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Thesis Abstract 

Prehension is proposed to consist of two movements mediated by separate neural 

pathways – a Reach transports the hand to the target while a Grasp shapes the hand for 

target purchase – but under vision the two movements appear as a seemless act. The 

purpose of the present thesis was to examine prehension under conditions of limited 

visual feedback. Removing vision in adults caused prehension to decompose into an open 

handed Reach followed by a haptically mediated Grasp, suggesting that haptics also 

access the Reach and Grasp pathways. That Grasp, but not Reach, formation is equally 

accurate under haptic versus visual control indicates that the sensory control of the two 

movements can be differentiated. Finally, young infants perform haptic Reach and Grasp 

movements before integrating them together under vision. These results suggest that the 

Reach and the Grasp, with their requisite neural pathways, originate under haptic control 

with secondary access by vision. 
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Introduction 
 

Modern theories of brain organization are based on the idea that neural areas are 

organized according to their functional outputs rather than their sensory inputs. This view 

was pioneered by visual neuroscientists Mishkin and Ungerleider (1982), who suggested 

that visual information is processed by two functionally distinct pathways: a dorsal 

“where” pathway in the parietal lobe that uses visual information to determine the 

location of an object within the external environment and a ventral “what” pathway in the 

temporal lobe that uses visual information to perceive, recognize, and remember what 

those objects are. This dual pathway model was later revised by Milner and Goodale 

(1995, 2008), who showed that the dorsal “where” pathway is more accurately described 

as a “how” pathway that uses visual information to guide one’s actions in space and to 

interact with external objects, for example, to reach out and grasp a piece of food. This 

distinction between the dorsal “vision-for-action” and the ventral “vision-for-perception” 

pathway is now widely accepted by the majority of the neuroscientific community and 

has become a foundational concept in the study of brain and behavior. 

While this work highlights a clear dissociation within the visual system, it has 

somewhat paradoxically led to the idea of unification between the visual and motor 

systems within the dorsal pathway. The idea being that neural processing related to visual 

inputs vs. motor outputs cannot be dissociated, but rather exist along a visual-to-motor 

continuum in the occipito-parieto-frontal cortex (Goodale, 1998). Clearly vision plays an 

important role in our ability to both perceive and interact with our external environment; 

however, there are at least as many situations where vision is not available to guide action 

and for many species vision plays a secondary role compared to the alternative sensations 
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of touch, olfaction, and audition. In short, it seems that the cortical motor system must 

operate independent from vision in order to enable interactions with objects to which our 

visual system is not directly attuned, i.e., objects in the dark, in peripheral vision, or 

located on our own body, and for the same reason non-visual systems such as touch and 

audition must also have access to the cortical motor system.  

The purpose of this review is to re-examine the organization of the primate 

somatosensory system from the perspective of its contribution to dorsal stream action 

control in the absence of vision, or, “somatosensation-for-action”. Somatosensory 

processing, which includes both tactile and proprioceptive inputs, is briefly described at 

the peripheral, subcortical, and cortical levels. I then describe emerging evidence that the 

cortical motor system consists of a number of partially overlapping parietofrontal circuits 

related to specific motor acts such as walking, reaching, handling food, and grasping 

(Kaas et al., 2013). In doing so, I consider the extent to which these circuits process 

somatosensory and visual inputs for action control. Collectively, the evidence supports 

emerging theories of sensorimotor control, which propose that functional motor modules 

can process inputs from a variety of sensory stimuli and achieve optimal action control by 

re-weighting sensory inputs according to their reliability in a given situation. 

 

Somatosensation in the Peripheral and Central Nervous Systems 

  

It is important to recognize that objects are comprised of a constellation of 

physical properties, which define the ways in which we may interact with them. For 

instance, the ability to reach out and grasp a piece of food is largely dependent on the 
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sensorimotor system’s ability to recognize an object’s extrinsic properties (i.e., location 

and orientation – to which the hand must reach), and an object’s intrinsic properties (i.e, 

size and shape – to which the digits must open, shape, and close; Jeannerod, 1981, 

Jeannerod et al., 1995). While some object properties are uniquely derived from a 

particular sensory modality, i.e., object colour from vision vs. object temperature from 

somatosensation, the properties of object location, orientation, size, and shape can be 

directly derived from either vision or somatosensation, insomuch as the object is located 

within the operational space of each modality. 

When we reach out to touch, grasp, or manipulate an object a bidirectional 

exchange occurs at the interface between the skin of our hand and the surface of the 

object. Consider reaching to grasp a small round blueberry. When the tip of your digit 

first touches the blueberry, its surface may yield to the pressure applied by your finger, 

but the skin of your fingertip is also deformed by reciprocal pressure from the surface of 

the blueberry. From this dynamic interaction, the peripheral somatosensory system must 

accurately discriminate the size, shape, density, texture, and curvature of that particular 

blueberry in order to successfully grasp it. To accomplish this, the somatosensory system 

has evolved a variety of specialized peripheral receptors, each of which processes 

information about a specific physical property. Thus, at the moment of contact the 

peripheral somatosensory system essentially breaks the blueberry apart into a 

constellation of its physical properties, each of which is analyzed by a separate receptor 

system.  

The task at higher levels of the somatosensory system then, is to piece these 

disparate physical properties back together into a meaningful whole and/or to activate the 
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appropriate motor actions required to grasp and interact with that blueberry. Here, a 

parallel can be drawn between the somatosensory system and the visual system 

(Dijkermann and de Haan, 2007), as the higher visual system must also reconstruct a 

meaningful whole from a constellation of disparate visual properties like object colour, 

luminance, shape, and contrast or engage the appropriate sequence of motor actions. 

 

Somatosensory Cells, Afferents, and Receptors 

  

Dorsal Root Ganglion (DRG) Cells. The DRG cell is the functional unit of the 

peripheral somatosensory system. It consists of a single cell body that has no dendrites 

and receives no synapses. Instead, it sends out a single axon that almost immediately 

branches into two. One branch (the primary afferent) projects to the periphery and 

terminates as a specialized receptor in the muscle, joint, or skin. The second branch 

projects into the spinal cord where it either synapses with a motor neuron, forming a 

spinal reflex, or ascends to the brain via the dorsal columns. The dorsal root ganglion 

system along the spine conveys somatosensory information from the body and limbs, 

whereas a different, trigeminal ganglion system, conveys somatosensory information 

from the face and head (Amaral, 2013). 

 

Somatosensory Receptors. Compared to the visual and auditory systems, the 

somatosensory system contains a large number of receptors, each of which processes a 

different somatosensory modality. For the purposes of this review, we will focus on 

sensations of fine touch, pressure, and proprioception from the glabrous skin of the 



	   6 

primate hand, which are largely conveyed by four tactile receptors (Table 1.1, Johansson 

and Vallbo, 1983; Johnson, 2001; Johnson et al., 2000), which are described below, and 

proprioceptive mechanoreceptors, which are described elsewhere (Proske and Gandevia, 

2012). Although our focus here is on the tactile feedback from the hand, it has been 

reported that similar tactile receptors process complex somatosensory stimuli on the face 

and in the mouth (Trulsson and Johansson, 2002). 

Tactile receptors in the glabrous skin of the primate hand can be divided into two 

groups based on the firing properties of the primary afferent fibers to which they are 

attached (Johnson 2001). Rapidly adapting (RA) fibers only fire at the onset and offset of 

a stimulus whereas slowly adapting (SA) fibers continue firing for the entire duration that 

a tactile stimulus is in contact with the skin. In addition, fibers may be Type 1, meaning 

that they terminate in the superficial layers of the skin, or Type 2, meaning that they 

terminate in deeper skin layers. Each type of fiber is associated with a specific type of 

receptor: Meissner corpuscles (RA1), Merkel disk receptors (SA1), Pacinian Corpuscles 

(RA2), and Ruffini Endings (SA2). 

Type 1 Tactile Receptors. Meissner corpuscles (RA1) are located in the 

superficial layers of the skin and have very small receptive fields. They are the most 

numerous tactile receptor in the hand and form orderly rows along the dermal ridges of 

the overlying fingerprint (Bolanowski and Pawson, 2003; Johnson, 2001). They respond 

to low frequency vibration, tapping, and flutter and they are extremely sensitive to stimuli 

moving across their receptive field. Thus, they help to signal slippage of an object held in 

the hand (Macefield et al., 1996).  
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Table 1.1 Somatosensory Receptor Types* 

Receptor Type Fiber Modality 

Cutaneous and subcutaneous mechanoreceptors  Touch 
Meissner corpuscle RA1 Flutter, stroking 
Merkel disk receptor SA1 Pressure, curves 
Pacinian corpuscle RA2 Vibration 
Ruffini ending SA2 Skin stretch 

 
* (adapted from Johnson et al., 2001) 



	   8 

Merkel disk receptors (SA1) are also located in the superficial layers of the skin 

and are concentrated in the most sensitive parts of the body, the fingertips and lips (van 

Boven and Johnson, 1994). In rodents they accumulate near the follicles of the whiskers 

and also on the glabrous skin of the forepaws (Abraira and Ginty, 2013). Merkel disk 

receptors have very small receptive fields (about 2 to 3 mm in humans), but can resolve 

spatial detail even finer than this (Johnson, 2001). They have a low activation threshold, 

which makes them very responsive to light touch or indentation, especially during contact 

with edges, curves, and corners of objects (Goodwin and Wheat, 1999), which is clearly 

important for determining object size, shape, and rigidness. The more concentrated the 

stimulus (i.e. the tip of a nail) the stronger the SA1 fiber responds (creates a sharp 

feeling). The less concentrated the stimulus (i.e. the side of a glass), the weaker the SA1 

fiber responds (creates a smooth feeling; Goodwin et al., 1995; Vega-Bermudez and 

Johnson, 1999).  

The way that Type 1 receptors are organized in the upper layers of the skin is 

important for a number of reasons (Pare et al., 2002). First, receptor density reflects the 

sensitivity of a particular body part. As mentioned, Type 1 receptors are most dense in 

the fingertips and the lips. Thus, the tip of the index finger acts like the somatosensory 

fovea of the hand, whereas the lips/mouth act as the somatosensory fovea of the face. 

Using these effectors, one can detect fine tactile details like the braille letter “A” because 

the individual bumps co-activate discrete Type 1 receptors and their afferents (Phillips et 

al., 1992). Second, a single receptor may be innervated by axons from several different 

DRG cells. This is called ‘convergence’ and it allows the somatosensory system to detect 

very weak stimuli, because although only one receptor may be activated, multiple DRGs 
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are activated; however, high convergence results in low spatial resolution, so if high 

spatial resolution is required (like on the finger tips) then convergence is low. Third, a 

single primary afferent fiber (and thus, DRG cell) may receive input from multiple 

receptors, which may be located across different digits or parts of the hand. This is called 

‘divergence’ and it allows the somatosensory system to integrate complex somatosensory 

stimuli across multiple skin locations. Thus, the receptive fields of Type 1 fibers consist 

of an array of small hotspots that reflect the branching of the primary fiber to which they 

are attached (Johansson and Vallbo, 1983).  

Type 2 Tactile Receptors. Pacinian corpuscles (RA2) are located in the deeper 

layers of the skin or subcutaneous fat. They are concentrated more in the palm, joints of 

the fingers, and the wrist rather than in the fingertips. Unlike Type 1 receptors, Pacinian 

corpuscles have very large receptive fields, sometimes covering the whole hand, which 

gives them quite low spatial acuity (Johnson et al., 2001). They are extremely sensitive, 

however, to high frequency vibrations made by an object gripped or manipulated by they 

hands and they can even discriminate the temporal structure of these high frequency 

vibrations (Brisben et al., 1999). This allows us to perceive what is going on at the distal 

tip of a tool that is held in the hand. Thus, Pacinian corpuscles may be especially 

important for allowing us to manipulate and interact with objects, especially tools, in the 

absence of vision. 

Ruffini endings (SA2) are also located in deep skin layers and have large receptive 

fields on the skin surface. They are located mainly around the joints of the hand and in 

the folds of skin on the palm, but they respond to skin stretch (Edin, 1992; Johnson et al., 

2000). This allows them to detect hand shape and finger configurations, regardless of 
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whether an object is being held or not. If the hand is held in a fist, the skin of the 

knuckles is stretched and the ruffini endings there are activated. If the hand is open, the 

skin on the palm is stretched and the ruffini endings there are activated. Thus, ruffini 

endings provide more information about the shape of the hand than they do about an 

external object (Edin and Johansson, 1995), but they can also detect object motion when 

an object moving across the skin causes the skin to stretch (Olausson et al., 2000).  

Type 1 receptive fields are small so they can only detect small portions of an 

object that is held in the hand. In contrast, the large receptive fields of Type 2 receptors 

allow them to detect more global features of an object, such as overall size and shape. 

Thus, activity from all four tactile receptors is important for grasping (Johansson and 

Flanagan, 2009; Johnson et al., 2000;Westling and Johansson, 1987). RA1 fibers signal 

the stability of the grasp on the object. They stop firing once the grasp is stabilized, but 

fire again if the object slips. SA1 fibers signal the amount of force applied by each finger 

and detect the curvature and edges of the object. RA2 fibers detect the vibrations that are 

emitted when the object is lifted from or placed on a surface. SA2 fibers signal changes 

in hand and finger configuration as the object is being grasped. Thus, a loss of this 

somatosensory information causes deafferented patients to show huge impairments in 

controlling grip shape and force when trying to grasp and manipulate objects (Darian-

Smith and Ciferri, 2005; Hermsdorfer et al., 2008; Sainburg et al., 1993). Even when 

vision is available, these impairments cannot be fully compensated for, which reveals the 

tight interdependence of the somatosensory and motor systems in performing precise and 

dexterous hand movements. 
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It should be noted that although the majority of somatosensory research has 

focused on tactile feedback from glabrous skin on the primate hand, almost all other 

mammals rely much more heavily on a variety of hair mechanoreceptors located across 

the body in non-glabrous skin, including vibrissae hairs on the face, limbs, and trunk, 

which can process equally complex somatosensory stimuli (see Abraira and Ginty, 2013; 

Diamond, 2010; Li et al., 2011; Wu et al., 2012). 

   

Dorsal Column-Medial Lemniscal Pathway 

 

Dorsal Columns. The cell body of a DRG cell is located in a ganglion on the 

dorsal root of a spinal nerve. Within this ganglion, individual DRG cells may be large or 

small. Large DRG cells process tactile and proprioceptive information whereas small 

DRG cells process pain and temperature information (Amaral, 2013). We are concerned 

with large DRG cells, the fibers of which enter the spinal cord via the dorsal horn where 

they may terminate or turn upwards and ascend as part of the dorsal columns in the dorsal 

funiculus. Dorsal column fibers ascending from the feet, legs, and lower trunk are called 

the gracile fasiculus (located medially) whereas fibers ascending from the hands, arms, 

and upper trunk are called the cuneate fasciculus (located laterally, figure 1.1, adapted 

from Amaral et al., 2013). This mediolateral organization produces a somatopic map of 

the body across the dorsal columns, with the feet located medially and the hands located 

laterally (Whitsel et al., 1972).  

Dorsal Column-Trigeminal Complex. Upon reaching the lower medulla, the 

dorsal column fibers and fibers from the trigeminal ganglion system synapse with their 

respective dorsal column nuclei: the gracile nucleus (lower body), the cuneate nucleus  
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Figure 1.1 The dorsal column-medial lemniscal pathway (adapted from Amaral et al., 
2013). 
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(upper body), and the principal trigeminal nucleus (face and head). These three nuclei, in 

addition to adjacent cells that receive proprioceptive input from muscle spindles and joint 

receptors, make up the dorsal column-trigeminal complex (Kaas, 2008). Here, the 

somatotopic map of the body is maintained but the tactile and proprioceptive inputs are 

segregated. The majority of outgoing projections then cross the midline of the medulla 

and ascend in a fiber bundle called the medial lemniscus, which maintains the 

mediolateral somatotopic map of the body, and projects to the ventroposterior complex of 

the contralateral thalamus (figure 1.1). However, a small minority of fibers, carrying 

information about the mouth, lips, and teeth, also projects to the ipsilateral 

ventroposterior complex (Jones et al., 1986). The majority of the inputs to the 

ventroposterior complex are excitatory, but about 30% are inhibitory and may act to limit 

the size of the receptive fields of neurons in the these nuclei (Schwark et al., 1999; Wang 

and Wall, 2006). 

 

Ventroposterior Complex of the Thalamus  

 

The thalamus acts as a selective filter for information passing between subcortical 

structures and the cortex. It may enhance or prevent the transfer of specific information 

depending on a person’s behavioural state. The somatosensory thalamus (the 

ventroposterior complex) consists of 3 major nuclei (Kaas, 2008): the ventroposterior 

nucleus (VP), which relays primarily tactile information, the ventroposterior superior 

nucleus (VPS), which relays primarily proprioceptive information, and the 
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ventroposterior inferior nucleus (VPI), which relays primarily pain and temperature 

information. Here, we will consider only VP and VPS. 

The majority of inputs to VP are tactile (Kaas, 2008; Kalil, 1981). Thus, VP 

contains a somatotopic map of the contralateral body, but it is the mirror image of the 

map found in the dorsal columns and medial lemniscus with the head located medially 

and the feet laterally. Bands devoid of cells separate different body parts, like the head 

from the rest of the body, and in primates the forelimb representation is separated from 

the hindlimb representation. Smaller bands separate individual fingers and parts of the 

face and mouth (Kaas, 2008; Rausell and Jones, 1991). These cell-free bands are thought 

to represent body areas (or spaces between body parts) that lack somatosensory receptors. 

The majority of VP outputs project to area 3b of the primary somatosensory cortex, but a 

minority also project to areas 1 and 2 of SI as well as the hand and face areas in posterior 

parietal cortex (Cusick et al., 1985; Kaas, 2008; Pons and Kaas, 1985). These projections 

are generally somatotopic with hand regions in VP projecting to hand areas of cortex.  

 The VPS, which processes proprioceptive information is located just dorsal to VP 

and receives projections from the proprioceptive nuclei in the dorsal column-trigeminal 

complex (Boivie and Boman, 1981). Its outgoing projections are directed to areas 3a and 

2 in primary somatosensory cortex (Cusick et al., 1985; Darian-Smith and Darian-Smith, 

1993). A substantial number of these projections (up to ~40%) may split and 

simultaneously project to homotopic areas in both area 3b and 2 (Cusick et al., 1985). 

 A number of additional thalamic nuclei receive somatosensory inputs and project 

to somatosensory regions in the parietal cortex. These nuclei may be involved in 

processing higher-level somatosensory information and include; the anterior pulvinar, 
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which has reciprocal connections with anterior, posterior, and lateral parietal cortex (Pons 

and Kaas, 1985); the medial pulvinar, which has reciprocal connections with 

somatosensory and multisensory posterior parietal areas, including those involved in 

reaching and grasping (Kaas, 2008); the lateral posterior nucleus which connects to 

posterior and lateral parietal cortex (Padberg and Krubitzer, 2006); and the basal ventral 

medial nucleus, which receives tactile inputs from the mouth and projects to the tongue 

representation in area 3b of SI (Kaas et al., 2006).  

Axons leaving the thalamus to the cortex project via the internal capsule, but 

there are many more projections moving in the opposite direction, from the cortex to the 

thalamus and also to the dorsal column-trigeminal complex. In general, these 

corticothamalic connections are somatotopic, meaning that cortical areas representing the 

hand tend to project to thalamic areas also representing the hand; however, some 

projections are mismatched (Kaas, 2008). These cortical to subcortical projections appear 

to regulate the size of the receptive fields of the cells in the thalamic nuclei (Wang and 

Wall, 2006) and may help to spread somatosensory information across different parts of 

the cortex. Ultimately, these connections appear to modulate the responsiveness of the 

thalamic nuclei to different somatosensory stimuli, depending on behavioural state.  

 

Primary Somatosensory Cortex (SI) 

 

Primary somatosensory cortex (SI) is located on the anterior parietal cortex and 

extends from the caudal region of the central sulcus into the postcentral sulcus. It consists 

of 4 separate somatotopic representations of the opposite side of the body; areas 3a, 3b, 1, 

and 2 progressing from rostral to caudal (Kaas et al., 1979). In all four areas, the feet are 
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represented medially and the hands and head are represented laterally. As mentioned, the 

majority of VPS and VP projections are directed towards areas 3a and 3b, respectively. 

Thus areas 3a and 3b appear to be engaged in simpler forms of somatosensory processing 

compared to areas 1 and 2. The ability to process more complex somatosensory stimuli 

appears to be related to differences in receptive field size and complexity between the 

different SI areas. 

According to extensive neuroanatomical and electrophysiological work by Kaas 

and colleagues (Huffman & Krubitzer, 2001; Kaas,1984, 2004; Qi et al., 2008; Qi and 

Kaas, 2004) each SI area processes a different set of somatosensory inputs. Area 3b 

receives tactile inputs from VP and is generally considered the ancestral form of SI, 

which is present in all mammals (Kaas, 2004). It contains two types of modules. As in the 

thalamus, bands lacking cells separate individual body parts such as the head vs. body, 

individual digits, and different parts of the face, mouth, and teeth (Kaas, 2004; Qi and 

Kaas, 2004). These body-specific modules are most obvious in area 3b, but are also 

present in areas 3a, 1, and 2. Within these body-specific modules, alternating patches of 

cortex (~0.5mm wide) receive selective inputs either from SA or RA tactile receptors 

(Chen et al., 2001), thereby forming mini modality-specific modules within each body 

part representation. Higher somatosensory cortical areas may also consist of a similar 

modular organization, but it is not clear how the modules and mini-modules are defined, 

but it is likely by more complex features than body or receptor type. Area 3a receives 

proprioceptive inputs directly from VPS and appears to respond only to position sense. It 

likely corresponds to the rostral somatosensory area (SR) located rostral to SI in non-

primate mammals. Area 1 processes tactile inputs, which it receives directly from VP, but 
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also indirectly via area 3b. Area 2 receives both tactile inputs from 3b and 1 and 

proprioceptive inputs from 3a and VPS. Together, areas 1 and 2 may correspond to the 

caudal somatosensory area (SC) located caudal to SI in non-primate mammals. All of the 

primary somatosensory areas project to SII and the posterior parietal cortex (PPC). 

Iwamura and colleagues (1993, 1994) studied the receptive fields of cells in SI. 

They found that SI receptive fields are larger than the receptive fields of individual 

sensory afferents that project there. For instance, a single 3b cell will have a receptive 

field that represents about 300 incoming somatosensory afferents. As you move to higher 

cortical areas the receptive fields get larger and more complex. Thus, receptive fields in 

area 3b might cover the tip of a single digit, area 1 receptive fields may span multiple 

digit tips, and area 2 receptive fields may span multiple digits. The receptive field of a 

single cell in area 1 or 2 is comprised of a number of area 3b receptive fields arranged in 

a particular spatial pattern. As discussed further below, the receptive fields in SII and 

PPC are often discontinuous and cover multiple body parts, like the hand and the mouth, 

and are often bilateral.  

Differences in receptive field size and complexity means that different S1 areas 

process stimuli of differing complexity (Ageranioti-Belanger and Chapman, 1992). The 

electrophysiological properties of neurons in areas 3a and 3b are relatively simple. 

Neurons in 3b have small and precise receptive fields, thus 3b activity recreates the 

topographic locations of tactile events on the skin surface. But as information flows to 

higher somatosensory areas, more complex stimuli are needed to excite the neurons. For 

instance, area 1 cells respond to specific tactile patterns or textures (Tremblay et al., 

1996) whereas area 2 cells respond to the orientation of edges, the surface curvature of 
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objects, and the direction of motion across the hand. Area 2 neurons fire most strongly 

when the hand grasps an object, and individual area 2 neurons are specific to the shape of 

the object grasped, i.e., a round ball or a long narrow rod (Iwamura and Tanaka, 1978).  

The organization of these complex receptive fields is somewhat dynamic, as they 

change throughout development and can be modified in response to experience or injury 

(Merzenich and Jenkins, 1993). Lesions to SI produce impairments on relatively simple, 

but specific somatosensory tasks. Lesions to area 3b impair one’s ability to detect tactile 

stimuli on certain parts of the body, lesions to area 1 impair one’s ability to detect 

changes in textural patterns on the skin, and lesions to area 2 impair one’s ability to 

detect the size and shape of an object held by the hand (Hikosaka et al., 1985). 

 
Secondary Somatosensory Cortex (SII) 
 
 
 SII is located on the upper bank of the lateral sulcus, but its organization is not 

well understood. In macaques, SII is thought to consist of at least 4 regions (Eickhoff et 

al., 2006) including at least 3 hand maps (Fitzgerald et al., 2004). SII receives both tactile 

and proprioceptive inputs from SI and the thalamus (Kaas, 1984; Cusick et al., 1989; 

Krubitaer and Kaas, 1990; Qi et al., 2002; Coq et al., 2004) and some neurons process 

both types of input (Fitzgerald et al., 2004). Neurons in SII have larger and more complex 

receptive fields than are found in SI. SII receptive fields may be bilateral, cover multiple 

parts of the hand, multiple parts of the hand and face, half the body, or the whole body 

(Fitzgerald et al., 2004; Ishida et al., 2013). SII appears to play an important role in being 

able to recognize objects through touch (Hsaio, 2008) and in producing haptic 

exploration movements with the hands. Lesions to this area impair manipulatory hand 
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movements (tactile apraxia; Valenza et al., 2001; Roland, 1987) and the ability to 

discriminate the shape of an object held in the hand (tactile agnosia; Caselli, 1991) 

despite normal performance on simpler tactile discrimination tasks.  

 

Posterior Parietal Cortex (PPC) 

 

 

 Traditionally, significant debate existed concerning the extent to which the PPC 

of human and non-human primates was homologous. This made neuroanatomical 

comparisons between the two groups especially difficult and conclusions drawn from 

such research were generally conservative. However, functional neuroimaging (Culham 

et al. 2006; Grefkes and Fink 2005), in addition to recent anatomical and functional 

connectivity studies (Mars et al., 2011; Margulies et al., 2009) suggest that the 

organization of functional parietal areas, as well as parietofrontal connectivity, is more 

similar between human and non-human primates than previously thought. Human vs. 

non-human differences appear to be most pronounced in the medial inferior parietal lobe, 

with humans displaying greater connectivity between this region and anterior prefrontal 

cortex compared to macaques (Mars et al., 2011).   

 In both humans and macaques the PPC is divided into two lobes. The superior 

parietal lobe (SPL) is located dorsal to the intraparietal sulcus (IPS) and extends from the 

medial lip of the IPS onto the medial surface of the longitudinal fissure. The inferior 

parietal lobe (IPL) is located ventral to the IPS and extends from the lateral lip of the IPS 

to the sylvian fissure. Figure 1.2 (adapted from Caminiti et al., 2010) illustrates the 

various terminologies used to describe subregions of the PPC in macaques and humans.  
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Figure 1.2 Cortical regions of posterior parietal cortex in the macaque (A) and human 
(B) brain (adapted from Caminiti et al., 2010). 
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It is generally accepted that the parietal lobes contain a rostrocaudal gradient with 

somatosensory information processing dominating in anterior PPC and gradually 

transitioning to predominantly visual processing in posterior PPC (Filimon, 2010).  

 

Motor Modules in PPC 

 

Classic work by Mountcastle et al. (1975) and Rizzolatti et al. (1988) showed that 

neurons in both frontal and parietal cortex fire in response to particular ethologically-

relevant movements such as grasping with the hand, grasping with the mouth, reaching to 

a location in external space, and bringing the hand toward the mouth. Subsequent 

electrical stimulation studies by Graziano (2006) and Kaas et al. (2013) have confirmed 

that electrical stimulation applied for an ethologically-relevant length of time to 

interconnected regions of anterior PPC and motor cortex can elicit these same complex 

movements. Even more recently, studies using long-train stimulation of motor cortex 

have elicited complex forelimb movements, some of which also resemble reach, grasp, 

and hand-to-mouth movements in rodents (Bonazzi et al., 2013; Harrison et al., 2012). 

Together, this work suggests that interconnected modules in primate parietofrontal cortex 

are dedicated to specific motor actions and that at least the frontal aspects of these 

modules are retained from the common ancestor of rodents and primates, with some 

investigators proposing that action-specific processing is also a conserved feature of 

rodent PPC (Whitlock, 2014). In the following sections I describe four primate 

parietofrontal pathways that appear to mediate walking, reaching, grasping, and hand-to-
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mouth food handling behaviours as well as the visual and somatosensory inputs that they 

process. 

 
Locomotion 
 

Neural recording (Brevelieri et al., 2008; Drew et al., 2008), electrical stimulation 

(Graziano, 2006; Kaas et al., 2013), and neuroanatomical (Bakola et al., 2010, 2013) 

studies in non-human mammals, along with human neuropsychological (Della Sala et al., 

2002; Evans et al., 2013) and neuroimaging studies (Abdollahi et al., 2013; Heed et al., 

2011) converge to suggest that interconnected regions of the superior parietal lobe and 

medial frontal cortex are involved in producing complex locomotor behavior in 

mammals. In primates, this locomotor network appears to include the supplementary 

motor area (SMA/F3) and parietal areas PE, PEc, and V6A (Table 1.2).  

Supplementary Motor Area (SMA). SMA/F3 is a cortical motor area located on 

the medial surface of the longitudinal fissure, just dorsal to PMd/F2, and sends 

projections to both the cervical and lumbrosacral regions of the spinal cord (Murray and 

Coulter, 1981). Short train stimulation of SMA produces a rough somatotopic map of the 

body with the forelimbs located in the middle, the face and mouth rostrally, and the 

hindlimbs caudally (Fried et al., 1991). The majority of movements evoked from SMA 

involve proximal limb joints or complex movements involving more than one joint (Fried 

et al., 1991; Luppino et al., 1991). The majority of SMA neurons respond to 

somatosensory stimuli, but visual responses are rare (Matsuzaka et al., 1992). Monkeys 

with lesions to SMA show a disruption of bimanual coordination in that they are unable  
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Table 1.2 Monkey cortical regions proposed to be involved in locomotion and their 
somatosensory and visual inputs 

 

 Somatosensory or Somatomotor Visual 

Area Inputs References Inputs References 

V6A/SPOC 

MIP 
PEc 
PG 
VIP  
MST 

PMd /F7 

Bakola et al., 2010, 2013;  
Gamberini et al., 2009, 2011; 

Marconi et al., 2001 

V2 
V3 
V4 
V6 
VIP 
MST 

Gamberini et 
al., 2009, 2011; 
Passarelli et al., 

2011; 
Shipp et al., 

1998; 

PEc 

PE 
PEci 
MIP 

SI (2) 
SII 

PMd/F2 
SMA/F3 

MI 

Bakola et al., 2010; 
Luppino et al., 1991 

Mitz and Wise, 1987; 
Petrides and Pandya,1984; 

 

V6Ad Bakola et al., 
2010 

PE 

PEc 
PEci 
PEa 
PF 
PG 
MIP 

SI (2) 
SII 

SMA/F3 
M1 

PMd/F2 
PMV/F4 

Bakola et al., 2013; 
Gerbella et al., 2011; 

Petrides and Pandya,1984; 
Pons and Kaas, 1986; 

PG Bakola et al., 
2013 

SMA/F3 

PE 
PEa 
PEci 
SII 

PFop, PGop 
PMd/F2/F7 
PMv F4/F5 

MI 

Jones et al., 1978; 
Luppino et al., 1991,1993; 
Petrides and Pandya, 1984; 
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to produce coordinated actions with two hands. Instead, both hands consistently perform 

the same action (Brinkman, 1981). Bilateral SMA lesions in humans, produce gait ataxia 

(Della Salla, 2002), an inability to initiate or stop walking, which is often accompanied 

by disturbances in other coordinated behaviors, like rolling over in bed, walking 

backwards, or sitting down and standing up from a chair. A recent functional imaging 

study in healthy participants has also confirmed increased activity in SMA when people 

watch videos of others walking and stepping over obstacles (Wang et al., 2009). This 

work suggests that SMA processes primarily somatosensory inputs in order to produce 

coordinated movements of the forelimbs, hindlimbs, and torso, especially those involved 

in locomotion.  

