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ABSTRACT 

Changes in postural stability following sensory manipulation were investigated among 

Parkinson's disease patients and healthy older adults. Sixteen Parkinson's disease patients (PD; 

mean age 68.2 ± 2.7 years) and sixteen older adults (control; mean age 67.6 + 2.6 years) 

performed quiet standing trials that progressed through baseline, sensory manipulation, and 

reintegration. Postural control following visual deprivation was assessed following alternate 

removal and reinsertion of visual information. Postural recovery following sensory 

incongruence was assessed following the termination of visual, somatosensory, and visuo-

somatosensory incongruence. PD patients' balance was disrupted following visual deprivation, 

and was initially disrupted when visual information was returned. PD patients' postural 

recovery was comparable to control subjects when sensory incongruence ended. These 

findings indicate that situations of visual deprivation in particular are initially disruptive for PD 

patients, and imply initial difficulty for sensory reorgani2ation in these patients. Our results 

provide insight into environmental situations imposing greater fall risk among the parkinsonian 

population. 
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I. G E N E R A L INTRODUCTION 

Balance is integral to the performance of daily activities, such as crossing the street, 

rising from a chair, or bending to pick up a child. Because two-thirds of total body weight is 

located two-thirds of the body height above the ground, the human body has been described 

as an inherently unstable system (Winter, 1995). Thus, the maintenance of upright posture is 

achieved by an intricate working relationship among the musculoskeletal system, the body's 

sensory systems, and the Central Nervous System. Information from peripheral muscular and 

sensory systems is processed and integrated by the central nervous system to provide an 

internal representation of the body's position with respect to the external environment 

(Shumway-Cook & Woollacott, 2001). Any disruption in this relationship may result in a loss 

of equilibrium that may cause a fall. 

A concern among the elderly population is the increased fall risk that is associated with 

reduced postural stability (Winter, 1995; Romero & Stelmach, 2003). The mechanisms 

underlying reductions in postural stability in this population are theorized to be of peripheral 

and central origin (Shumway-Cook & Woollacott, 2001; Romero & Stelmach, 2003). 

Specifically, increased detection thresholds of sensory receptors and decreased muscle strength 

have been implicated as peripheral mechanisms contributing to deterioration in balance control 

(Winter, 1995; Shumway-Cook & Woollacott, 2001). In addition, reduced functional integrity 

of the central mechanisms responsible for the processing and integration sensory information 

have also been implicated in contributing to postural difficulty among the aging population 

(Horak & Macpherson, 1996; Romero & Stelmach, 2003). Decline in postural stability, 

however, is not exclusive to the aging population; on the contrary, diseases of the central 

nervous system are associated with postural impairment that is not related to peripheral 
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dysfunction beyond that associated with age. One such disease is Parkinson's disease (PD). 

PD is a progressive and neurodegenerative disease, which results from the death of dopamine 

producing cells within the midbrain of the central nervous system. Indeed, PD is associated 

with the highest fall rate of all neurological disorders (Stolze, Klebe, Zechlin, Baecker, Friege, 

& Deuschl, 2004). This high fall rate is the leading cause of physical trauma among the 

parkinsonian population, and is strongly associated with disease-related postural impairment 

(Balash, Peretz, Leibovich, Herman, Hausdorff, & Giladi, 2005). For many patients, the 

threat of sustaining serious fall-related injuries, combined with progressive, disease-related 

decline in balance control may lead to the development of fear of falling that may impose 

further balance threat (Adkin, Frank, & Jog, 2001). Consequently, patients may limit their 

participation in activities of daily living, which may cause a loss of personal independence, 

reduced quality of life, and in extreme cases, admission to nursing homes (Giladi, Hausdorff, 

& Balash, 2005). 

The purpose of this thesis was to investigate the influence of sensory manipulation on 

postural control among patients suffering from Parkinson's disease. This thesis includes a 

general introduction, two independent experiments, and a general discussion. The purpose of 

the general introduction is to provide background into postural control and Parkinson's 

disease, and to provide insight into environmental situations that impose fall risk among these 

individuals. The first experiment investigates the influence of visual deprivation on postural 

control among neurologically normal older adults and among PD patients. The second 

experiment examines PD patients' and control subjects' capacity for postural recovery 

following the termination of an imposed period of sensory incongruence. The general 

discussion summarizes the major research findings as they relate to the current literature. 
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1.1. OVERVIEW 

PD has been described as a progressive, neurodegenerative disorder resulting from a 

loss of dopamine producing neurons in the pars compacta zone of the substantia nigra, a 

nucleus making up part of the basal ganglia (Cote & Crutcher, 1991). The symptoms of PD 

typically do not begin to show until approximately 80% of dopamine producing cells within 

the substantia nigra are depleted, and thus, individuals may be well into disease progression at 

the point of diagnosis (Barbeau, 1980). 

PD is one of the most common late-life neurodegenerative disorders (Tanner, 

Goldman, & Ross, 2002), second only to Alzheimer's disease. In the next fifty years, the 

prevalence of this disease is expected to triple (Tanner, et al, 2002). This age-related risk of 

developing PD is particularly alarming because the number of individuals who will reach the 

age of 65 in the next few decades is expected to increase significantly. Consequently, the 

number of individuals suffering from Parkinson's disease will continue to increase, adding 

additional burden to an already strained health care system. 

1.2. PARKINSON'S DISEASE: E T I O L O G Y AND PATHOPHYSIOLOGY 

1.2.1 Symptoms 

PD is characterized by four cardinal symptoms, including: rigidity, tremor, 

bradykinesia, and postural impairment (Tanner, et al, 2002). Rigidity can be described as a 

heightened resistance to passive limb movement, and usually predominates in the flexor 

muscles of the trunk and limbs (Shumway-Cook & Woollacott, 2001). Rigidity often produces 

functional limitations for the patient, causing difficulties in bed mobility, gait, and balance 

control. Bradykinesia has been described as slowness in the performance of complex 

voluntary movements (Purves, Augustine, Fitzpatrick, Katz, LaMantia, McNamara, & 
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Williams, 1997). Tremor is defined as involuntary movements occurring at a frequency of 4-6 

Hz (Latash, 1998), and usually occur while a patient is at rest (resting tremor), but may also 

occur during the performance of a motor task (intention tremor) (Purves, et al., 1997). Finally, 

postural impairment can be described as unsteadiness that occurs when standing or while 

performing locomotor tasks (Overstall, 2001). Postural impairment is particularly prevalent 

with disease onset after 70 years of age (Overstall, 2001). Overall, the severity of each 

symptom is variable among individuals, which makes the development of a generalized PD 

treatment particularly difficult. Symptom severity can be a major concern for the patient, 

because it impedes successful performance of daily activities, thus reducing patient 

independence and overall quality of life. 

Of particular concern is postural impairment, a symptom that intensifies with 

advancing disease (Bloem, van Vugt, & Beckley, 2001) and that is not alleviated by 

conventional levodopa treatment (Rocchi, Chiari, & Horak, 2002). Disease-related postural 

impairment is associated with defective basal ganglia circuitry, which causes muscle rigidity 

around postural joints, and which reduces patients' ability to maintain posture following 

external perturbations (Chong, Horak, & Woollacott, 2000; Romero & Stelmach, 2003). 

1.2.2. The Basal Ganglia 

PD is characterized by basal ganglia dysfunction (Cote & Crutcher, 1991). The basal 

ganglia are a group of five subcortical nuclei that are theorized to play a role in the sequencing, 

timing, and coordination of movement execution (Marsden, 1982; Kolb & Whishaw, 1996; 

Takakusaki, Saitoh, Harada, & Kashiwayanagi, 2004). Because the basal ganglia do not make 

direct connections with the motor cortex, the regulation of movement occurs via connections 

with the thalamus, which then directly projects to and influences the motor cortex (Cote & 

Crutcher, 1991). Takaksusaki and colleagues (2004) suggest that the basal ganglia play an 
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important role in both volitional and automatic locomotor control via their connections with 

both the motor cortical areas and with the brainstem. Specifically, the basal ganglia may exert 

influence over the initiation and termination of gait, as well as obstacle avoidance during 

locomotion through their interaction with the thalarnico-cortical circuits (Takakusaki, 

Oohinata-Sugimoto, Saitoh, & Habaguchi, 2004). Moreover, the automatic control of 

postural muscle tone and postural reflexes may be modulated by the basal ganglia via their 

direct connections with the brainstem (Takakusaki, et al., 2004). Finally, Keele and Ivry 

(1991) suggest that a major underlying function of the basal ganglia is to generate adequate 

movement force production. Hyperkinetic movement disorders associated with basal ganglia 

dysfunction generally result in force production in excess, while hypokinetic disorders result in 

inadequate force production, and typically result in the reduced capacity to successfully 

generate movements with sufficient force (Keele & Ivry, 1991). 

The source of the motor dysfunction that is characteristic of PD results from the loss 

of dopamine producing cells within the substantia nigra (Cote & Crutcher, 1991). Mild 

symptoms often manifest well before disease diagnosis, and, at the time of diagnosis, 

approximately 80% of dopamine producing cells have already been lost. This substantial loss 

of dopamine cells within the substantia nigra prevents the adequate production of dopamine, 

and thus results in an inability to produce normal movements (Kolb & Whishaw, 2001). 

1.2.3. Direct and Indirect Pathways 

The basal ganglia consist of two main neuroanatomical motor circuits, both of which 

function to modulate thalamic output to the motor cortex (Figure 1.1). The direct pathway is 

comprised of projections from the caudate and putamen to the globus pallidus internus and 

substantia nigra pars reticulata. A major purpose of the direct pathway is to release cortical 

motor neurons from tonic inhibition placed upon them by the thalamus. In other words, a 

5 



function of the direct pathway is to decrease the amount of inhibition placed upon the motor 

cortex, thus facilitating movement. 

The indirect pathway is comprised of projections from the caudate and putamen to the 

globus pallidus external. Projections from the globus pallidus external are in turn sent to both 

the globus pallidus and to the subthalamic nucleus. The subthalamic nucleus sends additional 

projections to the globus pallidus internal and substantia nigra pars reticulata, and serves to 

increase the level of tonic inhibition placed upon cortical motor neurons. Stated simply, the 

indirect pathway acts to "brake" the normal function of the direct pathway. 

A third circuit within the basal ganglia system acts to modulate thalamic input to the 

motor cortex. This circuit is comprised of dopminergic cells within the pars compacta zone of 

the substantia nigra and modulates output of the caudate and putamen. Neurons within the 

caudate and putamen project to the substantia nigra pars compacta, which in turn sends 

dopaminergic projections back to the caudate/putamen. The influence of dopaminergic 

projections to the caudate/putamen can provide excitatory inputs (mediated by D l type 

dopaminergic receptors) to the globus pallidus internal. Inhibitory D2 type dopaminergic 

receptors also influence neuronal projections to the globus pallidus external. The antagonistic 

actions of the direct and indirect pathways on the output of the basal ganglia serve to produce 

the same effect: to decrease the inhibitory output of the basal ganglia. 

Alterations to the operation of this third pathway may explain many of the motor 

symptoms associated with PD. The normal effects of substantia nigra pars compacta input to 

the caudate/putamen are excitation of the neurons projecting to the globus pallidus internal 

(direct pathway) and inhibition of the neurons that project to the globus pallidus external 

(indirect pathway). The outcome of both of these dopaminergic effects is to increase the 

excitability of cortical motor neurons, which is mediated by a decrease in the inhibitory output 

of the basal ganglia. PD-associated destruction of dopamine cells within the substantia nigra 
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pars compacta result in an abnormally high amount of inhibitory output of the basal ganglia, 

thus reducing thalamic activation of cortical motor neurons. 

Figure 1.1: The basal ganglia and associated neuroanatomical circuitry. The basal ganglia are composed of five 
separate nuclei (a), including the caudate, putamen, globus pallidus (internal and external), subthalamic nucleus, 
and substantia nigra (pars compacta and pars reticulata). Basal ganglia activity is mediated by the release of 
dopamine from the substantia nigra (b), which exerts an excitatory effect on Dl receptors (black arrows) and an 
inhibitory effect on D2 receptors (red arrows) (http://www.dnesen.com/basal_ganglia.html). 

1.2.4. Etiology 

Although the cause of PD is unknown, several factors have been implicated in disease 

onset. Two such factors include environmental factors and heredity (Tanner, et al., 2002). 

Environmental factors that may contribute to the development of PD include environmental 

toxins such as pesticides, herbicides, and industrial chemicals (Tanner & Langston, 1990). 

Other environmental toxins that may be associated with the risk of developing PD include 

trace metals, cyanide, carbon monoxide, and organic solvents (Olanow & Tatton, 1999). The 

theory that exposure to toxins increases the risk of developing PD originated from die 
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exposure of drug addicts to 1,2,3,6-methyl-phenyl, tetrahydropyridine (MPTP), which is a by

product of the illegal production of synthetic heroine (Olanow & Tatton, 1999). Drug addicts 

who took MPTP developed a syndrome that was clinically and pathophysiologically similar to 

PD (Olanow & Tatton, 1999). MPTP toxicity results from its conversion to pyridinium 

(MPP + ) in a reaction that is catalyzed by monooxidase type B (MAO-B) (Singer, Castagnoli, 

Ramsay, & Trevor, 1987). MPP + is then taken up by dopamine-producing neurons and 

becomes concentrated in the mitochondria, where it binds and inhibits NADH complex I 

(Tanner, et al, 2002). Blockade of NADH-I prevents oxidative phosphorylation and the 

production of adenosine triphosphate (ATP) (Tanner, et al., 2002). Free-radical and nitric 

oxide build-up also occur, which contribute to oxidative stress and cellular apoptosis (Tanner, 

et al, 2002). 

Genetics have also been implicated as potential risk factors for the development of 

PD. Wood et al, (1998) report that the incidence of PD is greater in family members than in 

age-matched controls. Similarly, concordance rates indicated a significandy higher incidence of 

PD in monozygotic twins who developed the disease before the age of 50 (Tanner, Ottman, 

Ellenberg, & al, 1997). These findings imply that young-onset (ie onset occurring before the 

age of 50) PD, in particular, may have a strong genetic link. 

Because the cause of PD is undetermined, disease prevention is unattainable. At 

present, treatment of parkinsonian symptoms is focused on returning patients to their best 

possible level of functionality to ensure optimal quality of life. Levodopa medication is 

successful as a generalized treatment for PD, often providing prolonged alleviation of tremor, 

rigidity, and bradykinesia (Suchowersky, 2002). Levodopa dosage must be increased, however, 

as symptoms become intensified with disease progression. Increased dosage often results in 

the development of unfavourable motor fluctuations known as dyskinesias. Levodopa is also 

not beneficial to reduce postural instability (Rocchi, et al, 2002; Rocchi, Chiari, Cappello, 
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Gross, & Horak, 2004), because it reduces tonic muscle stiffness around the ankle and hips 

joints without improving patients' ability to rapidly compensate for disruptions to equilibrium 

(Chong, et al., 2000). In addition, the development of dyskinesias can interfere with patients' 

postural control, and consequently may intensify parkinsonian instability (Overstall, 2001). 

