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ABSTRACT

Net primary productivity (NPP} is a key ecological parameter that is impdrtant in
estimating carbon sto_éks in large forested areas; NPP is estimated using models of which
leaf area index (LAI) is a key input. This research computes a variety of groun'd-based
and remote sensing LAI estimation approaches and e?cam'mes the impact of these
estimates on modeled NPP. A relative comparison of ground-based LAI estimates from
optical and allometric techniques showed that the integrated LAI-2000 aﬁd TRAC’
method was preferred. Spectral mixture analysis (SMA), accounting for subpixel
influences on reflectance, outperformed vegetation indices in LAI _prediction from remote
sensing. LAI was shown to be the most important variable in modeled NPP in the
Kananaskis, Alberta region compared to soil water content (SWC} and climatic inputs.
The variability in I.AI and NPP estimates were not proportional, from which a threshold

was suggested where first LAl is limiting than water availability.
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CHAPTER }

1.0 Imiroduction
1.1 Introduction

Human activities are altering the earth’s atmosphere, biosphere and hydrosphere at
an accelerated pace, as manifested by ozone depletion, increases in atmospheric
greenhouse gas emissions, pollution and changing patterns of landcover and natural
resource use (IPPC, 2001; Myneni et al., 2000; Rizzo and Wiken, 1992). These activities
are thought to be altering the global climate, beyond its natural variability, a process
termed global change (CDIAC, 1999). The increase in atmospheric greenhouse gases
such as carbon dioxide (CO») has been a major focus of recent research due to the
considerable increase in levels of atmospheric CO; since the Industrial Revolution
(Keeling et al.,, 1995). The terrestrial biosphere is the second largest reservoir for carbon
with much of that being stored in forests. Canada’s landmass consists of 417.6 million
hectares of forested area or 10% of the world’s terrestrial biosphere, therefore, the
contributions from this land mass are significant at global scales to the world carbon
sinks (CCFM, 1997; CFS, 1997).

One of the important descriptors of carbon storage is net primary productivity
(NPP). NPP is the total amount of carbon fixed by photosynthesis less respiration, the
carbon that is expended for the maintenance and growth of cells. It is therefore a
quantitative measure of carbon and energy assimilation or absorption into a system (Chen

et al., 1999; Melillo et al., 1993). Process-based simulation models have been developed



for the estimation of NPP. A process-based model simulates the functional mechanisms
of an ecosystem. These process-based models are importaat to the study of ecosystems
since they attempt to simulate or characterize the mechanisms that influence the
functionality of an ecosystem without requiring vast amounts of data that are difficult or
impossible to acquire (Waring and Running, 1998). These models have been shown to be
the only feasible method to make spatially comprehensive estimates of NPP over large
regions {Cramer and Field, 1999).

Physiological processes controiling NPP have been directly linked to leaf arca
index (LAI), an important measure of canopy structure (Waring and Schlesinger, 1985).
LAL has been defined as one half the total light intercepting area per unit ground surface
area (Chen and Black, 1992), and is an objective measure of canopy structure without the
complexities of leaf-age class distribution, angular distribution, or canopy geometry
(Running and Huant, 1993). 1t is influenced by site water balance, radiation regime,
canopy architecture, specific leaf area, leaf nitrogen content and species and stand
composition (Chen et al., 1997a; Pierce et al., 1994; Grier and Running, 1977 ). LAI has
been recognized as being the most important variable for characterizing vegetation
structure over large areas that can be obtained at broad spatial scales with sateilite remote
sensing data (Running and Coughlan, 1988). It was also found to correlate better with
NPP than with other environmental gradients (Gholz, 1982). Accordingly, many process-
based models (e.g. FOREST-BGC) use LAI as one of their main driving inputs, as it is
related to vegetative biomass, carbon, and energy exchange (Running and Coughlan,

1988).



LLAI can be estimated over large areas using remote sensing imagery or over smail
areas (e.g. field plots) using ground-based instruments. Accurate and consistent LAT
estimation is of great importance as it will influence estimates derived from productivity
models (Liu et al., 1997; Running and Coughlan, 1988). Thus, an assessment of LAI
measures from various ground-based and remote sensing methods will aid validation of
NPP modeling. Determining the variability in NPP estimates from the popular FOREST-
BGC model in terms of output NPP from different LAl source inputs will provide
insights into how the model uses the estimated LA] parameter within a given ecosystem
particularly the montane. In western Canada, a large portion of 'foreé’ts are in high relief
areas, thus variation in both ecological models, image processing, and field
measurements must be explicitly accounted for, so that policy and informed decisions can
‘be made for sustainable forest management.

In this research five different ground-based LAl estimation methods were
evaluated: (1) hemispherical photography, (2) LAI-2000, (3) Tracing Radiation and
Architecture of Canopies Instrument (TRAC), (4) the integrated LAI-2000 and TRAC
and (5) sapwood area/leaf area allometrics for a mountainous study site in the Alberta
Rockies. These tests were conducted for the four main species types in the area that
included: lodgepole pine (Pinus contorta var. latifolia Dougl ex. Loud.), white spruce
{Picea glauca (Moench) Voss), mixedwood and hardwood species including aspen
(Populus tremudoides Michx.) and balsam poplar (Populus balsamifera l..). As well,
different remote sensing LAT estimation methods were evaluated including a comparison

of three different vegetation indices with Spectral Mixture Analysis (SMA) that were



identified from previous research as producing the highest correlation between remotely
sensed and LAI estﬁnate§ (Peddlé et al., I§99a, 2001, Johnson, 2000; Chen, 19965 ).
| Asa result, the three main objectives for this research are:

1. To determine the extent that five different ground-based methods for
esﬁffiaﬁng LAI are similar .ove.r forest stands consisting of the four main
species in the area.

2. To determine if there is a difference among.LAI estimates derived from
remote sénsing using three vegetation indices and spectral mixture analysis.

3. Todetermine the sensitivity in NPP outputs from FOREST-BGC ecosystem
model to different LAI inputs derived from both field and remote sensing

methods as defined and analyzed in objectives 1 and 2.

1.2 Organization of Tliesis

This thesis has been organized into five chapters. In this chapter the thesis has
been introduced and research objectives defined.

In Chapter Two, a review of the literature and an overview of the broader contexts
of the research are presented. The chapter begins with an overview of global climate
change and carbon cycles to set the framework for this study. This material is followed
by a description of process-based ecosystem models, with emphasis on the FOREST-
BGC and BIOME-BGC models and including an in-depth discussion on model input
parameters, which is pertinent in the estimation of carbon stocks. LAI estimation methods
are introduced for both ground level and remote sensing techniques as a means for

comparison and with reference to inputs to the ecosystem NPP models.



In Chapter Three, the reseérch methods and experimental design are discussed. A
description of the: study area and grduﬁdwbased measuremeﬁts is first presented inéluding
forestry structural parameters and LAI estimation instrumentation and procedure is
presented, followed by a description of the remote sensing imagery-based data sets. The
various input parameters to the .NPP model are then described. The experimental design
for three anaiyzcs are presented with a description and rationale for the statistical tests
used for assessing the ground-based and remotely sensed LAI estimation methods, and
the vaniability of the NPP mode! to those estimates.

In Chapter Four, the results of the LAI assessments and the NPP model sensitivity
experiment are presented and discussed. A comparison of the results from the various
ground-based LAI estimation methods is provided, to determine and understand the
differences in ground-based LAI measurements by different species and then apply these
to regional scales. This is followed by a comparison of results from the remote sensing
LAI estimation techniques. Finally, to quantify the effects LAl has on NPP, the
sensitivity of the NPP model to the various key input parameters is compared, and the
variability of the modeled NPP is compared to the variability of the input LAL

In Chapter Five, major conclusions from this thesis are presented. First, the results
of the analysis are summarized, and then major conclusions from these results are drawn.
Finally, the contributions to research from this thesis are outlined and areas for future

research are identified.



CHAPTER II

2.0 Literature Review

2.1 Introduction

This chapter presents a review of ecological modeling of net primary productivity
(NPP), and the inputs required for these models, with a particular emphasis on LAL. This
chapter begins with a description of global change, carbon cycling, forest productivity
modeling and remote sensing, to provide the broader context of this research. The
modeling of ecological processes in the determination of NPP is described through an
overview of the functionality and history of prooess-based models, specifically FOREST-
BGC and BIOME-BGC. A perspective on the assumptions and deficiencies in LAI
estimation techniques and the potential effect this has on modeled NPP is provided

through a review of the ground-based and remote sensing LAI estimation techmques.

2.2 C(Climate Change, Productivity, and Forests
2.2.1 Global Climate Change

The Intergovernmental Panel on Climate Change (IPPC) has stated that most of
the observed global warming over the last 50 years is likely due to anthropogenic
increases in greenhouse gas concentrations (IPPC, 2001). Keeling et al. (1995) found
that there is a proportional relationship between the rise in atmospheric concentrations of
CO; and industrial CO; emissions based on historical atmospheric CO, data collected at

Mauna Loa, Hawaii and the South Pole. In the last 40 years there has been a steady



increase in atmospheric CO; (Figure 2.1). If the emissions of these greenhouse gases
continue at this rate, by 21.00 CO; concentrations will be at 700 ppm, which is 2 ¥ times
the pre-industrial CO; concentration (IPPC, 2001). _Keeling et al. (1996) observed that
the amplitude of annual CO, _wﬂs éorrelated with land surface temperatures, suggesting
there is an influence on the global carbon cycle due to a changing climate. The projected
range of global warming caused by increased greenhouse gas emissions has been
simulated to be between a 1.4°C to 5.8°C increase in temperature over the 21 century
{(IPPC, 2001). This rise in CO, and subsequent global warming could have significant
ecological, social and economic impzicts on terrestrial ecosystems, such as shifts in
precipitation patterns, potential shifts of the tree line to more northerly latitudes,
progressive lengthening of the growing seasons, major shifts in ecological boundaries and
changes in ecosystem structure and composition (Myneni et al., 2000; Gifford et al.,
1996; Keeling et al., 1996; Baker and Allen, 1994; Rizzo and Wiken, 1992; Izrael, 1991).
The observed increase in Ievcl§ of atmospheric CO; is causing an increased focus on the
processes that control CO, accumulation in the environment aﬁd’.the contributions to

global CO; sources and sinks {Schimel, 1995).
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Figure 2-1 - Average annual atmospheric CO, concentrations measured in parts
per miliion (ppm) derived from insitu air samples collected at Mauna Loa
Observatory, Hawaii (ZGQN, 156"W). {Data source: Keeling et al., 2001)

The atmosphere is the main reservoir of carbon that is in constant exchange with
the oceans and terrestrial biosphere {Tans and White, 1998). The increased emissions of
fossil fuels, from vehicles, industry and other sources, into the atmosphere are placing
greater demands on the ocean and terrestrial biosphere to maintain a balance with
atmospheric carbon levels through the absorption of greater amounts of carbon (Schimel,
1995). Carbon storage by land ecosystems can play an important role in kimiting the rate
of atmospheric carbon increase (IGBP Terrestrial Carbon Working Group, 1998).
Forested land accounts for approximately 90% of the terrestrial carbon storage in the
world through sequestration of CO, from the atmosphere (Gates, 1990). Studies in
Canada and Europe have suggested that the boreal forest may be a substantial sink of
carbon (50-250Tg C yr'") (Breymeyer et al., 1996). Canada’s landmass consists of 417.6
million hectares of forested area, or 10% of the world’s terrestrial biosphere (CCFM,

1997; CFS, 1997). Therefore, Canadian forests play a major role in the world’s carbon



budget by their-contribution to, and regulation of global biogeochemical cycles (CCFM,
-1997). Under Article 3 of the Kyoto Protocol, an international treaty signed by
developed countries to limit'.ne't greenhouse gas emissions, countries must count both
sequestrations and emissions of carbon from land use change and forestry activities
towards meeting their Kyoto target commitments (Gov’t of Canada, 2001). T.hué,- in
accordance with the Kyoto Protocol, for Canada’s greenhouse gas reduction target of 6%
below 1990 levels by 2008-2012, anthropogenic disturbances of the terrestrial biosphere
need to be monitored, and inventories or measurements of significant carbon sources and
sinks in Canada’s carbon cycles are imperative to direct international policies aim'ed at

ensuring that the balance is maintained (Gov’t of Canada, 2001).

2.2.2 Carbon Cycling in Forests

Carbon (C) is found in all terrestrial life forms; it is the currency that plants
.accumulate, store and use to build their structure and maintain their physiological
Processes (Waring and Schlesinger, 1985). Itis intfoduced into plants by the assimilation
of atmospherié CO; through photosynthesis into réduced sugar. Photosynthesis is ah
important phase in the biogeochemical global carbon cycle. Tree photosynthesis requires
three main processes; light absorption, electron transport, and the carbon reduction
(Calvin) cycle (Lambers et al., 1998). Light energy is harnessed from the sun by two
photosystems containing chlorophyll, carotenoids and other pigments. Light energy is
| received between 400-700 nm or the photosynthetically aétive radiétion-(PAR) region.
The electron transport chain produces energy in the form of adenosine triphosphate

(ATP) and nicotinamide adenine dinucleotide in its reduced phase (NADPH) from the



light energy, which drives further reactions within the carbon reduction cycle. At the
same time, atmospheric CO, is assimilated into the leaf as a result of a gradient between
intercellutar CO; to atmospheric CO,. The carbon reduction cycle accepts the CO; and,
using the energy from the electron transport chain, produces carbon in the form of sugar
or starch. The initial carbon gain through photosynthesis is called gross primary
production (GPP). Approximately half of the GPP is used as autotrophic respiration (Ra)
by the plant for the maintenance and synthesis of living cells. During respiration, sugars
are broken down and COQ; is released (Waring and Running, 1988). The rate of
photosynthesis and respiration is dependent upon site factors includihg CO; concentration
in the atmeosphere, surface temperature, nutrients, water availability and plant physiology
(Waring and Schlesinger, 1985). Respiration is active all the time, while photosynthesis
depends on light for the production of energy. The remaining carbon produced after
respiratton {GPP — Ra) goes into net primary production (NPP) as foliage, branches,
stems, roots and plant reproductive organs (Waring and Running, 1998). NPP, therefore,
quantifies the amount of large-scale carbon accumulation into an ecosystem (Figure 2.2).
An ecosystem is defined as “an ecological system that consists of all the organisms
(including plants) in an area and the physical environment with which they interact”
{Lambers et al., 1998). Thus plant processes drive the input of carbon into the

ecosystem, which is subsequently used by other organisms.
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Figure 2-2 — Graphical representation of the processes involved in carbon
accumulation (adapted from Waring and Running, 1998). Environmental inputs
are carbon {C), nitrogen (N}, water, photosynthetically active radiation (PAR),
wind and temperature.
2.2.3 Remote Sensing of Forests and Forest Productivity
Much of today’s understanding of large ecosystem functioning 1s extrapolated
from smalier, intensively studied plots or sites, which may not adequately characterize
the full spatial extent of large ecosystems without introducing bias or inaccuracies
(Running et al., 1996). Remote sensiﬁg image analysis and modeling can provide
spatially comprehensive information to help monitor ecosystem functioning at regional to
global scales (Sellers and Schimel, 1993). In the forestry context, remote sensing has
been used to provide estimates of forest cover and LAI_that serve as mnputs to ecological
tnodels (Peddle et al., 1999a; Liu et al., 1997). Many process-based NPP models such as
FOREST-BGC, earlier versions of BIOME-BGC, and BEPS require inpuf variables

derived from remote sensing (Liu et al., 1997; Running and Hunt, 1993; Running and

3



Coughlan, 1988). Remote sensing can also aid in the validation of ecosystem model
outputs, help refine model input parameters, and provide quantitative spatially
continuous, timely, and synoptic information for model input (Roughgarden et al., 1991).
Remote sensing, however, does not mea.éure any forest structural or biophysical
characteristics directly, rather, quantitative relationships must be established between
fundamental ecological or stand structural variables (fraction of PAR (fPAR),
eyaporaﬁon, LAI, biomass, canopy chemistry) and remote sensing physical units (Peddle
etal, 2001; Chen, 1996a; Running et al., 1986, 1989;, Wessman et al., 1988; Peterson et
al., 1987;).

Hyperspectral remote sensing has advanced the development of these algorithms, as the
electromagnetic spectrum has three main spectral regions that can describe the optical
properties of leaves, within which detailed studies have been conducted (Guyot et al.,
1989). There are three regions that characterize the intrinsic dimensionality of remote
sensing imagery including, visible (400-700 nm), near infrared (NIR) (700 - 1300 nm),
and shortwave infrared radiation (SWIR) (1300-2500 nm)(Figure 2-3) (Guyot ¢t al.,
1989). In the visible region, light is absorbed by chlorophyil a and b, and carotenoids
with spectral absorption peaking at 450nm and 670nm for chlorophyll a and b,
respectively. The NIR is dominated by the effects of leaf structure, characterized by
mesophyll that results in a high degree of intra- and interleaf scattering in the plant
canopies. Leaf reflectance in this region is increased by multiple layers of leaves, more
heterogeneous cell shapes, more cell layers and intercellular spaces, and increased cell
size (Running et al., 1986; Guyot et al., 1989). The shortwave infrared radiation (1300-

2500 nm) characterizes leaf water content (Guyot et al., 1989). At 1400 and 1900 nm the

12



water in the leaves strongly absorb radiation thus dips in the speciral response pattern can
be seen (Liliesand and Kieffer, 1994)(Figure 2-3). The leaf reflectance has been shown
to be inversely related to the total amount of water present as a function of moisture

content and the thickness of the leaf (Lillesand and Kieffer, 1994),
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2.3 Process-based Ecosystem Medels
2.31 Modeling Concepts

Smith (1990) defines a model as “an abstraction or simpiification of a natural

phenomenon developed fo predict a new phenomenon or to provide insight into existing
ones.” Computer models have been widely accepted for the transiation of local scale
ecological hypotheses to regional, continental or global scale ecosystem processes

(Cramer and Field, 1999). There are three types of models generally used to estimate



ecological functions: (1) statistical, (2) parametric, and (3) process-based or simulation
models (Liu et al., 1997). Statistical models use regression equations to predict
ecological processes from other easily obtained ecosystern measurements. These models
often consist of two or more variables from which a refationship is produced where one
variable is a function of another. They are generally not very complex with a minimal
number of variables. The second model type, parametric, uses efficiency concepts to
derive ecological parameters. These models use a small number of important parameters
that have the most significant impacts on what is being modeled. They are more complex
than statistical models as relationships are weighted differently and combined as separate
functions to develop the modeled parameters. Simulation or processed-based models
attempt to simulate or characterize the mechanisms that control the functionality of an
ecosystem (Waring and Running, 1998). They are not mutually exclusive from the
parametric models, however, they tend to have a much higher level of interaction.
Process-based models should be more reliable than the other types of models since their
foundation is based on knowledge about ecosystems {Liu ¢t al., 1997). Advantages of
process-based models to ecosystem studies include providing a tool to extrapolate local
scale phenomena to broader spatial and temporal scales, aiding the conceptualization of
structure and function of an ecosystem, and facilitating the recognition of important
spatial patterns and successional processes on vegetative structure (Lauenroth et al.,
1998).

Since the late 1970s, emphasis has been placed on accurate calculation of a global
carbon budget and the quantification of terrestrial vegetation activity (Running, 1990).

The fundamental and critical ecological questions that need answers concern the rates and

14



co.ntrols of eﬁer_gy, carbon, water, and nutriént exchange at broader spatial séales
(Rﬁmling and Coughlan, 1988). To answer the ecological question at regional and global
| scales, Running (1990} suggested that a weil-tested’.écosystem process-based modet
would facilitate the extrapolation of information from local to broader scales. This
simulation modeling can evaluate ecosystem activity at space aﬁd time scales greater than
direct measurements by quantifymg our understanding of fundamental mechanistic
ecological processes of energy and mass fluxes {Waring and Running, 1998; Running,
1994). These models have been deemed the only feasible method to make spatially

detailed estimates for large regions (Cramer and Field, 1999)

23.2 Review of Process-based Ecosystem Meodels

There are many types of ecosystem simulation models, such as biogeographical
(geographical distribution of plant communities and biomes), successional (succession of
plant species in an ecosystem over time), population dynamics (germination, birth,
growth, and mortality in an ecosystem and interaction among members of a species and
different species), soil-vegetation-atmosphere transfer {climate and land-surface
relationships) and biogeochemical models (cycling of water, carbon and nutrients through
an ecosystem) (Ford et al., 1994). For this study, only biogeochemical models are
described as they are widely used in carbon studies and in quantifying carbon stocks.
Biogeochemical models simulate the cycling of water, carbon and nutrients through an
ecosystem. There are many models that attempt to simulate this cycle at different scales
(from plant to globe) and for different ecosystems (e.g. grasslands, forests). Argen et al.

(1991) did a comprehensive review of six local or regional scale biogeochemical models
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includihg BACROS (deWitet al., 1978) for modeling crop growth; BIOMASS
(McMurtrie et al., 1989) for modeling .forest growth and water balance; FORGRO
(Mohren et al.,. 1984) for modeling forest growth, water balance, nitrogen and bhosphoms
cycles; MAESTRO (Wa.ng, 1988} for modeling forest canopy assimilation and
transpiration; FOREST-BGC (Running and Coughian, 1988) for modeling forest growth
and water balance, and BLUE GRAMA (Detling et al., 1979) for modeling grass growth
and water balance. Among these models they found many differences in the number and
type of driving variables, the incorporation of canopy structure information, and ways in
which each model dealt with photosynthesis, respiration, allocation, and litterfall. The
models had different inputs and placed different weightings on the various input
parameters, which reflected the objectives of the model and the geographic region being
modeled. Because of the incorporation of different theories and inputs among the
different models the estimation of the output ecological factors were different.

