
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2018

A Computational study of sparse or

structured matrix operations

Aimaiti, Nuerrennisahan (Nurgul)

Lethbridge, Alta. : Universtiy of Lethbridge, Department of Mathematics and Computer Science

https://hdl.handle.net/10133/5268

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185288753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A COMPUTATIONAL STUDY OF SPARSE OR STRUCTURED MATRIX
OPERATIONS

NUERRENNISAHAN AIMAITI
(Nurgul Amat)

Master of Science, Umeå University, Sweden, 2015

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Nuerrennisahan Aimaiti, 2018

A COMPUTATIONAL STUDY OF SPARSE OR STRUCTURED MATRIX
OPERATIONS

NUERRENNISAHAN AIMAITI

Date of Defense: August 21, 2018

Dr. Shahadat Hossain
Supervisor Professor Ph.D.

Dr. Daya Gaur
Committee Member Professor Ph.D.

Dr. Saurya Das
Committee Member Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

“ Sometimes our light goes out but is blown into flame by another human being. Each

of us owes deepest thanks to those who have rekindled this light.” - Albert Schweitzer

I dedicate this thesis to my beloved parents, siblings, Dr. Dennis Will and

Mrs.Marie-Jeanne Will who have been the source of my inspiration and support.

iii

Abstract

Matrix computation is an important area in high-performance scientific computing. Major

computer manufacturers and vendors typically provide architecture- aware implementation

libraries such as Basic Linear Algebra Subroutines (BLAS). In this thesis, we perform an

experimental study of a subset of matrix operations, where the matrices are dense, sparse,

or structured in Java. We implement a subset of BLAS operations in Java and compare

their performance with standard data structures Compressed Row Storage (CRS) and Java

Sparse Array (JSA) for dense and sparse structured matrices. The diagonal storage format

is shown to be a viable alternative for dense and structured matrices.

iv

Acknowledgments

I would like to take the opportunity to express my gratitude and appreciation to my super-

visor, Dr. Shahadat Hossain for his continuous support, encouragement, invaluable guid-

ance and standing by me when challenges arose. I would also like to thank my committee

members Dr. Daya Gaur and Dr. Saurya Das for their time, constructive comments, and

suggestions.

I would like to thank Dr. Howard Cheng and Dr. Amir Akbary for their academic and

administrative help. I would like to thank Administrative Support Ms. Barb Hodgson for

her cordial support whenever I needed her assistance. I would also like to thank University

of Lethbridge, School of Graduate Studies of Canada for funding my graduate program.

A special thanks goes to Dr. Dennis Will and his family for playing such a great role

in my life. A role model is a person who has positively influenced someone in their lifes

journey. I would like to thank Dr. Will for being that person for me. He is, and always will

be the one person that I can turn to for advice in difficult situations, and know that he will

always be there to discuss important issues, provide insight and assist me when needed.

I would like to thank my friends for their help. I am fortunate to have Hossein, Jay-

ati, Sahar and Shamria for their excellent and insightful advises, thoughts and providing

valuable suggestions.

Last but not least, I must mention my family. There are no words to express my gratitude

and thanks to my beloved parents and siblings who have been with me throughout my

journey. My family, including many who are several thousand miles away have always put

their shoulder to the wheel in providing me with endless support, encouragement and love

throughout my life. For this I will be forever grateful.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Objectives of this thesis . 2
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 Theoretical Framework 4
2.1 Important Features of Java Architecture 4

2.1.1 Memory Management and Garbage Collection 6
2.1.2 Java Native Arrays . 7
2.1.3 Multidimensional Arrays . 8

2.2 Matrices and Data Structures . 11
2.3 The Row-major Storage . 13
2.4 The Compressed Row Storage (CRS) . 13
2.5 Diagonal Storage (DIAS) . 14

2.5.1 Formulas to identify and access diagonal elements for dense matrices 16
2.6 Banded Matrices and Storage Format . 18

2.6.1 Formulas to identify and access diagonal elements for banded ma-
trices . 19

2.7 Java Sparse Array (JSA) . 20

3 Cache Memory 22
3.1 Memory Hierarchy . 22
3.2 Basic Concepts of Cache Memory . 24
3.3 Temporal and Spatial Locality . 25
3.4 Memory Mountain . 28

4 Matrix Operations on Different Storage Schemes and Algorithms 32
4.1 Implementation of Some Basic Linear Algebra Routines 32
4.2 The SMM on Ax and AT x . 33
4.3 The DMM on Ax and AT x . 34
4.4 AB and AT B on Six versions Multiplication 36
4.5 AB and AT B on DIAS . 39

vi

CONTENTS

4.6 Ax and AT x on CRS . 45
4.7 Ax and AT x on JSA . 46
4.8 Ax and AT x on DIAS . 47
4.9 Banded Matrix Multiplication Algorithm on CRS and JSA 48
4.10 Banded Matrix Multiplication Algorithm on DIAS 49
4.11 Cache Miss Analysis for Matrix Multiply 51

5 Computational Experiments 54
5.1 Test Data Sets . 54
5.2 Benchmarking and Test Environment . 55
5.3 Input Data Types . 56
5.4 Challenges associated with running the algorithms used in this project . . . 56
5.5 Computational Experiment . 56

5.5.1 Introduction . 56
5.5.2 Model 1 . 57
5.5.3 Model 2 . 61

6 Conclusion and Future Work 66
6.1 Conclusion . 66
6.2 Future Research Needs . 66

Bibliography 68

Appendix 71

A Tables of Experiment Results 71
A.1 Performance of Dense Matrix-Vector Multiplications 71
A.2 Performance of Banded Matrix-Vector Multiplications 73
A.3 Performance of Banded Matrix-Matrix Multiplications 74

Appendix 76

B Java Codes of the Implementations 77
B.1 Code for Model 1: Dense Matrix Operations 77

B.1.1 The matrix-vector multiplication routines 77
B.1.2 The matrix-matrix multiplication routines 79

B.2 Code for Model 2: Sparse (Banded) Matrix Operations 81
B.2.1 The matrix-vector multiplication routines on CRS, JSA, DIAS . . . 81
B.2.2 The matrix-matrix multiplication routines on CRS, JSA, DIAS . . . 84

vii

List of Tables

2.1 CRS data structure . 14
2.2 JSA data structure . 20

4.1 Six versions innermost loop . 38
4.2 Cache miss analysis of matrix multiplication Equation (4.2) 53
4.3 Cache miss analysis of transpose matrix multiplication Equation (4.3) . . . 53

5.1 Test platform technical data information 55

A.1 Dense matrix vector multiplication performance in 1D (ie,. row-wise layout 71
A.2 Dense matrix vector multiplication performance in 2D (ie,. two-dimensional

layout . 72
A.3 Banded matrix vector multiplication performance. 73
A.4 Banded matrix-matrix multiplication performance (Numerical Approach

for CRS, JSA). 74
A.5 Banded matrix-matrix multiplication performance. 75
A.6 Numerical approach versus Algorithm (B.16) for CRS and Algorithm (B.19)

for JSA. 76

viii

List of Figures

2.1 The Java Architecture . 5
2.2 A true two-dimensional array . 9
2.3 A two-dimensional Java array . 9
2.4 A two-dimensional Java array where it has different row length 10

3.1 Memory Hierarchy . 24
3.2 Core i7 six versions of matrix multiplication performance 26
3.3 Core i7 blocked matrix multiplication performance 27
3.4 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz - The Memory Mountain . . . 30

4.1 Access pattern of inner loop . 52

5.1 The SMM versus DMM on Ax and AT x 58
5.2 The DIAS versus six versions on AB . 59
5.3 The DIAS versus V 5 ki j and V 6 ik j on AB 59
5.4 The DIAS versus six versions on AT B . 60
5.5 The DIAS versus V 5 ki j and V 6 ik j on AT B 60
5.6 Banded matrix-vector multiplication on CRS, JSA and DIAS 62
5.7 Banded matrix transpose -vector multiplication on CRS, JSA and DIAS . . 62
5.8 Banded matrix Ax and AT x routines on CRS, JSA and DIAS 63
5.9 AB on CRS, JSA and DIAS, where numerical approach [12] was used for

CRS and JSA, the total number of nonezero values are 0.19%. 63
5.10 The numerical approach versus Algorithms B.16 and B.19 applied on CRS

and JSA on AB . 64
5.11 AT B on CRS′, JSA′ and DIAS . 65

ix

Chapter 1

Introduction

Computer languages suitable for writing scientific computing software are expected to have

several important features such as efficiency of compiled object code, numerical precision,

and the expressiveness of operations. In the past, portability was not among the must have

features. However, modern applications are becoming increasingly complex. Some of the

challenges are due to the enormous amount of data (exa-scale) needed to be processed and

the multidisciplinary nature of applications. Also applications are increasingly required to

run on heterogeneous computing platforms.

Some of the main design objectives of language Java were to facilitate platform inde-

pendence and network-aware distributed application development. Traditionally, numerical

scientific computing applications require language features that allow access to computing

resources at lower-level such as the ability to access and manipulate heap-memory which is

not directly accessible in Java. Moreover, the implementation of Java arrays (two or higher

dimensional) pose performance issues for applications that manipulate large matrices and

higher dimensional tensors. This is due to the fact that multi-dimensional arrays are built

through object references rather than actual objects.

Matrix computation is an important area in high-performance scientific computing. Ma-

jor computer manufacturers and vendors typically provide architecture- aware implementa-

tion libraries such as Basic Linear Algebra Subroutines (BLAS). In this thesis, we perform

an experimental study of a subset of matrix operations, where the matrices are dense, sparse,

or structured in Java. We implement existing sparse data structures including compressed

1

1.3. THESIS ORGANIZATION

row storage and Java sparse array and provide implementations of diagonal storage that can

be used for both dense and structured matrices.

1.1 Objectives of this thesis

Java has not been regarded as the next universal language for numerical computing

despite its powerful features because of its poor performance in high level numerical com-

puting including Java arrays. This research project is undertaken to identify methods to

increase Java performance when using Java arrays. To do this, specific problems explored

and investigated in this thesis are as follows:

• Design and implement data structures that exploit sparsity and structure of sparse

matrix objects.

• Implement the linear algebraic operations needed in the solution of the linear systems

in model algorithms such as Newton’s method.

• Experiment and evaluate the implementations on benchmark problem instances.

1.2 Contributions

The contributions of this thesis are listed below:

1. We implement a subset of BLAS operations in Java and compare their performance

with standard data structures Compressed Row Storage (CRS) and Java Sparse Array

(JSA) for dense and sparse structured matrices.

2. The diagonal storage shceme is shown to be a viable alternative for dense and struc-

tured matrices.

3. We perform extensive numerical testing on large dense, sparse, and structured matri-

ces on computing systems with multiple levels of cache memory.

2

1.3. THESIS ORGANIZATION

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 presents the theoretical framework about the Java architecture and the matrix

data structures.

Chapter 3 a brief introduction to the basic concepts of cache memory is presented.

Chapter 4 provides the implementation of different storage formats on some basic linear

algebra routines and algorithms.

Chapter 5 contains a description of the computational models with results.

Chapter 6 concludes the thesis by summarizing the computational results and discussing

possible future research needs.

3

Chapter 2

Theoretical Framework

2.1 Important Features of Java Architecture

Java is an object-oriented language with a very good collection of useful features. The

Java language was developed by the Java group at Sun Microsystems to overcome some

software engineering problems introduced by C++.

Java is known as a platform independent programming language as it is designed to

operate on all operating systems. Java program functions by generating bytecode utilizing

the high level programming language called source code [8]. A computer cannot execute

source codes directly. A source code must be translated into machine code for execution.

Figure 2.1 shows Java architecture.

In Figure 2.1, Java compiler (called javac) converts the source code into bytecode

(bytecode files use the extension .class). However, bytecode is not an executable file.

To execute a btyecode file, at the run time, Java Virtual Machine (JVM) interprets the

bytecode and converts it into machine code which can then be directly executed on any

computer with JVM installed. The JVM plays a key role in making Java portable and user

friendly. This demonstrates one of the key benefits of Java which is the independence from

platform, i.e., Java-based apps can run on Windows, Linux or Mac operation systems [12].

The same compiled program can be run on multiple platforms without making any changes

in the source code, this is one of the essential features of Java [8].

4

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

Java Compiler

Java Virtual Machine

Figure 2.1: The Java Architecture

Gundersen in [12] indicates Java has been very successful due to its platform indepen-

dence, the extensive libraries it possesses, a run-time system that encourages array-bounds

checking, exception handling and an automated memory manager supported by a garbage

collector. Java does not have features like pointers, templates and multiple inheritance

which although important are more error-prone. Java has not been considered to be a high

powered universal language for numerical computing in spite of its very important features

because of its poor performance compare to FORTRAN, C and C++.

According to Gundersen [12], Java has poor performance including floating point arith-

metic, Java arrays, the memory model and automatic garbage collection.

5

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

2.1.1 Memory Management and Garbage Collection

Memory and memory management is a complex field of computer science and there

are many techniques being developed to make it more efficient [30]. Dynamic memory

management is an integral characteristic of every modern programming language. There

are two types of dynamic memory management: manual and automatic.

Manual memory management requires the programmer to explicitly return memory

to the language when it is no longer needed. The key feature of a manual memory manager

is the memory manager does not recycle any memory without such an instruction. Manual

memory management is used in Fortran, C, C++, Pascal, etc [30].

Automatic memory management frees the programmer from this burden. Memory is

automatically reclaimed when the run-time system can determine that it can no longer be

referenced. Automatic memory managers are often referred to as garbage collectors. Most

modern languages use mainly automatic memory management: BASIC, Dylan, Erlang,

Haskell, Java, JavaScript, Python, etc. There are several reasons for the integration of the

automatic memory management into the programming languages [30].

The advantages of automatic memory management are:

• Programmer time is freed to work on the actual problem

• Module interfaces are typically cleaner

• There are fewer memory management problems

• Memory management is often more efficient than manual memory management

The disadvantages of automatic memory management are:

• Memory is sometimes retained because it is reachable, when in fact it will not be

used again

• Limited availability to certain languages

6

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

Garbage collection is an important part of the Java virtual machine’s (JVM’s) dynamic

memory management system. It frees up occupied memory that is no longer referenced by

any reachable Java object. In general, only the Java objects that are still referenced, and

thus reachable, are kept. When there is no reference to an object, Java will assume that this

object is not used anymore. When the garbage collection process happens, the unneeded

objects are destroyed and the memory is reclaimed.

In many other programming languages, it is the programmer’s responsibility to delete

the garbage, but in Java, it is the responsibility of the system, not the programmer, to keep

track of which objects are ”garbage”. The garbage collection process frees up space to

enable new object allocation [8, 11].

2.1.2 Java Native Arrays

All major computer programming languages support arrays. However, Java arrays have

some very unique and specific properties that other programming languages do not have

making them particular useful for computing algorithms. In [31] , an array is defined as

being a sequence of indexed components which have the following general properties:

• When an array is constructed, its length (or number of components) is fixed.

• Each component of the array has a fixed and unique index. The indices range from a

lower index bound to a higher index bound.

• Any component of the array can be accessed (inspected or updated) using its index.

Other properties of arrays vary from one programming language to another. In Java,

arrays are objects unlike C++. Java arrays have the following specific properties [31]:

• For an array of length n, the index range is from 0 to n−1.

• The type of array components are stated in the program.

7

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

• An array is itself an object. Consequently, an array is selected and allocated dynam-

ically (by means of new) when it is required and is manipulated by reference. An

array is automatically deallocated when no longer required and referred to.

• Notation a [i] denotes the component of array a with index i, and the length of array

a can be noted with a.length.

• Java has two data types, one is primitive data types which is built by eight set of

types named byte, short, int, long, float, double, char, and boolean. The other is

object data type. See [31] for more details.

The array algorithms presented in this thesis are expressed in terms of the general prop-

erties of arrays and the specific properties of Java arrays.

2.1.3 Multidimensional Arrays

Java is an excellent computing language. One of the language’s most significant short-

comings for effective high powered numerical computing is the lack of strong support for

multidimensional arrays. The Java programming language does not support true multidi-

mensional arrays. This has been recognised as a major deficiency in Java’s applicability

to numerical computing. However, when Java is supplemented with multidimensional ar-

rays it can achieve very high-performance levels for numerical computing when used in

conjunction with compiler techniques and a collection of array operations [21].

Samuel et al. [21] indicate that there are three options available to improve Java’s

support for multidimensional arrays. These include:

• The usage of class libraries to assist with the implementation of these structures.

• Utilising JVM to identify arrays of arrays to mimic multidimensional arrays.

• Expanding the Java language with the addition of new syntactic models for usage with

multidimensional arrays. It does so by adding the new syntax directly into bytecode.

8

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

Samuel et al. [21] show that of these choices the best option for computer programmers

depends on the relative importance of each of the metrics, the intended use by Java pro-

grammers, the effort required for implementation, and the overall impact on performance.

Java’s two-dimensional (2D) native arrays are a blend of an object and a primitive. Each

element in the outermost array in Java is an object reference. Each inner array is an array

of primitive elements. An array of objects includes the reference to the objects. Similarly,

when an array of primitive elements is created the array contains the referenced values for

each of the elements. As references are a key component of arrays, an array element may

make reference to another array thereby creating multidimensional arrays [14].

The layout of a two-dimensional matrix or rectangular array of numbers is shown in Fig-

ure 2.2. Figure 2.3 illustrates the concept of arrays of arrays, simulating a two-dimensional

multiarray. In multidimensional arrays the elements in the outermost array are an object

reference.

Column

Row

Figure 2.2: A true two-dimensional array Figure 2.3: A two-dimensional Java array

Since a 2D array is a 1D array of references to 1D arrays, the arrays are not required

to be rectangular. Each of these inner 1D arrays (rows) can have a different length which

creates a jagged form as demonstrated in Figure 2.4. Furthermore, the structure of arrays

can change during a computation. These characteristics make the job of automatically op-

timizing Java array code almost impossible for existing compilers [21]. Another limitation

9

2.1. IMPORTANT FEATURES OF JAVA ARCHITECTURE

of arrays of arrays associates with parameter passing. It is very difficult to pass general

regular sections of an array of arrays between caller and callee. Referring to Figure 2.3,

where it is trivial to pass row 0 of array, let’s say array A to a method (just pass A[0]), it is

not possible to pass column 0 of array A without first copying it to another one-dimensional

array.

