. coli, overexpression of YchF has been 

associated with hydrogen peroxide hypersensitivity (61).  YchF is capable of 

inhibiting the catalase activity of KatG through a direct interaction.  Furthermore 
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the transcription levels of YchF are repressed by the transcription factor OxyR 

(61).  When the cellular concentration of hOLA1 is reduced, resistance to 

peroxides and thiols is increased therefore drawing a correlation between YchF 

and its human homolog would suggest that both enzymes function as a negative 

regulators of the oxidative stress response (62).   Due to its high level of 

conservation and functional similarity with hOLA1, determining and 

understanding the cellular function YchF will provide key information necessary 

for unraveling the cellular role of hOLA1.    

1.5.1 Structure of YchF 

     Crystal structures of YchF have been determined from several organisms 

including Thermus thermophilus, Haemophilus influenza (H. influenza) and Homo 

sapiens (59,63). All structures revealed that YchF folds into three well-defined 

domains.  Apart from the typical P-loop NTPase G-domain located at the N-

terminus, YchF possesses a α-helical domain and a C-terminal TGS (Threonyl-

tRNA synthetases, GTPases, SpoT) domain (Figure 1.5.1.1) (59,63).  Present in 

YchF and characteristic of the common structure formed by canonical G-domains 

is a parallel β-sheet surrounded by α-helices on each side (Figure 1.5.1.1) (63).  

YchF also contains the two conserved sequence motifs, the Walker A (G1) and 

Walker B (G2) that play a major role in coordinating the phosphates of bound 

nucleotides (Figure 1.5.1.1) (63).  The differentiating feature of YchF within the 

TRAFAC class of P-loop GTPases is the guanine nucleotide-binding site.  The 

G4 (N/TKXD) motif of YchF and the Obg-like ATPase subfamily is variable, with 

bacterial proteins containing the consensus sequence NVNE, whereas human 
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proteins contain the sequence NLSE (59,63).  The crystal structure from H. 

influenza revealed that the missing lysine residue in this motif was replaced by a 

conserved phenylalanine residue from an adjacent G-domain loop, β5 (63).  

Stacking of the guanine base is accomplished through a pi-pi stacking interaction 

with the phenylalanine residue (63). The asparagine residue together with the 

glutamate residue further position the nucleotide by contacting the amino groups 

of the guanine base (63).  This alteration in the G4 motif of the G-domain results 

in an altered specificity of YchF, preferring adenine nucleotides over guanine 

nucleotides.  This altered specificity has been confirmed experimentally in 

Trypanosoma cruzi (T. cruzi), H. influenza, E. coli, Saccharomyces cerevisiae 

and with hOLA1 (59,64-66). The two domains flanking the N-terminal G-domain, 

the α-helical domain and TGS domain form what could be considered a binding 

site for a double-stranded nucleic acid as the inner helices of both these regions 

of the protein consist of clusters of positively-charged residues (Figure 1.5.1.1) 

(63).  Both domains resemble proteins known to bind RNAs, suggesting a similar 

function for YchF.  Proteins such as seryl-tRNA synthetase and threonyl-tRNA 

synthetase in particular make contact with tRNA, and topologically match the α-

helical domain and TGS domain, respectively (63).  The potential of YchF to 

interact with a structured RNA needs to be further explored and considered in 

light of its interaction with ribonucleoprotein complexes, such as the ribosome.  
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Figure 1.5.1.1 Homology model of E. coli YchF based on the crystal 

structure from H. influenzae (1JAL).  The G1 motif is shown in red, G2 in 
orange, and G3 in green and G4 in purple. 

 
1.5.2. The Nucleotide Hydrolysis Activity of YchF  

     Within the GTPase superfamily, YchF belongs to the subfamily of HAS-

GTPases wherein the catalytic glutamine residue is replaced with a hydrophobic 

leucine (64).  YchF contains all the conserved elements to be considered a 

potassium-dependent GTPase, which includes a K-loop element inserted into 

switch I and an asparagine in the P-loop (64).  The slow intrinsic hydrolysis of 

ATP can be stimulated by potassium ions, with the asparagine residue 

demonstrated to be critical for coordinating it (64).  Other HAS-GTPases such as 

MnmE and YqeH have catalytic residues that are provided by α-helices adjacent 

to the G3 motif (67,68).  Examination of YchF led to the discovery that a highly 

conserved lysine in position 78 in E. coli could potentially position a water 

molecule for a nucleophilic attack on the gamma phosphate of the adenine 

nucleotide (64).  When mutated to alanine, the actual role for this lysine residue 

appears to be in influencing the extent of potassium-dependent activation of ATP 
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hydrolysis (64). The potassium dependence of YchF could serve as an effective 

mode of regulation. In E. coli, where the concentration of the monovalent cation 

is around 200 mM, its levels within the cell fluctuate in response to osmotic stress 

in order for bacterial growth to continue (69,70).  However, before the context of 

regulation by potassium ions can be fully understood, the single or multiple 

residues required for catalysis in YchF in the presence or absence of ribosomes 

need to be elucidated.   

1.5.3 Hypotheses as to the Functional Role of YchF 

     A role for YchF in protein synthesis has also been hypothesized much like 

HflX and several of the previously characterized, universally conserved 

GTPases.  YchF from the protozoan, Trypanosoma brucei, has been found to 

associate with ribosomes (65).  T. cruzi YchF immunoprecipitates with ribosomal 

subunits and a subunit of the proteasome (65).  This data correlates well with the 

discovery that YchF in S. cerevisiae interacts with the multisubunit translation 

elongation factor eEF1 and the yeast proteasome (71).  In E. coli, His-tagged 

YchF has been reported to associate with a megadalton complex containing 70S 

ribosomes (66).  YchF in complex with both ribosomes and ribosomal subunits 

can be reconstituted in vitro, and this interaction has been shown to be 

dependent on the nucleotide bound state of the factor with tighter binding to 70S 

and 50S particles observed in the presence of ATP (66).  Intact 70S ribosomes 

can stimulate the ATPase activity of YchF, but only 30% of this ribosome 

population is capable of interacting with the protein (66). 
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Figure 1.5.3.1 Minimal mechanistic model of YchF.  YchF (pink, blue and 
black) in its ADP-bound form may not be found bound to 70S ribosomes (grey).  
Upon dissociation of ADP and binding of ATP, YchF will interact with the 70S 

ribosomes, stimulating the factor’s ATPase activity. 
 
This low occupancy of ribosomes with YchF is similar to other ribosome 

biogenesis factors like EngA and Era (66) and suggests that YchF most likely 

interacts with an intermediate in the ribosome assembly pathway.  The exact 

nature of this intermediate remains to be identified, as well if the ribosome can 

modulate and stabilize various nucleotide bound states of YchF.        
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1.6 Objectives  

     The universally conserved GTPases, IF2, EF-Tu and EF-G are essential to 

the process of ribosome-dependent protein synthesis.  HflX and YchF are 

universally conserved ribosome-associated GTPases but their cellular roles are 

poorly understood.  Examining the structural and functional dynamics of these 

proteins’ GTPase cycles is critical to understanding their functions in the cell.    

This thesis focuses on HflX and YchF in relation to their GTPase cycles and 

addresses the following questions:  

1. What are the rates of the interactions of HflX and YchF in different 

nucleotide-bound states with ribosomal particles (70S, 30S and 50S)? 

A fluorescence-based system was designed and used to study the interaction of 

HflX and YchF with 70S ribosomes and 50S and 30S ribosomal subunits. Both 

proteins naturally contain multiple cysteines, thus initial construction of modified 

HflX and YchF was undertaken to allow for the incorporation of fluorescent dyes 

in specific locations for future fluorescence experiments.   

2. Does the nucleotide hydrolysis activity of HflX require monovalent 

cations, large-scale movement of protein domains or its poorly 

conserved C-terminal extension?  

Variants of HflX were constructed to dissect whether the structural dynamics of 

HflX and the interactions between its structural elements influences its ribosome-

associated catalytic activities.  

3. To what extent can the ribosome regulate nucleotide association and 

dissociation from HflX and YchF? 
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Kinetic parameters associated with nucleotide binding and hydrolysis were 

obtained in both the presence and absence of antibiotics to induce various 

conformational states of the ribosome in order to gain insight into the “NTPase 

activated” states of HflX and YchF.   
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Chapter 2 –  

Development of a Fluorescence-Based System to Study the Interaction of 
HflX and YchF with the Ribosome 
 
2.1 Introduction   

     A variety of biochemical and biophysical methods have been developed to 

study protein-protein interactions.  In order to identify novel cellular interaction 

partners, pull-down assays with affinity-tagged proteins or co-immunopreciptation 

techniques can be used (72).  To understand how an interaction between two 

proteins is related to its specific activity and response in vivo, a method sensitive 

enough to detect interactions between molecules with affinities ranging from 

micro to picomolar levels is required (72).  Fluorescence based assays can allow 

for particular interactions to be quantified and even reveal the dynamics of a 

molecular system.  Fluorophores are able to provide such information by 

exhibiting changes in fluorescence upon perturbations in the local environment.  

The formation of a complex of proteins can lead to the reduction of interfaces 

with solvent molecules shifting fluorescence emission and providing researchers 

with temporal information about biomolecular interactions.  Proteins contain two 

amino acids with either sulfhydryl or amino groups that allow for conjugation to 

chemically reactive groups attached to fluorophores (73).  It is most informative 

to place these cysteine or lysine residues in specific locations of interest upon the 

removal of the naturally-occurring residues elsewhere in the protein.  Once a 

protein has been shown to retain its activity following the substitution of naturally 

occurring reactive residues, the modified enzyme can then be used in fluorescent 

experiments.  For many of the canonical translational GTPases, residues critical 
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to catalysis or that are required to mediate interactions with other biomolecules 

such as nucleotides, RNAs or other proteins have been discovered (74). Even 

residues that have been found to not directly participate in any molecular 

interactions may have lesser-defined functional roles in the protein or could 

participate in a communication network of residues that taken all together are 

responsible for the specific dynamics of that GTPase.  Alterations to residues in 

GTPases should only be undertaken if their contribution to regulating and fine-

tuning the function of the protein is well understood. For E. coli EF-Tu, a GTPase 

containing three intrinsic cysteines, a fully functional Cys-less variant has been 

constructed by ensuring naturally occuring substitutions were made in the place 

of the respective cysteine residues (74).  A similar approach was used with E. 

coli HflX and YchF.  First, the requirements of the two factors for cysteine 

residues in their intrinsic positions will be assessed upon their respective 

removal.  For HflX and YchF, possessing three and six cysteines respectively, 

Cys-less variants of both factors will allow for the inclusion of site-specific 

fluorescent labels for single-molecule experiments. As a starting point, the 

susceptibility of the naturally-occuring cysteines within these proteins to react 

with a fluorophore was tested to ensure that the known activities of the factors 

are unchanged upon modification.  Additionally, preliminary kinetic information 

relating to the dynamics of fluorescently labeled HflX and YchF interacting with 

ribosomes will be elucidated.    
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2.2 Materials and Methods 

DH5α cells were purchased from New England BioLabs and BL21-DE3 

competent cells were purchased from Novagen. PCR primers were purchased 

from Invitrogen and Integrated DNA technologies. Restriction enzymes were 

obtained from New England BioLabs. Radiochemicals were purchased from 

Perkin-Elmer. Nucleotides and fluorescent nucleotide analogs were purchased 

from Sigma and Jena BioScience. All buffers were filtered through 0.45 µm 

Whatman nitrocellulose membranes. 

2.2.1 Sequence Alignments 
 
Protein sequences from the Entrez Gene database (www.ncbi.nlm.nih.gov/gene) 

were aligned using ClustalW2 from EBI (http://www.ebi.ac.uk/Tools/clustalw2).  

Images of the multiple sequence alignments were generated in GeneDoc and 

shaded based on percent identity.  Amino acids highlighted in white are less than 

60% identical, residues in light grey are 60-80% identical, dark grey coloring is 

indicative of greater than 80% identity and 100% identity is shown with black 

shading (75). 

2.2.2 Site-directed Mutagenesis 

A pET28a plasmid harboring the nucleotide sequence for N-terminal His6-tagged 

E. coli HflX was subjected to the Quikchange® Site-Directed Mutagenesis 

method to introduce amino acid substitutions. At position 96 within the protein, a 

cysteine was substituted to a serine whereas cysteines at 98 and 415 were 

changed to leucine residues. Restriction sites were incorporated into the DNA 
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sequences to allow for the screening of variants prior to sequencing.  In Table 

2.2.2.1, the respective nucleotide changes are denoted in bold while restriction 

sites are underlined.  Reactions with a final volume of 25 µL were composed as 

follows:  1000 ng of template DNA, 0.4 µM of each forward and reverse primer 

(Invitrogen), 400 µM of dNTPs and 3 units of Pfu DNA polymerase (Truin 

Science).  A TGradient thermocycler (Biometra) was used to initially heat the 

reactions to 95°C for 5 minutes, followed by 18 cycles of 95°C for 1 minute, a 1 

minute annealing step at a temperature 10°C below the melting temperature of 

the primer (TM), and extension at 68°C for 20 minutes.  The reaction was 

subjected to a final extension at 68°C prior to treatment with the restriction 

enzyme DpnI (Fermentas).  Overnight incubation at 37°C with the enzyme results 

in the complete cleavage of methylated template DNA.  A dilution of 1:100 of the 

reaction products were transformed into 20 µL of E. coli DH5α competent cells 

(New England BioLabs) and subsequently grown on 50 mg/mL kanamycin-

supplemented Luria-Bertani (LB) agar plates and LB media.  To identify positive 

mutants, restriction digestion screening was performed on plasmids isolated from 

individual colonies using a miniprep purification kit (EZ-10 Spin Column Plasmid 

DNA Kit, BioBasic).   Following further verification through Sanger sequencing 

(Genewiz), plasmids harboring the desired variants of HflX were transformed into 

15 µL of E. coli BL21-DE3 competent cells (Invitrogen) for subsequent 

overexpression.   
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Table. 2.2.2.1  Primers for Site-Directed Mutagenesis of HflX 

 
C96SC98L C415L 

 
Forward 
Primer 

 

 
5’ AAC CTG GAG CGT 

TTG TCC GAG CTC CGT 
ATC GAC CGC ACC GG 3’ 

 

 
5’ CGC CTC CTT 

AAG CAA GAA CCG 
GCG 3’ 

 

 
Reverse 
Primer 

 

 
5’ CCG GTG TCG ATA 

ACA CGG AGC TCG GAC 
AAA CGC TCC AGG TT 3’ 

 

 
5’ CGC CGG TTC 

TTG CTT AAG GAG 
GCG 3’ 

TM  (°C) 72.8 70.6 

Restriction 
Site 

 
SacI 

 
AflII 

 

2.2.3 Protein Expression and Purification 
 

HflX - Transformed E. coli BL21-DE3 cells were grown at 37°C in LB media 

containing 50 mg/mL kanamycin until mid-log phase or an optical density of 

approximately 0.6 at 600 nm, followed by subsequent induction with 1 mM IPTG 

(isopropyl-β-D-galactopyranoside) (BioBasic).  The late logarithmic stage was 

reached following three additional hours of incubation at 37°C and cells were 

harvested by centrifugation at 5000xg in order to be flash frozen and stored at  

-80°C until purification.  Protein expression levels were monitored by obtaining 1 

OD culture samples every hour upon induction and analyzing the cell pellets 

dissolved in 8 M urea by 12% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) (BioRad Mini Protean 3 System).  SDS-PAGE were 
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performed at 80 V for 20 minutes followed by 60 minutes at 200 V.  Gels were 

stained with Coomassie blue and all other SDS-PAGEs were completed in a 

similar fashion.  All HflX overexpressing frozen cell pellets were first resuspended 

in 7 mL/g of cells of Buffer A (50 mM Tris-Cl pH 8.0 at 4°C, 60 mM NH4Cl, 300 

mM KCl, 7 mM MgCl2, 7 mM β-mercaptoethanol, 10 mM imidazole, 15% v/v 

glycerol and 1 mM phenylmethylsulfonyl fluoride (PMSF)).  Lysis was achieved 

by a 30 minute incubation at 4°C with 1 mg/mL of cells of lysozyme. 

Subsequently, sodium deoxycholate to a final concentration of 12.5 mg/g of cells 

was added and incubation at 4°C was carried out until the viscosity of the 

solution increased.  The solution was then sonicated to shear genomic DNA prior 

to centrifugation at 3000xg to pellet cell debris.  Cleared cell lysate was obtained 

by further centrifugation at 30000xg for 45 minutes (Beckman).  To isolate HflX 

by affinity chromatography, the resulting cell lysate was applied to a 5 mL Ni2+- 

Sepharose column (GE Healthcare) pre-equilibrated in Buffer A.  The resin was 

first washed with 30 column volumes of Buffer A followed by 30 column volumes 

of Buffer B (Buffer A with 20 mM imidazole) to remove any nonspecifically bound 

protein.  Elution of His6-tagged HflX variants was done with 8 column volumes of 

Buffer E (Buffer A with 300 mM imidazole).  Size exclusion chromatography 

using a pre-equilibrated Superdex 75 XK26/100 column (GE Healthcare) was 

utilized to further purify and rebuffer the pooled and concentrated elutions from 

affinity chromatography. Fractions in final storage buffer (TAKM7: 50 mM Tris-Cl 

pH 7.5 at 4°C, 70 mM NH4Cl, 300 mM KCl and 7 mM MgCl2) were pooled and 

concentrated.  The final concentration of the protein preparations were 
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determined photometrically at 280 nm using a molar extinction coefficient of 

32555 M-1cm-1 and confirmed by SDS-PAGE analysis followed by quantification 

with ImageJ software (76).  Aliquots of HflX protein were flash frozen and stored 

at -80°C until future use.   

Insoluble HflX Variants - Expression of insoluble variants of HflX was achieved in 

a similar manner as above, but upon induction E. coli cells were grown at 18°C 

overnight instead of 37°C for three hours.  Solubility tests were performed by 

opening cells as outlined previously but pellets from the two centrifugation runs 

were dissolved in 8 M urea to ascertain whether HflX variants were being 

sequestered in inclusion bodies within E. coli.    