Another carbon model that was not discussed in Argen et al. (1991) is Boreal
Ecosystems Productivity Simulator (BEPS). BEPS was developed by Liu et al. (1997)
and is based on FOREST-BGC, however, it accounts for the effects of canopy
architecture on radiation interception (Liu et al., 1997). The most important inputs for
this model are LAI, available water content of the soil, and daily meteorological variables
{(short wave radiation, minimum and maximum temperature, humidity and precipitation)
(Liv et al., 1997). BEPS has been further expanded through the Integrated Terrestrial
Ecosystem Model (InTEC) (Chen, 2002). It has increased functionality with the addition
of all atmospheric, climatic and biotic factors to decrease the uncertainty due to data

limitations or simplistic assumptions (Chen, 2002)
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A global terrestrial NPP model intercomparison was performed by the Potsdam
Institute for Climate Impact Research to compare the NPP output from a variety of
biogeochemical models (Cramer et al., 1999). They divided the models into three
different types: satellite based models that use remote sensing data as the major input
(CASA, GLO PEM, SDBM, SIB2, and TURC); models that simulate carbon flux based
on vegetation structure (BIOME-BGC (newest model), CARAIB 2.1, CENTURY 4.0,
FBM 2.2, HRBM 3.0, KGBM, PLAI 0.2, SILVAN 2.2, and TEM 4.0); and models that
simulate both vegetation structure and carbon fluxes (BIOME3, DOLY, and HYBRID
3.0) (Cramer et al., 1999). The models differed widely in complexity and original
purpose so differences in NPP values were expected. Foi‘mula.tion and parameter values
used by the models introduce bias into the NPP estimates (Kicklighter et al., 1999). The
study found that the broad global patterns and the relationships between major climatic
variables and annual NPP coincided between the models. The differences that were
found could not be attributed to the fundamental modeling siratcgies (Cramer et al.,
1999). The high seasonal variations among the models indicated the specific deficiencies
in the models. Most models estimated the lowest global NPP month in February, and the
highest monthly global NPP during the northem summer (Cramer et al., 1999). The
performance of an intercomparison of giobal NPP models is important to investigate the
specific features of model behavior, includiﬁg testing the underlying assumptions of each
model. Global absolute measurements of NPP are impossible so no direct validation of
global models could be done; therefore intercomparisons are an important technique to
determine deficiencies and differences among the models (Cramer and Field, 1999). No

one model was pinpointed as providing the best estimates of global NPP or providing the
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best model construction due to the lack of .validation NPP values, this exercise however, -
provided researchers with the means of identifying errors..or inadequacies that can be
corrected in subsequent models (Kicklighter et al., 1999). The study demonstrated the
agreement between the present generation of models for broad features of behavior
regardless of the different purposes and resources for the different models (Cramer et al.,
1999)

Many ecological models have been built at various spatial and temporal scales,
locations, and with different driving inputs and assumptions linking C, N, and water,
representation of heterogeneity, detail of photosynthesis, allocation, and decomposition
{Cramer et al., 1999; Argen et al., 1991). The ability of each model to reproduce current
and forecasted conditions depends largely on how constrained the models are by the
initial conditions (Breymeyer et al., 1996). General trends can be seen throughout all the
models as they are generally produced using tested i:)lant physiological laws and theories.
Validation has been completed for some models, namely those built at local scales. For
this study, FOREST-BGC (Running and Coughlan, 1988) will be used because it has
been validated for forests in Montana, Florida, and Alaska, suggesting that this is a robust
model that can be used in a multitude of environments in North America. This choice of
model] is discussed further in Section 3.5.1. In the next section, the FOREST-BGC and

BIOME-BGC models are reviewed in more detail.

2.3.3 FOREST-BGC
FOREST - BGC originated as a water balance model, which emphasized canopy gas
exchange processes and system water storage (Running and Milner, 1993; Running and

Coughlan, 1988). The intent was to develop a “generic” process-based mode! to simulate
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tﬁe cycling of carbon, water, and nitrogen through forést.ecosystems (W'aring and
Running, 1998; Running and Coughlan, 1988). It was originally developed for
coniferous physiology because it allowed efficient analysis of basic grov}th factérs across
“a landscape, assuming no external perturbation (Running; 1994; Running and Miner,
1593). FOREST-BGC represents all essential ecosystem processes with minimal
complexity, allowing the model to be applied at different temporal and spatial scales and
.Iocations (Running and Mitner, 1993). To minimize the complexity and the ease of
application in other locations, the model requires easily attainable data as its driving
variables. The variables include standard meteorological information and the explicit
definition of important site and vegetation characteristics such as soil water content and
leaf area index (Nemani and Running, 1989). FOREST-BGC requires maximum and
minimum temperatures and precipitation data that are routinely available from records at
the nearest weather stations (Nemani and Running, 1989; Running and Coughlan, 1988).
Soil water content (SWC) can bé calculated as the water held between the field capacity
and the permanent wilting point of the soil based on soil texture and depth (Nemani and
Running, 1989). However, the key structural attribute defining vegetation characteristics
is LAI, as it is the principal variable used to calculate CO; and water vapour exchange
and can be estimated and assessed at regional scales through remote sensing technology
(Waring and Running 1998; Running, 1994; Running and Gower, 1991; Running and
Coughlan, 1988). LAl is a canopy structural variable that is useful in quantifying the
energy and mass exchange char_acteristics directly involved in the functioning of all
terrestrial ecosystems (Running, 1990; Nemani and Rﬁnning, 1989). LAl reduces

geometric complexities of the different trec canopies by treating the forest canopy as a

19



homogeneous three-dimensional leaf, with the dépth being proportional to LAI (Waring

and Running, 1998; Running and Coughlan, 1988). Running (1994) describes LAI using

the analogy of it being a chiorophyll sponge blanketing the earth. LAT strongly affects

this model because many processes are controlied by it, including snow melt, canopy

interception and evaporation, transpiration, canopy light attenuation, photosynthesis, leaf

maintenance respiration, litter fall, and leaf nitrogen turnover (Running, 1950).

To simplify reality, the mode} structure is based on a set of assumptions that define

the systern structure, basic linkages and constraints {Running, 1994). The most

significant assumptions incorporated into FOREST-BGC are as follows (Waring and

Running, 1998, Running and Milner, 1993; Running and Coughlan, 1988):

Individual species are not explicitly defined, only general physiological attributes;
however, physiclogical characteristics can be represented by the alteration of
some key parameters (Table 2-1). |

Individual trees are not represented -- only carbon, water and nitrogen pools.

No detail on internal physiology concerning water, carbon and nutrient transport
1s included.

No individual canopy strata or structure, leaf age class or leaf angular distribution
are defined -- only LAIL

No belowground details on root distribution, variation in soil profile properties,
rooting processes, oot water or nutrient uptake are defined.

Fluxes are defined in one dimension (vertical) so that horizontal homogeneity is

assumed for the defined area.
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Thesé simplifications and assumptions have allowed this model to be applied at 'any
temporal and spatial scale.

Running (1990, 1993) summarized the key processes that FOREST-BGC
calculates for each of the hvdrologic, carbon and nitrogen cycles:
Hydrologic

- preéipitation,_ SNOW Vs. rain partitioning
- snow.rmei't
- canopy/litter interception and evaporation
- surface runoff vs. soil storage
- transpiration
- ﬁhysiological water stress and surface resistance
- éubsurfacc outflow |
Carbon
- .photosynthesis
- maintenance respiration
- growth respiration
- carbon allocation (leaf, stem, root)
- net primary productivity
- litter fall
- decomposition
Nitrogen
- deposition uptake

- mineralization and leaching
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" The compartments storing C, N, and H,0 are not exclusive to a single process,
many linkages occur between compartments (Figure 2-4). The model was developéd to
have a split or mixed time resolution so that each of the processes modeled will use its
optimum time scale for adequate .and efficient simulation. For example, hydrologic and
canopy gas exchange are computed daily, while carbon and nitrogen cycles are computed
annually (Running and Coughlan, 1988). The daily submodel calculates hydrologic
balance and photc.)synthesi-s-.respiration balance, and applies the carbon to the yearly
submedel (Running and Coughlan, 1988). The yearly submodel .conlrols the processes of
carbon ﬁartitiom’ng, growth respiration, litter fall and decomposition (Running and
Coughlan, 1988).

Canopy photosynthesis 1s calculated by multiplying the CO, diffusion gradient by
mesophyli CO, cdnductance and by the canopy water vapour conductance (Equation 2-
1) Running and Milner, 1993; Hunt et al., 1991; Running and Coughlan, 1988).
Mesophyll CO; and canopy water vapour conductance are both controlled by daylight air
temperature, average canopy absorbed radiation, maximum photosynthetic rate and
daylength (Hunt et al., 1991; Running and Couglan, 1988). Canopy water conductance
values are determined through leaf water potential (derived from soil water fraction based
on precipitation and snowmelt and canopy interception or rain proportional to LAI) and

absolute humidity deficit (Running and Coughian, 1982).
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PSN = [{ACO; CC CMY/(CC + CM)] LA DAYL
(Equation 2-1)
where:
PSN = canopy photosynthesis (kg CO; day™)
A CO, = CO, diffusion gradient from leaf to air (kg m> )
CC = canopy conductance (m s™)
CM = mesophyli conductance (m s™)
LLAI = leaf area index

DAYL = day length

The carbon is then partitioned into compartments including maintenance
respiration, growth respiration, leaf gmwth, root growth, and stem growth (Running and
Gower, 1991). Maintenance respiration is calculated as an exponential function of air
temperature where Q10 = 2.3. Q10 is the fractional change in rate of maintenance
respiration with a 10°C increase in temperature. Net photosynthesis is then calculated by
subtracting the maintenance fespiration from the canopy photosynthesis. Growth
respiration is subtracted as a fixed function from the leaf, stem and root compartments.
Net primary production is then calculated by the subtraction of growth respiration from
net photosynthesis. The resulting carbon available to NPP is then partitioned into the
leaf, stem and root growth compartments based on optimization logic which compares

water, nitrogen, and phdtosynthate availability (Running and Milner, 1993).
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Parameterization of an ecosystem model can be very difficult, as many of the
processes are difficult, impractical or impossible to measure due to area, time, cost and
other constraints {Running, 1994). Many aspects of FOREST-BGC have been tested and
validatéd _ét different temporal and spﬁtial scales and locations. Running and Coughian
(1988) showed that FOREST-BGC could determine the relative differences in ecosystem
processes in variable climates and scales, without site or species-specific tuning.

Ecological processes have also been validated including NPP estimates, water budgets,
élimate and soil control, and carbon allocation (Running and Gower, 1991; Nemani and

Running, 198; Running and Coughlan, 1988).

2.3.4 BIOME-BGC

To apply FOREST-BGC to different biomes, a series of parameters were altered based on
species-specific -physiology {(Running and Hunt, 1993). This was done tﬁ include. other
major landcove;r types (broadleaf forest, grasslands) in the creation of BIOME-BGC or an
extension of FOREST-BGC. Many of the physiological parameters differ among
ecosystems (Table 2-1). For example, leaf-on and leaf-off periods are very different in
deciduous-dominant and coniferous-dominant forest biomes; conifers do not annually
drop their needles, whereas deciduous trees shed and regenerate leaves seasonally. Other
examples of physiological differences in the two biome types are specific leaf area, and
leaf morph_ology and structure. To maintain the robustness of FOREST;BGC, Running
and Hunt (1993) were able to reparameterize the modei so that ecosystem function can
also be simuiated for either broadleaf forests or grasslands, in addition to coniferous

biomes. In the alteration of some parameters to characterize the different biomes,
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FOREST-BGC maintained its computational stability and the carbon and nitrogen
remained balanced, thus leading to the development of BIOME-BGC. BIOME-BGC is a

generic model that simuiates a range of ecosystems.

26



Table 2-1 — Default parameter values used in creating BIOME-BGC by adding
broadleaf and grasslands to FOREST-BGC (from Running and Hunt, 1993). The
following is the suggested default values for model input.

Parameter Conifer | Deciduous | Grassland

Maximum Leaf Area Index | 10 6 3

Specific leaf area (m’kg 'drymass) 5 17 5

Specific leaf area (m*kg ' earbon) 25 75 25
Leaf ON date 0 120 120
Leaf OFF date 365 300 240
Maximum stomatal conductance (mm sec™) 1.6 2.5 5.0
Boundary layer conductance (mm se_:c") 100 100 10
Maximum photosynthetic rate (umol m™ sec™’) 5 5 10
Critical leaf water potential (MPa) -2.0 -2.0 -3.5
Leaf maintenance respiration (g kg™ day™) 0.2 0.4 0.4
Stem maintenance respiration (g kg'1 day™) 0.2 0.2 0.3
Root maintenance respiration (g kg day™) 0.4 1.1 0.6
Leaf turnover (% year™) 33 100 100
Stem turnover (% year’) 2 2 99

Root turnover (% year") 80 80 40

Leaf lignin concentration (%) 25 i8 17
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2.3.5 The Effects of Environmental Factors on Modeled Productivity

Assessing the effects of individual variable on the ecosystem model is difficult as
many of the variables are dependent on each other and are interwoven in the functionality
of the ecosystem and how it is modeled. The important ecosystem input variables for
BIOME-BGC are leaf area index (LAI), clhnaﬁc information, available soil water
content, and species composition. Generalizations about the variables are useful,
however, the prediction of the composition and productivity of site vegetation based only
on either soil moisture condition, climatic variables, species composition. and LAl is
inadequate for this characterizaﬁon (Kimmins, 1997; Waring and Schlesing_er, 1985).
Interactions ocour with all these variables to produce the structure of the vegetétion. The
recognition of the general functionality of each variable will provide a better
understanding of the ecosystem. Climate sets the framework for much of the biotic
potential of an envirorment., Temperature extremes and inadequate precipitation limit
terrestrial NPP (Waring and Schlesinger, 1985). Climate is related to the amount of
water present within the soil through both precipitation and evaporation, however, soils
by themselves dictate thg amount of water and nutrients available through porosity and
parent material. Soils that have extremely low moisture storage or an excess of water are
unsuitable for most forms of plant growth (Kimmins, 1997). However, soils that are weli
drained and maintain sufficient water availability throughout the growing season,
generally support highiy productive and lush vegetation (Kimmins, 1997). Species
composition and LAI are largely based on the climatic variables. The influence of

species composition and LAI on productivity and vegetation is dependent on competition,
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efficiency of water and nutrient use, and successional stage. The amount of carbon
produced and stored in a region is a function of both the LAI and species composition,

which in turn, are a function of climate and soil.

2.4 Process-based Ecosystem Model Inputs
2.4.1 Ground Based Leaf Area Index (LAI) Estimation

LAl is an important parameter that characterizes a forest stand, as it is a
controlling factor in both physical and biological processes of plant canopies (Daughtry,
1990). LAI has been related to site water balance in mature coniferous forests (Gholz,
1982; Grier and Running, 1977), specific leaf area and leaf nitrogen (Pierce et al., 1994),
canopy interception, transpiration and net photosynthesis (Pierce and Running, 1988),
and water, carbon and energy exchange (Gower and Norman, 1991). As well, functional
reiationships exist between LAI and net primary productivity, biomass (Gholz, 1982) and
stem wood production (Schroeder et al., 1982). Waring (1985) also suggested that LAI
may be useful in monitoring and detecting early symptoms of anthropogenic and natural
stresses of forest ecosystems. Thus many large area ecosystem models have been
developed to be sensitive to and driven by LAI (Liu et al., 1997; Running and Hunt,
1993; Running and Coughlan, 1988).

LAI was initially defined as the area of one side of green leaves (projected) per
unit area of soil surface (Ross, 1981). This implies that the leaves receive light mainly in
one direction. This definition is appropriate for most broadleaf plants and grasses but not
for conifer species as the foliage elements are not flat (Daughtry, 1990). Conifer needles

may be cylindrical or close to hemi-cylindrical, or have foliage clumps that may be
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spherical, ellipsoidal or iother shapes. Therefore, the meaning of one-sided area is not
clear (Chen and Black, 1992). Chen and Black (1992) performed a theoretical study on
radiation interception of conifer species and produced a more suitable definition of LAl
for coniferous species or non-flat leaves, as “half the total intercepting area per unit
ground surface area.” This definition is based on mathematical derivations and
numerical calculations for mean projection coefﬁcieﬂt of spheres, circular cylinders,
hemicircular cylinders, bent plates, square bars and multi-sided bars with random angular
distributions. They found that the mean projection coefficient for all the different shapes

were all close to a constant of 0.5 based on the fotal intercepting area.

2.4.1.1 Absolute LAI Measurement

There are many approaches used to estimate LAI at the ground level. The most
direct measurement-techﬁique requires destructive sampling (e.g. measuring the total area
of all the leaves or needles removed from the canopy). Methods of direct measurement
of LAI include leaf tracing methods, matching of standard leaf shapes and sizes,
calculations based on linear measurements, leaf area to mass relationships, and optical
planimetric methods (Daughtry, 1990). Leaf tracing methods incorporate the tracing of a
leaf onto graph paper and the calculation of its area by counting the number of squares.
This method has very high accuracy but detg:rmining the area of each leaf for a tree or
many trees requires vast amounts of time. The ﬁatchhg of standard leaf shapes method
is relatively efficient, simple to use and requires no special equipment. For this method a
set of standard leaves with different shapes and sizes are assembled, and the area is

calculated. Leaves of the test plants are then referenced to the set of standards, and the
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standard that most closely mafches the leaf is recorded. Accuracy of the matching |
standard leaf shape methdd is lower than the leaf tracing method (Daughtl'y, 1990). In
the method of calculation based on linear measurements, the leaf is modeled as a simple
geometric shape and the area is determined by l_inear measurements (i.e. length and
'widtﬁ). This method is relati\?e}y easy to implement and is less time consuming than fhe
leaf tracing method (Daughtry, 1990). The method of developing a_leaf area to mass
relationship is probably the most cormmonly used technique for direct absolute
measurement of LAI in forestry research, as it is the most efficient technique for
measuring a large amount of Jeaves at one time (Chen, 1996b; Daughtry,I 1990). Leaf
area and leaf mass are measured on a small subsample of leaves and a ratio is developed
between leaf area and leaf mass. The remaining leaves are weighed and the ratio is
applied to determine the leaf area for the entire plot. The final direct method of
measuring leaf area is optical planimetric methods. These instruments employ
planimetric principles and calculate the area as they are fed through an automated optical
instrument (e.g. Licor L1-3100 Area Meter). All of these methods are useful in
calculating leaf area index for small plants or in agricultural research; however, the use of
these methods for foxfestry are not widely implemented due to cost, time and the
irreversible, destructive removal of entire trees and vegetation.

An alternative to direct measurements that require destructive sampling, a variety
of indirect methods have been developed to estimate LAI without the time and cost
réquirements associated with the direct absolute measurements. However, as with most
indirect methods, additional error can be introduced in estimating LAl compared to direct

measurement methods. In the next section, indirect methods for estimating LAI using
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sampling methods (eg. Litterfall traps) and allometric techniques as well as optical
- measurements including hemispherical photography, LAI-2000 Plant Gap Analyzer,
sunfleck ceptometers and Tracing Radiation and Architecture of Canopies (TRAC)

instruments as well as the integration of two methods are reviewed.

2.4.1.2 Litterfall Traps

A litter trap is an apparatus that captures leaves, needles, branches and shoots that
héve been shed from trees within a stand. Hughes et al. (1987) defined the important
features needed for a litter trap: (i) quickly and easily constructed from readily available,
inexpensive materials, (ii) strong and durable and require minimum maintenance, (iii)
stable and not easily tipped yet sufficiently lightweight so that large numbers of traps can
be transported easily, (iv) easily positioned at any height or orientation even on steep,
rocky slopes, (v) suited for use in stands of different successional age, (vi) easily
emptied, {vii) rapidly drained following precipitation, and (viii) protected from seed
predation from wildlife. There are a large range of sizes (0.18 — 1 m®) and number of
litter traps used for a stand, which is largely dependent on the plot area and structural
variability of the stand (Cutini et al., 1998; Herbert and Jack, 1998; Voss and Allen,
1988; Hughes et al., 1987). Litterfall is then periodically collected within the year to
ensure samples are preserved (Cutini et al., 1998). The litter is then sorted into
components (leaves, needles, branches and seeds), dried, and weighed. To estimate LAI
for the stand the total dry leaf mass collected per unit ground area (area of the trap} is
multiplied by the weighted mean annual.speciﬁc leaf area (SLA). SLA is the leaf area

per unit of dry leaf mass. It can be determined by using a subsample of leaves where
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both the leaf area and leaf dry weight are measured and a ratio is calculated. SLA is
dependent upon species, site, season and year, therefore a SLA must be produced for
each stand. To determine LAI for deciduous species the leaf fall is summed for the year
(Cutimi et al., 1998) whereas for coniferous species the needlefall must be summed for 2
or more years as the standard turnover rate for coniferous species is larger than the

deciduous turnover rate (Voss and Allen, 1988; Hendry and Gholz, 1986).

