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  ABSTRACT 
 

Rats display considerable individual differences in performance of skilled 

reaching for food. Such variability in the normal performance of the rats intrudes upon 

the interpretation of many different experimental investigations in behavioral 

neuroscience. Understanding the origins of individual differences in skilled reaching 

performance of the rat provides insights into brain function, the evolution of skilled 

reaching, and also it helps optimizing preventative and therapeutic care. Although 

variability in skilled reaching is manifested in many studies, their origins remain poorly 

understood. The objective of the present thesis was to document the individual 

differences in skilled reaching for food in rats and to examine potential sources of 

individual differences in brain function. The present studies revealed that the difference 

in reaching success displayed by rats was a robust and constant feature in different 

conditions, emerged with practice and the motor cortex plays an important role in such 

variability. 
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General Introduction 
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Introduction 

The present thesis investigates individual differences displayed by rats in skilled 

reaching performance. The rat was chosen as a subject because it is widely used as a 

model for investigating the motor system more generally. Skilled reaching, in which a rat 

reaches for a food pellet with a hand, was chosen because the movement is a preplanned 

movement with a very variable success outcome.  

The purpose of the present introduction is to first provide some of the background 

on the neural organization of motor control, which will be followed by a summary on 

individual differences in motor performance. The introduction will then describe the rat 

model of skilled reaching and this will be followed by a summary of the use of the rat as 

a model in investigating neuroplasticity in the motor system, the presumptive neural basis 

of individual differences in motor performance. The objectives of the thesis will be 

described at the end of this chapter.   

 

Neural organization of motor control 

The neural organization of motor control will be described in the following 

sections. Three levels of neural processing will be explained in the related brain 

structures of motor system involved in motor control, followed by a description on the 

neural pathways through which the three levels of motor control communicate. 

Movement arises from the interplay between three systems including, the 

sensory/perceptual system, the motor system, and the cognitive system. There are many 

levels of processing within brain structures that give rise to these systems. The emphasis 

here will be on the motor system.  
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Brain structures involved in motor control 

The brain structures involved in the motor control are organized both 

hierarchically and in parallel. The lowest level of the hierarchy of the motor system 

includes spinal cord, muscles, and sensory receptors. The spinal cord circuitry is involved 

in receiving and processing the somatosensory information from the muscles, joints and 

skin. In addition, the spinal cord is the last level of processing before muscle activation. 

The reflexive movements and also some basic patterns of muscles flexion and extension 

of the legs movements such as kicking and locomotion are controlled at this level of 

hierarchy (Ghez & Krakauer, 1991).  

The next level of the neural processing is the brainstem, which contains nuclei 

such as vestibular nuclei, reticular nuclei, and red nucleus. These nuclei play important 

roles in controlling more complex movements, particularly locomotion and postural 

control. This part of the motor system receives sensory information from the visual and 

vestibular systems and somatosensory information from the skin and muscles of the head. 

The brainstem contributes in controlling movements of the neck, face and the eyes and 

also is critical in the respiratory movements, arousal and awareness (Ghez & Krakauer, 

1991).   

One of the brain structures that participates in motor control is the cerebellum. 

The cerebellum receives inputs from the spinal cord and cerebral cortex and sends 

outputs to those parts as well as the brainstem. The cerebellum is involved in many 

important functions in motor control including motor coordination, motor learning and 

motor programming (Leonard, 1998). The thalamus, as a part of diencephalon, also plays 
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a role in motor control. Information from the spinal cord, brainstem, basal ganglia, and 

cerebellum must first pass through thalamus. The other brain structure important for 

motor control is the basal ganglia, set of nuclei beneath the frontal cortex, which are 

reciprocally connected with the neocortex and with the brainstem. After receiving and 

processing inputs from cerebral cortex, these nuclei send their outputs back to the cortex 

via thalamus. The basal ganglia nuclei are generally considered to be involved in 

planning of motor strategies (Ghez & Krakauer, 1991).   

The highest level of motor control is provided by the cerebral cortex. Simple to 

complex voluntary movements are controlled at this level. Some areas of the cerebral 

cortex such as the somatosensory cortex, visual cortex and motor cortex, along with other 

parts of the nervous system are involved in the identification of targets, planning the 

proper ways of actions and execution of the movements, including movements of the 

hand in reaching for objects (Ghez & Krakauer, 1991).  

The circuitry of the motor system is complex, as is summarized in Figure 1.1. The 

motor cortex is located in the frontal lobe and consists of three main parts, including the 

primary motor cortex (Brodmann’s area 4) which is located in precentral gyrus, the 

premotor cortex (Brodmann’s area 6) which lies rostral to the primary motor cortex (M1), 

and the supplementary motor area (Brodmann’s area 6) which is located medial to the 

dorsal premotor cortex and sends projections to the M1 as well as the spinal cord. These 

motor regions interact with sensory areas, basal ganglia, cerebellum, thalamus, brainstem 

and spinal cord for the initiation and execution of coordinated movements. The 

movement of reaching for a target thus does not simply involve primary motor cortex, but 
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Figure 1.1. Schematic diagram of main connections of the motor control systems.  The 
cortical motor areas are divided into three main regions including, primary motor cortex 
(M1), supplementary motor cortex (SMA), and premotor cortex (PM). The majority of 
the cortical projections to the spinal cord (SC) and brain stem (BS) arise in the primary 
motor cortex. Subcortical regions such as basal ganglia (BG) and cerebellum (C) send 
projections to the M1 via thalamus (Th). The premotor cortex receives cortical 
projections from the somatosensory areas (SI, SII), posterior parietal cortex (PP), and 
prefrontal cortex (PFC). 
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involves the entire circuit of the motor system (Georgopoulos, 1988; Krakauer & Ghez, 

1991). 

Although motor cortex is generally considered to execute movement, both 

premotor cortex and supplementary motor cortex are responsible for motor planning and 

coordination of motor sequelae. Experimental evidence indicates that the premotor cortex 

is more directly involved in visually guided sequential movements and the supplementary 

motor area is more involved in internally generated sequential movements (Halsband, 

Matsuzaka, & Tanji, 1994). Ventral and dorsal regions of the premotor cortex receive 

information from posterior parietal cortex and project to the M1 and spinal cord. The 

primary motor cortex sends motor commands to the basal ganglia and cerebellum for 

their regulatory feedback and then sends the final motor commands to the brainstem and 

spinal cord for the execution of movements (Figure 1.2). With respect to an act like 

skilled reaching, more dorsally located structures are proposed to be involved in the reach 

to the target and more ventrally located structures are proposed to be more involved in 

withdrawing the target to the mouth. 

The primary motor cortex is the location of large pyramidal cells, called Betz 

cells, which monosynaptically connected with the motor neurons in the spinal cord. There 

is a pronounced tradition in research on primates, including humans, that these cells are 

specifically involved in skilled movements. The levels of activation and involvement of 

these cells could change depending on several factors including, (1) the types of 

movement [single joint or multiple joints], (2) speed, (3) the degree of precision, (4) in 

memorized movements, (5) the initial position of the limb, (6) the requirements of spatial 

transformation [e.g. moving around obstacles], and (7) the individual’s intent and
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Figure 1.2. Diagram illustrating the motor control areas of the human brain. The primary 
motor cortex (M1), the supplementary motor cortex (SMA), and the dorsal and ventral 
regions of the premotor cortex (PMd, PMv) are the main cortical regions of the motor 
control, which are connected to subcortical areas such as basal ganglia (BG) and 
cerebellum (C) via the thalamic nuclei (VA, VL). The cortical motor areas can influence 
the spinal cord either directly or indirectly through the brain stem (Adapted from 
Gharbawie, 2006 & Ghez & Krakauer, 1991). 
. 
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motivation. The evidence supporting these views is that the electrical activity of these 

cells changes with the changes in the force, the direction of the force, and the frequency 

of the movement (Georgopoulos, 1994; Georgopoulos, Schwartz, & Kettner, 1986). 

 

 
 Neural pathways involved in motor control 

 The various motor centers of the brain and spinal cord communicate through 

several pathways, including corticospinal tract (pyramidal tract), vestibulospinal tract, 

reticulospinal tract, tectospinal tract, and rubrospinal tract. The corticospinal tract is the 

main connection between cerebral cortex and the spinal cord and is generally proposed to 

be the main pathway for motor action. Although the somatosensory cortex projections 

contribute to the corticospinal tract the main descending fibers arise from the various 

regions of the motor cortex. The first major connections arise from the M1 and the 

second one originates from the premotor and the supplementary motor cortex (Dum & 

Strick, 1991). The fibers descend ipsilaterally through the internal capsule, the midbrain, 

and the medulla. Near the junction of the medulla and the spinal cord, most of the fibers 

cross to the contralateral side and form the lateral corticospinal tract and the uncrossed 

fibers form the anterior corticospinal tract. These projections enter the ventral horn of the 

spinal cord and make excitatory monosynaptic connections onto α-motor neurons and 

interneurons. They also make polysynaptic connections to γ-motor neurons and some 

interneurons. These crossed connections provide the anatomical basis from which each 

cerebral hemisphere comes to control movements of the opposite hand (Ghez & 

Krakauer, 1991). 
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The vestibulospinal pathway originates from the vestibular nuclei of the medulla 

in the brainstem and project to the spinal cord. The vestibulospinal tract is involved in 

activating antigravity muscles in the neck, trunk and limbs in controlling of posture and 

balance. The reticulospinal pathway connects reticular formation in the brainstem to the 

spinal cord and is important for the autonomic functions and coordination of the 

automatic movements in locomotion and posture. Also it facilitates or inhibits voluntary 

movements by affecting muscle tone. The tectospinal tract connects tectum in the 

midbrain to the contralateral portion of the spinal cord. It mediates reflex postural 

movements of the head and the eyes. The rubrospinal tract originates from the 

magnocellular neurons of the red nucleus, crosses to the other side of the midbrain and 

terminates in the lateral part of the spinal cord. This tract mediates voluntary movements 

and contributes to the large and fine motor control. The traditional view of its function in 

relation to the corticospinal tract is that it controls upper arm movements where as the 

corticospinal tract controls hand and finger movements (Ghez & Krakauer, 1991). 

In addition to these main pathways, there are multiple closed loops that contribute 

to the motor control.  The input zone of the basal ganglia, which is the striatum receives 

inputs from the motor cortex and projects directly and indirectly to the neocortex and 

provides regulatory feedback. It provides excitatory feedback through its direct pathway, 

which involves the internal pallidum via the anterior thalamic nuclei and the inhibitory 

feedback through the indirect pathway involving the subthalamic nucleus and internal 

pallidum. Another closed loop is formed between the motor cortex and the cerebellum via 

the lateral thalamic nuclei. However, the projections to and from the cerebellum are not 
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direct pathways and they travel through different regions in the forebrain before the final 

destination (Ghez & Krakauer, 1991). 

  

Functional organization of reaching movement 

Although the description of motor system including the classical neocortical 

movement regions and their projections to the spinal cord are recognized in all 

anatomical texts, there are differences in options concerning their functions. In the 

following section, the functional organization of reaching movement will be discussed. 

Three fundamental elements contribute to a successful reaching movement, 

including selection of a goal, computation of a motor plan of action and production of 

coordinated forces to execute the reaching movement. These three elements are 

controlled by cognitive, sensory and motor systems. In addition, the functions of 

musculoskeletal system also contribute to the control of reaching and grasping 

movements, which will be described here as well.  

A successful reach requires the accurate use of forces (dynamics) and also 

changes of joint angles (kinematics) relative to the target location, size, and shape. 

Sensory information helps individuals to locate their bodies (e.g. location of joints 

relative to each other) relative to other objects including target in the space. In goal-

directed reaching, the visual inputs go through two parallel pathways. The first pathway 

or the ventral stream is related to the perception and recognition of the target and it 

originates from primary visual cortex and projects to the temporal cortex (Goodale & 

Milner, 1992; Ungerleider & Mishkin, 1982). The ventral stream provides the conscious 

visual perceptual experience. Visual information plays a significant role in guiding the 
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act of reaching in primates but not in rodents. Instead, olfaction provides critical 

information for guidance of skilled reaching in rats. Rats are able to determine the 

location of the food and reach for it accurately in complete darkness and even when their 

eyes are patched. When the olfaction is blocked rats reaching movements are disturbed 

(Whishaw & Tomie, 1989).  

The second pathway or the dorsal stream is related to the localization of the object 

(Goodale & Milner, 1992; Ungerleider & Mishkin, 1982). The neural circuitry involved 

in visuomotor transformation in primates originates from the primary visual cortex where 

the visual information is encoded and terminates in the primary motor cortex that sends 

the motor commands for the execution of the movements. During the transformation, 

visual information is sent to the association areas of the parietal cortex, the anterior 

intraparietal sulcus and the medial intraparietal sulcus. These regions are known as the 

parietal reach areas. According to Goodale and Milner (1992) the dorsal stream 

projections from the visual cortex to the parietal lobe provides action relevant 

information such as object position, structure and orientation. Evidence has shown that 

most neurons in the dorsal stream area are multimodal and show both movement-related 

and sensory-related activities (Andersen, 1987; Schendel & Robertson, 2004). 

It is thought that the information related to actions such as various digit and limb 

postures in reaching is encoded by sending the information to the ventral premotor 

cortex. The information related to the actions transform into required muscle synergies 

for the execution of a reaching movement when they are projected to the primary motor 

cortex (Rizzolatti et al., 1988). The plan is also sent to the basal ganglia and cerebellum 

for modification and refinement of the reaching movement. The refined and updated 
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motor output plan from the cerebellum is also sent to the M1 and to the brainstem. The 

motor command descends through corticospinal pathway from the M1 and rubrospinal 

pathway from the brainstem and terminates in the ventral horn of the spinal cord and 

synapse with motor neurons and interneurons that control the arm and hands. With the 

activation of the spinal motor neurons, muscles and joints are synergistically activated to 

execute the reaching movement. The sensory consequences of the reaching movement are 

evaluated and updated by the cerebellum when needed. Thus sensory information not 

only is necessary for making the motor plan but also is important for adjusting the 

movements and correcting the errors for execution of an accurate reach.   

Patients with lesions in dorsal stream pathways show multiple difficulties in 

reaching movement including problems with reaching in right direction, hand posture and 

finger positioning. They have problems with adjusting the orientation of the hand and 

also difficulty in grasp adjustment relative to the object size, shape and orientation, 

however, they can use the same sensory information to identify and describe the object. 

On the other hand, patients with the ventral stream lesions has no conscious perception of 

the size, shape and orientation of the objects and able to pick them up with great 

adeptness (Goodale & Milner, 1992; Goodale, Milner, Jakobson, & Carey, 1991). 

According to Paillard (1982) three aspects of visual information are used in 

reaching movements, (1) the visual localization of the target in space, (2) the relative 

position of hand and target, and (3) the motion of the limb across the visual field. Two 

visual systems are responsible to process and utilize the information related to arm 

movements. The first system utilizes the central vision to analyze positional information 

and the second system uses the peripheral vision and analyzes the motion cues, especially 
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self-produced movements (Held & Hein, 1963; Jeannerod & Biguer, 1982; Paillard, 

1982).  

Mountcastle and colleagues (1975) reported the activation of some cells in the 

posterior parietal cortex of monkeys occurs during reaching towards extra-personal space 

and they have called these cells “reaching neurons”. Also Georgopoulos (1986; 1996) has 

found that neurons in the motor cortex are tuned toward specific directions, and different 

populations code the direction of the limb movement via excitatory and inhibitory effects. 

He demonstrated that with stimulation of those neurons, which are broadly tuned toward 

a specific direction could move a hand that is initially positioned in a location central to 

the body toward peripheral locations. Initial position and posture of the arm and joint 

angles as well as speed, force, and muscle activity are the variables that could contribute 

to directional tuning of the cells (Graziano, 2006; Holdefer & Miller, 2002; Kakei, 

Hoffman, & Strick, 1999). 

Graziano (2006) has proposed that similar directional tuning of cells in the motor 

cortex are related to ethologically relevant motor patterns. According to his findings, the 

motor cortex is divided into several subregions. The neurons located within each 

subregions code for a different category of movement such as central space/ 

manipulations, reaching movements, defensive movements, hand to mouth movements, 

climbing and leaping movements, and other outward movements of the arm. He 

suggested that the topographical organization of the movement could be modified by 

relevant experience.  

Rizzolatti and his colleagues (1996) find that mirror neurons in the motor cortex 

are associated with goal-directed hand movements, ingestive and communicative 
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movements of the mouth (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; 

Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti, Fadiga, Gallese, & Fogassi, 

1996). They show that these neurons are not only active during the execution of the 

movement, for example grasping and eating, but also they are active in recognizing 

others actions during performance (Iacoboni & Mazziotta, 2007). Two classes of mirror 

neurons are identified; the mirror neurons, which fire upon the observation of the 

execution of an exact action and the mirror neurons, and those which fire upon the 

observation of the similar actions with the same goal (Gallese, Fadiga, Fogassi, & 

Rizzolatti, 1996; Rizzolatti & Craighero, 2004).  

Visual feedback in reaching adjustment plays an important role in accurate 

reaching. Studies have shown that the reaches with visual feedback are longer in duration 

than those performed without feedback. However, the grasp component of the reach 

movement does not change in the absence of the visual feedback (Jeannerod, 1990). In 

addition, Fitts and Crannell (1950) found that three factors influence the accuracy of 

blind reaching, the starting point of the reaching movement, its amplitude, and the 

movement end point.  

As an aside, it is worth noting that reaching can be accomplished without visual 

cortex. Visual cortical damage to monkeys rendered them blind, but they were able to 

reach for the objects in or moving across their visual field. It has been shown that the 

superior colliculus contributes significantly in reaching behaviors in the absence of visual 

feedback (Humphrey & Weiskrantz, 1969).  

Somatosensory feedback also affects aiming movements. The performance of 

complex movements requiring coordination of many joints for repeating movements with 
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the eyes closed quickly deteriorated in the absence of somatosensory feedback (Rothwell 

et al., 1982). However, there are various hand movements that can be carried out without 

somatosensory feedback, such as tapping movements or drawing figures in the air. 

Therefore, visual and somatosensory feedbacks are essential for programming of accurate 

goal-directed reaching movements and are responsible for the correct initial direction of 

the limb toward the target and initial coordination between limb segments. 

In addition to neural control, musculoskeletal systems also contribute significantly 

to the reaching and grasping movements. Musculoskeletal systems include muscle 

properties such as muscle tone and strength, joint range of motion, and biomechanical 

relationships between linked body segments. Different types of joint motion are required 

for the ability to reach and grasp, including scapular rotation, appropriate movement of 

humeral head, ability to supinate the forearm, flexion (100-120 degrees) of the shoulder 

and elbow, ability to extend the wrist and sufficient mobility of the hand in performing 

grasp and release (Charness, 1994). In humans the upper arm that generates a wide range 

of movements is connected to the shoulder by a joint. The same range of movements can 

be seen in rats with scapula tethered by muscles. Limb musculature is similar between 

rats and humans. Although rats have intrinsic muscles in their hands, their movements are 

controlled and supplied by forearm muscles (Whishaw, 2005).   

The hand in both humans and rats is specialized to play a significant role in 

reaching and grasping. They not only use hands in feeding movements but also in 

manipulating objects and communication. Grasp patterns vary based on the size, shape 

and location of the object to be grasped (Johansson & Edin, 1992). Napier (1956) 

classified grasping movements in two classes, power grasp and precision grasp. He 
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believed that not only the object shape and size would affect the grip pattern but also the 

intended activity would determine the grasp pattern as well (Jeannerod, 1996; Napier, 

1956). The pincer grasp, which is thought to be exclusive to the primates, involves the 

thumb moving in opposition to one of the other fingers, usually the index finger, and it 

allows fine manipulation of tiny objects. The rat does not display a pincer grasp when 

reaching and so its reaching and grasping movements are equivalent to the primate power 

grasp. 

 

Individual differences 

The study of individual differences in motor skills has been neglected in 

investigations that use rats as their models. Individual variation in motor performance is 

usually classified as an error variance and experimenters predominantly only consider the 

group data. Obviously individual differences are important factors in experimental 

paradigms and failure to consider individual variation discards valuable information and 

reduces explanatory power. The following sections will describe: the neurobiology of 

individual differences characteristics, the factors related to individual differences in 

motor performance, and individual differences in motor abilities and skill acquisition. 

 

Neurobiology of individual differences  

 People differ in terms of aptitude, attitude, motivation, and temperament and 

these variations are caused by differences in the physical and chemical structure of the 

brain. Brain differences are the neurobiological base for the individual differences found 

in perceptual, cognitive and motor responses. The sources of brain variations are both 
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genetic and epigenetic. The genetic makeup of an individual has its origins in the half of 

the genome received from the mother and the half of the genome received form the father 

(Dunn & Plomin, 1990; Schumann, 2004).   

According to Edelman (1987) a developing nervous system is not simply 

specified by genes. Genes respond to the local chemical environment to control the 

expression of adhesion molecules that influence the differentiation, migration and 

connections of neurons. Thus, three sources of individual differences might be 

recognized: 1) developmental selection may lead to roughly similar brain construction 

but with potentially different microstructure, 2) the establishment of “primary repertoire” 

or the basic neuronal groups and their connections by the activity of adhesion molecules, 

3) experiential selection, resulting from an individual’s postnatal interactions with his/her 

environment. During this stage, there are vast changes in the brain including shedding of 

synaptic connections, pruning of dendritic trees, and even the substantial loss of neurons. 

Experiential selection generates more differences between individuals because of the 

difference between individuals’ environmental experiences. In addition, the interaction 

between the environment and intrinsic growth mechanisms generates more variation in 

neuronal structure (Edelman, 1987, 1992; Quartz & Sejnowski, 1997; Schumann, 2004).  

 According to Darwinian view, the differences in brains are selected by 

environment and facilitated by experience within the environment. For example, the best 

athletes are those individuals with particular neuro-hypertrophy who developed their 

motor skill in a proper environment. If these particular neural strengths are not selected 

and used in an environment, then they would not be recognized as super talented athletes. 

Evolution permits environmental selection on the inter-individual variations of the 
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nervous systems. The diversity and adaptability of the nervous systems to the constantly 

changing environment are the results of natural selection and both increase the chance of 

survival (Schumann, 2004). 

 

Factors related to individual differences in motor performance  

Motor skill is defined as specific physical movements required for accomplishing 

the goal of a particular task. Motor skills vary from simple to complex and are most often 

composed of series of distinct movements that need to be learned and performed in 

specific orders. The term of motor skill has been used in literature in two different ways: 

1) it is used as an act or task, such as piano playing, swimming or reaching toward an 

object, 2) it is also used as an indicator of quality of performance, which is determined by 

the degree of proficiency or productivity of the performance. A performer can be called 

“skillful” or “skilled” when his performance meets several criteria. First, his performance 

should lead to successful outcomes. Second, during learning the performer uses the 

relevant and meaningful cues in guiding the movements skillfully and is not distracted by 

other cues that are not important for skill acquisition. Third, the performer should be able 

to anticipate the subsequent movements for better responding (Magill, 1985).  

Motor skill should be distinguished from motor ability. According to Schmidt 

(1975) motor abilities are “ hypothetical constructs thought to be innate and relatively 

stable characteristics of the individual that underlie a certain type of motor response”. 

Skill is more specific and easily modifiable by practice. The earliest idea about motor 

abilities was the idea that all motor skills, ranging from simple to complex, are developed 

on the basis of a single motor capacity known as, general motor ability (GMA). This 
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view is similar to Pearson’s idea about the nature of intelligence, which was a general 

intellectual capacity. Individuals with “high” GMA are able to perform well on almost 

every motor task and individuals with “low” GMA were destined to fail in almost every 

motor task. This hypothesis predicts that individuals with better performance in one 

motor skill should be the good performer on other motor skills (Sheridan, 1985).  

Opposition to the GMA notion came from correlational studies. During 1950s and 

1960s many studies showed very low correlations between motor tasks, even motor tasks 

that have a strong resemblance (Schmidt, 1975). The specificity hypothesis presented by 

Henry (1968) also opposes the GMA hypothesis. Henry hypothesized that there are a 

large number of motor abilities responsible for motor behavior, each of which are 

involved in limited number of movements. These motor abilities are independent of each 

other. Based on this hypothesis, success in a performance depends on the “quality” of 

abilities involved in that movement. Therefore, because of the independence of abilities, 

high quality performance in one motor task does not guarantee the quality of the 

performance in another task (Henry, 1968). 

Fleishman’s (1965) ideas on motor abilities positioned him between these two 

extreme thoughts. Using factor analysis statistical techniques, he outlined some abilities 

as clusters of skills that are correlated with each other such as control precision, multi-

limb coordination, etc. that underlies motor performance. He believed that these abilities 

are not task specific but they are a prerequisite for successful performance.  

Motor performance in the earlier theories was not distinguished from motor 

learning. It was usually thought that the changes in motor performance during practice 

were due to motor learning per se (Schmidt, 1992). Motor performance can be defined as 
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a temporary change in the observed motor behavior during practice sessions (Shumway-

Cook & Woollacott, 2001). However, performance is an interaction between variables 

such as learning, motivation, anxiety, fatigue, and many others. 

 

Individual differences in motor abilities and skill acquisition 

The nature of individual differences in motor abilities and skill learning was 

questioned early in the history of modern psychology. Early investigators tried to answer 

the fundamental question about the effects of nature versus nurture on motor behavior 

and skill acquisition. In explaining the differences in motor performance and appearance 

of various phylogenic skills, the investigation of individual differences in skilled 

movements has traditionally been dominated by the issue of capacity based on maturation 

rather than experience and interaction with the environment. Although initially 

maturation may seem to be a significant contributor to the onset of phylogenic skills it is 

very difficult to rule out experiential factors on the development of even fundamental 

actions.  

Thorndike (1908) was perhaps the first investigator to try and examine the 

similarities and differences between individual performances after extensive practice. He 

thought if nature or genes are the primary determinants of the individual’s performance, 

after extensive practice individuals should reach their optimum and reveal the genetic 

contribution variation in task performance. On the other hand, he proposed that if nurture 

or experience were the primary determinant of the performance, the result would be a 

reduced variability in performance (Boyle & Ackerman, 2004). The major concern of the 
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investigators in this field is the problem related to the assumption that underlying abilities 

required for tasks are the same (Ackerman, 1987; Adams, 1987).   

Individuals encountering a new task usually transfer some prior knowledge and 

relevant abilities (Ferguson, 1956). According to Schmidt’s schema theory, the transfer to 

a novel task can be increased with more variability of practice (Schmidt, 1975). The 

degrees of prior knowledge and the task relevant abilities are different among individuals. 

Because of the differential transfer, the amount of time for familiarization with the new 

task and also the degrees of learnt skill would be different. There is a common finding for 

many skill acquisition tasks that in terms of the difference between initial and practiced 

task performance, the subjects with poorest performance tend to improve the most with 

more practice. Such negative correlation between initial performance and performance 

improvement after practice is explained partly by the fact that better performers at the 

beginning of the training are those with better repertoire of abilities that they can 

positively be transferred to a new task. In other words, the good performers with better 

start in a new task will travel a shorter distance on a learning curve than the poor 

performers.  

The final performance levels also are related to the initial transfer as well as the 

amount of learning of the new skill. In addition, non-ability characteristics (motivational 

and affective traits such as self-efficacy, high/low level of anxiety or motivation) play 

important role in individual differences in skill acquisition. For example, high level of 

anxiety might be detrimental to learning because it leads to distraction of attention, which 

is required for better learning during initial phase of acquisition (Kanfer & Heggestad, 

1999). 
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 According to Henry (1958) individual differences in the ability to learn one motor 

skill are not predictive of ability to learn other motor skills. He suggests that although 

there are some common factors in motor skills that could facilitate the learning, the 

transfer process is not a skill-to-skill transfer. Fleishman (1965) also points out the 

importance of the ability-to-skill transfer in his theory. He proposes that an individual’s 

ability to learn a motor skill is largely determined by the individual’s possession of the 

perceptual-motor abilities required for that particular skill. Thus, those individuals with 

more highly developed perceptual-motor abilities can become proficient in several 

relevant motor skills. He assumes that skill specificity limits the amount of transfer that 

can be expected between different motor skills.  

Cratty (1966) in his “Three-level Theory” attempted to organize factors that 

contribute to individual differences. His theory is conceptualized as a triangle with base, 

midsection, and apex for the three levels of factors influencing the performance. The base 

level consists of the individual’s traits, which influence all kinds of behavior and the 

individual’s level of arousal and general aspiration level. The second level is the location 

of perceptual-motor abilities such as strength, flexibility, and speed required for 

performing motor skills. The last level, on the apex of the triangle, is the level of factors 

(neuromuscular/environmental) specific to a particular skill such as unique spatial-

temporal pattern of movement or unique situation under which the skill is being 

performed.   

Adams (1987) proposes that different abilities become important in relation to the 

early or late (experienced) performance on a skill task. Early performance is determined 

by general cognitive ability while later performance is determined by the task-specific 
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ability. The only way of predicting the skilled performance on a task is the measures 

taken from that particular task, not other tasks or abilities prior to training (Fleishman & 

Hempel, 1955). They believe that the best performers cannot be identified from measures 

for general abilities on the early stage of skill acquisition prior to practice. However, 

there are other others who disagree with this notion (Ackerman, 1989; Barrett, 

Alexander, & Doverspike, 1992; Hulin, Henry, & Noon, 1990). For example, Ackerman 

(1987) finds that individual differences in skilled performance after extensive practice are 

related to the perceptual, cognitive and motor abilities and could be predicted even prior 

to the extensive practice with proper measures and statistical procedures.       

According to information-processing theory, performing a new task is effortful 

and needs longer time for processing but after practice and learning the task, it changes 

into more automatic processing (Ackerman & Schneider, 1985; Schneider & Shiffrin, 

1977). Thus, a task requires continues attention and control over performance at the 

beginning of training because of the novelty of the task. With extended practice, the task 

can be performed with the minimum amount of attention due to acquired automaticity. 

The transition from learning new components of the task to the formation of strong 

associations between information and responses forms the framework of skill acquisition. 

Thus, skill emerges out of the consistent attributes of the task and extensive practice 

(Fitts & Posner, 1967).     

 Individual differences can be measured by specific tasks for a wide variety of 

abilities and traits. Three major measures are usually the focus of the studies of skill 

acquisition: (1) initial performance, (2) rate of skill acquisition, and (3) asymptotic skill 

level (Boyle & Ackerman, 2004). According to the three-phase theory of individual 
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differences in skill learning proposed by Ackerman (1988), skilled performance of more 

consistent tasks becomes more automatic after practice. During the first phase, attention 

and cognition are very demanding and performance is slow and is associated with many 

errors. At this stage, an individual encountering a novel situation uses its reasoning skills 

and general intelligence to evaluate the situation and learn the rules and basics related to 

the task. Thus, at the first phase of the skill acquisition, general intelligence is the main 

determinant of individual differences in performance. The second phase is important for 

integration and consolidation of the collected information. During this phase of learning, 

perceptual speed abilities are the most important determinants of the individual 

differences in performance. Thus, the individual encodes consistent patterns rapidly and 

compare them for better response and forms stronger associations between information 

and responses. The third phase of the skill acquisition occurs during the late stages of 

practice. At this stage, the performance is mostly motor response and free of perceptual 

processing of information. Skilled performance gets automatic and effortlessly executed 

while approaching the asymptotic level.   

This theory suggests that general ability used in phase 1 is highly correlated with 

the early performance and declines with practice. However, perceptual speed abilities 

used in phase 2 are not correlated with performance initially but increases with the 

formation of stronger associations and decreases again. In phase 3 psychomotor abilities 

comes into play and are correlated with the late performance, which is characterized by 

on rapid responses.  

Clearly, the research on motor skills suggests that it is difficult to parse 

performance into components that are attributable to individual differences in any one 
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factor, even though individual differences in performance emerge. Perhaps developing 

simpler models could be beneficial for understanding individual differences. Thus, this 

thesis has attempted to develop a simple animal model of motor performance. The skilled 

reaching behavior of the rat, which is the animal model to be used here, will be described 

in the following section. 

Skilled reaching 

The hand in humans and rats are specialized body parts, and of course, play 

significant role in reaching and grasping. Hands are used not only for manipulating 

objects that can facilitate feeding process but also are useful in our communication. 

According to Napier and Tuttle (1993) each finger (except the thumb) composed of three 

phalanges that are able to flex by the joint which connect them together. Small and 

precise movements of fingers occur with the movements of tendons that are attached to 

the forearm muscles. Flexion and extension of fingers provide numbers of hand postures 

such as poke, pinch, clench, and palm and make the object manipulation possible. The 

differentiation of the hand postures happens in the pre-shaping of the grasp phase during 

the transportation component of the reaching (Jeannerod, 1996; Klatzky et al., 1987). 

Therefore, two important factors are required to make a successful grasp. Appropriate 

hand posture based on the shape, size and the use of object, and appropriate timing of the 

finger closing on the object during reaching movement (Jeannerod, 1990). 

Skilled reaching is a behavior in which an animal reaches for a piece of food and 

places it in the mouth for eating. The behavior is also sometimes called reach-to-eat. 

Skilled reaching for food by rats has been studied extensively in order to obtain a better 

understanding of neural and functional organization of the movement. The behavior has 
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also been used to assess the behavior after brain injury and to evaluate effects of 

therapeutic interventions. Although skilled reaching is widely used to model a variety of 

neurological conditions, there has been little attention directed at individual differences in 

reaching performance of the rats. This section of the thesis will describe the evolution of 

skilled reaching; skilled reaching in the rat; and neural plasticity associated with skilled 

reaching following different conditions such as motor cortex injury.  

The evolution of skilled reaching 

Many psychologists, including William James, have noted that all behavior, 

including psychological processes, can only be recognized through movement. Because 

this thesis is directly concerned with individual differences in reaching behavior, it will 

be helpful to have a definition of the reaching movement.  

As note above, skilled reaching is an act in which a hand is used to grasp food and 

place it in the mouth for eating. As such, it is a complex action that requires the 

cooperation of several brain systems including motor systems, sensory systems and 

cognitive systems. The motor system plans and executes the reaching movements. 

Sensory systems provide information about the location of the body in space and the 

location of objects in the environment. Cognition integrates perceptual events and 

movement to provide a holistic and individual perspective. The sensory and cognitive 

information is integral to the motor ability and is necessary in production of an effective 

and successful movement in an environment (Rosenbaum, 1991).  

A wide variety of animal species display skilled reaching. A phylogenetic analysis 

of animals that display the behavior suggests that it likely evolved in the earliest 

terrestrial vertebrates (Iwaniuk & Whishaw, 2000). Nevertheless, forelimb dexterity have 
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been lost in some mammalian species such as polar bears of the family Ursidae and have 

been more developed in some other mammalian orders such as primates (Iwaniuk, 2000). 

The rodents and primates appear to be the groups that are most adept for using the 

forelimbs to reach (Whishaw, 2005).   

The origins of skilled reaching movement are not well understood, but it may 

have evolved in part from a number of different precursor behaviors. Skilled reaching 

may have developed by the modification of movements required for locomotion. Thus, 

reaching for an object may simply be a modification of the movement of the forelimb to 

grasp the ground while walking. It may also have evolved as a modification of 

movements used for feeding. For example, an eating animal may make movements of 

“wiping” [movements of the palms, which are used to push the prey towards the midline], 

“scooping” [the movements with the extension of the digits and use the back of the hand 

to push the food into the mouth], and grasping [movements of the closure of digits on the 

prey to bring it toward the mouth] (Iwaniuk & Whishaw, 2000). Reaching may have also 

evolved as a modification of stepping movements in arboreal animals that use the 

forelimbs to grasp branches. These and other influences are not mutually exclusive, and 

each may have shaped the specialized behavior of different species. 

It is clear that skilled reaching has been modified substantially in its evolution and 

the evolutionary history of the movement may be partly different in different orders of 

animals. Nonprimate species of animals do not appear to use vision to direct their limbs 

toward objects, whereas primates do use vision. To locate food prior reaching and 

preshaping digits for grasping (Figure 1.3), rats use olfactory and tactile information 

(Whishaw & Tomie, 1989; Whishaw, Dringenberg, & Pellis, 1992). In testing conditions 
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in which visual inputs are blocked, rats can quickly and successfully locate the food as 

they do in normal situations but with the elimination of olfaction the reaching movements 

of the rats are disturbed. However, the guidance of the forearm toward the food is not 

controlled by olfaction but rather by central control (Whishaw, 2005). Metz and Whishaw 

(2000) suggested that the skilled reaching displayed by rats is organized as an action 

pattern because of similarity, consistency and being recognizable from instant to instant 

and also because of its disruption after the task demands are altered.  

Bloch and Boyer (2002) suggest that specialized grasping evolved before the 

capacity to control reaching visually. They suggest that animals were first able to make 

anchors for stability using their hindlimbs and forelimbs. Thereafter they began to use the 

forelimb to grasp objects. They further suggest that this kind of feeding contributed to the 

forward binocular configuration of the eyes of primates. Therefore, the accurate control 

of reaching with vision may have occurred early in primate evolution. All primates do 

use vision to guide a hand to a target object. 

The difference between rodents and primates is important with respect to the 

objects of the present thesis. In order to reach for an object, a rodent must compose and 

execute a motor plan. As will be described in the thesis, rats are not always successful in 

obtaining food, and their inaccuracy provides a measure of skill and therefore insights 

into individual differences. Because reaching is guided online in primates, they are often 

successful and there is low variance in the performance of the animals that would allow 

for the study of individual differences. 



 
 
 

29 

 

 

 

 

 

 

 

Figure 1.3. Reaching and pre-shaping of the digits during grasp movement in rats. (A) 
the digits are extended during advance part of the reaching movement, and (B) the digits 
are pre-shaped for the grasping movement during arpeggio when the hand pronates from 
digit 5 (the outer digit) through to digit 2, while simultaneously the digits are opened. 
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Skilled reaching in the rat 

Peterson (1934) was amongst the first scientists to describe reaching behavior in 

the rat using a task in which the animals reached to take food from a tray.  The animal is 

now widely used to study skilled reaching. This section will first describe the anatomical 

basis of skilled reaching in the rat, then describe tasks used to study skilled reaching, and 

conclude with exemplar research in which rat skilled reaching has been used to study 

neural plasticity. 

 

The anatomical basis of skilled reaching 

Limb musculature is similar between rats and humans. Although rats have 

intrinsic muscles in their hands, their movements are controlled and supplied by the 

forearm muscles (Whishaw, 2005).  The number of digits and phalangeal composition in 

rat’s hand is similar to that of human. A rat’s hand has five digits, a small thumb with nail 

(digit 1) and four other digits with claws (digits 2-5). The capability of medially 

movements of the thumb (digit 1) toward the palm and the extent of flexion and 

extension of the digits show that they are able to manipulating fine objects such as a 

strand of uncooked spaghetti.  Rats are able to make the pincer grips that are made by 

opposition between the thumb and digit 2 and also the scissor grasps that are formed by 

opposition between digits 4 and 5 (Whishaw, 2005; Whishaw & Coles, 1996).  

The overall neural organization of motor control in rats is similar to humans. 

There are three anatomical distinctive neocortical regions in rat’s brain, including 

agranular zone, granular zone, and dysgranular zone, which play significant role in 

sensory and motor control (Figure 1.4). 
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Figure 1.4. Diagram illustrating the motor control areas of the rat brain. The main motor 
cortical areas of the rat brain are the agranular medial cortex (AGm) and the agranular 
lateral cortex (AGl). These regions are connected with the subcortical regions such as 
basal ganglia (BG) and cerebellum (C) via thalamic nuclei (VA,VL). (Adapted from 
Gharbawie, 2006). 
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Based on the similar neurophysiological properties, the primary motor cortex of 

the human is similar to the lateral agranular neocortex (AGl) of the rat frontal lobe (Wise 

& Donoghue, 1986). This area contains a larger layer of pyramidal cells and is the origin 

of the corticospinal projections. The AGl similar to the M1 forms closed loops with the 

basal ganglia and the cerebellum. 

The premotor and supplementary motor areas in primates share the similar 

anatomical and electrophysiological properties with agranular medial neocortex (AGm) 

in rodents (Neafsey et al., 1986; Sievert & Neafsey, 1986). The sensorimotor cortex is 

located lateral to the AGl and support sensory and motor functions. This area is a 

dysgranular zone with a less-dense and thinner layer 4. Lateral to the dysgranular zone is 

the granular zone, which extends as far as insular cortex and is distinguished by its 

elaborative layer 4. This area receives sensory inputs from the ventral posterior nucleus 

of thalamus (Wise & Donoghue, 1986).  

The corticospinal fibers in rats take a somewhat different route than those of 

primates. Most of the fibers exit the cortex and immediately enter the internal capsule and 

the remainder project through the striatum before entering the internal capsule. 

Corticospinal fibers descend in the base of the dorsal horn of the rat spinal cord and 

entering the spinal gray matter and synapse in the intermediate zone. The corticospinal 

fibers do not make direct connections with the motor neurons of the spinal cord but 

synapse on pools of interneurons (Lemon & Griffiths, 2005). 