Postural control is a biomechanically challenging task even for healthy adults, but is particularly 

difficult for PD patients because of enhanced rigidity, abnormal postural reflexes (Romero & 

Stelmach, 2003), and because of deficits in their capacity for the central integration of sensory 

information for postural control (Bronstein, Hood, Gretsy, & Panagi, 1990; Bronte-Stewart, 

Minn, Rodrigues, Buckley, & Nashner, 2002; Abbruzzese & Berardelli, 2003; Nallegowda, 

Singh, Handa, Khanna, Wadhwa, Yadav, Kumar, & Behari, 2004). 

1.3. POSTURAL C O N T R O L 

Postural control is defined as the process of regulating the body's position in space for 

the purpose of achieving an upright and stable stance (Shumway-Cook & Woollacott, 2001). 

As such, effective postural control requires both perception and action. 'Perception' refers to 

the detection and integration of sensory information to evaluate the position and motion of 

the body with respect to the environment. 'Action' refers to the body's ability to produce 

forces for controlling body position systems (Shumway-Cook & Woollacott, 2001). Thus, 

perception and action are dependent upon communication and interaction between the body's 

neural and musculoskeletal systems. Neural components of postural control include motor 

processes, sensory processes, and high-level integrative processes. Musculoskeletal 

components include joint range of motion, spinal flexibility, muscle properties, and the 

biomechanical relationships among body segments. Efficient communication between these 

systems is crucial if stability is to be maintained during the performance of daily activities. 

Thus, the body's systems for postural control communicate via feed-forward and feed-back 
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inputs to ensure that the ultimate goal of postural control is achieved: to detect and correct 

disruptive movements that surpass the body's stability limits to prevent an injurious fall 

episode. 

1.3.1. The Biomechanical Basis of Postural Control 

Balance is defined as the ability to maintain the body in equilibrium (Shumway-Cook & 

Woollacott, 2001). The human body has been described as an inherendy unstable system 

because approximately two-thirds of the total body mass is located two-thirds of the body 

height above the ground (Winter, Patla, & Frank, 1990; Winter, 1995). Consequently, 

equilibrium control is a biomechanically challenging task. Complete balance control is 

achieved by regulating balance in the antero-posterior (AP) and medio-lateral (ML) directions 

(Winter, Prince, Stergiou, & Powell, 1993). AP balance is controlled around the ankles and is 

regulated by the contraction of plantarflexor (triceps surae muscle group) and dorsiflexor 

(tibialis anterior) muscles (Winter, et al, 1993; Winter, 1995). ML balance, on the other hand, 

is controlled at the hip joint and is regulated by the contraction of hip abductors and adductors 

(Winter, et al, 1993; Winter, Prince, Frank, Powell, & Zabjek, 1996). 

Ultimately, AP and ML body movement arise because a large portion of total body mass 

(and thus the body's centre of mass) is located over a relatively small base of support. The 

influence of gravitational forces and the distribution of a large portion of total body mass 

above the legs present the propensity of the upper body to rotate around the hip joint 

(Winter, 1995). As such, the human body has been described following the model of an 

inverted pendulum (Winter, 1995; Winter, Pada, Prince, Ishac, & Gielo-Perczak, 1998). In 

this model, postural equilibrium, or balance, is maintained only when the body's centre of mass 

remains within the body's narrow base of support (Winter, 1995; Horak & Macpherson, 1996; 

(Shumway-Cook & Woollacott, 2001). Centre of mass refers to a point in space that 
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represents the net location of total body mass, and represents the weighted average of body 

segments (Winter, 1995; Shumway-Cook & Woollacott, 2001). The base of support refers to 

the area of the body in contact with the ground (or support surface), and is typically defined by 

the boundaries of the feet (Winter, 1995; Horak & Macpherson, 1996; Shumway-Cook & 

Woollacott, 2001). 

During stance, external forces acting on the centre of mass must be of equal and 

opposite magnitude for postural equilibrium to be maintained (Horak & Macpherson, 1996). 

These external forces include the downward-acting force of gravity, and the equal and opposite 

ground reaction force acting under the feet (Horak & Macpherson, 1996). During quiet 

standing, gravitational acceleration creates a force that passes through the centre of mass, 

which can cause a forward movement of the centre of mass (Horak & Macpherson, 1996). 

Excessive forward movement of the centre of mass is prevented by the ground reaction force, 

which acts on the soles of the feet with a force equal and opposite to that of the force of 

gravity (Horak & Macpherson, 1996). Consequendy, maintenance of static equilibrium is 

achieved. 

Maintenance of postural equilibrium during quiet standing constrains movement of the 

centre of mass to the boundaries of the base of support (Horak & Macpherson, 1996). Centre 

of mass movement may occur due to movements originating from within the body, such as 

those caused by respiration or by the beating of the heart. Furthermore, the occurrence of 

continually varying muscle forces, represented by the ground reaction force, may also generate 

body movement (Horak & Macpherson, 1996). The point of origin of the ground reaction 

force is referred to as the centre of pressure, and is a theoretical point of force application. 

During quiet standing, the centre of pressure is usually located between the feet. The 

occurrence of internally-generated body movements and the ongoing variation of muscle 

forces generate centre of pressure movement that, if large enough, may result in centre of mass 
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movement (Horak & Macpherson, 1996). Thus, it is unlikely that the position of centre of 

mass within the base of support is ever static. 

Continual variation in muscle force generates a centre of pressure movement trajectory 

(Horak & Macpherson, 1996) within the boundaries of the body's base of support. Winter 

(1995) describes the centre of pressure as a reflection of direct neural control of ankle muscle 

activity. Neural control of plantarflexor and invertor muscle activity produces anterior and 

lateral centre of pressure movement, while increased dorsiflexor and evertor muscle activity 

produces posterior and medial centre of pressure movement (Winter, 1995). It is important to 

note that centre of pressure and centre or mass, although often used interchangeably, are not 

synonymous; in fact, centre of pressure is independent of centre of mass (Winter, 1995). 

Winter (1995) describes the centre of pressure and centre of mass as being related, however, 

such that the position of centre of mass in relation to centre of pressure will influence centre 

of pressure movement, which will in turn affect centre of mass movement (Figure 1.2). For 

example, if the centre of mass is positioned ahead of the centre of pressure, a clockwise torque 

will be produced, causing clockwise angular acceleration of the body about the ankle joints. 

Increased activity of plantarflexor muscles will cause a forward shift in centre of pressure 

movement, until eventually it will lie ahead of the centre of mass. When this occurs, a 

counterclockwise torque will be generated, causing a counterclockwise angular acceleration of 

the body about the ankle joints. In this situation, the central nervous system regulates centre 

of pressure movement by reducing plantarflexor activity (and increasing dorsiflexor activity), 

thus facilitating centre of pressure movement to a position behind the centre of mass. 

Posterior movement of centre of pressure behind centre of mass will again create a forward 

angular acceleration, causing the body to move forward to its original position (Winter, 1995). 
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Figure 1.2. Diagram of the inverted pendulum model of postural 
control. During quiet standing, a destabilizing torque is produced by the 
downward projection of the centre of mass (COM) anterior to the ankle 
joint. To oppose this torque and preserve upright stance, the central 
nervous system generates a stabilizing torque about the ankle joint 
(achieved by posterior displacement of the centre of pressure (COP) 
behind the COM) via the activation of plantarflexor muscles in the 
lower leg (figure adapted from Winter et al., 1995, and Polych, 2002). 

COM 

Destabilizing Torque 

________o____ COP Stabilizing Torque 

7 7 7 
The body movement produced from the continual movement of centre of mass is 

Woollacott, 2001). Individuals who exhibit a higher degree of overall body sway during quiet 

standing are considered to be less stable (Pada, Winter, Frank, & al., 1990), and may be at 

higher risk of falling. If the centre of mass moves to within a few centimeters of, or deviates 

from, the boundaries of the base of support, fall probability increases (Shumway-Cook & 

Woollacott, 2001). In such situations, balance will be preserved only if an individual utilizes 

distinct movement patterns to prevent a fall (Horak & Nashner, 1986; Winter, 1995; Horak, 

Henry, & Shumway-Cook, 1997). These distinct movement patterns of postural recovery, 

also referred to as 'postural strategies', function to preserve equilibrium following external 

disruptions by constraining the centre of mass within the base of support (Shumway-Cook & 

Woollacott, 2001). 

The postural strategies commonly described in the literature include the feet-in-place 

(ankle and/or hip) strategy and the change-in-support (stepping) strategy (Winter, 1995; 

commonly referred to as spontaneous sway, body sway, or simply sway (Shumway-Cook & 
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Horak & Macpherson, 1996; Shumway-Cook & Woollacott, 2001; Maki, Mcllroy, & Fernie, 

2003). Horak and Nashner (1986) describe the ankle strategy as being the most frequently 

used response during quiet standing. The ankle strategy may be used when the body sways 

forward, which may occur following an external perturbation such as a gentle nudge to the 

upper shoulders. Backward movement of the support surface creates a rotation around the 

ankle joint that causes an anterior shift of the centre of pressure beyond the centre of mass. 

The anterior shift in centre of pressure reverses centre of mass displacement and drives it 

backward to its original position. Consequendy, forward body sway is reduced (Horak & 

Macpherson, 1996). The backward shift in centre of mass displacement is achieved by the 

sequential activation of ankle, knee, and hip extensor muscles, which rotates the body about 

the ankle joints, and causes relatively little movement around the hip or knee joints (Horak & 

Macpherson, 1996). Use of the ankle strategy is most efficient in situations involving small, 

slow perturbations on an even, firm surface (Horak & Macpherson, 1996), and is the strategy 

most commonly used by younger adults (Brown, Shumway-Cook, & Woollacott, 1999). 

Situations involving rapid or large amplitude disruptions, and/or conditions which 

constrain or prevent ankle rotation require the use of the hip strategy (Horak & Macpherson, 

1996). The hip strategy is characterized by the simultaneous bending of the trunk at the hip 

joints, and the counter-rotating at the neck and ankle joints caused by the sequential activation 

of the quadriceps muscle, the abdominal muscles, and the neck muscles (Horak & Nashner, 

1986). According to Brown et al., (1999), the hip strategy is frequently used among elderly 

adults. In addition, elderly adults may be more inclined to employ the change-in-support 

strategy for the maintenance of balance. The change-in-support (stepping) strategy involves 

taking a step in response to very fast and/or large postural disruptions, or when there is a 

predominant requirement of mamtaining vertical upper body orientation (Horak & 

Macpherson, 1996). The use of a stepping strategy may also emerge in response to small 
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perturbations with which individuals lack prior experience, or in situations in which individuals 

are not constrained to keeping their feet on the ground (Horak & Macpherson, 1996). 

Effective use of postural strategies is highly dependent upon an individual's ability to 

adjust and modify existing motor programs according to task requirements and to 

environmental context. The ability to maintain equilibrium in changing environmental 

contexts requires the modification of motor set. Motor set can be defined as movement 

preparation achieved by the selection of appropriate movements and the suppression of 

inappropriate movements (Kropotov & Etlinger, 1999). For example, an appropriate muscle 

response to a platform perturbation involving backward translation involves the contraction of 

anterior leg muscles (tibialis anterior and rectus femoris muscles) and the suppression of 

posterior leg muscles (hamstring and triceps surae muscle groups) to counteract translation-

induced anterior body sway (Horak & Nashner, 1986). In this situation, contraction of the 

posterior leg muscles would be an inappropriate response because it would impose a postural 

disruption beyond that induced by platform translation (Chong, et al., 2000). Conversely, a 

perturbation involving forward translation would require a modification of motor set to 

facilitate the contraction of the posterior leg muscles and the suppression of the anterior leg 

muscles to counteract the effects of backward sway (Horak & Nashner, 1986). The ability to 

rapidly modify automatic motor programs according to task demands and to environmental 

context is integral to an individual's ability to maintain stability in a dynamic environment. 

This capacity for rapid modification of motor set for postural tasks is impaired among 

individuals suffering from PD (Chong, Jones, & Horak, 1999), which may be even more 

problematic for a population already suffering from balance impairment. 
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1.3.2 Parkinsonian Posture 

Postural impairment has been described as one of the most disabling signs of 

Parkinson's disease, because it is associated with a high rate of falls that often cause serious 

injury (Bloem, et al, 2001; Balash, et al, 2005). Epidemiologic evidence indicates that the 

percentage of patients who fall ranges between 38% and 68% (Hoehn & Yahr, 1967; Gray & 

Hildebrand, 2000; Ashburn, Stack, Pickering, & Ward, 2001; Michalowska, Krygowska-Wajs, 

Jedynecka, Sobieszek, & Fiszer, 2002; Wood, Bilclough, Bowron, & Walker, 2002); this is in 

contrast to the healthy older adult population, which is characterized by a fall rate of 30% 

among individuals aged 60+ years (Bloem, et al, 2001). The high rate of falling among the 

parkinsonian population is strongly associated with a loss of postural reflexes and increased 

postural impairment that are related to disease progression (Balash, et al., 2005). A high fall 

rate among PD patients is a concern because falls are a leading cause of physical trauma in this 

population; approximately 50% of PD patients fall at least twice yearly, with 1 /5 of these 

patients suffering from bone fractures and/or intracranial hematomas (Balash, et al, 2005). 

For many patients, the possibility of experiencing a fall leads to the restriction of daily 

activities, and in some circumstances, admission to nursing homes (Giladi, et al, 2005). 

1.4 SENSORY CONTRIBUTIONS T O POSTURAL CONTROL 

The visual, vestibular, and somatosensory systems provide the central nervous system 

with information regarding the position and state of the body in relation to the external 

environment. Information from each type of sensory modality provides the central nervous 

system with an accurate internal representation of the body in space. 
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1.4.1 Somatosensory Inputs 

The somatosensory system provides humans with the ability to monitor internal and 

external forces acting on the body at any moment in time (Purves, Augustine, Fitzpatrick, 

Katz, LaMantia, McNamara, & Williams, 1997). Information from muscle, joint, and 

cutaneous receptors located throughout the body's periphery provide the central nervous 

system with information regarding the state of the musculoskeletal system and the external 

environment (Horak, Nashner, & Diener, 1990). Muscle receptors include muscle spindles 

and golgi tendon organs, which detect changes in muscle length and muscle tension, 

respectively (Purves, et al, 1997). Joint receptors include Paciniform endings, ligament 

receptors, and free-nerve endings that are sensitive to joint movement and to stress 

(Shumway-Cook & Woollacott, 2001). Tactile changes in the environment and the position of 

the body witiiin the environment are detected by cutneous mechanoreceptors. Several types of 

cutaneous mechanoreceptors exist, each detecting a different modality of sensory information. 

