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ABSTRACT 

 Canada’s boreal forest provides important breeding habitat for 12 to 14 

million migratory birds annually. Nonetheless the ecology of boreal wetlands 

remains poorly understood. Over the last 40 years, rapid industrial development 

with little attention to conservation has been ongoing in the region. Apparent 

population declines of species, such as that of lesser scaup have raised concerns 

about the quality of western boreal wetlands. This is one of very few studies 

demonstrating patterns in brood-rearing habitat use by ducks and grebes in the 

Canadian western boreal forest. In this study, wetland characteristics associated 

with brood-rearing wetlands of American wigeon (Anas Americana), green-

winged teal (Anas crecca), mallard (Anas platyrhynchos), lesser scaup (Aythya 

affinis), ring-necked duck (Aythya collaris), horned grebe (Pondiceps auritus), and 

red-necked grebe (Podiceps grisegena) were investigated on 75 wetlands near 

Yellowknife, NT, Canada. 

 I used Principle Components and regression analyses to delineate patterns 

of habitat use by breeding water birds. Results indicate that physical 

characteristics of wetlands, area in particular, had stronger correlations with 

brood-rearing habitat then did invertebrate abundance. Invertebrate groups 

positively associated with brood-rearing wetlands included: Amphipoda, 

Pelecypoda, and or Ephemeroptera. Breeding diving ducks had negative 



 iv 

associations with Dipteran abundance. Diving ducks and red-necked grebes 

were more strongly correlated with habitat variables then were dabbling ducks 

and horned grebes. Brood-rearing wetlands of the smallest birds in the study, 

green-winged teal and horned grebe, had the fewest and weakest associations 

with habitat variables.  
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Humankind has not woven the web of life.  We are 
but one thread within it.  Whatever we do to the web, 
we do to ourselves.  All things are bound together.  
All things connect.   
 
~Chief Seattle, 1855 
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1. INTRODUCTION 

The survival and reproductive success of waterfowl and other aquatic 

birds are directly linked to habitat selection (Greene and Stamps 2001, Martin 

1998). Therefore, key to developing sound conservation initiatives and meeting 

conservation objectives pertaining to waterfowl and other aquatic birds is 

identifying and understanding what factors influence their habitat selection. 

Predictions regarding wildlife-habitat associations are only possible after 

patterns of association are identified.  

Factors influencing habitat selection by waterfowl and other aquatic birds 

include food availability (Pöysä 2000), vegetation composition (Martin 1987, 

Sjöberg et al. 2000), abundance of predators and competitors (Martin 1993, Petit 

and Petit 1996), intraspecific attraction (Danchin et al. 1998, Forsman et al. 1998, 

Pöysä 1998), and philopatry to natal or previously successful breeding areas 

(Greenwood 1980). Because behaviour (breeding, non-breeding), location 

(wintering, summering), and needs (habitat for nesting, brood-rearing, migration 

stops, wintering) change substantially throughout the year, migratory birds 

provide interesting and challenging subjects with respect to identifying habitat 

requirements. This study used variables thought to influence wetland suitability 

for brood-rearing by five duck and two grebe species that breed on northwestern 

boreal wetlands near Yellowknife, Northwest Territories, Canada. American 
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wigeon (Anas americana), green-winged teal (Anas crecca), mallard (Anas 

platyrhynchos), lesser scaup (Aythya affinis), ring-necked duck (Aythya collaris), 

red-necked grebe (Podiceps grisigena), and horned grebe (Podiceps auritus) are the 

seven most abundant nesters on the study wetlands (Canadian Wildlife Service, 

unpublished data). 

Canada’s boreal forest is an important aquatic bird breeding ground with 

over a third of the region covered by water and wetlands critical to migratory 

birds (Ducks Unlimited 2000). Certain waterfowl populations are declining in the 

region; annual waterfowl breeding surveys indicate that the population of lesser 

scaup has declined by 50% or more since the early 1980’s (Austin et al. 2000). 

Much of the dramatic decline of scaup has occurred in the northwestern boreal 

forest (WBF). Recent studies indicate that the portions of the population most 

affected are those of female and young birds (G.T. Allen, D.F. Caithamer, and M. 

Otto, United States Fish and Wildlife Service, 1999, unpublished report, A.D. 

Afton, United States Geological Survey, unpublished data, Anderson, Ducks 

Unlimited, unpublished data in Austin et al. 2000). A number of potential causes 

for scaup declines have been suggested, including: poor recovery from drought 

during the 1980’s in Prairie Pothole Region (PPR) breeding grounds, 

contaminants, and or habitat changes in migration and/or wintering areas, and 
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disturbance, such as logging impacts, fires, and acid rain. Scaup declines may be 

indicative of deteriorating quality of WBF wetlands (Austin et al. 2000). 

WBF wetlands provide brood-rearing habitat for 12 to 14 million ducks and, 

in North America, are second only to the PPR of Canada in this capacity (Ducks 

Unlimited 2000). Northern wetlands become of even greater importance to 

waterfowl during periods of extended drought (Johnson and Grier 1988, Hodges 

et al. 1996, Dubovsky et al. 1997, and Niemuth and Solberg 2003). For example, 

over the past 40 years, Canadian Wildlife Service waterfowl surveys have found 

that decreased breeding mallard numbers in the PPR have been offset by stable 

or increasing numbers in the WBF (Canadian Wildlife Service Waterfowl 

Committee 2004).  

Historically, research activities by wetland and aquatic bird scientists have 

been limited in the WBF, and aquatic bird habitat associations derived from 

studies performed in other regions, such as the PPR of North America and the 

Fennoscandian boreal region, have been extrapolated, perhaps questionably, to 

include the boreal area. Knowledge derived from other regions regarding the 

habitat requirements of aquatic birds may not be unequivocally applicable to the 

habitat of the WBF (Hornung 2005, Simpson 2005). For instance, seasonal 

drought is not an issue in the WBF, and although seasonal or age related changes 

in duckling mortality occur in the boreal and Great Lakes regions, within season 
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temporal variation in duckling mortality is linked to seasonal drought in the PPR 

(Simpson 2005). In addition, while previous studies have suggested a link 

between mallard duckling success and chironomid abundance (Danell and 

Sjöberg 1980, Dzus and Clark 1997, King and Wrubleski 1998), Hornung (2005) 

proposed that coleopterans, specifically Dytiscidae, and not dipterans, 

specifically Chironomidae (Danell and Sjöberg 1980; Sjöberg and Dannell 1982; 

Swanson et al. 1985; Batzer et al. 1993) are the dominant food source in mallard 

duckling diets in WBF wetlands in northern Alberta. Finally, given the northern 

latitude and recent glacial history of the region, WBF wetlands assuredly have 

low overall species diversity (Pianka 1966, Schindler 1998), in contrast to species-

rich wetlands of the PPR (Swanson and Duebbert 1989 in Cox 1998). Resource 

use commonly changes with availability (Manly et al. 1993), thus aquatic birds 

dependent on invertebrates may utilize resources in WBF wetlands differently if 

the nature and structure of invertebrate communities differ in WBF and PPR 

wetlands (Hornung 2005). Low species diversity leads to low functional 

redundancy and increased susceptibility to change (MacArthur 1955, 

Rosenzweig 1995, Jacobsen 1997). Nonetheless, across the WBF region, 

expanding industrial developments continue to outpace conservation efforts. 

Given the pace of natural resource development in the region and since little 

work has been conducted towards understanding the ecology of WBF wetlands, 
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habitat selection studies (fundamentally linked to functional ecology) from the 

area are quickly becoming increasingly urgent (Caughley 1994).  

Aquatic invertebrates play a central role in all wetland food webs, 

providing an essential trophic link between wetland primary producers (Murkin 

and Wrubleski 1988 in Zimmer et al. 2000), macrophytes (Pieczynska et al. 1999), 

and top predators, like insectivorous fish and aquatic birds. Although outside of 

the breeding season species such as the American wigeon, mallard, and ring-

necked duck are predominantly or exclusively vegetarian, breeding females and 

ducklings of all aquatic bird species are insectivorous, relying heavily on 

invertebrates (Chura 1961, Perret 1962, Bartonek and Hickey 1969, Sugden, 1973, 

Krapu 1974, Pehrsson 1979, Swanson 1984) during the breeding season and 

earliest weeks of life. The protein necessary for growth and development is 

obtained primarily from aquatic invertebrates. Fat reserves acquired prior to 

arrival on breeding grounds are depleted during rapid ovarian follicle growth, 

and the protein required for egg production must be obtained from food eaten 

during the laying period (Hohman 1986, Alisauskas et al. 1992). Efficient 

foraging in the earliest weeks of life results in increased duckling survival (Cox 

1998). In turn, duckling survival is a key factor affecting aquatic bird population 

dynamics (Johnson et al. 1992).  
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Patterns of distribution and abundance can be framed at different scales 

(Johnson 1980), therefore, consideration of the scale from which habitat 

associations have been identified is important when those data are to be applied 

in resource management. Given the large area of the WBF with its relatively 

contiguous habitat and abundant wetland complexes, the scale dilemma is only 

accentuated in a study such as this. Specifically, used habitat may not necessarily 

be optimal habitat if individuals are in some way prevented from occupying or 

identifying optimal sites (Van Horne 1983, Pulliam 1988, Martin 1992, Jones 

2001). For instance, in consecutive years apparent nest-success (a plausible 

surrogate for reproductive success (Greenwood et al. 1987)) was 38% and 68% 

greater for Great Slave Lake island-nesting lesser scaup compared to mainland 

(YKSA) wetland nesters (Fournier and Hines 2001), which may indicate that on a 

large scale, nest-sites and brood-rearing habitat on the islands of Great Slave 

Lake are preferable to those on the mainland (YKSA). (Reproductive success is a 

measurable response to habitat selection.) Once capacity on the islands of Great 

Slave Lake is reached, nest-site and brood rearing habitat suitability choices 

made on a smaller scale may form the basis of habitat selection from amongst the 

mosaic of wetlands on the mainland adjacent to the lake.  Studies specific to this 

region, which lend a better understanding to the unique qualities and ecology of 
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its wetlands may lead to a better understanding of water bird habitat 

associations therein.  

1.1. The ducks and grebes of YKSA 

 Species of the genus Anas are referred to as dabbling ducks or dabblers, 

whereas those of Aythya are known as diving ducks or divers. In order of size, 

from the smallest to the largest, the dabbling ducks in this study are the green-

winged teal (length 30-41 cm), American wigeon (length 46-58 cm), and mallard 

(length 51-71 cm) (Fisher 1998). Nesting habitat preferences overlap greatly in the 

boreal region; all of the dabbling ducks included in this study are typically 

upland nesters. In 2002, over 40% of the population estimate of American wigeon 

occurred in the northern portion of the boreal forest (U.S. Fish and Wildlife 2004). 

Breeding population trends in the short, medium, and long terms all indicate 

declining American wigeon populations in the Canadian Prairies and a long term 

declining trend in the WBF (Canadian Wildlife Service Waterfowl Committee 

2005). According to long term trends, abundance of Green-winged teal is stable 

or increasing in the WBF (Canadian Wildlife Service Waterfowl Committee 2005). 

Although there was no significant trend in the WBF, 5- and 10-year breeding 

mallard population trends show declines (Canadian Wildlife Service Waterfowl 

Committee 2005). The western Canadian boreal forest is a core breeding area for 

ring-necked ducks and lesser scaup; both species are diving ducks and are 
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similar in size (length 36-46 cm and 38-46 cm, respectively) (Fisher 1998). Ring-

necked ducks and lesser scaup typically build nests near water with ring-necked 

ducks perhaps showing a greater inclination to construct nests over water in 

emergent vegetation or on a floating sedge mat. Breeding population estimates 

for ring-necked ducks have been stable or increasing in the long term in the WBF 

(Hohman 1998, Canadian Wildlife Service Waterfowl Committee 2005), whereas 

that of lesser scaup has declined dramatically since the 1980’s (Austin et al. 2002, 

Canadian Wildlife Service Waterfowl Committee 2005).   

 Toft et al. (1982) identified two patterns of breeding chronology among 

the five dominant duck species on the YKSA. On average, the dabblers arrived 

earlier, initiated nests earlier, and fledged young much earlier than the divers 

did. 

Grebes are not closely related to ducks. Morphologic constraints confine 

grebe broods to a single wetland until fledged, whereas, among the species 

studied, diving ducks may move their broods among wetlands and dabbling 

ducks frequently move broods among wetlands. Horned grebes are smaller than 

red-necked grebes (length 30-38 cm and 43-56 cm, respectively) (Fisher 1998). 

Less precocial than ducklings, which follow the hen to a water body and begin 

feeding themselves within 24 hours after hatching, red-necked grebe chicks 

travel on their mother’s back and horned grebe chicks are fed by a parent for at 
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least 9 days after hatching. Although isolated population declines have been 

reported, red-necked grebe populations are most likely stable (Stout and 

Nuechterlein 1999), whereas 1966-1996 horned grebe populations (except 

Manitoba) showed negative trends (Stedman 2000). Both grebe species build 

their nests over water in emergent vegetation, such as willows, cattails, and 

sedges.  

1.2. Thesis objectives 

1.2.1. Relationships between physical wetland characteristics and use by 

breeding water birds 

 One of the main objectives of this thesis is to determine the effects of 

abiotic wetland characteristics on wetland selection by broods of each of the 

seven aquatic bird species of interest in the study. Based on existing size 

dependent theory, that larger habitats attract greater numbers of individuals 

(Abbott 1978, Williamson 1981, Price 1984, Blake and Karr 1987), I expect that 

area will demonstrate a positive influence on wetland-use by broods. Because 

shoreline irregularity increases habitat diversity, I also suspect that increasing 

shoreline irregularity will positively influence wetland-use by broods. I test six 

other potentially influential abiotic parameters as well including conductivity, 

depth, pH, water transparency, water temperature, and distance to the roadway.    
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 The ability to move broods between wetlands differs among the water 

birds studied. As a consequence, I expect that associations between brood-

rearing wetlands and habitat variables will be stronger for species less likely to 

or unable to move broods between wetlands.  

1.2.2. Relationships between aquatic invertebrates and wetland use 

Quantitative analysis of the invertebrate community and its effect on 

wetland-use by broods was another fundamental facet of this study. I evaluate 

the status of whether a wetland is used or unused by broods relative to 

invertebrate abundance and biomass.  

 Because it is typical for the abundances of certain invertebrate taxa to rise 

and fall throughout the summer, before analyzing the effect of invertebrate 

abundance on wetland selection by broods, I determine whether temporal 

changes to invertebrate abundances occurred on YKSA wetlands during my 

sampling period, identify which taxonomic groups behaved dynamically, and 

qualify the pattern(s) of temporal change. I completed sampling in as short a 

time as possible and hypothesized that within taxa, invertebrate abundance 

would be static. Although among the aquatic birds in my study, chronology of 

hatching may occur, field season sampling was timed to coincide with the time 

during which the majority of broods hatch. Additionally, I look for correlations 

between invertebrate abundances and the eight abiotic wetland characteristics.   
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1.2.3. Interspecific associations and interactions among aquatic bird species in 

wetland use 

 In this thesis I also investigate interspecific associations between the seven 

aquatic bird species. I also expect that since grebes are highly territorial, 

wetlands used by grebe broods would not be shared with broods of other 

species. Toft et al. (1982) identified two patterns of breeding chronology among 

the five dominant duck species on YKSA, one early and the other late. 

Differences in chronology of breeding among species may result from 

interspecific competition for habitat or some other resource; consequently I 

hypothesized that wetlands would be shared among species whose patterns of 

breeding chronology were opposed, specifically I expect more sharing of 

wetlands between dabblers and divers, and more negative interactions within 

these groups.  

1.2.4. Unused wetlands  

Finally, I hypothesize that although a fraction of the over 500 YKSA 

wetlands were not used by broods of any of the five duck species for the 

duration of CWS survey years, this proportion of unused wetlands is not greater 

than what would be expected to occur by chance.  
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1.3. Study area 

Field work was conducted on a 38-km2 study area (Figure 1), west of 

Yellowknife, Northwest Territories (62°27’N, 114°22’W). The Yellowknife Study 

Area (YKSA) is an approximately 48-km roadside transect dissected by 

Northwest Territories Highway 3. Wetlands included in the study area are 

located within 0.4-km of either side of the road. The Canadian Wildlife Service 

(CWS) has monitored waterfowl pair and brood use of wetlands on the YKSA 

since 1985 and that of grebes since 1991.   

There are over 500 wetlands in the YKSA; 262 are natural wetlands and 

approximately 300 are borrow pits, which were established during the 

construction of Highway 3. The YKSA wetlands have been surveyed several 

times each year between May and August. At each wetland, the aquatic bird 

species present are identified and wetland-use by pairs and/or broods is 

recorded. At the time this study was conducted, a notable number of YKSA 

wetlands had never been used by a brood of any of the duck species included in 

this study for the duration of the CWS survey years.  

The YKSA falls within the Tazin Lake Upland ecoregion of the Western 

Taiga Shield ecozone, (Ecological Stratification Working Group 1995). The area is 

characterized by many poorly drained fens and bogs and small lakes. Bog-fen 

vegetation includes dwarf black spruce (Picea mariana), Labrador tea (Ledum 



 13 

groenlandicum), ericaceous shrubs, and mosses. Common trees in the region are 

black and white spruce (Picea glauca and Picea mariana), white birch (Betula 

papyrifera), and trembling aspen (Populus tremuloides). Permafrost is 

discontinuous and localized. Elevated areas of exposed bedrock commonly occur 

(National Wetlands Working Group, 1988). YKSA runs approximately parallel to 

the North Arm shore of Great Slave Lake between Yellowknife and Rae, NT.  
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Figure 1 - Map showing the approximate location of the Yellowknife Study Area 

in the boreal forest region of the Northwest Territories. 