 

Tasks used to study skilled reaching in rats 
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Numerous reaching tasks have been used for investigating skill acquisition 

(Greenough, Larson, & Withers, 1985; Kleim, Barbay, & Nudo, 1998; Montoya, 

Campbell-Hope, Pemberton, & Dunnett, 1991; Whishaw, O’Connor, & Dunnett, 1986; 

Whishaw & Pellis, 1990), handedness (Peterson, 1934; Peterson & Gucker, 1959), and 

identifying impairments and recovery of function after lesions to the cortical and 

subcortical areas (Whishaw & Gorny, 1996; Whishaw, O’Connor, & Dunnett, 1986) 

especially motor cortex (Gharbawie, Gonzalez, & Whishaw, 2005; Gonzalez & Kolb, 

2003; Whishaw, Pellis, Gorny, & Pellis, 1991).  

The tray-reaching task as a simple test of forelimb use (Whishaw, O’Connor, & 

Dunnett, 1986) provides a relatively easy assessment of a rats preferred hand and its 

reaching ability. Rats are placed in the tray reaching boxes measured 10 cm long, 18 cm 

wide, and 10 cm high (Figure 1.5). The tops, backs, and sides are made of transparent 

Plexiglas. The front of the box is constructed of 2 mm bars that are separated by 9 mm 

distance. Rats reach through bars into a 4 cm wide and 5 mm deep tray, mounted in front 

of each box and extended for the length of the box, filled with granules of food (chicken 

feed or small food pellets). The floor of the boxes is made of metal grids, so that dropped 

chicken food would not be accessible to the rat. Reaching performance is assessed based 

on the number of success or failure. Similar to the other reaching tests, this test has some 

advantages and disadvantages. The possibility of simultaneous testing of several rats as 

well as un-accessibility of the dropped food pellets (because of the wire grid floor) is 

among advantages of the task. One of the limitations of this test is the lack of power for 

detailed analysis of the limb movements. Such limitation is mainly due to the structure of 

the apparatus that provides greater options for the rats to insert their forelimbs from
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Figure 1.5. Tray-reaching apparatus. (A) front view of three attached tray-reaching 
boxes, (B) angular perspective of the apparatus for better view of the inside of the box as 
well as the food tray and metal grids floor.  
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different angles between the bars and from various possible body postures. This condition 

does not allow a controlled observation and scoring of the limb movements while 

reaching. 

 The staircase test (Montoya, Campbell-Hope, Pemberton, & Dunnett, 1991) is 

designed to assess both forelimbs in a single testing session. Rats are placed on a 

platform to reach for food pellets on the steps (7 steps in total) of a staircase on either 

side. Because only the number of pellets remaining on the stairs is counted as a 

behavioral measure, several rats can be assessed concurrently. The difficulty of the task is 

ranged from easy to hard in terms of the possibility of various reaching targets with 

different distances (closer vs. farther steps). Although this task has some advantages such 

as time efficiency and high range of reaching assessment such as side bias, maximum 

forelimb extension, and grasping movements. 

The single pellet-reaching task is a reliable measure of reaching performance in 

which rats reach through a slot for a single food pellet each trial. Every session consists 

of 20 trials in total. Discrete trials are established by the experimenter via withholding the 

food pellet at the end of each trial and shaping the rats behavior to leave the slot, walk to 

the rear wall of the box, turn and approach the slot again for the next pellet, allowing the 

animal to reposition its body for the next reach.  

The single pellet-reaching box (Figure 1.6) is made of transparent Plexiglas with 

45 cm length, 14 cm width, and 35 cm height. In the middle of the front wall, a 1 cm 

wide slit is extended from bottom of the box to a height of 15 cm. A 2 cm wide by 4 cm 

long shelf is attached to the outside of the front wall, 3 cm above the bottom of the box in 

front of the opening. There are two small indentations with 1.5 cm distance from the front  
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Figure 1.6. Single pellet-reaching apparatus. (A) full view of the single pellet-reaching 
box, (B) close up view of the shelf and the slot on the front wall of the reaching box. 
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wall aligned with each side of the slot to hold the food pellets. A food pellet in each 

indentation is accessible only to the contralateral hand, because it pronates medially to 

grasp. Reaching performances are assessed quantitatively in terms of the number of 

attempts, single reach successes, and total success (Whishaw, Pellis, Gorny, & Pellis, 

1991). 

A successful reach is a reach attempt in which the food pellet is grasped following 

the advancement of a forelimb through the slot, which is followed by its withdrawal 

toward the mouth and obtaining the food by the rat. Success in single pellet reaching task 

requires greater precision and higher motor control relative to other reaching tasks 

perhaps partly because the range of movements required to successfully perform this task 

is much more limited than other tasks, which provide a challenging condition for the 

performers. Therefore, this task makes individual differences more noticeable. The 

transparency of the reaching box makes video recording possible from different angles 

and facilitates kinematic analysis of the reaching movement and also analysis of the body 

posture during the performance. 

The skilled reaching is a voluntary goal-directed behavior, which is controlled by 

perceptual, cognitive and motor systems and become automatic with extensive practice 

(Dickinson, 1985; Halsband & Freund, 1993). The skilled movements in rats are the 

movements of forelimbs, hands, and digits for catching, manipulating, and holding 

objects, which is a well-developed behavior in almost two thousand rodent species 

(Whishaw, 2005).  

Although individual differences in skilled reaching performance of rats have not 

been studied systematically, there are several studies showing differences in skilled 
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reaching of various strains of rats. Nikkhah and colleagues (1998) described the strain 

differences in successful reaching in the staircase task. They reported that outbred albino 

Sprague-Dawley rats were the most successful reachers among others. Although, it has 

been shown that Sprague-Dawley and Long-Evans rats displayed equivalent reaching 

success on the single pellet-reaching task, the movements used are different between 

these strains (Whishaw, Gorny, Foroud, & Kleim, 2003). Also, the study of strain 

differences in topographical representations of movements between Long-Evans and 

Fischer-344 suggested that the Long-Evans rats showed a relatively larger cortical 

representation for movements as well as higher reaching success and more organized 

movements relative to Fischer-344 strain (VandenBerg, Hogg, Kleim, & Whishaw, 

2002). 

Behavioral manifestations of individual differences can be measured by some 

specialized tests.  Movements can be analyzed at three levels including (a) action, (b) 

movements, and (c) neuromotor processes (Gentile, 1992). There are different facets in 

every movement, which can be analyzed at these three levels. A combination of 

information gathered by these analyzing methods will provide a better understanding of 

the considered movement.  

According to Gentile, analyzing a movement at the action level examines the 

behavioral outcome in various categories including, accuracy, speed, and response 

magnitude. The outcome of a movement is not separable from the form of the movement 

and a successful outcome can be achieved from a good form of the movement although 

there is no guarantee. Thus, the second method of analysis is focused on movement 

elements used in the performance. A movement also can be studied at the neuromotor 
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level. Gentile (1992) suggests that a specific movement could be analyzed based on its 

underlying neural processes. In a goal-directed action, one can use different strategies in 

performing an action towards the selected target that are called movement equivalence 

and also there are many ways to organize underlying systems to achieve a specific motor 

pattern, which are called motor equivalence (Bernstein, 1967; Gentile, 1992; vanSant, 

1988). Therefore, a skilled movement is defined by the ability to adapt movements to 

successfully and efficiently achieve the goals or avoid the harms in a constantly changing 

environment. Although these three levels of analysis are very important in assessing a 

movement, but it needs to be mentioned that the observed movement is determined by the 

interaction of three factors, including the individual, the task, and the environment 

(Shumway-Cook & Woollacott, 2001).   

For a better understanding of the movement elements in rat’s skilled reaching, 

different methods of analysis have been used. For example Eshkol Wachmann Movement 

Notation (EWMN) is used to describe the relations of body segments (Whishaw & Pellis, 

1990), and Laban Movement Analysis (LMA) for describing qualitative aspects of 

movement (Whishaw, Gorny, Foroud, & Kleim, 2003). Rats are required to fixate some 

parts of the limb in order to move other parts. For example, when rats bring their digits to 

the midline of its body, they are fixed to that location while its elbow moves to the 

midline position (Whishaw, 2005). Skilled reaching movement is subdivided into 10 

movements including, (1) digits to the midline, (2) digits flexed, (3) elbow in, (4) 

advance, (5) digits extend, (6) arpeggio, (7) grasp, (8) supination I, (9) supination II, and 

(10) release (Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993). Each of the 10 reaching 

elements is rated on a three-point scale (0, 0.5, 1) to obtain movement scores. A score for 
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a normal movement is “0”, a score for an abnormal movement is “0.5”, and the score is 

“1” in the absence of the movement. Also, LMA provides a method for quantifying the 

non-kinematic features of movement (Foroud & Whishaw, 2006). Reaching consists of a 

sequence of four gestures including (1) advance, (2) grasp, (3) withdrawal, and (4) 

release. Each gesture is separated by a brief pause and change in the movement direction 

and speed (Alaverdashvili, Foroud, Lim, & Whishaw, 2008). Typically in a successful 

reach, each of these gestures is performed once in a complete reach sequence (advance-

grasp-withdrawal-release), but gestures can also be repeated several times in a successful 

reaching movement. Counting the number of gestures performed in a reaching movement 

is another variable used for measuring the skilled reaching performance. 

 

Neuroplasticity and skilled reaching 

Individual differences in performance must have their origins in some aspect of 

the morphology of animals. Given the equivalence in general morphology, a likely origin 

is in neuroplasticity of the brain and skilled reaching in rats has been extensively 

associated with studies of neuroplasticity. This section will summarize some of the 

literature on skilled reaching and neuroplasticity, especially with the aim of pointing out 

that measures of reaching success are generally viewed as relevant to understanding 

motor learning and neuroplasticity. 

Motor learning emerges from a complex of perception, cognition, and motor 

processes. Animals with the use of motor learning can achieve valuable and beneficial 

goals and avoid harms. According to Schmidt (1988) motor learning has several 

characteristics, (1) motor learning is a set of underlying changes that happen only with 
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practice, (2) it produces capability for particular movement, (3) the processes of learning 

is not a change in behavior per se, but it is the internal capability for responding, (4) 

motor learning is relatively permanent and is different from a variety of temporary 

performance factors such as fatigue or high/low levels of motivation. Therefore, 

according to Schmidt, motor learning is defined as a set of processes associated with 

practice or experience that leads to relatively permanent changes in the capability for 

movement.  

Schmidt’s definition describes only one form of motor learning, which is skill 

acquisition. Shadmehr and Wise (2005) have an expanded view of motor learning, which 

includes three forms of motor learning: (1) an evolutionary form of motor learning that 

passes through generations and contributes directly to biological fitness with allowing 

animals to associate neutral stimuli to stimuli that trigger instinctive reactions, (2) skill 

acquisition (gaining a new level of motor performance) and motor adaptation (regaining a 

given level of motor performance), and (3) learning how to make decisions for selecting 

goals and the required movements in order to reach that goals.  

According to Shadmehr and Wise (2005) motor learning over generations 

involves many autonomic and neuro-endocrine functions as well as many aspects of 

procreation, foraging, exploration, defense and ingestion. These instinctive behaviors are 

learned through mechanisms that are not based on an individual’s experience and 

encoded genetically and reproduced over generations. Some of these behaviors can be 

modified to various degrees by an individual’s experience and some are not flexible at 

all.  
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Animals also use a learning mechanism involving the prediction of sensory inputs 

associated with potential harm or benefit which is triggering some somatic reflexes in 

response to that prediction. This response range form simple autonomic reflexes to the 

movement of a whole animal body. The moving behavior of an animal toward a stimulus 

associated with a reward such as food is called approach behavior and the moving 

behavior of an animal away from a stimulus associated with harm is called fear 

conditioning. This learning mechanism underlies fundamental behaviors including 

feeding, fleeing, fighting, and mating (Shadmehr & Wise, 2005). 

In everyday life, animals must behave adaptively in a changing environment by 

extending their motor repertoire and adapting the new and existing motor programs for a 

successful living. Two types of motor learning, skill acquisition and motor adaptation, 

contribute to the movement stability and control. Skill acquisition involves expansion of 

the motor performance beyond prior limits of the system that is developed by the 

interaction of systems involved in selecting the target, computing a motor plan, and 

generating the coordinated movements. On the other hand, motor adaptation can be 

defined as a modification in motor performance to regain capabilities in changing 

circumstances (Shadmehr & Wise, 2005). Motor skills are acquired gradually through 

practice and interactions with environment. Studies have shown that the acquisition of 

motor skills follows two distinct phases: one an early and fast learning phase in which 

considerable motor improvement can be measured within a single learning session, the 

other is a later slow learning phase in which more motor improvements can be observed 

across training sessions (Karni et al., 1998; Nudo, Wise, SiFuentes, & Milliken, 1996). 

Different variables are used to measure motor skill learning such as a reduction in 
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reaction time, the number of successes or errors, and/or a change in movement synergy 

and kinematics (Ungerleider, Doyon, & Karni, 2002). Investigators measure both skill 

acquisition and motor adaptation to study the neural substrates mediating motor skill 

learning (Doyon, Owen, Petrides, Sziklas, & Evans, 1996; Karni et al., 1995). 

In a changing environment, advanced animals must be capable of adapting 

behavioral repertoire in that environment. According to Balleine (2001) both prediction 

and control are required for a successful adaptation. Pavlovian conditioning as a form of 

predictive learning is used to elicit anticipatory responses to some stimuli based on 

establishing associations between them (Balleine & Dickinson, 1998; Hammond, 1980).  

With the use of predictive learning animals are able to control their responses toward 

gaining access to benefits or avoiding from harms. Therefore, for a successful adaptation, 

the innate behavioral repertoire must be modified through skill acquisition and actions 

must be learned and selected based on their potential consequences (Balleine & 

Dickinson, 1998). The decision-making process as a part of motor learning is essential 

for movements particularly reaching movements.  

Before starting many of our movements such as reaching, goals must be selected 

consciously among several options. Also there are other movements that are controlled 

subconsciously and could be seen as simple sensorimotor transforms such as habits 

(Graybiel, 2008; Shadmehr & Wise, 2005). It is thought that a skilled behavior becomes 

resistant to both interference and passage of time with extended practice (Ungerleider, 

Doyon, & Karni, 2002). This happens through the involvement of separate neural 

processes for goal-directed vs. habitual behavior (Balleine & Dickinson, 1998). Two 

distinct cortical-subcortical circuits are thought to be involved in the motor skill 
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acquisition: one is the cortico-striato-thalamo-cortical loop and the other is the cortico-

cerebello-thalamo-cortical loop (Middleton & Strick, 1997). Different studies have been 

used to support the involvement of the two cortical-subscortical circuits in motor skill 

learning including, lesion experiments, neurophysiological and morphological studies and 

investigations using neuroimaging techniques. The role of neural plasticity associated 

with experience and motor learning will be described in the following section.   

 

Motor learning and plasticity 

Synaptic connections and neuronal organization in the brain underlie behavior. 

Changes in the brain could result in a change in behavior and vice versa. Neural plasticity 

refers to the ability of the nervous system to change adaptively to internal and/or external 

environmental alterations (Liu & Wang, 2001). Such changes can be studied in different 

ways, from global measures of brain activity to study the changes at molecular level 

(Kolb, Teskey, & Gibb, 2010). To investigate the relationship between changes in the 

brain and that of the behavior, scientists link such changes using anatomical such as cell 

morphology and connectivity, physiological such as cortical stimulation, and in vivo 

imaging techniques (Kolb, Teskey, & Gibb, 2010). 

Wide variety of experiences can change the brain, including sensory and motor 

experience, learning a task, gonadal hormones, psychomotor stimulant drugs, 

neurotrophic factors, electrical stimulation, stress, rewards, diet, and aging (Kolb, 

Teskey, & Gibb, 2010). Neural plasticity occurs through reorganization of existing 

circuits and/ or creating new circuits. Also, regenerating new tissue which take place after 

brain damage is considered as another mechanism in neural plasticity. Neural plastic 
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alterations are not only time-dependent and change over time but also age-dependent 

(Kolb, Gorny, Li, Samaha, & Robinson, 2003; Kolb, Teskey, & Gibb, 2010). In addition, 

plasticity induced by different experiences can interact with each other. For example, 

drug experiences prior to brain injury may influence both spontaneous recovery and the 

effectiveness of postinjury treatments (Kolb, Teskey, & Gibb, 2010).  

Although earlier studies of motor learning were more focused on changes in 

neuronal activity related to a simple reflex adaptation (Lisberger & Pavelco, 1988; 

Thompson, 1990), recent studies have been trying to investigate brain functional and 

anatomical changes associated with motor learning of more complex behaviors such as 

skills. These studies revealed robust functional (Classen, Liepert, Wise, Hallett, & Cohen, 

1998; Karni et al., 1995, 1998; Ungerleider, Doyon, & Karni, 2002), physiological 

(Greenough, Swain, Kleim, & Weiler, 1996; Hess & Donoghue, 1996; Nudo, Plautz, & 

Milliken, 1997; Teskey et al., 2007) and anatomical (Greenough, Larson, & Withers, 

1985; Kleim, Barbay, & Nudo, 1998; Kolb, Buhrmann, McDonald, & Sutherland, 1994; 

Withers & Greenough, 1989) changes associated with the acquisition of a novel motor 

task within motor-related brain areas.  

Motor skill acquisition induces synaptic plasticity and causes reorganization of 

movement representations within the motor cortex. The functional reorganization of 

movement representations has been demonstrated using intracortical microstimulation 

(ICMS). For example, Nudo and colleagues (1996) showed an expansion of digit 

representation in the primary motor cortex of squirrel monkeys associated with training 

on a small object retrieval task. Similarly, Kleim and colleagues (2008) demonstrated an 

expansion of wrist and digit representations in the caudal forelimb area of the rats trained 
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to perform skilled reaching movements for food and they did not find such reorganization 

of the movement representations in the unskilled reaching rats. 

Neural imaging techniques such as fMRI and PET have allowed scientists to 

follow dynamic neural changes that occur during different phases of motor learning. 

Recent findings using fMRI techniques on learning of a motor sequence such as 

sequential finger movements suggest that the development of skill acquisition is 

associated with: (1) slowly evolving functional reorganization in the primary motor 

cortex over several weeks, (2) this motor-activity-evoked signal changes in the primary 

motor cortex follows more dynamic and fast changes in the cerebellum, striatum, and 

other cortical areas related to motor behavior over several days. The imaging data also 

suggest that extensive practice of the same sequential movements results in a gradually 

evolving and more extensive representation of the movements in the primary motor 

cortex  (Ungerleider, Doyon, & Karni, 2002). It has been shown that the cerebellum is 

active during initial training, which is the fast phase of motor learning (Jenkins, Brooks, 

Nixon, Frackowiak, & Passingham, 1994; Ungerleider, Doyon, & Karni, 2002), but this 

activity declines with more practice and it might become undetectable with over-learning 

(Grafton, Woods, & Mike, 1994; Ungerleider, Doyon, & Karni, 2002). Also, an increase 

in striatal activity can be observed with more practice of sequential movements when 

movements become “automatic” (Doyon, Owen, Petrides, Sziklas, & Evans, 1996; 

Ungerleider, Doyon, & Karni, 2002). 

The neural correlates of functional reorganization have been demonstrated mostly 

in the primary motor cortex. Donoghue and colleagues (1996) showed that primary motor 

cortex plasticity depends on horizontal connections throughout the entire region, 
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especially in layers II/III and V within the primary motor cortex. Synaptic modification 

as a rapid cortical plasticity can be modulated via NMDA receptors within the involved 

horizontal circuitry (Nudo, Plautz, & Milliken, 1997; Sanes & Donoghue, 2000) and 

persistent alterations in the efficacy of the circuit results from synaptic changes through 

long-term potentiation (LTP) and long-term depression (LTD) mechanisms (Rioult-

Pedotti & Donoghue, 2002). The synaptic mechanisms of LTP/LTD are thought to up-/ 

down-regulate the strength of the connections (Abraham & Bear, 1996; Hess, Aizenman, 

& Donoghue, 1996).  

High-frequency stimulation and low-frequency stimulation have been shown to 

reliably induce LTP and LTD, respectively in many different areas such as the lateral 

amygdala (Rogan, Stäubli, & LeDoux, 1997), subthalamic nucleus (Shen, Zhu, Munhall, 

& Johnson, 2003), hippocampus (Saucier & Cain, 1995), visual cortex (Hager & 

Dringenberg, 2010), olfactory cortex (Roman, Truchet, Marchetti, Chaillan, & Soumireu-

Mourat, 1999), and sensorimotor cortex (Froc, Chapman, Trepel, & Racine, 2000; 

Monfils, VandenBerg, Kleim, and Teskey, 2004; Teskey et al., 2007). For example, 

Monfils and colleagues (2004) found that increase in the synaptic efficacy through 

induction of LTP cause an expansion in the movement representations and dendritic 

hypertrophy in layers III and V of rat sensorimotor cortex. In addition, Teskey and 

colleagues (2007) demonstrated that induction of LTD results in smaller movement 

representations, a reduction in the density of excitatory perforated synapses, and an 

increase in the density of inhibitory synapses in layer V of rat sensorimotor cortex.  

Consistent with functional and physiological reorganization in the motor cortex, 

structural changes also have been reported in association with motor skill learning. 
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According to Greenough and colleagues (1985) pyramidal cells in the motor cortex of 

rats trained on skilled reaching task showed a hypertrophy in the dendritic arborizations 

relative to those of rats without training. Also, a significant increase in the number of 

synapses per neuron within layer II/III of the motor cortex has been reported in rats 

trained on a complex motor task compared to both active and inactive ones (Kleim, 

Lussnig, Schwarz, Comery, & Greenough, 1996). Similarly, an increase in the number of 

synapses per Purkinje cell has been found in the cerebellar cortex in rats trained on a 

complex motor task compared to both active and inactive ones (Black, Isaacs, Anderson, 

Alcantara, & Greenough, 1990; Kleim, Ballard, Vij, & Greenough, 1995).  

Motor skill learning induces alterations in cortical connectivity by changing the 

range of synaptic efficacy (Martin & Morris, 2001). An increase in synaptic responses in 

the motor cortex associated with motor skill learning (Friedman, Rioult-Pedotti, & 

Donoghue, 1997; Woody, Gruen, & Birt, 1991) is an example of such alteration. The 

study conducted by Monfils and Teskey (2004) indicated a relation between the 

acquisition of a motor skill and synaptic plasticity in the sensorimotor cortex of the rat. 

They found that the increase in skilled reaching task proficiency induced an increase in 

synaptic efficacy on the contralateral side to the reaching forelimb.  

However, rules of the neural plasticity are specific for each region of the brain 

and motor learning can be correlated with multiple opposing morphological changes even 

in the same region of the brain. The cell morphology measures such as dendritic length 

and spine density can vary independently and sometimes in opposite direction in response 

to the same experience (Kolb, Cioe, & Comeau, 2008; Kolb, Teskey, & Gibb, 2010; 

Comeau, McDonald, & Kolb, 2010). For example, an initial transient increase in 
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dendritic length has been reported in prefrontal cortex in response to experience in an 

enriched environment, which has been disappeared after 2 weeks. In contrast, although 

no changes have seen in the sensory cortex at the beginning of the experience but a 

permanent changes in this region has reported after 2 weeks (Comeau, McDonald, & 

Kolb, 2010). 

Similar results have been reported in physiological studies. Kindling as a model 

of brain sensitization is used for demonstrating neuronal plasticity. Repeated electrical 

stimulation to a specific brain site causes the progressive enhancement of seizure in the 

brain, which refers to kindling (Teskey, 2001). Similar to other models of sensitization, 

the development and expression of kindling is associated with dynamic structural 

plasticity such as dendritic arborization and spine density in the involved brain areas. 

Teskey and colleagues (2006) have reported changes in opposite direction in dendritic 

length and spine density of the layer III and V pyramidal neurons in a time point of 3 

weeks. They demonstrated an initial reduction in dendritic length and spine density in 

layer III of pyramidal neurons after the cessation of seizures, which was followed by a 

rebound and increase in 3 weeks. These scientists also showed the same changes but in 

the opposite direction in the layer V pyramidal neurons with an initial increase of 

dendritic length and spine density followed by decrease in those measures (Teskey, 

Monfils, Silasi, & Kolb, 2006). 

 

Neuroplasticity and brain damage 

Behavioral scientists try to map normal behavioral and psychological functions 

onto specific neuronal circuits. They use variety of methods to manipulate brain tissue to 
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demonstrate that neuronal alterations may result in changes in behavioral and 

psychological functions through the cause-effect mechanisms (Szechtman & Eilam, 

2005; Teitelbaum & Pellis, 1992). Lesions, which damage brain tissue, are one of the 

oldest methods used to localize particular function to a specific region of the brain. This 

section will describe studies that have examined neuroplasticity from the perspective of a 

lesion approach. 

The earliest lesion study on cortical control of skilled reaching conducted by 

Peterson and Francarol in 1951. They found that the motor cortex is the most effective 

region of the brain for handedness (Peterson & Francarol, 1951). Another early 

investigation on skilled reaching using motor cortex lesion conducted by Castro in 1972. 

Although he could not document digit use deficits directly, he argued that motor cortex 

injury causes digit use impairments.  

Subsequently, many investigations have examined the importance of motor cortex 

for skilled reaching and confirmed its contribution (Alaverdashvili, Foroud, Lim, & 

Whishaw, 2008; Gharbawie, Gonzalez, & Whishaw, 2005; Metz, Antonow-Schlorke, & 

Witte, 2005; Whishaw, 2000; Whishaw, Pellis, Gorny, & Pellis, 1991). It has been found 

that both the rostral and the caudal forelimb areas of the motor cortex contribute to 

skilled reaching (Hall & Lindholm, 1974; Hyland, 1998; Gharbawie, Karl, & Whishaw, 

2007; Neafsey & Sievert, 1982).  Research findings on the role of the motor cortex in 

skilled reaching performance will be summarized in two sections in the following, 

behavioral outcome and recovery of function after motor cortex injury, and synaptic 

plasticity following the motor cortex damage. 
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 Several factors contribute to the behavioral outcome after motor cortex injury, 

including stroke type (Alaverdashvili, Moon, Beckman, Virag, & Whishaw, 2008; 

Voorhies & Jones, 2002; Woodlee et al., 2005), infarct size and location (Gonzalez & 

Kolb, 2003; Whishaw, 2000), age (Brown, Marlowe, Bjelke, 2003; Sutherland, Dix, & 

Auer, 1996), sex (Gargano & Reeves, 2007; Zalihić, Markotić, Zalihić, & Mabić, 2010), 

and genetic susceptibility (Carr et al., 2002; Waters & Nicoll, 2005).   

Damage to the forelimb regions of the motor cortex regardless of the type of 

lesion results in an acute period of depression in motor behavior especially skilled actions 

such as skilled reaching  (Biernaskie, Szymanska, Windle, & Corbett, 2005; Erickson, 

Gharbawie, & Whishaw, 2007; Teskey, Flynn, Goertzen, Monfils, & Young, 2003; 

Whishaw, 2000; Whishaw, O’Connor, & Dunnett, 1986; Whishaw, Pellis, Gorny, & 

Pellis, 1991). Animals may make no reaching attempts using their contralateral to lesion 

limb during initial period after motor cortex injury. This acute post-injury period is 

considered as a state of shock or diaschisis, which could be lasted from hours to several 

days (Erickson, Gharbawie, & Whishaw, 2007; Gharbawie & Whishaw, 2006). 

Diaschisis is a distinctive stage, in which brain regions associated with the damaged area 

are functionally shut down and after a short time of neural and behavioral depression, 

recovery of function are mediated (Von Monakow, 1914). 

 Another distinctive feature following motor cortex injury is the strong tendency of 

the animals to switch their limb use for skilled reaching (Castro-Alamancos & Borrell, 

1993; Peterson & Francarol, 1951; Whishaw, O’Connor, & Dunnett, 1986). When 

animals are restrained from switching their limb use to the ipsilateral to lesion limb, with 
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the use of contralateral to lesion limb (bad limb) the ability to reach start to recover 

(Whishaw, 2000).   

The first few days after the motor cortex injury the animals make very few 

reaching attempts and successes but over the course of 14 days their reaching attempts 

and successes start to increase (Gharbawie, Gonzalez, & Whishaw, 2005; Whishaw, 

2000).  Although the total success rate almost recovers to the preoperative levels using 

compensatory movements, this recovery occurs with a dramatic increase in reaching 

attempts. Many more reaching attempts are needed for an animal to make a successful 

reach. In addition, the single reach success scores are extremely poor and never recover 

(Gharbawie & Whishaw, 2006; Whishaw, Alaverdashvili, & Kolb, 2008). Therefore, 

post-operative recovery is incomplete with very poor single reach success, too many 

reaching attempts, and almost regaining the pre-operative level of successful reaching 

with the use of compensatory movements such as the substitution of body rotation for lost 

or abnormal movement elements including aim, advance, pronation, supination and 

release  (Alaverdashvili, Foroud, Lim, & Whishaw, 2008; Gharbawie, Gonzalez, & 

Whishaw, 2005; Metz, Antonow-Schlorke, & Witte, 2005; Whishaw, Pellis, Gorny, & 

Pellis, 1991).  

Considerable works show the involvement of the motor cortex in both the 

learning and performance of skilled reaching (Gharbawie & Whishaw, 2006; Kleim et al., 

2002, 2004; Monfils & Teskey, 2004; Rioult-pedotti, Friedman, Hess, Donoghue, 1998; 

Whishaw, 2000; Whishaw, O’Connor, & Dunnett, 1986; Withers & Greenough, 1989). It 

has been shown that there are similar stages for the acquisition of skilled reaching and 

recovery after motor cortex damage.  
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Three oppositions are learned sequentially before and after motor cortex stroke. 

These oppositions are invariant relationships between a body part and food target but 

they can be achieved with variable movements. These relationships consist of a snout-

food pellet opposition, which organizes the movements of orienting, a hand-food pellet 

opposition, which organizes the limb transport and grasping movements, and a mouth-

food pellet opposition, which organizes the limb withdrawal and release movements. 

These oppositions are disrupted after the motor cortex injury and reestablished during 

recovery in the same order in which they were acquired prior to the damage (Gharbawie 

& Whishaw, 2006). Although regaining of the oppositions after the motor cortex injury 

are similar to the acquisition prior to the damage but the movements used are not normal 

and rats use compensatory movements such as trunk rotation and head movements to 

complete the task (Whishaw, Alaverdashvili, & Kolb, 2008).  

  It is assumed that behavioral changes and functional compensation following the 

motor cortex damage are associated with plastic changes in synaptic connections and 

neuronal organization underlying the behavior. A cascade of molecular and cellular 

changes evolves after brain injury in the related regions. For example, degenerative 

processes occur during first few days after brain damage in which cell death and atrophy 

of synapses can be observed. After the stabilization of degenerative processes, a slow 

development of new sprouting of remaining motor system pathways occurs over time 

(Gonzalez & Kolb, 2003; Kolb, Teskey, & Gibb, 2010). Thus, the organization of 

cerebral cortex changes because of the neuronal loss and disruption of neural circuits 

connected to the damaged area (Nudo, Barbay, & Kleim, 2000). This neural 
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reorganization occurs at different levels of the nervous system, including the cortical 

regions, red nucleus, cerebellum, and spinal cord (Butefisch, 2006).   

Neural reorganization can take place either in the injured hemisphere and/or in the 

intact hemisphere following motor cortex injuries. It has been shown that following 

sensorimotor cortex lesion in rats an initial atrophy on dendritic field of pyramidal 

neurons take place followed by sprouting and increase in dendritic branching which is 

correlated with recovery of performance (Kolb, 1995; Kolb, Cioe, & Whishaw, 2000). 

Also, It has been shown that following unilateral motor cortex damage in rats some 

contralesional changes occur in the intact hemisphere, including increased dendritic 

arborization and synaptogenesis (Adkins, Voorhies, & Jones, 2004; Biernaskie & 

Corbett, 2001; Jones, 1999; Jones, Kleim, & Greenough, 1996). However, a recent study 

has shown a reduction in dendritic arborization in both cortical hemispheres, which were 

reversed by complex housing (Witt-Lajuenesse, Cioe, & Kolb, in press). The 

contradictory findings might be related to lesion etiology, lesion size, and experience 

(Whishaw, Alaverdashvili, & Kolb, 2008). Gonzalez and Kolb (2003) compared different 

lesion etiologies and found although the behavioral outcomes of all types of lesions were 

similar, the structural plasticity varied with the lesion etiology and location of cells. They 

found opposite dendritic changes in layer V pyramidal neurons in the intact hemisphere 

after two types of lesions, an increase in dendritic length after injuries via 

devascularization and a decrease in dendritic length after aspiration injuries. Also, they 

found an increase only in the spine density following aspiration.  

Examination of other cortical and subcortical regions such as medial prefrontal 

cortex and striatum showed that lesions made with devascularization led to bilateral 
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increase in dendritic arborization in layer III pyramidal neurons in the Cg3 whereas an 

opposite change was found after aspiration injuries. Although they did not find any 

structural modifications in the Cg3 after middle cerebral artery occlusion but they found 

bilateral increase in dendritic length in the striatum (Gonzalez & Kolb, 2003). 

It is clear that the recovery of function and structural plasticity after motor cortex 

damage are associated with experience. Investigators use behavioral rehabilitation to 

promote structural plasticity and functional recovery. One of the effective methods of 

treatment is complex housing (Biernaskie & Corbett, 2001; Johansson, 1996; Kolb & 

Elliot, 1987). It has been found that motor skill improvement after motor cortex injury is 

correlated with experience-induced plasticity such as enhancement of dendritic length 

and spine density in both intact and injured cortex (Biernaskie & Corbett, 2001; 

Johansson & Belichenko, 2002; Kolb & Elliot, 1987). But this functional and structural 

improvement is time-dependent (Biernaskie, Chernenko, & Corbett, 2004). Biernaskie 

and colleagues (2004) found that complex housing can be more effective if is provided 

earlier after brain damage and thus the functional improvement is correlated with 

structural plasticity. Taken together, structural plasticity and functional recovery after 

motor cortex damage vary with the region of study, the type of lesion and that of 

experience, age and other factors (Biernaskie & Corbett, 2001; Gonzalez & Kolb, 2003; 

Kolb & Elliot, 1987; Kolb, Cioe, & Whishaw, 2000; Kolb & Teskey, 2010). Thus, more 

detailed investigations are required for understanding the relations.  

In conclusion, the present introduction was an attempt to put together the most 

relevant variables that play crucial roles in understanding reaching behavior as our model 

in studying individual differences in rats as simpler animals in the hierarchy of evolution. 
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Such approach will enhance our chance to examine individual differences in a more 

controlled and systematic manner. Although, the neural organization of brain have not 

been directly examined in the present thesis, it is presumed that individual differences in 

skill reaching in rats is perhaps somewhat mediated by such reorganization in neural 

circuits explained in the first part of this introduction as they have been recognized as 

relevant to the motor behavior.  

  

Objectives of the thesis 

The present thesis attempted to accomplish two goals. The first is to characterize 

individual differences in skilled reaching for food in the rats by providing in depth 

descriptions of such differences. The second is to find potential sources underlying the 

differences by examining the brain. The experiments focused on individual differences 

because such investigation provides valuable insights into the evolution, development 

and learning of motor skills and also helps optimizing preventative and therapeutic care 

for individuals.  

The goals of the study were achieved by two sets of experiments. In the first 

phase of the investigation, experiments were designed to assess skilled reaching 

performance in normal animals during the acquisition and asymptote period of the skill. 

In these subjects, possible relations between individual differences and other behavioral 

characteristics and neurobiological differences in the brains were examined. In the second 

phase of the study, the potential sources underlying the differences and the distribution of 

individual differences were examined under two different methods of brain manipulation. 

The first induced behavioral sensitization by repeated exposure to psychomotor stimulant 
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drugs. In the second, the relationship between individual differences in performance and 

motor cortex damage were examined. Taken together the thesis had four objectives. 

Objective 1: Individual differences in skilled reaching for food related to increased 

number of gestures  

  In this study, individual differences in skilled reaching for food in rats were 

documented through series of behavioral and anatomical experiments. Rats were trained 

in single pellet reaching task and their reaching performances were analyzed using three 

different evaluation methods: endpoint measures, kinematic analysis using a scale 

derived from Eshkol-Wachmann Movement Notation (EWMN), and gesture analysis. 

The variability in their reaching performances was explored in relation to motor ability, 

general motor activity, rehabilitation, and gross anatomical measures including brain 

weight, cortical thickness, Acetylcholinesterase density, number of cells in the motor 

cortex, and pyramidal tract size.  

Objective 2: Individual differences in skilled reaching for food emerged with practice  

 In this study, the development of skilled reaching during skill acquisition period 

was examined and learning curves for animals with good and poor reaching skills were 

assessed to investigate individual differences skill acquisition. Skilled reaching in rats 

was monitored from the beginning of the skill acquisition until it reached asymptote. 

Reaching performance was analyzed in terms of endpoint measures and kinematic 

analysis during several stages of the skill learning. This in depth investigation of the 

individual differences was designed to obtain an estimate on the rate of the skill 

acquisition in animals that end up displaying either poor or good reaching ability.  
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Objective 3: Individual differences related to brain changes induced by sensitization with 

amphetamine or nicotine 

Two experiments explored the effects of behavioral sensitization on the 

subsequent acquisition of skilled reaching. In the first experiment, animals were trained 

following a regime of sensitization with amphetamine. In the second experiment, animals 

were trained following a regime of sensitization with nicotine. Both drug treatments 

produce widespread structural changes in the brain and so provide a possible 

manipulation that might expose the neural origins of individual differences in motor 

performance.  

Objective 4: The relation between individual differences and motor cortex damage  

The final experiment examined the effects of small motor cortex lesions on the 

display of individual differences in skilled reaching. Rats were trained on the single-

pellet reaching task prior to the motor cortex damage. Then, they were received 

consistent small motor cortex lesions in the caudal region of the forelimb area on the 

contralateral side via pial strip procedure. The reaching abilities were assessed using 

endpoint measures and kinematic analysis for 3 weeks, which was started 24 hours after 

the surgery. Then brains were harvested, sectioned and stained to visualize the location of 

the lesions for measurements. The expectation was that rats would show different rates of 

recovery following damage to the motor cortex that were related to individual differences 

prior to the injuries.  
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CHAPTER 2 

 

Individual differences in skilled reaching for food related to increased number of 

gestures: Evidence for goal and habit learning of skilled reaching  

 

 

 

 

 

 

 

 

 

 

 

 

 

Modified from a paper published in Behavioral Neuroscience, 123(4): 863-874 by Gita 

Gholamrezaei and Ian Q. Whishaw in 2009. 
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Abstract 

Reaching for food with a forelimb by the rat (skilled reaching) is widely used as a model 

for neurobiological studies of motor function and for the study of abnormalities 

associated with acquired nervous system disorders in humans. Although many aspects of 

the motor act of reaching in rodents and primates are similar, success in reaching by 

rodents is distinctively variable but the source of this variability has not been examined 

previously. Long-Evans rats were video taped as they reached for food in two different 

reaching tasks and end-point measures of performance were examined in relation to 

variables previously associated with individual differences including: (1) testing 

procedures and rehabilitation, (2) movement ability, (3) general locomotor activity, and 

(4) cortical anatomy (brain weight, cortical thickness, Acetylcholinesterase density, 

number of neurons in motor cortex, pyramidal tract size). There were striking and 

consistent individual differences in performance but these were not related to the 

dependent measures related to training, movement ability, locomotor activity or anatomy. 

Success was negatively related to numbers of gestures (non-weight bearing movements 

of the reaching limb) used on a reach, however. The results are discussed in relation to 

the idea that individual differences in response strategy bias some rats to use a goal 

strategy and others to use a habit strategy for skilled reaching. 
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Introduction 

 Individual differences are universally expressed in animals (Darwin, 1859) and 

contribute to many different experimental investigations in behavioral neuroscience 

(Anastasi, 1965; Cooper, 1998). Individual differences are manifest even in relatively 

inbred strains of laboratory animals (Anderson, 2000; Mormede et al., 2002). 

Furthermore, they can be measured in all behaviors including learning and memory 

(Hooks et al., 1994; Topic et al., 2005), ageing (Rapp & Amaral, 1992), reactivity to 

novelty (Antoniou et al., 2008; Dellu, Piazza, Mayo, Le Moal, & Simon, 1996; Thiel, 

Muller, Huston, & Schwarting, 1999), response to reward (Flagel, Watson, Akil, & 

Robinson, 2008; Tonissaar, Herm, Rinken, & Harro, 2006), emotion (Clinton, Miller, 

Watson, & Akil, 2008; Ho, Eichendorff, & Schwarting, 2002) and scheduled induced 

behavior (Mittleman & Valenstein, 1985). Individual differences have also been used for 

the selection of animal strains as models for such psychiatric disorders as addiction 

(Ellenbroek, van der Kam, van der Elst, & Cools, 2005; Spanagel, 2000), attention 

deficit/hyperactivity (Viggiano, Vallone, Ruocco, & Sadile, 2003), emotion and learning 

(Blizard & Adams, 2002; Innis, 1992).   

Individual differences are also present in motor skills (Buitrago et al., 2004), 

including fine motor skills such as human reaching for and grasping objects (Wong & 

Whishaw, 2004). Anecdotal reports suggest that there are also individual differences in 

rat skilled reaching for food  (Peterson & Fracarol, 1938; Whishaw & Kolb, 2005). 