Ruffini endings respond to changes in stretch, Merkel's discs to pressure, Meissner's corpuscles 

to vibration and light touch, and Pacinian corpuscles to vibration (Shumway-Cook & 

Woollacott, 2001). The distribution of somatosensory receptors throughout the body provides 

the central nervous system with a wide range of information regarding the configuration of 

body segments in relation to each other, and with respect to the external environment (Horak 

& Macpherson, 1996). 

1.4.2 Vestibular Inputs 

The vestibular system provides a gravitoinertial frame of reference for postural control. 

Specifically, vestibular inputs provide the central nervous system with information regarding 

the position and movement of the head with respect to gravity and inertial forces (Shumway-

17 



Cook & Woollacott, 2001). Two types of receptors respond to different aspects of head 

position and motion: the semicircular canals sense and respond to angular acceleration of the 

head, while the otolith organs sense linear position and acceleration. The semicircular canals 

are particularly sensitive to fast head movements, such as those that occur during slips or 

stumbles (Horak & Shupert, 1994). The otolith organs, on the other hand, respond primarily 

to slow head movements, such as those occurring during postural sway (Shumway-Cook & 

Woollacott, 2001). 

Vestibular inputs have been implicated for the triggering of postural responses to 

sudden, unexpected falling (Horak & Macpherson, 1996). Experimentation with both 

humans and cats revealed an early activation of extensor muscles following a sudden, 

unexpected drop of the body from a height (Greenwood & Hopkins, 1976; Watt, 1976), an 

effect which was not observed in patients without vestibular function and in cats with lesioned 

otolith organs. The early activation of extensor muscles may function to prepare the body for 

impending landing following an unexpected drop (Horak & Macpherson, 1996). Conversely, 

vestibular inputs may not be required for the triggering of postural responses following 

movements of the support surface, especially when an individual is in contact with a large, 

stable surface (such as when standing on the ground). Patients suffering from bilateral 

disruption of vestibular function exhibit normal timing and patterning of muscle activation 

following support surface translations and rotations, although the magnitude of muscle 

activation may be reduced. Thus, vestibular inputs may influence the magnitude of postural 

responses, but are not integral for the triggering, patterning, or scaling of postural responses to 

surface perturbations (Horak & Macpherson, 1996). 
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1.4.3 Visual Inputs 

Visual inputs provide information pertaining to the position and motion of the head 

with respect to the surrounding environment (Shumway-Cook & Woollacott, 2001). 

Information from both peripheral and foveal sources is included in visual inputs, although 

peripheral information (i.e. information from a large visual field) may be more important than 

foveal visual information for the control of posture (Paillard, 1987). 

Visual inputs are important for the control of upright posture, but they may not be 

absolutely necessary. In most cases, individuals are still able to maintain their balance in 

conditions in which visual input is reduced or absent altogether, such as when an individual 

moves from a lighted to a darkened room. In such situations, a heavy reliance would likely be 

placed on vestibular and somatosensory inputs for the maintenance of stable posture. 

The elimination of vision influences postural equilibrium in a task- and context-

dependent manner (Horak & Macpherson, 1996). The removal of vision generally causes an 

increase in sway during quiet stance. In the original experiment that measured balance while 

participants closed their eyes, Romberg (1851) observed that the degree of sway was influenced 

by stance position. Romberg (1851) also noted that body sway appeared to increase even 

further in patients suffering from central or peripheral neural disorders. Similarly, alterations 

of visual information have been shown to reveal an increase in sway area among the elderly 

(Peterka & Black, 1990-1991; Redfern, Yardley, & Bronstein, 2001). Conversely, experiments 

in which subjects were instructed to stand as still as possible or who were anxious about falling 

revealed that subjects did not exhibit increased sway area following eye closure (Nashner, 

1982). The magnitude of sway increase may vary according to factors such as stance posture, 

availability of accurate somatosensory and vestibular information, and cognitive factors such as 

fear of falling (Horak & Macpherson, 1996). In addition, magnitude of sway in the absence of 
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vision may also be related to an individual's ability to adapt motor set and compensate for the 

loss of vision (Horak & Macpherson, 1996). 

1.4.4 Integration of Sensory Information for Postural Control 

The central processing of sensory information ensures the production of a motor plan 

for task execution that is appropriate to the sensory environment (Allison & Jeka, 2004). 

Equilibrium control depends on the continual updating and prioritization of sensory 

information generated by the environment. The process of updating and prioritizing sensory 

information for postural control is referred to as sensory reweighing (Allison & Jeka, 2004). 

Because the centre of mass is a calculated point in space, the central nervous system can never 

determine its position solely from one type of sensory information. Instead, centre of mass 

must be determined using information conveyed from the three sensory modalities for 

postural control, which communicate redundant information about the position of the body 

relative to the external environment (Shumway-Cook & Woollacott, 2001). The redundancy 

of sensory inputs conveyed to the central nervous system provides a degree of flexibility for 

the maintenance of postural equilibrium, such that balance can be preserved when one sensory 

modality conveys ambiguous information, or when information from another modality 

becomes deprived (Horak & Macpherson, 1996; Allison & Jeka, 2004). When information 

from one sensory modality is incongruent to information conveyed by another, the central 

nervous system must resolve sensory conflict by prioritizing the remaining congruent sensory 

information and suppressing the inaccurate information. The central nervous system has been 

described as organizing sensory information in a hierarchy (Teasdale & Simoneau, 2001), such 

that balance control is based heavily on information conveyed by the sensory modality of 

'highest priority'. I f the accuracy or availability of this 'high priority' sensory input becomes 

compromised, the central nervous system must disregard this information and instead 
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reorganize the sensory hierarchy to prioritize remaining sensory information for postural 

control (Teasdale & Simoneau, 2001; Allison & Jeka, 2004). Moreover, when sensory 

information becomes available following a period of incongruence or deprivation, the central 

nervous system must reintegrate, or incorporate this information back into the sensory 

hierarchy to ensure that adjustments in postural set reflect the most current state of the 

sensory environment. 

PD patients have difficulty adjusting to postural disruptions imposed by situations of 

sensory incongruence or deprivation (Bronstein, Hood, Gretsy, & Panagi, 1990; Chong, et al, 

1999; Bronte-Stewart, et al, 2002; Nallegowda, et al., 2004). Results from sensory 

manipulation experiments indicate that PD patients experience difficulty with the reweighing 

of sensory inputs (Bronstein, et al, 1990; Bronte-Stewart, et al., 2002). For example, a moving-

room experiment conducted by Bronstein and colleagues (1990) revealed difficulty among PD 

patients to adapt to successive small room movements. In that experiment, patients were 

examined on a stable platform during lateral linear movement of the visual surrounds. Moving 

the room led to increased levels of unsteadiness among PD patients. Moreover, PD patients 

were unable to overcome the destabilizing effects of the room motion during recurring 

stimulation. Current theory indicates that postural adaptation in moving-room experiments 

depends on a shift from primarily visual to proprioceptive control (Teasdale & Simoneau, 

2001). The decrease in postural stability observed among PD patients during moving-room 

experiments implies a lack of adaptation, and consequently implicates a role of the basal 

ganglia in sensory integration (Bronstein, et al, 1990; Teasdale & Simoneau, 2001). Additional 

studies also indicate that postural disruptions emerge when PD patients are presented with 

situations of sensory incongruence (Bronte-Stewart, et al, 2002; Nallegowda, et al, 2004). 

These results lend support to the notion that the capacity for the suppression of incongruent 

sensory information is reduced among PD patients, and consequendy also provide further 
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empirical evidence implicating a role of the basal ganglia in sensory integration for postural 

control. 

The integrity of the central mechanisms for sensorimotor integration is generally inferred 

via the Sensory Organization Test (NeuroCom International, Clackamas, OR), which assesses 

postural control under varying sensory conditions (Nashner, 1993; Shumway-Cook & 

Woollacott, 2001; Allison & Jeka, 2004). The apparatus includes a movable force platform and 

a movable visual surround, which both move according to the magnitude of postural sway 

displayed by the participant. Sensory organization test protocols investigate quiet standing 

under varying sensory conditions, during which the availability or accuracy of sensory inputs 

are manipulated (Figure 1.3). A benefit of sensory organization test protocols is that they 

accurately assess upright standing under sensory conditions that simulate real-world situations 

(Nashner, 2001), and that they are not influenced by learning bias (Nashner, 1993; Paloski, 

Reschke, & Black, 1999). 

Although sensory organization test protocols have been influential in the development of 

current theories regarding central contributions of sensory information for postural control, 

the information obtained from this protocol does not provide an assessment of changes in 

postural stability that occur over time. Instead, sensory organization test protocols provide a 

single measure of postural control that reflects stability across the entire period of 

perturbation, which is typically 15 or 20 seconds in duration. Although this measurement 

provides information regarding the overall stability of the participant across a particular period 

of time, it does not provide information regarding fluctuations in stability that occur within a 

particular time interval. For example, a participant's stability may be initially disrupted when 

sensory inputs are manipulated, but may stabilize within a few seconds following sensory 

perturbation. Thus, the single measure of stability that is provided by sensory organization test 

protocols may not capture this initial disruption. Consequendy, the quantification of 
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fluctuations in postural stability witiiin smaller intervals of time (time based assessment) may 

be beneficial to capture changes in stability occurring in the initial few seconds following 

sensory perturbation. 
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Figure 1.3. Sensory conditions of the Sensory Organization Test. Postural control is assessed under 
five sensory conditions. Condition 1 is considered as the 'baseline' condition, where all sensory inputs 
are accurate and available. Condition 2 involves visual deprivation, while Condition 3 involves a 
situation of visual incongruence, achieved by sway-referencing of the visual surround. Condition 4 
introduces a situation of somatosensory incongruence, achieved by sway-referencing of the force 
platform. Condition 5 introduces a situation of visual deprivation and somatosensory incongruence, 
achieved by depriving the subject o f visual information and by sway-referencing of the force platform. 
Condition 6 involves a situation of visuo-somatosensory incongruence, achieved by sway referenced 
movement of the force platform and visual surround (figure adapted from Allion & Jeka, 2004 and 
Shumway-Cook & Woollacott, 2001). 

For example, if PD patients have difficulty rapidly compensating for postural disruption 

imposed by sensory manipulation, then an assessment of postural control across shorter time 
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intervals may be a useful method of exploring this possibility. Specifically, if PD patients are 

deficient in their ability to reorganize sensory priorities following sensory manipulation, then it 

is possible that the effects of sensory perturbation may not be immediate, but may be time-

lagged to the onset of perturbation. In recognition of this possibility, Vuillerme and colleagues 

(2001) performed a time based assessment of postural control among balance-trained and 

balance-untrained adults following sensory manipulation. The authors' findings confirmed 

that the postural effects of sensory manipulation were not immediate, and that they varied 

according to the characteristics of the performer (Vuillerme, Teasdale, & Nougier, 2001). 

Consequendy, these authors confirmed that the time course, or time needed to return postural 

sway to a magnitude that is comparable to that which occurs during full sensory availability, 

differed between balance-trained and balance-untrained adults, such that balance-untrained 

adults had a prolonged time course for postural control compared to their balance-trained 

counterparts. 

When sensory feedback sources become available or accurate following a prolonged 

period of unavailability or inaccuracy, the central nervous system must update and reorganize 

the sensory hierarchy to accommodate this change in sensory inputs (Allison & Jeka, 2004). 

In addition, the ability7 to reintegrate sensory information following a prolonged period of 

incongruence or absence is also crucial for the maintenance of equilibrium (Vuillerme, et al, 

2001). Thus, examining how the magnitude of postural sway changes following a 

manipulation of sensory information is important because it provides insight into the 

magnitude of postural disruption and the time course for postural compensation. For patients 

with PD, time based assessments of postural control following sensory perturbation will 

contribute additional knowledge regarding situations when PD patients may be most 

susceptible to a fall episode. Expansion of the current knowledge base in this domain may be 

important to increase patients' awareness of environmental situations impose balance threat, 
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and may contribute to the reduction of fall risk in this population. Moreover, investigation 

into the time-based characteristics of postural control among PD patients may be an important 

factor contributing to the development of rehabilitation strategies targeted at improving 

balance control in challenging sensory situations. 

1.5 SUMMARY 

PD is a progressive and neurodegenerative disease that imposes debilitating symptoms 

upon the patient, resulting in reduced independence and quality of life. Postural impairment is 

a concern for patients, because it is not alleviated by conventional drug therapy, and because it 

increases patient fall risk. Parkinsonian medications can be detrimental to balance because 

they reduce tonic rigidity occurring around the ankle and hip joints without improving the 

mechanisms underlying postural adaptation (Horak, Nutt, & Nashner, 1992; Bloem, et al., 

2001). Consequendy, although PD patients may experience medication-dependent relief from 

excessive muscle rigidity (Suchowersky, 2002), patients become more vulnerable to falls 

because they have difficulty mamtaining equilibrium in environmental situations that impose 

postural disruptions. 

Another factor affecting postural stability among PD patients is the central processing 

of peripheral sensory information (Bronte-Stewart, et al, 2002; Abbruzzese & Berardelli, 

2003; Nallegowda, et al., 2004). PD-associated basal ganglia dysfunction is theorized to cause 

deficits in the central processing and integration of sensory information for postural control 

(Bronstein, et al, 1990; Bronte-Stewart, et al., 2002; Abbruzzese & Berardelli, 2003). Adequate 

postural control is dependent upon the ability of the central nervous system to process and 

integrate, or 'make sense of, afferent sensory feedback conveying the current state of 

equilibrium relative to the sensory environment (Allison & Jeka, 2004). The maintenance of 

equilibrium in dynamic sensory environments can be challenging because it requires continual 
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prioritization of sensory inputs for postural control, a task which can be difficult for older 

adults who experience age-related decline in central processing capacity. Reorganization and 

prioritization of sensory inputs for postural control is often more even more difficult for PD 

patients, who may experience deficits in central processing capacity beyond those related to 

age. Consequendy, postural impairment may become intensified in situations involving 

deprivation or inaccuracy of sensory inputs. 