Parietal Area PE. PE is located in the SPL just posterior to SI and is also 

proposed to be involved in producing complex locomotor behavior in mammals. 

Ethologically relevant trains of stimulation applied to medial PE elicit complex forelimb 

and hindlimb movements reminiscent of running, leaping, or climbing in monkeys (Kaas 

et al., 2013). Human PE neurons (area 5 and precuneous) are activated during both the 

execution and observation of arm and leg movements involved in reaching, pointing, or 

climbing (Abdollahi et al., 2012; Filimon et al., 2009; Heed et al., 2011) and appear to 

code arm movements in both postural and retinal coordinates depending on whether or 

not vision is available (Bernier and Grafton, 2010; Bremner and Andersen, 2012; Filimon 

et al., 2010). The feline homologue of primate PE is involved in the production of skilled 

forelimb stepping movements over complex and uneven terrains (Drew et al., 2008; 

Marigold and Drew, 2011). 
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In primates, PE contains a rough somatotopic map of the contralateral side of the 

body with the feet at the midline and the face and hands located on the lateral surface, 

although the hand representation is largely over represented (Padberg et al., 2007). 

Bakola et al. (2013) report that 60% of the inputs to PE are from other parietal areas that 

process somatosensory stimuli, mostly SI and SII, with another 30% arriving from frontal 

cortex; M1 and SMA/F3. PE neurons respond most strongly to proprioceptive stimulation 

of the limbs, rather than to tactile or visual stimulation (Hyvarinen, 1982). Medial PE 

regions, which represent the legs, receive inputs from homotopic leg regions in the 

somatosensory and motor cortices whereas lateral PE, which represents mostly the arms, 

receives both homotopic and heterotopic inputs. PE is directly connected to dorsal MIP 

and PEc, but not ventral MIP (MIP-proper) or AIP, regions known to be involved in 

reaching and grasping. Interestingly, while direct inputs from visual areas and prefrontal 

cortex are almost completely absent, PE is well connected to mesial cortical areas 

involved in navigation (Bakola et al., 2013). 

Parietal Area PEc. PEc is located just caudal to PE in the SPL and responds to 

passive joint manipulation and tactile stimulation of the skin on the arms and, to a lesser 

extent, the legs (Breveglieri et al., 2006, 2008). Bakola et al. (2010) showed that the 

majority of PEc neurons receive inputs from somatosensory areas PE, dorsal MIP, SI 

(area 2), and SII. PEc also receives inputs from motor areas that process somatosensory 

information about the hindlimbs such as PMd/F2 and SMA (Bakola et al., 2010; Luppino 

et al. 1991). These somatosensory and motor inputs seem to be most prominent in rostral 

PEc. Visual inputs to caudal PEc originate mostly from V6Ad, but also from cortical 

areas involved in optic flow, eye movements, and navigation (Bakola et al., 2010), which 
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suggests that the visual information that PEc does process may be related to the animal’s 

movement through the environment (Breveglieri et al., 2008).  

Breveglieri and colleagues (2008) also show that the somatosensory receptive 

fields of neurons in PEc are organized in a non-topographic manner and are mostly 

anchored to proximal limb regions, while the visual receptive fields of the same neurons 

are large, respond only to complex visual stimuli, and do not anchor to the same location 

as the corresponding somatosensory receptive field. The authors propose that this lack of 

topography and somatosensory/visual field convergence implicates a role for PEc in 

coordinating various body parts as the animal moves through a complex visual 

environment. The majority of PEc outputs are directed towards somatosensory responsive 

regions of dorsocaudal PMd/F2 and to SMA/F3 (Matsuzaka et al., 1992).  

Visual Area 6A (V6A). V6A, the most caudal cortical area implicated in 

locomotor behaviour, consists of two subregions, V6Ad and V6Av (Gamerbini et al., 

2011). The vast majority of neurons in both regions respond to arm reaching and pointing 

movements (Galletti et al., 1997), but V6Ad cells respond more vigorously to reaching 

movements in the dark whereas V6Av cells respond more vigorously to reaching 

movements in the light (Gamberini et al., 2009). Reaching or pointing movements with 

the legs and feet have not been investigated in monkeys; however, the human homolog of 

V6A (SPOC) is activated during pointing movements made with both the hand and the 

foot (Heed et al., 2011) and lesions to SPOC disrupt both visually-guided reaching and 

stepping movements (Cavina-Pratesi et al., 2013; Evans et al., 2013). 

While just less than half of the inputs to V6Ad are somatosensory, only about a 

quarter of the inputs to V6Av are somatosensory (Gamberini et al., 2011). Bimodal cells 
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that respond to both visual and somatosensory inputs are only located in V6Ad. V6Av 

receives strong inputs from early visual areas (Passarelli et al., 2011), whereas the visual 

inputs that do project to V6Ad appear to originate from higher visual areas such as VIP, 

which processes visual stimuli approaching the face, and MST, which processes optic 

flow information generated by self motion through the environment (Bakola et al., 2010; 

Gamberini et al., 2009).  

 

Reaching  

 

Extensive human and non-human primate studies have consistently implicated a 

role for the SPL in generating visually-guided reaching movements (for reviews see 

Andersen et al., 2014; Culham and Valyear, 2006; Vesia and Crawford, 2012). The most 

prominent evidence is derived from studies in human and non-human primates showing 

that lesions localized to the caudal pole of the SPL produce impairments in visually 

guided reaching (Cavina-Pratesi et al., 2010a, 2013; Desmurget et al., 1999; Hwang et al., 

2012; Karnath and Perenin, 2005; Perenin and Vighetto, 1988), but may leave grasping 

intact (Cavina-Pratesi et al., 2010a). The parietofrontal areas involved in reaching 

partially overlap with those previously described for locomotion and include PMd/F2, 

PE, PEc, PG, and V6A (Table 1.3). Recent studies (Blangero et al., 2007; Filimon et al., 

2010; Reichenback et al., 2014), suggest that in addition to visually guided reaching, 

these parietofrontal areas may also play an important role in processing proprioceptive 

inputs for reaching without vision. 
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Table 1.3 Monkey cortical regions proposed to be involved in reaching and their 
somatomotor and visual inputs 

 Somatosensory or Somatomotor Visual 

Area Inputs References Inputs References 

V6A/SPOC 

MIP 
PEc 
PG 
VIP  
MST 

PMd /F7 

Bakola et al., 2010, 2013; 
Gamberini et al., 2009, 

2011; 
Marconi et al., 2001 

V2 
V3 
V4 
V6 
VIP 
MST 

Gamberini et al., 
2009, 2011; 

Passarelli et al., 
2011; 

Shipp et al., 1998; 
 

PEc 

PE 
PEci 
MIP 

SI (2) 
SII 

PMd/F2 
SMA/F3 

MI 

Bakola et al., 2010; 
Luppino et al., 1991 

Mitz and Wise, 1987; 
Petrides and Pandya,1984; 

 

V6Ad Bakola et al., 2010 

PE 

PEc 
PEa 
PF 
PG 
MIP 

SI (2) 
SII 

SMA/F3 
M1 

PMd/F2 
PMV/F4 

Bakola et al., 2013; 
Gerbella et al., 2011; 
Pons and Kaas, 1986; 

PG Bakola et al., 2013 

PG 

PEc 
MIP 
AIP 
SII 

Murata et al., 2000;  
Johnson et al., 1996;  

Rozzi et al., 2006 

V6Ad 
Opt Rozzi et al., 2006 

MIP DCN/VPS 
SI (3a) Prevosto et al., 2011 

V6A 
LIP 

Cerebellum 
Thalamus 

 
Galletti et al., 2001; 

Prevosto et al., 
2009, 2010; 

 
 

PMd/F2 

PE 
PEc 
PF 

MIP 
VIP 

PMV/F5 
SMA 

Caminiti et al., 1999;  
Johnson et al., 1996; 
Matelli et al., 1998; 

Tanne-Gariepy et al., 
2002; 

V6A 
MIP 
VIP 

Johnson et al., 
1996; 

Matelli et al., 1998; 
Tanne-Gariepy et 

al., 2002 
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Dorsal Premotor Cortex (PMd/F2). PMd/F2 is located rostral to the superior 

portion of M1. It receives both proprioceptive and visual information from three main 

SPL regions: MIP, V6A/SPOC, PEc and fewer projections from mesial areas of the SPL  

 (Matelli et al., 1998). A number of non-human primate studies have identified PMd/F2 

as a region that processes signals related to reach direction (Cisek and Kalaska, 2005; 

Scott et al., 1997), reach orientation (Scott et al., 1997), reach distance (Messier and 

Kalaska, 2000), and reach correction (Lee and van Donkelaar 2006). PMd/F2 cells may 

encode reaching movements in both retinal and postural coordinates (Batista et al., 2007) 

and long-train electrical stimulation of this region elicits reaching movements to different 

regions of peripersonal space (Gharbawie et al., 2011; Graziano, 2006). PMd may 

influence reaching movements through direct projections to the spinal cord, or indirectly 

via connections with M1. 

Parietal Areas PE, PEC, and V6A. The relevant neurophysiological properties 

of PE, PEc and V6A have been largely covered in the above section on locomotion. To 

summarize, significant somatosensory inputs project to anterior SPL regions (PE and 

rostral PEc), which are engaged during both visually and proprioceptively guided 

reaching movements (Filimon et al., 2010; Bernier and Grafton, 2010). In contrast, 

caudal regions (caudal PEc and V6A) receive additional visual inputs and appear to play 

a specialized role in reaching to grasp visual targets. Both areas, however, may be 

capable of representing reach targets in both retinal and postural coordinates depending 

on whether or not vision is available (Bernier & Grafton, 2010; Beurze et al., 2010). 

Medial Intraparietal Sulcus (MIP). Selective lesions to monkey MIP produce 

reaching impairments while leaving saccadic eye movements unimpaired (Hwang et al., 



	   30 

2012; Trillenberg et al., 2007) and MIP has been proposed to play a specialized role in 

guiding reaching movements both with and without vision (Reichenback et al., 2014). 

Using retrograde tracers, Prevosto et al., (2011) found that macaque MIP receives dense 

proprioceptive inputs from both the dorsal column nuclei (via the VPS and the anterior 

pulvinar), and area 3a in SI. Direct inputs from area 3a originate mostly from the arm, 

shoulder and neck representation, with a small input originating from the more lateral 3a 

hand representation. The majority of inputs from both 3a and the dorsal column nuclei 

are almost entirely proprioceptive, rather than tactile, which likely explains why it is easy 

to elicit neural activity from MIP during passive arm movements, but not so much in 

response to cutaneous stimuli (Burbaud et al., 1991). This also supports the proposition 

that neural activity in MIP is much more related to multi-joint arm movements during 

reaching than to grasping and/or manipulatory hand actions (Prevosto et al. 2011; 

Crawford et al., 2004). MIP also receives visual inputs from V6A and LIP. 

Parietal Area PG. PG is located in the IPL and is strongly connected with higher 

visual areas also involved in reaching such as MIP, V6Ad and Opt, as well as SII (Rozzi 

et al., 2006). Electrophysiological recordings from PG show that many of the neurons 

respond to reaching movements (Battaglia-Mayer et al., 2007; Blum, 1985; Rozzi et al., 

2008), with fewer neurons also responding to eye movements (Rozzi et al., 2008). Early 

reports suggested that PG neurons responded equally to reaching in the light and dark, 

but later studies suggest that PG reaching neurons in PG respond more strongly to 

visually-guided reaching (Rozzi et al., 2008).  

 

Summary of Locomotion and Reaching  
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Together neuroanatomical and electrophysiological studies in primates suggest 

that anterior SPL (PE and rostral PEc) receives somatomotor inputs related to both 

hindlimb and forelimb movements whereas posterior SPL (caudal PEc and V6A) receives 

additional visual and motor inputs related to forelimb movements. Thus, anterior SPL 

regions may specialize in coordinating hindlimb and forelimb movements for locomoting 

in nonvisual environments, whereas additional activity from the posterior SPL could 

mediate locomotion in a visual environment. As suggested by Bakola et al., (2013), 

anatomical and physiological differences in anterior and posterior SPL could underlie 

sensorimotor specializations for the arms (reaching to visual targets) vs. the legs 

(stepping, usually in the absence of direct visual guidance) in primates. Neural commands 

related to locomotor activity appear to ultimately reach the spinal cord via reciprocal 

connections between SPL, and frontal motor areas SMA/F3, PMd/F2, and M1, whereas 

neural commands related to forelimb reaching may be mediated by connections between 

the SPL and PMd/F2. 

As an aside, it should be noted that the majority of primate studies have examined 

subjects whose heads were locked in a fixed position. This has obviously limited the 

extent to which cortical contributions to locomotor control have been directly 

investigated in primates and contrasts significantly with studies of PPC in freely moving 

cats and rodents, which have strongly implicated a role for PPC in navigational (Wilber 

et al., 2014), locomotor (Whitlock et al., 2014), and forelimb placing tasks (De Ryck et 

al., 1992). Thus, future studies using unrestrained primates should help to bridge the 

current gap between non-primate and primate research concerning cortical contributions 

to locomotion.  
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Feeding 

 

Clinical studies have described brain injured patients that are impaired at 

performing coordinated eating and drinking behaviours (Jackson, 1870; Holmes, 1918) 

and a few monkey studies show that certain PPC lesions may impair visually guided 

reaching to external objects while leaving the ability to bring the hand to the mouth intact 

(Ettlinger and Wegener, 1958; Bates and Ettlinger, 1960). In addition, single neuron 

recording (Rizzolatti et al., 1988; Taoka et al., 2013; Yokochi et al., 2003) and 

microstimulation studies (Desmurget et al., 2014; Graziano, 2006; Kaas et al., 2013) in 

humans and non-human primates have implicated at least 3 parietofrontal areas that 

might contribute to the production of hand-to-mouth and feeding movements in primates. 

These are PMv/F5, PF/PFG, and SII (Table 1.4).  

Ventral Premotor Cortex (PMv/F5). PMv/F5 is located in the rostrolateral 

region of premotor cortex, ventral and caudal to the arcuate sulcus. It is strongly 

interconnected with somatosensory areas of the parietal cortex like SI, SII, and PF/PFG 

and higher-order visual/somatomotor areas like AIP and VIP (Tanne-Gariepy et al., 2002; 

Luppino et al., 1999). Recording from this area, Rizzolatti and colleagues (1988) 

discovered  “grasping-with-the-hand-and-the-mouth” neurons, which fired whenever the 

monkey grasped a piece of food with it’s mouth, left hand, or right hand, but not during 

coordinated actions between the hand and the mouth. About one half of these neurons 

responded to passive somatosensory stimuli on the arms, mouth, or face, and about one 

fifth responded to visual stimuli. They also described another subset of “hand-to-mouth” 

neurons that fired when the monkey brought a grasped piece of food towards the mouth 
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Table 1.4 Monkey cortical regions proposed to be involved in feeding or hand-to-moth 
behaviour and their somatomotor and visual inputs 

 Somatomotor Visual 

Area Inputs References Inputs References 

SII SI 
DCN/Thalamus Kaas, 2008   

PF/PFG 

PE 
SI (2) 

SII 
AIP 
VIP 

PMv/F4/F5 

Gharbawie et al., 2011; 
Rozzi et al., 2006; 

Cavada and Goldman-
Rakic, 1989a,b; 

STS 
PG 
VIP 
MST 

Rozzi et al., 2006; 

AIP 
PF/PFG 

SII 
PMv (F5) 

Borra et al., 2008; 

LIP 
STS 
MTG 
VIP 
FEF 

Borra et al., 2008; 

PMv/F5 

SI 
SII 
AIP 
VIP 

PF/PFG 
PEa 

Pre-SMA/F6 
PMv/F4 

Cavada and Goldman-
Rakic, 1989a,b; 

Gerbella et al., 2011; 
Luppino et al., 1999; 
Tanne-Gariepy et al., 

2002; 

AIP 
VIP 

Pre-SMA/F6 

 
 

Gerbella et al., 2011; 
Luppino et al., 1999; 
Tanne-Gariepy et al., 

2002; 
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with the hand. The majority of these hand-to-mouth neurons did not display visual or 

tactile receptive fields, but the ones that did responded to visual stimuli moving towards 

the mouth and tactile stimuli on or near the mouth. In a more recent study, approximately 

one third of the mouth neurons recorded in PMv/F5 also showed mirror response 

properties in that they fired when the monkey observed another animal making feeding or 

communicative movements with the mouth (Ferrari et al., 2003). Graziano (2009) found 

that he could elicit hand-to-mouth movements in monkeys by stimulating the anterior 

PMv and a recent study has found that long-train stimulation of rostral M1 regions can 

also elicit hand-to-mouth movements in humans (Desmurget et al., 2014).  

Another subset of neurons in human M1 were found to generate arm/hand 

movements, but processed somatosensory inputs from the mouth (Desmurget et al., 

2014). The authors propose that these neurons may, “constitute a hardwired feedback 

loop suited to bind oral sensory inputs with upper limb motor commands, for guiding 

hand movements according to mouth sensations”. The authors suggest that this feedback 

loop would support perioral behaviours in young infants; however, it is conceivable that 

such a mechanism might also subserve food-handling behaviours, where the hands lift, 

shape, and grasp a food item already held in the mouth in order to manipulate it or 

modify it for consumption. The number of sites sampled by Desmurget et al. (2014) was 

small, but they did not find evidence of the reverse type of neurons, that process sensory 

inputs from the hand and also generate mouth movements, suggesting that sensory inputs 

from the mouth tend to guide actions of the hand and not the reverse. Perhaps this is why 

young infants engage in perioral exploration – haptic feedback from the mouth may help 

to train manipulatory actions made with the hand.  
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 Parietal Area PF/PFG. Yokochi et al. (2003) describe “face-hand” neurons in 

areas PF and PFG in the rostral IPL, which were later confirmed by Rozzi et al (2008). 

These neurons have unique somatosensory receptive fields that are large, bilateral, and 

discontinuous, covering both the hand (83% covered the whole hand) and part of the face 

(96% covered the mouth). Some face-hand neurons responded to uncoordinated face and 

hand actions (similar to the first set of neurons described by Rizzolatti et al. (1988) in 

PMv). These were intermingled in the anterior tip of the IPS. Other neurons responded to 

self-generated synergistic movements between the hand and the face, i.e., bringing the 

hand to the mouth during eating. These neurons fired more strongly during coordinated 

eating behaviours than they did when hand and mouth movements were made in 

isolation, or when the hand and mouth receptive fields were passively stimulated. 

Yokochi et al. (2003) localized these neurons to rostroventral regions of PF, whereas 

Rozzi et al. (2008) localized them to PFG. Interestingly, PFG may be the only area in the 

IPL that sends projections to the spinal cord (Rozzi et al., 2006). Similar neurons, called 

bimanual or intrapersonal coordination neurons, were previously described by Leinonen 

and Nyman (1979) and Leinonen et al. (1979). Approximately one quarter of Yokochi’s 

face-hand neurons also responded to complex visual stimuli, usually when the monkey 

observed the experimenter performing an action that coordinated with the monkey’s own 

behavior. For example, one neuron began firing as the experimenter moved a piece of 

food, held in his hand, towards the monkey and stopped firing after the monkey took the 

piece of food in his mouth and ate it. These were not mirror neurons, as they required 

action by the monkey in order to fire. 
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Secondary Somatosensory Cortex (SII). More recently Taoka et al. (2013) have 

described hand-mouth neurons located at the border between face neurons and hand 

neurons in rostral SII. These neurons become active when the monkey retrieves food with 

the hand, puts the food in the mouth, and closes the mouth to chew. About 60% of these 

neurons have discontinuous somatosensory receptive fields on the face and hands, 

whereas the remaining neurons have receptive fields only on the hands, only on the face, 

or no receptive fields at all. Hand-mouth neurons in SII could be either phasic or tonic. 

Phasic hand-mouth neurons fired during specific actions – when the monkey grasped the 

food, when the monkey transferred the food from one hand to the other, and when the 

monkey closed his mouth to chew. Thus, similar to a subset of neurons found in PMv/F5 

these neurons fired when the monkey grasped the food item, regardless of the body part 

used (right hand, left hand, or mouth). The authors conclude that these neurons might 

encode the goal of the action (to grasp the object) rather than the effector used to execute 

the action. Tonic hand-mouth neurons started firing when the monkey began to reach 

towards the food and peaked when the monkey put the food in its mouth, stopping when 

the monkey began chewing. Hand-mouth neurons in SII almost never responded to initial 

tactile contact between the monkey’s hand and the object in the experimenter’s hand, 

suggesting that they process information related to proprioceptive/motor control rather 

than tactile feedback. 

 

Grasping  
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A plethora of neural recording (Mountcastle et al., 1974; Rizzolatti et al., 1988), 

electrical stimulation (Gharbawie et al., 2011; Graziano, 2006; Kaas et al., 2013), lesion 

(Fogassi et al., 2001; Gallese et al., 1994) and neuroanatomical tracing (Borra et al., 

2008; Tanne-Gariepy et al., 2002) studies in monkeys, combined with human 

neuropsychological (Binkofski et al., 1998), neurostimulation (Cohen et al., 2009) and 

neuroimaging (Binkofski et al., 1998; Cavina-Pratesi et al., 2010; Culham et al., 2003; 

Konen et al., 2013) studies have identified four parietofrontal areas that appear to be 

consistently involved in the production of grasping and/or manipulatory actions made 

with the hand. In monkeys, this circuit largely overlaps with the cortical areas involved in 

feeding behavior and include SII, PF/PFG, AIP, and PMv/F5, all of which are strongly 

interconnected (Table 1.5). Real or virtual lesions to one or more of these areas may 

impair grasping and/or manipulatory hand movements, with little or no impairment in 

reaching (Binkofski et al., 1998; Gallese et al., 1994; Fogassi et al., 2001; Rice et al., 

2006; Tunik et al., 2005).  

Ventral Premotor Cortex (PMv/F5/F4). As mentioned above, Rizzolatti and 

colleagues (1988) also describe “grasping-with-the-hand” neurons in monkey PMv. 

Specific PMv neurons fire when a monkey forms a particular grip configuration or when 

the monkey makes other hand actions like tearing, holding, or manipulating, regardless of 

whether or not vision is available (Raos et al., 2006). The authors conclude that, “…the 

activity of F5 grasping neurons is not related to individual finger movements, but to the 

grasping action as a whole. The brain uses motor schemata/grasp categories to simplify 

the control of the many degrees of freedom of the hand…” Thus, PMv appears to contain 

a “vocabulary” of hand shapes that can be used to grasp and interact with different  
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Table 1.5 Monkey cortical regions proposed to be involved in grasping and their 
somatomotor and visual inputs 

 Somatosensory or Somatomotor Visual 

Area Inputs References Inputs References 

SII SI 
DCN/Thalamus Kaas, 2008;   

PF/PFG 

PE 
SI (2) 

SII 
AIP 
VIP 

PMv/F4/F5 

Gharbawie et al., 2011; 
Rozzi et al., 2006; 

 

STS 
PG 
VIP 
MST 

Rozzi et al., 2006; 

AIP 
PF/PFG 

SII 
PMv (F5) 

Borra et al., 2008; 

LIP 
STS 
MTG 
VIP 
FEF 

Borra et al., 2008; 

PMv/F5 

SI 
SII 
AIP 
VIP 

PF/PFG 
PEa 

Gerbella et al., 2011; 
Luppino et al., 1999; 

Tanne-Gariepy et al., 2002; 

AIP 
VIP 

 
 

Luppino et al., 1999; 
Tanne-Gariepy et al., 

2002; 
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 objects. While all “grasping” neurons fire when a grasping action is actually executed, 

about half also fire when the monkey simply looks at a graspable object (Murata et al., 

1997; Raos et al., 2006). These neurons usually encode visual objects and grip 

configurations that are compatible. That these neurons are really “grip” rather than 

“shape” selective is confirmed by evidence that the same neuron fires when using a 

similar grip to grasp different shaped objects (Raos et al., 2006). Reversible inactivation 

of PMv disrupts the ability to form the appropriate grip configuration and to place the 

grasping digits at appropriate contact points on the object in both monkeys and humans 

(Fogassi et al., 2001; Davare et al., 2006).  

Parietal Areas PF/PFG. Grasping neurons, similar to those described in PMV/F5 

were discovered even earlier in the anterior IPL by Vernon Mountcastle (Mountcastle et 

al., 1975). Some PF/PFG neurons fire during grasping in both the light and the dark, 

some fire more strongly in the light compared to the dark, and some fire only in the light. 

Subsequent investigations by Rozzi and colleagues (2008) localized the majority of hand 

grasping neurons to area PFG. Similar to PMV/F5 and AIP (as described below) PFG 

neurons that respond to both motor acts and visual inputs appear to encode visual object 

shapes and grip configurations that are compatible (Rozzi et al., 2008). 

Anterior Intraparietal Sulcus (AIP). Grip selective neurons have also been 

found in monkey AIP (Murata et al., 2000; Sakata et al., 1997; Taira et al., 1990) and 

functional neuroimaging studies have attributed grasp selective activity to the human AIP 

region (Begliomini et al., 2007; Binkofski et al., 1998; Cavina-Pratesi et al., 2010; 

Culham et al., 2003; Frey et al., 2005; Konen et al., 2013). AIP is located at the 

intersection of the rostral tip of the intraparietal sulcus and postcentral sulcus. In 
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monkeys, this region receives strong somatosensory inputs from area 2 in primary 

somatosensory cortex (Gharbawie et al., 2011a,b), SII (Borra et al., 2008) and PF/PFG. It 

also receives visual inputs from both the dorsal (LIP, VIP) and ventral (STS) streams 

(Borra et al., 2008). Grasp selective neurons in this region may respond to grasping in the 

dark, grasping in the dark and in the light, or viewing of graspable objects. Thus, AIP is 

engaged during the grasping and manipulation of both visual and non-visual targets 

(Binkofski, 1998; Murata et al., 2000). In humans the more anterior region of human AIP 

may encode the somatosensory and motor aspects of grasping, whereas the posterior 

regions may additionally encode the visual aspects (Culham et al., 2006).  

Secondary Somatosensory Cortex (SII). Ishida and colleagues (2013) recently 

described “hand-manipulation” neurons in SII that fire in relation to grasping or 

exploratory hand movements made in both the light and the dark. Many of these neurons 

also show grip-selectivity, similar to PMv/F5 and AIP grasping neurons. Some SII hand-

manipulation neurons appear to encode motor, rather than somatosensory, parameters as 

they tend to fire before and after contact with the target and rarely in response to passive 

somatosensory stimuli. The authors suggest that SII neurons that do respond to 

somatosensory stimuli may detect hand-object interaction and trigger the appropriate 

motor command for subsequent exploration and manipulation of the object. Binkofski et 

al. (1999a, 1999b) showed that SII co-activates with AIP and PMV when humans 

manipulate a 3D object and this may be related to SII’s role in processing somatosensory 

information related to active hand movements (Valenza et al., 2001).  

 

Feeding and Grasping Summary 
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The studies reviewed above suggest that either a single, or two overlapping 

networks involving SII, PF/PFG/AIP, and PMv/F5 contribute to the production of hand-

to-mouth, hand grasping, and mouth grasping movements regardless of whether or not 

vision is available. While neuroanatomical (Stepniewska et al., 2009) and behavioural 

work (Edwards et al., 2005; Karl et al., 2012b) suggest that forelimb hand-to-mouth 

movements are mediated almost exclusively by somatosensation, additional work 

suggests that the grasping network preferentially processes somatosensory inputs 

(Gharbawie et al., 2011a), but also processes grasping related visual information from 

both the dorsal and ventral streams (Gharbawie et al., 2011a; Borra et al., 2008). 

Human feeding behavior has not been studied to the same extent as reaching or 

grasping. There are difficulties associated with attempting hand-to-mouth movements in 

an MRI scanner; however, future work employing virtual lesions of these cortical areas 

should further elucidate the specific contribution of each to feeding, as well as other 

coordinated hand and mouth movements, in humans. Complex feeding behavior has been 

well documented in rodents (Whishaw and Coles, 1996) and is dependent on the 

corticospinal system (Whishaw et al., 1992). Nevertheless, additional lesion and/or 

electrophysiological work is needed to ascertain whether or not PPC contributes to 

feeding behavior in rodents. 

 

Intermodule Connectivity 
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Although the emphasis in this review is on the differences between the 

parietofrontal pathways that mediate different actions, it is important to note that a 

number of smaller connections exist between most of these cortical areas (Borra et al., 

2008; Gamberini et al., 2009; Gharbawie et al., 2011) and that these pathways likely 

work together in a coordinated manner to produce meaningful behaviour. As such, almost 

all of the cortical areas mentioned above can be found to contain neurons that respond to 

actions other than the one to which they are primarily attuned. For instance, “reach area” 

PMd/F2 is connected to “grasp area” PMv/F5 and “reach area” V6A is connected to 

“grasp area” AIP. Thus, traditional reach areas PMd/F2 and V6A also contain some 

neurons that respond to grasping movements (Raos et al., 2003, 2004; Fattori et al., 

2010).  

As has been previously suggested (Cavina-Pratesi et al., 2010b; Karl and 

Whishaw 2013), it is likely the case that simpler tasks can be accomplished by a single 

parietofrontal pathway acting in relative isolation, but more complex tasks, such as 

combined reach-to-grasp movements may require significant interaction between 

multiple pathways at the same time. In support of this, Raos et al (2004) found that 

visually modulated grasp selective neurons in PMd/F2, but not PMv/F5 (Raos et al., 

2006), lose their grip selectivity when reaching to grasp an object in the dark. The authors 

suggest that these PMd/F2 neurons might combine grip information from PMv/F5 with 

visual “reaching” information from MIP, V6A, and MST in order to “continuously 

update the configuration and orientation of the hand as it approaches the object to be 

grasped”. In other words, SPL regions with privileged access to the dorsal visual areas 
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may also serve to integrate the reach and the grasp together under visual control. A 

similar role has been proposed for SPL area V6A (Fattori et al., 2010). 

 

Motor Intentions 

 

The existence of common and interconnected motor representations in both 

parietal and frontal cortices raises questions about redundancy. A recent study by 

Desmurget et al. (2009) suggests that one unique contribution of the movement 

representations in PPC is that they are coupled to conscious intention and awareness, 

whereas the action representations in frontal cortex are not.  

Desmurget et al. (2009) stimulated anterior PPC and frontal cortex in awake 

patients undergoing brain surgery. Patients reported that moderate stimulation of the IPL 

induced a strong desire or intention to move specific body parts like the arm, foot, or 

mouth. When IPL stimulation was increased, patients reported that they had actually 

made the desired movements, even though they had not, which was confirmed with 

EMG. When stimulation was applied to the premotor cortex patients actually made 

specific movements with the arms, legs, and mouth, but when asked, they denied that 

they had moved at all. These results suggest that conscious intention and awareness of 

executed movements are dependent on the neural processing that takes place in PPC prior 

to movement initiation (Desmurget et al., 2009).  

That PPC uniquely encodes movement intentions is further illustrated by a 

serendipitous observation made by Graziano (2009) when stimulating the premotor 

cortex of an awake monkey for the first time. Upon stimulation, the monkey’s arm 
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reached out in front of him, an act that appeared to surprise the monkey as much as it did 

the experimenters! Upon completion of the stimulation the monkey promptly retrieved 

his extended arm and hand and proceeded to sit on it for the remainder of the testing 

session, clearly indicating that he had certainly not intended to make that reaching 

movement.  

The dissociation of action executions in frontal cortex from action intentions in 

PPC can thus explain a variety of intriguing phenomenon that arise after disconnective 

brain injuries such as alien hand syndrome, in which patients report that one arm appears 

to move and act according to its own free will, apparently with intentions of its own that 

are not consciously accessible to the patient. An important point here is that the dorsal 

stream is usually considered “unconscious”, however, this work highlights the tight link 

between neural activity in PPC and conscious understanding of one’s own actions. 