YchF - Expression and purification of wildtype and variants of YchF was carried 

out as described for HflX but with the addition of an anion exchange 

chromatography (Q-Sepharose XK26 Fast Flow – GE Healthcare) step prior to 

subjecting the protein preparations to size exclusion chromatography.  Pooled 

and concentrated elutions from affinity chromatography were exchanged into Q-

Sepharose Buffer A (50 mM Tris-Cl pH 7.5 at 4°C, 10 mM MgCl2, 5 mM EDTA, 1 

mM diothiothreitol (DTT)). To remove any bound RNA, a salt gradient from 0 to 

100% Q-Sepharose Buffer B (Q-Sepharose Buffer A with 1 M KCl) was utilized 

resulting in protein free of nucleic acid.  A molar extinction coefficient of 16305  

M-1cm-1 was used to determine the final concentrations of YchF protein 

preparations photometrically at 280 nm. 
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2.2.4 Preparation of Ribosomes 
 
Ribosomes were purified from E. coli MRE600 cells as described but with a Ti 45 

rotor rather than a Ti 50.2 rotor (77).    

2.2.5 Fluorescent Labeling with 5-IAF  
 
In a total volume of 5 mL, 100 000 pmol of purified His6-tagged HflX or YchF was 

incubated with 5 mM β-mercaptoethanol (β-ME) for 30 minutes in Labeling Buffer 

(TAKM7 with 15% glycerol) to reduce the cysteines found within the proteins. To 

adequately space the protein in solution, protein was applied to a Ni2+- 

Sepharose column pre-equilibrated in Labeling Buffer for 30 minutes at 4°C.   

Unbound protein was collected from the resin by centrifugation at 500xg for 2 

minutes. 30 column volumes of Labeling Buffer were utilized to further remove 

any remaining β-ME or unbound protein.  Treatment of the bound protein sample 

with a 40 molar excess of the cysteine-specific fluorescent dye, 5-

iodoacetoamidofluorescein (5-IAF) (Sigma) dissolved in dimethylsulfoxide 

(DMSO), was carried out at room temperature for 2 hours initially, followed by 

overnight at 4°C in 20 mL of Labeling Buffer.  Incubation of the resin coated in 

labeled factor with 40 column volumes of Labeling Buffer allowed for the removal 

of excess fluorescent dye in the supernatant.  Elution of HflX or YchF labeled 

with 5-IAF was accomplished by 20 minute incubations with 8 column volumes of 

Buffer E (as described in 2.2.3).  Three successive overnight dialysis steps into 1 

L of Labeling Buffer, utilizing high retention seamless cellulose tubing (MWCO 

11033 – Sigma), were required to reduce the concentration of imidazole in the 

final fluorescently labeled protein preparations.  ImageJ (76) was used to 



	
  
	
  

34 

determine the concentration of fluorescently-labeled HflX or YchF from 12% 

SDS-PAGE gels.  HflX or YchF concentration upon labeling and the number of 5-

IAF molecules per molecule of protein were also quantified from absorbance 

measurements at 280 and 490 nm (A280 and A490) using Equations 2.2.5.1, 

2.2.5.2 and 2.2.5.3, where Ɛ are the molar extinction coefficients of 5-IAF or the 

protein factors in solution.  

!!"#
Ɛ!!!"#  @  !"#  !"

×  Ɛ!!!"#  @  !"#  !"  !  !!"#  !"  !!!"#                                                    (2.2.5.1) 

 
!!"#  !  !!"#  !"  !!!"#  
Ɛ!"#$%&  @  !"#  !"

= 𝐹𝑎𝑐𝑡𝑜𝑟                                                                          (2.2.5.2) 
 
 

!!"#
Ɛ!!!"#  @  !"#  !"  ×[!"#$%&]

= #  𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠  𝑜𝑓  𝑑𝑦𝑒  𝑝𝑒𝑟  𝑓𝑎𝑐𝑡𝑜𝑟  𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒               (2.2.5.3) 
 

To avoid photobleaching, the labeling procedure was carried out under dark 

conditions.   

2.2.6 Steady State Fluorescence Measurements 
 
Fluorescence emission spectra of HflX or YchF labeled with 5-IAF were obtained 

using a QuantaMaster Fluorescence Spectrophotometer (Photon Technology 

International) with a 2 mm by 10 mm quartz cuvette (18F-Q-1MS – Starna Cells).  

The fluorescence emission of 0.25 µM of labeled protein was monitored from 500 

to 600 nm upon excitation at 490 nm.  Slit widths were set to 1 and 5 nm for 

excitation and emission, respectively.   

Since HflX and YchF contain tryptophan residues in their G and TGS domains, 

the intrinsic fluorescence of these residues can be monitored during nucleotide 

binding experiments.  In TAKM7 buffer, 1 µM of protein was incubated with 
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increasing amounts of purine nucleotides.  Following excitation at 280 nm with a 

slit width of 1 nm, fluorescence emission was recorded from 300 to 500 nm at a 

step size of 1 nm and a slit width of 5 nm.  The overall fluorescence intensity 

detected for each nucleotide binding experiment was calculated by subtracting 

the fluorescence intensity observed for the addition of nucleotide into buffer and 

the change in fluorescence was also corrected for dilution.  From the 

concentration dependence of the fluorescence change at 337 nm, equilibrium 

dissociation constants for HflX and YchF and nucleotides were determined.  

Using Table Curve (Jandel) and Prism (GraphPad) software the data was fit with 

a hyperbolic function (Equation 2.2.6.1), where 𝐹𝑙 is the final fluorescence, 𝐹𝑙! is 

the initial fluorescence value,  𝛥𝐹!"# is the overall change in fluorescence and 𝐾! 

is the characteristic equilibrium dissociation constant.  

𝐹𝑙   = 𝐹𝑙!   +
!!!"#  ×[!"]
!!![!"]

                                                                                 (2.2.6.1) 

2.2.7 Nucleotide Hydrolysis Assays 
 
HflX - The release of 32P-labeled inorganic phosphate (Pi) from [γ-32P] GTP 

(Perkin-Elmer) was monitored to determine the rate of GTP hydrolysis by HflX 

(47).  To ensure that nucleotides were in their triphosphate form and multiple 

turnover experiments would not be inhibited by nucleotide diphosphates, [γ-32P] 

GTP  (approximately 100 dpm/pmol) was incubated with 0.25 µg/µL pyruvate 

kinase (PK), and 3 mM phosphenolpyruvate (PEP) for 15 minutes at 37°C (47).  

Similarly, 15 µM HflX was also incubated with PK and PEP (47).  Reactions were 

composed of 1 µM HflX, 125 µM radiolabeled nucleotide solution, 1 µM 

ribosomes or ribosomal subunits and carried out in TAKM30 buffer (50 mM Tris-Cl 
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pH 7.5 at room temperature, 70 mM NH4Cl, 30 mM KCl, 30 mM MgCl2). At 

different time points, 5 µL of reactions were removed and quenched in 50 µL of 1 

M HClO4 with 3 mM K2HPO4 (47).  Inorganic phosphate was extracted as a 

phosphate-molybdate complex following the addition of 300 µL of 20 mM 

Na2MoO4 and 400 µL of isopropyl acetate, mixing for 30 seconds and 

centrifugation at 17000xg for 5 minutes (47).  The organic phase containing the 

radiolabeled inorganic phosphate was added to 2 mL of scintillation cocktail (MP 

EcoLite) and counted in a Perkin-Elmer Tri-Carb 2800TR liquid scintillation 

counter. To determine the concentration of 32Pi released as a function of time the 

concentration of NTPs hydrolyzed by buffer or ribosomes alone was subtracted 

from the concentration of NTPs hydrolyzed by enzyme in the presence or 

absence of ribosomes.  The rates of purine nucleotide hydrolysis by HflX in the 

presence of ribosomes was found by fitting the multiple turnover experiments 

with a linear equation, where the slope is equal to the apparent rate of nucleotide 

hydrolysis.   

YchF – The methodology to monitor the ATP hydrolysis by YchF was identical to 

the methods previously described for HflX except that the final concentration of 

YchF in the reaction was 5 µM.  

2.2.8 Pre-Steady State Fluorescence Stopped-Flow Experiments 
 
Fluorescently labled HflX was excited at 490 nm and the emission of the 

fluorophore detected upon passing through LG-500F cutoff filters (NewPort 

Filters).  Changes in fluorescence were monitored and recorded upon rapidly 

mixing 1 µM 5-IAF labeled HflX in the apo, GDP or GDPNP bound state (250 µM 
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of guanine nucleotides) against 0.30 µM ribosomal subunits (50S or 30S) or 

ribosomes (70S) in a KinTek SF-2004 Stopped-flow apparatus.  The 

fluorescence changes observed were best fit with a two exponential function 

using TableCurve software.  To ascertain whether any of the fluorescence 

changes were dependent on concentration, 50S ribosomal subunits (0.40 µM to 

1.2 µM) were titrated against preformed complexes of 1 µM 5-IAF HflX and 250 

µM GDP.    Normalized traces were averaged and refit with a three exponential 

function where  𝑘!"" is the characteristic apparent rate constant,  𝐴 is the signal 

amplitude,   𝐹𝑙  is the fluorescence at time t,   and   𝐹𝑙!  is the final value of 

fluorescence (Equation 2.2.8.1).       

𝐹𝑙 = 𝐹𝑙! + 𝐴! exp −𝑘!""!𝑡   + 𝐴! exp −𝑘!""!𝑡 + 𝐴! exp(−𝑘!""!𝑡)           (2.2.8.1) 

2.2.9 Microfiltration Binding Assays 
 
HflX - In TAKM30 buffer, complexes of HflX with the ribosome were formed by 

incubating 5 µM of wild-type or variant HflX with 1 µM of 70S in the presence of 1 

mM GDP or GDPNP for 15 minutes at 37°C.  Incubation on ice for 5 minutes 

preceded the addition of the samples to 480 µL of TAKM30 buffer and 

centrifugation for 5 minutes at 10000xg in Vivaspin-500 columns with a MWCO of 

100 kDa (GE Healthcare).  Once a final volume of 20 µL was reached, the 

samples were diluted a second time to 500 µL and refiltered.  The binding of HflX 

to ribosomes or ribosomal subunits was analyzed using 12% SDS-PAGE gels.  

YchF - Microfiltration assays with various YchF preparations were performed 

identically to those carried out with HflX with the exception of the buffer system 
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being TAKM7 buffer and the concentration of the components being 4 µM YchF 

variant, 0.68 µM 70S ribosomes and 500 µM ADP or ADPNP.   

2.2.10 Circular Dichroism Spectroscopy Experiments  
 
Using a Jasco J815 CD Spectrometer, the spectra of variant HflX and YchF 

proteins was compared to the spectra of wild-type HflX and YchF.  Prior to 

analysis, protein samples were dialyzed overnight into water or 50 mM Na3PO4 to 

avoid any chemicals that would absorb light of lower wavelengths.  Higher yields 

of HflX were found when dialyzed into 50 mM Na3PO4 whereas a greater yield of 

YchF protein was obtained following dialysis in water.  At 20°C, 1 µM of protein in 

150 µL of appropriate buffer is scanned from 250 nm to 350 nm to obtain 

ellipticity values.   
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2.3 Results 

2.3.1 Initial Characterization of Fluorescently Labeled YchF 

     The susceptibility of the intrinsic cysteines within HflX and YchF to react with 

the fluorescent dye, 5-iodoacetoamidofluorescein and an initial assessment of 

whether once labeled the two proteins retained wildtype behavior, had not been 

studied until recently. In our laboratory, HflX labeled with the 5-IAF, was shown to 

function comparably to unlabeled wildtype HflX, being capable of hydrolyzing 

GTP and binding to 70S ribosomes  (Mackenzie Coatham, Undergraduate 

Thesis 2012).  An analogous approach of labeling wildtype YchF, containing six 

cysteine residues, was attempted to initially characterize the factor. Fluorescence 

emission for fluorescently labeled YchF (Fl-YchF) was observed upon exciting 

the fluorophore at 490 nm.  A maximal increase in fluorescence was observed at 

520 nm, the fluorescence emission for the fluorophore (Figure 2.3.1.1 Panel A).  

Having confirmed that YchF was fluorescently labeled with one molecule of 5-

IAF, the factor’s ability to bind adenine nucleotides, hydrolyze ATP and bind 

ribosomes was examined.  Interestingly, following modification of YchF by the 

introduction of a fluorescent dye, the 70S ribosome stimulated ATPase activity of 

YchF was slower by approximately 20-fold from 0.53±0.04 pmol min-1 for wildtype 

to 0.03±0.02 pmol min-1 with labeled YchF (Figure 2.3.1.1 Panel B).  
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Figure 2.3.1.1. Fluorescently labeled YchF is inactive compared to 

unlabeled wildtype YchF. (A) Fluorescence emission spectra upon exciting 
YchF labeled with 5-IAF at 490 nm.  A fluorescence maximum for Fl-YchF (dark 
grey) at 520 nm was not observed with wild-type YchF (black).  (B) Time course 
of ATP hydrolysis by Fl-YchF (dark grey) and wild-type YchF (black) stimulated 

by 1 µM 70S ribosomes. 
 
To determine whether this effect on ATP hydrolysis is due to YchF having a 

lower affinity for adenosine nucleotides or 70S ribosomes, the ability of Fl-YchF 

to perform both of these functions was tested.  The amount of YchF bound to 

70S ribosomes has been reported to be sub-stochiometric but stronger binding 

can be observed in the presence of ADPNP over ADP (66).  A similar interaction 

with 70S ribosomes modulated by the adenine nucleotide present in solution was 

observed for Fl-YchF, with more YchF present after microfiltration in the ADPNP 

rather than the ADP bound states (Figure 2.3.1.2).  
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Figure 2.3.1.2 YchF labeled with 5-IAF binds 70S ribosomes in its ADP and 
ADPNP bound states like wildtype YchF.   Fl-YchF (45 kDa) is found with 70S 
in the presence of adenine nucleotides similar to wildtype YchF when subjected 

to microfiltration centrifugation in 100 kDa molecular weight cut off filters. 
 

As binding to 70S ribosomes was not significantly affected and could not provide 

an explanation for the inability of Fl-YchF to hydrolyze ATP in the presence of 

70S, an examination of the ADP and ATP binding to fluorescently labeled YchF 

was carried out.  As the phosphorylation state of the nucleotide bound can be 

critical to the function of an ATPase, equilibrium fluorescence titrations allow for 

the determination of affinities that in turn provide information related to the 

nucleotide specificity of the factor. By plotting the decrease in tryptophan 

fluorescence at 337 nm as a function of adenine nucleotide concentration, 

preliminary dissociation constants can be determined for Fl-YchF.  For ADP and 

ATP, affinities of 106±34 µM and 247±265 µM, respectively were determined for 

Fl-YchF (Figure 2.3.1.3).  The above mentioned affinities differ significantly when 

compared to the affinities of wild-type YchF for adenosine nucleotides reported in 

Becker et al. (66).  This could be attributed to the affect fluorescently labeling has 

on the protein.  Furthermore, these affinities of Fl-YchF for the di- and 
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triphosphate forms of adenosine, could be resulting in the slower rate of multiple- 

turnover ATP hydrolysis in the presence of ribosomes.   

    

 
Figure 2.3.1.3 YchF labeled with 5-IAF binds both ADP and ATP.  (A) 

Fluorescence emission spectra from 300 to 500 nm upon exciting the intrinsic 
tryptophan of 1 µM Fl-YchF at 280 nm in the presence of increasing 

concentrations of ADP.  (B) Fluorescence emission spectra from 300 to 500 nm 
upon exciting the intrinsic tryptophan of 1 µM Fl-YchF at 280 nm in the presence 

of increasing concentrations of ATP.  (C) Plot of the decrease in fluorescence 
signals at 337 nm as a function of the concentration of ADP (black diamonds) 

and ATP (clear circles). 
 
2.3.2 Characterization of a YchF Variant Lacking Cysteine Residues 

     As YchF labeled with the fluorescent dye, 5-IAF, at naturally occurring 

cysteines was severely affected in its ability to bind adenine nucleotides and 

hydrolyze ATP, further probing of the structural and functional contributions of the 

cysteine residues within wildtype YchF was pursued. A previously constructed 

but otherwise uncharacterized variant of YchF in which three of its 6 intrinsic 
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cysteines were substituted for alanine residues, YchFC5AC35AC106A, served as a 

starting point for the assessment of whether modifying YchF in order to achieve a 

Cys-less state effects its functions.  Having half of the cysteines in its G-domain 

substituted, YchFC5AC35AC106A was a variant that could assist in answering the 

question if these residues play a critical role in the activity of the factor.   

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.3.2.1 Homology model of YchF from E. coli.  The G-domain (grey) 
harbors four of the six cysteines in YchF depicted in yellow.  The remaining two 

cysteines are found within the alpha-helical domain (blue).  The tryptophan 
(green sticks) is located in the TGS domain of YchF (pink). 

 
Firstly, the structure of the YchF variant was compared to wildtype using circular-

dichroism spectroscopy, but subsequently also its ability to bind adenine 

nucleotides, hydrolyze ATP and associate with 70S ribosomes were examined.  

Similar to Fl-YchF, the 70S ribosome-stimulated ATPase activity of 

YchFC5AC35AC106A was significantly lower than that of wildtype YchF (Figure 2.3.2.2 

Panel B).  The initial rate of ribosome-stimulated ATP hydrolysis of labeled YchF 

was ten-fold slower at 0.030±0.009 pmol min-1 than that observed for wildtype 

YchF (0.74±0.04 pmol min-1).     
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Figure 2.3.2.2 YchFC5AC35AC106A differs from wild-type YchF in both its 

structure and ability to hydrolyze ATP. (A) Time course of ATP hydrolysis by 
YchFC5AC35AC106A (dark grey) and wildtype YchF (black) in the presence of 1 µM 

70S ribosomes. (B) Overlaid CD spectra of YchFC5AC35AC106A (dark grey) and 
wildtype YchF (black). 