Sensory organization protocols are useful for the assessment of postural control under 

various sensory conditions (Nashner, 1993; Bronte-Stewart, et al., 2002; Tsang, Wong, Fu, & 

Hui-Chan, 2004), and generally accepted as a reliable paradigm of measuring the capacity of 

the central nervous system to prioritize and reintegrate sensory information (Nashner, 1993; 

Bronte-Stewart, et al, 2002; Tsang, et al, 2004). Although these protocols provide insight into 

the magnitude of postural disruption following sensory perturbation, they do not provide a 

time based assessment of postural control during the perturbation period, or during the 

reintegration period. 
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1.6. OBJECTIVES OF T H E THESIS 

The primary objective of this thesis is to provide an in-depth examination of the 

influence of PD on the time course for postural control following imposed manipulations of 

sensory information. Two studies were conducted to address this objective. The purpose of 

Study 1 was to investigate the effects of visual deprivation on the time course of the 

reweighing and reintegration of sensory information for postural control. The purpose of 

Study 2 was to investigate the time course for postural recovery following the termination of 

imposed situations of sensory incongruence. 

1.6.1. Study 1 Predictions 

Based on the evidence available in the literature (Bronstein, et al., 1990; (Bronte-

Stewart, et al., 2002; (Nallegowda, et al., 2004), it was predicted that visual deprivation would 

induce postural disruption that is more difficult to overcome for medicated Parkinson's 

patients than their healthy older adult counterparts. In addition, it was hypothesized that the 

time course for postural recalibration following the deprivation and reinsertion of visual 

information will be prolonged compared to healthy control subjects. 

1.6.2. Study 2 Predictions 

It was predicted that the termination of imposed intervals of sensory incongruence will 

induce postural disruptions among PD patients. Specifically, it was hypothesized that PD 

patients will express deficits in the reintegration of sensory information following the 

termination of a prolonged interval of sensory incongruence, and that this difficulty will 

emerge as a smaller magnitude of, and a prolonged time course for, postural recovery 

compared to neurologically healthy older adults. 
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II. STUDY 1 - PARKINSONIAN DEFICITS IN SENSORY INTEGRATION FOR 
POSTURAL CONTROL: T E M P O R A L RESPONSE TO ALTERATIONS IN 
VISUAL INPUT 

2.1. Introduction 

Postural control is a sensorimotor process in which the central integration of visual, 

vestibular, and propriocepdve information conveys the current state of equilibrium to ensure 

on-going regulation of motor commands appropriate to the sensory experience (Allison & 

Jeka, 2004). The redundancy of sensory information that is conveyed to the central nervous 

system permits flexibility to suppress incongruent sensory information and to compensate for 

situations of sensory conflict and/or sensory deprivation. Sensory manipulation experiments 

demonstrating increased postural impairment among PD patients implicate the basal ganglia as 

being crucial for the integration of sensory information for postural control (Bronstein, et al, 

1990; Chong, Horak, & Woollacott, 2000; Bronte-Stewart, et al, 2002; Nallegowda, et al, 

2004). 

Standard protocols (ie Sensory Organization Test, NeuroCom® International, 

Clackamas, OR) for investigating sensory contributions to postural control quantify the 

magnitude of deterioration in postural performance when a sensory feedback source is 

deprived or disrupted, either independendy or in combination with other feedback sources. 

The foundation of this testing protocol is to assess the integrity of the central nervous system 

to resolve conflicts of sensory information and to compensate for situations of sensory 

deprivation. Although results have been influential to current theories (Bronstein, et al., 1990; 

Chong, et al, 2000; Bronte-Stewart, et al., 2002; Dickin & Rose, 2004), a major limitation of 

these protocols is that they fail to provide any information regarding the time course for 

postural control during the sensory manipulation interval. For example, it may be possible that 
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the effect of altering sensory feedback is not instantaneous, but is time-lagged from the onset 

of the manipulation; perhaps as a function of characteristics such as age or disease state. 

Recendy, in recognition of this limitation, Vuillerme and colleagues (2001) explored the effect 

of sensory manipulation on the time course for postural control among skilled and unskilled 

gymnasts. Their findings confirmed that the effect of a sensory manipulation is not 

immediate, and that characteristics of the performer influence the time based effects of sensory 

manipulation. This information, currentiy unavailable from standard sensory organization 

protocols (Horak, et al, 1992; Chong, et al, 2000; Shumway-Cook & Woollacott, 2001; 

Bronte-Stewart, et al, 2002), provides a dimension of knowledge that will extend our current 

understanding of sensory contributions to postural control. 

Although current theory holds that the basal ganglia contribute to sensorimotor 

integration for postural control (Bronstein, et al., 1990; Bronte-Stewart, et al, 2002; 

Nallegowda, et al, 2004), stability among PD patients is not compromised when visual 

information is absent (Horak, et al, 1992; Waterston, Hawken, Tanyeri, Janti, & Kennard, 

1993; Bronte-Stewart, et al, 2002). Postural control is disrupted in these patients, however, if 

visual information is made incongruent to accurate somatosensory or vestibular feedback 

(Bronstein, et al, 1990; Bronte-Stewart, et al, 2002; Nallegowda, et al, 2004). These findings 

imply that PD patients can reweigh sensory feedback sources to prioritize accurate modalities 

when vision is absent, but that the presence of visual information, even if providing inaccurate 

feedback regarding the state of equilibrium, overrides the ability to reweigh sensory feedback 

sources and prioritize accurate information. Nonetheless, this continued use of visual cues, 

despite any incongruence, confirms that PD patients have a visual dependence for the 

regulation of postural control (Bronstein, et al, 1990; Nallegowda, et al, 2004) and presents 

the possibility that removing visual information may be initially disruptive to posture until 

remaining sensory inputs can be reorganized. This hypothesis has not been tested to date. Our 
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first purpose in this study was to compare the time course for postural control between PD 

patients and healthy control participants. In addition to the ability to reorganize sensory 

priorities following deprivation, the ability to reintegrate accurate sensory feedback following a 

period of deprivation or incongruence is also essential for successful postural control 

(Vuillerme, et al., 2001). I f PD patients experience difficulty when visual information is 

initially deprived, then similar effects should arise if visual cues suddenly become available. The 

second purpose in this study was to compare how PD patients and healthy controls adapt 

when visual information becomes available. Because PD patients depend on visual 

information for postural control, but can successfully reorganize sensory priorities when visual 

cues are removed, we expected that the initial effects of visual manipulation during removal 

and reinsertion would be more severe among PD patients than among controls. 

2.2. Materials & Methods 

2.2.1. Participants 

Thirteen participants with idiopathic Parkinson's disease (PD; M a g e = 67.7yrs, clinical 

characteristics in Table 2.1) and thirteen age-matched controls (control; M a g e = 65.1yrs) 

participated in this study, in accordance with the Declaration of Helsinki. All subjects were 

informed on the nature of the study and provided written consent for participation. Approval 

to conduct this study was provided by the Human Research Ethics committee of the 

University of Lethbridge and by the Institutional Review Board of Texas Tech University. 

Testing was conducted at both sites using the same equipment. O f the thirteen PD patients 

included in this study, nine were tested at the University of Lethbridge, and the remaining four 

were tested at Texas Tech University. PD patients were all taking dopaminergic medications, 

and were tested in their best ON (between 1 and 2 h post-medication) state, as confirmed by 

patient self-report and clinical measures. 
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Table 2.1. Clinical characteristics of Parkinson's disease patients. 

Subject Age Disease 
Duration (yrs) UPDRS (III) Medication Dosage (m 

Permax 100 
Carbidopa 200 

PD 1 54 7 16 Comtan 200 
Amantadine 100 

Sinemet 100 
PD 2 45 5 24 Carbidopa 100 

PD 3 70 1 13 Requip 300 

PD 4 65 1 11 Sinemet 100 
Sinemet 100 

PD 5 66 11 16 
Mirapex 100 

PD 5 66 11 16 
Comtan 200 

Amantadine 100 

PD 6 66 1.5 15 
Sinemet CR 160 

PD 6 66 1.5 15 
Mirapex 300 

PD 7 80 26 Sinemet 200 PD 7 80 5 26 Sinemet 200 PD 7 80 26 
Mirapex 300 
Permax 100 

PD 8 57 8 5 Sinement 200 
Amantadine 100 

PD 9 79 10 29 Sinemet 250 

PD 10 64 23 
Sinemet 50 

PD 10 64 9 23 
Sinemet 50 

PD 10 64 23 
Mirapex 300 

PD 11 80 15 34 Sinemet 80 

PD 12 80 5 29 Sinement CR 80 

PD 13 74 1 7 Sinemet 100 

2.2.2. Procedures 

Postural stability was assessed using measures of static postural sway obtained from a 

force platform (Bertec Corporation, Columbus, OH). Subjects performed two 45-second 

quiet standing trials in which they stood at a self-selected stance width without footwear, and 

with feet equidistant from the origin of the force platform in the medio-lateral dimension. 

During these trials, visual information was available for the first 15 seconds of the trial 

(Baseline: 0 to 15 sec), was removed for the middle 15 seconds of the trial (Perturbation: 15 to 
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30 sec), and was made available for the final 15 sec of the trial (Reintegration: 30 to 45 sec). 

Visual information was manipulated using liquid crystal vision-occlusion goggles (PLATO®, 

Translucent Technologies, Toronto, ON), which provide a near instantaneous (< 3ms) 

alteration in lens opacity between clear and occluded without any alteration in light intensity. 

During each trial, the goggles were open for the baseline interval (0 to 15 sec), were closed for 

the perturbation interval (15 to 30 sec), and were re-opened for the reintegration interval (30 to 

45 sec) of the balance trial. 

2.2.3. Data Analysis 

Forceplate data were collected at a sampling frequency of 600Hz (National Instruments 

16-bit A / D board; Lab View software). Forceplate data were filtered using a 4 t h order 

Butterworth dual pass digital filter at a cut-off frequency of 5 Hz using a custom written 

algorithm (Madab, The Math Works, Natick MA USA). Co-ordinates for the medio-lateral (x) 

and antero-posterior (y) positions of the centre of pressure relative to the forceplate origin 

were then calculated for the assessment of spontaneous postural sway. Postural control was 

quantified as Elliptical Sway Area, which represents the area of an ellipse that encompasses the 

points of the centre of pressure path (Sokal & Rohlf, 1981). 

The time course for postural control following visual deprivation and re-insertion was 

determined by dividing the 45 sec test trial into 9 equal 5 sec time bins and calculating the 

elliptical sway area for each bin. The immediate effect of the visual perturbation was 

investigated by comparing elliptical sway area obtained from the time bin prior to, and 

following, the removal (ie Bin 3 vs Bin 4) or the reinsertion (ie. Bin 6 vs Bin 7) of visual 

information. The time course for postural control during sensory reweighing in the absence of 

visual information was determined by comparing elliptical sway area across Bin 4 to Bin 6. 

The time course for reintegration of visual information was determined by comparing elliptical 
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sway area across Bin 7 to Bin 9. The effectiveness of sensory reweighing and reintegration was 

assessed by determining whether elliptical sway area values from the extended deprivation state 

(Bin 6) and the extended re-insertion state (Bin 9) approximated baseline levels (Bin 3). 

The possibility for time-dependent changes in baseline elliptical sway area values (Bins 1-

3) independent of visual manipulation was determined using a one-way Repeated Measures 

Analysis of Variance (RM ANOVA) across the first three time bins (Bins 1-3). A separate test 

was conducted for each group. We used separate GROUP X BIN Repeated Measures 

Analyses of Covariance (RM ANCOVA) to (1) assess the immediate effect of visual 

deprivation and the time course for the reweighing of sensory information in the absence of 

visual information, and (2) to assess the immediate effect of reinserting visual information and 

the time course for the reweighing of sensory information when visual information became 

available. The immediate effect of visual deprivation and the time course for reweighing 

sensory information in the absence of vision was compared between groups using a GROUP 

X BIN RM ANCOVA across time bins 3 through 6. The immediate effect of re-inserting 

visual information and the time course for reweighing sensory information when vision 

becomes available was determined using a GROUP X BIN RM ANCOVA across time bins 6 

through 9. For both tests, UPDRS (III) score was used as a covariate. Paired samples t-tests 

were conducted to assess within-groups differences following significant interactions (alpha = 

.05). 

2.3. Results 

There were no significant effects for BIN across the baseline interval among control or 

PD (p > .05). A significant main effect for BIN did emerge across bins 3-6 (F = 5.70; p = 

.005). Moreover, a significant BIN X GROUP effect confirmed that the effect of visual 

deprivation differed between control and PD patients (F = 3.47; p = .03). Post-hoc 

comparisons revealed that significant differences in elliptical sway area emerged between Bins 
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3 and 4 for both groups (Control: t(12) = -2.69; p = .02, PD: t(12) = -3.55; p = .004), and that 

elliptical sway area in the extended deprivation state (Bin 6) was not significandy different from 

initial deprivation levels (Bin 4). However, reductions in elliptical sway area across the 

deprivation period (Bins 4-6) brought elliptical sway area at Bin 6 among control to a level that 

was not significantly different from baseline (Bin 3), while elliptical sway area among PD did 

not return to baseline levels (Bin 3 P D vs Bin 6 P D : t (12) = -2.68; p = .020). These results are 

illustrated in Figure 2.1. 

There was no effect for BIN across the visual reintegration period (Bins 6-9: p > .05). 

Moreover, the effect of providing visual feedback after a prolonged absence did not differ 

between PD and control (p > .05). Finally, paired sample t-tests confirmed that there were no 

significant differences in ESA between Bin 9 and Bin 3 for either group (p > .05). 