 

Flexible Sensory Control of Motor Actions 

 

The work described above provides evidence that interconnected neurons in 

parietal and frontal cortex contribute to the production of specific motor acts, which may 

be performed both with and without visual guidance. Many of these neurons have both 

visual and somatosensory receptive fields, indicating that a single “action-specific” 

neuron can process more than one type of sensory input. This suggests that if one sensory 

modality is unavailable (i.e., vision is removed) the movement could still be performed 

based on the remaining sensory inputs (i.e., haptics).  
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This view is supported by a number of lines of evidence. First, it has been shown 

that motor plans are coded in multiple spatial reference frames (i.e., gaze-centered, hand-

centered, body-centered coordinates, etc.) all of which contribute to motor control, but 

with different and flexible weightings (McGuire and Sabes, 2009). The reference frame 

that is most reliable in any given situation receives the heaviest weighting. So, in the 

absence of vision, non-visual or postural coordinates would make the most significant 

contribution to action control. Second, cortical areas traditionally considered unisensory, 

are capable of processing similar object characteristics (i.e., form) derived from other 

modalities (Fiehler et al., 2009; Sathian and Lacey, 2007; Stilla and Sathian, 2008). This 

suggests that the neural representations of haptic and visual object features are similar 

enough that “unisensory” cortical areas are capable of encoding either representation. 

Third, haptic and visual representations of object shape appear to converge to produce a 

multimodal representation of the object (Lacey and Sathian, 2011). Although this 

multimodal representation has largely been studied in the ventral stream where it is 

thought to subserve cross-modal perception, a similar process is proposed to occur in the 

intraparietal sulcus to create a multimodal representation of object shape that can be used 

to guide action. 

These findings support the transition to a new theory of brain organization that 

define cortical areas based on their functional output, regardless of their sensory inputs 

(Pascual-Leone and Hamilton, 2001). A number of interesting questions, specifically 

related to sensorimotor control, arise from this new model that may be addressed by 

future research. (1) How are different parietofrontal action pathways initially established 

during evolution or development? (2) Are these action pathways initially established 
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under a single form of sensory control with secondary access by other modalities or are 

they established under multimodal control from the outset? (3) Do all the action pathways 

use the same weighting metric or is one modality the preferred input for one action but 

not another? (4) If action pathways are flexible in terms of the sensory inputs that they 

process, can we create new sensory devices that can “tap in” to the already existing action 

pathways? (5) How are new motor behaviours or action pathways created… can one 

action pathway split to produce multiple variations of a single behavior? Can multiple 

action pathways be combined to produce a single, more complex, behavior? 

 

Rationale for Thesis 

 

 The act of reaching out to grasp an object in order to retrieve it and place it in the 

mouth provides a suitable behavioural model for investigating differences in sensory 

control for reaching, grasping, and hand-to-mouth actions, each of which is proposed to 

be mediated by a different parietofrontal module. While reaching and grasping have 

largely been investigated from the perspective of their role in visually guided prehension, 

less is known about how these movements are executed in the absence of vision. The 

purpose of the present thesis was to describe motoric changes in Reach, Grasp, and Hand-

to-Mouth movements under conditions where visual inputs are removed or degraded in 

order to determine the contribution of non-visual modalities, specifically 

somatosensation, to each of these behaviours. 

 

Theory 
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 The Dual Visuomotor Channel (DVC) theory posits that prehension consists of 

two movements, a Reach and a Grasp, which are mediated by separate but interacting 

visuomotor pathways projecting from occipital to parietofrontal cortex (Figure 1.3, 

Jeannerod et al., 1981, 1995). The Reach serves to transport and orient the hand in 

relation to the location and orientation (extrinsic properties) of the target, while the Grasp 

serves to open, shape, and close the hand to the size and shape (intrinsic properties) of the 

target. When vision is available, the extrinsic and intrinsic properties of the target can be 

determined concurrently. This allows for simultaneous activation of both the Reach and 

the Grasp pathways, resulting in behavioral integration of the Reach and the Grasp into a 

seemless prehensile act whereby the hand opens, shapes, and largely closes by the time it 

contacts the target (also referred to as hand “preshaping”). 

 While the DVC theory has received significant support from electrophysiological 

(Kaas et al., 2013), lesion (Cavina-Pratesi et al., 2010a), and neuroimaging (Cavina-

Pratesi et al., 2010b) studies, support has not been derived from behavioural work. 

According to the DVC theory, isolated changes in target location should produce isolated 

changes in the Reach without affecting the Grasp and vice versa. Unfortunately, 

behavioural investigations thus far have found that modifications to one spatial property, 

either target location or target size, introduces compensatory changes in both the Reach 

and the Grasp (Jakobson and Goodale, 1991; Paulignan et al., Paulignan et al., 1990a,b).  

 An alternate approach, rather than manipulating the relative intrinsic and extrinsic 

properties of the target, is to remove vision altogether. If online visual input is the critical 

factor required to integrate the Reach and the Grasp together, then by removing vision it 

should be possible to fully dissociate the Reach and the Grasp. 
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Figure 1.3 The dorsomedial Reach pathway (Blue) and the dorsolateral Grasp pathway 
(Green), adapted from Grafton, 2010 (aIPS – Anterior Intraparietal Sulcus, M1 – Primary 
Motor Cortex, mIPS – Medial Intraparietal Sulcus, PMd – Dorsal Premotor Cortex, PMv 

– Ventral Premotor Cortex, S1 – Primary Somatosensory Cortex, S2 – Secondary 
Somatosensory Cortex, SMA – Supplementary Motor Area, SPOC – Superior Parieto-
Occiptal Cortex, V1 – Primary Visual Cortex, V2 – Secondary Visual Cortex, V3A – 

Visual Area 3A, V6A – Visual Area 6A, * - Intraparietal Sulcus, ** - Parieto-Occipital 
Sulcus). 
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Hypotheses 

 

Hypothesis 1: According to the DVC theory, foveal vision is required to integrate 

the Reach and the Grasp into a single prehensile act. Thus, I hypothesize that when vision 

is unavailable the two movements will become dependent on non-visual somatosensory 

feedback associated with target contact resulting in temporal dissociation of the Reach 

and the Grasp. Thus, when people reach-to-grasp an unseen and uncertain target item 

they will not integrate the Reach and the Grasp together, but will Reach to the target in 

order to locate it by touch and then use somatosensory feedback associated with that 

touch in order to shape and close the hand to Grasp (Experiment 1).  

 

Hypothesis 2: If the Reach and the Grasp are separate movements, as proposed 

by the DVC theory, then the two movements may be mediated by different sensory 

control systems, i.e., the Reach and the Grasp may be differentially dependent on vision. 

Thus, I hypothesize that previous haptic experience will have differential effects on the 

Reach versus the Grasp. Thus, people that reach-to-grasp an unseen and uncertain target 

repeatedly will show differential improvements in Reach trajectory versus Grasp 

formation (Experiment 2). 

 

Hypothesis 3: The DVC theory proposes that foveal vision simultaneously 

extracts both the extrinsic (i.e., location and orientation) and intrinsic (i.e., size and 

shape) properties of the target, resulting in simultaneous execution of the Reach and the 

Grasp as a seemless prehensile act. Thus, I hypothesize that if vision is not available, but 
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the extrinsic and intrinsic properties of the target can be extracted from a different 

sensory system (i.e., somatosensation), this will result in re-integration of the Reach and 

the Grasp such that the hand opens, shapes, and closes by the time it touches the target. 

Thus, unsighted adults reaching to grasp a target held in their own mouth will integrate 

the Reach and the Grasp together such that the hand opens, shapes, and closes before 

contact with the target (Experiment 3). 

 

Hypothesis 4: If the Reach and Grasp are separate movements, as proposed by 

the DVC theory, then it should be possible to identify different developmental profiles for 

the Reach and the Grasp. Thus, I hypothesize that separate Reach and Grasp movements 

are initially established under somatosensory control before they are integrated together 

under foveal vision. Thus, young infants will produce separate Reach and Grasp 

movements under somatosensory control before they can integrate the two movements 

together such that the hand opens, shapes, and closes, before making contact with the 

target (Experiment 4). 

 

Experiments 

 

 Experiment 1. Handshaping using hapsis resembles visually guided hand 

shaping. This experiment was designed to examine how the Reach-to-Grasp movement is 

performed when the target is both unseen and unknown prior to haptic contact. 

Participants reached without vision for three different sized food targets, which were 

presented in a random sequence. The results suggest that (1) unsighted adults temporally 
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dissociate the Reach and the Grasp so that haptic feedback associated with target contact 

can be used to first locate the target and then shape the hand to grasp it; (2) after initial 

contact, various strategies may be used to prepare the hand for grasping. In some 

instances the digits release all contact with the target before shaping to grasp, at other 

times some digits maintain contact and manipulate the target while the remain digits 

shape to grasp; and, (3) Grasp aperture scales accurately to target size, regardless of 

whether it is guided by vision of hapsis. 

 

 Experiment 2. Nonvisual learning of intrinsic object properties in a reaching 

task dissociates Grasp from Reach. This experiment was designed to determine whether 

repeated nonvisual reaching for a consistent target object could calibrate and integrate 

Reach and Grasp movements in a way similar to those guided by vision. Unsighted 

participants reached for the same target object at the same target location for 50 

consecutive trials. The results suggest that (1) Reach and Grasp movements respond 

differently to previous nonvisual experience; (2) hand movements related to extrinsic 

object properties (the Reach) may be more efficient when produced by online visual 

control, and (3) hand movements related to intrinsic object properties (the Grasp) may be 

more flexible in terms of their sensory control. 

 

 Experiment 3. Oral hapsis guides accurate hand preshaping for grasping food 

targets in the mouth. This experiment was designed to determine the extent to which 

haptic feedback from the mouth could be used to integrate the Reach and the Grasp such 

that the hand opens, shapes, and largely closes before target contact when reaching to 
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grasp and retrieve a food item from the mouth. Participants reached and grasped three 

different size food items, which were located either in their own mouth or on a pedestal 

in front of them. The results suggest that (1) unlike hand preshaping to distal targets, 

hand preshaping to oral targets was unaffected by visual occlusion suggesting that the act 

is exclusively under haptic control; (2) when reaching to an appropriately sized target, 

haptic feedback from the mouth is as effective as vision for calibrating peak Grasp 

aperture prior to target contact; and (3) hand preshaping, as a function of the frontal and 

parietal cortices could have originated under somatosensory control. 

 

 Experiment 4. Haptic grasping configurations in early infancy reveal different 

developmental profiles for visual guidance of the Reach vs. the Grasp. This experiment 

was designed to examine the Reach and Grasp configurations of infants aged 4 to 24 

months, compared to adults who reached with and without vision. The results suggest 

that (1) young infants reconfigure the Reach and the Grasp, similar to unsighted adults, in 

order to capitalize on haptic feedback associated with target contact, (2) the 

developmental transition from haptic to visual control is asymmetrical with visual 

guidance of the Reach preceding that of the Grasp, and (3) integration of separate Reach 

and Grasp movements into a single prehensile act occurs over a prolonged developmental 

time period lasting into early childhood. 
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Chapter 2 

Hand shaping using hapsis resembles visually guided hand shaping  



	   54 

Abstract 

 

The reach-to-grasp movement is composed of a number of movement elements including 

hand transport, hand shaping and grasping. These movement elements are featured in 

grasping when it is guided by vision, when it is guided by haptic input from the non-

reaching hand or other body parts, and when it is guided by offline perceptual 

(remembered) knowledge. An unanswered question is, how is the reach-to-grasp 

movement achieved when all information about the target must be acquired by the 

grasping hand? The answer to this question was obtained by asking participants to reach 

for three randomly presented food items that varied in size: an orange slice, a small round 

donut ball, or a blueberry. In order to constrain the grasping pattern, participants were 

asked to pick up an item with the intention of placing it in the mouth. Thus, in the 

unsighted condition, participants did not know which item they were reaching for until 

they made haptic contact with it. Hand transport, shaping, and grasping were examined 

using frame-by-frame video analysis and linear kinematics. These measures showed that 

in unsighted reaching, hand transport first served to establish haptic contact between 

either the second or third digit and the target. After haptic identification of the target, the 

hand and/or grasping digits adjusted their trajectory, reshaped and reoriented for 

grasping. A comparison of haptically-guided grasping and visually-guided grasping 

indicated that the two were very similar. This similarity is discussed in relation to 

contemporary ideas concerning the neural mechanisms that guide hand use.  
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Introduction 

 

The reach-to-grasp movement is proposed to be composed of a number of limb 

movement elements. These include hand transport, digit shaping, and a digit grasp (Arbib 

1981; Desmurget et al. 1996; Desmurget and Prablanc 1997; Elliott and Connolly, 1984; 

Iberall et al. 1986; Jacobsen and Sperling 1986; Jeannerod 1981, 1984, 1986, 1998; 

Kapandji 1982; MacKenzie and Iberall, 1994a; Mamassian 1997; Napier 1956; Paulignan 

et al. 1991; Stelmach et al. 1994). In hand transport, the arm and hand are advanced 

towards the target, in digit shaping the index finger and thumb shape to the size and 

orientation of the target and in grasping, the digits close to grip the target with respect to 

its intended use. Vision plays an important role in guiding these movements (Goodale et 

al. 1993, 1994, 2004; Goodale and Milner 1992; Hu et al. 1999; Jakobson and Goodale 

1991; Jeannerod 1981,1986; Wing et al. 1986). Yet, there are many situations in which 

vision is not available to directly guide reaching, grasping, or manipulatory actions of the 

hand. For instance, when reaching into one’s pocket to grasp a pen or a coin or when 

searching for the light switch in a dark room. In these situations hapsis likely plays a 

central role. Previous studies have shown that the hand is appropriately shaped when a 

participant reaches to an unseen body part (Edwards et al., 2005) or to an unseen object 

held by the non-reaching hand (Pettypiece et al. 2009; Pettypiece et al. 2010). The hand 

also shapes appropriately to an unseen but remembered object (Castiello et al. 1993; 

Fiehler et al. 2011; Hu et al. 1999; Jakobson and Goodale 1991; Wing et al., 1986). 

Nevertheless, in all of these studies the participant knew the location, properties, and 
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identity of the target before the reach was initiated, thus allowing the participant to 

preshape the hand during transport for grasping.  

It is not known how the reach-to-grasp movement is performed when the target is 

both unseen and unknown prior to haptic contact. One way of investigating this question 

is to modify the traditional reach-to-grasp task such that participants reach for uncertain 

targets in the absence of vision. An uncertain target could be one of a number of familiar 

targets but which is unknown on any given trial. This procedure differs from that in 

previous studies as both identification and grasping of the target must be performed 

solely by the reaching hand, and only after initial haptic contact with the target is 

established. According to previous studies of nonvisual reaching, one might hypothesize 

that the participant may simply use a larger peak aperture during transport to ensure 

purchase of the target (Jakobson and Goodale 1991). Alternately, a participant may 

simply close the hand at contact with the target without shaping (Goodale et al. 1993; 

Jakobson et al. 1991; Jeannerod 1986; Jeannerod et al. 1994). A third strategy might be 

that a participant parses the movement into an initial component that identifies the target 

and a follow-up component that uses movement elements of hand shaping appropriate for 

object purchase. The dependent measures in the present study evaluated which of these 

three strategies is used. 

 Participants reached first with vision, then without vision, for ethologically-

relevant food targets of varying size; orange slices (large), round donut balls (medium) 

hereafter referred to as “donuts”, and blueberries (small), which were placed one at a 

time, on a pedestal centered in front of the subject. When vision was occluded, 

randomization of the food items ensured that while participants were familiar with the 
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targets, they did not know, at the onset of each trial, which food item they were reaching 

for. In order to constrain the grip pattern used to grasp the targets (Iberall et al. 1986; 

Napier 1956; Sartori et al. 2011; Valyear et al. 2011; Wong and Whishaw 2004), 

participants were asked to place the targets in their mouth after grasping. Offline, frame-

by-frame video analysis, and motion capture kinematics, were used to evaluate hand 

transport, shaping, and grasping in both conditions.  

 

Materials and Methods 

 

Participants 

 

Participants were 12 young adults (6 females, 6 males: M ± SD age = 20.14 ± 

1.91 years) recruited from the University of Lethbridge. All participants provided 

informed consent and were self-reported to be right-handed and of good health with no 

history of neurological or motor disorders. All participants had normal or corrected-to-

normal vision. The University of Lethbridge Human Subject Research Committee 

approved the study. Due to a technical error, kinematic data from a single male 

participant was excluded from analysis. 

 

Reaching Task 

 

Participants were seated in a comfortable upright position. A self-standing, 

height-adjustable pedestal was placed directly in front of the participant at a horizontal 



	   58 

reach distance normalized to the participant’s arm length (100% of length from shoulder 

to tip of index finger with elbow at 180° flexion) and a vertical height normalized to the 

participant’s trunk height (100% of height from floor to outstretched arm while seated 

and with shoulder at 90° flexion) (de Bruin et al. 2008; Whishaw et al. 2002). When 

necessary, visual occlusion was achieved using PLATO vision occluding goggles 

(Translucent Technologies, Toronto, ON) worn on the participant’s face. Because 

opening of the goggles permits central vision but still occludes peripheral vision, 

participants did not wear the goggles when reaching to visual targets. 

 

Procedures 

 

Kinematic and behavioural data were acquired from the right hand while 

participants reached to a distal pedestal for three different sized food items; orange slices, 

donuts, and blueberries. Participants first completed the Vision condition and then the No 

Vision condition (Figure 2.1). 

Figure 2.1A illustrates the Vision condition. The participant did not wear 

occlusion goggles. At the beginning of each trial, the participant placed the right hand in 

the “start position”, with the right index finger and thumb pressed together and resting on 

the anterior aspect of the right knee (Jakobson and Goodale 1991; Pettypiece et al. 2010). 

A single food item was placed on the pedestal. The participant was instructed to reach for 

the item as if she were going to pick it up and eat it. After a verbal “one, two, three, GO” 

command, the participant reached for the food item with the right hand, grasped it, and 

brought it to the mouth (as if to eat it) before handing it to the experimenter.  
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Figure 2.1 The reach-to-grasp task (A) with and (B) without vision. White arrows 
indicate the location of the food item at the beginning of each trial. Note: In the No 

Vision condition participants wore occlusion goggles. 
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At the completion of each trial the participant returned the right hand to the “start” 

position in preparation for the next trial. The three possible food items were presented in 

random order with six repetitions of each for a total of 18 trials.  

Figure 2.1B illustrates the No Vision condition. The task was the same as in the 

Vision condition, except that the participant wore occlusion goggles to occlude vision 

prior to, and throughout, the task to ensure that they did not know which of the three 

possible target items they were reaching for on any given trial. 

  

Kinematic Data Collection 

 

Hand kinematics were recorded using an Optotrak Certus Motion Capture System 

and NDI Dataview and NDI First Principles software (Northern Digital Inc.; Jakobson 

and Goodale 1991). Infrared emitting diodes (IREDs) were positioned on the thumb, 

index finger, dorsum of the hand, and the top of the pedestal. For each trial, IRED 

positions were sampled at 200Hz for 4 seconds following the verbal cue to initiate 

reaching. 

 

Kinematic Data Analysis 

 

Figure 2.2 illustrates the kinematic measures used to define hand preshaping. 

Aperture (mm) was calculated as the difference between the IRED positions on the 

thumb and the index finger. The change in Aperture (y axis) was plotted against Time (x 

axis), and is represented by the curved line. (1) Peak Aperture is defined as the maximum 
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Figure 2.2 Three measures of hand aperture (mm) over time (ms). The curved line 
indicates the changing distance between the index finger and the thumb as the hand 

approaches the food item. Peak Aperture: the maximum index-thumb aperture that occurs 
prior to contact with the food item. Grasp Aperture: the constant index-thumb aperture 

that occurs when the participant grasps, and holds, the food item. Over Grasp: the 
difference between the Peak Aperture and the Grasp Aperture. 
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 aperture obtained between movement onset and first contact with the target, or between 

first contact with the target and grasping of the target. (2) Grasp Aperture is defined as 

the final aperture obtained during actual grasping (and holding) of the target object. (3) 

Over Grasp is defined as the difference between peak aperture and grasp aperture and is 

used as a measure of hand preshaping accuracy, such that a smaller over grasp indicates 

more accurate preshaping of the hand. To control for variability in IRED positioning, the 

index-thumb aperture during the initial “start position,” was subtracted from all 

subsequent aperture measures for each participant.  

For relative comparisons of aperture change throughout the reach-to-grasp task, 

reaching trials were trimmed from a fixed start (movement onset) to a fixed finish (final 

grasp) using visual inspection of the aperture displacement signal, and confirmed with 

video analysis. Trimmed aperture signals were downsampled to 101 frames using the 

‘rubberband’ function in Matlab (Mathworks Inc.). Average change in aperture (y axis) 

was then plotted against normalized time (x axis). 

 

Behavioural Data Collection 

 

 A digital video camera was positioned sagittal to the participant to record a reach-

side view of the participant from lower leg to head at 30 frames/sec and 1/1000 shutter 

speed. A second digital camera was positioned dorsolateral to the pedestal to record the 

shape of the hand as it approached the target on the pedestal. Representative still frames 

were captured from digital video recordings with the video editing software Final Cut Pro 
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(http://www.apple.com). Pictures were cropped and adjusted for color and brightness 

contrast in Adobe Photoshop (V. 11.0) but were not altered in any other way. 

 

Behavioural Data Analysis 

 

 A number of behavioural measures were scored by performing off-line, frame-by-

frame analysis of the video record.  

(1) Movement Times were determined by counting the number of frames from 

movement onset to first contact and to final grasp.  

(2) Digit Shaping, as indicated by changes in index-thumb aperture in the 

kinematic profiles, was verified by reviewing hand shaping transitions on the video 

record both before and after first contact with the target.  

(3) Digit Orienting was determined by adapting previously defined methods 

(Goodale et al. 1994; Iberall et al. 1986; Stelmach et al. 1994) to frame-by-frame video 

analysis. The video record was reviewed for a subset of participants (n = 9) and the 

location of first contact and final grasp contacts were marked on the target object. The 

average final grasp contact location in the Vision condition was considered the “ideal” 

grasp contact location. To quantify the extent to which a first contact or final grasp 

contact deviated from the ideal, the distance between the actual contact point and the 

ideal contact point were measured in Photoshop (V.11.0). Humans are known to adopt a 

preferred digit-thumb opposition orientation when reaching to grasp a distal object 

(Gentilucci et al. 1996; Goodale et al. 1994; Iberall et al. 1986; Stelmach et al. 1994). 

Thus, localization of digit-to-target contacts along a single axis of the target, and close to 
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the “ideal” contact location, indicates the presence of a preferred digit-thumb opposition 

orientation. Variation in the location of digit-to-target contacts indicates the absence of a 

preferred digit-thumb opposition orientation.   

(4) Grasping Strategy refers to the use of different digit-to-target manipulations in 

order to facilitate successful grasping of the target after first contact. Different grasping 

strategies were identified by reviewing digit shaping transitions (of both the grasping and 

non-grasping digits) after first contact on the video record. Five different grasping 

strategies were identified. A single “visual grasping strategy” was used in the Vision 

condition. A basic “haptic grasping strategy” was used in the No vision condition, but 

three variations of the haptic strategy (variation 1, variation 2, and variation 3) could also 

be used. See Results section for a more detailed description of each grasping strategy.  

(5) Grip was determined by reviewing the video record and documenting whether 

the target was grasped with a pincer grip or precision grip. The pincer grip is 

characterized by gripping of the target between the thumb and one digit of the same hand. 

The precision grip features gripping of the target between the thumb and two or more 

digits of the same hand.  

  

Statistical Analysis 

 

Results were subject to analysis of variance (ANOVA) using the computer 

program SPSS (v. 19.0.0). Sex (MALE vs. FEMALE) served as a between-subjects 

factor. Feedback (VISION vs. NO VISION), Target (ORANGE, DONUT, and 

BLUEBERRY), Trial (1, 2, 3, 4, 5, and 6), Time (TO FIRST CONTACT, TO GRASP) 
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First Contact Strategy (DIGIT, THUMB, and DIGIT + THUMB), Grasp Strategy 

(VISUAL, HAPTIC, VARIATION 1, VARIATION 2, VARIATION 3), and Grip 

(PINCER vs. PRECISION) served as within-subjects factors. A p-value of less than 0.05 

was considered significant. Follow-up post hoc comparisons were subject to bonferroni 

correction. 

 

Results 

 

Sex was found to have no significant effect on Peak Aperture [F(1,9) = 0.130, p > 

0.05)], Over Grasp [F(1,9) = 1.442, p > 0.05)], or Grasp Aperture [F(1,9) = 1.90, p > 

0.05]. For this reason, data from male and female participants is combined in the 

following descriptions. 

 

Temporal Organization of the Reach-to-Grasp Movement  

 

 Figure 2.3 summarizes the temporal organization of the reach-to-grasp movement 

when reaching with and without vision. The results represent the mean across all trials, 

objects, and participants. 

 In the Vision condition, peak index-thumb aperture occured during transport of 

the hand to the target, after which the target was first contacted and then grasped. The 

entire reaching action, from movement onset to grasp, took less than 1 second. In the No 

Vision condition, participants took about the same amount of time to reach peak aperture, 

however, after peak aperture they took significantly longer to make first contact and to 



	   66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Time occurrence of peak aperture (light grey), first contact (dark grey), and 
grasp (black) of the reach-to-grasp movement when reaching to a distal object with and 
without vision (mean and standard error). Note: Peak aperture (light grey) occurred at a 

similar time in the Vision and No Vision conditions; however, in the No Vision condition 
both first contact (dark grey, p < 0.001) and grasp (black, p < 0.001) occurred later, when 

compared to the Vision condition. 
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grasp the target. The entire reaching action took almost 2 seconds. These main findings 

were confirmed by ANOVAs that gave significant effects of Feedback X Time to Grasp 

[F(1,10) = 37.060, p < 0.001] and Feedback X Time to First Contact [F(1,20) = 78.713, 

p< 0.001]. 

 Because there were differences in the temporal organization of the reach-to-grasp 

movement in the Vision and No Vision conditions, the following reaching descriptions 

will be partitioned such that Transport (movement onset to first contact) will be featured 

first, then Grasping (first contact to final grasp), and finally visually- and haptically-

guided hand shaping will be compared. 

 

Transport 

 

A comparison of the Vision and the No Vision conditions indicated that accurate 

hand preshaping and orienting occurred during transport when reaching to a seen target 

but not when reaching to an unseen target. A default hand shape and orientation, neither 

of which scaled to the size, shape, or orientation of the target, was used during hand 

transport in the No Vision condition. In brief, hand transport in the Vision condition was 

directed toward grasping the object, whereas hand transport in the No Vision condition 

was directed toward identifying the target. This general conclusion is supported by the 

following detailed descriptions. 

Hand preshaping with vision. Figure 2.4 summarizes the results of hand 

preshaping when reaching with vision for three different sized food items located on a 

distal pedestal. When reaching with vision, participants preshaped the hand according to  
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Figure 2.4 Hand shaping and peak aperture prior to first contact in the Vision condition. 

(A) Representative photos of the hand shape and orientation used to grasp an orange 
slice, donut, and blueberry. (B) Kinematic profiles (mean ± standard error) of the index-

thumb aperture when reaching for an orange slice, donut, and blueberry. (C) Peak 
Aperture (mean ± standard error) and (D) Over Grasp (mean ± standard error) when 

reaching for different sized food items. Note: Hand shape and Peak Aperture scaled to 
food item size, but Over Grasp did not, (O - Orange slice, D – Donut, B – Blueberry, 

***p < 0.001). 
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target size during transport (Figure 2.4A). When reaching for an orange slice (left), the 

index-thumb aperture was large, digits 2 through 5 were almost fully extended, and the 

thumb was fully extended. When reaching for a donut (middle), the index-thumb aperture 

was an intermediate size and all digits were partly flexed. When reaching for a blueberry 

(right), the index-thumb aperture was small and the digits were semi-flexed in a pre-

pincer grasp position. For all targets, the pads of the index finger and thumb aligned in 

opposition, and were oriented towards opposing sides of the target. 

Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 2.4B shows index-thumb aperture profiles (mean ± standard error of all 

participants and all trials) when reaching to targets of varying size with vision. When 

reaching with vision, peak aperture scaled to object size such that it was largest when 

reaching for an orange, intermediate when reaching for a donut, and smallest when 

reaching for a blueberry (Figure 4C). Over grasp did not vary according to object size 

(Figure 2.4D).  

3.2.2 Hand preshaping without vision. Figure 2.5 shows the results of hand 

preshaping when reaching without vision for different sized food items. When reaching 

without vision, participants did not systematically preshape the hand according to food 

item size during transport (Figure 2.5A). Instead, a common, “exploratory”, hand shape 

was used to reach for orange slices (left), donuts (middle), and blueberries (right). To 

make this hand shape, all digits were extended in an open and neutral posture. This hand 

shape did not reflect the use of a planned “grasping” hand shape, scaled to the size of the 

largest target (the orange slice), because the pads of the index finger and thumb did not 

align in opposition and did not orient towards opposing sides of the target. 
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Figure 2.5 Hand shaping and peak aperture prior to first contact in the No Vision 
condition. (A) Representative photos of the hand shape and orientation used to grasp an 
orange slice, donut, and blueberry. (B) Kinematic profiles (mean ± standard error) of the 
index-thumb aperture when reaching for an orange slice, donut, and blueberry. (C) Peak 

Aperture (mean ± standard error) and (D) Over Grasp (mean ± standard error) when 
reaching for different sized food items. Note: Hand shaping and peak aperture did not 

scale to food item size. A “default” hand shape and peak aperture were adopted, causing 
the Over Grasp to be inversely scaled to food item size, (O - Orange slice, D – Donut, B – 

Blueberry, ***p < 0.001). 
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Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 2.5B shows index-thumb aperture profiles (mean ± standard error of all 

participants and trials) when reaching to targets of varying size without vision. During 

transport, the hand adopted a “default” peak aperture regardless of the size of the target 

food item (Figure 2.5C). Because a “default” peak aperture was consistently used, the 

size of the over grasp was inversely related to food item size, such that the over grasp was 

smallest when reaching for an orange slice, intermediate when reaching for a donut, and 

largest when reaching for a blueberry (Figure 2.5D). Importantly, the default peak 

aperture used in the No Vision condition was significantly smaller than the peak aperture 

used when reaching to a visible orange slice (p < 0.05, compare Figure 2.4C and 2.5C), 

indicating that when reaching to an unseen and unpredictable target, the largest possible 

peak aperture was not employed during hand transport. These main findings were 

confirmed by the statistical and follow-up post-hoc analyses. For peak aperture, there was 

no significant effect of Feedback [F(1,10) = 2.032, p > 0.05], but a significant effect of 

Object [F(2,20) = 101.088, p < 0.001] and Feedback X Object [F(2, 20) = 267.399, p < 

0.001]. For over grasp, there was no significant effect of Feedback [F(1,10) = 3.579, p > 

0.05], but a significant effect of Object [F(2,20) = 110.926, p < 0.001], and Feedback X 

Object [F(2,20) = 227.276, p < 0.001].  

 Hand shaping at first contact with and without vision. Hand shaping and 

orienting were also examined at the point of first contact with the target object. Figure 

2.6A shows representative still frames of a participant at the point of first contact when 

reaching to a donut with vision (left) and without vision (right).  
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Figure 2.6 First contact. Hand shape, 
aperture, and orientation in the Vision 

condition (left) and No Vision 
condition (right). (A) Representative 

photos of the hand shape used to 
make first contact with a donut. (B) 
The index-thumb aperture (mean ± 

standard error) at first contact with an 
orange slice, donut, and blueberry. 

(C) The location of first contact on an 
orange slice, donut, and blueberry. In 

relation to the participant, the left 
portion of each target is located 

distally while the right portion of each 
target is located proximally (as in 
Figure 6A). Contacts made with a 
digit are shown in blue (dark grey) 

and contacts made with the thumb are 
shown in red (light grey; summed 

across all participants and trials). (D) 
The probability (mean ± standard 

error) that a digit, the thumb, or the 
thumb plus another digit made first 
contact with the target. Note: In the 

Vision condition the hand shape, 
index-thumb aperture, and digit-

thumb opposition orientation, 
matched the size, shape, and 

orientation of the target object. In the 
No Vision condition, participants 

predominatly used a single digit to 
make first contact, without a scaled 
aperture, or appropriate opposition-
orientation (O - Orange slice, D – 

Donut, B – Blueberry, ***p < 0.001). 
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Hand shape and orientation differed at first contact when reaching with vision as 

compared to without vision. 