 
Several differences between wildtype YchF and YchFC5AC35AC106A became evident 

upon further analysis.  Firstly, discrepancy between the CD spectra obtained for 

wildtype YchF and YchFC5AC35AC106A indicates a deviation in protein secondary 

structure (Figure 2.3.2.2 Panel A).  The spectra obtained for both the variant and 

wildtype YchF are most indicative of proteins containing multiple alpha-helices 

(78).  The shift in the spectrum for YchFC5AC35AC106A below 225 nm hints at some 

disorder of the alpha-helices comprising the G-domain of the protein upon 

removal of the cysteines located in the vicinity (Figure 2.3.2.2 Panel A).  

Equilibrium fluorescence titrations revealed that the affinities governing the 

interaction of YchFC5AC35AC106A with ADP and ATP were indistinguishable.  

Wildtype YchF can bind tightly to both the di- and tri-phosphate forms of 

adenosine but a smaller KD for ATP at 16±1 µM than ADP at 22±3 µM has been 

discovered (Figure 2.3.2.3).  The KDs for ADP and ATP determined for 

YchFC5AC35AC106A were both 11±2 µM compared to the equilibrium dissociation 

constants of 9±8 µM for ADPNP and 14±5 µM for ADP determined in (66) (Figure 
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2.3.2.3). Thus, along with structural differences, YchFC5AC35AC106A is unable to 

differentiate between the different forms of adenine nucleotides, all providing 

probable explanations for the inactivity of the factor.   
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Figure 2.3.2.3 YchFC5AC35AC106A binds ADP and ATP with the similar affinities.  
(A) Fluorescence emission spectra from 300 to 500 nm upon exciting the intrinsic 

tryptophan of 1 µM YchFC5AC35AC106A at 280 nm in the presence of increasing 
concentrations of ATP.  (B) Fluorescence emission spectra of 1 µM YchF as 

performed in (A). (C) Fluorescence emission spectra of 1 µM YchFC5AC35AC106A as 
performed in (A) but in the presence of increasing concentrations of ADP.  (D) 

Fluorescence emission spectra of 1 µM YchF as performed in (C). (E) Plot of the 
decrease in fluorescence signals for wildtype YchF (black squares) and 

YchFC5AC35AC106A (grey circles) at 337 nm as a function of the concentration of 
ATP. (F) A plot of the decrease in fluorescence signals for wildtype YchF (black 

squares) and YchFC5AC35AC106A (grey circles) at 337 nm as a function of the 
concentration of ADP. 
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Microfiltration assays revealed that the binding of YchFC5AC35AC106A to 70S was 

completely abolished, which contrasts with the 30% binding of factor to 

ribosomes that is normally exhibited by wildtype YchF  (Figure 2.3.2.4).  

Therefore, it seems that on their own or in consort, Cys 5, Cys 35 or Cys 106 are 

critical to the structure and adenine nucleotide associated activities of YchF. 

 
 
 
 
              
 
 

 

 
 
 

Figure 2.3.2.4 YchFC5AC35AC106A cannot bind 70S ribosomes in its ADP and 
ADPNP bound states.   YchFC5AC35AC106A (45 kDa) is not found with 70S in the 
presence of adenine nucleotides when subjected to centrifugation in 100 kDa 

molecular weight cut off filters unlike wildtype YchF. 
 
2.3.3  Preliminary Kinetic Studies with Fluorescently Labeled HflX 

     It has been reported previously that HflX is capable of binding to the 70S 

ribosome and 50S and 30S ribosomal subunits (50).  In order to determine the 

most probable functional interaction partner of HflX in the cell and to further 

characterize wild-type HflX labeled with 5-IAF, the rate of fluorescently labeled 

HflX binding to ribosomal particles was assessed using rapid kinetics.  Using a 

stopped-flow apparatus, fluorescently labeled HflX (0.50 µM final) was rapidly 

mixed with 70S, 50S or 30S to a final concentration of 0.15 µM respectively.  

Experiments were performed with HflX in the apo state or in the presence of 
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GDP and GDPNP (125 µM final respectively).  Increases in fluorescence over 

time were observed when Fl-HflX was rapidly mixed with 30S, 50S and 70S 

ribosomal particles (Figure 2.3.3.1).  The multiphasic increases in fluorescence 

were best fit with two or three exponential functions (Figure 2.3.3.1). The largest 

overall change in amplitude of the fluorescence signal was observed when the 

Fl-HflX interacted with 50S ribosomal subunits in all nucleotide bound states 

(Figure 2.3.3.1 Panel A-C).  Significantly smaller differences between final and 

initial fluorescence were observed when Fl-HflX associated with 30S ribosomal 

subunits or empty 70S ribosomes (Figure 2.3.3.1 Panel A-C).  Interestingly, the 

final fluorescence levels for the guanine nucleotide bound states of Fl-HflX were 

considerably higher than that detected for Fl-HflX in its apo form (Figure 2.3.3.1).  

This might suggest that in solution, the conformation of the protein and therefore 

the attached fluorophore in the presence of nucleotides differs from the apo state 

of the fluorescently labeled protein.      
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Figure 2.3.3.1 Changes in fluorescence observed upon Fl-HflX in various 
nucleotide bound states interacting with 30S, 50S and 70S.  (A) 

Fluorescence increase over time as 0.50 µM HflX was rapidly mixed with 0.15 
µM 50S (dark grey), 70S (black) and 30S (light grey). (B) Fluorescence increase 

over time as 0.50 µM HflX in the presence of 125 µM GDP was rapidly mixed 
with 0.15 µM 50S (dark grey), 70S (black) and 30S (light grey). (C) Fluorescence 

increase over time as 0.50 µM HflX in the presence of 125 µM GDPNP was 
rapidly mixed with 0.15 µM 50S (dark grey), 70S (black) and 30S (light grey). 

  
To obtain affinities for fluorescently labeled HflX for 50S ribosomal subunits, pre-

steady state experiments in which increasing concentrations of 50S ribosomal 

subunits were added into a final concentration of 0.15 µM HflX in the presence of 

125 µM GDP was undertaken in the stopped-flow.  50S ribosomal subunits were 

examined first due to the fact that the signal change was substantial compared to 

30S and 70S.  Upon increasing the 50S concentration, no concentration 

dependence of the rates or amplitudes associated with the interaction of HflX 
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labeled with 5-IAF with ribosomal subunits was observed (Figure 2.3.3.2).  These 

results indicate that either the utilization of 5-IAF as a fluorophore or its 

placement at the intrinsic cysteines within HflX only results in concentration-

independent conformational changes being detected.  Being able to obtain 

kinetic parameters associated with conformational changes can provide valuable 

information though with regard to the structural dynamics of the HflX-ribosome 

complex.  

Figure 2.3.3.2 Concentration independent rates and amplitudes associated 
with rapidly mixing an increasing concentration of 50S ribosomal subunits 

with GDP-bound Fl-HflX. (A) The rates obtained from fitting fluorescence 
changes upon rapidly mixing 0.15 µM fluorescently labeled HflX in its GDP-

bound state with increasing concentrations of 50S to three-exponential functions. 
(B) The amplitudes associated with the fluorescence changes observed upon 

rapidly mixing 0.15 µM fluorescently labeled HflX with increasing concentrations 
of 50S. 

 

2.3.4 Characterization of HflX Variants Lacking Cysteine Residues 

     Work towards the construction of a Cys-less HflX variant was undertaken, to 

be able to control the future placement of fluorophores with the end result being 

garnering kinetic information related to the interaction of HflX with ribosomal 

particles.  Two of the three cysteines, Cys 96 and Cys 98 in E. coli HflX are found 
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in the N-terminal HflX domain.  The third cysteine Cys 415 is located in the poorly 

conserved C-terminal extension, immediately following the G-domain.  

 

 

 

 

 

 

 

 
Figure 2.3.4.1 Homology model of E. coli HflX.  Within the N-terminal HflX 
domain (purple) are two cysteines 96 and 98 (yellow).  The G-domain (black) 

harbors the protein’s single tryptophan residue at position 341 shown in sticks. 
 
Cys 98 and 415 were replaced with leucine residues while a serine was 

substituted in position 96.  In a sequence alignment of various bacterial species, 

the amino acid cysteine is most often replaced with the unreactive, nonpolar 

residue, leucine.  Serine closely resembles cysteine in size and structure and 

additionally, cysteine can be synthesized from serine.   Upon expression and 

purification of the single and fully Cys-less variants, their overall structure and 

activity with regards to binding of GTP, GTP hydrolysis and binding of ribosomes 

was compared to wild-type HflX.  At 37°C, E. coli BL21-DE3 cells upon induction 

of the expression of HflXC96SC98L and HflXC96SC98LC415L displayed typical bacterial 

growth. An initial lag phase was followed by exponential growth and eventually 

the growth of the E. coli cells reached an OD600 of greater than 2 (Figure 2.3.4.2 

Panel A).  However, protein bands indicative of the HflX variants were not visible 
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by SDS-PAGE analysis when cells were opened under non-denaturing 

conditions in the absence of 8 M urea. The expression of proteins that are not 

naturally occurring within E. coli can often be detrimental to the growth of cells 

and may result in the seclusion of the expressed protein in inclusion bodies (79).  

In an attempt to obtain soluble HflXC96SC98L and HflXC96SC98LC415L, BL21-DE3 E. 

coli cells were grown overnight at 18°C.  Expression of HflX variants was also 

induced by 0.1 mM rather than 1 mM IPTG.  Lowering the concentration of IPTG 

was undertaken to promote lower levels of expression within E. coli, while the 

colder temperature ensures the correct folding of variants by temperature-

induced chaperone activity to prevent formation of insoluble inclusion bodies 

containing HflXC96SC98L and HflXC96SC98LC415L (80).  Under these conditions, 

production of soluble HflXC96SC98L and HflXC96SC98LC415L was still unsuccessful 

(Figure 2.3.4.2 Panel B).  

 
Figure 2.3.4.2 HflXC96SC98L and HflXC96SC98LC415L do not alter E. coli cell growth 
but are found in inclusion bodies. (A) Growth curves of E. coli BL21-DE3 cells 

producing HflXC96SC98L (open triangles), HflXC96SC98LC415L (open diamonds) and 
HflXC415L (open circles).  (B) 12% SDS-PAGE analysis of E. coli cell lysates 

before (T0) and 16 hours after induction (T∞).  Overexpression of HflX is visible 
for both HflXC96SC98L and HflXC96SC98LC415L (Cys-less) at 50.5 kDa at T∞.  Soluble 

(S) and insoluble fractions (IS) were obtained after E. coli cells were opened with 
lysozyme and centrifuged at 30000g.  Pellets from the centrifugation step were 

resuspended in 8 M urea and contain HflX as confirmed by SDS-PAGE. 
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Reagents such as urea or guanidinium chloride can break apart inclusion bodies, 

releasing insoluble and unfolded proteins into solution that can later be refolded 

and their functionality tested (80).  In order to obtain HflXC96SC98L and 

HflXC96SC98LC415L using a similar approach, purification of wildtype HflX under 

denaturing conditions followed by refolding, resulted in a protein that was unable 

to hydrolyze GTP in the presence of ribosomes (Figure 2.3.4.3 Panel A).   

HflXC415L was successfully purified from E. coli cell lysate by affinity and size 

exclusion chromatography under non-denaturing conditions.  The HflXC415L 

variant displayed a nearly superimposable CD spectrum as the wildtype protein, 

indicating that introduction of a different amino acid in the variable C-terminus of 

the protein does not significantly alter the structure of HflX (Figure 2.3.4.3 Panel 

B).  The spectrum obtained for both variant and wildtype HflX were characteristic 

of proteins comprised of multiple alpha-helices (78).  

Figure 2.3.4.3 HflXC415L is similar to wildtype HflX in both its structure and 
its ability to hydrolyze GTP in the presence of 70S ribosomes.  (A) Time 
course of GTP hydrolysis by HflX WT (black squares), HflXC415L (dark grey 

circles) and refolded wild-type HflX purified in 8 M urea (light grey triangles) in 
the presence of 1 µM 70S ribosomes.  (B) Superimposed CD spectra of HflX WT 

(black) and HflXC415L (dark grey). 
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Table 2.3.4.1 Specific GTPase activity of different HflX preparations stimulated 
by 70S ribosomes. 

 
 Rate (µM s-1) 

Wildtype HflX  0.11 ± 0.01 
HflXC415L  0.072 ± 0.003 

Refolded Wildtype HflX 0.002 ±0.001 
 

Having established that the structure of HflXC415L is in agreement with wildtype 

HflX, equilibrium fluorescence titrations were performed to characterize whether 

the HflXC415L variant had similar nucleotide binding properties to wildtype as well.  

The change in the fluorescence of the intrinsic tryptophan residues in HflX was 

monitored in the presence of guanosine nucleotides.  The addition of increasing 

concentrations of GTP resulted in a decrease in fluorescence at 337 nm that was 

plotted in order to obtain an KD for GTP of 124±12 µM for HflXC415L and a 

dissociation constant of 103±19 µM for wildtype HflX (Figure 2.3.4.4).  Thus, a 

similar KD within error for the triphosphate form of guanine nucleotides was 

determined for the single Cys-less variant, HflXC415L and wildtype HflX.  
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Figure 2.3.4.4 HflXC415L and wildtype HflX bind GTP with a similar affinity.  
(A) Fluorescence emission spectra from 300 to 500 nm upon exciting the intrinsic 

tryptophan of 1 µM HflXC415L at 280 nm in the presence of increasing 
concentrations of GTP.  (B) Fluorescence emission spectra from 300 to 500 nm 
upon exciting the intrinsic tryptophan of 1 µM HflX at 280 nm in the presence of 

increasing concentrations of GTP.  (C) Plot of the decrease in fluorescence 
signals for wildtype HflX (black squares) and HflXC415L (grey circles) at 337 nm as 

a function of the concentration of GTP. 
 
The next activity assessed was the ability of HflXC415L to bind ribosomes and 

hydrolyze GTP in the presence of 70S ribosomes. HflXC415L was retained above 

the filter with 70S ribosome in microfiltration assays (Figure 2.3.4.5). Only a two-

fold decrease in 70S ribosome stimulated GTPase activity was observed for 

HflXC415L when compared to the wildtype enzyme (Figure 2.3.4.3 Panel A). Taken 

together these results suggest that HflXC415L is capable of performing ribosome-

associated activities like wildtype factor. 
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Figure 2.3.4.5  HflXC415L binds 70S ribosomes regardless of the guanine 
nucleotide present.   HflXC415L (50.5 kDa) in its apo, GDP and GDPNP bound 
states remained above the filter with 70S in when subjected to centrifugation in 

100 kDa molecular weight cut off filters. 
 
2.4 Discussion and Future Directions 

     To gain kinetic information relating to the association and dissociation of HflX 

and YchF from ribosomes, a fluorescence-based system was developed. The 

affinities that could be generated by this system could eventually lead to 

elucidation of the functional complexes that these factors interact with in the cell.  

To reach this goal, wildtype HflX and YchF have been labeled with the cysteine-

specific fluorescent dye, 5-IAF and their published functions compared to 

wildtype. HflX with its intrinsic cysteines labeled with 5-IAF, hydrolyzes GTP and 

binds 70S ribosomes. Pre-steady state stopped-flow analysis did not reveal any 

concentration dependence on the changes in fluorescence or associated rates 

when 50S ribosomal subunits were titrated against HflX-GDP. The fact that only 

concentration-independent conformational changes, not concentration-

dependent binding events between labeled HflX and 50S ribosomal subunits, can 
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be detected suggests that the choice of fluorophore and its placement within the 

wild-type protein may need to be addressed.   

     To combat the issue of the positioning of the fluorophores within HflX, a Cys-

less background is required in which new locations for cysteine residues to be 

placed can be assigned. Sequence alignments have revealed that in HflX, the 

cysteine residues are highly conserved, besides 415. In HflX, Cys 96 is 88% 

identical while the cysteine at position 98 possesses 99% identity among 501 

bacterial species.  Construction of an active Cys-less variant of HflX was 

necessary to obtain variants in the future, in which the specific locations of 

fluorophores could be known.  In this way, control over the in vitro system that is 

unattainable when labeling intrinsic cysteine residues would be possible. At the 

very least, the contributions of the intrinsic cysteines to the structure and function 

of HflX would be revealed.  Interestingly, HflXC415L interacted with ribosomal 

particles and nucleotides much like wild-type protein. Removal of cysteines 96 

and 98 simultaneously led to the production of insoluble protein. The proximity of 

the amino acids to one another in space suggested that perhaps the two 

cysteines could be forming a disulfide bond, stabilizing the structure of the 

protein, but measurement of the distance between the residues was much farther 

(6 Å) than the 2 Å normally associated with such an interaction (81).  Cysteine is 

a residue of relatively low abundance within proteins yet a propensity for 

cysteines to be found two amino acids apart has been observed among bacterial 

organisms such as E. coli (82).  Although the two cysteines in HflX are located 

only one amino acid apart, the importance of these residues to stabilizing long-
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range intramolecular or interpolypeptide interactions should not be overlooked.  