24.1.3 Allometric Techniques

Allometric techniques are based on relationships of LAI to mensuration data such as
sapwood area, basal area and crown closure (Buckley, 1999; Snell and Brown, 1978).
Allometric equations relating species-specific cross-sectional sapwood area to individual
tree leaf area have been developed for an array of species (White et al., 1997; Lavigne et
al., 1996; Kaufmann and Troendle, 1981). For example, Marshalt and Waring (1986)
showed that the sapwood area was a better predictor of leaf area than tree diameter in
conifer species. This method uses the pipe model theory, which states that for a given
unit of leaves there must be a continuation of conducting tissue of constant cross-
sectional area that services the above foliage (Waring et al., 1982). The sapwood is the
most recently produced wood, which has open xylem conduits used for water transport
(Lambers, 1998). Many studies have attempted to validate this theory (White et al.,
1997; Lavigne et al., 1996; Gower et al., 1987; Waring et al., 1982; Kaufmann and
Troendle, 1981; Snell and Brown, 1978 ), however, this allometric relationship has been
found to be stand specific, dependent on season, age, stand density, tree crown size,

canopy position, early stand growth and climatic differences (Mencuccini and Grace,
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1995; Long and Smith, 1988; Hungerford, 1987, Dean and Long, 1986; Pearson et al.,
1984; Gholz et al., 1976 ). Pearson et al. (1984) found the sapwood area to leaf area
ranged from 0.20 to 0.57 m¥cm” in lodgepole pine sites of different densities, ages and
sites in Wyoming. White et al. (1997) combined cross-sectional sapwood area/ieaf area
values from a multitude of published allometrics obtained for the Rocky Mountain
regions of North America, which were then compared to optical estimates from LAI-
2000 and Ceptometer instruments to ground truth the estimates and provide a calibration
for optical estimates.
2.4.1.4 Hemispherical Photography

When used for LAI estimation, a hemispherical photograph is a skywards photo
taken under a forest canopy using an extreme wide-angle (180°) or ‘fish-eye’ lens, which
captures virtually the entire hemisphere above the camera plane (Figure 2-5). It captures
the species, site and age-related differences in canopy architecture based on the light
attenuation and contrast between features within the photo (sky vs. canopy) (Frazer et al.,
1998). The position, size and shape of these openings or “gaps” in a forest canopy are
captured and recorded (Frazer et al., 1998). Digital scanners and cameras are used to
convert the hemispherical photos into digital bitmap files, which can then be analyzed
using computer image analysis software (Frazer et al., 1999). The image processing
involves the transformation of image pixels in which gaps in the forest cover (sky) are
encoded as pixels with a value of 1 and obstruction to light rays caused by canopy
components are encoded as pixels with a value of 0 (Frazer et al., 1999; Fournier and
Mailly, 1999). This is used to supply canopy gap fraction or leaf angle distribution data

for inversion models that calculate LAI (Norman and Campbell, 1989). The calculation
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of LAI based solely on gap fraction has been termed effective LAI (eLAI) by Chen et al.
(1997a), since it disregards the effects of gap size distribution and assumes a random leaf
distribution. Effective LAl is calculated from the gap fraction using the following

formula through the adoption of Miller’s (1967} theorem:

/2
eLAI=2| Inl|— cosfsingdoe
o LP©)
where: (Eguation 2-2)

eL Al = effective LAI
P(0) = gap fraction at view zenith angle (0)

One operational consideration for hemispherical photography is that the ideal
light condition for photographs is diffuse irradiance, or where the entire sky hasa
pniform irradiance field. This ensures that none of the photographs are over exposed due
to the extreme brightness around the solar corolla, causing underestimation of LAI, and
also to inhibit the direct reflections of the foliage from the sun (Fournier and Mailly,

1999). As well, the camera must be steady, immobile and leveled (Fournier and Mailly,

1999).

“Fish-eye” lens

:,--LED mount

LED lights
for reference
system

35mm camera

Tripod

Figure 2-5 — Hemispherical camera set up (left) and example photo (right).
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2.4.1.5 LAI-2000

The LAI-2000 has been regarded as a convenient hemispherical camera as it does
not require any image procéssing (Chen et al., 1997a). The LAI-2000, like hemispherical
photography, measure.s canopy gap fraction based on the amount of radiation transmitted
through the canopy. It is an optical instrument that measures the light penetration
through the canopy using five quantum detectors arranged in concentric rings at 0-13%,
16-28°, 32-43°, 47-58°, and 61-74 O, thereby capturing light attenuatidn at several
angles from zenith (Li-cor Inc., 1990; Welles, 1990). The LAI-2000 foliows four basic
assumptions in its calculation of LAI (Li-cor Ine., 1990): |

1. The foliage is biack. No transmitted or reflected radiation by the canopy is

included.

2. The foliage is randomtiy distributed.

3. The foliage elements are small.

4. The foliage is azhnuthaliy randorhly oriented.

The L.AI measurement of the LAI-2000 uses only an estimate of canopy gap
fraction and therefore, as with hemispherical photography, is termed effective LAI
(eLAI) (Chen et al., 1997a). The lack of the gap size distribution measurement and the
assumed random leaf distribution are suggested to be the cause of underestimation of LAI
from the LAI-2000 for coniferous species (Chen et al., 1997a; Fassnacht et al., 1994;
Gower and Norman, 1991).

There are three main operational considerations for the use of the LAI-2000 (Li-
cor Inc., 1990). The first is that two measures of light are needed, a diffuse light

measurement either outside or above the canopy, and a measure of diffuse radiation
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below the canopy. Therefore, arrangements must be made fﬁr either two LAI-2000
instruments to be used (one above the canopy or outside the canopy in an open field, and
one instrument within the canopy for field measurements), otherwise the field plots must
be located near an open arca where an outside measurement can be takeﬁ with the same
instrument. The second main consideration is that the instrument is more accurate with
diffuse light conditions; therefore measurements should be taken on cloudy days or near
sunset or sunrise. The third consideration is that the field of view on the instrument is
rather large; therefore the use of this mstrument is more appropriate in larger stands
where there is a homogeneous tree cover or minimal open areas. The field of view of the
instrument can be altered with the inclusion qf view caps, which can aiso be accounted

for in processing.

- Data logger

~Bubble Level

- QOptical sensors
which measure at
five zenith angles

View Caps

Figure 2-6 — The LAI-2000 instrument.

2.4.1.6 Ceptometer
The sunfleck ceptometer is another optical instrument used in the estimation of
LAL It is a 90 cm long wand consisting of 80 photodiodes at 1em spacing that are

sensitive to PAR wavebands (Decagon, 1994). It measures the average transmittance of
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direct solar radiation, which is related to gap fraction at the solar zenith angle and with an
assumed leaf angle distribution LAI can be estimated (Chen et al,, 1997a). By using the
exponential decay of light intensity through the canopy by taking the ratio of below

canopy PAR to above canopy PAR, LAI can be estimated (Pierce and Running, 1988):
LAI = In{PARp/PARA)/-k

where: (Equation 2-3)
PARy is the below canopy estimate of PAR
PAR4 Is the above canopy PAR

k is a species-specific extinction factor

The extinction factor (k) corresponds to the portion of light intercepted by each
successive layers of leaves. Values for this coefficient are 0.5 for deciduous and 0.6 for
coniferous species but can range from (.3 for vertically inclined leaves to 1.0 for
horizontal leaf arrangements (Lambers et al., 1998; Noble and Schumann, 1992; Pierce

and Running, 1988).

There are three main operational considerations for the use of a ceptometer. Like
the LAI-2000 it requires a below canopy measurement of PAR and an above canopy or
an open canopy measurement of PAR. Thus arrangements must be made for the field
plots to be located near an open area. The ceptometer requires clear sky conditions with
no ¢loud cover. Optimal measurement times should be taken an hour either side of solar

noon to minimize the effects of changing solar zenith angle on PAR measurements.
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2.4.1.7 TRAC |
Chen and Cihlar (1995) took a further step with the develoﬁmeﬁt of the Tracing

Radiation and Architecture of Canopies (TRAC) instrument, which accounts for not only
canopy gap fraction but also canopy gap size distribution, thereby determining the leaf
distribution or clumping index. The TRAC consists of three quantum sensors. Two

- sensors are oriented upwards to measure down-welling total diffuse PAR through the
canopy, and one is orieﬁted downwards to measure the reflected PAR off the ground
(Figure 2-7). The TRAC measures sunfieck width (or the width of the light penetrating
through the canopy to giound below) and relates this to gap size distribution, which 1s
further related to information on canopy architecture {(tree crowns, branches, and shoots)
(Chen and Kwong, 1997). The addition of the gap size distribution provides another
dimension to the gap fraction data. It quantifies the effect of foliage clumping at scales
beyond that of shoots, thereby not relying on the assumption that there is a random spatial

distribution of fohiage 1n the canopy.

- Data logger

Bubble level .

2 guantum sensors {o
-—measure down-wefling
radiation

1 gquanium sensor to
—~—measure up-welling
radiation

Figure 2-7 — The TRAC instrument
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The TRAC calculates LAI by the following equation (Chen, 1996b):

LAI =(1- a)*eLAI* Ve
Q
(Equation 2-4)
where:
LAI = leaf area index
a = woody-to-shoot ratio
eLAl = effective leaf area index (from gap fraction)

Ve = needle-to-shoot ratio

Q= clumping index

The woody-¥o—shoot ratio (@) converts plant area index (i.e. a ratio of total plant
area including, leaves, branches and trunks, to ground area) into LAI, thereby removing
the contributions of non-leafy material to the LA estimate. Foliage, branches and tree
ﬁ'unks intercept incoming PAR, thus resulting in inflated LAI values. The TRAC
quantifies the a parameter with respect to the clumping index (£2), as it is assumed that
the non?woody materials have a spatial distribution pattern similar to that of the leaves
(Chen and Kwong, 1997). These woody-to-shoot ratios can also be calculated in the field
by felling trees within the study area and determining the ratio between the needle area,
and the tree trunk and branch area (Chen, 1996b). The needle-to-shoot ratio (Ve) is the
ratio of half the total needle area in a shoot to half the total shoot area. This ratio is
needed as the needles in the shoots of conifer forests are tightly grouped, making it

difficult or impossible to infer the needle surface area from optical measurements (Chen,
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1996b). Chen (1996b) detenningd that the average needle-to-shoot ratio is 1.4 for pure
conifer stands and 1.0 for pure deciduous stands, but these values will vary for different
species.

_There are three main operational considerations for the use of the TRAC {(Chen
and Kwong, 1997). Firstly, transects must be walked perpendicular to the principal plane
of the sun (i.e. the sun’s azimuth should be perpendicular to the operator’s shoulder) and
parallel to the siope. Secondly, the optimal measurement times for the TRAC are within
two hours of solar noon with solaf zenith angles (SZA) between 35 ® and 60°, so that the
trees do not cast iong shadows. Thirdly, because the TRAC measures sunflecks, clear
. sky conditions with no cloud cover are required to ensure that the sunflecks are only

affected by light penetration through the canopy.

24.1.8 Integrated LAI-2000 and TRAC

The TRAC, unlike ;the 1.AI-2000 or hemispheﬁcal photography, does not
calculate an effective LAI by obtaining readings at several zenith angles, because it
assumes the deviation from a random (spherical) leaf angle distribution is small, therefore
readings are taken at a single zenith angle (Chen and Kwong, 1997). The LAI-2000 and
hemispherical photography do not account for gap size distribution, while the TRAC
does. Chen et al. (1997a) found that effective LAl estimated from the L.AI-2000 were, on
average, 15.3% less than those from the TRAC in conifer stands. Recognizing the
different strengths and shortcomings of both instrurnents, Chen et al. (1997a) suggested
that integrating the LAI-2000’s effective LAI (eLAI) estimate with the TRAC’s clumping

index would provide a more accurate LAI estimate. This accounts for both gap angular
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distributions at several angles from zenith, as well as the gap size distribution function,
The integrated approach uses thé same equatioﬁ as the TRAC (Equation 2-3); however,
rather than using the TRAC’s effective LAl measurement {or gap fraction), it uses the

eL Al estimate from the LAI-2000 or from hemispherical photography. This also allows
the easy integration of ground based a into the equation, as the TRAC software calculates
it based.oﬁ €2. Both Chen et al. (1997a) and Leblanc and Chen (1998) suggested that the
combination of the LAI-2000°s eLAI estimates with the clumping index of the TRAC
should increase the aceuracy of the 1. Al estimate. Chen (1995) found that the integrated
approach out performed allometric techniques due to the magnification of error in the
allometrics causéd by the regression analysis. As well, the optical instruments were able

to obtain measurements over a larger scale thus being more representative of the stand.

2.4.2 Remote Sensing of Forest Leaf Area
2.4.2.1 Vegetation Indices and Issues

The information contained in a single spectral band is generally insufficient for
characterizing vegetation structure and status (i.e. canopy geometry, architecture, and
health); therefore, vegetation indices and band ratios \.vere developed fo incorporate more
information by combining two or more spectral bands from selected parts of the
electromagnetic spectrum (Qi et al., 1994), Most vegetation indices utilize the red and
near infrared (NIR) spectral bands (Baret and Guyot, 1991). Jordan (1969} theorized
that, first of all, the intensity of red radiation reaching the canopy is approximately equal
to the intensity of NIR radiation, but qn.the forest floor, the intensity of the NIR radiation

is much greater, due to the absorption of red radiation by the chiorophyll in the leaves
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(for photosynthesis). Since plants reflect less visible radiation, but more NIR radiation,
the more leaves or the healthier the leaves that are present, the greater the difference will
be between red and NIR radiation in vegetated surfaces. The intensities of red and NIR
radiation can then be expressed as a ratio that can be associated with canopy
characteristics and forest biophysical parameters. Different vegetation indices have been
developed for retrieving vegetation information, each having different advantages and
purposes (Chen, 1996a).

Bannari et al. (1995) summarized and discussed over forty vegetation indices that
were developed from 1972 to 1995. They observed that vegetatioh indices do not have a
standard universal value and are affected by atmosphere, sensor calibration, sensor
viewing condition, solar illumination geometry, soil moisture, colour and brightness.
They also remarked that each vegetation index is different and is dependent on the
environmental characteristics it was developed for. Chen (1996a) identified the 10 most
commonly used vegetation indices for forestry applications. He further split these
vegetation indices into two main categories: those that are based on the slope of constant
index lines in the NIR versus red reflectance plots, and indices that are based on the
distance between vegetation and soil reflectance lines, assuming the lines are parallel to
each other. The first type can be subdivided further into those that are expressed as a
function of the simple ratio (SR) between red and NIR reflectance developed by Jordan
{1969) and those that incorporate further mathematical equations. The vegetation indices
that are derived from the simple ratio are Normalized Difference Vegetation Index
(NDVI) (Rouse, 1973) and Modified Simple Ratio (MSR) (Chen, 1996a). The SR and its

derivatives have red and NIR reflectance coordinates converging at the origin (0,0).
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Howe‘)er, it has been shown that the converging point does not always occur at the origin
(Huete, 1988). This led to the development of vegetation indices that attemypt to account
for the convergence point not at the origin. The Soil Adjusted Vegetation Index (SAVI)
{Huete, 1988) introduced an L parameter, which is determine.d by the position of the
conv.grgence point. SAVI was ﬁ,l_rthér developed to allow the L parameter to vary with
the surface conditions rather than being a constant value (SAVI1, SAVI2) {Qi et al.,
1994). The Gloﬁal Environment Monitoring Index (GEMI) is also baséd on.the slope of
a constant index; however, it attempts to reduce the atmospheric effects by using a
curvilinear line between NIR and fed reflectance (Pinty and Verstraete, 1992). The Non-
linear Index (NLI) and Renormalized Difference Vegetation Index (RDVI) attempt to
linearize their relationship between NIR and red reflectance with surface parameters
(Goel and Qin, 1994; Roujean and Breon, 1995). The final type.of vegetation indices
includes the Weighted Difference Vegetation Index (WDVI) and Perpendicular
Vegetation Index (PVI) that are based on the absolute differences between the vegetation
NIR and red reflectance lines and the soil NIR and red reflectance lines (Clevers, 1989;
Richardson and Weigand, 1977). The equations for_ all the vegetation indices described
are presented in Table 2-2. Brown et al. (2000) developed a vegetation index, called the
reduced simple ratio (RSR), which uses the shortwave infrared band to improve LAI
retrieval. RSR is intended primarily for use with MODIS sensor data. RSR unifies
deciduous and coniferous species so that a classification is not required prior to deriving
the LAI estimation from regression models. This index has shown a 30% increase over

the SR for LAI estimation (Brown et al., 2000).



For this thesis, three vegetation indices were chosen for comparison from each
one of the three groups described by Chen (1996&). NDVI, SAVI1 and WDVI were
chosen based on their performance for the prediction of forest biophysical parameters in
studies that compared vegetation indices (Peddle et al., 2001; Chen, 1996a). The RSR
was not used in this study because it uses tﬁe shortwave infrared band rather than the near
infrared band, which is beyond the spectral resolution of the image data used in this
study, and which is not always available in some of the other sensors available. The three

vegetation indices chosen for this work are described further in the next section.

2.4.2.1.1 NDVI

NDVI was developed to normalize the difference between NIR and red reflectance, with
the output values ranging between —1 (no vegetation) and 1 I(high density of vegetation).
.;[herefore, the brighter the pixel, ﬁe greater the amouht of photosynthesizing vegetation
present (Jensen, 1996). NDVI has been related to carbon dioxide, ecological parameters,
photosynthesis, stomatal conductance, e\}aporation, nef primary productivity and LAI
{Carter, 1998; Chen, 1996a; Baret and Guyot, 1991; Cihlar et al,, 1991; Running, 1990).
It is limited at LAT values over approximately 3 because the ratio of red to near infrared
reaches an asymptote (Wulder et al., 1998; Running et al., 1986). NDVT assumes that the
NIR and red reflectance coordinates converge at the origin for a line with fixed NDVI

values (Table 2-2).
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Table 2-2 Vegetation index equations based on near infrared (NIR), red (R), and
shortwave infrared (SWIR) reflectance (after Chen, 1996). SWIRmin is the reflectance
from an open canopy and SWIRmax is the reflectance for a completely closed canopy

(Brown et al, 2000) e
Vegetation Index Equation Reference :

______________________ i R i A T

NDVI: Normalized Difference NIR -R ‘Rouse et al., :

Vegetation Index NIR+R 1973

SR: Simple Ratio ____liéB_ iJordon, 1969 -

; NR__, |

; . : . ! R

.MSR: Modified Simple Ratio TR ‘Chen, 1996

§ : I NIR 41 i

o R i

IRDVI: Re-nomalized Difference? NRR-R 'Roujean and

EVegetation Index . ]N]R+R i Breon, 1995 .

'WDVI: Weighted Difference ) f

| Vegetation Index NIR-a’R g = NIR, sail jCievers, 1989

" R, soil - :

| SAVI: Soil Adjusted
Vegetation Index

(NIR -R)(1+L)
(NIR+R+L) ;
05

|
i
Huete, 1988 1

]
]

SAVI1: Soil Adjusted
' Vegetation Index 1

| (MIR-R)(1+L)
(NIR+R+L)

L = 1-2.12*"NDVI*WDV1

SAVI2: Soil Adjusted
Vegetation Index 2

4
1

MR+ 05 -[NRw0 57 20N R)

i

l

]
Qi et al., 1994
|

Qietal., 1994

NLI: Non-Linear Index

:GEMI: Global Environment
IMonitoring Index

ERSR: Reduced Simple Ratio
|

 n(1-0.25*n) - (R-0.125)

] NIRZ-R
NIiR? +R

1-R
n= [2(NIR?-R? )+1.5*NIR+0.5"R]

EGoel and an
1994 i

Pinty and
Verstraete,
1992

i
f

_(NIR+R+05)

_(SWIR-SWIRmin)

. NIR “[4_ (SWIR-SWiRmir

Brown et al.,

R {(SWIRmax-SWIRmin)

2000
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2.4.2.1.2 WDVI
Huete .(1988) showed that the NIR and red converging point does not often occur
at the origin; rather it occurs at a negative fmint on both NIR and red reflectance
coordinétes due to the effects of soil backgroﬁnd. Asa résult, pixel reflectance Yalues are
comprised of subpixel scale reflectance components, includin_g soil or background,
vegetation and shadow.(Richardson and Wiegand, 1977). Due to the complex soil-
vegetﬁtion interactions within a single pixel, using vegetation indices it is difficuit to
remove or segregate the soil and vegetation reflection signals from the overall spectral
response. This is xmportam, since the soil reflectance has. been shown to influence the
relation between NIR réﬂqctance' and. LAI (Clever, 1989). Thus, Clever (1989) derived
WDVI for correcting the near—inﬁ'ared réﬂectance of vegetation for the effects of soil
background by subtracting the contribution of background or soil reflectance from the
initial NIR reflectance (Table 2-2). The correction factor for the soil reflectance was
.' obtaiﬁed through a weighted differeﬁce between the measured near-infrared and red

reflectance of_ the soii.

2.4.2.1.3 SAVIl

With the SAVI11 index, a soil adjustment factor L is defined which is intended to
account for soil noise by minimizing the soil brightness influences and producing
vegetation isolines more independent of the soil background (Table 2-2) (Qi et al., 1994,
Baret and Guyot, 1991). The L constant should vary inversely with vegetation density.
For intermediate densities, the best adjustment was shown to be 0.5 (SAVI). At low

vegetation densities L is approximately 1; while at higher vegetation densities, the L
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value is smaller (Huete, 1988). The ideal L factor does not remain constant because the
soil-vegetation interaction varies with canopy closure. Qi et al. (1994) suggested that the
L function could be optimized using the product of NDVI and WDVI, as both of these
vary with soil brightness and with canopy density. At high vegetation densities, L
approaches 0 and SAVI1 behaves similar to NDVI, while at lower vegétation densities, L
approaches 1 and SAVI1 behaves similar to WDVI (Qi et al., 1994). Therefore SAVI1
raises the vegetation signal and lowers the soil-induced variation, allowing it to be 2 more
sensitive indicator of vegetation amount. The L function allows SAVI1 isolines neither to
converge at the origin nor to run parallel to the soil line. SAVI1 increases the vegetation
dynamic response while further reducing the soil background influences, improving the
vegetation sensitivity by a “vegetation signal” to “soil noise” ratio (Qi et al., 1994).
Empirical evidence has shown that vegetation tndices that attempt to minimize the soil
background effects reduce the noise and are better predictors of forest biophysical
parameters compared to other vegetation indices (Peddle et al., 2001; Baret and Guyot,

1991; Huete, 1988;).

2.4.2.1.4 Problems with Vegetation Indices

Chen et al. (1996} and Peddle et al. (2001) summarized several assumptions that
vegetation indices make which may cause inaccuracies in deriving forest biophysical
parameters. The first assumption is that for any given vegetated surface, NIR and red
reflectance increase or decrease proportionally and simultaneously with each other. This
assumption is often not met, causing inaccuracies in vegetation index values. A concern

with vegetation indices is that they are based on measurements of entire pixels, thereby
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not explicitly accounting for mixed pixels with non-vegetated components including
shadows, background soil and understory vegetation (Hall et al., 1995; Peddle et al.,
19993, 2001). These non-vegetated mixtures complicate and diminish the ability to
obtain meaningful information about the actual vegetation of interest (i.e. the trees).
Furthermore, many vegetation indices are based on two spectral bands, and therefore do
not incorporate or utilize other potentially useful information contained in other bands.
Vegetation indices have also been shown to be less effective with canopies at higher leaf
areas due to the saturation of band ratios at greater LAl. As a result, methods such as
incorporating texture, performing spectral mixture analysis or reflectance modeling have
been used to estimate LAI in attemipts to provide improved results over vegetation indices

by addressing some or all of these problems.