Kinematic analysis confirmed the behavioural observation that accurate hand 

shaping was present at the point of first contact in the Vision condition, but not in the No 

Vision condition (Figure 2.6B). Hand aperture scaled to object size, such that it was 

largest when reaching for an orange slice, intermediate when reaching for a donut, and 

smallest when reaching for a blueberry in the Vision condition. In the No Vision 

condition, a default hand aperture was observed at first contact, regardless of target size. 

These findings were confirmed by an ANOVA that gave no significant effect of 

Feedback [F(1,10) = 0.048, p > 0.05], a significant effect of Object [F(2,20) = 143.473, p 

< 0.001], and a significant effect of Feedback X Object [F(2,20 = 114.779, p < 0.001]. 

Frame-by-frame video analysis confirmed that the hand was already oriented to 

the target at first contact in the Vision condition, but not in the No Vision condition. 

Figure 2.6C shows the three target objects and the locations at which first contact 

occurred with (left) and without (right) vision (summed across all participants and trials, 

not to scale). Blue stars represent contact points made with a digit (usually the index or 

middle finger) and red stars represent contact points made with the thumb. The location 

of first contact deviated significantly further from the ideal grasp contact locations in the 

No Vision (M ± SE = 9.96 ± 0.67 mm) compared to the Vision condition (M ± SE = 2.92 

± 0.33 mm). In the Vision condition, the location of first contacts is indicative of a digit-

thumb opposition orientation along the rostral-caudal axis of the target object. In the No 

Vision condition, the location of first contacts was randomized across the dorsal surface 

of the target object in a haphazard way, indicating the absence of a preferred digit-thumb 
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opposition orientation. These findings were confirmed by an ANOVA that gave a 

significant effect of Feedback [F(1,8) = 71.069, p < 0.001]. 

Frame-by-frame video analysis was also used to determine which digit made first 

contact with the target object. Figure 2.6D shows the probability that participants made 

first contact with a single finger, the thumb, or both at the same time when reaching with 

and without vision. In the Vision condition, all three scenarios occurred with equal 

probability. This differed significantly from the No Vision condition, in which first 

contact was almost always made with a single finger. This difference is likely due to the 

fact that in the Vision condition, the hand was shaped and oriented to the target prior to 

first contact, thus increasing the likelihood that first contact could occur with the finger, 

thumb, or both. In the No Vision condition the digits were almost always extended at first 

contact, thus increasing the likelihood that first contact would be made with a digit other 

than the thumb. These main findings were confirmed by an ANOVA that gave significant 

effects for Feedback [F(1,11) = 13.200, p < 0.01], First Contact Strategy [F(2,22) = 

44.098, p < 0.001], and Feedback X First Contact Strategy [F(2,22) = 22.639, p < 0.001]. 

 

Grasping 

 

Compared to the Vision condition, participants took significantly longer to grasp 

the target after first contact was made in the No Vision condition. This difference was 

explained by the different grasping strategies used in the two conditions. In the Vision 

condition grasping of the target immediately followed first contact with the target. In the 

No Vision condition, the hand did not immediately grasp the target after first contact. 
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Rather, the hand withdrew from the target after contact, the digits first collected (flexed 

and closed toward the starting position), then shaped to target size, shape, and orientation, 

after which the object was grasped. This general conclusion is supported by the following 

detailed descriptions. 

Different grasping strategies with and without vision. Figure 2.7 illustrates the 

basic grasping strategies used from first contact to final grasp when reaching with (Figure 

2.7A) and without vision (Figure 2.7B). When reaching with vision a visual grasping 

strategy was used. The hand was shaped and oriented to the target prior to contact. This 

facilitated immediate grasping of the target, such that only a slight flexion of the digits or 

thumb was required to achieve the final grasp posture. When reaching without vision a 

haptic grasping strategy was used. The hand was not shaped or oriented at first contact. 

Thus, a second hand transport was initiated after haptic contact with the target. This 

haptic grasping strategy was characterized by a retraction of the hand and/or digits from 

the target, followed by hand shaping and digit orienting to the size and shape of the 

target, as well as adjustments in digit-to-target contact location. Despite irregular hand 

shaping and orienting prior to first contact with the target in the absence of visual 

feedback, the use of this haptic strategy after first contact facilitated successful grasping 

of the target. 

Variations of the haptic grasping strategy. Depending on hand shape, aperture, 

and location of first contact with the target, variations of the haptic grasping strategy 

could be opportunistically applied. Nevertheless, each variation still passed through a 

critical phase in which the hand shaped and oriented to the target prior to grasping it.  
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Figure 2.7 Representative still frames illustrating the (A) the visual strategy and (B) 

haptic strategy used between first contact and final grasp. Note: For the haptic strategy, 
unlike the visual strategy, hand shape, aperture, and orientation scaled to the target after 

the hand released the target. 
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Figure 2.8 illustrates variations of the haptic grasping strategy used in the No Vision 

condition.  

Figure 2.8A illustrates Variation 1 of the haptic grasping strategy. At first contact 

the hand was already semi-shaped in anticipation of contacting a target object. First 

contact was made with either the thumb or a digit, but occurred at an inappropriate 

location on the target object. Thus, both the location of contact and hand shape was 

adjusted prior to establishing the final grasp posture. 

Figure 2.8B illustrates Variation 2 of the haptic grasping strategy. At first contact 

the hand was not shaped in any manner that would support immediate grasping of the 

target object. First contact was made most often with a digit (rather than the thumb), but 

always at a location on the target object that was conducive to initiating movement 

towards the appropriate final grasp orientation. Because the location of first contact and 

hand orientation were opportune, a simple flexion of the thumb allowed for successful 

“capture” of the target between the digit and thumb in an efficient final grasp posture; 

however, because the hand was not appropriately shaped at first contact, final closure of 

the hand took longer, and the flexion of the thumb was greater, than when compared to 

the visual grasping strategy (Figure 2.7A). 

Figure 2.8C illustrates Variation 3 of the haptic grasping strategy. At first contact 

the hand was not appropriately shaped for grasping the target. Contact was made with a 

digit (rather than the thumb) and occurred at an inappropriate location, usually the dorsal 

surface of the target. To facilitate grasping, the digit that made first contact maintained 

contact, while an adjacent digit established a second contact with the target. Meanwhile, 

the digit that made first contact may or may not have “rolled” the target object towards



	   78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.8 Representative still frames illustrate the 3 variations of the haptic strategy (A, 
B, and C). Note: For all variations, hand shape and/or orientation at first contact did not 

conform to the size, shape and orientation of the target object. Nevertheless, all strategies 
pass through a stage of hand shaping and orienting to produce a successful final grasp. 
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the participant to facilitate the second contact. After second contact, the digit that made 

first contact released the target and shaped, along with the thumb, in order to achieve the 

final grasp posture. 

 Frequencey of different hand shaping strategies with and without vision. 

Figure 2.9 shows the probability that participants used a specific grasping strategy when 

reaching either with or without vision. In the Vision condition, the basic visual strategy 

was used with a probability nearly equal to 1. In the No Vision condition, the probability 

of using the visual strategy dropped to 0; whereas, the probability of using the basic 

haptic strategy increased significantly, as did the probability of using variations of it. The 

use of variation 1 was favored when reaching for an orange slice as compared to a donut 

or blueberry. These main findings were confirmed by an ANOVA that found a significant 

effect of Feedback X Grasping Strategy [F(4,44) = 96.232, p < 0.001], Target X Grasping 

Strategy [F(8,88) = 5.342, p < 0.001], and Feedback X Target X Grasping Strategy 

[F(8,88) = 6.179, p < 0.001]. 

 Kinematic profiles of grasping variations with and without vision. Each 

grasping strategy and variation was associated with a unique kinematic index-thumb 

aperture profile. Figure 2.10 shows representative aperture profiles starting at first contact 

and ending at final grasp, for the visual strategy, the haptic strategy, and each variation of 

the haptic strategy.  

Figure 2.10A shows a kinematic profile for the visual strategy. At first contact the 

index-thumb aperture was already nearly equivalent to the final grasp aperture; only a 

slight decrease in aperture was needed to complete the grasp. Figure 2.10B shows a 

kinematic profile for the basic haptic strategy. A steady index-thumb aperture was  
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Figure 2.9 The probability that each grasping strategy was used when reaching for an 
orange slice, donut, or blueberry in the Vision and No Vision conditions (mean ± 

standard error) is shown. Note: The visual strategy was highly favoured in the Vision 
condition but not in the No Vision condition (p < 0.001). The haptic strategy, and the 
three variations of it, almost never occurred in the Vision condition, but occurred with 

equally frequency in the No Vision condition (haptic strategy, p < 0.001; variation 1, p < 
0.001; variation 2, p < 0.001; variation 3, p < 0.05). Of the haptic strategies, variation 1 

was highly favoured when reaching for an orange slice, but not when reaching for a donut 
or blueberry (p < 0.001). 
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Figure 2.10 Representative kinematic profiles, from first contact to grasp, of the index-
thumb aperture (mm) for each of the grasping strategies; (A) visual strategy, (B) haptic 
strategy, (C) variation 1, (D) variation 2, and (E) variation 3. Note: a peak aperture is 

observed between first Contact and grasp) for the basic haptic strategy, as well as 
variation 1, and variation 3. 
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maintained after first contact until an obvious peak aperture occurred prior to grasping of 

the target. Figure 2.10C shows a kinematic profile for variation 1 of the haptic strategy. 

After first contact, a steady index-thumb aperture was maintained until a small peak 

aperture occurred prior to grasping of the target object. Figure 2.10D shows a kinematic 

profile for variation 2. After first contact, a steady decrease in the index-thumb aperture 

occurred until final grasp aperture was reached. A second peak aperture was not 

observed, but may have been concealed by the fact that the hand aperture was so large at 

first contact, resulting in a linear decrease in aperture that could obscure the formation of 

an index-thumb aperture, scaled to the size of the target object. Figure 2.10E shows a 

kinematic profile for variation 3. After first contact, two additional peaks in index-thumb 

aperture occurred prior to grasping of the target.  

 

Comparison of visual vs. haptic strategies for hand shaping, orienting, and grasping 

 

Hand shaping, orienting, and grasping appeared very similar in the visual strategy 

and haptic strategy. A more detailed comparison as summarized below, confirmed this 

conclusion.  

To determine whether hand shaping scaled to target size in haptically-guided 

grasping, as it does in visually-guided grasping, index-thumb peak aperture was 

compared in both. A peak aperture could be identified after first contact in over half of 

the No Vision kinematic profiles (Table 2.1). The 112 No Vision trials were paired with 

112 corresponding Vision trials (ie., trials with the same target object) and a follow-up 

ANOVA was run to compare the size of peak aperture before first contact in the Vision  
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Table 2.1 Grasp strategies used when reaching to a distal object with or without vision 
and the occurrence of a 2nd Peak Aperture during the Grasping Phase of the reach for each 

strategy 

 

Feedback Grasping Strategy Frequency of 2nd 
Peak Aperture 

Frequency of 2nd 
Peak Aperture (%) 

Vision Vision 0/210 0% 
 Haptic 0/0 0% 
 Variation 1 4/6 67% 
 Variation 2 0/0 0% 
 Variation 3 0/0 0% 
 Total 4/216 1.9% 

No Vision Vision 0/0 0% 
 Haptic 45/67 67% 
 Variation 1 35/59 59% 
 Variation 2 0/36 0% 
 Variation 3 32/54 59% 
 Total 112/216 52% 
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condition and after first contact in the No Vision condition. Figure 2.11 shows peak 

aperture size before first contact in the Vision condition (white bars) and after first 

contact in the No Vision condition (black bars). In both conditions, peak aperture scaled 

to target size. Overall, peak aperture size did not significantly differ in the Vision and No 

Vision conditions. Nevertheless, when reaching for an orange slice, peak aperture was 

smaller in the No Vision condition compared to the Vision condition. This was likely due 

to the increased use of haptic grasping strategy variation 1 (Figure 2.9) which was 

associated with a relatively small peak aperture (Figure 2.10C). These findings were 

confirmed by an ANOVA that gave no significant effect of Feedback [F(1,10) = 3.571, p 

> 0.05], but significant effects of Object [F(2,20) = 203.831, p < 0.001] and Feedback X 

Object [F(2,20) = 9.281, p < 0.001] and follow-up post hoc analyses. 

In order to compare the effectiveness of the visual and haptic grasping strategies, 

hand shape, orientation, and grip posture were examined at final grasp. Figure 2.12A 

shows representative still frames of final grasp when reaching to a donut with (left) and 

without vision (right). A similar hand shape and index-thumb aperture were clearly 

achieved in both conditions. This result was confirmed by the kinematic analysis (Figure 

12B), which found that the grasp aperture for the orange slice, donut, and blueberry 

scaled to object size regardless of differences in sensory feedback. These findings were 

also confirmed by an ANOVA, that gave no significant effect of Feedback [F(1,10) = 

0.526, p > 0.05], and no significant effect of Feedback X Object [F(2,20 = 0.814, p > 

0.05], but a significant effect of Object [F(2,20) = 350.605, p < 0.001].  

Frame-by-frame video analysis also confirmed that the same opposition 

orientation was adopted at final grasp in the Vision and No Vision condition.  
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Figure 2.11 Peak Aperture (mm) when reaching in the Vision and No Vision conditions 
(mean ± standard error). Note: In the vision condition, peak aperture scaled to object size 

during hand transport. In the No Vision condition, peak aperture also scaled to object 
size, but only after first contact with the target (O - Orange slice, D – Donut, B – 

Blueberry, ***p < 0.001, **p < 0.01). 
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Figure 2.12 Hand shape, aperture, 
orientation, and grip at final grasp in 

the Vision (left) and No Vision 
conditions (right). (A) Representative 

photos of the hand shape used to 
grasp a donut. (B) The index-thumb 

aperture used to grasp an orange slice, 
donut, and blueberry (mean ± 

standard error). (C) The location of 
final grasp contacts on an orange 

slice, donut, and blueberry. In relation 
to the participant, the left portion of 
each target is located distally while 
the right portion of each target is 
located proximally (as in Figure 

2.12A). Contacts made with a digit 
are shown in blue (dark grey) and 
contacts made with the thumb are 
shown in red (light grey; summed 

across all participants and trials). (D) 
The probability that a pincer grip or 
precision grip was used to grasp the 

target object (mean ± standard error). 
Note: In both the Vision and No 

Vision conditions the hand shape, 
index-thumb aperture, and final grasp 

contact locations were scaled and 
oriented to the size and shape of the 
target object at final grasp. The only 
difference was that in the No Vision 
condition a precision grip occurred 
more often than a pincer grip, (O - 

Orange slice, D – Donut, B – 
Blueberry, ***p < 0.001). 
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Figure 2.12C shows the location on the target object at which final grasp contacts 

occurred when reaching for an orange, donut, or blueberry with (left) and without (right) 

vision (summed across all participants and trials). Blue (dark grey) stars represent contact 

points made with a digit (usually the index or middle finger) and red (light grey) stars 

represent contact points made with the thumb. The location of final grasp contacts 

deviated slightly further from the ideal grasp contact locations in the No Vision (M ± SE 

= 3.13 ± 0.22 mm) compared to the Vision condition (M ± SE = 2.32 ± 0.14 mm). 

Nevertheless, despite differences in index-thumb opposition orientation at first contact 

(Figure 2.6C), a common index-thumb opposition orientation, aligned with the rostral-

caudal axis, was used to grasp the target in both the Vision and No Vision conditions. 

These findings were confirmed by an ANOVA that gave a significant effect of Feedback 

[F(1,8) = 6.733, p < 0.05]. 

The only major difference at final grasp was related to the type of grip used in the 

Vision vs. No Vision conditions. Figure 2.12D shows the probability that participants 

used either a pincer grip or a precision grip when reaching for a distal object with or 

without vision. In the Vision condition, the probability of grasping the target with a 

pincer grip was significantly higher compared to the probability of using other precision 

grips. The reverse was true in the No Vision condition, for which the use of other 

precision grips occurred with a much higher probability than the pincer grip. These main 

findings were confirmed by an ANOVA that did not give a significant effect of Grip 

[F(1,11) = 3.107, p > 0.05], but a significant effect of Feedback X Grip [F(1,11) = 

32.201, p < 0.001]. In the No Vision condition, the use of a third digit in the precision 

grip might offer additional motor support for grasping of the target (Gentilucci et al. 
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2003), or it could play a primarily sensory role, by monitoring the state of interaction 

between the hand and target, while the remaining digit and thumb perform the primary 

motor action of grasping (Mackenzie and Iberall 1994b). 

 

Discussion 

 

This study provides the first description of the reach-to-grasp movement to 

uncertain targets in the absence of vision. Participants reached for orange slices, donuts, 

and blueberries placed on a distal pedestal. Participants were unaware, prior to haptic 

contact, which target they were reaching for. Frame-by-frame video analysis and 

kinematic motion capture were used to examine hand shaping, orienting, and grasping. 

The results of the present study extend previous work (Bernier and Grafton, 2010; 

Monaco et al. 2010, Pettypiece et al. 2009; Pettypiece et al. 2010; Castiello et al. 1993; 

Fiehler et al. 2011; Hu et al. 1999; Jakobson and Goodale 1991; Wing and Turton 1986) 

in three important ways. First, unlike other forms of visually- and haptically-guided 

grasping, hand shaping and orienting did not accompany hand transport when reaching to 

an unseen and uncertain target. Rather, hand transport served simply to establish haptic 

contact with the target, possibly in order to identify it. Second, after the target was 

contacted, the hand did not simply close, rather the hand adjusted its trajectory, often 

collecting the digits at the same time, before reorienting and reshaping for grasping. 

Third, variations of this basic strategy allowed for concurrent haptic exploration and 

manipulation of the target with some digits while the remaining digits released and 

shaped for grasping. Despite differences in the sensory information used to guide 
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grasping, hand shaping in the visual and haptic conditions were similar in that the 

grasping digits displayed a similar overgrasp and grasp. The common hand shaping 

elements applied under both visual and haptic control suggests that these different forms 

of grasping perhaps stem from a common neural origin.   

The design of the present experiment featured three manipulations that required 

haptic localization and identification of the target prior to grasping of it. First, 

ethologically-relevant food items of varying size were used to ensure that participants 

were familiar with the reaching targets. Second, participants were asked to grasp an 

object as if it were to be eaten. This constraint ensured that all subjects used a similar 

grasping pattern, a pincer or other precision grip, for all objects (Iberall et al. 1986; 

Napier 1956; Sartori et al. 2011). Third, visual occlusion ensured that both target 

identification and grasping were performed only by the grasping hand. As in previous 

studies, targets ranged in size so that hand shaping and orientating to the intrinsic 

properties (size and shape) of each target could be easily evaluated using frame-by-frame 

video analysis and kinematic motion capture (Jakobson and Goodale, 1991; Jeannerod 

1981, 1984, 1986).  

Some caveats must be made with respect to the procedures used. First, the 

kinematic method is limited, in that it does not provide a comprehensive measure of all 

hand shaping/orienting transitions. Although the video records clearly indicated how the 

hand was shaped and oriented for grasping, parts of the hand were sometimes obscured 

so that kinematic results were sometimes incompletely captured. Second, only the 

aperture between the index finger and thumb was measured. Shaping, however, also 

occured between the middle finger and thumb (Figure 8D, Frame 3), confirming the 
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adaptability of the digits in perfoming a variety of precision grasps (Wong and Whishaw 

2004). Thus, peak aperture could not be measured on all of the haptic trials. Nevertheless, 

52% of the haptic trials provided data that could be subjected to kinematic analysis. In 

future experiments, by the use of multiple camera views, measurement of the aperture 

between the thumb and other digits would likely increase the number of trials that could 

be subjected to kinematic analysis. Third, the reaching targets were restricted to a small 

number of categorically-related food items placed in a constant location. It is possible 

that novel variations of the haptic strategy might be introduced for grasping a wider range 

of targets at varied locations. For instance, tools such as a hammer can be grasped in 

many different ways. Yet only a specific grasping pattern supports proper use of the tool. 

In future experiments, it would be interesting to determine whether the use of tools as 

reaching targets would enhance the parsing of the reach-to-grasp movement and/or 

increase the number of concurrent exploratory/manipulatory hand shapes used prior to 

preshaping for grasping. Nevertheless, people use a similar hand shape to grasp targets 

with a common function (ie. to be brought to the mouth for eating). Thus, the chosen 

targets and location were ideal for standardizing final grip pattern across participants and 

trials.  

When reaching without vision to an uncertain target, the transport phase did not 

serve to prepare the hand for grasping. Instead, the hand served an exploratory function 

with the simple aim of establishing haptic contact with the target, presumably to identify 

it. This conclusion is supported by three observations. First, unlike visually-guided 

reaching, when the hand approached the target, its shape and aperture did not scale to the 

size of the target. Rather, a standard hand shape and aperture were used. Second, the 
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aperture of this standard hand shape was intermediate in size (smaller than an orange 

slice but larger than a blueberry). This differs from other forms of nonvisual reaching, ie., 

reaching to a remembered target, for which a larger-than-normal peak aperture is used as 

a means to facilitate grasping of the target despite errors in hand transport (Jakobson and 

Goodale, 1991). Third, the standard hand shape used during transport in the haptic 

condition did not simply reflect an averaging of the index-thumb aperture in relation to 

the three possible target sizes (Chapman et al. 2010). This is because the hand shape used 

to make first contact in the haptic condition was not a “grasping” hand shape at all. 

Rather, an “exploratory” hand shape was used, in which the digits were open and 

extended, and so, contact was made with a digit tip at a random location on the target. 

This contrasts with the “grasping” hand shape used in the visual condition, in which the 

digits were shaped, oriented, and directed to specific contact points on the target. In sum, 

the hand shape and orientation used during transport in the haptic condition are 

suggestive of an exploratory hand posture that serves to maximize the sensory range of 

each digit in order to contact and identify the target.  

When reaching without vision to an uncertain target, hand shaping for grasping 

did occur as a sequence of discrete movement elements, but only after haptic contact was 

made with the target. This conclusion is supported by a number of experimental 

measures. First, after making contact, the hand and/or grasping digits  sometimes closed 

and flexed into a collected hand posture. This collected hand posture is a common 

movement primitive known to precede natural hand shaping (Sacrey et al. 2009; Sacrey 

and Whishaw 2010; Saling et al. 1996; Timman et al. 1996; Whishaw et al. 2010a; 

Whishaw et al. 2010b). Second, the adoption of this posture allowed the hand to 
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transition from an open and extended exploratory hand shape, which increased the 

likelihood that one of the digits would contact the target, into a grasping hand shape, 

using whichever digits were best positioned to form a grip with the thumb. Third, this 

grasping hand shape both scaled and oriented to the target, after which, successful 

grasping of the target occurred. Taken together, these results argue that movement 

elements of hand collection, shaping, and orienting, which are characteristic of visually-

guided grasping, are also applied using haptic information from a touched target. 

When subjects reached without vision to an uncertain target, they did display 

variations in the haptic grasping strategy and the variations reveal that the hand could 

concurrently perform a number of acts. Sometimes, the first digit to contact the food 

stabilized it, meanwhile, shaping and grasping were performed by the remaining digits 

and thumb. At other times the target was “rolled” by a digit or between digits in order to 

manipulate it into a more convenient position for grasping, which was again performed 

by the remaining digits and thumb. These variations resembled both the manipulatory 

hand shapes described by Elliott and Connolly (1984), as well as the exploratory hand 

shapes described by Lederman and Klatzky (1998). Nevertheless, in each variation the 

hand still passed through a phase in which it was shaped and oriented to the target prior 

to grasping. Thus, in addition to exploring, manipulating, and stabilizing the target, the 

hand concurrently executed a common hand shaping sequence for grasping.  

Hand shaping in the visual condition and haptic condition were very similar in a 

number of ways. In both conditions, hand aperture scaled to the size of the target such 

that a large peak aperture was used to grasp an orange slice and a small peak aperture was 

used to grasp a blueberry; in both conditions, the index finger and thumb oriented to 
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similar opposing sides of the target, and; in both conditions, successful grasping of the 

target was achieved such that it could be brought to the mouth for eating. Taken together, 

these results indicate that the same hand shaping strategy that is implemented during 

transport in the visual condition is used after contact in the haptic condition. Despite 

differences in sensory control, this strategy always involved shaping of the hand, scaling 

of the index-thumb aperture, and orienting of the index finger and thumb to opposing side 

of the target, prior to grasping. 

The use of a seemingly similar movement in both visually- and haptically-guided 

grasping, is suggestive of a common neural origin for hand shaping for grasping despite 

differences in sensory conditions. A common neural representation for grasping could be 

coded within a human homologue of the macaque grasping circuit (Castiello et al. 2000). 

The areas in this circuit, especially AIP, appear to play a critical role in grasping (Murata 

et al. 1997; Rizzolatti et al. 1998), are activated by multiple forms of sensory input 

related to grasping (Binkofski et al. 1999), and are active during the grasping actions of 

numerous distal effectors (Castiello et al. 2000; Jacobs et al. 2010). It is also possible, 

however, that there are separate representations for visually and haptically guided 

grasping. It is suggested, for example, that visually guided and nonvisually guided hand 

shaping are mediated by parietal vs temporal lobe pathways in humans (Bernier and 

Grafton 2010; De Santis et al. 2007; Goodale et al. 2004; Goodale and Milner 1992; Reed 

et al. 2005; Sathian et al. 2011). Thus, the haptically executed grasping described here, 

although similar to visually-guided grasping, may nonetheless be mediated by the same 

offline temporal lobe pathway that mediates memory-guided grasping (Goodale et al. 

2004). Nevertheless, because haptic contact was sometimes maintained during hand 
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shaping for grasping, it is possible that haptically-guided grasping could also be mediated 

by the same online parietal pathway that mediates visually-guided grasping (Goodale and 

Milner 1992).  

In conclusion, the present results support the postulate of the DVC theory that the 

Reach and the Grasp are separate movements, likely mediated by different neural 

pathways. They also confirm the first hypothesis of this thesis that foveal vision is 

required to integrate the Reach and the Grasp into a seemless prehensile act by showing 

that when vision is not available to determine the extrinsic and intrinsic properties of the 

target the two movements dissociate so that haptic feedback associated with target 

contact may first guide the Reach in locating the target and then the Grasp in shaping the 

hand for target purchase. 
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Chapter 3 

Nonvisual learning of intrinsic object properties in a reaching task dissociates Grasp 

from Reach 
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Abstract 

 

The Dual Visuomotor Channel theory proposes that skilled reaching is composed of a 

Reach that directs the hand in relation to the extrinsic properties of an object (e.g., 

location) and a Grasp that opens and closes the hand in relation to the intrinsic properties 

of an object (e.g., size). While Reach and Grasp movements are often guided by vision 

they can also be performed without vision when reaching for a body part or an object on 

one’s own body. Memory of a recently touched but unseen object can also be used to 

guide Reach and Grasp movements although the touch-response memory durations 

described are extremely brief (Karl et al., 2012a). The purpose of the present study was to 

determine whether repeated non-visual reaching for a consistent object could calibrate 

Reach and Grasp movements in a way similar to those guided by vision. The non-vision 

group wore vision occluding goggles and reached for fifty consecutive trials for a round 

donut ball placed on a pedestal. The control group performed the same task with vision. 

Frame-by-frame video analysis and linear kinematics revealed that non-vision 

participants consistently used an elevated Reach trajectory, in which the hand, rather than 

being directed towards the target in the horizontal plane, was first elevated above the 

target before being lowered to touch and locate it. First contact was established with the 

dorsal surface of the target and thus adjustments in contact locations were often required 

for purchase. Although non-vision participants initially used an open and extended hand 

during transport, with practice they began to scale digit aperture to object size with an 

accuracy and temporal relation similar to vision participants. The different ways in which 

the Reach and Grasp movements respond to non-visual learning is discussed in relation to 
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support for the dual channel theory of reaching and to the idea that the Reach and Grasp 

channels may be differentially dependent on online visual guidance.  
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Introduction 

 

The reach-to-grasp action, in which a participant advances a hand to acquire an 

object, is used for many daily functions including eating. The Dual Visuomotor Channel 

theory (Jeannerod 1981) proposes that the act is composed of two movements. The Reach 

is guided by extrinsic object properties (e.g., location) whereas the Grasp is guided by 

intrinsic object properties (e.g., size). The Reach transports the hand to the target and the 

Grasp opens and closes the digits for object purchase (Arbib 1981; Jeannerod 1981, 1999; 

Jeannerod et al. 1998). The anatomical substrates of the two channels are proposed to be 

occipitoparietal pathways in the dorsal stream (Goodale and Milner 1992; Rizzolatti and 

Matelli 2003); a dorsomedial stream for the Reach and a dorsolateral stream for the Grasp 

(Binkofski et al. 1998, 1999; Cavina-Pratesi et al. 2010a,b; Jeannerod et al. 1994,1995; 

Murata et al. 2000; Rizzolatti et al. 1998; Tanne-Gariepy et al. 2002). Reach and Grasp 

movements can also be made without vision in order to grasp body parts (Edwards et al., 

2005), objects on the body (Edwards et al. 2005; Pettypiece et al. 2009, 2010), or objects 

held in the mouth (Karl et al. 2012b). These findings, along with findings from 

anatomical and imaging studies (Anema et al. 2009; Bernier and Grafton 2010; Binkofski 

et al. 1999; Dijkerman and de Haan 2007; James et al. 2002), show that nonvisual 

systems can access the Reach and Grasp channels. 

The question of whether Reach and Grasp movements can also be produced from 

memory has been addressed in a number of studies (Goodale et al. 1994a; Hu and 

Goodale 1999; Karl et al. 2012a). Karl et al. (2012a) report that visually occluded 

participants use an exploratory movement to seek out and identify an object and after 
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contact, withdraw the hand and/or digits, scale digit-thumb aperture to object size, and 

redirect the digits to appropriate locations on the object with movements and accuracy 

similar to that performed under online visual control. Although memory demands in this 

study were minor and the distance of hand transport was short, the results raise the 

question of whether repeated non-visual experience with a consistent object might 

calibrate Reach and Grasp movements so that they are similar to those guided by vision. 

An experimental design in which the reinforcement contingencies enable error correction 

on successive trials was postulated to be especially conducive for calibrating movements 

toward the intrinsic and extrinsic properties of the unseen target object (Bingham et al. 

2007). Accordingly, the present study was designed to determine if accurate Reach and 

Grasp movements can be learned without vision by having participants reach for the 

same unseen object repeatedly. If accurate Reach and Grasp movements can be calibrated 

from non-visual experience, the result would support the finding that reaching 

movements can be produced from memory (Bingham et al. 2007; Karl et al. 2012a). If 

non-visual experience did not result in accurate Reach and Grasp movements, the result 

would support the suggestion that offline reaching is different from online reaching 

(Goodale et al., 1994a; Hu and Goodale 1999). 

 In the present study, one group of ten healthy adult participants wore vision 

occluding goggles and reached to a small round donut ball placed on a pedestal in front of 

them. A second group of ten participants performed the same task with full vision. At the 

end of fifty consecutive trials, group assignments were reversed. In the initial condition, 

the visually occluded participants did not know what the target was going to be, and thus 

had to learn both its intrinsic and extrinsic properties without visual feedback. In order to 



	   100 

constrain the grip pattern used to grasp the target (Karl et al. 2012a,b; Napier 1956, 1980; 

Sartori et al. 2011; Valyear et al. 2011), participants were asked to bring the target to the 

mouth “as if they were going to eat it,” after grasping it. Off-line, frame-by-frame video 

analysis and linear kinematics were used to describe the Reach and Grasp movements 

and their temporal organization. 

 

Materials and Methods 

 

Participants 

The minimum number of participants required was determined by an a priori 

power analysis (G*Power: Faul et al., 2007). Results from a pilot study found that the 

effect size for peak grip aperture between sighted and unsighted participants was large, 

t(18) = 3.706, p = .002, Cohen’s d = 1.66, indicating that a total sample of 14 people 

would be needed to detect (at 80% chance) an effect of this size as significant with alpha 

at 0.05. Thus, similar to previous studies (Goodale et al. 1994), 20 young adults (11 

women and 9 men: M ± SD age = 22.35 ± 3.13 years) were recruited from the University 

of Lethbridge to participate in the present study. All participants provided informed 

consent and were self-reported to be right-handed and of good health with no history of 

neurological or motor disorders. All participants had normal or corrected-to-normal 

vision. The University of Lethbridge, Human Subject Research Committee approved the 

study.  