2 5 -

oH 1 1 1 1 1 1 1 1 1 — 

0 1 2 3 4 5 6 7 8 9 

Bin 

Figure 2.1. Time course of sway area following visual deprivation and reinsertion. 
Values represent mean + SE. Shaded area indicates interval of visual deprivation. Elliptical sway area 
among PD patients is represented by open boxes, and among control participants by closed boxes. 
Each time bin represents a 5 sec portion of the 45 sec balance trial. Stability among PD patients and 
control subjects was disrupted by visual deprivation, but this disruption was sustained among PD 
patients only. Stability among PD patients was initially disrupted when visual information was 
reinserted. 
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2.4. Discussion 

The first purpose of this study was to compare the time course of postural control 

between PD patients and healthy control subjects immediately following the removal of visual 

information. Like control subjects, PD patients showed significant increases in sway area 

immediate to visual deprivation. However, contrary to our expectations, the magnitude of 

increase in postural sway following this sensory perturbation was comparable between groups, 

with control showing a 118% increase and PD showing a 128% increase over baseline elliptical 

sway area values immediate to visual deprivation. Furthermore, like control subjects, PD 

patients did not show a significant reduction from initial deprivation levels (Bin 4) by the 

extended deprivation interval (Bin 6). However, unlike control participants, sway in the 

extended deprivation state (Bin 6) among the PD patients remained significantly higher than 

baseline values. These results suggest that although both groups were equally affected by the 

onset of visual cue deprivation, the long-term effect of removing visual cues was more 

disruptive to postural control for PD patients than for control subjects. The inference we 

draw from this finding is that PD patients have initial difficulty with the reorganization of 

sensory inputs when visual information is deprived. This interpretation is in apparent 

contradiction with findings published by Bronte-Stewart and colleagues (2002), who 

forwarded that postural control among PD patients was not compromised when visual 

information is deprived. However, due to methodological differences between our study and 

that of Bronte-Stewart and colleagues', we suggest that our fmdings extend, rather than 

contradict, this previous work. Specifically, Bronte-Stewart et al. (2002), present an assessment 

of postural control during trials in which vision was removed when participants closed their 

eyes. Our study assessed the effect of visual deprivation by removing visual cues using 

computer-controlled liquid crystal goggles that did not require eye closure. Rougier (2003) 
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suggested that eyelid closure during upright standing increases excitatory drive to postural 

muscles and enhances muscle tone. Established links between increased activation of the 

musculature relevant to the regulation of upright standing and a reduction in postural sway 

(Winter, et al., 1998; Carpenter, Frank, & Silcher, 1999; Brown, Polych, & Doan, under 

review) confirm that increased muscle tone can serve to preserve postural control. That this 

effect was mediated by eyelid closure is supported by Rougier's (2003) suggestion that 

brainstem circuits exert control over muscles that regulate eyelid closure. Specifically, levator 

palpebrae muscle fibres travel through the oculomotor nerve, which in turn may interact with 

the mesencephalic and paramedian pontine reticular formations of the brainstem via 

connections with the oculomotor nuclei (Rougier, 2003). These brainstem regions are also 

thought to exert control over descending pathways and influence the activity of motor neurons 

providing innervation to axial postural muscles (Sapper, 2000). Through this mechanism, the 

action of eye closure may partially reduce postural sway resulting from deprivation of visual 

information and, consequendy, provide justification why the results presented in this study 

differ from those published previously (Bronte-Stewart, et al, 2002). 

The second purpose of this study was to determine the time course of postural control 

between PD patients and healthy control subjects following the re-insertion of visual 

information. Our findings indicate that Parkinson's disease patients expressed initial difficulty 

with the reintegration of visual information for postural control. Specifically, postural sway 

among PD patients did not initially decrease when visual information was reintroduced (Bin 6 

vs Bin 7). Interestingly, similar to PD patients, control subjects did not show significant 

reductions in sway area when visual information became available. However, postural sway 

among control participants had already reduced to baseline levels by the end of period of 

visual deprivation (Bin 3 vs Bin 6) thereby removing the need for any further improvement in 

stability. Postural sway among PD patients, on the contrary, was significantly higher than 
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baseline at the end of visual deprivation (Bin 6), and did not immediately deviate from this 

level when visual information was made available. This finding implies a deficit associated 

with the demands of reintegrating visual information that results from basal ganglia 

dysfunction and is not alleviated by levodopa therapy. A similar concept has been forwarded 

by Bronstein and colleagues (1990), who suggested a role for the basal ganglia in postural 

adjustment under novel sensory environments. These authors proposed that postural 

adjustment in novel sensory conditions is dependent upon effective reweighing of 

sensorimotor loops. Consequendy, compromised postural control among PD patients in 

situations of visual incongruence may emerge because patients cannot de-emphasize the 

influence of the visuopostural loop. Based on the findings of this study, we suggest that the 

sustained increase in postural sway among PD patients emerged as a result of central deficits 

with the reorganization of sensory information for postural control. 

Overall, our results indicate a persistent, Parkinson's disease-associated dependence on 

visual information for posture that could not be captured without (1) a protocol that permitted 

manipulation of visual information without eye closure, or (2) a time based analysis of postural 

control. We suggest that this apparent visual dependence may be driven by deficits in central 

integration of sensory information necessary for the maintenance of stability. When visual 

information is absent, the central nervous system should reorganize the sensory hierarchy to 

prioritize remaining sensory input and adjust posture accordingly. PD patients, however, 

exhibited a more persistent increase in postural sway when visual information was deprived. 

This finding implies that PD patients were unable to prioritize remaining sensory input to 

adjust posture. Moreover, the gradual reduction in postural sway following reintroduction of 

visual feedback may indicate inherent deficits in patients' ability to quickly (< 5 sec) reintegrate 

visual information when it becomes available following a prolonged absence. This difficulty 
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with initial postural adjustment may implicate the basal ganglia as a critical structure for the 

reorganization of sensory inputs following visual manipulation. 

2.6. Conclusion 

Regardless of the underlying mechanisms, our results indicate that Parkinson's patients 

express inherent deficits of sensorimotor integration when visual information is absent. This 

fmding may be particularly important for patients to consider should they encounter daily 

situations in which the availability of visual cues becomes compromised, such as when moving 

from a lighted to a darkened room. Increasing patients' awareness of disease-related 

integrative deficits may be an important method to reduce fall risk in this population. 
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III. STUDY 2 - PARKINSONIAN CAPACITY F O R POSTURAL R E C O V E R Y 
F O L L O W I N G T H E T E R M I N A T I O N OF SENSORY I N C O N G R U E N C E 

3.1 Introduction 

For body equilibrium to be maintained, the central nervous system must process and 

integrate sensory feedback to generate a set of motor commands that are appropriate to the 

sensory environment (Balasubramaniam & Wing, 2002; Allison & Jeka, 2004). The 

redundancy of sensory inputs conveyed to the central nervous system allows flexibility to 

disregard incongruent sensory information and to prioritize accurate sensory inputs without 

compromising postural control if the sensory environment is altered (Shumway-Cook & 

Woollacott, 2001; Allison & Jeka, 2004). For example, to maintain balance while standing on a 

moving walkway, visual flow created by walkway motion conveys the message that the body is 

moving, while vestibular and somatosensory information indicate that the body is stationary. 

For balance to be preserved in this situation, the central nervous system must disregard 

erroneous visual information implying body motion, and prioritize accurate vestibular and 

somatosensory information. 

Clinical evidence derived from balance assessment paradigms incorporating 

computerized dynamic posturography indicates that postural control among patients with PD 

is readily compromised when sensory feedback sources convey incongruent information. For 

example, Bronte-Stewart and colleagues (2002) demonstrated disrupted postural control 

among PD patients when somatosensory information was incongruent with vestibular 

information. Similarly, Nallegowda and colleagues (2004) noted that situations of visual and 

visuo-somatosensory incongruence induced postural disruptions of greater magnitude among 

PD patients compared to control subjects. Taken together, these results indicate that PD 

patients may express difficulty with the suppression of incongruent sensory information and 
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with the prioritization of accurate feedback sources to ensure that stability is maintained 

(Bronte-Stewart, et al., 2002; Nallegowda, et al., 2004). These findings provide empirical 

support for the current theory imphcating the basal ganglia as being crucial for the integration 

of sensory information for postural control (Bronstein, et al, 1990; Bronte-Stewart, et al, 

2002; Nallegowda, et al, 2004). 

It stands to reason that if postural control is initially disrupted when sensory inputs 

become incongruent, then a similar effect may occur when sensory incongruence ends. For 

example, if patients are unable to quickly readjust sensory priorities to reflect the most current 

state of the sensory environment, then postural disruption may continue even when sensory 

conflict is no longer present. In addition, if PD patients are compromised in their capacity to 

reintegrate accurate sensory inputs, then postural recovery may be time-lagged to the 

termination of sensory incongruence. A similar delay in postural recovery following sensory 

reintegration has been identified between balance-trained and balance-untrained adults 

(Vuillerme, et al, 2001), and among PD patients in situations of visual deprivation (Brown, 

Cooper, Doan, Dickin, Pellis, Whishaw, & Suchowersky, under review). Whether a similar 

delay in postural recovery exists when sensory incongruence ends remains to be explored as a 

possible deficit of PD. The purpose of this study was to investigate the time course for 

postural control following the termination of an imposed period of sensory incongruence 

among PD patients. We assessed postural control of medicated PD patients and 

neurologically normal older adults during standing trials that progressed through baseline quiet 

standing, sensory manipulation, and reintegration. This paradigm provided a qualitative 

assessment of the magnitude of postural recovery and the time course for postural recovery 

experienced by PD patients following brief visual, somatosensory, or visuo-somatosensory 

perceptual incongruencies. Based on previous evidence (Bronstein, et al, 1990; Bronte-

Stewart, et al, 2002; Nallegowda, et al, 2004; Brown, et al., under review), we suggest that the 
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magnitude of postural recovery following sensory manipulation will be smaller among PD 

patients, and that they will express a prolonged time course for sensory reintegration compared 

to healthy older adults. An expanded understanding of the time course for sensory 

reintegration for postural control may help tailor mobility strategies and rehabilitation therapies 

for PD patients, and consequently be beneficial for the maintenance of optimal quality of life. 

3.2. Materials & Methods 

3.2.1. Participants 

Seven participants with idiopathic Parkinson's disease (PD; M a g e = 63.6 ± 5.2 yrs, clinical 

characteristics in Table 3.1) and seven age-matched older adults (control; M a g e = 63.8 ± 4.9 yrs) 

participated in this study. All subjects were informed on the nature of the study prior to 

providing written consent for participation. Ethics approval for this study was provided by the 

Institutional Review Board of Texas Tech University. All PD patients were taking 

dopaminergic medications, and were tested in their best ON (between 1 and 2 h post-

medication) state, confirmed via patient self-report and clinical measures. PD patients and 

control subjects were recruited from the surrounding community and from the local university. 

3.2.2. Equipment 

Postural stability was assessed using computerized dynamic posturography (CDP), 

conducted on a SMART Balance Master (SMART-BM)(NeuroCom International, Clackamas, 

OR) using DATA software version 2.1. The SMART-BM is comprised of a 36 cm x 36 cm 

forceplate enclosed on three sides by a visual surround room. The platform and visual 

surround were coupled to servo-motors that facilitated sway-referenced rotational movement 

in the antero-posterior plane. A separate computer and analog-to-digital board (DAQPad-

6020E - National Instruments, Austin, TX) were used to collect load cell and potentiometer 

41 



signals from the forceplate, visual surround room, and a synchronization pulse from the 

SMART-BM. 

Table 3.1. Clinical characteristics of Parkinson's disease patients. 

Patient Age 
Disease Duration UPDRS 

(yrs) (III) Medication 
Dosage 

(mg/day) 

PD01 63 1.5 15 Requip 3.75 

PD02 82 5.5 21 Carbidopa 100 

PD03 54 8.5 16 

Permax 
Carbidopa 
Comtan 

Amantadine 
Sinemet 

1 
200 
200 
100 
100 

PD04 45 5.5 24 Carbidopa 100 

PD05 70 1.0 13 Requip 5 

PD06 66 10.0 26 
Sinemet 
Requip 

25 
3 

PD07 65 4.0 11 Sinemet 100 

3.2.3. Procedures 

Participants were fitted with an upper-body harness and positioned on the force 

platform according to manufacturer specifications based on participant height. Participants 

were asked to stand as still as possible while directing their gaze straight ahead. 

Three sensory conditions were included in this study. The conditions selected for this 

study represent three testing conditions of the Sensory Organization Test (Nashner, 1993) 

that create sensory incongruence. Each condition included either a disruption of visual 

information, achieved by sway-referenced movement of the visual surround, a disruption of 
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somatosensory information, achieved by sway-referenced rotation of the force platform, or 

both, achieved by sway-referenced rotation of the force platform and sway-referenced 

movement of the visual surround. The three test conditions included in this study were: a) 

sway referenced room with eyes open (SOT3), referred to hereafter as EOR, b) sway 

referenced floor with eyes open (SOT4), referred to hereafter as EOF, and c) sway referenced 

room and sway referenced floor with eyes open (SOT6), referred to hereafter as EOFR. An 

oudine of the imposed sensory conditions are available in Figure 3.1. 

Fixed 

Visual Condition 

Eyes Closed Sway-Referenced 

J 

• a 
u 
e 

t i es 
t/2 

4. 

1 * I 

< 0 > i 

s . 

, ' \ ' 

6. r 

Sensory Organization Test 

Figure 3.1. Sensory conditions of the Sensory Organization Test. We assessed postural control during 
Conditions 3, 4, and 6. Condition 3 (EOR) involved sway-referenced movement of the visual surround; 
Condition 4 (EOF) involved sway-referenced movement of the force platform; Condition 6 (EOFR) 
involved sway-referenced movement of the force platform and visual surround (figure adapted from 
Allison & Jeka, 2004 and Shumway-Cook & Woollacott, 2001). 
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Each trial lasted a total of 45 seconds, and was divided into three equal 15 second time 

intervals that differed based on the availability of sensory information. Participants had full 

sensory availability during the initial (haseline) 15 seconds and the final (reintegration) 15 

seconds of each test trial; the middle 15 seconds consisted of the perturbation interval, during 

which sensory incongruencies were present. Participants were blinded to the testing 

conditions, and were not given any information regarding commencement of sensory 

manipulation. All participants performed three trials on each of the three balance conditions 

in a block randomized order, with a five minute rest period between blocks. 

3.2.4. Data Analysis 

Data were sampled at 1000Hz over a 45 second duration and stored off-line for 

analysis. Force platform data were filtered using a dual pass zero-phase Butterworth filter with 

a cutoff frequency of 4 Hz (Madab, Mathworks Inc, Natick MA). Postural stability was 

determined using an Equilibrium Quotient (NeuroCom International, Clackamas OR), which 

provides a measure of the maximum AP centre of mass angle measured as a percentage of the 

theoretical maximum sway an individual can tolerate before losing balance (Bronte-Stewart, et 

al., 2002). Measurement of equilibrium quotient is common in clinical practice and is standard 

to sensory organization protocols. Moreover, assessment of equilibrium quotient over time 

has been shown to be consistent and unaffected by learning bias (Coogler & Wolf, 1992; 

Nashner, 1993; Paloski, et al., 1999). Equilibrium quotient (expressed as a percent score) was 

calculated off-line using the following algorithm: 
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%EQ = 12.5° - (0max- 0min) 
x 100, 

12.5° 

where 12.5° is the normal range of antero-posterior sway, 
0max is the maximum excursion of the centre of mass, and 
©min is the minimum excursion of the centre of mass in the antero-posterior direction 
(Bronte-Stewart et al, 2002)). 

Equilibrium quotient scores were calculated across the baseline interval (Base; 0 msec — 

15000 msec), across the perturbation interval (Pert; 15001 msec - 30000 msec), and across the 

reintegration interval (R; 30001 - 45000 msec). To assess postural behaviour during the 

reintegration interval, equilibrium quotient scores were calculated across five separate 3 sec 

time intervals commencing when the perturbation interval ended: Reintegration Bin 1 (Rl): 

30001 - 33000 msec; Reintegration Bin 2 (R2): 330001 - 36000 msec, Reintegration Bin 3 

(R3): 36001 msec - 39000 msec, Reintegration Bin 4 (R4): 39001 msec - 42000 msec, and 

Reintegration Bin 5 (R5): 42001 msec - 45000 msec. Similar to Vuillerme and colleague's 

(2001) study, we restricted our analysis of postural recovery to time bin intervals Rl and R2. 