We can assume that elements of an array of primitive elements to be stored contiguously,

but we cannot assume the objects of an array of objects to be stored contiguously. For a

rectangular array of primitive elements, the elements of a row will be stored contiguously,

but the rows may be scattered [13]. As objects are created and heap allocated they can

be placed anywhere in the memory. Non-contiguous placement and access is less efficient

and slower than contiguous ones due to less spatial locality. This applies to all computer

languages.

Figure 2.4: A two-dimensional Java array where it has different row length

Java matrix computation packages such as JAMA [15] and JAMPACK [29] use the

native arrays as their primary storage format. Unfortunately, Java native arrays are of-

ten not considered to be sufficiently efficient for high performance computing. The most

challenging aspect of the static format is related to the insertion of new elements when car-

rying out matrix updates and matrix factorisation. Replacing the typical native arrays with

multidimensional arrays and researching different storage formats to take advantage of the

flexibility of Java’s arrays to create efficient algorithms would be very beneficial [21].

10

2.2. MATRICES AND DATA STRUCTURES

The paper [13] by Gunderson and Steihaug demonstrated that there was no reduction

in efficiency when the dynamic and more flexible data structures in jagged arrays were

used instead of the more static structure. Most importantly there was a very large gain in

efficiency and therefore time saving when the more dynamic and flexible data structures

were used.

Java has native support for arrays as parameters. A Java array is self-aware of its own

length, unlike C/C++. A two-dimensional array is actually an array in which each element

is a one-dimensional array. A two-dimensional array can be passed to a method just as a

one-dimensional array, no length parameter is needed [19]. Gundersen and Steihaug[13] re-

cently proposed the use of Java Sparse Array (JSA) storage format to take advantage of Java

arrays. JSA is a new format that has more dynamic features compared to the traditionally

storage formats like Compressed Row Storage (CRS), Compressed Column Storage (CCS)

and Coordinate Storage (COO). JSA is a row oriented storage format similar to CRS. It

uses two-dimensional array, which is formed as an array of arrays. Java sparse array format

is presented in section2.7.

2.2 Matrices and Data Structures

In computer science, a matrix is known as a dense matrix when many, or most of the

elements have a non-zero value. Every entry of a dense matrix can be stored in row-major

storage, column-major storage, or diagonal storage format. The design and selection of the

storage format is based on the intended use, the routines to be implemented, and the pattern

of the matrix [12]. In this thesis we use both row-major storage format and diagonal storage

format to perform dense matrix multiplications. These two storage formats are described in

section 2.3 and section 2.5 respectively.

Wilkinson defines a sparse matrix as any matrix with enough zeros that it pays to take

advantage of them [9]. Sparse matrices are used in specific ways in computer science, and

have different data analysis and storage protocols and techniques related to their use. There

11

2.3. THE ROW-MAJOR STORAGE

are benefits in both space and time by utilising only the nonzero elements [22]. It is more

efficient to store only the non-zero elements of a sparse matrix, so that the use of storage

formats for sparse matrices reduces the arithmetic operations on zeros. Sparse matrices

can be useful for computing large-scale applications that dense matrices cannot handle.The

objective of storage formats for sparse matrices is to reduce memory space by storing only

nonzero elements of a sparse matrix and to perform efficient execution of subroutines by

storing these nonzero elements in contiguous memory location [28].

Sparse matrices have two types: structured and unstructured [24]. In a structured ma-

trix, the nonzero elements form a regular pattern, often along a small number of diagonals,

while in an unstructured matrix, the nonzero elements are located irregularly. In comparison

to dense matrices, sparse matrices have more complex implementation since they only store

the nonzero elements and their index positions that they have in the full matrices. One of

the challenges with sparse structures is that both the indices and the numerical values of the

nonzero matrix entries are stored which requires more overhead. There are long standing

different storage formats for unstructured large sparse matrices that are used in computer

languages such as C, C++ and Fortran [14, 6, 7, 24]. Developing efficient algorithms to

work with matrices is very important. Sparse algorithms also tend to be more complex than

the same algorithms for dense matrices, due to the rather complex structures and algorithms

for saving space and time [12].

There are a number of storage formats used for storing the sparse matrices(see for in-

stance Saad [23]).

In this thesis, for sparse matrix we use Diagonal Storage (DIAS)format, Compressed

Row Storage(CRS), and Java Sparse Array(JSA) formats to perform matrix operations.

The common approach of these storage formats is to store only the non-zero elements of

the sparse matrix, and employ additional indexing information about the position of these

elements. These three storage formats are described in section 2.4, 2.6, and 2.7 respectively.

12

2.4. THE COMPRESSED ROW STORAGE (CRS)

2.3 The Row-major Storage

A matrix A ∈ R m×n is typically stored as a two-dimensional array. Each entry in the

array represents an element ai j of the matrix and is accessed by the two indices, such as i for

row index and j for column index. The choices of row-major or column-major indexing can

have a significant impact on performances because of the way memory and cache works,

and the way multiple indices are converted into a linear index. When the elements of an

m×n matrix is arranged in one-dimensional array in row-major order, element ai j of matrix

A is stored at index i×n+ j, then all the linear indices i×n+ j are traversed sequentially,

resulting in good memory locality. However, if the column-major order is used to arrange

elements of A, element ai j is stored at index j×m+ i, then the memory access will be

scattered in memory.

2.4 The Compressed Row Storage (CRS)

Compressed Row Storage (CRS), also called Compressed Sparse Row (CSR), is one

of the most general storage formats for sparse matrices whose sparsity patterns have no

known regular structure, and can be used to store any sparse matrix. There are a number of

variations of the CRS format. The most obvious variation is storing the columns instead of

rows. The format is known as Compressed Column Storage (CCS), and is not described in

this thesis. Another common variation of sparse matrices exploits the fact that the diagonal

elements of many matrices are all usually nonzero and they are accessed more often than

the rest of the elements. As a result they can be stored in Diagonal Storage (DIAS) format,

which will be described in Section 2.5.

The CRS format represents a sparse matrix that utilizes three one-dimensional arrays [3]:

1. value array stores only nonzero elements row-by-row in the matrix.

2. col index (column index) array stores column indices of the corresponding elements

in value.

13

2.5. DIAGONAL STORAGE (DIAS)

3. row ptr (row pointer) array stores the array index of the first non-zero element of

each row in the value with row ptr(n+ 1) = nnz+ 1, where nnz is the number of

non-zero elements in the matrix.

The non-zero elements in row i can be accessed as value(row ptr(i)). The memory storage

requirement in the CRS format for A ∈ R n×n requires only (2nnz+n+1) storage locations

instead of storing n2 elements. Hence, it provides significant storage savings.

An example of a sparse matrix A is as follows:

A =



0 a01 a02 0 0

0 a11 0 0 0

0 0 a22 0 0

0 0 a32 a33 0

0 a41 0 a43 0


(2.1)

The CRS format for this matrix is represented by three 1D arrays given in Table 2.1 below:

Table 2.1: CRS data structure

value a01 a02 a11 a22 a32 a33 a41 a43

col ind 1 2 1 2 2 3 1 3

row ptr 0 2 3 4 6 8

The CRS format is rather intuitive and straightforward, and most toolkits support this

format on most sparse matrix operations [27].

2.5 Diagonal Storage (DIAS)

The diagonal storage format, we call DIAS, is a standard storage format for matrices that

are diagonally structured, with storage of diagonals on the matrix in consecutive memory

14

2.5. DIAGONAL STORAGE (DIAS)

locations. In this section, we explain how to use the diagonal storage format to store a dense

matrix and a banded matrix. Given n× n square matrix of order n. For an element ai j in

the matrix with row index i and column index j. Diagonal storage format uses two arrays

to define the matrix storage, diag and value when the diagonals are stored not a specific

diagonal order, i.e. main, super and sub diagonals are stored in a random or mixed order.

When the specific storage order of diagonal elements is known, we can use only value array

to represent the matrix storage.

To provide a clear understanding of diag and value arrays in DIAS, consider the fol-

lowing as an example of how a n× n general matrix A with number of diagonals (2n− 1)

is stored in arrays diag and value. Given the following matrix A:

A =



a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


(2.2)

Elements of matrix A is stored in one-dimensional(1D) array by a diagonal order as

diag = {k0,k1,k2,k3,k−1,k−2,k−3}, (2.3)

value = {a00 a11 a22 a33 | a01 a12 a23 | a02 a13 | a03 |

a10 a21 a32 | a20 a31 | a30}
(2.4)

where ki for(−n+1≤ i≤ n−1) is a diagonal, n = 4 is size of matrix.

• ki = 0 represents the main diagonal

• when 0 < ki ≤ n−1, then ki is the ith super-diagonal

• when −n+1≤ ki < 0, then ki is the ith sub-diagonal

Storing matrices by diagonals has several drawbacks including the fact that the diagonals

15

2.5. DIAGONAL STORAGE (DIAS)

have different lengths, and the number of diagonals is more than the number of rows or

columns. The algorithm of matrix multiplication for a diagonal storage is more difficult

and less intuitive to describe and understand. However, there are obvious advantages to

storing or structuring a matrix by diagonals, especially for matrices that are diagonally

structured [20]. If the matrix A is banded with bandwidth that is fairly constant from row to

row, then it is worthwhile to take advantage of this structure in the storage format by storing

the non-zero diagonals of the matrix in consecutive locations. In the following subsection,

we explain how we extract each diagonal’s elements which are stored in diagonal storage

format, for matrix operations.

2.5.1 Formulas to identify and access diagonal elements for dense matrices

In order to find a starting index and ending index for each diagonal element stored in

one-dimensional array, we ran several iterations to find an effective formula to identify

starting and ending diagonal element’s indices.

• Assume k is a diagonal number, start index is an index of the first element of a

diagonal array, and the end index is an index of last element of a diagonal array.

Array indices are zero-based numbering.

• In array (2.4), we ran n = 4 iterations, at the start of each iteration we obtained the

following when 0≤ k ≤ n−1:

16

2.5. DIAGONAL STORAGE (DIAS)

k start index end index

0 0 = 0×n−0 3 = 0+(n−0)−1

1 4 = 1×n−0 6 = 4+(n−1)−1

2 7 = 2×n−1 8 = 7+(n−2)−1

3 9 = 3×n−3 9 = 9+(n−3)−1

⇓ ⇓

= k×n− k(k−1)
2 = start index+(n− k)−1

the formulas for a starting and ending index of main and super-diagonal arrays can

be written as:

start index = kn− k(k−1)
2

, (2.5a)

end index = start index+(n− k)−1 (2.5b)

• when −n+1≤ k < 0, after three iterations it gives the following at the start of each

iteration,

k start index end index

-1 10 = 10+(1−1)×n−0 12 = 10+(n−1)−1

-2 13 = 10+(2−1)×n−1 14 = 13+(n−2)−1

-3 15 = 10+(3−1)×n−3 15 = 15+(n−3)−1

⇓ ⇓

= n(n+1)
2 +(|k|−1)×n− |k|(|k|−1)

2 = start index+(n−|k|)−1

17

2.6. BANDED MATRICES AND STORAGE FORMAT

therefore, the formulas for a starting and ending index of sub-diagonal arrays can be written

as:

start index =
n(n+1)

2
+(|k|−1)×n− |k|(|k|−1)

2
(2.6a)

end index = start index+(n−|k|)−1 (2.6b)

2.6 Banded Matrices and Storage Format

Banded matrices have many zero entries and all non-zero entries are located near the

main diagonal. Therefore, it is no surprise that banded matrix manipulation allows for the

time and storage space savings. The bandwidth of a matrix A is defined as the maximum

of |i− j| for which ai j is nonzero. The upper bandwidth is the maximum j− i for which ai j

is nonzero and j > i [18]. For the matrices with few diagonals, the DIAS format stores all

the elements of each diagonal with nonzero elements in contiguous one-dimensional array.

Thus, the index array col index in CRS format can be deleted [17].

Many storage formats are available, but it is most common to store all the diagonals that

contains any non-zero entries. The tridiagonal is a special case of a banded matrix that it

has nonzero elements only on the main diagonal, the first diagonal below this, and the first

diagonal above the main diagonal. In this thesis we focused mainly on the general band

matrix where the nonzero elements are located only along a few diagonals adjacent to the

main diagonal [10].

A n×n matrix A:

A =



a00 a01 0 0 0 0

a10 a11 a12 0 0 0

a20 a21 a22 a23 0 0

0 a31 a32 a33 a34 0

0 0 a42 a43 a44 a45

0 0 0 a53 a54 a55


(2.7)

18

2.6. BANDED MATRICES AND STORAGE FORMAT

is a band-diagonal matrix with elements ai j:

• Matrix A has lower bandwidth p if ai j = 0 when i > j+ p

• Matrix A has upper bandwidth q if ai j = 0 when j > i+q

This 6×6 matrix A has lower bandwidth p = 2 and upper bandwidth q = 1. Instead of

storing 36 elements, 16 of them are zero, we store four diagonals (p+q+1) , or bands, in

one-dimensional array by a diagonal order as:

diag array = {k−2,k−1,k0,k1}. (2.8)

value array = {a20 a31 a42 a53 | a10 a21 a32 a43 a54 | a00 a11 a22

a33 a44 a55 | a01 a12 a23 a34 a45}

(2.9)

where ki for (−2≤ i≤−1) represents the diagonal number of A.

2.6.1 Formulas to identify and access diagonal elements for banded matrices

In banded matrices,each diagonal element can be identified and accessed by the follow-

ing formulas:

• k ≥ 0, super-diagonal elements

start index =
p(2n− p−1)

2
+

k(2n− k−1)
2

+ k (2.10a)

end index = start index+(n− k)−1 (2.10b)

• k < 0, take absolute value of k (ie,. |k|), then sub-diagonal elements can be accessed

19

2.7. JAVA SPARSE ARRAY (JSA)

by,

start index =
p(2n− p−1)

2
− |k|(2n−|k|−1)

2
(2.11a)

end index = start index+(n−|k|)−1 (2.11b)

The formulas presented in Equations (2.10) and (2.11) and are to define and access the di-

agonal elements which are stored in the diagonal storage format in the order sub-diagonals,

main diagonal and super-diagonals.

2.7 Java Sparse Array (JSA)

Gundersen and Steihaug [13] recently proposed the Java Sparse Array (JSA) storage

format that be used to take advantage of Java arrays. JSA is a row oriented storage format

similar to CRS. It uses two-dimensional arrays, which is formed as an array of arrays. A

sparse matrix is represented by two arrays, one of which is the value array which stores

arrays of the matrix elements. The other array is the index array which stores arrays con-

taining the column numbers of the matrix. The data structure to store the example sparse

matrix in Equation 2.1 under the JSA format are shown in Table 2.2.

Table 2.2: JSA data structure

value a01 a02 a11 a22 a32 a33 a41 a43

index 1 2 1 2 2 3 1 3

or the value array and index array can be expressed in Java as

double[][] value = {{a01,a02},{a11},{a22},{a32,a33},{a41,a43}} (2.12a)

int[][] index = {{1,2}},{1},{2},{2,3},{1,3}} (2.12b)

In JSA format, each row in the matrix has its elements and indices in a separate array.

20

2.7. JAVA SPARSE ARRAY (JSA)

All the separate arrays are elements of the value array. An important feature of the Java

Sparse Array format is that it is possible to make changes to the rows independently without

making adjustments to the rest of the structure as each row is composed of a value and a

corresponding index array each with its unique reference. This means a row can be removed

or inserted into the JSA structure without creating a new large 1D array for values and

indices. In CRS format, it is not possible to manipulate the rows independently without

updating the rest of the structure.

The memory storage requirements in JSA for A∈R n×n is (2nnz+2n) storage locations

compared with (2nnz+n+1) for the CRS format.

21

Chapter 3

Cache Memory

3.1 Memory Hierarchy

Actual performance of a program can be a complicated function of the architecture of

that program. Slight changes in the architecture or program can change the performance

significantly. Most programs have a high degree of locality in their accesses. Memory hier-

archy tries to exploit locality. The matrix operations performance is effected by a memory

hierarchy. In this thesis we have attempted to provide a description of the memory hierar-

chy system, including cache memory and locality and demonstrate the impact locality has

on the functioning of the memory.

The CPU (Central Processing Unit), or simply a processor is the brain of the computer.

It is an important computer component that is responsible for executing instructions stored

in main memory. The CPU attaches directly to a CPU socket on the motherboard located

inside the computer. The speed of a computer CPU is determined by the clock cycle,

which is the amount of time between two pulses of an oscillator [16]. The clock speed of

a processor is the number of instructions it can process in any given second, measured in

gigahertz (GHz). For example, a CPU has a clock speed of 1 HZ if it can process one piece

of instruction every second. Extrapolating this to a more real-world example: a CPU with

a clock speed of 3.0 GHz can process 3 billion instructions each second.

The CPU contains one or more cache memories to provide fast access to small amounts

of memory. To understand the need and use of caches, this chapter introduces some basic

knowledge about cache structures. The definitions of terms use in this section are based on

22

3.1. MEMORY HIERARCHY

those contained in text book [4] unless otherwise noted.

Figure3.1 shows a typical memory hierarchy with relationship between capacities, costs,

and access times.

The CPU consists of set of registers, used to hold words retrieved from the cache mem-

ory. If the information required is not present in one of the registers, the CPU will request

information from memory, by providing the address of the location where the required in-

formation is stored. The cache will first verify whether it has the requested information

available or not. The cache is a relatively small, but very fast, and expensive piece of mem-

ory, between the CPU and the main memory. If the requested information is available in

the cache, it can be retrieved quickly. If the information is not in the cache, the main mem-

ory is accessed, the main memory provides the requested information to the cache, and the

cache then provides it to the CPU. If the information is not available in the main memory,

secondary memory devices e.g. magnetic disks (like hard drives and floppy disks), optical

disks (ie, CDs and CDROMs) and magnetic tape, are accessed to retrieve the information.

Secondary memory is the slowest and cheapest form of memory. It offers a vast amount

of storage space, but it cannot be processed directly by the CPU. So, fundamentally, the

closer to the CPU a level in the memory hierarchy is located, the faster, smaller and more

expensive.