 

YKSA 
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2. METHODS 

 All analyses were executed using JMP IN® software (SAS Institute Inc. 

2001). 

2.1. Wetland Selection 

 A total of 75 natural wetlands were chosen so to reflect the physical ranges 

of size and shape of wetlands available and the different levels of brood use. The 

frequency of brood use of a wetland was calculated as the total number of broods 

observed on a given wetland over all of the survey years (1985-2003 for ducks, 

1991-2003 for grebes) and was calculated for each of the seven aquatic bird 

species in the study. Brood use data were acquired from CWS survey records for 

YKSA wetlands. The choice of wetlands to be sampled was also determined by 

their accessibility for sampling, either by canoe or on foot with a small inflatable 

boat.  

2.2. Limnological characteristics 

Sampling was conducted via canoe or inflatable boat, and took place 

between June 24 and July 24, 2004. At the centre of each wetland conductivity 

(µ/s), pH, temperature, depth, and Secchi disc transparency were measured and 

a surface water sample was collected from approximately 15 cm below the 

surface. Water samples were transferred to a freezer at the end of each day and 
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kept frozen until concentrations of total phosphorus (mg/L) were analyzed at 

Norwest Labs, Lethbridge, AB, approximately one year later. Area, perimeter, 

and distance to the road were measured from maps (scale 100 mm = 75 m) using 

ArcView GIS software. Distance to the road was measured from the center of 

each pond to the edge of the road. An index of shoreline irregularity (SI: Ried 

1961: 34, in Haszard 2004) was calculated using the equation: 

apSI 2/= , 

where p = perimeter (m) and a  = area (m2). For perfectly round wetlands SI = 1.0 

and as shoreline irregularity increases, SI >> 1.0. 

2.3. Invertebrate sampling 

Invertebrate sampling of the 75 study wetlands took place between 24 

June and 24 July, 2004. Samples were taken from 4 randomly-selected sites on 

each wetland. Sweep samples were conducted 0.5 to 1.5 m from shore by 

pushing the flat net-opening down through the water column to a depth of 0.5 to 

1.0 m, sweeping through the water parallel to the surface for 1.0 to 1.5 m, then 

drawing the net to the surface. The net bag was dipped into the water and 

shaken to sieve fine silts out through the mesh. This method of sampling 

invertebrates well reflects the availability of potential food items for dabbling 

ducks and some diving ducks, but may less accurately capture the preferred food 
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of grebes (Elmberg et al. 1994). Sample material and invertebrates were placed in 

Zip-locTM freezer bags and frozen at the end of each day. The first 12 wetlands 

sampled were sampled again after 30 days in order to ascertain if changes in 

invertebrate community composition or sampling effort had occurred.  I used a 

two-sample t-test (P < 0.05) to determine if abundances of 13 taxonomic groups 

of invertebrates changed over time. This analysis was carried out subsequent to 

Levene’s Test for homogeneity of variances (> 0.5). A value of Levene’s Test < 0.5, 

indicated that variances of two samples being compared were not equal; in such 

instances a Welsh Anova F-test was used to test for significant differences.  

 Temporal changes in the abundance of 5 of 13 invertebrate groups 

collected from YKSA wetlands were detected (Table 1). Anisoptera, Zygoptera, 

Crustacea, Gastropoda, and Hemiptera all increased in abundance in shoreline 

samples during the first four weeks of summer, which may reflect offshore shifts 

in distribution during the winter months when near shore areas are at risk of 

freezing to the bottom. In June 2004, when I began sampling YKSA wetlands, the 

substrate in areas of some wetlands was still frozen. Break-up on YKSA wetlands 

traditionally begins in-mid-May and freeze-up has usually occurred by the end 

of October (Toft et al. 1982). Surviving long cold winters poses an obvious 

dilemma for aquatic insects many of which have developed elaborate 

mechanisms to deal with freezing and over-wintering. In wetlands that do not 
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freeze solid, some invertebrates will move to deeper water to avoid freezing 

(Moon 1940, Davies and Everett 1977). Many benthic invertebrates are able to 

resist freezing by means of supercooling and may produce antifreeze agents. 

Daborn (1971) and Sawchyn and Gillott (1975) have described damselflies 

(coenagrion sp.) collected, encased in ice, but not frozen. Crustaceans, Daphnia in 

particular are well studied in regards to life cycles and general ecology. Diurnal 

variation and cyclic seasonal patterns in abundances are characteristic in some 

species and may explain the temporal variation observed for Crustacea in this 

study. Nonetheless, in this study, I believe that the populations of late emergent 

taxa had become established by the time the second set of samples were taken, 

thus an accurate measure of invertebrate abundance during the brood-rearing 

period on these wetland was captured.  

 In the lab, frozen samples were thawed and aquatic organism were 

identified to general taxonomic group (described below), and counted. 

Organisms from each taxonomic group were then pooled and weighed (wet-

weight).  

2.4. Data treatment and analysis 

Measurements of wetland area and depth were transformed using Box-

Cox statistical methods to improve normality. Because shoreline details may be 
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lost due to map scale, wetland periphery, used in determining shoreline 

irregularity, may have been underestimated. Underestimated measurements of 

periphery would be consistent among wetlands of similar size. To investigate the 

degree to which my measurements of periphery might be biased due to deriving 

them from maps with too course a scale, I determined the correlation between 

the shoreline irregularity indices I calculated with wetland area. A second issue 

regarding SI was that some wetlands consisted of a series of small water bodies. 

In these cases, I calculated SI for the individual water bodies, took the highest 

estimate only of SI, and added 0.2 to it for each additional water body in the 

wetland complex. Total phosphorus measurements were categorized into one of 

five categories: high, high-moderate, moderate, moderate-low and low. The 

counts and weights of sorted invertebrate data were skewed and contained 

zeros. Where numbers and weights of organisms were extremely low, the raw 

data for related taxa were pooled into broader taxonomic groups and then 

transformed using a log10 (x+10) transformation.  

 Principal Components Analysis (PCA) was used to examine relationships 

among aquatic bird community structure and the (1) environmental variables 

and (2) invertebrate community structure. I explored relationships between 

principal component scores for axis 1, 2, 3, and 4 of the bird species by 

correlating those with (1) environmental variables and (2) principal component 
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scores of the invertebrate community structure. The strength of the relationship 

between the avian responses to particular variables was assessed using linear 

regressions on the eigenvectors of the principal components. I also tested the 

relationships between and among abiotic variables and invertebrate groups 

using Pearson correlations (r), when one or both variables were not normally 

distributed Spearman’s Rho was used to evaluate the correlation between 

variables.  

 Associations of each aquatic bird species with environmental and 

invertebrate abundances were further evaluated using logistic regression 

analyses. Variables significant in predicting brood-rearing wetlands are 

identified by the logistic regressions. Subsequent linear regressions identify 

variables significant to increases in the numbers of broods of each species on a 

wetland.  

In the logistic regression analysis, for the more abundant aquatic bird 

species on the YKSA (American wigeon, green-winged teal, lesser scaup, and 

red-necked grebe,) wetlands were defined as “used” if a brood or broods had 

been observed on the wetland for more than 2 of the survey years. For the less 

abundant species (mallard, ring-necked duck, and horned grebe) wetlands were 

defined as “used” if a brood or broods had been observed on the wetland for 

more than 1 of the survey years. Logit models were also meant to provide insight 
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into the type and strength of relationships between habitat characteristics and 

brood presence or absence, while controlling for interactions between variables. 

Normality is not a requirement in logit modelling. However where the 

untransformed data were not normally distributed, transformation may have 

improved the fit of a model, therefore data both before and after transformation 

were used as separate parameters in this study. Likelihood ratio chi-square test 

was used to test for significant differences between used and unused wetlands 

for each aquatic bird species resulting from the categorized total phosphorus 

data.  

Variables with no significant effect in univariate logistic regression were 

excluded from multivariate logistic regression analysis. Otherwise, multivariate 

logit analysis proceeded in a stepwise manner, whereby the most significant 

variable from the among the univariate models was incorporated first, followed 

by the next most significant and so on. A variable was removed and excluded 

from the multivariate model if it was not significant (p > 0.05). Two-way 

interactions between terms in the model were tested as additional variables were 

added and retained.   

Using the wetland-use by brood data for all 262 natural YKSA wetlands, I 

predicted the number of wetlands expected to be unused by any duck broods by 

chance alone, as well as the number of wetlands expected to be used by all 5 
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species, by chance alone. Predictions are derived using probabilities; the 

percentage of used and unused wetlands is determined for each of the 5 duck 

species (N = 262) (all survey years combined); I dealt with correlations in the 

patterns of wetland-use between species (R2 > 0.20) by excluding one of the 

correlated species. The product of the percentages of unused wetlands by each 

waterfowl species is the probability that a wetland will be unused by broods of 

any of the 5 waterfowl species. The product of the percentages of used wetlands 

by each duck species is the probability that a wetland will be used by broods of 

all 5 duck species.  

3. RESULTS  

The most abundant species breeding and raising broods on the YKSA are 

lesser scaup and red-necked grebes, and fewest broods are recorded for ring-

necked ducks (Table 2). 

Twenty-year trends in duck brood abundances on YKSA wetlands (Figure 

2) show increased numbers of American wigeon broods during the later half of 

the 1990’s and increasing numbers of green-winged teal broods throughout the 

1990’s. Mallard brood numbers indicate a weak negative trend across the survey 

years. Of all species surveyed, lesser scaup brood counts have demonstrated the 

greatest variation across the survey years and suggest a declining trend in 

numbers of lesser scaup broods on YKSA (P = 0.046; R2 = 0.21; Figure 2). 
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Conversely, brood counts of the other main diver, ring-necked duck, indicate a 

weak, but positive trend across the survey years (P = 0.011; R2 = 0.33; Figure 2).   

There are fewer years of grebe brood abundance data for YKSA wetlands. 

Brood abundances of both grebe species are highly variable possibly showing a 

cyclical pattern (Figure 3). Numbers of red-necked grebe broods counted each 

year on the YKSA wetlands were less variable then numbers of horned grebe 

broods. 

3.1. Physical and chemical characteristics and invertebrate composition of 75 

Yellowknife Study Area wetlands  

Surface area among the study wetlands ranged from 0.03 ha to 12.8 ha. 

The majority of wetlands included in the study were relatively small, mean 2 ha, 

SE 0.3 (Table 3). Wetland depth ranged from less than 1 m to 6.4 m, however a 

thick peat substrate, which was relatively consistent among wetlands, may have 

hindered detection of the maximum depth of some ponds. Conductivity among 

wetlands ranged from 48 µ/cm to 1764 µ/cm; only the two highest values were 

greater than 920 µ/cm. Water pH ranged from 5.4 to 8.7. Total phosphorus levels 

indicated that the ponds are meso-eutrophic (Vollenweider and Kerekes 1980, 

from Walsh et al. 2006). 

Pairwise correlations showed that a few of the environmental variables 

were correlated (Table 4). Wetland area was positively correlated with shoreline 
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irregularity (R2=0.31, P<0.0001, N=75). Weaker correlations were present between 

area and depth, distance to the road, pH, water transparency, and water 

temperature (all R2<0.13 and P<0.002, N=75). Water transparency was positively 

correlated with depth (R2=0.33, P<0.0001, N=75) and also with shoreline 

irregularity (R2=0.14, P<0.0011, N=75). Temperature was positively correlated 

with distance to the road (R2=0.18, P<0.0002, N=75). Conductivity was negatively 

correlated with distance to the road (R2=0.15, P<0.0.0005, N=75), that is wetlands 

further from the road had lower conductivities. Other correlations among 

environmental variables were weak to negligible: shoreline irregularity with 

temperature (R2=0.06, P<0.0330, N=75) and pH with water transparency (R2=0.05, 

P<0.0513, N=75), shoreline irregularity (R2=0.05, P<0.0457, N=75), and 

temperature (R2=0.05, P<0.0524, N=75) and, thus likely to have occurred by 

chance alone.  

 The aquatic invertebrate community contained 18 taxonomic orders. 

Thirty-three species, genera, or families were identified. A few samples 

contained specimens that were unidentifiable beyond the classification of order 

due the integrity of the specimen. Thus a few more species than reported may 

have been present in the samples (Appendix A). Larvae of damselflies and 

dragonflies (Odonata) made up the largest part (21.5%) of the overall biomass. 

“Miscellaneous Crustacea” including Conchostraca, Cladocera, Copepoda, and 
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Ostracoda contributed 17% to overall biomass. Other major contributors to 

biomass included snails (Gastropoda) (16%), clams (Pelecypoda) (15.8%), Hyalella 

azteca (Amphipoda) (9.2%), true bugs (Hemiptera) (9%), beetles (Coleoptera) 

(2.8%), and mayflies (Ephemeroptera) (2.2%). The mean number of taxa collected 

from a wetland in the study was 18, with a range of 12 to 24. The highest biomass 

collected was 93.7 g/m2, the lowest was 4.9 g/m2, mean 24.7 g/m2, median 19.1 

g/m2. Pairwise correlations between the invertebrate taxa and environmental 

variables revealed a number of significant correlations (Table 5). Amphipoda 

were positively correlated with all the environmental variables, but most 

strongly so with wetland area (R2=0.25, P<0.0001, N=75). Pelecypoda were 

positively correlated with shoreline irregularity (R2=0.16, P<0.0004, N=75). 

Hemiptera were positively correlated with temperature (R2=0.16, P<0.0005, 

N=75). Total invertebrate biomass (log-transformed) was positively correlated 

with shoreline irregularity (R2=0.16, P<0.0005, N=75, Figure 4), and weakly 

correlated with transparency (R2=0.07, P<0.0259, N=75), but apparently not 

related to wetland area, conductivity, depth, pH, total phosphorus, or 

temperature. Total invertebrate abundance (log-transformed) was weakly 

correlated with pH (R2=0.07, P<0.0234, N=75). Correlations among invertebrate 

groups were also present (Table 6). The strongest correlations were between 

Ephemeroptera and Pelecypoda (R2=0.25, P<0.0001, N=75), Pelecypoda and 
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Gastropoda (R2=0.19, P<0.0001, N=75), Amphipoda and Ephemeroptera (R2=0.18, 

P<0.0002, N=75), Anisoptera with Zygoptera (R2=0.16, P<0.0005, N=75) and 

Pelecypoda (R2=0.19, P<0.0001, N=75), and Coleoptera and Hemiptera (R2=0.14, 

P<0.0008, N=75). All significant correlations among taxa were positive.  

In all but one wetland, I saw no evidence of the presence of fish. I did see 

a pike (Esox lucius) in a tributary (creek) that flowed into one of the larger YKSA 

wetlands in the study. Most YKSA wetlands are not proximate to a colonization 

source and likely freeze to the bottom in the winter, and are therefore unlikely to 

contain fish (J. Hines, CWS, pers. comm.).  

3.2. Brood-rearing habitat characteristics of aquatic birds on the Yellowknife 

Study Area 

 The distribution of broods of each of the seven aquatic bird species, by the 

total brood abundances over the CWS survey years lay on the positive side of 

Axis-1 of the PCA (Figure 5). Thus the gradient reflected by Axis-1 is some 

characteristic, which benefits all species. Axis-1 explains 51% of the variation in 

brood distribution. The total number of broods on a wetland over all the survey 

years is clearly influenced by wetland area (ha) (Figure 6), so to interpret the 

gradient represented by Axis-1 in the PCA, I began by fitting Factor-1 of the PCA 

by the slope derived by regression equations predicting brood abundance from 

wetland area (Table 7). A strong correlation exists between Factor-1 of the PCA 
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with the slopes derived from the relationships of brood abundances with 

wetland area (Figure 7), which indicates that the gradient reflected by Axis-1 in 

the PCA is wetland area.  Axis-2 explains an additional 18% of the variation in 

brood distribution; it describes a gradient that separates the abundances of 

horned grebe, American wigeon, green-winged teal and mallard broods from the 

abundances of red-necked grebe, ring-necked duck, and lesser scaup broods. 

Although I investigated components 1 and 2 of a PCA of the invertebrate 

community structure, none of the relationships provided a satisfactory 

interpretation of the gradient reflected by Axis-2, 3, or 4 of the distribution of 

broods. However, two possible explanations emerged from my exploration of 

what other variables might explain Axis-2 of the brood abundance PCA. 

Predicting the distribution of broods by (1) mean lake area that broods were 

recorded on (weighted by the number of broods of that species) (Figure 8) and 

(2) water transparency (Figure 9) both provide plausible explanations for Axis-2 

of the brood abundance PCA. The data presented in Table 7 indicate that brood 

abundances on the YKSA wetlands in the study are, with the exception of horned 

grebe broods, affected by wetland area (Axis-1 reflects the association between 

brood abundance and wetland area). The data in Table 7 also indicate that the 

predictive power of area on brood abundance varies among the bird species. 