Individual differences in rat skilled reaching pose a special opportunity and challenge for 

behavioral neuroscience. Theoretically, individual differences can provide insights into 

the evolution (Nikkhah, Rosenthal, Hedrich, & Samii, 1998; VandenBerg, Hogg, Kleim, 
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& Whishaw, 2002; Whishaw, Gorny, Foroud, & Kleim, 2003), development (Greenough, 

Black, & Wallace, 1987; Kolb & Gibb, 1991), and learning (Hermer-Vazquez, Hermer-

Vazquez, & Chapin, 2007; Kleim, Lussnig, Schwarz, Comery, & Greenough, 1996; 

Nudo, 2006) of motor skills. Practically, as rat skilled reaching is widely used to model 

human neurological conditions, variability in the normal performance of the rats intrudes 

upon the interpretation of impairments produced by neurological manipulations (Adkins, 

Boychuk, Remple, & Kleim, 2006; Döbrössy & Dunnett, 2006; Girgis et al., 2007; Jones, 

Chu, Grande, & Gregory, 1999; Kleim, Jones, & Schallert, 2003; Kolb, Cioe, & 

Whishaw, 2000; MacLellan, Gyawali, & Colbourne, 2006; Teskey et al., 2007; Whishaw, 

Alaverdshvili, & Kolb, 2008). Surprisingly, although individual differences in skilled 

reaching manifest in many studies, their source has not been systematically examined. 

This deficiency is addressed in the present study. 

The present experiments had three objectives. First, because individual 

differences in rat skilled reaching have not been systematically described and related to 

task acquisition/rehabilitation, performance across trials and days of training is described. 

Long-Evans rats were used because performance of this strain in the skilled reaching task 

has been standardized in previous research (Whishaw et al., 2002). Second, because 

individual differences could potentially be caused by abnormalities in limb use, success 

was related to limb movement scores derived from frame-by-frame video movement 

assay as described with Eshkol-Wachmann Movement Notation (EWMN) (Eshkol & 

Wachmann, 1958), which describes movement elements (Whishaw & Pellis, 1990), and 

Laban Movement Analysis (LMA) (Laban, 1971), which describes gestures 

(Alaverdashvili, Foroud, Lim, & Whishaw, 2008; Foroud & Whishaw, 2006). Third, 
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because individual differences have previously been associated with a propensity to show 

heightened general activity (Davis, Clinton, Akil, & Becker, 2008; Piazza, Deroche, 

Rouge-Pont, & Le Moal, 1998), as well as gross anatomical features of the cortical motor 

system such as preexisting stroke or injury or abnormalities such as cortical warts 

(Sherman, Galaburda, & Geschwind, 1985), performance was related to locomotor 

activity and to anatomical measures of the cortical motor system including brain weight, 

motor cortical thickness, Acetylcholinesterase (AChE) intensity in motor cortex, number 

of cells in the caudal forelimb motor area, and pyramidal tract size (Juraska, 1991; Kolb 

& Whishaw, 1998; Greenough, Larson, & Withers, 1985).  

Method 

Subjects 

Twenty adult (120 days old, weight 256-334 g) female Long-Evans hooded rats 

raised at the University of Lethbridge vivarium were used. They were housed as pairs in 

standard Plexiglas cages in an animal colony room with a 12h light-dark cycle (lights on 

7:30-19:30h) with temperature maintained at 22 °C. The experiments were approved 

using the guidelines of the University of Lethbridge animal care committee and the 

Canadian Council for Animal Care, which complies with international standards for 

animal care.  

Feeding 

Rats were food deprived to 85-90% of their normal body weight prior to the 

beginning of experiments. Each rat received 15g of Purina rat chow once a day to 

maintain at that body weight. The rats also received 0.9g of 45mg dustless precision 

banana-flavored pellets (product #F0021, Bioserve Inc., Frenchtown, NJ, USA) for 3 
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days prior to initial training on the single pellet-reaching task to familiarize them with the 

taste and smell of the food. During training and the experiments, the banana-flavored 

pellets were served as targets in the reaching task. Each rat could receive up to 20 pellets 

per day depend on the animal’s reaching accuracy. 

Reaching apparatus 

Two different types of reaching apparatus were used in this study: single pellet 

reaching box and food tray box (Whishaw, O’Connor, & Dunnett, 1986; Whishaw & 

Pellis, 1990). 

Single pellet reaching box 

The single pellet-reaching box is made of transparent Plexiglas with 45 cm length, 

14 cm width, and 35 cm height. In the middle of the front wall, a 1 cm wide slit is 

extended from bottom of the box to a height of 15 cm. A 2 cm wide by 4 cm long shelf is 

attached to the outside of the front wall, 3 cm above the bottom of the box in front of the 

opening. There are two small indentations with 1.5 cm distance from the front wall 

aligned with each side of the slot to hold the food pellets. A food pellet in each 

indentation is accessible only to the contralateral hand, because it pronates medially to 

grasp. 

Food tray box 

The Food tray boxes measured 10 cm long, 18 cm wide, and 10 cm high. The 

tops, backs, and sides of the boxes are made of transparent Plexiglas. The front of the box 

is constructed of 2 mm bars that are separated by 9 mm distance. A 4 cm wide and 5 mm 

deep tray mounted in front of each box and extended for the length of the box, serves to 



 
 
 

65 

contain granules of food (20-40 mg chick feed). The floor of the boxes is made of metal 

grids, so that dropped chick food would not be accessible to a rat. 

Reach training 

Each animal was handled for 5 min on 5 consecutive days prior to the training and 

also each received twenty food pellets for 3 days before training began. Reach training 

was conducted in a different room from that used to house the animals. Training sessions 

took place every day at the same time.  

Single pellet reaching task 

Rats were trained in the single pellet-reaching task for 14 days. Training consisted 

of several steps:  

       (1) Apparatus habituation.    Naïve animals were placed in the reaching apparatus 

individually for 10 min sessions daily. The objective was to introduce the rat to the 

reaching box with pellets on the shelf and to have the rat retrieve the pellet by hand or 

tongue. Once a rat was successfully retrieving the pellets, by moving the food pellets 

further away on the shelf, it was encouraged to use a hand to retrieve the food.  

      (2) Establishing hand dominance.    To determine the dominant forelimb, initially 

pellets were presented in both indentations. Once a rat showed a clear preference for one 

hand, by making more reaching attempts with it, the food pellets were presented in the 

indentation contralateral to the dominant hand.  

      (3) Full sequence reaching.    To obtain discrete reaching trials, the rat’s behavior 

was shaped to leave the slot, walk to the rear wall of the box, turn, and approach the slot 

again for the next pellet. Thus, a rat was required to reposition its body for each reach. In 

addition, by withholding food on semi-randomly selected trials, rats were taught to sniff 
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the shelf for a pellet and to reach only if a pellet was present (Alaverdashvili, Foroud, 

Lim, & Whishaw, 2008). Single pellet reaching tests were performed for 5 consecutive 

days after the completion of the training sessions. Each testing sessions consisted of 20 

trials.  

Food tray task 

Rats were placed in the reaching boxes for 1 hour daily for 10 consecutive days 

for training. In this task, a rat had to reach through the bars, grasp the food granules and 

retract the hand with the food. If a rat dropped the food granules, the food was lost and 

the rat had to reach for food again. Food tray reaching performance was measured for 2 

consecutive days after the completion of the training sessions. A rat’s reaching 

performance was video recorded for 5 min in each testing sessions. 

Single pellet reach retraining    

  Rats were retrained in the single pellet-reaching task for ten more days and their 

reaching movements were recorded. Each session consisted of 20 trials. 

Open field 

  Locomotor activity was measured in a transparent Plexiglas box 42 cm length, 24 

cm width, and 30 cm height monitored by Versamax animal activity monitoring system 

(AccuScan Instruments, Inc.). Open field activity was measured for 10 min on five 

consecutive days. Total distance traveled was used as the dependent measure of activity. 

Video recording 

  Video records were made with a Sony 3CCD camcorder with a shutter speed of 

1000th of a second. Illumination for high shutter speed filming was provided by a cold 

light source (Whishaw & Pellis, 1990). Frame by frame analysis was done at 30 frames 
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per second using a Sony digital videocassette recorder DSR-II. Representative still 

frames were captured from digital video recordings with Final Cut Pro HD (V.4.5 

http://WWW.apple.com).  

Behavioral analysis 

Endpoint measures   

Reaching performances were analyzed in each trial for the number of attempts, 

first reach success, and total success (Whishaw & Kolb, 2005; Whishaw, Pellis, & Gorny, 

1992). 

        Trial.   On each trial the rat had to approach the slot from the back of the box, 

reach for the food pellet through the slot, and after attempting to gain the food, return to 

the rear of the box. Once a rat was trained, a trial was typically associated with the rat 

grasping the food or else knocked it off the shelf. 

       Attempt.   A reach attempt is defined as a forward movement of rat’s preferred 

forelimb through the slot in the front wall of the reaching box in an attempt to grasp and 

obtain the food. A reach attempt could be successful or not. All reach attempts were 

recorded for each trial and session.  

       First reach success.   First reach success is defined as a reach attempt in which 

the food pellet is grasped with the first advance of the forelimb and is consumed by the 

rat. First reach success percent was calculated by the following formula: 

 

First reach success (%) = (Number of first reach successes/ Number of trials) × 100 
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      Total success.    All reaches made by the rat that resulted in obtaining food with 

the hand, despite the number of reach attempts, are defined as successes. Total success 

percent was calculated by the following formula:  

Total success (%) = (Number of successes/ Number of trials) × 100 

Movement element analysis 

Movement element analysis was performed using a rating scale derived from 

Eshkol-Wachmann Movement Notation analysis of reaching (Eshkol & Wachmann, 

1958). This conceptual framework is based on the analysis of the relations and changes of 

relations between parts of the body. Ten reaching elements were analyzed and scored for 

first three successful reaches and a mean was calculated. Ten reaching elements were 

defined as: 

    (1).  Digits to the midline.    The reaching limb is lifted from the floor so that the tips of 

the digits are aligned with the midline of the body. 

    (2).  Digits flexed.   As the limb is lifted, the digits are flexed and closed, the hand is 

supinated and the wrist is partially flexed. 

    (3). Elbow in.   The hand and elbow are carried inward to the midline of the body. 

   (4).  Advance.   The limb is advanced directly through the slot toward the food pellet. 

   (5).  Digits extend.   During the advance, the digits extend toward the food pellet. 

  (6). Arpeggio.   When the hand is over the food pellet, it pronates from digit 5 through 

to digit 2, and at the same time the digits open. 

     (7). Grasp.   The digits close and flex over the food pellet, with the hand remaining in 

place, and the wrist is slightly extended to lift the food. 

    (8).  Supination I.   As the forelimb is withdrawn, the hand supinates by almost 90°.  
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    (9).  Supination II.   Once the hand is withdrawn from the slot to the mouth, it 

supinates further by about 45° to place the food pellet in the mouth. 

   (10). Release.   The mouth contacts the hand and the digits open to release the food 

pellet. 

      Each of the 10 reaching elements was rated on a three-point scale to obtain 

movement scores. A score of “0” was given for a normal movement, a score of “0.5” was 

given for abnormal movement, and a score of “1” was given for the absence of the 

movement (Piecharka, Kleim, & Whishaw, 2005; Whishaw, Pellis, Gorny, Kolb, & 

Tetzlaff, 1993). 

Gesture analysis 

Gesture analysis was performed using the “Expressive Reaching Scale” derived 

from the Laban Movement analysis Notations of reaching. This rating scale provides a 

method for quantifying the non-kinematic features of movement (Foroud & Whishaw, 

2006). In ERS, a reaching movement consists of four gestures including: advance, grasp, 

withdrawal, and release (Figure 2.1). A gesture is defined as one action made by one limb 

or one limb segment. Four reaching gestures were defined as: 

     (1). Advance.   The limb is advanced toward the food pellet. 

     (2). Grasp.   The digits are closed over the food or near the food pellet. 

     (3). Withdraw.   The hand is withdrawn toward the mouth. 

    (4).  Release.   The digits are flexed and the limb is moved away from the mouth. 

The last testing session was used for determining the number of gestures. 

Gestures were scored on each trip made by a rat to the front of the reaching box. A score
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Figure 2.1. The start and finish of each of the four gestures: advance, grasp, withdrawal, 
and release. 
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of  “1” was given for each gesture. A successful reach required a minimum of four 

gestures. A failed reach was associated with a minimum of three gestures (withdrawal to 

the mouth was not observed for missed reaches). Both successful and failed reaches could 

be associated with many additional gestures, however (Alaverdashvili, Foroud, Lim, & 

Whishaw, 2008). 

Histology 

      At the completion of the behavioral experiments, rats were euthanized with an 

overdose of sodium pentobarbital and perfused transcardially with 0.9% phosphate 

buffered saline followed by 4% phosphate buffered paraformaldehyde. The brains were 

removed from the skull, weighed, and then post-fixed and cryoprotected in a 30% sucrose 

and 4% paraformaldehyde solution. The brains were then cut coronally in 40 µm sections 

on a freezing microtome. Twelve sets of slices were prepared. Two sets of slices were 

stained with Cresyl violet stain to determine cortical thickness and pyramidal tract size, 

and two sets of slices were stained for Acetylcholinesterase (AChE) to determine the 

density of the AChE activity in the motor cortex. Two additional sets of slices were 

stained with Fluorescent Nissl stain for the stereological analysis. Four brains (two brains 

from each group) had to be removed from the anatomical analysis because of inadequate 

tissue preparation. 

Cortical thickness 

      Cortical thickness was measured by projecting the cresyl violet-stained sections 

on a Zeiss DL 1 POL petrographic projector set at a 17.5X magnification. Three 

measurements (medial, central, and lateral) were taken from the edge of the white matter 

to the outer edge of the cortex using a transparent millimeter ruler for each of the 
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following planes; plane 1, first section with caudate putamen visible; plane 2, center of 

anterior commissure; plane 3, first section with a visible hippocampus; plane 4, posterior 

commissure; plane 5, most posterior section with a visible hippocampus. Mean thickness 

at each plane was calculated by averaging across each of the three measurement 

locations. 

AChE densitometry 

      Digital images were captured from six different coronal sections stained with 

AChE stain throughout the motor cortex. An image analysis program (Scion Image 6.21, 

NIH, USA) was used to estimate the density of the AChE activity in the layer V of the 

motor cortex with the sample size of 0.16 × 0.16 inches. Two measures were taken from 

each hemisphere, one measure in M1 and the other in M2 (Zilles, 1985). Mean AChE 

density at each plane was calculated by averaging those measures. 

Pyramidal tract size 

      Digital images were captured from three coronal sections (6 sections apart) 

stained with Cresyl violet stain from the largest part of pyramidal tract and the size of 

pyramidal tract was measured using an image analysis program (Scion Image 6.21, NIH, 

USA) and the mean was calculated by averaging across the three measures.  

Number of cells 

      Two sets of brain sections (every sixth section) stained with fluorescent Nissl 

stain were used to quantify the total number of cells in caudal forelimb motor area using 

optical fractionator method with Stereo Investigator 7 software program (mbf Bioscience, 

MicroBright Field, Inc. Vermont, USA). A Zeiss Axio Imager M1 microscope equipped 

with a microcator and a motorized x-y specimen stage were used. A video camera 
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(Sensicam QE, the Cooke corporation, Germany) was mounted on top of the microscope 

and connected to a computer. 

      The initial delineations of the region in both hemispheres were performed using a 

2.5X objective (Zeiss, EC Plan – NEO) and the sections were analyzed using 100X oil 

immersion objective (Zeiss, Plan Apo 1.40NA). Counts of cells were made at regular pre 

determined distances (between bregma and 2 mm anterior) within subdivisions with 50-

55 sampling sites in each hemisphere. After delineation of each sampling side, 2D 

unbiased counting frames (Gundersen, Jensen, Kieu, & Nielsen, 1999) with an area of 

200×200 µm were superimposed on the field of view. The thickness of the tissue was 

selected (32 µm) and 10 µm of guard height were considered for upper and lower surface 

of the section and cells in 12 µm (disector height) between guard zones were counted. 

The total number of cells (N) in caudal forelimb area in each hemisphere was estimated: 

 
        
      In the above formula, ∑Q is the total number of cells counted, ssf is the section 

sampling fraction, asf is the area sampling fraction, and hsf is the height sampling 

fraction.  

Statistical analysis 

The results were subject to multivariate and repeated measures analysis of 

variance (ANOVA). Comparisons of means between groups were performed using 

unpaired t-tests. To test for correlations between behavioral variables, Pearson’s 

correlation coefficient was applied. In all statistical analyses, a p-value of less than or 
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equal to 0.05 was considered significant. All results were presented as mean + the 

standard error of the mean (SEM). 

Results 

      Reaching performances were analyzed by trials (a trial was defined as an 

approach and reach through the slot for the food pellet, withdrawal of the limb, 

and return to the back of the box). 

End point measures 

       A summary of three end point measures of skilled reaching, total success, first 

reach success and number of attempts are shown for each rat in Figure 2.2. The results 

are order on the basis of success scores. The variation of total reaching success was high 

between individual animals, with the highest score of 86% and the lowest score of 30%, 

representing an almost three-fold difference (Figure 2.2.A). Animals with high total 

success score also had high first reach scores (Figure 2.2.B) and a lower number of 

attempts (Figure 2.2.C).   

The correlation between total success and first reach success was significant, r 

(19) = 0.85, p < 0.01 (Figure 2.3.A). In addition, the correlation between success scores 

and number of attempts were significant, (total success: r (19) = -0.58, p < 0.01 (Figure 

2.3.B); first reach success: r (19) = -0.81, p <0.01 (Figure 2.3.C).  

Because each testing session consisted of 20 trials give on each of 5 days, 

correlational analysis was performed between each endpoint measure and trial number. 

Overall, the performance across trials was similar and there was no significant correlation 

between total success and trial number (Figure 2.4.A). Nevertheless, there was a 

significant positive correlation between first success and trial numbers, r (19) = 0.48, p < 
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Figure 2.2. Individual skilled reaching performance (mean and standard error over 5 
days).  (A) total reaching success, (B) first reach success, and (C) number of attempts. 
Note: The rats are ordered by success scores. 
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Figure 2.3. Correlation between: (A) success and first reach success, (B) success and the 
number of attempts, and (C) first reach success and the number of attempts. 
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Figure 2.4. Trial-by-trial performance (mean of 5 days and correlation): (A) total 
success, (B) first reach success, and (C) number of attempts. Graphs represent correlation 
between performance and the trial number. 
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0.05 (Figure 2.4.B), and also a negative significant correlation between attempts and trial 

numbers, r (19) = -0.49, p < 0.05 (Figure 2.4.C). 

Thus, although each rat maintained its relative performance with respect to other 

rats across trials, there was a tendency for the rats to make more first trial success across 

each test session, which reduced the number of attempts. 

 

Movement elements 

       The analysis of data from EWMN rating scale indicated no significant difference 

between movement elements in rats reaching movements, F (1,18) = 1.43, p > 0.05. In 

general, the rats received scores of close to “0” for all movement elements, which is 

typical of a normal reach. Consequently, there were no significant correlations between 

the rats EWMN mean score and the end point measures (success: r (19) = 0.25, p > 0.05; 

first reach success:  r (19) = 0.23, p > 0.05; attempts: r (19) = - 0.22, p > 0.05). 

 

Gesture analysis 

       Gesture analysis and correlations showed that the number of gestures used in a 

trial was significantly related to reaching success. Gestures including advance, grasp, and 

release are negatively correlated with the success, (advance: r (19) = -0.52, p < 0.05 

(Figure 2.5.A); grasp: r (19) = -0.47, p < 0.05 (Figure 2.5.B); and release: r (19) = -0.50, 

p < 0.05 (Figure 2.5.D). A positive correlation was found between the number of 

withdrawal and success percentage, r (19) = 0.91, p < 0.01 (Figure 2.5.C). Stated 

differently, rats displaying poor success made more of the first three gestures on each
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Figure 2.5. Correlation between incidence of gesture and total success: (A) advance, (B) 
grasp, (C) withdrawal, and (D) release. 
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reach, and because the obtained food less often, therefore made fewer withdrawal 

gestures. 

Tray reaching task 

      The performance of rats on the tray-reaching task is shown in Figure 2.6. No 

relationship was found between reaching success and number of attempts. During 

training days, 30% of the animals (6 out of 20 rats) switched their forelimb preference 

and they used the single pellet task non-dominant hand for reaching.  

No correlation was found between reaching success in tray task and single pellet 

task, r (19) = -0.01, p > 0.05 (Figure 2.7). 

Single pellet retraining 

Following tray task training, the rats were retrained in the single pellet-reaching 

task for 10 days. Those rats that had changed their forelimb preference in the tray task 

switched to the limb that they originally used in the single pellet task. Their success 

scores were very similar to their original performance on the task; correlations between 

the results from first training and the retraining in the single pellet task, r (19) = 0.50, p < 

0.05. 

Group differences 

  To relate activity and histological measures to reach success, the rats were divided 

into two groups based on reaching success scores in the original testing, thus giving a 

group of rats with higher success scores (HS) and a group of rats with lower success 

scores (LS). A repeated measure ANOVA revealed a significant difference in first reach 

success between HS and LS groups, F (1,18) = 3.45, p < 0.05 (Figure 2.8). 
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Figure 2.6. Tray task performance of individual rats (mean + SEM).  (A) total reaching 
success, (B) first reach success, and (C) number of attempts. Note: Rats are ordered in 
terms of success in single pellet reaching and also rats with changed limb preference from 
right to left are shown with less dark bars and from left to right are shown with darker 
bars. 
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Figure 2.7. Correlation between total success on the single pellet and the tray task. 
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Figure 2.8. First reach success (mean) with additional training on the single pellet-
reaching task in higher success (HS) and lower success (LS) groups. P = previous score at 
the original testing. Note: Uniform differences between groups. 
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Open field 

       Total distance traveled by rats in the open field apparatus were measured for five 

days and a comparison of total distance traveled between HS and LS groups did not 

reveal a significant difference, F (1,18) = 0.12, p > 0.05 (Figure 2.9). Open-field 

locomotion was not correlated with the end point measures (Success: r (19) = - 0.24, p > 

0.05; First reach success: r (19) = -0.125, p > 0.05; Attempts: r (19) = - 0.008, p > 0.05).  

Histology 

       Mean and p values for the neurobiological measures for HS and LS groups are 

shown in Table 2.1. A comparison of the neurobiological measures including, brain 

weight, cortical thickness, AChE activity of the motor cortex, pyramidal tract size and 

number of cells did not reveal a significant difference between groups. There was a 

relation between performance and hemispheric density of AChE, which was attributable 

to limb preference in that the AChE density in the ipsilateral hemisphere was higher than 

that in the contralateral hemisphere. A pairwise comparisons between groups based on 

handedness revealed a significant effect of AChE density for the ipsilateral hemisphere F 

(1,14) = 4.96, p < 0.05, but not in the contralateral hemisphere, F (1,14) = 0.013, p > 0.05 

to the preferred limb. 

Discussion 

       The objective of the present study was to investigate individual differences in a 

skilled motor ability in adult rats and to investigate possible relations to other behavioral 

characteristics and neurobiological differences in their brains. There was variability in the 

skilled reaching performance of the rats, with the most successful animal obtaining end 
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Figure 2.9. Distance traveled (mean + SEM) by higher success (HS) and lower success 
(LS) groups over 5 test days in an open field. 
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Table 2.1. Neurobiological measures in higher success (HS) and lower success (LS) 
groups.  
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point scores nearly three times higher than the least successful rat. Large individual 

differences were not related to training and were not ameliorated by “rehabilitation”. 

Performance on skilled reaching did not correlate with measures of locomotor activity, 

nor were there obvious brain differences between high and low performing rats as 

measured by inspection of the brains, brain weight, measures of motor cortex thickness, 

cell numbers, pyramidal tract size, or AChE density. There were also no differences in 

the way that elements of the reaching movement were performed by high performing vs. 

low performing rats. Nevertheless, there was a relation between numbers of gestures 

associated with a reach and reaching success. Because gestures intrude into the act of 

limb transport, they may also impede accuracy. This result suggests that individual 

differences in skilled reaching are importantly influenced by the learning style of the 

subjects with animals prone to use stimulus-response (S-R) habits versus response 

orientation (R-O) strategies more likely to acquire disruptive reaching behavior. 

The present experiment presents three lines of behavioral evidence to support the 

idea that the individual differences displayed by the rats on skilled reaching are 

meaningful. First, the rats were tested on a standard task in which reliable measures of 

performance could be obtained on each trial. It is also a task that has been widely used 

and one in which individual differences is readily observable (Metz, Jadavji, & Smith, 

2005; Whishaw, 2000). The design of the experiment was also one in which the rats were 

tested repeatedly and it was confirmed that individual differences occurred on each 

iteration of the task both within days and across days and were consistent across the 

individual trials in a testing session. Second, a number of different measures of 

performance confirmed that the differences displayed by individual rats were reliable. 
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Measures of overall success, single reach success, and number of attempts were highly 

correlated. These measures have been used to define learning in skilled reaching 

(Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993) and to identify brain correlates of 

learning (Anderson, Eckburg, & Relucio, 2002; Kleim, Lussnig, Schwarz, Comery, & 

Greenough, 1996; Rosenzweig & Bennett, 1996; Withers & Greenough, 1989). Third, 

neither subjecting the rats to “rehabilitation” on a simpler tray reaching task nor 

overtraining had a significant effect on the relative performance of the rats.  

There are a number of potential explanations of the individual differences 

documented in the present study, including differences in training, differences in more 

motor skill, or gross neural abnormalities. Each of these possibilities was examined in the 

design of the experiments. First, the possibility that the observed individual differences 

were simply due to training was examined in a number of ways. The initial training of the 

animals was extensive and all animals were trained until their performance reached 

asymptote. The animals were also given training on a different, simpler, tray-reaching 

task that has previously proved useful in the “rehabilitation” of brain-injured animals 

(Vergara-Aragon, Gonzalez, & Whishaw, 2003). Rehabilitation and subsequent over 

training did result in slight group improvement, but it did not change the distribution of 

individual differences. It is noteworthy that individual differences were not as apparent in 

the tray-reaching task, but this may be explained by the fact that the task is simple and 

produces quite uniform group performance. It is also noteworthy that some rats even 

reached for food with a different forelimb in the two tasks, consistent with previous 

reports that the limb preference of individual rats is not consistent across different 

forelimb-related tasks (Miklyaeva, Ioffe, & Kulikov, 1991). Thus, taken together, the 
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procedures used in the present study appear to insure that individual differences are not 

due to inadequate training.  

Second, there are several reports that animals can display developmental 

abnormalities such as cortical warts (Sherman, Galaburda, & Geschwind, 1985; 

Threlkeld et al., 2007), abnormal cortical development (Goodman & Gilbert, 2007; 

Schwartzkroin, Roper, & Wenzel, 2004), or have suffered stroke, tumors, or other brain 

injury (unpublished observations). Thus, there was concern that at least some of poor 

performing rats may have been suffering from preexisting nervous system abnormalities. 

Both the behavior measures and the anatomical measures argue against these 

possibilities. An examination of the movements used by the rats in skilled reaching using 

a movement element analysis based on EWMN showed that all of the rats used normal 

movements. Were differences in performance related to preexisting brain abnormalities, 

it would be expected that they would display abnormalities in the rotational movement of 

the limb and in use of the digits as these measures have proved sensitive to many kinds of 

brain injury including injury to the motor cortex (Alaverdashvili, Foroud, Lim, & 

Whishaw, 2008; Erickson, Gharbawie, & Whishaw, 2007), basal ganglia (Gharbawie, 

Auer, & Whishaw, 2006; Whishaw, Zeeb, Erickson, & McDonald, 2007), red nucleus 

(Whishaw & Gorny, 1996; Whishaw, Gorny, & Sarna, 1998) and spinal cord (McKenna 

& Whishaw,1999). The anatomical measures were also consistent with the conclusion 

that the observed individual differences were not related to gross brain abnormalities. In 

general, measures that have been found to be sensitive to brain injury (Jones, Chu, 

Grande, & Gregory, 1999; Kleim & Jones, 2008; Kolb, 2003; Schallert, Kozlowski, 

Humm, & Cocke, 1997) including of brain weight, cortical thickness, pyramidal tract 
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size, motor cortex cell number, and AChE density revealed no obvious differences 

between rats and no differences that correlated with the behavioral measures. In future 

work other neurochemical differences in the motor system could be investigated and 

related to individual differences (Kleim, Chan, Pringle, Schallert, Procaccio, Jimenez, 

Cramer, 2006). 

One behavioral difference that was related to individual differences in skilled 

reaching success was the measure of gestures. A gesture is a nonweight bearing 

movement that appears to have the characteristic of a fundamental movement primitive 

(Foroud & Whishaw, 2006). Based on the gesture analysis of reaching movement using 

LMA, a normal reaching movement consists of four gestures including advance of the 

limb toward the food, grasp by flexing and closing the digits, hand withdrawal toward the 

mouth, and release of the limb to its starting position. Each of these gestures is separated 

by a slight pause and changes in the movement direction and speed (Alaverdashvili, 

Foroud, Lim, & Whishaw, 2008).  

      These gestures are similar to the movement primitives identified by relatively 

long duration electrical stimulation of the motor cortex (Graziano, 2006; Ramanathan, 

Conner, & Tuszynski, 2006) and to elements in the development of reaching (von 

Hofsten & Rönnqvist, 1988; Wallace & Whishaw, 2003). Typically in a successful reach, 

each of these gestures is performed once in a complete reach sequence (advance-grasp-

withdrawal-release). Sometimes the sequence is aborted at the transition points between 

gestures and this may result in the repetition of a gesture. For instance, on an 

unsuccessful trial, a rat might repeat the advance gesture to bring its hand to the vicinity 

of the food and/or grasp gestures if the hand did not contact the food. The failure in the 
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accuracy of a reaching movement does not seem to be due to the abnormality or absence 

of any gestures. Results from the analysis of movement elements using EWMN indicated 

that the reaching elements and thus the gestures were normal. The rats with highest 

success scores made few unnecessary gestures while rats with poorer scores made many 

more gestures on each reach. For the present study, analysis of behavior began once 

preliminary training was complete. In future work it would be interesting to analyze 

behavior during pretraining. Such an analysis might reveal why and how some rats 

achieved an efficient reaching strategy whilst other rats developed excessive gestures. 

Excessive gestures may be related to poor performance in two ways. They may 

signify that a rat has developed an inefficient strategy for obtaining food in that it has a 

poor approach, a poor posture, or a poor estimate of the location of the food and 

consequently is inaccurate in its reach. Gestures may also interfere with success directly. 

For example, a rat that makes repetitive grasping movements at the location of a food 

pellet increases its chance of knocking the food off the shelf and so encountering a failure 

on that trial. As an example, the intrusion of excessive gestures into the act of skilled 

reaching may be analogous to the intrusion of excessive syllables in speech to so causing 

stuttering (Mulligan, Anderson, Jones, Williams, & Donaldson, 2003; Prasse & Kikano, 

2008). Thus, each movement, although in and of itself quite normal, nevertheless impairs 

execution and success.  

One explanation for the development of excessive gestures by some of the rats is 

that they have developed as stimulus-response (S-R) approach to the task that makes 

them prone to develop motor habits inconsistent with optimal performance. Rats that are 

successful reachers may rely on a goal strategy, e.g., direct the hand to an appropriate 
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spatial location. It is illustrative that Dickinson (1985) has described an example of 

performance decline following extensive training in which animals display a decreased 

response to a conditioned cue in favor of greater reliance on motor habit. According to 

this explanation, for some rats training with occasional successes serves to encourage 

them to engage in repetitive gestures rather than using a goal-directed movement.  

This suggestion is consistent with other reports that there are individual 

differences in the strategies selected by rats in behavioral testing situations. Some 

animals are described as sign-trackers (they respond to a stimulus that signals reward) 

whereas others are described as goal-trackers (they respond to the location at which they 

get a reward (Boakes, 1977; Robinson & Flagel, 2009). Such differential tendencies may 

bias rats into those that favor a correct reach directed to the spatial location of the food 

vs. those that make repetitive movements until one is successful. It is interesting that an 

increase in gesture number also follows injury to the motor cortex by stroke in both rats 

(Alaverdashvili, Foroud, Lim, & Whishaw, 2008) and humans (Cirstea & Levin, 2000). 

Perhaps rats with motor cortex injury are less able to use a goal-oriented strategy and thus 

become more dependent upon a habit strategy. 

There are features of the skilled reaching task that could serve to encourage a 

habit strategy on the part of rats. Rats do not monitor their reach visually as do primates 

(de Bruin, Sacrey, Brown, Doan, & Whishaw, 2008) but must learn to detect and localize 

the food using olfaction (Whishaw & Tomie, 1989). As they reach, they must remove 

their nose away from its pre reach orientation and so must learn to use a preprogrammed 

reach trajectory. It is possible that some rats hit on a goal strategy of taking care to 

directing their reaches to the food pellet location whereas other rats learn a habit strategy. 
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Although a habit strategy may increase missing the food, repeated movements could 

nevertheless result in sufficient reinforcement to achieve and maintain a habit response. 

Thus, depending upon the strategy that is selected, some rats become good performers in 

that they are successful with most reaches whereas others rely on gesture repetition, 

which makes them more prone to making errors.   

In summary, rats display vast individual differences in skilled movement success 

in reaching for food. The differences are not easily explained by training procedures, 

general propensity to be active, or gross brain differences. It is suggested that individual 

differences in skilled reaching could derive from a particular strategy learned to obtain 

the food; with a goal oriented strategy likely to result in an accurate successful reach and 

a response oriented strategy resulting in repetitive movements that are less often 

successful. The strategy that is adopted by the latter rats is likely similar to a strategy of 

“learned baduse” described for rats that are impaired in skilled reaching due to motor 

cortex stroke (Alaverdashvili, Foroud, Lim, & Whishaw, 2008).  
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CHAPTER 3 

 

Individual differences in skilled reaching for food emerges with practice  
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Abstract 

The motor aspect of skilled reaching is similar in rodents and primates, but success in 

reaching by rodents is distinctively variable. Although, the individual differences in 

skilled reaching have been described after the skill acquisition in previous study, the 

emergence of the variability during initial training period has not been examined. Long-

Evans rats were video taped as they learned to reach for single food pellets from a shelf. 

Frame by frame video analysis of the development of skilled reaching showed that the 

stages of the acquisition of the skill were similar in all animals. Individual differences in 

skilled reaching performance emerged after three days of training, well before the 

acquisition of the task was completed.  The development of individual differences in 

skilled reaching during initial acquisition of the task are discussed in relation to the role 

of extensive practice in goal and habit learning of skilled reaching.         
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Introduction 

Learning a new motor skill is associated with an effortful control of the behavior 

at the beginning of the acquisition and then with training becomes more automatic 

(James, 1890). Therefore to learn a new task such as skilled reaching for food, the 

demands are different during initial and later learning. After it is well practiced, the task 

is performed with relatively less effort. Characteristically, a performance is improved 

most rapidly across the first few sessions of training, with less improvement as 

performance approaches a plateau (Kleim, Lussnig, Schwarz, Comery, & Greenough, 

1996; Schmidt & Lee, 2005).  

Skilled forelimb reaching for food in rodents (Whishaw & Pellis, 1990) is widely 

used as a model for neurobiological studies of motor function (Whishaw, Alaverdashvili, 

& Kolb, 2008; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993), motor skill learning 

(Greenough, Larson, & Withers, 1985; Kleim, Barbay, & Nudo, 1998; Remple, Bruneau, 

VandenBerg, Goertzen, & Kleim, 2001), and recovery from brain injuries 

(Alaverdashvili, Foroud, Lim, & Whishaw, 2008; Gharbawie & Whishaw, 2006; 

Whishaw & Gorny, 1996). Although the motor act of reaching in rats is similar with 

respect to movement elements, there is a distinctive variability once the task is learned. In 

chapter 2, the variability in skilled reaching performance of the adult rats was unchanged 

by overtraining and was related to the number of gestures (Gholamrezaei & Whishaw, 

2009). The purpose of the present study was to examine and describe the details of 

individual differences between reaching performance of the rats during the acquisition 

period of the task.  
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In the present study, rats were trained on a single pellet-reaching task and their 

improvement in skilled reaching performance was analyzed and compared within and 

between training sessions. In order to compare motor task acquisition between two 

groups of rats with good and poor reaching skills, reaching behaviors in all training 

sessions were video recorded for subsequent frame-by-frame study.  

 

Method 

Subjects 

Twenty-one male Long-Evans hooded rats, 120 days old and weighing 420-550 g 

at the beginning of the experiment from the University of Lethbridge vivarium were used. 

They were housed as pairs in standard Plexiglas cages (36 cm long, 20 cm wide, and 21 

cm deep) with sawdust bedding in an animal colony room with a 12h light-dark cycle 

(lights on 7:30-19:30h) with temperature maintained at 22 °C. The experiment was 

conducted in compliance with the guidelines of the University of Lethbridge animal care 

committee and the Canadian Council for Animal Care, which complies with international 

standards for animal care.  

Feeding 

Prior to initial training, the rats were gradually food deprived to 90-95% of their 

normal body weight. Each rat received 20g of Purina rat chow once a day to maintain at 

that body weight. The rats also received 0.9g of 45mg dustless precision banana-flavored 

pellets (product #F0021, Bioserve Inc., Frenchtown, NJ, USA) for 3 days prior to initial 

training on the single pellet-reaching task to familiarize them with the taste and smell of 

the food. During training and the experiment, the banana-flavored pellets were served as 
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targets in the reaching task. Each rat could receive up to 20 pellets per day depend on the 

animal’s reaching accuracy. 

Single pellet reaching apparatus 

The single pellet-reaching box was made of transparent Plexiglas with 45 cm 

length, 14 cm width, and 35 cm height (Whishaw & Pellis, 1990). In the middle of the 

front wall, a 1 cm wide slit was extended from bottom of the box to a height of 15 cm. A 

2 cm wide by 4 cm long shelf was attached to the outside of the front wall, 3 cm above 

the bottom of the box in front of the opening. There were two small indentations with 1.5 

cm distance from the front wall aligned with each side of the slot to hold the food pellets. 

A food pellet in each indentation was accessible to the contralateral hand, because it 

pronates medially to grasp. 

Single pellet reach training 

Each animal was handled for 5 min on 5 consecutive days prior to the training and 

also each received twenty food pellets for 3 days before training began. Reach training 

was conducted in a different room from that used to house the animals. Training sessions 

took place every day at the same time. Rats were trained in the single pellet-reaching task 

for 18 days. All sessions were video recorded for the behavioral analysis. Training 

consisted of several steps, including the following:  

       (1) Apparatus habituation.    Naïve animals were placed in the reaching apparatus 

individually for 10 min sessions daily. The objective was to introduce the rat to the 

reaching box with pellets on the shelf and to have the rat retrieve the pellet by hand or 

tongue. Once a rat was successfully retrieving the pellets, by moving the food pellets 

further away on the shelf, it was encouraged to use a hand to retrieve the food.  
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      (2) Establishing hand dominance.    To determine the dominant hand, initially 

pellets were presented in both indentations. Once a rat showed a clear preference for one 

hand, by making more reaching attempts with it, the food pellets were presented in the 

indentation contralateral to the dominant forelimb for three minutes of continuous 

reaching. 

      (3) Full sequence reaching. Full sequence reach training started after three 

minutes of continuous reaching. To obtain discrete reaching trials, a rat’s behavior was 

shaped to leave the slot, walk to the rear wall of the box, turn, and approach the slot again 

for the next pellet. Thus, a rat was required to reposition its body for each reach. In 

addition, by withholding food on semi-randomly selected trials, rats were taught to sniff 

the shelf for a pellet and to reach only if a pellet was present (Alaverdashvili, Foroud, 

Lim, & Whishaw, 2008). Rats were trained in full sequence reaching for 14 days in 

which each training session consisted of 10 minutes or 20 trials. 

Video recording 

  Skilled reach training sessions were video recorded for behavioral analysis. Video 

records were made with a Sony 3CCD camcorder with a shutter speed of 1000th of a 

second. Illumination for high shutter speed filming was provided by a cold light source 

(Whishaw & Pellis, 1990). Frame by frame analysis was done at 30 frames per second 

using a Sony digital videocassette recorder DSR-II.  

Behavioral analysis 

 The behavioral analyses were made for all training sessions as following: 

Early training 
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First training session began when a rat was placed in the reaching box and ended 

after 10 min with removing the rat out of the box. During initial training, rats learned how 

to orient the food pellet, advance their forelimb through the slot and grasp the food, and 

withdraw their hand to release the food pellet into their mouth. At the beginning of 

training, rats spent some time for familiarization to the box and the situation, which was 

used as the measures under time category. These measures were as follows:  

1. Time spent before consuming food pellets at the start of the training 

 The rats spent different amounts of time exploring when first introduced to the 

reaching box. The amount of time spent before consuming food pellets was used for the 

first measure of the performance.  

2. Time spent before making the first reach attempt 

 Time spent before first reach attempt was calculated.  