23

3.2. BASIC CONCEPTS OF CACHE MEMORY

CPU
Registers

Cache Memory

Main Memory

Secondary Memory

Small
Fast

Expensive

Large
Slow

Cheap

Figure 3.1: Memory Hierarchy

The main memory is a temporary storage device that holds both a program and the

data it manipulates while the processor is executing the program. Physically, main memory

consists of a collection of dynamic random access memory (DRAM) chips. Logically,

memory is organized as a linear array of bytes, each with its unique address (array index)

starting at zero.

3.2 Basic Concepts of Cache Memory

In the early computer systems, the memory hierarchy had only three levels of storage:

CPU registers, main memory and disk storage. However, because of increasing the speed

gap between CPU and main memory, the cache was introduced to reduce this speed gap.

The cache is a very important part of the computer system. It is used to store program

instructions and data that are used repeatedly in the operation of programs or information

that the CPU is likely to need next. It keeps a copy of the most frequently used data from

the main memory. This is to speed up the memory retrieval process. Without a cache the

24

3.3. TEMPORAL AND SPATIAL LOCALITY

computer would function very slowly. The cache can be further organized as L1, L2, L3,

etc.

• L1 cache, is relatively small but extremely fast, can be accessed in one or two clock

cycles. It is located on the CPU chip.

• L2 cache, is larger and slower than L1. It is located between the L1 cache and L3

cache.

• L3 cache is a specialized cache which sits between the L2 cache and main memory.

Typically, L3 cache memory performance is slower compared to L2 cache, but is still

faster than the main memory.

Basically, L1, L2, and L3 cache work together to improve computer performance. When

a request is made to the system, the CPU checks for information it needs from L1 to L3

cache. If the required information is not found in L1, CPU looks to L2, then to L3 cache.

In computer science, the fundamental property of computer programs is exploited by

locality of reference, as described in the next section.

3.3 Temporal and Spatial Locality

The ability of cache memory to improve a computer’s performance relies on the con-

cept of locality of reference. There are two different types of locality, which are temporal

locality and spatial locality [4].

• Temporal Locality (Locality in Time) states that the recently referenced data or in-

structions are more likely to be referenced again soon. Temporal locality can be

improved by using blocking technique.

• Spatial Locality (Locality in Space) states that the recently referenced data or in-

structions whose addresses are close by tend to be referenced soon. Spatial locality

can be improved by rearranging loops. This means changing nesting of loops to

access data in order stored in memory, e.g., i jk vs ki j, etc.

25

3.3. TEMPORAL AND SPATIAL LOCALITY

An example of the impact of spatial locality on processing time can be demonstrated

with matrix multiplication. There are several spatial arrangements for matrix multiplication.

We can permute the loops (i jk) in any of six possible permutations, i.e., i jk, jik, jki,k ji,ki j,

and ik j. More details for this are described in Section 4.11. We can analyse the different

permutations and predict which one will have the best performance. We executed all six

versions of the loop (i jk) with different matrix dimensions on a modern system Core i7-

4770, where n× n matrix is considered, where n = 100, . . . ,1500 in steps of 100, and the

execution time is calculated in milliseconds. See Figure 3.2.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 j k i
 k j i
 i j k
 j i k
 k i j
 i k j

S i x V e r s i o n s o f M a t r i x M u l t i p l i c a t i o n P e r f o r m a n c e

Figure 3.2: Core i7 six versions of matrix multiplication performance

This graph clearly demonstrates that permutations ki j/ik j had the fewest number of

misses and performed well (for cache miss analysis see section 4.11). The permutations

i jk/ jik were intermediate. The k ji/ jki versions each had 2 misses per iteration and were

the least effective combinations. By simple analysis, we could actually predict what this

graph would look like. When loop orders were rearranged in matrix multiplication to im-

26

3.3. TEMPORAL AND SPATIAL LOCALITY

prove spatial locality, there were no improvements to temporal locality.

Temporal locality is improved by using a technique referred to as blocking. To demon-

strate this we rewrote the matrix multiplication code for i jk, k ji and ik j versions to compare

their unblocked matrix multiplication versions. The codes are presented in Appendix.

Figure 3.3 shows the performance of three versions which we call the bi jk, bk ji and bik j

versions, of blocked matrix multiply on Core i7 system. We chose block size bsize=25. In

this program, exactly the same operations are done on the same data. We can see from the

results figure that blocking improves the running time. For small array sizes, the additional

overhead in the blocked version causes it to run slower than the unblocked versions. There

is a crossover point at n = 500, after which the blocked versions bk ji and bi jk run faster.

There exist unblocked version ik j of matrix multiply that have the same performance as the

blocked version bik j.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 k j i
 i j k
 b k j i
 b i j k
 i k j
 b i k j

B l o c k e d v s U n b l o c k e d M a t r i x M u l t i p l i c a t i o n P e r f o r m a n c e

Figure 3.3: Core i7 blocked matrix multiplication performance

In Figure 3.3, legend: bi jk, bk ji and bik j are different versions of blocked matrix mul-

27

3.4. MEMORY MOUNTAIN

tiplication. The performance of these three unblocked versions is shown in the figure for

reference.

We describe the following definitions to assess memory performance:

• Cache hit: It occurs if the requested data is in the cache. Hits are good, because the

cache can return the data much faster than main memory.

• Hit rate: is probability of successful look up in the cache by CPU.

• Cache miss: occurs if the requested data is not in the cache. Misses cause time delays

because the CPU must then wait for the slower main memory.

• Miss rate: is the probability of missing in the cache. It equals to (1-hit rate).

• Miss penalty: Any additional time required because of a miss.

• Average memory access time (AMAT) = HitTime+(MissRate×MissPenalty)

Cache performance can be improved by using the time to hit the cache, miss rate, and miss

penalty. Cache memory is built in automatic hardware storage devices. We can not really

control it. If we understand the cache memory, we can take advantage of our knowledge,

and exploit it and make our code run faster. We can accomplish this by focusing on the

inner loops and try to do accesses with stride 1 to maximise the spatial locality.The temporal

locality can be maximized by reusing the local variables which can be put into registers.

To provide the background of the cache analysis, we focused on an analysis of matrix

multiplication in section 4.11.

3.4 Memory Mountain

We have no control over our machine’s memory organisation, but we can rewrite our

programs to greatly improve performance. The performance of a memory system can be

visualised by the memory mountain shown in Figure 3.4, which characterizes the speed at

28

3.4. MEMORY MOUNTAIN

which memory can be read based on the data access pattern. The memory mountain Figure

3.4 was generated by using the online source code from [25] and used a python script to

generate the 3D plot of Core i7 cache memory performance.

The rate that a program reads data from the memory system is called the read through-

put, or read bandwidth, typically expressed in MBytes per second (MB/s). If we perform

the run function which is provided in [4] repeatedly using different values of size (the

number of bytes) and stride (the number of words) then we are able to recover, or plot

a two dimensional function of read bandwidth versus temporal and spatial locality called

the memory mountain. Perpendicular to the size axis (bytes) there are 4 ridges represent-

ing the L1,L2,L3 cache, and the main memory. Every computer has a distinctive memory

mountain composed of these ridges that indicates the capabilities of its memory system.

The layout of the memory mountain demonstrates clear differences in read throughput.

The higher a point is on the ridge the faster the read throughput. The lower any point is

on the ridge the slower the read throughput. Each ridge will have different high and low

points in read throughput. There are different rates of change between the high and low

read throughput for each of these ridges.

29

3.4. MEMORY MOUNTAIN

Slopes of spatial locality

L1

L2

L3

Mem

Figure 3.4: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz - The Memory Mountain

As we increase the stride, the spatial locality is decreased. As we increase the size,

the impact of temporal locality is decreased. When we increase the size, there are fewer

and fewer caches in the hierarchy that can hold all that data. The speed difference between

reading all of data from memory and reading from some part of the caches is enormous.

This Figure 3.4 of memory mountain with four ridges each have important features, as

follows:.

• Each ridge line of temporal locality corresponds to different levels in the hierarchy.

• The highest ridge line and fastest read throughput are associated with L1 cache, which

also has the least amount of storage space.

• The second ridge, with intermediate read throughput times is that of L2 cache, which

has an intermediate amount of storage space.

• The third ridge, with slower than L2, faster than main memory throughput is associ-

ated with L3 cache.

30

3.4. MEMORY MOUNTAIN

• The fourth ridge, with the slowest read throughput is associated with the main mem-

ory, which has the greatest amount of storage capacity.

• For each of the ridges the throughput decreases as there is an increase in the number

of strides (words) and reduction in spatial locality.

• The slope is steepest with the greatest reduction in read rates on the L2 cache memory

ridge because of the large absolute miss penalty when there is a transfer blocks of data

from the main memory.

• However, even in the main memory where read throughput per second are the lowest

there can be a very significant increase in the read rate where there is the smallest

stride.

31

Chapter 4

Matrix Operations on Different Storage
Schemes and Algorithms

4.1 Implementation of Some Basic Linear Algebra Routines

In this chapter, we described the implementations of some basic linear algebra routines

on different storage formats introduced in Chapter 2. We defined the following abbrevia-

tions used for the matrix operations in this chapter:

• Ax: multiplication of a matrix by a vector.

• AT x: multiplication of the transpose of a matrix by a vector.

• AB: multiplication of two matrices.

• AT B: multiplication of the transpose of a matrix by a matrix.

In some cases we used SMM as an abbreviation for Straightforward Matrix Multiplication

routine, and DMM for Diagonal Matrix Multiplication routine. These above abbreviations

were also used in Chapter 5 with the same meaning.

In order for matrix multiplication to be defined, the number of columns in the first

matrix must be equal to the number of rows in the second matrix. For example, in C = AB,

when A ∈ R m×p , B ∈ R p×n, then the resulting matrix C can be defined as A ∈ R m×n. For

simplicity, we considered only square matrices where m = p = n in this thesis.

In the following sections, we implemented four basic linear algebra routines such as Ax,

AT x, AB, and AT B on the straightforward matrix multiplication (SMM), the diagonal matrix

32

4.2. THE SMM ON AX AND AT X

multiplication (DMM) for dense matrix operations, and demonstrated the algorithms that

take the row-wise layout into consideration. For sparse matrices, the same routines were

carried out on CRS, JSA and DIAS, by using Java arrays for storing the nonzero elements.

Matrices A and B were considered to be sparse matrices and x is a full vector. As a result

there will be a full vector y in product y = Ax and y = AT x. The implementation of Ax and

AT x on CRS, JSA and DIAS are straightforward. The size of the resulting vector y can be

generated as x is a full vector. However, problems can arise when matrix multiplications are

implemented as the structure of the output nonzero matrix is unknown before multiplication

occurs [12].

4.2 The SMM on Ax and AT x

In this section, we focused on the general matrix-vector multiplications. An example of

this would be if we let A be an n×n matrix, x an n-length vector, and we want to compute

y = Ax, where the y vector is the solution of the multiplication. When we perform this

operation by hand we typically compute the ith element of y by taking the inner product of

the ith row of A with vector x:

yi =
n−1

∑
j=0

ai jx j for i = 0, . . . ,n−1 (4.1)

33

4.3. THE DMM ON AX AND AT X

The general algorithm to compute y = Ax is given in Algorithm 1:
Algorithm 1: Straightforward matrix-vector multiplication

Input data: One-dimensional array valueA, in which the elements of matrix A

stored in row-major order, and a full vector x of size n

Output data: Full vector y = Ax

1 for i = 0, . . . ,n−1 do

2 y[i] = 0

3 for j = 0, . . . ,n−1 do

4 y[i]+ = valueA[i×n+ j]× x[j]

5 end

6 end

The innermost loop performs the inner product between the i-row of A and x and the

outermost loop loops over each row of A and entry in y.

Matrix transpose is a main operation in many matrix- and vector-based computations of

image, video, and image/signal processing applications. In the transpose product y = AT x,

the columns of the matrix are traversed, the indices are switched in step(4) of Algorithm1

as y[i]+ = valueA[j×n+ i]×x[j], where cache misses may occur with each iteration as an

element is accessed by columns if the data is larger than cache size.

4.3 The DMM on Ax and AT x

If the n×n matrix A is stored in DIAS format described in section 2.5, it is still possible

to perform a matrix-vector product by using the formulas to identify and access diagonal

elements for dense matrices. The algorithm is given in Algorithm 2.

34

4.3. THE DMM ON AX AND AT X

Algorithm 2: Matrix-vector multiplication by diagonals
Input data: valueA, diag, x of size n

Output data: vector y of size n

1 for d=0:(diag.length-1) do

2 k = diag[d]

3 if k ≥ 0 then

// A’s main and super-diagonals elements multiply with x

4 i = k ; j = 0

5 start index=kn− k(k−1)/2 // Equation(2.5a)

6 end index = start index+n− k−1 // Equation(2.5b)

7 for start index = start index : end index do

8 y[j]+ = valueA[start index]× x[i]

9 i = i+1; j = j+1

10 end

11 end

12 else if k < 0 then

// A′s sub-diagonals elements multiply with x

13 i = 0 ; j = |k|

14 start index=n(n+1)/2+(|k|−1)n−|k|(|k|−1)/2

// Equation(2.6a)

15 end index= start index +n−|k|−1 // Equation(2.6b)

16 for start index≤ endindex do

17 y[i]+ = valueA[start index]× x[i]

18 i = i+1; j = j+1

19 end

20 end

21 end

35

4.4. AB AND AT B ON SIX VERSIONS MULTIPLICATION

The input data, output data and the multiplication processes of Algorithm 2 can be

outlined as follows:

• Input data: valueA denotes an input array of size n2 which contains elements of

matrix A stored in diagonals (main-super-sub diagonal) order. diag denotes an array

of size (2n−1) which contains diagonals, and x is a full vector of size n,

• Output data: a full vector y of size n.

• Total number of elements on each diagonal can be defined by n− |k|, where |k| is

absolute value of a diagonal.

• the ith element on the main or super-diagonals k, for i= 0, . . . ,n−k and k = 0, . . . ,n−

1, in matrix A is multiplied by (i+ k)th element of vector x, the result is stored in ith

position in vector y.

• the ith element on each sub-diagonal k, for i = 0, . . . ,n−|k| and k =−1, . . . ,−n+1,

in matrix A is multiplied by ith element of vector x, the result is stored in the (i+ |k|)th

position in vector y.

For the transpose matrix-vector product y = AT x, the algorithm has the same structure

as y = Ax except for a minor variation in the following steps:

Step 4: where i = k; j = 0 which become i = 0; j = k,

Step 14: where i = 0; j = k becomes i = k; j = 0.

4.4 AB and AT B on Six versions Multiplication

In this section, we described six different versions of matrix multiplication. Consider

the example of matrix multiplication C = AB, for matrix A and B, which have the size of

n×n, and C is an n×n matrix with entries

ci j =
n−1

∑
k=0

aikbk j. (4.2)

36

4.4. AB AND AT B ON SIX VERSIONS MULTIPLICATION

From this equation, a simple algorithm can be constructed by using the three loops

(i, j,k) as in Algorithm 3:
Algorithm 3: A straightforward matrix multiplication

Input data: A ∈ R n×n and B ∈ R n×n

Output data: C =C+AB, where C ∈ R n×n

1 for i = 0 : n−1 do

2 for j = 0 : n−1 do

3 for k = 0 : n−1 do

4 C[i][j]+ = A[i][k]×B[k][j]

5 end

6 end

7 end

Interchanging the three for loops results in there being six distinct combinations of ma-

trix multiplication [12] [13]. These can be divided into three groups based on the innermost

loop as Partial row and partial column-oriented (V1, V2), Pure column-oriented (V3,

V4), Pure row-oriented (V5, V6):

V1: Version 1, loop-order (i, j,k), i.e. V1 i jk denotes that for each row of matrix A, all of

the columns of matrix B are traversed to build up matrix C row-by-row.

V2: Version 2, loop-order (j, i,k), i.e. V2 jik denotes that for each column of matrix B,

all of the rows of matrix A are traversed to build up matrix C column-by-column.

V3: Version 3, loop-order (j,k, i), i.e. V3 jki denotes that for each column of matrix B,

all of the columns of matrix A are traversed to build up matrix C column-by-column.

V4: Version 4, loop-order (k, j, i), i.e. V4 k ji denotes that matrix C is swept through N

times column-wise, accumulating on term of the inner product in each pass.

V5: Version 5, loop-order (k, i, j), i.e. V5 ki j denotes that matrix C is swept through N

times row-wise, accumulating one term of the inner product in each pass of matrix C’s

37

4.4. AB AND AT B ON SIX VERSIONS MULTIPLICATION

elements. In this case we traverse the columns of matrix A, but not in the innermost

for-loop.

V6: Version 6, loop-order (i,k, j), i.e. V6 ik j denotes that for each row of matrix A, all of

the rows of matrix B are traversed to build up matrix C row-by-row.

Table 4.1 shows how the six versions of matrix multiplication extract data from the A,B

and C matrices in the inner loop.

Table 4.1: Six versions innermost loop

Versions Innermost -loop

V1 i jk or V2 jik

for k = 0 : n−1

C[i][j] =C[i][j]+A[i][k]∗B[k][j]

end

V3 jki or V4 k ji

for i = 0 : n−1

C[i][j] =C[i][j]+A[i][k]∗B[k][j]

end

V5 ki j or V6 ik j

for j = 0 : n−1

C[i][j] =C[i][j]+A[i][k]∗B[k][j]

end

Matrix transpose is an important problem in real life applications such as image process-

ing, signal modulation and scientific computing applications, etc [4]. It can be expressed

ci j =
n−1

∑
k=0

akibk j. (4.3)

When the input matrices A and B are stored in a row-wise order in one-dimensional arrays

as arrayA,arrayB, step 4 in algorithm 3 for AB and AT B in V1 i jk becomes:

38

4.5. AB AND AT B ON DIAS

for C = AB, arrayC[i∗n+ j]+ = arrayA[i∗n+ k]∗arrayB[k ∗n+ j],

for C = AT x, arrayC[i∗n+ j]+ = arrayA[k ∗n+ i]∗arrayB[k ∗n+ j].

Where the elements of the result matrix C are also stored in one-dimensional array, called

arrayC.

