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ABSTRACT 

Net primary productivity (NPP) is a key ecological parameter that is important in 

estimating carbon stocks in large forested areas. NPP is estimated using models of which 

leaf area index (LAI) is a key input. This research computes a variety of ground-based 

and remote sensing LAI estimation approaches and examines the impact of these 

estimates on modeled NPP. A relative comparison of ground-based LAI estimates from 

optical and allometric techniques showed that the integrated LAI-2000 and TRAC 

method was preferred. Spectral mixture analysis (SMA), accounting for subpixel 

influences on reflectance, outperformed vegetation indices in LAI prediction from remote 

sensing. LAI was shown to be the most important variable in modeled NPP in the 

Kananaskis, Alberta region compared to soil water content (SWC) and climatic inputs. 

The variability in LAI and NPP estimates were not proportional, from which a threshold 

was suggested where first LAI is limiting than water availability. 
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CHAPTER I 

1.0 Introduction 

1.1 Introduction 

Human activities are altering the earth's atmosphere, biosphere and hydrosphere at 

an accelerated pace, as manifested by ozone depletion, increases in atmospheric 

greenhouse gas emissions, pollution and changing patterns of landcover and natural 

resource use (IPPC, 2001; Myneni et al., 2000; Rizzo and Wiken, 1992). These activities 

are thought to be altering the global climate, beyond its natural variability, a process 

termed global change (CDIAC, 1999). The increase in atmospheric greenhouse gases 

such as carbon dioxide (CO2) has been a major focus of recent research due to the 

considerable increase in levels of atmospheric CO2 since the Industrial Revolution 

(Keeling et al., 1995). The terrestrial biosphere is the second largest reservoir for carbon 

with much of that being stored in forests. Canada's landmass consists of 417.6 million 

hectares of forested area or 10% of the world's terrestrial biosphere, therefore, the 

contributions from this land mass are significant at global scales to the world carbon 

sinks (CCFM, 1997; CPS, 1997). 

One of the important descriptors of carbon storage is net primary productivity 

(NPP). NPP is the total amount of carbon fixed by photosynthesis less respiration, the 

carbon that is expended for the maintenance and growth of cells. It is therefore a 

quantitative measure of carbon and energy assimilation or absorption into a system (Chen 

et al., 1999; Melillo et al., 1993). Process-based simulation models have been developed 
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for the estimation of NPP. A process-based model simulates the functional mechanisms 

of an ecosystem. These process-based models are important to the study of ecosystems 

since they attempt to simulate or characterize the mechanisms that influence the 

functionality of an ecosystem without requiring vast amounts of data that are difficult or 

impossible to acquire (Waring and Running, 1998). These models have been shown to be 

the only feasible method to make spatially comprehensive estimates of NPP over large 

regions (Cramer and Field, 1999). 

Physiological processes controlling NPP have been directly linked to leaf area 

index (LAI), an important measure of canopy structure (Waring and Schlesinger, 1985). 

LAI, has been defined as one half the total light intercepting area per unit ground surface 

area (Chen and Black, 1992), and is an objective measure of canopy structure without the 

complexities of leaf-age class distribution, angular distribution, or canopy geometry 

(Running and Hunt, 1993). It is influenced by site water balance, radiation regime, 

canopy architecture, specific leaf area, leaf nitrogen content and species and stand 

composition (Chen et a l , 1997a; Pierce et al., 1994; Grier and Running, 1977). LAI has 

been recognized as being the most important variable for characterizing vegetation 

structure over large areas that can be obtained at broad spatial scales with satellite remote 

sensing data (Running and Coughlan, 1988). It was also found to correlate better with 

NPP than with other environmental gradients (Gholz, 1982). Accordingly, many process-

based models (e.g. FOREST-BGC) use LAI as one of their main driving inputs, as it is 

related to vegetative biomass, carbon, and energy exchange (Running and Coughlan, 

1988). 
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LAI can be estimated over large areas using remote sensing imagery or over small 

areas (e.g. field plots) using ground-based instruments. Accurate and consistent LAI 

estimation is of great importance as it will influence estimates derived from productivity 

models (Liu et al., 1997; Running and Coughlan, 1988). Thus, an assessment of LAI 

measures from various ground-based and remote sensing methods will aid validation of 

NPP modeling. Determining the variability in NPP estimates from the popular FOREST-

BGC model in terms of output NPP from different LAI source inputs will provide 

insights into how the model uses the estimated LAI parameter within a given ecosystem 

particularly the montane. In western Canada, a large portion of forests are in high relief 

areas, thus variation in both ecological models, image processing, and field 

measurements must be explicitly accounted for, so that policy and informed decisions can 

be made for sustainable forest management. 

In this research five different ground-based LAI estimation methods were 

evaluated: (1) hemispherical photography, (2) LAI-2000, (3) Tracing Radiation and 

Architecture of Canopies Instrument (TRAC), (4) the integrated LAI-2000 and TRAC 

and (5) sapwood area/leaf area allometrics for a mountainous study site in the Alberta 

Rockies. These tests were conducted for the four main species types in the area that 

included: lodgepole pine (Pinus contorta var. latifolia Dougl ex. Loud.), white spruce 

(Picea glauca (Moench) Voss), mixedwood and hardwood species including aspen 

(Populus tremuloides Michx.) and balsam poplar (Populus balsamifera L.). As well, 

different remote sensing LAI estimation methods were evaluated including a comparison 

of three different vegetation indices with Spectral Mixture Analysis (SMA) that were 
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identified from previous research as producing the highest correlation between remotely 

sensed and LAI estimates (Peddle et al., 1999a, 2001; Johnson, 2000; Chen, 1996a). 

As a result, the three main objectives for this research are: 

1. To determine the extent that five different ground-based methods for 

estimating LAI are similar over forest stands consisting of the four main 

species in the area. 

2. To determine if there is a difference among LAI estimates derived from 

remote sensing using three vegetation indices and spectral mixture analysis. 

3. To determine the sensitivity in NPP outputs from FOREST-BGC ecosystem 

model to different LAI inputs derived from both field and remote sensing 

methods as defined and analyzed in objectives 1 and 2. 

1.2 Organization of Thesis 

This thesis has been organized into five chapters. In this chapter the thesis has 

been introduced and research objectives defined. 

In Chapter Two, a review of the literature and an overview of the broader contexts 

of the research are presented. The chapter begins with an overview of global climate 

change and carbon cycles to set the framework for this study. This material is followed 

by a description of process-based ecosystem models, with emphasis on the FOREST-

BGC and BIOME-BGC models and including an in-depth discussion on model input 

parameters, which is pertinent in the estimation of carbon stocks. LAI estimation methods 

are introduced for both ground level and remote sensing techniques as a means for 

comparison and with reference to inputs to the ecosystem NPP models. 
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In Chapter Three, the research methods and experimental design are discussed. A 

description of the study area and ground-based measurements is first presented including 

forestry structural parameters and LAI estimation instrumentation and procedure is 

presented, followed by a description of the remote sensing imagery-based data sets. The 

various input parameters to the NPP model are then described. The experimental design 

for three analyzes are presented with a description and rationale for the statistical tests 

used for assessing the ground-based and remotely sensed LAI estimation methods, and 

the variability of the NPP model to those estimates. 

In Chapter Four, the results of the LAI assessments and the NPP model sensitivity 

experiment are presented and discussed. A comparison of the results from the various 

ground-based LAI estimation methods is provided, to determine and understand the 

differences in ground-based LAI measurements by different species and then apply these 

to regional scales. This is followed by a comparison of results from the remote sensing 

LAI estimation techniques. Finally, to quantify the effects LAI has on NPP, the 

sensitivity of the NPP model to the various key input parameters is compared, and the 

variability of the modeled NPP is compared to the variability of the input LAI. 

In Chapter Five, major conclusions from this thesis are presented. First, the results 

of the analysis are summarized, and then major conclusions from these results are drawn. 

Finally, the contributions to research from this thesis are outlined and areas for future 

research are identified. 
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CHAPTER n 

2.0 Literature Review 

2.1 Introduction 

This chapter presents a review of ecological modeling of net primary productivity 

(NPP), and the inputs required for these models, with a particular emphasis on LAI. This 

chapter begins with a description of global change, carbon cycling, forest productivity 

modeling and remote sensing, to provide the broader context of this research. The 

modeling of ecological processes in the determination of NPP is described through an 

overview of the functionality and history of process-based models, specifically FOREST-

BGC and BIOME-BGC. A perspective on the assumptions and deficiencies in LAI 

estimation techniques and the potential effect this has on modeled NPP is provided 

through a review of the ground-based and remote sensing LAI estimation techniques. 

2.2 Climate Change, Productivity, and Forests 

2.2.1 Global Climate Change 

The Intergovernmental Panel on Climate Change (IPPC) has stated that most of 

the observed global warming over the last 50 years is likely due to anthropogenic 

increases in greenhouse gas concentrations (IPPC, 2001). Keeling et al. (1995) found 

that there is a proportional relationship between the rise in atmospheric concentrations of 

CO2 and industrial CO2 emissions based on historical atmospheric C 0 2 data collected at 

Mauna Loa, Hawaii and the South Pole. In the last 40 years there has been a steady 
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increase in atmospheric CO2 (Figure 2.1). If the emissions of these greenhouse gases 

continue at this rate, by 2100 C 0 2 concentrations will be at 700 ppm, which is 2 Vi times 

the pre-industrial C 0 2 concentration (IPPC, 2001). Keeling et al. (1996) observed that 

the amplitude of annual C 0 2 was correlated with land surface temperatures, suggesting 

there is an influence on the global carbon cycle due to a changing climate. The projected 

range of global warming caused by increased greenhouse gas emissions has been 

simulated to be between a 1.4°C to 5.8°C increase in temperature over the 2 1 s t century 

(IPPC, 2001). This rise in C 0 2 and subsequent global warming could have significant 

ecological, social and economic impacts on terrestrial ecosystems, such as shifts in 

precipitation patterns, potential shifts of the tree line to more northerly latitudes, 

progressive lengthening of the growing seasons, major shifts in ecological boundaries and 

changes in ecosystem structure and composition (Myneni et al., 2000; Gifford et al., 

1996; Keeling et al., 1996; Baker and Allen, 1994; Rizzo and Wiken, 1992; Izrael, 1991). 

The observed increase in levels of atmospheric C 0 2 is causing an increased focus on the 

processes that control C 0 2 accumulation in the environment and the contributions to 

global C 0 2 sources and sinks (Schimel, 1995). 
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Figure 2-1 - Average annual atmospheric CGi concentrations measured in parts 
per million (ppm) derived from insitu air samples collected at Mauna Loa 
Observatory, Hawaii (20°N, 156°W). (Data source: Keeling et al., 2001) 

The atmosphere is the main reservoir of carbon that is in constant exchange with 

the oceans and terrestrial biosphere (Tans and White, 1998). The increased emissions of 

fossil fuels, from vehicles, industry and other sources, into the atmosphere are placing 

greater demands on the ocean and terrestrial biosphere to maintain a balance with 

atmospheric carbon levels through the absorption of greater amounts of carbon (Schimel, 

1995). Carbon storage by land ecosystems can play an important role in limiting the rate 

of atmospheric carbon increase (IGBP Terrestrial Carbon Working Group, 1998). 

Forested land accounts for approximately 90% of the terrestrial carbon storage in the 

world through sequestration of COa from the atmosphere (Gates, 1990). Studies in 

Canada and Europe have suggested that the boreal forest may be a substantial sink of 

carbon (50-250Tg C yr' 1) (Breymeyer et al., 1996). Canada's landmass consists of 417.6 

million hectares of forested area, or 10% of the world's terrestrial biosphere (CCFM, 

1997; CFS, 1997). Therefore, Canadian forests play a major role in the world's carbon 
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budget by their contribution to, and regulation of global biogeochemical cycles (CCFM, 

1997). Under Article 3 of the Kyoto Protocol, an international treaty signed by 

developed countries to limit net greenhouse gas emissions, countries must count both 

sequestrations and emissions of carbon from land use change and forestry activities 

towards meeting their Kyoto target commitments (Gov't of Canada, 2001). Thus, in 

accordance with the Kyoto Protocol, for Canada's greenhouse gas reduction target of 6% 

below 1990 levels by 2008-2012, anthropogenic disturbances of the terrestrial biosphere 

need to be monitored, and inventories or measurements of significant carbon sources and 

sinks in Canada's carbon cycles are imperative to direct international policies aimed at 

ensuring that the balance is maintained (Gov't of Canada, 2001). 

2.2.2 Carbon Cycling in Forests 

Carbon (C) is found in all terrestrial life forms; it is the currency that plants 

accumulate, store and use to build their structure and maintain their physiological 

processes (Waring and Schlesinger, 1985). It is introduced into plants by the assimilation 

of atmospheric C 0 2 through photosynthesis into reduced sugar. Photosynthesis is an 

important phase in the biogeochemical global carbon cycle. Tree photosynthesis requires 

three main processes: light absorption, electron transport, and the carbon reduction 

(Calvin) cycle (Lambers et al., 1998). Light energy is harnessed from the sun by two 

photosystems containing chlorophyll, carotenoids and other pigments. Light energy is 

received between 400-700 nm or the photosynthetically active radiation (PAR) region. 

The electron transport chain produces energy in the form of adenosine triphosphate 

(ATP) and nicotinamide adenine dinucjeotide in its reduced phase (NADPH) from the 
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light energy, which drives further reactions within the carbon reduction cycle. At the 

same time, atmospheric CO2 is assimilated into the leaf as a result of a gradient between 

intercellular CO2 to atmospheric CO2. The carbon reduction cycle accepts the C 0 2 and, 

using the energy from the electron transport chain, produces carbon in the form of sugar 

or starch. The initial carbon gain through photosynthesis is called gross primary 

production (GPP). Approximately half of the GPP is used as autotrophic respiration (Ra) 

by the plant for the maintenance and synthesis of living cells. During respiration, sugars 

are broken down and CO2 is released (Waring and Running, 1988). The rate of 

photosynthesis and respiration is dependent upon site factors including CO2 concentration 

in the atmosphere, surface temperature, nutrients, water availability and plant physiology 

(Waring and Schlesinger, 1985). Respiration is active all the time, while photosynthesis 

depends on light for the production of energy. The remaining carbon produced after 

respiration (GPP - Ra) goes into net primary production (NPP) as foliage, branches, 

stems, roots and plant reproductive organs (Waring and Running, 1998). NPP, therefore, 

quantifies the amount of large-scale carbon accumulation into an ecosystem (Figure 2.2). 

An ecosystem is defined as "an ecological system that consists of all the organisms 

(including plants) in an area and the physical environment with which they interact" 

(Lambers et al., 1998). Thus plant processes drive the input of carbon into the 

ecosystem, which is subsequently used by other organisms. 
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Figure 2-2 - Graphical representation of the processes involved in carbon 
accumulation (adapted from Waring and Running, 1998). Environmental inputs 
are carbon (C), nitrogen (N), water, photosynthetically active radiation (PAR), 
wind and temperature. 

2.2.3 Remote Sensing of Forests and Forest Productivity 

Much of today's understanding of large ecosystem functioning is extrapolated 

from smaller, intensively studied plots or sites, which may not adequately characterize 

the full spatial extent of large ecosystems without introducing bias or inaccuracies 

(Running et al., 1996). Remote sensing image analysis and modeling can provide 

spatially comprehensive information to help monitor ecosystem functioning at regional to 

global scales (Sellers and Schimel, 1993). In the forestry context, remote sensing has 

been used to provide estimates of forest cover and LAI that serve as inputs to ecological 

models (Peddle et al., 1999a; Liu et al., 1997). Many process-based NPP models such as 

FOREST-BGC, earlier versions of BIOME-BGC, and BEPS require input variables 

derived from remote sensing (Liu et al., 1997; Running and Hunt, 1993; Running and 
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Coughlan, 1988). Remote sensing can also aid in the validation of ecosystem model 

outputs, help refine model input parameters, and provide quantitative spatially 

continuous, timely, and synoptic information for model input (Roughgarden et al., 1991). 

Remote sensing, however, does not measure any forest structural or biophysical 

characteristics directly, rather, quantitative relationships must be established between 

fundamental ecological or stand structural variables (fraction of PAR (fPAR), 

evaporation, LAI, biomass, canopy chemistry) and remote sensing physical units (Peddle 

et al., 2001; Chen, 1996a; Running et al., 1986, 1989;, Wessman et al., 1988; Peterson et 

al., 1987;). 

Hyperspectral remote sensing has advanced the development of these algorithms, as the 

electromagnetic spectrum has three main spectral regions that can describe the optical 

properties of leaves, within which detailed studies have been conducted (Guyot et al., 

1989). There are three regions that characterize the intrinsic dimensionality of remote 

sensing imagery including, visible (400-700 nm), near infrared (NIR) (700 - 1300 nm), 

and shortwave infrared radiation (SWIR) (1300-2500 nm)(Figure 2-3) (Guyot et al., 

1989). In the visible region, light is absorbed by chlorophyll a and b, and carotenoids 

with spectral absorption peaking at 450nm and 670nm for chlorophyll a and b, 

respectively. The NIR is dominated by the effects of leaf structure, characterized by 

mesophyll that results in a high degree of intra- and interleaf scattering in the plant 

canopies. Leaf reflectance in this region is increased by multiple layers of leaves, more 

heterogeneous cell shapes, more cell layers and intercellular spaces, and increased cell 

size (Running et al., 1986; Guyot et al., 1989). The shortwave infrared radiation (1300-

2500 nm) characterizes leaf water content (Guyot et al., 1989). At 1400 and 1900 nm the 
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water in the leaves strongly absorb radiation thus dips in the spectral response pattern can 

be seen (Lillesand and Kieffer, 1994)(Figure 2-3). The leaf reflectance has been shown 

to be inversely related to the total amount of water present as a function of moisture 

content and the thickness of the leaf (Lillesand and Kieffer, 1994). 
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'Visible i Near-Infrared Shortwave infrared 

Figure 2-3 - Spectral response pattern for a white spruce tree characteristic of 
most green vegetation. 

2.3 Process-based Ecosystem Models 

2.3.1 Modeling Concepts 

Smith (1990) defines a model as "an abstraction or simplification of a natural 

phenomenon developed to predict a new phenomenon or to provide insight into existing 

ones." Computer models have been widely accepted for the translation of local scale 

ecological hypotheses to regional, continental or global scale ecosystem processes 

(Cramer and Field, 1999). There are three types of models generally used to estimate 
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ecological functions: (1) statistical, (2) parametric, and (3) process-based or simulation 

models (Liu et al., 1997). Statistical models use regression equations to predict 

ecological processes from other easily obtained ecosystem measurements. These models 

often consist of two or more variables from which a relationship is produced where one 

variable is a function of another. They are generally not very complex with a minimal 

number of variables. The second model type, parametric, uses efficiency concepts to 

derive ecological parameters. These models use a small number of important parameters 

that have the most significant impacts on what is being modeled. They are more complex 

than statistical models as relationships are weighted differently and combined as separate 

functions to develop the modeled parameters. Simulation or processed-based models 

attempt to simulate or characterize the mechanisms that control the functionality of an 

ecosystem (Waring and Running, 1998). They are not mutually exclusive from the 

parametric models, however, they tend to have a much higher level of interaction. 

Process-based models should be more reliable than the other types of models since their 

foundation is based on knowledge about ecosystems (Liu et al., 1997). Advantages of 

process-based models to ecosystem studies include providing a tool to extrapolate local 

scale phenomena to broader spatial and temporal scales, aiding the conceptualization of 

structure and function of an ecosystem, and facilitating the recognition of important 

spatial patterns and successional processes on vegetative structure (Lauenroth et al., 

1998). 

Since the late 1970s, emphasis has been placed on accurate calculation of a global 

carbon budget and the quantification of terrestrial vegetation activity (Running, 1990). 

The fundamental and critical ecological questions that need answers concern the rates and 
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controls of energy, carbon, water, and nutrient exchange at broader spatial scales 

(Running and Coughlan, 1988). To answer the ecological question at regional and global 

scales, Running (1990) suggested that a well-tested ecosystem process-based model 

would facilitate the extrapolation of information from local to broader scales. This 

simulation modeling can evaluate ecosystem activity at space and time scales greater than 

direct measurements by quantifying our understanding of fundamental mechanistic 

ecological processes of energy and mass fluxes (Waring and Running, 1998; Running, 

1994). These models have been deemed the only feasible method to make spatially 

detailed estimates for large regions (Cramer and Field, 1999) 

2.3.2 Review of Process-based Ecosystem Models 

There are many types of ecosystem simulation models, such as biogeographical 

(geographical distribution of plant communities and biomes), successional (succession of 

plant species in an ecosystem over time), population dynamics (germination, birth, 

growth, and mortality in an ecosystem and interaction among members of a species and 

different species), soi 1-vegetation-atmosphere transfer (climate and land-surface 

relationships) and biogeochemical models (cycling of water, carbon and nutrients through 

an ecosystem) (Ford et al., 1994). For this study, only biogeochemical models are 

described as they are widely used in carbon studies and in quantifying carbon stocks. 

Biogeochemical models simulate the cycling of water, carbon and nutrients through an 

ecosystem. There are many models that attempt to simulate this cycle at different scales 

(from plant to globe) and for different ecosystems (e.g. grasslands, forests). Argen et al. 

(1991) did a comprehensive review of six local or regional scale biogeochemical models 
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including BACROS (deWit et al., 1978) for modeling crop growth; BIOMASS 

(McMurtrie et al., 1989) for modeling forest growth and water balance; FORGRO 

(Mohren et al., 1984) for modeling forest growth, water balance, nitrogen and phosphorus 

cycles; MAESTRO (Wang, 1988) for modeling forest canopy assimilation and 

transpiration; FOREST-BGC (Running and Coughlan, 1988) for modeling forest growth 

and water balance; and BLUE GRAMA (Detling et al., 1979) for modeling grass growth 

and water balance. Among these models they found many differences in the number and 

type of driving variables, the incorporation of canopy structure information, and ways in 

which each model dealt with photosynthesis, respiration, allocation, and litterfall. The 

models had different inputs and placed different weightings on the various input 

parameters, which reflected the objectives of the model and the geographic region being 

modeled. Because of the incorporation of different theories and inputs among the 

different models the estimation of the output ecological factors were different. 