Mean lake area that broods were recorded on, (weighted by the number of 
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broods of that species) (Table 7) provides an estimation of the relative 

importance of wetland area to breeding habitat selection by each of the aquatic 

bird species in the study and could explain the distribution of brood abundance 

on Axis-2.  Although the predictive power of water transparency as measured by 

Secchi disc depth (Table 7) on Factor-2 is not as strong as that of mean lake area 

(weighted by brood abundance) (R2=0.67 and R2=0.93, respectively), it is a 

significant variable on the brood-rearing habitats of some species, thereby 

providing a second possible explanation for Axis-2. Thirteen-percent of the 

variation in the PCA remained unexplained; however Eigen Values for all 

factors, except Factor-1 and 2, were <1, which makes it unlikely that they 

contribute any relevant or interpretable information to the distribution of brood 

abundances in the PCA (Manly 1990).  

 Results of the logistic regressions are summarized in Table 8. With the 

exception of horned grebe broods, wetland area was a significant explanatory 

variable of brood-rearing wetland selection by all the aquatic bird species 

included in the study.  In all models, the estimate for wetland area was positive, 

indicating that larger wetlands supported more broods overall.  

 With the exception of green-winged teal broods, shoreline irregularity 

contributed significantly to the univariate logit model for all aquatic bird species. 

Wetland distance to the road was a significant variable on brood-rearing wetland 
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selection by mallards, lesser scaup, and red-necked grebes. That water 

transparency was significant with the diving ducks and red-neck grebes in the 

univariate logistic regressions, provides support for my impression that 

transparency could explain the gradient reflected by Axis-2 of the brood 

abundance PCA. Little or no effect of other physical or chemical variables, such 

as depth, conductivity, pH, temperature, or total phosphorus on brood-rearing 

wetland selection was evident.  

 Three invertebrate groups had significant associations with brood-rearing 

wetlands: Amphipoda, Pelecypoda, and Ephemeroptera. The strength and 

direction of associations between brood-rearing wetlands and the habitat 

variables I measured are discussed in further detail for each aquatic bird species 

below. Although the effect of invertebrate abundance, log-transformed 

invertebrate abundance, and invertebrate biomass were all investigated in the 

regression analyses of brood-use, log-transformed invertebrate abundance 

provides the best fit to most models and was thus retained as the single 

parameter from which association between broods and invertebrates were 

estimated in this study. (Logit regression results from all measures are reported 

in Appendix B.) 
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3.3. American wigeon brood associations 

Thirty-seven percent of the studied wetlands were used by American 

wigeon broods for more than 2 survey years and were thus considered 

consistently used wetlands. Univariate logit regression analysis indicated that 

wetland area, shoreline irregularity, and abundance of Amphipoda, Pelecypoda, 

and Ephemeroptera were positively correlated with American wigeon brood-

rearing wetlands (Table 9). The best logit model with a reduction in deviance of 

17.36 from 32.19 (R2 = 0.35) for a loss of 2 d.f. indicated American wigeon broods 

were most strongly correlated with wetland area and the abundance of 

Ephemeroptera (Table 10). The average size of wetlands used by American 

wigeon broods in this study was 2.63 ha, SE 0.27, median 1.4 ha (derived from all 

wetlands ever used). The total number of American wigeon broods on these 

wetlands was positively correlated with wetland area, shoreline irregularity, and 

abundance of Pelecypoda, and Ostracoda (Table 11).  

3.4. Green-winged teal brood associations 

Forty percent of the studied wetlands were considered used consistently 

by green-winged teal broods.  Univariate logit regression analysis indicated that 

wetland area alone was correlated with brood-rearing wetlands (Table 12). 

Model fit was not improved by the addition of other variables. The average size 
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of wetlands used by green-winged teal broods in this study was 2.28 ha, SE 0.28, 

median 1.4 ha (derived from all wetlands ever used). The total number of green-

winged teal broods on these wetlands was positively correlated with wetland 

area, shoreline irregularity, and abundance of Gastropoda (Table 13).  

3.5. Mallard brood associations 

Forty-four percent of the studied wetlands were considered used 

consistently by mallard broods. Univariate logit regression analysis indicated 

that wetland area, shoreline irregularity, pH, and abundance of Amphipoda, 

Pelecypoda, and Conchostraca were positively correlated with brood-rearing 

wetlands (Table 14). Model fit was not improved by the addition of other 

variables. The average size of wetlands used by mallard broods in this study was 

2.53 ha, SE 0.27, median 1.8 ha (derived from all wetlands ever used). The total 

number of mallard broods on these wetlands was positively correlated with 

wetland area, pH, shoreline irregularity, and abundance of Amphipoda, 

Gastropoda, and Pelecypoda (Table 15).  

3.6. Lesser scaup brood associations  

Fifty-three percent of the studied wetlands were considered used 

consistently by lesser scaup broods. Univariate logit regression analysis 

indicated that wetland area, shoreline irregularity, pH, temperature, water 
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transparency, and abundance of Pelecypoda, Amphipoda, Ephemeroptera, and 

Ostracoda were positively correlated with brood-rearing wetlands, while Diptera 

had a negative correlation (Table 16). Model fit was not improved by the 

addition of other variables. The average size of wetlands used by lesser scaup 

broods in this study was 2.57 ha, SE 0.27, median 1.8 ha (derived from all 

wetlands ever used). The total number of lesser scaup broods on these wetlands 

was positively correlated with wetland area, transparency, shoreline irregularity, 

abundance of Amphipoda and Ostracoda, and Hirudinea biomass (g) (Table 17).  

3.7. Ring-necked duck brood associations  

Thirty-two percent of the studied wetlands were considered used 

consistently by ring-necked duck broods. Univariate logit regression analysis 

indicated that that wetland area, shoreline irregularity, transparency, water 

depth (m), and abundance of Pelecypoda, Amphipoda, and Ephemeroptera were 

positively correlated with brood-rearing wetlands, while Diptera had a negative 

correlation (Table 18). The best logit model with a reduction in deviance of 23.83 

from 47.02 (R2 = 0.51) for 2 d.f. indicated ring-necked duck broods were most 

strongly correlated with wetland area and abundance of Pelecypoda (Table 19). 

The average size of wetlands used by ring-necked duck broods in this study was 

3.21, SE 0.33, median 2.4 ha (derived from all wetlands ever used). The total 

number of ring-necked duck broods on these wetlands was positively correlated 
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with wetland area, transparency, shoreline irregularity, and abundance of 

Amphipoda, and Ostracoda (Table 20). 

3.8. Horned grebe brood associations 

Forty percent of the studied wetlands were considered used consistently 

by horned grebe broods. Univariate logit regression analysis indicated that 

abundance of Pelecypoda, Zygoptera, and Cyclopoida, and shoreline irregularity 

were positively correlated with horned grebe brood-rearing wetlands, while 

abundance of Trichoptera had a strong negative correlation (Table 21). Model fit 

was not improved by the addition of any of the other variables. The average size 

of wetlands used by horned grebe broods in this study was 2.4, SE 0.40, median 

1.4 ha (derived from all wetlands ever used). The total number of horned grebe 

broods on these wetlands was positively correlated with abundance of 

Cyclopoida and Pelecypoda and negatively by abundance of Trichoptera (Table 

22). 

3.9. Red-necked grebe brood associations 

Forty-six percent of the studied wetlands were considered used 

consistently by red-necked grebe broods. Univariate logit regression analysis 

indicated that wetland area, shoreline irregularity, transparency, temperature, 

and abundance of Amphipoda and Pelecypoda were positively correlated with 
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brood-rearing wetlands (Table 23). The average size of wetlands used by red-

necked grebe broods in this study was 2.86, SE 0.28, median 2.06 ha (derived 

from all wetlands ever used). The total number of red-necked grebe broods on 

these wetlands was positively correlated with wetland area, pH, transparency, 

shoreline irregularity, and abundance of Amphipoda, Ostracoda, and 

Trichoptera (Table 24).  

3.10. Interspecific brood associations 

 Green-winged teals and especially horned grebes stood out as having the 

fewest associations with the brood-rearing wetlands of the other species in the 

study (Table 25). Wetland area was not strongly correlated with the brood-

rearing wetlands of these two small species, which could explain the lack of 

association between these and the brood-rearing wetlands of the other species. 

All other species were associated with larger YKSA wetlands, which were less 

abundant in the study. The predictive power of the association, assessed by the 

R2 values derived by the logistic regressions (Table 25) indicate better fitting 

models among the diving ducks, between the diving ducks and red-necked 

grebe, and between the diving ducks and red-necked grebe with the largest 

dabbling duck, the mallard. The affinity for larger wetlands is a likely 

explanation for the brood-rearing wetland associations that were derived among 

these four YKSA breeders.  
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3.11. Unused wetlands 

 The probability that a natural YKSA wetland would not be used by a 

brood of any of the 5 dominant duck species on YKSA is 0.099. Thus, by chance 

alone, approximately 25 of 262 wetlands would be expected to be unused, if the 

use probabilities were independent.   The actual number of ponds unused by any 

duck species was only slightly higher than this with 34 (12.9%) wetlands were 

unused by any of the duck species.  Similarly, if use probabilities were 

independent, we would expect only 9 of 262 (3.4%) wetlands to be used by all of 

the duck species studied on YKSA.  The observed number of wetlands used by 

all species was 41 (15%), which was much greater than the number expected 

based on the assumption of independent probabilities.  Thus the positive 

associations that were detected between brood-use by several of the most 

abundant species lead to many wetlands being used by all species.  

4.  DISCUSSION 

4.1. Relationships between physical wetland characteristics and use by 

breeding water birds  

As expected, wetland area is associated with brood-rearing wetlands on 

the 75 YKSA wetlands studied. Two patterns in the association are apparent (1) 

in general, brood-rearing wetlands of diving ducks and the red-neck grebe are 
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larger than those of dabbling ducks and the horned grebe and (2) brood-rearing 

wetlands of the bigger aquatic birds in the study (American wigeon, mallard, 

ring-necked duck, lesser scaup, and red-necked grebe) are larger than those of 

the smallest species studied (green-winged teal and horned grebe).  

Although, horned grebe broods were an exception, associations between 

the physical characteristics of wetlands and brood-rearing habitat characteristics 

are stronger for species that are unable to or less likely to make frequent 

movements between wetlands (red-necked grebes and diving ducks). Ducks 

with ducklings that are able to move between wetlands (the dabbling ducks in 

this study) may subsidize an inadequacy of some resource by acquiring the 

resource elsewhere (Dzus 1997). In agreement with Möller (1987) and Elmberg 

(1994) my data indicate that wetland area is the more significant determinant of 

species number the more functionally dependant the species is on the wetland.  

The lack of any significant pattern of association between horned grebes 

and wetland size is interesting. That horned grebes are distinct from all the other 

species may be a reflection of the territorial nature of this species. Horned grebes 

are highly territorial with a preference for small ponds from which they 

aggressively defend a territory using visual cues (Faaborg 1975).  The strongest 

negative influence of an invertebrate group on brood-rearing habitat was that of 

Trichoptera on horned grebes. A possible explanation for the strong negative 
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association is that some habitat characteristic, which is favourable to Trichoptera, 

is undesirable to horned grebe broods. Trichoptera larvae and pupae are often 

associated with logs hanging into or sitting under the waters surface (Hoffmann 

2000). Perhaps, in the case of horned grebes, the presence of protruding logs 

visually restricts an environment and decreases its suitability for brood-rearing; 

however I was unable to test this hypothesis.  

 My results also indicate that, as hypothesised, shoreline irregularity is 

associated with brood-rearing wetland selection. Shoreline irregularity may (1) 

cue pairs in search of a suitable wetland based on potential food availability or 

(2) indicate areas with a greater abundance of suitable protective plant cover for 

brood rearing. While shoreline irregularity is likely a wetland characteristic 

associated with wetland selection during the breeding season for some species, 

in this study, shoreline irregularity was correlated with wetland area and the 

significance of SI as a regressor could be reflective of the strong association 

between brood-rearing wetlands and wetland area. Undoubtedly, shoreline 

details of small wetlands were lost by measuring wetland perimeters from coarse 

scale maps. Thereby, the shoreline irregularity of small wetlands is 

underestimated.  As a result, the association between shoreline irregularity and 

brood-rearing wetland selection remains somewhat unresolved. Interestingly, 

the only case where SI was not significant on wetland selection was in that of 
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green-winged teal, a small species associated with smaller wetlands.  

Consequently, I think my results may be at least partially driven by the 

association between wetland area and habitat suitability. Nevertheless, shoreline 

irregularity is likely an important characteristic of brood-rearing wetlands for 

aquatic birds and I think that if wetland perimeter were measured on a finer 

scale, its association with brood-rearing habitat would (1) include green-winged 

teal and (2) increase in the strengths of its associations with brood-rearing habitat 

of the other water birds studied.    

 The water transparency of wetlands, as measured by Secchi disc depth, is 

positively associated with brood-rearing wetlands of diving ducks and red-

necked grebes. In laboratory studies Sugden (1973) observed, ducklings making 

attempts to retrieve larger food items, while avoiding smaller, but more 

abundant items such as Daphnia sp., an indication that visual recognition affects 

the detection of food items in ducklings. The positive association between brood-

rearing wetlands and water transparency may occur because water transparency 

affects foraging success, especially in diving duck species and red-necked grebes. 

 On many wetlands the Secchi disc was visible to the bottom, so a strong 

correlation between wetland depth and water transparency was not surprising. 

However, that wetland depth appeared to have little or no influence on brood-

rearing wetland selection by water birds in the study was somewhat surprising. 
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Walsh et al. (2006) found a strong correlation between wetland depth and lesser 

scaup broods on 24 YKSA wetlands. The median and range of depths in the 24 

wetlands sampled by Walsh et al. (2006) were similar to those in this study; in 

Walsh et al. (2006) median wetland depth was 2.0 m, minimum 0.3 m, and 

maximum 4.6 m and in this study median depth was 1.6 m, minimum 0.5 m, and 

maximum 6.4 m.  

Wetlands on the study area had relatively low conductivity levels and 

were well below levels shown to be fatal to young ducklings (>20,000ms/cm) or 

known to affect growth (Mitcham and Wobeser 1998, Swanson et al. 1984). 

Conductivity had no association with brood-rearing habitat on these YKSA 

wetlands.  Wetlands further from the road had lower conductivities. Elevated 

conductivities near the road could possibly be attributed to former dust- 

suppression practices on the highway.   

 Although my results indicate wetland area is correlated with distance to 

the road and shoreline irregularity, I think it is unlikely that an actual cause and 

effect relationship exists between the variables. I think the correlation between 

wetland area and distance to the road exists because the study area is long and 

narrow and large wetlands often encompass a large portion of the 400m stretch 

from the road to the boundary of the study area, thus the distance from the edge 

of the road to the center of a large wetland implies that large wetlands are far 
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from the road. In actuality, the shorelines of large wetlands may be situated very 

near the road. Therefore, although distance to the road was a significant variable 

on brood-rearing wetland selection by mallards, lesser scaup, and red-necked 

grebes, interpreting the reason for the association is not straightforward; in fact 

the association may be spurious. 

Most studies that have correlated wetland-use by waterfowl with wetland 

productivity have been conducted in the PPR, the Great Lakes region, or 

Fennoscandia (eg. Merendino et al. 1993, Merendino and Ankney 1994, Staicer 

1994, Paquette and Ankney 1996, and Sjöberg et al. 2000 in Haszard 2004). The 

nutrient states of wetlands differ among regions and in comparison to wetlands 

in the WBF (Hornung 2005), making comparisons among regions difficult. I 

found no evidence to support associations between wetland-use by broods or 

invertebrate food abundance and wetland productivity on YKSA wetlands. One 

possible explanation for this is that levels used to detect phosphorus 

concentration from the samples were too high and did not provide the resolution 

necessary to detect a correlation. However, a more likely explanation is that no 

correlations with phosphorus concentrations were found since productivity was 

uniformly low across this series of wetlands.    
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4.2. Relationships between aquatic invertebrates and brood-rearing habitats 

of aquatic birds on the YKSA  

Numerous studies have linked waterfowl abundance and distribution to 

the availability of invertebrate prey. Nummi et al. (1994), Pöysä et al. (2000), and 

Elmberg et al. (2003) linked mallard and green-winged teal (Nummi and Pöysä 

1995) density to food abundance in Fennoscandian wetlands, and Lindeman and 

Clark (1999) linked wetland-use by lesser scaup to amphipod abundance in 

Saskatchewan wetlands.  

Three invertebrate groups had significant associations with brood-rearing 

wetlands: Amphipoda, Pelecypoda, and Ephemeroptera. Brood associations with 

Pelecypoda may reflect the nutritive requirements of egg production. Egg 

production is associated with high calcium requirements, and egg-laying female 

ducks often eat empty snail and clam shells (Krapu and Swanson 1975), which 

are high in calcium. In contrast, postlaying females sometimes remove shells and 

ingest only the soft parts of the animal (Hohman 1985). Fat reserves acquired 

prior to arrival on breeding grounds are depleted during rapid ovarian follicle 

growth and the protein required for egg production must be obtained from 

ambient dietary items ingested during laying (Hohman 1986, Alisauskas et al. 

1992). Swanson (1984) reported that only trace amounts of Gastropoda were 

consumed by mallards in the PPR during April; one month later, they accounted 
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for 25% of the foods consumed. Although the bill morphology of the green-

winged teal limit it to prey items smaller than those selected by other dabbling 

ducks (Pöysä 1983, Nudds and Bowlby 1984, Nummi 1993), even when its diet 

shifted to one higher in animal content during the breeding season, 11.3% of the 

17% total animal consumption was mainly Ostracoda, a small, but calcium-rich 

food item (Hughes and Young 1982). (Although not always a factor favouring 

occupancy alone, Ostracoda directly influenced the total numbers of American 

wigeon, lesser scaup, ring-necked duck, and red-necked grebe broods on 

wetlands.) Thus, female nutritive requirements during egg-production might 

drive the association between Pelecypoda with brood-rearing wetland habitat.   