To assess postural recovery during these selected time intervals, absolute (EQ A B S ) and relative 

improvements ( E Q ^ / J in equilibrium quotient score following perturbation were determined. 

Absolute recovery of postural stability at Rl was determined as the change in equilibrium 

quotient score calculated between the minimum equilibrium quotient score (ie maximum 

instability) during the perturbation interval and the baseline interval. Relative recovery of lost 

stability was determined to assess bin-specific postural recovery, and was expressed as the 

percentage of stability recovered relative to the total stability lost using the following algorithm: 
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EQw. (%) = EQRW ~ EQR(n ~ D 
100%, 

ABS 

where n = Equilibrium Quotient score at R l , 
n-1 = Equilibrium quotient score at Pert, 
E Q A B S = change in equilibrium quotient score calculated between the minimum 
Equilibrium Quotient score during perturbation and the baseline E Q score. 

3.2.5. Statistical Analysis 

Unpaired samples t-tests were conducted to assess between groups differences in the 

magnitude of postural recovery at time bins R l and R2 following each sensory manipulation. 

Unpaired samples t-tests were also conducted to assess between groups differences in relative 

postural recovery at time bins Rl and R2 following each sensory manipulation (alpha = .05). 

3.3. Results 

Time series data for each sensory perturbation are provided in Figure 3.2(A.), Figure 

3.3(A.), and Figure 3.4(A.) to indicate the effect of sensory perturbation on PD and control 

subjects. The effect of sensory perturbation on postural control is already documented 

(Bronte-Stewart, et al, 2002; (Nallegowda, et al., 2004); our analyses are restricted to the 

reintegration period. 

3.3.1 EOR 

Unpaired samples t-tests conducted on absolute recovery revealed a significant difference 

between control subjects and PD. Specifically, the magnitude of absolute recovery among PD 

patients at time bin Rl was greater than control subjects (t = -2.67; p = .021; Figure 3.2B). 

There was no significant between groups difference in absolute recovery at R2. Independent 
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samples t-tests conducted for relative postural recovery indicated that control participants and 

PD did not differ in relative postural recovery at R l , with both groups showing near-complete 

postural recovery within this time interval (t = 0.10 ; p > .05, control r d R 1 = 95.5 ± 9.6%; PD r e l R 1 

= 94.3 ± 9.6; Figure 3.2C). No differences in relative postural recovery emerged between 

groups at bin R2 (p > .05). 

33.2. EOF 

Unpaired samples t-tests conducted for absolute postural recovery did not reveal any 

significant between groups differences in postural recovery at either Rl or R2 (p > .05), 

indicating that the magnitude of postural recovery did not differ between control participants 

and PD (Figure 3.3B). No significant between groups differences emerged for relative postural 

recovery at either Rl or R2, indicating that relative recovery did not differ between control 

subjects and PD (p > .05; Figure 3.3C). 

3.3.3. EOFR 

No significant differences in the magnitude of absolute recovery emerged between 

CTRL and PD subjects at either R l or R2 (p > .05; Figure 3.4B). Moreover, there were no 

between groups differences in relative postural recovery at either R l or R2 (p > .05; Figure 

3.4C). 

47 



(B.) EORabs (C.) EORrel 

20 

- 15H 

10' 

] R1 
1R2 

120' 
O 

| 100 
!5 
3 
Z 80-o 

t 60-
> 

| 40-
S 

1 20-

0-

R1 
R2 

Control PD Control PD 
Group Group 

Figure 3.2. Time series data (A), absolute (B), and relative recovery (C) of postural stability among PD 
patients and control participants. Time series data (A) represent fluctuations in stability in both groups 
across the duration of the 45sec balance trial. Values are expressed as means ± SE. Shaded region indicates 
time bins of interest across which absolute and relative recovery were compared between groups. (B) 
represents absolute recovery of postural stability across time bins Rl (open portion of bars) and R2 (shaded 
portion of bars), measured as the absolute magnitude of improvement in equilibrium quotient score 
following termination of visual incongruence. (C) represents relative recovery of postural stability across Rl 
and R2 following the termination of visual incongruence. Relative recovery was measured as the percentage 
of stability recovered at Rl and R2 relative to stability lost during the interval of visual incongruence. 
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Figure 3.3. Time series data (A), absolute (B), and relative recovery (C) of postural stability among PD 
patients and control participants. Time series data (A) represent fluctuations in stability in both groups 
across the duration of the 45sec balance trial. Values are expressed as means ± SE. Shaded region indicates 
time bins of interest across which absolute and relative recovery were compared between groups. (B) 
represents absolute recovery of postural stability across time bins Rl (open portion of bars) and R2 (shaded 
portion of bars), measured as the absolute magnitude of improvement in equilibrium quotient score 
following termination of somatosensory incongruence. (C) represents relative recovery of postural stability 
across Rl and R2 following the termination of visual incongruence. Relative recovery was measured as the 
percentage of stability recovered at Rl and R2 relative to stability lost during the interval of somatosensory 
incongruence. 
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Figure 3.4. Time series data (A), absolute (B), and relative recovery (C) of postural stability among PD 
patients and control participants. Time series data (A) represent fluctuations in stability in both groups 
across the duration of the 45sec balance trial. Values are expressed as means ± SE. Shaded region indicates 
time bins of interest across which absolute and relative recovery were compared between groups. (B) 
represents absolute recovery of postural stability across time bins R l (open portion of bars) and R2 (shaded 
portion of bars), measured as the absolute magnitude of improvement in equilibrium quotient score 
following termination of visuo-somatosensory incongruence. (C) represents relative recovery of postural 
stability across Rl and R2 following the termination of visual incongruence. Relative recovery was measured 
as the percentage of stability recovered at Rl and R2 relative to stability lost during the interval of visuo-
somatosensorv incongruence. 

3.4. Discussion 

The purpose of this study was to investigate the time course for postural control 

following the termination of an imposed period of sensory incongruence. We assessed 

postural recovery across two separate time intervals between Parkinson's disease patients and 
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age matched neurologically normal older adults. Overall, our results indicate that PD patients 

showed patterns of postural recovery that were similar to control subjects. These fmdings 

suggest that the PD patients involved in this study did not show deficits in postural recovery 

when situations of sensory incongruence end and imply that these patients did not experience 

deficits in sensory reintegration for postural control. 

Based on recent evidence displaying postural disruption among PD patients during 

periods of sensory incongruence (Bronte-Stewart, et al., 2002; Nallegowda, et al., 2004), our 

hypothesis for this study was that PD patients would show continued postural disruption when 

sensory incongruence ends. The rationale behind this hypothesis was that if PD patients 

express deficits in the reorganization of sensory information when sensory information is 

incongruent, then correcting the inaccuracy could be disruptive because it also requires a 

reconfiguration of the postural control system (Vuillerme, et al, 2001). Contrary our 

expectation, we did not observe any differences in the relative magnitude of postural recovery 

between PD patients and control subjects following any of the sensory manipulations imposed 

in this study. In fact, PD patients and control subjects showed similar patterns of recovery 

when the period of sensory incongruence was terminated. Specifically, both groups 

demonstrated improvement in postural recovery during the first time bin interval in each 

sensory condition ( P D ( R l ) E O R = 95%, control(Rl) E O R = 93%; P D ( R 1 ) E 0 F = 78%, 

control(Rl) E O F = 79%; P D ( R l ) E O F R = 76%, control(Rl) E O F R = 74%), and both groups achieved 

complete postural recovery during the second time bin interval in each testing condition 

(PD(R2) E 0 R = 5%, control(R2) E O R = 7%; P D ( R 2 ) E O F = 12%, control(R2) E O F = 11%; 

P D ( R 2 ) E O F R = 24%, control(R2) E O F R = 26%). An interesting finding was that a difference did 

emerge between groups in magnitude of absolute recovery at R l for SOT1. Specifically, the 

PD group exhibited a greater magnitude of absolute recovery at Rl compared with control 

subjects (PD R l a b s = 12%; control R l a b s = 4%). This fmding indicates that PD patients were able 
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to recover from a greater magnitude of postural disruption within the same time period as 

control subjects. Moreover, these results confirm that PD patients, like control subjects, 

showed complete postural recovery witiiin a 6 second time interval. 

Collectively, the results of this study indicate a similar time course for postural recovery 

between PD patients and control subjects when periods of sensory incongruence are 

terminated. This fmding implies that PD patients retain the ability to reintegrate congruent 

sensory information for postural control. This implication is surprising for several reasons. 

First, previous experiments revealed that situations of sensory incongruence induced postural 

disruptions among PD patients beyond those observed among control participants (Bronstein, 

et al, 1990; Bronte-Stewart, et al, 2002). These postural disruptions were suggested to reflect 

deficits in sensory reweighing for postural control (Bronstein, et al., 1990; Bronte-Stewart, et 

al, 2002). Based on this evidence, we expected that parkinsonian deficits in sensory 

integration would extend to the process of sensory reintegration, which also requires 

reorganization of the postural control system (Vuillerme, et al, 2001). 

The absence of any differences between control participants and PD subjects may reflect 

the demographics of the patient population included in this study. One possibility is that 

disease duration may differentially influence the central integration of sensory information for 

postural control among PD patients. A similar explanation was forwarded by Smiley-Oyen 

and colleagues (2002), who observed that early-stage PD patients, like control subjects, were 

able to improve postural control following only one trial of somatosensory incongruence. The 

authors suggested that early-stage PD patients retained their ability to de-emphasize erroneous 

somatosensory information and maintain postural control by instead prioritizing congruent 

visual and vestibular inputs (Smiley-Oyen, Cheng, Latt, & Redfern, 2002). In the current 

study, the mean disease duration among PD patients was shorter than the patients included in 

Smiley-Oyen and colleagues' (2002) study. Consequendy, it remains possible that the apparent 
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retention of the capacity for sensory reintegration for postural control among the patients 

included in the current study was related to their early-stage disease state. Indeed, Klawans 

and Topel (1974) suggested that postural difficulties generally begin to emerge in patients with 

a more advanced disease state. Thus, it must be acknowledged that although our findings 

present promising insight regarding patients' ability to recover from postural disruption 

following periods of sensory incongruence, these fmdings may not be generalized across the 

parkinsonian population as a whole. It stands to reason that disease progression to mid- and 

late-stage PD could induce progressive decline in the capacity for the central integration of 

sensory information for postural control, and thus provides foundation for further exploration. 

Following the findings of Bronte-Stewart and colleagues (2002), it is also possible that 

PD patients may respond differendy during sensory reintegration. For example, Bronte-

Stewart and colleagues (2002) observed a differential effect of sensory manipulation among 

PD patients included in their study. Specifically, these authors noted two groups of PD 

patients who were differentially affected by sensory manipulation: one group whose postural 

control was not disrupted following any sensory manipulation, and another group who was 

particularly disrupted when somatosensory information was incongruent. The authors noted 

that the differences in postural disruption between these groups were not related to age, 

disease duration, or disease severity. This finding implies the existence of subpopulations of 

patients who express vastly dissimilar patterns of postural behaviour during periods of sensory 

incongruence. Therefore, these patients may also exhibit diverse patterns of postural recovery 

when sensory feedback becomes congruent. It is possible that some of the patients included in 

the current study comprised a similar subset of patients whose posture is not disrupted by 

sensory incongruence. Therefore, future work incorporating a larger sample of PD patients 

should explore this possibility. 

The work presented in this study provides preliminary insight into the postural behaviour 
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of PD patients during the process of sensory reintegration. Although we have incorporated 

the use of a standardized and widely accepted method of postural assessment (Dickin, Brown, 

& Doan, in press), future work should incorporate an analysis of postural control across 

shorter time bin intervals to address the possibility that group differences in the onset of 

postural recovery may exist. For example, it is possible that the onset of postural recovery 

occurs earlier for control subjects than for PD patients, but that this difference could not be 

captured across the time interval used in this study. In addition, the use of time-series analyses 

(ie stabilogram diffusion analysis (Mitchell, Collins, De Luca, Burrows, & Lipsitz, 1995)) to 

assess postural recovery during sensory reintegration may provide deeper insight into postural 

behaviour expressed by PD patients when sensory incongruence ends. 

3.5. Conclusion 

The PD patients included in this study displayed a time course for complete postural 

recover}^ that was comparable to control subjects. This finding implies that PD patients' 

capacity for the reintegration of sensory inputs for postural control following the termination 

of sensory incongruence was maintained, and provides positive insight regarding patients' 

ability to recover from postural disruption induced by situations of sensory incongruence. 

Nonetheless, continued research aimed at investigating reintegrative capacity among patients 

varying in disease state may provide valuable information regarding the stage of disease 

progression at which deficits in sensory integration for postural control emerge. Moreover, 

educating patients about environmental situations that impose balance threat may be an 

important method to assist patients in developing strategies to minimize fall risk. 
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IV. G E N E R A L DISCUSSION 

This thesis investigated the influence of Parkinson's disease on the time course for 

postural control following imposed sensory manipulations. Two studies were conducted to 

investigate postural behaviour among PD patients and age-matched neurologically healthy 

older adults following situations of sensory deprivation and sensory incongruence. Study 1 

examined the effects of visual deprivation on the time course for postural control among PD 

patients and among control participants. Study 2 explored the time course for postural 

recovery among PD patients and control participants following the termination of an imposed 

period of sensory incongruence. In both studies, participants performed quiet standing trials 

that progressed through baseline quiet standing, sensory manipulation, and reintegration. 

4.1. The Influence ofPD on Postural Behaviour Following Visual Deprivation 

The first study in this thesis investigated the time course for postural control among PD 

patients and control subjects following an imposed period of visual deprivation. We chose to 

investigate the specific effects of visual deprivation because it is well documented that PD 

patients express visual dependence for postural control (Bronstein, et al., 1990; Nallegowda, et 

al, 2004). This visual dependence is proposed to result from deficits in the central integrative 

processes necessary for the preservation of balance when the availability of sensory 

information becomes compromised. Specifically, disruptions to postural control among PD 

patients become apparent because of defective sensory reweighing processes that facilitate 

balance control in situations of visual deprivation. Because the basal ganglia have been 

implicated as making a crucial contribution to sensorimotor integration for postural control 

(Bronstein, et al, 1990; Bronte-Stewart, et al, 2002; Abbruzzese & Berardelli, 2003; 

Nallegowda, et al, 2004), we expected that an imposed period of visual deprivation would 
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induce greater postural disruption among PD patients compared to control subjects. Although 

the results from Study 1 did not reveal differences in the magnitude of disruption following 

visual deprivation between groups, they did confirm the disruptive effect of visual deprivation 

on postural control among both groups. Interestingly, the disruptive postural effect of visual 

deprivation among PD patients was sustained across the duration of the deprivation period. 