Another carbon model that was not discussed in Argen et al. (1991) is Boreal 

Ecosystems Productivity Simulator (BEPS). BEPS was developed by Liu et al. (1997) 

and is based on FOREST-BGC, however, it accounts for the effects of canopy 

architecture on radiation interception (Liu et al., 1997). The most important inputs for 

this model are LAI, available water content of the soil, and daily meteorological variables 

(short wave radiation, minimum and maximum temperature, humidity and precipitation) 

(Liu et al., 1997). BEPS has been further expanded through the Integrated Terrestrial 

Ecosystem Model (InTEC) (Chen, 2002). It has increased functionality with the addition 

of all atmospheric, climatic and biotic factors to decrease the uncertainty due to data 

limitations or simplistic assumptions (Chen, 2002) 
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A global terrestrial NPP model intercomparison was performed by the Potsdam 

Institute for Climate Impact Research to compare the NPP output from a variety of 

biogeochemical models (Cramer et al., 1999). They divided the models into three 

different types: satellite based models that use remote sensing data as the major input 

(CASA, GLO PEM, SDBM, SIB2, and TURC); models that simulate carbon flux based 

on vegetation structure (BIOME-BGC (newest model), CARA1B 2.1, CENTURY 4.0, 

FBM 2.2, HRBM 3.0, KGBM, PLAI 0.2, SILVAN 2.2, and TEM 4.0); and models that 

simulate both vegetation structure and carbon fluxes (BIOME3, DOLY, and HYBRID 

3.0) (Cramer et al., 1999). The models differed widely in complexity and original 

purpose so differences in NPP values were expected. Formulation and parameter values 

used by the models introduce bias into the NPP estimates (Kicklighter et al., 1999). The 

study found that the broad global patterns and the relationships between major climatic 

variables and annual NPP coincided between the models. The differences that were 

found could not be attributed to the fundamental modeling strategies (Cramer et al., 

1999). The high seasonal variations among the models indicated the specific deficiencies 

in the models. Most models estimated the lowest global NPP month in February, and the 

highest monthly global NPP during the northern summer (Cramer et al., 1999). The 

performance of an intercomparison of global NPP models is important to investigate the 

specific features of model behavior, including testing the underlying assumptions of each 

model. Global absolute measurements of NPP are impossible so no direct validation of 

global models could be done; therefore intercomparisons are an important technique to 

determine deficiencies and differences among the models (Cramer and Field, 1999). No 

one model was pinpointed as providing the best estimates of global NPP or providing the 
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best model construction due to the lack of validation NPP values, this exercise however, 

provided researchers with the means of identifying errors or inadequacies that can be 

corrected in subsequent models (Kicklighter et al., 1999). The study demonstrated the 

agreement between the present generation of models for broad features of behavior 

regardless of the different purposes and resources for the different models (Cramer et al., 

1999) 

Many ecological models have been built at various spatial and temporal scales, 

locations, and with different driving inputs and assumptions linking C, N, and water, 

representation of heterogeneity, detail of photosynthesis, allocation, and decomposition 

(Cramer et al., 1999; Argen et al., 1991). The ability of each model to reproduce current 

and forecasted conditions depends largely on how constrained the models are by the 

initial conditions (Breymeyer et al., 1996). General trends can be seen throughout all the 

models as they are generally produced using tested plant physiological laws and theories. 

Validation has been completed for some models, namely those built at local scales. For 

this study, FOREST-BGC (Running and Coughlan, 1988) will be used because it has 

been validated for forests in Montana, Florida, and Alaska, suggesting that this is a robust 

model that can be used in a multitude of environments in North America. This choice of 

model is discussed further in Section 3.5.1. In the next section, the FOREST-BGC and 

BIOME-BGC models are reviewed in more detail. 

2.3.3 FOREST-BGC 

FOREST - BGC originated as a water balance model, which emphasized canopy gas 

exchange processes and system water storage (Running and Milner, 1993; Running and 

Coughlan, 1988). The intent was to develop a "generic" process-based model to simulate 
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the cycling of carbon, water, and nitrogen through forest ecosystems (Waring and 

Running, 1998; Running and Coughlan, 1988). It was originally developed for 

coniferous physiology because it allowed efficient analysis of basic growth factors across 

a landscape, assuming no external perturbation (Running, 1994; Running and Miner, 

1993). FOREST-BGC represents all essential ecosystem processes with minimal 

complexity, allowing the model to be applied at different temporal and spatial scales and 

locations (Running and Milner, 1993). To minimize the complexity and the ease of 

application in other locations, the model requires easily attainable data as its driving 

variables. The variables include standard meteorological information and the explicit 

definition of important site and vegetation characteristics such as soil water content and 

leaf area index (Nemani and Running, 1989). FOREST-BGC requires maximum and 

minimum temperatures and precipitation data that are routinely available from records at 

the nearest weather stations (Nemani and Running, 1989; Running and Coughlan, 1988). 

Soil water content (SWC) can be calculated as the water held between the field capacity 

and the permanent wilting point of the soil based on soil texture and depth (Nemani and 

Running, 1989). However, the key structural attribute defining vegetation characteristics 

is LAI, as it is the principal variable used to calculate C 0 2 and water vapour exchange 

and can be estimated and assessed at regional scales through remote sensing technology 

(Waring and Running 1998; Running, 1994; Running and Gower, 1991; Running and 

Coughlan, 1988). LAI is a canopy structural variable that is useful in quantifying the 

energy and mass exchange characteristics directly involved in the functioning of all 

terrestrial ecosystems (Running, 1990; Nemani and Running, 1989). LAI reduces 

geometric complexities of the different tree canopies by treating the forest canopy as a 
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homogeneous three-dimensional leaf, with the depth being proportional to LAI (Waring 

and Running, 1998; Running and Coughlan, 1988). Running (1994) describes LAI using 

the analogy of it being a chlorophyll sponge blanketing the earth. LAI strongly affects 

this model because many processes are controlled by it, including snow melt, canopy 

interception and evaporation, transpiration, canopy light attenuation, photosynthesis, leaf 

maintenance respiration, litter fall, and leaf nitrogen turnover (Running, 1990). 

To simplify reality, the model structure is based on a set of assumptions that define 

the system structure, basic linkages and constraints (Running, 1994). The most 

significant assumptions incorporated into FOREST-BGC are as follows (Waring and 

Running, 1998, Running and Milner, 1993; Running and Coughlan, 1988): 

• Individual species are not explicitly defined, only general physiological attributes; 

however, physiological characteristics can be represented by the alteration of 

some key parameters (Table 2-1). 

• Individual trees are not represented - only carbon, water and nitrogen pools. 

• No detail on internal physiology concerning water, carbon and nutrient transport 

is included. 

• No individual canopy strata or structure, leaf age class or leaf angular distribution 

are defined ™ only LAI. 

• No belowground details on root distribution, variation in soil profile properties, 

rooting processes, root water or nutrient uptake are defined. 

• Fluxes are defined in one dimension (vertical) so that horizontal homogeneity is 

assumed for the defined area. 
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These simplifications and assumptions have allowed this model to be applied at any 

temporal and spatial scale. 

Running (1990,1993) summarized the key processes that FOREST-BGC 

calculates for each of the hydrologic, carbon and nitrogen cycles: 

Hydrologic 

- precipitation, snow vs. rain partitioning 

- snowmelt 

- canopy/litter interception and evaporation 

- surface runoff vs. soil storage 

- transpiration 

- physiological water stress and surface resistance 

- subsurface outflow 

Carbon 

- photosynthesis 

- maintenance respiration 

- growth respiration 

- carbon allocation (leaf, stem, root) 

- net primary productivity 

- litter fall 

- decomposition 

Nitrogen 

- deposition uptake 

- mineralization and leaching 
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The compartments storing C, N, and H 2 0 are not exclusive to a single process, 

many linkages occur between compartments (Figure 2-4). The model was developed to 

have a split or mixed time resolution so that each of the processes modeled will use its 

optimum time scale for adequate and efficient simulation. For example, hydrologic and 

canopy gas exchange are computed daily, while carbon and nitrogen cycles are computed 

annually (Running and Coughlan, 1988). The daily submodel calculates hydrologic 

balance and photosynthesis-respiration balance, and applies the carbon to the yearly 

submodel (Running and Coughlan, 1988). The yearly submodel controls the processes of 

carbon partitioning, growth respiration, litter fall and decomposition (Running and 

Coughlan, 1988). 

Canopy photosynthesis is calculated by multiplying the C 0 2 diffusion gradient by 

mesophyll C 0 2 conductance and by the canopy water vapour conductance (Equation 2-

1)( Running and Milner, 1993; Hunt et al., 1991; Running and Coughlan, 1988). 

Mesophyll C 0 2 and canopy water vapour conductance are both controlled by daylight air 

temperature, average canopy absorbed radiation, maximum photosynthetic rate and 

daylength (Hunt et al., 1991; Running and Couglan, 1988). Canopy water conductance 

values are determined through leaf water potential (derived from soil water fraction based 

on precipitation and snowmelt and canopy interception or rain proportional to LAI) and 

absolute humidity deficit (Running and Coughlan, 1988). 
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Figure 2-4 Compartment flow diagram of FOREST-BGC (adapted from Running and Gower, 1991 



PSN = [(AC0 2 CC CM)/(CC + CM)] LAI DAYL 

(Equation 2-1) 

where: 

PSN = canopy photosynthesis (kg CO2 day"1) 

A CO2 = CO2 diffusion gradient from leaf to air (kg m"3) 

CC = canopy conductance (m s"1) 

CM = mesophyll conductance (m s"1) 

LAI = leaf area index 

DAYL = day length 

The carbon is then partitioned into compartments including maintenance 

respiration, growth respiration, leaf growth, root growth, and stem growth (Running and 

Gower, 1991). Maintenance respiration is calculated as an exponential function of air 

temperature where Q10 = 2.3. Q10 is the fractional change in rate of maintenance 

respiration with a 10°C increase in temperature. Net photosynthesis is then calculated by 

subtracting the maintenance respiration from the canopy photosynthesis. Growth 

respiration is subtracted as a fixed function from the leaf, stem and root compartments. 

Net primary production is then calculated by the subtraction of growth respiration from 

net photosynthesis. The resulting carbon available to NPP is then partitioned into the 

leaf, stem and root growth compartments based on optimization logic which compares 

water, nitrogen, and photosynthate availability (Running and Milner, 1993). 
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Parameterization of an ecosystem model can be very difficult, as many of the 

processes are difficult, impractical or impossible to measure due to area, time, cost and 

other constraints (Running, 1994). Many aspects of FOREST-BGC have been tested and 

validated at different temporal and spatial scales and locations. Running and Coughlan 

(1988) showed that FOREST-BGC could determine the relative differences in ecosystem 

processes in variable climates and scales, without site or species-specific tuning. 

Ecological processes have also been validated including NPP estimates, water budgets, 

climate and soil control, and carbon allocation (Running and Gower, 1991; Nemani and 

Running, 198; Running and Coughlan, 1988). 

2.3.4 BIOME-BGC 

To apply FOREST-BGC to different biomes, a series of parameters were altered based on 

species-specific physiology (Running and Hunt, 1993). This was done to include other 

major landcover types (broadleaf forest, grasslands) in the creation of BIOME-BGC or an 

extension of FOREST-BGC. Many of the physiological parameters differ among 

ecosystems (Table 2-1). For example, leaf-on and leaf-off periods are very different in 

deciduous-dominant and coniferous-dominant forest biomes; conifers do not annually 

drop their needles, whereas deciduous trees shed and regenerate leaves seasonally. Other 

examples of physiological differences in the two biome types are specific leaf area, and 

leaf morphology and structure. To maintain the robustness of FOREST-BGC, Running 

and Hunt (1993) were able to reparameterize the model so that ecosystem function can 

also be simulated for either broadleaf forests or grasslands, in addition to coniferous 

biomes. In the alteration of some parameters to characterize the different biomes, 

25 



FOREST-BGC maintained its computational stability and the carbon and nitrogen 

remained balanced, thus leading to the development of BIOME-BGC. BIOME-BGC is a 

generic model that simulates a range of ecosystems. 
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Table 2-1 - Default parameter values used in creating BIOME-BGC by adding 
broadleaf and grasslands to FOREST-BGC (from Running and Hunt, 1993). The 
following is the suggested default values for model input. 

Parameter Conifer Deciduous Grassland 

Maximum Leaf Area Index 10 6 3 

Specific leaf area (m^g'drymass) 5 17 5 

Specific leaf area (nAg^earbon) 25 75 25 

Leaf ON date 0 120 120 

Leaf OFF date 365 300 240 

Maximum stomatal conductance (mm sec' 1) 1.6 2.5 5.0 

Boundary layer conductance (mm sec"1) 100 100 10 

Maximum photosynthetic rate (umol m"2 sec"1) 5 5 10 

Critical leaf water potential (MPa) -2.0 -2.0 -3.5 

Leaf maintenance respiration (g kg"1 day"1) 0.2 0.4 0.4 

Stem maintenance respiration (g kg 1 day ' ) 0.2 0.2 0.3 

Root maintenance respiration (g kg"1 day"1) 0.4 1.1 0.6 

Leaf turnover (% year"1) 33 100 100 

Stem turnover (% year"1) 2 2 99 

Root turnover (% year"1) 80 80 40 

Leaf lignin concentration (%) 25 18 17 
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2.3.5 The Effects of Environmental Factors on Modeled Productivity 

Assessing the effects of individual variable on the ecosystem model is difficult as 

many of the variables are dependent on each other and are interwoven in the functionality 

of the ecosystem and how it is modeled. The important ecosystem input variables for 

BIOME-BGC are leaf area index (LAI), climatic information, available soil water 

content, and species composition. Generalizations about the variables are useful, 

however, the prediction of the composition and productivity of site vegetation based only 

on either soil moisture condition, climatic variables, species composition and LAI is 

inadequate for this characterization (Kimmins, 1997; Waring and Schlesinger, 1985). 

Interactions occur with all these variables to produce the structure of the vegetation. The 

recognition of the general functionality of each variable will provide a better 

understanding of the ecosystem. Climate sets the framework for much of the biotic 

potential of an environment. Temperature extremes and inadequate precipitation limit 

terrestrial NPP (Waring and Schlesinger, 1985). Climate is related to the amount of 

water present within the soil through both precipitation and evaporation, however, soils 

by themselves dictate the amount of water and nutrients available through porosity and 

parent material. Soils that have extremely low moisture storage or an excess of water are 

unsuitable for most forms of plant growth (Kimmins, 1997). However, soils that are well 

drained and maintain sufficient water availability throughout the growing season, 

generally support highly productive and lush vegetation (Kimmins, 1997). Species 

composition and LAI are largely based on the climatic variables. The influence of 

species composition and LAI on productivity and vegetation is dependent on competition, 
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efficiency of water and nutrient use, and successional stage. The amount of carbon 

produced and stored in a region is a function of both the LAI and species composition, 

which in turn, are a function of climate and soil. 

2.4 Process-based Ecosystem Model Inputs 

2.4.1 Ground Based Leaf Area Index (LAI) Estimation 

LAI is an important parameter that characterizes a forest stand, as it is a 

controlling factor in both physical and biological processes of plant canopies (Daughtry, 

1990). LAI has been related to site water balance in mature coniferous forests (Gholz, 

1982; Grier and Running, 1977), specific leaf area and leaf nitrogen (Pierce et al., 1994), 

canopy interception, transpiration and net photosynthesis (Pierce and Running, 1988), 

and water, carbon and energy exchange (Gower and Norman, 1991). As well, functional 

relationships exist between LAI and net primary productivity, biomass (Gholz, 1982) and 

stem wood production (Schroeder et al., 1982). Waring (1985) also suggested that LAI 

may be useful in monitoring and detecting early symptoms of anthropogenic and natural 

stresses of forest ecosystems. Thus many large area ecosystem models have been 

developed to be sensitive to and driven by LAI (Liu et al., 1997; Running and Hunt, 

1993; Running and Coughlan, 1988). 

LAI was initially defined as the area of one side of green leaves (projected) per 

unit area of soil surface (Ross, 1981). This implies that the leaves receive light mainly in 

one direction. This definition is appropriate for most broadleaf plants and grasses but not 

for conifer species as the foliage elements are not flat (Daughtry, 1990). Conifer needles 

may be cylindrical or close to hemi-cylindrical, or have foliage clumps that may be 
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spherical, ellipsoidal or other shapes. Therefore, the meaning of one-sided area is not 

clear (Chen and Black, 1992). Chen and Black (1992) performed a theoretical study on 

radiation interception of conifer species and produced a more suitable definition of LAI 

for coniferous species or non-flat leaves, as "half the total intercepting area per unit 

ground surface area." This definition is based on mathematical derivations and 

numerical calculations for mean projection coefficient of spheres, circular cylinders, 

hemicircular cylinders, bent plates, square bars and multi-sided bars with random angular 

distributions. They found that the mean projection coefficient for all the different shapes 

were all close to a constant of 0.5 based on the total intercepting area. 

2.4.1.1 Absolute LAI Measurement 

There are many approaches used to estimate LAI at the ground level. The most 

direct measurement technique requires destructive sampling (e.g. measuring the total area 

of all the leaves or needles removed from the canopy). Methods of direct measurement 

of LAI include leaf tracing methods, matching of standard leaf shapes and sizes, 

calculations based on linear measurements, leaf area to mass relationships, and optical 

planimetric methods (Daughtry, 1990). Leaf tracing methods incorporate the tracing of a 

leaf onto graph paper and the calculation of its area by counting the number of squares. 

This method has very high accuracy but determining the area of each leaf for a tree or 

many trees requires vast amounts of time. The matching of standard leaf shapes method 

is relatively efficient, simple to use and requires no special equipment. For this method a 

set of standard leaves with different shapes and sizes are assembled, and the area is 

calculated. Leaves of the test plants are then referenced to the set of standards, and the 
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standard that most closely matches the leaf is recorded. Accuracy of the matching 

standard leaf shape method is lower than the leaf tracing method (Daughtry, 1990). In 

the method of calculation based on linear measurements, the leaf is modeled as a simple 

geometric shape and the area is determined by linear measurements (i.e. length and 

width). This method is relatively easy to implement and is less time consuming than the 

leaf tracing method (Daughtry, 1990). The method of developing a leaf area to mass 

relationship is probably the most commonly used technique for direct absolute 

measurement of LAI in forestry research, as it is the most efficient technique for 

measuring a large amount of leaves at one time (Chen, 1996b; Daughtry, 1990). Leaf 

area and leaf mass are measured on a small subsample of leaves and a ratio is developed 

between leaf area and leaf mass. The remaining leaves are weighed and the ratio is 

applied to determine the leaf area for the entire plot. The final direct method of 

measuring leaf area is optical planimetric methods. These instruments employ 

planimetric principles and calculate the area as they are fed through an automated optical 

instrument (e.g. Licor LI-3100 Area Meter). All of these methods are useful in 

calculating leaf area index for small plants or in agricultural research; however, the use of 

these methods for forestry are not widely implemented due to cost, time and the 

irreversible, destructive removal of entire trees and vegetation. 

An alternative to direct measurements that require destructive sampling, a variety 

of indirect methods have been developed to estimate LAI without the time and cost 

requirements associated with the direct absolute measurements. However, as with most 

indirect methods, additional error can be introduced in estimating LAI compared to direct 

measurement methods. In the next section, indirect methods for estimating LAI using 
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sampling methods (eg. Litterfall traps) and allometric techniques as well as optical 

measurements including hemispherical photography, LAI-2000 Plant Gap Analyzer, 

sunfleck ceptometers and Tracing Radiation and Architecture of Canopies (TRAC) 

instruments as well as the integration of two methods are reviewed. 

2.4.1.2 Litterfall Traps 

A litter trap is an apparatus that captures leaves, needles, branches and shoots that 

have been shed from trees within a stand. Hughes et al. (1987) defined the important 

features needed for a litter trap: (i) quickly and easily constructed from readily available, 

inexpensive materials, (ii) strong and durable and require minimum maintenance, (iii) 

stable and not easily tipped yet sufficiently lightweight so that large numbers of traps can 

be transported easily, (iv) easily positioned at any height or orientation even on steep, 

rocky slopes, (v) suited for use in stands of different successional age, (vi) easily 

emptied, (vii) rapidly drained following precipitation, and (viii) protected from seed 

predation from wildlife. There are a large range of sizes ( 0 . 1 8 - 1 m 2 ) and number of 

litter traps used for a stand, which is largely dependent on the plot area and structural 

variability of the stand (Cutini et al., 1998; Herbert and Jack, 1998; Voss and Allen, 

1988; Hughes et al., 1987). Litterfall is then periodically collected within the year to 

ensure samples are preserved (Cutini et al., 1998). The litter is then sorted into 

components (leaves, needles, branches and seeds), dried, and weighed. To estimate LAI 

for the stand the total dry leaf mass collected per unit ground area (area of the trap) is 

multiplied by the weighted mean annual specific leaf area (SLA). SLA is the leaf area 

per unit of dry leaf mass. It can be determined by using a subsample of leaves where 
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both the leaf area and leaf dry weight are measured and a ratio is calculated. SLA is 

dependent upon species, site, season and year, therefore a SLA must be produced for 

each stand. To determine LAI for deciduous species the leaf fall is summed for the year 

(Cutini et al., 1998) whereas for coniferous species the needlefall must be summed for 2 

or more years as the standard turnover rate for coniferous species is larger than the 

deciduous turnover rate (Voss and Allen, 1988; Hendry and Gholz, 1986). 

2.4.1.3 Allometric Techniques 

Allometric techniques are based on relationships of LAI to mensuration data such as 

sapwood area, basal area and crown closure (Buckley, 1999; Snell and Brown, 1978). 