 

Procedures 
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A between-subjects design was employed to simplify the demands on each 

participant and to reduce interference effects with respect to the objectives of the study.  

Participants were seated in a comfortable upright position. A self-standing, 

height-adjustable pedestal was placed directly in front of the participant at a horizontal 

reach distance normalized to the participant’s arm length (100% of length from shoulder 

to tip of index finger with elbow at 180° flexion) and a vertical height normalized to the 

participant’s trunk height (100% of height from floor to outstretched arm while seated 

and with shoulder at 90° flexion; de Bruin et al. 2008; Karl et al. 2012a,b; Whishaw et al. 

2002). All participants were shown the general location at which the reaching target 

would be placed and told that the reaching target would be small enough to grasp with 

one hand. When necessary, visual occlusion was achieved using PLATO vision 

occluding goggles (Translucent Technologies, Toronto, ON) worn on the participant’s 

face. Kinematic and behavioural data were acquired from the right hand as participants 

reached and grasped the donut. 

Figure 3.1a illustrates the VISION condition (n = 10). At the beginning of each 

trial, the participant placed the right hand in the “start” position with the right index 

finger and thumb pressed together and resting on the anterior aspect on the right knee 

(Jakobson and Goodale 1991; Pettypiece et al. 2010). The target object, a round donut 

ball approximately 28.82 ± 1.67 mm in diameter was placed on the pedestal. The 

participant was instructed to reach for the item as if she was going to pick it up and eat it. 

After a verbal “one, two, three, GO” command, the participant reached for the donut with 

the right hand, grasped it, and brought it to the mouth (as if to eat it) before handing it to 

the experimenter. The participant then returned the right hand to the “start” position in  
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Figure 3.1 The reach-to-grasp task (A) with and (B) without vision. White arrows 
indicate the location of the donut ball at the beginning of each trial. Note: in the NO 

VISION condition participants wore occlusion goggles. 



	   103 

preparation for the next trial. A total of fifty consecutive trials were performed by each 

VISION participant. Figure 3.1b illustrates the NO VISION condition (n = 10). The task 

was the same as in the VISION condition, except that the participant wore vision 

occluding goggles prior to, and throughout, the testing session to ensure that they could 

not visually identify the reaching target. The kinematic data from one participant in the 

NO VISION group was degraded and excluded from analysis.  

 

Kinematic data collection and analysis 

Hand kinematics were recorded using an Optotrak Certus Motion Capture System 

and NDI Dataview and NDI First Principles software (Northern Digital Inc. Waterloo, 

ON; Jakobson and Goodale 1991). Infrared-emitting diodes (IREDs) were positioned on 

the thumb, index finger, middle finger, and wrist. For each trial, IRED positions were 

sampled at 200 Hz for 4 s following the verbal cue to initiate reaching. 

Figure 3.2 illustrates the kinematic measures used in the present study. Aperture 

(mm) was calculated as the distance between the IRED positions on the thumb and the 

index finger. The change in Aperture (y-axis) was plotted against Time (x-axis) and is 

represented by the curved line. (1) Peak Aperture is defined as the maximum aperture 

obtained between movement onset and first contact with the object and is used as an 

indicator of anticipatory digit scaling. (2) First Contact Aperture is defined as the 

aperture obtained at first contact with the object. (3) Final Grasp Aperture is defined as 

the final aperture obtained during actual grasping (and holding) of the object. To control 

for variability of IRED positioning, the index-thumb aperture during the initial  
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Figure 3.2 Measures of Peak Aperture, First Contact Aperture, and Final Grasp Aperture 
(mm) plotted against time (ms). The curved line indicates the changing distance between 
the index finger and thumb as the hand transitions from the “start” position to holding of 

the object. 
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“start position,” was subtracted from all subsequent aperture measures for each trial for 

each participant (Karl et al. 2012a,b). 

  

Behavioural data collection and analysis 

A digital video camera was positioned sagittal to the participant to record a reach-

side view of the participant from the lower leg to head at 30 frames/sec and 1/1,000 

shutter speed.  Another high speed video camera was also positioned to record a reach-

side view of the participant at 300 frames/sec. The high speed video camera was time-

synced with the Optotrak using NDI First Principles software. Representative still frames 

were captured from digital video recordings with the video editing software Final Cut Pro 

(http://www.apple.com). Pictures were cropped and adjusted for color and brightness 

contrast in Adobe Photoshop (V. 11.0) but not altered in any other way. 

 A number of behavioural measures were scored by performing off-line, frame-by-

frame analysis of the video record and comparing it to the time synchronized kinematic 

data. 

1. Maximum Trajectory Height refers to the maximum vertical distance between the 

index knuckle of the right hand and the dorsal surface of the pedestal during hand 

transport towards the reaching target. Frame-by-frame video analysis and the image 

analyzing software ImageJ 1.45S (http://imagej.nih.gov/ij) were used to plot the 

trajectory of the right index knuckle and the tip of the right index finger during hand 

transport towards the reaching target. The maximum vertical distance between the 

right index knuckle and the center of the pedestal was measured and calculated using 
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basic trigonometry. The actual length of a single side of the pedestal surface was used 

to scale all calculated measures. 

2. Digit Contact Locations were determined by adapting previously defined methods 

(Goodale et al. 1994; Iberall et al. 1986; Stelmach et al. 1994) to frame-by-frame 

video analysis. The video record was reviewed for all participants for each condition, 

and the location of first contact and final grasp contacts was marked on the target 

object. The average final grasp contact location in the VISION condition was 

considered the “ideal” grasp target location.  To quantify the extent to which a first 

contact or final grasp contact deviated from the ideal, the distance between the actual 

contact point and the ideal contact point was measured in Photoshop (V.11.0).   

3. Digit to Make First Contact was determined by reviewing the video record and 

documenting which digit (palm, thumb, index, middle, ring, or pinkie) made first 

contact with the object. 

4. Final Grip Posture was determined by reviewing the video record and documenting 

whether the target was grasped with a precision grip or a power grip. The precision 

grip features gripping of the target between the thumb and two or more digits of the 

same hand. The power grip features gripping of the target between the palm of the 

hand and one or more digits of the same hand. 

5. Movement Times were obtained by examining the video record to determine the time 

of occurrence of key movement components and was confirmed using the time-synced 

kinematic data. Time of movement onset is defined as the moment of observable 

movement of the hand towards the donut ball. Time of peak aperture is defined as the 

time from movement onset to peak aperture prior to contact with the donut ball. Time 
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of first contact is defined as the time from movement onset to first contact with the 

donut ball. Time of final grasp is defined as the time from movement onset to final 

grasp of the donut ball.  

 

Statistical analysis 

Results were subject to a mixed analysis of variance (mixed ANOVA) using the 

computer program SPSS (v. 19.0.0). Sex (MALE vs. FEMALE) and Condition (VISION 

vs. NO VISION) served as between-subjects factors. Trial (1, 5, 10, 15, 20, 25, 30, 35, 

40, 45, 50 or FIRST 5 vs. LAST 5), Aperture (PEAK, FIRST CONTACT, FINAL 

GRASP), Time (TO PEAK APERTURE, TO FIRST CONTACT, and TO FINAL 

GRASP), Digit to Make First Contact (PALM, THUMB, INDEX, MIDDLE, RING, 

PINKIE), and Final Grip Posture (PRECISION vs. POWER) served as within-subjects 

factors. A p value of less than 0.05 was considered significant. Follow-up pairwise 

comparisons and post hoc analyses were subjected to bonferroni correction and power 

analyses were performed using G*Power 3.1 (Faul et al. 2007;	  http://www.psycho.uni-

duesseldorf.de/abteilungen/aap/gpower3/). Results are reported as the mean ± within-

subjects standard error of the mean. 

	  

Results 

 

Reach Trajectory 

Figure 3.3a shows the maximum vertical trajectory height, measured from the 

right index knuckle, when reaching to the donut ball on trial 1 and trial 50 in the VISION 
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Figure 3.3 Representative still 
frames of the wrist, forearm, and 
hand at the maximum height of 
the Reach trajectory on trial 1 

(top) and trial 50 (bottom) in the 
VISION and NO VISION 

conditions (A). Example Reach 
trajectories, determined by 
tracking the tip of the index 

finger, on trial 1 (top) and trial 50 
(bottom) in the VISION and NO 

VISION conditions (B). The 
maximum Reach trajectory height 

(cm) for the first and last five 
trials (mean ± SE)  when reaching 

in the VISION (white bars) and 
NO VISION (black bars) 

conditions (C). The maximum 
height of the Reach trajectory was 

consistently greater in the NO 
VISION condition compared to 
the VISION condition, (***p < 

0.001). 
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and NO VISION conditions. The elevation of the trajectory was clearly greater in the NO 

VISION compared to VISION condition, even after repeated reaching trials.  

Figure 3.3b shows the trajectory of the tip of the index finger on approach to the 

donut on trial 1 and trial 50 in the VISION and NO VISION conditions. When reaching 

to a visible object, reach trajectory was direct and approached the object in the horizontal 

plane. When reaching to an unseen object the reach trajectory was elevated above the 

expected location of the object and then lowered onto its dorsal surface. Despite repeated 

reaching trials, participants in the NO VISION condition maintained an elevated Reach 

trajectory. 

Kinematic analysis of maximum trajectory height confirmed the video 

description. Figure 3.3b shows the maximum trajectory height (mean ± SE of all 

participants) on the first five and last five reaching trials in the VISION (white bars) and 

NO VISION (black bars) conditions. Maximum trajectory height was significantly 

elevated in the NO VISION compared to VISION condition irrespective of trial number. 

In the NO VISION condition, maximum trajectory height appeared to decrease slightly 

with repeated reaching experience, but the effect was not significant.  

These main findings were confirmed by a repeated measures mixed ANOVA that 

gave a significant effect of Condition [F(1,17) = 35.673, p < 0.001], but no significant 

effect of Trial [F(9, 153) = 1.173, p > 0.05] or Trial X Condition [F(9,153) = 0.835, p > 

0.05].  

 

Digit Placement: First Contact and Final Grasp Contact Locations 
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Figure 3.4 shows the location of digit-to-object contact locations at first contact 

(left) and at final grasp (right) for the first five and last five trials in the VISION (Fig. 

3.4a) and NO VISION (Fig. 3.4b) conditions. This shows the extent to which the digits 

could be directed towards appropriate locations on the object before first contact and after 

first contact. In the VISION condition participants usually established first contact with 

the object by using the index finger to contact the distal side of the object or by using the 

thumb to contact the proximal side of the object. Because first contact was established 

with the grasping digits, and at appropriate locations on the object, no significant 

adjustments in digit-to-object contact locations were required after first contact in order 

to successfully grasp the object. This was true for both the early and late VISION trials. 

In the early NO VISION trials participants usually established first contact between the 

palm and the dorsal surface of the object. However, by later trials first contact was 

generally established with the index or middle finger, but still with the dorsal surface of 

the object. The location of first contacts differed significantly compared to the location of 

final grasp contacts and this was true for both the early and the late NO VISION trials. 

Thus, in the NO VISION condition, adjustments in digit-to-object contact locations were 

made after first contact in order to re-direct the digits to appropriate locations on the 

object in order to successfully grasp it (Karl et al., 2012a). These adjustments were still 

required after repeated reaching experience with the object. 

These results were confirmed by the statistical analysis. For location of first 

contact there were significant effects of Condition [F(1,17) = 57.667, p < 0.001], Trial 

[F(9,153) = 15.569, p < 0.001], and Trial X Condition [F(1,17) = 13.303, p < 0.001]. The 

significant effect of Trial found in this analysis is due to large variation between trials in  



	   111 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Digit-to-object contact locations at first contact (left) and final grasp (right) on 
the first five (top) and last five (bottom) trials in the VISION (A) and NO VISION (B) 
conditions. In relation to the participant, the left portion of each target is located distally 
and the right portion of each target is located proximally. Contacts were made with the 
palm (black), thumb (green), index (blue), middle (red), ring (purple), or pinkie (orange) 
finger. Note: digit-to-object contact locations did not change between first contact and 
final grasp in the VISION condition, but did change in the NO VISION condition. 
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the NO VISION condition and is not due to a learning effect. This is demonstrated by the 

fact that in the NO VISION condition, the location of first contact deviated further from 

the ideal contact location on trial 50 (M ± SE = 10.28 ± 0.86 mm) compared to trial 1 (M 

± SE = 6.97 ± 0.85 mm).  For location of final grasp contacts there were significant 

effects of Condition [F(1,17) = 1.108.812, p < 0.001], Trial [F(9,153) = 2.563, p < 0.01], 

and Trial X Condition [F(9,153) = 2.905, p < 0.01]. 

 

Digit to Make First Contact 

Figure 3.5 shows the probability that participants made first contact with the 

object using the palm, or one of the digits on the first five and last five trials in the 

VISION and NO VISION conditions. Figure 3.5a shows that in the VISION condition 

participants tended to make first contact with either the thumb or index finger. This was 

consistent across both early and late reaching trials. Figure 3.5b shows that in the early 

NO VISION trials, first contact was randomized across the palm, index, middle, or ring 

finger. With repeated reaching experience, however, first contact came to be primarily 

established with either the index or middle finger, indicating reduced variability in which 

digit was used to make first contact with the object, but still differed from the VISION 

condition in which first contact was consistently made with the thumb or index finger. 

This indicates that with repeated reaching experience visually occluded participants are 

better able to direct a more appropriate part of the hand (i.e. the index or middle finger) to 

the location of the target. Nevertheless, they never achieve the level of accuracy observed 

in the VISION condition, in which the primary grasping digits are always used to 

establish first contact with the object. 
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Figure 3.5 The probability (mean ± SE) that the palm or one of the fingers made first 
contact with the object on the first five and last five trials in the VISION (A) and NO 

VISION (B) conditions, (**p < 0.01). 
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These main findings were confirmed by a repeated measures ANOVA that gave 

significant effects of Digit [F(5,85) = 50.019, p < 0.001], Digit X Condition [F(5,85) = 

22.936, p < 0.001], Trial X Digit [F(45, 765) = 2.140, p < 0.001], and Trial X Digit X 

Condition [F(45,765) = 2.071, p < 0.001], but no significant effect of Trial [F(9,153) = 

0.895, p > 0.05]. Follow-up pairwise comparisons revealed that in the NO VISION 

condition the proportion of trials on which first contact was establish with the palm 

significantly decreased between the first five trials and last five trials [t(8) = 2.801, p 

<0.01]. 

 

Digit Scaling: Peak Aperture 

Figure 3.6a shows the shaping of the hand at the point of peak digit-thumb 

aperture during transport to the object on trial 1 and trial 50 in the VISION and NO 

VISION conditions. In the VISION condition a “grasping” hand shape was present at 

peak aperture such that the digits and thumb were directed towards opposite sides of the 

object and the index-thumb aperture appeared slightly larger than the object. This same 

hand shape was consistently employed from trial 1 through to trial 50.  In the NO 

VISION condition the hand shape used at peak aperture differed from trial 1 through to 

trial 50. On trial 1 an open and extended hand shape was present at peak aperture. The 

digits did not align to opposite sides of the target and the digit-thumb aperture did not 

appear to scale to the size of the target before contact. However, with repeated reaching 

experience, participants began to oppose the index finger and thumb at peak aperture, 

which also appeared to scale to the size of the object. 



	   115 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Representative still frames of the hand and digits at peak aperture on trial 1 
(top) and trial 50 (bottom) in the VISION and NO VISION conditions (A). Size of peak 

aperture (mean ± SE, mm) on trials 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 in the 
VISION (grey squares) and NO VISION (black squares) conditions (B). Note: on early 
trials peak aperture was significantly greater in the NO VISION compared to VISION 

condition , (***p < 0. 001). By trial 5 peak aperture did not significantly differ between 
the two conditions. 
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Kinematic analysis confirmed the video description. Figure 3.6b shows the size of 

the peak digit-thumb aperture on every 5th trial in the VISION (grey) and NO VISION 

(black) conditions. In the earliest trials, peak aperture was significantly larger in the NO 

VISION compared to the VISION condition. However, with repeated reaching 

experience and by trial 5, peak aperture in the NO VISION condition decreased and 

eventually achieved a level of accuracy comparable to that seen in the VISION condition. 

This accuracy was maintained until the end of the testing session.  

These main findings were confirmed by the statistical analysis. For peak aperture 

there was a significant effect of Condition [F(1,17) = 3.447, p < 0.001], Trial [F(10,170) 

= 4.767, p < 0.001], and Trial X Condition [F(10,170) = 3.454, p < 0.001]. A 

retrospective power analysis revealed an effect size of (f) = 0.451 and a power > 0.80 for 

this interaction. Follow-up pairwise comparisons revealed that peak aperture differed 

significantly between the VISION and NO VISION groups on Trial 1 [t(17) = 4.247, p < 

0.001]. Peak aperture did not significantly differ between the two groups on trials 5 to 50, 

[F(1, 17) = 2.122, p > 0.05, effect size (f) = 0.293]. Power analysis revealed that in order 

for an effect of this size to be detected (80% chance) as significant at an alpha of 0.05, a 

sample of 74 participants would be required. In order for a significant difference to be 

detected on trial 50 [t(17) = 0.868, p = 0.397, Cohen’s d = 0.421], a sample of 180 

participants would be required. 

 

Anticipatory Digit Closure: Aperture at First Contact 

Figure 3.7a shows the shaping of the hand at the point of first contact with the 

object on trial 1 and trial 50 in the VISION and NO VISION conditions. This provides a  
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Figure 3.7 Representative still frames of the hand and digits at first contact with the 
object on trial 1 (top) and trial 50 (bottom) in the VISION and NO VISION conditions 
(A). Size of digit-thumb aperture (mean ± SE, mm) at first contact with the object on 
trials 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 in the VISION (grey squares) and NO 

VISION (black squares) conditions (B), (***p < 0. 001, **p < 0.01, *p < 0.05). 
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measure of the extent of anticipatory closure of the hand on approach to the object. In the 

VISION condition the hand had almost fully closed by the time of first contact with the 

object. This was consistent for trial 1 through to trial 50. In the NO VISION condition the 

extent of anticipatory hand closure differed between trials. On the first trial the hand did 

not appear to close on approach to the object at all. Thus an open and “exploratory” hand 

shape was used to establish first contact with the object. By trial 5, however, the hand 

began to show significant closure upon approach to the target. Nevertheless, the extent of 

anticipatory hand closure was varied and did not always reach the same level as that 

observed in the VISION condition. 

Kinematic analysis confirmed the video description. Figure 3.7b shows the size of 

the digit-thumb aperture at first contact on every 5th trial in the VISION (grey) and NO 

VISION (black) conditions. On the first trial, digit-thumb aperture at first contact was 

significantly larger in the NO VISION compared to the VISION condition. However, 

with repeated reaching experience and by trial 5, the aperture of the hand at first contact 

in the NO VISION condition significantly decreased, although it did not always reach the 

same level as seen in the VISION condition.  

These main findings were confirmed by the statistical analysis. For aperture at 

first contact there was a significant effect of Condition [F(1,17) = 11.022, p < 0.01], Trial 

[F(10,170) = 3.826, p < 0.001], and Trial X Condition [F(10,170) = 6.484, p < 0.001]. 

Follow-up pairwise comparisons revealed that peak aperture differed between the 

VISION and NO VISION groups on Trial 1 [t(17) = 6.190, p < 0.001], Trial 20 [t(17) = 

3.498, p < 0.05], Trial 25 [t(17) = 3.076, p < 0.05], and Trial 30 [t(17) = 2.876, p < 

0.001]. 
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Aperture at Final Grasp 

Figure 3.8a shows the shaping of the hand at the point of final grasp with the 

object on trial 1 and trial 50 in the VISION and NO VISION conditions. In the VISION 

condition the digits and thumb appeared to grasp the target by applying grasping forces to 

opposite sides of the target. This was consistent from trial 1 through to trial 50. In the 

earliest NO VISION trials the digits did not always align to opposing sides of the target, 

but they did always align in opposition with each other. With repeated reaching 

experience, participants in the NO VISION condition became more adept at aligning the 

digits to opposite sides of the target at final grasp. 

 Kinematic analysis confirmed the video description. Figure 3.8b shows the size 

of the digit-thumb aperture at final grasp on every 5th trial in the VISION (grey) and NO 

VISION (black) conditions. Although the alignment of the digits with the target 

sometimes varied, final grasp aperture did not differ between the VISION and NO 

VISION conditions on any of the trials. These results confirm that the significant effects 

found for peak aperture and aperture at first contact were not related to a difference in the 

digit-thumb aperture used at final grasp.  

These main findings were confirmed by the statistical analysis. For aperture at 

final grasp there was no significant effect of Condition [F(1,17) = 0.261, p > 0.05], Trial 

[F(10,170) = 1.392, p > 0.05], or Trial X Condition [F(10,170) = 1.411, p > 0.05]. 

 

Final Grip Posture 

Figure 3.9 shows the probability that participants used a precision grip or power 

grip to grasp the object in the VISION and NO VISION conditions. Figure 3.9a 
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Figure 3.8 Representative still frames of the hand and digits at final grasp of the object 
on trial 1 (top) and trial 50 (bottom) in the VISION and NO VISION conditions (A). Size 
of digit-thumb aperture (mean ± SE, mm) at final grasp on trials 1, 5, 10, 15, 20, 25, 30, 

35, 40, 45, and 50 in the VISION (grey squares) and NO VISION (black squares) 
conditions (B). Note: digit-thumb aperture at final grasp did not significantly differ 

between the VISION and NO VISION conditions. 
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shows that in the VISION condition, participants consistently favoured a precision grip 

for both early and late trials. Figure 3.9b shows that in the NO VISION condition 

participants utilized a precision grip and a power grip with equal probability on trial 1; 

however, by trial 50 participants used only a precision grip, much like in the VISION 

condition.  

These main findings were confirmed by the statistical analysis that found 

significant effects of Grip [F(1,17) = 75.605, p < 0.001], Condition X Grip [F(1,17) = 

11.184, p < 0.001], Trial X Grip [F(1,17) = 11.184, p < 0.001], and Condition X Grip X 

Trial [F(1,17) = 11.184, p < 0.001]. Follow-up pairwise comparisons revealed that grip 

used in the NO VISION condition differed significantly from the first five to last five 

trials; the use of power grip was significantly decreased [t(8) = 3.162, p < 0.05], whereas 

the use of a precision grip significantly increased [t(8) = 3.162, p < 0.05]. 

 

Actual Movement Timing 

Figure 3.10a shows the temporal organization of peak aperture, first contact, and 

final grasp as a function of time. In the VISION condition, total movement time (from 

movement onset to final grasp) was less than 1 second and did not differ between the first 

five (M ± SE = 0.98 ± 0.04 s) and last five (M ± SE = 0.88 ± 0.03 s) trials. In the NO 

VISION condition, total movement time was significantly longer compared to the 

VISION trials; however, there was a significant decrease in total movement time between 

the first five (M ± SE = 2.19 ± 0.20 s) and the last five (M ± SE = 1.38 ± 0.16 s) NO 

VISION trials. This was due to a reduction in the amount of time devoted to transitioning 

from first contact to final grasp, likely because anticipatory digit scaling was largely 
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Figure 3.9 The probability that participants used either a power or precision grip (mean ± 
SE) to grasp the target in the VISION (A) and NO VISION (B) conditions, (Pow Power 

Grip, Pre Precision Grip, *p < 0.05). 
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Figure 3.10 The timing of peak aperture (dark grey, mean ± SE), first contact (light grey, 

mean ± SE), and final grasp (white, mean ± SE) as a function of actual time (s; A) and 
normalized time (%; B) on the first five and last five trials in the VISION and NO 

VISION conditions, (*p < 0.05, ** p < 0.01, *** p < 0.001). 
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 achieved before contact, rather than after contact, in the later NO VISION trials. 

These main findings were confirmed by the statistical analysis. For Peak Aperture 

there was no significant effect of Condition [F(1,17) = 3.420, p > 0.05], Trial [F(1,17) = 

0.710, p > 0.05], or Trial X Condition [F(1,17) = 0.248, p > 0.05]. For First Contact there 

was a significant effect of Condition [F(1,17) = 5.781, p < 0.05] but not Trial [F(1,17) = 

4.364, p > 0.05] or Trial X Condition [F(1,17) = 0.077, p > 0.05]. For Final Grasp there 

was a significant effect of Condition [F(1,17) = 35.869, p <0.001], Trial [F(1,17) = 

42.698, p < 0.001], and Trial X Condition [F(1,17) = 8.536, p <0.001]. Follow-up 

pairwise comparisons revealed that in the NO VISION condition the time of final grasp 

[t(8) = 2.484, p <0.05] occurred significantly earlier on the last five trials compared to the 

first five trials. 

 

Normalized Movement Timing 

 Figure 3.10b shows the temporal organization of peak aperture, first contact, and 

final grasp as a function of normalized time. In the VISION condition, peak aperture 

occurred about 57% of the way through the movement and first contact occurred about 

84% of the way through the movement. This remained consistent across all fifty reaching 

trials. In the early NO VISION trials, peak aperture and first contact occurred relatively 

earlier in the movement, at about 32% and 50% of the way through the movement, 

respectively. This was because half of all movement time was dedicated to transitioning 

from first contact to final grasp. With repeated reaching experience the temporal 

organization of the movement came to reflect that seen in the VISION condition. This 
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was largely due to a reduction in the amount of time required to transition from first 

contact to final grasp. 

These main findings were confirmed by the statistical analysis. For Peak Aperture 

there was a significant effect of Condition [F(1,17) = 38.528, p < 0.001], Trial [F(1,17) = 

27.090, p < 0.001] and Trial X Condition [F(1,17) = 14.931, p < 0.001]. For First Contact 

there was a significant effect of Condition [F(1,17) = 47.603, p < 0.001], Trial [F(1,17) = 

20.977, p < 0.001], and Trial X Condition [F(1,17) = 26.310, p < 0.001]. Follow-up 

pairwise comparisons revealed that in the NO VISION condition the time of peak 

aperture [t(8) = 5.227, p < 0.001] and the time of first contact [t(8) = 4.712, p < 0.01] 

occurred proportionally earlier on the first five trials compared to the last five trials. 

 

Non-visual Reach and Grasp movements after visual training 

 To test the robustness of the results presented above, the participants in the 

VISION group were asked to perform five NO VISION trials after they had completed 

the VISION task. The Reach trajectory and the peak aperture of the Grasp were examined 

to determine whether these measures were affected by visual reach training in a manner 

similar to non-visual training.  

Figure 3.11a shows the maximum trajectory height (mean ± SE of all 

participants). Participants that had visual training but then switched to the non-visual task 

(VISION-TO-NO VISION) immediately switched to using an elevated Reach trajectory. 

This was confirmed by the statistical analysis that found a significant effect of Condition 

[F(2,25) = 12.422, p < 0.001], but no significant effect of Trial [F(4,100) = 0.623, p > 

0.05], or Trial X Condition [F(8, 100) = 0.663, p > 0.05]. Follow-up post hoc analyses 
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Figure 3.11 The maximum Reach trajectory height (mean ± SE, cm) for the first trials 
when reaching in the VISION (light grey), NO VISION (black) and VISION-TO-NO 
VISION conditions (A). Peak aperture (mean ± SE, mm) for the first five trials when 

reaching in the VISION (light grey), NO VISION (black), and VISION-TO-NO VISION 
(dark grey) conditions. Note: Reach trajectory was immediately elevated when 

participants switched from the VISION-TO-NO VISION condition. Peak Aperture, 
however, did not increase but remained the same when participants switched from the 

VISION-TO-NO VISION condition. 
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 revealed that maximum trajectory height was significantly lower in the VISION 

condition compared to the NO VISION condition [t(17) = 7.144 , p < 0.001] and the 

VISION-TO-NO VISION condition [t(17) = 3.760, p < 0.001]. 

Figure 3.11b shows the size of peak aperture (mean ± SE of all participants). 

Participants that had visual training but then switched to the non-visual task did not 

switch to using a larger peak aperture, instead they maintained a peak aperture that scaled 

to the size of the object and did not significantly differ from the VISION condition. This 

was confirmed by the statistical analysis that found a significant effect of Condition 

[F(2,25) = 5.344, p < 0.01] but not Trial [F(4,100) = 2.016, p > 0.05] or Trial X 

Condition [F(8,100) = 1.492 p > 0.05]. Follow-up pairwise comparisons revealed that 

peak aperture was significantly greater in the NO VISION condition compared to the 

VISION condition [t(17) = 2.853, p < 0.01] as well as the VISION-TO-NO VISION 

condition [t(17) =  2.499, p < 0.05]. There was no significant difference between the 

VISION and VISION-TO-NO VISION conditions [t(17) = 0.433, p > 0.05]. 

 

Discussion 

 

The question asked in the present study was: can repeated reaching and grasping 

of an unseen object result in a memory sufficient for producing accurate Reach and Grasp 

movements similar to those produced under online vision? Sighted and visually occluded 

participants repeatedly reached for a round donut ball placed on a pedestal in front of 

them. The results show that with repeated reaching experience, unsighted participants 

began to modify the Reach and Grasp movements in different ways. The trajectory of the 
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Reach was consistently elevated so that the hand established first contact with the dorsal 

surface of the object. The Grasp, however, was characterized by improved anticipatory 

scaling of digit opening and closing to object size similar to visually guided Grasps. The 

results were unexpected in that they show that the Reach and Grasp movements respond 

differently to previous nonvisual experience. The differential changes in the Reach and 

Grasp movements shows that nonvisual experience differentially calibrates the Reach and 

Grasp movements suggesting that they are enabled by at least partially different neural 

substrates (Jeannerod 1981).  

The design of the present experiment featured a number of manipulations that 

ensured accurate measurement of Reach and Grasp movements. First, the intended use of 

a target is known to influence Reach and Grasp kinematics (Napier 1956, 1980; Sartori et 

al. 2011; Valyear et al. 2011). Thus, the target object was an ethologically relevant food 

item and participants were instructed to pick it up as if they were going to eat it. This 

ensured that all participants grasped the object with a similar intention and thus used a 

similar grip. Second, at the onset of the experiment, participants in both conditions were 

only shown the general location at which the object would be placed and were told only 

that the object would fit in one hand. Thus, the parameters of the Reach and the Grasp 

were constrained, but not defined, and would need to be learned through nonvisual 

reaching experience. Both groups received 50 consecutive trials as previous studies 

demonstrate that feedback from repeated experience allows reaching calibration 

(Bingham et al. 2007). Performance was evaluated by measuring behavior from frame-

by-frame video analysis of the movement and by linear kinematics.  



	   129 

The Reach movement of visual and nonvisual participants differed in three 

important ways. First, nonvisual participants used an elevated Reach trajectory in which 

the hand was raised above the object before being lowered down onto it, similar to 

pantomime Reach movements to an imaginary object as described by Goodale et al. 

(1994a). This differed from the visual condition, in which the hand was transported 

directly towards the object in the horizontal plane. Second, as a result of the hand being 

lowered onto the object from above, nonvisual participants established contact with the 

dorsal surface of the object rather than the proximal and distal sides as was done by the 

visual participants. Third, because first contact was establish with the dorsal surface of 

the object, nonvisual participants performed a number of adjustments, sometimes by fully 

releasing contact with the object, in order to redirect the digits to the sides of the object, 

as has been described in previous work with unsighted participants (Karl et al., 2012a). 

Despite repeated training, nonvisual Reach movements consistently differed from visual 

Reach movements on these measures. An aspect of the Reach movement that changed 

with training was that contact with the dorsal surface of the object became less likely to 

be made with the palm and more likely to be made with the distal digit pads.  