2.4.2.2 Texture

Texture can be characterized by the tonal properties and the spatial
interrelationships found between them (Haralick, 1979). Image texture has been used to
increase the accuracy of landcover classification and prediction of biophysical parameters
such as LAI (Peddle et al., 1999a; Wulder et al., 1998; Wulder et al., 1996; Peddle and
Franklin, 1991; Frankiin and Peddle, 1989; ). Wulder et al. (1996, 1998) showed that
texture derivatives provide forest structural information that can be related to LAI. The
inclusion of semivariance moment textures with NDVT has provided a more accurate.
estimate of LAI than NDVI alone in mixedwood stands in which the addition of texture
increased the accuracy of the LAI prediction by 43% (Wulder et al., 1998). Peddle et al.

(1999b) found texture alone (i.e. not using image pixel values, just the spatial texture)
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" had a stronger relationship with LAI (" = 0.29) than NDVI (r* = 0.01) forl']odgepole pine
and aspen species. In both studies, texture provided a measure of additional structural

information.

2.4.2.3 Spectral Mixture Analysis

Spectral mixture analysis (SMA) quantifies the abundance of sub;.)ixel'scene
components within an image (Adams et al., 1993). Subpixel scene components or
endmembers are identified by the spectral properties of each material present within an
image that are expected.to contribute to the .overall pixel levell reflectance. SMA depends
on accurate spectral characterization of endmembers by determining the purest {(without
the presence of other surface material) spectral response pattern of each scene
component, The oﬁtput from SMA is the fraction of each 'endjﬁember over the pixel area.
In the forestry context, three endmembers are often. i_dentiﬁed: sunlit canopy {(C), sunlit
background (B) and shadow (8). These endmember spectra can be estimated, measured
or modeled (Peddle et al., 199%a). Reference endmember spectra can be measured in the
field using a spectroradiometer. If endmembers are collected in this way, both the image
and the endmember spectra must Be calibrated to reflectance. Reference endmembers
can sometimes be obtained from spectral library databases. Image endmembers are
selected directly from the image from areas that contain homogeneous or near
homogeneous samples of the endmember material. The spectral reflectance of each
endmember (p, ps, ps) in each band is input to SMA and the overall pixel band

reflectance values (py) to be unmixed (Peddle et al., 2000, 1999a; Hall et al., 1995)

50



Py = Cpe +Bpp + Sps
(Equation 2-5)
where:

py = overall pixel reflectance value

C = fraction of canopy

B = fraction of background

S = fraction of shadow

pc = spectral reflectance of canopy

py = spectral reflectance of background
ps = spectral reflectance of shadow

'SMA expresses the ambunt of each material as a fraction of total pixel area;
therefore the fractidn components vary between 0 and 1. Fractions that are greater than 1
or less than 0 have not accurately characterized the material within the pixel, suggesting
that the endmember selection did not account for some scene component or that one or
more endmembers were not pure (Johnson, 2000;..Adams etal., 1993).

SMA is a robust method for the extraction of forest biophysical information from
remote sensing imagery, as different mixtures of scene components represent differeﬁt
forést structures. SMA has provided significant improvements over more traditional
methods such as vegetation indices for obtaining biophysical estimates (Johnson, 2000;
Peddle and Johnson, 2000; Peddie ét al.,, 1999a; Hall et al., 1995, 1996). SMA accounts
explicitly for the influence of background and shadows reflectance rather than using only

the overall pixel level reflectance as with vegetation indices (Peddle et al., 2001). In
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these studies, shaddw fraction has been shown to be the best prédictor of LAI and othér
biophy‘sical pMetem (Peddle et al., 1999a; Hali et al., 1995). The simplified physical
explanation for this is that larger trees cast larger shadows, with the shadow fraction
being more sensitiye to tree size and structure compared to sunlit canopy fraction m the
horizontal dimension (Peddle et al., 1999a). This suggests that shadow fraction may be a
surrogate for stand characteristics and canopy dirnension (Peddle et al., 1999a). Peddle
et al. (2001) found SMA to pfovide a 40% improvement in the prediction of forest

 biophysical .and structural information (biomass, NPP, LAI, and basal area) over 10
different vegetation indices.

Peddle et al. (1999b) evaluated multi-spectral LAI prediction using both texture
and mixture analysis of airbofne imagery in tﬁe Alberta, Rockies. In that study, a forest
scale contintum wés established with respect to sub-pixel scale mixture fraction, image
tone (pixel values) and spatial texture derived from groups of pixels. SMA provided a
better estimate of LAI compared to NDVI @* = .54 vs. 0.01). The inclusion of texture
with SMA shadow fraction increased the r* from 0.54 to 0.60 suggesting that the
extractioq of information over different scales has the potential to maximize the

predictive capabilities of biophysical parameters (Peddle et al., 1999b).

2.4.2.4 Reflectance Modeling

Reflectance modeling has provided a powerful tool for the extraction of
biophysical and structural characteristics of forest staqu from remote sensing imagery.
Goel {1989) provided a review of the canopy reflectance models, including geometric

optical, turbid medium, a hybrid of geometric optical and turbid medium models, and
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computer simulation. Li and Strahler (1986) suggested that geometric optical models are
recommended for deriving forest related parameters from airborne and satellite imagery.
For example, geometric optical mode!s have been shown to provide improved estimates
of important biophysical parameters such as LAI and biomass (Peddle et al., 1999a; Hall
et al,, 1997; Woodcock et al., 1993). These models treat vegetation canopies as a
collection of individual, three-dimensional objects that cast shadows on a contrasting
background (Li and Strahler, 1985,1986). For example in the Li and Strahler (1985)
medel, individual trees are modeled as cones. In forward mode the model predicts pixel
brightness from the tree size, shape and density of the forest and the illumination angle,
while in inverse mode the model estimates the mean height, shape and density of the
canopy from pixel brightness obtained from the imagery. This model was further
developed to produce the Geometric Optical Mutual Shadowing (GOMS) model (Li and
Strahler,1992) to account for terrain variations, off-nadir view angle, a spheroid shape,
and shadows falling on adjacent trees (Li aﬁd Strahler, 1992; Strahler and Jupp, 1990).
This model requires spectral endmember values of each scene component and the
viewing and solar illumination geometry of the image. This model has been used in
“Multiple-Forward Mode” (Peddle et al., 1999a) and further expanded for mountainous

terrain by Johnson (2000) to provide improved biophysical estimates.

2.4.3 Climatic Inputs te NPP Models
2.4.3.1 MTCLIM Model
FOREST-BGC requires climate data as an input, thus for site-specific measures of

climate for incorporation into a montane ecoregion, the Mountain Microclimate
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Simulator (MTCLIM) was used (Rﬁming and Coughlan, 1988). The primary function of. |
the MTCLIM is the extrapdlati&n of meteorological variables from an individuai location
where meteorological measureméﬁts are available (BASE) to another site where no
meteorological data exists (SITE) (Hungerford et al., 1989). This model was developed
due to the lack of available meteorological data in mountainous terrain, since most
meteorctogical measurements are taken at city airports situated in flat, non-mountainous
terrain. The extrapolation of climate déta from the base station is completed by making
vertical corrections to the base data for changes in terrain features, including elevation,
slope and aspect. The acouracy of the extrapdlatién decreases with distance from the
base station and the site due to the effects cqu air masses, cloud cover, precipitation and
local scale phenomena (Hungerford et al., 1989).

Input requirements for MTCLIM are basic meteorological measurements, which
are available from most weather stations, including daily maximum and minimum
temperature and precipitation, as well as basic terrain features of the base station (Figure
2-8). Site information is also needed including physiographic features (elevation, slope,
aspect, and east-west horizon angles) and initializing vegetation characteristics (LAI and
albedo) (Figure 2-8). The input information is then used to predict daily minimum,
maximum and average temperatures, precipitation, incoming solar radiation, and relative

humidity for the site where meteorological data are not available (Figure 2-8).
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2.44 Soil Water Content (SWC)

Another input to the FOREST-BGC model is soil water content (SWC). Soil is
the foundation of terrestrial communities and is an imporfant vessel in nutrient and water
cycles (Smith, 1990). The roots of trees occupy a considerable portion of the soil to
anchor and support above ground biomass and to aid in the cycling of water, nutrients
and oxygen needed by plants for growth and maintenance. Soil water is one of the major
factors controlling plant growth. The amount of water stored within the soil is
determined by the physical features of the soil, as well as climate and topography
(Kimmins, 1997). The soil water available for extraction by plants is found between the
field capacity, where the soil water has moved out of the macropores caused mostly by
gravity and the remaining water is in the micropores, and the wilting coefficient, where
plants are unable to extract sufficient water to meet their demands due to the lower water
potential and conductivity in the soil (Figure 2-9). The soil water available for plant
uptake depends on the relative abundance of different pore sizes, which in turn depends
on soil texture, structure and depth. Soils are made up of various combinations of
organic matter and mineral particles of various sizes defined as soil texture. Soil texture
has three major size classes: sand (0.02 — 2.0 mm), silt (0.002 — 0.02 mm), and clay
(<0.002 mm). As the fineness of texture increases (approaches clay), there is generally
an increase in available moisture storage (Brady and Weil, 1999). In coarse textured
soils (sand) the majority of the water is lost at field capacity due to gravitational water
loss through the larger pore sizes (Kimmins, 1997). Fine textured soils (silts and clays)
do not lose much water from gravity so the soil usually retains a higher saturated water

content (Kimmins, 1997). The depth of the soil is also a determining factor for the
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available water since, in general, the deeper the so1l, the greater the amount available

water (within the limits of the depths to which feeding plant roots can reach).
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Figure 2-9 — Relationship between available water content and so1l texture
{derived from Brady and Weil, 1999).
2.4.5 Land Classification
The final input to the NPP model is species composition, which is usually
generalized into life form groups {i.e. conifer, deciduous, grassland) as the physiological
differences are more important among the physiological groups than among species
within life forms (Bonan, 1993). Different biomes or sets of species have very different
ecological and physiological propertics; therefore, to characterize the functionality of
each ecosystem accuraiely, the study area must be divided into separate, functionally

similar units. For broad spatial scales this can be done with relative ease using muiti-
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spectral remote sensing land classification to _characferize ail'thé pixels in an image into
landcover classes or themes. It does this by analyzing the set of spectral band values of
each pixel and cétegorizing them baséd on similar spectral properties.

There are two general methods of land -classiﬁcatiﬁn from remote sensing,
supervised and unsupervised classification (Jensen, 1996). Supervised classification
requires a priori knowledge about the study area for the collection of training sites
(Jensen, 1996). Training sites are a collection of pixels which belong to the same class
{e.g. conifer or deciduous forest), and which capture the spectral variability within each
class. Unsupervised classification does not require a priori knowiedge; rather it separates
the image into classes based on statistically similar spectral groups (Jensen, 1996). These
groups or spectral clusters are then labeled, however, the statistically similar spectral
groups may not correspond to the classes of interest. Remote sensing image features can
affect the classification accuracy of an area. .The scale of the data affects the detail of the
information classes and the boundary designation, while the spectral bands and the
complexity of the environment affect the separability of the landcover classes (Wulder,
1998). Contexfual neural networks (Jensen, 1996) and evidential reasoning classifiers
(Peddle, 1995) have been developed to process more complex data sets, including hyper

spectral imagery and spatial, terrain and multi-source spatial information.

24.6 Complexities of Terrain on NPP Modeling
From a modeling perspective, terrain increases the amount of complexity in
estimating NPP or other forest biophysical parameters. Terrain variations affect

ecosystem functionality including light and water regimes, soil types, forest structures,
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and productivity. FOREST-BGC attempts Ito account for these effects through the
‘inclusion of important variables. The incorporation of climate data, which has been

. derived from MTCLIM, account for changcs in clima_te due to changes in terrain
(elévation,_ slope, and aspect). As well it accounts for diffet;ent_ soil types and the
subsequenﬂy soil water content. Forest structure is adaptable in tﬁe mode! based on the
inclusion of LAI. The accuracy of LAI estimation is also affected by terrain. Firstly at
the ground levél especially with optical instruments where terrain causes shadowing and
affects the length of light penetration into the canopy thereby altering the solar zenith
angles and the optimum times for data coliection (i.e. TRAC). Secondly, from remote
sensing where terrain influences the sun/surface/sensor geometry, which accounts for a
significant difference in the spectral response of a forest stand. As well light will
penetrate to different depths of the canopy, which will change the relative proportions of
the canopy and background that would be presented to the sensor. Thus a study in
mountainous terrain includes further complexities beyond that would be seen on flatter

terrain.

2.5 Chapter Sumhiary |

Due to the increased focus on potential climate change impacts to sustainability,
many countries are attempting to quantify their carbon stocks, for improved forest
management and as part of international policy agreements. Net Primary Productivity
(NPP) is one measure of this over large areas and this information can be obtained
through ecosystem productivity models. One such model is FOREST-BGC, which was

designed to be dependent upon LAI estimates, thus it follows that the accurate prediction
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of LAI is important. The accuracy of the estimation of LAI is two fold with estimation
for small areas using ground-béséd inétrumént_s and ¢sﬁmation of larger areas using
remote s_ensing data. Many ground-based instrﬁments and techniques have been
developed forl the estimation of LAI with varying assumptions and mechanisms. Some
optical instruments estimate LAI _Based on the gap fraction of light penetration through
the canopy (hemispherical photography and LAI-2000), while others go further with the
inclusion of gap size distribution (TRAC and integrated approach). It is hypothesized
that the inclusion of both gap fraction with gap size disn'iﬁution provides a more accurate
estimation of LAI. For large areas, vegetation indices have been widely implement in the
estimation of LAI from remote sensing data. However, vegetation indices have been
shown to be limited, as they do not adequately account for background reflectance,
shadows and canopy gebnietry aﬁd are restricted to two spectral bands. Spectral mixture
analysis {(SMA) explicitly accounts for background reflectance, shadows and canopy
geometry by quantifying the abundance of scene-componcnts at sub-pixel scales that
contribute to the overall pixel level reflectance. The potential inaccuracies found in both
ground-based and remotely sensed LAI estimates can subsequently produce etrors or
inaccuracies resulting in poor quantification of carbon and inadequate sustainable

management practices.

60



CHAPTER Il

3.0 Methods

3.1 Introduction

This chapter describes the experimental design and methods used tc compare the
ground-based and remote sensing estimates of LA, and the influences these measures
have on modeled NPP. It begins with a description of the Kananaskis study area and
forest mensuration techniques to provide information about the composition and
distribution of the forest stands. To quantify the differences in LAI estimation techniques
from both the field and remote sensing data, a detailed description of the collection and
processing of the ground-based and airborne LAl estimation techniques and the analytical
and statistical approaches used to compare and ;evaluate-fhe LAl estimation techniques
are described. The NPP modeling is documented and justified, including how all
ecosystem model inputs were obtained. The chapter concludes with the staﬁstical and
analytical methods used to determine the effects of LAl on modeled NPP, including both
simulation modeling and analyzing the variability in both LAI and NPP results for this

study area.
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3.2 Stondy Area and Data Set
3.2.1 Kananaskis Study Area

The study area is centered at 1 15°4°20”W, 51°1’13”N straddling Barrier Lake
within Bow Valley and Bow Valley Wildland Provincial Parks in Kananaskis Country,
Alberta, Canada (Figure 3-1). It is situated in a montane region on the eastern slopes of
the Canadian Rocky Mountains. This region covers approximately 77 km’® with a full
range of terrain aspects and slopes. The elevation of the study area ranges from 1400m
(Barrier Lake) to 2000m (top of Prairie View). The study area lies within the Montane
Natural Subregion of southwestern Alberta, which is characterized by patterns of open
forests and grasslands with a very diverse understory vegetation (Archibald et al., 1996).
Dominant softwood tree species in the area include lodgepole pine (Pinus contorta var.
latifolia Dougl ex. Loud.), white spruce (Picea glauca (Moench) Voss), Engelmann
spruce (Picea engelmannii Parry ex Engelm.), Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco), and subalpine fir (4bies lasiocarpa (Hook) Nutl.). The dominant
hardwood tree species include trembling aspen (Populus tremuloides Michx.), and
balsam poplar (Populus balsamifera L.), with lesser amounts of white birch (Betula
papyrifera Marsh.). The sampled areas consist of different stand structures and
compositions, which range from pure softwoods and hardwoods to mixedwood stands
(Figure 3-2). The spatial distribution of the dominant tree species is based largely on
terrain and proximity to a water body (Figure 3-2). The L.AI measurements taken within

these stands typically ranged from 0.84 to 7.77.
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Figure 3-1 Study Area. The study area is located on the eastern slopes of the Canadian
Rockies in Kananaskis Country, AB and is centered at 115 4°20”W,
51 1’13”N. Photo A is taken looking north across Barrier Lake from
Highway 40. Photo B is taken from the CASI mounted aircraft looking

south towards the end of Barrier Lake. Location of each photo is shown on
the CASI image (see map inset).
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Figure 3-2 Dominant tree types in the Kananaskis study area based on classifications

from the Alberta Vegetation Inventory (A V).
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32.1.1 Seil

Due to pronounced and compiex changes in topographic and climatic conditions,
the soil types within the Canadian Rockies are generally regarded as highly variable
{Archibald et al., 1996; Crossley, 1952). Crossley (1952) studied the mountain soiis of
the Kananaskis Forest Experiment Station, which covers much of the same area as this
study; however, the boundaries extended further east and south. Six soil classifications
exist in the study area: alluvium, rendzina, brown and grey podzotic, brown forest and
lithosolic (Figure 3-3). However, only brown and grey podzolic, brown forest and
lithosolic soils are present within the field plots sampled. Brown podzolic soil has a light
texture with only moderate leaching and usually supporté coniferous forests. Grey
podzolic soils generally exhibit a heavier texture due to parental materials and are more
chemically fertile than the brown podzolic. Brown forest soil is generally more fertile
than the other classes found within the study area. The main vegetation cover for the
brown forest soil is aspen or balsam poplar. Lithosolic soils are stony shallow azonal
soils frequently encountered on steep slopes and are characterized by stony thin brown
podzols. This soil class is not conducive to tree growth; trees that do grow there have
restricted room for the development of roots, resulting in an inadequate supply of soil
nutrients. This soil also has a limited water storage capacity and may have excessive run-
off. The location and depth of the various soils are dependent on both parental material
and topographic location. Generally, steeper slopes have shallower soils due to wind

ercsion and runoff; thus many of the soils found on these slopes are lithosolic.
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Figure 3-3 Soil Classification of the Kananaskis (taken from Crossley (1952))




3.2.1.2 Cli.mate

| The climate in this region is influenced by both the Cordilleran and Prairie
- climates. It has a mean summer temperature of 12°C and a mean winter temperature of -
6°C based on data from 1939-1985 (Kitby, 1973; KCEED, 1995). Temperature extremes
range from —45.6°C t0 33.4°C. The avérage prccipitatibn per year is 657.4 mm.,
Chinooks are common in this montane subregion with intermittent snow free periods
during the winter (Archibald et al., 1996).

For this study, only the 1998 weather data were used corresponding to the year of
image acquisition and fieldwork, and also since the study considered only annual
increment of NPP. The weather data were obtained from the weather station situated at
the .University of Calgary, Kanana,skjs Field Station for the year 1998. The Kananaskis
Field Statién is located in a valley bottom at UTM coordinates 5654737.124 North and
63 '_7856.739 West with an elevation 1393.5 meters above sea level. Daily weather
measurements were taken including maximum, minimum and average temperatures and
preci.pitation.. The weather conditions at the Kananaskis Field Station were similar to the
NOFm in 1998 (Table 3-1). To be consistent with the nomenclature of the FOREST-BGC
model the weather data for 1998 will be termed climate data it is however, acknoWledged
that climate refers to long term trends or patterns where as weather refers to more daily

-events,
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Table 3-1 A summary of the 1998 weather data.

Weather Trend Annual
Maximum Temperature (°C) 3
Minimum Temperature (°C) -39
Mean Summer Temperature (°C) 14.8
Mean Winter Temperature (°C) -6.3
Precipitation (mm) 8756
Growing Season Precipitation (mm) | 603.0
{mid June - late August

3.2.2 Field Data Collection
3.2.2.1 Plot Location

Field plots were established to study and evaluate remote sensing information and
ground-based forest biophysical parameters, and to develop ground truth information.
Most of the plots were located along defined transects comprising three or more plots that
coincided with the Compact Airborne Spectrographic Imager (CASI) airborne remote
sensing flight lines (described later in this chapter). The middle of the surveyed transects
(the middle of the flight line) were located approximately at the midpoints of each plot.
Alberta Vegetation Inventory (AVI) maps and airphoto interpretation were used to assist
in the location of transects and plots. The first plot of the transect was randomly selected
to be greater than or equal to 3 times the stand height from the point of entry. To ensure
an adequate spatial separation of plots the subsequent plot was located at 3 times the
height of the present stand to ensure the LAI-2000 measurements were independent. The
point of enfry was geﬁeraﬂy from a trail or road. Each plot was also iocated to provide
sufficient distance (approximately 3 times the height of the last plot) from the edge of the

stand. Much of the fieldwork in 1998 was completed prior to the July 18 CASI image
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. acquisition date. In these cases the proposed center flight lines were used for thé
fonnation of transects {there was little deviation from this and the actual lines flown).
Each plot was 10m x 10m, to be representative of the stand characteristics and to ensure
that the number of pixels within each plot was adequate for each spatial resolution of
CASI imagery (largest pixel =2m, resulting in a minimum of 25 pixels per plot). In total,
65 plots were established and criented in a north-south direction to align the plot with the
orientation of the north-south flight lines during image acquisition. The 1998 field |
season focused on the collection qf pure and fni.xed conifer plots, while the 1999 field

season focused on the collection of deciduous and mixedwood plots.