3. Time spent before first successful reach 

 This measure calculated by adding the amounts of time spent from the beginning 

of the first training session until a rat made its first successful reach. 

Continuous reaching and full sequence training   

Reaching performance was analyzed for the endpoint measures such as the 

number of attempts and success percentage (Whishaw, 2005; Whishaw, Dringenberg, & 

Pellis, 1992). The reaching performances during continuous reaching and the full 

sequence training were investigated as follows:  

 Attempt.   A reach attempt is defined as a forward movement of rat’s preferred forelimb 

through the slot to grasp and obtain the food. Two forms of attempt can be made during a 

reach performance. One is a form of reaching attempt that includes aiming movement, 
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which usually starts with digits flexed inside of the box. Another form is the reaching 

attempt that does not include aiming movement, which might be named as tapping 

attempts. This form of attempt usually starts with digits extend outside of the reaching 

box. A reach attempt could be successful or not. During training sessions, rats learned 

how to reach for a food pellet through trial and error. For example, rats made errors by 

reaching in the absence of a food pellet on the shelf (when a food pellet had been 

knocked off the shelf by inaccurate attempts). Attempts were counted as follows for all 

training sessions and calculated per trial:  

1. Number of new aimed attempts 

 The reaching attempts with new aiming movement usually started with digits 

flexed inside of the box and advance of the limb through the slot toward the food pellet. 

This form of attempt could be successful or unsuccessful. 

2. Number of tapping attempts 

The tapping attempts were defined as repeating attempts for grasping a food pellet 

following an advance of the limb through the slot outside of the box, which had led to an 

unsuccessful grasp.  

3. Number of attempts toward a food pellet 

  The number of attempts was counted when the food pellet was on the shelf.  

4. Number of attempt errors 

 Attempt errors were the reaching attempts in the absence of the food pellet on the 

shelf. Attempt errors mostly happened during initial days of training, and sometimes after 

the food pellets had been knocked off the shelf by inaccurate attempts.  

5. Total number of attempts 
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Total number of attempts was the overall number of attempts performed during 

reaching.  

 

Successful reaches. Reaches that resulted in grasping the food pellet and obtaining the 

food pellet by releasing it into the mouth were defined as successful reaches. Successful 

reaches were recorded for each trial and session as the following: 

1. First reach success 

 A reach attempt in which the food pellet was successfully grasped with the first 

advances of the limb and was consumed by the rat. First reach success percent was 

calculated by the following formula: 

First reach success (%) = (Number of first reach successes/ Number of trials) × 100 

2. Success with new aimed attempts 

 The successful reaches resulted from two or more new aimed attempts per trial 

were counted and the percentage were calculated by the following formula: 

Successful reaches with new aimed attempts (%) = (Number of Successful reaches with 

new aimed attempts / Number of trials) × 100 

3. Successful reaches made with tapping attempts 

 The successful reaches resulted from tapping attempts originated from the same 

aiming movement were counted and the percentage was calculated by the following 

formula: 

Successful reaches with tapping attempts (%) = (Number of Successful reaches with 

tapping attempts / Number of trials) × 100 

4. Total success 
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 All reaches made by the rat that resulted in grasping the food pellet with the hand 

and obtaining the food pellet by releasing it into the mouth, despite the number of reach 

attempts, is defined as total success. Total success percent was calculated by the 

following formula:  

Total success (%) = (Number of successes/ Number of trials) × 100 

 

Other measures. Some other measures were made during full sequence training 

including number of missed trials, trial time, and time spent for making a trip.  

1. Number of missed trials 

 When an animal returned to the front of the box for the next trial but did not reach 

for a food pellet was considered as a missed trial. The percentage of missed trials was 

calculated by the following formula:  

Missed trials (%) = (Number of missed trials/ Number of trials) × 100 

2. Trial time  

On each trial the rat had to approach the slot from the back of the box, reach for 

the food pellet through the slot, and after attempting to gain the food, return to the rear of 

the box. Once a rat was trained, a trial was typically associated with the rat grasping the 

food or else knocked it off the shelf. Trial time for each training session was measured by 

dividing the total amount of time spent in a session by the number of the trials completed 

in that training session.   

3. Trip time (time spent for going back of the box and returning to the front)  

 After completion of a trial, rats had to make a trip by going to the rear of the box 

and returning back to the front for the next trial. The time spent by each rat for 
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completing a trip were measured for first 5 trials of each training session and then 

averaged.  

Statistical analysis 

The animals were divided into two groups according to their single reach success 

scores during last five days of training. Animals above the median of this rank order were 

assigned to the good reacher (GR) subgroup, whereas the animals below the median were 

assigned to the poor reacher (PR) subgroup. The behavioral data obtained from single 

pellet reaching task over training days were compared between GR and PR groups using 

repeated measures analysis of variance (ANOVA). Comparisons of means between 

groups for single days were performed using unpaired two-tailed t tests. Also learning 

plateaus are presented using ANOVA for repeated measures. To test correlations between 

behavioral variables, Pearson’s correlation coefficient was applied. In all statistical 

analyses, a p-value of less than or equal to 0.05 was considered significant. All results 

were presented as mean + the standard error of the mean (SEM). 

Results 

Body weight 

Although the PR group had a higher body weight prior the skilled reach training, 

both groups lost weight similarly during training days and there were no differences in 

overall weight loss between the groups. The body weight of the groups prior to the food 

deprivation was significantly different between the GR and PR animals (t19 = -2.707, p = 

0.014). Animals in both groups significantly lost weight during food deprivation days 

(F3,57 = 89.217, p < 0.001), with no group difference (F1,19 = 0.156, p > 0.05), and no 
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interaction of day by group (F4,76 = 0.421, p > 0.05).  Additional testing of single days for 

weight loss also showed no differences. 

Early training 

Three different time measures in the reaching box obtained from both groups 

included time spent before consuming food pellets, time spent before first reach, and time 

spent before first successful reach. The results showed that none of the measures did 

differ between the groups (Figure 3.1). The times spent before consuming food pellets 

(t19 = 0.468, p > 0.05), before first reach (t19 = 1.244, p > 0.05), and before first success 

(t19 = 0.340, p > 0.05) were not significantly different between the groups. 

Continuous reach training 

Continuous reach training consisted of 3 minutes of training for reaching toward 

food pellets, starting immediately after hand dominance was determined. The first and the 

last minutes of continuous reaching were scored in each group for end point measures. 

Results were as follows: 

Attempts 

Number of attempts toward a food pellet 

The results indicated no differences between groups (F1,19 = 0.579, p > 0.05) 

during the first and last minutes of continuous reach practice.  Also, there was no practice 

effect (F1,19 = 1.685, p >0.05), or an interaction effect group by number of attempts in the 

first and last min (F2,38 = 3.103, p = 0.094). The statistical analysis indicated a group 

difference (t19 = - 2.079, p = 0.058) in the last minute of practice. The GR group exhibited  

 

 



 
 
 

106 

 

 

 

 

Figure 3.1. Early training time spent by GR and PR groups (mean + SEM). (A) time 
spent before consuming a food pellet, (B) time spent before first reach, and (C) time 
spent before first success. 
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a decreased the number of reaching attempts during the last minutes of the continuous 

reaching whereas the PR group showed an increase of this type of attempt (Figure 3.2.A).  

Number of attempt errors 

The decreased number of attempts on an empty shelf was not significant between 

the first and last minutes of practice (F1,19 = 3.583, p = 0.074). Also, there was no overall 

difference between the groups (F1,19 = 0.862, p > 0.05), or an interaction effect (F2,38 = 

0.005, p > 0.05) (Figure 3.2.A). 

Number of new aimed attempts    

The number of new aimed attempts during first and last minutes of continuous 

reaching were compared between groups and no difference was found (F1,19 = 0.024, p > 

0.05). This type of attempts also was not significantly different between the first and last 

minutes of reaching (F1,19 = 1.294, p > 0.05), and there was no interaction effect (F2,38 = 

0.182, p > 0.05) (Figure 3.2.B). 

Number of tapping attempts 

Although there was no significant difference between the number of tapping 

attempts during the first and last minute of continuous reaching (F1,19 = 0.624, p > 0.05) 

or between groups (F1,19 = 1.888, p > 0.05), an interaction effect of group by number of 

tapping attempts in the first and last min was found (F 2,38 = 4.129, p = 0.056). Rats in PR 

group exhibited an increased use of tapping attempts during the last minute of continuous 

reaching (Figure 3.2.B). Statistical analysis of the last minute of continuous reach 

practice showed a group difference in the number of tapping attempts (t19 = - 2.746, p = 

0.013). 
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Figure 3.2. Number of attempts per trial during first and last minutes of continuous 
reaching of GR and PR groups (mean + SEM). (A) number of attempts toward a food 
pellet and toward an empty shelf, and (B) number of new aimed, tapping and total 
attempts. 
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Total attempts      

Overall, there was no significant difference between groups in the number of total 

attempts (F1,19 = 0.871, p > 0.05) or in the first and last minutes of practice (F1,19 = 0.028, 

p > 0.05). Also, there was no interaction effect of group by number of attempts in the first 

and last min of practice (F2,38 = 0.767, p > 0.05) (Figure 3.2.B). 

 

Success 

Success made with new aimed attempts (%)   

Successful attempts made with new aiming movement significantly increased 

with more practice from the first minute to the last minute of continuous reaching in both 

groups (F1,19 = 9.704, p = 0.006). This type of success significantly differ between the 

groups (F1,19 = 4.496, p = 0.047), the GR group showed an increased percentage of 

success compared to the PR group. No interaction effect of group by minutes of practice 

was found (F2,38 = 1.816, p > 0.05) (Figure 3.3.A). 

Success made with tapping attempts (%) 

Overall, no significant difference was found in the success percentage with 

tapping attempts between the groups (F1,19 = 0.008, p >0.05). There was no significant 

effect of success in the first and last minutes of practice (F1,19 = 0.351, p > 0.05), or an 

interaction effect of group by success in the first and last minutes of practice (F2,38 = 

0.009, p > 0.05) (Figure 3.3.A). 

Single reach success (%) 

Single reach percent success was measured in both groups during the first and last 
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Figure 3.3. Success percentage during first and last minutes of continuous reaching of 
GR and PR groups (mean + SEM). (A) success (%) with new aimed and tapping attempts, 
and (B) single reach success and total success. 
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minutes of continuous reaching and the results showed a significant effect of practice 

(F1,19 = 23.607, p < 0.001). Although there was not a significant difference between 

groups (F1,19 = 1.183, p > 0.05), an interaction of groups by minutes of practice (F2,38 = 

4.799, p = 0.041) was found. An increase in the single reach success was more apparent 

in the GR group (Figure 3.3.B). Testing of the last minute of continuous reach practice 

showed a group difference in which rats in GR group were significantly improved in the 

single reach success (t19 = 2.229, p < 0.05). 

Total success (%) 

The results indicated that total success percentage significantly increased with the 

amount of practice in both groups (F1,19 =12.404, p = 0.002). But it did not differ between 

the groups (F1,19 = 2.359, p > 0.05) and no interaction effect was found (F2,38 = 2.780, p > 

0.05) (Figure 3.3.B). Testing of the last minute of practice indicated the group difference 

in the total success with the more improvement in the GR group (t19 = 2.724, p < 0.05).  

Full sequence reach training 

Full sequence reach training started after three minutes of continuous reaching. 

The training consisted of shaping the rats’ behavior to leave the slot, going to the back of 

the box, and returning to the front of the box for the next reach. Rats were trained in the 

full sequence reaching for 14 days and their reaching performance was analyzed for 

numbers of attempts, success percentage and other variables such as number of missed 

trials, trial time, and trip time. 

Attempts 

Number of new aimed attempts  

The number of new aimed attempts per trial declined during training sessions 
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Figure 3.4. Number of attempts per trial during 14 days of full sequence training between 
GR and PR groups (mean + SEM). (A) number of new aimed attempts, (B) number of 
tapping attempts, and (C) number of total attempts. 
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 (F13,247 = 31.878, p < 0.001), and it decreased more in the GR rats  (F1,19 = 4.900, p < 

0.05). Also the difference in learning effect was significant. An interaction effect of 

groups by training days was significant (F13,247  = 1.834, p < 0.05). The number of new 

aimed attempts plateaued at day 7 in both groups (F7,133 = 1.924, p > 0.05) (Figure 

3.4.A). Testing of single days showed that the GR rats had a lower number of new aimed 

attempts than the PR rats from the fourth day of training on (t19 = -2.760, p = 0.012) and 

thereafter (p values < 0.01). 

Number of tapping attempts 

The number of tapping attempts per trial decreased over training sessions (F13,247 

= 20.470, p < 0.001), and this decline was greater in the GR rats  (F1,19 = 4.771, p < 0.05). 

No interaction effect of groups by training days was found (F13,247 = 0.789, p > 0.05). The 

number of tapping attempts plateaued on day 6 of training in both groups (F8,152 = 1.341, 

p > 0.05) (Figure 3.4.B). Testing of single days revealed less number of tapping attempts 

in the GR relative to the PR rats from the third day of training (t19 = -2.628, p = 0.017) 

and thereafter (p values < 0.05). 

Number of total attempts 

The number of total attempts per trial decreased over training days (F13,247 = 

44.104, p < 0.001). The animals in the GR group showed a greater decrease in the 

number of total attempts (F1,19 = 6.649, p = 0.018). An interaction effect of groups by 

training days was found (F13,247 = 1.794, p < 0.05) (Figure 3.4.C). The number of total 

attempts plateaued from day 7 in both groups (F7,133 = 1.883, p > 0.05). Testing of single 

days revealed that the GR animals showed fewer total attempts on fourth day of the 

training (t19 = -2.740, p = 0.013) and thereafter (p values < 0.01). 
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Number of attempts toward a food pellet 

The number of attempts per trial when reward was on the shelf decreased over 

training sessions (F13,247 = 1.766, p < 0.05), and there was a significant group difference 

(F1,19 = 14.823, p = 0.001). An interaction effect of groups by training days was found 

(F13,247 = 2.075, p < 0.05).  The numbers of attempts plateaued on day 7 of the training 

period in both groups (F7,133 = 1.636, p > 0.05) (Figure 3.5. A). Testing of single days 

yielded lower number of tapping attempts in the GR rats on fourth day of the training (t19 

= -3.502, p = 0.002) and thereafter (p values < 0.01).  

Number of attempt errors 

The number of attempts per trial toward on an empty shelf decreased over training 

sessions in both groups (F13,247 = 42.118, p < 0.001). The groups did not differ (F1,19 = 

1.121, p > 0.05) and no interaction effect of groups by training days was found (F13,247 = 

1.632, p > 0.05) (Figure 3.5. B). Testing single days showed the groups were different in 

making attempts on an empty shelf during days 4-7 (p values < 0.05) with the GR rats 

making less attempts on the empty shelf. No difference was found between groups (p 

values > 0.05) during first three days and last week of the training. 

Success 

Success with new aimed attempts (%)   

Successful attempts made with new aiming did not differ over training days (F13,247 = 

1.274, p > 0.05). Success significantly differ between the groups (F1,19 = 18.842, p < 

0.001), the GR group showed a higher success score than the PR group. No interaction 

effect of groups by training days was found (F13,247 = 1.384, p > 0.05) (Figure 3.6.A).  
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Figure 3.5. Number of attempts per trial during 14 days of full sequence training between 
GR and PR groups (mean + SEM). (A) number of attempts toward a food pellet, and (B) 
number of attempts toward an empty shelf. 
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Figure 3.6. Success percentage during 14 days of full sequence training between GR and 
PR groups (mean + SEM). (A) success with new aimed attempts, (B) success with 
tapping attempts, (C) single reach success, and (D) total success. 
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Testing of single days showed that the GR rats had a higher success (%) than the PRs, 

starting from the fifth day of the training (t19 = 2.266, p = 0.035) and thereafter (p values 

< 0.01).  

Success with tapping attempts (%) 

The only measure that did not differ with more practice throughout training days 

was success on tapping attempts. Repeated measures ANOVA revealed that success with 

tapping attempts (%) did not differ over training days (F13,247 = 1.505, p > 0.05) and also 

successful reaching on tapping attempts was not different between groups (F1,19 = 0.049, 

p > 0.05).  In addition, no interaction effect of groups by training days was found (F13,247 

= 0.548, p > 0.05) (Figure 3.6.B). 

Single reach success (%) 

Single reach success percentage did not differ over training days (F13,247 = 1.256, 

p > 0.05) but the GR and PR groups were different significantly in making successful 

single reaches (F1,19 = 36.160, p < 0.001). A marginal interaction effect of groups by 

training days was found (F13,247 = 1.681, p = 0.065) (Figure 3.6.C). Testing of single days 

showed that the GR rats had a higher single reach success percentage than the PRs on the 

fourth day of training (t19 = 2.799, p = 0.011) and thereafter (p values < 0.05). 

Total success (%) 

Total success percentage did not differ over training days (F13,247 = 0.414, p > 

0.05) but the GR and PR groups were different significantly (F1,19 = 20.402, p < 0.001). 

An interaction effect of groups by training days was found (F13,247 = 1.845, p < 0.05) 

(Figure 3.6.D). Testing of single days showed that the GR rats had a higher total success  
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Figure 3.7. Missed trials (%) in GR and PR groups (mean + SEM). 
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(%) than the PR rats on the first day (t19 = 2.561, p = 0.019), fifth day (t19 = 3.308, p = 

0.004) of the training and thereafter (p values < 0.01).  

Missed trials (%) 

Missed trials (%) decreased significantly over training days (F13,247 = 6.400, p < 

0.001). The result revealed that the PR group showed a higher missed trials (%) than the 

GR group (F1,19 = 4.398, p < 0.05) (Figure 3.7). Also, an interaction effect of groups by 

training days was found (F13,247 = 2.534, p = 0.003).  

Trial time  

Trial time decreased significantly over training days (F13,247 = 63.001, p < 0.001) 

but it did not differ between groups (F1,19 = 2.834, p > 0.05) and no interaction effect of 

groups by training days was found (F13,247 = 1.128, p > 0.05) (Figure 3.8.A). 

Trip time  

Trip time decreased significantly over training days (F13,247 = 86.198, p < 0.001). 

The groups were not different in time spent to make a trip (F1,19 = 3.177, p > 0.05). No 

interaction effect of groups by training days was found (F13,247 = 1.453, p > 0.05) (Figure 

3.8.B). 

 
Discussion 

The objective of the present study was to investigate individual differences in 

skilled reaching performance and its emergence during initial learning in the adult naïve 

rats. One group of rats with higher success scores and lower number of attempts was 

designated as GRs and the other group was designated as PRs. Both groups of rats 

learned the task as confirmed by several factors including, increase in successful reaches, 

decrease in the number of attempts, decrease in the number of errors, and decrease in the  
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Figure 3.8. Spent time for making a trial and a trip during 14 days of full sequence 
training between GR and PR groups (mean + SEM). (A) trial time, and (B) trip time. 
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time spent for a trial or a trip. The findings are discussed in relation to the idea that rats 

with extensive training develop different strategies in learning a novel task, which leads 

to two different reaching abilities. 

The present results are in line with a previous study (Gharbawie & Whishaw, 

2006) showing that the act of reaching was formed and completed in both groups with 

similar serial and temporal organization. Comparison of learning between the GR and PR 

animals indicated that the skilled reaching performance was similar between groups at the 

beginning of the training, but individual differences started to emerge with practice. The 

difference in skilled reaching performance between groups was observable on the fourth 

day of the training and thereafter. It was also found that the animals in the PR group were 

different than the animals in the GR group in the number of missed trials throughout the 

training sessions. The considerable and consistent individual differences found in skilled 

reaching of the subjects in the present study support the idea that the individual 

differences in skilled reaching are reliable and meaningful. 

  The single pellet-reaching task has been chosen for a detailed study of the 

difference in reaching performance of the rats because it is a task that has been widely 

used in many different studies (Gholamrezaei & Whishaw, 2009; Metz, Jadavji, & Smith, 

2005; Whishaw, 2000). Rats display large variation in skilled reaching performance after 

completion the training period (Gholamrezaei & Whishaw, 2009). The single pellet-

reaching task also provides reliable measures of performance such as single reach 

success, total success, and number of attempts. These measures have been used 

previously to define learning in skilled reaching (Whishaw, Pellis, Gorny, Kolb, & 

Tetzlaff, 1993). In the present study, some other measures related to time spent, missed 



 
 
 

122 

trials, and different types of attempts in addition to previous ones were used to provide a 

more detailed investigation of the phenomenon.  

 Earlier studies have shown that skilled reaching in rats consists of three 

components, orientating toward a food pellet to locate it by sniffing, transporting the 

hand to the food pellet during which the digits are shaped to the target to grasp it, and 

withdrawal of the limb for releasing the food into the mouth (Gharbawie & Whishaw, 

2006). Results of the present study indicated that although there was variation in the time 

taken by individual rats to progress from one component to the next, the order and the 

amount of time spent to learn these three components of reaching was similar in both 

groups. That is, the amount of time spent before consuming the food pellets, before first 

reaching attempt, and before first successful reach was equivalent in rats that became GR 

and PR. In addition, the skilled reaching performances in both groups plateaued similarly 

on the seventh day of training. Despite of the skill improvement differences, both groups 

took the same amount of time to learn the skill and to reach the asymptotic level of their 

group. Therefore, it can be concluded that the act of reaching was formed in both groups 

with similar serial and temporal organization.  

The results of the present study indicate that the difference in the groups’ 

performance started to emerge after task learning was established and as performance 

improved with practice. For example, during the first phase of the training, which was 3 

minutes of reaching toward a food pellet without going to the back of the box, both 

groups made a similar number of attempts and success at the first minute of practice but 

their reaching attempts started to diverge after a couple of minutes practicing the same 

movements. The PR group began to make more tapping attempts whereas the GR group 
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started to perform fewer tapping attempts, which could be considered as a sign of the skill 

improvement.  

Although both groups improved in successful reaches, the GR group’s 

improvement was considerably higher than the PR group’s improvement. This 

differentiation in learning also was observable after the introduction of the second phase 

of training, which involved forming discrete reaching trials involving going to the back of 

the box and returning to the front for the next reaching act. Similarly, after introducing 

the second phase of training to the animals, the difference between groups became 

clearer. The PR group made more reaching attempts on each trial and the GR group 

began to improve success by making fewer attempts thus achieving a higher level of 

success. The learning difference between the groups was observable during initial days of 

practice and was completed on fourth day of the training. Although, both groups learned 

to make more accurate reaching attempts with more practice but the reaching skill 

improved in the GR group through increase of the success level and decline of the 

unnecessary reaching attempts, which was not observed in the PR group performance. 

The level of success of the PR group did not change through the full sequence training 

and the decline of the unnecessary reaching attempts was not as pronounced as it was in 

the GR group.  

There are a number of potential explanations of the divergence of the reaching 

performance by the groups. According to the study described in Chapter 1, the group 

difference was marked with lower success and higher number of attempts in the poor 

reachers that was not related to: (1) inadequate training (2) gross neural abnormalities (3) 

difference in other motor skills (4) abnormalities of the reaching movement elements 
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(Gholamrezaei & Whishaw, 2009). The present study also found that the amount of 

weight loss could not be a factor for the difference in skilled reaching displayed by rats, 

because results revealed that the overall weight loss was similar between groups.  

There are two potential explanations for the development of individual differences 

found in the present study. One relates to the higher number of missed trials in the PR 

group. There is evidence that rats do not locate the food visually as do primates (de 

Bruin, Sacrey, Brown, Doan, & Whishaw, 2008), and use olfaction to detect and localize 

the food (Whishaw & Tomie, 1989). Therefore, it is possible that the PR group show a 

higher number of missed trials because of impairment in olfactory detection. This 

impairment might be the origin of a poor estimate of the location of the food.  

The second possibility could be related to the higher number of missed trials 

displayed by the PR group. The PR rats may have developed a habit strategy through 

extensive practice of making the same sequence of movements over and over, 

irrespective of outcome. Recent studies have suggested that the reward-related actions 

such as skilled reaching behavior depend on two different learning processes. One of 

which is involved in the relationship between the action and their consequences that 

governs goal-directed behavior and the other is involved in the formation of stimulus-

response associations that are thought to control habitual actions (Balleine & O’Doherty, 

2010; Dickinson, 1994; Dickinson, Balleine, Watt, Gonzalez, & Boakes, 1995). 

Therefore, the learning strategy that the PR group might have developed was one of 

stimulus-response associations. Although training conditions were similar for both 

groups, the PR rats may have developed a motor habit (performing the full sequence of 

movements consists of going to the back of the box, returning to the front and making 
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reach attempts) as a sensorimotor response that is more reflexive in nature. On the other 

hand, the GR rats might have used goal-directed strategy and controlled their reaching 

performance in relation to the consequences and thus optimized their performance 

through directing their hand to the appropriate spatial location of the target.  

Different learning strategies acquired by rats have been reported in other reward-

related actions such as conditioned approach behavior in which animals developed 

tendencies to approach different stimuli in similar testing situations. One group 

responded to the stimulus or cue that signaled reward delivery whereas other group 

preferentially approached and responded to the location where the reward was delivered 

(Boakes, 1977; Flagel, Akil, & Robinson, 2008; Robinson & Flagel, 2009). The 

differential learning strategies may bias some rats to make successful reaches directed to 

the spatial location of the reward whereas other rats making more attempts toward the 

food just because they learned this response may lead to the reward by occasional prior 

successful reaches. Therefore, depending on the strategy, some animals become the good 

reachers with accurate reaching skills marked by higher success level and lower number 

of attempts while others became poor reachers.  

In conclusion, the objective of the present study was to investigate individual 

differences in skilled reaching performance and its emergence by analyzing behavior of 

two groups of animals that were defined by good and poor reaching skills. The study 

provides support for the reliability of the individual differences found in skilled reaching 

for food in female rats vs. male rats. The study also demonstrates that the difference in 

reaching success and the number of attempts between groups started to emerge with more 

practice of the same sequence of movements, as early as first couple of minutes after 
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initial training. It is suggested that the differences in skilled reaching could derive from 

two potential possibilities. First, it might be related to the impairment in olfactory 

processes in the PR group. Second, it could derive from the particular learning strategy 

adopted by each group of animals. A goal-directed strategy adopted by the GR group, in 

which reaching performance is controlled in relation to the consequences and is 

associated with the reward by locating the target accurately and directing forelimb to the 

appropriate spatial location of the food. On the other hand, a response-oriented strategy 

adopted by the PR group, in which reaching movement is performed as a sensorimotor 

response that is more habitual and reflexive in nature without less associative link to the 

reward, results in repetitive movements and a lower level of success. The study thus 

suggests that the differences in the skilled reaching might be influenced by the learning 

style of the rats.  
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CHAPTER 4 

 

Behavioral sensitization induced by repeated administration of amphetamine or nicotine 

has no effect on subsequent acquisition and performance of skilled reaching behavior but 

has differential effects on animals with good or poor reaching skills 
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Abstract 

Repeated administration of psychostimulant drugs can cause persistent alterations in the 

brain and behavior including long lasting structural plasticity, the development of 

enduring locomotor sensitization, and alterations in reward-related learning and memory. 

The purpose of this investigation was two fold: (1) to determine whether behavioral 

sensitization induced by prior repeated administration of amphetamine or nicotine has 

beneficial effects on the acquisition and performance of the skilled reaching behavior and 

(2) to investigate their possible effects on the individual differences in skilled reaching 

performance. Two separate experiments with similar experimental design were conducted 

to produce behavioral sensitization in rats using amphetamine and nicotine. After 

producing behavioral sensitization, rats were trained in single pellet reaching task and 

their reaching behavior was recorded, analyzed, and compared. Results indicated that 

behavioral sensitization prior to skilled reach training was not beneficial to learning the 

task or to subsequent performance of the sensitized rats. Comparing the animals with 

good and poor reaching skills in sensitized and non-sensitized groups showed that 

amphetamine sensitization had a different effect on subgroups that displayed good or 

poor reaching skills. There was an increase in successful reaches made by the sensitized-

good reachers relative to the good reachers in non-sensitized group. But no differences 

were found in the endpoint measures of the sensitized-poor reachers compared with non- 

sensitized-poor reachers. Sensitization to nicotine had a detrimental effect on the way 

movements were made. The results are discussed with respect to the deferential effects of 

psychostimulant drugs on individual differences in skilled reaching behavior. 
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Introduction 

 Repeated administration of drugs of abuse such as amphetamine and nicotine can 

cause persistent alterations in the brain and behavior. For example it can lead to long-

lasting structural plasticity in the nucleus accumbens and prefrontal cortex (Brown & 

Kolb, 2001; Robinson & Kolb, 1997, 2004; Singer et al., 2009), development of 

locomotor sensitization (Bevins & Palmatier, 2003; Dougherty & Ellinwood, 1981; 

Robinson & Becker, 1986; Vezina, McGehee, and Green, 2007), alterations in reward-

related learning and memory (Childress et al., 1993; Hyman & Malenka, 2001; Rogers et 

al., 1999), and enhancement of drug-related behaviors such as drug-seeking and -taking 

(Pierce & Kalivas, 1997; Robinson & Becker, 1986; Robinson & Berridge, 1993; Tiffany 

& Carter, 1998; Vanderschuren & Everitt, 2005). Repeated exposures to addictive drugs 

can also cause long-term increases in behaviors toward natural rewards such as food 

(Harmer & Phillips, 1998; Klein, Gehrke, Green, Zentall, & Bardo, 2007; Wyvell & 

Berridge, 2000, 2001), and sex (Fiorino & Phillips, 1999; Nocjar & Panksepp, 2002). The 

long-lasting changes in behavior and psychological functions are probably mediated by 

neurochemical drug effects (Robinson & Becker, 1986; Robinson, Mocsary, Camp, & 

Whishaw, 1994) on structural modifications in patterns of synaptic connectivity in 

relevant neural circuits (Greenough, 1984; Kolb & Teskey, 2010; Kolb, Forgie, Gibb, 

Gorny, & Rowntree, 1998; Robinson & Kolb, 1997), which were developed gradually 

and outlasted for months after termination of the drug treatment (Paulson, Camp, & 

Robinson, 1991).  

There is a considerable debate regarding the efficacy of amphetamine or nicotine 

on learning a novel motor skill, enhancing motor performance, and facilitating forelimb 
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motor recovery after motor cortex stroke (Alaverdashvili, Lim, & Whishaw, 2007; 

Gladstone et al., 2006; Gonzalez, Gharbawie, & Kolb, 2006; Lim, Alaverdashvili, & 

Whishaw, 2009; Papadopoulos et al., 2009). Variable behavioral effects have been 

reported in response to prior or concurrent repeated administration of amphetamine or 

nicotine. For example, some studies have shown that amphetamine and nicotine improve 

skilled reaching for food in both rats and primates (Adkins & Jones, 2005; Barbay et al., 

2006; Gilmour et al., 2005; Gonzalez, Gharbawie, Whishaw, & Kolb, 2005; Ramic et al., 

2006). However, some other studies have found negative results (Alaverdashvili, Lim, & 

Whishaw, 2007; Lim, Alaverdashvili, & Whishaw, 2009; Platz et al., 2005). Although the 

difference in the dose of drug and the timing schedule of drug administration may 

contribute to the variations reported, it is interesting that drug-induced behavioral 

changes and neurochemical adaptations may vary considerably between individual 

subjects as well (Cain, Coolon, & Gill, 2009; Deminiere, Piazza, Le Moal, & Simon, 

1989; Gingras & Cools, 1997; Scholl, Feng, Watt, Renner, & Forster, 2009). Rats exhibit 

individual differences in the development of behavioral sensitization (Perkins et al., 

2009; Scholl, Feng, Watt, Renner, & Forster, 2009), the attribution of incentive salience 

to reward-related cues (Robinson & Flagel, 2008), and the development of approach 

behavior (Flagel, Clinton, Watson, Robinson, & Akil, 2007; Simon, Mendez, & Setlow, 

2009; Taylor & Jentsch, 2001).  

Because of the long lasting effect of behavioral sensitization induced by 

administration of stimulant drugs on the patterns of synaptic connectivity and its effects 

on the acquisition of a novel task, it was hypothesized that behavioral sensitization 

induced by prior repeated exposure to amphetamine or nicotine affect the acquisition of 
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skilled reaching behavior and the effects would be different among animals’ skilled 

reaching behavior. Nelson and Killcross (2006) have shown that amphetamine 

sensitization disrupts the acquisition of goal-directed actions and accelerates the 

progression of habitual responding. Thus, the current experiments examined whether 

sensitization induced by amphetamine or nicotine accelerates the dominance of habitual 

responding of rats as a feature of poor reaching skills.  

Two separate experiments with similar experimental design were conducted to 

produce behavioral sensitization in rats using amphetamine and nicotine. After producing 

behavioral sensitization, rats were trained in single pellet reaching task and their reaching 

behavior were recorded, analyzed, and compared on several measures. First, the 

acquisition of skilled reaching was compared between drug-treated and saline-treated 

animals. Second, because of the considerable debate regarding the efficacy of 

amphetamine and nicotine to improve forelimb motor skill, the reaching performances of 

the drug-treated animals were compared with those of the saline-treated rats. Third, 

because the drugs of abuse might potentially have different effects on the performances 

of animals with good or poor reaching skills, each group (drug-treated and saline-treated) 

were divided into two subgroups, good reacher (GR) and poor reacher (PR) based on 

their reaching performance. Comparisons were made on the end-point measures of total 

success, single reach success, and the number of attempts per trial. Also, in order to 

investigate potential drug effects on movement elements used for reaching (Whishaw & 

Pellis, 1990), the performance were analyzed using a rating scale derived from Eshkol-

Wachmann Movement Notation (EWMN) analysis of reaching (Eshkol & Wachmann, 

1958; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993). In addition, reaching movements 
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were analyzed and compared for the non-kinematic features of the movement (gestures) 

derived from Laban Movement analysis Notations of reaching (LMA; Laban, 1971). 

 

Method  

Subjects 

 The subjects were 23 female Long-Evans rats, 3 months old and weighing 200-

300 g at the beginning of each experiment. Female Long-Evans were used because of the 

greater rates of sensitization than males (Robinson, 1984; Robinson & Becker, 1986). 

The animals were housed in standard Plexiglas cages in an animal colony room with food 

and water available and a 12h light-dark cycle (lights on 7:30-19:30h). The room 

temperature maintained at 22° C. The experiments were in compliance with the guideline 

of the University of Lethbridge animal care committee and the Canadian Council for 

Animal Care, which complies with international standards for animal care. Each 

experiment consisted of two groups: an experimental group, including amphetamine or 

nicotine (N=13) and a saline group (N=10). 

Drug administration 

 The intermittent schedule of psychostimulant drug administration was used to 

induce behavioral sensitization in rats using amphetamine and nicotine in two separate 

experiments. Rats were acclimatized for a week in the animal care facilities before the 

animals receive daily injections. In line with previous research (Kolb et al., 2003; 

Domino, 2000), animal received intraperitoneal (i.p.) injections of either d-amphetamine 

sulfate or 0.9% saline in the first experiment and either nicotine hydrogen tartrate salt or 

0.9% saline in the second experiment for 11 consecutive days. 
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On the first and last test day, animals in the amphetamine group were received 0.5 

mg/kg amphetamine (weight of the salt) and animals in the nicotine group were received 

0.2 mg/kg nicotine; for the 9 days in between the amphetamine group were given 1mg/kg 

amphetamine and the nicotine group were given 0.4 mg/kg nicotine.  

Horizontal locomotor activity 

 Horizontal locomotor activity (HLA) was measured in identical wired hanging 

cages 35 cm length, 26 cm width, and 20 cm height. Each cage was equipped with two 

pairs of infrared emitter-detector photocells that were positioned along the long axis 1 cm 

above the floor and 8 cm from the front and back of the cage. Photocell interruptions 

served as a measure of HLA. Data are presented as total horizontal locomotor activity 

during 30 min prior to and 90 min following drug/saline administration. All rats were 

habituated to the locomotor activity boxes for two days before any drug treatment 

commence. After two days of habituation, rats were placed in the activity boxes and their 

HLA were recorded 30 min before and 90 min following drug/saline administration for 

11 consecutive days.  

Food restriction 

The day after last injection in each experiment, the animals were food deprived to 

90-95% of their normal body weight. Each rat received 18g of Puria rat chaw once a day 

to maintain at that body weight. Also they received 0.9g of 45 mg dustless precision 

banana-flavored pellets (product# F0021, Bioserve Inc., Frenchtown, NJ, USA) for 3 

days prior to initial training on the single pellet-reaching task for familiarization with the 

taste and smell of the food pellets. During the training and testing sessions, the banana-
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flavored pellets were served only as targets in the reaching task. Each animal could 

receive up to 20 pellets per day depend on the reaching accuracy. 

Single pellet reaching 

The single pellet-reaching box was made of transparent Plexiglas with 45 cm 

length, 14 cm width, and 35 cm height. In the middle of the front wall, a 1 cm wide slit is 

extended from bottom of the box to a height of 15 cm. A 2 cm wide by 4 cm long shelf is 

attached to the outside of the front wall, 3 cm above the bottom of the box in front of the 

opening. There are two small indentations with 1.5 cm distance from the front wall 

aligned with each side of the slot to hold the food pellets. A food pellet in each 

indentation is accessible only to the contralateral forelimb, because the hand pronates 

medially to grasp (Whishaw & Pellis, 1990). 

Reach training sessions were conducted at approximately the same time each day 

in a testing room. Rats were trained on the single pellet-reaching task for 14 days. On the 

first day of training, rats were placed individually in the reaching apparatus with pellets 

on the shelf for 10 minutes to have them retrieved the food pellet by hand or tongue. 

Once the pellets were retrieved successfully, the pellets were moved further away on the 

shelf to encourage the rat to use a hand and reach for the food. Pellets were initially 

presented in both indentations to determine the forelimb dominance. Once a rat showed a 

clear preference for one hand, by making more reaching attempts with it, a single food 

pellet was presented in the indentation contralateral to the preferred forelimb for three 

minutes of continuous reaching. In order to obtain discrete reaching trials, rats were 

required to reposition their body on each trial. They were shaped to leave the slot, walk to 

the rear wall of the box, turn and approach the slot again for the next pellet. In addition, 
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by withholding food on semi-randomly selected trials, rats were taught to sniff the shelf 

for a pellet and to reach only if a pellet was present. Single pellet reaching tests (each 

session consisted of 20 trials) were performed for five consecutive days after the 

completion of the training sessions. 

Video recording 

 Video records were made using a Sony 3CCD camcorder with a shutter speed of 

1000th of a second. Illumination for high shutter speed filming was provided by a cold 

light source (Whishaw & Pellis, 1990). Frame by frame analysis was done at 30 frames 

per second using a Sony digital videocassette recorder DSR-II.  

 

Behavioral analysis 

The behavioral analyses were made for training sessions as following: 

Early training 

First training session began when a rat was placed in the reaching box and ended 

after 10 min with removing the rat out of the box. During initial training, rats learned how 

to orient the food pellet, advance their preferred forelimb through the slot and grasp the 

food, and withdraw their hand to release the food pellet into their mouth. At the 

beginning of training, rats spent some time for familiarization to the box and the 

acquisition of the task, which was used as the measures under time category. These 

measures were as follows:  

1. Time spent before consuming food pellets at the start of the training 
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 Rats spent different amounts of time exploring when were introduced to the 

reaching box. The amount of time spent before consuming a food pellet was used for the 

first measure of the performance.  

2. Time spent before making the first reach attempt 

 Time spent before first reach attempt was calculated despite of the success or 

failure of the reach.  

3. Time spent before first successful reach 

 This measure calculated by adding the amounts of time spent from the beginning 

of the first training session until a rat made its first successful reach. 

Continuous reaching and full sequence training   

Reaching performances during training and testing sessions were analyzed for the 

endpoint measures such as the number of attempts and success percentage (Whishaw, 

2005; Whishaw, Pellis, & Gorny, 1992).  

End point measures  

A testing session consisted of twenty trials. On each trial, the rat had to approach 

the slot from the back of the box, reach for the food pellet through the slot, and after 

attempting to get the food (grasping the food or else knocked it off the shelf), return to 

the rear of the box. Reaching performances were analyzed in each trial for the number of 

attempts, first reach success and total success (Whishaw, 2005; Whishaw, Pellis, & 

Gorny, 1992). 

Attempt. The number of reach attempts was counted in each trial. A reach attempt 

is defined as a forward movement of rat’s preferred forelimb to the slot in the front wall 
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of the reaching box in an attempt to grasp and obtain the food. A reach attempt could be 

successful or not depending on the accuracy of the reaching movement.  

 First reach success. First reach success is defined as a reach attempt in which the 

food pellet is grasped with the first advance of the forelimb and is consumed by the rat. 