4.5 AB and AT B on DIAS

The theorem that we implemented in the diagonal multiplication computational model is

based on a 1976 paper by Niel K. MADSEN et al [20]. The fundamental difference between

the algorithms for matrix multiplication C = AB used in this computational model and a

standard algorithm is that a diagonal of matrix C is formed, instead of the traditional rows

or columns. The algorithm to compute a diagonal ck of C can be challenging to describe

mathematically. However, a very effective graphic representation of matrix multiplication

by diagonals was presented in [20].

We also need the concept of a vector or 1D array “offset ”to understand the notations in

Theorem 1. Let v = (v1, . . . ,vn) be a 1D array or vector length of n. The notation v(p;q)

denotes the vector as

v(p;q) = (vp+1,vp+2, . . . ,vn−q) (4.4)

We say that v(p;q) has been obtained by offsetting the vector v by p from the left (begin)

and q from the right (end) [20].

39

4.5. AB AND AT B ON DIAS

Theorem 1

Let A = (a−(n−1), . . . ,a0, . . . ,an−1) and B = (b−(n−1), . . . ,b0, . . . ,bn−1) be n×n ma-

trices stored by the indicated diagonals. Then AB = C = (c−(n−1), . . . ,c0, . . . ,cn−1)

is given by the following algorithm: let ck = 0 for all k, then

(i) for k = 0 : n−1, compute ck by

ck(i− k;) = ck(i− k;)+ak−i(;k)bi

for i = k+1 : n−1,

ck(; i− k) = ck(; i− k)+aibk−i(k;)

for i = k+1 : n−1,

ck = ck +ai(;k− i)bk−i(i;)

for i = 0 : k,

(ii) for k = 1 : n−1, compute c−k by

c−k(i− k;) = c−k(i− k;)+a−ibi−k(;k)

for i = k+1 : n−1,

c−k(; i− k) = c−k(; i− k)+ai−k(k;)b−i

for i = k+1 : n−1,

c−k = c−k +a−i(k− i;)bi−k(; i)

for i = 0 : k,

The steps required to compute the kth diagonal ck of C are outlined below:

(1) Firstly, for k ≥ 0 simply delete the bottom k rows of A and the top k rows of BT .

(2) Secondly, the resulting two congruent (n− k)× n matrices are multiplied diagonal by

diagonal (element by element) to form an intermediate matrix, called Dk size of (n−

k)×n.

(3) Finally, the diagonals of Dk are added to each other to form the final result vector ck

40

4.5. AB AND AT B ON DIAS

whose mth component is the sum of the elements in the mth row of Dk.

(4) To form c−k for k ≥ 0, one starts by deleting the top k rows of A and the bottom k rows

of BT and then proceed as steps (2) and (3).

Proof of Theorem 1

Based on the definition of general matrix multiplication, a result matrix element ci j for

arbitrary i and j can be expressed by

ci j =
n−1

∑
t=0

aitbt j (4.5)

We need to show that by the diagonal multiplication formula, the inner product expression

(Equation 4.5) for ci j is same as in diagonal multiplication.

Assume ci j is on the kth diagonal, we have the following:

• Diagonal k = j− i

• If j = i, then ci j is on the main diagonal

• If j > i, then ci j is on the superdiagonal

• If j < i, then ci j is on the subdiagonal

Without loss of generality, let’s take j ≥ i, and k is a main or superdiagonals.

Assume ci j is an arbitrary element on the main or super diagonals. Define an intermediate

matrix Dk of size (n−k)×n, which is formed by using the computational step (1), and step

(2). Let di j be an element of Dk, it can be expressed by

di j = ai jb j(i+k), for 0≤ i≤ (n− k−1), k ≤ j ≤ (n−1). (4.6)

Then using step (3), adding the diagonals (or elements of each row) of Dk to get a

vector Ck size of (n− k)×1. Let Ck(i) denote the ith element of Ck. We can use elements

41

4.5. AB AND AT B ON DIAS

of Dk to represent Ck(i) as

Ck(i) =
n−1

∑
t=0

dit =
n−1

∑
t=0

aitbt(i+k) (4.7)

In Equation 4.7, column index of b can be replaced by j = i+k as k = j− i is known. Then,

Equation 4.7 becomes as

Ck(i) =
n−1

∑
t=0

dit =
n−1

∑
t=0

aitbt j (4.8)

From Equation 4.5 and 4.8, we can get

Ck(i) = ci j (4.9)

Similarly, when j < i, for an arbitrary element ci j on the subdiagonals, we can use the same

methods above. The intermediate matrix will be written as D−k, and di j of D−k will be

expressed as

di j = a(i+k) jb ji, for k ≤ i≤ (n−1), 0≤ j ≤ (n− k−1). (4.10)

The jth element of Ck will become

C−k(j) =
n−1

∑
t=0

d jt =
n−1

∑
t=0

a(j+k)tbt j (4.11)

where k can be replaced by i− j, then Equation 4.12 becomes

C−k(j) =
n−1

∑
t=0

d jt =
n−1

∑
t=0

aitbt j (4.12)

From Equation 4.5 and 4.12, we can get

C−k(j) = ci j (4.13)

42

4.5. AB AND AT B ON DIAS

Equations 4.9 and 4.12 proved that by the diagonal multiplication formula, the inner product

expression (Equation 4.5) for ci j is same as in diagonal multiplication.

The computing steps above are conducted by three functions named :

1. getDiagArrayFunction which is used to extract the required diagonal elements using

index formulas, shown in Algorithm 4.

2. cutElementFunction which is used to conduct step (4), shown in Algorithm 5.

3. AB multiplydiag is a main function which is to correlate with the other two functions

to complete the overall matrix multiplication process.

The Java codes for these functions are provided in Appendix B.

43

4.5. AB AND AT B ON DIAS

Algorithm 4: getDiagArrayFunction
Input data: valueA, k

Output data: A getdiag array size of (n−|k|)) that stores the required diagonal

elements

1 Initialize a starting index of getdiag array as index=0

2 if (k >= 0 && k =< n−1) then

// Extract main or super-diagonal elements

3 start index = kn− k(k−1)/2 // Equation(2.5a)

4 end index= start index+n− k−1 // Equation(2.5b)

5 for i=start index : end index do

6 getdiag array[index] = valueA[i]

7 index++

8 end

9 end

10 else if (k >=−n+1 && k < 0) then

// Extract the sub-diagonal elements

11 start index = n(n+1)/2+(|k|−1)n−|k|(|k|−1)/2 // Equation(2.6a)

12 end index = start index+(n−|k|)−1 // Equation(2.6b)

13 for i=start index : end index do

14 getdiag array[index] = valueA[i]

15 index++

16 end

17 end

18 Return getdiag array

44

4.6. AX AND AT X ON CRS

Algorithm 5: cutElementFunction
Input data: getdiag array, cutBegin, cutEnd

Output data: An out put array size of (size− cutBegin− cutEnd) where the

required diagonal elements stored after cutting elements from

beginning or ending in getdiag array

1 size=getdiag array.length

2 for i = 0 : (size− cutBegin− cutEnd)−1 do

3 out put array[i] = getdiag array[i+ cutBegin]

4 end

5 Return out put array

The input data cutBegin and cutEnd in Algorithm 5 denote “offset”of getdiag array .

4.6 Ax and AT x on CRS

The matrix-vector product y = Ax using CRS format can be expressed in the usual way

as in Equation 4.1 with the following Algorithm 6.
Algorithm 6: Matrix-vector multiplication on CRS

Input data: valueA, row ptr, and col ind arrays, vector x

Output data: vector y

1 for i = 0 : n−1 do

2 y[i] = 0

3 for j = row ptr(i) : row ptr(i+1)−1 do

4 y[i] = y[i]+ valueA[j]× x[col ind[j]]

5 end

6 end

This method traverses the rows of the matrix A, and only multiplies nonzero matrix

entries, the operation count is 2nnz, which is a significant time and space savings over the

dense operation requirement of 2n2. This method has a more favourable memory access

pattern as per iteration of the outer loop it reads a row of matrix A and the input vector of x

45

4.7. AX AND AT X ON JSA

and writes one scalar [2].

For y = AT x, we switch indices to

for all j, do for all i : yi = yi +a jix j (4.14)

then, step 4 in Algorithm 6 is

y[col ind[i]] = y[col ind[i]]+ valueA[i]× x[j] (4.15)

since this method implies traversing columns of the matrix A, an inefficient operation for

matrices stored in CRS format. Because in this method, for per iteration of the outer loop it

reads one row of matrix A and one element of the input vector x and both reads and writes

the result vector y.

4.7 Ax and AT x on JSA

As described in section 2.7, the JSA format is a row oriented storage format similar to

CRS. It uses two-dimensional arrays arranged as an array of arrays. This section shows

how to perform matrix-vector multiplication routines using JSA format with Algorithm 7.
Algorithm 7: Matrix-vector multiplication on JSA

Input data: valueA, indexA arrays, and vector x

Output data: vector y

1 for i = 0 : n−1 do

2 subarray = valueA[i]

3 subindex = indexA[i]

4 for j = 0 : (subarray.length−1) do

5 y[i]+ = subarray[j]× x[subindex[j]]

6 end

7 end

46

4.8. AX AND AT X ON DIAS

In Algorithm 7, there are two multidimentional arrays, double[][]valueA and int[][]

indexA. These arrays are used to store nonzero elements and the column indices in each

row of matrix A.

The innermost for-loop (j) performs the multiplication of all of the rows of matrix A

and vector x. The results of the innermost loop multiplication are stored in the resulting

vector y.

The outermost for-loop (i) accesses all the rows of matrix A, while the innermost for-

loop performing the multiplication. The index of result element in vector y is defined by

the index array of a row in A. This is very similar to Ax implementation using the CRS

format. However, in JSA format, a single nonzero element in the rows of matrix A cannot

be manipulated independently from the rest of the nonzero structures without accessing the

array of rows.

The algorithm for AT x on JSA format has the same structure as Algorithm 7 except step

5. It should be

y[subindex[j]]+ = subarray[subindex[j]]× x[i] (4.16)

In AT x case, accessing the elements by column-wise is very time and space consuming.

For innermost for-loop (j) multiplication, each element of vector x is multiplied by each

element in subarray of valueA array, which means for each element of x, the rows of matrix

A are traversed and multiplied with x. The results are stored in vector y in the place given

by the column index of matrix A.

4.8 Ax and AT x on DIAS

The matrix-vector multiplication of Algorithm 2 presented in section 4.3 can be con-

veniently applied to banded matrix-vector multiplication. The only difference is obtaining

the diagonal elements. If a matrix A is a banded n× n matrix stored by sub-main-super

diagonals order in a one-dimensional array, the formulas in Equation (2.10) and Equation

(2.11) are used to identify and access diagonal elements in steps 5, 6 and 15, 16 of Algo-

47

4.9. BANDED MATRIX MULTIPLICATION ALGORITHM ON CRS AND JSA

rithm 2. The banded matrix transpose -vector multiplication is very straightforward. For

the transpose matrix-vector product y = AT x, the algorithm has the same structure as y = Ax

except for a minor variation in

step 4: where i = k ; j = 0 which become i = 0 ; j = k, and

step 14: where i = 0 ; j = k becomes i = k ; j = 0.

4.9 Banded Matrix Multiplication Algorithm on CRS and JSA

In sparse matrices, the algorithm of the matrix-vector multiplication routines are rather

straightforward. When it comes to matrix-matrix multiplication routines, it is much less

straightforward. The reason for this is that we can not create the exact nonzero structure of

the resulting matrix and perform the numerical multiplication without knowing the pattern,

or the number of nonzero elements of the resulting matrix. In order to calculate the exact

nonzero elements of the resulting matrix, we used the symbolic approach based on [22].

The numerical multiplications were performed on CRS and JSA storage formats. In [12],

based on [22], the symbolic multiplication approach was presented in detail by performing

matrix multiplications on CRS, where both input matrices were on CRS, and the resulting

matrix was on CRS using Java’s native arrays.

The main objective in the use of the symbolic approach was to find the nonzero structure

of the index array and the pointer array for CRS (only the index array for JSA), then store

this information in temporary arrays and expand this structure for each row created. The

row pointer array can be created easily since the dimension of the resulting matrix is known.

We must have an index array that holds the indexes for a new row, and to add it to the index

array that holds all the rows previously created. A new index array is then created to include

the original rows and the new row. We copied both the original index rows and the newly

created row to the new temporary array. This operation must be carried out for each new

row created.

After creating the index array and the pointer array was initialised, the numerical multi-

48

4.10. BANDED MATRIX MULTIPLICATION ALGORITHM ON DIAS

plication [12] was then performed successfully as the already created index array can deter-

mine the size of the value array for the resulting matrix. The large number of modifications

required to be made to the index array was the most time consuming aspect of performing

the symbolic multiplication approach. This updating process can be done in Java, either by

a for-loop method or by using the arraycopy() method. We chose the arraycopy() method

to update the index array for implementation. For the use of the arraycopy() method in

Java, see [12, 19].

The implementation of both symbolic and numerical multiplication approaches for CRS

and JSA in Java (adapted from [12]), are outlined in Appendixes B.12-B.15.

4.10 Banded Matrix Multiplication Algorithm on DIAS

When the matrices have banded structures, the matrix multiplication by diagonals is

really useful. The theorem that we implemented in the banded matrix multiplications by

diagonals is based on a 1976 paper by Niel K. MADSEN et al [20].

Suppose A = (a−L1, . . . ,a0, . . . ,aU1) and B = (b−L2, . . . ,b0, . . . ,bU2) have banded struc-

tures of size n, and L1, L2 are lower diagonals or lower bandwidth, U1, U2 are upper diago-

nals (or upper bandwidth) of matrices A and B respectively. Then the result matrix C = AB

can be described by C = (c−L3, . . . ,c0, . . . ,cU3). Where the lower and upper diagonals of C

can be found by

L3 = min(n−1,L1 +L2) (4.17a)

U3 = min(n−1,U1 +U2) (4.17b)

For banded matrix multiplication case, theorem 1 presented in section 4.5 can be gen-

eralised to the following corollary.

49

4.10. BANDED MATRIX MULTIPLICATION ALGORITHM ON DIAS

Corollary 1: This is a corollary of Theorem 1

If the matrices A and B have banded structures as described above, then the result

matrix C = AB can be computed by the following:

Let ck = 0 for all k, then

(i) For k = 0 : U3 compute ck by

ck(i− k;) = ck(i− k;)+ak−i(;k)bi

for i = k+1 : min(U2,k+L1),

ck(; i− k) = ck(; i− k)+aibk−i(k;)

for i = k+1 : min(U1,k+L2),

ck = ck +ai(;k− i)bk−i(i;)

for i = max(0,k−U2) : min(k,U1),

(ii) for k = 1 : L3 compute c−k by

c−k(i− k;) = c−k(i− k;)+a−ibi−k(;k)

for i = k+1 : min(L1,k+U2),

c−k(; i− k) = c−k(; i− k)+ai−k(k;)b−i

for i = k+1 : min(L2,k+U1),

c−k = c−k +a−i(k− i;)bi−k(; i)

for i = max(0,k−L2) : min(k,L1).

The algorithm of matrix multiplication by diagonals is much more efficient for narrow

banded matrices. In the implementation, the multiplication of two matrices A and B of

size n is considered to be having the same bandwidth L1 = L2 = U1 = U2 = p, where p is

assumed to be small relative to n so that C = AB is also a banded matrix with L3 = U3 =

2p. To compute ck of C in diagonal multiplication algorithm, it requires 2p+1− k vector

multiplications and additions. The time complexity is O(n(2p+1)2).

50

4.11. CACHE MISS ANALYSIS FOR MATRIX MULTIPLY

The steps required to compute the kth diagonal ck of C for dense matrices multiplication

by diagonals outlined in Section 4.5 can be used to compute the kth diagonal ck of C, where

L3 ≤ k ≤U3 in band matrix.

The computing steps for band matrices are also conducted by three functions as follow-

ing:

1. getDiagArrayFunction is presented in Section 4.5 Algorithm 4

2. cutElementFunction is presented in Section 4.5 Algorithm 5

3. BandAB multiplydiag is a main function which is to correlate with the other two

functions to complete the overall band matrix multiplication process. See Appendix

B.21 for the complete Java code.

4.11 Cache Miss Analysis for Matrix Multiply

In matrix multiplication performance, the order of three for loops (i, j,k) can have a

considerable impact on practical performance due to the memory access patterns and cache

use of the algorithm. The most time efficient order also depends on whether the matrices

are stored in row-major order, column-major order, or a mix of both [26]. To illustrate

the importance of locality, we considered six different versions of the SMM and DMM

using the example of matrix multiplication C = AB in Equation 4.2 and matrix transpose

multiplication in Equation 4.3.

For the purpose of analysis the behaviour of the innermost loop iterations, the assump-

tions are as following [4]:

• n×n matrix elements are double

• Linesize is 8 words

• Cache size is not even big enough to hold multiple rows

51

4.11. CACHE MISS ANALYSIS FOR MATRIX MULTIPLY

In computer memory, a matrix stored in row-major order, the rows of the matrix are con-

tiguous and the columns are discontiguous. Let’s take the V 1 i jk form as an example to

analyse the cache miss per inner loop iteration for matrix A, B and C in the matrix multipli-

cation Algorithm 3. Figure 4.1 shows the access pattern of matrices elements in the inner

loop.

×= A(i, *) B(*, j)

Column-wiseRow-wiseFixed

+C(i, j) C(i, j)

Figure 4.1: Access pattern of inner loop

Matrix A: When i and j are fixed, k is varied, row-i is accessed, there is 1/8 misses per

inner loop iteration.

Matrix B: When i and j are fixed, k is varied, elements in the columns of B are accessed.

There is 1 miss per inner loop iteration.

Matrix C: There is temporal reuse for C in the inner loop iteration, therefore it has 0 miss.

In matrix multiplication by diagonals, the elements of matrix A and B are stored in the

one-dimensional arrays by their diagonals order. When an element of matrix A and B is

accessed with a stride 1, the miss rate for A is 1/8, and the miss rate for B is also 1/8. The

miss rate for matrix C is 1/8 as its each element is formed with stride 1 by diagonal order

in one-dimensional array.

Table 4.2 shows the results of rate of cache misses for six versions of SMM (based on

[4]) and DMM.