3.2.2.2 Field and Image Position

An important aspect to any remote sensing analysis is the ability to accurately
locate field plots in an image for validation and testing purposes. A differential global
positioning system (DGPS) was used in the field to obtain geographic position with a +/-
1 m accuracy. A Trimble Pathfinder Pro XL GPS was used to collect uncorrected GPS
coordinates at each corner of the plots. These coordinates were then differentially
corrected using the base station data collected simultaneously at the Kananaskis Field
Station using Pathfinder Office 2.11 software. The corrected plot corner coordinates
were overlaid on the CASI imagery and vectors were drawn to delineate plot area based

on the 10mx10m plot size.
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3.2,2.3 Forest Structural Data

The structurai characterization of each stand was essential for studying the
influence of LAT measures on process-based productivity estimates. Among the
structural parameters measured were iree height, tree height distribution, diameter at
breast height, stand density, and crown closure. Other variables collected at each plot,
which aided in the characterization of the stands, were tree species, tree cores, slope and
aspect, and descriptive plot maps of the location of each tree (stem maps). Tree heights
were measured to the closest % or tenth of a metre using either a clinometer or a digital
hyﬁsometer, respectively. Diameter at breast height (cm) was measured at approximately
1.3m above the ground. The percentage of crown closure was estimated using both a
spherical and GRS densitometer, and both measurements were averaged to producé a
single plot estimate. Tree cores were collected from a representative number of trees
within each blot. Two cores were extracted from breast height for each tree at right
angles from each other. The number of trees cored was a function of the tree species
j)resent. Two cores were collected from the dominant species within the plot, and one
core for each of the subordinate species. Stem maps were produced for each of the plots
using locations determined relative to the marked cormers. These maps were also used to
aid in the identification éf plot locations on the imagery. Forest structural data and plot

characteristics are presented for each of the species in section 4.2.

3224 Endmember Spectra Collection
A spectral library was built for the Kananaskis Region where the dominant
canopy-and understory species were identified. Spectra were collected using an

Analytical Spectral Devices (ASD) spectroradiometer for each of the species with
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illumination .for both sunlit and shadow, us-ing the portable field laboratory in Peddle
(1998'). The ASD spectroradiometer used in this research is a full range instrument (350-
2500 nm), which takes spectra at 1nm spéctral resolution. Samples were removed from

. the forest stands and measured in an open parkiné .lo:t to avoid the influences of variable
canopy shadowing and understory signals (J o'hns.dn, 2000). Tree canopy samples were
arranged into optically thick stacks to ensure a pure measurement of a single species. To
use the 1nm spectra with the imagefy, endmerﬁber values were derived for the image
bandwidths based on the spectral response function for each band of the CASI sensor. To
create shadowed illumination, a sheet of plywood was used to block all direct sunlight
onto the samples. All radiance measurements were corrected to reflectance using a

coincident spectral measurement of irradiance from a calibrated Spectralon panel.

3.2.3 Ground-based LAI Estimation Techniques
3.2.3.1 Allometric Technigues

_ The transition zone between the sapwood and heartwood was marked on each
increment cores in the field where visible. For each of the trees, sapwood widths were
averaged and sapwood area was calculated as the difference between the stem area at
breast height and heartwood area. Stem area at breast height was calculated based on the
diameter of each tree inside the bark. The diameter inside bark was determined based on
diameter outside bark/ diameter inside bark (DOB/DIB) models for each species in
Provincial Natural Region 9, which encompassed this study area (Huang 1994). Since it
was not possible to core all the trees in every plot, extrapolation was needed fo determine

sapwood area for the entire plot. Using the various tree data, regression models were
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built to relate sapwood basal area to tree basal area for each species within the study area.
Due to the smali sample size of balsam poplar, the balsam popiar measurements were
merged with the trembling aspen measurements in a composite deciduous group. The
regression models were built and tested through the production of a fitting and a
validation sample to allow the independent assessment of the regression models for
predicting sapwood basal area. The validation sample set was chosen randomly from
each species, with % of the species data used to ensure an appropriate sample size for
both the validation and fit data sets. The regression models were built from the fit data
set. The regression models were chosen based on the magnitude of the coefficient of
determination (£), root mean square error, the standardized residual plots and the
statistical significance of each model. CurveExpert 1.3 software was used to determine
the best line fit for each of the species (r’and RMSE), and then the best models were
incorporated into SAS software to determine further statistics (standardized residual plots
and statistical significance) for the statistical models chosen. The results of this statistical
analysis are presented in Section 4.3. The statistical models were then applied to the
uncored trees within the plots to determine a plot level sapwood basal area estimate.
Leaf area of each stand was estimated using allometric equations of sapwood basal area
to leaf area for montane ecosystems in the Rocky Mountains (Gower et al., 1987; Waring
et al., 1982; Kaufmann and Troendle, 1981) (Table 3-2). Absolute LAl measurements
were not available since destructive sampling was illegal in the study area. Therefore, it
was not possible to assess the published allometrics as they applied to this study area.

Species sapwood basal area was summed for each plot and the coefficients related to the
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separate species were applied. The summed leaf area was then divided by the plot

ground area of 130 m® (10m x 19m) to determine L.AI for each of the piots.

Table 3-2 — Literature cited for projected leaf area to cross-sectional sapwood area
values. (Taken from White ¢t al., 1997)

Species Common Name Leaf References
' - area/sapwood
area
(m’em?)
Pinus contoria Lodgepole pine 0.14 Gower et al., 1987
Picea engelmanni | White Spruce 0.34 Waring et al., 1982
Pseudotsuga Douglas-fir 0.35 Gower et al., 1987
menziesii :
Populus Trembling Aspen 0.10 Kaufmann and -
tremuloides Troendle, 1981

3.2.3.2 Hemispherical Photography

Hemispherical phd_tos were taken at or near the centre of each plot. Five photos
using 400 ASA Fuji NPH film were taken per plot with an apeﬁure of F/8 at 5 shutter
speeds (1/60s, 1/125s, 1/250s, 1/500s, and 1/1000s). From these bracketed exposures, the
photos with the highest contrast bétﬁ?een sky and canopy were digitally scanned using a
HP 4C 600 dpi optical scanner. Plot LAI estimates from the digitized photos were
obtained using the Gap Light Analyzer (GL.A) software (Frazer et al., 1999), which

includes terrain corrections based on local slope and aspect inputs.

3.2.3.3 LAIL-2000

For each plot, overstory LAI was measured using the LAI-2000 at 8 locations
within each plot. An outside canopy measure was also taken in an open field
immediately prior to the measurements in the plot to simulate an above canopy

measurement. Measurements were taken on overcast days or the operator shadowed the
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sensor to prevent diréct éunlight ﬁ'Om_ reaching the sensor. The LAI-2000 values were
post processed using manufacturer provided software to calculate LAI (_Licor_ Inc., 1990).
To minimize the effects of s!opég either the last ring (61-74°) or th§ last two rings (61-74°,
47-58°) were removed during the calculation of effective LAL. The last two rings were
manually scrutinized to determine if the PAR meé.surements fell bctween the ranges
found in the earlier three rings. 1f this criterion was not met, the values were ferhoved

and LAI was recalculated.

3.2.3.4 TRAC

Using the TRAC, ten transects of 10m length each were established within each
10m x 10m plot at approximately 1m spacing and oriented perpendicular to the solar
plane. Measurements were collected by walking at a rate of approximately 0.3 m/s.
Measurements were taken on sunny days with no cloud cover. The TRAC values were
post processed using manufacturer provided software to determine both clﬁmping index
and LAI (Chen and Kwong, 1997). A topographic normalization was combletéd by using
a ratio between the depth of the canopy on flat ground to the depth of the canoi:y on
sloped ground (Chen pers. comm., 1999). Canopy depth and slope were measured within
each plot, and geometric principles were applied to determine canopy depth on sloped
ground at the solar zenith angle measured by the TRAC. The ratio was then applied to

the TRAC LAI estimates for each plot.
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3.2.3.5 Integrated LAI-2000 and TRAC

The integrated approach was applied to each of the plots using the slope adjusted
effec.tive. LAI estimates from the LAI-2000 and the clumping index from the TRAC
{Equation 2-3) (Chen, 1996b). Woody-to-shoot ratios were not available for this fegion
so instead ratios for the same or ciosely related species were obtained from the literature
(Ch_en,ﬁ | 1996b). Ratios for jack pine were used for lodgepole pine, black spruce ratios
were used for white spruce, and aspen ratios were used for trembling aspen and balsam
poplar as measured from the BOREAS study area in Saskatchewan and Manitoba, using
déstructivc sampling of entire trees. The needle-to-shoot ratio (Ve) is the ratio of half the
total needle area in a shoot to half the total shoot area, to account for only the projected
leaf area not total leaf area. This value was calculated in the field using the mean width
and length of six randomly selected needles from each species. The clumping index ()
was obtained using the TRAC. No slope alterations were needed here as the incorporated

LAI-2000 and TRAC data had already been adjusted for slope effects.

3.2.36 'Summary of Ground-Based LAI Data

In total, 5 LAI estimation methods were evaluated for 4 species classes. All LAI
measurements for a given plot were taken within a week of each other to ensure minimal
effects from possible changes in phenology. No absolute measures of LAI were obtained
in the field due to monetary, time and legal constraints. Thus a relative comparison of the
ground-based LAI estimates was completed, as described later, Although, absolute
measures of LAl from destructive sampling would be ideal for both comparison with the

ground-based optical instruments and remote sensing validation, issues surround the
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measurement of LAI for use with remote sensing. It should be noted that absolute
measures of LAI coincident with the pixel spatial resolution of airborne or satellite
sensors is difficult and often impractical or impossible. Often pixel resolution is beyond
that of the achievable measurements of LAI, due to time or monetary constraints in
destructive sampling. As well positional control issues arise for relating field
measurements with the exact corresponding pixel within an image, especially where field
sampling is performed prior or independent of the imagery acquisition. Even with
absolute measurements of LAI for remote sensing validation relations between LAI and
remote sensing are compromised by issues of spatial scale, positional accuracy and field
sampling. The comparison of the plethora of optical instruments and allometrics attempt

to balance the lack of absolutes with a large number of field methods for estimating LAL

3.2.3.7 Ground-based LAI Estimation Experimental Design

Comparisons of some of the ground-based LAl estimation techniques has been
completed, however, a comparison involving a multitude of optical and allometric
techniques in a montane environment has not yet been attempted. By quantifying the
differences in the ground-based LAl estimation techniques it will aid in the determination
of the species-specific limitations of the various techniques and determine the viability of
these techniques to this montane study area. Forty-two plots were chosen within the four
stand compositions (lodgepole pine, white spruce, mixedwood, and composite
hardwood). Within each of these plots, LLAI or eL Al estimates were made using each of
the optical instruments and allometric techniques described earlier. Slope normalization
procedures were implemented during data collection and processing for each instrument.
Although, the differences between eLAI and LAI has been acknowledged these terms
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wi'lll'be combined under the terma LA as many studies refer to the estimates of the LAI- |
2000 and hemispherical phofog_raph’y as LAI (Fassnacht et al., 1994; Goﬁer and Norman,
1991). Means and standard deviations were calculated for LAI estimates from each
instrument and species. A statistical comparison for LAI by instrizment and species was

then 'performed, as described in section 3.6.

3.24 Remote Sensing Imagery
3.2.4.1 CASI Airborne Data

A multi-spectral Compact Airborne Spectrographic Imager {CAST) (Anger et al.,
1991) from Itres Research Ltd. in Calgary, Alberta was used for the imaging of the study
area from a fixed-wing aircraft. The CASI instrument is a visible-near infrared (VNIR)
pushbroom imaging spectrometer with a sﬁec‘tral_ range between 400 nm and 1000 nm.
The ground coverage and pixel size for the CASI imagery were determined by the
altitude above the ground and the speed the #ircraﬂ was flying. The CASI wasusedina
modified spatial mode configuration, in which bandwidths and band locations are fully
programmable, with a maximum of 19 non-overlapping bands set within the sensor’s
spectral range. Three spatial resolutions of imagery (60 cm, 1 m, and 2 m) were flown
between 9:30 and 13:00 on July 18, 1998. The mission day was optimal as there were
clear skies with only a light wind. The timing of the mission was based on weather, solar
position, local terrain effects and image properties. The azimuth of the sun in the
morning avoided large shadows cast by nearby mountains onto the study area. The larger
solar zenith angles in the morning also increased canopy shadow, and reduced the effects

of the background on the images. In mountainous terrain during favourable summer
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weather, clear skies are generally more likely in the morning. The 2 m and 1 m data
consisted of 18 bands, whereas the 60 cm had only 8 bands due to sensor integration time
limitations. For this study, the 2 m imagery was used to reduce the processing time and
to relate the LAI and the NPP modeling to a larger area. However, to facilitate the
incorporation of SMA into this study, a validation of the spectral endmembers using the
60 cm data was required, therefore, the 2 m data needed to be reduced to the same bands
available at the 60 cm (Johnson, 2000) (Table 3-3). This reduction of bands was
completed using a weighted average of bands from the 18 bandset that matched the 8
bands presented in Table 3-3. Further image acquisition and flight planning information
is available in Johnson (2000).

Table 3-3 — Reduced 2 m CASI image band set.
Band Number | Wavelength (nm)
1 456-500
540-560
610-640
640-680
690-715
730-755
790-810
850-875

00 =3 O W] & W N

3.2.4.2 TImage Preprocessing

Itres Research Ltd. performed a geometric correction to account for distortions
caused by aircraft orientation (e.g. pitch and roll) during image acquisition. Real-time
altitude measurements were recorded on the aircraft using an Inertial Navigation System

(INS) and locations were recorded using an onboard GPS system to facilitate the
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geometric correction. Itres Research Ltd. also digitélly resampled the image to remove
‘the Variéﬁén iﬁ pixel resolution across ﬂle mourntainous terram
| Empirical radiometric normalization was peﬁomcd at the University of
Lethbridge to accéunt fbf atmospheric variations using 4 pseudo-invariant targeté set up
at a radiometric calibration site in a parking lot near Barrier Lake (Johnson, 2000).
| Ground-based reflectance values we're. deternzjned for each of the pseudo-invariant targets
énd also for asphalt using an ASD field .spectroradiometer and adjusted to the 8 CASI
image bands using a linear spectral response function. A transformation function was
computed between the CASI radiance data.a:cqlﬁred over the radiometric calibration
targets and the gfound spg:ctral reflectance measurements. This transformation function

was then used to correct the CASI image to reflectance.

3.2.43 Terrain Normalization

An added dimension to the determination of LAI through remote sensing was the
influence of mountainous terrain on the sun/sensor/surface geometry and therefore the
spectral response patterns in the image. Both the slope and the aspect of a given pixel
can cause radiometric distortion. Terrain correction methods have been derived to reduce
the slope and aspect induced illumination variations within an image. Iliumination is
defined as a function of the cosine of the incident solar angle; thus this is dependent on
the orientation of the pixel towards the sun’s position (Meyer et al., 1993). There are
four different illumination-based terrain normalization methods: Cosine Correction,
Minnaert Correction, C-correction and Statistical Empirical Correction (Teillet et al.,

' 1982). Johnson (2000) showed that terrain normalization can result in improvements to
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the prediction of LAI. Meyer et al (1993) reported the C-correction provided the most
increase in forest stand type classification accuracy compared to the other terrain
normalization methods. Based on ease of implementation and the results of Meyer et al.
(1993), the C-correction was selected for terrain normalization of the imagery and
performed by Johnson (2000).

The C-correction uses a trigonometric approach that accounts for the proportion
of direct illumination based on slope and aspect with an additional ¢ parameter that
emulates path irradiance (Teillet et al., 1982). The calculation of the ¢ parameter is based
on a linear regression between the original digital number collected by the sensor and the

cosine of the solar incident angle in relation to a normal pixel (I). The equation is as

follows:
LH=LT ¢cos(SZA) + ¢
cos(l) +¢
where: (Equation 3-1)

LH = radiance observed from a horizontal surface
LT = radiance recorded by the sensor
SZA = solar zenith angle
I = solar incident angle in relation to a normal pixel
¢ = correction parameter

¢ =b/m
m = slope of regression line

b =y intercept
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- 3.2.5 Digital Elevation Data

The Miistakis Institute for the Rockies (MIR) supplied the digital elevation model
~ {DEM). The initial DEM was from the Government of Alberta provincial database as
compiled photogrémeh‘ically from 1: 60 000 scale airphotos (Altalis, 1999). Further
post processing was done-by the MIR to remove or minimiﬁ data errors. The. final
spatial resolution of the DEM was 25 metres based on the original 1000m spacing.
Although not ideal, the DEM was resampled to 2m to facilitate the required image
preprocessing including image radiometric correction by ltres Research Ltd. and terrain

normalization by Johnson (2000).

3.3 Remote Sensing LAl Estiniation Comparison
33.1 Veggtation Indices

NDVI,.WDVI and SAVI were computed from the 2 m image using the equations
in Table 2-2. Since these indices require two bands (red and near infrared) the CASI data
were first transformed using a weighted average of the bands that fell within the red and
near infrared wavelengths. The soil or background spectral component reflectance value
needed for WDV and SAVI was the same as that used in the spectral mixture analysis
described in section 3.4.2.2. Each vegetation index was computed for the entire study
area. To obtain the same area of measurement as the ground-based LAI for each plot, the
vegetation index values were aggregated to the plot scale by averaging the pixels over the
10m x 10m plot area. Linear relationships were produced between the aggregated

vegetation index values, the different species types (coniferous, deciduous, and
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mixedwood) and ground-based LAI instruments. Linear relationships, rather than more
complex relationships, were developed to help simplify the remote sensing algorithms for
application to regional scales {Chen, 1996a). More recently, however, Fernandes et al.
{2001) showed that the use of linear relationships might not be appropriate. Regressions
on transformed data including log and power transformation provided better results -
(Fernandes et al., 2001). However, for this research only the linear relationships will be

use due to application ease and comparisons of these results with other studies.

3.3.2 Spectral Mixture Analysis

The three main scene components for this forestry study area are sunlit canopy,
sunlit background and shadow. The endmembers were chosen from a spectral library of
spectra measured in the field, using an ASD spectroradiometer including those from
Johnson (2000). The sunlit canopy endmember was the spectra for either lodgepole pine,
white spruce, or Douglas-fir depending on the species composition of the plot recorded in
the field. Only conifer endmembers were tested and validated in this area for the use
with spectral mixture analysis (SMA), therefore these results did not encompass the
deciduous plots as the validation and testing of the endmembers was not available. The
background endmember was obtained using spectroradiometer measurements of the
aggregated background found on the forest floor inciuding pine grass (Calamagrostis
rubescens Buckl.), step moss (Hylocomium splendens (Hedw.) B.S.G.), and buffalo berry
(Shepherdia canadensis (Nutt) L.). The shadow endmember was the darkest apparent
reflectance of canopy or background within any of the field samples. The apparent

reflectance (Peddle et al 2001; Miller et al 1997) of the canopy and background targets
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was determined from spectral measurements of i:he fargets in com;ﬁlete shadow, with
respect to an iliﬁtﬁinated_and calibrated reference panel. In this stﬁdy, the apparent
reﬂectarice of pine grass sﬁecﬁ’a was used as the shadiow'endmember reflectance. These
estimates like the vegetation indices were aggregated to 10m x 10m so that linear
reg?ession eguations could be built at the plot scale for SMA and ground-based LAI

e_stimates.

3.4 Ecosystem NPP Model Parameterization
3.4.1 Model Inputs .

FOREST-BGC/BIOME-BGC was chosen for this study as it has been validated
for forests m Montana, Florida, and .Alaska suggesting that this is a robust model that can
beusedina muit-itude of environments. It can be used for both local and plot level

estimates of NPP and also be expénded to regional scales. It was also one of the foremost
models, upon which many other models were based such as BEPS (Liu et al, 1997) and
Regional Hydro-Ecological Simulation System (RHESSys) (Nemani et al., 1993).
FOREST—BGC continued to be improved through the validation and testing of each of its
functions {Running and Gower, 1991; Nemani and Running, 1989; Running and
Coughlan, 1988 ) It is relatively easy to parameterize and run. The four important
parameters that drive the FOREST-BGC/BIOME-BGC NPP mode! are leaf area index,
.climate data, soil water content and species physiology (Running and Hunt, 1993;
Running and Coughlan, 1988). All these measures can be determined in the field,
calculated from existing field data, or obtained from the literature. These model input

parameters will be discussed in each of the next four sections.
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3411 LAI

LAY was incorporated into the model aé.foliar carbor, which_.is calculated as a.
ﬁmctién of specific leaf area and LAL Spe.ciﬁc Ieaf .area (SL.A) is the amount of leaf area
per unit leaf mass and can be attained from the literature (Running and Hunt, 1993). For
conifcfous species a SLA constant of 25 m/kg was used, for deciduous a SLA constant of
- 75 m/kg was used (Running and Hunt, 1993). Foliar carbon is calculated using the

following formula (Kimbal-l pers. com, 2000) :.

Foliar carbon = LAI
SLA
(Equation 3-2)

Each of the ground-based LAI estimates were transformed into foliar carbon and
the foliar carbon values for each plot were incorporated into the FOREST-BGC model.
The equations for the statistically significant (p<0.05) regression models of the SMA and
vegetation indices with ground-based LAI estimates where applied back to the
aggregated 10 m image producing a remote sensing estimate of LAI for each plot. The

remote sensing LAI values were then imported into BIOME-BGC as the transformed

foliar carbon.

34.1.2 Climate

To produce plot specific climate data, the base station data from the Kananaskis
Field Station were processed through the mountain microclimate simulator (MTCLIM)
(Hungerford et al., 1989). Snowpack was calculated as the accumulation of snow water

equivalent for an average of 10 years from 1989 to 1998 for the period between October
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(or first day of snow) to April 1% as per Running and Nemani (1991). Site isohyet
(precipitation contour) was based on the linear relationship developed by Shépard (1996)
ré_lating isohyet to elevation for the eastern siopes of the Canadian Rockies. East and

west horizons were determined based on the DEM.

3.4.1.3 Species Physiology

Each plot was assigned a species type depending on the basal area of the trees
found within each piot. To'mail_ltain the simplicity of BIOME-BGC it does not-
incorporate species-specific information. The model instead only requires a more general
discrimination of the species into coniferous or deciduous stands (Table 2-1). For the
mixedwood plots a ﬁfst order NPP estimate was made by using a weighted estimate from
the percentage of coniferous and deciduous species based on their respective basal area

within each plot.