First reach success scores were calculated as follows: 

First reach success (%) = (Number of first reach successes/ Number of trials) × 100 

     Total success.    Success is defined by reaches resulted in obtaining food by grasping 

the pellet with the hand despite the number of reach attempts. Total success percent was 

calculated as follows: 

Total success (%) = (Number of successes/ Number of trials) × 100 

Movement element analysis 

 Reaching movements were analyzed using a rating scale derived from Eshkol-

Wachmann Movement Notation (EWMN) analysis of reaching (Eshkol & Wachmann, 

1958; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993) based on the analysis of the 

relations and changes of relations between the body parts involved in the reaching 

movement. A reach was subdivided into ten reaching elements including; (1) Digits to the 

midline: The reaching limb is lifted from the floor so that the tips of the digits are aligned 

with the midline of the body. (2) Digits closed: As the limb is lifted, the digits are flexed 

and closed, the hand is supinated and the wrist is partially flexed. (3) Aim: The hand and 

elbow are carried inward to the midline of the body, with the hand located just under the 

mouth. (4) Advance: The limb is advanced directly through the slot toward the food 

pellet. (5) Digits extend: During the advance, the digits extend toward the food pellet. (6) 

Arpeggio: When the hand is over the food pellet, it pronates from digit 5 through to digit 
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2, and at the same time the digits open. (7) Grasp: The digits close and flex over the food 

pellet, with the hand remaining in place, and the wrist is slightly extended to lift the food. 

(8) Supination I: As the hand is withdrawn, it supinates by almost 90°. (9) Supination II: 

Once the hand is withdrawn from the slot to the mouth, it supinates further by about 45° 

to place the food pellet in the mouth. (10) Release: The mouth contacts the hand and the 

digits open to release the food pellet. 

 Ten reaching elements were analyzed and scored for first three successful reaches 

of the last test session. Each of the reaching elements was rated on a three-point scale. A 

score of “0” was given for a normal movement, a score of “0.5” for an abnormal 

movement, and a score of “1” for the absence of a movement (Piecharka, Kleim, & 

Whishaw, 2005; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993). 

Gesture analysis 

 Reaching movements were analyzed using the “Expressive Reaching Scale” 

derived from Laban Movement analysis Notations of reaching (LMA), which provides a 

quantifying method for the non-kinematic features of the movement (Foroud & Whishaw, 

2006). Based on this rating scale, a gesture is defined as one action made by one limb or 

one limb segment and a reach is subdivided into four gestures including, (1) advance: 

The limb is advanced toward the food pellet. (2) Grasp: The digits are closed over the 

food or near the food pellet. (3) Withdraw: The hand is withdrawn toward the mouth. (4) 

Release: The digits are flexed and the limb is moved away from the mouth. 

 Reaching performances on the last test session were analyzed and the number of 

gestures was calculated for the first five trials. A score of “1” was given for each gesture. 

Because a reach consisted of four gestures, a minimum of four score could be given to a 



 
 
 

139 

successful reach. However, both successful and failed reaches could be associated with 

additional gestures (Alaverdashvili, Foroud, Lim, & Whishaw, 2008). 

Statistical analysis 

 The results were subject to multivariate and repeated measures analysis of 

variance (ANOVA). Follow-up analyses of significant interactions were performed with 

Bonferroni post hoc tests. Also, comparisons of means between groups were performed 

using paired and unpaired t-tests. In all statistical analyses, a p-value of less than or equal 

to 0.05 was considered significant. All results were presented as mean + the standard 

error of the mean (SEM).  

 

Results 

Horizontal locomotor activity 

 Psychomotor sensitization was obtained during 11 days of drug administration in 

both experiments. Due to temporary malfunction of the apparatus the data related to 2 

rats in the amphetamine group and 1 rat in the saline group of the first study was not 

available and the analysis was conducted according to the data obtained from the rest of 

the animals. Although no significant difference in HLA was found between groups 

during 30 min habituation time before drug administration in both studies (AMPH vs. 

saline: F1,18 = 2.018, p > 0.05 [Figure 4.1.A];  NIC vs. saline: F1,21 = 1.842, p > 0.05 

[Figure 4.1.C]), a higher HLA was observed in the drug groups during 90 min testing 

after injections (Figure 4.1). Repeated measures ANOVA showed a significant effect of 

group (F1,18 = 337.401, p < 0.001), along with an interaction of group by day 
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Figure 4.1. Horizontal activity before and after drug injections over 11 consecutive days 
(mean + SEM). (A) 30-min habituation time before injection (AMPH vs. Saline), (B) 90-
min test after injection (AMPH vs. Saline), (C) 30-min habituation time before injection 
(Nicotine vs. Saline), and (D) 90-min test after injection (Nicotine vs. Saline). 
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(F10,180 = 3.517, p < 0.001) (Figure 4.1.B). Repeated measures ANOVA revealed a 

significant effect of nicotine vs. saline group (F1,21 = 89.767, p < 0.001), day (F10,210 = 

2.921, p = 0.002), and an interaction of group by day (F10,210 = 11.854, p < 0.001) (Figure 

4.1.D). 

Psychomotor sensitization was confirmed also by comparing the effects of the 

half dose drug administration on the first and last day of the treatment in both groups. 

Paired t-test showed a significant increase of locomotor activity between the first and last 

day of drug administration in the AMPH group (t10= -2.391, p < 0.05), and the NIC group 

(t12= -2.817, p < 0.05). 

Single pellet reaching 

Three days after the last injections, animals in both experiments were trained in 

the single pellet reaching task for 14 days and tested for 5 more days. Performances were 

analyzed for initial learning, first and last minutes of continuous reaching, and full 

sequence training days (D1, D3, D5, D7, D9). Also all five testing sessions were scored 

and analyzed for endpoint measures, movement elements and number of gestures.  

Early training 

Three different time spent in the reaching box were measured in all groups in both 

experiments including, time spent before consuming a food pellet, time spent before first 

reach, and time spent before first successful reach. The results showed that none of the 

measures did differ between the drug-treated animals and the saline groups (Figure 4.2). 

The time spent before consuming food pellets [AMPH vs. saline: (t21 = -0.729, p > 0.05); 

NIC vs. saline: (t21 = -0.939, p > 0.05)], before first reach [AMPH vs. saline: (t21 = -

0.442, p > 0.05); NIC vs. saline: (t21 = 0.658, p > 0.05)], and before first success [AMPH 
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Figure 4.2. Early training time spent by the drug- and saline-treated animals (mean + 
SEM). (A) AMPH vs. saline, and (B) Nicotine vs. saline. 
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vs. saline: (t21 = -0.172, p > 0.05); NIC vs. saline: (t21 = -1.162, p > 0.05)], were not 

significantly different between the groups. 

First and last minutes of continuous reaching 

Continuous reach training consisted of 3 minutes of training for reaching toward 

food pellets, starting immediately after hand dominance was determined. The first and the 

last minutes of continuous reaching were scored in each group for endpoint measures. A 

summary of results for endpoint measures is illustrated in Figure 4.3. The results 

indicated that saline animals had higher successful reaches compare to drug-treated 

animals during continuous reach training. The group difference was observed for total 

success in both experiments [AMPH vs. saline: (F1,21 =5.246, p < 0.05); NIC vs. saline: 

(F1,21 =5.315, p < 0.05)] and single reach success only in nicotine study (F1,21 =7.403, p < 

0.05). The main effect of practice was found for single reach success and number of 

attempts only in the AMPH vs. saline groups [single reach success: (F1,21 =5.617, p < 

0.05); number of attempts: (F1,21 =6.096, p < 0.05)], but not in the nicotine vs. saline 

animals [single reach success: (F1,21 = 0.310, p > 0.05); number of attempts: (F1,21 = 

0.172, p > 0.05)].  Also a group by minutes of practice interaction was found for total 

success in nicotine vs. saline group (F1,21 =5.947, p < 0.05) but not in the AMPH study 

(F1,21 = 0.176, p > 0.05). 

Full sequence training 

Full sequence reach training started after three minutes of continuous reaching. 

The training consisted of shaping the rats’ behavior to leave the slot, going to the back of 

the box, and returning to the front of the box for the next reach. Rats were trained in full 
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Figure 4.3. Endpoint scores during first and last minutes of continuous reaching in 
sensitized and non-sensitized animals (mean + SEM). (A) total success (%), (B) single 
reach success (%), (C) number of attempts in AMPH vs. saline groups, and (D) total 
success (%), (E) single reach success (%), and (F) number of attempts in nicotine vs. 
saline groups.    
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sequence reaching and their reaching performance on 1st, 3rd, 5th, 7th, and 9th days of 

training were scored and analyzed for the endpoint measures during training period. A 

summary of endpoint measures during training days is illustrated in Figure 4.4. Repeated 

measure ANOVA revealed that the groups did not differ in total success [AMPH vs. 

saline: (F1,21 = 0.107, p > 0.05); NIC vs. saline: (F1,21 = 0.116, p > 0.05)], single reach 

success [AMPH vs. saline: (F1,21 = 1.476, p > 0.05); NIC vs. saline: (F1,21 = 1.073, p > 

0.05)], and the number of attempts [AMPH vs. saline: (F1,21 = 1.694, p > 0.05); NIC vs. 

saline: (F1,21 = 1.399, p > 0.05)] during training days. The main effect of day found only 

for the number of attempts [AMPH vs. saline: (F4,84 = 24.047, p < 0.001); NIC vs. saline: 

(F4,84 = 27.063, p < 0.001)], and not for the total success [AMPH vs. saline: (F4,84 = 

0.588, p > 0.05); NIC vs. saline: (F4,84 = 0.937, p > 0.05)] or single reach success [AMPH 

vs. saline: (F4,84 = 2.037, p > 0.05); NIC vs. saline: (F4,84 = 2.160, p > 0.05)]. No day by 

group interactions were found [AMPH vs. saline: (F4,84 = 2.666, p > 0.05); NIC vs. 

saline: (F4,84 = 0.402, p > 0.05)]. 

Single pellet reaching test sessions 

After completion of training days rats in both experiments were tested for 5 

consecutive days and their reaching performances were analyzed for endpoint measures. 

Results indicated that drug-treated rats in both studies did not differ in total success 

scores, single reach success scores, and the number of attempts relative to saline-treated 

rats (Figure 4.5).  

AMPH vs. saline group: repeated measures ANOVA on the total success showed  
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Figure 4.4. Endpoint scores during full sequence training in sensitized and non-sensitized 
animals (mean + SEM). (A) total success (%), (B) single reach success (%), (C) number 
of attempts in AMPH vs. saline group, and (D) total success (%), (E) single reach success 
(%), and (F) number of attempts in nicotine vs. saline groups. 
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Figure 4.5. Endpoint scores during five test sessions between drug- and saline-treated 
groups (mean + SEM). (A) total success (%), (B) single reach success (%), (C) number of 
attempts in AMPH vs. saline group, and (D) total success (%), (E) single reach success 
(%), and (F) number of attempts in nicotine vs. saline groups. 
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no significant difference between groups (F1,21 = 0.319, p > 0.05), with no effects of test 

day (F4,84 = 0.701, p > 0.05), but a marginal interaction of group by day was found (F4,84 

= 2.347, p = 0.061) (Figure 4.5.A). Results for single reach success scores indicated no 

difference between groups (F1,21 = 0.103, p > 0.05), with no effects of test day (F4,84 = 

1.818, p > 0.05) or interaction (F4,84 = 1.242, p > 0.05) (Figure 4.5.B). Repeated measures 

ANOVA on the number of attempts per trial revealed that although there was no 

difference in the number of attempts made per trial between groups (F1,21 = 0.516, p > 

0.05), there was a significant effect of test days (F4,84 = 4.315, p = 0.003). Also no test 

day by group interaction was found (F4,84 = 0.266, p > 0.05) (Figure 4.5.C).  

Nicotine vs. saline group: similar results were found in the second study, repeated 

measures ANOVA on the total success showed no significant difference between groups 

(F1,21 = 0.005, p > 0.05), with no effects of test day (F4,84 = 0.726, p > 0.05) or interaction 

(F4,84 = 1.357, p > 0.05) (Figure 4.5.D). Results from single reach success scores 

indicated no difference between groups (F1,21 = 0.069, p > 0.05), with no effect of test 

day (F4,84 = 1.985, p > 0.05) or interaction (F4,84 = 0.739, p > 0.05) (Figure 4.5.E). 

Repeated measures ANOVA on the number of attempts per trial revealed that although 

there was no difference in the number of attempts made per trial between groups (F1,21 = 

0.141, p > 0.05), there was a significant effects of test day (F4,84 = 3.694, p = 0.008). Also 

no test day by group interaction was found (F4,84 = 1.761, p > 0.05) (Figure 4.5.F).   

Individual differences (Good reachers vs. poor reachers)  

The animals in each group were then divided into two subgroups: good reachers 

(GR) and poor reachers (PR) according to their single reach success scores over five test 

sessions (Gholamrezaei & Whishaw, 2009). Animals above the median of this rank order 
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were assigned to the GR subgroup, whereas the animals below the median were assigned 

to the PR subgroup. The behavioral data obtained from single pellet reaching task over 

testing days and also behavioral sensitization data during 11 days of drug/saline 

administration were compared between GR and PR subgroups within drug vs. vehicle 

main category. 

Single pellet reaching test sessions 

Results showed a significant difference in total success scores between the 

AMPH-treated GRs vs. saline-injected GRs (t9= -3.039, p < 0.05) in which GRs of the 

AMPH group showed higher reaching success relative to GRs of the saline group. 

Although AMPH-treated PRs showed lower success level than the saline-injected PRs, 

the difference was not found significant (t10= 0.418, p > 0.05).  

Two-way ANOVA showed a significant main effect of skill on all three endpoint 

measures including total success, single reach success, and number of attempts between 

subgroups of animals within both drug vs. saline groups, but no effect of group or skill by 

group interaction was found. The results of both experiments are summarized for each of 

the endpoint measures in the following. 

Total success. Two-way ANOVA on total success (Figure 4.6.A & 4.6.D) showed a 

significant main effect of skill in both experiments [AMPH vs. saline: (F1,19 = 24.902, p < 

0.001); NIC vs. saline: (F1,19 = 8.562, p = 0.009)], but no effect of group [AMPH vs. 

saline: (F1,19 = 1.289, p > 0.05); NIC vs. saline: (F1,19 = 0.004, p > 0.05)], or skill by 

group interaction [AMPH vs. saline: (F1,19 = 3.395, p = 0.081); NIC vs. saline: (F1,19 = 

0.706, p > 0.05)].  
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Figure 4.6. Endpoint measures during five test sessions between drug- and saline-treated 
rats with good vs. poor reaching skills (mean + SEM). (A) total success (%), (B) single 
reach success (%), (C) number of attempts in AMPH vs. saline group, and (D) total 
success (%), (E) single reach success (%), and (F) number of attempts in nicotine vs. 
saline groups. 
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Single reach success. The similar results were found on single reach success (Figure 

4.6.B & 4.6.E) in both experiments with a significant main effect of skill [AMPH vs. 

saline: (F1,19 = 34.865, p < 0.001); NIC vs. saline: (F1,19 = 25.089, p < 0.001)], with no 

effect of group [AMPH vs. saline: (F1,19 = 0.634, p > 0.05); NIC vs. saline: (F1,19 = 0.04, 

p > 0.05)], or skill by group interaction [AMPH vs. saline: (F1,19 = 1.148, p > 0.05); NIC 

vs. saline: (F1,19 = 0.08, p > 0.05)].  

Number of attempts. Also similar results were found on the number of attempts (Figure 

4.6.C & 4.6.F) with a significant main effect of skill [AMPH vs. saline: (F1,19 = 22.677, p 

< 0.001); NIC vs. saline: (F1,19 = 17.633, p < 0.001)], with no effect of group [AMPH vs. 

saline: (F1,19 = 2.105, p > 0.05); NIC vs. saline: (F1,19 = 0.143, p > 0.05)], or skill by 

group interaction [AMPH vs. saline: (F1,19 = 2.609, p > 0.05); NIC vs. saline: (F1,19 = 

1.219, p > 0.05)].  

Comparing data of the NIC-treated subgroups showed that nicotine diminished 

the difference between the GRs and PRs on the number of attempts. The NIC-treated 

GRs displayed an increase in the number of attempts (F1,11 = 3.751, p > 0.05).  

Behavioral sensitization in GRs vs. PRs 

Although there was a significant difference between behavioral sensitization 

demonstrated by drug-treated vs. saline-treated groups (AMPH vs. saline: F3,16 = 

100.877, p < 0.001; NIC vs. saline: F3,19 = 27.253, p < 0.001), no significant difference 

was found between drug-treated GR vs. PR subgroups (AMPH-treated GRs vs. PRs: F1,9 

= 0.038, p > 0.05; NIC-treated GRs vs. PRs: F1,11 = 0.086, p > 0.05). 
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Figure 4.7. Movement elements of reaching on the last day of testing (mean + SEM). (A) 
AMPH vs. saline group, and (B) Nicotine vs. saline group. Note: Nicotine-treated 
animals displayed impairments in the aim and supination II. 
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Movement elements 

 The ten movement components of three successful reaches for the last day (day 5) 

of the testing sessions were examined carefully frame by frame. The analysis showed that 

the movement elements made by animals that sensitized by AMPH were not significantly 

different than the saline group (Figure 4.7.A). Repeated measures ANOVA indicated a 

significant effect of element (F9,189 = 9.801, p < 0.001), with no effect of group (F1,21 = 

0.469, p > 0.05) or a group by element interaction (F9,189 = 0.842, p > 0.05).    

Repeated measures ANOVA on movement elements of NIC vs. saline groups 

revealed a significant effect of group (F1,21 = 5.645, p < 0.05), element (F9,189 = 11.609, p 

< 0.001), and a group by element interaction (F9,189 = 3.113, p = 0.002). Post hoc analysis 

(p < 0.05) showed that nicotine-treated rats were impaired significantly on aim, advance, 

and supinating the hand to present the food to the mouth (Figure 4.7.B). Nicotine-treated 

animals with incorrect aiming movements advanced their limb diagonally toward the 

food pellet and they had difficulty in supinating their hand completely to present food to 

the mouth. 

 In order to determine whether there was a treatment effect on the reaching 

elements of the subgroups with good and poor reaching skills, performances of the four 

subgroups were compared (Figure 4.8). 

Repeated measures ANOVA on reaching elements between the AMPH vs. saline 

subgroups revealed that there was no effect of subgroups (F3,19 = 0.171, p > 0.05), but a 

significant effect of element (F9,171 = 8.514, p < 0.001). The element by subgroup 

interaction was not significant (F27,171 = 0.692, p > 0.05) (Figure 4.8.A). Comparison of 

the reaching elements between the nicotine vs. saline subgroups indicated no significant 
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Figure 4.8. Movement elements of reaching on the last day of testing in subgroups of 
animals with good and poor reaching skills (mean + SEM). (A) AMPH vs. saline group, 
and (B) Nicotine vs. saline group. 
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difference between subgroups (F3,19 = 2.271, p > 0.05), but there was a significant effect 

of element (F9,171 = 11.623, p < 0.001) and a subgroup by element interaction (F27,171 = 

1.795, p <0.05). Post hoc analysis (p < 0.05) of the elements within subgroups showed 

that nicotine-treated PR rats were impaired significantly on supination-II relative to the 

other subgroups (Figure 4.8.B). 

Gesture analysis 

 Reaching performances on the last test session were analyzed and the number of 

gestures was calculated for the first five trials. In both studies, the repeated measures 

ANOVA indicated no significant effect of group (AMPH vs. saline: F1,21 = 1.460, p > 

0.05); NIC vs. saline: F1,21 = 0.780, p > 0.05), gesture (AMPH vs. saline: F4,84 = 0.984, p 

> 0.05); NIC vs. saline: F4,84 = 0.758, p > 0.05), and also no group by gesture interactions 

(AMPH vs. saline: F4,84 = 0.717, p > 0.05); NIC vs. saline: F4,84 = 0.572, p > 0.05). 

However, the repeated measures ANOVA on the number of gestures between 

subgroups of the AMPH vs. saline group indicated that there was a significant effect of 

subgroup (F3,19 = 3.677, p < 0.05), but no effect of gesture (F4,76 = 0.936, p > 0.05), and 

no gesture by subgroup interaction effect (F12,76 = 0.474, p > 0.05). Post hoc analysis (p < 

0.05) revealed that the AMPH-treated PRs significantly made higher number of gestures 

relative to the GR subgroups.  

No significant difference was found between subgroups of the nicotine study on 

the number of gestures (F3,19 = 2.493, p > 0.05). Also the effect of gesture (F4,76 = 0.781, 

p > 0.05) and the gesture by subgroup interaction effect (F12,76 = 0.994, p > 0.05) was not 

significant. Furthermore, gesture analysis and correlations indicated that the number of 
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Figure 4.9. Correlation between incidence of gestures and total success. (A) AMPH vs. 
saline group, and (B) Nicotine vs. saline group. 
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gestures used per reach were negatively correlated with reaching success in the 

amphetamine group (r12 = - 0.738, p = 0.004)[Figure 4.9.A], but not in the nicotine group 

(r12 = - 0.383, p > 0.05) [Figure 4.9.B]. 

Discussion 

 Amphetamine and nicotine are proposed to have efficient roles in promoting 

recovery of function after stroke. The present study was designed to examine whether the 

beneficial and activating effects of amphetamine and nicotine and also their potential 

effects on brain plasticity extend to normal motor function of adult rats without injuries. 

The main objective of the present study was to investigate the potential effects of prior 

repeated exposure to amphetamine or nicotine on acquisition of skilled reaching behavior 

and individual differences following learning single pellet reaching task. 

The results indicated that the development of behavioral sensitization following 

repeated daily injections of the amphetamine (first study) or nicotine (second study) prior 

to skilled reach training was not beneficial in learning the task or the reaching 

performance of the sensitized animals. Drug-treated (AMPH or NIC) and saline-treated 

groups both learnt the task in similar timeframe and endpoint scores. Both drug groups 

reached similar success rate, single reach success and number of attempts in comparison 

with the saline groups during training and testing periods.  

Comparing the subgroups (GRs and PRs) of the drug-treated vs. saline-injected 

animals showed that amphetamine had a positive effect only on the GR group with 

increasing the number of successful reaches. Results of the second experiment indicated 

that nicotine increased the number of attempts displayed by the GRs and diminished the 

difference between the GR and PR groups on this measure.  
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Comparisons of the movement elements between drugs vs. saline groups showed 

that reaching elements in AMPH-treated animals were not different than the saline group, 

but NIC-treated rats were impaired on aim, advance and supination in their reaching 

performance in comparison with the saline-treated group. The PRs in the nicotine group 

showed a higher impairment on rotatory movement (supination II) compared with the 

other groups. The present results suggest that prior repeated exposure to amphetamine or 

nicotine, which led to behavioral sensitization, did not have beneficial effects on 

acquisition and performance of single pellet reaching but each drug had different effects 

on skilled reaching performance of subgroups of animals with good and poor reaching 

skills.  

 The present experiments were designed to investigate the role of induced 

behavioral sensitization via prior intermittent exposure to amphetamine or nicotine on the 

acquisition and performance of skilled reaching of the normal adult rats in becoming 

good or poor reachers. Behavioral sensitization in the present experiments was induced 

via injection of amphetamine or nicotine according to a well-established model used in 

previous studies (Bevins & Palmatier, 2003; Domino, 2001; Hakan & Ksir, 1988; 

Kosowski & Liljequist, 2005; Mendez et al., 2009; Robinson & Becker, 1986; Stewart & 

Badiani, 1993; Vanderschuren & Kalivas, 2000; Vezina, McGehee, & Green, 2007). 

The single pellet task was chosen for two reasons. First, it is a standard task and 

widely used in the assessment of motor performance. Second, it is a task in which 

individual differences in skilled reaching are readily observable and measurable 

(Gholamrezaei & Whishaw, 2009; Metz, Jadavji, & Smith, 2005).  This task provides 

end-point measures of reaching performance and also allows examination of the 
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kinematic aspects of the movement elements used for reaching from frame-by-frame 

inspection of the video records.  

The results obtained from the first phase of the experiments showed that both 

amphetamine and nicotine produced behavioral sensitization in rats. Behavioral 

sensitization induced by repeated administration of drug is thought to be effective in 

improving the behavioral function (Feeney & Sutton, 1987; Goldstein, 2003; Maling & 

Acheston, 1946; Martinsson, Hardemark, & Wahlgren, 2003) and neuroplastic responses 

(Ramic et al., 2006; Robinson & Kolb, 1997; Stroemer, Kent, & Hulsebosch, 1998). 

Because of the long-lasting effects of behavioral sensitization (Paulson, Camp, & 

Robinson, 1991; Paulson & Robinson, 1995; Robinson & Becker, 1986), the 

enhancement of motor function was examined in later skilled reaching performance of 

sensitized vs. non-sensitized rats. The results indicated that prior repeated exposure to 

amphetamine or nicotine did not improve subsequent acquisition and performance of 

single pellet reaching.  

The beneficial effects of amphetamine and nicotine on recovery of function after 

stroke have been reported previous studies. For example, some studies have shown that 

administration of amphetamine or nicotine improves postural balance and coordinated 

limb use in locomotion or skilled reaching in a time-dependent manner or in combination 

with rehabilitative training after stroke (Adkins & Jones, 2005; Goldstein, 2003; 

Gonzalez, Gharbawie, & Kolb, 2006; Hovda & Fenney, 1984; Ramic et al., 2006), but 

the efficacy of these treatments depends on several factors such as the dose of drug, 

timing schedule, behavioral requirements of the task, and also combination of drug and 

physical rehabilitation after brain damage (Adkins & Jones, 2005; Barbay et al., 2006; 
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Ramic et al., 2006; Schmanke, Avery, & Barth, 1996). However, there are some other 

studies in which no recovery of function and motor improvements were found as a result 

of amphetamine or nicotine administration after brain damage (Alaverdashvili, Lim, & 

Whishaw, 2007; Lim, Alaverdashvili, & Whishaw, 2009; Platz et al., 2005). Therefore, 

these drugs can be useful in enhancing motor function in limited circumstances.  

Present findings suggest that the efficacy of amphetamine or nicotine to facilitate 

motor function also depends on the individual differences in developing skilful 

movements. Consistent with previous accounts, saline-injected control GRs showed 

better reaching skills with higher success scores and lower number of attempts relative to 

the saline-treated PRs. However, pretraining exposure to amphetamine had different 

effects on animals in developing the good vs. poor reaching skills but not as expected. It 

has been suggested that GRs and PRs might develop different learning strategies in 

acquisition of skilled reaching behavior (Gholamrezaei & Whishaw, 2009). The GRs 

display goal-directed behavior and rely on a goal strategy in which direct their hands to 

the appropriate spatial locations of the food, whereas, the PRs develop a stimulus-

response approach to the task that makes them prone to develop motor habits. That is 

consistent with other reports that there are individual differences in developing approach 

strategy and habitual responses (Boakes, 1977; Flagel, Clinton, Watson, Robinson, & 

Akil, 2007; Flagel, Watson, Akil, & Robinson, 2008; Hogarth & Chase, 2011; Robinson 

& Flagel, 2008). Previous studies have shown that sensitization to amphetamine disrupts 

the acquisition of goal-directed actions, enhances the formation of stimulus-reward 

associations and accelerates the progression of habitual responding (Hitchcott, Harmer, & 

Phillips, 1997; Nelson & Killcross, 2006; Taylor & Jentsch, 2001). Thus, it was expected 
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that sensitization induced by prior amphetamine administration would affect animals in 

becoming more poor reachers rather than good reachers. The findings suggest somewhat 

different than that was expected. Results showed that sensitization with amphetamine 

improved successful performance of skilled reaching in the GRs but no differences were 

found between skilled reaching performances of the sensitized- and non-sensitized PRs. 

Unfortunately, the design of the experiments did not allow us to investigate individual 

differences in skilled reaching prior to the behavioral sensitization and the comparisons 

were made based on the performance of non-sensitized counterparts.  

Nicotine sensitization had a detrimental effect on the GRs reaching skills through 

increasing the number of attempts. Prior exposure to nicotine diminished the difference 

on the number of attempts between the GRs and PRs.  Although the movement elements 

such as aim, advance, and supination were impaired in nicotine-treated animals but the 

increase of the number of attempts in the GR group is unlikely due to their abnormal 

movements. Previous studies have shown that nicotine-treated animals showed 

impairments in learning a new task such as single pellet reaching task with lower success 

rates and movement element impairments due to premature plastic changes induced by 

nicotine (enhanced dendritic branching and length of pyramidal cells in the motor 

cortex), which might interfere with normal learning (Gonzalez, Gharbawie, & Kolb, 

2006). In addition, it has been found that administration of nicotine prior to enriched 

environment such as complex housing blocks the increase of experience-dependent 

dendritic arborization, length, and spine density induced by enriched environment 

(Hamilton & Kolb, 2005). Therefore, the impairments of movement element found in the 



 
 
 

162 

present study might be related to the interference of nicotine with normal experience-

dependent plasticity.  

In conclusion, despite the general activating effects of amphetamine and nicotine 

and their effects on neural plasticity (Brown & Kolb, 2001; Meintzschel & Ziemann, 

2006; Robinson & Kolb, 1997, 2004; Singer et al., 2009), induced behavioral 

sensitization by repeated administration of these drugs did not promote acquisition and 

performance of single pellet reaching. Present results are in line with previous studies and 

support the idea that the skilled reaching is resistant to pharmacotherapy (Lim, 

Alaverdashvili, & Whishaw, 2009). Although amphetamine and nicotine improve some 

aspects of motor behavior after stroke, these drugs similar to other treatment such as 

levodopa (Melwin et al., 2005; Metz, Farr, Ballermann, & Whishaw, 2001) and 

fluoxetine (Windle & Corbett, 2005) do not enhance skilled reaching performance. 

However, subgroups of sensitized animals to amphetamine or nicotine developed better 

or worse reaching skills relative to non-sensitized animals. Amphetamine was more 

effective on skilled reaching in a group of animals that developed good reaching skills 

but not in poor reachers. On the other hand, nicotine not only had no positive effect on 

skilled reaching but also it was detrimental. Therefore, although each of these treatments 

might be effective in a specific population or on particular aspects of behavior, they are 

not effective for the enhancement of skilled reaching performance in general.  
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CHAPTER 5 

 

Role of the motor cortex in the individual differences in skilled reaching for food: Good 

reaching skills depend on the motor cortex 
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Abstract 

Post-stroke behavioral outcomes and the patterns of recovery in human and non-human 

animals are widely variable and cannot easily be predicted. Although there are several 

investigations on the effects of stroke type and lesion size on the variability in the 

behavioral outcome and recovery of function, the role of individual differences in motor 

performance has not been described as a source of post-stroke behavioral heterogeneity. 

Rats were trained in single pellet reaching task and divided into two groups of good and 

poor reaching skills prior to a small motor cortex stroke. Following motor cortex injury, 

skilled reaching performance was assessed during acute and chronic recovery periods and 

compared to pre-lesion performance. The results indicated that small motor cortex lesions 

via pial removal produced a mild behavioral deficit only in animals with good reaching 

skills. Rats with good reaching skills displayed a decrease in successful reaching (both 

total success and single reach success) and also increased number of attempts, whereas 

the poor reachers did not show significant changes in any of the end-point measures. 

However, both groups were impaired in the way they performed reaching movements 

during the acute post-lesion period. The findings are discussed in relation to the idea that 

skilled reaching variability after a small motor cortex damage might be related to the 

differences in the neural processes underlying skilled reaching behavior used by different 

groups of animals.  
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Introduction 

 Post-stroke behavioral outcomes and recovery patterns in human and non-human 

animals are widely variable and cannot easily be predicted. This variation displayed by 

animals is more obvious during early postsurgical period (Whishaw, 2000). Different 

factors such as stroke type (Alaverdashvili, Moon, Beckman, Virag, & Whishaw, 2008; 

Voorhies & Jones, 2002; Woodlee et al., 2005), infarct size and location (Gonzalez & 

Kolb, 2003; Whishaw, 2000), age (Brown, Marlowe, & Bjelke, 2003; Sutherland, Dix, & 

Auer, 1996), sex (Gargano & Reeves, 2007; Zalihić, Markotić, Zalihić, & Mabić, 2010), 

and genetic susceptibility (Carr et al., 2002; Waters & Nicoll, 2005) may contribute to the 

rate of behavioral recovery. It is interesting that a substantial variability has been reported 

even within a single stroke type, size and location. For example, Whishaw (2000) 

reported a large variation in the skilled reaching performance of individual animals across 

and within days during early post-surgical period. Also, Metz et al. (2005) reported less 

motor impairment with an increased number of successes in a subgroup of animals after 

photothrombotic motor cortex stroke. Another report by Erickson et al. (2007) showed 

individual differences in susceptibility to diaschisis in acute period following motor 

cortex devascularization.  

Understanding factors influencing recovery of function after brain injuries may 

provide insights into how brain reorganizes itself after stroke, how recovery can be 

improved or delayed and how a particular treatment might be useful. Although there are 

several investigations on the role of stroke type and lesion size and their effects on 

recovery of function, there is a lack of systematic examination of individual differences 

as a source of post-stroke behavioral heterogeneity. This was the focus of the present 
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study. Rats display considerable variation in normal skilled reaching behavior 

(Gholamrezaei & Whishaw, 2009). The variable rates of motor recovery in rats’ skilled 

reaching after stroke raise a question of whether the source of variability is related to 

individual differences in skilled reaching of the rats prior to stroke. 

The purpose of the present study was to investigate the acute and chronic effects 

of a small motor cortex lesion produced by pial removal on skilled reaching behavior by 

comparing groups of rats with good and poor reaching skills. The standard training 

procedure (Whishaw & Pellis, 1990) was used to train animals in skilled reaching task 

prior to the small motor cortex injury. Then rats were divided into two groups with good 

and poor reaching skills based on end-point measures of their performance. After a motor 

cortex lesion to the caudal forelimb area, animals’ skilled reaching performance was 

evaluated over 21 consecutive days. In addition, a detailed analysis of limb movement 

elements (Whishaw, Dringenberg, & Pellis, 1992; Whishaw, Pellis, Gorny, & Pellis, 

1991) was used to assess functional improvements following lesion-induced deficits. 

Movement element scores derived from frame-by-frame video movement assay as 

described with Eshkol-Wachmann Movement Notation (EWMN; Eshkol & Wachmann, 

1958). 

 

Method  

Subjects 

 The subjects were 12 female Long-Evans rats, 3 months old and weighing 200-

300 g at the beginning of the experiment. The animals were housed in standard Plexiglas 

cages in an animal colony room with food and water available and a 12h light-dark cycle 
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(lights on 7:30-19:30h). The room temperature maintained at 22° C. The experiments 

were in compliance with the guideline of the University of Lethbridge animal care 

committee and the Canadian Council for Animal Care, which complies with international 

standards for animal care.  

Food restriction 

The animals were gradually food deprived to 90-95% of their normal body weight 

prior to and during training. Each rat received 15g of Puria rat chaw once a day to 

maintain at that body weight. Also they received 0.9g of 45 mg dustless precision 

banana-flavored pellets (product# F0021, Bioserve Inc., Frenchtown, NJ, USA) for 3 

days prior to initial training on the single pellet-reaching task for familiarization with the 

taste and smell of the food pellets. During the training and testing sessions, the banana-

flavored pellets were served only as targets in the reaching task. Each animal could 

receive up to 20 pellets per day depend on the reaching accuracy. 

Single pellet reaching box 

The single pellet-reaching box was made of transparent Plexiglas with 45 cm 

length, 14 cm width, and 35 cm height. In the middle of the front wall, a 1 cm wide slit is 

extended from bottom of the box to a height of 15 cm. A 2 cm wide by 4 cm long shelf is 

attached to the outside of the front wall, 3 cm above the bottom of the box in front of the 

opening. There are two small indentations with 1.5 cm distance from the front wall 

aligned with each side of the slot to hold the food pellets. A food pellet in each 

indentation is accessible only to the contralateral forelimb, because it pronates medially 

to grasp (Whishaw & Pellis, 1990). 

Training 
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Reach training sessions were conducted at approximately the same time each day 

in a testing room. Rats were trained on the single pellet-reaching task for 14 days. On the 

first day of training, rats were placed individually in the reaching apparatus with pellets 

on the shelf for 10 minutes. Once the pellets were retrieved successfully, the pellets were 

moved further away on the shelf to encourage the rat to use a hand and reach for the food. 

Pellets were initially presented in both indentations to determine the dominant forelimb. 

Once a rat showed a clear preference for one hand, by making more reaching attempts 

with it, a single food pellet was presented in the indentation contralateral to the preferred 

forelimb. In order to obtain discrete reaching trials, rats were required to reposition their 

body on each trial. They were shaped to leave the slot, walk to the rear wall of the box, 

turn and approach the slot again for the next pellet. In addition, by withholding food on 

semi-randomly selected trials, rats were taught to sniff the shelf for a pellet and to reach 

only if a pellet was present. Single pellet reaching tests (each session consisted of 20 

trials) were performed for five consecutive days after the completion of the training 

sessions. 

Video recording 

 Video records were made using a Sony 3CCD camcorder with a shutter speed of 

1000th of a second. Illumination for high shutter speed filming was provided by a cold 

light source (Whishaw & Pellis, 1990). Frame by frame analysis was done at 30 frames 

per second using a Sony digital videocassette recorder DSR-II.  

 

Motor cortex devascularization 
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 Small motor cortex lesions were made in the caudal forelimb area of the 

sensorimotor cortex (Donoghue & Wise, 1982; Hall & Lindhom, 1974). The lesion was 

performed on the side contralateral-to-the pretrained forelimb. To facilitate respiration 

throughout surgery, the animals received an injection of atropine methyl nitrate (0.1 

mg/kg i.p; Sigma-Aldrich, St. Louis, MO, USA) and also they received an injection of 

analgesic buprenorphine (0.01 mg/kg s.c; Schering-Plough, Hertfordshire, UK) prior to 

the surgery. They were then anesthetized with sodium pentobarbital (45 mg/kg, i.p; 

Sigma-Aldrich, St. Louis, MO, USA). The skull was removed by drilling four holes into 

the skull overlaying the motor cortex and demarcating the lesion target. The stereotaxic 

coordinates as measured from Bregma were anterior (A) and lateral (L): A +0.5 mm, L -

2.0 mm; A +0.5 mm, L -3.5; A +2.0 mm, L -3.5 mm; A +2.0 mm, L -2.0 mm. The 

exposed dura matter was cut, peeled away and the tissue was devascularized by gently 

removing the pia matter and blood vessels using a saline-soaked cotton swab. The 

incision was sutured and the animal was received a second dose of buprenorphine (0.01 

mg/kg s.c.). The animals were monitored during 24 h recovery time before being returned 

to the colony room.  

       

Behavioral analysis 

End point measures  

A testing session consisted of twenty trials. On each trial, the rat had to approach 

the slot from the back of the box, reach for the food pellet through the slot, and after 

attempting to gain the food (grasping the food or else knocked it off the shelf), return to 

the rear of the box. Reaching performance was analyzed and for each trial the number of 
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attempts, first reach success and total success were recorded (Whishaw, 2005; Whishaw, 

Dringenberg, & Pellis, 1992). 

Attempt. The number of reach attempts was counted in each trial of five pre-lesion 

testing sessions. A reach attempt is defined as a forward movement of rat’s preferred 

forelimb through the slot in the front wall of the reaching box in an attempt to grasp and 

obtain the food. A reach attempt could be successful or not depending on the accuracy of 

the reaching movement.  

 First reach success. First reach success is defined as a reach attempt in which the 

food pellet is grasped with the first advance of the forelimb and is consumed by the rat. 

First reach success scores were calculated as follows: 

First reach success (%) = (Number of first reach successes/ Number of trials) × 100 

     Total success.    Success is defined by reaches resulted in obtaining food by grasping 

the pellet with the hand despite the number of reach attempts. Total success percent was 

calculated as follows: 

Total success (%) = (Number of successes/ Number of trials) × 100 

Movement element analysis 

 Reaching movements were analyzed using a rating scale derived from Eshkol-

Wachmann Movement Notation (EWMN) analysis of reaching (Eshkol & Wachmann, 

1958; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993) based on the analysis of the 

relations and changes of relations between the body parts involved in the reaching 

movement. A reach was subdivided into ten reaching elements including; (1) Digits to the 

midline: The reaching limb is lifted from the floor so that the tips of the digits are aligned 

with the midline of the body. (2) Digits closed: As the limb is lifted, the digits are flexed 
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and closed, the hand is supinated and the wrist is partially flexed. (3) Aim: The forelimb 

and elbow are carried inward to the midline of the body, with the hand located just under 

the mouth. (4) Advance: The limb is advanced directly through the slot toward the food 

pellet. (5) Digits extend: During the advance, the digits extend toward the food pellet. (6) 

Arpeggio: When the hand is over the food pellet, it pronates from digit 5 through to digit 

2, and at the same time the digits open. (7) Grasp: The digits close and flex over the food 

pellet, with the hand remaining in place, and the wrist is slightly extended to lift the food. 

(8) Supination I: As the hand is withdrawn, it supinates by almost 90°. (9) Supination II: 

Once the hand is withdrawn from the slot to the mouth, it supinates further by about 45° 

to place the food pellet in the mouth. (10) Release: The mouth contacts the hand and the 

digits open to release the food pellet. 

 Ten reaching elements were analyzed and scored for first three successful reaches 

of the last presurgery session, and also post-surgery days of 5, 15, and 21. Each of the 

reaching elements was rated on a three-point scale. A score of “0” was given for a normal 

movement, a score of “0.5” for an abnormal movement, and a score of “1” for the 

absence of a movement (Piecharka, Kleim, & Whishaw, 2005; Whishaw, Pellis, Gorny, 

Kolb, & Tetzlaff, 1993). 