The Grasp movement of visual and nonvisual participants differed considerably 

during early reaching attempts; however, with practice many aspects of the nonvisual 

Grasp movement came to resemble that of the visual Grasp movement. First, nonvisual 

participants did not initially scale the grasping digits to object size during hand transport, 

but instead used an open and extended hand shape with a large peak digit aperture (Karl 

et al., 2012a), likely to compensate for potential errors in Reach trajectory (Wing et al., 

1986). With repeated reaches, however, nonvisual participants began to scale peak digit 
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aperture to a size appropriate for the target object. Second, on early trials, nonvisual 

participants did not begin to close the digits for grasping until after establishing first 

contact with the object; but, in later trials they showed a biphasic grasping pattern before 

object contact in which the digits first opened to a peak aperture followed by closure of 

the digits on approach to the object. Third, initially the nonvisual participants often 

grasped the target using a power grip but with practice they came to use a precision grip 

exclusively. Fourth, on early nonvisual reaching trials a disproportionate amount of time 

was dedicated to transitioning from first contact to final grasp but with practice the 

transition became more rapid. In all of these respects, the Grasp of the nonvisual 

participants came to resemble the Grasp of the visual participants.  

In relation to the question asked in the present study, the results show that offline 

Reach and Grasp movements can benefit from nonvisual practice/learning but only digit 

scaling becomes calibrated to resemble online Grasp movements. Furthermore, when the 

group conditions were reversed, the visual group switched to the nonvisual condition 

displayed a similar dissociation of the Reach and Grasp from the first trial, indicating that 

previous visual experience also benefited subsequent unsighted Grasp movements. These 

results are in accord with previous work that shows that digit scaling and peak digit 

aperture can be calibrated with nonvisual feedback to resemble online visually guided 

Grasp movements (Bingham et al. 2007; Gentilucci et al. 1995; Opitz et al. 1996; 

Safstrom and Edin 2004, 2008). It is interesting that the nonvisual Reaches in the present 

study resemble the pantomime Reaches made to an imaginary object as described by 

Goodale et al. (1994a). The nonvisual Grasps, however,  more closely resemble online 

Grasps than pantomime Grasps (Goodale et al., 1994a). Thus, the task constraint of 
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actually acquiring a physical object is likely necessary to elicit the dissociation between 

the Reach and Grasp movements observed in the present study. Considered together, the 

results of the present study show that previous nonvisual experience can result in offline 

Grasp, but not Reach movements, that resemble those of online visually guided reaching. 

The conclusions derived from this finding should be tempered in relation to a 

number of caveats, however. The target was not fixed and was at risk for being knocked 

from the pedestal, there were slight variations in the size and placement of the object 

from trial to trial, and the participants were not given specific instructions about how they 

should grip the object. Were modifications made with respect to these procedural aspects 

of the study, such as fixing the object on a larger platform, stabilizing the participant’s 

sitting position, and placing the hand on a more stable initial support and not on the lap, it 

is possible that both nonvisual Reach and Grasp movements might come to resemble 

visual Reach and Grasp movements (see Cavina-Pratesi et al., 2010a). Nevertheless, the 

present task provided more immediate feedback relevant for reach calibration than have 

studies in which actual reaching and virtual reaching were alternated (Bingham et al. 

2007; Gentilucci et al. 1995; Opitz et al. 1996; Safstrom and Edin 2004, 2008). 

Therefore, the unexpected finding that the Reach and Grasp movements of visually 

occluded participants were modified in different ways in relation to the movements of 

sighted participants appears robust and is relevant to the question of dual channel control 

of the reaching movement.  

The theory that Reach and Grasp movements are enabled by separate neural 

channels is supported by studies of brain injury (Binkofski et al. 1998; Cavina-Pratesi et 

al. 2010a; Jeannerod et al., 1994; Shallice et al., 2005), brain imaging (Cavina-Pratesi et 
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al. 2010b), anatomy (Gharbawie et al., 2011; Rizzolatti and Matelli 2003; Tanne-Gariepy 

et al. 2002), and electrophysiology (Fattori et al. 2005; Kaas et al. 2011; Sakata et al. 

1995; Snyder et al. 1997). Definitive support has not come from behavioral analysis, 

however, as Jakobson and Goodale (1991) as well as others (see Schmidt and Lee 2011 

for a review), have reported that when the extrinsic and intrinsic properties of a target are 

manipulated independently, e.g., by changing only the location of the object or only the 

size of the object, both the Reach and Grasp change. Thus, the present finding that 

unsighted participants can scale digit opening and closing to object size, despite a dorsal 

approach to the object and an inability to direct the digits to appropriate contact locations 

on the object, provides serendipitous behavioural support for the dual channel theory. 

That Reach and Grasp movements can be dissociated by nonvisual experience 

raises the interesting question of whether the Reach is more dependent on online control 

than the Grasp. There are differing opinions concerning whether the appropriate 

placement of the digits in relation to the object should be considered a function of the 

Reach or the Grasp or indeed whether this is the single salient aspect of reaching (Smeets 

and Brenner 1999). The present results favour the view that digit placement is the 

terminal function of the Reach and, as is shown by the present results, can be uncoupled 

from digit scaling. That the Reach is constrained by task configuration in a way not 

similarly imposed upon the Grasp could be further examined in future studies. For 

example, variations in target size, in a between groups design, would be expected to be 

associated with similar Reach movements as measured by approach direction and contact 

location, but by changing Grasp movements as measured by digit scaling. 
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In conclusion, the DVC theory of reaching (Jeannerod, 1981) was intended to 

explain the visual control of reaching, but modifications of the theory can also explain 

nonvisually guided reaching. The present results suggest that both Reach and Grasp 

movements can be performed offline but the differential extent to which they resemble 

online movements provides behavioural support for the DVC theory and the second 

hypothesis of this thesis. This conclusion favours the view that hand movements related 

to extrinsic object properties may be more efficient when produced by online control 

whereas hand movements related to intrinsic object properties may be more flexible. 

Indeed, anatomical evidence from non-human primates suggests that the dorsomedial 

Reach channel may be preferentially connected to visual cortex (Gharbawie et al. 2011a), 

whereas the dorsolateral Grasp channel receives significant non-visual inputs from 

somatosensory cortex (Gharbawie et al., 2011a) and inferotemporal cortex (Borra et al. 

2008). Perhaps these differences stem from the evolutionary history of the movements, in 

which the Reach may have evolved from forelimb stepping movements (Georgopoulos 

and Grillner 1989) whereas the Grasp may have evolved from hand use for food 

handling, in which non-visual information is used to grasp an object in the mouth (Karl et 

al. 2012b; Whishaw 2003). 
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Chapter 4 

Oral hapsis guides accurate hand preshaping for grasping food targets in the mouth  
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Abstract 

 

Preshaping the digits and orienting the hand when reaching to grasp a distal target 

is proposed to be optimal when guided by vision. A reach-to-grasp movement to an 

object in one’s own mouth is a natural and commonly used movement but there has been 

no previous description of how it is performed. The movement requires accuracy, but 

likely depends upon haptic rather than visual guidance, leading to the question of whether 

the kinematics of this movement are similar to those with vision or whether the 

movement depends upon an alternate strategy. The present study used frame-by-frame 

video analysis and linear kinematics to analyze hand movements as participants reached 

for ethologically relevant food targets placed either at a distal location or in the mouth. 

When reaching for small and medium sized food items (blueberries and donut balls) that 

had maximal lip-to-target contact, hand preshaping was equivalent to that used for 

visually-guided reaching. When reaching for a large food item (orange slice) that 

extended beyond the edges of the mouth hand preshaping was suboptimal compared to 

vision. Nevertheless, hapsis from the reaching hand was used to reshape and reorient the 

hand after first contact with the large target. The equally precise guidance of hand 

preshaping under oral hapsis is discussed in relation to the idea that hand preshaping, and 

its requisite neural circuitry, may have originated under somatosensory control, with 

secondary access by vision.  
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Introduction 

 

The hand preshaping component of the reach-to-grasp movement is proposed to 

have evolved under visual control in the primate lineage by animals climbing and 

reaching for food in an arboreal habitat (Cartmill, 1974; Napier, 1980). In visually-guided 

hand preshaping, the grasping digits form a peak aperture prior to contact with the target, 

the digits orient and scale to the intrinsic features of the target, and a successful grasp is 

almost always achieved on the first attempt (Goodale et al. 1994, 2004; Goodale and 

Milner 1992; Hu et al. 1999; Jakobson and Goodale 1991; Jeannerod 1981,1986; 

Jeannerod et al., 1998; Mamassian, 1997; Wing et al., 1986). Thus, other forms of 

grasping, including haptically-guided grasping which occurs after the hand makes first 

contact with an unseen target (Edwards et al., 2005; Karl et al., 2012; Pettypiece et al. 

2009; Pettypiece et al. 2010) and grasping guided by memory (Berthier et al. 1996; 

Castiello et al. 1993; Fiehler et al. 2011; Goodale et al., 2004; Hu et al. 1999; Jakobson 

and Goodale 1991; Wing et al., 1986), are proposed, in part, to capitalize on visually-

dependent neural substrates. Nevertheless, one reason that vision may appear to play a 

superior role in hand preshaping is that the reach-to-grasp movement has been studied 

mainly from the perspective of its central role in visually-guided reaching. 

A commonly performed reaching act is to grasp and manipulate or remove a food 

item from one’s own mouth. This is a natural behavior that is displayed by animal species 

in a number of mammalian orders (Iwaniuk and Whishaw, 2000) and is likely guided by 

oral hapsis. Nevertheless, it is not known whether this form of reaching is as accurate as 

visually-guided reaching with respect to hand preshaping. There are three possibilities. 
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First, Pettypiece et al. (2010) find that hand preshaping to a target held in the opposite 

hand is less accurate than visually-guided hand preshaping, suggesting that haptic 

guidance is not as useful as visual information. Second, Edwards et al. (2009) find that 

hand preshaping to objects held against the face is as accurate as that of vision, 

suggesting that the head centered location of the haptic target improves accuracy. Third, 

Edwards et al. (2005) report that subjects reaching for their own face-parts show hand 

preshaping that is more accurate than that of visually-guided reaching, suggesting a role 

for familiarity in guidance. Given that the lips have a higher 2-point discriminative ability 

than the hand (van Boven et al., 1994), and given that an object in the mouth is head-

centered, it could be predicted that hand preshaping to targets in the mouth might also be 

more accurate than hand preshaping to a visual target. Because targets of different size 

provide varying degrees of oral feedback, subjects may use multiple haptically-guided 

grasping strategies, including a touch and release strategy (Karl et al, 2012). Thus, the 

purpose of the present experiment was to compare hand preshaping for objects held in the 

mouth compared to the same objects identified by vision.  

Participants reached for small and medium-sized food items (blueberries and 

donut balls), which achieved optimal contact with the lips and thus provided 

unambiguous oral feedback about the target’s size and shape. Participants also reached 

for large food items (orange slices) that extended beyond the lateral edges of the mouth, 

and thus provided ambiguous oral feedback about the target’s size and shape. Young 

adult participants reached for the food items, which were placed either in their mouth or 

on a pedestal placed in front of them, under both vision and no vision conditions. Hand 

preshaping, as indicated by index-thumb aperture, was measured using infrared emitting 
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diodes (IREDs) placed on the digits of interest and recorded using a motion capture 

system. Offline, frame-by-frame video analysis and linear kinematics were then used to 

measure and compare hand preshaping in all conditions. 

 

Materials and Methods 

 

Participants 

Participants were 36 young adults (18 females, 18 males: M ± SD age = 20.14 ± 

1.91 years) recruited from the University of Lethbridge. All participants provided 

informed consent and were self-reported to be right-handed and of good health with no 

history of neurological or motor disorders. All participants had normal or corrected-to-

normal vision. The University of Lethbridge Human Subject Research Committee 

approved the study.  

 

Experimental Design 

Frame-by-frame video analysis and linear kinematics were used to measure hand 

preshaping as participants reached for and grasped ethologically relevant food targets 

located either on a distal pedestal or in the participant’s own mouth. Food targets varied 

in size and consisted of orange slices (large), donut balls (medium), and blueberries 

(small). A between-subjects experimental design was employed for the present study both 

to simplify the demands placed on each subject as well as to reduce task expectations 

with respect to the objectives of the study. 
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Vision Condition. Hand preshaping was examined as participants reached with 

vision. Participants were divided into two groups. One group (6 male, 6 female) reached 

for food targets located on a distal pedestal. Another group (6 male, 6 female) reached for 

food targets located in the mouth.  

No Vision Condition. Hand preshaping was examined as participants reached 

without vision. Participants were again divided into two groups. The same group of 

participants (6 male, 6 female) that reached with vision to food targets on a distal pedestal 

also reached without vision to food targets on a distal pedestal. Another group (6 male, 6 

female) reached without vision for food targets located in the mouth. Visual occlusion 

was achieved using PLATO vision occluding goggles (Translucent Technologies, 

Toronto, ON) worn on the participant’s face. 

 

Reaching Task 

Participants were seated in a comfortable upright position. A self-standing, 

height-adjustable pedestal was placed directly in front of the participant at a horizontal 

reach distance normalized to the participant’s arm length (100% of length from shoulder 

to tip of index finger with elbow at 180° extension) and a vertical height normalized to 

the participant’s trunk height (100% of height from floor to outstretched arm while seated 

and with shoulder at 90° flexion) (de Bruin et al., 2008; Whishaw et al., 2002).  

 

Procedures 

Vision Condition. Figure 4.1A shows a participant reaching to a target on a distal 

pedestal with vision. It is known that restriction of a person’s field of view can influence 
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the kinematics of the reach-to-grasp movement when directed towards a distal target 

(Gonzalez-Alvarez et al., 2007; Sivak and MacKenzie, 1990; Watt et al., 2000). Because 

the occlusion goggles limited the participant’s field of view, even when open, the 

participant did not wear occlusion goggles in the vision condition. At the beginning of 

each trial, the participant placed the right hand in the “start position”, with the right index 

finger and thumb pressed together and resting on the anterior aspect of the right knee 

(Jakobson and Goodale, 1991; Pettypiece et al., 2010). A single food item was placed on 

the pedestal. The participant initiated reaching after a verbal “one, two, three, GO” 

command. The participant reached for the food item with the right hand, grasped it, and 

brought it to the mouth (as if to eat it) before handing it to the experimenter (Castiello, 

1997; de Bruin et al., 2008; Ferri et al., 2010; Gentilucci 2001; Whishaw et al., 1992b). 

Although this movement was two-part (transport of the hand to the target followed by 

withdrawal of the hand and target to the mouth), only the transport phase of the 

movement (from movement onset to final grasp) was subjected to behavioural and 

kinematic analyses. At the completion of each trial, the participant returned the right hand 

to the “start” position in preparation for the next trial. The three possible food items were 

presented in random order with six repetitions of each for a total of 18 trials. Kinematic 

data from one male participant were unusable and excluded from this analysis.  

Figure 4.1B shows a participant reaching to a target in the mouth with vision. The 

participant did not wear occlusion goggles. At the beginning of each trial, the participant 

placed the right hand in the “start position”. A single food item was placed in the 

participant’s mouth. The participant initiated reaching after a verbal “one, two, three, 

GO” command. The participant reached for the food item with the right hand, grasped it, 
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Figure 4.1 The reach-to-grasp task. In the Vision condition (top) participants reached to a 

target located either on a distal pedestal (A) or in the mouth (B). In the No Vision 
condition (bottom) participants reached to a target located either on a distal pedestal (C) 

or in the mouth (D). White arrows indicate the location of the food target at the beginning 
of each trial. Note: In the No Vision condition participants wore visual occlusion goggles. 
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and removed it from the mouth before handing it to the experimenter. Again, only the 

transport phase of the movement (from movement onset to final grasp) was subjected to 

behavioural and kinematic analyses. At the completion of each trial, the participant 

returned the right hand to the “start position” in preparation for the next trial. The three 

possible food items were presented in random order with six repetitions of each for a total 

of 18 trials. Kinematic data from one male participant were unusable and excluded from 

this analysis.  

No Vision Condition. Figure 4.1C shows a participant reaching to a target on a 

distal pedestal without vision. The task was the same as in the Vision condition, except 

that the participant wore occlusion goggles prior to, and throughout, the entire task. Due 

to randomization of the target object, participants did not know which particular food 

item they were reaching for on any given trial (Karl et al., 2012). 

Figure 4.1D shows a participant reaching to a target in the mouth without vision. 

The task was the same as in the Vision condition, except that the participant wore 

occlusion goggles prior to, and throughout, the entire task. Kinematic data from two 

female participants were unusable and excluded from this analysis. 

 

Reaching Targets  

Standardization of Target Size. Orange slices, small round donut balls, and 

blueberries were used as ethologically relevant reaching targets. Because these targets 

were placed in the participants’ mouths, different orange slices, donuts, and blueberries 

were used for each participant. To ensure consistency between target size across all 

participants, a subset of orange slices (n = 12), donuts (n = 12), and blueberries (n = 12) 
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were measured across their longest axis to determine the average size of each target. The 

average size and standard error for each target was as follows: Orange slice, 60.53 ± 

0.83mm; Donut, 28.82 ± 1.67mm; Blueberry, 12.41 ± 0.33mm. Potential targets outside 

these standard size ranges were not used in the study. 

Oral Target Placement. Figure 4.2 summarizes the positioning of an orange 

slice, a donut ball, and a blueberry in the mouth. Figure 4.2A shows the placement of an 

orange slice in the mouth. The lateral tips of the orange slice extended slightly beyond the 

lateral edges of the lips and the peel of the orange protruded beyond the mouth in the 

anterior direction. This positioning resulted in ambiguous oral haptic feedback 

concerning the most distal edges of the orange slice. 

Figure 4.2B shows the placement of a donut ball in the mouth. No part of the 

donut ball extended beyond the lateral edges of the lips. The anterior portion of the donut 

ball did, however, protrude beyond the lips in the anterior direction. Maximum mouth-to-

target contact was achieved between the lips and the circumference of the donut ball. 

This positioning likely maximized oral haptic feedback concerning target size, without 

exceeding the sensory range of the lips and mouth. 

Figure 4.2C shows the placement of a blueberry in the mouth. No part of the 

blueberry extended beyond the lateral edges of the lips. Due to the relatively small size of 

the blueberry, however, only a very small portion of the blueberry protruded beyond the 

lips in the anterior direction. This positioning likely maximized oral haptic feedback 

concerning target size. The proximity of the blueberry to the lips, however, may have 

introduced a physical challenge for the digits when trying to grasp the blueberry. 
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Figure 4.2 Representative photos of the positioning of (A) an orange slice, (B) a donut 
ball, and (C) a blueberry in the mouth. Note: the lateral tips of the orange slice extend 
slightly beyond the lateral edges of the lips and the blueberry recedes slightly into the 

mouth. 
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Behavioural Data Collection 

 A digital video camera was positioned sagittal to the participant to record a reach-

side view of the participant from lower leg to head at 30 frames/sec and 1/1000 shutter 

speed. A second digital camera was positioned either dorsolateral to the pedestal, so as to 

record the shape of the hand as it approached the target on the pedestal, or ventrolateral to 

the participant’s mouth, so as to record the shape of the hand as it approached the food 

target in the mouth. Representative still frames were captured from digital video 

recordings with the video editing software Final Cut Pro (http://www.apple.com). 

Pictures were cropped and adjusted for color and brightness contrast in Adobe Photoshop 

(V. 11.0) but were not altered in any other way.  

 

Behavioural Data Analysis 

 A number of behavioural measures were scored by performing off-line, frame-by-

frame analysis of the video record. Total Movement Times were determined by counting 

the number of frames from movement onset to final grasp. Digit Shaping, as indicated by 

changes in index-thumb aperture in the kinematic profiles, was verified by reviewing 

handshaping transitions on the video record during hand transport towards the target. 

Grasping Errors to targets in the mouth were characterized by reviewing hand shaping 

adjustments both before target contact and after target contact on the video record. An 

underestimation error was characterized by the use of a smaller than necessary hand 

aperture at first target contact. An overestimation error was characterized by the use of a 

larger than necessary hand aperture at first target contact. Final Grip was determined by 

reviewing the video record and documenting whether the target was grasped with a 
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pincer grip or precision grip. The pincer grip features gripping of the target between the 

thumb and one other digit of the same hand. The precision grip features gripping of the 

target using the thumb and two or more digits of the same hand.  

  

Kinematic Data Collection 

Kinematics from the right hand were recorded using an Optotrak Certus Motion 

Capture System and NDI Dataview and NDI First Principles software (Northern Digital 

Inc.; Jakobson & Goodale, 1991). Infrared emitting diodes (IREDs) were positioned on 

the thumb, index finger, dorsum of the hand, and the top of the pedestal. For each trial, 

IRED coordinates were sampled at 200Hz for 4 seconds following the verbal cue to 

initiate reaching. 

 

Kinematic Data Analysis 

Figure 4.3 illustrates the kinematic measures used to define hand preshaping. 

Aperture (mm) was calculated as the three-dimensional resultant between the thumb and 

index finger IREDs. The change in Aperture (y axis) was plotted against Time (x axis), 

and is represented by the curved line. Peak Aperture is defined as the maximum aperture 

obtained between movement onset and first contact with the target. Grasp Aperture is 

defined as the final aperture obtained during actual grasping (and holding) of the target 

object. Over Grasp is defined as the difference between peak aperture and grasp aperture 

and is used as a measure of hand preshaping accuracy, such that a smaller over grasp 

indicates more accurate preshaping of the hand. To control for variability in IRED 

positioning, the baseline aperture at the initial “start position,” was subtracted from all 
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Figure 4.3 Three measures of hand aperture (mm) over time (ms). The curved line 
indicates the changing distance between the index finger and the thumb as the hand 

approaches the food target. Peak Aperture: the maximal index-thumb aperture that occurs 
prior to contact with the food target. Grasp Aperture: the constant index-thumb aperture 

that occurs when the participant grasps, and holds, the food target. Over Grasp: the 
difference between the Peak Aperture and the Grasp Aperture. 
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 subsequent aperture measures for each participant.  

For relative comparisons of aperture change throughout the reach-to-grasp task, 

reaching trials were trimmed from a fixed start (movement onset) to a fixed finish (final 

grasp) using visual inspection of the aperture displacement signal and confirmed with 

video analysis. Trimmed aperture signals were downsampled to 101 frames using the 

‘rubberband’ function in Matlab (Mathworks Inc.). Average change in aperture (y axis) 

was then plotted against normalized time (x axis). 

 

Statistical Analysis 

Results were subject to analysis of variance (ANOVA) using the computer 

program SPSS (v. 19.0.0). Sex (MALE vs. FEMALE), Feedback (VISION vs. NO 

VISION), and Location (PEDESTAL vs. MOUTH) served as between-subjects factors. 

Target (ORANGE, DONUT, and BLUEBERRY), Trial (1, 2, 3, 4, 5, and 6), Grasping 

Error (UNDERESTIMATION, OVERESTIMATION), and Grip (PINCER vs. 

PRECISION) served as within-subjects factors. A p-value of less than 0.05 was 

considered significant. Follow-up post hoc comparisons were subject to bonferroni 

correction. 

 

Results 

 

Vision Condition 

When reaching with vision, hand preshaping scaled to target size regardless of 

whether the target was located on a distal pedestal or in the participant’s own mouth. 



	   149 

Although both types of reaching were accurate, hand preshaping appeared to be most 

accurate when reaching to large and medium-sized food targets in the mouth compared to 

the same targets on a distal pedestal. This suggests that hand preshaping to targets in 

one’s own mouth is similar to, and at least as accurate as, hand preshaping to distal 

targets using vision. This general conclusion is supported by the following detailed 

descriptions. Because sex was found to have no significant effect on Peak Aperture 

[F(1,18) = 0.125, p > 0.05)], Grasp Aperture [F(1,18) = 1.733, p > 0.05], or Over Grasp 

[F(1,18) = 0.473, p > 0.05)] data from male and female participants were combined.  

Reaching to a target on a distal pedestal with vision. Figure 4.4 summarizes 

the results of hand preshaping when reaching with vision for three different sized food 

items located on a distal pedestal. When reaching with vision, participants preshaped the 

hand according to target size prior to grasping (Figure 4.4A). When reaching for an 

orange slice (left), the index-thumb aperture was large, digits 2 through 5 were almost 

fully extended, and the thumb was fully extended. When reaching for a donut ball 

(middle), the index-thumb aperture was an intermediate size and all digits were partly 

flexed. When reaching for a blueberry (right), the index-thumb aperture was small and 

the digits were semi-flexed in a pre-pincer grasp position.  

Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 4.4B shows index-thumb aperture profiles (mean ± standard error of all 

participants and all trials) when reaching to targets of varying size with vision.  
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Figure 4.4 Reaching with vision to targets located on a distal pedestal. (A) 
Representative photos of the hand shape used to grasp an orange slice, donut ball, and 
blueberry. (B) Kinematic profiles (mean ± standard error) of the index-thumb aperture 

when reaching for an orange slice, donut ball, and blueberry. (C) Peak Aperture (mean ± 
standard error) and (D) Over Grasp (mean ± standard error) when reaching for different 

sized food items. Note: Hand shape and Peak Aperture scaled to food target size, but 
Over Grasp did not, (O, Orange slice; D, Donut ball; B, Blueberry, ***p < 0.001). 
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When reaching with vision, peak aperture scaled to object size such that it was largest 

when reaching for an orange, intermediate when reaching for a donut ball, and smallest 

when reaching for a blueberry (Figure 4.4C). Over grasp did not appear to scale to target 

size, although it did tend to be slightly larger when reaching for a donut ball (Figure 

4.4D).  

These main findings were confirmed by statistical analyses. For Peak Aperture, 

there was a significant effect of Target [F(2,20) = 508.218, P < 0.001]. For Over Grasp, 

there was also a significant effect of Target [F(2,20) = 3.764, p < 0.05]; however, 

Bonferroni correction of follow-up pairwise comparisons found no significant differences 

between targets. 

Reaching to a target in the mouth with vision. Figure 4.5 summarizes the 

results of hand preshaping when reaching with vision for three different sized food items 

located in the mouth. When reaching with vision, participants accurately preshaped the 

hand according to target size (Figure 4.5A). When reaching for an orange slice (left), the 

distance between the index finger and thumb was relatively large, digits 2 through 5 were 

almost fully extended, and the thumb was fully extended. When reaching towards a donut 

ball (middle), the distance between the index finger and thumb was intermediate and the 

digits were partly flexed. When reaching for a blueberry (right), the distance between the 

index finger and thumb was small and the digits were semi-flexed in a pre-pincer grasp 

position.  

Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 4.5B shows index-thumb aperture profiles (mean ± standard error of all 

participants and all trials) when reaching to targets of varying size with vision.  
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Figure 4.5 Reaching with vision to targets located in the mouth. (A) Representative 
photos of the hand shape used to grasp an orange slice, donut ball, and blueberry. (B) 

Kinematic profile of the index-thumb aperture (mean ± standard error) when reaching for 
an orange slice, donut ball, and blueberry. (C) Peak Aperture (mean ± standard error) and 

(D) Over Grasp (mean ± standard error) when reaching for different sized food items. 
Note: Hand shape and Peak Aperture scaled to food target size, but Over Grasp did not, 

(O, Orange slice; D, Donut ball; B, Blueberry, ***p < 0.001). 
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When reaching with vision, peak aperture scaled to target size such that it was largest 

when reaching for an orange slice, intermediate when reaching for a donut ball, and 

smallest when reaching for a blueberry (Figure 4.5C). Over grasp was smaller when 

reaching for an orange slice compared to reaching for a donut ball or a blueberry (Figure 

4.5D).  

These main findings were confirmed by statistical analyses. For Peak Aperture, 

there was a significant effect of Target [F(2,20) = 289.494, P < 0.001], and for Over 

Grasp, there was also a significant effect of Target [F(2,20) = 16.478, p < 0.001]. 

Effect of target location on hand preshaping accuracy with vision. Figure 4.6 

summarizes the accuracy of hand preshaping, as measured by peak aperture and over 

grasp, when reaching with vision for food targets located on a distal pedestal or in the 

mouth. Figure 4.6A shows peak aperture (mean ± stand error of all participants and all 

trials) when reaching for orange slices, donut balls, and blueberries located either on a 

distal pedestal (black) or in the mouth (grey). Peak aperture was significantly smaller 

when reaching for orange slices and donut balls located in the mouth as compared to on a 

distal pedestal. Figure 4.6B shows over grasp (mean ± stand error of all participants and 

all trials) when reaching for orange slices, donut balls, or blueberries located either on a 

distal pedestal (black) or in the mouth (grey). Again, over grasp was significantly smaller 

when reaching for orange slices and donut balls located in the mouth as compared to on a 

distal pedestal. 

These main findings were confirmed by statistical analyses. For Peak Aperture, 

there was a significant effect of Location [F(1,20) = 4.653, p < 0.05] and  
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Figure 4.6 Peak Aperture and Over Grasp when reaching with vision to targets located 
on a distal pedestal or in the mouth. (A) Peak Aperture (mean ± standard error) when 

reaching for orange slices, donut balls, and blueberries located on a distal pedestal (black) 
or in the mouth (white). (B) Over Grasp (mean ± standard error) when reaching for 

orange slices, donut balls, and blueberries located on a distal pedestal (black) or in the 
mouth (white). Note: Peak Aperture and Over Grasp were significantly smaller when 

reaching to orange slices and donut balls located in the mouth as compared to the same 
targets located on a distal pedestal, (***p < 0.001, **p < 0.001, *p < 0.05). 
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Target X Location [F(2,40) = 12.305, p < 0.001]. For Over Grasp, there was a significant 

effect of Location [F(1,20) = 6.319, p < 0.05] and Target X Location [F(2,40) = 6.365, p 

< 0.01].  

 

No Vision Condition 

When reaching without vision, hand preshaping scaled to target size if the target 

was located in the mouth, but not if it was on a distal pedestal. This supports previous 

findings that online visual information is necessary for accurate hand preshaping to a 

distal target (Jakobson and Goodale, 1991; Karl et al., 2012). Conversely, hand 

preshaping remained accurate when reaching to targets in the mouth, despite the loss of 

vision. This suggests that oral hapsis is sufficient for the guidance of accurate hand 

preshaping to targets in the mouth. This general conclusion is supported by the following 

detailed descriptions. Sex was found to have no significant effect on Peak Aperture 

[F(1,18) = 0.827, p > 0.05)], Grasp Aperture [F(1,18) = 0.387, p > 0.05], or Over Grasp 

[F(1,18) = 1.380, p > 0.05)]. For this reason, data from male and female participants were 

combined.  

Reaching to a target on a distal pedestal without vision. Figure 4.7 shows the 

results of hand preshaping when reaching without vision for different sized food items. 

When reaching without vision, participants did not systematically preshape the hand 

according to target size during transport (Figure 4.7A). Instead, a similar handshape was 

used to reach for orange slices (left), donut balls (middle), and blueberries (right). To 

make this handshape, digits 2 through 5 were almost fully extended and the thumb was 

fully extended (Karl et al., 2012a).  
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Figure 4.7 Reaching without vision to targets located on a distal pedestal. (A) 
Representative photos of the hand shape used to grasp an orange slice, donut ball, and 
blueberry. (B) Kinematic profiles of the index-thumb aperture (mean ± standard error) 

when reaching for an orange slice, donut ball, and blueberry. (C) Peak Aperture (mean ± 
standard error) and (D) Over Grasp (mean ± standard error) when reaching for different 

sized food items. Note: Hand shape and Peak Aperture did not scale to food target size. A 
“default” hand shape and Peak Aperture were adopted, causing the Over Grasp to be 

inversely scaled to food item size, (O, Orange slice; D, Donut ball; B, Blueberry, ***p < 
0.001). 
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Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 4.7B shows index-thumb aperture profiles (mean ± standard error of all 

participants and trials) when reaching to targets of varying size without vision. During 

transport, the hand adopted a “default” peak aperture regardless of the size of the target 

food item (Figure 4.7C). Because a “default” peak aperture was consistently used, the 

size of the over grasp was inversely related to food item size, such that the over grasp was 

smallest when reaching for an orange slice, intermediate when reaching for a donut ball, 

and largest when reaching for a blueberry (Figure 4.7D). These main findings were 

confirmed by statistical analyses. For Peak Aperture, there was no significant effect of 

Target [F(2,22) = 1.425, p > 0.05]. For Over Grasp, there was a significant effect of 

Target [F(2,22) = 179.205, p < 0.001]. 