Allometric equations relating species-specific cross-sectional sapwood area to individual 

tree leaf area have been developed for an array of species (White et al., 1997; Lavigne et 

al., 1996; Kaufmann and Troendle, 1981). For example, Marshall and Waring (1986) 

showed that the sapwood area was a better predictor of leaf area than tree diameter in 

conifer species. This method uses the pipe model theory, which states that for a given 

unit of leaves there must be a continuation of conducting tissue of constant cross-

sectional area that services the above foliage (Waring et al., 1982). The sapwood is the 

most recently produced wood, which has open xylem conduits used for water transport 

(Lambers, 1998). Many studies have attempted to validate this theory (White et al., 

1997; Lavigne et al., 1996; Gower et al., 1987; Waring et al., 1982; Kaufmann and 

Troendle, 1981; Snell and Brown, 1978 ), however, this allometric relationship has been 

found to be stand specific, dependent on season, age, stand density, tree crown size, 

canopy position, early stand growth and climatic differences (Mencuccini and Grace, 
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1995; Long and Smith, 1988; Hungerford, 1987; Dean and Long, 1986; Pearson et al., 

1984; Gholz et al., 1976). Pearson et al. (1984) found the sapwood area to leaf area 

ranged from 0.20 to 0.57 m 2 /cm 2 in lodgepole pine sites of different densities, ages and 

sites in Wyoming. White et al. (1997) combined cross-sectional sapwood area/leaf area 

values from a multitude of published allometrics obtained for the Rocky Mountain 

regions ofNorth America, which were then compared to optical estimates from LAI-

2000 and Ceptometer instruments to ground truth the estimates and provide a calibration 

for optical estimates. 

2.4.1.4 Hemispherical Photography 

When used for LAI estimation, a hemispherical photograph is a skywards photo 

taken under a forest canopy using an extreme wide-angle (180°) or 4fish-eye' lens, which 

captures virtually the entire hemisphere above the camera plane (Figure 2-5). It captures 

the species, site and age-related differences in canopy architecture based on the light 

attenuation and contrast between features within the photo (sky vs. canopy) (Frazer et al., 

1998). The position, size and shape of these openings or "gaps" in a forest canopy are 

captured and recorded (Frazer et al., 1998). Digital scanners and cameras are used to 

convert the hemispherical photos into digital bitmap files, which can then be analyzed 

using computer image analysis software (Frazer et al., 1999). The image processing 

involves the transformation of image pixels in which gaps in the forest cover (sky) are 

encoded as pixels with a value of 1 and obstruction to light rays caused by canopy 

components are encoded as pixels with a value of 0 (Frazer et al., 1999; Fournier and 

Mailly, 1999). This is used to supply canopy gap fraction or leaf angle distribution data 

for inversion models that calculate LAI (Norman and Campbell, 1989). The calculation 
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of LAI based solely on gap fraction has been termed effective LAI (eLAI) by Chen et al. 

(1997a), since it disregards the effects of gap size distribution and assumes a random leaf 

distribution. Effective LAI is calculated from the gap fraction using the following 

formula through the adoption of Miller's (1967) theorem: 

e L A I = 2 f I n [ - — I c o 

Jo t ? ( 8 ) J 

where: 

s e s i n e d e 

(Equation 2-2) 

eLAI = effective LAI 

P(0) = gap fraction at view zenith angle (0) 

One operational consideration for hemispherical photography is that the ideal 

light condition for photographs is diffuse irradiance, or where the entire sky has a 

uniform irradiance field. This ensures that none of the photographs are over exposed due 

to the extreme brightness around the solar corolla, causing underestimation of LAI, and 

also to inhibit the direct reflections of the foliage from the sun (Fournier and Mailly, 

1999). As well, the camera must be steady, immobile and leveled (Fournier and Mailly, 

1999). 

"Fish-eye" lens 

LED mount 

LED lights 
for reference 
system 

35mm camera 

_i _ x t J i m m m m m m k Tripod 

Figure 2-5 - Hemispherical camera set up (left) and example photo (right). 
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2.4.1.5 LAI-2000 

The LAI-2000 has been regarded as a convenient hemispherical camera as it does 

not require any image processing (Chen et al., 1997a). The LAI-2000, like hemispherical 

photography, measures canopy gap fraction based on the amount of radiation transmitted 

through the canopy. It is an optical instrument that measures the light penetration 

through the canopy using five quantum detectors arranged in concentric rings at 0-13°, 

16-28 °, 32-43 °, 47-58 °, and 61-74°, thereby capturing light attenuation at several 

angles from zenith (Li-cor Inc., 1990; Welles, 1990). The LAI-2000 follows four basic 

assumptions in its calculation of LAI (Li-cor Inc., 1990): 

1. The foliage is black. No transmitted or reflected radiation by the canopy is 

included. 

2. The foliage is randomly distributed. 

3. The foliage elements are small. 

4. The foliage is azimuthally randomly oriented. 

The LAI measurement of the LAI-2000 uses only an estimate of canopy gap 

fraction and therefore, as with hemispherical photography, is termed effective LAI 

(eLAI) (Chen et al., 1997a). The lack of the gap size distribution measurement and the 

assumed random leaf distribution are suggested to be the cause of underestimation of LAI 

from the LAI-2000 for coniferous species (Chen et al., 1997a; Fassnacht et al., 1994; 

Gower and Norman, 1991). 

There are three main operational considerations for the use of the LAI-2000 (Li-

cor Inc., 1990). The first is that two measures of light are needed, a diffuse light 

measurement either outside or above the canopy, and a measure of diffuse radiation 
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below the canopy. Therefore, arrangements must be made for either two LAI-2000 

instruments to be used (one above the canopy or outside the canopy in an open field, and 

one instrument within the canopy for field measurements), otherwise the field plots must 

be located near an open area where an outside measurement can be taken with the same 

instrument. The second main consideration is that the instrument is more accurate with 

diffuse light conditions; therefore measurements should be taken on cloudy days or near 

sunset or sunrise. The third consideration is that the field of view on the instrument is 

rather large; therefore the use of this instrument is more appropriate in larger stands 

where there is a homogeneous tree cover or minimal open areas. The field of view of the 

instrument can be altered with the inclusion of view caps, which can also be accounted 

for in processing. 

View Caps 

Data logger 

Bubble Level 

Optical sensors 
which measure at 
five zenith angles 

Figure 2-6 - The LAI-2000 instrument. 

2.4.1.6 Ceptometer 

The sunfleck ceptometer is another optical instrument used in the estimation of 

LAI. It is a 90 cm long wand consisting of 80 photodiodes at lcm spacing that are 

sensitive to PAR wavebands (Decagon, 1994). It measures the average transmittance of 
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direct solar radiation, which is related to gap fraction at the solar zenith angle and with an 

assumed leaf angle distribution LAI can be estimated (Chen et al., 1997a). By using the 

exponential decay of light intensity through the canopy by taking the ratio of below 

canopy PAR to above canopy PAR, LAI can be estimated (Pierce and Running, 1988): 

LAI = In(PARB/PARA)/-k 

where: (Equation 2-3) 

PARB is the below canopy estimate of PAR 

PAR A IS the above canopy PAR 

k is a species-specific extinction factor 

The extinction factor (k) corresponds to the portion of light intercepted by each 

successive layers of leaves. Values for this coefficient are 0.5 for deciduous and 0.6 for 

coniferous species but can range from 0.3 for vertically inclined leaves to 1.0 for 

horizontal leaf arrangements (Lambers et al., 1998; Noble and Schumann, 1992; Pierce 

and Running, 1988). 

There are three main operational considerations for the use of a ceptometer. Like 

the LAI-2000 it requires a below canopy measurement of PAR and an above canopy or 

an open canopy measurement of PAR. Thus arrangements must be made for the field 

plots to be located near an open area. The ceptometer requires clear sky conditions with 

no cloud cover. Optimal measurement times should be taken an hour either side of solar 

noon to minimize the effects of changing solar zenith angle on PAR measurements. 
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2.4.1.7 TRAC 

Chen and Cihlar (1995) took a further step with the development of the Tracing 

Radiation and Architecture of Canopies (TRAC) instrument, which accounts for not only 

canopy gap fraction but also canopy gap size distribution, thereby determining the leaf 

distribution or clumping index. The TRAC consists of three quantum sensors. Two 

sensors are oriented upwards to measure down-welling total diffuse PAR through the 

canopy, and one is oriented downwards to measure the reflected PAR off the ground 

(Figure 2-7). The TRAC measures sunfleck width (or the width of the light penetrating 

through the canopy to ground below) and relates this to gap size distribution, which is 

further related to information on canopy architecture (tree crowns, branches, and shoots) 

(Chen and Kwong, 1997). The addition of the gap size distribution provides another 

dimension to the gap fraction data. It quantifies the effect of foliage clumping at scales 

beyond that of shoots, thereby not relying on the assumption that there is a random spatial 

distribution of foliage in the canopy. 

Bubble level 

2 quantum sensors to 
measure down-welling 
radiation 

1 quantum sensor to 
measure up-welling 
radiation 

Data logger 

Figure 2-7 - The TRAC instrument 
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The TRAC calculates LAI by the following equation (Chen, 1996b): 

LAI = (1- <x)*eLAI* Ve 
O 

where: 

L A I = leaf area index 

a = woody-to-shoot ratio 

eLAI = effective leaf area index (from gap fraction) 

Ve = needle-to-shoot ratio 

Q = clumping index 

(Equation 2-4) 

The woody-to-shoot ratio (a) converts plant area index (i.e. a ratio of total plant 

area including, leaves, branches and trunks, to ground area) into LAI, thereby removing 

the contributions of non-leafy material to the LAI estimate. Foliage, branches and tree 

trunks intercept incoming PAR, thus resulting in inflated LAI values. The TRAC 

quantifies the a parameter with respect to the clumping index (Q), as it is assumed that 

the non-woody materials have a spatial distribution pattern similar to that of the leaves 

(Chen and Kwong, 1997). These woody-to-shoot ratios can also be calculated in the field 

by felling trees within the study area and determining the ratio between the needle area, 

and the tree trunk and branch area (Chen, 1996b). The needle-to-shoot ratio (Ve) is the 

ratio of half the total needle area in a shoot to half the total shoot area. This ratio is 

needed as the needles in the shoots of conifer forests are tightly grouped, making it 

difficult or impossible to infer the needle surface area from optical measurements (Chen, 
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1996b). Chen (1996b) determined that the average needle-to-shoot ratio is 1.4 for pure 

conifer stands and 1.0 for pure deciduous stands, but these values will vary for different 

species. 

There are three main operational considerations for the use of the TRAC (Chen 

and Kwong, 1997). Firstly, transects must be walked perpendicular to the principal plane 

of the sun (i.e. the sun's azimuth should be perpendicular to the operator's shoulder) and 

parallel to the slope. Secondly, the optimal measurement times for the TRAC are within 

two hours of solar noon with solar zenith angles (SZA) between 35° and 60°, so that the 

trees do not cast long shadows. Thirdly, because the TRAC measures sunflecks, clear 

sky conditions with no cloud cover are required to ensure that the sunflecks are only 

affected by light penetration through the canopy. 

2.4.1.8 Integrated LAI-2000 and TRAC 

The TRAC, unlike the LAI-2000 or hemispherical photography, does not 

calculate an effective LAI by obtaining readings at several zenith angles, because it 

assumes the deviation from a random (spherical) leaf angle distribution is small, therefore 

readings are taken at a single zenith angle (Chen and Kwong, 1997). The LAI-2000 and 

hemispherical photography do not account for gap size distribution, while the TRAC 

does. Chen et al. (1997a) found that effective LAI estimated from the LAI-2000 were, on 

average, 15.3% less than those from the TRAC in conifer stands. Recognizing the 

different strengths and shortcomings of both instruments, Chen et al. (1997a) suggested 

that integrating the LAI-2000's effective LAI (eLAI) estimate with the TRAC's clumping 

index would provide a more accurate LAI estimate. This accounts for both gap angular 
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distributions at several angles from zenith, as well as the gap size distribution function. 

The integrated approach uses the same equation as the TRAC (Equation 2-3); however, 

rather than using the TRAC's effective LAI measurement (or gap fraction), it uses the 

eLAI estimate from the LAI-2000 or from hemispherical photography. This also allows 

the easy integration of ground based a into the equation, as the TRAC software calculates 

it based on O. Both Chen et al. (1997a) and Leblanc and Chen (1998) suggested that the 

combination of the LAI-2000's eLAI estimates with the clumping index of the TRAC 

should increase the accuracy of the LAI estimate. Chen (1995) found that the integrated 

approach out performed allometric techniques due to the magnification of error in the 

allometrics caused by the regression analysis. As well, the optical instruments were able 

to obtain measurements over a larger scale thus being more representative of the stand. 

2.4.2 Remote Sensing of Forest Leaf Area 

2.4.2.1 Vegetation Indices and Issues 

The information contained in a single spectral band is generally insufficient for 

characterizing vegetation structure and status (i.e. canopy geometry, architecture, and 

health); therefore, vegetation indices and band ratios were developed to incorporate more 

information by combining two or more spectral bands from selected parts of the 

electromagnetic spectrum (Qi et al., 1994). Most vegetation indices utilize the red and 

near infrared (NIR) spectral bands (Baret and Guyot, 1991). Jordan (1969) theorized 

that, first of all, the intensity of red radiation reaching the canopy is approximately equal 

to the intensity of NIR radiation, but on the forest floor, the intensity of the NIR radiation 

is much greater, due to the absorption of red radiation by the chlorophyll in the leaves 
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(for photosynthesis). Since plants reflect less visible radiation, but more NIR radiation, 

the more leaves or the healthier the leaves that are present, the greater the difference will 

be between red and NIR radiation in vegetated surfaces. The intensities of red and NIR 

radiation can then be expressed as a ratio that can be associated with canopy 

characteristics and forest biophysical parameters. Different vegetation indices have been 

developed for retrieving vegetation information, each having different advantages and 

purposes (Chen, 1996a). 

Bannari et al. (1995) summarized and discussed over forty vegetation indices that 

were developed from 1972 to 1995. They observed that vegetation indices do not have a 

standard universal value and are affected by atmosphere, sensor calibration, sensor 

viewing condition, solar illumination geometry, soil moisture, colour and brightness. 

They also remarked that each vegetation index is different and is dependent on the 

environmental characteristics it was developed for. Chen (1996a) identified the 10 most 

commonly used vegetation indices for forestry applications. He further split these 

vegetation indices into two main categories: those that are based on the slope of constant 

index lines in the NIR versus red reflectance plots, and indices that are based on the 

distance between vegetation and soil reflectance lines, assuming the lines are parallel to 

each other. The first type can be subdivided further into those that are expressed as a 

function of the simple ratio (SR) between red and NIR reflectance developed by Jordan 

(1969) and those that incorporate further mathematical equations. The vegetation indices 

that are derived from the simple ratio are Normalized Difference Vegetation Index 

(NDVI) (Rouse, 1973) and Modified Simple Ratio (MSR) (Chen, 1996a). The SR and its 

derivatives have red and NIR reflectance coordinates converging at the origin (0,0). 
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However, it has been shown that the converging point does not always occur at the origin 

(Huete, 1988). This led to the development of vegetation indices that attempt to account 

for the convergence point not at the origin. The Soil Adjusted Vegetation Index (SAVI) 

(Huete, 1988) introduced an L parameter, which is determined by the position of the 

convergence point. SAVI was further developed to allow the L parameter to vary with 

the surface conditions rather than being a constant value (SAVI1, SAVI2) (Qi et al., 

1994). The Global Environment Monitoring Index (GEMI) is also based on the slope of 

a constant index; however, it attempts to reduce the atmospheric effects by using a 

curvilinear line between NIR and red reflectance (Pinty and Verstraete, 1992). The Non­

linear Index (NLI) and Renormalized Difference Vegetation Index (RDVI) attempt to 

linearize their relationship between NIR and red reflectance with surface parameters 

(Goel and Qin, 1994; Roujean and Breon, 1995). The final type of vegetation indices 

includes the Weighted Difference Vegetation Index (WDVI) and Perpendicular 

Vegetation Index (PVI) that are based on the absolute differences between the vegetation 

NIR and red reflectance lines and the soil NIR and red reflectance lines (Clevers, 1989; 

Richardson and Weigand, 1977). The equations for all the vegetation indices described 

are presented in Table 2-2. Brown et al. (2000) developed a vegetation index, called the 

reduced simple ratio (RSR), which uses the shortwave infrared band to improve LAI 

retrieval. RSR is intended primarily for use with MODIS sensor data. RSR unifies 

deciduous and coniferous species so that a classification is not required prior to deriving 

the LAI estimation from regression models. This index has shown a 30% increase over 

the SR for LAI estimation (Brown et al., 2000). 
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For this thesis, three vegetation indices were chosen for comparison from each 

one of the three groups described by Chen (1996a). NDVI, SAVI1 and WDVI were 

chosen based on their performance for the prediction of forest biophysical parameters in 

studies that compared vegetation indices (Peddle et al., 2001; Chen, 1996a). The RSR 

was not used in this study because it uses the shortwave infrared band rather than the near 

infrared band, which is beyond the spectral resolution of the image data used in this 

study, and which is not always available in some of the other sensors available. The three 

vegetation indices chosen for this work are described further in the next section. 

2.4.2.1.1 NDVI 

NDVI was developed to normalize the difference between NIR and red reflectance, with 

the output values ranging between -1 (no vegetation) and 1 (high density of vegetation). 

Therefore, the brighter the pixel, the greater the amount of photosynthesizing vegetation 

present (Jensen, 1996). NDVI has been related to carbon dioxide, ecological parameters, 

photosynthesis, stomatal conductance, evaporation, net primary productivity and LAI 

(Carter, 1998; Chen, 1996a; Baret and Guyot, 1991; Cihlar et al., 1991; Running, 1990). 

It is limited at LAI values over approximately 3 because the ratio of red to near infrared 

reaches an asymptote (Wulder et al., 1998; Running et al., 1986). NDVI assumes that the 

NIR and red reflectance coordinates converge at the origin for a line with fixed NDVI 

values (Table 2-2). 
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Table 2-2 Vegetation index equations based on near infrared (NIR), red (R), and 
shortwave infrared (SWIR) reflectance (after Chen, 1996). SWIRmin is the reflectance 
from an open canopy and SWIRmax is the reflectance for a completely closed canopy 
(Brown et al, 2000) 

Vegetation Index Equation Reference 

NDVI: Normalized Difference 
Vegetation Index 

NIR-R 
NIR+R 

Rouse et al., 
1973 

SR: Simple Ratio NIR 
R 

Jordon, 1969 

MSR: Modified Simple Ratio 
NIR 1 

_ R . . 
NIR + 1 

i R 

Chen, 1996 

RDVI: Re-normalized Difference 
Vegetation Index 

NIR-R 
\ NIR+R 

Roujean and 
Breon, 1995 

WDVI: Weighted Difference 
Vegetation Index NIR - a *R NIR, soil 

a ~ R, soil 
Clevers, 1989 

SAVI: Soil Adjusted 
Vegetation Index 

(NIR-R)(1+L) 
(NIR+R+L) 

L = 0.5 

Huete, 1988 

SAVI1: Soil Adjusted 
Vegetation Index 1 

(NIR -R)(1+L) 
(NIR+R+L) 

L= 1-2.12*NDVI*WDVI 

Qietal . , 1994 

SAVI2: Soil Adjusted 
Vegetation Index 2 NIR + 0.5 -J(NIR+0.5f -2(NIR-R) Qietal . , 1994 

NLI: Non-Linear Index NIR 2-R 
NIF^+R 

Goel and Qin, 
1994 

GEMI: Global Environment 
Monitoring Index 

n(1-0.25*n)-(R-0.125) 
1[2(NIR 2 -R 2 )+1.5*NIR+0.5*R] 

Pinty and 
Verstraete, 
1992 

GEMI: Global Environment 
Monitoring Index 

(NIR+R+0.5) 

Pinty and 
Verstraete, 
1992 

RSR: Reduced Simple Ratio 
NIR * 1 (SWIR-SWIRmin) 
R (SWIRmax-SWIRmin) 

Brown et al., 
2000 
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2.4.2.1.2 WDVI 

Huete (1988) showed that the NIR and red converging point does not often occur 

at the origin; rather it occurs at a negative point on both NIR and red reflectance 

coordinates due to the effects of soil background. As a result, pixel reflectance values are 

comprised of subpixel scale reflectance components, including soil or background, 

vegetation and shadow (Richardson and Wiegand, 1977). Due to the complex soil-

vegetation interactions within a single pixel, using vegetation indices it is difficult to 

remove or segregate the soil and vegetation reflection signals from the overall spectral 

response. This is important, since the soil reflectance has been shown to influence the 

relation between NIR reflectance and LAI (Clever, 1989). Thus, Clever (1989) derived 

WD VI for correcting the near-infrared reflectance of vegetation for the effects of soil 

background by subtracting the contribution of background or soil reflectance from the 

initial NIR reflectance (Table 2-2). The correction factor for the soil reflectance was 

obtained through a weighted difference between the measured near-infrared and red 

reflectance of the soil. 

2.4.2.1.3 SAVI1 

With the SAVI1 index, a soil adjustment factor L is defined which is intended to 

account for soil noise by minimizing the soil brightness influences and producing 

vegetation isolines more independent of the soil background (Table 2-2) (Qi et al., 1994; 

Baret and Guyot, 1991). The L constant should vary inversely with vegetation density. 

For intermediate densities, the best adjustment was shown to be 0.5 (SAVI). At low 

vegetation densities L is approximately 1; while at higher vegetation densities, the L 
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value is smaller (Huete, 1988). The ideal L factor does not remain constant because the 

soil-vegetation interaction varies with canopy closure. Qi et al. (1994) suggested that the 

L function could be optimized using the product of NDVI and WD VI, as both of these 

vary with soil brightness and with canopy density. At high vegetation densities, L 

approaches 0 and SAVI1 behaves similar to NDVI, while at lower vegetation densities, L 

approaches 1 and SAVI1 behaves similar to WDVI (Qi et a l , 1994). Therefore SAVI1 

raises the vegetation signal and lowers the soil-induced variation, allowing it to be a more 

sensitive indicator of vegetation amount. The L function allows SAVI1 isolines neither to 

converge at the origin nor to run parallel to the soil line. SAVI1 increases the vegetation 

dynamic response while further reducing the soil background influences, improving the 

vegetation sensitivity by a "vegetation signal" to "soil noise" ratio (Qi et al., 1994). 