Cys 96 and 98 link together an alpha-helix and beta-sheet made up of a number 

of positively-charged amino acids and, as a consequence, may be critical for the 

structure of the regions constituting the N-terminus of HflX, thought to be 

required to interact with RNA.   In order to be able to work with variants of HflX 

lacking cysteines at 96 and 98 or 415 as well, a different tagging system to purify 

the mutated recombinant protein will likely be required.  Potentially, using GST or 

MBP tags which have been shown to improve the solubility and stability of 

proteins in solution over histidine tags will have to be considered (83).  If the 

proteins fused to HflX variants have enhanced solubility in solution, it is more 

likely that these GST and MBP tags will facilitate protein folding and reduce 

protein aggregation, increasing the expression and purification yield of HflX (83).   
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Table 2.4.1 Summary of the Characterization of HflX Variants Lacking Cysteines 

Variant HflXC96SC98L HflXC415L 

 
Amino Acid 

Conservation of 
Mutated Cysteines 

 

88, 99% 
 

<60% 
 

Expression At 18°C with 0.1 M IPTG At 37°C with 1 M IPTG 

Purification Not Possible with 
Denaturing Conditions Non-Denaturing Conditions 

Structure 
 

N/A 
 

Identical CD Spectra to WT 

Nucleotide Binding N/A KD For GTP  
Within Error of WT 

Ribosome Binding N/A 1:1 Binding of Variant to 70S 

Nucleotide 
Hydrolysis N/A 2-Fold Slower GTPase 

Activity with 70S 
 

     The variant of YchF lacking cysteines at positions 5, 35 and 106 could be 

purified, but upon analysis of its structure by circular dichroism studies and 

assessment of its ribosome-associated functions, the protein was found to be 

significantly different from wild-type YchF.  YchFC5AC35AC106A had all but one of the 

cysteines that are found within the G-domain replaced. The cysteine residue at 

position 5 is 98% identical, which contrasts with the 100% conservation found for 

Cys 35 and 106 among 291 bacterial organisms. As with HflX, the distance 

between the cysteines close in space was examined to infer whether disulfide 

bonds were capable of forming between the reactive residues. Cys 5 and 35 and 

Cys 106 and 236 were all much farther apart than would be required to form a 

disulfide bond, with measurements of 13 and 11 Å, respectively. Interestingly, the 
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cysteine at position 35 is located within Switch I of YchF and cysteine 106 serves 

as an attachment point for the flexible linker containing one of the proposed 

catalytic residues for YchF, histidine 114.  From the results presented in this 

thesis from equilibrium fluorescence titrations, the ability of Fl-YchF to 

differentiate between the di-and tri-phosphate forms of adenosine appeared to be 

negatively affected. Switch I is critical for sensing the presence of GTP or GDP 

by numerous translational GTPases.  In direct relation then, the alteration to 

cysteine residue 35 upon the addition of a fluorescent dye within this motif of 

YchF leads directly to the hypothesis that it interferes with the specificity of the 

factor for adenosine nucleotides. An explanation for the very slow hydrolysis rate 

of ATP by YchFC5AC35AC106A observed in the presence of 70S ribosomes can be 

linked to the substitution of cysteine 106.  This residue in conjunction with the 

ribosome could be responsible for orientating the catalytic machinery of YchF to 

position a water molecule for a nucleophilic attack on ATP.  In addition to roles in 

regulating the concerted movements of the G-domain and sensing of the number 

of phosphate groups present on nucleotides, the cysteines within YchF have also 

been proposed to be indispensible for its role in the oxidative stress response 

(61).  This same group hypothesized that the intrinsic cysteines of YchF could be 

influencing its ATPase activity. For the first time, using fluorescence emission 

spectra and nucleotide hydrolysis assays to study a variant of YchF lacking three 

naturally occurring cysteine residues and fluorescently labeled YchF preparation, 

a connection between the absence of cysteines and the disruption of the 

interaction of YchF with ribosomes and nucleotides can be drawn. A detailed 
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examination of the structure and function of YchF variants bearing single 

cysteine substitutions within the G domain will be of upmost interest to study in 

order to validate the influence of the individual cysteine residues on the ATPase 

activity and cellular function of YchF.       

Table 2.4.2 Summary of the Characterization of Modified YchF Preparations 

Variant Fl-YchF YchFC5AC35AC106A 

 
Amino Acid 

Conservation of 
Mutated 

Cysteines 
 

N/A 
 

98, 100, 100% 
 

Expression At 37°C with 1 M IPTG At 37°C with 1 M IPTG 

Purification Non-Denaturing Conditions Non-Denaturing Conditions 

Structure 
 

N/A 
 

Deviation from  
WT CD Spectra  

Nucleotide 
Binding 

 
Similar KDs for 

ATP and ADP Unlike WT 
 

Similar KDs for ATP and 
ADP and Similar to WT 

Ribosome Binding 30% Binding of  
Variant to 70S 

No Binding of  
Variant to 70S 

Nucleotide 
Hydrolysis 

> 20-fold reduction in 
ATPase Activity with 70S 

> 20-fold reduction in 
ATPase Activity with 70S 

 

2.5 Conclusion  

     Classical biochemical methods and state-of-the-art biophysical techniques 

have revealed that the naturally-occurring cysteine residues within HflX and YchF 

can accept fluorescent dye.  In the case of HflX, although increases in 

fluorescence over time can be observed when the labeled wild-type protein is 
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rapidly mixed with ribosomal particles, the placement of the fluorescent dye did 

not result in the determination of equilibrium dissociation constants between HflX 

and 30S, 50S and 70S.  Fluorescent labeling of YchF’s intrinsic cysteines 

resulted in protein unable to differentiate between adenosine nucleotides 

consistent with the fact that highly conserved cysteines can play important roles 

in the function of a factor.  It has also been shown that work towards Cys-less 

variants of both HflX and YchF resulted in insoluble protein and inactive protein, 

respectively.  Thus, structurally and functionally relevant roles for cysteines within 

HflX and YchF showing a high percentage of identity among bacterial species 

can be proposed.             
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Chapter 3 –  

Toward Understanding the Catalytic Mechanism and Structural Dynamics 
of HflX 
 
3.1 Introduction  
 
     Guanine triphosphatases, grouped together based on the possession of a G-

domain containing common sequence and structural motifs, have evolved unique 

differentiating factors that allow their specific roles in cells to be fine-tuned (28).  

The rate in which the switch is turned over in vivo can be dependent on its 

interactions with external GAPs or GEFs, but the intrinsic properties of the 

GTPase can also lead to catalysis of the hydrolysis or nucleotide exchange steps 

of the GTPase cycle (29). HflX is no exception to this observation acquiring what 

appear to be single amino acids or arrangements of residues that currently 

remain unclear as to how they directly influence catalysis and in turn the cellular 

function of the factor.  To note about HflX though, is the fact that it does not 

possess the catalytic histidine that is present in other TRAFAC GTPases (84,85). 

Histidine 84 and 91 in EF-Tu and EF-G, respectively, are present to coordinate a 

water molecule for a nucleophilic attack of guanine nucleotides.  In the place of 

the histidine in the G-domain, there is a phenylalanine present in the G-domain of 

HflX, characterizing the protein as a hydrophobic amino acid-substituted GTPase 

(HAS-GTPase) (39).  This knowledge raises the question as to how GTP and 

ATP hydrolysis is carried out by HflX.  Furthermore, several groups have also 

proposed that HflX along with other GTPases contain an element called the K 

loop and several conserved asparagines, which can coordinate potassium ions 

that are capable of stimulating the very slow intrinsic catalysis of some GTP 
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hydrolyzing proteins (48).  This ionic mode of stimulation of NTPase activity has 

not yet been proven for HflX or correlated with the fact that the ribosome can also 

provide stimulation of the protein’s hydrolysis activity.     

     Multidomain proteins like HflX must also evolve ways to effectively 

communicate and correlate movements in one domain to the action of other 

areas in the protein.  Typically, the G-domain of GTPases does not act alone.  

Additional domains can influence the performance of a GTPase’s cellular 

function by providing binding sites for nucleic acids or in some cases the 

presence of a tandem G-domain can aid in the regulation of the GTPase activity 

of its actively hydrolyzing G-domain (86,87).   HflX is novel in that its domain 

upstream of the G-domain is found only within its superfamily (33).  Recently, this 

N-terminal HflX domain has been proposed to possess nucleotide hydrolysis 

capabilities and interactions between the HflX- and G-domains have been 

proposed to modulate the purine nucleotide hydrolysis rates of HflX in the 

absence of ribosomes (46). Seeking an explanation as to the ability of HflX to 

hydrolyze ATP, structural bioinformatics analyses were carried out and weak 

structural homology between the first 120 amino acids of HflX to ATP/ADP 

binding domains in other proteins was found (46).  Confirmation of ATP 

hydrolysis activity was achieved by testing a truncation of the protein consisting 

of the first 120 residues of the HflX domain (46).  The group proceeded to 

demonstrate that salt-bridges fastening the HflX- and G-domains together can 

regulate the nucleotide hydrolysis activities of HflX (46). The C-terminal 

extension of HflX, present in HflX from E. coli but lacking among a small subset 
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of other organisms such as S. solfataricus was also examined but its regulatory 

effect on the functions of HflX still remains unclear (46). Many questions remain 

to be answered with regards to the regulation of purine nucleotide catalysis by 

HflX.  Although the roles of the N and C-terminal domains on intrinsic nucleotide 

hydrolysis by HflX have been examined, their exact activity in the context of the 

cell is poorly understood. How the ribosome influences the dynamics of all the 

domains of HflX with regard to stimulated NTP hydrolysis is also a question that 

remains to be answered.  As one of the most likely substrates for HflX in the cell 

is the ribosome, a better understanding of all the contributing factors to catalysis 

is required in order to elucidate the functional the cycle of HflX.          

3.2 Materials and Methods 

3.2.1 Sequence Alignments 

Refer to Section 2.2.1. 

3.2.2  Site-directed Mutagenesis 

A glutamate residue at position 29 and an arginine at position 114 were both 

replaced with alanine residues using the Quikchange® Site-Directed 

Mutagenesis Method.  The deletion of the C-terminal domain of HflX was 

achieved by introducing an amber stop codon at the position in the hflx gene 

coding for leucine 372. 
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Table. 3.2.2.1 Primers for Site-Directed Mutagenesis 

 E29A R114A ΔL372 

 
Forward Primer 

 

 
5’ GAT ATC GAA 
GAC CTC CAG 
GCG TTT G 3’ 

 

 
5’ ATT TTC 

GCC CAA GCG 
GCG CGT ACG 

CAT 3’ 
 

 
5’ GCA TAC ATT 

GCG TCT GTA ATA 
GCC GGC AGG 

GCG TCT GAG A 3’ 
 

 
Reverse Primer 

 

 
5’ CAA ACG CCT 
GGA GGT CTT 
CGA TAT C 3’ 

 

5’ ATG CGT 
ACG CGC CGC 
TTG GGC GAA 

AAT 3’ 

5’ TCT CAG ACG 
CCC TGC CGG CTA 
TTA CAG ACG CAA 

TGT ATG C 3’ 

TM  (°C) 67.4 68.6 69.2 

Restriction Site EcoRV BsiWI N/A 

 

Refer to Section 2.2.2 for methodology.   

3.2.3. Protein Expression and Purification 

Refer to Section 2.2.3. 

3.2.4 Preparation of Ribosomes 

Refer to Section 2.2.4  

3.2.5 Nucleotide Hydrolysis Assays 

HflX Variants - The release of 32P-labeled inorganic phosphate (Pi) from [γ-32P] 

GTP or [γ-32P] ATP (Perkin-Elmer) was monitored to determine the rate of GTP 

or ATP hydrolysis by HflX. Reactions were composed of 1 µM HflX, 125 µM 

radiolabeled nucleotide solution, in the presence or absence of 1 µM 70S 

ribosomes or 50S ribosomal subunits and carried out in TAKM7 or TAKM30  buffer 



	
  
	
  

67 

(50 mM Tris-Cl pH 7.5 at room temperature, 70 mM NH4Cl, 30 mM KCl, 30 mM 

MgCl2). Refer to Section 2.2.7 for further procedural details.  

Wild-type HflX (Intrinsic) - The rate of intrinsic GTP hydrolysis by HflX was 

determined following separation by thin layer chromatography rather than 

extraction.  Reactions were composed as in 2.2.7 but with GTP concentration 

varying from 10 µM (approximately 20-fold lower than the KD of HflX for GTP) to 

500 µM (about 3-fold higher than the KD).  Samples (5 µL) were removed from 

the reaction and subsequently quenched with 1 µL of 6 M formic acid.  Following 

separation of 32Pi from [γ-32P] GTP by thin layer chromatography, plates (TLC 

PEI Cellulose F, EMD Millipore) were visualized using a Typhoon Trio Scanner 

(GE Healthcare) and the amount of 32Pi formed calculated from ImageJ (76). 

Wild-type HflX (Potassium Ion Dependence) - To assess the dependence of 

ribosome-stimulated wild-type HflX GTPase activity on potassium ions, 25 000 

pmols of wild-type HflX were dialyzed either into 1 L final storage buffer or 1 L 

final storage buffer containing 300 mM NaCl rather than KCl.  To be able to 

control the concentration of potassium ion present within the reaction, a new 

buffer system had to be utilized. A 10X buffer with the same composition as 

TAKM30 but lacking any potassium ions (10X TAM30) allowed for the ionic 

strength of the other buffer components present to remain constant.  The desired 

concentration of potassium ions while maintaining the relative ionic strength of 

the other buffer components was achieved by using a 1X TAKM30 buffer 

containing 600 mM of potassium ions (1X TAK600M30).  In this way, a final 

concentration of potassium ions in the reaction of 30 and 300 mM could be 



	
  
	
  

68 

directly compared with reactions in TAKM30 as performed in 2.2.7.  A titration of 

potassium ions was achieved by maintaining an overall ionic strength of 

monovalent cations (sodium or potassium ions) in solution around 300 mM and 

using 1X TAK600M30 or 1X TAN600M30 buffers. Wild-type HflX dialyzed into sodium 

ion- or potassium ion- containing final storage buffers were subjected to GTP 

hydrolysis reactions as previously described in 2.2.7 using the new buffer system 

(10X TAM30 and 1X TAK600M30 or 1X TAN600M30).   

3.2.6 Light Scattering 
 
To monitor the dissociation of 70S ribosomes into 50S and 30S ribosomal 

subunits, a KinTek SF-2004 Stopped-flow apparatus at 20°C was utilized. 

Samples were excited at 436 nm and scattering was detected at a 90° angle after 

passing through 400 nm filters. Reactions were performed in TAKM5 buffer 

(similar to TAKM7 but with 5 mM MgCl2), by rapidly mixing 2 µM of wildtype or 

variant HflX in the presence of 250 µM GTP and 0.30 µM of 70S ribosomes.  The 

resulting signals were normalized with respect to the initial light scattering of the 

solution, setting the first value as 100% of intact 70S ribosomes.  

3.2.7 Microfiltration Binding Assays 

Refer to Section 2.2.9. 

3.3 Results 

3.3.1 Potassium ion dependence of ribosome-stimulated HflX GTPase activity  

     To address whether HflX is indeed dependent on potassium ions for its 

nucleotide hydrolysis activity, the ability of the wild-type protein under different 

monovalent ion conditions to bind 70S ribosomes and hydrolyze GTP in the 
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presence or absence of 70S was assessed.  On the sequence and structural 

level, HflX possesses features indicative of cation dependence, specifically a 

requirement for potassium ions (Figure 3.3.1.1) that is shared by other GTPases 

such as YihA, FeoB, and MnmE (49).  Two asparagines from the GTPase, the 

oxygens from phosphate groups of the nucleotide and backbone carbon atoms 

from Switch I can all contribute to the coordination of a potassium ion (49).  

Switch I in these GTPases is also altered, adopting a distinct conformation that 

places a so-called K loop over top of the bound nucleotide (49).  The conserved 

asparagines in the G1 motif play a role in positioning Switch I in its K-loop 

orientation by forming hydrogen bonds with its backbone atoms (49).   

 

 

 

Figure 3.3.1.1 Homology model of E. coli HflX showing the features that 
have classified it as potassium-selective cation dependent GTPase. N207 
and N215 (green sticks) of the G-domain are shown in proximity to the K-loop 

(yellow-green). 
 
As a starting point, a Michaelis-Menten titration was performed to determine if 

potassium ions had an effect on the GTP hydrolysis of HflX alone.  The 

determination of initial rates of HflX GTPase activity using extraction followed by 

scintillation counting as a detection method proved not to be a very sensitive 

approach.  This is due to the fact that the amount of inorganic phosphate 



	
  
	
  

70 

released by wildtype HflX alone is within levels of the amount of GTP hydrolyzed 

by buffer. Thus, the titration was repeated using a different detection method, thin 

layer chromatography (TLC), which allows for the complete separation of 

radiolabeled inorganic phosphate from GTP.  Additionally, TLC had been used to 

determine the catalytic parameters associated with the intrinsic GTPase activity 

of the archael homolog of HflX from S. solfataricus (45).  Comparison of the 

kinetic parameters between those previously described for S. solfataricus HflX 

and those found for E. coli using the extraction method utilized in our laboratory, 

led to the discovery that the catalytic efficiency or kcat/KM were similar within error.  

Upon repetition of the same experiment but using TLC, to separate low levels of 

liberated inorganic phosphate from di- and triphosphate forms of guanosine 

nucleotides, no kcat or KM could be calculated from the rates of intrinsic GTP 

hydrolysis when plotted against increasing concentrations of guanosine 

triphosphates (Figure 3.3.1.2).  

 
 
 
 
 
 
 
 
 
 

 
Figure 3.3.1.2 Plot of initial rates of GTPase activity of wild-type HflX alone 

over increasing concentrations of GTP.  1 µM HflX was incubated with 
increasing concentrations of radiolabeled GTP to obtain intrinsic rates of GTP 

hydrolysis for a range of nucleotide concentrations using thin layer 
chromatography as a detection method.  No concentration dependence was 

observed for the GTPase activity of the enzyme alone. 
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Based on the fact that the amount of GTP hydrolyzed by wild-type HflX is 

intrinsically difficult to detect and a concentration dependence of the initial rates 

not observable, a study of the effect of potassium ions on the ribosome-

stimulated GTPase activity of HflX was undertaken for the very first time. The 

GTPase activity of HflX stimulated by 70S was measured at increasing 

concentrations of potassium ions.  To exclude the effects of ionic strength on the 

interaction of HflX with the ribosome and ultimately on the observed multiple 

turnover GTPase activity, alteration to the buffer composition was required in 

order to maintain a constant ionic strength while varying the concentration of 

potassium ions.  The ability of HflX in complex with 70S ribosomes to hydrolyze 

GTP in TAK600M30, the adjusted buffer system, which can allow for potassium ion 

concentration to be manipulated, was compared to its activity using the 

established 1X TAKM30 buffer system.  At a final potassium ion concentration of 

30 mM in both reaction buffers, the 70S-stimulated GTPase activities of HflX 

were very similar at 0.089 ± 0.006 µMs-1 and 0.104 ± 0.004 µMs-1 (Figure 3.3.1.3 

Panel A and Table 3.3.1.1).  Interestingly, increasing the potassium ion  

concentration 10-fold to 300 mM, reduced the GTPase rate about 5-fold to 

0.020±0.002 µMs-1 (Figure 3.3.1.3 Panel A and Table 3.3.1.1).  Dialysis of the 

protein into a buffer containing a different monovalent cation, sodium, was 

necessary to reduce the concentration of potassium ions that was present in the 

protein preparation due to the purification procedure.  HflX was dialyzed into the 

same potassium ion-containing buffer to take into account the effect the dialysis 

process alone has on the GTPase activity of the factor. To further validate a 
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potassium ion concentration dependence on the rate of ribosome-stimulated 

GTPase activity on HflX, the GTP hydrolysis capabilities of both dialyzed 

preparations were compared to that of wild-type undialyzed protein in TAKM30.  