Ducklings are precocial. They leave the nest and follow the hen to water 

within 24 hours of hatching and begin feeding themselves immediately. For the 

first few days of life their bills are unspecialized and they are too light to tip-up 

or dive to retrieve food items, thus ducklings are restricted to food items on the 

waters surface (Sugden 1973). Scaup ducklings begin making short dives within 

a day or so of being in the water and, as do the ducklings of other species, begin 

to emulate adult foraging behaviour within 4-5 days. However, mature foraging 

behaviour may not be effectual for several weeks (Sugden 1973). Thus, although 

invertebrate sampling was better suited to invertebrates available to dabbling 

ducks, as ducklings, most species are restricted to capturing similar invertebrate 
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prey. Although the youngest ducklings are bound by morphologic constraints to 

a generalist diet for the first few days of life, bill specialization occurs in 

conjunction with increased duckling body mass, which affords some broods with 

the ability to move to a new wetland in search of food if the original brood pond 

is insufficient in that capacity. Hens in the PPR and Fennoscandia are known to 

move their broods to a new wetland for rearing within a short time (Talent et al. 

1982, Dzus and Clark 1997). Similarly hens may move young broods to alternate 

wetlands on YKSA (J. Hines, Canadian Wildlife Service, pers. comm.). Talent et 

al. (1982) hypothesized that the brood movements are conducted due to poor 

food availability in natal ponds. Thus there is evidence for the existence of food 

limitation on these wetlands. However, my findings demonstrate that, overall 

the associations between invertebrate taxa and brood-rearing wetlands are weak 

in comparison to brood-rearing habitat associations with the physical parameters 

of these wetlands. This could indicate that other factors, such as predation, cool 

weather, and late frosts may be more important at the population level than food 

limitation is in this area.   

My findings provide some support for geographic variation in the 

invertebrate groups associated with brood-rearing habitat for certain aquatic bird 

species in the study. Diptera, especially chironomid larvae have been considered 

an important dietary item for mallard and other ducklings (Danell and Sjöberg 
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1980, Sjöberg and Danell 1982, Talent et al. 1982, Batzer et al. 1993, Gardarsson 

and Einarsson 1994), Dzus and Clark 1997, King and Wrubleski 1998, Ashley et 

al. 2000, in Hornung 2005). However, in my study, Dipteran abundance was not 

associated with brood-rearing wetlands of any species. In fact, Dipteran 

abundance had a negative correlation with the brood-rearing habitats of lesser 

scaup and ring-necked ducks.  My findings are consistent with those of Hornung 

(2005) who found no association between mallard duckling diet and the 

abundance of dipterans in northern Alberta wetlands. Hornung (2005) identifies 

Dytiscids as important to mallard duckling diets in northern Alberta, however, I 

found no association between Dytiscids and mallard brood-rearing habitat on 

these wetlands.  

Diets of duckling and juvenile lesser scaup are dominated by Amphipoda, 

Gastropoda, and Diptera in Manitoba (Bartonek and Hickey 1969) and Diptera 

and Conchostraca in the Northwest Territories (Bartonek and Murdy 1970). In 

my study, Amphipoda, Pelecypoda, Ephemeroptera, and Ostracoda were 

positively correlated with brood-rearing wetlands of lesser scaup, while the 

association with Diptera was a negative one. 

In Maine and Minnesota, Hohman (1985) and McAuley and Longcore 

(1988) identified Trichoptera, Diptera, Conchostraca, Gastropoda and 

Pelecypoda as important food items for ring-necked ducklings. Trichoptera had 
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no association with the brood-rearing wetlands of ring-necked ducks, 

Pelecypoda may be a potential prey item, and Diptera had a negative association 

with brood-rearing wetlands of ring-necked ducks on the YKSA.   

In breeding lakes in Alberta and British Columbia, Odonata are important 

food items for adult and young red-necked grebes (Kevan 1970, Riske 1976, 

Ohanjanian 1986, in Stout and Nuechterlein 1999). However, Odonata were not 

significantly associated with red-necked grebe brood-rearing wetlands in my 

study.   

4.3. Interspecific associations among aquatic bird species on the YKSA  

 Interspecific association (+ or -) results from one of two general factors: (1) 

species select or avoid the same habitat or components of the same habitat or (2) 

species have an affinity for another species that is manifested in an attraction or 

repulsion.  

 Since variables that were significant on brood-rearing wetlands were 

similar among species, with the exception of horned grebes, it is not surprising 

that associations among species were common in this study. Support for my 

predictions regarding the effect of breeding chronology patterns on interspecific 

associations found little support in the results of evaluations of interspecific 

affinities (Table 23). While numerous associations are significant, the R2 values 
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do not indicate that, in any of the instances, breeding chronology predicts well 

that wetlands used by early breeders will be shared with late breeders.   

 My predictions regarding the effect of grebe territoriality on brood-use of 

wetlands also found little support. Both grebe species are territorial (Garner 1991 

and Fjeldså 1973), but red-necked grebes appear to be tolerant of other species on 

these wetlands. Garner (1991) indicated territoriality increased in red-necked 

grebes in response to limits to food availability. Determining whether broods of 

other species occur more often on wetlands during the years when red-necked 

grebes are absent would provide a better test of the degree of territoriality 

exercised by breeding red-necked grebes in this area. Nonetheless, I interpreted 

my findings regarding interspecific associations of red-necked grebes on these 

wetlands as partial, yet further support suggesting that food limitation is not the 

foremost factor affecting brood-rearing wetland selection on the YKSA wetlands 

studied.   

4.4. Unused wetlands 

 Slightly more natural YKSA wetlands were unused for brood-rearing by 

all ducks then what I predicted would have occurred by chance (12.9% and 9% 

respectively). Two-hundred and sixty-two YKSA wetlands are natural water 

bodies and 313 are borrow pits. A possible explanation for why more wetlands 

were unused than what I expected is that breeding ducks use both natural water 
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bodies and borrow-pits, thus the number of unused natural wetlands on YKSA is 

inflated. I predicted fewer wetlands would be used by all broods (3.4%) than 

what was observed (15.6%). These findings suggest that, in general, YKSA 

wetlands do not lack brood rearing resources.    

4.5. Invertebrate community patterns and environmental relationships 

Aside from shoreline irregularity total invertebrate abundance was not 

significantly correlated with any other abiotic variable. Shoreline irregularity 

affords a wetland with wind-protected bays, which promote macrophyte 

colonization, increase the number of hiding places and ultimately habitat 

suitability for many aquatic invertebrates (Kalff 2001), which probably explains 

the correlation.  

 Some studies have reported that predation pressure from fish presence 

has reduced the abundances of Crustacea (Zimmer et al. 2000, Bartonek and 

Hickey 1969) and Anisoptera (Henrikson 1988, Bendell and McNicol 1995 in 

Sotiropoulos 2002) in wetlands.  The fact that Crustacea and Odonata are the two 

highest contributors to invertebrate biomass in study wetlands is therefore 

consistent with the observation that fish are absent from these wetlands. In terms 

of food availability, the absence of fish in YKSA wetlands may increase the 

suitability of these wetlands for broods. Hill et al. (1987) reported that mallard 

ducklings feeding in lakes with high densities of fish (and low densities of 
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aquatic invertebrates) survived at lower rates than those feeding in habitats with 

low densities of fish.  

5. CONCLUSION 

The western boreal forest provides important breeding habitat for 12 to 14 

million aquatic birds annually. Across the region, industrial developments are 

quickly outpacing conservation efforts. This is one of very few studies 

demonstrating patterns in brood-rearing habitat use by ducks and grebes in the 

boreal region.  

With the exception of horned grebes, in my study area, the most 

significant variable in determining brood-rearing habitat was wetland area. 

Shoreline irregularity was also an important variable in determining wetland 

suitability. Admittedly the indices of shoreline irregularity in my study were 

correlated with wetland area, which may have biased those results. In general, 

associations between physical wetland characteristics and brood-rearing habitat 

were greater than associations between invertebrate taxa and brood-rearing 

habitat. Among the aquatic birds studied, associations with habitat variables 

were also stronger with the diving ducks and red-necked grebes than they were 

with the dabbling ducks and horned grebes. The ability or tendency of dabbling 

ducks to use several wetlands during the brood-rearing period may explain why 

correlations between wetland variables and breeding dabbling ducks were 
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weaker than the associations with breeding birds that are less likely to or unable 

to move between wetlands.  

Developing sound conservation initiatives for aquatic bird communities 

like this one is complicated by the range of life history traits, such as the ability to 

move broods, present in the assemblage. In the assemblage I have studied, a few 

species are reliant on a single wetland for the duration of the brood-rearing 

period, whereas other species use numerous wetlands for brood-rearing. 

Therefore, successful management strategies will require the conservation of a 

variety of features to meet the requirements of this assembly of aquatic birds 

during the breeding season. My findings indicate that an appropriate target for 

management would include wetland complexes, within which there are large 

wetlands characterized by irregular shorelines, as well as smaller wetlands 

characterized by sparsely vegetated shorelines.  

Invertebrate sampling was better suited to invertebrates available to 

dabbling ducks, but the ducklings of most species are restricted to similar 

invertebrate prey while young. In general this study shows weak links between 

invertebrate abundance and brood-rearing wetland selection by all 7 aquatic bird 

species. This finding may indicate that factors, other than food limitation, such as 

predation, cool weather, and late frosts may be more important at the population 

level in this area.  Additionally, some of my findings demonstrate intraspecific 
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variation along geographic lines with regard to the biotic variables that influence 

wetland suitability for certain waterfowl broods; however further research is 

needed to learn more about the relationships between ducklings and invertebrate 

prey.  
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Table 1 - Temporal changes to invertebrate abundance (transformed) on YKSA 

wetlands between mid-June and mid-July 2004. Asterisks denote significant 

differences by 2-sample t-tests (P<0.05, n=13). 

Taxa mean SE
Amphipoda June 1.95 0.165

July 2.18 0.162
*Anisoptera June 1.36 0.064

July 1.58 0.073
Coleoptera June 1.18 0.043

July 1.26 0.026
*Crustacea June 2.28 0.144

July 2.73 0.101
Diptera June 1.75 0.080

July 2.04 0.144
Ephemoptera¹᾿² June 1.65 0.179

July 1.36 0.053
*Gastropoda June 1.53 0.127

July 1.86 0.090
*Hemiptera¹᾿² June 1.29 0.040

July 1.82 0.090
Hiudinea¹ June 1.14 0.064

July 1.17 0.067
Hydrachnidia¹ June 1.17 0.041

July 1.19 0.037
Pelecypoda¹ June 1.89 0.168

July 1.90 0.121
Trichoptera¹᾿² June 1.13 0.040

July 1.06 0.019
*Zygoptera June 1.34 0.060

July 1.71 0.075
¹ data not normally distributed
² significant differences tested using Welsh Anova F-test  
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Table 2 - Total number of broods counted on wetlands on the Yellowknife Study Area. Counts for ducks are based on the years 

1985-2003 and counts for grebes are based on the years 1991-2003. The percentage of wetlands (N=75) used by broods is reported 

for each aquatic bird species.  Medians, ranges, and means ±SE, are the median, range, and mean ±SE broods counted per “used 

wetland”.  

 

Species
Total broods 

counted

% wetlands 
used by broods 

(N=75)

dabbling ducks
American wigeon 218 69.3% 3 1 to 23 4.2 (± 0.59)
Green-winged teal 211 76.0% 3 1 to 20 3.7 (± 0.42)
Mallard 162 73.3% 2 1 to 8 2.9 (± 0.29)
diving ducks
Lesser scaup 406 73.3% 4 1 to 62 7.4 (± 1.33)
Ring-necked duck 140 45.3% 2 1 to 24 4.1 (± 0.97)
grebes
Horned grebe 161 61.3% 3 1 to 11 3.6 (± 0.42)
Red-necked grebe 453 60.0% 7 1 to 48 9.8 (± 1.37)

Number of broods per "used wetland"                                                               
Median                        Range                     Mean (±SE)
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Table 3 - Means standard errors, medians, and ranges of environmental and 

chemical characteristics of 75 natural wetlands near Yellowknife, Northwest 

Territories, Canada (2004).  

Variable Mean SE Median Min Max
Area (ha) 2.0 0.3 1.2 0.03 12.8
Conductivity (u/cm) 296 29 229 48 1764
Depth (m) 2.1 0.2 1.6 0.5 6.4
Distance to road (m) 21.8 1.5 20.0 2.5 54.0
pH 7.4 0.1 7.5 5.4 8.7
Shoreline irregularity 1.7 0.1 1.7 0.4 3.8
Secchi disc depth (m) 1.2 0.0 1.2 0.4 2.5
Temp (C°) 20.9 0.3 20.8 14.4 26.7
Total P (mg/L) <0.02 0.002 <0.02 <0.02 0.1
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Table 4 – Simple correlation coefficients between environmental variables of 75 Yellowknife Study Area wetlands (2004). 

Area (ha)a Conductivity 
(µ/cm)1 Depth (m)b pH 

Transparency 
(m)c SId Temperature 

(°C)
Conductivity (µ/cm)1 -

Depth (m)b 0.2383 -
P=0.0395

pH 0.2884 0.2432 -
P=0.0121 P=0.0355

Transparency (m)c 0.3444 - 0.5725 0.2259
P=0.0025 P=0.0000 P=0.0513

SId 0.5600 - - 0.2315 0.3705
P=0.0000 P=0.0457 P=0.0011

Temperature (°C) 0.2677 - - 0.2249 - 0.2465
P=0.0203 P=0.0524 P=0.0330

Distance to road (m)1 0.4257 -0.3934 - - - 0.3078 0.4183
P=0.0002 P=0.0005 P=0.0076 P=0.0002  

1 Data not normally distributed. Correlation is measured using Spearman’s Rho.  

a Area data are Box-Cox transformed (Area0.2) 

b Depth data are Box-Cox transformed (Log(Depth)) 

c  Transparency as measured by Secchi disc depth (m) 

d SI = shoreline irregularity
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Table 5 - Simple correlation coefficients between environmental variables and invertebrate taxa of 75 Yellowknife Study Area 

wetlands (2004). Invertebrate data have been log10(x+10) transformed. 

Area (ha)a Cond. 
(µ/cm)1 Depth (m)b pH SD (m)c SId Temp. (°C)

Dist. to 
road (m)1

0.4124 - 0.2645 0.2447 0.2595 0.2812 0.2490 -
P=0.0002 P=0.0219 P=0.0344 P=0.0246 P=0.0145 P=0.0345

- - - - - - - -

- - - 0.2729 - - - -
P=0.0178

-0.3030 0.2774 -0.3299 - - - - -
P=0.0082 P=0.0160 P=0.0038

0.3415 - - - 0.3310 0.2461 - -
P=0.0027 P=0.0037 P=0.0333

- - - 0.3232 - - - -
P=0.0047

- - - - - - 0.3846 -
P=0.0007

0.2663 - - 0.2599 - - - -
P=0.0209 P=0.0243

- 0.2730 - - - - - -
P=0.0178

- - - - - - - -

- - - - - 0.2997 0.2322 -
P=0.0090 P=0.0450

0.3678 - - - 0.2824 0.4010 - -
P=0.0012 P=0.0141 P=0.0004

- - - - - - - 0.2555
P=0.0280Trichoptera1

Hydrachnidae & Araneae1

Anisoptera

Zygoptera1

Pelecypoda

Ephemeroptera1

Gastropoda

Hemiptera1

Hirudinea1

Amphipoda1

Coleoptera1

Crustacea

Diptera1

 
1 Data not normally distributed. Correlation is measured using Spearman’s Rho.  

a Area data are Box-Cox transformed (Area0.2) 

b Depth data are Box-Cox transformed (Log(Depth)) 

c  Transparency as measured by Secchi disc depth (m) 

d SI = shoreline irregularity
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Table 6 - Simple correlation coefficients between invertebrate taxa from 75 Yellowknife Study Area wetlands (2004). ). 

Invertebrate data have been log10(x+10) transformed. 
Amphipoda1 Coleoptera1 Crustacea Diptera1 Ephemeroptera1 Gastropoda Hemiptera1 Hirudinea1

Hydrachnidae & Araneae1 Anisoptera Zygoptera1 Pelecypoda
-

- -

- 0.2793
P=0.0152

0.3749 - 0.2488 -
P=0.0009 P=0.0314

0.3170 - 0.2328 0.3159 0.3577
P=0.0056 P=0.0444 P=0.0058 P=0.0016

- 0.4051 - - -0.3077 -
P=0.0003 P=0.0072

0.3971 0.2404 - - 0.2287 0.2350 -
P=0.0004 P=0.0378 P=0.0484 P=0.0424

0.2481 0.3455 0.3412 - - - 0.2828 -
P=0.0319 P=0.0024 P=0.0027 P=0.0139

- -0.2604 - - 0.3427 0.3248 - -0.2340 -
P=0.0241 P=0.0026 P=0.0045 P=0.0433

- - - - - 0.3699 - - - 0.3791
P=0.0011 P=0.0008

0.2294 - - - 0.5125 0.4324 - - - 0.4334 0.2992
P=0.0477 P<0.0000 P<0.0001 P=0.0001 P=0.0091

0.2665 - - - - - - 0.3704 - - - -
P=0.0208 P=0.0011

Coleoptera1

Crustacea

Diptera1

Ephemeroptera1

Gastropoda

Hemiptera1

Hirudinea1

Trichoptera1

Hydrachnidae & Araneae1

Anisoptera

Zygoptera1

Pelecypoda

 
1 Data not normally distributed. Correlation is measured using Spearman’s Rho.  
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Table 7 – Regression equations predicting brood abundance by wetland area (ha) and Secchi disc depth (m) are derived from 75 

wetlands on the Yellowknife Study Area, near Yellowknife, NT, 2004. Mean-pond size (weighted by brood abundance, 

calculated by: ((area*brood abundance)/brood abundance) is also reported.  