52

4.11. CACHE MISS ANALYSIS FOR MATRIX MULTIPLY

Table 4.2: Cache miss analysis of matrix multiplication Equation (4.2)

Matrix multiply Loads Stores A miss B miss C miss Total misses

V 1 i jk & V 2 jik 2 0 0.125 1.00 0.00 1.125

V 3 jki & V 4 k ji 2 1 1.00 0.00 1.00 2.00

V 5 ki j & V 6 ik j 2 1 0.0 0.125 0.125 0.25

diagonals 2 1 0.125 0.125 0.125 0.375

Here are the results of rate of cache misses for transpose matrix multiplications for the

inner most-loop in each iteration in Table 4.3.

Table 4.3: Cache miss analysis of transpose matrix multiplication Equation (4.3)

Transpose Matrix multiply Loads Stores A miss B miss C miss Total misses

V 1 i jk & V 2 jik 2 0 1.00 1.00 0.00 2.00

V 3 jki & V 4 k ji 2 1 0.125 0.00 1.00 1.125

V 5 ki j & V 6 ik j 2 1 0.00 0.125 0.125 0.25

diagonals 2 1 0.125 0.125 0.125 0.375

Important findings in tables 4.2 and 4.3,

1. A miss is the rate of cache misses when accessing an element of A.

2. When an element of array A is accessed by a row-order with a stride 1, the miss rate

for A is 0.125 misses per iteration.

3. If an element of array A is accessed by a column-order with n strides, the miss rate

for A is 1.00 misses per iteration.

4. The order of accessing a data in an array affects the running time of matrix multipli-

cation.

53

Chapter 5

Computational Experiments

In this chapter, we present the numerical results of different storage formats on matrix mul-

tiplication routines. First, we will give the details of test data sets and this will be followed

by outlining benchmarking and the test environment on which we ran our experiments.

5.1 Test Data Sets

In this thesis, we only consider the operations on real matrices. The entries for the (full

and sparse) matrix and vector were generated randomly by using (double) (Math.round

(Math.random()*1000))/1000 to get 3 digit decimal precision in Java, where the random

number generator Math.random() was used to obtain a random double value between

0.001 and 1.000 (excluding 1.000) to populate the matrix and vector [19]. All the matrices

were square, with the same number of rows and columns, and non-symmetric.

• Dense matrix

The input matrix was initially generated in a two-dimensional format. The matrix entries

were subsequently stored in a one-dimensional array with a row-wise order for the stan-

dard matrix multiplication. However, for diagonal multiplication, although the entries were

stored in a one-dimensional array, they were arranged in a (main super sub) diagonal

order.

• Band matrix

54

5.3. INPUT DATA TYPES

The input matrix was initially generated in a (sub main super) diagonal order in a one-

dimensional array using a predetermined bandwith. Subsequent to this, the diagonal storage

format was converted to CRS and JSA storage format using the format conversion algorithm

in Appendix B.8. In the computational experiments, all band matrices were generated as

having approximately 0.19 - 0.20% of non zero elements in the matrix.

5.2 Benchmarking and Test Environment

The execution time performance measurements for matrix multiplication routines on

different storage formats were determined by benchmarking. Execution times of matrix

multiplication routines were measured using System.currentTimeMillis() which re-

turns the current time in milliseconds [8]. They are stored in variables of type double.

The program was run multiple times to get the average execution time. All the benchmark

results only consider the timings of the for-loop from where it starts, to where it stops.

The test platform technical data information used to perform the benchmarking is shown in

Table 5.1.

Table 5.1: Test platform technical data information

Model name Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

Operating system CentOS Linux release 7.3.1611 (Core)

JDK version OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)

L1d and L1i cache 32KB

L2 cache 256KB

L3 cache 8192KB

CPU MHz 3400.132

55

5.5. COMPUTATIONAL EXPERIMENT

5.3 Input Data Types

In Java and most other languages, a variable has a types that indicates what sort of data

it can hold. As we mentioned in section 2.1.2, Java has two data types, one is primitive

data types, the other is object data type. The primitive data types were chosen as an input

data type in the computational experiments.

5.4 Challenges associated with running the algorithms used in this

project

When the array size is increased beyond a certain size as indicated in the test result

figures, the program is terminated and the following error message is given:

• (java.lang.OutOfMemoryError: Java heap space). This error message arises

due to JVM being unable to allocate memory in heap, and the garbage collection is

unable to reclaim memory [5].

5.5 Computational Experiment

5.5.1 Introduction

In the computational experiment, we set up two computational models to demonstrate

basic linear algebra routines (BLAS) on different storage formats described in Chapter 2.

BLAS are routine that provide the standard computing building blocks to perform basic

matrix operations [1]. It has three levels:

• Level 1 BLAS perform scalar, vector and vector-vector operations.

• Level 2 BLAS perform matrix-vector operations.

• Level 3 BLAS perform matrix-matrix operations.

The BLAS are efficient, portable, and widely available, and they are commonly used in

the development of high quality linear algebra software such as Linear Algebra Package

56

5.5. COMPUTATIONAL EXPERIMENT

(LAPACK).

In the first computational model, we will implement a straightforward matrix multipli-

cation routine that takes the row-wise layout of a two-dimensional array into consideration.

Then we will focus on diagonal multiplication routine and compare it to the straightforward

routine on the basis of performance speed for dense matrix.

Model 1 : Dense matrix operations

• Ax and AT x on SMM versus DMM

• AB and AT B on six versions of SMM versus DMM

In second computational model, we will implement three different sparse matrix storage

formats on matrix multiplication routines and compare them each other on the basis of

performance speed for banded matrix.

Model 2 : Banded matrix operation

• Ax on CRS, JSA, versus DIAS.

• AT x on CRS, JSA, versus DIAS.

• AB on CRS, JSA, versus DIAS.

• AT B on CRS, JSA, versus DIAS.

5.5.2 Model 1

The results of performing straightforward method versus diagonal multiplications on

Ax and AT x is presented in Figure 5.1.

57

5.5. COMPUTATIONAL EXPERIMENT

9 0 0 0 9 5 0 0 1 0 0 0 0 1 0 5 0 0 1 1 0 0 0 1 1 5 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Ex
ecu

tio
n t

im
e (m

illi
s)

A r r a y s i z e (n)

 A T x _ S M M
 A x _ S M M
 A T x _ D M M
 A x _ D M M

M a t r i x - v e c t o r M u l t i p l i c a t i o n P e r f o r m a n c e

Figure 5.1: The SMM versus DMM on Ax and AT x

The result shows that SMM method is performing well on Ax, but its performance was

not very good on AT x. Diagonal multiplication was more efficient than SMM.

The results of performing straightforward method versus diagonal multiplications on

AB and AT B are presented in Figure 5.2 and 5.4 respectively.

58

5.5. COMPUTATIONAL EXPERIMENT

2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

3 0 0 0 0 0

6 0 0 0 0 0

9 0 0 0 0 0

1 2 0 0 0 0 0

1 5 0 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 V 1 _ i j k
 V 2 _ j i k
 V 3 _ j k i
 V 4 _ k j i
 V 5 _ k i j
 V 6 _ i k j
 D I A S

C = A B o n D I A S v s S i x V e r s i o n s

Figure 5.2: The DIAS versus six versions on AB

2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 V 5 _ k i j
 V 6 _ i k j
 D I A S

C = A B o n D I A S v s V 5 a n d V 6

Figure 5.3: The DIAS versus V 5 ki j and V 6 ik j on AB

59

5.5. COMPUTATIONAL EXPERIMENT

2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

3 0 0 0 0 0

6 0 0 0 0 0

9 0 0 0 0 0

1 2 0 0 0 0 0

1 5 0 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 V 1 _ i j k
 V 2 _ j i k
 V 3 _ j k i
 V 4 _ k j i
 V 5 _ k i j
 V 6 _ i k j
 D I A S

C = A T B o n D I A S v s S i x V e r s i o n s

Figure 5.4: The DIAS versus six versions on AT B

2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 V 5 _ k i j
 V 6 _ i k j
 D I A S

C = A T B o n D I A S v s V 5 a n d V 6

Figure 5.5: The DIAS versus V 5 ki j and V 6 ik j on AT B

From the results shown in Figures 5.2, 5.3, 5.4 and 5.5, we observed that:

60

5.5. COMPUTATIONAL EXPERIMENT

• The run time changes in a cubic O(n3) order when the array size increases.

• Accessing consecutive elements in a row is faster than accessing consecutive ele-

ments in a column.

• The execution times for matrix multiplications and transpose matrix multiplications

for diagonals are fairly similar.

• Data cache miss is a significant time efficiency issue when data is accessed by column

order as it causes cache misses.

• It is clear to see that the pure column-oriented version is the least efficient, while

the pure row-oriented version is the most efficient implementations. This is due to

the need to access different object arrays when traversing columns as opposed to

accessing the same object array several times. The pure row-oriented version does

not traverse the columns of any matrices involved.

• The pure row-oriented version with loop- order (i,k, j) is more efficient than the

version with loop-order (k, i, j), as the latter traverses the columns of matrix A in the

loop-body of the second for-loop.

• Diagonal multiplication algorithm is more efficient than the pure column-oriented

version and the partial row/column-oriented version in both matrix product and ma-

trix transpose product.

5.5.3 Model 2

The results of performing CRS, JSA and DIAS on Ax and AT x are presented in Figure

5.6 and 5.7 respectively.

61

5.5. COMPUTATIONAL EXPERIMENT

1 2 0 0 0 0 1 2 5 0 0 0 1 3 0 0 0 0 1 3 5 0 0 0 1 4 0 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

A x _ J S A
 A x _ C R S
 A x _ D I A S

A x o n C R S , J S A a n d D I A S

Figure 5.6: Banded matrix-vector multiplication on CRS, JSA and DIAS

1 2 0 0 0 0 1 2 5 0 0 0 1 3 0 0 0 0 1 3 5 0 0 0 1 4 0 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 A T x _ J S A
 A T x _ C R S
 A T x _ D I A S

A T x o n C R S , J S A , a n d D I A S

Figure 5.7: Banded matrix transpose -vector multiplication on CRS, JSA and DIAS

62

5.5. COMPUTATIONAL EXPERIMENT

1 2 0 0 0 0 1 2 5 0 0 0 1 3 0 0 0 0 1 3 5 0 0 0 1 4 0 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 A x _ J S A
 A T x _ J S A
 A x _ C R S
 A T x _ C R S
 A x _ D I A S
 A T x _ D I A S

A x a n d A T x o n C R S , J S A a n d D I A S

Figure 5.8: Banded matrix Ax and AT x routines on CRS, JSA and DIAS

2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 C R S
 J S A
 D I A S

A B o n C R S , J S A a n d D I A S

Figure 5.9: AB on CRS, JSA and DIAS, where numerical approach [12] was used for CRS
and JSA, the total number of nonezero values are 0.19%.

The comparison between the numerical approach and algorithms (CRS), (JSA) applied

63

5.5. COMPUTATIONAL EXPERIMENT

on AB is shown in Figure 5.10, where CRS′ and JSA′ indicate the results of Algorithms

B.16 and B.19 in Appendix B. The total number of nonezero values are 0.19%.

2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0
Ex

ecu
tio

n t
im

e (m
s)

A r r a y s i z e (n)

 C R S
 C R S '
 J S A
 J S A '

 N u m e r i c a l A p p r o a c h v e r s u s N e w A l g o r i t h m s f o r C R S , J S A o n A B

Figure 5.10: The numerical approach versus Algorithms B.16 and B.19 applied on CRS
and JSA on AB

Figure 5.11 shows the matrix transpose multiplication performance on CRS, JSA and

DIAS.

64

5.5. COMPUTATIONAL EXPERIMENT

2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Ex
ecu

tio
n t

im
e (m

s)

A r r a y s i z e (n)

 C R S '
 J S A '
 D I A S

 A T B o n C R S ' , J S A ' a n d D I A S

Figure 5.11: AT B on CRS′, JSA′ and DIAS

From the results shown in Figures 5.6 - 5.11 for the computational model 2, we observed

that:

• Implementing a matrix-vector multiplication and matrix transpose -vector multipli-

cation on CRS, JSA and DIAS format was rather straightforward since the structure

or size of the resulting vector is known before calculation.

• We can see that DIAS on AB has similar efficiency as on AT B. The reason for this is

that multiplication starting in main-super-sub diagonal order is the same as starting

in main-sub-super diagonal order. The diagonal orders do not affect the performance

since we used indexing formulas to extract the diagonal elements.

• The DIAS format performed well both in banded matrix-vector operations and banded

matrix-matrix operations compared to CRS and JSA formats. The time complexity

of band matrices multiplication by diagonals is O(n(2p+1)2).

65

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we performed an experimental study of a subset of BLAS operations on

existing sparse matrix structures including compressed row storage, Java sparse array and

provided implementations of diagonal storage that can be used for both dense and structured

matrices in Java. The results of computational experiments show that:

• Data cache miss is a significant time efficiency issue when data is accessed by column

order as it causes cache misses.

• The matrix transpose operations had not previously been researched in depth in Java.

This project attamps to fill this void.

• The diagonal storage format performed well on the matrix operations. The execution

times for matrix multiplication and transpose matrix multiplications are fairly sim-

ilar. The diagonal storage format is shown to be a viable alternative for dense and

structured matrices.

6.2 Future Research Needs

There are a number of interesting extensions of the work presented in this thesis.

• One possible extensions is to implement the diagonal storage formats on many and

multi-core architecture. Specifically, the diagonal storage format can be implemented

on many-core computing systems with Compute Unified Device Architecture (CUDA).

66

6.2. FUTURE RESEARCH NEEDS

Currently, there does not exist an implementation of level-3 BLAS for banded matrix

in CUDABLAS.

• Another interesting extension is to take general sparse diagonally structured matrices

and three-dimensional tensors into account. The possibility is to study a band matrix

which is diagonally structured where the diagonals are non-contiguous.

67

Bibliography

[1] BLAS (Basic Linear Algebra Subprograms). Online: http://www.netlib.org/blas/old-
index.html, Accessed time: 2018-07-21.

[2] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst.
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
volume 11. SIAM, 2000.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

[4] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Addison-Wesley Publishing Company, USA, 2nd edition, 2010.

[5] John Dean and Ray Dean. Introduction to Programming with Java: A Problem Solving
Approach. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2008.

[6] Jack Dongarra, Andrew Lumsdaine, Xinhui Niu, Roldan Pozo, and Karin Remington.
Sparse matrix libraries in c++ for high performance architectures. 12 1996.

[7] Iain S Duff, Albert M Erisman, and John K Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Inc., New York, NY, USA, 1986.

[8] David J Eck. Programming: Introduction to programming using java. 2009.

[9] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab: Design
and implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–
356, 1992.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[11] James Gosling and Henry McGilton. The java language environment. Sun Microsys-
tems Computer Company, 2550, 1995.

[12] Geir Gundersen. The use of java arrays in matrix computation. Candidatus Scientar-
ium (Master in Science) Thesis, 2002.

[13] Geir Gundersen and Trond Steihaug. Data structures in java for matrix computations.
Concurrency and computation: Practice and Experience, 16(8):799–815, 2004.

68

BIBLIOGRAPHY

[14] Geir Gundersen and Trond Steihaug. On the use of java arrays for sparse matrix com-
putations. In Advances in Parallel Computing, volume 13, pages 119–126. Elsevier,
2004.

[15] Joe Hicklin, Cleve Moler, Peter Webb, Ronald F. Boisvert, Bruce Miller, Roldan
Pozo, and Karin Remington. JAMA: A Java Matrix Package. Online:
https://math.nist.gov/javanumerics/jama, November 2012.

[16] Computer Hope. Free computer help since 1998- clock cycle. Online:
https://www.computerhope.com/jargon/c/clockcyc.html, Accessed time: 2018-07-15.

[17] Eun-Jin Im. Optimizing the performance of sparse matrix-vector multiplication. Com-
puter Science, 2000.

[18] The Matrix Market is a service of the Mathematical, Computational Sciences Di-
vision of the Information Technology Laboratory of the National Institute of
Standards, and Technology. Matrix market vision 3.0, glossary. Online:
https://math.nist.gov/MatrixMarket/glossary.html, Accessed time:2018-05-08.

[19] Y. Daniel Liang. Introduction to Java Programming and Data Structures, Compre-
hensive Version, Student Value Edition Plus MyProgrammingLab with Pearson eText
- Access Card Package (11th Edition). Pearson, 11 edition, 2017.

[20] Niel K. Madsen, Garry H. Rodrigue, and Jack I. Karush. Matrix multiplication by
diagonals on a vector/parallel processor. Information Processing Letters, 5(2):41 –
45, 1976.

[21] Jos Moreira, Samuel Midkiff, and Manish Gupta. Supporting multidimensional arrays
in java. 15, 03 2003.

[22] Sergio Pissanetzky. Introduction. In Sergio Pissanetzky, editor, Sparse Matrix Tech-
nology. Academic Press, 1984.

[23] Youcef Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2,
1994.

[24] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[25] Guillaume Salagnac. Memory mountain-a script to get a 3D plot of your cache mem-
ory performance. Online: https://github.com/guillaumesalagnac/memory-mountain,
2015.

[26] Steven S Skiena. The algorithm design manual: Text, volume 1. Springer Science &
Business Media, 1998.

[27] FS Smailbegovic, Georgi N Gaydadjiev, and Stamatis Vassiliadis. Sparse matrix stor-
age format. 2005.

69

BIBLIOGRAPHY

[28] Ivan P Stanimirović and Milan B Tasić. Performance comparison of storage for-
mats for sparse matrices. Facta universitatis-series: Mathematics and Informatics,
24(1):39–51, 2009.

[29] G. W. Stewart. JAMPACK: A Package for Matrix Computations. Online:
ftp://math.nist.gov/pub/Jampack/Jampack/AboutJampack.html, November 2012.

[30] Marta Stojanovic. Automatic Memory Management in Java. 07 2001.

[31] D.A. Watt and D.F. Brown. Java collections: an introduction to abstract data types,
data structures, and algorithms. John Wiley, 2001.