Empirical evidence has shown that vegetation indices that attempt to minimize the soil 

background effects reduce the noise and are better predictors of forest biophysical 

parameters compared to other vegetation indices (Peddle et al., 2001; Baret and Guyot, 

1991; Huete, 1988;). 

2.4.2.1.4 Problems with Vegetation Indices 

Chen et al. (1996) and Peddle et al. (2001) summarized several assumptions that 

vegetation indices make which may cause inaccuracies in deriving forest biophysical 

parameters. The first assumption is that for any given vegetated surface, NIR and red 

reflectance increase or decrease proportionally and simultaneously with each other. This 

assumption is often not met, causing inaccuracies in vegetation index values. A concern 

with vegetation indices is that they are based on measurements of entire pixels, thereby 
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not explicitly accounting for mixed pixels with non-vegetated components including 

shadows, background soil and understory vegetation (Hall et al., 1995; Peddle et al., 

1999a, 2001). These non-vegetated mixtures complicate and diminish the ability to 

obtain meaningful information about the actual vegetation of interest (i.e. the trees). 

Furthermore, many vegetation indices are based on two spectral bands, and therefore do 

not incorporate or utilize other potentially useful information contained in other bands. 

Vegetation indices have also been shown to be less effective with canopies at higher leaf 

areas due to the saturation of band ratios at greater LAI. As a result, methods such as 

incorporating texture, performing spectral mixture analysis or reflectance modeling have 

been used to estimate LAI in attempts to provide improved results over vegetation indices 

by addressing some or all of these problems. 

2.4.2.2 Texture 

Texture can be characterized by the tonal properties and the spatial 

interrelationships found between them (Haralick, 1979). Image texture has been used to 

increase the accuracy of landcover classification and prediction of biophysical parameters 

such as LAI (Peddle et al., 1999a; Wulder et al., 1998; Wulder et al., 1996; Peddle and 

Franklin, 1991; Franklin and Peddle, 1989;). Wulder et al. (1996,1998) showed that 

texture derivatives provide forest structural information that can be related to LAI. The 

inclusion of semivariance moment textures with NDVI has provided a more accurate 

estimate of LAI than NDVI alone in mixedwood stands in which the addition of texture 

increased the accuracy of the LAI prediction by 43% (Wulder et al., 1998). Peddle et al. 

(1999b) found texture alone (i.e. not using image pixel values, just the spatial texture) 
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had a stronger relationship with LAI (r 2 = 0.29) than NDVI (r 2 = 0.01) for lodgepole pine 

and aspen species. In both studies, texture provided a measure of additional structural 

information. 

2.4.2.3 Spectral Mixture Analysis 

Spectral mixture analysis (SMA) quantifies the abundance of subpixel scene 

components within an image (Adams et al., 1993). Subpixel scene components or 

endmembers are identified by the spectral properties of each material present within an 

image that are expected to contribute to the overall pixel level reflectance. SMA depends 

on accurate spectral characterization of endmembers by determining the purest (without 

the presence of other surface material) spectral response pattern of each scene 

component. The output from SMA is the fraction of each endmember over the pixel area. 

In the forestry context, three endmembers are often identified: sunlit canopy (C), sunlit 

background (B) and shadow (S). These endmember spectra can be estimated, measured 

or modeled (Peddle et al., 1999a). Reference endmember spectra can be measured in the 

field using a spectroradiometer. If endmembers are collected in this way, both the image 

and the endmember spectra must be calibrated to reflectance. Reference endmembers 

can sometimes be obtained from spectral library databases. Image endmembers are 

selected directly from the image from areas that contain homogeneous or near 

homogeneous samples of the endmember material. The spectral reflectance of each 

endmember (p c , pt>, p s) in each band is input to SMA and the overall pixel band 

reflectance values (p y) to be unmixed (Peddle et al., 2000,1999a; Hall et al., 1995) 
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py = Cp c +Bp b + Sp S 

(Equation 2-5) 

where: 

p y = overall pixel reflectance value 

C = fraction of canopy 

B = fraction of background 

S = fraction of shadow 

p c = spectral reflectance of canopy 

Pb = spectral reflectance of background 

p s = spectral reflectance of shadow 

SMA expresses the amount of each material as a fraction of total pixel area; 

therefore the fraction components vary between 0 and 1. Fractions that are greater than 1 

or less than 0 have not accurately characterized the material within the pixel, suggesting 

that the endmember selection did not account for some scene component or that one or 

more endmembers were not pure (Johnson, 2000; Adams et al., 1993). 

SMA is a robust method for the extraction of forest biophysical information from 

remote sensing imagery, as different mixtures of scene components represent different 

forest structures. SMA has provided significant improvements over more traditional 

methods such as vegetation indices for obtaining biophysical estimates (Johnson, 2000; 

Peddle and Johnson, 2000; Peddle et al., 1999a; Hall et al., 1995,1996). SMA accounts 

explicitly for the influence of background and shadows reflectance rather than using only 

the overall pixel level reflectance as with vegetation indices (Peddle et al., 2001). In 
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these studies, shadow fraction has been shown to be the best predictor of LAI and other 

biophysical parameters (Peddle et al., 1999a; Hall et al., 1995). The simplified physical 

explanation for this is that larger trees cast larger shadows, with the shadow fraction 

being more sensitive to tree size and structure compared to sunlit canopy fraction in the 

horizontal dimension (Peddle et al., 1999a). This suggests that shadow fraction may be a 

surrogate for stand characteristics and canopy dimension (Peddle et al., 1999a). Peddle 

et al. (2001) found SMA to provide a 40% improvement in the prediction of forest 

biophysical and structural information (biomass, NPP, LAI, and basal area) over 10 

different vegetation indices. 

Peddle et al. (1999b) evaluated multi-spectral LAI prediction using both texture 

and mixture analysis of airborne imagery in the Alberta, Rockies. In that study, a forest 

scale continuum was established with respect to sub-pixel scale mixture fraction, image 

tone (pixel values) and spatial texture derived from groups of pixels. SMA provided a 

better estimate of LAI compared to NDVI (r 2 = 0.54 vs. 0.01). The inclusion of texture 

with SMA shadow fraction increased the r 2 from 0.54 to 0.60 suggesting that the 

extraction of information over different scales has the potential to maximize the 

predictive capabilities of biophysical parameters (Peddle et al., 1999b). 

2.4.2.4 Reflectance Modeling 

Reflectance modeling has provided a powerful tool for the extraction of 

biophysical and structural characteristics of forest stands from remote sensing imagery. 

Goel (1989) provided a review of the canopy reflectance models, including geometric 

optical, turbid medium, a hybrid of geometric optical and turbid medium models, and 
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computer simulation. Li and Strahler (1986) suggested that geometric optical models are 

recommended for deriving forest related parameters from airborne and satellite imagery. 

For example, geometric optical models have been shown to provide improved estimates 

of important biophysical parameters such as LAI and biomass (Peddle et al., 1999a; Hall 

et al., 1997; Woodcock et al., 1993). These models treat vegetation canopies as a 

collection of individual, three-dimensional objects that cast shadows on a contrasting 

background (Li and Strahler, 1985,1986). For example in the Li and Strahler (1985) 

model, individual trees are modeled as cones. In forward mode the model predicts pixel 

brightness from the tree size, shape and density of the forest and the illumination angle, 

while in inverse mode the model estimates the mean height, shape and density of the 

canopy from pixel brightness obtained from the imagery. This model was further 

developed to produce the Geometric Optical Mutual Shadowing (GOMS) model (Li and 

Strahler, 1992) to account for terrain variations, off-nadir view angle, a spheroid shape, 

and shadows falling on adjacent trees (Li and Strahler, 1992; Strahler and Jupp, 1990). 

This model requires spectral endmember values of each scene component and the 

viewing and solar illumination geometry of the image. This model has been used in 

"Multiple-Forward Mode" (Peddle et al., 1999a) and further expanded for mountainous 

terrain by Johnson (2000) to provide improved biophysical estimates. 

2.4.3 Climatic Inputs to NPP Models 

2.4.3.1 MTCLIM Model 

FOREST-BGC requires climate data as an input, thus for site-specific measures of 

climate for incorporation into a montane ecoregion, the Mountain Microclimate 
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Simulator (MTCLIM) was used (Running and Coughlan, 1988). The primary function of 

the MTCLIM is the extrapolation of meteorological variables from an individual location 

where meteorological measurements are available (BASE) to another site where no 

meteorological data exists (SITE) (Hungerford et al., 1989). This model was developed 

due to the lack of available meteorological data in mountainous terrain, since most 

meteorological measurements are taken at city airports situated in flat, non-mountainous 

terrain. The extrapolation of climate data from the base station is completed by making 

vertical corrections to the base data for changes in terrain features, including elevation, 

slope and aspect. The accuracy of the extrapolation decreases with distance from the 

base station and the site due to the effects of air masses, cloud cover, precipitation and 

local scale phenomena (Hungerford et al., 1989). 

Input requirements for MTCLIM are basic meteorological measurements, which 

are available from most weather stations, including daily maximum and minimum 

temperature and precipitation, as well as basic terrain features of the base station (Figure 

2-8). Site information is also needed including physiographic features (elevation, slope, 

aspect, and east-west horizon angles) and initializing vegetation characteristics (LAI and 

albedo) (Figure 2-8). The input information is then used to predict daily minimum, 

maximum and average temperatures, precipitation, incoming solar radiation, and relative 

humidity for the site where meteorological data are not available (Figure 2-8). 
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Figure 2-8 Flow chart of the Mountain Microclimate Simulator Model 
(MTCLIM) showing the transformation of climate data from a known 
base station to another location based on the physiographic 
information and climatic principles. 
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2.4.4 Soil Water Content (SWC) 

Another input to the FOREST-BGC model is soil water content (SWC). Soil is 

the foundation of terrestrial communities and is an important vessel in nutrient and water 

cycles (Smith, 1990). The roots of trees occupy a considerable portion of the soil to 

anchor and support above ground biomass and to aid in the cycling of water, nutrients 

and oxygen needed by plants for growth and maintenance. Soil water is one of the major 

factors controlling plant growth. The amount of water stored within the soil is 

determined by the physical features of the soil, as well as climate and topography 

(Kimmins, 1997). The soil water available for extraction by plants is found between the 

field capacity, where the soil water has moved out of the macropores caused mostly by 

gravity and the remaining water is in the micropores, and the wilting coefficient, where 

plants are unable to extract sufficient water to meet their demands due to the lower water 

potential and conductivity in the soil (Figure 2-9). The soil water available for plant 

uptake depends on the relative abundance of different pore sizes, which in turn depends 

on soil texture, structure and depth. Soils are made up of various combinations of 

organic matter and mineral particles of various sizes defined as soil texture. Soil texture 

has three major size classes: sand (0.02 - 2.0 mm), silt (0.002 - 0.02 mm), and clay 

(<0.002 mm). As the fineness of texture increases (approaches clay), there is generally 

an increase in available moisture storage (Brady and Weil, 1999). In coarse textured 

soils (sand) the majority of the water is lost at field capacity due to gravitational water 

loss through the larger pore sizes (Kimmins, 1997). Fine textured soils (silts and clays) 

do not lose much water from gravity so the soil usually retains a higher saturated water 

content (Kimmins, 1997). The depth of the soil is also a determining factor for the 



available water since, in general, the deeper the soil, the greater the amount available 

water (within the limits of the depths to which feeding plant roots can reach). 
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Figure 2-9 - Relationship between available water content and soil texture 
(derived from Brady and Weil, 1999). 

2.4.5 Land Classification 

The final input to the NPP model is species composition, which is usually 

generalized into life form groups (i.e. conifer, deciduous, grassland) as the physiological 

differences are more important among the physiological groups than among species 

within life forms (Bonan, 1993). Different biomes or sets of species have very different 

ecological and physiological properties; therefore, to characterize the functionality of 

each ecosystem accurately, the study area must be divided into separate, functionally 

similar units. For broad spatial scales this can be done with relative ease using multi-
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spectral remote sensing land classification to characterize all the pixels in an image into 

landcover classes or themes. It does this by analyzing the set of spectral band values of 

each pixel and categorizing them based on similar spectral properties. 

There are two general methods of land classification from remote sensing, 

supervised and unsupervised classification (Jensen, 1996). Supervised classification 

requires a priori knowledge about the study area for the collection of training sites 

(Jensen, 1996). Training sites are a collection of pixels which belong to the same class 

(e.g. conifer or deciduous forest), and which capture the spectral variability within each 

class. Unsupervised classification does not require a priori knowledge; rather it separates 

the image into classes based on statistically similar spectral groups (Jensen, 1996). These 

groups or spectral clusters are then labeled, however, the statistically similar spectral 

groups may not correspond to the classes of interest. Remote sensing image features can 

affect the classification accuracy of an area. The scale of the data affects the detail of the 

information classes and the boundary designation, while the spectral bands and the 

complexity of the environment affect the separability of the landcover classes (Wulder, 

1998). Contextual neural networks (Jensen, 1996) and evidential reasoning classifiers 

(Peddle, 1995) have been developed to process more complex data sets, including hyper 

spectral imagery and spatial, terrain and multi-source spatial information. 

2.4.6 Complexities of Terrain on NPP Modeling 

From a modeling perspective, terrain increases the amount of complexity in 

estimating NPP or other forest biophysical parameters. Terrain variations affect 

ecosystem functionality including light and water regimes, soil types, forest structures, 
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and productivity. FOREST-BGC attempts to account for these effects through the 

inclusion of important variables. The incorporation of climate data, which has been 

derived from MTCLIM, account for changes in climate due to changes in terrain 

(elevation, slope, and aspect). As well it accounts for different soil types and the 

subsequently soil water content. Forest structure is adaptable in the model based on the 

inclusion of LAI. The accuracy of LAI estimation is also affected by terrain. Firstly at 

the ground level especially with optical instruments where terrain causes shadowing and 

affects the length of light penetration into the canopy thereby altering the solar zenith 

angles and the optimum times for data collection (i.e. TRAC). Secondly, from remote 

sensing where terrain influences the sun/surface/sensor geometry, which accounts for a 

significant difference in the spectral response of a forest stand. As well light will 

penetrate to different depths of the canopy, which will change the relative proportions of 

the canopy and background that would be presented to the sensor. Thus a study in 

mountainous terrain includes further complexities beyond that would be seen on flatter 

terrain. 

2.5 Chapter Summary 

Due to the increased focus on potential climate change impacts to sustainability, 

many countries are attempting to quantify their carbon stocks, for improved forest 

management and as part of international policy agreements. Net Primary Productivity 

(NPP) is one measure of this over large areas and this information can be obtained 

through ecosystem productivity models. One such model is FOREST-BGC, which was 

designed to be dependent upon LAI estimates, thus it follows that the accurate prediction 
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of LAI is important. The accuracy of the estimation of LAI is two fold with estimation 

for small areas using ground-based instruments and estimation of larger areas using 

remote sensing data. Many ground-based instruments and techniques have been 

developed for the estimation of LAI with varying assumptions and mechanisms. Some 

optical instruments estimate LAI based on the gap fraction of light penetration through 

the canopy (hemispherical photography and LAI-2000), while others go further with the 

inclusion of gap size distribution (TRAC and integrated approach). It is hypothesized 

that the inclusion of both gap fraction with gap size distribution provides a more accurate 

estimation of LAI. For large areas, vegetation indices have been widely implement in the 

estimation of LAI from remote sensing data. However, vegetation indices have been 

shown to be limited, as they do not adequately account for background reflectance, 

shadows and canopy geometry and are restricted to two spectral bands. Spectral mixture 

analysis (SMA) explicitly accounts for background reflectance, shadows and canopy 

geometry by quantifying the abundance of scene components at sub-pixel scales that 

contribute to the overall pixel level reflectance. The potential inaccuracies found in both 

ground-based and remotely sensed LAI estimates can subsequently produce errors or 

inaccuracies resulting in poor quantification of carbon and inadequate sustainable 

management practices. 
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CHAPTER III 

3.0 Methods 

3.1 Introduction 

This chapter describes the experimental design and methods used to compare the 

ground-based and remote sensing estimates of LAI, and the influences these measures 

have on modeled NPP. It begins with a description of the Kananaskis study area and 

forest mensuration techniques to provide information about the composition and 

distribution of the forest stands. To quantify the differences in LAI estimation techniques 

from both the field and remote sensing data, a detailed description of the collection and 

processing of the ground-based and airborne LAI estimation techniques and the analytical 

and statistical approaches used to compare and evaluate the LAI estimation techniques 

are described. The NPP modeling is documented and justified, including how all 

ecosystem model inputs were obtained. The chapter concludes with the statistical and 

analytical methods used to determine the effects of LAI on modeled NPP, including both 

simulation modeling and analyzing the variability in both LAI and NPP results for this 

study area. 
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3.2 Study Area and Data Set 

3.2.1 Kananaskis Study Area 

The study area is centered at 115°4'20"W, 51°1 '13"N straddling Barrier Lake 

within Bow Valley and Bow Valley Wildland Provincial Parks in Kananaskis Country, 

Alberta, Canada (Figure 3-1). It is situated in a montane region on the eastern slopes of 

the Canadian Rocky Mountains. This region covers approximately 77 km 2 with a full 

range of terrain aspects and slopes. The elevation of the study area ranges from 1400m 

(Barrier Lake) to 2000m (top of Prairie View). The study area lies within the Montane 

Natural Subregion of southwestern Alberta, which is characterized by patterns of open 

forests and grasslands with a very diverse understory vegetation (Archibald et al., 1996). 

Dominant softwood tree species in the area include lodgepole pine (Pinus contorta var. 

latifolia Dougl ex. Loud.), white spruce (Picea glauca (Moench) Voss), Engelmann 

spruce (Picea engelmannii Parry ex Engelm.), Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco), and subalpine fir (Abies lasiocarpa (Hook) Nutl.). The dominant 

hardwood tree species include trembling aspen (Populus tremuloides Michx.), and 

balsam poplar (Populus balsamifera L.), with lesser amounts of white birch (Betula 

papyrifera Marsh.). The sampled areas consist of different stand structures and 

compositions, which range from pure softwoods and hardwoods to mixedwood stands 

(Figure 3-2). The spatial distribution of the dominant tree species is based largely on 

terrain and proximity to a water body (Figure 3-2). The LAI measurements taken within 

these stands typically ranged from 0.84 to 7.77. 
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Figure 3-1 Study Area. The study area is located on the eastern slopes of the Canadian 
Rockies in Kananaskis Country, AB and is centered at 115 4'20"W, 
51 1' 13"N. Photo A is taken looking north across Barrier Lake from 
Highway 40. Photo B is taken from the CASI mounted aircraft looking 
south towards the end of Barrier Lake. Location of each photo is shown on 
the CASI image (see map inset). 
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Figure 3-2 Dominant tree types in the Kananaskis study area based on classifications 
from the Alberta Vegetation Inventory (AVI). 
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3.2.1.1 Soil 

Due to pronounced and complex changes in topographic and climatic conditions, 

the soil types within the Canadian Rockies are generally regarded as highly variable 

(Archibald et al., 1996; Crossley, 1952). Crossley (1952) studied the mountain soils of 

the Kananaskis Forest Experiment Station, which covers much of the same area as this 

study; however, the boundaries extended further east and south. Six soil classifications 

exist in the study area: alluvium, rendzina, brown and grey podzolic, brown forest and 

lithosolic (Figure 3-3). However, only brown and grey podzolic, brown forest and 

lithosolic soils are present within the field plots sampled. Brown podzolic soil has a light 

texture with only moderate leaching and usually supports coniferous forests. Grey 

podzolic soils generally exhibit a heavier texture due to parental materials and are more 

chemically fertile than the brown podzolic. Brown forest soil is generally more fertile 

than the other classes found within the study area. The main vegetation cover for the 

brown forest soil is aspen or balsam poplar. Lithosolic soils are stony shallow azonal 

soils frequently encountered on steep slopes and are characterized by stony thin brown 

podzois. This soil class is not conducive to tree growth; trees that do grow there have 

restricted room for the development of roots, resulting in an inadequate supply of soil 

nutrients. This soil also has a limited water storage capacity and may have excessive run­

off. The location and depth of the various soils are dependent on both parental material 

and topographic location. Generally, steeper slopes have shallower soils due to wind 

erosion and runoff; thus many of the soils found on these slopes are lithosolic. 
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3.2.1.2 Climate 

The climate in this region is influenced by both the Cordilleran and Prairie 

climates. It has a mean summer temperature of 12°C and a mean winter temperature of -

6°C based on data from 1939-1985 (Kirby, 1973; KCEED, 1995). Temperature extremes 

range from -45.6°C to 33.4°C. The average precipitation per year is 657.4 mm. 

Chinooks are common in this montane subregion with intermittent snow free periods 

during the winter (Archibald et al., 1996). 

For this study, only the 1998 weather data were used corresponding to the year of 

image acquisition and fieldwork, and also since the study considered only annual 

increment of NPP. The weather data were obtained from the weather station situated at 

the University of Calgary, Kananaskis Field Station for the year 1998. The Kananaskis 

Field Station is located in a valley bottom at UTM coordinates 5654737.124 North and 

637856.739 West with an elevation 1393.5 meters above sea level. Daily weather 

measurements were taken including maximum, minimum and average temperatures and 

precipitation. The weather conditions at the Kananaskis Field Station were similar to the 

norm in 1998 (Table 3-1). To be consistent with the nomenclature of the FOREST-BGC 

model the weather data for 1998 will be termed climate data it is however, acknowledged 

that climate refers to long term trends or patterns where as weather refers to more daily 

events. 
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Table 3-1 A summary of the 1998 weather data. 
Weather Trend Annual 

Maximum Temperature (°C) 33 

Minimum Temperature (°C) -39 

Mean Summer Temperature (°C) 14.8 

Mean Winter Temperature (°C) -6.3 

Precipitation (mm) 875.6 

Growing Season Precipitation (mm) 

(mid June - late August 

603.0 

3.2.2 Field Data Collection 

3.2.2.1 Plot Location 

Field plots were established to study and evaluate remote sensing information and 

ground-based forest biophysical parameters, and to develop ground truth information. 