 
1 Brood abundance is the total number of broods observed by Canadian Wildlife Service survey 1985-2003. 

2 Brood abundance is the total number of broods observed by Canadian Wildlife Service survey 1991-2003. 

3 Mean pond size (weighted by the number of broods of that species) = 

∑

∑

=

=

•

L

i
i

L

i
ii

N

AN

1

1 ,  

where Ni represents the number of broods of a given species in the ith  lake, L is the number of lakes, and Ai is the surface area of the ith lake 

Species 
Regression equation predicting brood  

abundance by wetland area 

Mean-pond size  
(weighted by brood  

abundance) (ha)3 

Regression equation predicting brood  
abundance by wetland area 

1 American wigeon y=0.53+1.21x; P<0.0001; R 2 =0.45 4.03 y=1.42+1.2x; P<0.2888; R 2 =0.02 
1 Green-winged teal y=1.76+0.54x; P<0.0009; R 2 =0.14 2.9 y=2.65+1.4x; P<0.8813; R 2 =0.00 
1 Mallard y=1.26+0.46x; P<0.0001; R 2 =0.21 3.02 y=1.4+0.6x; P<0.3346; R 2 =0.01 
1 Lesser scaup y=-1.61+3.57x; P<0.0001; R 2 =0.79 5.25 y=-1.64+5.7x; P<0.0224; R 2 =0.07 
1 Ring-necked duck y=-1.39+1.65x; P<0.0001; R 2 =0.74 6.37 y=-1.83+2.9x; P<0.0121; R 2 =0.08 
2 Horned grebe y=2.11+0.02x; P<0.9006; R 2 =0.00 2 y=1.39+0.6x; P<0.4360; R 2 =0.01 
2 Red-necked grebe y=-0.69+3.42x; P<0.0001; R 2 =0.77 4.78 y=-2.29+6.8x; P<0.0048; R 2 =0.10 
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Table 8 – Summary results of logistic regressions for the habitat characteristics and invertebrate groups associated with brood-

rearing wetlands for 7 aquatic bird species on 75 Yellowknife Study Area wetlands, near Yellowknife, NT, 2004. Only variables 

that were significant to two or more species are listed. 

Variable
American 

wigeon
Green-winged 

teal
Mallard Lesser scaup

Ring-necked 
duck

Horned grebe
Red-neck 

grebe
Environmental variable

Area (ha)a ● ◦ ● ● ● ●
Area (ha) □ ∙ ● ● ● ●
Distance to road (m)b ◦ ◦ ◦
pH ∙ ∙
Secchi disc depth (m) ∙ ◦ ∙
Shoreline irregularity ◦ □ □ ◦ ∙ ◦

Invertebrate group
Log_Amphipoda ◦ ∙ ∙ ∙ ◦
Log-Diptera ∙ ∙
Log-Ephemeroptera ◦ ∙ ∙
Log-Pelecypoda ◦ ∙ ∙ ◦ ◦ ∙  

•P<0.05, ◦ P<0.01, □ P<0.001, • P<0.0001. 
a Area is Box-Cox transformed (Area=Area0.02). 
b Distance to the road is measured from the center of a wetland to the edge of the road.
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Table 9 - Univariate logit regression indicating habitat features associated with 

American wigeon brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 

Table 10 - Multivariate logit regression indicating habitat associated with 

American wigeon brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004.  

 

 

Table 11 - Linear regressions indicating habitat features associated with the total 

number of American wigeon broods on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 9.6987 1.4160 6.85 <.0001 0.3829
Shoreline irregularity 2.8488 0.7016 4.06 0.0001 0.1731
Log-Pelecypoda 2.0948 0.9582 2.19 0.0320 0.0486
Log-Ostracoda 5.0084 2.2988 2.18 0.0326 0.0482  

 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 7.0763 1.7301 16.7298 0.0000 0.3037 
Shoreline irregularity 1.5570 0.5019 9.6237 0.0019 0.1244 
Log_Amphipoda 1.8699 0.6313 8.7731 0.0031 0.1140 
Log-Ephemeroptera 2.2212 0.7840 8.0269 0.0046 0.0943 
Log-Pelecypoda 1.7148 0.6125 7.8379 0.0051 0.0963 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 7.1731 1.8846 14.4868 0.0001 0.35 
Log-Ephemeroptera 1.9023 0.9204 4.2717 0.0388 
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Table 12 - Univariate logit regression indicating habitat features associated with 

green-winged teal brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance.  

 

 

Table 13 - Linear regressions indicating habitat features associated with the total 

number of green-winged teal broods on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance.  

 
variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 5.1145 1.3177 3.8800 0.0002 0.1711
Shoreline irregularity 1.7409 0.5850 2.9800 0.0040 0.1082
Log-Gastropoda 2.2681 1.0400 2.1800 0.0324 0.0486  

 

 
 

 

 

 

 

 

 

 

 

 

 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 3.0191 1.0847 7.7500 0.0054 0.0908 
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Table 14 - Univariate logit regression indicating habitat features associated with 

mallard brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 

Table 15 - Linear regressions indicating habitat features associated with the total 

number of mallard broods on the Yellowknife Study Area, near Yellowknife, NT, 

2004. Variables are listed in order of significance.  

variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 5.2242 0.8179 6.39 <.0001 0.3497
Shoreline irregularity 1.5954 0.3952 4.04 0.0001 0.1713
Log-Gastropoda 2.0577 0.7181 2.87 0.0054 0.0888
Log-Amphipoda 1.2717 0.5095 2.50 0.0148 0.0660
Log-Pelecypoda 1.2660 0.5365 2.36 0.0210 0.0582
pH 0.9981 0.4365 2.29 0.0251 0.0540  

 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 9.2326 2.1589 18.2900 <.0001 0.3982 
Shoreline irregularity 1.8653 0.5435 11.7800 0.0006 0.1586 
pH  1.2486 0.5200 5.7700 0.0163 0.0710 
Log_Amphipoda 1.2423 0.5334 5.4300 0.0198 0.0597 
Log-Pelecypoda 1.1409 0.5417 4.4400 0.0352 0.0476 
Log-Conchostraca 0.6829 0.3419 3.9900 0.0458 0.0409 
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Table 16 - Univariate logit regression indicating habitat features associated with 

lesser scaup brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 

Table 17 - Linear regressions indicating habitat features associated with the total 

number of lesser scaup broods on the Yellowknife Study Area, near Yellowknife, 

NT, 2004. Variables are listed in order of significance. 

variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 23.7609 2.9675 8.01 <.0001 0.4603
Hirudinea (wt) (g) 3.6299 1.0486 3.46 0.0009 0.1292
Shoreline irregularity 4.9817 1.6403 3.04 0.0033 0.1000
Log-Ostracoda 12.2793 5.1185 2.40 0.0190 0.0604
Secchi disc depth (m) 5.7119 2.4484 2.33 0.0224 0.0566
Log-Amphipoda 4.2948 2.0534 2.09 0.0400 0.0436  

 

 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 9.1552 2.1389 18.3200 <.0001 0.3982 
Shoreline irregularity 1.9821 0.5683 12.1700 0.0005 0.1657 
Log-Pelecypoda 1.4469 0.5720 6.4000 0.0114 0.0720 
pH  1.1346 0.4934 5.2900 0.0215 0.0631 
Log_Amphipoda 1.1495 0.5117 5.0500 0.0247 0.0535 
Temperature (°C) 0.1971 0.0912 4.6700 0.0306 0.0488 
Log-Diptera -1.2292 0.5712 4.6300 0.0314 0.0495 
Log-Ephemeroptera 1.5583 0.7413 4.4200 0.0355 0.0472 
Log-Ostracoda 3.2510 1.5983 4.1400 0.0420 0.0536 
Secchi disc depth (m) 1.2326 0.6187 3.9700 0.0463 0.0421 
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Table 18 - Univariate logit regression indicating habitat features associated with 

ring-necked duck brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 
 
Table 19 - Multivariate logit regression indicating habitat associated with ring-

necked duck brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004.  

 

 

Table 20 - Linear regressions indicating habitat features associated with the total 

number of ring-necked duck broods on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance.   

variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 10.2473 1.5311 6.69 <.0001 0.3718
Shoreline irregularity 2.5756 0.7760 3.32 0.0014 0.1192
Log-Ostracoda 6.8629 2.4123 2.84 0.0058 0.0875
Hirudinea (wt) (g) 1.3522 0.5174 2.61 0.0109 0.0730
Secchi disc depth (m) 2.9912 1.1622 2.57 0.0121 0.0706
Log-Amphipoda 2.0814 0.9812 2.12 0.0373 0.0452  

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 10.8327 2.6066 17.2700 <.0001 0.4553 
Shoreline irregularity 1.5074 0.5009 9.0600 0.0026 0.1207 
Log-Pelecypoda 1.7596 0.6312 7.7700 0.0053 0.1002 
Secchi disc depth (m) 1.8078 0.6746 7.1800 0.0074 0.0880 
Log-Diptera -1.4993 0.6666 5.0600 0.0245 0.0628 
Log_Amphipoda 1.2469 0.5794 4.6300 0.0314 0.0564 
Log-depth (m) 0.9459 0.4528 4.3600 0.0367 0.0501 
Log-Ephemeroptera 1.4298 0.7305 3.8300 0.0503 0.0427 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 11.6381 2.8912 16.2038 0.0001 0.51 
Log-Pelecypoda 1.7696 0.8655 4.1801 0.0409 
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Table 21 - Univariate logit regression indicating habitat features associated with 

horned grebe brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 

Table 22 - Linear regressions indicating habitat features associated with the total 

number of horned grebe broods on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance.  

variable estimate SE t Ratio P R2

Log Trichoptera -17.2617 5.0838 -3.40 0.0011 0.1246
Log-Pelecypoda 1.8461 0.6523 2.83 0.0060 0.0865
Log-Cyclopoida 0.8360 0.4223 1.98 0.0515 0.0380  

 
 

variable estimate SE Walds X2 P R 2 

Log-Trichoptera -24.6855 7.6937 10.2900 0.0013 0.1798 
Log-Pelecypoda 1.9268 0.6364 9.1700 0.0025 0.1161 
Shoreline irregularity 1.0455 0.4407 5.6300 0.0177 0.0635 
Log-Zygoptera  2.1136 0.9571 4.8800 0.0272 0.0538 
Log-Cyclopoida 0.6802 0.3257 4.3600 0.0368 0.0453 
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Table 23 - Univariate logit regression indicating habitat features associated with 

red-necked grebe brood-rearing wetlands on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance. 

 

 

Table 24 - Linear regressions indicating habitat features associated with the total 

number of red-necked grebe broods on the Yellowknife Study Area, near 

Yellowknife, NT, 2004. Variables are listed in order of significance.  

variable estimate SE t Ratio P R2

Area (ha) ^ 0.2 25.0854 2.6134 9.60 <.0001 0.5519
Shoreline irregularity 6.1937 1.5183 4.08 0.0001 0.1745
Secchi disc depth (m) 6.7548 2.3220 2.91 0.0048 0.0916
Log-Amphipoda 4.7896 1.9648 2.44 0.0172 0.0626
Log-Ostracoda 11.1862 4.9686 2.25 0.0274 0.0521
pH 3.6403 1.6864 2.16 0.0342 0.0471
Log Trichoptera 34.6940 16.5639 2.09 0.0397 0.0438  

 

variable estimate SE Walds X2 P R 2 

Area (ha) ^ 0.2 12.6504 2.9969 17.8200 <.0001 0.5096 
Shoreline irregularity 1.7229 0.5246 10.7800 0.0010 0.1395 
Log_Amphipoda 1.4347 0.5469 6.8800 0.0087 0.0775 
Secchi disc depth (m) 1.5283 0.6359 5.7800 0.0163 0.0633 
Log-Pelecypoda 1.1320 0.5394 4.4000 0.0358 0.0469 
Temperature (°C) 0.1734 0.0897 3.7300 0.0533 0.0384 
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Table 25 - Interspecific affinity for coexistence between brood species on YKSA 

wetlands, near Yellowknife, NT as evaluated using logit regression analysis. 

Significant associations are highlighted in bold lettering and listed in order of 

significance. 

 

 

Y X estimate SE Walds X2 P R 2 
American wigeon Mallard 0.4531 0.1299 12.1700 0.0005 0.1555 

Lesser scaup 0.2601 0.0781 11.0900 0.0009 0.2398 
Red-necked grebe 0.1157 0.0394 8.6200 0.0033 0.1220 
Green-winged teal 0.2941 0.1046 7.9000 0.0049 0.1063 
Ring-necked duck 0.4407 0.2020 4.7600 0.0291 0.1483 
Horned grebe 0.1146 0.0855 1.8000 0.1801 0.0184 

Green-winged teal American wigeon 0.2524 0.0959 6.9300 0.0085 0.1089 
Mallard 0.2855 0.1134 6.3300 0.0118 0.0693 
Lesser scaup 0.0853 0.0415 4.2300 0.0396 0.0618 
Red-necked grebe 0.0593 0.0314 3.5700 0.0587 0.0417 
Horned grebe 0.1559 0.0879 3.1400 0.0762 0.0330 
Ring-necked duck 0.1049 0.0667 2.4700 0.1158 0.0311 

Mallard Red-necked grebe 0.2508 0.0612 16.7900 <.0001 0.2991 
Lesser scaup 0.3852 0.1066 13.0500 0.0003 0.2994 
Green-winged teal 0.4049 0.1207 11.2500 0.0008 0.1577 
American wigeon 0.3180 0.1130 7.9200 0.0049 0.1344 
Ring-necked duck 0.7326 0.2766 7.0100 0.0081 0.1786 
Horned grebe 0.0290 0.0834 0.1200 0.7280 0.0012 

Lesser scaup Mallard 0.7902 0.2058 14.7400 0.0001 0.2673 
Ring-necked duck 1.5577 0.4039 14.8700 0.0001 0.3030 
Red-necked grebe 0.3232 0.0839 14.8600 0.0001 0.3275 
American wigeon 0.7624 0.2037 14.0100 0.0002 0.2871 
Green-winged teal 0.3311 0.1170 8.0000 0.0047 0.1071 
Horned grebe 0.0502 0.0847 0.3500 0.5539 0.0034 

Ring-necked duck Red-necked grebe 0.2167 0.0529 16.8000 <.0001 0.2991 
Lesser scaup 0.4219 0.1108 14.5100 0.0001 0.4025 
Mallard 0.3684 0.1199 9.4300 0.0021 0.1147 
American wigeon 0.2752 0.0962 8.1800 0.0042 0.1400 
Green-winged teal 0.1697 0.0881 3.7100 0.0540 0.0472 
Horned grebe -0.0721 0.0957 0.5700 0.4510 0.0064 

Horned Grebe Green-winged teal 0.2674 0.1019 6.8800 0.0087 0.0896 
American wigeon 0.1368 0.0714 3.6700 0.0553 0.0452 
Mallard 0.0998 0.1043 0.9200 0.3385 0.0091 
Red-necked grebe -0.0250 0.0299 0.7000 0.4028 0.0075 
Ring-necked duck -0.0476 0.0634 0.5600 0.4528 0.0063 
Lesser scaup -0.0017 0.0265 0.0000 0.9497 0.0000 

Red-necked grebe Mallard 0.9385 0.2231 17.6900 <.0001 0.3517 
Ring-necked duck 1.5046 0.3696 16.5700 <.0001 0.3272 
Lesser scaup 0.4817 0.1271 14.3700 0.0002 0.3444 
American wigeon 0.4237 0.1367 9.6000 0.0019 0.1763 
Green-winged teal 0.3257 0.1117 8.5100 0.0035 0.1124 
Horned grebe -0.0502 0.0847 0.3500 0.5539 0.0034 

interspecific association (Y by X) 
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Figure 2 – Brood abundance of five species of ducks on the 38 km2 Yellowknife 

Study Area. Broods were counted during Canadian Wildlife Service surveys 

from 1985 to 2003 (Canadian Wildlife Service, unpublished data). The scale of the 

y-axis is the same for all species and ranges from 0 to 150 broods. 
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Figure 3 – Brood abundance of two species of grebes on the 38 km2 Yellowknife 

Study Area. Broods were counted during Canadian Wildlife Service surveys 

from 1991 to 2003 (Canadian Wildlife Service, unpublished data). The scale of the 

y-axis is the same for both species and ranges from 0 to 150 broods. 
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Figure 4 - Relationship of total invertebrate biomass (g) to shoreline irregularity 

on 75 Yellowknife Study Area wetlands (2004) (R2 = 0.16, P < 0.0005). 
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Figure 5 - PCA on brood abundances of seven species of aquatic birds that breed 

on Yellowknife Study Area wetlands. Waterfowl broods were counted during 

Canadian Wildlife Service surveys from 1985 to 2003 and grebe broods were 

counted on the same surveys from 1991 to 2003 (Canadian Wildlife Service, 

unpublished data). Axis-1 explains 51% of the variation and Axis-2 explains an 

additional 18%.  
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Figure 6 - Relationship of total water bird broods counted by Canadian Wildlife 

Service annual survey on 75 Yellowknife Study Area wetlands, near Yellowknife, 

NT, to wetland area (ha), (R2 = 0.86, P < 0.0001). Duck broods were counted from 

1985 to 2003 and grebe broods were counted from 1991 to 2003. 
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Figure 7 – Fit of Factor-1 from the PCA of the distribution of broods on 

Yellowknife Study Area wetlands by the slopes of the regression equations 

predicting brood abundance from wetland area. Regression equation: 

y=0.38+0.09Ln(x); R2 = 0.99. 
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Figure 8 - Fit of Factor-2 from the PCA of the distribution of broods on 

Yellowknife Study Area wetlands by mean-pond size (weighted by brood 

abundance). Regression equation: y=1.12+0.25x; R2 = 0.93. Mean-pond size 

(weighted by brood abundance) is calculated by: ((area*brood abundance)/brood 

abundance). 
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Figure 9 - Fit of Factor-2 from the PCA of the distribution of broods on 

Yellowknife Study Area wetlands by the slopes of the regression equations 

predicting brood abundance from Secchi disc depth (m). Regression equation: 

y=-3.17-5.59x; R2 = 0.67.  
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Appendix A - Aquatic invertebrate taxa belonging to the invertebrate groups 
used in analyses of 75 wetlands near Yellowknife, NT (2004).   
 