Histology 

 At the completion of the experiments, animals were euthanized with an overdose 

of sodium pentobarbital and intracardially perfused with 0.9% phosphate buffered saline 

followed by a 4% paraformaldehyde solution. The brains were removed from the skull 

post-fixed and cryoprotected in a 30% sucrose and 4% paraformaldehyde solution. 

Coronal sections (40 µm) were cut throughout the brain on a cryotome, mounted on the 
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gelatine-coated slides and stained with 0.3% Cresyl Fast Violet for the lesion analysis. 

Digital images were captured from three different coronal sections from the rostral, 

middle, and caudal extent of the lesion. The ImageJ program (V 1.36 

http://rsb.info.nih.gov/ij/download.html) was used to estimate the tissue loss of the motor 

cortex damage by comparing the remaining tissue area with that in the undamaged tissue 

of the intact hemisphere (ipsilateral-to-the- pretrained limb). The following formula was 

used to estimate the tissue loss (%):  

Tissue loss (%) = [ipsilateral motor cortex (pixels2) – contralateral motor cortex (pixels2) 

/ ipsilateral motor cortex (pixels2)]  100  

 

Statistical analysis 

 The animals were divided into two groups according to their single reach success 

scores during last five days of training (Gholamrezaei & Whishaw, 2009). Animals above 

the median of this rank order were assigned to the GR group, whereas the animals below 

the median were assigned to the PR group. The results and comparisons between groups 

were made using multivariate and repeated measures analysis of variance (ANOVA). 

Follow-up analyses of significant interactions were performed with Bonferroni post hoc 

tests. Also, comparisons of means between groups were performed using paired and 

unpaired t-tests. In all statistical analyses, a p-value of less than or equal to 0.05 was 

considered significant. All results were presented as mean + the standard error of the 

mean (SEM).  

 

Procedure 
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 After pretraining in the single pellet-reaching task, the animals underwent 

surgery. The recovery of skilled reaching was examined for 21 consecutive days (20 trials 

each day) starting from the next day after the motor cortex lesion. End-point measures 

were assessed daily and movement element analysis was made on the day before motor 

cortex lesion, post-lesion day 5, day15, and day 21. 

Results 

Histology 

 Figure 5.1 illustrates a dorsal image of the brain from a representative rat that had 

received a small motor cortex lesion and also coronal sections from the rostral, middle, 

and caudal extent of the representative brain lesion. The mean percentage of tissue loss 

on contralateral forelimb region of the motor cortex was 34.87 + 4.05 S.E.M. % of the 

intact forelimb motor area in the ipsilateral hemisphere.  

To determine whether motor cortex infarct size affected the behavioral measures, 

the estimated percentage of tissue loss in the lesion-hemisphere was correlated with post-

surgical end-point measures (Figure 5.2). Consistent with a previous report (Whishaw, 

2005) no significant correlations were found between the tissue loss and total success 

(r(11)= -0.347, p > 0.05) (Figure 5.2.A), single reach success (r(11)= -0.442, p > 0.05) 

(Figure 5.2.B), or the number of attempts (r(11)= 0.483, p > 0.05) (Figure 5.2.C). Also 

tissue loss (%) was compared between animals with good vs. poor reaching skills and the 

results indicated no significant difference between groups (F(1,10) = 0.534, p > 0.05). The 

mean percentage of tissue loss in the good reachers was 31.85 + 5.85 S.E.M. and in the 

poor reachers was 37.90 + 5.85 S.E.M. (Figure 5.3). 
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Figure 5.1. Representative small forelimb motor cortex stroke. (A) dorsal image of a 
post-fixed brain with unilateral devascularization lesion of the motor cortex. (B) coronal 
sections from the rostral, middle, and caudal extent of the representative lesion. Note: 
Cortical tissue surrounding the lesion penetrated into the cavity. 
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Figure 5.2. Correlation between endpoint scores and tissue loss (%). (A) total success 
(%), (B) single reach success (%), and (C) number of attempts. 
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Figure 5.3. Percentage of tissue loss in animals with good vs. poor reaching skills.  
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Single pellet reaching 

End point measures 

(1) Total success. Success rates were measured for 5 days of pre-surgery training days 

and also 21 post-surgery test sessions and analyzed as pre-lesion, first 10 days of 

post-lesion, and last 11 days of post-lesion mean scores. A summary of pre- and 

post-lesion success scores is illustrated in Figure 5.4.A. The small motor cortex 

lesion significantly alters the total reaching success (F(2,20) = 3.712, p < 0.05).  No 

significant difference was found between groups (F(1,10) = 3.186, p > 0.05), and also 

no interaction of group and test day was found (F(2,20) = 1.866, p > 0.05). Post hoc 

analysis indicated a significant difference (p <0.05) between pre- and first 10 days of 

post-lesion performance only. It is interesting that the lesion effect diminished the 

pre-lesion difference on the success scores between groups. Examining the effects of 

lesion within groups showed that decline of the total success scores was only 

significant for the animals with good reaching skills. 

(2) Single reach success. Pre- and post-lesion single reach success scores are shown in 

Figure 5.4.B. The small motor cortex lesion reduced single reach success scores 

markedly compared to pre-lesion performance (F(2,20) = 7.842, p = 0.003). Also a 

significant difference was found between groups (F(1,10) = 9.045, p < 0.05), but no 

interaction (F(2,20) = 1.702, p > 0.05). Post hoc analysis revealed significant 

difference (p <0.05) between pre- and post-lesion performance (both first 10 days 

and last 11days). Examining the effects of small motor cortex lesion within groups 

revealed that the reduction of single reach success scores was dominant in the good
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Figure 5.4. Pre- and post-lesion endpoint scores of skilled reaching performance (mean + 
SEM). (A) total success (%), (B) single reach success (%), and (C) number of attempts. 



 
 
 

179 

 reachers. The reduction of single reach success scores was not significant in the rats 

with poor reaching skills. 

(3) Number of attempts. Pre- and post-lesion performance on the number of attempts is 

illustrated in Figure 5.4.C. A significant increase in the number of attempts was 

found between pre- and post-lesion days (F(2,20) = 4.541, p < 0.05). Also a significant 

difference was found between groups (F(1,10) = 10.390, p = 0.009), but no interaction 

of group and test day (F(2,20) = 2.441, p > 0.05). Post hoc analysis revealed a 

significant increase of attempts during first 10 days but not last 11 days of post-

lesion (p <0.05). Also examination of the effects of lesion within groups indicated 

that the increased number of attempts was only significant in the GR group.  

Although the number of attempts increased in the poor reachers performance after 

lesion but no significant difference was found when compared with pre-lesion 

performance. 

Pattern of successful reaches 

The number of different types of successful reaches before and after lesion is 

shown in Figure 5.5.  Results indicated that after motor cortex lesion single reach 

success scores (Figure 5.5.A) decreased significantly (F(2,20) = 7.778, p = 0.003). 

Although no difference was found between the first and last 10 days of post-lesion on 

single reach success, both were significantly different when compared to the pre-lesion 

performance. The single reach success scores after lesion in the PR group did not differ 

when compared to the pre-lesion performance. A significant difference was found only 

in the performance of the GR group. The reduction of the single reach success in this 

group did not change the difference between groups and the level of single reach success 
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Figure 5.5. Patterns of successful reaches (mean + SEM). Note: The reduction of single 
reach success scores and increase of success scores on more than 3 consecutive reaching 
attempts are noticeable. 



 
 
 

181 

was still significantly higher in the GR group after motor cortex lesion  (F(1,10) = 9.224, p 

= 0.013), also no interaction of group by test day was found (F(2,20) = 1.679, p > 0.05). 

 The success scores on the 2nd reach (Figure 5.5.B) did not differ after motor 

cortex lesion (F(2,20) = 2.230, p > 0.05), and no difference was found between groups 

(F(1,10) = 0.001, p > 0.05). Also no interaction of group by test day was found (F(2,20) = 

0.009, p > 0.05). 

Results on success made by more than 3 reaching attempts (Figure 5.5.C) 

revealed that this type of success increased after motor cortex lesion during both first and 

last 10 days of post-lesion (F(2,20) = 9.194, p = 0.001). A marginal difference was found 

between groups (F(1,10) = 4.493, p = 0.06). Also no interaction of group by test day was 

found (F(2,20) = 0.517, p > 0.05). The increased number of success on 3rd reach and up 

was observed in both groups. The success on 3rd and more reaching attempts in the GR 

group during both first and last 10 days of post-lesion were significantly different 

compared to the pre-lesion performance but this type of success increased significantly 

only during the second half of the post-lesion period in the PR group. 

Correlation analysis of pre- vs. post-lesion reaching performance 

Correlations between pre- and post-lesion endpoint measures are illustrated in 

Figure 5.6. The correlation analysis revealed that there was a significant correlation 

between pre- and post-lesion behavioral measures, Total success (r(11) = 0.675, p <0.05) 

(Figure. 5.6.A), single reaching success (r(11) = 0.677, p <0.05) (Figure 5.6.B), and the 

number of attempts (r(11) = 0.691, p <0.05) (Figure 5.6.C). 
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Figure 5.6. Correlation between pre- and post-lesion endpoint measures. 
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Movement elements 

Separate analyses were performed for four scoring days including pre-lesion day, 

post-lesion day5, day15, and day21. A summary of pre- and post-lesion reaching 

movement element scores for the GR and PR groups are illustrated in Figure 5.7. The 

movement element analyses indicated that there were no significant differences on 

movement elements between GRs and PRs prior to- or after the motor cortex lesion (pre-

lesion: F(1,10) = 0.061, p > 0.05; post-lesion day5: F(1,10) = 0.00, p > 0.05; day15: F(1,10) = 

0.011, p > 0.05; day21: F(1,10) = 0.122, p > 0.05). Following the small motor cortex 

lesion the animals in both groups were similarly impaired on a number of movement 

elements such as aim, advance, supination II, and release.  

In order to determine whether there was a rehabilitation effect on the reaching 

elements, pre-lesion performance compared to the performance during acute (post-lesion 

D5) and chronic (post-lesion D15 and D21) periods. Results indicated that the pattern of 

impairment changed through different periods after the lesion. For example, aim (F(3,30) 

= 6.942, p < 0.001) and release (F(3,30) = 10.367, p < 0.001) were impaired on both post-

lesion D5 and D15. Release element recovered in the PRs faster than the GRs. The result 

confirmed by a day and group interaction effect (F(3,30) = 3.466, p < 0.05). Supination II 

(F(3,30) = 7.391, p < 0.001) was impaired significantly on the acute period D5. Advance 

(F(3,30) = 7.278, p < 0.001) and pronation (F(3,30) = 7.105, p < 0.001) impairments showed 

up later in time on D15. The pronation impairment was observed only in the PRs and 

digits open was impaired in the GRs. All movement elements were recovered by the 

post-lesion D21. 
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Figure 5.7. Pre- and post-lesion reaching movement element scores in the animals with 
good and poor reaching skills. (A) pre-lesion movement element scores, (B) post-lesion 
day5, (C) post-lesion day15, and (D) post-lesion day21. Note: All movement elements 
were recovered by the last test session (post-lesion day 21). 
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Discussion 

 The objective of the present study was to investigate the acute and chronic effects 

of a small motor cortex lesion to the caudal forelimb area and variability of behavioral 

outcomes in relation to individual differences in skilled reaching behavior prior to the 

damage. Recovery patterns were examined by comparing two groups of rats with good 

and poor reaching skills. The performance in the skilled reaching task was assessed by 

end-point measures of total success, single reach success, and number of attempts prior to 

the lesion for assigning animals into two groups of good vs. poor reachers. The same end-

point measures were reevaluated during acute and chronic periods after the lesion. In 

addition, limb movement elements were analyzed for functional improvements over 

recovery days.  

The results indicated that small motor cortex lesion via pial removal produced a 

mild behavioral deficit in a subgroup of animals. Rats with good reaching skills displayed 

a decrease in successful reaching (both total success and single reach success) and an 

increased number of attempts, whereas the poor reachers did not show significant 

changes in the end-point measures of total success, single reach success, and the number 

of attempts compared to their pre-lesion performance. However, both groups were 

impaired in the way they performed their reaching movements during the acute post-

lesion period. Nevertheless, the rats significantly recovered after three weeks of 

rehabilitation.  

 Previous studies on the effects of motor cortex lesion on behavioral outcome 

indicated large variations in the skilled performance regardless of lesion type, size and 

location, during the early post-surgical period (Alaverdashvili, Moon, Beckman, Virag, & 
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Whishaw, 2008; Erickson, Gharbawie, & Whishaw, 2007; Goldstein & Davis, 1990; 

Knieling, Witte, & Metz, 2003; Metz, Antonow-Schlorke, & Witte, 2005; Napieralski, 

Banks, & Chesselet, 1998; Whishaw, 2000). Individual differences in pre-surgical 

performance could be considered as a variable that might influence the behavioral 

outcome after cortical damage, which was addressed in the present study.  

Damaging the caudal forelimb area of the motor cortex was chosen because of its 

central role in skilled reaching. It has been shown that the caudal area of the motor cortex 

is most critical for skilled reaching in rats (Gharbawie, Karl, & Whishaw, 2007) and in 

primates (Friel et al., 2005). Lesions in the caudal forelimb area produced similar 

reaching deficits compared to the “standard” motor cortex lesion in which both rostral 

and caudal areas are damaged. In addition, lesions of the caudal motor cortex resulted in 

larger behavioral deficits when compared to lesions in the rostral region of the motor 

cortex (Gharbawie, Karl, & Whishaw, 2007).  

The behavioral deficits resulting from the small lesion in the present study were 

mild but they decreased the total success and single reach success without a severe 

depression of success. The lesion led to increased number of attempts without 

development of “learned non-use”, the tendency to quit using the bad limb 

(Alaverdashvili, Foroud, Lim, & Whishaw, 2008; Erickson, Gharbawie, & Whishaw, 

2007; Taub, 1977; Taub et al., 1993; Whishaw, 2000) or switching forelimb use (Hsu & 

Jones, 2005; Gonzalez et al., 2004) during early post-lesion period. However, the 

reaching deficits after a “standard” motor cortex lesion consist of an acute decline of 

successful reaching, especially single reach success and reaching attempts in early post 

operative period followed by improvements in performance via compensatory strategies 
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(Metz, Antonow-Schlorke, & Witte, 2005; Whishaw, 2000; Whishaw, Pellis, Gorny, & 

Pellis, 1991). The mild end-point impairments found in the present study are likely due to 

the small lesion size. 

It is interesting that the behavioral deficits in total success and number of attempts 

recovered after three weeks of rehabilitation. The present findings support the idea that 

chronic reaching deficits are more closely related to the lesion size (Alaverdashvili, 

Moon, Beckman, Virag, & Whishaw, 2008; Metz, Antonow-Schlorke, & Witte, 2005; 

Gonzalez & Kolb, 2003; Whishaw, 2000) and recovery is proportional to the sparing of 

the same cortical areas (Gharbawie, Karl, & Whishaw, 2007). Therefore, in general, the 

extent of the tissue loss might be the primary factor for the acute and chronic behavioral 

deficits while the remaining portion of the cortical area might be the main factor for the 

recovery rate. 

The main finding of the present study was that despite of similar sized lesion of 

the motor cortex, reaching deficits was displayed by subgroup of animals with good 

reaching skills. The good reachers showed a decrease in successful reaching and also 

increased number of attempts, whereas rats with poor reaching skills did not display 

significant changes in the end-point measures relative to their pre-surgical performance. 

The present findings confirm previous reports that subgroups of animals display different 

end-point performance after small motor cortex lesions (Metz, Antonow-Schlorke, & 

Witte, 2005). According to Metz and colleagues (2005) small photothrombosis produced 

either no end-point deficits or end-point improvements in subgroups of animals, which is 

not quite similar to the present findings. The distinction might be related to the lesion 

type or based on the factors defining the subgroups.     
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One interesting feature was the effect of small motor cortex lesion on single reach 

success scores. The decline in the single reach success was pronounced in the GRs. The 

same variability in the single reach success scores between animals after small motor 

cortex devascularization has also been reported previously (Whishaw, 2000). Success on 

the first reach is the main measure of the skilful behavior because it is a measure for a 

more demanding task. The animals with good reaching skills are prominent in performing 

this type of successful reaching and based on their higher single reach success get 

assigned as the good reachers. However, the rats with poor reaching skills mainly lack the 

required precision and thus they normally show a low level of single reach success 

scores. It seems that the small motor cortex lesion primarily affected this type of success, 

thus GRs are more prone to lose their capabilities. It is noteworthy that the decline of 

total success in the animals with good reaching skills abolished the pre-lesion group 

difference. 

By comparing pattern of successful reaches prior to- and after the lesion in both 

groups, it was found that the small motor cortex lesion increased the number of success 

on more than three reaching attempts. Therefore, the results suggest that the caudal 

forelimb area of the motor cortex has a primary role in skilful reaching in rats. Possibly 

the poor reachers may lack the plastic capacity that underlies high success. This 

suggestion is in line with the idea proposed by Mittleman and colleagues (1988) that the 

post-stroke behavioral variation might be related to individual variability in neural 

organization underlying the behavior (Mittleman, Whishaw, & Robbins, 1988; 

Galaburda, Rosen, & Sherman, 1990). Previous studies suggest that damage to any part 

of the motor system including the motor cortex (Castro, 1972a; Gharbawie & Whishaw, 



 
 
 

189 

2006; Gonzalez & Kolb, 2003; Whishaw, 2000; Whishaw, O’Connor, & Dunnett, 1986), 

basal ganglia (Clarke, Ploughman, & Corbett, 2007; Maclellan, Gyawali, & Colbourne, 

2006; Pisa & Cyr, 1990; Whishaw, O’Connor, & Dunnett, 1986; Whishaw, Zeeb, 

Erickson, & McDonald, 2007), pyramidal tract (Castro, 1972b; Piecharka, Kleim, & 

Whishaw, 2005; Whishaw, Pellis, Gorny, Kolb, & Tetzlaff, 1993), red nucleus (Whishaw 

& Gorny, 1996; Whishaw, Gorny, & Sarna, 1998), and spinal cord (Ballerman, Metz, 

McKenna, Klassen, & Whishaw, 2001; McKenna & Whishaw, 1999) can impair skilled 

reaching for food in rats. Because selective damage to any of these structures only alters 

the quality of movements and does not completely abolish the skilled reaching, it can be 

inferred that different neural circuits in the motor system might be involved in such skill. 

Therefore, it can be concluded that the motor cortex is a critical structure for the precise 

and skilful movements, and fine motor control of the forelimb and it is the core structure 

in the underlying neural circuits used by the good reachers in performing the task.  

Correlation analysis of the pre- and post-lesion performance indicated that good 

reachers still performed better than the poor reachers even after motor cortex damage. 

This conclusion does not discount the important role of the motor cortex in the way each 

movement element is performed. Impairments of the movement elements after the 

damage in both groups suggest that the motor cortex is the key structure underlying the 

movements. The examination of movement element revealed that both groups showed 

impairments in several elements of reaching such as aim, supination, and release during 

the acute period after the lesion. The abnormality of movement element was still 

observed in the advance and pronation during second week after the damage, which 

suggests the involvement of the compensatory movements and their influence on 
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performing normal movements. The development of compensatory movements after 

small motor cortex lesions was previously reported in both rats (Metz, Antonow-

Schlorke, & Witte, 2005; Whishaw, 2000) and primates (Friel & Nudo, 1998). The 

present results suggest that although there were some variations in movement element 

impairments in groups and also different recovery time for different movement elements, 

the animals in both groups displayed true movement elements recovery after three weeks 

of rehabilitation. This result is supported by previous studies, which reported restoration 

of function in human patients after small strokes (Bonita & Beaglehole, 1988; Hendricks, 

van Limbeek, Geurts, & Zwarts, 2002).  

The present results are in line with previous report on changes in qualitative 

performance in two subgroups of animals (consistent and improved reachers) after small 

motor cortex lesions (Metz, Antonow-Schlorke, & Witte, 2005). The movement element 

analysis revealed that both groups were similarly impaired on some elements such as aim, 

supination II, and release. Also both groups showed impairments on different elements. 

For example, the good reachers displayed digits extension impairment whereas the poor 

reachers showed changes in pronation. Severely impaired digit movements in the good 

reachers were noticeable in two elements, digits extension and release. Although release 

was impaired in both groups, the good reachers showed a longer duration of impairment. 

On the other hand, the rotatory elements of the reaching movement, pronation and 

supination, were markedly impaired in the poor reachers. The supination element of the 

movement was also impaired in the good reachers but it recovered faster in this group. It 

is interesting to speculate then, that the compensatory mechanisms underlying recovery in 
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GR and PR is different (Jones & Schallert, 1994; Kolb, Brown, Witt-Lajeunesse, & Gibb, 

2001; Nudo, 1999, 2003; Sanes & Donoghue, 2000). 

In conclusion, a small motor cortex lesion via devascularization study produced 

mild motor impairments. The study indicated that variation in motor deficits during early 

post-surgical period is related to individual differences in motor performance prior to the 

damage. The present finding suggests that for a complete assessment of the effects of 

cortical damage and therapeutic interventions, behavioral assessment in relation to 

individual differences is useful. Thus, for a better understanding and treatment of the 

acute and chronic impairments after brain injuries, individual differences need to be 

considered. Future work should be directed toward investigating the anatomical changes 

induced by brain damage in relation to individual differences and variations of behavioral 

outcome in order to find better therapeutic interventions and treatments for the patient 

with brain injury.    
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The purpose of this thesis was to characterize individual differences in skilled 

reaching for food in rats and to examine potential sources of individual differences in 

brain function. This was achieved by two sets of experiments. The first set of experiments 

was designed to assess skilled reaching behavior in normal rats during skill acquisition 

and after the establishment of well-practiced performance. These experiments also 

examined other behavioral characteristics and neurobiological measures that might 

correlate with individual differences in performance. In the second set of experiments the 

potential sources underlying the differences and the distribution of individual differences 

were examined after two different methods of brain manipulations. Rats were subject to 

behavioral sensitization by repeated exposure to psychomotor stimulants (amphetamine 

or nicotine) or they received motor cortex damage.  

The main findings of the experiments were as following: 

1. Rats displayed distinctive variation in the skilled reaching performance. Some 

displayed very poor success rates and some displayed very good success rates. 

Although there were differences in skilled reaching performance on a number of 

endpoint measures, including success rates, number of attempts, and number of 

gestures, all animals used normal movement elements and gestures in their 

performance. 

2. Detailed behavioral analysis during initial training indicated that although the act 

of reaching was developed with similar serial and temporal organization, the 

individual differences started to emerge as the animals became more practiced. 

3. There were no significant correlations between other behavioral or brain measures 

and individual differences in skilled reaching. 
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4. Behavioral sensitization induced by repeated administration of the psychomotor 

stimulant drugs amphetamine and nicotine had a marginal effect on individual 

differences in skilled reaching.  

5. Following small motor cortex lesions there was a drop in reaching success and an 

increase in reaching attempts.  The effect occurred mainly in good reachers. 

Nevertheless, both poor and good reachers were impaired in the way they 

performed their reaching movements during the acute post-lesion period.  

The findings and other relevant issues will be discussed in the following 

sections, which will include considerations of the importance of investigating 

individual differences and the importance of individual differences to brain 

function. 

The “group” is the standard unit of investigation for the interpretation of data in 

neuroscience, and therefore, in most studies, individual differences are hidden by reports 

of only the group mean and variance. Nevertheless, the case can be made that the 

application of research findings to rehabilitation, drug treatment, or other therapeutic 

interventions could be aided by adequate knowledge of individual differences in 

performance of a behavior. In an actual clinical setting, a therapeutic intervention deals 

with individuals and their unique set of abilities and skills. Understanding individual 

differences helps optimizing preventative and therapeutic care. From a research 

perspective, individual differences should also provide insights into brain function. At the 

very least, if damage to a region of the brain results in poor performance of a motor skill, 

it might be expected that an animal with poor motor skill may in turn have deficiencies in 

the brain region responsible for that skill. Finally, at a very practical experimental level, 
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understanding individual differences provides insights into the adequacy of an 

experimental manipulation. The extent to which subjects are poor vs. good may reflect on 

the adequacy of training and measurement procedures used by an experimenter. 

Individual differences are also currency of evolution. Darwin’s theory of common 

descent proposes that individual differences are selected by the environment so that 

individuals possessing a favored trait successfully reproduce and pass that trait on to their 

offspring. Therefore, individual differences are the basis of selection. It is not surprising, 

therefore, that a generalist species such as the rat, displays individual differences in motor 

behavior. Certainly in studies that have measured individual differences in rats, 

individual differences are reliably obtained (Gholamrezaei & Whishaw, 2009; Mittleman, 

2005; Mittleman, Castaneda, Robinson, & Valenstein, 1986; Piazza, Mittleman, 

Deminiere, Le Moal, & Simon, 1993; Valenstein, 1969; Whishaw, 2000). 

Nevertheless, one problem related to the understanding of individual differences, 

is that of evaluating the importance of a difference. The present experiments examined 

individual differences in the performance of a skilled reaching behavior, in which a rat 

uses a hand to obtain a food pellet for eating. It must be considered that the task is quite 

artificial. Skilled reaching may not be a behavior that in any important way determines an 

animal’s survival in a natural environment. On the other hand, the task is very useful for 

understanding the neural basis of skilled forelimb use and for investigating neurological 

conditions and their treatment. For the latter reason, at least, understanding individual 

differences can prove useful. 

Individual differences in skilled reaching 
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Over the four experiments performed in the present thesis, the results were very 

consistent. There was a similar wide distribution of performance with some rats having 

success levels of about 25% and other rats having success levels of close to 100%. 

Because a rat had to make a complete trip to the back of the test box and then back to the 

food source, the best rats required close to 20 trips to complete the 20 trials of each day’s 

testing. The bad rats would have required up to and perhaps more than 40 trips to obtain 

the same nutrient reward. Assuming that the task was motivating, and all rats always 

completed the task, the poor performance of some rats seems indeed due to impairment in 

optimal performance. It can be assumed that expenditure of twice as much energy would 

be costly and as such would motivate improved performance. 

Individual differences are well recognized in many studies of motor behavior. As 

is reviewed in the introduction, individual variation in motor skill of many different kinds 

is documented in motor skills research. At the more practical level, it is well recognized 

that even despite extensive practice, certain individuals excel in motor skill while other 

remain clumsy. Thus, the finding that rats vary in the skill of reaching for food is not 

surprising.  

One purpose of the first phase of the study was to examine whether individual 

differences in skilled reaching were robust. To this end, the same rats were given a 

number of challenges designed to improve their performance. First, they were given 

extensive overtraining. Were individual differences simply a reflection of inadequate 

experience, overtraining would be expected to reduce the variability in inter animal 

performance. Second, the rats were also given further training on a simpler reaching task. 

Third, they were then returned to the original task. None of these procedures resulted in a 
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lessening of group variability, or for that matter, improved performance. Furthermore, the 

relative ranking of the rats was not changed by these manipulations, it must be concluded 

therefore, that individual differences in skilled reaching performance are not related in 

any simple way to experiential factors. 

 A second objective of the first studies was to examine the consistency of the 

measures used to quantify performance. Thus, three measures of performance were used, 

overall success, first reach success, and number of attempts. High consistency was found 

between the measures. It was found that the most skilful animals reached with higher 

overall success levels, higher single reach success, and with the lowest number of 

attempts. This consistency in the rat skilled reaching performance was replicated in all 

five studies performed for this thesis. In addition, a trial by trial analysis and an 

additional analysis across the 20 trials of each day’s testing session, and across days of 

testing consistently showed a consistency in performance in which individual animals 

displayed little change in their rankings. Thus, the multiple measures used in the study 

indicated that the measures of performance were robust. 

The third objective of the present thesis was satisfied by overall comparison of the 

first studies, which imply that the sex differences are not a determining variable affecting 

the performance of good vs. poor reachers. Sex differences are widely reported in motor 

skills research with males generally excelling in tasks requiring strength and spatial skills 

and females excelling in tasks that require fine motor skills (Field & Whishaw, 2005). 

The present study found similarity in functional endpoints in skilled reaching 

performance in male and female rats. This gender-neutral result suggests that individual 

differences in skilled reaching are not due to any of the obvious sex-related differences, 
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including differences in the body size of the rats, their morphology, or their hormonal 

status. In addition, because rats were tested repeatedly over many days, individual 

differences in motor skill did not appear to fluctuate in any obvious way with the 

animal’s estrous cycle. Previous studies of the skill with which rats can walk on a beam 

have reported changes in skill with estrous cycle (Becker, Snyder, Miller, Westgate, & 

Jenuwine, 1987).  

A fourth objective of the first studies was to examine whether in coordination or 

clumsy movements could be related to individual differences in any simple way. An 

obvious source of poor vs. good performance relates to the way that animals perform a 

reaching movement. The adequacy of reaching movements was assessed using EWMN 

movement notation (Eshkol & Wachmann, 1958). This notational scheme describes the 

movement of distal end of each body segment relative to its proximal end. By notating all 

relevant body segments both the absolute and relative movement of each body part are 

scored (Whishaw & Pellis, 1990). EWMN has proved very useful in scoring the 

adequacy of movement of reaching in a number of animal models of neurological 

conditions, including stroke, Parkinson’s disease, and Huntington’s disease (Klein, 

Sacrey, Dunnett, Whishaw, & Nikkhah, 2011; Whishaw, Suchowersky, Davis, Sarna, 

Metz, & Pellis, 2002; Whishaw, Pellis, Gorny, & Pellis, 1991). When EWMN was used 

to describe the performance of poor vs. good reachers, no differences in movement were 

obtained. That is, all animals performed the reaching movement in the same way despite 

variations in their endpoint performance. This finding definitively rules out the possibility 

that individual variation is in part attributable to some defect in the motor system 
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analogous to what might occur in neurological conditions that are associated with 

changes in movement. 

A fifth objective of the initial studies was to examine whether individual 

differences were related only to the skilled reaching performance of the rats or were a 

general feature of their test performance. Previous studies on the learning of skilled 

reaching for food in the single pellet task have shown that rats sequentially learn the task 

in three stages. These stages can be identified via three oppositions between a body part 

and the food pellet. The first opposition is a snout-pellet relationship in which the rat 

locomotes to the food location and sniffs the food. This opposition can be associated with 

any number of movements, but will always result in the rat locating the food. Then the rat 

learns that it can grasp the food, and this is the hand-pellet opposition, which organizes 

the transportation of the limb toward the food pellet for grasping. After grasping, the rat 

must learn that it can bring the food to the mouth, and this is the mouth- pellet opposition, 

which organizes the movements for withdrawing the limb to the mouth for releasing the 

food pellet into the mouth (Gharbawie & Whishaw, 2006). The analysis assessed the time 

required for each rat to progress through the three stages. The results indicated that 

although there was variation in the time taken by individual rats to progress from one 

opposition to another, the amount of time spent to learn these three oppositions were 

similar in the groups with good and poor reaching performance. This finding shows that 

skilled reaching movement is learned in a similar sequence and in a similar time frame by 

rats that subsequently display good and poor reaching skills. Thus, the individual 

differences found in skilled reaching in rats are not related to the difference in the way 

they organize their movements serially or temporally. Individual difference only began to 
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emerge as the rats began to reach for food. Thus, individual differences in reaching 

performance appeared to be unrelated to the general way that animals acquired the task, 

nonreaching demands of the task, or motivation to obtain food.  

A sixth objective of the first experiments was to determine whether there were 

any obvious differences in brain morphology of the rats that might be related to their 

skilled reaching performance. Some anatomical and neurobiological measures that have 

been found sensitive to brain injury include brain weight, cortical thickness, pyramidal 

tract size, motor cortex cell number and AChE density in the motor cortex (Jones, Chu, 

Grande, & Gregory, 1999; Kleim & Jones, 2008; Kolb, 2003; Schallert, Kozlowski, 

Humm, & Cocke, 1997). Gross anatomical examination can also reveal whether pre-

existing brain abnormalities, such as tumors, strokes, or other brain anomalies are 

present. It was found that individual variation in skilled reaching was not related to gross 

abnormality in the motor system. No differences were found in brain size, cortical area, 

pyramidal tract size, or neurochemical measures in the motor cortex. Therefore, both the 

anatomical and behavioral measures revealed that the individual differences in 

performance were not related to obvious pre-existing brain abnormalities, tumors, or 

other brain anomalies.  

A source of individual differences was identified in the way that the rats used 

gestures for reaching, however. Reaching consists of a sequence of four gestures, 

including advance, grasp, withdrawal, and release forming a normal reaching movement. 

Each gesture is separated by a brief pause and change in the movement direction and 

speed (Alaverdashvili, Foroud, Lim, & Whishaw, 2008). Although, one occurrence of 

each gesture is sufficient to form a single reach, each gesture can also be repeated several 
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times in a successful reaching movement. For example, if a rat were to miss the food on 

the grasp gesture, it might repeat that gesture in an attempt to get the food. The gesture 

analysis showed that increased number of gestures was related to poor reaching 

performance. The animals with poor reaching skills displayed high number of gestures in 

their performance relative to the animals with good reaching skills.  

The excessive gestures may affect performance in a number of ways. First, they 

may indicate that the rat has not positioned itself appropriately and so cannot target the 

food accurately, resulting in reposition of the body and further reach attempts. Second, 

increased gestures may interfering with successful reaching by increasing the chance that 

a poorly directed movement may result in the rat knocking the food pellet off the shelf 

and thus incurring a miss. Third, the increased number of gestures may indicate that the 

rat has adopted a reaching strategy that is different from that used by a rat that makes few 

gestures. 

In keeping with the idea that gesture number may be related to strategy selection, 

individual differences displayed by rats in skilled reaching may relate to the way that they 

learn the task. In principal, there are two ways to solve the task (Boakes, 1977; Flagel, 

Akil, & Robinson, 2008; Robinson & Flagel, 2009). A rat could use a goal-oriented 

strategy (Balleine & O’Doherty, 2010; Dickinson, 1994; Dickinson, Balleine, Watt, 

Gonzalez, & Boakes, 1995) in which it learns the location of the food and directs its 

reaching movement to that location. Such a goal strategy would ensure that the reaching 

movement is accurate and may thus result in good performance because the location of 

the food pellet does not change. Furthermore, the location of the food can be confirmed 

on every trial by sniffing. On the other hand, a rat may learn to make a sequence of 
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movements, which hopefully results in obtaining the food object. Such a habit strategy 

(Balleine & O’Doherty, 2010; Dickinson, 1994; Dickinson, Balleine, Watt, Gonzalez, & 

Boakes, 1995) would be reinforced by obtaining food on some reaches but may 

nevertheless result in poorer overall reaching success. Each misses would then result in 

another attempt and repeating attempts would then become a “feature” of an animal’s 

performance. Thus, poor reachers might develop such a habit strategy as is supported by 

the gestural analysis that showed that poor reaching is characterized by many gestures.  

In summary, the results from the first two experiments of the thesis indicate that 

reliable individual differences on skilled reaching performance of the rats exist. They are 

not related in an obvious way to the training procedures, amount of practice, or brain 

correlates that were examined. It is suggested that they may be due to the learning 

difference adopted by the animals. In order to investigate this variability more, we tried to 

change the brains by the effects of psychomotor stimulant drugs such as amphetamine 

and nicotine. The results will be discussed next.  

Sensitization and skilled reaching 

In the examination of the performance of rats in skilled reaching, it was found that 

there are considerable individual differences in the performance of the rats. The top half 

of each group of rats in terms of reaching success were designated as the good reach 

group and the bottom half were designated as the poor reach group. In the absence of any 

obvious cause of the variability in performance of the groups, it was proposed that the 

groups adopt different strategies in solving the problem of reaching with a hand for food. 

Rats that treat the food as an object at a location may excel because they direct their 

movements in relation to the food’s location. Rats that merely acquire a sequence of 
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movements that they execute in the general location of the food may do poorly because 

they rely on chance accuracy.  

In independent investigations, it has been suggested that rats performing in food 

reward tasks can also be divided into two groups. Rats may focus their attention on the 

location of a food reward or they could arbitrarily attend to some irrelevant cue that they 

associate with the reward. Rats that display the former behavior have been termed “goal-

trackers” and rats that display the latter behavior have been termed “sign-trackers”. It was 

hypothesized that the behavior of the GR and PR groups in the skilled reaching task may 

be analogous to the behavior of goal- and sign-trackers. If this were the case, then, using 

procedures that influence the incidence of goal- vs. sign-trackers may influence the 

incidence of GR and PR. This hypothesis was tested in two experiments. 

The psychostimulant drugs are well-known chemicals because of their behavioral 

activating effects. Repeated exposure to the drugs such as amphetamine or nicotine leads 

to an enduring enhancement of the activating effects, which is called behavioral 

sensitization (Kalivas & Stewart, 1991; Robinson & Becker, 1986). Sensitization changes 

behavior (Feeney & Sutton, 1987; Goldstein, 2003; Maling & Acheson, 1946; 

Martinsson, Hardemark, & Wahlgren, 2003) and neuroplastic responses such as patterns 

of synaptic connectivity (Ramic et al., 2006; Robinson & Kolb, 1997; Stroemer, Kent, & 

Hulsebosch, 1998). These changes are developed gradually and lasted for months after 

the termination of drug treatment (Paulson, Camp, & Robinson, 1991).  

Sensitization also influences the propensity of rats to become goal- or sign- 

trackers in subsequent behavioral tests (Flagel, Watson, Akil, & Robinson, 2008; 

Robinson & Flagel, 2009; Saunders & Robinson, 2010). Presumably, the synaptic 
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capacity used up in the process of becoming sensitized renders the animals more likely to 

become sign-trackers than goal-trackers. If goal tracking vs. sign tracking are related to 

GR vs. PR strategies, then rats that are sensitized should be more likely to be PR than 

GR. Therefore, it was expected that behavioral sensitization induced by prior repeated 

administration of amphetamine or nicotine would influence the number of rats that 

become either GR or PR.  

In the initial phase of the experiments, rats were treated with either amphetamine 

or nicotine in a sensitization paradigm. The sensitization procedure was successful in 

producing rats that met the criteria of sensitization, in that their response to a test dose of 

the drug after a sequence of daily drug administrations was enhanced.  

It was found that the behavioral sensitization induced by prior repeated 

administration of either amphetamine or nicotine did not affect the acquisition and 

performance of single pellet reaching in sensitized animals. The acquisition and 

performance of skilled reaching were not different between sensitized and non-sensitized 

rats. Both drug groups (amphetamine and nicotine) reached similar amount of total 

success, single reach success and number of attempts relative to the saline groups during 

training and testing periods. But sensitization to amphetamine or nicotine has differential 

effects on animals with good or poor reaching skills. Comparing the animals with good 

and poor reaching skills in sensitized and non-sensitized groups showed that sensitization 

to amphetamine had different effects on subgroups that displayed good or poor reaching 

skills. There was an increase in successful reaches made by the sensitized-GRs. But no 

effect was found on the sensitized-PRs reaching performance relative to the non-

sensitized poor reachers. Sensitization to nicotine had a detrimental effect on the way 
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movements were made and decreased performance in rats with good reaching skills.

 In summary then, sensitization with amphetamine and nicotine did influence 

subsequence performance. Following amphetamine sensitization, the GR in the sensitized 

group performed somewhat better than the GR in the control group. Following nicotine 

sensitization the success of the animals was not altered, although the movements used by 

the sensitized rats were poorer than those of the control group. The main results, 

however, did not suggest that sensitization altered individual differences in the predicted 

direction of producing more rats that could be classified as PR. Thus, the experiments do 

no lend support to the idea that it is differences in learning strategy that account for why 

rats turn out to be either good or poor reachers. It seems more likely, then, that there must 

be some structural basis for the rats’ performance. It is likely that a structural difference 

resides in the motor cortex. In order to test this idea, a final experiment was conducted. 

Motor cortex and individual differences in skilled reaching 

Given that the sensitization study, described above, did not provide evidence that 

there was a change in the biases of the rats that would increase the number of PR, the 

studies prediction, a different hypothesis was tested. The question asked was whether 

some aspect of the motor cortex was involved in generating individual differences in 

skilled reaching. In order to investigate the role of the motor cortex in the reaching 

variability, a lesion study was conducted. Small lesions were made in motor cortex 

contralateral to the preferred forelimb.  The rats were well trained and divided into GR 

and PR groups prior to receiving the lesions. The expectation was that there should be a 

decrease in successes in animals with good reaching skills. That is, in order to be a GR, 

the expectation was that an intact and highly functioning motor cortex is required. 
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This method of using motor cortex lesions to investigate skilled motor behavior is 

one of the most common and classic ways to study brain-behavior relationships. In the 

earliest investigation, Peterson and Francarol (1951) found the relationship between 

handedness and the motor cortex. By making lesions in the motor cortex of pretrained 

rats, they found a shift in limb use. Many studies have subsequently replicated this 

finding by using different kinds of motor cortex lesions. For investigating the role of 

motor cortex in the individual differences in skilled reaching, several factors should be 

considered. The lesion would have to be consistent in all animals. The devascularization 

of surface blood vessels (pial strip) model was chosen because this model provides well 

defined and consistent infracts. The lesion would also have to be small. A small lesion 

would maximize performance and also would not mask the variability in the behavioral 

outcome due to the severity of the impairments. Finally, the lesion should be in the 

caudal region of the forelimb because this are is likely most closely associated with 

control of the forelimb (Gharbawie, Karl, & Whishaw, 2007; Friel et al., 2005). In the 

present study, consistent lesions that were small in size were successfully produced in the 

caudal region of the forelimb motor cortex in all of the rats. 