Most of the plots were located along defined transects comprising three or more plots that 

coincided with the Compact Airborne Spectrographic Imager (CASI) airborne remote 

sensing flight lines (described later in this chapter). The middle of the surveyed transects 

(the middle of the flight line) were located approximately at the midpoints of each plot. 

Alberta Vegetation Inventory (AVI) maps and airphoto interpretation were used to assist 

in the location of transects and plots. The first plot of the transect was randomly selected 

to be greater than or equal to 3 times the stand height from the point of entry. To ensure 

an adequate spatial separation of plots the subsequent plot was located at 3 times the 

height of the present stand to ensure the LAI-2000 measurements were independent. The 

point of entry was generally from a trail or road. Each plot was also located to provide 

sufficient distance (approximately 3 times the height of the last plot) from the edge of the 

stand. Much of the fieldwork in 1998 was completed prior to the July 18 CASI image 
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acquisition date. In these cases the proposed center flight lines were used for the 

formation of transects (there was little deviation from this and the actual lines flown). 

Each plot was 10m x 10m, to be representative of the stand characteristics and to ensure 

that the number of pixels within each plot was adequate for each spatial resolution of 

CASI imagery (largest pixel —2m, resulting in a minimum of 25 pixels per plot). In total, 

65 plots were established and oriented in a north-south direction to align the plot with the 

orientation of the north-south flight lines during image acquisition. The 1998 field 

season focused on the collection of pure and mixed conifer plots, while the 1999 field 

season focused on the collection of deciduous and mixedwood plots. 

3.2.2.2 Field and Image Position 

An important aspect to any remote sensing analysis is the ability to accurately 

locate field plots in an image for validation and testing purposes. A differential global 

positioning system (DGPS) was used in the field to obtain geographic position with a +/-

1 m accuracy. A Trimble Pathfinder Pro XL GPS was used to collect uncorrected GPS 

coordinates at each corner of the plots. These coordinates were then differentially 

corrected using the base station data collected simultaneously at the Kananaskis Field 

Station using Pathfinder Office 2.11 software. The corrected plot corner coordinates 

were overlaid on the CASI imagery and vectors were drawn to delineate plot area based 

on the lOmxlOm plot size. 
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3.2.23 Forest Structural Data 

The structural characterization of each stand was essential for studying the 

influence of LAI measures on process-based productivity estimates. Among the 

structural parameters measured were tree height, tree height distribution, diameter at 

breast height, stand density, and crown closure. Other variables collected at each plot, 

which aided in the characterization of the stands, were tree species, tree cores, slope and 

aspect, and descriptive plot maps of the location of each tree (stem maps). Tree heights 

were measured to the closest lA or tenth of a metre using either a clinometer or a digital 

hypsometer, respectively. Diameter at breast height (cm) was measured at approximately 

1.3m above the ground. The percentage of crown closure was estimated using both a 

spherical and GRS densitometer, and both measurements were averaged to produce a 

single plot estimate. Tree cores were collected from a representative number of trees 

within each plot. Two cores were extracted from breast height for each tree at right 

angles from each other. The number of trees cored was a function of the tree species 

present. Two cores were collected from the dominant species within the plot, and one 

core for each of the subordinate species. Stem maps were produced for each of the plots 

using locations determined relative to the marked corners. These maps were also used to 

aid in the identification of plot locations on the imagery. Forest structural data and plot 

characteristics are presented for each of the species in section 4.2. 

3.2.2.4 Endmember Spectra Collection 

A spectral library was built for the Kananaskis Region where the dominant 

canopy and understory species were identified. Spectra were collected using an 

Analytical Spectral Devices (ASD) spectroradiometer for each of the species with 



illumination for both sunlit and shadow, using the portable field laboratory in Peddle 

(1998). The ASD spectroradiometer used in this research is a full range instrument (350-

2500 nm), which takes spectra at lnm spectral resolution. Samples were removed from 

the forest stands and measured in an open parking lot to avoid the influences of variable 

canopy shadowing and understory signals (Johnson, 2000). Tree canopy samples were 

arranged into optically thick stacks to ensure a pure measurement of a single species. To 

use the lnm spectra with the imagery, endmember values were derived for the image 

bandwidths based on the spectral response function for each band of the CASI sensor. To 

create shadowed illumination, a sheet of plywood was used to block all direct sunlight 

onto the samples. All radiance measurements were corrected to reflectance using a 

coincident spectral measurement of irradiance from a calibrated Spectralon panel. 

3.2.3 Ground-based LAI Estimation Techniques 

3.2.3.1 Allometric Techniques 

The transition zone between the sapwood and heartwood was marked on each 

increment cores in the field where visible. For each of the trees, sapwood widths were 

averaged and sapwood area was calculated as the difference between the stem area at 

breast height and heartwood area. Stem area at breast height was calculated based on the 

diameter of each tree inside the bark. The diameter inside bark was determined based on 

diameter outside bark/ diameter inside bark (DOB/DIB) models for each species in 

Provincial Natural Region 9, which encompassed this study area (Huang 1994). Since it 

was not possible to core all the trees in every plot, extrapolation was needed to determine 

sapwood area for the entire plot. Using the various tree data, regression models were 
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built to relate sapwood basal area to tree basal area for each species within the study area. 

Due to the small sample size of balsam poplar, the balsam poplar measurements were 

merged with the trembling aspen measurements in a composite deciduous group. The 

regression models were built and tested through the production of a fitting and a 

validation sample to allow the independent assessment of the regression models for 

predicting sapwood basal area. The validation sample set was chosen randomly from 

each species, with lA of the species data used to ensure an appropriate sample size for 

both the validation and fit data sets. The regression models were built from the fit data 

set. The regression models were chosen based on the magnitude of the coefficient of 

determination (r 2), root mean square error, the standardized residual plots and the 

statistical significance of each model. CurveExpert 1.3 software was used to determine 

the best line fit for each of the species (r^and RMSE), and then the best models were 

incorporated into SAS software to determine further statistics (standardized residual plots 

and statistical significance) for the statistical models chosen. The results of this statistical 

analysis are presented in Section 4.3. The statistical models were then applied to the 

uncored trees within the plots to determine a plot level sapwood basal area estimate. 

Leaf area of each stand was estimated using allometric equations of sapwood basal area 

to leaf area for montane ecosystems in the Rocky Mountains (Gower et al., 1987; Waring 

et al., 1982; Kaufmann and Troendle, 1981) (Table 3-2). Absolute LAI measurements 

were not available since destructive sampling was illegal in the study area. Therefore, it 

was not possible to assess the published allometrics as they applied to this study area. 

Species sapwood basal area was summed for each plot and the coefficients related to the 
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separate species were applied. The summed leaf area was then divided by the plot 

ground area of 100 m 2 (10m x 10m) to determine LAI for each of the plots. 

Table 3-2 - Literature cited for projected leaf area to cross-sectional sapwood area 
values. (Taken from White et al., 1997) 
Species Common Name Leaf 

area/sapwood 
area 

(m2cm"2) 

References 

Pinus contorta Lodgepole pine 0.14 Gower et al., 1987 
Picea engelmanni White Spruce 0.34 Waring et al., 1982 
Pseudotsuga 
menziesii 

Douglas-fir 0.35 Gower et al., 1987 

Populus 
tremuloides 

Trembling Aspen 0.10 Kaufmann and 
Troendle, 1981 

3.2.3.2 Hemispherical Photography 

Hemispherical photos were taken at or near the centre of each plot. Five photos 

using 400 ASA Fuji NPH film were taken per plot with an aperture of F/8 at 5 shutter 

speeds (l/60s, 1/125s, l/250s, l/500s, and 1/1000s). From these bracketed exposures, the 

photos with the highest contrast between sky and canopy were digitally scanned using a 

HP 4C 600 dpi optical scanner. Plot LAI estimates from the digitized photos were 

obtained using the Gap Light Analyzer (GLA) software (Frazer et al., 1999), which 

includes terrain corrections based on local slope and aspect inputs. 

3.2.3.3 LAI-2000 

For each plot, overstory LAI was measured using the LAI-2000 at 8 locations 

within each plot. An outside canopy measure was also taken in an open field 

immediately prior to the measurements in the plot to simulate an above canopy 

measurement. Measurements were taken on overcast days or the operator shadowed the 



sensor to prevent direct sunlight from reaching the sensor. The LAI-2000 values were 

post processed using manufacturer provided software to calculate LAI (Licor Inc., 1990). 

To minimize the effects of slope, either the last ring (61-74°) or the last two rings (61-74°, 

47-58°) were removed during the calculation of effective LAI. The last two rings were 

manually scrutinized to determine if the PAR measurements fell between the ranges 

found in the earlier three rings. If this criterion was not met, the values were removed 

and LAI was recalculated. 

3.2.3.4 TRAC 

Using the TRAC, ten transects of 10m length each were established within each 

10m x 10m plot at approximately lm spacing and oriented perpendicular to the solar 

plane. Measurements were collected by walking at a rate of approximately 0.3 m/s. 

Measurements were taken on sunny days with no cloud cover. The TRAC values were 

post processed using manufacturer provided software to determine both clumping index 

and LAI (Chen and Kwong, 1997). A topographic normalization was completed by using 

a ratio between the depth of the canopy on flat ground to the depth of the canopy on 

sloped ground (Chen pers. comm., 1999). Canopy depth and slope were measured within 

each plot, and geometric principles were applied to determine canopy depth on sloped 

ground at the solar zenith angle measured by the TRAC. The ratio was then applied to 

the TRAC LAI estimates for each plot. 
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3.2.3.5 Integrated LAI-2000 and TRAC 

The integrated approach was applied to each of the plots using the slope adjusted 

effective LAI estimates from the LAI-2000 and the clumping index from the TRAC 

(Equation 2-3) (Chen, 1996b). Woody-to-shoot ratios were not available for this region 

so instead ratios for the same or closely related species were obtained from the literature 

(Chen, 1996b). Ratios for jack pine were used for lodgepole pine, black spruce ratios 

were used for white spruce, and aspen ratios were used for trembling aspen and balsam 

poplar as measured from the BOREAS study area in Saskatchewan and Manitoba, using 

destructive sampling of entire trees. The needle-to-shoot ratio (Ve) is the ratio of half the 

total needle area in a shoot to half the total shoot area, to account for only the projected 

leaf area not total leaf area. This value was calculated in the field using the mean width 

and length of six randomly selected needles from each species. The clumping index (Q) 

was obtained using the TRAC. No slope alterations were needed here as the incorporated 

LAI-2000 and TRAC data had already been adjusted for slope effects. 

3.2.3.6 Summary of Ground-Based LAI Data 

In total, 5 LAI estimation methods were evaluated for 4 species classes. All LAI 

measurements for a given plot were taken within a week of each other to ensure minimal 

effects from possible changes in phenology. No absolute measures of LAI were obtained 

in the field due to monetary, time and legal constraints. Thus a relative comparison of the 

ground-based LAI estimates was completed, as described later. Although, absolute 

measures of LAI from destructive sampling would be ideal for both comparison with the 

ground-based optical instruments and remote sensing validation, issues surround the 
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measurement of LAI for use with remote sensing. It should be noted that absolute 

measures of LAI coincident with the pixel spatial resolution of airborne or satellite 

sensors is difficult and often impractical or impossible. Often pixel resolution is beyond 

that of the achievable measurements of LAI, due to time or monetary constraints in 

destructive sampling. As well positional control issues arise for relating field 

measurements with the exact corresponding pixel within an image, especially where field 

sampling is performed prior or independent of the imagery acquisition. Even with 

absolute measurements of LAI for remote sensing validation relations between LAI and 

remote sensing are compromised by issues of spatial scale, positional accuracy and field 

sampling. The comparison of the plethora of optical instruments and allometrics attempt 

to balance the lack of absolutes with a large number of field methods for estimating LAI. 

3.2.3.7 Ground-based LAI Estimation Experimental Design 

Comparisons of some of the ground-based LAI estimation techniques has been 

completed, however, a comparison involving a multitude of optical and allometric 

techniques in a montane environment has not yet been attempted. By quantifying the 

differences in the ground-based LAI estimation techniques it will aid in the determination 

of the species-specific limitations of the various techniques and determine the viability of 

these techniques to this montane study area. Forty-two plots were chosen within the four 

stand compositions (lodgepole pine, white spruce, mixedwood, and composite 

hardwood). Within each of these plots, LAI or eLAI estimates were made using each of 

the optical instruments and allometric techniques described earlier. Slope normalization 

procedures were implemented during data collection and processing for each instrument. 

Although, the differences between eLAI and LAI has been acknowledged these terms 
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will be combined under the term LAI, as many studies refer to the estimates of the LAI-

2000 and hemispherical photography as LAI (Fassnacht et al., 1994; Gower and Norman, 

1991). Means and standard deviations were calculated for LAI estimates from each 

instrument and species. A statistical comparison for LAI by instrument and species was 

then performed, as described in section 3.6. 

3.2.4 Remote Sensing Imagery 

3.2.4.1 CASI Airborne Data 

A multi-spectral Compact Airborne Spectrographic Imager (CASI) (Anger et al., 

1991) from Itres Research Ltd. in Calgary, Alberta was used for the imaging of the study 

area from a fixed-wing aircraft. The CASI instrument is a visible-near infrared (VNIR) 

pushbroom imaging spectrometer with a spectral range between 400 nm and 1000 nm. 

The ground coverage and pixel size for the CASI imagery were determined by the 

altitude above the ground and the speed the aircraft was flying. The CASI was used in a 

modified spatial mode configuration, in which bandwidths and band locations are fully 

programmable, with a maximum of 19 non-overlapping bands set within the sensor's 

spectral range. Three spatial resolutions of imagery (60 cm, 1 m, and 2 m) were flown 

between 9:30 and 13:00 on July 18, 1998. The mission day was optimal as there were 

clear skies with only a light wind. The timing of the mission was based on weather, solar 

position, local terrain effects and image properties. The azimuth of the sun in the 

morning avoided large shadows cast by nearby mountains onto the study area. The larger 

solar zenith angles in the morning also increased canopy shadow, and reduced the effects 

of the background on the images. In mountainous terrain during favourable summer 
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weather, clear skies are generally more likely in the morning. The 2 m and 1 m data 

consisted of 18 bands, whereas the 60 cm had only 8 bands due to sensor integration time 

limitations. For this study, the 2 m imagery was used to reduce the processing time and 

to relate the LAI and the NPP modeling to a larger area. However, to facilitate the 

incorporation of SMA into this study, a validation of the spectral endmembers using the 

60 cm data was required, therefore, the 2 m data needed to be reduced to the same bands 

available at the 60 cm (Johnson, 2000) (Table 3-3). This reduction of bands was 

completed using a weighted average of bands from the 18 handset that matched the 8 

bands presented in Table 3-3. Further image acquisition and flight planning information 

is available in Johnson (2000). 

Table 3-3 - Reduced 2 m CASI image jand set. 
Band Number Wavelength (nm) 

1 450-500 

2 540-560 

3 610-640 

4 640-680 

5 690-715 

6 730-755 

7 790-810 

8 850-875 

3.2.4.2 Image Preprocessing 

Itres Research Ltd. performed a geometric correction to account for distortions 

caused by aircraft orientation (e.g. pitch and roll) during image acquisition. Real-time 

altitude measurements were recorded on the aircraft using an Inertial Navigation System 

(INS) and locations were recorded using an onboard GPS system to facilitate the 
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geometric correction. Itres Research Ltd. also digitally resampled the image to remove 

the variation in pixel resolution across the mountainous terrain. 

Empirical radiometric normalization was performed at the University of 

Lethbridge to account for atmospheric variations using 4 pseudo-invariant targets set up 

at a radiometric calibration site in a parking lot near Barrier Lake (Johnson, 2000). 

Ground-based reflectance values were determined for each of the pseudo-invariant targets 

and also for asphalt using an ASD field spectroradiometer and adjusted to the 8 CASI 

image bands using a linear spectral response function. A transformation function was 

computed between the CASI radiance data acquired over the radiometric calibration 

targets and the ground spectral reflectance measurements. This transformation function 

was then used to correct the CASI image to reflectance. 

3.2.4.3 Terrain Normalization 

An added dimension to the determination of LAI through remote sensing was the 

influence of mountainous terrain on the sun/sensor/surface geometry and therefore the 

spectral response patterns in the image. Both the slope and the aspect of a given pixel 

can cause radiometric distortion. Terrain correction methods have been derived to reduce 

the slope and aspect induced illumination variations within an image. Illumination is 

defined as a function of the cosine of the incident solar angle; thus this is dependent on 

the orientation of the pixel towards the sun's position (Meyer et al., 1993). There are 

four different illumination-based terrain normalization methods: Cosine Correction, 

Minnaert Correction, C-correction and Statistical Empirical Correction (Teillet et al., 

1982). Johnson (2000) showed that terrain normalization can result in improvements to 
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the prediction of LAI. Meyer et al (1993) reported the C-correction provided the most 

increase in forest stand type classification accuracy compared to the other terrain 

normalization methods. Based on ease of implementation and the results of Meyer et al. 

(1993), the C-correction was selected for terrain normalization of the imagery and 

performed by Johnson (2000). 

The C-correction uses a trigonometric approach that accounts for the proportion 

of direct illumination based on slope and aspect with an additional c parameter that 

emulates path irradiance (Teillet et al., 1982). The calculation of the c parameter is based 

on a linear regression between the original digital number collected by the sensor and the 

cosine of the solar incident angle in relation to a normal pixel (I). The equation is as 

follows: 

LH = LTcosTSZA) + c 
cos(I) + C 

where: (Equation 3-1) 

LH = radiance observed from a horizontal surface 

LT = radiance recorded by the sensor 

SZA = solar zenith angle 

I = solar incident angle in relation to a normal pixel 

c - correction parameter 

c = b/m 

m = slope of regression line 

b = y intercept 
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3.2.5 Digital Elevation Data 

The Miistakis Institute for the Rockies (MIR) supplied the digital elevation model 

(DEM). The initial DEM was from the Government of Alberta provincial database as 

compiled photogrammetrically from 1: 60 000 scale airphotos (Altalis, 1999). Further 

post processing was done by the MIR to remove or minimize data errors. The final 

spatial resolution of the DEM was 25 metres based on the original 1000m spacing. 

Although not ideal, the DEM was resampled to 2m to facilitate the required image 

preprocessing including image radiometric correction by Itres Research Ltd. and terrain 

normalization by Johnson (2000). 

3.3 Remote Sensing LAI Estimation Comparison 

3.3.1 Vegetation Indices 

NDVI, WDVI and SAVI were computed from the 2 m image using the equations 

in Table 2-2. Since these indices require two bands (red and near infrared) the CASI data 

were first transformed using a weighted average of the bands that fell within the red and 

near infrared wavelengths. The soil or background spectral component reflectance value 

needed for WDVI and SAVI was the same as that used in the spectral mixture analysis 

described in section 3.4.2.2. Each vegetation index was computed for the entire study 

area. To obtain the same area of measurement as the ground-based LAI for each plot, the 

vegetation index values were aggregated to the plot scale by averaging the pixels over the 

10m x 10m plot area. Linear relationships were produced between the aggregated 

vegetation index values, the different species types (coniferous, deciduous, and 
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mixedwood) and ground-based LAI instruments. Linear relationships, rather than more 

complex relationships, were developed to help simplify the remote sensing algorithms for 

application to regional scales (Chen, 1996a). More recently, however, Fernandes et al. 

(2001) showed that the use of linear relationships might not be appropriate. Regressions 

on transformed data including log and power transformation provided better results 

(Fernandes et al., 2001). However, for this research only the linear relationships will be 

use due to application ease and comparisons of these results with other studies. 

3.3.2 Spectral Mixture Analysis 

The three main scene components for this forestry study area are sunlit canopy, 

sunlit background and shadow. The endmembers were chosen from a spectral library of 

spectra measured in the field, using an ASD spectroradiometer including those from 

Johnson (2000). The sunlit canopy endmember was the spectra for either lodgepole pine, 

white spruce, or Douglas-fir depending on the species composition of the plot recorded in 

the field. Only conifer endmembers were tested and validated in this area for the use 

with spectral mixture analysis (SMA), therefore these results did not encompass the 

deciduous plots as the validation and testing of the endmembers was not available. The 

background endmember was obtained using spectroradiometer measurements of the 

aggregated background found on the forest floor including pine grass (Calamagrostis 

ruhescens Buckl.), step moss (Hylocomium splendens (Hedw.) B.S.G.), and buffalo berry 

(Shepherdia canadensis (Nutt) L.). The shadow endmember was the darkest apparent 

reflectance of canopy or background within any of the field samples. The apparent 

reflectance (Peddle et al 2001; Miller et al 1997) of the canopy and background targets 
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was determined from spectral measurements of the targets in complete shadow, with 

respect to an illuminated and calibrated reference panel. In this study, the apparent 

reflectance of pine grass spectra was used as the shadow endmember reflectance. These 

estimates like the vegetation indices were aggregated to 10m x 10m so that linear 

regression equations could be built at the plot scale for SMA and ground-based LAI 

estimates. 

3.4 Ecosystem NPP Model Parameterization 

3.4.1 Model Inputs , 

FOREST-BGC/BIOME-BGC was chosen for this study as it has been validated 

for forests in Montana, Florida, and Alaska suggesting that this is a robust model that can 

be used in a multitude of environments. It can be used for both local and plot level 

estimates ofNPP and also be expanded to regional scales. It was also one of the foremost 

models, upon which many other models were based such as BEPS (Liu et al, 1997) and 

Regional Hydro-Ecological Simulation System (RHESSys) (Nemani et al., 1993). 

FOREST-BGC continued to be improved through the validation and testing of each of its 

functions (Running and Gower, 1991; Nemani and Running, 1989; Running and 

Coughlan, 1988). It is relatively easy to parameterize and run. The four important 

parameters that drive the FOREST-BGC/BIOME-BGC NPP model are leaf area index, 

climate data, soil water content and species physiology (Running and Hunt, 1993; 

Running and Coughlan, 1988). All these measures can be determined in the field, 

calculated from existing field data, or obtained from the literature. These model input 

parameters will be discussed in each of the next four sections. 
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3.4.1.1 LAI 

LAI was incorporated into the model as foliar carbon, which is calculated as a 

function of specific leaf area and LAI. Specific leaf area (SLA) is the amount of leaf area 

per unit leaf mass and can be attained from the literature (Running and Hunt, 1993). For 

coniferous species a SLA constant of 25 m/kg was used, for deciduous a SLA constant of 

75 m/kg was used (Running and Hunt, 1993). Foliar carbon is calculated using the 

following formula (Kimball pers. com, 2000): 

Foliar carbon = LAI 
SLA 

(Equation 3-2) 

Each of the ground-based LAI estimates were transformed into foliar carbon and 

the foliar carbon values for each plot were incorporated into the FOREST-BGC model. 