3.4.1.4 Soil Water Content

A soil classification is generally available for much of Canada, however, available
soil water content is genérally not measured. Therefore, to determine the soil water
content for the region, estimates were made from the soil classes and the general soil
water volumes for each soil texture taken from Brady and Weil {1999) (Table 3-4).
Auvailable water content was determined as the mid point between field capacity and
wilting coefficient. Crossley (1952) describes in detail each layer of the soil classes
including, a description and depth of each layer (Figure 3-5). The soil water content

(m’/ha) for each layer was calculated as the depth (cm) multiplied by the available soil
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water {%). T03 determine the available soil Wate; contenf for each of the plots, the soil
water content for each layer was summed toa depth of 100 cm or the maximum rooting
~ depth (Running, 1994; Running and Nemani, 1991).

Table 3-4 — The field capacity, wilting coefficients, and available soil water
~content, all in volume % for general soil types in North America.

Soil Type |Field | Wilting Available Water
| _ Capacity | Coefficient | Content

Sand 9.2 (25 5.85

Sandy loam | 20.0 6.8 13.4

Loam 295 11.1 20.3

Siltloam |36 14.2 25.1

Clay loam | 382 | 18.5 2835
{Clay 382|215 29.85
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Brown Podzol Grey Podzol Brown Forest Lithosol
Available ~ Soil Available  Soil Available  Soil Available  Soil
) Soll  Water . Soil Water i Soil Water . Soit  Water
Soil  pepth Water Content Sof Depth Water Content .?0‘ Depth  \Water Content SO!  Depth  Water Content
om.ype  fem) (%) (@) W& fem) (%) mY) e (em) %) (@) Type  (cm) %) (m’)
) 3 3 0.0128 L 0.0077
0.0508 0.0288 . 0.0609
0.1481
0.0101
0.0101 70 0
0.1320 0.2096 0.1071 Parent Material
|
i
1 1] S — e [ I— — 5
Total 0.2030 0.2513 0.2609 0.0609
x10,000m” (ha) 2030 m'/ha 2513 m'/ha 2608 m'tha’ 809 m'ha

Figure 3-5 Description of each of the soil classes for the Kananaskis (from Crossley, 1952).
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3.4.2 Plot Level NPP Medei'Sensitivity to LAI

| To determine the effects of LAI,' climate, soil water content, ard vegetation
_cha_n'gg:‘s on the estimation of NPP, values were simulated for each of these variables
withi;n the range mgasured for the study area and p-Idtted using the same NPP axes on the
graph, to allow direct visual comparison. Other model input variables were held constant
with values used from a representative spruce plot, which was the dominant conif'erous
species type and had equivalent measurements to the mean LAI, tree height, and basal
area of stands within the study area. Further comparisons of different species and plots
were performed yielding similar results to the representative spruce plot, therefore only
the spruce plot will be presented. The ranges of LA obtained from each species and
mstrunient were from a minimum of 0.5 to a maximum of 7.77. The soil water content
ranged from .609.00 m’/ha for a lithosolic soil to 2609.00 m*/ha for a brown forest soil as
defined in the section 3.5.1.4. The elevations tested were between 1375m and 1649m as
the z_hinimum and maximum plot elevations. Elevation was tested as it affects the
microclimate of the study area, thus in essence a change in elevation can result in a
change in microclimate. For example, as elevation increases, the temperature drops and
‘precipitation may increase. The climate effects can be further broken down beyond
elevation (i.e. precipitation, temperature, snowpack) however, for this study the climatic
influences will be tested through elevation only to provide a generalized estimate of
climate change over the study area.

By comparing the magnitude of variation in L AT and NPP, the importance of LAI

in modeled NPP can be assessed. To determine if the variation in LAl measurement was

similar to the NPP variation, two methods were used. The first was stack graphs of each
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of the modeled NPP means and standard deviations for the different species, instrument
and remote sensing types so that the patterns of NPP and LAI can be compared. In the
second method, coefficients of variation were determined for each of the ground-based
estimates and the remote sensing estimates of LAI and NPP, so that the variation in both
could be standardized and compared. The coefficients of variation for LAI and NPP for
the separate species and instruments were plotted together for visual assessment of the

variation in each. Details of the statistical analysis are provided next.

3.5 Statistical Methods

For the comparison of ground-based LAI estimation techniques for species and by
instrument, a factorial analysis of variance (ANOVA) was performed. An ANOVA isa
comparison of two or more means to determine if there is a statistically significant
difference among the various factors (Sall and Lehman, 1996). A factorial ANOVA isan
analysis where there are many factors where, for each factor, there are different levels
(Steel and Torrie, 1980). For example, in the case of the LAI comparisons, instrument
and species are the factors and the levels within the factors are the different LAl
instrument and different species types. Therefore, a factorial experiment is one that
consists of all possible combinations of levels within a factor for the different factors
(Steel and Torrie, 1980). The primary outcome obtained through using an ANOVA is to
determine if the differences in response to the level of one factor are similar or different
at different levels of another factor (Steel and Torrie, 1980). However, a cross effect or
an interaction may occur between the factors, in that each factor affects the response

differently depending on the level of the other factor within the model (Sall and Lehman,
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1996). In that case, the response of the model is not only the sum of the separate factors
but also a combination of the factors.

A two-way (two factdrs) facioriai- analysis of -vafiance with interactioﬁs between
LAl instrumentation and species type was conducted with SPSS software to determine if
LAI values difﬁ:rgd among esfilﬁation methods. Interaction terms were initiatly
introduced into the model, however, if these terms were not statisticaily significant, they
- were removed énd the model was run again without the interaction term to increase the
degrees of freedom assigned to-the residual error term. If a statistical difference is found
by the ANOVA, further testing was pursued. To determine which levels among the
factors were statistically different, a comparison of all the pairs was done using a
Studcnt—Newman—Keuls _(S-N-Kj multiplé-mean comparison test. The S-N-K test
compares the minimum and maximum means within the factor and if the range is not
statistically significant further testing is not completed and the levels are regarded as
homogeneous (Steel and Torrie, 1980). If the range is statistically significant, further
testing is completed and levels that are statistically similar are categorized into groups.
All statistical tests in this study were conducted at the 5% probability level.

The comparison of LAI prediction techniques was based on the lineatity of each
of the vegetation indices and the SMA fractions with respect to LAI.  The comparison of
rﬁodels was based on the magnitude of the coefficient of determination (%), root mean
square error, the standardized residual plots and the statistical significance of each model.
The coefficient of determination (r°) measures the proportion of the total variance
explained by fitting the model. As the r* values approaches 1, a greater proportion of the

variance is explained by the model, and similarly, as the r* values approaches 0, less
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variance is explained. ..The f;oot mean square err@r (RMSE) is defined as the positive
square root of the residual-mcan square term. The smalier the RMSE, the better the
. inpd_el fit. The standardized residual plots are the residuals from the regression or the
difference bétween actual and prédicted values (Sall and Lehman, 1996). The residuals
would be expected to bé scaﬁered randomly aroun.d the mean of zero if there is no bias in
the model.

To determine if the variation in LAI is proportional to the variation in modeled
NPP, a coefficient of variation was used for both LAl and NPP. The coefficient of
variation (CV) is a quantity used to evaluate results from different experiments (Steel and
Torrie, 1980). The CV is calculated as the standard deviation divided by the mean
multiplied by 100. The CV is a relative measure of variation, unlike standard deviation
where the units of standard deviation are the same as the observed measures. Thus the
CV is a unitless measure that can be used to compare the variance from different

experiments.

3.6 Chaéter Summary

In this chapter, three separate tests were described for: (1) the comparison of ground-
based LAI estimation techniques, (2} the comparison of remote sensing LAI estimation
‘techniques and (3) to determine the effects of different LLAI estimates on modeled NPP
estimates. The first set of tests assess the variability of the ground-based estimates of
LAI from diffefent instruments or allometrics for different species types. This test was
designed to quantify the differences and assumptions among the various ground-based

instruments and the effects of species type on LAI output. The second set of tests were to
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assess the remote sensing estimates of LAI for deciduous, coniferous and mixedwood
tree types by comparing three vegetation indices with spectral mixture analysis in terms
of the ability to predict LAL The final set of tests were designed to assess the relative

variability between LAI and NPP using two graphical te.chniqu'e_s. This method was

désigned to characterize the relationship between 1.Al inputs and modeled NPP outputs,

and to determine if their relationship was proportional.
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CHAPTER IV

4.0 Results and Discussion

4.1 Introduction

In this chapter the resuits of the analysis from this research are pfesented and
discussed. The chapter is organiz_ed according to the three thesis objectives (sgction 1.1).
The first objecﬁve, the gl_round-bascd LAl estimate comparison, is intended to determine
the relative .differences in both the optical instruments and allometric techniques for each
species types assessed through an analysis of variance. This analysis is directed at
imprOﬁing knowledge about the differences in LAI estimation techniques. The second
objective involves estimation of LAl from remote sensing for deciduous, coniferous and
mixedwood species based on linear regression analysis. This approach defines
relationships between forest structural and spectral information for estimating LAl for
input into regional scale NPP models. The third objective is to assess the effects of LAI
variability on FOREST-BGC’s NPP output, through model simulations of the key
variables (LAI, soil water céntent, and climate). These are intended to determine the
effects that each of the variables may have on the NPP output, and to determine if the
variability in LAI was similar to the variability in modeled NPP. By quantifying the
effects of LAI on NPP insights can be derived about how FOREST-BGC uses the
estimated LA parameter and what margins of error can be tolerated in LAI estimation

from remote sensing.
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4.2 Stand Mensuration Information

Since plots were chosen to incorporate representative stands of the four species
types, the stands were first evaluated with descriptive statistics by species. White spruce
had larger basal areas and tree heights while having smaller stem densities compared to
the other species (Table 4-1). It would follow that larger basal areas and tree heights
would inhibit the penetration of light to the forest floor. Those trees that are already
established will out-compete other trees for light energy, thus reducing the stem densities
within a stand due to lack of light for establishment and growth (Kimmins, 1997).
Lodgepole pine stands were characterized by small basal areas, stem densities and tree
heights (Table 4-1). Lodgepole pine species are highly adaptable and tolerant of low
nutrient and moisture conditions (Johnson et al., 1995). However, the development in
low nutrient conditions may inhibit growth, which may be the case in this study with
small basal area, stem densities and tree heights. Both mixedwood and hardwood stands
had highly variable crown closures with similar basal areas (Table 4-1). Mixedwood
stands had the highest stem density and relatively taller trees that may be due, in part, to
the composition of the mixedwoods being made largely of white spruce and deciduous
species. The hardwood species had similar tree heights compared to the lodgepole pine,
however, they also had larger stem densities and basal areas (Table 4-1). White spruce
occurred on elevations that were higher than the other species. All species were
represented at lower elevations, while at higher elevations not all species occurred.
Hardwood species were the only one that did not occur on slopes greater than 15°,
Balsam poplar generally inhabited the valley bottom close to Barrier Lake, as these

hardwood species thrive in moist/wet sites (Johnson et al., 1995). Aspen stands grow the

94



best in well drained fnoist loamy soils (Johnson et al., 1995). The hardwood trees had
.d'ensé_r understory vegetation followed by mixedwood, lodgepole pine, and white spruce
l'argely due to the light :penetration through the canopy. Terrain, competition for light,
the availability of waier and nutrients, and plant-environment interactions all contributed

to the structural development and characteristics of the various stands.

Table 4 -1 Summary of Descriptive Statistics for Field Plot Data by Cover Type.

Lodgepole | White | Mixed- | Hardwood
Pine Spruce wood
No. of plots _ 8 7 i5 12
Min. Crown Closure (%) 25 | 46 29 | 26
Max. Crown closure (%) 52 66 80 75
Average stem density 2200 1600 2900 2600
(stems/ha) - - (810) (510) {1100) {310)
Averape tres height (m) 12 % T 14 12
(1.38) (1.60) | (5.42) (3.10)
Average Basal area 30.07 51.79 37.31 38.23
(m*ha) (9.91) (1581) | (13.59) (16.85)
Min. elevation. (m) T 1369 1315 1315 1374
Max. elevation {(m) 14.35 - 1642 1390 1552
Min. slope (degrees) 5.16 0.14 1.43 2.86
Max, slope(degrees) 36.16 33.46 40.5 14.95

4.3 Sapwood Extrapolation from DBH

An extrapolation of species-specific sapwood area from tree basal area was
required based on a subsample from each plot because the measurement of sapwood area
for each tree within the plot was prohibitively costly and time consuming. Two types of

models were used: (i) a general linear model for Douglas-fir and (ii) a saturation growth
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rate model for lodgepole pine, white spruce, and deciduous. The production of the

mode_l equatidns was based on .the strongest mpdei (highest r* and lowest RMSE) that
charaétcrized the patterns found within the data. All models were built from sample sizes
greater tﬁan 40, had a coefficient of determination (1*) greater than 0.83 and relatively
small standard errors (Table 4 -2). These equations were applied to the vﬁlidation data

set for which a very strong relationship was observed (Appendix A).

Table 4-2 — Regression models for the prediction of species-specific sapwood basal
area (SA) from iree basal area (BA) (cm?) determined through area

gstimates from DBH. _
Species Common N | ¥ |RMSE [Equation{cm®)
Name
Pinus contorta | Lodgepole 54 1091 |34.08 SA = _ 706.8689(BA)
Pine (986.6348 + BA)
Picea glauca | White Spruce | 44 | 0.84 | 47.60 SA= _1742.1374(BA)

(2559.8276 + BA)

Pseudotsuga | Douglasfir | 41 | 084 |21.08 | SA =0.8870 +0.2093(BA)

menziesi

Deciduous | Deciduous 64 |0.83 |40.87 SA = _ -528.8743(BA)
(Populus (Aspen and (-1266.7565 + BA)
tremuloides & | Poplar)

P. balsamifera)

4.4 Comparison of Ground-Based LAI Estimates

LAI estimates among the different species and instruments were different for each
stand (Table 4 -3). White spruce had the highest LAI estimates of all the instruments
used, followed by the mixedwood, hardwood and lodgepole pine, respectively (Table 4 -
3). The variation in LAI may be due, in part, to species type and stand structural

atiributes as well as the technique used to estimate LAI. The TRAC gave the highest
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of:atic_:al_ estimaté's of LAI for-_all species, followed by the integrated LAI-2000 and TRAC,
- LAI-2000, and heﬂxispherical photography, tespectively, however, the integrated
approach produced lower estimates than the LAI-2000 in the hardwood stands (Table 4 -
3}. Hemispherical photography and LAI-ZObO produced the smailes't estimates of LAI
for all species, with the -exéeptioﬁ of the integrated estimates in the hardwood stands.
Both the LAI-2800 and hemispherical photography do net account for gap size
distribution (clumping index) thus a more conservative estimate of LAI would be
provided by these instruments which is épparent in the lower estimates. 1t should be
noted, howevér, that hemispherical photographs were taken only in the middle of each
plot and may not be as representative of the stand as the LAI-2000. This may explain the
empirical difference in LAl estimates between hemispherical photographs and LAI-2000.
The TRAC produced the highest LAI estimates for the optical techniques (Table 4 -3),
which may be due to using the clumping index and gap fracﬁon as well as the
measurement of gap fraction at a single zeﬁith angle. For the optical instruments the
TRAC exhibited the greatest variation around the mean for all species types (Figure 4-1).
The clumping indices for all species showed relatively high values (Table 4-3, Figure 4 -
2). However, the clumping index values were larger in the white spruce stands followed
by mixedwood, lodgepole pine and deciduous stands (Table 4 -3). Deciduous species are
believed to have a random distribution of leaves, thus a clumping index value is not as
important (Welles, 1990). However, in this study the deciduous species had a clumping
index of 0.87, which is slightly smaller than the coniferous stands but still high enough to
exhibit clumping within the canopy (Figure 4 -2). Other studies have also shown that a

clumping index is also present in deciduous species (Chen et al., 1997b; Kucharik et al.,
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1997). The integrated approach d;:ﬂates the LAI esﬁmate of the TRAC, while still
incorporating both clumping index and gap fraction information at several zenith angles.
The lower estimates Qf LAI calculated from the intégrated approach as comparedl to the
L.AI-2000 for deciduous species may be due to the lower needle-to-shoot ratio (Ve) and
clumping index (€2) values. -

'_}.”able 4 -3 LAJ mean {and standé.rd deviation) for each instrument or technique by

species. The clumping index means (and standard deviation) from the
TRAC are used in LAI estimates for the integrated approach and the

_TRAC.
N | Hemi- |LAI-2000 | TRAC | Integrated | Sapwood { Clumping
spherical : LAI-2000 Area Index
Photos and
- _ TRAC

" Lodgepole | 8 1.22 1.53 2.62 1.75 2.54 0.89
pine (047) | (0.38) (0.69) 0.37) (1.03) (0.10)
White | 7 2.01 2.50 5.35 3.25 6.39 0.93
spruce (0.61) (1.03) (2.03) (1.32) (1.49) (0.07)
Mixedwood | 15 1.85 2.39 4.86 2.67 3.74 0.90
(0.69) (0.65) (1.29) (0.79) (2.38) (0.06)

Hardwood | 12 1.66 1.75 3.51 1.69 2.29 0.87
(0.30) (0.66) (2.08) (0.60) 093) | (0.10)

The sapwood area/ leaf area gave the highest estimates of LAI for white spruce
over the other optical instruments (Table 4 -3, Figure 4 ~1). Sapwood area/leaf area
estimates are lower than TRAC but greater than the other optical instruments for the
lodgepole pine, mixedwood and deciduous species (Figure 4 —1). The sapwood area/leaf
area estimates fall within the range of the optical instruments for all species except white

spruce (LAI= 6.39 vs. LAI = 2.01-5.35) suggesting that this approach may provide first
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order estimates of LAL if other techniques were unavailable. There isa large variation
afound the mean m sapwood area/ leaf area estimates for all species types (Figure 4 —1).
The trends in ihese mean LAi g:stimates by inmment and species suggest that the
dif’féren(;,es in LAI estimation techniques &nd species type affects the resulting LAI
estimates. This .will bt; discussed further in section 4.4.1.

Chen et al. (1997a) found the mean LAl estimates from the LAI-2000 to be larger
within black spruce (LAI=2.56) and mixedwood (LAI=2.60) sites than in aspen
(LAI=2.19) and jack pine (LAT=2.12) within the BOREAS study area in Manitoba and
Saskatchewan, Canada. This is similar to the results presented here, white spruce and
mixedwood had greater LAI values than deciduous and lodgepole pine (Table 4 -3).

| W'h:ite et al. (1997) reported coniferous (lodgepole pine, Douglas-Fir and westcﬁ larch)
and deciduous stands (aspen, paper birch and black cottonwood) within the mountainous
terrain of Glacier National Park, Montana gave mean LLAI-2000 estimates of 1.90 and
1.39 respectively. In this study area, coniferous stands (LAI = 3.25 for spruce and 1.75
for pi-ne) generally had greater LAI-2000 values than deciduous stands (LAI = {.69).
From-ﬂwse comparisons, it was concluded that LAT values from this study area generally
follow similar trends to that found in the literature for similar locations and speciés

compositions reported in other studies in north central North America.
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Figure 4-2 Hemispherical photographs depicting cé.mpy gaps and leaf and needle
clumping for (a) lodgepole pine, (b) white sprice, {c) deciduous and (d)
mixedwood stands
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4.4.1 Instrument and Species Comparison
4.4.1.1 Results

I.Al estimates were significantly different among the difterent species and
instrument factors (Table 4 -4). The S-N-K analysis distinguished which LAI estimation
technique was statistically different from the others. The TRAC and sapwood area/leaf
area estimates across all species were significantly higher than the other three approaches
(Table 4 -5). Although not significantly different, the integrated approach gave larger
mean LAl estimates than that from the LAI-2000 instrument (Table 4 -5). The LAI-2000
was statistically similar to both hemispherical photography and the integrated approach,
however, according to the S-N-K results the integrated approach and hemispherical
photography were significantly different (Table 4 -5). The instrument and species
interaction factor was statistically significant, suggesting that I.AI values varied with

species and measurement technique (Table 4 -5).

Table 4 -4 Two-way factorial analysis of variance for species type,
instrumentation and interactions.

Df | Mean F p-value
square
Instrument 4 3443 28.01 | .00*
Species 3 |32.87 26.75 | .00*
Instrument*Spectes | 12 | 4.35 3.54 .00*

*statistically significant at p<0.05
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Table 4 -5 Student-Newman-Keuls statistical test for LAI by instrument. Means
with the same superscript are not significantly different from each

other.
Instrument [ N
Hemi 37 | 16T
LAI-2000 36 |2.06° |2.06°
Integrated 34 2.31°
SA 42 3.42°
TRAC 39 3.88°

Note: numbers with the same superscript are not statistically different.
4.4.1.2 Discassion

The structural properties of a tree and its distribution within a stand have an
important influence on the amount of light that penetrates to the forest floor. The
differences in LAl among the species are attributed to the structural composition of the
stand inchuding canopy architecture and morphology, leaf orientation and distribution,
stand structure, and foliar biomass. Thus a statistically significant difference in the LAl
estimates between species was expected (Table 4-4).

The different assumptions built into the estimation of LAl from the different
techniques affect the LAI estimations thus producing a statistically significant difference
among them (Table 4-4). The LAI-2000 and hemispherical photographs do not account
for gap size distribution but instead measures gap fraction at several zenith angies,
therefore, no significant statistical difference was expected between them. The LAI-2000
has been described as a convenient version of hemispherical photography because image
processing is not required (Chen et al., 1997a). In other studies, the LAI-2000 was found
to underestimate LAI especially for coniferous forests whose foliage are typically

clumped at the shoot and canopy levels (Fassnacht et al., 1994; Gower and Norman,

103



19915. Gower and Norman (1 991) found that the predicted LAI-2000 values were 35-.
40% below direct LAI measuremeﬁts for a red oak plantation in Wisconsin. This
underestimation may be due in large part to the lack of gap size distribution information
as well as the effects of blue light scattering within the canopy (Chen et al., 1997a).