Invertebrate Grouping Families or Genera in Grouping
Anostraca†
Amphipoda Hyalella azteca, Gammarus lacustris
Coleoptera Chrysomelidae, Curculionidae, 

Dytiscidae, Elmidae, Gyrinidae, 
Crustacea Cladocera, Conchostraca, Cyclopoida, 

Ostracoda
Diptera Chaoboridae, Chironomidae, Culicidae, 

Ceratopogonidae
Ephemeroptera* Caenidae, Ephemerellidae, Siphlonuridae
Gastropoda Planorbidae, Lymnaeidae
Hemiptera Corixidae, Gerridae, Notonectidae
Hirudinea Glossiphoniiidae, Hirudinidae 
Hydrachnidae & Araneae  Hydrachnidia & Hydrachna
Odonata Anisoptera, Zygoptera 
Plecoptera†
Pelecypoda Sphaeriidae
Trichoptera* Limnephilidae
† occurance on YKSA wetlands extremely rare
* taxonomic resolution to order only  
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Appendix B - Univariate logit regression indicating the influence of habitat 

features on wetland-use by broods of seven aquatic bird species on YKSA 

wetlands near Yellowknife, NT (2004). 

American Wigeon
abiotic variable estimate SE Walds X2 P R2

Area (ha) 0.8367 0.2228 14.1000 0.0002 0.2665
Area (ha) (Box-Cox transformed) 7.0763 1.7301 16.7300 <.0001 0.3037
Conductivity -0.0017 0.0014 1.5100 0.2196 0.0207
Depth (m) -0.0753 0.1875 0.1600 0.6879 0.0017
Log-depth (m) 0.0002 0.4057 0.0000 0.9997 0.0000
pH 0.8743 0.4823 3.2900 0.0698 0.0382
Secchi disc depth (m) 0.6427 0.5822 1.2200 0.2696 0.0125
Shoreline irregularity 1.5570 0.5019 9.6200 0.0019 0.1244
Temperature (°C) 0.1100 0.0893 1.5200 0.2176 0.0157
biotic variable
Amphipoda 0.0016 0.0012 1.6500 0.1994 0.0196
Log_Amphipoda 1.8699 0.6313 8.7700 0.0031 0.1140
Amphipoda biomass (g) 0.5229 0.2533 4.2600 0.0390 0.0544
Coleoptera 0.0416 0.0292 2.0300 0.1539 0.0234
Log_Coleoptera 2.4780 1.6606 2.2300 0.1356 0.0235
Coleoptera biomass (g) -0.1241 0.6322 0.0400 0.8444 0.0004
Dytiscidae 0.0197 0.0353 0.3100 0.5759 0.0031
Dytiscidae biomass (g) -0.1330 0.6518 0.0400 0.8383 0.0004
Crustacea -0.0002 0.0002 0.5800 0.4457 0.0067
Log-Crustacea -0.0501 0.3726 0.0200 0.8929 0.0002
Crustacea biomass (g) -0.0336 0.0591 0.3200 0.5705 0.0037
Cladocera -0.0017 0.0012 2.1800 0.1397 0.0383
Log-Cladocera -0.5377 0.3811 1.9900 0.1583 0.0209
Cladocera biomass (g) -1.6501 1.2241 1.8200 0.1777 0.0325
Conchostraca 0.0000 0.0005 0.0000 0.9561 0.0000
Log-Conchostraca 0.3578 0.3331 1.1500 0.2828 0.0117
Conchostraca biomass (g) -0.0241 0.0605 0.1600 0.6898 0.0018
Cyclopoida 0.0001 0.0004 0.0500 0.8313 0.0005
Log-Cyclopoida 0.0791 0.3167 0.0600 0.8028 0.0006
Cyclopoida biomass (g) 0.0664 0.3396 0.0400 0.8450 0.0004
Ostracoda 0.0285 0.0226 1.5900 0.2080 0.0166
Log-Ostracoda 1.7054 1.2060 2.0000 0.1573 0.0207
Ostracoda biomass (g) 8.6044 7.1560 1.4500 0.2292 0.0151
Diptera -0.0037 0.0030 1.5500 0.2127 0.0308
Log-Diptera -0.5117 0.5530 0.8600 0.3548 0.0089
Diptera biomass (g) -0.9382 0.9223 1.0300 0.3090 0.0196
Chaoboridae -0.0059 0.0073 0.6500 0.4185 0.0159
Chaoboridae biomass (g) -0.5526 0.8491 0.4200 0.5151 0.0068
Chironomidae -0.0055 0.0047 1.3300 0.2490 0.0249
Chironomidae biomass (g) -5.5288 3.9569 1.9500 0.1623 0.0371
Culicidae 0.0092 0.0227 0.1700 0.6837 0.0017
Culicidae biomass (g) -1.2523 7.9991 0.0200 0.8756 0.0002
Ceratopogonidae -0.0262 0.0397 0.4400 0.5092 0.0056
Ceratopogonidae biomass (g) -52.9148 69.6691 0.5800 0.4475 0.0081  
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American Wigeon cont.
variable
Ephemeroptera 0.0101 0.0052 3.7200 0.0538 0.0469
Log-Ephemeroptera 2.2212 0.7840 8.0300 0.0046 0.0943
Ephemeroptera biomass (g) 0.2752 0.5902 0.2200 0.6410 0.0022
Gastropoda 0.0074 0.0042 3.0500 0.0808 0.0387
Log-Gastropoda 1.3565 0.7233 3.5200 0.0607 0.0376
Gastropoda biomass (g) 0.1043 0.0857 1.4800 0.2236 0.0244
Planorbidae 0.0066 0.0053 1.5400 0.2149 0.0158
Planorbidae biomass (g) -0.1777 0.2368 0.5600 0.4529 0.0071
Lymnaeidae 0.0138 0.0141 0.9500 0.3292 0.0274
Lymnaeidae biomass (g) 0.3796 0.2268 2.8000 0.0942 0.0578
Hemiptera -0.0027 0.0034 0.6200 0.4301 0.0105
Log-Hemiptera -0.7102 0.7040 1.0200 0.3131 0.0108
Hemiptera biomass (g) 0.0668 0.1103 0.3700 0.5450 0.0037
Corixidae -0.0146 0.0098 2.2300 0.1358 0.0438
Corixidae biomass (g) -5.6848 3.2445 3.0700 0.0797 0.0620
Gerridae -0.4584 0.4298 1.1400 0.2862 0.0165
Gerridae biomass (g) -80.2623 72.9259 1.2100 0.2711 0.0197
Notonectidae 0.0067 0.0063 1.1500 0.2837 0.0127
Notonectidae biomass (g) 0.1036 0.1150 0.8100 0.3677 0.0086
Hirudinea -0.0147 0.0270 0.3000 0.5865 0.0034
Log_Hirudinea 0.5452 1.4705 0.1400 0.7108 0.0014
Hirudinea biomass (g) 0.1882 0.2532 0.5500 0.4572 0.0056
Hydrachnidae & Araneae -0.0167 0.0266 0.4000 0.5289 0.0043
Log_Hydrachnidae & Araneae -1.1253 1.4192 0.6300 0.4278 0.0066
Hydrachnidae & Araneae biomass (g) -6.9413 8.1155 0.7300 0.3924 0.0082
Odonata 0.0006 0.0043 0.0200 0.8867 0.0002
Odonata biomass (g) 0.0230 0.0972 0.0600 0.8130 0.0006
Anisoptera 0.0018 0.0063 0.0800 0.7756 0.0008
Log-Anisoptera 0.5864 0.9172 0.4100 0.5226 0.0041
Anisoptera Biomass (g) 0.0206 0.1008 0.0400 0.8377 0.0004
Zygoptera -0.0006 0.0071 0.0100 0.9352 0.0001
Log-Zygoptera -0.0120 0.8640 0.0000 0.9889 0.0000
Zygoptera biomass (g) 0.2046 0.7153 0.0800 0.7748 0.0008
Pelecypoda 0.0022 0.0011 3.9100 0.0480 0.0551
Log-Pelecypoda 1.7148 0.6125 7.8400 0.0051 0.0963
Pelecypoda biomass (g) 0.1288 0.0901 2.0400 0.1530 0.0245
Trichoptera 0.1434 0.1402 1.0500 0.3062 0.0106
Log-Trichoptera 4.3218 3.9699 1.1900 0.2763 0.0120
Trichoptera biomass (g) 1.0544 2.9936 0.1200 0.7247 0.0012  
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Green-winged Teal 
abiotic variable estimate SE Walds X2 P R2

Area (ha) 0.2892 0.1299 4.9600 0.0260 0.0612
Area (ha) (Box-Cox transformed) 3.0191 1.0847 7.7500 0.0054 0.0908
Conductivity -0.0010 0.0011 0.8200 0.3639 0.0097
Depth (m) -0.0352 0.1822 0.0400 0.8467 0.0004
Log-depth (m) 0.1825 0.4014 0.2100 0.6493 0.0021
pH 0.3584 0.4216 0.7200 0.3953 0.0074
Secchi disc depth (m) -0.0130 0.5703 0.0000 0.9818 0.0000
Shoreline irregularity 0.4413 0.3963 1.2400 0.2655 0.0125
Temperature (°C) 0.0673 0.0867 0.6000 0.4372 0.0060
biotic variable
Amphipoda -0.0002 0.0011 0.0200 0.8896 0.0002
Log_Amphipoda 0.0858 0.4759 0.0300 0.8569 0.0003
Amphipoda biomass (g) 0.1505 0.2013 0.5600 0.4547 0.0057
Coleoptera 0.0015 0.0261 0.0000 0.9541 0.0000
Log_Coleoptera 0.6977 1.5864 0.1900 0.6601 0.0019
Coleoptera biomass (g) 0.1135 0.6092 0.0300 0.8523 0.0003
Dytiscidae -0.0131 0.0363 0.1300 0.7184 0.0013
Dytiscidae biomass (g) -0.1174 0.6401 0.0300 0.8544 0.0003
Crustacea 0.0000 0.0002 0.0100 0.9231 0.0001
Log-Crustacea 0.2901 0.3743 0.6000 0.4384 0.0060
Crustacea biomass (g) 0.0337 0.0506 0.4400 0.5047 0.0046
Cladocera -0.0003 0.0004 0.4100 0.5198 0.0068
Log-Cladocera 0.0654 0.3609 0.0300 0.8561 0.0003
Cladocera biomass (g) -0.2781 0.4389 0.4000 0.5263 0.0072
Conchostraca 0.0006 0.0006 1.2100 0.2712 0.0156
Log-Conchostraca 0.3366 0.3302 1.0400 0.3080 0.0103
Conchostraca biomass (g) 0.0495 0.0580 0.7300 0.3933 0.0081
Cyclopoida 0.0000 0.0004 0.0100 0.9390 0.0001
Log-Cyclopoida 0.2133 0.3127 0.4700 0.4952 0.0046
Cyclopoida biomass (g) 0.0125 0.3399 0.0000 0.9706 0.0000
Ostracoda 0.0084 0.0220 0.1500 0.7016 0.0014
Log-Ostracoda 0.7729 1.1778 0.4300 0.5117 0.0043
Ostracoda biomass (g) 2.5544 6.9507 0.1400 0.7132 0.0013
Diptera -0.0010 0.0014 0.4500 0.5008 0.0053
Log-Diptera -0.6039 0.5496 1.2100 0.2719 0.0124
Diptera biomass (g) 0.0695 0.4171 0.0300 0.8677 0.0003
Chaoboridae 0.0016 0.0024 0.4300 0.5144 0.0047
Chaoboridae biomass (g) 0.5053 0.6031 0.7000 0.4021 0.0090
Chironomidae -0.0065 0.0049 1.7900 0.1815 0.0317
Chironomidae biomass (g) -5.4672 3.8178 2.0500 0.1521 0.0384
Culicidae -0.0118 0.0233 0.2600 0.6123 0.0026
Culicidae biomass (g) -10.2501 8.7308 1.3800 0.2404 0.0150
Ceratopogonidae -0.0409 0.0474 0.7400 0.3885 0.0112
Ceratopogonidae biomass (g) -74.7443 81.4129 0.8400 0.3586 0.0135
Ephemeroptera 0.0075 0.0048 2.4300 0.1191 0.0275
Log-Ephemeroptera 0.4922 0.6766 0.5300 0.4670 0.0053
Ephemeroptera biomass (g) 1.4234 1.0125 1.9800 0.1598 0.0328
Gastropoda 0.0071 0.0042 2.8500 0.0913 0.0355
Log-Gastropoda 0.9278 0.6941 1.7900 0.1813 0.0182
Gastropoda biomass (g) 0.1334 0.1021 1.7100 0.1913 0.0306
Planorbidae 0.0048 0.0052 0.8500 0.3562 0.0085
Planorbidae biomass (g) 0.0225 0.1766 0.0200 0.8986 0.0002
Lymnaeidae 0.0273 0.0170 2.5700 0.1086 0.0471
Lymnaeidae biomass (g) 0.3098 0.2122 2.1300 0.1443 0.0448
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Green-winged Teal cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0021 0.0028 0.5500 0.4602 0.0080
Log-Hemiptera -0.1790 0.6586 0.0700 0.7857 0.0007
Hemiptera biomass (g) -0.1004 0.1317 0.5800 0.4458 0.0066
Corixidae -0.0013 0.0025 0.2900 0.5894 0.0037
Corixidae biomass (g) -0.1972 0.5619 0.1200 0.7257 0.0013
Gerridae 0.1561 0.2689 0.3400 0.5617 0.0034
Gerridae biomass (g) 61.5356 48.4187 1.6200 0.2038 0.0200
Notonectidae -0.0062 0.0074 0.7000 0.4040 0.0084
Notonectidae biomass (g) -0.0914 0.1311 0.4900 0.4860 0.0055
Hirudinea -0.0282 0.0328 0.7400 0.3901 0.0101
Log_Hirudinea -1.3606 1.7122 0.6300 0.4268 0.0070
Hirudinea biomass (g) 0.2385 0.2606 0.8400 0.3601 0.0088
Hydrachnidae & Araneae 0.0202 0.0241 0.7100 0.4008 0.0071
Log_Hydrachnidae & Araneae 1.4520 1.3385 1.1800 0.2780 0.0118
Hydrachnidae & Araneae biomass (g) 8.9679 7.2576 1.5300 0.2166 0.0160
Odonata 0.0066 0.0045 2.1600 0.1413 0.0227
Odonata biomass (g) 0.1475 0.1186 1.5500 0.2134 0.0191
Anisoptera 0.0060 0.0067 0.8200 0.3644 0.0088
Log-Anisoptera 0.7759 0.9120 0.7200 0.3949 0.0073
Anisoptera Biomass (g) 0.1387 0.1219 1.3000 0.2550 0.0159
Zygoptera 0.0100 0.0071 1.9600 0.1613 0.0201
Log-Zygoptera 1.2837 0.8958 2.0500 0.1519 0.0213
Zygoptera biomass (g) 0.8302 0.7195 1.3300 0.2486 0.0135
Pelecypoda 0.0006 0.0008 0.4700 0.4917 0.0048
Log-Pelecypoda 0.6118 0.5111 1.4300 0.2313 0.0146
Pelecypoda biomass (g) 0.0003 0.0790 0.0000 0.9968 0.0000
Trichoptera -0.0851 0.1449 0.3400 0.5572 0.0035
Log-Trichoptera -2.2151 4.0616 0.3000 0.5855 0.0030
Trichoptera biomass (g) -2.1222 3.2172 0.4400 0.5095 0.0046  
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Mallard 
abiotic variable estimate SE Walds X2 P R2