The equations for the statistically significant (p<0.05) regression models of the SMA and 

vegetation indices with ground-based LAI estimates where applied back to the 

aggregated 10 m image producing a remote sensing estimate of LAI for each plot. The 

remote sensing LAI values were then imported into BIOME-BGC as the transformed 

foliar carbon. 

3.4.1.2 Climate 

To produce plot specific climate data, the base station data from the Kananaskis 

Field Station were processed through the mountain microclimate simulator (MTCLIM) 

(Hungerford et al., 1989). Snowpack was calculated as the accumulation of snow water 

equivalent for an average of 10 years from 1989 to 1998 for the period between October 
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(or first day of snow) to April 1 s t as per Running and Nemani (1991). Site isohyet 

(precipitation contour) was based on the linear relationship developed by Shepard (1996) 

relating isohyet to elevation for the eastern slopes of the Canadian Rockies. East and 

west horizons were determined based on the DEM. 

3.4.1.3 Species Physiology 

Each plot was assigned a species type depending on the basal area of the trees 

found within each plot. To maintain the simplicity of BIOME-BGC it does not 

incorporate species-specific information. The model instead only requires a more general 

discrimination of the species into coniferous or deciduous stands (Table 2-1). For the 

mixedwood plots a first order NPP estimate was made by using a weighted estimate from 

the percentage of coniferous and deciduous species based on their respective basal area 

within each plot. 

3.4.1.4 Soil Water Content 

A soil classification is generally available for much of Canada, however, available 

soil water content is generally not measured. Therefore, to determine the soil water 

content for the region, estimates were made from the soil classes and the general soil 

water volumes for each soil texture taken from Brady and Weil (1999) (Table 3-4). 

Available water content was determined as the mid point between field capacity and 

wilting coefficient. Crossley (1952) describes in detail each layer of the soil classes 

including, a description and depth of each layer (Figure 3-5). The soil water content 

(m 3/ha) for each layer was calculated as the depth (cm) multiplied by the available soil 
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water (%). To determine the available soil water content for each of the plots, the soil 

water content for each layer was summed to a depth of 100 cm or the maximum rooting 

depth (Running, 1994; Running and Nemani, 1991). 

Table 3-4 - The field capacity, wilting coefficients, and available soil water 
content, all in volume % for general soil types in North America. 

Soil Type Field 

Capacity 

Wilting 

Coefficient 

Available Water 

Content 

Sand 9.2 2.5 5.85 

Sandy loam 20.0 6.8 13.4 

Loam 29.5 11.1 20.3 

Silt loam 36 14.2 25.1 

Clay loam 38.2 18.5 28.35 

Clay 38.2 21.5 29.85 
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Brown Podzol 

0 m 

Soil 
Type 

Available Soil 
Soil Water 

Depth Water Content 
(cm) (%) (m') 

BBBBBB 0.0508 

I 1 1 0.0101 

0.0101 

0.1320 

1 m 
Total 

x10,000m2 (ha) 

Grey Podzol 

Soil 
Type 

Available 
Soil 

Depth Water 
(cm) (%) 

6 -/Xi.o 

0.2030 
2030 rrrVha 

Soil 
Water 

Content 
(m 3) 

0.0129 
0.0288 

0.2096 

Brown Forest 

Soil 
Type 

Depth 
(cm) 

Available 
Soil 

Water 
(%) 

0.2513 
2513 rrrVha 

Soil 
Water 

Content 
(m3) 
0.0077 

0.1461 

0.1071 

Lithosol 
Available Soil 

e .. Soil Water 
Depth water Content 

Type (cm) (%) ( m 3 } 

^^^^^^^^^H 0.0609 

70 

Parent Material 

0.2609 
2609 nf/ha 

0.0609 
609 m3/ha 

Figure 3-5 Description of each of the soil classes for the Kananaskis (from Crossley, 1952). 



3.4.2 Plot Level NPP Model Sensitivity to LAI 

To determine the effects of LAI, climate, soil water content, and vegetation 

changes on the estimation of NPP, values were simulated for each of these variables 

within the range measured for the study area and plotted using the same NPP axes on the 

graph, to allow direct visual comparison. Other model input variables were held constant 

with values used from a representative spruce plot, which was the dominant coniferous 

species type and had equivalent measurements to the mean LAI, tree height, and basal 

area of stands within the study area. Further comparisons of different species and plots 

were performed yielding similar results to the representative spruce plot, therefore only 

the spruce plot will be presented. The ranges of LAI obtained from each species and 

instrument were from a minimum of 0.5 to a maximum of 7.77. The soil water content 

ranged from 609.00 m 3/ha for a lithosolic soil to 2609.00 m 3/ha for a brown forest soil as 

defined in the section 3.5.1.4. The elevations tested were between 1375m and 1649m as 

the minimum and maximum plot elevations. Elevation was tested as it affects the 

microclimate of the study area, thus in essence a change in elevation can result in a 

change in microclimate. For example, as elevation increases, the temperature drops and 

precipitation may increase. The climate effects can be further broken down beyond 

elevation (i.e. precipitation, temperature, snowpack) however, for this study the climatic 

influences will be tested through elevation only to provide a generalized estimate of 

climate change over the study area. 

By comparing the magnitude of variation in LAI and NPP, the importance of LAI 

in modeled NPP can be assessed. To determine if the variation in LAI measurement was 

similar to the NPP variation, two methods were used. The first was stack graphs of each 
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of the modeled NPP means and standard deviations for the different species, instrument 

and remote sensing types so that the patterns of NPP and LAI can be compared. In the 

second method, coefficients of variation were determined for each of the ground-based 

estimates and the remote sensing estimates of LAI and NPP, so that the variation in both 

could be standardized and compared. The coefficients of variation for LAI and NPP for 

the separate species and instruments were plotted together for visual assessment of the 

variation in each. Details of the statistical analysis are provided next. 

3.5 Statistical Methods 

For the comparison of ground-based LAI estimation techniques for species and by 

instrument, a factorial analysis of variance (ANOVA) was performed. An ANOVA is a 

comparison of two or more means to determine if there is a statistically significant 

difference among the various factors (Sail and Lehman, 1996). A factorial ANOVA is an 

analysis where there are many factors where, for each factor, there are different levels 

(Steel and Torrie, 1980). For example, in the case of the LAI comparisons, instrument 

and species are the factors and the levels within the factors are the different LAI 

instrument and different species types. Therefore, a factorial experiment is one that 

consists of all possible combinations of levels within a factor for the different factors 

(Steel and Torrie, 1980). The primary outcome obtained through using an ANOVA is to 

determine if the differences in response to the level of one factor are similar or different 

at different levels of another factor (Steel and Torrie, 1980). However, a cross effect or 

an interaction may occur between the factors, in that each factor affects the response 

differently depending on the level of the other factor within the model (Sail and Lehman, 
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1996). In that case, the response of the model is not only the sum of the separate factors 

but also a combination of the factors. 

A two-way (two factors) factorial analysis of variance with interactions between 

LAI instrumentation and species type was conducted with SPSS software to determine if 

LAI values differed among estimation methods. Interaction terms were initially 

introduced into the model, however, if these terms were not statistically significant, they 

were removed and the model was run again without the interaction term to increase the 

degrees of freedom assigned to the residual error term. If a statistical difference is found 

by the ANOVA, further testing was pursued. To determine which levels among the 

factors were statistically different, a comparison of all the pairs was done using a 

Student-Newman-Keuls (S-N-K) multiple-mean comparison test. The S-N-K test 

compares the minimum and maximum means within the factor and if the range is not 

statistically significant further testing is not completed and the levels are regarded as 

homogeneous (Steel and Torrie, 1980). If the range is statistically significant, further 

testing is completed and levels that are statistically similar are categorized into groups. 

All statistical tests in this study were conducted at the 5% probability level. 

The comparison of LAI prediction techniques was based on the linearity of each 

of the vegetation indices and the SMA fractions with respect to LAI. The comparison of 

models was based on the magnitude of the coefficient of determination (r 2), root mean 

square error, the standardized residual plots and the statistical significance of each model. 

The coefficient of determination (r 2) measures the proportion of the total variance 

explained by fitting the model. As the r 2 values approaches 1, a greater proportion of the 

variance is explained by the model, and similarly, as the r 2 values approaches 0, less 
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variance is explained. The root mean square error (RMSE) is defined as the positive 

square root of the residual mean square term. The smaller the RMSE, the better the 

model fit. The standardized residual plots are the residuals from the regression or the 

difference between actual and predicted values (Sail and Lehman, 1996). The residuals 

would be expected to be scattered randomly around the mean of zero if there is no bias in 

the model. 

To determine if the variation in LAI is proportional to the variation in modeled 

NPP, a coefficient of variation was used for both LAI and NPP. The coefficient of 

variation (CV) is a quantity used to evaluate results from different experiments (Steel and 

Torrie, 1980). The CV is calculated as the standard deviation divided by the mean 

multiplied by 100. The CV is a relative measure of variation, unlike standard deviation 

where the units of standard deviation are the same as the observed measures. Thus the 

CV is a unitless measure that can be used to compare the variance from different 

experiments. 

3.6 Chapter Summary 

In this chapter, three separate tests were described for: (1) the comparison of ground-

based LAI estimation techniques, (2) the comparison of remote sensing LAI estimation 

techniques and (3) to determine the effects of different LAI estimates on modeled NPP 

estimates. The first set of tests assess the variability of the ground-based estimates of 

LAI from different instruments or allometrics for different species types. This test was 

designed to quantify the differences and assumptions among the various ground-based 

instruments and the effects of species type on LAI output. The second set of tests were to 
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assess the remote sensing estimates of LAI for deciduous, coniferous and mixedwood 

tree types by comparing three vegetation indices with spectral mixture analysis in terms 

of the ability to predict LAI. The final set of tests were designed to assess the relative 

variability between LAI and NPP using two graphical techniques. This method was 

designed to characterize the relationship between LAI inputs and modeled NPP outputs, 

and to determine if their relationship was proportional. 
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CHAPTER IV 

4.0 Results and Discussion 

4.1 Introduction 

In this chapter the results of the analysis from this research are presented and 

discussed. The chapter is organized according to the three thesis objectives (section 1.1). 

The first objective, the ground-based LAI estimate comparison, is intended to determine 

the relative differences in both the optical instruments and allometric techniques for each 

species types assessed through an analysis of variance. This analysis is directed at 

improving knowledge about the differences in LAI estimation techniques. The second 

objective involves estimation of LAI from remote sensing for deciduous, coniferous and 

mixedwood species based on linear regression analysis. This approach defines 

relationships between forest structural and spectral information for estimating LAI for 

input into regional scale NPP models. The third objective is to assess the effects of LAI 

variability on FOREST-BGC's NPP output, through model simulations of the key 

variables (LAI, soil water content, and climate). These are intended to determine the 

effects that each of the variables may have on the NPP output, and to determine if the 

variability in LAI was similar to the variability in modeled NPP. By quantifying the 

effects of LAI on NPP insights can be derived about how FOREST-BGC uses the 

estimated LAI parameter and what margins of error can be tolerated in LAI estimation 

from remote sensing. 
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4.2 Stand Mensuration Information 

Since plots were chosen to incorporate representative stands of the four species 

types, the stands were first evaluated with descriptive statistics by species. White spruce 

had larger basal areas and tree heights while having smaller stem densities compared to 

the other species (Table 4-1). It would follow that larger basal areas and tree heights 

would inhibit the penetration of light to the forest floor. Those trees that are already 

established will out-compete other trees for light energy, thus reducing the stem densities 

within a stand due to lack of light for establishment and growth (Kimmins, 1997). 

Lodgepole pine stands were characterized by small basal areas, stem densities and tree 

heights (Table 4-1). Lodgepole pine species are highly adaptable and tolerant of low 

nutrient and moisture conditions (Johnson et al., 1995). However, the development in 

low nutrient conditions may inhibit growth, which may be the case in this study with 

small basal area, stem densities and tree heights. Both mixedwood and hardwood stands 

had highly variable crown closures with similar basal areas (Table 4-1). Mixedwood 

stands had the highest stem density and relatively taller trees that may be due, in part, to 

the composition of the mixedwoods being made largely of white spruce and deciduous 

species. The hardwood species had similar tree heights compared to the lodgepole pine, 

however, they also had larger stem densities and basal areas (Table 4-1). White spruce 

occurred on elevations that were higher than the other species. All species were 

represented at lower elevations, while at higher elevations not all species occurred. 

Hardwood species were the only one that did not occur on slopes greater than 15°. 

Balsam poplar generally inhabited the valley bottom close to Barrier Lake, as these 

hardwood species thrive in moist/wet sites (Johnson et al., 1995). Aspen stands grow the 
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best in well drained moist loamy soils (Johnson et a l , 1995). The hardwood trees had 

denser understory vegetation followed by mixedwood, lodgepole pine, and white spruce 

largely due to the light penetration through the canopy. Terrain, competition for light, 

the availability of water and nutrients, and plant-environment interactions all contributed 

to the structural development and characteristics of the various stands. 

Table 4-1 Summary of Descriptive Statistics for Field Plot Data by Cover Type. 
Lodgepole White Mixed- Hardwood 

Pine Spruce wood 

No. of plots 8 7 15 12 

Min. Crown Closure (%) 25 46 29 26 

Max. Crown closure (%) 52 66 80 75 

Average stem density 2200 1600 2900 2600 

(stems/ha) (810) (510) (1100) (310) 

Average tree height (m) 12 20 14 12 

(1.38) (1.60) (5-42) (3-10) 

Average Basal area 30.07 51.79 37.31 38.23 

(m 2/ha) (9.91) (15.81) (13.59) (16.85) 

Min. elevation (m) 1369 1315 1315 1374 

Max. elevation (m) 1435 1642 1390 1552 

Min. slope (degrees) 5.16 0.14 1.43 2.86 

Max. slope(degrees) 36.16 33.46 40.5 14.95 

4.3 Sapwood Extrapolation from DBH 

An extrapolation of species-specific sapwood area from tree basal area was 

required based on a subsample from each plot because the measurement of sapwood area 

for each tree within the plot was prohibitively costly and time consuming. Two types of 

models were used: (i) a general linear model for Douglas-fir and (ii) a saturation growth 
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rate model for lodgepole pine, white spruce, and deciduous. The production of the 

model equations was based on the strongest model (highest r 2 and lowest RMSE) that 

characterized the patterns found within the data. All models were built from sample sizes 

greater than 40, had a coefficient of determination (r 2) greater than 0.83 and relatively 

small standard errors (Table 4 -2) . These equations were applied to the validation data 

set for which a very strong relationship was observed (Appendix A). 

Table 4-2 - Regression models for the prediction of species-specific sapwood basal 
area (SA) from tree basal area (BA) (cm 2) determined through area 
estimates from DBH. 

Species Common 

Name 

N r> RMSE Equation (cm 2) 

Pinus contorta Lodgepole 

Pine 

54 0.91 34.08 S A = 706.8689(BA) 

(986.6348 + BA) 

Picea glauca White Spruce 44 0.84 47.60 S A = 1742.1374mA) 

(2559.8276 + BA) 

Pseudotsuga 

menziesii 

Douglas-fir 41 0.84 21.98 SA = 0.8870 +0.2993(BA) 

Deciduous 

(Populus 

tremuloides & 

P. balsamifera) 

Deciduous 

(Aspen and 

Poplar) 

64 0.83 40.87 S A = -528.8743CBA) 

(-1266.7565 + BA) 

4.4 Comparison of Ground-Based LAI Estimates 

LAI estimates among the different species and instruments were different for each 

stand (Table 4 -3). White spruce had the highest LAI estimates of all the instruments 

used, followed by the mixedwood, hardwood and lodgepole pine, respectively (Table 4 -

3). The variation in LAI may be due, in part, to species type and stand structural 

attributes as well as the technique used to estimate LAI. The TRAC gave the highest 
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optical estimates of LAI for all species, followed by the integrated LAI-2000 and TRAC, 

LAI-2000, and hemispherical photography, respectively, however, the integrated 

approach produced lower estimates than the LAI-2000 in the hardwood stands (Table 4 -

3). Hemispherical photography and LAI-2000 produced the smallest estimates of LAI 

for all species, with the exception of the integrated estimates in the hardwood stands. 

Both the LAI-2000 and hemispherical photography do not account for gap size 

distribution (clumping index) thus a more conservative estimate of LAI would be 

provided by these instruments which is apparent in the lower estimates. It should be 

noted, however, that hemispherical photographs were taken only in the middle of each 

plot and may not be as representative of the stand as the LAI-2000. This may explain the 

empirical difference in LAI estimates between hemispherical photographs and LAI-2000. 

The TRAC produced the highest LAI estimates for the optical techniques (Table 4 -3 ) , 

which may be due to using the clumping index and gap fraction as well as the 

measurement of gap fraction at a single zenith angle. For the optical instruments the 

TRAC exhibited the greatest variation around the mean for all species types (Figure 4-1). 

The clumping indices for all species showed relatively high values (Table 4 -3 , Figure 4 -

2). However, the clumping index values were larger in the white spruce stands followed 

by mixedwood, lodgepole pine and deciduous stands (Table 4 -3) . Deciduous species are 

believed to have a random distribution of leaves, thus a clumping index value is not as 

important (Welles, 1990). However, in this study the deciduous species had a clumping 

index of 0.87, which is slightly smaller than the coniferous stands but still high enough to 

exhibit clumping within the canopy (Figure 4 -2) . Other studies have also shown that a 

clumping index is also present in deciduous species (Chen et al., 1997b; Kucharik et al., 
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1997). The integrated approach deflates the LAI estimate of the TRAC, while still 

incorporating both clumping index and gap fraction information at several zenith angles. 

The lower estimates of LAI calculated from the integrated approach as compared to the 

LAI-2000 for deciduous species may be due to the lower needle-to-shoot ratio (Ve) and 

clumping index (Q) values. 

Table 4 -3 LAI mean (and standard deviation) for each instrument or technique by 
species. The clumping index means (and standard deviation) from the 
TRAC are used in LAI estimates for the integrated approach and the 
TRAC. 

N Hemi­

spherical 

Photos 

LAI-2000 TRAC Integrated 

LAI-2000 

and 

TRAC 

Sapwood 

Area 

Clumping 

Index 

Lodgepole 8 1.22 1.53 2.62 1.75 2.54 0.89 

pine (0.47) (0.38) (0.69) (0.37) (1.03) (0.10) 

White 7 2.01 2.50 5.35 3.25 6.39 0.93 

spruce (0.61) (1.03) (2.03) (1.32) (1.49) (0.07) 

Mixedwood 15 1.85 2.39 4.86 2.67 3.74 0.90 

(0.69) (0.65) (1.29) (0.79) (2.38) (0.06) 

Hardwood 12 1.66 1.75 3.51 1.69 2.29 0.87 

(0.30) (0.66) (2.08) (0.60) (0.93) (0.10) 

The sapwood area/ leaf area gave the highest estimates of LAI for white spruce 

over the other optical instruments (Table 4 - 3 , Figure 4 -1) . Sapwood area/leaf area 

estimates are lower than TRAC but greater than the other optical instruments for the 

lodgepole pine, mixedwood and deciduous species (Figure 4 - 1 ) . The sapwood area/leaf 

area estimates fall within the range of the optical instruments for all species except white 

spruce (LAI= 6.39 vs. LAI = 2.01-5.35) suggesting that this approach may provide first 
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order estimates of LAI if other techniques were unavailable. There is a large variation 

around the mean in sapwood area/ leaf area estimates for all species types (Figure 4 -1) . 

The trends in these mean LAI estimates by instrument and species suggest that the 

differences in LAI estimation techniques and species type affects the resulting LAI 

estimates. This will be discussed further in section 4.4.1. 

Chen et al. (1997a) found the mean LAI estimates from the LAI-2000 to be larger 

within black spruce (LAI=2.56) and mixedwood (LAI=2.60) sites than in aspen 

(LAI=2.19) and jack pine (LAI=2.12) within the BOREAS study area in Manitoba and 

Saskatchewan, Canada. This is similar to the results presented here, white spruce and 

mixedwood had greater LAI values than deciduous and lodgepole pine (Table 4 -3). 

White et al. (1997) reported coniferous (lodgepole pine, Douglas-Fir and western larch) 

and deciduous stands (aspen, paper birch and black cottonwood) within the mountainous 

terrain of Glacier National Park, Montana gave mean LAI-2000 estimates of 1.90 and 

1.39 respectively. In this study area, coniferous stands (LAI = 3.25 for spruce and 1.75 

for pine) generally had greater LAI-2000 values than deciduous stands (LAI = 1.69). 

From these comparisons, it was concluded that LAI values from this study area generally 

follow similar trends to that found in the literature for similar locations and species 

compositions reported in other studies in north central North America. 
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Figure 4-2 Hemispherical photographs depicting canopy gaps and leaf and needle 
clumping for (a) lodgepole pine, (b) white spruce, (c) deciduous and (d) 
mixedwood stands 



4.4.1 Instrument and Species Comparison 

4.4.1.1 Results 

LAI estimates were significantly different among the different species and 

instrument factors (Table 4 -4). The S-N-K analysis distinguished which LAI estimation 

technique was statistically different from the others. The TRAC and sapwood area/leaf 

area estimates across all species were significantly higher than the other three approaches 

(Table 4 -5). Although not significantly different, the integrated approach gave larger 

mean LAI estimates than that from the LAI-2000 instrument (Table 4 -5) . The LAI-2000 

was statistically similar to both hemispherical photography and the integrated approach, 

however, according to the S-N-K results the integrated approach and hemispherical 

photography were significantly different (Table 4 -5). The instrument and species 

interaction factor was statistically significant, suggesting that LAI values varied with 

species and measurement technique (Table 4 -5). 