In contrast, control subjects were able to improve postural stability across the deprivation 

period, such that stability in the extended deprivation state approximated baseline stability. 

This finding indicates that PD patients, in contrast to control subjects, had initial difficulty 

with the reorganization of sensory inputs for postural control when visual information is 

deprived. In addition, this reduced capacity for sensory reorganization when visual 

information is deprived may be related to parkinsonian deficits in sensory integration for 

postural control. 

Perhaps the most compelling fmding from Study 1 was that, contrary to control 

participants, PD patients were unable to quickly improve postural control despite the renewed 

availability of visual information. Although patients were able to achieve baseline stability by 

the end of the balance trial, they were unable to do so as quickly as control subjects. This 

result indicates that PD patients experienced difficulty in the reintegration and utilization of 

visual information to improve balance control. A similar explanation was forwarded by 

Bronstein and colleagues (1990), who suggested a role for the basal ganglia in postural 

recalibration in novel sensory environments. These authors suggested that the preservation of 

equilibrium in novel sensory contexts depends on effective reweighing of sensorimotor loops. 

The process of sensory reintegration requires that previously unavailable or incongruent 

sensory information is reintegrated into the sensory hierarchy, and that sensory priorities are 

subsequently reorganized to reflect the most current state of the sensory environment. The 

consequence of ineffective sensor}7 reorganization processes in situations of visual deprivation 
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may emerge because patients experience difficulty rapidly de-emphasizing, and later re-

emphasizing, the contribution of the visuopostural loop. Moreover, the sustained disruption 

in postural control when visual information was made available following prolonged absence 

may reflect perpetual central reorganizational deficits that are associated with basal ganglia 

dysfunction. Overall, the findings from Study 1 provide additional evidence to substantiate the 

notion of basal ganglia contributions to sensory integration for postural control (Bronstein, et 

al, 1990; Chong, et al, 1999; Teasdale & Simoneau, 2001; Bronte-Stewart, et al., 2002). 

4.2. The Influence of PD on Postural Beha viour Following Sensory Incongruence 

The second study in this thesis examined postural control among PD patients and 

control subjects following situations of imposed sensory incongruence. Specifically, we sought 

to investigate the time course for postural recovery following the termination of imposed 

periods of visual, somatosensory, and visuo-somatosensory incongruencies. We expected the 

results of this study to reveal differences in postural recover}7 between PD patients and control 

subjects following the termination of sensory incongruence. Our results revealed that, 

contrary to our expectation, PD patients demonstrated postural recovery that was comparable 

to control participants, regardless of the sensory manipulation imposed. Specifically, like 

control subjects, PD patients retained their ability to recover from postural disruption induced 

by sensory incongruence, and that, interestingly, they were able to do so within the same time 

interval as control subjects. Overall, the results from Study 2 indicate that PD patients not 

only retained their ability to recover from postural disruption induced by sensory 

incongruence, but that they were able to do so within the same time period as control subjects. 

The results derived from this study suggest that PD patients and control subjects exhibit a 

similar time course for postural recovery following the termination of imposed situations of 

sensory incongruence. This finding implies that, among these patients, the functional capacity 
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of the basal ganglia to reintegrate congruent sensory information for postural control following 

a prolonged period of incongruence was preserved. 

The measures used to quantify postural control in this thesis are different between Study 

1 and Study 2. Our measurement of postural stability in Study 1 was elliptical sway area, which 

quantified the area of an ellipse that captured 95% of the centre of pressure movement area. 

By using this measure, we were able to capture centre of pressure movement in the antero

posterior and medio-lateral dimensions. As a result, we were able to quantify the area of 

postural sway occurring in two dimensions. To quantify postural stability in Study 2, we used 

equilibrium quotient score, which quantifies centre of mass movement in the antero-posterior 

dimension. Equilibrium quotient score is the standardized measure that is used in sensory 

organization test protocols applied in clinical settings (Bronte-Stewart et al, 2002; Nashner 

1993; Allison & Jeka, 2004), and as such, our use of this measure conformed to the parameters 

of the protocol. 

Although elliptical sway area and equilibrium score quantify the displacement of two 

different variables (i.e. centre of pressure versus centre of mass), they are related because of the 

biomechanical relationship between centre of pressure and centre of mass. Specifically, centre 

of pressure and centre of mass are related such that displacement of the centre of pressure 

influences displacement of the centre of mass. For example, if centre of pressure position 

moves far enough ahead (i.e. anteriorly) of the centre of mass, the centre of mass will also 

move in the anterior direction. If the centre of mass moves too far anteriorly, however, centre 

of pressure will move posteriorly until it is located behind the centre of mass. This posterior 

displacement of the centre of pressure behind the centre of mass will cause posterior 

displacement of the centre of mass to its original position (Winter, 1995). Consequendy, 

fluctuations in the location of the centre of pressure relative to the centre of mass function to 

constrain the centre of mass within the body's base of support. Because of this biomechanical 
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relationship, both elliptical sway area and equilibrium quotient score are acceptable measures 

to quantify postural sway. Specifically, centre of pressure movement influences centre of mass 

movement, such that the magnitude of centre of pressure movement induces a greater 

magnitude of centre of mass movement. Consequendy, a lower equilibrium quotient score in 

Study 2 indicated a greater magnitude in centre of mass movement, which can be inferred to 

result from a greater magnitude in centre of pressure movement. We performed a post hoc 

correlation between elliptical sway area and equilibrium quotient score to confirm that the 

documented relationship between centre of pressure and centre of mass movement was 

upheld for the results presented in this thesis. A significant relationship between these 

variables did emerge, such that decreases equilibrium quotient score were significantly 

correlated with increases in elliptical sway area. This relationship provides justification for our 

use of measures in these experiments. 

4.3. Postural Stability Following Sensory Deprivation Versus Sensory Incongruence 

Perhaps the most compelling finding in this thesis was that the detrimental postural 

effects induced by visual deprivation were sustained among PD patients even when visual 

information was made available. In contrast, postural control among PD patients was not 

disrupted following the termination of a prolonged period of visual incongruence. Although 

the mediating factor for this difference may be disease duration, further explanation of the 

mechanisms underlying this difference is warranted. 

One possibility is that situations of sensory incongruence were not as disruptive to 

postural control among PD because some accurate sensory information was still available. 

Similar explanations have been reported by Smiley-Oyen and colleagues (2002), and by 

Nallegowda and colleagues (2004). Smiley-Oyen and colleagues (2002) recognized that 

although somatosensory incongruence generated by muscle vibration does disrupt a large 
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portion of somatosensory inputs that regulate upright stance, PD patients may have been able 

to utilize accurate inputs conveyed from joint receptors and cutaneous inputs to improve their 

postural control. Likewise, Nallegowda and colleagues (2004) observed that postural control 

among PD patients was not disrupted following somatosensory incongruence. In light of this 

finding, the authors suggested that patients may have been able to preserve balance by utilizing 

accurate somatosensory inputs received from gravitoreceptors located in the kidneys and other 

large organs (Mittelstaedt, 1996; Dietz, 1998). 

An alternate explanation for our fmdings is that the effect of sensory deprivation is 

disruptive among later-stage PD patients because the task of completely suppressing a sensory 

modality is more demanding than the task of extracting the accurate information from 

inaccurate information (Horak & Macpherson, 1996). Perhaps the condition of visual 

deprivation induced disruption among later-stage PD patients because it introduced an 

additional step in the integrative process. Specifically, if a role of the basal ganglia is to extract 

and utilize sensory information that is consistent with the internal model of the body position, 

then perhaps the task of extracting meaningful sensory inputs and subsequendy suppressing 

deprived inputs is beyond the functional capacity of the basal ganglia in later-stage patients. 

Likewise, the sustained disruption of postural control when previously-deprived visual 

information is made available occurs because the dysfunctional basal ganglia has exceeded its 

capacity for further sensory integration. Whether the occurrence of this sustained postural 

disruption is specific to the termination of imposed periods of visual deprivation provides 

foundation for further investigation. Moreover, whether reintegrative difficulties following 

prolonged periods of sensory deprivation are exclusive to later-stage PD patients also warrants 

further exploration. 

A third possibility for our findings in Study 1 may be related to differences in basal 

ganglia processing occurring following sensory manipulation. Specifically, because the basal 

60 



ganglia are responsible for continually evaluating the availability and quality of sensory inputs, 

then it is possible that situations of visual deprivation disrupt this evaluation process. For 

example, when visual information is deprived for long enough, the basal ganglia may eventually 

stop 'checking', or evaluating sensory inputs. The basal ganglia may evaluate sensory inputs 

initially following visual deprivation, but will not extract any meaningful visual information 

because visual inputs are not available. Consequendy, if visual information is deprived for a 

prolonged period of time, the basal ganglia may stop its evaluation of visual information 

altogether. Or, alternatively, the basal ganglia may continue to 'check' for visual information, 

but it may not do so as frequently. This possibility may explain the initial, but not sustained 

disruption in postural control among PD patients when visual information was reinserted. 

Moreover, this hypothesis may also provide explanation for PD patients' ability to recover 

stability when visual incongruence, or sensory incongruence in general, ended. It is possible 

that, while evaluating sensory information during the period of sensory incongruence, the basal 

ganglia was still able to extract a small amount of meaningful sensory information. 

Consequently, the frequency at which the basal ganglia evaluated sensory inputs may not have 

changed. This possibility may provide explanation for PD patients' ability to recover postural 

stability in the same time period as control subjects when sensory incongruence ended. 

PD patients' ability to recover balance when sensory incongruence ends may also be 

driven by the activity of alternate motor loops, such as those acting through brainstem 

structures such as the pedunculopontine nucleus. There is anatomical evidence to indicate that 

the pedunculopontine nucleus makes connections with the basal ganglia (Lee, Rinne, & 

Marsden, 2000), and thus it may be possible that the activation of these connections (in lieu of 

a faulty basal ganglia) facilitates postural recovery when sensory incongruence ends. Finally, it 

may be possible that patients' ability to recover balance following the termination of sensory 

incongruence was driven by attentional processes. Specifically, there is evidence to indicate 
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that by dkecting attention to the performance of motor tasks, patients are able to bypass faulty 

basal ganglia motor loops to facilitate successful task performance (Morris, Iansek, Matyas, & 

Summers, 1996; Morris, Iansek, Smithson, & Huxham, 2000). By directing attention to 

mamtaining balance, postural control shifts from an automatic motor task (controlled by the 

dysfunctional basal ganglia) to a voluntary task (controlled primarily by higher cortical 

structures such as the premotor cortex and the supplementary motor area) (Wise, 1985). 

Consequently, by directing attention to staying balanced, patients were able to recover stability 

in the same time period as control subjects. This possibility provides foundation for further 

exploration. 

4.4. Contribution of the Sensory Hierarchy to Postural Control 

The collective results from this thesis, while providing insight into the postural 

behaviour PD patients during and following alterations in sensory information, also support 

the theory of the existence of a sensory hierarchy for postural control. The theory of sensory 

reweighing, introduced by Nashner and colleagues (1982) describes the process by which 

postural control is maintained when the sensory environment changes. Specifically, the central 

nervous system organizes sensory information in a hierarchy, such that postural control is 

primarily achieved by prioritizing sensory information conveyed by the sensory priority given 

'highest priority' (Teasdale, Stelmach, Breunig, & Meeuwsen, 1991). In addition, Bronte-

Stewart and colleagues (2002) have suggested that the priority, or weight, given to each sensory 

modality may vary among individuals. For example, whereas visual information may be the 

highest priority sensory modality among some individuals, somatosensory information may be 

allocated highest priority in others. As a consequence, individual differences in sensory 

weighting may differentially affect balance control following disruptions in sensory 

information. Our findings from Study 2, in particular, provide empirical evidence to support 
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this theory. Specifically, we observed that PD patients were more disrupted by visual 

incongruence than control subjects. This greater disruption was reflected by the significant 

difference in magnitude of absolute recovery between PD patients and control subjects, and 

may imply that PD patients allocated higher priority to visual information for balance control, 

and consequendy became more disrupted when visual inputs became incongruent. We did not 

observe any differences in the magnitude of absolute recovery that emerged between groups 

following the termination of somatosensory, or visuo-somatosensory incongruence. This 

finding may indicate that both groups showed similar weighting of sensory inputs in these 

situations, and thus were similarly affected when these inputs became incongruent. 

4.5. Implications for PD Patients 

All PD patients who participated in this thesis were dopamine dependent, and were 

testing during their best reported ON state. We did not investigate the influence of sensory 

manipulation on the time course for postural control among non-medicated patients or among 

patients employing surgical interventions as their primary method of treatment. Furthermore, 

we did not restrict our analysis to PD patients categorized according to disease state. When 

considering these demographics, we cannot generalize our findings across the parkinsonian 

population as a whole. Our results do, however, provide groundwork for future research in 

this domain. 

We restricted our analysis to medicated patients only because we believe that 

investigating postural control in the ON state best represents patients' behaviour during the 

performance of activities of daily living. Assessing postural control following sensory 

manipulation when patients are in their OFF state may provide valuable insight into postural 

disruptions that may occur if patients experience a 'wearing off effect (Suchowersky, 2002), or 

when they are approaching the completion of a medication cycle. Although summary 

63 



measures of postural stability (ie postural sway area) occasionally indicate that non-medicated 

PD patients are more stable compared to their medicated state, (Rocchi, et al., 2002; Rocchi, 

et al., 2004), the evidence regarding postural behaviour among non-medicated patients 

following sensory manipulation is controversial. Specifically, results from some studies 

revealed that situations of sensory incongruence induced postural disruptions among non-

medicated PD patients (Bronstein, et al., 1990; Bronte-Stewart, et al, 2002; Nallegowda, et al, 

2004), while others have shown postural disruption among non-medicated PD patients 

following sensory deprivation as well (Nallegowda, et al, 2004). In contrast, there is also 

evidence to suggest that postural control among non-medicated PD patients is not disrupted 

following sensory perturbation of any kind (Horak, et al., 1992; Waterston, et al, 1993). In 

particular, Horak and colleagues (1992) noted that non-medicated PD patients displayed 

postural sway following sensory manipulation that was smaller than older adult control 

subjects, thus implying that deficits in sensory integration for postural control were non

existent among these patients. Consequendy, the inconsistent evidence regarding the postural 

effects of sensory manipulation on non-medicated PD patients provides foundation for further 

research. Future studies should be aimed at clarifying the effects of sensory manipulation on 

postural control among these patients, and at providing further insight into the time-based 

postural behaviour of non-medicated patients following sensory manipulation. 