70

Appendix A

Tables of Experiment Results

Most of the details of the computational results associated with Chapter 4 and Chapter 5
have been placed in this appendix. All execution times are in milliseconds. In all exper-
iments, the matrix size was initially started at a predetermined number (ie,. n=5000) and
then increased in size by steps (ie,. 200, or 1000) until we received the error message as:
java.lang.OutOfMemoryError: Java heap space.

A.1 Performance of Dense Matrix-Vector Multiplications

Table A.1: Dense matrix vector multiplication performance in 1D (ie,. row-wise layout

Matrix size (n) Ax Ax diag AT x AT x diag
9000 99 74 225 84
9200 103 77 998 88
9400 108 80 261 92
9600 113 84 843 97
9800 119 88 266 101

10000 124 91 383 104
10200 129 95 848 108
10400 134 98 923 113
10600 138 103 917 118
10800 146 105 734 122
11000 151 110 438 126
11200 154 115 477 132
11400 163 128 963 135
11600 183 124 1240 144
11800 173 128 1223 146
12000 177 132 1124 155
12200 181 133 1399 151

where the matrix elements were accessed in one-dimensional arrays. We increased the
matrix size from n=5000, . . . , till heap the Java space Java heap space in steps of 200. In

71

A.2. PERFORMANCE OF BANDED MATRIX-VECTOR MULTIPLICATIONS

the table we only presented the performance results from n=9000, . . . , and higher.

Table A.2: Dense matrix vector multiplication performance in 2D (ie,. two-dimensional
layout

Matrix size (n) Ax Ax diag AT x AT x diag
9000 99 446 340 462
9200 104 870 784 877
9400 109 486 375 498
9600 112 486 381 504
9800 120 511 396 526

10000 123 1301 1216 1304
10200 130 888 796 899
10400 132 1065 964 1073
10600 139 981 875 994
10800 145 1557 1475 1565
11000 150 644 509 664
11200 155 673 508 697
11400 163 1614 1415 1635
11600 177 1568 1464 1580
11800 177 1806 1558 1815
12000 182 3487 3445 3490
12200 184 1769 1681 1783

where the matrix elements were accessed in two-dimensional arrays. We increased the
matrix size from n=5000, . . . , till heap the Java space Java heap space in steps of 200. In
the table we only presented the performance results from n=9000, . . . and higher.

72

A.3. PERFORMANCE OF BANDED MATRIX-MATRIX MULTIPLICATIONS

A.2 Performance of Banded Matrix-Vector Multiplications

Table A.3: Banded matrix vector multiplication performance.

Matrix size Bandwidth nnz
Ax AT x

(n) % CRS JSA Diag CRS JSA Diag
125000 249 0.18 61 66 28 57 60 26
126000 251 0.18 63 65 28 58 62 25
127000 253 0.18 66 67 27 58 62 26
128000 255 0.18 64 67 27 60 63 26
129000 257 0.18 66 68 28 68 70 29
130000 259 0.18 65 69 29 61 65 28
131000 261 0.18 66 73 42 75 80 35
132000 263 0.18 72 84 37 68 80 29
133000 265 0.18 68 73 30 64 67 29
134000 267 0.18 71 75 32 67 70 30
135000 269 0.18 70 74 31 66 69 30
136000 271 0.18 72 76 32 68 70 31
137000 273 0.18 74 75 32 70 72 31
138000 275 0.18 85 82 33 71 73 31
139000 277 0.18 77 78 34 72 73 32
140000 279 0.18 85 80 36 76 76 36
141000 281 0.18 80 80 34 76 76 32
142000 283 0.18 92 92 37 76 75 37
143000 285 0.18 82 85 35 77 79 33

We increased the matrix size in steps of 1000,bandwidth in steps of 2, to maintain a
total number of nonzero values at approximately 0.18% in a matrix, with n=100000, . . . ,
until we received the error message as java.lang.OutOfMemoryError: Java heap space. In
the table we only presented the performance results from n=125000, . . . , and higher.

73

A.3. PERFORMANCE OF BANDED MATRIX-MATRIX MULTIPLICATIONS

A.3 Performance of Banded Matrix-Matrix Multiplications

Table A.4: Banded matrix-matrix multiplication performance (Numerical Approach for
CRS, JSA).

Matrix size Bandwidth nnz
AB

(n) % CRS JSA Diag
25000 49 0.196 113 87 43
26000 51 0.196 126 96 42
27000 53 0.196 140 109 58
28000 55 0.196 155 117 62
29000 57 0.196 173 131 75
30000 59 0.196 189 143 76
31000 61 0.196 210 158 96
32000 63 0.196 231 172 115
33000 65 0.196 252 203 112
34000 67 0.196 274 206 122
35000 69 0.196 298 224 146
36000 71 0.197 324 240 123
37000 73 0.197 348 261 151
38000 75 0.197 380 280 181
39000 77 0.197 407 308 186
40000 79 0.197 440 322 202
41000 81 0.197 482 356 205
42000 83 0.197 505 373 244

We increased the matrix size in steps of 1000,bandwidth in steps of 2 to maintain a
total number of nonzero values at approximately 0.19% in the matrix. In the table we only
presented the performance results from n=25000. The numerical approach from [12] was
used when implementing CRS, JSA on AB.

74

A.3. PERFORMANCE OF BANDED MATRIX-MATRIX MULTIPLICATIONS

Table A.5: Banded matrix-matrix multiplication performance.

Matrix size Bandwidth nnz
AB AT B

(n) % CRS JSA Diag CRS JSA Diag
25000 49 0.196 57 54 43 67 50 40
26000 51 0.196 61 60 42 73 56 44
27000 53 0.196 68 70 58 82 68 66
28000 55 0.196 74 83 62 90 70 58
29000 57 0.196 82 83 75 101 77 68
30000 59 0.197 91 92 76 111 84 65
31000 61 0.197 100 101 96 123 98 74
32000 63 0.197 110 111 115 137 102 108
33000 65 0.197 121 139 112 148 126 112
34000 67 0.197 130 131 122 164 122 120
35000 69 0.197 141 143 146 176 133 122
36000 71 0.197 154 160 123 191 142 130
37000 73 0.197 166 168 151 207 156 152
38000 75 0.197 180 180 181 225 168 157
39000 77 0.197 193 195 186 244 182 161
40000 79 0.197 212 211 202 263 192 191
41000 81 0.197 224 226 205 281 214 221
42000 83 0.198 240 242 244 301 225 230

We increased the matrix size in steps of 1000,bandwidth in steps of 2 to maintain a
total number of nonzero values at approximately 0.19% in the matrix. In the table we only
presented the performance results from n=25000. Algorithms B.16 and B.19 were used
when implementing CRS, JSA on AB and AT B.

75

A.3. PERFORMANCE OF BANDED MATRIX-MATRIX MULTIPLICATIONS

Table A.6: Numerical approach versus Algorithm (B.16) for CRS and Algorithm (B.19) for
JSA.

Matrix size Bandwidth nnz
CRS JSA

(n) % Numerical Algorithm(B.16) Numerical Algorithm(B.19)
25000 49 0.196 113 57 87 54
26000 51 0.196 126 61 96 60
27000 53 0.196 140 68 109 70
28000 55 0.196 155 74 117 83
29000 57 0.196 173 82 131 83
30000 59 0.197 189 91 143 92
31000 61 0.197 210 100 158 101
32000 63 0.197 231 110 172 111
33000 65 0.197 252 121 203 139
34000 67 0.197 274 130 206 131
35000 69 0.197 298 141 224 143
36000 71 0.197 324 154 240 160
37000 73 0.197 348 166 261 168
38000 75 0.197 380 180 280 180
39000 77 0.197 407 193 308 195
40000 79 0.197 440 212 322 211
41000 81 0.197 482 224 356 226
42000 83 0.198 505 240 373 242

76

Appendix B

Java Codes of the Implementations

In this Appendix we show the classes and methods used to implement four basic linear alge-
bra routines using several storage formats. These classes stores only n×n square matrices.
For some routines, we have provided explanatory comments pertaining to the code. If not,
the routines are small and rather self explanatory. Overall the meaning of methods and
the implemented routines should be rather clear for the reader who has some experiences
with Java code and these routines. Java codes were written early in the work on this thesis,
therefore some names of variables, routines may suffer from that on the basis of consistent
notation.

Here is a list of Java packages that we used in the implementation:
1 j a v a . u t i l . A r r ay s ;
2 j a v a . l a n g . O b j e c t ;
3 j a v a . u t i l . Random ;
4 j a v a . i o . Ou tpu tS t r eam ;
5 j a v a . i o . F i l e O u t p u t S t r e a m ;
6 j a v a . i o . P r i n t S t r e a m ; ;
7 j a v a . t e x t . DecimalFormat ;

Listing B.1: Java packages list

B.1 Code for Model 1: Dense Matrix Operations
B.1.1 The matrix-vector multiplication routines

1 / / Method : Matr ix− v e c t o r m u l t i p l i c a t i o n by d i a g o n a l s
2 p u b l i c s t a t i c d ou b l e m u l t i p l y d i a g A x (i n t n , d ou b l e [] valA , i n t [] d iag ,

do ub l e [] x) {
3 do ub l e [] y= new d oub le [n] ;
4 i n t j , i ;
5 do ub l e s t a r t T i m e = System . c u r r e n t T i m e M i l l i s () ;
6 / / A’ s main and super−d i a g o n a l s e l e m e n t s m u l t i p l y wi th v e c t o r x
7 f o r (i n t d =0; d<d i a g . l e n g t h ; d ++){
8 i n t k= d i a g [d] ;
9 i f (k>=0){

10 j =0 ;
11 i =k ;
12 i n t s t a r t i n d e x =k*n−k *(k−1) / 2 ;
13 i n t s t o p i n d e x = s t a r t i n d e x +n−k−1;
14 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
15 y [j]+= valA [s t a r t i n d e x]* x [i] ;

77

B.1. CODE FOR MODEL 1: DENSE MATRIX OPERATIONS

16 j ++;
17 i ++;
18 }
19 }
20 e l s e { / / A’ s sub−d i a g o n a l s e l e m e n t s m u l t i p l y wi th v e c t o r x
21 i n t a b s k =Math . abs (k) ;
22 j = a b s k ;
23 i =0 ;
24 i n t s t a r t i n d e x =n *(n +1) / 2 + (abs k −1)*n − a b s k *(abs k −1) / 2 ;
25 i n t s t o p i n d e x = s t a r t i n d e x + n−abs k −1;
26 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
27 y [j]+= valA [s t a r t i n d e x]* x [i] ;
28 j ++;
29 i ++;
30 }
31 }
32 }
33 do ub l e endTime = System . c u r r e n t T i m e M i l l i s () ;
34 do ub l e t o t a l T i m e = endTime − s t a r t T i m e ;
35 r e t u r n t o t a l T i m e ;
36 }

Listing B.2: Ax by diagonals

1 / / Method : Ma t r i x t r a n s p o s e− v e c t o r m u l t i p l i c a t i o n by d i a g o n a l s
2 p u b l i c s t a t i c d ou b l e m u l t i p l y d i a g A T x (i n t n , dou b l e [] valA , i n t [] d iag ,
3 do ub l e [] x) {
4 do ub l e [] y= new d oub le [n] ;
5 i n t i , j ;
6 do ub l e s t a r t T i m e = System . c u r r e n t T i m e M i l l i s () ;
7 / / A’ s main and s u p e r d i a g o n a l s e l e m e n t s m u l t i p l y wi th v e c t o r x
8 f o r (i n t d =0; d<d i a g . l e n g t h ; d ++){
9 i n t k= d i a g [d] ;

10 i f (k>=0){
11 j =k ;
12 i =0 ;
13 i n t s t a r t i n d e x =k*n−k *(k−1) / 2 ;
14 i n t s t o p i n d e x = s t a r t i n d e x +n−k−1;
15 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
16 y [j]+= valA [s t a r t i n d e x]* x [i] ;
17 j ++;
18 i ++;
19 }
20 }
21 e l s e {
22 i n t a b s k =Math . abs (k) ;
23 j =0 ;
24 i = a b s k ;
25 i n t s t a r t i n d e x =n *(n +1) / 2 + (abs k −1)*n − a b s k *(abs k −1) / 2 ;
26 i n t s t o p i n d e x = s t a r t i n d e x + n−abs k −1;
27 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
28 y [j]+= valA [s t a r t i n d e x]* x [i] ;
29 j ++;
30 i ++;
31 }

78

B.1. CODE FOR MODEL 1: DENSE MATRIX OPERATIONS

32 }
33 }
34 do ub l e endTime = System . c u r r e n t T i m e M i l l i s () ;
35 do ub l e t o t a l T i m e = (endTime − s t a r t T i m e) ;
36 r e t u r n t o t a l T i m e ;
37 }

Listing B.3: AT x by diagonals

B.1.2 The matrix-matrix multiplication routines
1 / / Method : Get t h e r e q u e s t e d d i a g o n a l a r r a y
2 p u b l i c s t a t i c d ou b l e [] g e t D i a g A r r a y F u n c t i o n (do ub l e [] valueA , i n t k) {
3 do ub l e [] g e t a r r a y =new d oub le [n−Math . abs (k)] ;
4 i f (k >= 0 && k<=n−1){
5 i n t s t a r t i n d x =k*n−k *(k−1) / 2 ;
6 i n t end indx = s t a r t i n d x + n−k−1;
7 i n t i n d e x =0;
8 f o r (i n t i = s t a r t i n d x ; i<=end indx ; i ++){
9 g e t a r r a y [i n d e x]= valueA [i] ;

10 i n d e x ++;
11 }
12 }
13 e l s e i f (k <0 && k>=−(n−1)) {
14 i n t a b s k =Math . abs (k) ; / / t a k e t h e a b s o l u t e v a l u e o f k
15 i n t s t a r t i n d x =n *(n +1) / 2 + (abs k −1)*n − a b s k *(abs k −1) / 2 ;
16 i n t end indx = s t a r t i n d x + n−abs k −1;
17 i n t i n d e x =0;
18 f o r (i n t i = s t a r t i n d x ; i<=end indx ; i ++){
19 g e t a r r a y [i n d e x]= valueA [i] ;
20 i n d e x ++;
21 }
22 }
23 r e t u r n g e t a r r a y ;
24 }

Listing B.4: Get the requested diagonal array

1 / / Method : Cut t h e e l e m e n t s from g e t D i a g A r r a y
2 p u b l i c s t a t i c d ou b l e [] c u t E l e m e n t F u n c t i o n (do ub l e [] ge tDiagAr ray , i n t

cu tBeg in , i n t cu tEnd) {
3 i n t s i z e = g e t D i a g A r r a y . l e n g t h ;
4 do ub l e [] o u t p u t A r r a y =new d oub le [s i z e−cu tBeg in−cutEnd] ;
5 f o r (i n t i =0 ; i<s i z e−cu tBeg in−cutEnd ; i ++){
6 o u t p u t A r r a y [i]= g e t D i a g A r r a y [i + c u t B e g i n] ;
7 }
8 r e t u r n o u t p u t A r r a y ;
9 }

Listing B.5: Cut the elements from getDiagArray

1 / / Method : M u l t i p l y i n g two m a t r i c e s on DIAS f o r m a t
2 p u b l i c s t a t i c d ou b l e [] [] A B m u l t i p l y d i a g (i n t n , do ub l e [] d i agS to reAr rayA ,

do ub l e [] d i a g S t o r e A r r a y B) {
3 do ub l e [] C = new d oub le [n*n] ;
4 / / g e t t i n g main and super−d i a g o n a l s o f C

79

B.1. CODE FOR MODEL 1: DENSE MATRIX OPERATIONS

5 f o r (i n t k =0; k<=n−1;k ++){
6 i n t inx C = k*n−k *(k−1) / 2 ;
7 i n t end inx C = inx C + n−k−1;
8 f o r (i n t i =k +1; i<=n−1; i ++){
9 do ub l e [] d i a g a 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA

, k−i) , 0 , k) ;
10 do ub l e [] d i a g b 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B

, i) , 0 , 0) ;
11 i n t s i z e 1 = d i a g b 1 . l e n g t h ;
12 f o r (i n t j =0 ; j<=s i z e 1 −1; j ++){
13 C[inx C +i−k+ j]= C[inx C +i−k+ j]+ d i a g a 1 [j]* d i a g b 1 [j] ;
14 }
15 do ub l e [] d i a g a 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA

, i) , 0 , 0) ;
16 do ub l e [] d i a g b 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B

, k−i) , k , 0) ;
17 i n t s i z e 2 = d i a g a 2 . l e n g t h ;
18 f o r (i n t j =0 ; j<=s i z e 2 −1; j ++){
19 C[inx C + j]= C[inx C + j]+ d i a g a 2 [j]* d i a g b 2 [j] ;
20 }
21 }
22 f o r (i n t i =0 ; i<=k ; i ++){
23 do ub l e [] d i a g a 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i agS to reAr rayA , i) , 0 , k−i) ;
24 do ub l e [] d i a g b 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i a g S t o r e A r r a y B , k−i) , i , 0) ;
25 i n t s i z e 3 = d i a g a 3 . l e n g t h ;
26 f o r (i n t j =0 ; j<=s i z e 3 −1; j ++){
27 C[inx C + j]= C[inx C + j]+ d i a g a 3 [j]* d i a g b 3 [j] ;
28 }
29 }
30 } / / g e t t i n g sub−d i a g o n a l s o f C
31 f o r (i n t k =1; k<=n−1;k ++){
32 i n t inx C = n *(n +1) / 2 + (k−1)*n − k *(k−1) / 2 ;
33 i n t end inx C = inx C + n−k−1;
34 f o r (i n t i =k +1; i<=n−1; i ++){
35 do ub l e [] d i a g a 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA

,− i) , 0 , 0) ;
36 do ub l e [] d i a g b 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B

, i−k) , 0 , k) ;
37 i n t s i z e 1 = d i a g b 1 . l e n g t h ;
38 f o r (i n t j =0 ; j<=s i z e 1 −1; j ++){
39 C[inx C +i−k+ j]= C[inx C +i−k+ j]+ d i a g a 1 [j]* d i a g b 1 [j] ;
40 }
41 do ub l e [] d i a g a 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA

, i−k) , k , 0) ;
42 do ub l e [] d i a g b 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B