Treatment of wild-type HflX to dialysis led to a 2-fold decrease in GTPase activity 

in the presence of 70S (Figure 3.3.1.3. Panel B and Table 3.3.1.2).  The 

inhibition of GTPase activity was even more pronounced (4-fold) when wild-type 

HflX was dialyzed into sodium ion-containing buffer not potassium ions, further 

suggesting that HflX does require potassium ions to some degree (Figure 

3.3.1.3. Panel B and Table 3.3.1.2).  

 

Figure 3.3.1.3 Potassium ion concentration can affect the 70S ribosome 
stimulated GTPase activity of HflX to different extents. (A) Time course of 
GTP hydrolysis by wildtype HflX stimulated by 1 µM 70S ribosomes in TAKM30 

(black squares), in TAK600M30 buffer with a final [K+] of 30 mM (dark grey circles) 
and in TAK600M30 buffers with a final [K+] of 300 mM (light grey inverted triangles). 

(B) Time course of wildtype HflX GTPase activity in the presence of 1 µM 
ribosomes in TAKM30 (black squares), in TAKM30 following dialysis into a KCl 

containing final storage buffer (dark grey diamonds), and in TAKM30 after dialysis 
into a final storage buffer containing NaCl (light grey circles). 
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Table 3.3.1.1 Specific GTPase activity of wildtype HflX subjected to different 
potassium ion-containing buffer conditions. 

 
 Rate (µM s-1) 

HflXWT (TAKM30) 0.089 ± 0.006 
HflXWT (Final [K+] = 30 mM) 

(TAK600M30) 
0.104 ± 0.004 

HflXWT (Final [K+] = 300 mM) 
(TAK600M30) 0.020 ± 0.002 

 
Table 3.3.1.2 Specific GTPase activity of dialyzed preparations of HflX subjected 

to different potassium ion-containing buffer conditions. 
 

 Rate (µM s-1) 
K+- dialyzed HflXWT 

(TAKM30) 
0.048 ± 0.002 

Na+- dialyzed HflXWT 
(TAKM30) 0.023 ± 0.001 

 

To further investigate the dependence of the ribosome stimulated GTPase 

activity of HflX on the potassium ion concentration; the rates of GTP hydrolysis 

by HflX at increasing concentrations of the monovalent cation were determined. 

While no trend could be observed when the HflX preparation dialyzed into NaCl 

was subjected to increasing potassium concentration, the preparation of HflX 

dialyzed into KCl showed a 3-fold decrease in the rate of 70S ribosome-

stimulated GTP hydrolysis once the KCl concentration in the reaction buffer 

exceeded 50 mM (Figure 3.3.1.4. Panel B). To ensure that the observed 

difference in the ribosome stimulated GTPase activity of the two wildtype HflX 

preparations was not due to altered binding affinities under these buffer 

conditions, microfiltration assays were carried out at 0 and 50 mM potassium ion 

concentrations to confirm binding of HflX to 70S ribosomes. At both monovalent 

cation concentrations and in the presence of GDPNP, HflX was retained above 
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the filter together with 70S ribosomes (Figure 3.3.1.4. Panel A). Finally, of 

interest to note is that the ribosome-stimulated GTPase activity of both the KCl 

and NaCl-dialyzed HflX were significantly faster in hydrolyzing GTP than the 

GTPase activity of wildtype HflX not stimulated by ribosomes (Figure 3.3.1.4. 

Panel B).  Thus, the rates of GTP hydrolysis by these HflX preparations are most 

similar to ribosome-stimulated, non-dialyzed wildtype HflX GTPase activity 

(Figure 3.3.1.4. Panel B). 

 

 

Figure 3.3.1.4. At low K+ concentrations Na+ and K+ dialyzed HflX can bind 
70S ribosomes but only KCl dialyzed HflX can hydrolyze GTP near wild-

type activity. (A) In the presence of 70S, Na+ and K+ dialyzed HflX (50.5 kDa) in 
their GDPNP bound states, were retained above the 100 kDa molecular weight 
cut off filters following centrifugation in buffer containing 0 and 50 mM KCl. (B) 

Plot of the initial rates of GTP hydrolysis by 1 µM Na+ HflX (light grey circles) and 
1 µM K+ HflX (dark grey diamonds) incubated with 1 µM 70S and radiolabeled 

GTP in TAK(600mM)M30 buffer containing increasing concentrations of 
potassium ions. The GTPase rate of undialyzed, unstimulated wildtype HflX for 

comparison purposes is shown as a black circle. 

The fact that the GTPase activity of dialyzed HflX in the presence of 70S is 

slower at concentrations of potassium ions higher than 50 mM correlates with the 

results observed with the non-dialyzed HflX. For the first time, the GTP hydrolysis 

activity of HflX has been shown to be regulated by potassium ions as its rate of 
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ribosome-stimulated GTPase activity is optimal at lower concentrations of the 

monovalent cation. Up to this point, this is a phenomenon that has only been 

observed with other GTPases in the absence of their GAPs (48). 

3.3.2 Functional Role of the Interdomain Interactions and C-terminus of HflX  

     There are many residues located along the interface between the HflX- and 

G-domains that form salt-bridge and hydrogen bonding interactions. The role of 

these interdomain interactions in regulating the factor’s ability to hydrolyze GTP 

in the presence of 70S remains unclear.  In addition, the C-terminus of HflX not 

present in all organisms must have been retained by some homologs for some 

specific cellular purpose.  As the function of HflX in vivo most likely involves the 

ribosome, an understanding of the effects of overall domain movements and the 

role of the C-terminus is vital.  Two salt bridges, R114A-D251 and E29A-R257 

were focused on primarily in this thesis. Both R114 and E29 are highly conserved 

with over 80% identity as revealed by a sequence alignment of 501 bacterial 

species. Glu 29 and Arg 114 were substituted with the non-reactive, nonpolar 

and smaller residue, alanine to generate the variants HflXE29A and HflXR114A (46). 

The introduction of a premature stop codon following a leucine residue at position 

372 generated HflXΔL372 and resulted in a truncation of the C-terminal extension 

that is normally found branching off the G-domain of HflX (46). 
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Figure 3.3.2.1. Homology model of E. coli HflX featuring two of the salt 

bridge interactions between the N-terminal HflX domain and the C-terminal 
G-domain. E29 and R114 of the HflX domain interact with R257 and D251 of the 

G-domain of HflX, respectively. 
     
Due to the hypothesis that HflX will function primarily as a guanine nucleotide-

dependent enzyme at cellular concentrations of purine nucleotides (47), the 

intrinsic and 70S ribosome-stimulated GTPase activity of these HflX variants was 

assessed first with nucleotide hydrolysis assays.  The rate of GTPase activity for 

HflXE29A, HflXR114A and HflXΔL372 in the presence of 70S ribosomes was slower 

than wildtype (0.103 ± 0.0008 µMs-1) by a factor ranging from 2 to 3-fold (Figure 

3.3.2.2 Panel A and Table 3.3.2.1). A similar behavior was observed for the 50S 

ribosomal subunit stimulated rates of GTP hydrolysis by HflX variants (Figure 

3.3.2.2 Panel B and Table 3.3.2.1). 
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Figure 3.3.2.2 Comparison of the rates of 70S and 50S stimulated GTPase 
activity for HflX variants, HflXE29A, HflXR114A and HflXΔL372.  (A) Comparison of 

the rates of GTP hydrolysis by indicated HflX variants in the presence of 70S 
ribosomes with wildtype HflX (black) exhibiting the fastest rate followed by 

HflXΔL372 (light grey), HflXR114A  (white with polka dots) and HflXE29A (dark grey). 
(B) Comparison of the rates of GTP hydrolysis by HflX variants in the presence of 

50S ribosomal subunits with wildtype HflX (black) exhibiting the fastest rate 
followed by HflXΔL372 (light grey), HflXR114A (white with polka dots) and HflXE29A 

(dark grey). 
 

Table 3.3.2.1 Specific GTPase activitiy of HflX variants stimulated by 70S 
ribosomes and 50S ribosomal subunits. 

 
 70S 50S 

Variant  Rate (µM s-1) Rate (µM s-1) 
HflXWT  0.103 ± 0.0008 0.29 ± 0.03 

HflXE29A  0.038 ± 0.002 0.14 ± 0.01 
HflXR114A  0.058 ± 0.002 0.20 ± 0.02 
HflXΔL372  0.065 ± 0.006 0.25 ± 0.02 

 

To ascertain whether this slight decrease in activity was a result of the HflX 

variants altered affinity for the 70S ribosome, microfiltration assays were 

performed.  HflXE29A, HflXR114A and HflXΔL372 were all retained together with the 

70S ribosome above the 100 kDA molecular weight cut-off membrane (Figure 

3.3.2.3 and Figure 3.3.2.4), suggesting that the affinity for the 70S ribosome is 

not affected in these HflX variants.   
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Figure 3.3.2.3 HflXE29A and HflXR114A can bind 70S ribosomes. In the presence 
of 70S, HflX (50.5 kDa) in its apo, GDP and GDPNP bound states, was retained 

above the 100 kDa molecular weight cut off filters following centrifugation. 
 
 

Figure 3.3.2.4 HflXΔL372 can bind 70S ribosomes and 30S and 50S ribosomal 
subunits in all nucleotide bound states.  (A) Truncated HflX (50.5kDa) was 

found in the retenate with 70S ribosomes upon filtration regardless of the 
absence or presence of guanine nucleotides.  (B) Truncated HflX (50.5 kDa) was 

found in the retenate with 30S and 50S ribosomal subunits upon filtration 
regardless of the absence or presence of guanine nucleotides. 

 
The intrinsic GTPase activity of the HflX variants was identical to wildtype HflX 

except for HflXR114A, which had previously been reported to not exhibit a faster 

rate of GTP hydrolysis by enzyme alone (46).  HflXR114A had an intrinsic GTPase 

rate of 0.3 x 10-4±3.0 x 10-6 µMs-1, which was approximately 5-fold quicker than 

HflXE29A, HflXΔL372 and even wildtype HflX (Figure 3.3.2.5 Panel A). Sequence 
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alignments have revealed that Arg 114 is 100% conserved compared to the 90% 

identity observed for Glu 29 and may provide some explanation as to the more 

pronounced effects of this HflX variant on intrinsic guanine nucleotide hydrolysis.   

Perhaps, the high level of conservation of this arginine amino acid among 

bacterial HflX proteins, hints at a critical role for this residue in ensuring efficient 

intrinsic hydrolysis of GTP by HflX.  

     HflX has been shown to be capable of hydrolyzing ATP and recently, a 

hypothesis was proposed that interruption of interdomain interactions stimulates 

the intrinsic ATPase activity of HflX (46,47).  Thus, the hydrolysis of ATP both in 

the presence and absence of ribosomes was examined using nucleotide 

hydrolysis assays.  HflXE29A alone was shown previously to hydrolyze ATP faster 

(46) but under conditions similar to those described in (47) the only HflX variant 

to exhibit any difference in the rate of ATP hydrolysis was HflXR114A, which was 

about 3-fold slower at 3 x 10-6±2 x 10-6 µM s-1 (Figure 3.3.2.5 Panel B) (46).  

 

 

 
 
 
 

 
 

Figure 3.3.2.5  HflX variants exhibit different rates of intrinsic ATPase and 
GTPase activity.  (A) Comparison of the rates of GTP hydrolysis by wildtype 
HflX alone (black), HflXE29A (dark grey), HflXR114A (white with polka dots) and 

HflXΔL372 (light grey).  (B) Comparison of the rates of ATP hydrolysis by wildtype 
HflX alone (black), HflXE29A (dark grey), HflXR114A (white with polka dots) and 

HflXΔL372 (light grey). 
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Table 3.3.2.2 Specific intrinsic GTPase and ATPase activity of HflX variants. 
 

 GTPase ATPase 
Variant  Rate (µM s-1) Rate (µM s-1) 
HflXWT  2.9 x 10-5 ± 2.2 x 10-5 9 x 10-6 ± 2 x 10-6 

HflXE29A  3.5 x 10-5 ± 3.2 x 10-5 9 x 10-6 ± 2 x 10-6 
HflXR114A  1.3 x 10-4 ± 3.0 x 10-6 3 x 10-6 ± 2 x 10-6 
HflXΔL372 3.2 x 10-5 ± 3.0 x 10-5 9 x 10-6 ± 2 x 10-6 

 
 
Unpublished data from our laboratory suggests that HflX can dissociate 70S 

ribosomes in a nucleotide-dependent manner wherein the extent of light 

scattering observed in a stopped-flow measurement is the greatest when HflX is 

in the presence of GTP compared to its apo state (Jeffrey Fischer, Doctoral 

Dissertation 2011).  All nucleotide hydrolysis assays are performed in buffer 

containing a concentration of 30 mM magnesium to prevent the splitting of 70S 

ribosomes.  Unexpectedly, this high concentration of magnesium in solution only 

affected the 70S- and 50S- stimulated ATPase activity of wildtype HflX.  A 

reduction in rate close to one order of magnitude for both wildtype HflX ATP 

hydrolysis in the presence of 70S ribosomes and 50S ribosomal subunits was 

observed in TAKM30 (Figure 3.3.2.6).  The ATPase activity of HflXE29A, HflXR114A 

and HflXΔL372 in the presence of 50S contrasted with the ATPase rates of the 

variants stimulated by 70S ribosomes.  No stimulation of HflXΔL372 over intrinsic 

levels of ATP hydrolysis was observed, indicating that the C-terminus might play 

a role in regulating ATP hydrolysis (Figure 3.3.2.6 Panel B and Table 3.3.2.3).  

When stimulated by 50S ribosomal subunits, HflXE29A within error possessed a 

rate of ATP hydrolysis similar to HflXWT in TAKM7 buffer (Figure 3.3.2.6 Panel B 

and Table 3.3.2.3).  
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Figure 3.3.2.6. The rates of 50S and 70S stimulated ATPase activity differ for 

HflX variants.  (A) Comparison of the rates of 70S ribosome stimulated ATP 
hydrolysis by wildtype HflX in TAKM7 (black brick pattern), wild-type HflX in 
TAKM30 (black), HflXE29A (dark grey), HflXR114A (white with polka dots) and 

HflXΔL372 (light grey).  (B) Comparison of the rates of 50S ribosomal subunit 
stimulated ATP hydrolysis by wildtype HflX in TAKM7 (black brick pattern), wild-

type HflX in TAKM30 (black), HflXE29A (dark grey), HflXR114A (white with polka dots) 
and HflXΔL372 (light grey). 

 
Table 3.3.2.3 Specific ATPase of HflX variants stimulated by 70S ribosomes and 
50S ribosomal subunits.  It should be noted that assays in the presence of 50S 

ribosomal subunits were performed in TAKM7 buffer. 
 

 70S  50S 
Variant  Rate (µM s-1) Rate (µM s-1) 

HflXWT (TAKM7) 2 x 10-5 ± 1 x 10-6 4.3 x 10-4 ± 1.9 x 10-5 
HflXWT (TAKM30) 6 x 10-6 ± 1 x 10-6 2 x 10-5 ± 1 x 10-6 

HflXE29A (TAKM30) 1 x 10-5 ± 1 x 10-6 4.2 x 10-4 ± 3.3 x 10-5 
HflXR114A (TAKM30) 3 x 10-6 ± 1 x 10-6 2.1 x 10-4 ± 8.3 x 10-6 
HflXΔL372 (TAKM30) 6 x 10-6 ± 1 x 10-6 7 x 10-6 ± 7 x 10-7 

 
As previously mentioned, wildtype HflX has a propensity to split 70S ribosomes 

into 30S and 50S ribosomal subunits as has been witnessed by light scattering 

stopped-flow experiments. Consistent with this, rapidly mixing 1 µM of HflXE29A, 

HflXR114A and HflXΔL372 in the presence of 125 µM GTP with 0.15 µM of 70S 

ribosomes resulted in decreases in Rayleigh light scattering when the samples 

were subjected to light at a wavelength of 436 nm. Complete dissociation of 70S 

ribosomes in a low magnesium concentration buffer has been reported to result 

in an approximate 29% decrease in Rayleigh light scattering (88).  HflX in its 
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GTP bound form can catalyze ribosome dissociation to the same extent as has 

been observed by magnesium depletion and by known ribosome dissociation 

factors such as RRF and EF-G (88).  HflXE29A, HflXR114A and HflXΔL372 were 

impaired both in the rate and extent of their catalysis of 70S ribosome 

dissociation (Figure 3.3.2.7).  HflXE29A and HflXR114A reached the maximum 

decrease in light scattering (~30%) but at a slower rate than wildtype HflX (Figure 

3.3.2.7).  HflXΔL372 exhibited drastically reduced 70S ribosome dissociation 

reaching the maximal extent of light scattering at a much slower rate.  For the 

first time, a role in regulating the dissociation of 70S ribosomes can be attributed 

to the C-terminal extension of HflX. 

 

 

  

 

 
 
 
Figure 3.3.2.7 HflXE29A, HflXR114A and HflXΔL372 dissociate 70S ribosomes. All 
variants of HflX assessed were found to split 70S into 50S and 30S ribosomal 
subunits slower and to lesser extents than wildtype. HflXE29A (dark grey) was 

most similar to wild-type (black) with HflXR114A (lightest grey) exhibiting a slower 
rate of 70S ribosome dissociation but was not as significantly impaired as 

HflXΔL372 (light grey). 
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3.4 Discussion and Future Directions 

     Through sequence alignments, several conserved stretches of residues or 

single amino acids within HflX have been discovered and their involvement in 

modulating one of its key cellular functions in E. coli, nucleotide hydrolysis has 

been studied.  Previously, HflX was deemed to not be dependent on potassium 

ions for its intrinsic GTP hydrolysis activity (49).  As an accurate procedure to 

study the intrinsic GTPase activity of HflX to obtain such kinetic parameters as 

Michaelis Menten constants or catalytic efficiencies has yet to be found, our 

focus remains on studying ribosome-stimulated nucleotide hydrolysis activity.  