Results from a series of studies conducted by Rocchi and colleagues (2002; 2004) indicate 

that patients receiving deep brain stimulation of the subthalamic nucleus and of the globus 

pallidus internal display decreased postural impairment compared to their medication-only 

state, and compared to older adult control subjects. From these results, the authors suggested 

that deep brain stimulation may improve postural stability by influencing the integration of 

somatosensory information, thereby improving kinesthetic control of the centre of mass. 

While the specific actions of deep brain stimulation are still unclear, the results of Rocchi and 
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colleagues' (2002; 2004) studies provide foundation for further exploration. Specifically, if 

deep brain stimulation does aid in the integration of somatosensory information for postural 

control, then it is possible that this effect may be beneficial for postural recovery following the 

reinsertion of congruent sensory information. Moreover, it might be possible that deep brain 

stimulation generates a general, rather than modality-specific, influence on sensory integration 

for postural control. This implication is particularly important for patients currently receiving 

DBS as a treatment method, because these patients generally experience severe postural 

impairment. Consequendy, further research targeted at exploring potential influences of deep 

brain stimulation on sensory integration for postural control is warranted. 

A recent study conducted by Bronte-Stewart and colleagues (2002) highlighted the 

existence of subsets of PD patients whose postural control was differentially affected by 

sensory manipulation. In that study, the authors observed the existence of a patient group 

who expressed postural disruption beyond that associated with PD. Although these authors 

did not provide explanation for the mechanisms underlying postural disruption in this specific 

patient group, it is possible that intensified postural disruption could be mediated by cognitive 

factors such as fear of falling. Fear of falling has been widely accepted as a factor mediating 

balance performance among both elderly (Adkin, Frank, & Jog, 2003), and young adults 

(Brown & Frank, 1997; Adkin, Frank, Carpenter, & Peysar, 2000; Carpenter, Frank, Silcher, & 

Peysar, 2001), and has also been identified as a factor mediating balance performance among 

PD patients (Adkin, et al, 2003). For example, older adults who identify with having a fear of 

falling exhibit larger amplitude of postural sway when visual information is deprived compared 

to elderly adults who do not report being fearful of falling (Maki, Holliday, & Topper, 1991; 

Maki, Holliday, & Topper, 1994). In addition, fear of falling generated by introducing 

significant postural threat has been shown to influence balance control among younger adults 

during quiet standing, and when responding to an unexpected external perturbation to posture 
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(Brown & Frank, 1997; Adkin, et al, 2000; Carpenter, et al, 2001). Adkin and colleagues 

(2003) recendy showed that PD patients who displayed postural impairment also reported 

lower confidence in their balance abilities. What remains unknown, however, is whether fear 

of falling exacerbates postural instability that is related to the parkinsonian disease process. 

Furthermore, potential influences of fear of falling on sensory organization for postural 

control remain unexplored among the parkinsonian population. Although Adkin and 

colleagues (2003) incorporated the use of balance tasks to assess postural stability among PD 

patients, they did acknowledge that these balance tasks were relatively simple. Consequendy, 

the assessment of postural control among PD patients who identify with fear of falling using 

balance tasks that impose challenge to the sensory systems may provide insight into potential 

mediating effects of fear of falling on sensory integration for postural control in this 

population. 

Finally, Bronte-Stewart and colleagues (2002) have shown that PD patients who 

received pallidotomy to alleviate parkinsonian symptoms displayed reduced postural 

impairment following combined visual deprivation and somatosensory incongruence 

compared to their pre-surgery stability scores. Moreover, this improvement in postural 

stability following sensory manipulation was maintained at 6 and 12 months post-surgery. The 

authors suggested that, in contrast to medication, pallidotomy may be beneficial to completely 

correct abnormalities in sensory organization for postural control following sensory 

manipulation. Specifically, pallidotomy may act to improve sensory integration processes by 

normalizing irregular neuronal firing patterns in the pallido-thalamocortical and pallido-

pedunculopontine-thalamocortical pathways (Vitek & Giroux, 2000), thus releasing 

downstream nuclei from the inhibitory commands that generate movement difficulties. This 

correction of sensory organizational abnormalities may improve patients' ability to recover 

from postural disruptions imposed during periods of sensory manipulation, and following the 
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termination of sensory manipulation. Consequently, this possibility also provides justification 

for further study. 

Because we did not restrict our analysis to patients categorized by disease state, future 

studies should be directed at investigating the possibility that sensory organizational processes 

for postural control are influenced by disease duration. Klawans and Topel (1974) suggested 

that postural impairment emerges in patients with more advanced disease state. I f postural 

impairment in these patients is caused by deficient sensory organizational processes, then it is 

possible that a relationship between disease duration and measures of postural stability 

following sensory manipulation exists. Although we did not explore this possibility in this 

thesis, it provides foundation for further investigation. 

4.6. Future Research 

The existence of subject heterogeneity and diverse treatment methods provide vast 

opportunity for ongoing investigation of the sensory organizational processes that regulate 

postural control among individuals suffering from PD. Bronte-Stewart and colleagues' (2002) 

identification of subsets of patients whose postural responses gready differ during sensory 

incongruence present the possibility that these patients may also show differential postural 

recovery when periods of sensory incongruence end. In addition, the existence of patients 

who employ different treatment strategies warrants future research, because the underlying 

physiological actions of these treatments (ie medication versus DBS versus surgery) may 

influence the sensory organizational processes for postural control among PD patients. 

However, future research should also maintain a strong focus on providing patients with 

rehabilitation strategies for balance control that can be utilized in the home, and in a social 

setting. For example, the incorporation of regular exercise regimes tailored specifically to 

target balance control may be an effective rehabilitative strategy for PD patients. In addition, 
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the organization of exercise classes developed exclusively for PD patients may be useful not 

only to improve balance control, but also to return a social aspect to the daily lives of patients. 

Recent evidence indicates that elderly adults who actively participate in balance activities 

targeted to challenge the sensory systems express improvements in balance performance 

(Ledin, Kronhed, Moller, Moller, Odkvist, & Olsson, 1991; Hu & Woollacott, 1994; Rose & 

Clark, 2000). For example, Tsang and colleagues (2004) noted that elderly individuals who 

regularly practiced Tai Chi displayed balance performance that was comparable to young 

adults, even in altered sensory conditions. In contrast, balance performance among elderly 

non-Tai Chi practitioners was significandy reduced. From these results, the authors concluded 

that practicing Tai Chi improved balance control among elderly adults in situations when 

sensory information was reduced or conflicting. 

Although there is evidence to suggest that exercise programs combining resistance and 

balance teaming are beneficial to improve postural control among PD patients (Hirsch, Toole, 

Maitland, & Rider, 2003; Lun, Pullan, Labelle, Adams, & Suchowersky, 2005), the effects of 

exercises that challenge the sensory systems among PD patients are unknown. However, 

evidence derived from similar studies conducted on elderly adults indicates that regular 

practice of exercises that challenge the sensory systems are beneficial to improve balance 

control (Tsang, et al., 2004) in these individuals. Thus, it is possible that the incorporation of 

a balance teaming regime that emphasizes sensory challenge may also be beneficial to enhance 

postural control among PD patients. Because PD patients suffer from balance impairments 

beyond those associated with the aging process (Romero & Stelmach, 2003), emphasis should 

be placed on developing rehabilitation strategies that target sensory organization processes in 

this population. 
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4.7. Research Applications 

The results of this thesis indicate that postural control among PD patients is disrupted 

following situations of sensory manipulation. Patients' capacity to quickly recover from 

postural disruption following the reinsertion of previously deprived or incongruent sensory 

inputs may depend on factors such as disease duration and disease severity. Nonetheless, the 

main purpose of this thesis was to provide an in-depth assessment of postural control among 

PD patients following the imposed manipulations of sensory information. Our results provide 

insight that is relevant to daily life, because they present clinicians, patients, and their caregivers 

with information regarding environmental conditions that may impose threat to balance 

among PD patients. The collective results of Study 1 indicate that PD patients express 

difficulty recovering from postural disruption induced by visual deprivation. Furthermore, this 

postural disruption is initially sustained among PD patients even when visual information 

becomes available. Consequendy, the results of Study 1 provide insight into a specific sensory 

situation that is disruptive to balance among PD subjects in particular. 

The results from Study 2 present promising preliminary evidence regarding patients' 

ability to recover from postural disruption induced by situations of sensory incongruence. 

However, we must caution that the results from this study cannot be generalized across the 

parkinsonian population in its entirety. Specifically, the disease state of the patients included in 

Study 2 may provide explanation for patients' ability to recover from postural disruptions 

induced by sensory manipulation. Nonetheless, our findings in this study do imply that 

patients PD do not express deficits in postural recovery when congruent sensory information 

becomes available. Moreover, our fmdings extend the current knowledge regarding the time-

based postural behaviour among PD patients following the termination of imposed sensory 

conflict. 
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4.8. Limitations 

The results of Study 1 may be limited by subject heterogeneity. Specifically, we did not 

control for disease severity. There is evidence to indicate that disease severity may 

differentially affect postural behaviour among PD patients following sensory manipulation. 

For example, Waterston and colleagues (1993) observed differences in stability between PD 

patients who differed in disease severity. Specifically, patients suffering from a more severe 

disease state exhibited greater postural disruption following an external perturbation to balance 

compared to patients suffering from lower disease severity and compared to control subjects. 

This fmding presents the possibility that differences in disease severity among the patients 

included in this thesis may have influenced the outcome of our results. We suggest that 

patients suffering from greater disease severity should express greater disruptions in postural 

control during sensory organization for postural control that are related to more advanced 

basal ganglia degeneration. This prediction provides foundation for exploration in this 

domain. 

The results of Study 2 may also be limited by sample number, because a total of 7 PD 

patients participated in this study. Although other studies have incorporated similar PD 

participant numbers (Rocchi, et al, 2002; Rocchi, et al, 2004), we suggest that future studies 

should incorporate a larger sample size to further increase statistical power. In addition, the 

results of Study 2 could be limited in that mean disease duration of PD participants was 

relatively low. Consequendy, the results obtained from this study should not be generalized to 

patients suffering from more advanced disease states. Indeed, Smiley-Oyen and colleagues 

(2002) observed that, like control subjects, early-stage PD patients were able to improve 

balance following only one trial of somatosensory incongruence. Thus, it remains possible that 

the early disease state of the patients included in Study 2 influenced the outcome of this 
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investigation. Consequently, future investigation should be targeted at elucidating differences 

in sensor)- organizational capacity among patients varying in disease state. 

Finally, the results of Study 1 and Studv 2 are limited because the length of the time bin 

intervals within which postural behaviour was analyzed may have been too long, and thus may 

not have been sensitive enough to reveal differences in postural recovery between groups. 

Specifically, it is possible that onset of postural recovery during the sensory reweighing and 

reintegration processes may differ between groups, but that these differences could not be 

detected given the time intervals used in this study. Future work in this area should 

incorporate measurement of postural behaviour across smaller time intervals (ie < 3 sec), as 

well as a measure that reflects the time point at which postural recovery occurs. Moreover, 

future studies could incorporate the use of time series analysis (Mitchell, et al., 1995; (Peterka 

& Loughlin, 2004) of postural control to gain a deeper understanding of the physiological 

mechanisms underlying postural impairment among PD patients. 

4.9. Conclusions 

The results of Study 1 indicate that environmental situations involving a deprivation of 

visual information induce sustained postural disruptions that are difficult for PD patients to 

overcome. When visual information was deprived, postural control among PD patients and 

control subjects was disrupted. Unlike control subjects, PD patients were unable to recover 

from postural disruption across the duration of the deprivation interval. Contrary to control 

subjects, postural stability among PD patients in the extended deprivation state remained 

substantially worse than baseline levels of stability. Furthermore, postural control among PD 

patients was initially disrupted even following the reintroduction of visual information. The 

inference we draw from these fmdings is that parkinsonian deficits in the central integration of 

sensory inputs for postural control detrimentally influenced patients' stability following visual 
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deprivation. We suggest that these central deficits manifested as a reduced ability of patients to 

rapidly reprioritize sensory inputs when visual information became deprived, and as a reduced 

ability to reintegrate visual inputs when the interval of visual deprivation was terminated. 

The results of Study 2 indicate that PD patients retained their abiHty to recover from 

postural disruption induced by situations of sensory incongruence. Specifically, when 

situations of sensory incongruence were terminated, PD patients exhibited magnitudes of 

relative postural recovery that were comparable to control subjects. Moreover, PD patients 

were able to recover from postural disruption within the same time period as control subjects. 

Consequendy, our findings in Study 2 indicate that PD patients express a time course for 

postural control that is similar to healthy, age-matched older adults of similar age. This result 

implies that, among these patients, the sensory organizational processes for sensory 

reintegration were maintained. 

Collectively, our results indicate that patients suffering from Parkinson's disease are 

susceptible to postural disruptions induced by deprived or altered sensory conditions, and that 

their ability to recover from such disruptions may depend on the type of sensory manipulation 

imposed. Specifically, it is possible that situations of sensory deprivation are fundamentally 

more disruptive to balance control compared to situations of sensory incongruence, and that 

the faulty basal ganglia induce difficulty among patients to quickly recovery from instability. 

The results of this thesis indicate that situations of visual deprivation impose a particularly 

disruptive effect on postural control among PD patients. In such conditions, PD patients 

express an initial disruption in postural recovery following visual deprivation compared to 

control participants. Interestingly, however, PD patients retain their capacity for postural 

recovery following the termination of imposed intervals of sensory incongruence. Moreover, it 

may also be possible that PD patients' capacity for sensory integration may depend on 

individual characteristics such as disease state. As a result, continued research targeted at 
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mvestigating the capacity for sensory integration among PD patients varying in disease state 

may provide valuable insight regarding the stage of disease progression at which integrative 

deficits emerge. Moreover, our results provide insight into the contribution of sensory 

information to balance control. Although equilibrium control is physically achieved the 

actions of the musculoskeletal system, these actions are mediated by the activity of the central 

nervous system based on information conveyed by the sensory systems (Allison & Jeka, 2004). 

Consequendy, the functional integrity of the basal ganglia to process, integrate, and 'make 

sense o f sensory information conveying body position is necessary for the generation of 

motor plans for the musculoskeletal system to implement. Our results indicate that PD-

associated deficits in this functional integrity do generate postural difficulties in specific 

sensory contexts. Finally, our results provide information regarding environmental situations 

that impose balance threat among individuals suffering from PD, and thus provide preliminary 

evidence that may be useful for the development of rehabilitative strategies to minimize fall 

risk in this population. 
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