The results showed that the behavioral deficits were mild, featuring a decrease 

total success, single reach success and an increase in the number of attempts during the 

early post-lesion period. Previous studies have shown that after a “standard” motor cortex 

lesion, severe behavioral deficits do occur (Alaverdashvili, Moon, Beckman, Virag, & 

Whishaw, 2008; Erickson, Gharbawie, & Whishaw, 2007; Gonzalez & Kolb, 2003; 

Gonzalez et al., 2004; Hsu & Jones, 2005; Metz, Antonow-Schlorke, & Witte, 2005; 

Whishaw, 2000; Whishaw, Pellis, Gorny, & Pellis, 1991) but severe deficits were not 
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produced in the present study. Thus, the intention of producing a small lesion that still 

had mild deficits on performance was achieved.  

The central result of the study was that despite similar sized lesion of the motor 

cortex in the rats designated as GR and PR, a mild reaching deficit observed only in the 

performance of the GR. Rats with good reaching skills displayed a decrease in successful 

reaching (both total success and single reach success). The deficit in single reach success 

did not improve with three weeks of rehabilitation. In addition, there was an increase in 

the number of attempts only in the GR group. Thus, the main effect of the lesion was to 

decrease successful reaching in the GR group and to leave the PR group unaffected. This 

finding seemingly confirms the prediction underlying the hypothesis that was tested by 

the experiment and suggests that the substrate that mediates the differences between GR 

and PR is the motor cortex. 

There is one caveat to the conclusion that the substrate of the difference between 

GR and PR is the motor cortex. The elemental analysis of the rats reaching performance 

showed that both PR and GR displayed a chronic decrease in movement performance. 

Thus, the motor impairment produced by the lesion may have led to the decrease in the 

performance of the GR group. At the present time, the relationship between movement 

elements and endpoint measures is not certain. Clearly after most lesions to the motor 

system, the two measures undergo correlated changes. After a recovery period, however, 

endpoint measures do undergo improvement, and are likely mediated by compensatory 

movements, which is not matched by improvements in movement.  

On the basis of information at hand, however, it is possible to speculate that in 

fact the lesions were successful in identifying the motor cortex as the substrate for 
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performance and therefore the substrate for individual differences. It is not likely, 

however, that frank structural damage is the variable related to individual differences in 

performance. There could be differences in many features of motor cortex, including 

synaptic connections, neuronal morphology, or growth factor and other chemical content. 

It is interesting in this respect that Kleim et al. (2006, 2010) have found that the content 

of BDNF in the motor cortex of the human brain is related to the size of the forelimb 

representation of motor cortex. Future studies could investigate whether BDNF content or 

other changes in motor cortex are related to the skill with which an animal is able to use 

its hands for reaching for food. 

4. Conclusion 

In conclusion, this study investigated individual differences in skilled reaching 

performance in rats. It was thought that identification of skilled reaching would reveal 

something of the control process of skilled reaching, provide insights into the evolution 

of skilled reaching, and would be relevant to the performance of animals used in studies 

that investigate neurological studies. Five experiments were performed and these 

investigated the profile of individual differences in normal rats and also manipulated the 

neuronal condition of rats in order to reveal neural substrates for individual differences. 

Skilled difference in endpoint measures of reaching success was found to be a 

robust feature of the performance of the rats. The differences were constant in the face of 

the extent of training given to the animals, manipulations of the training conditions, and 

the trial-by-trial performance of the animals. Individual differences were not related to 

the way that rats acquired the task, their motivation to perform the task, or to the gross 

differences in the anatomy of their motor system. 
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It was hypothesized that individual differences may be related to the strategies 

that rats adopt to perform skilled reaching, with GR solving the task using a goal strategy 

and PR solving the task using a habit strategy. This idea was tested first by sensitizing 

rats with the stimulant drugs amphetamine and nicotine, and then training them on the 

skilled reaching task. The prediction was that sensitization would increase the probability 

of the use of a habit strategy and so increase the probability that a rat would be a PR. The 

predication was not born out and the sensitized rats displayed no differences in their 

performance profile relative to the control rats. 

A final experiment tested the idea that substrate for performance and individual 

differences is the motor cortex. Well-trained rats divided into groups of GR and PR were 

given small motor cortex lesions with the prediction that disruption of the motor cortex 

would preferentially disrupt the performance of GR. The prediction was born out as the 

lesions had little effect on the endpoint measures of the PR but they did reduce successful 

reaching of the GR. The suggestion is made that future studies could investigate the 

structural and neural chemical organization of the motor cortex with the aim of revealing 

the neural substrate of individual differences. 

 
 

 

 

 

 

 

 



 
 
 

210 

References 
 

Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic 
plasticity. Trends in Neurosciences, 19, 126-130. 

 
Ackerman, P. L. (1987). Individual differences in skill learning: an integration of 

psychometric and information processing perspectives. Psychological Bulletin, 102, 3-
27. 

 
Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: 

cognitive abilities and information processing. Journal of Experimental Psychology: 
General, 117, 288-318. 

 
Ackerman, P. L. (1989). Within task intercorrelations of skilled performance: 

implications for predicting individual differences? (A comment on Henry and Hulin, 
1987). Journal of Applied Psychology, 74, 360-364. 

 
Ackerman, P. L., & Schneider, W. (1985). Individual differences in automatic and 

controlled information processing. In R. F. Dillon, & R. R. Schmeck (Eds.), Individual 
differences in cognition, Vol. 2 (pp. 35–66). New York: Academic Press. 

 
Adams, J. A. (1987). Historical review and appraisal of research on the learning, 

retention, and transfer of human motor skills. Psychological Bulletin, 101, 41-74. 
 
Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces 

experience-specific patterns of plasticity across motor cortex and spinal cord. Journal 
of Applied Physiology, 101,1776-1782. 

 
Adkins, D. L., & Jones, T. A. (2005). D-amphetamine enhances skilled reaching after 

ischemic cortical lesions in rats. Neuroscience letters, 380, 214-218.  
 
Adkins, D. L., Voorhies, A. C., & Jones, T. A. (2004). Behavioral and neuroplastic 

effects of focal endothelin-1 induced sensorimotor cortex lesions. Neuroscience, 128, 
473-486. 

 
Alaverdashvili, M., Foroud, A., Lim, D. H., & Whishaw, I. Q. (2008). “Learned baduse” 

limits recovery of skilled reaching for food after forelimb motor cortex stroke in rats: 
A new analysis of the effect of gestures on success. Behavioural Brain Research, 188, 
281-290. 

 
Alaverdashvili, M., Lim, D. H., & Whishaw, I. Q. (2007). No improvement by 

amphetamine on learned non-use, attempts, success or movement in skilled reaching 
by the rat after motor cortex stroke. European Journal of Neuroscience, 25, 3442-
3452.  

 



 
 
 

211 

Alaverdashvili, M., Moon, S. -K., Beckman, C. D., Virag, A., & Whishaw, I. Q. (2008). 
Acute but not chronic differences in skilled reaching for food following motor cortex 
devascularization vs. photothrombotic stroke in the rat. Neuroscience, 157, 297-308. 

 
Anastasi, A. (1965). Individual differences. New York: John Wiley & Sons, Inc.  
 
Andersen, R. A. (1987). Higher functions of the brain, part 2: The Nervous System. In 

Mountcastle, V. B., Plum, F., & Geiger, S. R. (Eds.), Handbook of Physiology, Vol.5, 
section 1, (pp. 483-518). American Physiological Association.  

 
Anderson, B. (2000). The g factor in non-human animals. Novartis Foundation 

Symposium, 233, 79-90. 
 
Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of 

motor cortical subregions after motor-skill learning and exercise. Learning and 
Memory, 9, 1-9. 

 
Antoniou, K., Papathanasiou, G., Papalexi, E., Hyphantis, T., Nomikos, G. G., Spyraki, 

C., et al. (2008). Individual responses to novelty are associated with differences in 
behavioral and neurochemical profiles. Behavioural Brain Research, 187, 462-472. 

 
Balleine, B. W. (2001). Incentive processes in instrumental conditioning. In S. B. Klein 

(Ed.), Handbook of Contemporary Learning Theories, (pp. 307-366). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

  
Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency 

and incentive learning and their cortical substrates. Neuropharmacology, 37, 407-419. 
 
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action 

control: corticostriatal determinants of goal-directed and habitual action. 
Neuropsychopharmacology, 35, 48-69. 

 
Ballerman, M., Metz, G. A., McKenna, J. E., Klassen, F., & Whishaw, I. Q. (2001). The 

pasta matrix reaching task: a simple test for measuring skilled reaching distance, 
direction, and dexterity in rats. Journal of Neuroscience Methods, 106, 39-45. 

 
Barbay, S., Zoubina, E. V., Dancause, N., Frost, S. B., Eisner-Janowicz, I., Stowe, A. M., 

Plautz, E. J., & Nudo, R. J. (2006). A single injection of D-amphetamine facilitates 
improvements in motor training following a focal cortical infarct in squirrel monkeys. 
Neurorehabilitation and Neural Repair, 20, 455-458. 

 
Barrett, G. V., Alexander, R. A., & Doverspike, D. (1992). The implications for 

personnel selection of apparent declines in predictive validities over time: a critique of 
Hulin, Henry, and Noon. Personnel Psychology, 45, 601–617. 

 
Becker, J. B., Snyder, P. J., Miller, M. M., Westgate, S. A., & Jenuwine, M. J. (1987). 



 
 
 

212 

The influence of estrous cycle and intrastriatal estradiol on sensorimotor performance 
in the female rat. Pharmacology, Biochemistry, and Behavior, 27, 53-59. 

 
Bernstein, N. (1967). The coordination and regulation of movement. London: Pergamon. 
 
Bevins, R. A., & Palmatier, M. I. (2003). Nicotine-conditioned locomotor sensitization in 

rats: assessment of the US-preexposure effect. Behavioural Brain Research, 143, 65-
74. 

 
Biernaskie, J., Chernenko, G., & Corbett, D. (2004). Efficacy of rehabilitative experience 

declines with time after focal ischemic brain injury. Journal of Neuroscience, 24, 
1245-1254. 

 
Biernaskie, J., & Corbett, D. (2001). Enriched rehabilitative training promotes improved 

forelimb motor function and enhanced dendritic growth after focal ischemic injury. 
Journal of Neuroscience, 21, 5272-5280. 

Biernaskie, J., Szymanska, A., Windle, V., & Corbett, D. (2005). Bi-hemispheric 
contribution to functional motor recovery of the affected forelimb following focal 
ischemic brain injury in rats. European Journal of Neuroscience, 21, 989-999. 

Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). 
Learning causes synaptogenesis whereas motor activity causes angiogenesis in 
cerebellar cortex of adult rats. Proceedings to the National Academy of Sciences USA, 
87, 5568-5572. 

 
Blizard, D.A., & Adams, N. (2002). The Maudsley reactive and nonreactive strains: a 

new perspective. Behavior Genetics, 32, 277-299. 
  
Bloch, J. I., & Boyer, D. M. (2002). Grasping primate origins. Science, 298, 1606-1610. 
 
Boakes, R. (1977). Performance on learning to associate a stimulus with positive 

reinforcement. In H. Davis, & H. Hurwitz (Eds.), Operant-Pavlovian Interactions (pp. 
67-97). NJ, Hillsdale: Erlbaum. 

 
Bonita, R., & Beaglehole, R. (1988). Recovery of motor function after stroke. Stroke, 19, 

1497-1500. 
 
Boyle, M. O., & Ackerman, P. L. (2004). Individual differences in skill acquisition. In A. 

M. Williams & N. J. Hodges (Eds.), Skill Acquisition in Sport: Research, theory and 
practice,  (pp. 84-102). NY: Routledge. 

 
Brown, R. W., & Kolb, B. (2001). Nicotine sensitization increases dendritic length and 

spine density in the nucleus accumbens and cingulate cortex. Brain Research, 899, 94-
100. 

 



 
 
 

213 

Brown, A. W., Marlowe, K. J., Bjelke, B. (2003). Age effect on motor recovery in a post-
acute animal stroke model. Neurobiology of Aging, 24, 607-614. 

 
Buitrago, M. M., Ringer, T., Schulz, J. B., Dichgans, J., & Luft, A. R. (2004). 

Characterization of motor skill and instrumental learning time scales in a skilled 
reaching task in rat. Behavioural Brain Research, 155, 249-256. 

 
Butefisch, C. M. (2006). Neurobiological bases of rehabilitation. Neurological Science, 

27, S18-23. 
 
Cain, M. E., Coolon, R. A. & Gill, M. J. (2009). The contribution of the central nucleus 

of the amygdala to individual differences in amphetamine-induced hyperactivity. 
Behavioural Brain Research, 202, 11-18. 

 
Carr, F. J., McBride, M. W., Carswell, H. V., Graham, D., Strahorn, P., Clark, J. S., et al. 

(2002). Genetic aspects of stroke: human and experimental studies. Journal of 
Cerebral Blood Flow & Metabolism, 22, 767-773. 

 
Castro, A. J. (1972a). The effects of cortical ablations on digital usage in the rat. Brain 

Research, 37, 173-185. 
 
Castro, A. J. (1972b). Motor performance in rats: The effects of pyramidal tract section. 

Brain Research, 44, 313-323. 
 
Castro-Alamancos, M. A., & Borrell, J. (1993). Reversal of paw preference after ablation 

of the preferred forelimb primary motor cortex representation of the rat depends on the 
size of the forelimb representation. Neuroscience, 52, 637-644. 

 
Charness, A. L. (1994). Management of the upper extremity in the patient with 

hemiplegia. Course syllabus, annual meeting, Washington Physical Therapy 
Association. 

 
Childress, A. R., Hole, A. V., Ehrman, R. N., Robbins, S. J., McLellan, A. T., & O’Brien, 

C. P. (1993). Cue reactivity and cue reactivity interventions in drug dependence. NIDA 
Research Monograph, 137, 73-95. 

 
Cirstea, M. C., & Levin, M. F. (2000). Compensatory strategies for reaching in stroke. 

Brain, 123, 940-953. 
 
Clarke, J., Ploughman, M., & Corbett, D. (2007). A qualitative and quantitative analysis 

of skilled forelimb reaching impairment following intracerebral hemorrhage in rats. 
Brain Research, 1145, 204-212.  

  
Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity 

of human cortical movement representation induced by practice. Journal of 
Neurophysiology, 79, 1117-1123. 



 
 
 

214 

 
Clinton, S., Miller, S., Watson, S. J., & Akil, H. (2008). Prenatal stress does not alter 

innate novelty-seeking behavioral traits, but differentially affects individual 
differences in neuroendocrine stress responsivity. Psychoneuroendocrinology, 33, 
162-177. 

 
Comeau, W. L., McDonald, R., & Kolb, B. (2010). Learning-induced alterations in 

prefrontal cortical circuitry. Behavioural Brain Research. 214, 91–101. 
 
Cooper, C. (1998). Individual differences. London: Arnold.  
 
Cratty, B. J. (1966). A three level theory of perceptual-motor behavior. Quest, 

Monograph Series, 6, 3-10. 
 
Darwin, C. (1859). The origin of species by means of natural selection. London: John 

Murray. 
 
Davis, B. A., Clinton, S. M., Akil, H., & Becker, J. B. (2008). The effects of novelty-

seeking phenotypes and sex differences on acquisition of cocaine self-administration 
in selectively bred High-Responder and Low-Responder rats. Pharmacology, 
Biochemistry, and Behavior, 90, 331-338. 

 
de Bruin, N., Sacrey, L. A., Brown, L. A., Doan, J., & Whishaw, I. Q. (2008). Visual 

guidance for hand advance but not hand withdrawal in a reach-to-eat task in adult 
humans: reaching is a composite movement. Journal of Motor Behavior, 40, 337-346. 

 
 Dellu, F., Piazza, P. V., Mayo, W., Le Moal, M., & Simon, H. (1996). Novelty-seeking 

in rats – Biobehavioral characteristics and possible relationship with the sensation-
seeking trait in man. Neuropsychobiology, 34, 136-145.  

 
Deminiere, J., Piazza, P., Le Moal, M., & Simon, H. (1989). Experimental approach to 

individual vulnerability to psychostimulant addiction. Neuroscience & Biobehavioral 
Reviews, 13, 141-147. 

 
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). 

Understanding motor events: A neurophysiological study. Experimental Brain 
Research, 91, 176-180. 

 
Dickinson, A. (1985). Actions and habits: the development of behavioral anatomy. 

Philosophical Transactions of the Royal Society of London. Series B-Biological 
Sciences, 308, 67-78. 

 
Dickinson, A. (1994). Instrumental conditioning. In N. J. Mackintosh (Ed.), Animal 

cognition and learning (pp. 4-79). London: Academic Press. 
 
Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., & Boakes, R. A. (1995). 



 
 
 

215 

Motivational control after extended instrumental training. Animal Learning and 
Behavior, 23, 197-206. 

 
Döbrössy, M. D., & Dunnett, S. B. (2006). The effects of lateralized training on 

spontaneous forelimb preference, lesion deficits, and graft-mediated functional 
recovery after unilateral striatal lesions in rats. Experimental Neurology, 199, 373-383.  

  
Domino, E. F. (2001). Nicotine induced behavioral locomotor sensitization. Progress in 

Neuro-psychopharmacology and Biological Psychiatry, 25, 59-71. 
 
Donoghue, J. P., Hess, G., & Sanes, J. N. (1996). Motor cortical substrates and 

mechanisms for learning. In J. R. Bloedel, T. J. Ebner, & S. P. Wise (Eds.), 
Acquisition of motor behavior in vertebrates (pp. 273-294). San Diego: Academic 
Press. 

 
Donoghue, J. P., & Wise, S. P. (1982). The motor cortex of the rat: cytoarchitecture and 

microstimulation mapping. Journal of Comparative Neurology, 212, 76-88. 
 
Dougherty, G. G. Jr, & Ellinwood, E. H. Jr. (1981). Chronic D-amphetamine in nucleus 

accumbens: lack of tolerance or reverse tolerance of locomotor activity. Life sciences, 
28, 2295-2298. 

 
Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. C. (1996). Functional 

anatomy of visuomotor skill learning in human subjects examined with positron 
emission tomography. European Journal of Neuroscience, 8, 637-648.  

 
Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the 

premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667-689. 
 
Dunn, J., & Plomin, R. (1990). Separate lives: Why siblings are so different. New York: 

Basic books. 
 
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New 

York: Basic Books. 
 
Edelman, G. M. (1992). Bright air brilliant fire: On the matter of mind. New York: Basic 

Books. 
 
Ellenbroek, B. A., van der Kam, E. L., van der Elst, M. C. J., & Cools, A. R. (2005). 

Individual defferences in drug dependence in rats: The role of genetic factors and life 
events. The European Journal of Pharmacology, 526, 251-258.  

 
Erickson, C. A., Gharbawie, O. A., & Whishaw, I. Q. (2007). Attempt-dependent 

decrease in skilled reaching characterizes the acute post surgical period following a 
forelimb motor cortex lesion: An experimental demonstration of learned nonuse in the 
rat. Behavioural Brain Research, 179, 208-218. 



 
 
 

216 

 
Eshkol, N., & Wachmann, A. (1958). Movement notation. London: Weidenfeld and 

Nicholson.  
 
Feeney, D. M., & Sutton, R. L. (1987). Pharmacotherapy for recovery of function after 

brain injury. Critical Reviews in Neurobiology, 3, 135-197. 
 
Ferguson, G. A. (1956). On transfer and the abilities of man. Canadian Journal of 

Psychology, 10, 121–131. 
 
Field, E. F., & Whishaw, I. Q. (2005). Sexually dimorphic postural adjustments are used 

in a skilled reaching task in the rat. Behavioural Brain Research, 163, 237-245. 
 
Fiorino, D. F., & Phillips, A. G. (1999). Facilitation of sexual behavior and enhanced 

dopamine efflux in the nucleus accumbens of male rats after d-amphetamine-induced 
behavioral sensitization. Journal of Neuroscience, 19, 456-463. 

 
Fitts, P. M., & Crannell, C. (1950). Location discrimination. II. Accuracy of reaching 

movements to twenty-four different areas. USAF Air Material Command Tech. Rep. 
5833. 

 
Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, CA: Brooks/Cole. 
 
Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution 

of incentive salience to reward-related cues: implications for addiction. 
Neuropharmacology, 56 (1 Suppl), 139-148. 

  
Flagel, S. B., Clinton, S. M., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Rats 

selectively bred on the basis of a novelty-seeking trait exhibit individual differences in 
the propensity to approach signals vs. goals: implications for addiction. Society for 
Neuroscience, Abstract. 

 
Flagel, S. B., Watson, S. J., Akil, H., & Robinson, T. E. (2008). Individual differences in 

the attribution of incentive salience to a reward-related cue: influence on cocaine 
sensitization. Behavioural Brain Research, 186, 48-56. 

 
Fleishman, E. A. (1965). The description and prediction of perceptual-motor skill 

learning. In R. Glaser (Ed.), Training research and education. New York: John Wiley. 
 
Fleishman, E. A. and Hempel, W. E. (1955). The relation between abilities and 

improvement with practice in a visual discrimination reaction task. Journal of 
Experimental Psychology, 49, 301–312. 

 
Foroud, A., & Whishaw, I. Q. (2006). Changes in the kinematic structure and non-

kinematic features of movements during skilled reaching after stroke: A Laban 



 
 
 

217 

movement Analysis in two case studies. Journal of Neuroscience Methods, 158, 137-
149. 

 
Friedman, D., Rioult-Pedotti, M. S., & Donoghue, J. P. (1997). Motor skill acquisition 

strengthens horizontal connections in adult rat motor cortex. Society for Neuroscience, 
Abstract, 23, 227. 

 
Friel, K. M., Barbay, S., Frost, S. B., Plautz, E. J., Hutchinson, D. M., Stowe, A. M. et al. 

(2005). Dissociation of sensorimotor deficits after rostral versus caudal lesions in the 
primary motor cortex hand representation. Journal of Neurophysiology, 94, 1312-
1324. 

 
Friel, K. M., & Nudo, R. J. (1998). Recovery of motor function after focal cortical injury 

in primates: compensatory movement patterns used during rehabilitative training. 
Motor Research, 15, 173-189.  

 
Froc, D. J., Chapman, C. A., Trepel, C., & Racine, R. J. (2000). Long-term depression 

and depotentiation in the sensorimotor cortex of the freely moving rat. Journal of 
Neuroscience, 20, 438-445. 

 
Galaburda, A. M., Rosen, G. D., & Sherman, G. F. (1990). Individual variability in 

cortical organization: its relationship to brain laterality and implications to function. 
Neuropsychologia, 28, 529-546. 

 
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the 

premotor cortex. Brain, 119, 593-609. 
 
Gargano, J. W., & Reeves, M. J. (2007). Sex differences in stroke recovery and stroke-

specific quality of life. Stroke, 38, 2541-2548.  
 
Gentile, A. (1992). The nature of skill acquisition: therapeutic implications for children 

with movement disorders. In H. Forssberg, & H. Hirschfeld (Eds.), Movement 
disorders in children, (pp. 31-40). Basel: Karger. 

 
Georgopoulos, A. P. (1986). On Reaching. Annual Reviews of Neuroscience, 9, 147-170. 
 
Georgopoulos, A. P. (1988). Neural integration of movement: Role of motor cortex in 

reaching.The FASEB Journal, 2, 2849-2857. 
 
Georgopoulos, A. P. (1994). Behavioral neurophysiology of the motor cortex. The 

Journal of Laboratory and Clinical Medicine, 124, 766-774. 
 
Georgopoulos, A. P. (1996). Arm movements in monkeys: Behavior and 

neurophysiology. Journal of Comparative Physiology, 179, 603-612. 
 



 
 
 

218 

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population 
coding of movement direction. Science, 233, 1416-1419. 

 
Gharbawie, O. A. (2006). Modeling middle cerebral artery stroke in rats: an examination 

of the skilled reaching impairments. Doctor of Philosophy dissertation, University of 
Lethbridge.  

 
Gharbawie, O. A., Auer, R. N., & Whishaw, I. Q. (2006). Subcortical middle cerebral 

artery ischemia abolishes the digit flexion and closing used for grasping in rat skilled 
reaching. Neuroscience, 137, 1107-1118. 

 
Gharbawie, O. A., & Whishaw, I. Q. (2006). Parallel stages of learning and recovery of 

skilled reaching after motor cortex stroke: “oppositions” organize normal and 
compensatory movements. Behavioural Brain Research, 175, 249-262. 

 
Gharbawie, O. A., Gonzalez, C. L., & Whishaw, I. Q. (2005). Skilled reaching 

impairments from the lateral frontal cortex component of middle cerebral artery 
stroke: a qualitative and quantitative comparison to focal motor cortex lesions in rats. 
Behavioural Brain Research, 156, 125-137. 

 
Gharbawie, O. A., Karl, J. M., & Whishaw, I. Q. (2007). Recovery of skilled reaching 

following motor cortex stroke: do residual corticofugal fibers mediate compensatory 
recovery? European Journal of Neurosience, 26, 3309-3327. 

 
Ghez, C., & Krakauer, J. (1991). The organization of movement. In E. R. Kandel, J. H. 

Schwartz, & T. M. Jessell (Eds.), Principles of neuroscience, 3rd ed. (pp. 653-673). 
New York: Elsevier. 

 
Gholamrezaei, G., & Whishaw, I. Q. (2009). Individual differences in skilled reaching for 

food related to increased number of gestures: Evidence foe goal and habit learning of 
skilled reaching. Behavioral Neuroscience, 123, 863-874. 

 
Gilmour, G., Iverson, S. D., O’Neill, M. F., O’Neill, M. J., Ward, M. A. & Bannerman, 

D. M. (2005). Amphetamine promotes task-dependent recovery following focal 
cortical ischaemic lesions in the rat. Behavioural Brain Research, 165, 98-109. 

 
Gingras, M. A., & Cools, A. R. (1997). Different behavioral effects of daily or 

intermittent dexamphetamine administration in Nijmegen high and low responders. 
Psychopharmacology, 132, 188-194.  

 
Girgis, J., Merrett, D., Kirkland, S., Metz, G. A., Verge, V., & Fouad, K. (2007). 

Reaching training in rats with spinal cord injury promotes plasticity and task specific 
recovery. Brain, 130, 2993-3003.  

 
Gladstone, D. J., Danells, C. J., Armesto, A., McIlroy, W. E., Staines, W. R., Graham, S. 

J., Herrmann, N., Szalai, J. P. & Black, S. E. (2006). Physiotherapy coupled with 



 
 
 

219 

dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-
blind, placebo-controlled trial. Stroke, 37, 79-85. 

 
Goldstein, L. B. (2003). Amphetamine and related drugs in motor recovery after stroke. 

Physical Medicine and Rehabilitation Clinics of North America, 14 (Suppl1), S125-
S134. 

 
Goldstein, L. B. & Davis, J. N. (1990). Influence of lesion size and location on 

amphetamine-facilitated recovery of beam-walking in rats. Behavioral Neuroscience, 
104, 320-327. 

 
Gonzalez, C. L. R., Gharbawie, O. A., & Kolb, B. (2006). Chronic low-dose 

administration of nicotine facilitates recovery and synaptic change after focal ischemia 
in rats. Neuropharmacology, 50, 777-787.  

 
Gonzalez, C. L. R., Gharbawie, O. A., Whishaw, I. Q. & Kolb, B. (2005). Nicotine 

stimulates dendritic arborization in motor cortex and improves concurrent motor skill 
but impairs subsequent motor learning. Synapse, 55, 183-191. 

 
Gonzalez, C. L., Gharbawie, O. A., Williams, P. T., Kleim, J. A., Kolb, B., & Whishaw, 

I. Q. (2004). Evidence for bilateral control of skilled movements: ipsilateral skilled 
forelimb reaching deficits and functional recovery in rats following motor cortex and 
lateral frontal cortex lesions. European Journal of Neuroscience, 20, 3442-3452. 

 
Gonzalez, C. L., & Kolb, B. (2003). A comparison of different models of stroke on 

behaviour and brain morphology. European Journal of Neuroscience, 18, 1950-1962. 
 
Goodale, M. A. (2001). Different spaces and different times for perception and action. 

Progress in Brain Research, 134, 313-331. 
 
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and 

action. Trends in Neuroscience, 15, 20-25. 
 
Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological 

dissociation between perceiving objects and grasping them. Nature, 349, 154-156. 
 
Goodman, J. H., & Gilbert, M. E. (2007). Modest thyroid hormone insufficiency during 

development induces a cellular malformation in the corpus callosum: A model of 
cortical dysplasia. Endocrinology, 148, 2593-2597. 

 
Grafton, S. T., Woods, R. P., & Mike, T. (1994). Functional imaging of procedural motor 

learning: relating cerebral blood flow with individual subject performance. Human 
Brain Mapping, 1, 221-234. 

 
Graybiel, A. M. (2008). Habits, rituals, and the evaluative brain. Annual Review of 

Neuroscience, 31, 359-387. 



 
 
 

220 

 
Graziano, M. S. A. (1999). Where is my arm? The relative role of vision and 

proprioception in the neuronal representation of limb position. Proceedings to the 
National Academy of Sciences USA, 96, 10418-10421. 

  
Graziano, M. S. A. (2006). The organization of behavioral repertoire in motor cortex. 

Annual Review of Neuroscience, 29, 105-134. 
 
Greenough, W. T. (1984). Structural correlates of information storage in the mammalian 

brain: a review and hypothesis. Trends in Neuroscience, 7, 229-233. 
 
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain 

development. Child Development, 58, 539-559. 
 
Greenough, W. T., Larson, J. R., & Withers, G. S. (1985). Effects of unilateral and 

bilateral training in a reaching task on dendritic branching of neurons in the rat motor-
sensory forelimb cortex. Behavioral and neural biology, 44, 301-314. 

 
Greenough, W. T., Swain, R. A., Kleim, J. A., & Weiler, I. J. (1996). Are experience 

induced morphological changes reflected in brain physiology? In M. Ito and Y. 
Miyashita (Eds.), Integrative and Molecular Approaches to Brain Function (pp. 29-
34). New York: Elsevier. 

 
Gundersen, H. J. G., Jensen, E. B., Kieu, K., & Nielsen, J. (1999). The efficiency of 

systematic sampling in stereology - reconsidered. Journal of Microscopy, 193, 199-
211.  

 
Hager, A. M., & Dringenberg, H. C. (2010). Assessment of different induction protocols 

to elicit long-term depression (LTD) in the rat visual cortex in vivo. Brain Research, 
1318, 33-41. 

 
Hakan, R. L., & Ksir, C. J. (1988). Nicotine induced locomotor activity in rats: the role of 

Pavlovian conditioning. Pharmacology, Biochemistry and behavior, 29, 661-665. 
  
Hall, R. D., & Lindholm, E. P. (1974). Organization of motor and somatosensory 

neocortex in albino rat. Brain Research, 66, 23-38. 
 
Halsband, U., & Freund, H. (1993). Motor learning. Current Opinion in Neurobiology, 3, 

940-949. 
 
Halsband, U., Matsuzaka, Y., & Tanji, J. (1994). Neuronal activity in the primate 

supplementary, pre-supplementary and pre-motor cortex during externally and 
internally instructed sequential movements. Neuroscience Research, 20, 149-155. 

 



 
 
 

221 

Hamilton, D. A., & Kolb, B. (2005). Differential effects of nicotine and complex housing 
on subsequent experience-dependent structural plasticity in the nucleus accumbens. 
Behavioral Neuroscience, 119, 355-365. 

 
Hammond, L. J. (1980). The effects of contingencies upon appetitive conditioning of 

free-operant behavior. Journal of the Experimental Analysis of Behavior, 34, 297-
304. 

 
Harmer, C. J., & Phillips, G. D. (1998). Enhanced appetitive conditioning following 

repeated pretreatment with d-amphetamine. Behavioral Pharmacology, 9, 299-308. 
 
Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of 

visually guided behavior. Journal of Comparative Physiology and Psychology, 56, 
872-876. 

 
Hendricks, H. T., van Limbeek, J., Geurts, A. C., & Zwarts, M. J. (2002). Motor recovery 

after stroke: a systematic review of the literature. Archives of Physical Medicine and 
Rehabilitation, 83, 1629-1637. 

 
Hermer-Vazquez, L., Hermer-Vazquez, R., & Chapin, J. K. (2007). The reach-to-grasp-

food task for rats: a rare case of modularity in animal behavior? Behavioural Brain 
Research, 177, 322-328. 

 
Henry, F. M. (1958). Specificity and generality in learning motor skills. Proceedings of 

the 61st Annual Meeting of the College Physical Education Association, (pp. 126-
128). 

 
Henry, F. M. (1968). Specificity vs. generality in learning motor skill. In R. C. Brown & 

G. S. Kenyon (Eds.), Classical studies on physical activity. Englewood Cliffs, NJ: 
Prentice Hall. 

 
Hess, G., & Donoghue, J. P. (1996). Long-term potentiation and long-tern depression of 

horizontal connections rat motor cortex. Acta Neurobiological Experimentalis 
(Warsaw), 56, 397-405.  

 
Hess, G., Aizenman, C. D., & Donoghue, J. P. (1996). Conditions for the induction of 

long-term potentiation in layer II/III horizontal connections of the rat motor cortex. 
Journal of Neurophysiology, 75, 1765-1778.  

 
Hitchcott, P. K., Harmer, C. J., & Phillips, G. D. (1997). Enhanced acquisition of 

discriminative approach following intra-amygdala d-amphetamine. 
Psychopharmacology, 132, 237-246. 

 
Ho, Y. J., Eichendorff, J., & Schwarting, R. K. W. (2002). Individual response profiles of 

male Wistar rats in animal models for anxiety and depression. Behavioural Brain 
Research, 136, 1-12. 



 
 
 

222 

 
Hogarth, L., & Chase, H. W. (2011). Parallel goal-directed and habitual control of human 

drug-seeking: implications for dependence vulnerability. Journal of experimental 
Psychology. Animal Behavioral Processes, 37, 261-276. 

 
Holdefer, R. N., & Miller, L. E. (2002). Primary motor cortical neurons encode 

functional muscle synergies. Experimental Brain Research, 146, 233-243. 
 
Hooks, M. S., Jones, G. H., Juncos, J. L., Neill, D. B., & Justice, J. B. (1994). Individual 

differences in schedule-induced and conditioned behaviors. Behavioural Brain 
Research, 60, 199-209. 

 
Hovda, D. A., & Fenney, D. M. (1984). Amphetamine with experience promotes 

recovery of locomotor function after unilateral frontal cortex in the cat. Brain 
Research, 298, 358-361. 

 
Hsu, J. E. & Jones, T. A. (2005). Time-sensitive enhancement of motor learning with the 

less-affected forelimb after unilateral sensorimotor cortex lesions in rats. European 
Journal of Neuroscience, 22, 2069-2080. 

 
Hulin, C. L., Henry, R. A., & Noon, S. L. (1990). Adding a dimension: time as a factor in 

the generalizability of predictive relationships. Psychological Bulletin, 107, 328-340. 
 
Humphrey, N. K., & Weiskrantz, L. (1969). Vision in monkeys after removal of the 

striate cortex. Nature, 215, 595-597. 
 
Hyland, B. (1998). Neural activity related to reaching and grasping in rostral and caudal 

regions of rat motor cortex. Behavioral Brain Research, 94, 255-269. 
 
Hyman, S. E., & Malenka, R. C. (2001). Addiction and the brain: the neurobiology of 

compulsion and its persistence. Nature Reviews Neuroscience, 2, 695-703. 
 
Iacoboni, M., & Mazziotta, J. C. (2007). Mirror neuron system: Basic findings and 

clinical applications. Annuals of Neurology, 62, 213-218. 
 
Innis, N. K. (1992). Tolman and Tryon. Early research on the inheritance of the ability to 

learn. The American Psychologist, 47, 190-197. 
 
Iwaniuk, A. N. (2000). The evolution of skilled forelimb movements in carnivorans. 

Masters of Science dissertation, University of Lethbridge.  
 
Iwaniuk, A. N., & Whishaw, I. Q. (2000). On the origin of skilled forelimb movements. 

Trends in Neuroscience, 23, 372-376.  
 
James, W. (1890). The principles of psychology, Vol.1. Online resource developed by C. 

D. Green. 



 
 
 

223 

 
Jeannerod, M. (1990). The neural and behavioral organization of goal-directed 

movements. Oxford: Clarendon. 
 
Jeannerod, M. (1996). Reaching and grasping: parallel specification of visumotor 

channels. In Handbook of perception and action, vol 2, (pp. 405-460). London: 
Academic Press. 

 
Jeannerod, M., & Biguer, B. (1982). Visuomotor mechanisms in reaching within 

extrapersonal space. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), 
Analysis of Visual Behavior, (pp. 387-409). Cambridge, MA: MIT.  

 
Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. 

(1994). Motor sequence learning: a study with positron emission tomography. 
Journal of Neuroscience, 14, 3775-3790. 

 
Johansson, B. B. (1996). Functional outcome in rats transferred to an enriched 

environment 15 days after focal brain ischemia. Stroke, 27, 324–326. 

Johansson, B. B., & Belichenko, P. V. (2002). Neuronal plasticity and dendritic spines: 
effect of environmental enrichment on intact and postischemic rat brain. Journal of 
Cerebral Blood Flow & Metabolism, 22, 89-96. 

Johansson,  R. S., & Edin, B. B. (1992). Neural control of manipulation and grasp. In H. 
Forssberg, & H. Hirschfeld (Eds.). Movement disorders in children, (pp. 107-112). 
Basel: Karger. 

Jones, T. A. (1999). Multiple synapse formation in the motor cortex opposite unilateral 
sensorimotor cortex lesions in adult rats. Journal of Comparative Neurology, 414, 
57-66. 

Jones, T. A., Chu, C. J., Grande, L. A., & Gregory, A. D. (1999). Motor skills training 
enhances lesion-induced structural plasticity in the motor cortex of adult rats. The 
Journal of Neuroscience, 19, 10153-10163. 

 
Jones, T. A., Kleim, J. A., & Greenough, W. T. (1996). Synaptogenesis and dendritic 

growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a 
quantitative electron microscopic examination. Brain Research, 733, 142-148. 

 
Jones, T. A., & Schallert, T. (1994). Use-dependent growth of pyramidal neurons after 

neocortical damage. Journal of Neuroscience, 14, 2140-2152. 
 
Juraska, J. M. (1991). Sex differences in “cognitive” regions of the rat brain. 

Psychoneuroendocrinology, 16, 105-109. 
 



 
 
 

224 

Kakei, S., Hoffman, D., & Strick, P. (1999). Muscle and movement representations in the 
primary motor cortex. Science, 285, 2136-2139. 

 
Kalivas, P. W. & Stewart, J. (1991). Dopamine transmission in the initiation and 

expression of drug- and stress-induced sensitization of motor activity. Brain Research 
Reviews, 16, 223-244. 

 
Kanfer, R., & Heggestad, E. D. (1999). Individual differences in motivation: Traits and 

self-regulatory skills. In P. L. Ackerman, P. C. Kyllonen & R. D. Roberts (Eds.). 
Learning and individual differences: process, trait, and content determinants (pp. 
293-309). Washington, DC: American Psychological Association. 

 
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. 

(1995). Functional MRI evidence for adult motor cortex plasticity during motor skill 
learning. Nature, 377, 155-158. 

 
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & 

Ungerleider, L. G. (1998). The acquisition of skilled motor performance: fast and 
slow experience-driven changes in primary motor cortex. Proceedings of the National 
Academy of Science of the United States of America, 95, 861-868. 

 
Klatzky, R. L., McCloskey, B., Doherty, S., et al. (1987). Knowledge about hand shaping 

and knowledge about objects. Journal of Motor Behavior, 19, 187-213. 
 
Kleim, J. A., Ballard, D., Vij, K., & Greenough, W. T. (1995). The persistence of 

experience dependent morphological plasticity in the cerebellar cortex of the rat.  
Society for Neuroscience, Abstract, 21, 445. 

 
Kleim, J. A., Barbay, S., Cooper, N. R., Hogg, T. M., Reidel, C. N., Remple, M. S., et al. 

(2002). Motor learning- dependent synaptogenesis is localized to functionally 
reorganized motor cortex. Neurobiological Learning and Memory, 77, 63-77. 

  
Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor 

cortex following motor skill learning. Journal of Neurophysiology, 80, 3321-3325. 
 
Kleim, J.A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., Cramer, S.C. 

(2006). BDNF val66met polymorphism is associated with modified experience-
dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735-737. 

 
Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., & Remple, 

M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, 
but not early, phase of motor skill learning. Journal of Neuroscience, 24, 628-633. 

 
Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: 

Implications for rehabilitation after brain damage. Journal of Speech, Language, and 
Hearing Research, 51, S225-S239. 