Table 4 -4 Two-way factorial analysis of variance for species type, 
instrumentation and interactions. 

Df Mean 

square 

F p-value 

Instrument 4 34.43 28.01 .00* 

Species 3 32.87 26.75 .00* 

Instrument* Species 12 4.35 3.54 .00* 

* statistically significant at p<0.05 
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Table 4 -5 Student-Newman-Keuls statistical test for LAI by instrument. Means 
with the same superscript are not significantly different from each 
other. 

Instrument N 

Hemi 37 1.67a 

LAI-2000 36 2.06 s 2.06 b 

Integrated 34 2 . 3 1 b 

SA 42 3.42 c 

TRAC 39 3.88 c 

Note: numbers with the same superscript are not statistically different. 

4.4.1.2 Discussion 

The structural properties of a tree and its distribution within a stand have an 

important influence on the amount of light that penetrates to the forest floor. The 

differences in LAI among the species are attributed to the structural composition of the 

stand including canopy architecture and morphology, leaf orientation and distribution, 

stand structure, and foliar biomass. Thus a statistically significant difference in the LAI 

estimates between species was expected (Table 4-4). 

The different assumptions built into the estimation of LAI from the different 

techniques affect the LAI estimations thus producing a statistically significant difference 

among them (Table 4-4). The LAI-2000 and hemispherical photographs do not account 

for gap size distribution but instead measures gap fraction at several zenith angles, 

therefore, no significant statistical difference was expected between them. The LAI-2000 

has been described as a convenient version of hemispherical photography because image 

processing is not required (Chen et al., 1997a). In other studies, the LAI-2000 was found 

to underestimate LAI especially for coniferous forests whose foliage are typically 

clumped at the shoot and canopy levels (Fassnacht et al., 1994; Gower and Norman, 
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1991). Gower and Norman (1991) found that the predicted LAI-2000 values were 35-

40% below direct LAI measurements for a red oak plantation in Wisconsin. This 

underestimation may be due in large part to the lack of gap size distribution information 

as well as the effects of blue light scattering within the canopy (Chen et al., 1997a). 

The higher LAI estimates by the TRAC are attributed to the calculation of a 

clumping index, to determine gap size distribution, and the lower gap fraction estimate 

due to the optical measurement at one zenith angle (Leblanc and Chen, 1998; Chen and 

Cihlar, 1995). The clumping index calculation is more important in coniferous species 

where the assumption of a random distribution of leaves is not valid (Figure 4-2a and b) 

(Chen and Cihlar, 1995). However, in this study, clumping index may be as important in 

deciduous species as in coniferous ones because the clumping index for deciduous 

species was on average 0. 87. Therefore, the assumption of a random distribution of 

leaves in deciduous species may be invalid (Figure 4-2c). Chen et al. (1997b) suggested 

that the assumptions that foliage elements are randomly distributed within foliage clumps 

and foliage clumps are randomly distributed in space can not be substantiated for aspen 

stands. They calculated clumping index (Q) values as 0.84, 0.75, and 0.70 for aspen 

stands within Prince Albert National Park, Saskatchewan, Canada. Kucharik et al. (1997) 

determined aspen and poplar stands within the BOREAS Study Area (Saskatchewan and 

Manitoba, Canada) to have clumping indices between 0.52 and 0.87. Thus, clumping is 

important to consider in both deciduous and coniferous stands (Figure 4-2). 

The larger mean of the integrated approach over the effective LAI instruments 

(hemispherical photography and LAI-2000) suggests the importance of combining the 

effective LAI estimate of the LAI-2000 with the clumping index of the TRAC. Leblanc 
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and Chen (1998) reported that the integrated approach provided a more accurate estimate 

of LAI compared to TRAC or LAI-2000 alone. In this study, the integrated approach 

deflated the TRAC estimate by between 3 3 % and 51%. The lower estimate of LAI by 

the integrated approach than by the TRAC suggests the importance of estimating eLAI at 

several zenith angles, otherwise estimates of eLAI my be inflated (Table 4 -3). 

Theoretically, this approach should provide a more accurate estimate of LAI since it 

includes gap size distribution (clumping index) as well as quantifying the effects of 

foliage distribution and gap angular distribution, measured as effective LAI at several 

angles from zenith (Chen et al., 1997a). 

The sapwood area/leaf area LAI estimates were not significantly higher than the 

TRAC estimate, suggesting that the technique of sapwood area to leaf area ratios from 

other areas within the Rocky Mountains (White et al., 1997) may be viable for this study 

area if the optical instrumentation is not available (Table 4 -4). However, sapwood 

area/leaf area estimates for white spruce were much higher than all of the other optical 

measurements (Table 4 -3). Since the white spruce estimate exceeded the range in 

optical measurements this estimate may not be suitable for the Kananaskis study area. 

The use of the sapwood area/leaf area estimates in previous studies has shown to be stand 

specific, and dependent on season, age, stand density, tree crown size, and climatic 

differences (Mencuccini and Grace, 1995; Pearson et al., 1984; Gholz et al., 1976). For 

future work, further testing and validation should be pursued. Local sapwood area/leaf 

area relationships may be needed to generate LAI estimates that would be more 

appropriate for the species in this study area. 
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The interaction term between instrument and species was statistically significant 

suggesting that the instruments measure LAI differently for the different species. This is 

probably indicative of the assumptions built into the design of the instruments and the 

species-specific algorithms applied for sapwood area/leaf area estimates. The significant 

interaction term may be due to the coniferous species exhibiting a clumping effect on 

foliage distribution at different levels including branches, whirls and crowns, rather than 

shoots alone. Therefore estimating LAI for needles nested within clumps is complex 

(Chen and Cihlar, 1995). Instruments that only measure gap fraction (i.e. LAI-2000 and 

hemispherical photography) do not account for complex clumping of needles and assume 

a random distribution of leaves/needles. A clumping index was also found in deciduous 

stands (0.87) that was slightly smaller than the coniferous species, yet, still larger than a 

random distribution of leaves. Chen et al. (1997b) and Kucharick et al. (1997) also found 

that deciduous stands exhibit a clumping effect. Therefore in both deciduous and 

coniferous stands, where needle or leaf clumping is a factor, optical instruments that 

account for the clumping index are necessary and techniques that only use gap fraction 

may be inappropriate. However, to determine the importance of clumping index in both 

coniferous and deciduous species would require absolute measures of true LAI for 

validation and/or calibration. 

4.5 Comparison of Remotely Sensed LAI Estimates 

4.5.1 Results 

S M A S , NDVI and WDVI had a statistically significant relationship with LAI from 

both the LAI-2000 and integrated approach in coniferous stands (Table 4-6 and Appendix 
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B). However, the TRAC had no significant statistical relationship with any of the 

vegetation indices or S M A S (Table 4-6). The S M A S approach improved the 

coefficient of determination (r 2) by 0.35 (from 0.44 to 0.79) and reduced the root mean 

square error over the vegetation indices for the integrated approach (1^= 0.79) and LAI-

2000 (1^= 0.75) for coniferous species (Table 4-6). NDVI performed better than the 

other vegetation indices for the integrated approach (1^= 0.44) and LAI-2000 (1^= 0.40) 

based on an increase in the coefficient of determination (r 2) and the lower root mean 

square error (Table 4 -6). A statistically significant relationship was also found between 

S M A S and sapwood area/leaf area (r 2 = 0.28), and SAVI and hemispherical photographs 

(t1- 0.49) for coniferous species (Table 4 -6 ) . Spectral mixture analysis produced the 

strongest relationships with LAI for coniferous species (1^= 0.79), which may be 

indicative of the structural parameters that SMA models. 

In deciduous stands a significant relationship was found between all the vegetation 

indices and ground-based LAI techniques, except for the TRAC (Table 4 - 7 , Appendix 

B). S M A S was not completed for the deciduous species since appropriate endmembers 

where not available (Chapter 3). In deciduous stands, SAVI produced stronger 

relationships with the integrated approach (r 2= 0.61) and the LAI-2000 (t*- 0.60), while 

WDVI had stronger relationships with hemispherical photograph estimates (1^= 0.37) and 

NDVI had the strongest relationships with sapwood area/leaf area estimates (r 2= 0.39) 

(Table 4 -7). The integrated approach and LAI-2000 had the strongest relationship with 

all the vegetation indices for both the deciduous and coniferous species (Table 4 - 7 , 

Table 4 -6) . 
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Mixedwood stands showed a statistically significant relationship (p<0.05) between 

SAVI and all the ground-based instruments (Table 4 -8). SAVI produced the strongest 

relationship with sapwood area/leaf area estimates (1^= 0.78) followed by the integrated 

approach (r 2 = 0.58) (Table 4-8). Both NDVI and WDVI did not have statistically 

significant relationships with any of the ground-based instruments for the mixedwoods 

(Table 4-8). It should also be noted that due to the smaller sample size an independent 

validation sample set was not produced for all stands. The entire usable sample was 

required for the regression model, and therefore it was not possible to have an 

independent mutually exclusive validation sub-sample. The model strength is presented 

based on their coefficient of determination and RMSE and not on the application of the 

data to a validation data set. 

Differences were seen in both the mean and standard deviation of the ground-based 

LAI estimates compared to remote sensing LAI estimates (Figures 4 - 3 through 4 -5) . In 

both the coniferous and deciduous stands, the stronger the statistical model (higher 

coefficient of determination (r 2) and lower root mean square error) the closer the remote 

sensing modeled mean would be to the ground-based means (Figure 4 - 3 through Figure 

4 -5). For all stands, the variability around the mean for the S M A S and the vegetation 

indices were smaller than the ground-based estimates (Figure 4-3 through Figure 4 -5 ) . 

In general, the remote sensing estimates follow the same trends as the ground-based LAI 

estimates, but they were less variable. 
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Table 4 -6 - Coefficient of determination (r 2), standard error, and significance (p<0.05) for modeled estimates for each LAI estimation 
technique and using the remotely sensed vegetation indices and SMA shadow fraction for conifer species. The equations 

Instrument N NDVI WDVI SAVI SMA Shadow Fraction Instrument N 
r 2 SE PO.G5 r1 SE PO.05 r1 SE PO.05 r* SE P<0.05 

TRAC 27 0.05 1.95 0.26 0.05 1.97 0.27 0.06 1.94 0.21 0.06 1.88 0.23 
LAI-2000 22 0.40 0.60 0.00 0.32 0.64 0.01 0.00 0.77 0.93 0.75 0.47 0.00 
Hemi 21 0.00 0.67 0.99 0.01 0.66 0.76 0.49 0.48 0.00 0.01 0.66 0.72 
Integrated 22 0.44 0.65 0.00 0.35 0.70 0.00 0.00 0.87 0.89 0.79 0.51 0.00 
Sapwood area 27 0.05 1.90 0.29 0.06 1.89 0.23 0.11 1.84 0.10 0.28 1.88 0.01 

Table 4 - 7 - Coefficient of determination (r 2), standard error, and significance (p<0.05) for modeled estimates for each LAI estimation 
technique and using the remotely sensed vegetation indices and SMA shadow fraction for deciduous species. The equations 

Instrument N NDVI WDVI SAVI Instrument N 
r* SE P<0.05 SE PO.05 r* SE PO.05 

TRAC 10 0.00 1.86 0.87 0.03 1.84 0.65 0.07 1.80 0.48 
LAI-2000 9 0.39 0.55 0.05 0.42 0.54 0.04 0.60 0.45 0.00 
Hemi 11 0.31 0.23 0.05 0.37 0.22 0.03 0.23 0.24 0.05 
Integrated 9 0.41 0.49 0.04 0.42 0.49 0.04 0.61 0.40 0.00 
Sapwood area 11 0.39 0.99 0.03 0.30 1.06 0.05 0.33 1.04 0.04 

Table 4 - 8 - Coefficient of determination (r 2), standard error, and significance (p<0.05) for modeled estimates for each LAI estimation 
technique and using the remotely sensed vegetation indices and SMA shadow fraction for mixedwood species. The 

o 

Instrument N NDVI WDVI SAVI Instrument N 
r 2 SE PO.05 r* SE PO.05 i* SE PO.05 

TRAC 10 0.12 1.15 0.33 0.28 1.04 0.11 0.39 0.96 0.05 
LAI-2000 11 0.00 0.71 0.92 0.03 0.70 0.59 0.47 0.52 0.02 
Hemi 10 0.00 0.84 0.99 0.04 0.82 0.58 0.58 0.54 0.01 
Integrated 11 0.06 0.71 0.47 0.00 0.73 0.90 0.35 0.59 0.05 
Sapwood area 11 0.01 2.18 0.81 0.08 2.12 0.41 0.78 1.03 0.00 
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Shadow fraction from SMA produced the "best" regression results based on the 

coefficient of determination and RMSE for conifer species, compared to the vegetation 

indices (Table 4 - 6 , Appendix B). SMA has been shown to provide better estimates of 

forest biophysical parameters than vegetation indices in other studies (Peddle et al., 

1999a, 2001; Peddle and Johnson, 2000; Johnson, 2000). Peddle et al. (2001) reported 

an average 40% improvement using SMA compared with 10 vegetation indices in the 

prediction ofbiomass, NPP, and LAI in a black spruce forest in Minnesota, USA. Peddle 

and Johnson (2000) found SMA shadow fraction improved LAI estimates by an average 

of 20% compared to NDVI for Multi-Spectral Video (MS V) data of trembling aspen and 

lodgepole pine stands in Kananaskis. In this study, SMA shadow fraction improved the 

r 2 by 0.35 and reduced the RMSE compared to any of the vegetation indices for the LAI-

2000 and integrated approach (Table 4-6). 

Of the vegetation indices, in conifer stands, NDVI produced improved regression 

results with higher r 2 values and reduced the RMSE over both WDVI and SAVI. In 

general, most of the conifer plots were comprised of white spruce stands with larger tree 

heights and basal areas which inhibit more light penetration to the soil or background, 

possibly reducing the effects that background has on the remote sensing signals. Chen et 

al. (1996a) found that simple ratios such as NDVI performed better than other vegetation 

indices that attempt to minimize soil background effects in predicting LAI and fPAR as 

the signal noise is proportional in both the red and infrared bands, thereby canceling out 

signal noise in jack pine and black spruce stands in Manitoba, Canada. Chen et al. 

(1996a) hypothesized that signal noise can be retained or amplified through the 



mathematical equations in SAVI and WDVI. However, Peddle et al. (2001) found that 

vegetation indices that incorporated background effects were better predictors of forest 

biophysical parameters including biomass, NPP, LAI, DBH, stem density and basal area 

fraction for black spruce stands in Minnesota, USA. Black spruce and jack pine species 

generally have smaller crown sizes and smaller branches than that of white spruce or 

lodgepole pine species respectively (Johnson et al., 1995). By segregating the general 

conifer species into lodgepole pine and white spruce, the results may coincide with the 

results presented by Peddle et al. (2001) and Chen et al. (1996a), however, due to the 

relatively small sample size, this was not possible. 

For the deciduous stands, SAVI showed the best relationship to LAI for both the 

integrated approach and LAI-2000. Deciduous canopies in this area have lower tree 

heights and mid-range basal areas (38 m 2/ha). This may result in a greater amount of 

canopy gaps and therefore the light penetration to the understory would increase and may 

have a greater background effect on the remote sensing signal. For both coniferous and 

deciduous species, except for SAVI in coniferous stands, the integrated approach 

produced higher coefficient of determination values than the other ground based 

estimates suggesting that the integrated approach may indeed be a more accurate LAI 

estimation technique than the other measures. 

The same rationale for the deciduous species can also be applied to the mixedwood 

stands where there was a stronger relationship with SAVI than the other vegetation 

indices, likely because mixedwood stands have a relatively small basal area and the tree 

heights are lower than the white spruce. The sapwood area/leaf area estimate had a 
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strong relationship with SAVI. The integrated approach did, however, perform the best 

of the optical ground-based LAI estimates. 

The similarity of the remote sensing mean LAI estimates to the ground-based mean 

LAI estimates is indicated by the magnitude of the coefficient of determination. The 

higher the coefficient of determination and the lower the root mean square error the more 

similar the remote sensing estimates were to the ground-based estimates. The decreased 

variability in the remotely sensed LAI estimates compared to the ground-based LAI 

estimates was quantified using the linear regression model. A linear model was fit to 

produce the remote sensing equations by using a line of best fit for which the extremes 

are not accounted for and the deviation will be less. Therefore, in the application of the 

remote sensing equations to the same plots, the estimates should be similar to the ground-

based estimates used to build the equation, however the variation should be less, which 

was seen in this study. 

4.6 NPP Model Sensitivity to LAI 

4.6.1 Results 

4.6.1.1 NPP General Simulations 

Several NPP model simulations were completed where only one variable was altered 

to test the impacts of each variable, for the ranges found in the study area. LAI appears 

to have had a positive linear relationship with NPP (Figure 4 -6a). A range in LAI 

between 1-8 produced a range ofNPP estimates from 1496-14035 kg_C/ha/yr. Soil 

water content and elevation had very little variation over the ranges of each variable 

tested (Figure 4 - 6 b, c). The SWC ranged between 500-3000m 2 resulted in a range of 
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NPP estimates from 2909 to 2953 kg_C/ha/yr. A gain in elevation from 1389m to 1649m 

resulted in a decrease in NPP from 3034 kg_C/ha/yr to 2455 kg_C/ha/yr. For LAI, 

species also affected the NPP output, with deciduous species having a greater NPP than 

coniferous species at higher LAI values (Figure 4 -6a). The simulation results suggest 

that LAI is the main driving variable for FOREST-BGC in this region at this scale. 

4.6.1.2 NPP Output From Field and Remotely Sensed LAI Inputs 

The modeled NPP estimates produced similar patterns among the ground-based and 

remote sensing techniques to that seen in the LAI estimates. The NPP estimates were 

larger for the ground-based TRAC (NPP =6889-10474 kg_C/ha/yr) and sapwood 

area/leaf area (NPP = 6072-8572 kg_C/ha/yr) LAI inputs in all species, followed by 

integrated (NPP = 3903-5411 kg_C/ha/yr), LAI-2000 (NPP = 3664-4863 kg_C/ha/yr) and 

hemispherical photographs (NPP = 3009-3643 kg_C/ha/yr) (Figure 4 -8). Sapwood 

area/leaf area NPP estimates (NPP = 8572 kg_C/ha/yr) were only larger for the 

coniferous stands, while TRAC NPP estimates were higher in both the deciduous (NPP = 

6889 kg_C/ha/yr) and mixedwood stands (NPP = 10474 kg_C/ha/yr) which was 

consistent with the patterns for ground-based LAI estimation (Figure 4 - 8 , Figure 4 -1) . 

The same relationship was seen in the remote sensing techniques, where the patterns of 

NPP and LAI were similar (Figures 4-9 through 4-11, Figures 4 - 3 through 4 -5). The 

similar trends between modeled NPP estimates and LAI estimates are consistent with the 

emphasis placed on LAI by the model. 
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4.6.1.3 Comparison of Variability Between LAI and Modeled NPP 

Variation around the mean is observable in both LAI and NPP estimates for each 

stand. Determining the coefficient of variation for each of the estimates enabled the 

direct comparison of variation among the different measures. In this section, the 

coefficient of variation for LAI will be designated as CVLAI and the coefficient of 

variation for NPP will be CVNPP. The greater the coefficient of variation the more 

variable either the NPP or LAI estimates were. The variability found within the NPP 

estimates was not proportional to the variability in LAI estimates (Figure 4 -12). In 

general, larger LAI estimates (i.e. TRAC and sapwood area/leaf area estimates), had a 

larger CVLAI than CV N pp, however for smaller LAI estimates (i.e. LAI-2000 and 

hemispherical photography) the CVLAI were smaller than the CVNPP (Figure 4 -12). The 

larger ground-based estimates of LAI produced by the sapwood area/leaf area and TRAC 

had smaller variability in NPP compared to the variability in LAI in all the stands (CVLAI 

> CVNPP), with the exception of the TRAC in the mixedwood stands (CVLAI < CVNPP) 

(Figure 4 -12). The smaller ground-based estimates of LAI from the LAI-2000 and 

hemispherical photographs had greater variability in NPP than in LAI (CVLAI < CVNPP) 

for all species (Figure 4 -12). While the variability in the NPP and LAI estimates for the 

integrated approach appeared similar (CVLAI = CVNPP) in the coniferous (CVLAI = 48.4, 

CVNPP = 48.3) and mixedwood stands (CVLAI = 29.5, CVNPP = 29.7), the variability is 

greater in the NPP estimate (CVLAI < CVNPP) in deciduous stands (CVNPP = 44.4, CVLAI = 

35.5) (Figure 4-12). A threshold is suggested where the coefficient of variation is equal 

for both NPP and LAI, above which LAI has a larger variation, and below which NPP 

has a larger variation. The threshold value for conifer and mixedwood stands were close 
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to the integrated estimate of LAI (conifer LAI= 2.48, mixedwood LAI= 2.67, and for 

deciduous stands the threshold was between the sapwood area/leaf area (LAI=2.29) and 

integrated LAI estimate (LAI =1.69) (Figure 4-12). 

In all stands, both CVLAI and CVNPP were lower for the remote sensing than the 

ground-based estimates (Figure 4 - 1 3 through 4-15). Based on the smaller standard 

deviations for the mean remote sensing LAI estimates over the ground-based LAI 

estimates (Figures 4-9 through 4-11), the coefficient of variation for the remote sensing 

LAI and NPP estimates should be lower than the ground-based LAI and NPP estimates. 