,− i) , 0 , 0) ;
43 i n t s i z e 2 = d i a g a 2 . l e n g t h ;
44 f o r (i n t j =0 ; j<=s i z e 2 −1; j ++){
45 C[inx C + j]= C[inx C + j]+ d i a g a 2 [j]* d i a g b 2 [j] ;
46 }
47 }
48 f o r (i n t i =0 ; i<=k ; i ++){

80

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

49 do ub l e [] d i a g a 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA
,− i) , k−i , 0) ;

50 do ub l e [] d i a g b 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B
, i−k) , 0 , i) ;

51 i n t s i z e 3 = d i a g a 3 . l e n g t h ;
52 f o r (i n t j =0 ; j<=s i z e 3 −1; j ++){
53 C[inx C + j]= C[inx C + j]+ d i a g a 3 [j]* d i a g b 3 [j] ;
54 }
55 }
56 }
57 r e t u r n C ;
58 }

Listing B.6: AB on DIAS

B.2 Code for Model 2: Sparse (Banded) Matrix Operations
B.2.1 The matrix-vector multiplication routines on CRS, JSA, DIAS

1 / / Methods : G e n e r a t e t h e random band m a t r i x wi th bandwid th BW, and
r e t u r n nnz e l e m e n t s i n 1D a r r a y c a l l e d d i a g A r r a y wi th column i n d e x (
i e , . c o l i n d) a r r a y

2 p u b l i c s t a t i c O b j e c t [] RandomArray (i n t n , i n t [] d i a g) {
3 i n t i i =0 ;
4 i n t nnz =0;
5 f o r (i n t i =0 ; i<d i a g . l e n g t h ; i ++){
6 nnz+=n−Math . abs (d i a g [i]) ;
7 }
8 do ub l e [] d i a g A r r a y = new d ou b le [nnz] ;
9 i n t [] c o l i n d =new i n t [nnz] ;

10 / / va lue , column i n d e x a r r a y
11 f o r (i n t t =0 ; t<d i a g . l e n g t h ; t ++){
12 f o r (i n t k =0; k<n−Math . abs (d i a g [t]) ; k ++){
13 d i a g A r r a y [i i] = (do ub l e) (Math . round (Math . random () *1000)) / 1 0 0 0 ;
14 i f (d i a g [t]<0){
15 c o l i n d [i i]= k ;
16 }
17 e l s e {
18 c o l i n d [i i]= k+Math . abs (d i a g [t]) ;
19 }
20 i i ++;
21 }
22 }
23 O b j e c t [] o b j e c t s =new O b j e c t [] { d iagAr ray , c o l i n d } ;
24 r e t u r n o b j e c t s ;
25 }

Listing B.7: Generate the random band matrix with bandwidth BW, and return nnz elements
in one-dimensional array called diagArray with column index (ie,. colind) array

1 / / Method : Conve r t d i a g o n a l s t o r a g e f o r m a t (i e , . d i a g A r r a y) t o CRS and JSA
s t o r a g e f o r m a t s .

2 p u b l i c s t a t i c O b j e c t [] ConvertDiagToCRS JSA (i n t n , d ou b l e [] d i agAr ray ,
i n t [] c o l i n d , i n t [] d i a g) {

3 i n t s i z e = d i a g A r r a y . l e n g t h ;

81

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

4 do ub l e [] CRSarray=new d oub le [s i z e] ;
5 i n t [] co l ind CRS =new i n t [s i z e] ;
6 i n t [] r o w p t r =new i n t [n + 1] ;
7 do ub l e [] [] JSAar ray = new d ou b le [n] [1] ;
8 do ub l e [] tempJSA=new d oub le [n] ;
9 i n t [] [] c o l i n d J S A = new i n t [n] [1] ;

10 i n t [] t empindex =new i n t [n] ;
11 i n t i i , j j =0 ;
12 i n t kk =0;
13 i n t x =0;
14 i n t i n d e x =0;
15 i n t [] newindex=new i n t [s i z e] ;
16 i n t c o u n t =0 ;
17 r o w p t r [0] = 0 ;
18 f o r (i n t r =0 ; r<n ; r ++){
19 i n t c n t =0 ;
20 f o r (i n t i =0 ; i<d i a g . l e n g t h ; i ++){
21 i n t p= d i a g [i] ;
22 i f (− r<=p && p<n−r) {
23 i f (p<0){
24 x=p ;
25 }
26 i f (p>=0){
27 x =0;
28 }
29 i n t a l p h a =x ;
30 i n t sum =0;
31 f o r (i n t j =0 ; j<i ; j ++){
32 sum+=n−Math . abs (d i a g [j]) ;
33 }
34 i i =sum+ r + a l p h a ;
35 CRSarray [j j]= d i a g A r r a y [i i] ;
36 co l ind CRS [j j]= c o l i n d [i i] ;
37 tempJSA [c n t]= d i a g A r r a y [i i] ;
38 t empindex [c n t]= c o l i n d [i i] ;
39 j j ++;
40 c n t ++;
41 }
42 }
43 c o u n t += c n t ;
44 r o w p t r [kk +1]= c o u n t ;
45 kk ++;
46 do ub l e [] j s a =new d oub le [c n t] ;
47 i n t [] j s a i n d e x = new i n t [c n t] ;
48 System . a r r a y c o p y (tempJSA , 0 , j s a , 0 , c n t) ;
49 System . a r r a y c o p y (tempindex , 0 , j s a i n d e x , 0 , c n t) ;
50 JSAar ray [r]= j s a ;
51 c o l i n d J S A [r]= j s a i n d e x ;
52 }
53 O b j e c t [] o b j e c t s =new O b j e c t [] { CRSarray , rowpt r , col ind CRS , JSAarray ,

c o l i n d J S A } ;
54 r e t u r n o b j e c t s ;
55 }

Listing B.8: Convert DIAS format to CRS storage format and JSA format

82

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

1 / / Method : M u l t i p l y i n g a m a t r i x wi th a v e c t o r on CRS
2 p u b l i c s t a t i c d ou b l e AxinCRS (dou b l e [] va l , i n t [] c o l i n d , i n t []

r o w p t r , d ou b l e [] x , i n t n) {
3 do ub l e [] y= new d oub le [n] ;
4 do ub l e s t a r t T i m e = System . c u r r e n t T i m e M i l l i s () ;
5 f o r (i n t i =0 ; i< n ; i ++) {
6 f o r (i n t j = r o w p t r [i] ; j<=r o w p t r [i +1]−1; j ++){
7 y [i]= y [i]+ v a l [j]* x [c o l i n d [j]] ;
8 }
9 }

10 do ub l e endTime = System . c u r r e n t T i m e M i l l i s () ;
11 do ub l e t o t a l T i m e = (endTime − s t a r t T i m e) ;
12 r e t u r n t o t a l T i m e ;
13 }

Listing B.9: Banded matrix Ax on CRS

1 / / Method : M u l t i p l y i n g a m a t r i x wi th a v e c t o r on JSA
2 p u b l i c s t a t i c d ou b l e AxinJSA (dou b l e [] [] va l , i n t [] [] index , do ub l e []

x , i n t n) {
3 do ub l e [] y= new d oub le [n] ;
4 do ub l e s t a r t T i m e = System . c u r r e n t T i m e M i l l i s () ;
5 f o r (i n t i =0 ; i< n ; i ++) {
6 do ub l e [] s u b a r r a y = v a l [i] ;
7 i n t [] s u b i n d e x = i n d e x [i] ;
8 f o r (i n t i i =0 ; i i <s u b a r r a y . l e n g t h ; i i ++){
9 y [i]+= s u b a r r a y [i i]* x [s u b i n d e x [i i]] ;

10 }
11 }
12 do ub l e endTime = System . c u r r e n t T i m e M i l l i s () ;
13 do ub l e t o t a l T i m e 3 = (endTime − s t a r t T i m e) ;
14 r e t u r n t o t a l T i m e ;
15 }

Listing B.10: Banded matrix Ax on JSA

1 / / Method : M u l t i p l y i n g a m a t r i x wi th a v e c t o r on DIAS
2 p u b l i c s t a t i c d ou b l e AxinDiag (dou b l e [] va l , i n t [] d iag , do ub l e [] x , i n t

n , i n t U, i n t L) {
3 do ub l e [] y= new d oub le [n] ;
4 i n t j , i ;
5 do ub l e s t a r t T i m e = System . c u r r e n t T i m e M i l l i s () ;
6 / / A’ s main and s u p e r d i a g o n a l s e l e m e n t s m u l t i p l y wi th v e c t o r x
7 f o r (i n t d =0; d<d i a g . l e n g t h ; d ++){
8 i n t k= d i a g [d] ;
9 i f (k>=0){

10 j =0 ;
11 i =k ;
12 i n t s t a r t i n d e x =L*(2* n−L−1) / 2 + k *(2* n−k−1) / 2 + k ;
13 i n t s t o p i n d e x = s t a r t i n d e x +n−k−1;
14 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
15 y [j]+= v a l [s t a r t i n d e x]* x [i] ;
16 j ++;
17 i ++;
18 }

83

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

19 }
20 e l s e {
21 i n t a b s k =Math . abs (k) ;
22 j = a b s k ;
23 i =0 ;
24 i n t s t a r t i n d e x =L*(2* n−L−1) / 2 − a b s k *(2* n−abs k −1) / 2 ;
25 i n t s t o p i n d e x = s t a r t i n d e x + n−abs k −1;
26 f o r (; s t a r t i n d e x <=s t o p i n d e x ; s t a r t i n d e x ++){
27 y [j]+= v a l [s t a r t i n d e x]* x [i] ;
28 j ++;
29 i ++;
30 }
31 }
32 }
33 do ub l e endTime = System . c u r r e n t T i m e M i l l i s () ;
34 do ub l e t o t a l T i m e = (endTime − s t a r t T i m e) ;
35 r e t u r n t o t a l T i m e ;
36 }

Listing B.11: Banded matrix Ax on DIAS

B.2.2 The matrix-matrix multiplication routines on CRS, JSA, DIAS

1 / / Method : Use t h e s y m b o l i c method t o f i n d column i n d e x and row p o i n t e r
o f C f o r CRS f o r m a t .

2 p u b l i c s t a t i c O b j e c t [] C i n d e x p o i n t e r (do ub l e [] valueA , i n t [] indexA , i n t
[] po in t e rA , dou b l e [] valueB , i n t [] indexB , i n t [] p o i n t e r B , i n t n) {

3 i n t [] indexC = new i n t [n] ;
4 i n t [] p o i n t e r C =new i n t [n + 1] ;
5 p o i n t e r C [0] = 0 ;
6 i n t l e n = −1;
7 i n t l en t emp = −1;
8 b o o l e a n t e s t = t r u e ;
9 i n t temp [] = new i n t [n] ;

10 i n t [] indexTemp = n u l l ;
11 f o r (i n t i =0 ; i<n ; i ++){
12 temp [i]=−1;
13 }
14 f o r (i n t i = 0 ; i<n ; i ++){
15 i n t s t a r t r o w a = p o i n t e r A [i] ;
16 i n t s t o p r o w a = p o i n t e r A [i +1]−1;
17 f o r (; s t a r t r o w a <=s t o p r o w a ; s t a r t r o w a ++){
18 i n t j j = indexA [s t a r t r o w a] ;
19 i n t s t a r t r o w b = p o i n t e r B [j j] ;
20 i n t s top rowb = p o i n t e r B [j j +1]−1;
21 f o r (; s t a r t r o w b <=s toprowb ; s t a r t r o w b ++){
22 i n t j c o l = indexB [s t a r t r o w b] ;
23 i n t j p o s i t i o n = temp [j c o l] ;
24 i f (j p o s i t i o n == −1){
25 l e n ++;
26 l en t emp ++;
27 indexC [l en t emp]= j c o l ;
28 temp [j c o l]= l e n ;
29 }
30 }

84

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

31 }
32 f o r (i n t k =0; k<=len temp ; k ++){
33 temp [indexC [k]]=−1;
34 }
35 p o i n t e r C [i +1]= l e n +1;
36 i f (t e s t) {
37 indexTemp=new i n t [l e n + 1] ;
38 System . a r r a y c o p y (indexC , 0 , indexTemp , 0 , l e n +1) ;
39 t e s t = f a l s e ;
40 }
41 e l s e {
42 i f (len temp >−1){
43 i n t [] a= new i n t [l e n + 1] ;
44 System . a r r a y c o p y (indexTemp , 0 , a , 0 , indexTemp . l e n g t h) ;
45 System . a r r a y c o p y (indexC , 0 , a , indexTemp . l e n g t h , l en t emp +1) ;
46 indexTemp=a ;
47 }
48 }
49 l en t emp =−1;
50 indexC=new i n t [n] ;
51 }
52 O b j e c t [] o b j e c t s C =new O b j e c t [] { indexTemp , p o i n t e r C } ;
53 r e t u r n o b j e c t s C ;
54 }

Listing B.12: Precalculate the column indices and the row pointers matrix C for CRS format
using the symbolic method, adapted from [12].

1 / / Method : M u l t i p l y i n g two m a t r i c e s on CRS f o r m a t u s i n g n u m e r i c a l
a p p r o a c h .

2 p u b l i c s t a t i c d ou b l e ABinCRS Numerical (d ou b l e [] valueA , i n t [] indexA ,
i n t [] po in t e rA , dou b l e [] valueB , i n t [] indexB , i n t [] p o i n t e r B , i n t
[] indexC , i n t [] p o i n t e r C , i n t n) {

3 do ub l e [] va lueC = new d ou b le [indexC . l e n g t h] ;
4 i n t l e n = −1;
5 i n t temp [] = new i n t [n] ;
6 f o r (i n t i =0 ; i<n ; i ++){
7 temp [i]=−1;
8 }
9 do ub l e s t a r t T i m e 1 = System . c u r r e n t T i m e M i l l i s () ;

10 f o r (i n t i = 0 ; i<n ; i ++){
11 i n t s t a r t r o w a = p o i n t e r A [i] ;
12 i n t s t o p r o w a = p o i n t e r A [i +1]−1;
13 f o r (; s t a r t r o w a <=s t o p r o w a ; s t a r t r o w a ++){
14 do ub l e s c a l a r = valueA [s t a r t r o w a] ;
15 i n t j j = indexA [s t a r t r o w a] ;
16 i n t s t a r t r o w b = p o i n t e r B [j j] ;
17 i n t s top rowb = p o i n t e r B [j j +1]−1;
18 f o r (; s t a r t r o w b <=s toprowb ; s t a r t r o w b ++){
19 i n t j c o l = indexB [s t a r t r o w b] ;
20 i n t j p o s i t i o n = temp [j c o l] ;
21 i f (j p o s i t i o n == −1){
22 l e n ++;
23 temp [j c o l]= l e n ;

85

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

24 valueC [l e n]= s c a l a r * valueB [s t a r t r o w b] ;
25 }
26 e l s e {
27 valueC [j p o s i t i o n]+= s c a l a r * valueB [s t a r t r o w b] ;
28 }
29 }
30 }
31 f o r (i n t k= p o i n t e r C [i] ; k<=l e n ; k ++){
32 temp [indexC [k]]=−1;
33 }
34 }
35 do ub l e endTime1 = System . c u r r e n t T i m e M i l l i s () ;
36 do ub l e t o t a l T i m e 1 = endTime1 − s t a r t T i m e 1 ;
37 r e t u r n t o t a l T i m e 1 ;
38 }

Listing B.13: Numerical approach- CRS format on AB, adapted from [12].

1 / / Method : Use t h e s y m b o l i c method t o f i n d column i n d i c e s o f C f o r JSA
f o r m a t .

2 p u b l i c s t a t i c i n t [] [] indexCinJSA Symbol ic (i n t [] [] indexA , i n t [] []
indexB , i n t n) {

3 i n t [] [] indexC = new i n t [n] [1] ;
4 i n t [] temp = new i n t [n] ;
5 i n t [] t empIndex = new i n t [n] ;
6 i n t nonze ro =0;
7 i n t l e n = −1;
8 f o r (i n t i = 0 ; i<temp . l e n g t h ; i ++){
9 temp [i]=−1;

10 }
11 f o r (i n t i = 0 ; i<indexA . l e n g t h ; i ++){
12 i n t [] a i n d e x = indexA [i] ;
13 f o r (i n t j =0 ; j<a i n d e x . l e n g t h ; j ++){
14 i n t i n d e x = a i n d e x [j] ;
15 i n t [] b in de x = indexB [i n d e x] ;
16 f o r (i n t k = 0 ; k<b i nd ex . l e n g t h ; k ++){
17 i n t j c o l = b in de x [k] ;
18 i n t j p o s = temp [j c o l] ;
19 i f (j p o s == −1){
20 l e n ++;
21 nonze ro ++;
22 t empIndex [l e n] = j c o l ;
23 temp [j c o l] = l e n ;
24 }
25 e l s e {
26 }
27 }
28 }
29 i n t [] c i n d e x = new i n t [l e n + 1] ;
30 System . a r r a y c o p y (tempIndex , 0 , c index , 0 , l e n +1) ;
31 indexC [i]= c i n d e x ;
32 f o r (i n t i i = 0 ; i i <l e n +1; i i ++){
33 temp [tempIndex [i i]]=−1;
34 }
35 l e n = −1;

86

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

36 }
37 r e t u r n indexC ;
38 }

Listing B.14: Precalculate the column indices of matrix C for JSA format using the
symbolic method, adapted from [12].

1 / / Method : M u l t i p l y i n g two m a t r i c e s on JSA f o r m a t u s i n g n u m e r i c a l
a p p r o a c h .