Reaching to a target in the mouth without vision. Figure 4.8 summarizes the 

results of hand preshaping when reaching without vision for different sized food items 

located in the mouth. Although vision was occluded, participants accurately preshaped 

the hand to target size when it was located in the mouth (Figure 4.8A). When reaching 

towards an orange slice (left), the distance between the index finger and thumb was 

relatively large, digits 2 through 5 were almost fully extended, and the thumb was fully 

extended. When reaching towards a donut ball (middle), the distance between the index 

finger and thumb was intermediate and the digits were partly flexed. When reaching for a 

blueberry (right), the distance between the index finger and thumb was small and the 

digits were semi-flexed in a pre-pincer grasp position.  

Kinematic analysis of index-thumb aperture confirmed the video description. 

Figure 4.8B shows index-thumb aperture profiles (mean ± standard error of all  



	   158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Reaching without vision to targets located in the mouth. (A) Representative 
photos of the hand shape used to grasp an orange slice, donut ball, and blueberry. (B) 

Kinematic profiles of the index-thumb aperture (mean ± standard error) when reaching 
for an orange slice, donut ball, and blueberry. (C) Peak Aperture (mean ± standard error) 
and (D) Over Grasp (mean ± standard error) when reaching for different sized food items. 

Note: Hand shape and Peak Aperture scaled to target size but Over Grasp did not, (O, 
Orange slice; D, Donut ball; B, Blueberry, ***p < 0.001, *P < 0.05). 
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participants and all trials) when reaching to targets of varying size without vision. When 

reaching without vision, peak aperture scaled to target size such that it was largest when 

reaching for an orange slice, intermediate for a donut ball, and smallest for a blueberry 

(Figure 4.8C). Over Grasp tended to be smaller when reaching for an orange slice 

compared to a donut ball or blueberry (Figure 4.8D). These main findings were 

confirmed by the statistical analyses. For Peak Aperture, there was a significant effect of 

Target [F(2,18) = 131.560, P < 0.001]. For Over Grasp, there was a significant effect of 

Target [F(2,18) = 3.607, p < 0.05]. 

Effect of target location on hand preshaping accuracy without vision. Figure 

4.9 summarizes the accuracy of hand preshaping, as measured by peak aperture and over 

grasp, when reaching without vision for food targets located on a distal pedestal or in the 

mouth. Figure 4.9A shows peak aperture (mean ± stand error of all participants and all 

trials) when reaching for orange slices, donut balls, and blueberries located either on a 

distal pedestal (black) or in the mouth (grey). Peak aperture was significantly smaller 

when reaching for donut balls and blueberries located in the mouth as compared to on a 

distal pedestal. Figure 4.9B shows over grasp (mean ± stand error of all participants and 

all trials) when reaching for orange slices, donut balls, or blueberries located either on a 

distal pedestal (black) or in the mouth (grey). Over grasp was significantly smaller when 

reaching for donut balls and blueberries located in the mouth as compared to on a distal 

pedestal. These results were due to the fact that when vision was occluded the hand did 

not preshape at all when reaching to targets on a distal pedestal. 

These main findings were confirmed by statistical analyses. For Peak Aperture, 

there was a significant effect of Location [F(1,20) = 609.157, p < 0.001] and  
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Figure 4.9 Peak Aperture and Over Grasp when reaching without vision to targets 
located on a distal pedestal or in the mouth. (A) Peak Aperture (mean ± standard error) 

when reaching for orange slices, donut balls, and blueberries located on a distal pedestal 
(black) or in the mouth (white). (B) Over Grasp (mean ± standard error) when reaching 

for orange slices, donut balls, and blueberries located on a distal pedestal (black) or in the 
mouth (white). Note: Peak Aperture and Over Grasp were significantly smaller when 

reaching to orange slices and donut balls located in the mouth as compared to the same 
targets located on a distal pedestal. The large difference is due to the fact that the hand 

did not scale to target size when reaching to targets on a distal pedestal in the No Vision 
condition, (***p < 0.001, **p < 0.001). 
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Target X Location [F(2,40) = 67.781, p < 0.001]. For Over Grasp, there was a significant 

effect of Location [F(1,20) = 15.242, p < 0.001] and Target X Location [F(2,40) = 

74.954, p < 0.001].  

 

Comparison of the Vision and No Vision conditions  

Hand preshaping for reaching and grasping appeared to be very similar for targets 

located on a distal pedestal compared to targets in the mouth. Nevertheless, reaching to a 

distal target appeared to be dependent on vision, whereas reaching to a target in the 

mouth did not. In addition, hand preshaping appeared to be more accurate when reaching 

to large and medium-sized targets in the mouth compared to the same targets on a distal 

pedestal, even in the absence of vision. This accuracy suggests that online haptic 

feedback, rather than vision or offline perceptual knowledge, likely guides grasping to 

targets in the mouth. A more detailed comparison, as summarized below, confirmed this 

conclusion. 

Time of Peak Aperture Formation. Figure 4.10 summarizes the time of peak 

aperture formation as a percent of total reach-to-grasp time. In general, time of peak 

aperture was dependent on vision when reaching to a distal target, but not when reaching 

to a target in the mouth. 

Figure 4.10A shows the time of peak aperture when reaching for an orange slice, 

donut, and blueberry placed on a distal pedestal in the Vision (left) and No Vision (right) 

conditions. In the Vision condition, peak aperture generally occurred 52% of the way 

through the reach; and, was earliest for a blueberry and orange slice, and later for a donut. 

In the No Vision condition, peak aperture occurred significantly earlier, 34% of the way  
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Figure 4.10 Time of Peak Aperture formation as a percent of total movement time when 
reaching for orange slices, donut balls, and blueberries located (A) on a distal pedestal 
and (B) in the mouth in the Vision (left) and No Vision (right) conditions. Note: When 

reaching to a distal pedestal, time of Peak Aperture formation decreased in the No Vision 
condition compared to the Vision condition. When reaching to the mouth, visual 
occlusion had no effect on the time of Peak Aperture formation, (***p < 0.001). 
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through the reach, regardless of whether the target was an orange slice, donut or 

blueberry.  

Figure 4.10B shows the time of peak aperture when reaching for an orange slice, 

donut, and blueberry placed in the mouth in the Vision (left) and No Vision (right) 

conditions. In the Vision condition, peak aperture generally occurred 45% of the way 

through the reach. This did not significantly differ from the No Vision condition in which 

peak aperture generally occurred 49% of the way through the reach. For both conditions, 

time of peak aperture tended to correspond to target size in that peak aperture occurred 

earliest when reaching for a blueberry, intermediate when reaching for a donut, and latest 

when reaching for an orange slice, although the difference between the donut and orange 

slice was not significant. 

These main findings were confirmed by statistical analyses. An overall ANOVA 

found no significant effect of Location [F(1,39) = 4.013, p > 0.05], but a significant effect 

of Feedback [F(1,39) = 5.435, p < 0.05], and Feedback X Location [F(1,39) = 17.234, p < 

0.001]. For reaches to the pedestal, significant effects were found for Target [F(2,40) = 

13.364, p < 0.001] and Feedback [F(1,20) = 48.303, p < 0.01], but not for Target X 

Feedback [F(2,40) = 1.457, p > 0.05]. For reaches to the mouth, a significant effect was 

found for Target [F(2, 38) = 21.543, p < 0.001], but not for Target [F(2,38) = 21.543, p < 

0.001], or Target X Feedback [F(2,38) = 1.015, p > 0.05]. 

Total movement time. Figure 4.11A summarizes the total amount of time 

required to complete the reach-to-grasp movement (mean ± stand error of all participants 

and all trials) in the Vision (white bars) and No Vision (black bars) conditions when 

reaching to a target located on a distal pedestal or in the mouth. When reaching to a target  
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Figure 4.11 Total movement time, 
Peak Aperture, Over Grasp, and the 

Probability of using a pincer grip 
when reaching to targets on a distal 

pedestal (left) and in the mouth (right) 
in the Vision (white bars) and No 

Vision (black bars) conditions. Note: 
In the No Vision condition, total 

movement time, Peak Aperture, Over 
Grasp, and the probability of using a 

non-pincer grip all increased 
significantly when reaching to targets 

on a distal pedestal, but not when 
reaching to targets in the mouth (***p 

< 0.001, *p < 0.05). 
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located on a distal pedestal, total movement time was significantly greater in the No 

Vision condition compared to the Vision condition. When reaching to a target in the 

mouth, total movement time did not differ between the two conditions. Thus, total 

movement time was influenced by visual feedback when reaching to a target located on a 

distal pedestal, but not when reaching to a target located in one’s own mouth. 

These main findings were confirmed by statistical analyses, which found a 

significant effect of Location [F(1,40) = 35.697, p < 0.001], Feedback [F(1,40) = 57.811, 

p < 0.001], and Location X Feedback [F(1,40) = 51.695, p < 0.001]. 

Hand preshaping accuracy. Figures 4.11B and 4.11C summarize the effect of 

visual occlusion on hand preshaping accuracy when reaching to a target located on a 

distal pedestal (left) or in the mouth (right). Figure 4.11B shows peak aperture (mean ± 

stand error of all participants and all trials) in the Vision (white bars) and No Vision 

(black bars) conditions. When reaching to a target located on a distal pedestal, peak 

aperture increased significantly in the No Vision condition compared to the Vision 

condition. When reaching to a target in the mouth, peak aperture did not differ between 

the two conditions. Figure 4.11C shows over grasp (mean ± stand error of all participants 

and all trials) in the Vision (white bars) and No Vision (black bars) conditions. When 

reaching to a target located on a distal pedestal, over grasp increased significantly in the 

No Vision condition compared to the Vision condition. When reaching to a target in the 

mouth, over grasp did not differ between the two conditions. Thus, visual feedback 

influenced hand preshaping accuracy when reaching to a target located on a distal 

pedestal, but not when reaching to a target in one’s own mouth. 
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These main findings were confirmed by statistical analyses. For Peak Aperture, 

there was a significant effect of Location [F(1,40) = 24.09, p < 0.001], Location X 

Feedback [F(1,40) = 5.84, p < 0.05], and Location X Feedback X Target [F(2,80) = 

77.86, p < 0.001]. For Over Grasp, there was a significant effect of Location [F(1,40) = 

21.25, p < 0.001], Location X Feedback [F(1,40) = 6.06, p < 0.05], and Location X 

Feedback X Target [F(2,80) = 76.55, p < 0.001].  

Final grip. Figure 4.11D summarizes the effect of visual occlusion on final grip 

posture when reaching to a target located on a distal pedestal (left) or in the mouth 

(right). Figure 4.11D shows the probability (mean ± stand error of all participants and all 

trials) that a pincer grip was used to grasp the target in the Vision (white bars) and No 

Vision (black bars) conditions. When reaching to a target located on a distal pedestal, the 

probability of using a pincer grip decreased significantly in the No Vision condition 

compared to the Vision condition. When reaching to a target in the mouth, the probability 

of using a pincer grip did not differ between the two conditions.  

These main findings were confirmed by statistical analyses. For Pincer Grip, there 

was no significant effect of Location [F(1,44) = 0.667, p > 0.05], but there was a 

significant effect of Feedback [F(1,44) = 7.654, p < 0.01] and Location X Feedback 

[F(1,44) = 6.531, p < 0.05].  

Grasp aperture. Figure 4.12 summarizes the results of actual grasp aperture 

when participants reached for orange slices, donut balls, and blueberries located either on 

a distal pedestal or in the mouth. As expected, Grasp Aperture did vary according to 

target size, such that it was largest for an orange slice, intermediate for a donut ball, and 

smallest for a blueberry. For each target, actual grasp aperture was the same regardless of 
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Figure 4.12 Final Grasp Aperture when reaching to orange slices, donut balls, and 

blueberries located on a distal pedestal and in the mouth. Note: For each food target, 
actual Grasp Aperture was the same, regardless of where the target was located and 

whether vision was available or not. 
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where the target was located or whether visual feedback was available. These results 

confirm that the smaller over grasp used to reach to a target in the mouth was related to a 

decrease in peak aperture and not to an increase in actual grasp aperture.  

 These results were confirmed by statistical analysis, which found a significant 

effect of Target [F(2,80) = 1174.54, p <0.001]; but no significant effect of Location 

[F(1,40) = 1.30, P > 0.05], Feedback [F(1,40) = 1.32, p > 0.05], Location X Feedback 

[F(1,40) = 0.03, p > 0.05], or Location X Feedback X Target [F(2,80) = 1.519, P > 0.05].  

 

Effect of object size on hand preshaping to targets in the mouth  

The role of haptic feedback for reaching and grasping targets on a distal pedestal 

has been addressed in previous work (Karl et al., 2012a). For this reason, only the role of 

haptic feedback for reaching and grasping oral targets was evaluated in the present study. 

When reaching to the mouth, hand preshaping accuracy was related to target size in that 

peak aperture and over grasp were most accurate for an orange slice and least accurate for 

a blueberry (Fig 4.5). Differences in oral haptic feedback for large vs. small target items 

likely contributed to these differences. A more detailed comparison, as summarized 

below, supported this conclusion. 

Figure 4.13 summarizes the two types of hand preshaping errors associated with 

reaching to targets in the mouth. Figure 4.13A illustrates an underestimation error. It 

appears that because the lateral portions of the orange slice extended slightly beyond the 

lips, participants tended to underestimate the hand aperture required to grasp it. At first 

contact, hand aperture was too small to comfortably grasp the orange slice; thus, the 

thumb or remaining digits (or both) would re-open to form a larger aperture before  
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Figure 4.13 Representative photos illustrating the hand shaping adjustments associated 

with (A) an underestimation error and (B) on overestimation error. Note: An 
underestimation error is characterized by the use of a hand aperture that is too small to 

grasp the target on first contact, followed by a slight opening of the hand (white arrows) 
in order to achieve the larger final grasp posture. An overestimation error is characterized 
by the use of a hand aperture that is too large to grasp the target on first contact, thus, at 

least one of the digits makes initial contact with the lips rather than the target (white 
arrows), after which hand aperture is adjusted to achieve the smaller final grasp posture. 
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closing to contact slightly more lateral portions of the orange slice in order to 

successfully grasp it.  

Figure 4.13B illustrates an overestimation error. It appears that because the 

blueberry tended to recede into the lips and mouth, participants tended to overestimate 

the hand aperture required to grasp the blueberry. At first contact, hand aperture was too 

large to grasp the blueberry and the thumb and/or digits often made contact with the 

surrounding lip tissue. After contact with the lips, the hand would redirect the grasping 

digits towards the blueberry and slowly close to form a smaller hand aperture in order to 

successfully grasp it. 

The hand shaping transitions used to compensate for underestimation errors and 

overestimation errors were characterized using frame-by-frame video analysis and linear 

kinematics. Figures 4.14A and 4.14B provide a topographical description of the digit-to-

target contact locations at first contact (red dots) and at final grasp (blue dots) associated 

with three representative underestimation errors on an orange slice (Fig 4.14A) and three 

representative overestimation errors on a blueberry (Fig 4.14B). In the event of an 

underestimation error, digit-to-target contact locations at first contact (red dots) were 

located medial to the final grasp digit-to-target contact locations (blue dots), indicating 

that a widening of the digit aperture was required to transition from first contact to final 

grasp. The opposite was true in the event of an overestimation error, in which case digit-

to-target contact locations at first contact (red dots) were located peripherally to the final 

grasp digit-to-target contact locations (blue dots), indicating that a narrowing of digit 

aperture was required to transition from first contact to final grasp.  
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Figure 4.14 Topography of digit-to-target contact locations and aperture profiles 
associated with 3 representative underestimation errors to an orange slice in the mouth 
(left) and 3 representative overestimation errors to a blueberry in the mouth (right). (A) 

Location of first contacts (red dots) and final grasp contacts (blue dots) for 
underestimation errors to an orange slice in the mouth. (B) Location of first contacts (red 
dots) and final grasp contacts (blue dots) for overestimation errors to a blueberry in the 
mouth. (C) A representative index-thumb aperture profile of an underestimation error to 

an orange slice in the mouth. (D) A representative index-thumb aperture profile of an 
overestimation error to a blueberry in the mouth. Note: To compensate for an 

underestimation error the digits must open wider after first contact with the target in order 
to achieve an appropriate final grasp aperture and contact locations. To compensate for an 
overestimation error, the digits must close further after first contact with the lips in order 

to achieve an appropriate final grasp aperture and contact locations on the target. 
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Linear kinematics confirmed the topographical analyses provided in Figures 

4.14A and 4.14B. Figures 4.14C and 4.14D each provide a single, representative digit 

aperture profile associated with an underestimation error for an orange slice (Fig 4.14C) 

and an overestimation error for a blueberry (Fig 4.14D). Figure 4.14C shows that in order 

to compensate for an underestimation error, a second peak aperture (re-opening of the 

digits) was formed after first contact with the target. After this, the digits closed to a final 

grasp aperture that was slightly larger than the original digit aperture used at first contact. 

Figure 4.14D shows that in order to compensate for an overestimation error, after first 

contact, the digits continued to gradually close for a significant portion of total movement 

time until achieving final grasp aperture.  

Figure 4.15 shows that hand preshaping errors to targets in the mouth were related 

to target size. Underestimation errors (dark grey bars, Mean ± SE) occurred most 

frequently when reaching for an orange slice, whereas overestimation errors (light grey 

bars, Mean ± SE) occurred most frequently when reaching for a blueberry. These results 

were confirmed by the statistical analysis. For Grasping Errors there was a significant 

effect of Target [F(2,38) = 14.664, p < 0.001], but not Feedback [F(1,19) = 1.268, p > 

0.05) or Feedback X Target [F(2,38) = 0.288, p > 0.05]. 

Because measures of peak aperture and over grasp were taken only for the first 

grasping attempt (ie. before first contact), the introduction of underestimation errors and 

overestimation errors may have led to an artificial increase in hand preshaping accuracy 

to the orange slice in the mouth and an artificial decrease in hand preshaping accuracy to 

the blueberry in the mouth. Taken together, these results suggest that there may be an 

“ideal” target size, for reaching to objects in the mouth. This target size would maximize 
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Figure 4.15 The probability (mean ± standard error, across all participants, trials, and 
feedback conditions) that an underestimation (black bars) or overestimation (white bars) 
error occurred when reaching for an orange slice, donut ball, and blueberry located in the 
mouth. Note: Underestimation errors were most common when reaching for the largest 

target object, an orange slice, while overestimation errors were most common when 
reaching for the smallest target object, a blueberry, (***, p < 0.001). 
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haptic feedback from the mouth without exceeding the sensory range of the lips and 

without receding into the mouth. 

 

Discussion 

	  

This study provides the first description of hand preshaping to oral targets as 

compared to visually-guided hand preshaping to the same targets located on a distal 

pedestal. Frame-by-frame video analysis and linear kinematics revealed that hand 

preshaping to oral targets was similar to, and at least as accurate as, visually-guided hand 

preshaping. Unlike hand preshaping to distal targets, hand preshaping to oral targets was 

unaffected by visual occlusion, suggesting that the act is exclusively under haptic control. 

This conclusion was supported by the finding that ambiguity in oral haptic feedback, as 

occurs when the edges of a large target extend beyond the edges of the mouth, results in 

suboptimal hand preshaping. Nevertheless, haptic feedback from the reaching hand could 

be used to reshape and reorient the hand after first contact with the ambiguous target. The 

accurate guidance of hand preshaping by oral hapsis is discussed in relation to the idea 

that hand preshaping, as a function of the frontal and parietal cortices may have 

originated under somatosensory control with secondary access by vision.  

The design of the present experiment featured three manipulations that ensured 

accurate measurement of hand preshaping. First, because the intended use of a target 

dictates how the reach-to-grasp movement is performed (Arbib et al., 1985; Jeannerod, 

1981, 1984; Marteniuk et al., 1990), only ethologically relevant food items were used for 

both oral and distal reaching targets. Second, when reaching to distal targets, participants 
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were instructed to reach for the target as if they were going to pick it up and eat it. 

Together these manipulations ensured that all subjects grasped the food targets with a 

similar intention and thus used a similar grasping pattern, a pincer or other precision grip, 

for all reaches (Iberall et al., 1986; Ingram et al., 2010; Napier 1956; Sartori et al., 2011). 

Third, as in previous studies, targets ranged in size so that scaling of hand aperture to 

target size and shape could be easily evaluated using frame-by-frame video analysis and 

kinematic motion capture (Jakobson and Goodale, 1991; Jeannerod 1981, 1984, 1986). 

Some caveats must be made with respect to the procedures used. First the 

kinematic method is limited in that it does not provide a comprehensive measure of all 

hand preshaping transitions. Although the video record clearly indicated how the hand 

was shaped for grasping, parts of the hand were sometimes obscured so that kinematic 

results were incompletely captured and some data had to be removed. Nevertheless, the 

large majority of trials provided useful data and could be subjected to kinematic analysis. 

Second, because gustatory feedback has been shown to influence hand preshaping (Parma 

et al., 2011a,b), it is possible that gustatory sensations may have contributed to the 

accuracy of hand preshaping to oral targets in the present study. In future studies, the 

removal of gustatory feedback, by the use of non-ethologically relevant target items, 

could address this question. Third, it is possible that asking participants to bring the distal 

food target to the mouth after grasping it may have elicited different planning and control 

strategies compared to asking them to simply grasp and retrieve the target, as they were 

asked to do when reaching to the mouth (Ansuini et al., 2006, 2008; Gentilucci et al., 

1997; Sartori et al., 2011). This may limit the extent to which data from the present 

experiment and data across numerous other studies may be directly compared. 
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Nevertheless, asking participants to pick up the distal target as if they were going to eat it 

ensured that a similar, “eating-related affordance or intention” was applied to the 

reaching movement in both the distal condition and the oral condition of the present 

study. Fourth, when reaching to unseen distal targets, participants did not know what the 

target was. This differs from reaching to an unseen oral target, in which case the 

participants were likely aware of the target’s identity and could use either online haptic 

feedback or stored perceptual knowledge about the target to guide the reach. 

Nevertheless, it is known that hand preshaping based on stored perceptual knowledge 

(memory) is significantly less accurate than hand preshaping based on online sensory 

feedback (Jakobson and Goodale, 1991). Thus, because hand preshaping accuracy to oral 

targets was unaffected by visual occlusion, this supports the interpretation that the act is 

guided primarily by online oral hapsis rather than by stored perceptual knowledge about 

the target. 

Hand preshaping to oral targets is similar to, and at least as accurate as, visually-

guided hand preshaping to distal targets. This conclusion is supported by a number of 

observations. First, in both conditions, hand aperture increased steadily from movement 

onset until reaching a peak aperture larger than the target, before closing to grasp. 

Second, regardless of where the target was located, hand shape and aperture scaled 

accurately to target size such that it was largest for an orange slice, intermediate for a 

donut ball, and smallest for a blueberry. Third, hand preshaping to both oral and distal 

targets resulted in successful grasping of the target and an identical final grasp aperture. 

Interestingly, hand preshaping accuracy (in terms of peak aperture and over grasp) 

appeared to be greatest when reaching to a donut ball placed in the mouth, as compared 
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to the same target located on a distal pedestal. This suggests that under some 

circumstances hand preshaping to oral targets may actually be more accurate than 

visually-guided hand preshaping to the same targets in distal space. In sum, these 

similarities are suggestive of a common, feed-forward, hand preshaping action pattern 

that can be implemented when reaching to either visible distal targets or to targets in the 

mouth. 

Time of peak aperture formation differs when reaching to distal targets compared 

to oral targets. When reaching to a distal target with vision, peak aperture generally 

occurred 52% of the way through the reach. This is slightly earlier than the 60-75% 

reported in some previous studies (Jakobson and Goodale, 1991; Jeannerod 1981, 1984; 

Paulignan et al., 1990). In addition, peak aperture formation occurred earlier than might 

have been expected when reaching to the largest distal target, an orange slice (Jakobson 

and Goodale, 1991; Marteniuk et al., 1990; Paulignan et al., 1991), and also when 

reaching to oral targets. This tendency to form a peak aperture earlier-than-expected is 

likely due to a number of factors. First, in the present study, total movement time was 

calculated from movement onset to final grasp. Because the targets in the present study 

were not completely solid, they were subject to a slight compression upon final grasp. 

The additional time required to achieve optimal grip friction forces may have caused the 

time of peak aperture formation to occur proportionally earlier in the total movement 

time. Second, it is known that peak aperture formation may occur proportionally earlier 

when “compensatory” or “cautious” grasping strategies must be employed (Jakobson and 

Goodale, 1991; Karl et al., 2012). In the present study, reaching to an unseen distal target, 

reaching to a wet and sticky orange slice balanced on a pedestal, and reaching to a target 
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located in one’s own mouth, may all represent reaching conditions in which a “cautious” 

strategy must be employed in order to prevent dropping of the target and/or self-injury. 

Third, the timing of peak aperture formation may be related to the intended use of the 

target (Sartori et al., 2011). Because the target was grasped with the intention of either 

bringing it to the mouth or removing it from the mouth, this may have elicited different 

planning and grasping strategies compared to a situation in which the intended use of the 

target is to simply lift it from a table. This may have affected the time of peak aperture 

formation. In general, the results of these analyses suggest that the physical nature of the 

reaching target, the intended use of the reaching target, and the “stability” of the reaching 

target may all influence the timing of peak aperture formation. 

Accurate hand preshaping to distal targets requires vision, but hand preshaping to 

oral targets is guided by hapsis. This conclusion is supported by the following 

observations. First, without vision, reaching and grasping of distal targets took 

significantly longer compared to oral targets. Second, although time of peak aperture 

formation occurred earlier when reaching to unseen distal targets, time of peak aperture 

was unaffected in the No Vision condition when reaching to oral targets. Third, when 

reaching without vision to a distal target, peak hand aperture did not scale to target size; 

instead, a standard peak hand aperture was consistently employed. This differed from 

reaching to an oral target, in which peak hand aperture scaled to target size, even in the 

absence of vision. Fourth, the removal of visual feedback resulted in a change in final 

grip preference when reaching for a distal target. Specifically, a pincer grip was 

employed more often under normal visual conditions, whereas a precision grip was 

employed more often under visual occlusion. In contrast, when grasping an oral target, a 
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precision grip was preferred under both visual conditions. The use of a precision grip 

might reflect a higher reliance on haptic feedback from the reaching hand in order to 

ensure successful grasping of the target (Karl, 2012; Mackenzie and Iberall, 1994). Taken 

together, these results show that while visual feedback is required for optimal hand 

preshaping to distal targets, oral hapsis appears to be sufficient for accurate hand 

preshaping to targets in the mouth. 

Hand preshaping to targets in the mouth is guided primarily by oral hapsis, but 

haptic feedback from the reaching hand can be used to optimize the movement. This 

conclusion is supported by the following observations. First, when haptic information 

from the mouth was ambiguous, as occurred when the lateral tips of the orange slice 

extend beyond the lips, peak hand aperture was often insufficient to allow for successful 

grasping of the target. This indicates that hand preshaping to targets in the mouth is 

guided only by available oral hapsis. Second, in instances where peak hand aperture 

underestimated actual target size, the reaching hand could re-shape to an appropriate final 

grasp aperture, but only after first haptic contact with the target. This resembles the 

parsed strategy of using haptic feedback from the hand to first locate the target, and then 

to guide re-shaping of the hand after first contact (Karl et al., 2012). Third, when the 

smallest target receded into the lips, a larger than required peak hand aperture could be 

used to compensate for anticipated initial contact between the digits and the lips. After 

initial contact, the digits would then close and produce a successful final grasp. Thus, 

hand preshaping to targets in the mouth is guided primarily by oral hapsis. Nevertheless, 

hapsis from the reaching hand can be used to compensate for ambiguous oral haptic 

feedback in order to successfully grasp an oddly shaped target in the mouth. 
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The accuracy of hand preshaping to oral haptic targets is likely due to a number of 

factors. First, the spatial acuity of tactile information on the lips and tongue is high, 

almost double that of the digits (Van Boven et al., 1994), and can provide precise size 

and shape information concerning objects held by the mouth. Second, withdrawal of the 

hand from distal space, in order to place a food item into the mouth, is also guided by 

somatosensensory feedback from the hand, arm, and mouth, rather than by vision (de 

Bruin et al., 2008, Kaas et al., 2011; Sacrey and Whishaw, 2011). Third, the same neural 

circuitry that mediates visually-guided hand preshaping to distal targets also mediates 

haptically-guided hand preshaping. (Binkofski et al. 1998; 1999a,b; De Santis et al., 

2007; Reed et al., 2005; Sathian et al., 2011). Thus, the results of the present study suppor 

the third hypothesis of the present thesis, that online somatosensory inputs concerning the 

extrinsic and intrinsic properties of the target can result produce temporally integrated 

Reach and Grasp movements (i.e., hand preshaping) similar to those under vision. The 

use of a seemingly similar hand preshaping movement, despite differences in sensory 

control, is suggestive of a common neural origin for hand preshaping to grasp both distal 

objects and objects in the mouth.  

A substantial literature is interpreted as supporting the idea that hand preshaping 

is a primarily visual act. The classic theories of skilled hand movement evolution, the 

arboreal theory and the visual predation theory, posit that skilled reaching and grasping 

originated under visual control in the primate lineage and is a consequence of an arboreal 

lifestyle (Cartmill, 1974; Napier, 1980). Nevertheless, we suggest that hand preshaping 

for grasping and its requisite neural circuitry in parietofrontal cortex may have actually 

originated under haptic control in a common ancestor to rodents and primates in order to 
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grasp a food item in the mouth. Sensory control may have then been modified in more 

recent mammalian orders to allow primates to redirect the reach-to-grasp movement 

towards distal targets using vision (Whishaw, 2003).  

A number of recent findings support this feeding theory. First, while the reaching 

and grasping circuitry in primate parietofrontal cortex receives both somatosensory and 

visual inputs, the somatosensory inputs are direct, whereas the visual inputs are less 

direct. In fact, it has not been possible to identify any direct connections from visual areas 

representing central space to the reaching/grasping circuitry in parietofrontal cortex at all 

(Kaas et al., 2011, Stepniewska et al., 2009a,b). Second, all studied branches of primate 

evolution share the same basic reaching and grasping circuitry in the parietofrontal cortex 

(Gharbawie et al. 2010, 2011, Kaas et al., 2011, Stepniewska et al. 2005, 2009a,b). Thus, 

this circuitry likely did not originate in “visually inclined” primates, but was most likely 

retained from a common ancestor and modified in more recent primate lineages. Third, 

rats can readily use oral hapsis to guide accurate hand preshaping to food targets located 

in the mouth (Ivanco et al., 1996; Whishaw et al., 1992a, 1998; Whishaw & Coles, 1996). 

They cannot, however, use vision to guide hand preshaping to targets in distal space 

(Hermer-Vazquez, 2007; Metz & Whishaw, 2000; Whishaw, 2003; Whishaw et al., 

1992b). This ability does appear to be unique to primates (Hermer-Vazquez et al., 2007; 

Metz and Whishaw, 2000; Whishaw and Tomie, 1989). Finally, the results of the present 

study show that not only can humans use oral hapsis to guide accurate hand preshaping to 

targets in the mouth, but there are instances where this form of hand preshaping is 

actually more accurate than that guided by vision. Thus, the findings of the present study, 
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combined with previous work, support the feeding theory as a possible explanation for 

the evolution of skilled hand movements such as hand preshaping. 
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Chapter 5 

Haptic grasping configurations in early infancy reveal different developmental 

profiles for visual guidance of the Reach vs. the Grasp 
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Abstract 

 

The Dual Visuomotor Channel theory posits that reaching consists of two movements 

mediated by separate but interacting visuomotor pathways that project from occipital to 

parietofrontal cortex. The Reach transports and orients the hand to the target while the 

Grasp opens and closes the hand for target purchase. Adults rely on foveal vision to 

synchronize the Reach and the Grasp so that the hand orients, opens, and largely closes 

by the time it gets to the target. Young infants produce discrete preReach and preGrasp 

movements, but it is unclear how these movements become synchronized under visual 

control throughout development. Highspeed 3D video recordings and linear kinematics 

were used to analyze reaching components, hand orientation, hand aperture, and grasping 

strategy in infants aged 4 to 24 months compared to adults who reached with and without 

vision. Infants aged 4 to 8 months resembled adults reaching without vision in that they 

delayed both Reach orientation and Grasp closure until after target contact, suggesting 

that they relied primarily on haptic cues to guide reaching. Infants aged 9 to 24 months 

oriented the Reach prior to target contact, but continued to delay the majority of Grasp 

closure until after target contact, suggesting that they relied on vision for the Reach vs. 

haptics for the Grasp. Changes in sensorimotor control were associated with sequential 

Reach and Grasp configurations in early infancy vs. partially synchronized Reach and 

Grasp configurations in later infancy. The results argue that 1) haptic inputs likely 

contribute to the initial development of separate Reach and Grasp pathways in 

parietofrontal cortex, 2) the Reach and the Grasp are adaptively uncoupled during 

development, likely to capitalize on different sensory inputs at different developmental 
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stages, and 3) the developmental transition from haptic to visual control is asymmetrical 

with visual guidance of the Reach preceding that of the Grasp. 
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Introduction 

  

The Dual Visuomotor Channel theory proposes that reaching consists of two 

movements mediated by separate but interacting visuomotor pathways that project from 

occipital to parietofrontal cortex (Arbib 1981; Cavina-Pratesi et al., 2010a; Culham and 

Valyear, 2006; Filimon, 2010; Jeannerod 1981; Karl and Whishaw, 2013; Rizzolatti et al. 