The coefficients of variation for both NPP and LAI for the remote sensing estimates have 

similar patterns to the ground-based estimates. In both coniferous and deciduous stands, 

the smaller LAI estimates of hemispherical photographs, LAI-2000, and the integrated 

approach for both ground-based and remote sensing techniques had less variable LAI 

estimates than NPP (CVLAI < CVNPP), except the ground-based integrated approach in 

coniferous stands where LAI was slightly more variable (CVLAI > CVNPP) (Figure 4 - 1 3 

and 4 -14). The mixedwood and conifer stands had a greater variation in LAI than NPP 

(CVLAI > CVNPP) for sapwood area/leaf area estimates for both the ground-based and 

remotely sensed results (Figure 4 - 1 3 and 4-15). Also, in mixedwood stands there was 

greater variability in LAI over NPP (CVLAI > CVNPP) for both TRAC ground-based and 

remote sensing estimates (Figure 4 -15). In deciduous stands, LAI had greater variability 

over NPP (CVLAI > CVNPP) for ground-based sapwood area/leaf area estimates, however 

remote sensing sapwood area/leaf area estimates had more variable NPP estimates 

(CVLAI < CVNPP). The variability in remote sensing techniques show similar patterns to 

the variability in ground-based estimates with threshold values of equal coefficient of 
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variation for both NPP and LAI, however, the coefficient of variation for both the NPP 

and LAI from remote sensing are lower than the ground-based estimates. 
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4.6.2 Discussion 

The magnitude ofNPP change with altered LAI in comparison to the altered soil 

water content and elevation illustrates the importance the FOREST-BGC model places on 

LAI inputs over the other variables (Figure 4 -6) . Thus accurate and consistent LAI 

estimates are imperative in the modeling of NPP. Species also influences NPP model 

output due to basic physiological differences that are characterized by maximum LAI, 

specific leaf area, leaf on/off dates, respiration and conductance rates among species 

(Figure 4 -7 ) (Running and Hunt, 1993). 

Running and Coughlan (1988) modeled NPP estimates for a hypothetical 

coniferous forest stand using FOREST-BGC in Missoula, Montana for variable LAI 

values of 3, 6 and 9 and produced NPP estimates of 4.1 tonnes of carbon/hectare/year 

(t/ha/yr), 4.9 t/ha/yr, and 4.9 t/ha/yr, respectively. Prescott et al. (1989) determined NPP 

in the Kananaskis region for lodgepole pine, white spruce and Douglas-fir stands to be 

4.57 t/ha/yr, 4.32 t/ha/yr, and 3.83 t/ha/yr, respectively. In this study the average NPP 

estimate for coniferous stands (including lodgepole pine, white spruce and mixed conifer 

where the latter consisted of lodgepole pine, white spruce and Douglas fir) using the 

integrated approach (theorized to be the most accurate) was 4.56 t/ha/yr. These results 

are similar to both the Prescott et al. (1989) ground-based NPP estimates, and Running 

and Coughlan (1988) modeled results for NPP estimates of coniferous species on the 

eastern slopes of the Rocky Mountains. Since there are no other studies of deciduous 

NPP in montane ecozones a comparison with the same species in boreal stands was 

performed instead. Gower et al. (1997) measured annual NPP for aspen stands in a boreal 

ecozone in Saskatchewan to be 3.12 t/ha/yr and 3.52 t/ha/yr, and in Manitoba at 2.49 
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t/ha/yr and 3.49 t/ha/yr. In this study, the integrated LAI-2000 and TRAC, and LAI-2000 

techniques produced NPP estimates of 3.9 t/ha/yr and 3.85 t/ha/yr for deciduous stands. 

The results for this study are slightly higher than the measurements taken in 

Saskatchewan and Manitoba. This is due to the more southerly location of the study area 

and the difference in ecozone (montane cordillera vs boreal forest) affecting climate, 

growing season, parental material, permafrost and soil (Johnson et al., 1995). 

The mean NPP estimates and standard deviations for the ground-based and 

remote sensing techniques follow the same patterns of the mean LAI estimates (Figure 4-

8 through 4-11). Large LAI estimates (sapwood area/leaf area and TRAC estimates) 

produce larger NPP estimates (sapwood NPP = 8.57 t_C/ha/yr and TRAC NPP = 8.30 

t_C/ha/yr) compared to those of smaller LAI estimates (hemispherical photography and 

LAI-2000) (hemispherical NPP = 3.01 t_C/ha/yr and LAI-2000 NPP = 3.80 t_C/ha/yr). 

This again shows the influence of the LAI estimates on the modeled NPP output. 

The variability of LAI and NPP was not proportional. A threshold value was 

suggested at the point where the variability of NPP and LAI were equal. For LAI 

estimates lower than the threshold, there is more variability with the NPP estimates than 

the LAI estimates. Alternatively, if the LAI estimates are greater than the threshold 

value, the NPP variability will be less than the variability in the LAI estimates. The 

threshold values for the coniferous stands were suggested to be approximately similar to 

the integrated LAI-2000 and TRAC approach. For deciduous stands, the threshold value 

was suggested to be between the LAI estimates of the LAI-2000 and sapwood area/leaf 

area, and for the mixedwood stands between the LAI-2000 and integrated approach. 

Beyond this LAI threshold, other environmental factors including climate and soil water 
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content may limit the increase in NPP, while below this threshold LAI may limit the 

increase of NPP (Nemani and Running, 1989; Running and Coughlan, 1988). 

Photosynthesis, NPP and CO2 uptake rely on the capture of PAR by trees (Bonan, 

1993). The amount of PAR captured is largely dependent upon the surface area of leaves 

or LAI (Kimmins, 1997; Bonan, 1993). The leaf area is determined based on the 

availability of site resources including: water, nutrient and light (Kimmins, 1997). Stand 

leaf area is usually lower where water is limited (Nemani and Running, 1989). Both 

climate and soil play a significant role in determining the water availability of a site 

because the climate dictates the amount of available precipitation and evaporation for the 

site and the soil dictates the amount of water that is stored. As a result, equilibrium 

should exist between climate, soil and leaf area due to the supply-storage-demand 

interaction (Nemani and Running, 1989; Grier and Running, 1977). Equilibrium is met 

where photosynthesis is maximized and a suitable internal water status is maintained 

(Nemani and Running, 1989). By increasing tree leaf area, there is an increase in 

photosynthetic potential, however, increased leaf area will also cause an increase in 

transpiration loss. Therefore, to restrict water stress there is reduced stomatal aperture, 

which also causes a reduction in CO2 fixation (Nemani and Running, 1989). 

Nemani and Running (1989) found that a necessary hydrological equilibrium 

exists between climate, soil water content and maximum leaf area in water limited 

coniferous forests in Montana. In FOREST-BGC, a linkage between hydrologic 

components and carbon balance predictions of photosynthesis, respiration, and growth 

allocations would provide additional insight into the limitations of LAI (Nemani and 

Running, 1989). They were able to infer estimates of maximum leaf area that a site can 
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support with prior knowledge of soil and climatic conditions. Their modeled maximum 

LAI estimates were validated through comparing modeled maximum LAI and field 

estimates of LAI showing a linear correlation between field and modeled LAI (1^=0.87). 

The strong relation between field and modeled LAI confirms the control water 

availability has on leaf area carrying capacity of forest stands (Nemani and Running, 

1989). In this study, the LAI threshold value is suggested to be the point of model 

equilibrium between LAI, soil water content and climate. 

Running and Coughlan (1988) found that based on model simulations in the mid-

latitudes of west central North America, an increase in LAI is limited by hydrologic 

balances and partitioning, altering the subsequent photosynthesis of forest canopies. They 

found that there was no increase in total transpiration from an LAI of 3 to 9 because all 

available soil water was consumed because of low annual precipitation or there was more 

transpiration with higher LAI values resulting in a longer duration of canopy water stress. 

Therefore, there was equal total transpiration for LAI values ranging between 3 and 9. 

They also found that where physiological activity is substantially water limited or 

radiation limited, increasing LAI produced a weak positive response to photosynthesis. 

As photosynthesis is an important parameter in the calculation ofNPP, the weak positive 

response to photosynthesis would have an affect on the resulting output. For example, in 

a FOREST-BGC modeled coniferous forest in Missoula, Montana an increase in LAI 

from 3,6 and 9 resulted in an NPP of 4.1 t/ha/yr, 4.9 t/ha/yr, and 4.9 t/ha/yr (Running and 

Coughlan, 1988). The lack of NPP increase from 6 to 9 is likely due to the short growing 

season and small amount of precipitation (337mm) received in this area (Running and 
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Coughlan, 1988). Thus a threshold value exists here between LAI of 3 and 6, where 

equilibrium of LAI, SWC and climate is met. 

In the Kananaskis study area of this research, similar trends occur, thus as LAI 

estimates increase, the resulting NPP will be limited by soil water content and climate. 

NPP values less than the LAI threshold were not water limited but rather LAI limited, 

resulting in more variable NPP estimates compared to the LAI estimates. Thus, at the 

LAI threshold, an equilibrium exists between SWC and climate and the amount of LAI a 

site can sustain. Therefore, below the LAI threshold or site equilibrium, LAI limits the 

amount ofNPP, while above the threshold site water availability (SWC and climate) limit 

the amount of NPP. 

4.7 Chapter Summary 

In this chapter, comparisons of ground-based and remote sensing LAI estimates and 

the effect LAI has on modeled NPP estimates were completed. The relative comparison 

of the ground-based LAI estimates suggest optical techniques which incorporate 

clumping effects and gap fraction measured at several zenith angles, like the integrated 

LAI-2000 and TRAC approach, theoretically provide the most accurate LAI estimations. 

This approach deflated the TRAC estimate by 32-52%. The integrated approach also had 

the strongest relationships with the remote sensing techniques (SMA shadow fraction and 

vegetation indices) over any other ground-based estimate, which provided empirical 

evidence to support this theory, further supporting the preferred use of the integrated 

approach. SMA shadow fraction produced the best overall estimates of integrated LAI 

for the coniferous species, while NDVI produced the best estimates of the different 
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vegetation indices tested. For the deciduous stands (for which SMA was not conducted), 

SAVI had the strongest relationship with the integrated LAI. For mixedwood stands, 

SAVI produced the strongest relationships with all the instruments over any other 

vegetation indices. Species and stand structure were shown to affect LAI estimation at 

both ground-based and remote sensing levels. 

LAI has a strong influence on the modeled NPP estimate from FOREST-BGC. 

Simulations showed that LAI affects NPP more than either soil water content or climate. 

As well, the graphical patterns observed in each of LAI and NPP estimates were similar, 

however, the variability between LAI and NPP was not equal. Coefficients of variations 

were determined for both the LAI input and the NPP output, from which a threshold LAI 

estimate was proposed as the point where the variability in LAI is similar to the 

variability of NPP. Below this threshold, the variability in LAI is greater than the 

variability ofNPP, while the opposite is true above this threshold. This LAI threshold 

suggests that, initially, the increase in modeled NPP is limited by LAI, but that beyond 

this threshold the increase in modeled NPP is limited by soil water content and climate 

due to the hydrological equilibrium between climate, soil water content and leaf area. 
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CHAPTER V 

5.0 Summary and Conclusions 

5.1 Summary of Results 

The ability to predict the amount of carbon in an ecosystem through NPP modeling 

is important for the determination of climate change effects and global carbon budgets, 

which has come to the forefront of much research due to anthropogenic increases in 

atmospheric CO2. Process-based ecosystem models have been developed using leaf area 

index (LAI) as a key variable, as it can be obtained at multiple scales and over large areas 

using remote sensing, and it is a parameter related to energy, gas and water exchange of 

an ecosystem. As a result, understanding the variability in LAI from both ground-based 

instrumentation and from remote sensing techniques and the resulting affect this has on 

modeled NPP is important for making accurate estimates of carbon. In this thesis, 

results were obtained for the three research objectives identified. In the following 

sections, these results are summarized for: (i) ground-based LAI estimation, (ii) remote 

sensing of LAI and (iii) variability ofNPP. 

5.1.1 Ground-based LAI Estimation 

In this research, five approaches for ground-based LAI estimation were compared 

including, LAI-2000, hemispherical photography, TRAC, integrated LAI-2000 and 

TRAC, and sapwood area/leaf area. The integrated LAI-2000 and TRAC approach 

provided the best theoretical basis for estimating LAI as it accounted for both the 

135 



clumping index and the gap fractions at several solar zenith angles. In this study area 

clumping indices were found in both coniferous and deciduous stands. For conifer 

stands, the integrated approach reduced LAI estimates from the TRAC by 37% and 

increased the LAI-2000 estimates by 19%. All the stands had lower LAI estimates for 

the integrated approach than the TRAC. This result suggests the importance of 

estimating eLAI from gap fraction at several zenith angles. However further analysis of 

the optical instruments in comparison with absolute LAI values should be completed. 

The sapwood area/leaf area estimates used from the literature may be inappropriate for 

this area, especially the white spruce stands, as these exceeded the optical estimates. This 

analysis is limited due to the lack of absolute validation of LAI, as the destructive 

sampling of some of these stands was not only illegal but also prohibitive in terms of 

monetary, location and time constraints. Thus only a relative study could be completed, 

however, it was stated earlier that absolute measures of LAI for the incorporation with 

remote sensing is difficult, impractical or impossible. This is due to the difficulties in 

measuring LAI over a large area that will correspond with the image pixel resolution, 

positional control of field measurements in relation to the exact pixel area, and field 

sampling that would provide an appropriate representation of forest stands. Ideally, a 

large sample of absolute measures of LAI from destructive sampling together with optical 

and allometric techniques should be used, however, with the plethora of optical LAI 

estimates and allometrics derived independently of the optical instruments a robust 

comparison was provided. 
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5.1.2 Remote Sensing of LAI 

In the remote sensing analysis, spectral mixture analysis shadow fraction 

( S M A S ) (r 2 = 0.79) produced stronger predictive relationships for conifer LAI estimates 

compared to all vegetation indices tested (NDVI, WDVI, and SAVIlXr 2 = 0.44,0.35, and 

0.00 respectively). Of the vegetation indices, NDVI produced the strongest relationships 

with LAI for coniferous stands, suggesting that in the coniferous stands, which are 

characterized by larger tree heights and greater basal area, the effects of background are 

not as strong. In deciduous and mixedwood stands, the vegetation indices that account 

for the effects of background produced stronger relationships with LAI (SAVI r 2 

increased by 0.20 from 0.41 to 0.61 compared to NDVI in deciduous). All the remote 

sensing techniques produced better results (higher coefficient of determination and lower 

RMSE) for predicting LAI with the integrated LAI-2000 and TRAC approach compared 

to the other predictions of the other LAI instruments (LAI-2000, hemispherical 

photography, allometrics, and TRAC). This further supported the argument that the 

integrated approach is preferred for estimating LAI. 

5.1.3 Variability ofNPP 

Process-based NPP models have been developed using knowledge of ecological 

process and functions, which can be applied to broad spatial scales to determine estimates 

of carbon stocks. Running and Coughlan (1988) developed their process-based 

ecosystem model, FOREST-BGC to be driven in large part by LAI. By simulating the 

key model input variables, a series of controlled experiment were conducted in which 

these individual variables (soil water content, climate, and LAI) were analyzed, with all 
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other inputs held constant in each test. Of these three key variables used, LAI was the 

most important input based on the magnitude of change in modeled NPP as a function of 

changing LAI. A further analysis compared a graphic representation of mean modeled 

NPP and mean LAI estimates for the various LAI estimation techniques and species 

types. The similar patterns observed among the mean modeled NPP output and LAI 

inputs for the different LAI estimate techniques suggested that LAI is the driving variable 

in the FOREST-BGC model (Figure 4-1 and Figure 4-8). A threshold was identified, 

through the analysis of the coefficients of variation for both NPP and LAI, below which 

the variability in NPP was greater than the variability in LAI. Beyond this threshold, the 

opposite was true-the variability in NPP was less than the variability in LAI. The 

threshold value was suggested as an equilibrium point where photosynthesis is 

maximized and transpiration water loss is reduced so that the internal water status is 

maintained. The equilibrium is based on a supply-storage-demand interaction between 

climate, soil water content, and LAI. Below the LAI threshold, LAI limited the increase 

in NPP, while above the LAI threshold water availability (soil water content or climatic 

influences) limited the increase in NPP (Running and Coughlan, 1988). Like the LAI 

analysis, no absolute validation for NPP was possible due to legal, monetary, time and 

location constraints of the destructive sampling required. Thus absolute validation of the 

NPP output from the model was not possible. 
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5.2 Conclusions 

A number of conclusions have been drawn from this research: 

• The integrated LAI-2000 and TRAC approach for the estimation of LAI has been 

suggested as the preferred approach for estimating LAI based on the theoretical 

assumptions of the instruments. As well SMA and vegetation indices were shown to 

provide the best relationship with the integrated approach, which lends further 

support to the argument of this being the preferred technique. 

• A clumping index is suggested in deciduous species and the assumption of a random 

distribution of leaves may be inappropriate. 

• Spectral mixture analysis shadow fraction provided substantial improvements over 

vegetation indices in estimating LAI for coniferous species. 

• Vegetation indices that attempt to account for the effects of soil or background in 

their formulation may be dependent upon the stand structural attributes (tree height, 

basal area, and stem density) or the species type in terms of their ability to predict 

LAI. 

• In this montane ecoregion and at this local scale, LAI was the most important variable 

affecting modeled NPP from FOREST-BGC compared to soil water content or 

climate. 

• The variability in modeled NPP was not proportional to the variability in LAI. There 

appears to be a LAI threshold value, where this variability is equal, above which LAI 

was more variable and below which NPP was more variable. It was proposed that 
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LAI limits the increase in NPP below the LAI threshold, and that either soil water 

content or climate limits the increase in NPP above this threshold. 

5.3 Contributions to Research 

This research has made several scientific contributions to the research community. 

First, by understanding the variability among the ground-based LAI estimates, 

researchers and other workers will be aided in the selection of ground-based LAI 

instruments and remote sensing image analysis methods for retrieving LAI in the field 

and over large areas. By understanding the variability ofNPP modeled by FOREST-

BGC as a function of different LAI inputs compared to other key model inputs makes a 

contribution towards improved NPP model use and understanding particularly in a 

montane forest environment where few such studies have been conducted. 

5.4 Future Research 

Some future research has been identified from the results of this research. To 

further improve the ground-based LAI comparisons an absolute LAI measure for each of 

the different species and stands would provide a more definitive basis for determining the 

best instrument or technique for estimating LAI as well for improved NPP modeling. 

This could be accomplished with the destructive sampling of trees within the plots or the 

incorporation of litter fall traps to estimate LAI without the use of equations from the 

literature. As well, the production of sapwood area to leaf area ratios for the Kananaskis 

Region would increase the applicability of these relationships to this area as they have 

been found to have stand-specific differences (Hungerford, 1987; Pearson et al., 1984; 
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Gholz et al., 1976). To further improve the remote sensing LAI estimation component of 

this research, a better validation data set would also be useful to determine how definitive 

these models are for their application on a regional scale. Also SMA endmember 

validation and SMA LAI estimates would be useful to complete for deciduous and 

mixedwood species. SMA and other vegetation indices could also be tested for 

relationships with other forest biophysical parameters including biomass, volume and 

NPP. Other remote sensing image analysis techniques including the vegetation indices 

in Table 2-2, and others as reviewed by Bannari et al. (1995), and Brown et al. (2000) 

(e.g. reduce simple ratio), as well as reflectance modeling and image texture or the 

application of nonlinear regression models (Fernandes et al., 2001) could be compared to 

provide a more robust analysis of the possible techniques used in estimating LAI. 

Finally, the extension of these remote sensing techniques (SMA and vegetation indices) 

to large areas of satellite imagery would be useful for the investigation of scale issues 

and the determination of better LAI predictors for larger pixel areas beyond that could be 

applied to regional NPP models for regional carbon estimates. 
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Appendix A - Actuai and Predicted Sapwood Area Estimates From Tree Basal 

Area. 

Actual and predicted estimates of sapwood area from the validation data set. Predicted 

estimates were determined through linear regression models and saturation growth model 

for diameter at breast height (DBH) with sapwood area estimates for Douglas-Fir, 

lodgepole pine, white spruce and a composite deciduous species. 
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Appendix B - Residual Plots for Regression Models for Remote Sensing Techniques 

and LAI 

Regression standardized residuals plots for linear regression models for spectral mixture 

analysis shadow fraction and vegetation indices with the ground-based LAI estimation 

techniques, including hemispherical photography, LAI-2000, TRAC, integrated approach 

and sapwood area/leaf area. 
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Appendix C - Regression Equations for Remote Sensing Techniques and LAI 

Equations for the regression models built for vegetation indices or SMA and ground-

based LAI. 
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Table C-l Model equations using each LAI estimation technique and vegetation indices 
for conifer species. 

Instrument NDVI 
equation 

WDVI 
equation 

SAVI 
equation 

SMA_S 
equation 

TRAC 17.97x -9.42 13.32x + 4.07 7.56x - 8.22 6.64x + 0.41 
LAI-2000 19.80x-13.41 13.01x+ 1.49 0.22x + 1.83 l l . 7 5 x - 5 . 0 8 
Hemi 0.09x+ 1.65 1.65x+1.68 -7.37x + 4.41 0.72x+1.39 
Integrated 23.48x-15.96 15.48x+ 1.71 0.41x + 2.06 14.35x-6.33 
Sapwood 
area 

16.40x - 8.20 13.94x + 4.06 -10.43x+8.39 17.00x-5.61 

Table C-2 Model equations using each LAI estimation technique and vegetation indices 

Instrument NDVI 
equation 

WDVI 
equation 

SAVI 
equation 

TRAC -3.51x + 6.04 -3.96x + 3.78 -4 .9U + 5.94 
LAI-2000 -13.61x+ 13.03 -5.57x + 2.65 -5.31x + 4.80 
Hemi -5.01x + 5.78 -2.14x+ 1.98 -1.35x + 2.40 
Integrated -12.49x+12.03 -5.03x + 2.50 -4.85x + 4.47 
Sapwood 
area 

-25.88x +24.37 -8.77x + 4.32 -7.41x + 7.14 

Table C-3 Model equations using each LAI estimation technique and vegetation indices 

Instrument NDVI WDVI SAVI 
equation equation equation 

TRAC -12.68x+ 14.60 -14.60x + 5.37 -8.85x + 7.78 
LAI-2000 0.79x+1.73 -2.88x + 2.57 -5.57x + 4.58 
Hemi -9.85x + 2.75 -3.78x + 2.94 -7.41x + 5.54 
Integrated 5.51x-2.67 0.70x+ 1.75 -4.94x + 3.77 
Sapwood -5.61x + 8.17 -13.30x + 4.62 -22.06x + 12.39 
area 
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