The higher LAl estimates by the TRAC are attributed to the caiculation of a
clumping index, to determine gap size distribution, and the lower gap fraction estimate
due to the optical measurement at one zenith angle (Leblane and Chen, 1998; Chen and
Cihlar, 1995). The clumping index calculation is more important in coniferous species
where the assumption of a random distribution of leaves is not valid (Figure 4-2a and b)
{Chen and Cihlar, 1995). However, in this study, clumping index may .be as ﬁnpoﬂant in
deciduous species as in coniferous ones because the clumping index for deciduous
species was on average 0. 87. Therefore, the assumption of a random distribution of
leaves in deciduous species may be invalid (Figure 4-20). Chen et al. (1997b) suggested
that the assumptions that foliage elements are randomly distributed within foliage clumps
and foliage clumps are randomly distributed in space can not be substantiated. for aspen -
stands. They calculated clumping index (€2} values as 0.84, 0.75, and 0.70 for aspen
stands within Prince Albert National Park, Saskatchewan, Canada. Kucharik et al. (1997)
determined aspen and poplar stands within the BOREAS Study Area (Saskatchewan and
Manitoba, Canada) to have clumping indices between 0.52 and 0.87. Thus, clumping is
important to consider in both deciduous and coniferous stands (Figure 4-2).

The larger mean of the integrated approach over the effective LAI instruments
(hemispherical photography and LAI-2000) suggests the importance of combining the

effective LAI estimate of the LAI-2000 with the clumping index of the TRAC. Leblanc
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and-Chen (1998) reported that the integrated approach provided a more acc_uréte estimate
of LAI compared to TRAC or LAI-2000 alone. In this study, the integrated approach
deflated the TRAC estimate by between 33% and 51%. The lower estimate of LAI by
the integrated approach than by the TRAC suggests the importance of estimating eLAI at
several zenith angles, otherwise estimates of eL.Al my be inflated (Table 4 -3).
Theoretically, this approach should provide a more accurate estimate of LAl since it
includes gap size distribution (clumping index) as well as quantifying the effects of
foliage distribution and gap angular distribution, measured as effective LAI at several
angles from zenith (Chen et al., 1997a).

The sapwood area/leaf area LAl estimates were not significantly higher than the
TRAC estimate, suggesting that the technique of sapwood area to leaf area ratios from
other areas within the Rocky Mountains (White et al., 1997) may be viable for this study
area if the optical instrumentation is not available (Table 4 -4). However, sapwood
area/leaf area estimates for white spruce were much higher than all of the other optical
measurements (Table 4 -3). Since the white spruce estimate exceeded the range in
optical measurements this estimate may not be suitable for the Kananaskis study area.
The use of the sapwood area/leaf area estimates in previous studies has shown to be stand
specific, and dependent on season, age, stand density, tree crown size, and climatic
differences (Mencuccini and Grace, 1995; Pearson et al., 1984; Gholz et al., 1976 ). For
future work, further testing and validation should be pursued. Local sapwood area/leaf
area relationships may be needed to generate LAl estimates that would be more

appropriate for the species in this study area.
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The interaction term. between instrument and species was statistically signiﬁcant
suggesting that the instruments measure LAI differently for the different species. This is
probably indicative of the assumptions built into the design of the instruments and the
épecies-speciﬁc algorithms applied for sapwood area/leaf area estimates. The significant
interaction term may be dué to the coniferous species exhibiting a clumping effect on

foliage distribution at different levels including branches, whirls and crowns, rather than
shoots alone. Therefore estimating LAl for needles nested within clumps is complex
(Chen and Cihlar, 1995). Instruments that only measure gap fraction (i.e. LAI-2000 and
hemispherical photography) do not account for complex clumping of needies and assume
a random distribution of leaves/needles. A clumping index was also found in deciduous
stands (0.87) that was slightly smaller than the coniferous species, yet, still larger than a
random distribution of leaves. Chen et al, (1997b) and Kucharick et al. {1997) also found
that deciduous stands exhibit a clumping effect. Therefore in both deciduous and
coniferous stands, where needle or leaf clumping is a factor, optical instruments that
account for the clumping index are necessary and techniques that only use gap fraction
may be inappropriate. However, to determine the importance of clumping index in both
coniferous and deciduous species would require absolute measures of true LAI for

validation and/or calibration.

4.5 Comparison of Remotely Sensed LAI Estimates
4.5.1 Results
SMA_S, NDVI and WDVI had a statistically significant relationship with LAI from

both the LAI-2000 and integrated approach in coniferous stands (Table 4-6 and Appendix
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‘B). HbWever_, the TRAC had no significant statistical relationship with anf of the
vegetéﬁdh indices or SMA_8S (Table 4-6). The SMA_,S approach improvéd the
coefficient of determination (r*) by 0.35 (from 0.44 to 0.79) and reduced the root mean
square error over the vegetétiqn indices for the integrated approach (*=0.79) and LAI-
2000 (r2= 0.75) for conifen:ius 'species (Table 4-6). NDVI performed bettér than the
other vegetation indices for the integrated approach (r’= 0.44) and LAI-2000 (’= 0.40)
based on an increase in the coefficient of determination (r*) and the lower root mean
squafe error (Table 4 -6). A\ statistically significant relationship V\;as also found between
SMA_S and sapwood area/leaf area (r>= 0.28), and SAVI and hemispherical photographs
("= 0.49) for coniferous species (Table 4 -6). Spectral mixture analyéis produced the
sfrongest relationships with LAI for coniferous species (= 0.79), which may be
indicative of the structural parameters that SMA models.

In deciduous stands a significant relationship was found between all the vegetation

~ indices and ground-based i..AI techniques, except for the TRAC (Table 4 -7, Appendix

B). SMA_S was not completed for the deciduous species since appropriate endmembers

where not available (Chapter 3). In deciduous stands, SAVI produced stronger

relaﬁonéhips with the integrated approach (i'2= 0.61) and the LAI-2000 ("= 0.60), while

WDV had stronger relatibnships. with hemispherical photograph estimati:s (**=0.37) and

NDVI had the strongest relationships with sapwood area/leaf area estimates (r°= 0.39)

(Table 4 -7). The integrated approach and L.AI-2000 had the strongest relationship with

~ all the vegetation indices for both the deciduous and coniferous species (Table 4 -7,

Table 4 —6).
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-.Mixec:lwood. stands showed a statistically significant relationship @<0.0‘5) Eehveen
| SAVI and all the ground-based instruments (Table 4.-8). SAV] produced the strongest
rélationship with sapwood area/leaf area estimﬁteé (12 =(.78) foilowed. by the integrated
” approaéh (= 0.58) (Table 4-8). Bqth NDVI and WDVI did not have statistically
si@iﬁcant relationships with any of the groﬁnd~based instruments for the mixedwoods
- (Table 4-8}. It should also be noted that dué to the smaller sample size an independent
validation sample set was not pfd&uced for all stands. The entire usable sample was
;réquircd for the regression model, and therefore it was not possible to have an
- independent mutually exclusive validation sub-sample. The model strength is presented
based on their coefficient of determination and RMSE and not on the application of the
-.da’.ta.to a vali&tion data set.
| Diﬁ"ert_mdes weré seen in both fhé mean and standard deviation of the ground-based
LAIT estimates compared to remote sensing LAI estimates (Figures 4 -3 through. 4-5). In
~ both the conifercus and deciduous stands, the stronger the statistical model (higher
coefficient of determination (r*) and lower root mean square error) the closer the remote
._sensing modeled mean would be to the ground-based means (Figure 4 —3 through Figure
4 -5). Forall stands,. the variabiiity around the mean for the SMA_S and the vegetation
indices were smaller than the ground-based estimates (Figure 4-3 through Figure 4 -5).
In general, the remote sensing estimates follow the same trends as the ground-based LAI

estimates, but they were less variable.
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are provided in Appendix C.

Table 4 -6 — Coefficient of determination (t°), standard error, and significance (p<0.05) for modeled estimates for each LAI estimation
technique and using the remotely sensed vegetation indices and SMA shadow fraction for conifer species. The equations

Instrument N NDVI WDVI . SAVI SMA Shadow Fraction
I SE P<0.05 | SE [ P<0.05 |r SE P<0.05 | ¢’ SE P<0.05
TRAC 27 (005 (195 |026 1005 |197 {027 0.06 | 194 [0.21 006 |1.88 |0.23
LAI-2000 22 (040 1060 [0.00 632 | 0.64 |0.01 0.00 077 |0.93 0.75 1047 |0.00
Hemi 21 {000 1067 |0.99 001 {066 |0.76 049 1048 | 000 001 1066 |0.72
Integrated 22 (044 (065 |0.00 0.35 {070 |0.00 0.00 |[0.87 [0.89 0.79 {051 |0.00
Sapwoodarea {27 [0.05 |190 |0.29 0.06 |1.89 |0.23 011 [1.84 |0.10 0.28 {1.88 |0.01

Table 4 -7 — Coefficient of determination (%), standard error, and significance (p<0.05) for modeled estimates for each LAY estimation
technique and using the remotely sensed vegetation indices and SMA shadow fraction for deciduous species. The equations

are provided in Appendix C.
Instrument N NDVI WDVI SAVI
r SE [ P<0.05 |1 SE [P<005|F SE | P<0.05

TRAC 10 1000 | 186 |0.87 0.03 ;1.84 | 0.65 0.07 | 1.80 } 0.48
LAL-2000 9 0.39 1055 |0.05 042 {054 {004 0.60 | 045 |0.00
Hemi 11 {031 (023 |0.05 037 1022 |0.03 023 1024 |0.05
Integrated G 041 1049 ;0.04 042 1049 {004 061 |040 |0.00
Sapwood area 11 1039 1099 10.03 030 {1.06 |0.05 033 [1.04 |0.04

Table 4 -8 — Coefficient of determination (%), standard error, and significance (p<0.05) for modeled estimates for each LAI estimation

technique and using the remotely sensed vegetation indices and SMA shadow fraction for mixedwood species. The
equations are provided in Appendix C.

Instrument N NDVI WDVI SAVI

r SE [P<0.05 |¢ SE P<0.05 | SE P<0.05
TRAC 10 {012 [1.15 {033 028 [1.04 |0.11 039 {096 |005
LAI-2000 11 {000 [071 092 0.03 {070 |0.59 047 052 |0.02
Hemi 10 000 [0.84 [0.99 0.04 |0.82 |0.58 0.58 |0.54 {0.01
Integrated 11 {006 [071 |047 0.00 {0.73 |0.90 0.35 1059 |0.05
Sapwoodarea |11 |0.01 [2.18 |08l 0.08 1212 |04 0.78 [1.03 |0.00
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Figure 4-3 A comparison between ground-based and remote sensing LAI estimates. Mean LAI estimates and standard deviation
(shown as line bar) from integrated LAI-2000 and TRAC {A), LA1-2000 (B), hemispherical photography (C), and sapwood
area/leaf area (D) from ground-based and remeote sensing techniques for all coniferous stands. Results that were not
statistically significant are not shown.
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4.5.2 Discussion

Shadow fraction from SMA produced the “best” regression results based on the
coefficient of determination and RMSE for conifer species, compared to the vegetation
indices (Table 4 -6, Appendix B). SMA has been shown to provide better estimates of
forest biophysical parameters than vegetation indices in other studies (Peddle et al.,
1999a, 2001; Peddle and Johnson, 2000; Johnson, 2000 ). Peddle et al. (2001) reported
an average 40% improvement using SMA compared with 10 vegetation indices in the
prediction of biomass, NPP, and LAl in a black spruce forest in Minnesota, USA. Peddle
and Johnson (2000) found SMA shadow fraction improved LAI estimates by an average
of 20% compared to NDVI for Multi-Spectral Video (MSV) data of trembling aspen and
lodgepole pine stands in Kananaskis. In this study, SMA shadow fraction improved the
r* by 0.35 and reduced the RMSE compared to any of the vegetation indices for the LAI-
2000 and integrated approach (Table 4-6).

Of the vegetation indices, in conifer stands, NDVI produced improved regression
results with higher r* values and reduced the RMSE over both WDVI and SAVL. In
general, most of the conifer plots were comprised of white spruce stands with larger tree
heights and basal areas which inhibit more light penetration to the soil or background,
possibly reducing the effects that background hasron the remote sensing signals. Chen et
al. (1996a) found that simple ratios such as NDVI performed better than other vegetation
indices that attempt to minimize soil background effects in predicting LAI and fPAR as
the signal noise is proportional in both the red and infrared bands, thereby canceling out
signal noise in jack pine and black spruce stands in Manitoba, Canada. Chen et al.

(1996a) hypothesized that signal noise can be retained or amplified through the
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mathematical cqﬁations in SAVI] .an.d WDVI. However, Peddle et al. (2001) found that |
v-égétation indices that incorporated background effects were better predictors of forest
biophysical parameters inc]ﬁding biomass, NPP, :LAI, DBH, stem density and basal area
fraction for black spruce stands in Mi:nnesota, USA. Black spruce and jack pine species
generally have smailer crown sizes and smaller branches than that of white spruce or
lodgepoie pine species respectively (Johnson et :ai., 1995). By ségregaﬁng the general
conifer species into lodgepole: pine and white spruce, the resulis may coincide with the
results presenied by Peddle et al. (2001) and Chen et al. (1996a), however, due to the
relatively small sample size, this was not possible.

For the deciduous stands, SAVT showed the best relationship to LAI for both the
integrated approach and LAI-2080. Deciduous canépies in this area have lower tree
heights and mid—r%mge basal areas (38 m*/ha). This may result in a greater amount of
canopy gaps and therefore the light penetration to the understory would increase and may
have a greater background effect on the remote sensing signal. For both coniferous and
deciduous species, except for SAVI in coniferous stands, the integ:atéd -al.)proach..
produced higher coefficient of determination values than the other ground based
estimates suggesting that the integrated approach may indeed be a mofe accurate LAl
estimation technique than the other measures. |

The same rationale for the deciduous species can also be applied to the mixedwood
stands Where there was a stronger relationship with SAV] than the other vegetation
indices, Iikely because mixedwood stands have a relatively smali basal area and the tree

heights are lower than the white spruce. The sapwood area/leaf area estimate had a
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strong relationship with SAVI. The integrated approach did, however, perform the best
of the optical ground-based LAl estimates.

The similarity of the remote sensing mean LAI estimates fo the ground-based mean
LALI estimates is indicated by the magnitude of the coefficient of determination. The
higher the coefficient of determination and the lower the root mean square error the more
similar the remote sensing estimates were to the ground-based estimates. The decreased
variability in the remotely sensed LAI estimates compared to the ground-based LAl
estimates was quantified using the linear regression model. A linear model was fit to
produce the remote sensing equations by using a line of best fit for which the extremes
are not accounted for and the deviation will be less. Therefore, in the application of the
remote sensing equations to the same plots, the estimates should be similar to the ground-
based estimates used to build the equation, however the variation should be less, which

was seen in this study.

4.6 NPP Model Sensitivity to LAI
4.6.1 Results
4.6.1.1 NPP General Simulations

Several NPP model simulations were completed where only one variable was altered
to test the impacts of each variable, for the ranges found in the study area. LAI appears
to have had a positive linear relationship with NPP (Figure 4 —6a). A range in LAI
between 1-8 produced a range of NPP estimates from 1496-14035 kg_C/halyr. Soil
water content and elevation had very little variation over the ranges of each variable

tested (I'igure 4 -6 b, ¢). The SWC ranged between 500-3000m’ resulted in a range of
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NPP estimates from 2909 to 2953 kg_C/halyr. A gain in elevation from 1389m to 1649m
resulted in a decrease in NPP from 3034 kg C/ha/yr to 2455 kg_C/ha/yr. For LAI,

species also affected the NPP output, with deciduous species having a greater NPP than
-coniferou; species at higher LAl values (Figure 4 —6a). The simulation results sﬁggest

that LAI is the main driving variable for FOREST-BGC in this region at this scale.

4.6.1.2 NPP Output From Field and Remotely Sensed LAI Inputs

The modeled NPP estimates produced similar patterns among the ground-based and
remote sensing techniques to that seen in the L AT estimates. The NPP estimates were
jarger for the ground-based TRAC (NPP =6889-10474 kg_C/ha/yr) and sapwood
arca/leaf area (NPP = 6072-8572 kg_C/ha/yr) LAl inputs in ail species, followed by
integrated (NPP = 3903-5411 kg_C/ha/yr), LAI-2000 (NPP = 3664-4863 kg_C/ha/yr) and
hemispherical photographs (NPP = 3009-3643 kg C/ha/yr) (Figure 4 -8). Sapwood
area/leaf area NPP estimates (NPP = 8572 kg_C/ha/yr) were only larger for the
coniferous stands, while TRAC NPP estimates were higher in both the deciduous (NPP =
6889 kg_C/hafyr) and mixedwood stands (NPP = 10474 kg_C/ha/yr) which was
consistent with the patterns for ground-based LAI estimation (Figure 4 —8, Figure 4 —1).
The same relationship was seen in the remote sensing techniques, where the patterns of
NPP and LAI were similar (Figures 4-9 through 4-11, Figures 4 -3 through 4 -5). The
similar trends between modeled NPP estimates and LAl estimates are consistent with the

emphasis placed on LAI by the model.
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Using Different Ground-
based LAl Inputs
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4.6.1.3 Comparison of Variability Between LAl and Modeled NPP

Variation around the mean is observable in both LAI and NPP estimates for each
stand. Determining the coefficient of variation for each of the estimates enabled the
direct comparison of variation among the different measures. In this section, the
coefTicient of variation for I.AT will be designated as CVpa) and the coefficient of
variation for NPP will be CVypp. The greater the coefficient of variation the more
variable either the NPP or LAI estimates were. The variability found within the NPP
estimates was not proportional to the variability in LAI estimates (Figure 4 -12). In
general, larger LAI estimates (i.e. TRAC and sapwood area/leaf area estimates), had a
larger CVy4; than CVypp, however for smaller LAI estimates (i.e. LAI-2000 and
hemispherical photography) the CV; were smaller than the CVypp (Figure 4 —12). The
larger ground-based estimates of LAI produced by the sapwood area/leaf area and TRAC
had smaller variability in NPP compared to the variability in LA in all the stands (CVa;
> CVynpep), with the exception of the TRAC in the mixedwood stands (CV 4y < CVypp)
(Figure 4 —12). The smaller ground-based estimates of LAI from the LLAI-2000 and
hemispherical photographs had greater variability in NPP than in LAI (CVpa1 < CVxpp)
for all species (Figure 4 -12). While the variability in the NPP and LAl estimates for the
integrated approach appeared similar (CVpa; = CVaep) in the coniferous (CVipa = 48.4,
CVnpp = 48.3) and mixedxévood stands (CVpa; = 29.5, CVnpp = 29.7), the variability is
greater in the NPP estimate (CVpar < CVnpp) in deciduous stands (CVnpp = 44.4, CVia =
35.5) (Figure 4-12). A threshold is suggested where the coefficient of variation is equal
for both NPP and LAI, above which LAI has a larger variation, and below which NPP

has a larger variation. The threshold value for conifer and mixedwood stands were close

122



to the integrated estimate of LAl (conifer LAI= 2 .48, mixedwood LAI=2.67, and for
deciduous stands the threshold was between the sapwood area/leaf area (LAI=2.29) and
integrated LAl estimate (LAl =1.69) (Figure 4-12).

In all stands, both CVy4: and CVypp were lower for the remote sensing than the
ground-based estimates (Figure 4 ~13 through 4-15). Based on the smaller standard
deviations for the mean remote sensing L.Al estimates over the ground-based LAI
estimates (Figures 4-9 through 4-11), the coefficient of variation for the remote sensing
LA} and NPP estimates shouid be lower than the ground-based LAl and NPP estimates.
The coefficients of variation for both NPP and LAl for the remote sensing estimates have
similar patterns to the ground-based estimates. In both coniferous and deciduous stands,
the smaller LAI estimates of hemispherical photographs, I.Al-2000, and the integrated
approach for both ground-based and remote sensing techniques had less variable LAl
estimates than NPP (CVyar < CVupp), except the ground-based integrated approach in
coniferous stands where LAI was slightly more variable (CVya1 > CVypp) (Figure 4 —13
and 4 -14). The mixedwood and conifer stands had a greater variation in LAl than NPP
(CVvia1 > CVner) for sapwood area/leaf area estimates for both the ground-based and
remotely sensed results (Figure 4 —13 and 4-15). Also, in mixedwood stands there was
greater variability in LAl over NPP (CV a1 > CVnpp) for both TRAC ground-based and
remote sensing estimates (Figure 4 —15). In deciduous stands, LAI had greater variability
over NPP (CVpa; > CVypp) for ground-based sapwood area/leaf area estimates, however
remote sensing sapwood area/leaf area estimates had more variable NPP estimates
(CViai <CVpnpp). The variability in remote sensing techniques show similar patteras to

the variability in ground-based estimates with threshold values of equal coefficient of
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variation for both NPP and LAI, however, the coefficient of variation for both the NPP

and LAI from remote sensing are lower than the ground-based estimates.
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4.6.2 Discussion

The magnitude of NPP change with altered LAl in comparison to the altered soil
water content and elevation illustrates the importance the FOREST-BGC model places on
LLAI inputs over the other variables (Figure 4 —6). Thus accurate and consistent LAI
estimates are imperative in the modeling of NPP. Species also influences NPP model
output due to basic physiological differences that are characterized by maximum LAI,
specific leaf area, leaf on/off dates, respiration and conductance rates among species
(Figure 4 —7) (Running and Hunt, 1993).