This approach resulted in the discovery that the 70S stimulated GTPase activity 

of HflX is indeed regulated by potassium ions.  Potassium dependence has been 

reported to act as a GTPase-Activating Element (GAE) (89).  For the bacterial 

GTPase MnmE, the monovalent cation promotes dimerization that stabilizes the 

transition state that exists during the GTP hydrolysis process (68).  For EngA, 

potassium allows for the nucleotide or catalytic machinery to be optimally 

positioned for efficient hydrolysis of GTP (89). As the ribosome has been shown 

to act as GAP for HflX, it is most likely that at lower concentrations, potassium 

ions act to optimally coordinate the nucleotide within the binding pocket of the 

factor for fast GTPase activity (47).   

     Having established that HflX possesses sequence elements that do indeed 

allow potassium ion concentration to fine-tune its ribosome-stimulated GTPase 

activity, several interesting conclusions can be drawn from the effects alterations 

to the domain contacts and deletion of the C-terminus has on HflX.  The fact that 
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disrupting salt bridges connecting the HflX-domain to the G-domain can have 

opposing effects on intrinsic and ribosome stimulated purine nucleotide 

hydrolysis suggests that the mechanisms in which ATP and GTP hydrolysis are 

fine-tuned could indeed be different.  As the catalytic machinery contributed by 

HflX and the ribosome to nucleotide hydrolysis have not yet been elucidated, the 

link between overall domain or terminus movement to catalysis cannot be 

definitively determined. For ATP hydrolysis specifically, no unique binding site or 

P-loop/Walker A-like feature for recognizing only adenine nucleotides has been 

discovered for HflX (46). Mutation of P-loop residues has been shown to impair 

the GTP hydrolysis activity of GTPases such as dynamin, thus a similar 

methodology could be used to decipher the ATP hydrolysis machinery of HflX 

and whether it is also executed by residues within the G-domain (90).  Figuring 

out the catalytic machinery of HflX responsible for both ATP and GTP hydrolysis 

will serve as a basis for building bridges to the effects brought upon by residues 

found in other regions of the protein.   

     Of particular interest within this thesis, were the effects magnesium ion 

concentration had on the 70S ribosome and 50S ribosomal subunit stimulated 

ATPase activity of wild-type HflX and HflX variants. The important role of 

magnesium in the nucleotide hydrolysis reaction of phosphatases in general has 

been shown by quantum mechanics/molecular mechanics simulations (91).  

Cleavage of the phosphodiester bond is driven forward due to the fact that 

magnesium coordinating the nucleotide triphosphates elongates the bond 

between the beta and gamma phosphates mimicking the transition state of the 
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molecule (91). Beyond an influence in the nucleotide hydrolysis reaction, 

magnesium ions, through an interaction with the phosphate backbone of RNA, 

can stabilize the entire ribosome (92).  As a result, a concentration of magnesium 

in vivo of 3 to 5 mM is also necessary for protein synthesis machinery to come 

together for effective translation (92). A concentration of magnesium ten fold over 

in vivo levels may hinder the natural motion of the macromolecular complex due 

to the excessive amounts of divalent cation interacting with rRNA. This 

movement could be required to stimulate the ATP hydrolysis capacity of HflX.  

Similarly, established preventers of ribosome dissociation, the polyamines, 

spermine and spermidine, slow the rates of ribosome-stimulated GTP hydrolysis 

by HflX (93).  The reduced rates for both types of nucleotide hydrolysis are most 

likely both originating from extensive stabilization of the ribosome to the point that 

its natural dynamics are encumbered.  Thus, large-scale movements of the 

ribosome, prevented by stabilizing factors such as metal ion concentration or 

naturally occurring compounds like polyamines, can critically affect the activity of 

associated factors.   

     To note as well, is that a more concrete role for the C-terminal extension of 

HflX from E. coli has been resolved.  The absence of the C-terminus resulted in 

intrinsic levels of ATP hydrolysis in the presence of 50S ribosomal subunits. 

Together with the decrease in the maximum extent of light scattering observed 

for HflXΔL372 variant, these results could suggest that the contacts wildtype HflX 

makes with 70S compared to the 50S alone are critical for both its ATP 

hydrolysis activity and ribosome dissociation activitycatalyzed by HflX in the 
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presence of GTP.  Structures of HflX bound to the empty ribosome, ribosomal 

subunits or functional ribosome complexes containing tRNA in the P and E-sites 

especially, would allow for the determination of any changes in the contacts 

between the subunits constituting the 70S to be discovered as has been found 

for other translational factors such as RRF (94).  In this way, a hypothesis as to 

the manner in which 70S ribosome splitting is severely affected when the C-

terminus of HflX is removed could be formulated. The structural insight garnered 

from a structure of HflX on the ribosome would also allow for the impact of the 

HflXE29A and HflXR114A variants on ribosome dissociation to be confirmed.  One 

assumption would be that coordinated movements of both of the domains 

comprising HflX would be necessary to orchestrate the separation of such a large 

macromolecular complex as the ribosome.  With the guanine nucleotide-binding 

pocket positioned within the cleft formed by the HflX and G-domain, 

conformational changes required for catalyzing the splitting of ribosomes may 

also be altered when R114A-D251 and E29A-R257 are broken. In the future, 

variants consisting of several mutations disrupting salt-bridges all along the 

interface between the HflX and G domain will be tested to establish if there will 

be cumulative effects on nucleotide hydrolysis.  This work will be of upmost 

importance to better understand communication networks between the protein 

domains.                            
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Table 3.4.1 Summary of the Characterization of HflX Variants with Disrupted 

Domain Interactions or Lacking the C-terminal Extension 
 

Variant HflXE29A HflXR114A HflXΔL372 

 
Amino Acid 

Conservation 
of Mutated 
Residue 

 

90% 99% <60% 

Expression At 37°C with  
1 M IPTG 

At 37°C with  
1 M IPTG 

At 37°C with 
1 M IPTG 

Purification Non-Denaturing 
Conditions 

Non-Denaturing 
Conditions 

Non-Denaturing 
Conditions 

Ribosome 
Binding 

1:1 Binding of Variant 
to 70S 

1:1 Binding of Variant 
to 70S 

1:1 Binding  
of Variant to  

30S, 50S & 70S 

ATP 
 Hydrolysis 

Intrinsic: 
Similar to WT 

70S: 
Slower than WT 

50S: 
Similar to WT 

Intrinsic: 
Slower than WT 

70S: 
Slower than WT 

50S: 
Slower than WT 

Intrinsic: 
Similar to WT 

70S: 
Slower than WT 

50S: 
Intrinsic Levels 

GTP 
Hydrolysis 

Intrinsic: 
Similar to WT 

70S/50S: 
Slower than WT 

Intrinsic: 
Faster than WT 

70S/50S:  
Slower than WT 

Intrinsic: 
Similar to WT 

70S/50S:  
Slower than WT 

 

3.5 Conclusion 

     Previous publications from our laboratory have revealed that HflX can interact 

with 30 and 50S ribosomal subunits and 70S ribosomes.  Thus a better 

understanding of the protein domain dynamics of HflX and its catalytic activity in 

the context of it in complex with ribosomes was the main goal of this chapter of 

the thesis.  Regulation of HflX GTP hydrolysis by potassium ions, a contested 

theory only proposed based on conserved structural elements, was for the first 

time observed for the factor in the presence of 70S ribosomes.  Additionally, the 

elimination of highly conserved salt-bridge interactions and the less conserved C-
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terminal domain of HflX were found to have effects on both 70S and 50S-

stimulated nucleotide hydrolysis that was different from intrinsic activities 

determined for the variant factors.  These results indicate that the movement of 

single amino acids or domains of HflX may differ depending on whether or not it 

is found bound to ribosomes and provides further evidence that the ribosome can 

modulate the activity of HflX by sending signals through its protein structure.  
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Chapter 4 –  

Insight into the NTPase-Activated States of HflX and YchF 

4.1 Introduction 

     A plethora of clinical antibiotics target the bacterial ribosome, often altering 

different regions’ conformations upon binding.  Decoding centre antibiotics, 

paromomycin in particular, have been shown experimentally to alter the 30S 

ribosomal subunit by displacing nucleotides in relation to the minor groove of 16S 

rRNA (95,96).  The peptidyl-transferase centre can support the binding of 

multiple antibiotics due to the fact that the rRNA can form hydrophobic, stacking 

and/or hydrogen bonding interactions with a variety of aromatic or non-polar 

small molecules (11,24,97).  Invasion of these peptidyl-transferase centre drugs 

into the space occupied by the amino acid end of incoming tRNAs is considered 

to be their common mechanism of action.  The evidence provided by the 

inhibitory function of these particular classes of antibiotics insinuates that base 

flips of rRNA, obstruction of interaction surfaces and perhaps even 

conformational changes to ribosomal proteins can disrupt vital communication 

networks between the ribosome and bound translation factors.  This has been 

shown to be the case for the peptidyl transferase centre-targeting antibiotic, 

chloramphenicol which inhibits the ribosome-stimulated GTPase activity of HflX 

(47).  This result contrasts with the fact that kanamycin, an antibiotic which binds 

to the decoding centre of the 70S does not slow the rate of GTP hydrolysis in the 

presence of ribosomes (47).  It is unclear exactly what step in the GTPase cycle 

of HflX antibiotics can influence, resulting in overall slower rates of multiple 
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turnover GTP hydrolysis.  The ribosome acts as GAP for HflX, stabilizing its 

GTPase activated state and stimulating hydrolysis (47,50), but it remains unclear 

as to whether the binding of antibiotics to the 70S can affect the affinity of HflX 

for ribosomes, guanine nucleotides or both.  Antibiotics, such as chloramphenicol 

along with disrupting these interactions could also hinder the ribosome in its 

ability to contribute the catalytic machinery required for the catalysis of GTP 

hydrolysis or the release of inorganic phosphate necessary for the continuation of 

the cycle. Thus if different classes of antibiotics can affect the interaction 

between HflX and potentially YchF and the ribosome distinctly, this could 

potentially lead to the discovery of novel antibiotic targets.  Perhaps, by 

assessing the effects of antibiotics on the NTP hydrolysis activities of HflX and 

YchF, which are critical to their functions as NTPases, the findings could provide 

insight into their cellular roles and maybe reveal some commonalities between 

the factors.    

     Before this could become a reality though, the connection between ribosome-

targeting antibiotics and their influence on the ribosome-associated functions of 

HflX and YchF has to become evident.  Here, a number of clinically relevant, 

bacteriostatic antibiotics were tested in order to observe their effects on the rates 

of HflX and YchF nucleotide hydrolysis in the presence of 70S ribosomes.  

Additionally, knowledge exists that chloramphenicol reduces the rate of 

ribosome-stimulated GTP hydrolysis yet the exact mode of how this is achieved 

is uncertain. Therefore, the rate constants describing guanine nucleotide 

association and dissociation from HflX in complex with ribosomes in the 
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presence of antibiotics were found using fluorescence based rapid kinetics. All of 

this work is a prerequisite to identifying states of the ribosome during protein 

synthesis that have remained hidden from researchers or new interactions with 

specialized stress factors such as HflX and YchF and utilizing this information as 

the inspiration for new antibiotic development.   

4.2 Materials and Methods 

4.2.1 Protein Expression and Purification 

Refer to Section 2.2.3. 

4.2.2 Preparation of Ribosomes 

Refer to Section 2.2.4  

4.2.3 Nucleotide Hydrolysis Assays 

Assays were performed essentially as described in Section 2.2.7 but with the 

following changes: antibiotics to a final concentration of 500 µM were also 

included in the 60 µL reaction volume for screening purposes.  One way analysis 

of variance was performed to compare the rates of ribosome stimulated 

nucleotide hydrolysis obtained in the presence of antibiotics to the 70S-

stimulated NTPase rate in the absence of antibiotics.  

4.2.4 Pre-Steady State Fluorescence Stopped-Flow Experiments  

YchF - All pre-steady-state kinetics of mant-nucleotide association and 

dissociation from YchF were determined using a KinTek SF-2004 Stopped-flow 

apparatus.  Through the radiationless mechanism, fluorescence resonance 

energy transfer (FRET), mant-nucleotides (Jena Bioscience) were excited by the 

tryptophan residues in the proteins.  The tryptophan in YchF was excited at 280 
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nm and the emission of the mant-nucleotides detected after passing through LG-

400-F long-pass cutoff filters.  Initially, complexes of YchF and 70S ribosomes or 

30S ribosomal subunits were incubated at 20°C for 15 minutes. The association 

of the non-hydrolyzable analog of ATP, ADPNP, to YchF was determined by 

rapidly mixing 25 µL of preformed YchF complex (1.36 µM YchF and 2 or 8 µM 

70S or 30S) with 25 µL of increasing concentrations of mant-nucleotides (5 to 40 

µM for ADPNP) in TAKM7 at 20°C. Fluorescence changes were best fit with a two 

exponential function, normalized and a minimum of ten traces averaged and refit 

with the appropriate equation.  The concentration dependence of the rates 

obtained from fitting the fluorescence changes can be fit with a linear function to 

attain rate constants.  The slope of the linear concentration dependence of kapp is 

equal to the bimolecular association rate constant.  To determine the dissociation 

rate of mant-nucleotides (30 µM) from the respective complexes, 25 µL of 

YchF•mant-nucleotide•ribosome complexes were rapidly mixed with 25 µL of an 

excess of unlabeled nucleotide (300 µM).  Complexes were formed by incubating 

1.36 µM YchF and 2 or 8 µM 70S ribosome or 2 µM 30S ribosomal subunit with 

30 µM mant-nucleotide for 20 minutes at 20°C.  The resulting fluorescence traces 

were best fit with the equation 4.2.4.1 where  𝑘!"" is the characteristic apparent 

rate constant,  𝐴 is the signal amplitude,  𝐹𝑙 is the fluorescence at time t,  and  𝐹𝑙! 

is the final value of fluorescence.   

𝐹𝑙 = 𝐹𝑙! + 𝐴! exp −𝑘!""!𝑡   + 𝐴! exp −𝑘!""!𝑡                                                    (Equation 4.2.4.1) 
 
HflX - Stopped-flow experiments with HflX were performed and analyzed as in 

(50) but using TAKM30 buffer (contents similar to TAKM7 with the exception of 30 
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mM MgCl2), which has been shown to prevent HflX catalyzed splitting of 70S 

ribosomes (Mackenzie Coatham and Tobias Schuemmer, unpublished data).  

The rate constants for the association and dissociation of mant-GDP and the 

non-hydrolyzable analog of GTP, GDPNP to and from the 70S ribosome 

respectively were monitored in the presence of 1 mM of the peptide exit tunnel 

binding antibiotic, erythromycin and clindamycin which targets the peptidyl-

transferase centre, clindamycin.    

4.2.5 Microfiltration Binding Assays  

Microfiltration binding assays were performed similar to Section 2.2.9 with the 

only difference that antibiotics were present to a final concentration of 500 µM 

throughout the duration of the experiment.  

4.3 Results 

4.3.1.  The Effects of Antibiotics on YchF and HflX Nucleotide Hydrolysis Activity  

     An assessment of the effect of currently used antibiotics (Table 4.3.1.1) on the 

ribosome-associated nucleotide hydrolysis activity of HflX and YchF was 

accomplished by performing antibiotic screens.  To this end, the amount of 

nucleotide hydrolyzed by 1 µM HflX or 5 µM YchF in the presence of 1 µM 70S 

and 500 µM antibiotics was quantified.   
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Table 4.3.1.1 Summary of Various Classes of Protein Synthesis Inhibitors 

Antibiotic  Class of Antibiotic  Mode of Action 

Kanamycin (18) Aminoglycoside Decoding Centre 
Inhibitor 

Paromomycin (12) Aminoglycoside Decoding Centre 
Inhibitor 

Tobramycin (18) Aminoglycoside Decoding Centre 
Inhibitor 

Viomycin (98) Cyclic Peptide  
Ribosome 

Translocation 
Inhibitor 

Thiostrepton (27) Thiopeptide Translation Factor 
Inhibitor 

Chloramphenicol  (24) N/A PTC Inhibitor 
Clindamycin (99) Lincosamide  PTC Inhibitor 
Lincomycin (99) Lincosamide  PTC Inhibitor 

Azithromycin (25) Macrolide PET Inhibitor 
Erythromycin (99) Macrolide        PET Inhibitor 

 

None of the classes of antibiotics tested had any significant effects on the 

ribosome-stimulated ATPase activity of YchF (Figure 4.3.1.1 and Table 4.3.1.2). 

No stimulatory or inhibitory effect was larger than 2-fold and therefore no 

correlation between the binding sites of the antibiotics and their influence on the 

rate of ribosome stimulated ATPase can be observed (Figure 4.3.1.1 and Table 

4.3.1.2) 
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Figure 4.3.1.1 Antibiotics affect ribosome stimulated YchF ATPase activity. 

Comparison of the rates of 70S stimulated ATPase activity of YchF WT in the 
presence of representative antibiotics from the aminoglycoside (blue horizontal 

lines), translation factor inhibiting (yellow diagonal lines), lincosamide (light 
purple checkered pattern) and macrolide (green polka dot pattern) classes to the 

rate observed in the absence of antibiotics (solid black). 
 

Table. 4.3.1.2 Specific ATPase activity of wild-type YchF stimulated by 70S 
ribosomes in the presence and absence of antibiotics. P values less than 0.05 

were considered to be significant with the level of significance being denoted on 
tables by the number of  * markings. 