 
 
 

225 

 
Kleim, J. A., Jones, T. A., & Schallert, T. (2003). Motor enrichment and the induction of 

plasticity before or after brain injury. Neurochemical Research, 28, 1757-1769. 
 
Kleim, J. A., Lussnig, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). 

Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor 
skill learning.  The Journal of Neuroscience, 16, 4529-4535. 

 
Klein, E. D., Gehrke, B. J., Green, T. A., Zentall, T. R., & Bardo, M. T. (2007). Repeated 

cocaine experience facilitates sucrose-reinforced operant responding in enriched and 
isolated rats. Learning and Motivation, 16, 190-209. 

 
Klein, A., Sacrey, L. A., Dunnett, S. B., Whishaw, I. Q., & Nikkhah, G. (2011). Proximal 

movements compensate for distal forelimb movement impairments in a reach-to-eat 
task in Huntington’s disease: new insights into motor impairments in a real-world 
skill. Neurobiology of Disease, 41, 560-569.  

 
Knieling, M., Witte O. W., & Metz, G. A. (2003). Dissociation of the effects of lesion 

type and lesion size on motor recovery and compensation in rat models of ischemic 
stroke. Society for Neuroscience, Abstract 276.2. 

  
Kolb, B. (1995). Brain plasticity and behavior. Mahwah, New Jersey: Lawrence Erlbaum 

Associates. 
 
Kolb, B. (2003). Overview of cortical plasticity and recovery from brain injury. Physical 

Medicine and Rehabilitation Clinics of North America, 14 (1 suppl), S7-S25. 
 
Kolb, B., Brown, R., Witt-Lajeunesse, A., & Gibb, R. (2001). Neural compensations after 

lesion of the cerebral cortex. Neural Plasticity, 8, 1-16. 
 
Kolb, B., Buhrmann, K., McDonald, R., & Sutherland, R. J. (1994). Dissociation of the 

medial prefrontal, posterior parietal, and posterior temporal cortex for spatial 
navigation and recognition memory in the rat. Cerebral Cortex, 4, 664-680. 

 
Kolb, B., Cioe, J., & Comeau, W. (2008). Contrasting effects of motor and visual 

learning tasks on dendritic arborization and spine density in rats. Neurobiology of 
Learning and Memory, 90, 295–300. 

    
Kolb, B., Cioe, J., & Whishaw, I. Q. (2000). Is there an optimal age for recovery from 

motor cortex lesions? II. Behavioural and anatomical consequences of unilateral motor 
cortex lesions in perinatal, infant, and adult rats. Restorative Neurology and 
Neuroscience, 17, 61-70. 

 
Kolb, B., & Elliott, W. (1987). Recovery from early cortical damage in rats. II. Effects of 

experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. 
Behavioral Brain Research, 26, 47–56. 



 
 
 

226 

 
Kolb, B., Forgie, M., Gibb, R., Gorny, G., & Rowntree, S. (1998). Age, experience and 

the changing brain. Neuroscience and Biobehavioral Reviews, 22, 143-159. 
 
Kolb, B., & Gibb, R. (1991). Environmental enrichment and cortical injury: behavioral 

and anatomical consequences of frontal cortex lesions. Cerebral Cortex, 2, 189-198. 
 
Kolb, B., Gorny, G., Li, Y., Samaha, A.N., & Robinson, T.E. (2003). Amphetamine or 

cocaine limits the ability of later experience to promote structural plasticity in the 
neocortex andnucleus accumbens. Proceedings of the National Academy of Sciences of 
the United States of America, 100, 10523-10528. 

 
Kolb, B., & Teskey, G. C. (2010). Age, experience, injury, and the changing brain. 

Developmental Psychobiology, 1-15. 
 
Kolb, B., Teskey, G. C., & Gibb, R. (2010). Factors influencing cerebral plasticity in the 

normal and injured brain. Frontiers in Human Neuroscience, 4, 1-12. 
 
Kolb, B., & Whishaw, I. Q. (1996). Fundamentals of Human Neuropsychology, 4th ed. 

WH Freeman and Company: USA. 
 
Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual review of 

psychology, 49, 43-64. 
 
Kosowski, A. R., & Liljequist, S. (2005). Behavioural sensitization to nicotine precedes 

the onset of nicotine-conditioned locomotor stimulation. Behavioural Brain Research, 
156, 11-17. 

 
Krakauer, J., & Ghez, C. (1991). Voluntary movement. In E. R. Kandel, J. H. Schwartz, 

& T. M. Jessell (Eds.), Principles of neuroscience, 3rd ed. (pp. 756-779). New York: 
Elsevier. 

 
Laban, R. (1971). The mastery of movement (L. Ullman, Ed.). Boston: Plays. 
 
Lemon, R. N., & Griffiths, J. (2005). Comparing the function of the corticospinal system 

in different species: organizational differences for motor specialization? Muscle Nerve, 
32, 261-279. 

  
Leonard, C. T. (1998). The neuroscience of human movement. Missouri: Mosby. 
 
Lim, D. H., Alaverdashvili, M., & Whishaw, I. Q. (2009). Nicotine does not improve 

recovery from learned nonuse nor enhance constraint-induced therapy after motor 
cortex stroke in the rat. Behavioural Brain Research, 198, 411-419. 

 
Lisberger, S. G., & Pavelko, T. A. (1988). Brain stem neurons in modified pathways for 

motor learning in the primate vestibulo-ocular reflex. Science, 242, 771-773. 



 
 
 

227 

 
Liu, L., & Wang, Y. T. (2001). Regulation of postsynaptic receptor trafficking: a novel 

means of generating synaptic plasticity. In C. A. Shaw & J. C. McEachern (Eds.), 
Toward a theory of neuroplasticity. Psychology Press. 

 
MacLellan, C. L., Gyawali, S., & Colbourne, F. (2006). Skilled reaching impairments 

follow intrastriatal hemorrhagic stroke in rats. Behavioural Brain Research, 175, 82-
89.  

 
Magill, R. A. (1985). Motor learning: Concepts & Applications. Iowa: WM. C. Brown. 
 
Maling, H. M., & Acheson, G. H. (1946). Righting and other postural activity in low-

decerebrate and in spinal cats after d- amphetamine. Journal of Neurophysiology, 9, 
379-386. 

 
Martin, S. J., & Morris, R. G. (2001). Cortical plasticity: It’s all the range! Current 

Biology, 11, R57-59. 
 
Martinsson, L., Hardemark, H. G., & Wahlgren, N. G. (2003). Amphetamines for 

improving stroke recovery: a systematic Cochrane review. Stroke, 34, 2766. 
 
McHughen, S. A., Rodriguez, P. F., Kleim, J. A., Kleim, E. D., Marchal Crespo, L., 

Procaccio, V., & Cramer, S. C. (2010). BDNF val66met polymorphism influences 
motor system function in the human brain. Cerebral Cortex, 20, 1254-1262. 

 
McKenna, J. E., & Whishaw, I. Q. (1999). Complete compensation in skilled reaching 

success with associated impairments in limb synergies, after dorsal column lesion in 
the rat. The Journal of Neuroscience, 19, 1885-1894. 

 
Meintzschel, F., & Ziemann, U. (2006). Modofication of practice-dependent plasticity in 

human motor cortex by neuromodulators. Cerebral Cortex, 16, 1106-1115. 
 
Melvin, K. G., Doan, J., Pellis, S. M., Brown, L., Whishaw, I. Q., & Suchowersky, O. 

(2005). Pallidal deep brain stimulation and L-dopa do not improve qualitative aspects 
of skilled reaching in Parkinson’s disease. Behavioural Brain Research, 160, 188-194. 

 
Mendez, I. A., Williams, M. T., Bhavsar, A., Lu, A. P., Bizon, J. L., & Setlow, B. (2009). 

Long-lasting sensitization of reward-directed behavior by amphetamine. Behavioral 
Brain Research, 201, 74-79. 

 
Metz, G. A., Antonow-Schlorke, I., & Witte, O. W. (2005). Motor improvements after 

focal cortical ischemia in adult rats are mediated by compensatory mechanisms. 
Behavioural. Brain Research, 162, 71-82. 

 
Metz, G. A., Farr, T., Ballermann, M., & Whishaw, I. Q. (2001). Chronic levodopa 

therapy does not improve skilled reach accuracy or reach range on a pasta matrix 



 
 
 

228 

reaching task in 6-OHDA dopamine-depleted (hemi-Parkinson analogue) rats. 
European Journal of Neuroscience, 14, 27-37. 

 
Metz, G. A., Jadavji, N. M., & Smith, L. K. (2005). Modulation of motor function by 

stress: a novel concept of the effects of stress and corticosterone on behavior. 
European Journal of Neuroscience, 22, 1190-1200. 

 
Metz, G. A., & Whishaw, I. Q. (2000). Skilled reaching an action pattern: Stability in rat 

(Rattus norvegicus) grasping movements as a function of changing food pellet size. 
Behavioral Brain Research, 116, 111-122. 

 
Middleton, F. A., & Strick, P. L. (1997). Cerebellar output channels. International 

Review of Neurobiology, 41, 61-82. 
 
Miklyaeva, E. I., Ioffe, M. E., & Kulikov, M. A. (1991). Innate versus learned factors 

determining limb preference in the rat. Behavioural Brain Research, 46, 103-115. 
 
Mittleman, G. (2005). Individual differences. In I. Q. Whishaw, & B. Kolb (Eds.), 

Analysis of behavior in the laboratory rat (pp. 37-46). New York: Oxford. 
 
Mittleman, G., Castaneda, E., Robinson, T. E., & Valenstein, E. S. (1986). The 

propensity for non-regulatory ingestive behavior is related to differences in dopamine 
systems: behavioral and biochemical evidence. Behavioral Neuroscience, 100, 213-
220. 

 
Mittleman, G., & Valenstein, E. S. (1985). Individual differences in non-regulatory 

ingestive behavior and catecholamine systems. Brain Research, 348, 112-117. 

Mittleman, G., Whishaw, I. Q., & Robbins, T. W. (1988). Cortical lateralization of 
function in rats in a visual reaction time task. Behavioral Brain Research, 31, 29-36.  

Monfils, M. H., & Teskey, G. C. (2004). Skilled-learning-induced potentiation in rat. 
Sensorimotor cortex: a transient form of behavioral long-term potentiation. 
Neuroscience, 125, 329-336. 

 
Monfils, M. H., VandenBerg, P. M., Kleim, J. A., and Teskey, G. C. (2004). Longterm 

potentiation induces expanded movement representations and dendritic hypertrophy in 
layer V of rat sensorimotor neocortex. Cereb. Cortex, 14, 586–593. 

 
Montoya, C. P., Campbell-Hope, L. J., Pemberton, K. D., & Dunnett, S. B. (1991). The 

“staircase test”: a measure of independent forelimb reaching and grasping abilities in 
rats. Journal of Neuroscience Methods, 36, 219-228. 

 
Mormede, P., Courvoisier, H., Ramos, A., Marissal-Arvy, N., Ousova, O., Desautes, C., 

et al. (2002). Molecular genetic approaches to investigate individual variations in 



 
 
 

229 

begavioral and neuroendocrine stress responses. Psychoneuroendocrinology, 27, 563-
583. 

 
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A. P., Sakata, H., & Acuna, C. (1975). 

Posterior parietal association cortex of the monkey: Command functions for operations 
within extrapersonal space. Journal of Neurophysiology, 38, 871-907. 

 
Mulligan, H. F., Anderson, T. J., Jones, R. D., Williams, M. J., & Donaldson, I. M. 

(2003). Tics and developmental stuttering. Parkinsonism and Related Disorders, 9, 
281-289. 

 
Napier, J. R. (1956). The prehensile movement of the human hand. Journal of Bone Joint 

Surgery, 38b, 902-913. 
 
Napier, J. R., & Tuttle, R. (1993). Hands, Rev. Edition. Princeton, NJ: Princeton 

University Press. 
 
Napieralski, J. A., Banks, R. J. A., & Chesselet, M. F. (1998). Motor and somatosensory 

deficits following uni- and bilateral lesions of the cortex induced by aspiration or 
thermocoagulation in the adult rat. Experimental Neurology, 154, 80-88. 

  
Neafsey, E. J., Bold, E. L., Haas, G., Hurley-Gius, K. M., Quirk, G., Sievert, C. F., & 

Terreberry, R. R. (1986). The organization of the rat motor cortex: a microstimulation 
mapping study. Brain Research, 396, 77-96. 

 
Neafsey, E. J., & Sievert, C. (1982). A second forelimb motor area exists in rat frontal 

cortex. Brain Research, 232, 151-156. 
 
Nelson, A., & Killcross, S. (2006). Amphetamine exposure enhances habit formation. 

Journal of Neuroscience, 26, 3805-3812. 
 
Nikkhah, G., Rosenthal, C., Hedrich, H. J., & Samii, M. (1998). Differences in 

acquisition and full performance in skilled forelimb use as measured by the ‘staircase 
test’ in five rat strains. Behavioural Brain Research, 92, 85-95. 

 
Nocjar, C., & Panksepp, J. (2002). Chronic intermittent amphetamine pretreatment 

enhances future appetitive behavior for drug- and natural-reward: interactions with 
environmental variables. Behavioral Brain Research, 128, 189-203. 

 
Nudo, R. J. (1999). Recovery after damage to motor cortical areas. Current Opinion in 

Neurobiology, 9, 740-747. 
 
Nudo, R. J. (2003). Functional and structural plasticity in motor cortex: implications for 

stroke recovery. Physical Medicine and Rehabilitation Clinics of North America, 14, 
S57-S76. 

 



 
 
 

230 

Nudo, R. J. (2006). Plasticity. NeuroRx, 3, 420-427. 
 
Nudo, R. J., Barbay, S., & Kleim, J. A. (2000). Role of neuroplasticity in functional 

recovery after stroke. In H. S. Levin & J. Grafman (Eds.), Cerebral reorganization of 
function after brain damage. Oxford University Press. 

 
Nudo, R. J., Milliken, G. W., Jenkins, W. M., & Merzenich, M. M. (1996). Use-

dependent alterations of movement representations in primary motor cortex of adult 
squirrel monkeys. Journal of Neuroscience, 16, 785-807. 

 
Nudo, R. J., Plautz, E. J., & Milliken, G. W. (1997). Adaptive plasticity in the primate 

motor cortex as a consequence of behavioral experience and neuronal injury. Seminars 
in Neuroscience, 9, 13-23. 

 
Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural substrates for 

the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 
272, 1791-1794.  

 
Paillard, J. (1982). The contribution of peripheral and central vision to visually guided 

reaching. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of 
visual behavior, (pp. 367-385). Cambridge, MA: MIT. 

 
Papadopoulos, C. M., Tsai, S.-Y., Guillen, V., Ortega, J., Kartje, G. L., & Wolf, W. A. 

(2009). Motor recovery and axonal plasticity with short-term amphetamine after 
stroke. Stroke, 40, 294-302.  

 
Paulson, P. E., Camp, D. M., & Robinson, T. E. (1991). Time course of transient 

behavioral depression and persistent behavioral sensitization in relation to regional 
brain monoamine concentrations during amphetamine withdrawal in rats. 
Psychopharmacology, 103, 480-492. 

 
Paulson, P. E., & Robinson, T. E. (1995). Amphetamine-induced time-dependent 

sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a 
microdialysis study in behaving rats. Synapse, 19, 56-65. 

 
Perkins, K. A., Coddington, S. B., Karelitz, J. L., Jetton, C., Scott, J. A., Wilson, A. S., & 

Lerman, C. (2009). Variability in initial nicotine sensitivity due to sex, history of other 
drug use, and parental smoking. Drug and Alcohol Dependence, 99, 47-57. 

 
Peterson, G. M. (1934). Mechanisms of handedness in the rat. Com parative Psychology 

Monographs, 9, 1-67. 
  
Peterson, G. M., & Francarol, L. C. (1951). The relative influence of the locus and mass 

of destruction upon the control of handedness by the cerebral cortex. Journal of 
Comparative Neurology, 68, 173-190. 

 



 
 
 

231 

Peterson, G. M., & Gucker, D. K. (1959). Factors influencing identification of the 
handedness area in the cerebral cortex of the rat. Journal of Comparative and 
Physiological Psychology, 52, 279-283. 

 
Piazza, P. V., Deroche, V., Rouge-Pont, F., & Le Moal, M. (1998). Behavioral and 

biological factors associated with individual vulnerability to psychostimulant abuse. 
NIDA Research Monograph, 169, 105-133. 

 
Piazza, P. V., Mittleman, G., Deminiere, J. M., Le Moal, M., & Simon, H. (1993). 

Relationship between schedule-induced polydipsia and amphetamine self-
administration: individual differences and the role of experience. Behavioural Brain 
Research, 55, 185-194. 

 
Piecharka, D. M., Kleim, J. A., & Whishaw, I. Q. (2005). Limits on recovery in the 

corticospinal tract of the rat: partial lesions impair skilled reaching and the 
topographic representation of the forelimb in motor cortex. Brain Research Bulletin, 
66, 203-211. 

 
Pierce, R. C., & Kalivas, P. W. (1997). A circuitry model of the expression of behavioral 

sensitization to amphetamine-like psychostimulants. Brain Research, 25, 192-216. 
 
Pisa, M. & Cyr, J. (1990). Regionally selective roles of the rat’s striatum in modality-

specific discrimination learning and forelimb reaching. Behavioral Brain Research, 
37, 281-292. 

 
Platz, T., Kim, I. H., Engel, U., Pinkowski, C., Eickhof, C., & Kutzner, M. (2005). 

Amphetamine fails to facilitate motor performance and to enhance motor recovery 
among stroke patients with mild arm paresis: interim analysis and termination of a 
double blind, randomised, placebo-controlled trial. Restorative Neurology and 
Neuroscience, 3, 271-280. 

 
Prasse, J. E., & Kikano, G. E. (2008). Stuttering: An overview. American Family 

Physician, 77, 1271-1276. 
 
Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A 

constructivist manifesto. Behavioral and Brain Sciences, 20,  537-596. 
 
Ramanathan, D., Conner, J. M., & Tuszynski, M. H. (2006). A form of motor cortical 

plasticity that correlates with recovery of function after brain injury. Proceedings of 
the National Academy of  Sciences of the United States of America, 103, 11370-11375. 

 
Ramic, M., Emerick, A. J., Bollnow, M. R., O’Brien, T. E., Tsai, S.-Y., & Kartje, G. L. 

(2006). Axonal plasticity is associated with motor recovery following amphetamine 
treatment combined with rehabilitation after brain injury in the adult rat. Brain 
Research, 1111, 176-186.  

 



 
 
 

232 

Rapp, P. R., & Amaral, D. G. (1992). Individual-differences in the cognitive and 
neurobiological consequences of normal aging. Trends in Neurosciences, 15, 340-345. 

 
Remple, M. S., Bruneau, R. M., VandenBerg, P. M., Goertzen, C., & Kleim, J. A. (2001). 

Sensitivity of cortical movement representations to motor experience: evidence that 
skill learning but not strength training induces cortical reorganization. Behavioral 
Brain Research, 123, 133-141. 

  
Rioult-pedotti, M. S., & Donoghue, J. P. (2002). Learning, retention and persistent 

synaptic strengthening of cortical synapses. Society for Neuroscience, Abstract, 32, 
713. 

 
Rioult-pedotti, M. S., Friedman, D., Hess, G., Donoghue, J. P. (1998). Strengthening of 

horizontal cortical connections following skill learning. Nature Neuroscience, 1, 230-
234. 

 
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the 

recognition of motor actions.  Cognitive Brain Research, 3, 131-141.  
 
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of 

Neuroscience, 27, 169-192. 
 
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. 

(1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 
and the control of distal movements. Experimental Brain Research, 71, 491-507. 

 
Robinson, T. E. (1984). Behavioral sensitization: characterization of enduring changes in 

rotational behavior produced by intermittent injections of amphetamine in male and 
female rats. Psychopharmacology, 84, 466-475. 

 
Robinson, T.E., & Becker, J.B. (1986). Enduring changes in brain and behavior produced 

by chronic amphetamine administration: a review and evaluation of animal models of 
amphetamine psychosis. Brain Research, 11, 157–198. 

 
Robinson, T.E., & Berridge, K.C. (1993). The neural basis of drug craving: an incentive-

sensitization theory of addiction. Brain Research, 18, 247–291. 
 
Robinson, T. E., & Flagel, S. B. (2009). Dissociating the predictive and incentive 

motivational properties of reward-related cues through the study of individual 
differences. Biological Psychiatry, 65, 869-873. 

 
Robinson, T. E., & Kolb, B. (1997). Persistent structural modifications in nucleus 

accumbens and prefrontal cortex neurons produced by previous experience with 
amphetamine. Journal of Neuroscience, 17, 8491–8497. 

 



 
 
 

233 

Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to 
drugs of abuse. Neuropharmacology, 47, 33-46. 

 
Robinson, T. E., Mocsary, Z., Camp, D. M., & Whishaw, I. Q. (1994). Time course of 

recovery of extracellular dopamine following partial damage to the nigrostriatal 
dopamine system. Journal of Neuroscience, 14, 2687-2696. 

 
Rogan, M. T., Stäubli, U. V., & LeDoux, J. E. (1997). Fear conditioning induces 

associative long-term potentiation in the amygdala. Nature, 390, 604-607.  
 
Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., et al. 

(1999). Dissociable deficits in the decision-making cognition of chronic amphetamine 
abusers, opiate abusers, patients with focal damage to prefrontal cortex, and 
tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. 
Neuropsychopharmacology, 20, 322-339. 

 
Roman, F. S., Truchet, B., Marchetti, E., Chaillan, F. A., & Soumireu-Mourat, B. (1999). 

Correlations between electrophysiological observations of synaptic plasticity 
modifications and behavioral performance in mammals. Progress in Neurobiology, 58, 
61-87. 

 
Rosenbaum, D. (1991). Human Motor Control. New York: Academic. 
 
Rosenzweig, M. R., & Bennett, E. L. (1996). Psychobiology of plasticity: effects of 

training and experience on brain and behavior. Behavioural Brain Research, 78, 57-
65. 

 
Rothwell, J. C., Traub, M. M., Day, B. L., et al. (1982). Manual motor performance in a 

deafferented man. Brain, 105, 515-542. 
 
Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual 

Reviews of Neuroscience, 23, 393-415. 
 
Saucier, D., & Cain, D. P. (1995). Spatial learning without NMDA receptor dependent 

long-term potentiation. Nature, 378, 186-189. 
 
Saunders, B. T., & Robinson, T. E. (2010). A cocaine cue acts as an incentive stimulus in 

some but not others: implications for addiction. Biological Psychiatry, 67, 730-736. 
 
Schallert, T., Kozlowski, D. A., Humm, J. L., & Cocke, R. R. (1997). Use-dependent 

structural events in recovery of function. Advances in Neurology, 73, 229-238. 
 
Schendel, K., & Robertson, L. C. (2004). Reaching out to see: Arm position can attenuate 

human visual loss. Journal of Cognitive Neuroscience, 16, 935-943. 
 



 
 
 

234 

Schmanke, T. D., Avery, R. A., & Barth, T. M. (1996). The effects of amphetamine on 
recovery of function after cortical damage in the rat depend on the behavioral 
requirements of the task. Journal of Neurotrauma, 13, 293-307. 

  
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological 

Reviews, 82, 225-260. 
 
Schmidt, R. A. (1988). Motor control and learning, 2nd ed. Champaign, IL: Human 

Kinetics. 
 
Schmidt, R. A. (1992). Motor learning principles for physical therapy. In Contemporary 

management of motor control problems. Proceedings of the II step conference, (pp. 
49-62). Alexandria, VA: APTA.  

 
Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral 

emphasis. 4th ed. Champaign (IL): Human Kinetics. 
 
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information 

processing: I. Detection, search, and attention. Psychological Review, 84, 1-66. 
 
Scholl, J. L., Feng, N., Watt, M. J., Renner, K. J., & Forster, G. L. (2009). Individual 

differences in amphetamine sensitization, behavior and central monoamines. 
Physiology & Behavior, 96, 493-504. 

 
Schumann, J. H. (1997). The neurobiology of affect in language. Malden, MA: 

Blackwell. 
  
Schumann, J. H. (2004). The neurobiology of aptitude. In J. H. Schumann, S. E. Crowell, 

N. E. Jones, N. Lee, S. A. Schuchert, & L. A. Wood (Eds.), The Neurobiology of 
Learning: perspectives from second language acquisition (pp. 7-21). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

 
Schwartzkroin, P. A., Roper, S. N., & Wenzel, H. J. (2004). Cortical dysplasia and 

epilepsy: Animal models. Advances in Experimental Medicine and Biology, 548, 145-
174. 

 
Shadmehr, R., & Wise, S. P. (2005). The computational neurobiology of reaching and 

pointing: A foundation for motor learning. Cambridge, MA: MIT Press. 
 
Shen, K. Z., Zhu, Z. T., Munhall, A., & Johnson, S. W. (2003). Synaptic plasticity in rat 

subthalamic nucleus induced by high-frequency stimulation. Synapse, 50, 314-319. 
 
Sherman, G. F., Galaburda, A. M., & Geschwind, N. (1985). Cortical anomalies in brains 

of New Zealand mice: a neuropathologic model of dyslexia? Proceedings of the 
National Academy of Sciences of the United States of America, 82, 8072-8074. 

 



 
 
 

235 

Sheridan, M. R. (1985). Individual differences in voluntary movement. In B. D. 
Kirkcaldy (Ed.), Individual Differences in Movement (pp. 3-26). Hingham, MA: MTP 
Press Limited. 

  
Shumway-Cook, A., & Woollacott, M. H. (2001). Motor control: theory and practical 

applications, 2nd ed. Philadelphia: Lippincott Williams & Wilkins. 
 
Sievert, C. F. & Neafsey, E. J. (1986). A chronic unit study of the sensory properties of 

neurons in the forelimb areas of rat sensorimotor cortex. Brain Research, 381, 15-23. 
 
Simon, N. W., Mendez, I. A. & Setlow, B. (2009). Effects of prior amphetamine 

exposure on approach strategy in appetitive Pavlovian conditioning in rats. 
Psychopharmacology, 202, 699-709. 

 
Singer, B. F., Tanabe, L. M., Gorny, G., Jake-Matthews, C., Li, Y., Kolb, B., & Vezina, 

P. (2009). Amphetamine-induced changes in dendritic morphology in rat forebrain 
correspond to associative drug conditioning rather than nonassociative drug 
sensitization. Biological Psychiatry, 65, 835-840. 

 
Spanagel, R. (2000). Recent animal models of alcoholism. Alcohol Research & Health, 

24, 124-131. 
 
Stewart, J., & Badiani, A. (1993). Tolerance and sensitization to the behavioral effects of 

drugs. Behavioural Pharmacology, 4, 289–312. 
 
Stroemer, R. P., Kent, T. A., & Hulsebosch, C. E. (1998). Enhanced neocortical neural 

sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after 
neocortical infarction in rats. Stroke, 29, 2381-2393. 

 
Sutherland, G. R., Dix, G. A., & Auer, R. N. (1996). Effect of age in rodent models of 

focal and forebrain ischemia. Stroke, 27, 1663-1667. 
 
Szechtman, H., & Eilam, D. (2005). Psychiatric models. In I. Q. Whishaw, and B. Kolb 

(Eds.), The behavior of the laboratory rat: a handbook with tests (pp. 462-474). New 
York: Oxford University Press. 

 
Taub, E. (1977). Movement in non-human primates deprived of somatosensory feedback. 

Exercise and Sport Sciences Reviews, 4, 335-374. 
 
Taub, E., Miller, N. E., Novack, T. A., Cook III, E. W., Fleming, W. C., Nepomuceno, C. 

S. et al. (1993). Technique to improve chronic motor deficit after stroke. Archives of 
Physical Medicine and Rehabilitation, 74, 347-354. 

 
Taylor, J. R., & Jentsch, J. D. (2001). Repeated intermittent administration of 

psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in 



 
 
 

236 

rats: Differential effects of cocaine, d-amphetamine and 3,4-
methylenedioxymethamphetamine (“ecstasy”). Biological Psychiatry, 50, 137-143. 

 
Teitelbaum, P. & Pellis, S. M. (1992). Toward a synthetic physiological psychology. 

Psychological science, 3, 4-20. 
 
Teskey, G. C. (2001). Using kindling to model the neuroplastic changes associated with 

learning and memory, neuropsychiatric disorders, and epilepsy. In C. A. Shaw and J. 
McEachern (Eds.), Toward a Theory of Neuroplasticity (pp. 347-358). Philadelphia, 
PA: Psychology Press. 

 
Teskey, G. C., Flynn, C., Goertzen, C. D., Monfils, M. H., & Young, N. A. (2003). 

Cortical stimulation improves skilled forelimb use following a focal ischemic infarct 
in the rat. Neurological Research, 25,794–800. 

 
Teskey, G. C., Monfils, M. H., Silasi, G., & Kolb, B. (2006). Neocortical kindling is 

associated with opposing alterations in dendritic morphology in neocortical layer V 
and striatum from neocortical layer III. Synapse, 59, 1–9. 

 
Teskey, G. C., Young, N. A., van Rooyen, F., Larson, S. E. M., Flynn, C., et al. (2007). 

Induction of neocortical long-term depression results in smaller movement 
representations, fewer excitatory perforated synapses, and more inhibitory synapses. 
Cerebral Cortex, 17, 434-442. 

 
Thiel, C. M., Muller, C. P., Huston, J. P., & Schwarting, R. K. W. (1999). High versus 

low reactivity to a novel environment: Behavioural, pharmacological and 
neurochemical assessments. Neuroscience, 93, 243-251. 

 
Thompson, R. F. (1990). Neural mechanisms of classical conditioning in mammals. 

Philosophical Transactions of the Royal Society Biological Sciences, 329, 161-170. 
 
Thorndike, E. L. (1908). The effect of practice in the case of a purely intellectual 

function. American Journal of Psychology, 19, 374-384. 
 
Threlkeld, S. W., McClure, M. M., Bai, J., Wang, Y., LoTurco, J. J., Rosen, G. D., et al. 

(2007). Developmental disruptions and behavioral impairements in rats following in 
utero RNAi of Dyx1c1. Brain Research Bulletin, 71, 508-514. 

 
Tiffany, S. T., & Carter, B. L. (1998). Is craving the source of compulsive drug use? 

Journal of Psychopharmacology, 12, 23-30. 
 
Tonissaar, M., Herm, L., Rinken, A., & Harro, J. (2006). Individual differences in 

sucrose intake and preference in the rat: Circadian variation and association with 
dopamine D2 receptor function in striatum and nucleus accumbens. Neuroscience 
Letters, 403, 119-124. 

 



 
 
 

237 

Topic, B., Dere, E., Schulz, D., de Souza Silva, M. A., Jocham, G., Kart, E., et al. (2005). 
Aged and adult rats compared in acquisition and extinction of escape from the water 
maze: Focus on individual differences. Behavioral Neuroscience, 119, 127-144. 

 
Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor 

skill learning. Neurobiology of Learning and Memory, 78, 553-564. 
 
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. 

A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). 
Cambridge, Massachusetts: MIT Press. 

 
Valenstein, E. S. (1969). Behavior elicited by hypothalamic stimulation: a prepotency 

hypothesis. Brain, Behavior, and Evolution, 2, 295-316.   
 
VandenBerg, P. M., Hogg, T. M., Kleim, J. A., & Whishaw, I. Q. (2002). Long-Evans 

rats have a larger cortical topographic representation of movement than Fischer-344 
rats: A microstimulation study of motor cortex in naïve and skilled reaching-trained 
rats. Brain Research Bulletin, 59, 197-203. 

 
Vanderschuren, L. J. M. J., & Everitt, B. J. (2005). Behavioral and Neural mechanisms of 

compulsive drug seeking. European Journal of Pharmacology, 526, 77-88. 
 
Vanderschuren, L. J. M. J., & Kalivas, P. W. (2000). Alterations in dopaminergic and 

glutamatergic transmission in the induction and expression of behavioral sensitization: 
a critical review of preclinical studies. Psychopharmacology, 151, 99-120. 

 
vanSant, A. F. (1988). Rising from a supine position to erect stance: description of adult 

movement and a developmental hypothesis.  Physical Therapy, 68, 185-192. 
 
Vergara-Aragon, P., Gonzalez, C. L., & Whishaw, I. Q. (2003). A novel skilled-reaching 

impairment in paw supination on the "good" side of the hemi-Parkinson rat improved 
with rehabilitation. Journal of Neuroscience, 23, 579-586. 

 
Vezina, P., McGehee, D. S., & Green, W. N. (2007). Exposure to nicotine and 

sensitization of nicotine-induced behaviors. Progress in Neuro-Psychopharmacology 
& Biological Psychiatry, 31, 1625-1638.  

 
Viggiano, D., Vallone, D., Ruocco, L. A., & Sadile, A. G. (2003). Behavioural, 

pharmacological, morpho-functional molecular studies reveal a hyperfunctioning 
mesocortical dopamine system in n animal model of attention deficit and hyperactivity 
disorder. Neuroscience & Biobehavioral Reviews, 27, 683-689. 

 
von Hofsten , C., & Rönnqvist, L. (1988). Preparation for grasping an object: a 

developmental study. Journal of Experimental Psychology. Human perception and 
performance, 14, 610-621. 

 



 
 
 

238 

von Monakow, C. (1914). Diaschisis [G. Harris (trans.)]. In K. H. Pribram (Ed.), Brain 
and behavior I: mood states and mind (1969). Baltimore: Penguin (pp. 27-36).  

 
Voorhies, A. C., & Jones, T. A. (2002). The behavioral and dendritic growth effects of 

focal sensorimotor cortical damage depend on the method of lesion induction. 
Behavioral Brain Research, 133, 237-246. 

 
Wallace, P. S., & Whishaw, I. Q. (2003). Independent digit movements and precision 

grip patterns in 1-5-month-old human infants: hand-babbling, including vacuous then 
self-directed hand and digit movements, precedes targeted reaching. 
Neuropsychologia, 41, 1912-1918. 

 
Waters, R. J., & Nicoll, J. A. (2005). Genetic influences on outcome following acute 

neurological insults. Current Opinion in Critical Care, 11, 105-110. 
 
Whishaw, I. Q. (2000). Loss of the innate cortical engram for action patterns used in 

skilled reaching and the development of behavioral compensation following motor 
cortex lesions in the rat. Neuropharmacology, 39, 788-805. 

 
Whishaw, I. Q. (2005). Prehension. In I. Q. Whishaw & B. Kolb (Eds.), The behavior of 

the laboratory rat: a handbook with tests, (pp. 162-170). New York: Oxford 
University Press. 

 
Whishaw, I.Q., Alaverdshvili, M., & Kolb, B. (2008). The problem of relating plasticity 

and skilled reaching after motor cortex stroke in the rat. Behavioural Brain Research, 
192, 124-136. 

  
Whishaw, I. Q., & Coles, B. L. (1996). Varieties of paw and digit movement during 

spontaneous food handling in rats: postures, bimanual coordination, preferences, and 
the effects of forelimb cortex lesions. Behavioral Brain Research, 77, 135-148. 

 
Whishaw, I. Q., Dringenberg, H. C., & Pellis, S. M. (1992). Spontaneous forelimb 

grasping in free feeding by rats: Motor cortex aids limb and digit positioning. 
Behavioral Brain Research, 48, 113-125. 

 
Whishaw, I. Q., & Gorny, B. (1996). Does the red nucleus provide the tonic support 

against which fractionated movements occur? A study on forepaw movements used in 
skilled reaching by the rat. Behavioural Brain Research, 74, 79-90. 

 
Whishaw, I. Q., Gorny, B., Foroud, A., & Kleim, J. A. (2003). Long-Evans and Sprague-

Dawley rats have similar skilled reaching success and topographic limb 
representations in motor cortex but use different movements as assessed by EWMN 
and Laban movement analysis. Behavioral Brain Research, 145, 221-232. 

 
Whishaw, I. Q., Gorny, B., & Sarna, J. (1998). Paw and limb use in skilled and 

spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the 



 
 
 

239 

rat: Behavioral and anatomical dissociations. Behavioural Brain Research, 93, 167-
183. 

 
Whishaw, I. Q., & Kolb, B. (2005). Analysis of behavior in the laboratory rat. New 

York: Oxford.  
 
Whishaw, I. Q., O’Connor, W. T., & Dunnett, S. B. (1986). The contributions of motor 

cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. 
Brain, 109, 805-843. 

 
Whishaw, I. Q., & Pellis, S. M. (1990). The structure of skilled forelimb reaching in the 

rat: Proximally driven movement with a single distal rotatory component. Behavioral 
Brain Research, 41, 49-59. 

 
Whishaw, I. Q., Pellis, S. M., & Gorny, B. P. (1992). Skilled reaching in rats and 

humans: evidence for parallel development or homology. Behavioural Brain 
Research, 47, 59-70. 

 
Whishaw, I. Q., Pellis, S. M., Gorny, B., Kolb, B., & Tetzlaff, W. (1993). Proximal and 

distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract 
lesions. Behavioral Brain Research, 56, 59-67. 

 
Whishaw, I. Q., Pellis, S. M., Gorny, B. P., & Pellis, V. C. (1991). The impairments in 

reaching and the movements of compensation in rats with motor cortex lesions: an 
endpoint, videorecording, and movement notation analysis. Behavioral Brain 
Research, 42, 77-91. 

 
Whishaw, I. Q., Suchowersky, O., Davis, L., Sarna, J., Metz, G. A., & Pellis, S. M. 

(2002). Impairment of pronation, supination, and body co-ordination in reach-to-grasp 
tasks in human Parkinson’s disease (PD) reveals homology to deficits in animal 
models. Behavioural Brain Research, 133, 165-176. 

 
Whishaw, I. Q., & Tomie, J. A. (1989). Olfaction directs skilled forelimb reaching in the 

rat. Behavioral Brain Research, 32, 11-21. 
 
Whishaw, I. Q., Zeeb, F., Erickson, C., & McDonald, R. J. (2007). Neurotoxic lesions of 

the caudate-putamen on a reaching for food task in the rat: Acute sensorimotor neglect 
and chronic qualitative motor impairment follow lateral lesions and improved success 
follows medial lesions. Neuroscience, 146, 86-97. 

 
Windle, V., & Corbett, D. (2005). Fluoxetine and recovery of motor function after focal 

ischemia in rats. Brain Research, 1044, 25-32. 
 
Wise, S. P., & Donoghue, J. P. (1986). Sensory-motor areas and aspects of cortical 

connectivity. In E. G. Jones, & A. Peters (Eds.), Motor cortex of rodents. New York: 
Plenum. 



 
 
 

240 

 
Withers, G. S., & Greenough, W. T. (1989). Reach training selectively alters dendritic 

branching in subpopulations of layer II-III pyramids in rat motor- somatosensory 
forelimb cortex. Neuropsychologia, 27, 61-69. 

 
Witt-Lajuenesse, A., Cioe, J., & Kolb, B. (submitted for publication). Rehabilitative 

experience interacts with bFGF to facilitate functional improvement after motor cortex 
injury. 

 
Wong, Y. J., & Whishaw, I. Q. (2004). Precision grasps of children and young and old 

adults: Individual differences in digit contact strategy, purchase pattern, and digit 
posture. Behavioural Brain Research, 154, 113-123. 

 
Woodlee, M. T., Asseo-Garcia, A. M., Zhao, X., Liu, S. J., Jones, T. A., & Schallert, T. 

(2005). Testing forelimb placing “across the midline” reveals distinct, lesion-
dependent patterns of recovery in rats. Experimental Neurology, 191, 310-317. 

 
Woody, C. D., Gruen, E., & Birt, D. (1991). Changes in membrane currents during 

Pavlovian conditioning of single cortical neurons. Brain Research, 539, 76-84. 
 
Wyvell, C. L. & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the 

conditioned incentive salience of sucrose reward: enhancement of reward “wanting” 
without enhanced “liking” or response reinforcement. Journal of Neuroscience, 20, 
8122-8130. 

 
Wyvell, C. L. & Berridge, K. C. (2001). Incentive sensitization by previous amphetamine 

exposure: increased cue-triggered “wanting” for sucrose reward. Journal of 
Neuroscience, 21, 7831-7840. 

 
Zalihić, A., Markotić, V., Zalihić, D., & Mabić, M. (2010). Gender and quality of life 

after cerebral stroke. Bosnian Journal of Basic Medical Sciences, 10, 94-99. 
 
Zilles, K. (1985). The cortex of the rat. New York: Springer. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

241 

Appendix 1 

Edited video clips display animals’ performance in the single pellet-reaching task 

demonstrating good and poor reaching skills. The first video clip shows a successful 

reach on the first reaching attempt performed by a good reacher. This video clip is played 

twice, first time in normal speed (100%) and the second time in a slower mode (40%). 

The second video clip shows unsuccessful reaching attempts performed by a poor 

reacher. This video clip also is played twice, first in normal speed and then in a slower 

pace. 

 

Appendix 2 

Edited video clip shows an animal performing tapping attempts. This video clip 

demonstrates a successful reach on tapping attempts. These attempts are performed 

outside of the reaching box without a new aiming movement. This video clip is played 

twice, first in normal speed (100%) and then in a slower mode (40%). 

 

 

 

 

 

 

 

 
 

 
 