Running and Coughlan (1988) modeled NPP estimates for a hypothetical
coniferous forest stand using FOREST-BGC in Missoula, Montana for variable LAI
values of 3, 6 and 9 and produced NPP estimates of 4.1 tonnes of carbon/hectare/year
(thalyr), 4.9 t/ha/yr, and 4.9 tha/yr, respectively. Prescott et al. (1989) determined NPP
in the Kananaskis region for lodgepole pine, white spruce and Douglas-fir stands to be
4.57 thafyr, 4.32 t/ha/yr, and 3.83 t'ha/yr, respectively. In this study the average NPP
estimate for coniferous stands (including lodgepole pine, white spruce and mixed conifer
where the latter consisted of lodgepole pine, white spruce and Douglas fir) using the
integrated approach (theorized to be the most accurate) was 4.56 t/ha/yr. These resuits
are similar to both the Prescott et al. (1989) ground-based NPP estimates, and Running
and Coughlan (1988) modeled results for NPP estimates of coniferous species on the
eastern slopes of the Rocky Mountains. Since there are no other studies of deciduous
NPP in montane ecozones a comparison with the same species in boreal stands was
performed instead. Gower et al. (1997) measured annual NPP for aspen stands in a boreal

ecozone in Saskatchewan to be 3.12 t‘ha/yr and 3.52 t/ha/yr, and in Manitoba at 2.49
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t/ha/yr and 3.49 t/ha/yf.. In this study, the integrated LAI-2000 ané; TRAC, and LAI-2000
techniques prbduced NPP estimates of 3.9 t/ha/yr and 3.85 ttha/yr for deciduous stands.
The results for this sudy are slightly highcr.than the measurements taken in
Saskatchewan and Manitoba. This is due to the more southerly location of the study area
and the difference in ecozone (montane cordillera vs boreal forest) affecting climate,
growing season, parental material, permafrost and. soil {Johnson et al., 1995).

The mean NPP estimates and Qtandard deviations for the ground-based and
remote sensing techniques foflow the same patterns of the mean LAI estimates (Figure 4-
8 through 4-11). Large LAI estimates (sapwood area/leaf area and TRAC estimates)
produce larger NPP estimates (sapwood NPP = 8.57 t C/ha/yr and TRAC NPP = 8.30
t_C/ha/yr) compared to those of smaller LAi estimates (hemispherical photography and
LAE-2000) (hemispherical NPP = 3.01 t_C/ha/yr and LAI-2000 NPP = 3.80 t_C/ha/yr).
This again shows the influence of the LAI estimates on the modeled NPP output.

The variability of LAI and NPP was not proportional. A threshold value was
suggested at the point where the variability of NPP and LAI were equal. For LAI
estimates lower than the threshold, theré is more variability with the NPP estimates than
the LAl estimates. Alternatively, if the LAI estimates are greater than the threshold
value, the NPP variability will be less than the variability in the LAl estimates. The
threshold values for the coniferous stands were suggeéted to be approximately similar to
the integrated LAI-2000 and TRAC approach. For deciduous stands, the threshold value
was suggested to be between the LA estimates of the LAI-2000 and sapwood area/leaf
area, and for the mixedwood stands between the LAI~2000 and integrated approach.

Beyond this LAI threshold, other environmental factors including climate and soil water
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content may limit the increase in NPP, Wh_ile below thié threshold LAI méy limit the
increase of NPP (Nemani and Running, 1989; Rﬁnning_and Coughlan, 1988),

Photosynthesis, NPP and CO, uptake rely on the capfure ﬁf PAR by trees (Bonan,
1993). The amount of PAR captured is largely dependent upon ﬁe surface area of leaves
or LAI (Kimmins, 1997; Bonan, 1993). The leaf area is detenﬁined based on the
availability of site resources including: water, nutrient and light (K_immins, 1997). Stand
leaf area is usually lower where water is limited (Nemani and Running, 1989). Both
climate and soil play a significant role in determining the water availability of a site
because the climate dictates the amount of availabie precipitation and evaporation for the
site and the soil dictates the amount of water that is stored. As a result, equilibrium
should exist between climate, soil and leaf area due to the supply-storage-demand
interaction (Nemani and Running, 1989; Grier and Running, 1977}, Equilibrium is met
where photosynthesis is maximized and a suitable internal water status is maintained
(Nemani and Running, 1989). By increasing tree leaf area, there is an increase in
photosynthetic potential, however, increased leaf area will also cause an increase in
transpiration loss. Therefore, to restrict water stress there is reduced stomatal aperture,
which also causes a reduction in CO; fixation (Nemani and Running, 1989).

Nemani and Running (1989) found that a necessary hydrological equilibrium
exists between climate, soil water content and maximum leaf area in water limited
coniferous forests in Montana. In FOREST-BGC, a linkage between hydrologic
components and carbon balance predictions of photosynthesis, respiration, and growth
allocations would provide additional insight into the limitations of LAI (Nemani and

Running, 1989), They were able to infer estimates of maximum leaf area that a site can
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support with prior k;nowledge of soil and climatic conditions. Their modeled maximum
LAIesti_mates were validated through comparing modeled maximum LAT and field
esﬁmateg of LAI showing a linear correlation between field and modeled LAI (*=0.87).
The strong relation between field and modeled LAI confirms the contrél water |
availability has on leaf area carrying capacity of forest stands (Nemani and Running,
1989). In this study, the LAl threshold \?alue is suggested. to be the point of model
equilibfiurn between LAI, soil wéter content and climate.

Running and Coughlan (1988) found that based on model simulations in the mid-
latitudes of west central North America, an increase in LAI is limited by hydrologic
bélances and partitioning, altering the subsequent photosynthesis of forest canopies. They
found that there was no increase in total transpiration from an LAT of 3 to 9 because all
available soil water was consumed because of Jow annual precipitation or thefe was more
transpiration with higher LAI values resulting in a longer duration of canopy water stress.
Therefore; there was equal total iranspiration for LAI values ranging between 3 and 9.
They also found that where .physiological activity is substantially water limited or
radiation limited, increasing LAI produced a weak positive résponse to photosynthesis.
As photosynthesis is an important parameter in the calculation of NPP, the weak positivé
response to photosynthesis would have an affect on the resulting output. For exﬁmple, in
a FOREST-BGC modeled coniferous foresf in Missoula, Montana an increase in LAI
~ from 3, 6 and 9 resulted in an NPP of 4.1 v/ha/yr, 4.9 t'ha/yr, and 4.9 tha/yr (Running and
Coughlan, 1988). The lack of NPP increase from 6 to 9 is likely due to the short growing

season and small amount of precipitation (337min) received in this area (Running and
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Coughlan, 1988). Thus a threshold value exists hefe between LAI of 3 and 6, where
equilibrium of LAL SWC and climate is met. |

In the Kananaskis study area of this research, similar trends occur, thus as LAI
estimates increase, the resuiting NPP will be Limited by soil water content and climate.
NPP values Ieés than the LAI threshold were not water limited but rather LAI limited,
resulting in more variable NPP estimates compared to the LAI estimates. Thus, at the
LAI threshold, an equilibrium exists between SWC and climate and the amount of LAI a
site can sustain. Therefore, below the LAI threshold or site equilibrium, LAI limits the
amount of NPP, while above the thresﬁold site water availability (SWC and climate) limit

the amount of NPP.

4.7 Chapter Summary

In this chapter, comparisons of ground-based and remote sensing LAI estimates and
the effect LAI has on modeled NPP estimates were completed. The relative comparison
of the ground-based LAl estimates suggest optical techniques which incorporate
clumping effects and gap fraction measured at several zenith angles, like the integrated
LAI-2000 and TRAC approach, theoretically provide the most accurate LAI estimations.
This approach deflated the TRAC estimate by 32-52%. The integrated approach also had
the strongest relationships with the remote sensing techniques (SMA shadow fraction and
vegetation indices) over any other ground-based estimate, which provided empirical
evidence to support this theory, further supporting the preferred use of the integrated
approach. SMA shadow fraction produced the best overall estimates of integrated LLAI

for the coniferous species, while NDVI produced the best estimates of the different
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vegetation indices tested. For the deciduous stands (for which SMA was not conducted),
SAVI had the strongest relationship with the integrated LAI. For mixedwood stands,
SAVI produced the strongest relationships with all the instruments over any other
vegetation indices. Species and stand structure were shown to affect LAI estimation at
both ground-based and remote sensing levels.

LAl has a strong influence on the modeled NPP estimate from FOREST-BGC.
Simulations showed that LAl affects NPP more than either soil water content or climate.
As well, the graphical patterns observed in each of 1.AT and NPP estimates were similar,
however, the variability between LAl and NPP was not equal. Coefficients of variations
were determined for both the LAI input and the NPP output, from which a threshold LAI
estimate was proposed as the point where the variability in LAI is similar to the
variability of NPP. Below this threshold, the variability in LAI is greater than the
variability of NPP, while the opposite is true above this threshold. This LAI threshold
suggests that, initially, the increase in modeled NPP is limited by LAI, but that beyond
this threshold the increase in modeled NPP is limited by soil water content and climate

due to the hydrological equilibrium between climate, soil water content and leaf area.
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CHAPTER Y

5.0 Summary and Conclusions

5.1 Summary of Results

The ability to predict the amount of carbon in an ecosystem through NPP modeling
is important for the determination of climate change effects and global carbon budgets,
which has come to the forefront of much research due to anthropogenic increases in
atmospheric CO,. Process-based ecosystemn models have been developed using leaf area
index (LAT) as a key variable, as it can be obtained at multiple scales and over large areas
using remote sensing, and it is a parameter related to energy, gas and water exchange of
an ecosystem. As a result, understanding the variability in LAl from both ground-based
instrumentation and from remote sensing techniques and the resulting affect this has on
modeled NPP is important for making accurate estimates of carbon. In this thesis,
results were obtained for the three research objectives identified. In the following
sections, these results are summarized for: (i) ground-based LAI estimation, (i) remote

sensing of LA and (iii) variability of NPP.

5.1.1 Ground-based LAI Estimation

In this research, five approaches for ground-based LAI estimation were compared
including, LAI-2000, hemispherical photography, TRAC, integrated LAI-2000 and
TRAC, and sapwood area/leaf area. The integrated LAI-2000 and TRAC approach

provided the best theoretical basis for estimating LAl as it accounted for both the
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clumping index and the gap fractions at several solar zenith angles. In this study area
clumping indices were found in both coniferous and deciduous stands. For conifer
stands, the integrated approach reduced LAI estimates from the TRAC by 37% and
increased the LAI-2000 estimates by 19%. All the stands had lower LAI estimates for
the integrated approach than the TRAC. This resuit suggests the importance of
estimating eL Al from gap fraction at several zenith angles. However further analysis of
the optical instruments in comparison with absolute LAI values should be completed.

The sapwood area/leaf area estimates used from the literature may be inappropriate for
this area, especially the white spruce stands, as these exceeded the optical estimates. This
analysis is limited due to the lack of absolute validation of LAI, as the destructive
sampling of some of these stands was not only illegal but also prohibitive in terms of
monetary, location and time constraints. Thus only a relative study could be completed,
however, it was stated earlier that absolute measures of LAI for the incorporation with
remote sensing is difficult, impractical or impossible. This is due to the difficulties in
measuring LAT over a large area that will correspond with the image pixel resolution,
positional control of field measurements in relation to the exact pixel area, and field
sampling that would provide an appropriate representation of forest stands. Ideally, a
large sample of absolute measures of LAI from destructive sampling together with optical
and allometric techniques should be used, however, with the plethora of optical LAI
estimates and allometrics derived independently of the optical instruments a robust

comparison was provided.
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5.1.2 Remote Sensing of LAI

In the remote sensing analysis, spectral mixture analysis shadow fraction
(SMA_8) (f* = 0.79) produced stronger predictive relationships for conifer LAI estimates
compared to all vegetation indices tested (NDVI, WDVI, and SAVI1)(r* = 0.44, 0.35, and
0.00 respectively). Of the vegetation indices, NDVI produced the strongest relationships
with LAl for coniferous stands, suggesting that in the coniferous stands, which are
characterized by larger tree heights and greater basal area, the effects of background are
not as strong. In deciduous and mixedwood stands, the vegetation indices that account
for the effects of background produced stronger relationships with LAI (SAVI 1
increased by 0.20 from 0.41 to 0.61 compared to NDVI in deciduous). All the remote
sensing techniques produced better results (higher coefficient of determination and lower
RMSE) for predicting AT with the integrated LAI-2000 and TRAC approach compared
to the other predictions of the other LAl instruments (LLAI-2000, hemispherical
photography, allometrics, and TRAC). This further supported the argument that the

integrated approach is preferred for estimating LAI

5.1.3 Variability of NPP

Process-based NPP models have been developed using knowledge of ecological
process and functions, which can be applied to broad spatial scales to determine estimates
of carbon stocks. Running and Coughlan (1988) developed their process-based
ecosystem model, FOREST-BGC to be driven in large part by LAI. By simulating the
key model input variables, a series of controlled experiment were conducted in which

these individual variables (soil water content, climate, and LAI) were analyzed, with all
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other inputs held constant in each test. Of these three key variables used, LAI was the
most important input based on the magnitude of change in modeled NPP as a function of
changing LAI. A further analysis compared a graphic representation of mean modeled
NPP and mean LA] estimates for the various LAI estimation techniques and species
types. The similar patterns observed among the mean modeled NPP output and LAI
inputs for the different LAI estimate techniques suggestéd that LAI is the driving variable
in the FOﬁEST—BGC model (Figure 4-1 and Figure 4-8). A threshold was identified,
through the analysis of the coefficients of variation for both NPP and LAI, below which
the variability in NPP was greater than the variability in LAI. Beyond this threshold, the
opposite was tru¢-the variability in NPP was less than the vatiability in LAI. The
threshold value was suggested as an equilibrium point where photosynthesis is
maximized and transpiration water loss is reduced so that the internal water status is
maintained. The equilibrium is based on a supply-storage-demand interaction between
climate, soil water content, and LAI. Below the LAI threshold, LAl limited the increase
in NPP, while above the LAI threshold water availability (scil water content or climatic
influences) limited the increase in NPP (Running and Coughlan, 1988). Like the LAI
analysis, no absolute validation for NPP was possibie due to legal, monetary, time and
Jocation constraints of the destructive sampling required. Thus absolute validation of the

NPP output from the mode! was not possible.
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52 Conclusions

A number of conclusions have been drawn from this research:

s The integrated L.AI-2000 and TRAC approach for the estimation of LAI has been
suggested as the preferred approach for estimating LAI based on the theoretical
assumptions of the instruments. As well SMA and vegetation indices were shown to
provide the best relationship with the integrated approach, which lends further
support to the argument of this being the preferred technique.

s A clumping index is suggested in deciduous species and the assumption of a random
distribution of leaves may be inappropriate.

=  Spectral mixture analysis shadow fraction provided substantial improvements over
vegetation indices in estimating LAI for coniferous species.

= Vegetation indices that attempt to account for the effects of soil or background in
their formulation may be dependent upon the stand structural attributes (tree height,
basal area, and stem density) or the species type in terms of their ability to predict
LAL

= In this montane ecoregion and at this local scale, LAI was the most important variable
affecting modeled NPP from FOREST-BGC compﬁred to soil water content or
climate. .

= The variability in modeled NPP was not proportional to.the variability in LAI. There
appears to be a LAI threshold value, where this variability is equal, above which LAI

was more variable and below which NPP was more variable. It was proposed that
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- LAI limits the increase in NPP below the LAI threshold, and that either soil water

content or climate limits the_ increase in NPP above this threshold.

5.3 Contributions to Research

This re_search has made several scientific contributions to the research community.
First, by understanding the variability among the ground;-based LAI estimates,
rcseérchers and other workers will be aided in the selection of ground-based LAI
instruments and remote sensing image analysis methods for retrieving LAI in the field
and over large areas. By understanding the variability of NPP modeled by FOREST-
BGC as a function of different LAI inputs compared to other key model inputs makes a
- contribution towards improved NPP model use and understanding particularly in a

montane forest environment where few such studies have been conducted.

5.4 Future Research

Some future research has been identified from the results of this research. To
further improve the ground-based LAI comparisons an absolute LAI measure for each of
the different species and stands would provide a more definitive basis for determining the
best instrument or techniqﬁe for estimating LAI as well for improved NPP modeling,.
This could be accomplished with the destructive sampling of trées within the plots or the
incorporation of Iittér {all traps to estimate LAI without the use of equations from the
literature. As well, the production of sapwbod area to leaf area ratios for the Kananaskis
Region would increase the épplicability of these rélationships to this area as they have

been found to have stand-specific differences (Hungerford, 1987; Pearson et al., 1984;
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Gholz et al., 1976). To further improve the remote sensing L.AI estimation component of
this research, a better validation data set would also be useful to determine how definitive
these models are for their application on a regional scale. Also SMA endmember
validation and SMA LAI estimates would be useful to complete for deciduous and
mixedwood species. SMA and other vegetation indices could also be tested for
relationships with other forest biophysical parameters including biomass, volume and
NPP. Other remote sensing image analysis techniques including the vegetation indices
in Table 2-2, and others as reviewed by Bannari et al. (1995), and Brown et al. (2000)
(e.g. reduce simple ratio), as well as reflectance modeling and image texture or the
application of nonlinear regression models (Fernandes et al., 2001) could be compared to
provide a more robust analysis of the possible techniques used in estimating LAI

Finally, the extension of these remote sensing techniques (SMA and vegetation indices)
to large areas of satellite imagery would be useful for the investigation of scale issues
and the determination of better LAI predictors for larger pixel areas beyond that could be

applied to regional NPP models for regional carbon estimates.
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Appendix A — Actual and Predicted Sapwood Area Estimates From Tree Basal
Area.
Actual and predicted estimates of sapwood area from the validation data set. Predicted
estimates were determined through linear regression models and saturation growth model
for diameter at breast height (DBH) with sapwood area estimates for Douglas-Fir,

lodgepole pine, white spruce and a composite deciduous species.
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Appendix B - Residual Plots for Regression Models for Remote Sensing Techniques
and LAI
Regression standardized residuals piots for linear regression models for spectral mixture
analysis shadow fraction and vegetation indices with the ground-based LAI estimation
techniques, including hemispherical photography, LAI-2000, TRAC, integrated approach

and sapwood area/leaf area.
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Regression Standardized Residuals for the Integrated LAl and Remote Sensing Technigues for Coniferous Stands
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Regression Standardized Residuals for the LAI-2000 and Remote Sensing Technigues for Coniferous Stands
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Regression Standardized Residuals for the Hemi and Remote Sensing Techniques for Coniferous Stands
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Regression Standardized Residuals for the TRAC and Remote Sensing Techniques for Coniferous Stands

20

1.01

0.04

TRAC and NDVI
Conifer
o 1

Rogression Standardized Residual

TRAC and WDVI
Conifer
o 1

Regression Standardized Residual

Predicted

Pradicted

TRAC and SMA_S

Conifer
-] [+]
a o
a ﬂn . o
a % : a 8 i
a a
e = ] a
2 1 o 1 2 3
Regression Standardized Residual
TRAC and SAVi1
Conifer
3
2
n
[~] n "
[}
o : L] s a L : ?
o ° © [ <] B ’ °
o o a
15 5 5 15 25

Regression Standardized Residual



691

Regression Standardized Residuals for the Sapwood Area and Remote Sensing Techniques for Coniferous Stands
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Regression Standardized Residuals for the integrated LAl and
Remote Sensing Technigues for Deciduous Stands
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Predicted

Regression Standardized Residuals for the LAI-2000 and
Remote Sensing Techniques for Deciduous Stands
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Regression Standardized Residuals for the Hemisphe'rical' Photography and

Remote Sensing Technigues for Deciduous Stands
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Predicted

Regression Standardized Residuals for the TRAC and

Remote Sensina Technicues for Deciduous Stands
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Predicted

Regression Standardized Residuals for the Sapwood area/leaf area and
Remote Sensing Techniques for Deciduous Stands
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Predicted

Regression Standardized Residuals for the Integra;ted' and
Remote Sensing Techniques for Mixedwood Stands
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Regression Standardized Residuals for the LAI-2000 and
Remote Sensing Techniques for Mixedwood Stands
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Regression Standardized Residuals for the Hemispherical Photography and
Remote Sensing Techniques for Mixedwood Stands

Pradicted Value
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Regression Standardized Residual
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Regression Standardized Residuals for the TRAC and
Remote Sensing Techniques for Mixedwood Stands
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Pradicted

Regression Standardized Residuals for the Sapweed AreallLeaf Area and
' Remote Sensing Techniques for Mixedwood Stands
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Appendix C — Regression Equations for Remote Sensing Techniques and LAY
Equations for the regression models built for vegetation indices or SMA and ground-

based LAI.
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Table C-1 Model equations using each LAl estimation technique and vegetation indices

for conifer species.

WDVI

SMA_S

Instrument | NDVI - SAVI
_ equation equation equation equation

TRAC 17.97x-9.42 | 13.32x+4.07 | 7.56x - 8.22 6.64x +0.41
LAI-2000 | 19.80x ~13.41 [ 13.01x+1.49 | 0.22x + 1.83 11.75x ~ 5.08
Hemi 009x+1.65 |1.65x+1.68 |-7.37x+441 [0.72x+1.39

{ Integrated | 23.48x-15.96 | 15.48x+ 1.71 | 0.4ix +2.06 14.35x — 6.33
Sapwood | 16.40x - 8.20 | 13.94x +4.06 | -10.43x+8.39 | 17.00x — 5.61
area

Table C-2 Model equations using each LAI estimation technique and vegetation indices

for deciduous species.

Instroment NDVI WDVI SAVI
_ _ equation equation equation

TRAC -3.51x + 6.04 -3.96x +3.78 | -4.91x+5.94
LAJ-2000 | -13.61x+13.03 | -557x+2.65 |-531x+4.80
Hemi 1 -3.01x+5.78 2.14x+ 198 {-135x+240
Integrated | -12.49x+12.03 |-5.03x +2.50 |-4.85x+4.47
Sapwood | -25.88x+24.37 |-8.77x+4.32 |-741x+7.14
area

Table C-3 Model equations using each LAI estimation technique and vegetation indices

for mixedwood species.

Instrument NDVI WDVI SAVI

) equation equation equation
TRAC 1 -12.68x + 14.60 | -14.60x +5.37 | -8.85x + 7.78
LAI-2000 | 0.79x+1.73 -2.88x+2.57 |-5.57Tx+4.58
Hemi -9.85x + 2.75 -3.78x+2.94 {-741x+5.54
Integrated | 5.51x - 2.67 0.70x + 1.75 -4.94x +3.77
Sapwood ~561x+8.17 -13.30x + 4.62 |-22.06x+12.39
area
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