 

Condition Rate (pmol min-1) Significance 
(P < 0.05) 

No Antibiotic  0.53 ± 0.04 N/A 
Paromomycin 

(Aminoglycoside) 
0.84 ± 0.05 *** 

Clindamycin (Lincosamide) 0.62 ±0.04 No 
Tobramycin (Aminoglycoside) 0.47 ± 0. 04 No 

Azithromycin (Macrolide)  0.31 ± 0.02 * 
Thiostrepton  

(Translation Factor Inhibitor)  0.29 ± 0.04 ** 

 
In contrast to the effects observed on YchF ATPase activity, antibiotics, 

especially those of the lincosamide and macrolide class, inhibited the 70S 

stimulated GTPase activity of HflX by up to a factor of 50-fold (Figure 4.3.1.2 

Panel A and Table 4.3.1.3).  This contrasted with the less than 5-fold inhibition 

observed for the rate of GTP hydrolyzed in the presence of aminoglycoside 
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antibiotics (Figure 4.3.1.2 Panel A and Table 4.3.1.3).  The rates associated with 

the GTPase activity of HflX stimulated by 50S ribosomal subunits were slowed in 

a similar manner. Antibiotics targeting the peptidyl transferase centre, 

chloramphenicol and lincomycin, and the peptide exit tunnel, erythromycin 

reduced the rates of GTP hydrolysis by HflX by 10- to 15-fold (Figure 4.3.1.2 

Panel B and Table 4.3.1.3).  

 

 
 
 
 
 
Figure 4.3.1.2 Peptidyl-transferase centre and peptide exit tunnel targeting 

antibiotics significantly slow the rate 70S and 50S stimulated GTPase 
activity of HflX. (A) The rate of 70S stimulated GTPase activity of HflX WT in the 

presence aminoglycosides (blue horizontal lines), translation factor inhibitors 
(yellow diagonal lines), PTC targeting antibiotics (light purple checkered pattern) 

and macrolides (green polka dot pattern) were compared to the absence of 
antibiotic (solid black). (B) Rates of HflX GTPase activity stimulated by the 50S 
ribosomal subunit in the presence of antibiotics obtained in a similar manner as 

in (A). 
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Table 4.3.1.3 Specific GTPase activity of wildtype HflX stimulated by 70S 
ribosomes and 50S ribosomal subunits in the presence and absence of 

antibiotics.  P values less than 0.05 were considered to be significant with the 
level of significance being denoted on tables by the number of  * markings. 

 
 70S 50S  

Condition Rate (µM s-1) Rate (µM s-1) Significance 
(P < 0.05) 

No Antibiotic 0.093 ± 0.006 0.105 ± 0.008 N/A 
Viomycin (Translation 

Factor Inhibitor) 0.057 ± 0.006 N.D. *** 

Kanamycin 
(Aminoglycoside) 0.046 ± 0.007 N.D. *** 

Paromomycin 
(Aminoglycoside) 0.031 ± 0.004 N.D. *** 

Tobramycin 
(Aminoglycoside) 0.027 ± 0.001 0.088 ± 0.003 *** 

Thiostrepton  
(Translation Factor 

Inhibitor)  
0.023 ± 0.001 N.D. *** 

Chloramphenicol   
(PTC Inhibitor) 0.007 ± 0.001 0.016 ± 0.002 **** 

Clindamycin 
(Lincosamide) 0.004 ± 0.003 N.D.  **** 

Lincomycin 
(Lincosamide) 0.003 ± 0.001 0.010 ± 0.001 **** 

Azithromycin (Macrolide)  0.006 ± 0.001 N.D. **** 
Erythromycin (Macrolide)  0.003 ± 0.001 0.007 ± 0.001 **** 

No Antibiotic &  
No Stimulation  
by 70S or 50S 

0.00084 ± 0.00001 0.00084 ± 
0.00001 **** 

 
 
To elucidate whether the salt-bridges between the HflX and G-domain or the 

presence of the C-terminus of HflX were required for the inhibition of ribosome-

stimulated GTP hydrolysis by antibiotics, the GTPase activity of HflX variants in 

the presence of the antibiotics, erythromycin and clindamycin was determined.  

Intriguingly, the rates of HflX variants’ GTPase activity in the presence of 70S 

and in the presence of representative PTC and PET targeting antibiotics were 

similar within error, regardless of the difference in rates observed for the variants 
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in the absence of antibiotics (Figure 4.3.1.3 and Table 4.3.1.4). These results 

suggest that the salt-bridges connecting the HflX domain to the G-domain as well 

as the C-terminal extension are not required for the inhibition of ribosome-

stimulated GTPase activity by antibiotics binding to the peptidyl-transferase 

centre and peptide-exit tunnel regions of the ribosome.         

 

 

 

 

 

 
 
Figure 4.3.1.3 The rates of 70S ribosome stimulated GTPase activity of HflX 
variants are similar to wildtype HflX in the presence of peptidyl-transferase 

centre and peptide-exit tunnel targeting antibiotics. In the presence of 
erythromycin (green) or clindamycin (pink), HflXE29A, HflXR114A and HflXΔL372 

hydrolyze GTP in the presence of ribosomes as slow as wildtype HflX under the 
same conditions. 

 
Table 4.3.1.4 Specific GTPase activity of wildtype HflX and HflX variants 
stimulated by 70S ribosomes in the presence and absence of antibiotics. 

 
Rates  

(µM s-1) 
Wildtype E29A R114A ΔL372 

No Antibiotic 0.099±0.006 0.038±0.002 0.057±0.002 0.065±0.006 
Erythromycin 0.004±0.001 0.002±0.002 0.003±0.002 0.004±0.003 
Clindamycin 0.005±0.003 0.005±0.002  0.005±0.002 0.006±0.005 

 
To ensure that the effects on GTP hydrolysis in the presence of ribosomes were 

not due to an inability of HflX to bind to the 70S ribosome, microfiltration assays 

were performed.  SDS-PAGE analysis of the retenates revealed that antibiotics 

did not interfere with binding of HflX to the ribosome as HflX was found to remain 
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above the filter with the large ribosomal particles regardless of the antibiotic and 

the guanine nucleotide present in the experiment (Figure 4.3.1.4). 

 

 

 

 

 

 

 

Figure. 4.3.1.4 Antibiotics targeting various functional centers on the 
ribosome do not affect binding of HflX to 70S ribosomes.  HflX in its 

GDPNP- and GDP- bound form was retained above a 100 kDa MWCO filter with 
70S ribosomes in the presence of aminoglycoside antibiotics (paromomycin, 

kanamycin and tobramycin), the translation factor inhibitor, viomycin and 
PTC/PET antibiotics (clindamycin or lincomycin, chloramphenicol and 

erythromycin). 
 
4.3.2 Pre-Steady State Kinetics of Guanine Nucleotide Binding to HflX in the 
Presence of Antibiotics  
 
     To pinpoint the exact step in the GTPase cycle of HflX that is affected by 

antibiotics and resulting in slower rates of GTP hydrolysis, pre-steady state rapid 

kinetic measurements were carried out to assess whether the binding or 

dissociation of guanine nucleotides from HflX are contributing to the observed 

antibiotic inhibition.  Previously, the rates of association and dissociation of mant-

labeled GDP and GDPNP have been reported for HflX when in complex with 70S 

ribosomes and 50S and 30S ribosomal subunits.  The 70S ribosome and 50S 

ribosomal subunit stabilize the binding of GTP by at least 250-fold up to a factor 

of 70000, most likely assisting HflX in adopting a ‘GTPase-activated state’ (50).  
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Previously, these experiments were performed in buffer conditions where HflX is 

capable of dissociating ribosomes, thus a buffer containing a high concentration 

of magnesium ions (30 mM) was utilized.  Under these experimental conditions, 

in the presence of HflX, stable 70S ribosomes should be found, resulting in the 

determination of kinetic constants that truly reflect guanine nucleotide association 

dissociation from HflX in complex with 70S (not a mixture of 50S or 30S 

ribosomal subunits).   Association experiments with mant-GDP were carried out 

by rapidly mixing 1 µM HflX-70S complex with increasing concentrations of mant-

GDP (10 to 50 µM) in a stopped-flow apparatus. Monophasic fluorescence 

changes were observed, supporting a one-step binding process (Scheme 

4.3.2.1) and accordingly fit with a single exponential function (Figure 4.3.2.1 

Panel A).  The apparent rates obtained for this step increased with the 

concentration of mant-GDP allowing for the calculation of k1 values from the 

slope of this concentration dependence. In the presence of 30 mM Mg2+ (0.37 ± 

0.10 µMs-1) or 1 mM of clindamycin (0.49 ± 0.04 µMs-1) and erythromycin (0.61 ± 

0.11 µMs-1) the k1 values determined were within error of the rate constant of 

0.49 ± 0.10 µMs-1 reported in (50) in TAKM7 (Figure 4.3.2.1 Panel B and Table 

4.3.2.1).  Chase experiments, in which preformed HflX-70S-mant-GDP 

complexes were rapidly mixed with an excess of unlabeled GDP, led to the 

observance of a decrease in fluorescence over time indicative of guanine 

nucleotide dissociation (Figure 4.3.2.1 Panel C). The decays in fluorescence 

could be best described as monophasic in nature and best fit with a single-

exponential function. A value for k-1 of 2.5 ± 0.1 s-1 which was determined in (50) 
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under low Mg2+ conditions was consistent with the 2.8 ± 0.3 s-1, 2.4 ± 0.3 s-1, and 

2.2 ± 0.3 s-1 reported here in the presence of 30 mM Mg2+, 1 mM of clindamycin 

or 1 mM of erythromycin, respectively (Table 4.3.2.1).  From the experimentally 

determined rate constants, equilibrium dissociation constants (KD) governing the 

interaction of mant-GDP to HflX-70S complexes under high Mg2+ conditions or in 

the presence of PTC or PET targeting antibiotics were calculated. Whether under 

30 mM Mg2+ conditions (KD = 7.6 ± 2.2 µM), or in the presence of clindamycin 

(KD = 4.9 ± 0.7 µM) or erythromycin (KD = 3.6 ± 0.8 µM), the determined 

equilibrium dissociation constants were close to the 3.1 ± 0.8 µM affinity of HflX-

70S for GDP reported previously (50) (Table 4.3.2.1).  Thus, antibiotics that 

inhibit the ribosome-stimulated GTPase activity of HflX do not affect either the 

binding or dissociation of mant-GDP from the HflX-70S complex.  These results 

prompted an examination of the pre-steady state kinetics with regards to the 

association and dissociation of mant-GDPNP to and from HflX in complex with 

70S ribosomes.     

                                           𝑘! 
𝐻𝑓𝑙𝑋 • 70𝑆 +𝑚𝑎𝑛𝑡 − 𝐺𝐷𝑃  ⇀↽  𝐻𝑓𝑙𝑋 •𝑚𝑎𝑛𝑡 − 𝐺𝐷𝑃 • 70𝑆  (Scheme 4.3.2.1) 
                                          𝑘!! 
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Figure 4.3.2.1 Pre-steady state kinetics of mant-GDP binding and 
dissociation for HflX WT in complex with 70S in the presence or absence of 

inhibitors of ribosome-stimulated GTPase activity. (A) Representative 
fluorescent traces observed upon rapidly mixing HflX-70S complexes with 30 µM 
mant-GDP. The normalized, average trace obtained in the absence of antibiotic 
is shown in black, while the traces obtained in the presence of clindamycin and 

erythromycin are represented in light purple and green, respectively.  (B) 
Concentration dependence of the kapp values for mant-GDP association to HflX-
70S complexes in the absence of antibiotics (black), or in the presence of the 

antibiotics, clindamycin (light purple) and erythromycin (green). (C) 
Representative time courses of the dissociation of mant-GDP from HflX-70S 

upon being rapidly mixed with an excess of unlabeled nucleotide.  The 
normalized, average trace obtained in the absence of antibiotic is shown in black, 

while the traces obtained in the presence of clindamycin and erythromycin are 
represented in light purple and green, respectively. 
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Table 4.3.2.1  Summary of experimentally determined rates and constants for the 
binding of mant-GDP to HflX under buffer conditions in which ribosome 

dissociation is inhibited and the presence or absence of antibiotics. 
 

 High Mg2+ 
Conditions 

High Mg2+ 
Conditions &  
Clindamycin 

High Mg2+ 
Conditions & 
Erythromycin 

k1 (µMs-1) 0.37 ± 0.10 0.49 ± 0.04 0.61 ± 0.11 
k-1 (s-1) 2.8 ± 0.3 2.4 ± 0.3 2.2 ± 0.3 
k-1 (s-1)  

from k1 plot 8.8 ± 3.5 4.6 ± 1.5 5.9 ± 3.6 

KD (µM) 7.6 ± 2.2 4.9 ± 0.7 3.6 ± 0.8 
 
In a similar fashion as the studies of mant-GDP association to HflX in complex 

with the ribosome, the binding of 5 to 25 µM of mant-GDPNP to HflX-70S was 

monitored in a stopped-flow apparatus in TAKM30 buffer, where the resulting 

fluorescent changes upon excitation at 280 nm exhibited biphasic behavior 

(Figure 4.3.2.2 Panel A).  The obtained time courses were best fit with a two-

exponential function (Figure 4.3.2.2 Panel A).  Consistent with a two-step binding 

model (Scheme 4.3.2.2), the apparent rate constants determined for the first fast 

change in fluorescence were concentration dependent, whereas the second 

slower phase appeared to be concentration independent (Figure 4.3.2.2 Panel 

B).  This suggests that the binding of mant-GDPNP to HflX-70S complexes in 

high Mg2+ buffer conditions, and either in the presence or absence of the PTC 

inhibitor, clindamycin or the PET antibiotic, erythromycin is similar to that 

observed for the same reaction in TAKM7.  However, one consequence of 

increasing the concentration of magnesium to 30 mM was a 10-fold reduction in 

the k2 value or rate of conformational change from 0.019 ± 0.005 s-1 under 7 mM 

Mg2+ conditions to 0.0017±0.0006 s-1 under 30 mM Mg2+ conditions (Table 

4.3.2.2).  To determine the rate of dissociation of mant-GDPNP from HflX-70S, 
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an identical nucleotide chase experiment that was previously used to monitor 

mant-GDP dissociation was utilized. The time courses obtained from these 

experiments, featuring fluorescence decays characteristic of nucleotide 

dissociation, were best fit with a two exponential function (Figure 4.3.2.2 Panel 

C).  Strikingly, both the faster dissociation rate constant k-1 and the slower k-2 

value are at least 10-fold faster under 30 mM Mg2+ conditions or the presence of 

clindamycin or erythromycin at a concentration of 1 mM in solution (Figure 

4.3.2.2 Panel C and Table 4.3.2.2).  Repetition of the same experiment 

performed in (50), monitoring mant-GDPNP dissociation from wildtype HflX in 7 

mM Mg2+ resulted in a k-2 of a similar order of magnitude (0.0041±0.0003 s-1 in 

TAKM7 compared to 0.0012 ± 0.0001 s-1 in (50)).  On the other hand, values for 

k-1 (1.36 ± 0.60 s-1 in TAKM7 compared to 0.012 ± 0.004 s-1 in (50)) were in 

agreement with the faster dissociation rate constants observed in TAKM30 and 

the presence of clindamycin and erythromycin, inhibitors of the ribosome-

stimulated GTPase activity of HflX (Figure 4.3.2.2 Panel C and Table 4.3.2.2).  

Comparison of the affinities of HflX-70S for mant-GDPNP calculated from the 

rate constants determined experimentally did not reveal a 250-fold stabilization of 

mant-GDPNP binding observed under low Mg2+ conditions (50) rather only 3-fold 

(Table 4.3.2.2).  The presence of a 30 mM Mg2+ (KD = 227 ± 118 µM) along with 

the antibiotics clindamycin (KD = 215 ± 124 µM) or erythromycin (KD = 49 ± 17 

µM) led to KD values either increased by a factor of two or within error of the 

dissociation constant (KD = 49 ± 13 µM) governing the interaction of mant-

GDPNP to HflX alone (47,50) (Table 4.3.2.2).   
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Rate and equilibrium dissociation constants determined for HflX in complex with 

ribosomes in TAKM7 that indicate that the 70S can stabilize a GTPase-activated 

state of the ribosome are not observed under 30 mM Mg2+, which inhibits HflX-

catalyzed ribosome dissociation.  Furthermore, it appears as though the kinetic 

parameters obtained in the presence of PTC or PET targeting antibiotics do not 

significantly differ from those determined in the 30 mM Mg2+ conditions.    

 
                               𝑘!                               𝑘! 
𝐻𝑓𝑙𝑋 • 70𝑆 +𝑚𝑎𝑛𝑡 − 𝐺𝐷𝑃𝑁𝑃  ⇀↽  𝐻𝑓𝑙𝑋 •𝑚𝑎𝑛𝑡 − 𝐺𝐷𝑃𝑁𝑃 • 70𝑆

⇀
↽  𝐻𝑓𝑙𝑋 •𝑚𝑎𝑛𝑡 − 𝐺𝐷𝑃𝑁𝑃 • 70𝑆*  (Scheme 4.3.2.2) 

                               𝑘!!                            𝑘!! 
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Figure 4.3.2.2 Pre-steady state kinetics of mant-GDPNP binding and 
dissociation for HflX WT in complex with 70S in the presence or absence of 

inhibitors of ribosome-stimulated GTPase activity.  (A) Representative 
fluorescent traces observed upon rapidly mixing HflX-70S complexes with 15 µM 
mant-GDP. The normalized, average trace obtained in the absence of antibiotic 
is shown in black, while the traces obtained in the presence of clindamycin and 

erythromycin are represented in light purple and green, respectively. (B) 
Concentration dependence of the kapp values for mant-GDPNP association to 
HflX-70S complexes in the absence of antibiotics (black), or in the presence of 

the antibiotics, clindamycin (light purple) and erythromycin (green). (C) 
Representative time courses of the dissociation of mant-GDPNP from HflX-70S 

upon being rapidly mixed with an excess of unlabeled nucleotide.  The 
normalized, average trace obtained in the absence of antibiotic is shown in black, 

while the traces obtained in the presence of clindamycin and erythromycin are 
represented in light purple and green, respectively. 

 
 
 
 
 
 
 
 



	
  
	
  

107 

Table 4.3.2.2 Summary of experimentally determined rate and constants for the 
binding of mant-GDPNP to HflX under buffer conditions in which ribosome 

dissociation is inhibited and the presence or absence of antibiotics.  Highlighted 
in grey are rates determined from (50). 