2 p u b l i c s t a t i c d ou b l e ABinJSA Numerical (do ub l e [] [] valueA , i n t [] []
indexA , d ou b l e [] [] valueB , i n t [] [] indexB , i n t n) {

3 do ub l e [] [] va lueC = new d oub le [n] [1] ;
4 i n t [] [] indexC = new i n t [n] [1] ;
5 i n t [] temp = new i n t [n] ;
6 do ub l e [] tempValue = new d ou b le [n] ;
7 i n t [] t empIndex = new i n t [n] ;
8 i n t nonze ro =0;
9 i n t l e n = −1;

10 f o r (i n t i = 0 ; i<temp . l e n g t h ; i ++){
11 temp [i]=−1;
12 }
13 do ub l e s t a r t T i m e 1 = System . c u r r e n t T i m e M i l l i s () ;
14 f o r (i n t i = 0 ; i<valueA . l e n g t h ; i ++){
15 do ub l e [] a v a l u e = valueA [i] ;
16 i n t [] a i n d e x = indexA [i] ;
17 f o r (i n t j =0 ; j<a v a l u e . l e n g t h ; j ++){
18 do ub l e s c a l a r = a v a l u e [j] ;
19 i n t i n d e x = a i n d e x [j] ;
20 do ub l e [] b v a l u e = valueB [i n d e x] ;
21 i n t [] b in de x = indexB [i n d e x] ;
22 f o r (i n t k = 0 ; k<b v a l u e . l e n g t h ; k ++){
23 i n t j c o l = b in de x [k] ;
24 i n t j p o s = temp [j c o l] ;
25 i f (j p o s == −1){
26 l e n ++;
27 nonze ro ++;
28 t empIndex [l e n] = j c o l ;
29 temp [j c o l] = l e n ;
30 tempValue [l e n]= s c a l a r * b v a l u e [k] ;
31 }
32 e l s e {
33 tempValue [j p o s]+= s c a l a r * b v a l u e [k] ;
34 }
35 }
36 }
37 do ub l e [] c v a l u e =new d ou b le [l e n + 1] ;
38 i n t [] c i n d e x = new i n t [l e n + 1] ;
39 System . a r r a y c o p y (tempValue , 0 , cva lue , 0 , l e n +1) ;
40 System . a r r a y c o p y (tempIndex , 0 , c index , 0 , l e n +1) ;
41 valueC [i]= c v a l u e ;
42 indexC [i]= c i n d e x ;
43 f o r (i n t i i = 0 ; i i <l e n +1; i i ++){
44 temp [tempIndex [i i]]=−1;
45 }

87

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

46 l e n = −1;
47 }
48 do ub l e endTime1 = System . c u r r e n t T i m e M i l l i s () ;
49 do ub l e t o t a l T i m e 1 = endTime1 − s t a r t T i m e 1 ;
50 r e t u r n t o t a l T i m e 1 ;
51 }

Listing B.15: Numerical approach- JSA format on AB, adapted from [12].

1 / / Method : Banded m a t r i x m u l t i p l i c a t i o n on CRS f o r m a t .
2 p u b l i c s t a t i c d ou b l e ABinCRS (dou b l e [] valA , i n t [] col indA , i n t [] ptrA ,

do ub l e [] valB , i n t [] co l indB , i n t [] pt rB , i n t [] co l indC , i n t []
pt rC , i n t n) {

3 do ub l e [] va lueC = new d oub le [c o l i n d C . l e n g t h] ;
4 do ub l e s t a r t T i m e 1 = System . c u r r e n t T i m e M i l l i s () ;
5 f o r (i n t i =0 ; i<n ; i ++){
6 i n t s t a r t r o w a = pt rA [i] ;
7 i n t s t o p r o w a = pt rA [i +1]−1;
8 f o r (; s t a r t r o w a <=s t o p r o w a ; s t a r t r o w a ++){
9 do ub l e s c a l a r = valA [s t a r t r o w a] ;

10 i n t j a = co l indA [s t a r t r o w a] ;
11 i n t s t a r t r o w b = p t rB [j a] ;
12 i n t s top rowb = p t rB [j a +1]−1;
13 f o r (; s t a r t r o w b <=s toprowb ; s t a r t r o w b ++){
14 i n t j b = c o l i n d B [s t a r t r o w b] ;
15 i n t j c = c o l i n d C [p t rC [i]] ;
16 valueC [p t rC [i]− j c + j b]+= s c a l a r * valB [s t a r t r o w b] ;
17 }
18 }
19 }
20 do ub l e endTime1 = System . c u r r e n t T i m e M i l l i s () ;
21 do ub l e t o t a l T i m e 1 = endTime1 − s t a r t T i m e 1 ;
22 r e t u r n t o t a l T i m e 1 ;
23 }

Listing B.16: Banded matrix AB on CRS

1 / / Method : Banded ma t r ix−t r a n s p o s e m u l t i p l i c a t i o n on CRS f o r m a t
2 p u b l i c s t a t i c d ou b l e ATBinCRS (dou b l e [] valA , i n t [] col indA , i n t [] ptrA

, d ou b l e [] valB , i n t [] co l indB , i n t [] pt rB , i n t [] co l indC , i n t []
pt rC , i n t n) {

3 do ub l e [] va lueC = new d oub le [c o l i n d C . l e n g t h] ;
4 do ub l e s t a r t T i m e 2 = System . c u r r e n t T i m e M i l l i s () ;
5 f o r (i n t i =0 ; i<n ; i ++){
6 i n t s t a r t r o w a = pt rA [i] ;
7 i n t s t o p r o w a = pt rA [i +1]−1;
8 f o r (; s t a r t r o w a <=s t o p r o w a ; s t a r t r o w a ++){
9 do ub l e s c a l a r = valA [s t a r t r o w a] ;

10 i n t j a = co l indA [s t a r t r o w a] ;
11 / / column i n d e x of A can be an i n d e x of r o w p o i n t e r C
12 i n t s t a r t r o w b = p t rB [i] ;
13 i n t s top rowb = p t rB [i +1]−1;
14 f o r (; s t a r t r o w b <=s toprowb ; s t a r t r o w b ++){
15 i n t j b = c o l i n d B [s t a r t r o w b] ;
16 i n t j c = c o l i n d C [p t rC [j a]] ;

88

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

17 columnindexC= j c = c o l i n d e x C [p t r [j a]] ;
18 valueC [p t rC [j a]− j c + j b]+= s c a l a r * valB [s t a r t r o w b] ;
19 }
20 }
21 }
22 do ub l e endTime2 = System . c u r r e n t T i m e M i l l i s () ;
23 do ub l e t o t a l T i m e 2 = (endTime2 − s t a r t T i m e 2) ;
24 r e t u r n t o t a l T i m e 2 ;
25 }

Listing B.17: Banded matrix AT B on CRS

1 / / Method : Based on t h e column i n d i c e s o f i n p u t m a t r i c e s A and B ,
p r e c a l c u l a t e t h e column i n d i c e s o f m a t r i x C f o r JSA s t o r a g e f o r m a t
u s i n g t h e s y m b o l i c method

2 p u b l i c s t a t i c i n t [] [] indexCinJSA (i n t [] [] indexA , i n t [] [] indexB , i n t
n) {

3 i n t [] [] indexC = new i n t [n] [1] ;
4 i n t [] temp = new i n t [n] ;
5 i n t [] t empIndex = new i n t [n] ;
6 i n t nonze ro =0;
7 i n t l e n = −1;
8 f o r (i n t i = 0 ; i<temp . l e n g t h ; i ++){
9 temp [i]=−1;

10 }
11 f o r (i n t i = 0 ; i<indexA . l e n g t h ; i ++){
12 i n t [] a i n d e x = indexA [i] ;
13 f o r (i n t j =0 ; j<a i n d e x . l e n g t h ; j ++){
14 i n t i n d e x = a i n d e x [j] ;
15 i n t [] b in de x = indexB [i n d e x] ;
16 f o r (i n t k = 0 ; k<b i nd ex . l e n g t h ; k ++){
17 i n t j c o l = b in de x [k] ;
18 i n t j p o s = temp [j c o l] ;
19 i f (j p o s == −1){
20 l e n ++;
21 nonze ro ++;
22 t empIndex [l e n] = j c o l ;
23 temp [j c o l] = l e n ;
24 }
25 e l s e {
26 }
27 }
28 }
29 i n t [] c i n d e x = new i n t [l e n + 1] ;
30 System . a r r a y c o p y (tempIndex , 0 , c index , 0 , l e n +1) ;
31 indexC [i]= c i n d e x ;
32 f o r (i n t i i = 0 ; i i <l e n +1; i i ++){
33 temp [tempIndex [i i]]=−1;
34 }
35 l e n = −1;
36 }
37 r e t u r n indexC ;

89

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

38 }

Listing B.18: Precalculate the column indices of matrix C for JSA storage format using the
symbolic method

1 / / Method : Banded m a t r i x m u l t i p l i c a t i o n on JSA f o r m a t
2 p u b l i c s t a t i c d ou b l e ABinJSA (dou b l e [] [] valA , i n t [] [] col indA , do ub l e

[] [] valB , i n t [] [] co l indB , i n t [] [] co l indC , i n t n) {
3 do ub l e [] [] va lueC = new d oub le [n] [1] ;
4 do ub l e s t a r t T i m e 3 = System . c u r r e n t T i m e M i l l i s () ;
5 f o r (i n t i =0 ; i<n ; i ++){
6 do ub l e [] rowa = valA [i] ;
7 i n t [] i n d e x a = co l indA [i] ;
8 i n t [] i n d e x c = c o l i n d C [i] ;
9 do ub l e [] rowc=new d oub le [i n d e x c . l e n g t h] ;

10 f o r (i n t a j =0 ; a j<rowa . l e n g t h ; a j ++) {
11 do ub l e s c a l a r = rowa [a j] ;
12 i n t i n d a = i n d e x a [a j] ;
13 do ub l e [] rowb=valB [i n d a] ;
14 i n t [] i nd ex b = c o l i n d B [i n d a] ;
15 f o r (i n t b j =0 ; bj<rowb . l e n g t h ; b j ++){
16 i n t c j = i nd ex b [b j]− i n d e x c [0] ;
17 rowc [c j]+= s c a l a r * rowb [b j] ;
18 }
19 }
20 valueC [i]= rowc ;
21 }
22 do ub l e endTime3 = System . c u r r e n t T i m e M i l l i s () ;
23 do ub l e t o t a l T i m e 3 = (endTime3 − s t a r t T i m e 3) ;
24 r e t u r n t o t a l T i m e 3 ;
25 }

Listing B.19: Banded matrix AB on JSA

1 / / Method : Banded ma t r ix−t r a n s p o s e m u l t i p l i c a t i o n on JSA f o r m a t
2 p u b l i c s t a t i c d ou b l e ATBinJSA (dou b l e [] [] valA , i n t [] [] col indA , do ub l e

[] [] valB , i n t [] [] co l indB , i n t [] [] co l indC , i n t n) {
3 do ub l e [] [] va lueC = new d ou b le [n] [1] ;
4 f o r (i n t j =0 ; j<n ; j ++){
5 valueC [j]= new do ub le [c o l i n d C [j] . l e n g t h] ;
6 }
7 do ub l e s t a r t T i m e 4 = System . c u r r e n t T i m e M i l l i s () ;
8 f o r (i n t i =0 ; i<n ; i ++){
9 do ub l e [] rowa = valA [i] ;

10 i n t [] i n d e x a = co l indA [i] ;
11 do ub l e [] rowb=valB [i] ;
12 i n t [] i nd ex b = c o l i n d B [i] ;
13 f o r (i n t a j =0 ; a j<rowa . l e n g t h ; a j ++) {
14 do ub l e s c a l a r = rowa [a j] ;
15 i n t i n d a = i n d e x a [a j] ;
16 i n t [] i n d e x c = c o l i n d C [i n d a] ;
17 f o r (i n t b j =0 ; bj<rowb . l e n g t h ; b j ++){
18 i n t c j = ind ex b [b j]− i n d e x c [0] ;
19 valueC [i n d a] [c j]+= s c a l a r * rowb [b j] ;

90

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

20 }
21 }
22 }
23 do ub l e endTime4 = System . c u r r e n t T i m e M i l l i s () ;
24 do ub l e t o t a l T i m e 4 = (endTime4 − s t a r t T i m e 4) ;
25 r e t u r n t o t a l T i m e 4 ;
26 }

Listing B.20: Banded matrix AT B on JSA

1 / / Method : Banded m a t r i x m u l t i p l i c a t i o n Algo r i t hm (C o r o l l a r y 1) , where LA
, UA d e n o t e lower bandwid th and uppe r bandwi th o f m a t r i x A
r e s p e c t i v e l y

2 p u b l i c s t a t i c d ou b l e BandAB mul t ip lyd iag (d ou b l e [] d i agS to r eAr rayA ,
do ub l e [] d i a g S t o r e A r r a y B , i n t LA, i n t UA, i n t LB , i n t UB, i n t LC , i n t
UC, i n t n , i n t sum) {

3 do ub l e [] C = new d oub le [sum] ;
4 / / g e t main and super−d i a g o n a l s o f C
5 do ub l e t o t a l t i m e = 0 . 0 ;
6 f o r (i n t k =0; k<=UC; k ++){
7 i n t inx C = LC*(2* n−LC−1) / 2 + k *(2* n−k−1) / 2 + k ;
8 i n t end inx C = inx C + n−k−1;
9 f o r (i n t i =k +1; i<=Math . min (UB, k+LA) ; i ++){

10 do ub l e [] d i a g a 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i agS to r eAr rayA
, LA, UA, k−i , n) , 0 , k) ;

11 do ub l e [] d i a g b 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (d i a g S t o r e A r r a y B
, LB , UB, i , n) , 0 , 0) ;

12 i n t s i z e 1 = d i a g b 1 . l e n g t h ;
13 do ub l e s t a r t 1 = System . c u r r e n t T i m e M i l l i s () ;
14 f o r (i n t j =0 ; j<=s i z e 1 −1; j ++){
15 C[inx C +i−k+ j]= C[inx C +i−k+ j]+ d i a g a 1 [j]* d i a g b 1 [j] ;
16 }
17 do ub l e end1 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 1) ;
18 t o t a l t i m e = t o t a l t i m e + end1 ;
19 do ub l e [] d i a g a 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i agS to reAr rayA , LA, UA, i , n) , 0 , 0) ;
20 do ub l e [] d i a g b 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i a g S t o r e A r r a y B , LB , UB, k−i , n) , k , 0) ;
21 i n t s i z e 2 = d i a g a 2 . l e n g t h ;
22 do ub l e s t a r t 2 = System . c u r r e n t T i m e M i l l i s () ;
23 f o r (i n t j =0 ; j<=s i z e 2 −1; j ++){
24 C[inx C + j]= C[inx C + j]+ d i a g a 2 [j]* d i a g b 2 [j] ;
25 }
26 do ub l e end2 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 2) ;
27 t o t a l t i m e = t o t a l t i m e + end2 ;
28 }
29 f o r (i n t i =Math . max (0 , k−UB) ; i<=Math . min (k , UA) ; i ++){
30 do ub l e [] d i a g a 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i agS to reAr rayA , LA, UA, i , n) , 0 , k−i) ;
31 do ub l e [] d i a g b 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i a g S t o r e A r r a y B , LB , UB, k−i , n) , i , 0) ;
32 i n t s i z e 3 = d i a g a 3 . l e n g t h ;
33 do ub l e s t a r t 3 = System . c u r r e n t T i m e M i l l i s () ;
34 f o r (i n t j =0 ; j<=s i z e 3 −1; j ++){
35 C[inx C + j]= C[inx C + j]+ d i a g a 3 [j]* d i a g b 3 [j] ;

91

B.2. CODE FOR MODEL 2: SPARSE (BANDED) MATRIX OPERATIONS

36 }
37 do ub l e end3 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 3) ;
38 t o t a l t i m e = t o t a l t i m e + end3 ;
39 }
40 }
41 / / g e t sub−d i a g o n a l s o f C
42 f o r (i n t k =1; k<=LC ; k ++){
43 i n t inx C = LC*(2* n−LC−1) / 2 − k *(2* n−k−1) / 2 ; ;
44 i n t end inx C = inx C + n−k−1;
45 f o r (i n t i =k +1; i<=Math . min (LA, k+UB) ; i ++){
46 do ub l e [] d i a g a 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i agS to reAr rayA , LA, UA,− i , n) , 0 , 0) ;
47 do ub l e [] d i a g b 1 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i a g S t o r e A r r a y B , LB , UB, i−k , n) , 0 , k) ;
48 i n t s i z e 1 = d i a g b 1 . l e n g t h ;
49

50 do ub l e s t a r t 4 = System . c u r r e n t T i m e M i l l i s () ;
51 f o r (i n t j =0 ; j<=s i z e 1 −1; j ++){
52 C[inx C +i−k+ j]= C[inx C +i−k+ j]+ d i a g a 1 [j]* d i a g b 1 [j] ;
53 }
54 do ub l e end4 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 4) ;
55 t o t a l t i m e = t o t a l t i m e + end4 ;
56

57 do ub l e [] d i a g a 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (
d i agS to reAr rayA , LA, UA, i−k , n) , k , 0) ;

58 do ub l e [] d i a g b 2 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (
d i a g S t o r e A r r a y B , LB , UB,− i , n) , 0 , 0) ;

59 i n t s i z e 2 = d i a g a 2 . l e n g t h ;
60

61 do ub l e s t a r t 5 = System . c u r r e n t T i m e M i l l i s () ;
62 f o r (i n t j =0 ; j<=s i z e 2 −1; j ++){
63 C[inx C + j]= C[inx C + j]+ d i a g a 2 [j]* d i a g b 2 [j] ;
64 }
65 do ub l e end5 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 5) ;
66 t o t a l t i m e = t o t a l t i m e + end5 ;
67 }
68 f o r (i n t i =Math . max (0 , k−LB) ; i<=Math . min (k , LA) ; i ++){
69 do ub l e [] d i a g a 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i agS to reAr rayA , LA, UA,− i , n) , k−i , 0) ;
70 do ub l e [] d i a g b 3 = c u t E l e m e n t F u n c t i o n (g e t D i a g A r r a y F u n c t i o n (

d i a g S t o r e A r r a y B , LB , UB, i−k , n) , 0 , i) ;
71 i n t s i z e 3 = d i a g a 3 . l e n g t h ;
72

73 do ub l e s t a r t 6 = System . c u r r e n t T i m e M i l l i s () ;
74 f o r (i n t j =0 ; j<=s i z e 3 −1; j ++){
75 C[inx C + j]= C[inx C + j]+ d i a g a 3 [j]* d i a g b 3 [j] ;
76 }
77 do ub l e end6 = (System . c u r r e n t T i m e M i l l i s () − s t a r t 6) ;
78 t o t a l t i m e = t o t a l t i m e + end6 ;
79 }
80 }
81 r e t u r n t o t a l t i m e ;
82 }

Listing B.21: Banded matrix AB on DIAS

92