Area (ha) 1.2259 0.3120 15.4300 <.0001 0.3454
Area (ha) (Box-Cox transformed) 9.2326 2.1589 18.2900 <.0001 0.3982
Conductivity -0.0009 0.0011 0.7300 0.3919 0.0081
Depth (m) -0.0709 0.1808 0.1500 0.6950 0.0015
Log-depth (m) -0.0868 0.3958 0.0500 0.8265 0.0005
pH 1.2486 0.5200 5.7700 0.0163 0.0710
Secchi disc depth (m) 0.6740 0.5746 1.3800 0.2408 0.0137
Shoreline irregularity 1.8653 0.5435 11.7800 0.0006 0.1586
Temperature (°C) 0.1128 0.0871 1.6800 0.1950 0.0168
biotic variable
Amphipoda 0.0026 0.0015 2.9500 0.0857 0.0394
Log-Amphipoda 1.2423 0.5334 5.4300 0.0198 0.0597
Amphipoda biomass (g) 0.5143 0.2573 4.0000 0.0456 0.0493
Coleoptera -0.0506 0.0340 2.2100 0.1369 0.0269
Log_Coleoptera -2.3732 1.6928 1.9700 0.1609 0.0204
Coleoptera biomass (g) -0.4151 0.6368 0.4300 0.5144 0.0043
Dytiscidae -0.0718 0.0434 2.7400 0.0982 0.0320
Dytiscidae biomass (g) -0.3771 0.6526 0.3300 0.5634 0.0034
Crustacea -0.0001 0.0002 0.3200 0.5734 0.0033
Log-Crustacea 0.2762 0.3684 0.5600 0.4535 0.0055
Crustacea biomass (g) 0.0665 0.0605 1.2100 0.2712 0.0147
Cladocera -0.0018 0.0011 2.7500 0.0973 0.0464
Log-Cladocera -0.4755 0.3678 1.6700 0.1961 0.0167
Cladocera biomass (g) -2.0669 1.2366 2.7900 0.0946 0.0470
Conchostraca 0.0008 0.0007 1.4700 0.2260 0.0209
Log-Conchostraca 0.6829 0.3419 3.9900 0.0458 0.0409
Conchostraca biomass (g) 0.1264 0.0919 1.8900 0.1690 0.0305
Cyclopoida -0.0001 0.0004 0.0600 0.8094 0.0006
Log-Cyclopoida 0.0756 0.3095 0.0600 0.8070 0.0006
Cyclopoida biomass (g) -0.0697 0.3414 0.0400 0.8383 0.0004
Ostracoda -0.0064 0.0224 0.0800 0.7768 0.0008
Log-Ostracoda 0.4031 1.1727 0.1200 0.7311 0.0011
Ostracoda biomass (g) -1.9510 7.0781 0.0800 0.7828 0.0007
Diptera -0.0028 0.0023 1.5000 0.2199 0.0259
Log-Diptera -0.6625 0.5427 1.4900 0.2222 0.0151
Diptera biomass (g) -0.7996 0.7480 1.1400 0.2851 0.0186
Chaoboridae -0.0029 0.0039 0.5700 0.4509 0.0092
Chaoboridae biomass (g) -0.5545 0.7721 0.5200 0.4726 0.0077
Chironomidae -0.0035 0.0037 0.9200 0.3373 0.0179
Chironomidae biomass (g) -2.2807 2.4569 0.8600 0.3533 0.0173
Culicidae -0.0261 0.0237 1.2100 0.2722 0.0123
Culicidae biomass (g) -8.9921 8.3209 1.1700 0.2798 0.0121
Ceratopogonidae -0.0441 0.0470 0.8800 0.3483 0.0132
Ceratopogonidae biomass (g) -60.8798 68.4905 0.7900 0.3741 0.0110
Ephemeroptera 0.0041 0.0044 0.8500 0.3579 0.0086
Log-Ephemeroptera 0.8902 0.6835 1.7000 0.1928 0.0169
Ephemeroptera biomass (g) 1.9850 1.2369 2.5800 0.1085 0.0445
Gastropoda 0.0053 0.0039 1.8000 0.1794 0.0206
Log-Gastropoda 0.8424 0.6841 1.5200 0.2181 0.0151
Gastropoda biomass (g) 0.1060 0.0919 1.3300 0.2490 0.0217
Planorbidae 0.0006 0.0052 0.0100 0.9136 0.0001
Planorbidae biomass (g) -0.0824 0.1894 0.1900 0.6637 0.0020
Lymnaeidae 0.0484 0.0222 4.7500 0.0293 0.0834
Lymnaeidae biomass (g) 0.3423 0.2274 2.2600 0.1324 0.0453
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Mallard cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0078 0.0051 2.3400 0.1263 0.0392
Log-Hemiptera -1.2426 0.7258 2.9300 0.0869 0.0317
Hemiptera biomass (g) -0.0537 0.1160 0.2100 0.6433 0.0022
Corixidae -0.0175 0.0100 3.0600 0.0802 0.0594
Corixidae biomass (g) -3.6374 2.5351 2.0600 0.1514 0.0463
Gerridae -0.6281 0.4619 1.8500 0.1739 0.0280
Gerridae biomass (g) -131.1624 92.6057 2.0100 0.1567 0.0388
Notonectidae -0.0010 0.0059 0.0300 0.8633 0.0003
Notonectidae biomass (g) -0.0155 0.1116 0.0200 0.8893 0.0002
Hirudinea 0.0193 0.0242 0.6400 0.4238 0.0069
Log_Hirudinea 1.8652 1.6139 1.3400 0.2478 0.0145
Hirudinea biomass (g) 0.2263 0.2638 0.7400 0.3910 0.0076
Hydrachnidae & Araneae -0.0205 0.0258 0.6300 0.4260 0.0066
Log_Hydrachnidae & Araneae -0.8141 1.3438 0.3700 0.5447 0.0036
Hydrachnidae & Araneae biomass (g) -7.0333 7.6605 0.8400 0.3586 0.0089
Odonata 0.0030 0.0042 0.4900 0.4861 0.0048
Odonata biomass (g) 0.1749 0.1286 1.8500 0.1740 0.0237
Anisoptera 0.0080 0.0072 1.2400 0.2664 0.0139
Log-Anisoptera 0.9263 0.9083 1.0400 0.3079 0.0103
Anisoptera Biomass (g) 0.1744 0.1365 1.6300 0.2014 0.0215
Zygoptera -0.0010 0.0069 0.0200 0.8792 0.0002
Log-Zygoptera -0.1807 0.8418 0.0500 0.8301 0.0004
Zygoptera biomass (g) 0.6473 0.7106 0.8300 0.3624 0.0082
Pelecypoda 0.0026 0.0013 4.0100 0.0452 0.0598
Log-Pelecypoda 1.1409 0.5417 4.4400 0.0352 0.0476
Pelecypoda biomass (g) 0.3020 0.1565 3.7200 0.0536 0.0681
Trichoptera 0.1356 0.1397 0.9400 0.3316 0.0093
Log-Trichoptera 3.8478 3.9377 0.9500 0.3285 0.0094
Trichoptera biomass (g) 1.5126 2.9695 0.2600 0.6105 0.0025
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Lesser Scaup
abiotic variable estimate SE Walds X2 P R2

Area (ha) 1.6076 0.4105 15.3400 <.0001 0.3752
Area (ha) (Box-Cox transformed) 9.1552 2.1389 18.3200 <.0001 0.3982
Conductivity -0.0012 0.0011 1.3600 0.2440 0.0154
Depth (m) 0.0228 0.1778 0.0200 0.8979 0.0002
Log-depth (m) 0.2300 0.3959 0.3400 0.5613 0.0033
pH 1.1346 0.4934 5.2900 0.0215 0.0631
Secchi disc depth (m) 1.2326 0.6187 3.9700 0.0463 0.0421
Shoreline irregularity 1.9821 0.5683 12.1700 0.0005 0.1657
Temperature (°C) 0.1971 0.0912 4.6700 0.0306 0.0488
biotic variable
Amphipoda 0.0007 0.0011 0.3600 0.5469 0.0037
Log-Amphipoda 1.1495 0.5117 5.0500 0.0247 0.0535
Amphipoda biomass (g) 0.4813 0.2652 3.2900 0.0695 0.0403
Coleoptera 0.0157 0.0269 0.3400 0.5597 0.0034
Log_Coleoptera 0.9391 1.5862 0.3500 0.5538 0.0034
Coleoptera biomass (g) -0.2232 0.6042 0.1400 0.7118 0.0013
Dytiscidae -0.0056 0.0348 0.0300 0.8729 0.0002
Dytiscidae biomass (g) -0.4198 0.6321 0.4400 0.5066 0.0044
Crustacea -0.0003 0.0002 1.6600 0.1971 0.0194
Log-Crustacea -0.0367 0.3616 0.0100 0.9191 0.0001
Crustacea biomass (g) -0.0860 0.0689 1.5600 0.2117 0.0209
Cladocera -0.0007 0.0008 0.8200 0.3651 0.0215
Log-Cladocera -0.5357 0.3674 2.1300 0.1449 0.0213
Cladocera biomass (g) -0.8064 0.9035 0.8000 0.3721 0.0222
Conchostraca -0.0005 0.0005 0.8600 0.3540 0.0103
Log-Conchostraca 0.2690 0.3300 0.6600 0.4149 0.0065
Conchostraca biomass (g) -0.0744 0.0709 1.1000 0.2939 0.0143
Cyclopoida -0.0001 0.0004 0.0300 0.8547 0.0003
Log-Cyclopoida -0.2232 0.3097 0.5200 0.4711 0.0050
Cyclopoida biomass (g) -0.1025 0.3353 0.0900 0.7599 0.0009
Ostracoda 0.0433 0.0282 2.3600 0.1248 0.0288
Log-Ostracoda 3.2510 1.5983 4.1400 0.0420 0.0536
Ostracoda biomass (g) 13.6754 9.0385 2.2900 0.1303 0.0283
Diptera -0.0074 0.0037 4.0100 0.0453 0.0813
Log-Diptera -1.2292 0.5712 4.6300 0.0314 0.0495
Diptera biomass (g) -1.8010 1.2196 2.1800 0.1397 0.0503
Chaoboridae -0.0109 0.0086 1.6200 0.2035 0.0373
Chaoboridae biomass (g) -1.0896 1.1642 0.8800 0.3493 0.0193
Chironomidae -0.0094 0.0050 3.5900 0.0580 0.0599
Chironomidae biomass (g) -7.4029 3.8546 3.6900 0.0548 0.0670
Culicidae -0.0226 0.0227 0.9900 0.3185 0.0098
Culicidae biomass (g) -8.7437 7.9357 1.2100 0.2705 0.0122
Ceratopogonidae -0.0551 0.0485 1.2900 0.2560 0.0208
Ceratopogonidae biomass (g) -104.8881 86.4484 1.4700 0.2250 0.0258
Ephemeroptera 0.0041 0.0047 0.7600 0.3826 0.0079
Log-Ephemeroptera 1.5583 0.7413 4.4200 0.0355 0.0472
Ephemeroptera biomass (g) 1.4029 1.1242 1.5600 0.2121 0.0253
Gastropoda 0.0072 0.0046 2.4500 0.1178 0.0308
Log-Gastropoda 1.1167 0.6997 2.5500 0.1105 0.0258
Gastropoda biomass (g) 0.1393 0.1180 1.3900 0.2378 0.0248
Planorbidae 0.0044 0.0053 0.6700 0.4130 0.0067
Planorbidae biomass (g) -0.0271 0.1752 0.0200 0.8772 0.0002
Lymnaeidae 0.0433 0.0230 3.5300 0.0602 0.0617
Lymnaeidae biomass (g) 0.4915 0.2910 2.8500 0.0913 0.0542
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Lesser Scaup cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0031 0.0031 1.0100 0.3158 0.0169
Log-Hemiptera -0.4747 0.6489 0.5400 0.4644 0.0052
Hemiptera biomass (g) 0.0962 0.1228 0.6100 0.4338 0.0066
Corixidae -0.0132 0.0078 2.8700 0.0901 0.0531
Corixidae biomass (g) -3.0603 2.1135 2.1000 0.1476 0.0483
Gerridae -0.3845 0.3347 1.3200 0.2506 0.0161
Gerridae biomass (g) -38.7691 44.2114 0.7700 0.3805 0.0083
Notonectidae 0.0088 0.0079 1.2600 0.2623 0.0161
Notonectidae biomass (g) 0.1601 0.1454 1.2100 0.2706 0.0151
Hirudinea -0.0017 0.0222 0.0100 0.9375 0.0001
Log_Hirudinea 0.7252 1.5125 0.2300 0.6316 0.0023
Hirudinea biomass (g) 0.4615 0.3608 1.6400 0.2009 0.0222
Hydrachnidae & Araneae -0.0042 0.0237 0.0300 0.8596 0.0003
Log_Hydrachnidae & Araneae -0.2269 1.3070 0.0300 0.8622 0.0003
Hydrachnidae & Araneae biomass (g) 0.4859 6.9403 0.0000 0.9442 0.0000
Odonata 0.0018 0.0042 0.1800 0.6734 0.0017
Odonata biomass (g) 0.1855 0.1382 1.8000 0.1794 0.0233
Anisoptera 0.0079 0.0076 1.0800 0.2994 0.0124
Log-Anisoptera 0.8165 0.9047 0.8100 0.3668 0.0080
Anisoptera Biomass (g) 0.1996 0.1520 1.7200 0.1893 0.0232
Zygoptera -0.0034 0.0068 0.2500 0.6154 0.0024
Log-Zygoptera 0.1472 0.8378 0.0300 0.8606 0.0003
Zygoptera biomass (g) 0.3611 0.7083 0.2600 0.6102 0.0025
Pelecypoda 0.0021 0.0013 2.8000 0.0943 0.0401
Log-Pelecypoda 1.4469 0.5720 6.4000 0.0114 0.0720
Pelecypoda biomass (g) 0.1137 0.0992 1.3100 0.2515 0.0159
Trichoptera 0.0076 0.1379 0.0000 0.9561 0.0000
Trichoptera biomass (g) -2.5026 3.0494 0.6700 0.4118 0.0067
Log-Trichoptera 0.5461 3.8995 0.0200 0.8886 0.0002
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Ring-necked Duck
abiotic variable estimate SE Walds X2 P R2

Area (ha) 1.1232 0.2774 16.4000 <0.0001 0.3899
Area (ha) (Box-Cox transformed) 10.8327 2.6066 17.2700 <.0001 0.4553
Conductivity -0.0018 0.0015 1.4100 0.2345 0.0211
Depth (m) 0.2857 0.1866 2.3400 0.1258 0.0253
Log-depth (m) 0.9459 0.4528 4.3600 0.0367 0.0501
pH 0.2979 0.4417 0.4500 0.5000 0.0050
Secchi disc depth (m) 1.8078 0.6746 7.1800 0.0074 0.0880
Shoreline irregularity 1.5074 0.5009 9.0600 0.0026 0.1207
Temperature (°C) 0.1481 0.0944 2.4600 0.1168 0.0274
biotic variable
Amphipoda 0.0009 0.0011 0.6600 0.4165 0.0071
Log-Amphipoda 1.2469 0.5794 4.6300 0.0314 0.0564
Amphipoda biomass (g) 0.6111 0.2647 5.3300 0.0210 0.0737
Coleoptera -0.0248 0.0322 0.5900 0.4414 0.0071
Log_Coleoptera -1.3531 1.7549 0.5900 0.4407 0.0066
Coleoptera biomass (g) -0.5333 0.7262 0.5400 0.4627 0.0063
Dytiscidae -0.0384 0.0426 0.8100 0.3677 0.0096
Dytiscidae biomass (g) -0.5152 0.7492 0.4700 0.4917 0.0055
Crustacea -0.0005 0.0004 1.9800 0.1599 0.0366
Log-Crustacea -0.3498 0.3892 0.8100 0.3687 0.0087
Crustacea biomass (g) -0.0503 0.0707 0.5100 0.4767 0.0068
Cladocera -0.0024 0.0014 2.7700 0.0961 0.0510
Log-Cladocera -0.7326 0.4068 3.2400 0.0717 0.0368
Cladocera biomass (g) -2.6142 1.5849 2.7200 0.0990 0.0505
Conchostraca -0.0005 0.0007 0.5400 0.4629 0.0078
Log-Conchostraca 0.2072 0.3423 0.3700 0.5450 0.0039
Conchostraca biomass (g) -0.0256 0.0649 0.1600 0.6931 0.0018
Cyclopoida -0.0005 0.0005 0.7400 0.3892 0.0101
Log-Cyclopoida -0.4931 0.3598 1.8800 0.1705 0.0214
Cyclopoida biomass (g) -0.4045 0.4734 0.7300 0.3928 0.0097
Ostracoda 0.0147 0.0223 0.4300 0.5097 0.0045
Log-Ostracoda 1.2045 1.1967 1.0100 0.3142 0.0106
Ostracoda biomass (g) 4.4182 7.0571 0.3900 0.5313 0.0041
Diptera -0.0132 0.0060 4.8200 0.0281 0.0997
Log-Diptera -1.4993 0.6666 5.0600 0.0245 0.0628
Diptera biomass (g) -5.9272 3.1845 3.4600 0.0627 0.0833
Chaoboridae -0.0135 0.0139 0.9400 0.3310 0.0275
Chaoboridae biomass (g) -3.1430 3.2445 0.9400 0.3327 0.0282
Chironomidae -0.0180 0.0084 4.6200 0.0316 0.0888
Chironomidae biomass (g) -15.5244 6.9332 5.0100 0.0251 0.1020
Culicidae -0.0370 0.0279 1.7600 0.1850 0.0212
Culicidae biomass (g) -9.5749 9.3832 1.0400 0.3075 0.0123
Ceratopogonidae -0.1251 0.1110 1.2700 0.2597 0.0307
Ceratopogonidae biomass (g) -208.0348 180.8723 1.3200 0.2501 0.0324
Ephemeroptera 0.0057 0.0045 1.6400 0.2006 0.0178
Log-Ephemeroptera 1.4298 0.7305 3.8300 0.0503 0.0427
Ephemeroptera biomass (g) 1.5485 1.0063 2.3700 0.1239 0.0429
Gastropoda -0.0007 0.0037 0.0300 0.8577 0.0003
Log-Gastropoda 0.0228 0.7113 0.0000 0.9744 0.0000
Gastropoda biomass (g) -0.0893 0.1107 0.6500 0.4199 0.0115
Planorbidae 0.0020 0.0054 0.1300 0.7170 0.0014
Planorbidae biomass (g) -0.0750 0.2094 0.1300 0.7202 0.0015
Lymnaeidae -0.0039 0.0076 0.2600 0.6075 0.0041
Lymnaeidae biomass (g) -0.1218 0.1794 0.4600 0.4970 0.0113
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Ring-necked Duck cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0038 0.0045 0.7400 0.3913 0.0143
Log-Hemiptera -0.8335 0.7486 1.2400 0.2655 0.0141
Hemiptera biomass (g) -0.0106 0.1186 0.0100 0.9289 0.0001
Corixidae -0.0140 0.0103 1.8400 0.1749 0.0381
Corixidae biomass (g) -2.7139 2.4974 1.1800 0.2772 0.0285
Gerridae -10.0157 72.0700 0.0200 0.8895 0.1095
Gerridae biomass (g) -7167.7747 78352 0.0100 0.9271 0.1095
Notonectidae 0.0031 0.0059 0.2900 0.5932 0.0030
Notonectidae biomass (g) 0.0185 0.1146 0.0300 0.8721 0.0003
Hirudinea -0.0321 0.0400 0.6400 0.4219 0.0106
Log_Hirudinea -0.9391 1.7559 0.2900 0.5928 0.0033
Hirudinea Biomass (g) 0.2294 0.2542 0.8100 0.3669 0.0087
Hydrachnidae & Araneae -0.0059 0.0261 0.0500 0.8221 0.0005
Log-Hydrachnidae & Araneae -0.0196 1.4000 0.0000 0.9888 0.0000
Hydrachnidae & Araneae biomass (g) 1.6653 7.2478 0.0500 0.8183 0.0006
Odonata 0.0081 0.0046 3.0400 0.0812 0.0346
Odonata biomass (g) 0.2711 0.1483 3.3400 0.0675 0.0522
Anisoptera 0.0150 0.0085 3.0900 0.0785 0.0445
Log-Anisoptera 1.4982 0.9835 2.3200 0.1277 0.0258
Anisoptera Biomass (g) 0.2875 0.1621 3.1500 0.0761 0.0512
Zygoptera 0.0051 0.0072 0.5100 0.4743 0.0054
Log-Zygoptera 1.0486 0.9344 1.2600 0.2618 0.0139
Zygoptera biomass (g) 0.5850 0.7314 0.6400 0.4239 0.0068
Pelecypoda 0.0035 0.0014 6.4200 0.0113 0.1126
Log-Pelecypoda 1.7596 0.6312 7.7700 0.0053 0.1002
Pelecypoda biomass (g) 0.3751 0.1622 5.3400 0.0208 0.1121
Trichoptera 0.0477 0.1447 0.1100 0.7417 0.0011
Log-Trichoptera 1.6003 4.0894 0.1500 0.6956 0.0016
Trichoptera biomass (g) -2.1502 3.4699 0.3800 0.5355 0.0044
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Horned Grebe
abiotic variable estimate SE Walds X2 P R2