 

 7 mM Mg2+ 
Conditions 

30 mM Mg2+ 
Conditions 

30 mM Mg2+ 
Conditions & 
Clindamycin 

30 mM Mg2+ 
Conditions & 
Erythromycin 

k1 (µM s-1) 0.017 ± 0.002 0.045 ± 0.014 0.033 ± 0.009 0.022 ± 0.002 
k2 (s-1) 0.019 ± 0.005 0.0017±0.0006 0.0017±0.0007 0.0022±0.0007 
k-1 (s-1) 1.36 ± 0.60 0.79 ± 0.17 0.93 ± 0.18 1.49 ± 0.42 
k-2 (s-1) 0.0041±0.0003 0.022 ± 0.001 0.013 ± 0.003 0.016 ± 0.003 
k-1 (s-1)  

from k1 plot N/A 0.041 ± 0.148 0.041 ± 0.148 0.002 ± 0.086 

KD (µM) 17 ± 9 227 ± 118 215 ± 124 49 ± 17 
 
 
4.3.3.  Pre-Steady State Kinetics of Adenine Nucletide Binding to YchF in 
Complex with Ribosomes 
 
     YchF has been found to interact with 70S ribosomes or 50S and 30S 

ribosomal subunits, with the 70S ribosome stimulating the ATPase activity of 

YchF by a factor of 10 fold (66). Although, YchF has been reported to only bind 

to approximately 30% of the ribosomes in the respective ribosome preparation, it 

has been shown by in vitro reconstitution assays, that differential binding of YchF 

to ribosomal particles can be observed as a function of the nucleotide bound 

state of the protein (66).  To screen for potential alterations in the interaction 

between nucleotides and YchF in complex with 70S or 30S or 50S, preliminary 

pre-steady state stopped-flow experiments were carried out.  Initially, equimolar 

amounts of YchF (1 µM) and 30S or 70S (1 µM) were incubated and 

subsequently mixed with an increasing concentration of mant-ADPNP, ranging 

from 5 µM to 40 µM.  The resulting increases in fluorescence displayed biphasic 

behavior and were best fit with a two-exponential function (Scheme 4.3.3.1 and 
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Figure 4.3.3.1 Panel A).  The rate constant, k1 was calculated from the slope of 

the concentration dependence and directly compared to the kinetics of mant-

ADPNP binding to YchF alone, although no significant differences could be found 

(Figure 4.3.3.1 Panel B an Table 4.3.3.1).  It is important to note that under these 

experimental conditions, most YchF will be free in solution and therefore, most of 

the fluorescence changes detected by the stopped-flow for mant-ADPNP 

association to YchF will be due to this population of YchF, providing a simple 

explanation for the similarity between the rates obtained.  The formation of YchF-

ribosome complexes was accomplished by incubating 1 µM YchF with a 4-fold 

excess of 70S ribosomes.   As a result of the high concentration of ribosomes in 

solution, inner filter effects were observed within the stopped-flow.  Fluorescence 

emission from mant-ADPNP as a result of FRET from the tryptophan residues in 

YchF became difficult to detect due to the fact that intensity of excitation 

wavelength reaching the tryptophan residues in YchF was lessened (Figure 

4.3.3.1 Panel A).  YchF alone or in complex with 30S or 70S, as confirmed by 

microfiltration binding assays, all exhibited biphasic fluorescence signal decays 

and a fast rate of dissociation of 30 µM mant-ADPNP following mixing with 300 

µM unlabeled ADPNP (Figure 4.3.3.1 Panel C and Table 4.3.3.1).  Dissimilar 

between YchF in complex with 30S or 70S to YchF alone, were ten-fold slower  

k-2 values at 0.012 ± 0.0003 s-1 and 0.079 ± 0.017 s-1 for the former compared to 

0.87 ± 0.14 s-1 for the latter (Table 4.3.3.1). The dissociation rate constant for the 

release of mant-ATP from YchF alone, also a biphasic fluorescence event, at 

0.33 ± 0.05 s-1 is close to the slow rate determined for mant-ADPNP dissociation 
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from YchF in the absence of ribosomal particles (Kirsten Rosler, Masters Thesis 

2013).  The fact that 30S ribosomal subunits and 70S ribosomes may have an 

effect on the slower step of mant-ADPNP dissociation hints at a role for the 70S 

ribosome and 30S ribosomal subunit in regulating the adenine nucleotide binding 

properties of YchF.    

                                    𝑘!                                    𝑘! 
𝑌𝑐ℎ𝐹 • 70𝑆/30𝑆 +𝑚𝑎𝑛𝑡 − 𝐴𝐷𝑃𝑁𝑃⇀↽  𝑌𝑐ℎ𝐹 •𝑚𝑎𝑛𝑡 − 𝐴𝐷𝑃𝑁𝑃 • 70𝑆/30𝑆

⇀
↽  𝑌𝑐ℎ𝐹 •𝑚𝑎𝑛𝑡 − 𝐴𝐷𝑃𝑁𝑃 • 70𝑆/30𝑆* (Scheme 4.3.3.1) 

                                    𝑘!!                                  𝑘!! 
 

 
Figure 4.3.3.1 Pre-steady state kinetics of mant-ADPNP binding and 

dissociation for wild-type YchF alone or in complex with 30S or 70S.  (A) 
Representative normalized and averaged fluorescent traces observed upon 

rapidly mixing 15 µM mant-ADPNP with 1 µM YchF alone (black), 1 µM YchF in 
the presence of 4 µM 70S ribosomes (dark grey), or 1 µM YchF in complex with 
1 µM 70S (light grey) or 1 µM 30S (lightest grey). (B) Concentration dependence 
of the kapp values for mant-ADPNP association to YchF alone (black) or YchF in 

complex with 70S (light grey) or 30S (lightest grey). (C) Representative 
normalized and averaged time courses of the dissociation of mant-ADPNP from 
YchF alone (black), or in complex with 70S (dark grey) or 30S (light grey) upon 

being rapidly mixed with an excess of unlabeled nucleotide. 
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Table 4.3.3.1 Summary of experimentally determined rate and constants for the 
binding of mant-ADPNP to YchF-30S or YchF-70S complexes in different 

stoichiometric ratios. 
 

 YchF alone 
 

YchF-30S (1:1) 
 

 
YchF-70S (1:1) 

 
k1  (µM s-1) 0.32 ± 0.04 0.43 ± 0.11 0.31 ± 0.13 

k2 (s-1) 0.0082 ± 0.0081 0.0016 ± 0.0118 0.0058 ± 0.0022 
k-1 (s-1) 5.2 ± 1.1 1.0 ± 0.2 4.7 ± 0.7 
k-2 (s-1) 0.87 ± 0.14 0.012 ± 0.0003 0.079 ± 0.017 
k-1 (s-1)  

from k1 plot 5.0 ± 1.0 5.4 ± 3.0 4.7 ± 3.5 

 

4.4 Discussion and Future Directions  

     Both HflX and YchF act as GTPases, associating with both the diphosphate 

and triphosphate forms of purine nucleotides during their functional cycle. Based 

on current knowledge, each of these proteins is regulated to some extent by the 

ribosome.  A better understanding of how the 70S ribosome modulates their 

NTPase activity will allow for the assessment if these interactions are viable 

targets for novel or even already existing antibiotics.  The peptidyl-transferase 

centre of the 70S ribosome is a flexible environment that can be easily influenced 

by a plethora of factors ranging from tRNA to proteins to small molecules like 

antibiotics (100).  Communication between the PTC in the large ribosomal 

subunit and the small subunit’s decoding centre has been reported, but signaling 

from the PTC in the form of conformational changes to other sites of the 

ribosome such as the E-site remains elusive (101-104).  HflX crosslinks to 

proteins near the ribosomal E-site of the ribosome, L2, L5 and S18 in particular 

(Jeffrey Fischer, Doctoral Dissertation 2011), so the observation that 

chloramphenicol along with other PTC-targeting antibiotics such as the 
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lincosamides, clindamycin and lincomycin can inhibit the ribosome-stimulated 

GTPase activity of HflX hints at a new mode of communication from the central 

active site of the macromolecular complex to extraneous factors. Further 

evidence that supports such an arrangement is the fact that antibiotics acting on 

the peptide-exit tunnel, adjacent to the PTC, also exhibit a similar inhibition on 

the activity of HflX.  Evidence also suggests that peptidyl-tRNA in the P-site can 

modulate the activity of A-site interacting translation factors such as IF2, EF-Tu, 

EF-G and RF3 (102), making studying HflX in a similar manner imperative to 

indeed establish if a new communication network originating from the P-site and 

acting on the E-site exists. Not surprisingly, none of the antibiotics tested had an 

effect on the ribosome-stimulated ATPase activity of YchF pointing at different 

modes of NTPase activation for both HAS-GTPases upon interaction with the 

ribosome.  

      To gain knowledge on enzymatic interactions and reactions in order to better 

understand the evolution of proteins, detailed kinetic information related to the 

NTPase cycles of ribosome-regulated factors such as HflX and YchF can be 

elucidated.  The 50S ribosomal subunit stabilizes the binding of mant-GDPNP to 

HflX by 70000-fold (50).  As the ribosome can modulate guanine nucleotide 

binding to the GTPase HflX, I proposed a hypothesis in this thesis that in a 

similar fashion the ribosome could serve as of regulator of adenine nucleotide 

binding and dissociation from YchF.  To perform pre-steady state stopped-flow 

experiments where the majority of YchF is bound to ribosomes required that over 

3 µM of ribosomes compared to less than 1 µM of YchF be in solution.  As no 
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fluorescence change was observed utilizing the intrinsic tryptophan residues of 

YchF as a FRET donor to the mant-nucleotide acceptor, this was not the 

experimental set-up in which to study the adenine nucleotide binding dynamics of 

YchF in the presence of ribosomes.  Direct excitation of the mant group on 

adenine nucleotides avoids the use of the FRET phenomenon in the presence of 

a large concentration of ribosomes in solution. Using this methodology instead of 

FRET might allow for the monitoring of dissociation events as has been used to 

study the nucleotide exchange mechanism of EF-Tu (105,106).  50S ribosomal 

subunits lowered the KD and thus increased the affinity of mant-GDPNP for HflX 

by slowing the rate of dissociation of the labeled nucleotide triphosphate (50).  

Although a method to precisely study the association of mant-adenine 

nucleotides to YchF in complex with 30S, 50S and 70S in real time has yet to be 

determined, evidence for a similar slowing of the nucleotide dissociation rate by 

ribosomal particles might suggest that the ribosome is capable of triggering tight 

binding of ATP by YchF.   

     The main goal of repeating the pre-steady state stopped-flow analysis of HflX 

in complex with 70S under non-70S splitting buffer conditions (30 mM Mg2+) was 

to elucidate if ribosome-targeting inhibitors exhibited any effect on the GTPase 

cycle of HflX. The binding or dissociation of guanine nucleotides from HflX in 

complex with 70S was not the consequence of the mode of action of antibiotics 

such as clindamycin and erythromycin which target the peptidyl-transferase 

centre and peptide exit tunnel of the ribosome. This leads to the hypothesis that 

the actual hydrolysis event or catalytic machinery contribution to hydrolysis 
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offered by the ribosome is the point of inhibition by antibiotics.  Even though, the 

exact contribution of the ribosome to nucleotide hydrolysis by HflX is unknown, 

the presence of the C-terminal region of HflX or the movement of the HflX 

domain in relation to the G-domain are not responsible for the reduction in the 

rates of GTP hydrolysis determined in the presence of antibiotics.  Two intriguing 

discoveries were made upon altering the buffer conditions of pre-steady state 

kinetic experiments monitoring guanine nucleotide binding to HflX in complex 

with 70S ribosomes.   Not only was k-1 an order of magnitude larger from what 

has been reported previously which could be a result of different HflX and 

ribosome preparations, but of more interest was that the very small k-2 value 

responsible for the 250-fold stabilization of mant-GDPNP on HflX as reported in 

(50) being an order of magnitude faster under the conditions tested here and 

resulting in only a 2-fold higher affinity for mant-GDPNP to HflX in the presence 

of 70S.  Taken together with data presented in Chapter 2 and 3, a dominant 

interaction between HflX and the 50S ribosomal subunit is emerging. The 50S 

ribosomal subunit displayed the most significant fluorescence changes when 

reacted with fluorescently labeled HflX and variants of HflX where domain 

interactions were disrupted or the C-terminus removed were most severely 

affected in their 50S-stimulated ATPase activity.  Perhaps a role for HflX in 

ribosome biogenesis under specific cellular conditions such as heat shock is a 

possibility based on the increasing evidence pointing to a more specific 

interaction between HflX and 50S ribosomal subunits.  Der, a ribosome 

biogenesis factor in E. coli associates specifically with 50S, a feature 
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characteristic of many prokaryotic factors involved in that stage of the ribosome 

functional cycle, but it is dispensable for growth at high temperatures, an 

environment during which HflX levels are thought to be increased (107).  

Nucleotide hydrolysis assays and pre-steady state kinetic analysis with functional 

ribosome complexes containing tRNA and mRNA will allow for the final 

classification of HflX as either a translational or biogenesis factor.  

4.5 Conclusions     

     It had been reported earlier by our laboratory that 70S ribosomes and 50S 

ribosomal subunits could stabilize the GTPase-activated state of HflX.  The aim 

of this chapter of the thesis was to understand how the ribosome regulates the 

GTP hydrolysis cycle of HflX.  To this end, additional antibiotics other than 

chloramphenicol, but also binding to the peptidyl-transferase centre or adjacent 

peptide exit tunnel region, were discovered to inhibit the GTPase activity of HflX. 

Antibiotics do not affect the affinity of HflX for 70S ribosomes or influence 

guanine nucleotide binding or dissociation to any degree.  These results suggest 

that the actual hydrolysis of GTP by HflX in conjunction with the 70S must be the 

steps afflicted in the presence of antibiotics.  Also for the first time, an 

investigation into whether 70S ribosomes or 50S and 30S ribosomal subunits 

could influence the adenine nucleotide binding properties of YchF was 

undertaken using the stopped-flow apparatus.  Preliminary data presented in this 

chapter has led to an initial proposal that indeed the presence of ribosomes or 

ribosomal subunits can stabilize an ATPase-activated state of YchF, but further 

experiments will be necessary to confirm such an effect.   



	
  
	
  

115 

Chapter 5 -   

Conclusion 
 
5.1 The role of intrinsic cysteines in HflX and YchF 
 
     In Chapter 2 of this thesis, I have demonstrated that the cysteine residues 

naturally occurring within HflX and YchF can be labeled with cysteine-specific 

fluorescent dye, 5-IAF.  Pre-steady state experiments revealed that increases in 

fluorescence could be observed for fluorescently labeled HflX in all its nucleotide-

bound states when rapidly mixed with 30S, 50S or 70S.  The three cysteines in 

HflX, 96, 98 and 415 are 88, 99 and less than 60% conserved among prokaryotic 

organisms, respectively.  Substitution of the two highly conserved residues 

resulted in HflX variants that were insoluble, suggesting these amino acids might 

play a structural role in HflX.  Fluorescent labeling of wild-type YchF with its six 

intrinsic cysteines led to protein that was inactive with regard to ATP hydrolysis in 

the presence of 70S ribosomes.  A YchF variant with alanines substituted for 

cysteines in positions 5, 35 and 106, was also impaired in ribosome-stimulated 

ATP hydrolysis.  With amino acid identities of 98%, 100% and 100% for 

cysteines 5, 35 and 106, respectively, these residues likely indirectly participate 

in ATP hydrolysis by playing critical structural roles within the YchF.  Whether 

fluorescently labeled or cysteines substituted, modified YchF was either 

incapable of distinguishing between the different phosphorylated states of 

adenosine nucleotides or possessed a lower affinity for 70S ribosomes.   
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5.2 Requirements for ribosome stimulated nucleotide hydrolysis by HflX 

     Chapter 3 of this work focused on the effect of K+ on the nucleotide hydrolysis 

activity of HflX.  Structurally, HflX contains all the elements of a GTPase that 

utilizes the monovalent cation to speed up its intrinsic rate of GTP hydrolysis, but 

this phenomenon has yet to be observed experimentally.  Nucleotide hydrolysis 

assays presented here demonstrate that the rates of ribosome-stimulated 

GTPase activity of HflX are influenced by potassium ions.  Additionally, within 

Chapter 3 the nucleotide hydrolysis activity of variants lacking salt-bridge 

interactions between the HflX domain and the G-domain or lacking the C-

terminus was further examined.  Interestingly, the 50S stimulated ATP hydrolysis 

activity of E. coli HflX without a C-terminus was found to be near unstimulated 

wild-type levels while HflX variants with alanines replacing residues involved in 

interdomain salt-bridges exhibited dissimilar rates of purine nucleotide hydrolysis 

when alone or in the presence of ribosomal particles.  These results suggest that 

the modes of GTP and ATP hydrolysis by HflX could indeed differ, a finding 

published recently (46). Furthermore, the contributions 70S ribosomes or 50S 

ribosomal subunits make to the catalysis of these different purine nucleotides 

could also have evolved to be differentiated.  Perhaps HflX can tap into both 

stores of purine nucleotides for different cellular roles and therefore requires 

different mechanisms of regulation in each case.     

5.3 Modulation of purine nucleotide binding to YchF and HflX by the 
ribosome 
 
     Results presented in Chapter 4 revealed that perturbations to the peptidyl-

transferase centre and peptide exit tunnel regions of the 70S ribosome as 
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caused by the binding of antibiotics to these areas can reduce the rate of GTP 

hydrolysis by HflX.  Therefore, a communication network between the P-site and 

the E-site of the ribosome where HflX is proposed to bind must exist.  

Additionally, the presence of antibiotics in these regions of the ribosome appears 

to hinder the contribution of the ribosome to the actual nucleotide hydrolysis 

event as pre-steady state kinetic experiments revealed no effects on nucleotide 

association and dissociation rate constants in the presence or absence of 

antibiotics.  Also presented in Chapter 4 are preliminary pre-steady state kinetic 

experiments performed to elucidate whether the ribosome or ribosomal subunits 

could influence the binding of adenine nucleotides to YchF and stabilize an 

activated state of the enzyme upon binding of ADPNP.  Within this work, I have 

demonstrated that under our experimental conditions, YchF in complex with 30S 

and 70S exhibits a slower rate of conformational change not observed with YchF 

alone.  This data could indicate tighter binding of ADPNP to YchF when bound to 

30S or 70S, results already published for the binding of GDPNP to HflX in the 

presence of 50S and 70S (50).   
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