Area (ha) -0.0131 0.1065 0.0200 0.9021 0.0002
Area (ha) (Box-Cox transformed) 1.4333 0.9541 2.2600 0.1331 0.0233
Conductivity -0.0009 0.0011 0.6500 0.4216 0.0073
Depth (m) 0.1074 0.1792 0.3600 0.5489 0.0036
Log-depth (m) 0.4616 0.4084 1.2800 0.2584 0.0129
pH -0.1270 0.4032 0.1000 0.7528 0.0010
Secchi disc depth (m) 0.3598 0.5703 0.4000 0.5281 0.0040
Shoreline irregularity 1.0455 0.4407 5.6300 0.0177 0.0635
Temperature (°C) -0.0115 0.0858 0.0200 0.8936 0.0002
biotic variable
Amphipoda -0.0009 0.0012 0.5700 0.4520 0.0064
Log-Amphipoda 0.4472 0.4866 0.8400 0.3581 0.0085
Amphipoda biomass (g) -0.0750 0.2072 0.1300 0.7175 0.0013
Coleoptera 0.0163 0.0261 0.3900 0.5317 0.0039
Log_Coleoptera 0.7249 1.5866 0.2100 0.6477 0.0021
Coleoptera biomass (g) -0.3320 0.6433 0.2700 0.6057 0.0027
Dytiscidae -0.0092 0.0360 0.0600 0.7989 0.0007
Dytiscidae biomass (g) -0.3314 0.6636 0.2500 0.6175 0.0026
Crustacea 0.0001 0.0002 0.1600 0.6902 0.0016
Log-Crustacea 0.1915 0.3712 0.2700 0.6060 0.0027
Crustacea biomass (g) 0.0718 0.0604 1.4100 0.2345 0.0176
Cladocera -0.0005 0.0007 0.5100 0.4772 0.0124
Log-Cladocera -0.2812 0.3658 0.5900 0.4420 0.0059
Cladocera biomass (g) -0.5101 0.7752 0.4300 0.5105 0.0123
Conchostraca 0.0006 0.0006 1.1800 0.2776 0.0150
Log-Conchostraca 0.3789 0.3310 1.3100 0.2523 0.0131
Conchostraca biomass (g) 0.0915 0.0740 1.5300 0.2165 0.0217
Cyclopoida 0.0005 0.0004 1.5400 0.2139 0.0175
Log-Cyclopoida 0.6802 0.3257 4.3600 0.0368 0.0453
Cyclopoida biomass (g) 0.4279 0.3630 1.3900 0.2385 0.0152
Ostracoda -0.0045 0.0227 0.0400 0.8443 0.0004
Log-Ostracoda -0.5083 1.2283 0.1700 0.6790 0.0017
Ostracoda biomass (g) -2.8445 7.3273 0.1500 0.6979 0.0015
Diptera -0.0040 0.0030 1.7600 0.1851 0.0348
Log-Diptera -0.7598 0.5601 1.8400 0.1749 0.0193
Diptera biomass (g) -0.9524 0.8963 1.1300 0.2880 0.0210
Chaoboridae -0.0108 0.0102 1.1100 0.2911 0.0276
Chaoboridae biomass (g) -0.8174 1.0916 0.5600 0.4540 0.0111
Chironomidae -0.0058 0.0047 1.5200 0.2172 0.0278
Chironomidae biomass (g) -4.3111 3.4641 1.5500 0.2133 0.0299
Culicidae 0.0293 0.0228 1.6500 0.1984 0.0167
Culicidae biomass (g) 9.5269 7.8822 1.4600 0.2268 0.0148
Ceratopogonidae -0.0099 0.0313 0.1000 0.7513 0.0011
Ceratopogonidae biomass (g) -23.1030 52.0870 0.2000 0.6574 0.0022
Ephemeroptera 0.0081 0.0049 2.6900 0.1007 0.0312
Ephemeroptera biomass (g) 1.2474 0.9389 1.7700 0.1840 0.0279
Log-Gastropoda 1.3508 0.7164 3.5500 0.0594 0.0374
Gastropoda biomass (g) 0.3991 0.1900 4.4100 0.0357 0.0951
Planorbidae 0.0057 0.0053 1.1800 0.2781 0.0118
Planorbidae biomass (g) 0.4236 0.2779 2.3200 0.1274 0.0349
Lymnaeidae 0.0150 0.0148 1.0200 0.3118 0.0273
Lymnaeidae biomass (g) 0.5668 0.2773 4.1800 0.0410 0.0815
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Horned Grebe cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0027 0.0033 0.6800 0.4098 0.0113
Log-Hemiptera -0.4392 0.6721 0.4300 0.5135 0.0043
Hemiptera biomass (g) -0.0865 0.1276 0.4600 0.4978 0.0051
Corixidae -0.0021 0.0032 0.4400 0.5085 0.0070
Corixidae biomass (g) -0.4759 0.7374 0.4200 0.5187 0.0058
Gerridae -0.0596 0.2775 0.0500 0.8301 0.0005
Gerridae biomass (g) 8.6450 40 0.0500 0.8282 0.0005
Notonectidae -0.0045 0.0068 0.4300 0.5127 0.0048
Notonectidae biomass (g) -0.0663 0.1239 0.2900 0.5928 0.0031
Hirudinea 0.0078 0.0222 0.1200 0.7264 0.0012
Log_Hirudinea 0.7172 1.4651 0.2400 0.6245 0.0024
Hirudinea biomass (g) 0.3637 0.2852 1.6300 0.2023 0.0188
Hydrachnidae & Araneae 0.0134 0.0238 0.3100 0.5751 0.0031
Log_Hydrachnidae & Araneae 0.7599 1.3231 0.3300 0.5657 0.0033
Hydrachnidae & Araneae biomass (g) 3.7044 6.9613 0.2800 0.5946 0.0028
Odonata 0.0098 0.0048 4.1900 0.0407 0.0469
Odonata biomass (g) 0.1631 0.1231 1.7600 0.1852 0.0224
Anisoptera 0.0060 0.0067 0.8200 0.3644 0.0088
Log-Anisoptera 1.0389 0.9221 1.2700 0.2599 0.0129
Anisoptera Biomass (g) 0.1331 0.1201 1.2300 0.2674 0.0149
Log-Zygoptera 2.1136 0.9571 4.8800 0.0272 0.0538
Zygoptera biomass (g) 1.6353 0.7815 4.3800 0.0364 0.0485
Pelecypoda 0.0022 0.0012 3.7800 0.0519 0.0532
Log-Pelecypoda 1.9268 0.6364 9.1700 0.0025 0.1161
Trichoptera -0.9633 0.3113 9.5800 0.0020 0.1830
Log-Trichoptera -24.6855 7.6937 10.2900 0.0013 0.1798
Trichoptera biomass (g) -19.2012 6.5060 8.7100 0.0032 0.1511
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Red-necked Grebe
abiotic variable estimate SE Walds X2 P R2

Area (ha) 2.0209 0.4875 17.1800 <.0001 0.4881
Area (ha) (Box-Cox transformed) 12.6504 2.9969 17.8200 <.0001 0.5096
Conductivity -0.0023 0.0015 2.5700 0.1092 0.0365
Depth (m) 0.1288 0.1791 0.5200 0.4719 0.0051
Log-depth (m) 0.4780 0.4028 1.4100 0.2354 0.0139
pH 0.7712 0.4501 2.9400 0.0866 0.0319
Secchi disc depth (m) 1.5283 0.6359 5.7800 0.0163 0.0633
Shoreline irregularity 1.7229 0.5246 10.7800 0.0010 0.1395
Temperature (°C) 0.1734 0.0897 3.7300 0.0533 0.0384
biotic variable
Amphipoda 0.0024 0.0015 2.5600 0.1097 0.0334
Log-Amphipoda 1.4347 0.5469 6.8800 0.0087 0.0775
Amphipoda biomass (g) 0.4077 0.2431 2.8100 0.0934 0.0330
Coleoptera -0.0248 0.0283 0.7700 0.3804 0.0081
Log_Coleoptera -0.8669 1.5834 0.3000 0.5840 0.0029
Coleoptera biomass (g) -0.1435 0.6077 0.0600 0.8134 0.0005
Dytiscidae -0.0509 0.0392 1.6800 0.1949 0.0181
Dytiscidae biomass (g) -0.1637 0.6264 0.0700 0.7938 0.0007
Crustacea -0.0002 0.0002 1.3000 0.2549 0.0152
Log-Crustacea -0.1309 0.3622 0.1300 0.7178 0.0013
Crustacea biomass (g) 0.0291 0.0511 0.3200 0.5694 0.0033
Cladocera -0.0009 0.0009 1.0500 0.3063 0.0229
Log-Cladocera -0.3445 0.3605 0.9100 0.3393 0.0090
Cladocera biomass (g) -1.1788 1.0201 1.3400 0.2479 0.0267
Conchostraca 0.0004 0.0005 0.7100 0.3996 0.0081
Log-Conchostraca 0.3128 0.3277 0.9100 0.3399 0.0089
Conchostraca biomass (g) 0.0719 0.0697 1.0600 0.3028 0.0136
Cyclopoida -0.0007 0.0005 1.7900 0.1807 0.0246
Log-Cyclopoida -0.3130 0.3152 0.9900 0.3206 0.0097
Cyclopoida biomass (g) -0.6553 0.4781 1.8800 0.1705 0.0252
Ostracoda 0.0164 0.0224 0.5400 0.4644 0.0053
Log-Ostracoda 1.6791 1.2447 1.8200 0.1773 0.0188
Ostracoda biomass (g) 4.2426 7.0158 0.3700 0.5454 0.0036
Diptera -0.0033 0.0025 1.7800 0.1819 0.0323
Log-Diptera -0.7709 0.5443 2.0100 0.1567 0.0204
Diptera biomass (g) -0.8405 0.7476 1.2600 0.2609 0.0208
Chaoboridae -0.0029 0.0037 0.6100 0.4353 0.0096
Chaoboridae biomass (g) -0.5559 0.7461 0.5600 0.4562 0.0081
Chironomidae -0.0050 0.0042 1.4100 0.2351 0.0265
Chironomidae biomass (g) -2.9377 2.7553 1.1400 0.2863 0.0232
Culicidae -0.0262 0.0234 1.2500 0.2637 0.0126
Culicidae biomass (g) -7.6565 8.0661 0.9000 0.3425 0.0091
Ceratopogonidae -0.0345 0.0398 0.7500 0.3857 0.0099
Ceratopogonidae biomass (g) -48.7738 59.6836 0.6700 0.4138 0.0083
Ephemeroptera 0.0019 0.0043 0.1900 0.6633 0.0018
Log-Ephemeroptera 0.9362 0.6860 1.8600 0.1724 0.0186
Ephemeroptera biomass (g) -0.2596 0.6219 0.1700 0.6764 0.0018
Gastropoda 0.0035 0.0036 0.9100 0.3393 0.0096
Log-Gastropoda 0.9930 0.6889 2.0800 0.1495 0.0208
Gastropoda biomass (g) 0.0468 0.0626 0.5600 0.4549 0.0064
Planorbidae 0.0000 0.0052 0.0000 0.9995 0.0000
Planorbidae biomass (g) -0.1419 0.2028 0.4900 0.4841 0.0054
Lymnaeidae 0.0160 0.0156 1.0500 0.3055 0.0248
Lymnaeidae biomass (g) 0.0903 0.1053 0.7300 0.3915 0.0132
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Red-necked Grebe cont.
variable estimate SE Walds X2 P R2

Hemiptera -0.0041 0.0039 1.1000 0.2932 0.0201
Log-Hemiptera -0.4860 0.6563 0.5500 0.4590 0.0054
Hemiptera biomass (g) -0.0409 0.1123 0.1300 0.7156 0.0013
Corixidae -0.0078 0.0067 1.3600 0.2431 0.0276
Corixidae biomass (g) -1.7605 1.6306 1.1700 0.2803 0.0262
Gerridae -0.9693 0.5679 2.9100 0.0878 0.0496
Gerridae biomass (g) -94.1632 71 1.7500 0.1858 0.0284
Notonectidae 0.0004 0.0058 0.0000 0.9515 0.0000
Notonectidae biomass (g) -0.0079 0.1102 0.0100 0.9426 0.0001
Hirudinea 0.0173 0.0241 0.5100 0.4732 0.0054
Log_Hirudinea 1.8374 1.6367 1.2600 0.2616 0.0138
Hirudinea biomass (g) 0.2830 0.2800 1.0200 0.3122 0.0112
Hydrachnidae & Araneae -0.0236 0.0258 0.8400 0.3590 0.0088
Log_Hydrachnidae & Araneae -0.9117 1.3357 0.4700 0.4949 0.0046
Hydrachnidae & Araneae biomass (g) -4.4548 7.1975 0.3800 0.5360 0.0038
Odonata 0.0017 0.0042 0.1600 0.6893 0.0015
Odonata biomass (g) -0.0060 0.0962 0.0000 0.9502 0.0000
Anisoptera -0.0027 0.0065 0.1700 0.6811 0.0017
Log-Anisoptera 0.1996 0.8870 0.0500 0.8220 0.0005
Anisoptera Biomass (g) -0.0295 0.1022 0.0800 0.7728 0.0008
Zygoptera 0.0076 0.0070 1.1900 0.2749 0.0118
Log-Zygoptera 1.0938 0.8637 1.6000 0.2054 0.0159
Zygoptera biomass (g) 1.1503 0.7459 2.3800 0.1230 0.0246
Pelecypoda 0.0015 0.0010 2.2200 0.1359 0.0274
Log-Pelecypoda 1.1320 0.5394 4.4000 0.0358 0.0469
Pelecypoda biomass (g) 0.1700 0.1115 2.3200 0.1274 0.0322
Trichoptera 0.2278 0.1463 2.4300 0.1193 0.0250
Log-Trichoptera 6.2966 4.0777 2.3800 0.1225 0.0242
Trichoptera biomass (g) 2.7537 3.0737 0.8000 0.3703 0.0081  