1998; Tanné-Gariépy et al. 2002). The Reach transports and orients the hand to the target 

while the Grasp opens and closes the hand for target purchase. Healthy adults visually 

fixate on a target at movement onset (de Bruin et al., 2008; Sacrey and Whishaw, 2012), 

which allows them to integrate the Reach and the Grasp into a single prehensile act such 

that Reach orientation and Grasp closure are largely complete by the time the hand 

contacts the target (Jeannerod, 1999). If vision is degraded, however, reaching 

decomposes into its constituent components: an open-handed Reach is first used to locate 

the target by touching it and then haptic feedback associated with target contact assists 

shaping and closure of the hand to Grasp (Hall et al., 2014; Karl et al., 2012a; Karl and 

Whishaw, 2013).  

Before infants begin reaching for visual targets they produce discrete preReach 

and preGrasp movements, suggesting that independent motor control for the Reach vs. 

the Grasp is established early in postnatal life. PreReach movements such as orienting the 

eyes and head to a target (Greenman, 1963; Kremenitzer et al., 1977; Hofsten and 

Rosander, 1997), swiping at a target with a fisted hand (White et al., 1964; Hofsten, 

1984), and reaching for an object with the mouth by thrusting the head forward and 

flexing the abdominals (Foroud and Whishaw, 2012), appear to be at least partially 



	   187 

mediated by vision (Hofsten, 1982). In contrast, preGrasp movements such as closing the 

hand on an object that contacts the palm (Twitchell, 1965), forming spontaneous pincer 

and precision grips during hand babbling (Rönnqvist and Hofsten, 1994; Wallace and 

Whishaw, 2003), and configuring the hand to grasp one’s own body or clothing (Wallace 

and Whishaw, 2003; Thomas et al., in prep) appear to be almost exclusively under 

somatosensory control (Lockman et al., 1984; Newell et al., 1993). There are at least two 

possibilities related to how independent preReach and preGrasp movements become 

integrated under vsion. First, visual control may mature at the same rate for both the 

Reach and the Grasp, in which case infants would show gradual and symmetrical 

improvements in both orienting the Reach and closing the Grasp prior to target contact at 

increasingly older ages. Alternatively, visual guidance may mature at different rates for 

the Reach vs. the Grasp, in which case infants would show asymmetrical improvements 

in orienting the Reach vs. closing the Grasp prior to target contact, with the movement 

that is more tightly coupled to vision showing improvements in anticipatory movement 

control earlier. 

To investigate these hypotheses, infants aged 4 to 24 months and healthy adults 

were filmed at high speed as they reached for a vertical rod placed on a table in front of 

them. Infants always reached with vision whereas adults reached without vision (NV) and 

with vision (V). Frame-by-frame 3D video analysis and linear kinematics were used to 

quantify the temporal structure of the movement components that comprise reaching, 

hand orientation at contact, hand aperture at contact, and overall grasping strategy in 

order to determine the extent to which visual vs. non visual inputs were used to orient the 

Reach vs. close the Grasp in each group.  
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Materials and Methods 

 

Participants 

 

 Adults. Eighteen young adults (9 male, 9 female, mean age = 21.6 ± 0.87 years) 

were recruited from a second year class at the University of Lethbridge. All participants 

provided informed consent and were self-reported to have no history of sensory, motor, 

or neurological disorders. All participants were selected because they were right-handed 

for writing and had normal or corrected-to-normal vision. 

 

Infants. Thirty-nine infants (21 male, 18 female) were recruited through an online 

advertisement (www.kijiji.ca) and were assigned to 5 age groups: 4 to 6 months of age (n 

= 8, mean age = 170 ± 8 days), 7 to 8 months of age (n = 8, 237 ± 5 days), 9 to 10 months 

of age (n = 9, 291 ± 5 days), 11 to 12 months of age (n = 7, 355 ± 9 days), and 24 months 

of age (n = 7, 754 ± 13 days). All parents provided informed consent and reported that 

infants were full term (born within 7 days of due date) and had no known sensory, motor, 

or neurological disorders. The University of Lethbridge Human Subject Research 

Committee approved the study. 

 

Procedures 

 

 Setup. Prior to testing adults were seated in a comfortable upright position on an 

armless chair in front of a table that bent at a 90º angle at the participant’s midline. The 
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height of the chair was adjusted so that the participant’s hands could rest comfortably on 

the table with the elbows bent at approximately 135º. Participants then placed their hands 

in an open and comfortable position on the dorsal aspect of their upper thighs in 

preparation for the first reaching trial. Infants were seated in a similar manner, but on the 

mother’s lap (Fagard, 2000). If necessary, the mother stabilized the infant by holding 

his/her waist with both hands. 

 

 Targets. Two custom made vertical rods, 20.5 cm in height, were used as 

reaching targets. Each rod was made of clear acrylic and filled with plastic sea glass 

pebbles and reflective ribbon to attract the infants’ attention. A 0.5 cm acrylic protrusion 

was attached to the bottom of each rod so that the rod could be secured in a vertical 

position on an acrylic receptacle located on the table in front of the participant. Adults 

reached for a rod that measured 3.25 cm in diameter; infants reached for a rod that 

measured 1.75 cm in diameter.  

 

 Adult Reaching Experiment. Adult participants assumed the “start” position by 

placing both hands in an open and relaxed posture on the dorsal aspect of their upper leg 

(see figure 5.1). They were shown the general location at which the target object would 

be placed before putting on plastic goggles that occluded target, which was placed on the 

table at a distance that allowed for complete extension of the participant’s arm. 

Participants were instructed to wait for a verbal 1, 2, 3, GO command, after which they 

were to reach out as naturally as possible, pick up the target object with the right hand, 

pass it back to the experimenter, and then return their hand to the start position in 
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Figure 5.1 Movement components in a healthy sighted adult. Lift, the hand begins to lift 
from the substrate. Collect, the digits flex and close as the hand is transported towards the 
target. Orient, the arm and hand supinate to orient to the target. Peak Aperture, maximum 
opening of the index finger and thumb . Close, the digits begin to close to grasp. Contact, 
the hand contacts the target. Hold, digit closure is complete as the hand holds the target. 
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preparation for the next trial. Because of the occluding goggles, participants did not know 

the exact size, shape, or location of the reaching target on their first No Vision reach 

attempt. Adults performed 5 No Vision trials, followed by 5 Vision trials with the 

goggles removed. To control for learning effects in the No Vision condition (Karl et al., 

2013) only the first trial in each viewing condition was subject to analysis.  

  

Infant Reaching Experiment. A similar design was used for the infant reaching 

experiment, with some differences. Infants were encouraged by their mother to start each 

trial with their hands placed on the table in front of them, although, infants in the two 

youngest age groups did not begin with the hands in this position on a minority of trials. 

Infants were not able to follow a verbal 1, 2, 3, GO command and simply reached for the 

target whenever they were ready. Infants were not blindfolded. After grasping the target, 

infants were allowed time (approximately 30 to 60 seconds) to explore and/or play with 

the target before the mother retrieved it and handed it back to the experimenter who then 

placed it back at the target location in preparation for the next trial.  

Infants reached for a maximum of twenty minutes or until they began to fuss. 

Eight reaches per infant were analyzed, although some trials were excluded due to 

incomplete data capture. A total of 274 (out of a potential 312) infant reaches were 

subject to kinematic and behavioural analysis with only one infant providing as few as 4 

successful reaches. 

 

Data Collection and Analysis 
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Two high-speed digital video cameras (Casio Exilim Ex-F1: http://www.exilim.eu 

/euro/exilimhighspeed/exf1/video/), operating at 300 frames/s, were positioned to record 

a reach-side view and top-down view of the participant. A lamp containing four 55 watt 

fluorescent light bulbs was used to illuminate the scene. Before testing, a 3D cubic 

calibration frame (http://www.motus10.com/motion-capture/calibration.aspx) was placed 

on the table in front of the participant and the experimenter touched the frame with her 

index finger. The two video records were time-synchronized offline using Final Cut Pro 

(http://www.apple.com/final-cut-pro/). The time-synchronized video records were 

imported into Peak Motus Motion Analysis Software (http://www.motus10.com/) and 

points of interest on the arm and hand were manually digitized by clicking on them in 

both video views for each reaching trial. These time-synchronized 2D coordinate points 

were then transformed into 3D scaled coordinates using the 3D calibration frame as a 

spatial reference. Offline, frame-by-frame analysis of the time-synchronized high-speed 

video record was used to score further behavioural measures. 

 

Movement Components. The movement components analyzed are based on a 

conceptual framework derived from Eshkol-Wachman Movement Notation (EWMN; 

Eshkol and Wachman, 1958), which has been used to describe reaching behaviour in 

healthy infants, healthy adults, and adults with sensorimotor disorders (see Sacrey et al., 

2012; Whishaw et al., 2002). The standard reaching analysis was modified to describe the 

point in time at which specific movement components occurred. This was achieved by 

stepping frame-by-frame through the video records and noting the individual frame at 

which a movement component occurred. Frames numbers were converted to seconds and 
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plotted as a function of total movement time. The movement components of interest to 

the present study are depicted in figure 5.1, which also shows the temporal organization 

of these movement components in an adult reaching with vision. 

1. Lift was defined as the time point at which the hand made its first discernable 

movement away from the leg (or table) and toward the target object that resulted in 

contact with the target. If the infant did not begin with the hands placed on the table, lift 

was defined as the first movement towards the target resulting in contact.  

 2. Collect was defined as the time point at which flexion and closure of the digits 

resulted in the smallest distance between the tips of the index finger and the thumb prior 

to target contact. 

 3. Orient was defined as the time point at which supination of the forearm and 

hand was complete, such that the orientation of the hand reached the smallest angle 

relative to the vertical target object, which could be achieved either before or after target 

contact.  

 4. Peak Aperture was defined as the time point at which the distance between the 

tips of the index finger and thumb reached the largest aperture prior to target contact. 

 5. Close was defined as the time point at which the tip of the index finger and/or 

thumb first began to close, resulting in a successful grasp of the target. 

 6. Contact was defined as the time point at which the hand made first contact with 

the target. 

 7. Hold was defined as the time point at which digit closure was complete, 

resulting in successful holding of the target. 

Total Movement Time was defined as the duration of time from Lift to Hold. 
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Inter-Rater Reliability of Movement Component Timings. Three reaches per 

infant age group, 3 adult Vision reaches, and 3 adult No Vision reaches were scored by 

three independent experimenters (N = 21 reaches or 105 movement components). Inter-

rater reliability was assessed using intraclass correlation co-efficients (ICC) with absolute 

agreeability for individual movement components. For Lift ICC = 0.999 (95% confidence 

interval 0.990 – 1.000), Collect = 0.963 (0.765 – 0.987), Orient = 0.992 (0.942 – 0.997), 

Peak Aperture = 0.965 (0.779 – 0.988), Close = 0.991 (0.930 – 0.997), Contact = 1.000 

(0.998 – 1.000), and Hold = .999 (0.991 – 1.000), suggesting very high reliability.  

  

 Contact, Orientation, and Aperture Kinematics. The time-synchronized video 

records were paused on the frame at which the hand made first contact with the target. 

Figure 5.2 shows the kinematic measures derived from the Peak Motus Motion Analysis 

software at this time point. 

 

 1. First Contact. The hand was arbitrarily divided into 20 sections corresponding 

to distal contact locations (distal digital phalanges) and proximal contact locations 

(middle and proximal digital phalanges + metacarpophalangeal (MCP) joints 2 to 5 + the 

thenar space between the thumb and index finger). Inspection of the video record was 

used to determine which section of the hand made first contact (visualized as a green dot 

in figure 5.2). 

2. Extra Contacts. A reach movement was considered to contain an extra contact 

if, between first contact and final hold, the participant released and re-established contact. 

3. Orientation at First Contact. The orientation of the hand at first contact was 
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Figure 5.2 Aperture (red) and orientation (blue) of hand at first contact (green). A. 
Dorsal view. B. Lateral view. 
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 determined by measuring the vector angle between two line segments, the hand 

(visualized as a blue line segment joining the second and fifth metacarpophalangeal joints 

in figure 5.2) and the vertical rod (visualized as a blue line segment joining the top and 

the bottom of the rod in figure 5.2). A hand orientation of 0° indicated that the hand was 

vertically oriented, parallel to the vertical rod, whereas an orientation of 90° indicated 

that the hand was horizontally oriented, perpendicular to the vertical rod. 

4. Aperture at First Contact. The distance between the index finger and thumb at 

first contact was measured (visualized as a red line segment joining the tip of the index 

finger and the tip of the thumb) and divided by the participant’s hand length (from tip of 

middle finger to center of wrist) to correct for differences in hand size across participants. 

5. Kinematic Profiles. For a subset of reaches, change in hand orientation and 

change in hand aperture were plotted as functions of normalized time. Only trials on 

which infants began the reaching trial with the hands place on the table in front of them 

were included in this analysis.  

 

 Grasp Strategy. The grasp strategy used to acquire the target was scored using 

previously defined methods (Hall et al., 2014; Karl et al., 2012a). A visual grasp strategy 

was identified as one in which the digits preshaped in an over grasp before object contact, 

closed to a grasping configuration on approach to the object, and grasped the object 

directly without making adjustments as it was contacted. This is termed a preshape 

strategy and is illustrated in Figure 5.3A. 

 A grasp strategy was considered to be haptic if the hand did not preshape and 

close on approach to the target and/or featured adjustments to hand orientation, hand 
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shape, or digit contact locations after first contact. Haptic strategies included a touch & 

release, in which the hand touched the object and then withdrew contact in order to adjust 

contact locations, re-orient, re-shape, and close the hand to grasp (Figure 5.3B); a 

capture, in which a digit or the palm of an open hand contacted the object while the 

remaining digits closed from a very large aperture to grasp it (Figure 5.3); an adjust, in 

which the target was grasped and then slightly released and grasped again in order to 

establish different contact points; and a manipulate, in which the target was moved and/or 

manipulated by one or more digits before being grasped (Karl et al., 2012a). 

 Infants often employed a combination of strategies such as a touch & release 

strategy followed by a manipulate strategy. For this reason, only the first strategy 

employed in each reach trial was counted for analysis. 

 

Statistical Analysis 

 

 The results of the adult experiment were evaluated using a repeated measures 

ANOVA with the computer software SPSS (V.19). Visual Condition (NO VISION vs. 

VISION) served as a within-subjects factor when analyzing Movement Components 

(collect, orient, peak ap, close, contact), Total Movement Time, Extra Contacts, Time 

from Orient to Contact, Time from Close to Contact, Orientation at Contact, and Aperture 

at Contact. Results reported as proportions or frequencies such as Hand Contact  

(proximal vs. distal hand) and Grasping Strategy (preshape, touch & release, capture) 

were evaluated using the McNemar non-parametric statistical test. 

To accommodate uneven subject and trial numbers, the results of the infant 
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Figure 5.3 Grasping Strategies. A. preshape, digits gradually close to grasp at first 
contact B.,C., The digits do not gradually close to grasp at first contact. After touching 
the target the hand releases contact as the digits orient, shape, and close to grasp it (B, 

Touch & Release), or the hand maintains contact with the target as the remaining digits 
either close to grasp it (C, Capture) or manipulate the target in order to grasp it (not 

shown). 
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experiment were evaluated using a repeated measures mixed linear model (MLM) in 

SPSS (Heck et al., 2014). Age (4-6, 7-8, 9-10, 11-12, and 24 MONTHS) served as a 

between-subject factor and Trial (1, 2, 3, 4, 5, 6, 7, and 8) served as a within-subjects 

factor when analyzing Movement Components (collect, orient, peak ap, close, contact), 

Total Movement Time, Extra Contacts, Time from Orient to Contact, Time from Close to 

Contact, Orientation at Contact, and Aperture at Contact. Results reported as proportions 

or frequencies such as Hand Contact (proximal vs. distal hand) and Grasping Strategy 

(preshape, touch & release, capture) were normally distributed and evaluated using an 

one-way ANOVA using the Brown-Forsythe test to correct for unequal variances when 

necessary. 

Adult vs. infant comparisons were made by converting infant repeated measures 

to the mean and treating adult Visual Condition (NO VISION vs. VISION) as a between-

subjects factor. Because the data were normally distributed, statistical comparisons were 

made using an one-way ANOVA using the Brown-Forsythe test to correct for unequal 

variances when necessary. 

A p value of < 0.05 was considered significant. Follow-up pairwise comparisons 

and post hoc analyses were subjected to Bonferroni correction. Unless a non-significant 

effect was of interest, only significant effects are reported. Results are reported as the 

mean ± standard error. 

 

Results 

 

Results Summary 
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In young infants, movement component organization resembled that of adults in 

the No Vision condition. At older ages, however, movement organization came to 

resemble that of adults in the Vision condition. At the youngest ages, infants failed to 

orient the Reach or close the Grasp prior to target contact. Thus, they required more time 

to complete these movements after the hand touched the target. The Reach and the Grasp 

followed different developmental profiles. Between 9 and 24 months, infants were able to 

transport and orient the Reach as accurately as adults in the Vision condition, but they 

persisted in using an open Grasp to contact the target, similar to adults in the No Vision 

condition. Infants of different ages also favoured different grasping strategies. Younger 

infants favoured a touch & release strategy, whereas older infants favoured a capture 

strategy. All infants differed from adults in the Vision condition who favoured the 

preshape strategy. 

 

Movement Components 

 

 Figure 5.4 illustrates the time at which each movement component occurred as a 

function of total reaching time. Figures 4A and G show that the adult reaching movement 

is organized differently depending on whether or not vision is available. In the No Vision 

condition, peak aperture and target contact occur relatively early in the movement (~50% 

and 54% of the way through the movement, respectively) and hand close and orient are 

relatively delayed, occurring after contact (~74%, 78%, and 55% of the way through the 

movement, respectively). This differs from the adult Vision condition in which peak 

aperture occurs in the later half of the movement (~ 67%) and hand orient and close 
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precede contact, (~50%, 74%, and 88%, respectively). Thus, reaching in the No Vision 

condition did not reflect a simple modification of the kinematics of visually guided 

reaching. Rather, the organizational structure of the movement was fundamentally 

different depending on whether or not vision was available. These differential movement 

structures can be described as follows:  

 

Adult No Vision:  Lift ! Collect ! Peak Ap ! Contact ! Orient/Close ! Hold 

Adult Vision:   Lift ! Collect ! Orient ! Peak Ap ! Close ! Contact ! Hold 

 

Infants aged 4 to 12 months (figures 5.4B,C,D,E) display the same reaching 

structure as adults in the No Vision condition. By 24 months, however, the structure of 

the reaching movement (figure 5.4F) approaches that of adults in the Vision condition. 

The adult results were confirmed by repeated measures ANOVAs that gave a significant 

effect of Visual Condition for collect [F(1,17) = 56.961, p < 0.001], orient [F(1,17) = 

51.642, p < 0.001], peak ap [F(1,17) = 29.527, p < 0.001], and contact [F(1,17) = 99.497, 

p < 0.001], but not close [F(1,17) = 2.388, p > 0.05]. The infant results were confirmed 

by repeated measures MLMs that gave a significant effect of Age for collect [F(4, 

30.388) = 6.978, p < 0.001], orient [F(4, 27.206) = 11.582, p < 0.001], peak ap [F(4, 

25.583) = 16.041, p < 0.001], close [F(4,26.909) = 5.903, p < 0.001], and contact 

[F(4,24.305) = 25.133, p < 0.001].  

 

Timing of Reach Orientation, Grasp Closure, and Total Movement Time 
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Figure 5.4 Temporal organization of 

reaching movement components. 
Reach movement components (mean 

± se, lift, collect, orient, peak 
aperture, close, contact, and hold) 

averaged across all trials and 
subjects for each group and plotted 

against normalized time. Note: 
reaching component organization of 
young infants is similar to unsighted 

adults but transitions to resemble 
sighted adults in older infants. 
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  Reach Orientation. Figure 5.5A illustrates time at which the hand finished 

orienting to the target relative to the time of target contact (0.0 seconds). Younger infants 

and adults in the No Vision condition failed to finish orienting the hand prior to target 

contact. Instead they completed hand orientation ~ 0.55s (4 to 6 month infants, NV 

adults) and 0.16s (7 to 8 month infants) after target contact. In contrast, infants aged 9 

months and older finished orienting the hand anywhere from 0.14s to 0.24s prior to 

contact, similar to adults in the Vision condition.  

These result were confirmed by a repeated measures ANOVA that gave a significant 

effect of Visual Condition [F(1,17) = 54.542, p < 0.001] for adults and a repeated 

measures MLM that gave a significant effect of Age [F(4, 240.906 = 16.042, p < 0.001] 

for infants. Adult vs. infant comparisons were confirmed by an one-way ANOVA that 

gave a significant effect of Group [F(6, 35.995) = 26.821, p < 0.001]. Pairwise 

comparisons revealed that in the No Vision condition adults did not differ from 4 to 6 

month old infants, but did differ from all other groups (p < 0.001). In the Vision 

condition adults differed from 4 to 6 month old infants (p < 0.001) and 7 to 8 month old 

infants (p < 0.01). 

Grasp closure. Figure 5.5B illustrates the time at which the digits began to close 

to Grasp relative to the time of target contact (0.0 seconds). On average, young infants, 

like adults in the No Vision condition, did not start closing the digits to Grasp until 0.84 

to 0.20 seconds after target contact. With increasing age, infants required less time after 

contact to begin closing the digits to Grasp and between 12 and 24 months infants began 

to close the digits prior to contact, similar to adults in the Vision condition.  

These results were confirmed by a repeated measures ANOVA that gave a 
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Figure 5.5 Timing of orientation, aperture closure, and hold. A. Time of orientation 
completion relative to first contact (mean ± se). B. Time of aperture closure onset relative 

to first contact (mean ± se) C. Total movement time from lift to hold (mean ± se) 
averaged across all trials and subjects for each group. Note: From 9 months of age and 

older infants finish orienting the hand prior to contact. At 12 months of age infants do not 
initiate hand closure until after object contact, but by 24 months they initiate hand closure 

prior to object contact, similar to sighted adults. Younger infants (4 to 12 months) and 
unsighted adults take significantly longer to complete the reach movement compared to 

older infants (24 months) and sighted adults (*** p < 0.001 vs. 4-6 month infants). 
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significant effect of Visual Condition [F(1,17) = 30.236, p < 0.001] for adults and a 

repeated measures MLM that gave a significant effect of Age [F(4,157.066 = 19.759, p < 

0.001] for infants. Adult vs. infant comparisons were confirmed by an one-way ANOVA 

that gave a significant effect of Group [F(6,35.252) = 14.194, p < 0.001]. Pairwise 

comparisons revealed that in the No Vision condition adults differed from 4 to 6 month 

(p <0.001), 24 month (p < 0.001), and 11 to 12 month old infants ( p < 0.05). In the 

Vision condition adults differed from all groups (p < 0.001, 0.01, 0.5) except 24 month 

old infants. 

Total movement time. Figure 5.5C illustrates the total amount of time required to 

complete the reaching movement. Adults took significantly longer to complete the 

reaching movement in the No Vision condition compared to the Vision condition. 

Younger infants also took longer to complete the movement but total movement duration 

decreased as a function of increasing infant age such that 24 month old infants took about 

the same amount of time as adults in the Vision condition to complete the reaching 

movement.  

These results were confirmed by a repeated measures ANOVA that gave a 

significant effect of Visual Condition [F(1,17) = 55.987, p < 0.001] for adults and a 

repeated measures MLM that gave a significant effect of Age [F(4,195.510, p < 0.001] 

for infants. Adult vs. infant comparisons were confirmed by an one-way ANOVA that 

gave a significant effect of Group [F(6,34.311) = 12.127, p < 0.001]. Pairwise 

comparisons revealed that in the No Vision condition adults differed only from 24 month 

old infants (p < 0.001) whereas in the Vision condition adults differed from all infants (p 

< 0.001) except 24 month old infants. 
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Contact Location and Extra Contacts 

 

 Contact Location. Figure 5.6A illustrates the part of the hand adults used to 

make first contact with the target in the No Vision and Vision conditions. Adults made 

contact with a larger range of distal digit segments in the No Vision condition compared 

to the Vision condition. The distal digit segment of the middle finger was the most 

common part of the hand to make first contact in the No Vision condition, whereas the 

proximal segment of the index finger was the most common part of the hand to make first 

contact in the Vision condition.  

 Figure 5.6B illustrates the part of the hand infants used to make first contact with 

the target. There was a general tendency for younger infants to make contact with distal 

portions of the hand and for older infants to make contact with proximal portions of the 

hand, especially between the index finger and thumb. The most common part of the hand 

to make first contact was the distal segment of the index finger in 4 to 6 month old 

infants; the distal segment of the thumb in 7 to 8 and 9 to 10 month old infants; the 

proximal segment and metacarpophalangeal joint of the index finger in 11 to 12 month 

old infants; and the thenar space between the index finger and thumb in 24 month old 

infants.  

These results were confirmed by a McNemar test which showed that adults used 

the proximal part of the hand to contact the target significantly more in the Vision 

compared to No Vision condition (p < 0.01, 2-tailed) and an one-way ANOVA that gave 

a significant effect of Age [F(4,34) = 6.139, p < 0.001] for infants. Pairwise comparisons 

revealed that 24 month old infants made contact with proximal parts of the hand more 
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Figure 5.6 First contact and extra contacts. A.,B. Photographs and heat maps (averaged 

across all trials and subjects for each group) indicate which portion of the hand was most 
likely to make first contact with the target in unsighted and sighted adults (A) and infants 
(B). C. Number of extra target contacts (mean ± se) averaged across all trials and subjects 

for each group. Note: Younger infants (4 to 12 months) and unsighted adults are more 
likely to make first contact with a distal portion of the hand whereas older infants (24 
months) and sighted adults tend to make contact with the thenar space or the proximal 
phalange of the index finger, respectively. Younger infants and unsighted adults also 

make extra contacts between first contact and final hold whereas older infants (24 
months) and sighted adults do not (* p < 0.05, **p < 0.01, *** p< 0.001). 
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often than infants aged 4 to 6 months (p < 0.01), 7 to 8 months, (p < 0.001), and 9 to 10 

months (p < 0.01); and 11 to 12 month old infants made contact with proximal parts of 

the hand more often than 7 to 8 month old infants (p < 0.01). Adult vs. infant 

comparisons were confirmed by an one-way ANOVA that gave a significant effect of 

Group [F(6,62.446) = 7.029, p < 0.001] and pairwise comparisons revealed that in the No 

Vision condition adults used the distal part of the hand to contact the target more than 24 

and 11 to 12 month old infants (p < 0.01, 0.05), whereas in the Vision condition adults 

used the proximal part of the hand to contact the target more than 4 to 6, 7 to 8, and 9 to 

10 month old infants (p < 0.01). 

 Extra Contacts. Figure 5.6C illustrates the number of extra contacts (and 

subsequent releases) made between the hand and target before the hand fully closed to 

grasp it. Adults made an average of one extra contact in the No Vision condition, whereas 

they never made any extra contacts in the Vision condition. The youngest infants also 

made extra contacts, but this decreased with increasing infant age.  

These results were confirmed by a repeated measures ANOVA that gave a 

significant effect of Visual Condition [F(1,17) = 55.987, p < 0.001] for adults and a 

repeated measures MLM that gave a significant effect of Age [F(4,28) = 4.225, p < 0.01] 

for infants. Adult vs. infant comparisons were confirmed by an one-way ANOVA that 

gave a significant effect of Group [F(6,68) = 8.578, p < 0.001]. Pairwise comparisons 

revealed that in the No Vision condition adults differed only from 24 month old infants (p 

< 0.01) whereas in the Vision condition adults differed from all infants (p < 0.001, 0.01, 

0.05). 
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Reach Orientation at First Contact 

 

 Figure 5.7 illustrates the orientation of the hand upon making first contact with 

the target. For adults, the angle between the hand and the vertical target was significantly 

greater in the No Vision condition compared to the Vision condition. This indicates that 

adults were  more accurate at matching the orientation of their hand to the target before 

contact in the Vision condition. The youngest infants resembled adults in the No Vision 

condition in that the orientation of their hand did not match the target by the time of 

contact; however, the ability to match hand orientation to target orientation prior to 

contact gradually improved with increasing infant age.  

 The adult results were confirmed by a repeated measures ANOVA that gave a 

significant effect of Visual Condition for orientation angle at contact [F(1,17) = 80.257, 

p < 0.001]. The infant results were confirmed by a repeated measures MLM that gave a 

significant effect of Age for orientation angle at contact [F(4,35.614) = 23.574, p < 

0.001]. Adult vs. infant comparisons were confirmed by an one-way ANOVA that gave a 

significant effect of Group [F(6,52.395) = 28.179, p < 0.001]. Pairwise comparisons 

revealed that in the No Vision condition adults differed from all infants except 4 to 6 

month old infants (p < 0.001). In the vision condition adults differed from 4 to 6 (p < 

0.001), 7 to 8 (p < 0.001) and 9 to 10  (p = 0.05) month old infants, but not 11 to 12 or 24 

month old infants.  

 

Kinematic Profiles of Hand Orientation 
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Figure 5.7 Orientation angle at first contact (mean ± se). Note: the accuracy of hand 
orientation at contact gradually improves with age and approaches that of sighted adults 

between 11 and 12 months of age (**p < 0.01, ***p < 0.001 vs. 4-6 month infants). 
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Figure 5.8 shows sample kinematic profiles of changing hand orientation as a 

function of total movement time for a 6 month old infant, 24 month old infant, an adult in 

the No Vision condition, and an adult in the Vision condition. The 6 month old infant, 

like the unsighted adult, contacts the target approximately half way through the 

movement and only finishes orienting the hand to the target after contact. In contrast, the 

24 month old infant and the sighted adult finish orienting the hand prior to target contact, 

which occurs relatively later in the movement. 

 

Grasp Aperture at First Contact 

 

 Figure 5.9 illustrates hand aperture (corrected for hand size) upon making first 

contact with the target. Adults contacted the target with a larger hand aperture in the No 

Vision condition compared to the Vision condition. Infants also contacted the target using 

a large hand aperture. Between 9 and 24 months, hand aperture at contact was 

proportionately larger even than that of adults in the No Vision condition. The use of a 

wide hand aperture at first contact was a consistent feature of grasping in all infant age 

groups and did not change with increasing age. 

 These results were confirmed by a repeated measures ANOVA that gave a 

significant effect of Visual Condition [F(1,17) = 4.520, p < 0.05] for adults and a 

repeated measures MLM that gave no significant effect of Age [F(4,34.851) = 1.565, p > 

0.05] for infants. Adult vs. infant comparisons were confirmed by an one-way ANOVA 

that gave a significant effect of Group [F(6,68) = 6.314, p < 0.001]. Pairwise comparisons 

revealed that in the No Vision condition adults differed from 9 to 10 (p < 0.01), 11 to 12 
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Figure 5.8 Sample kinematic profiles of hand orientation from lift to hold. Dashed red 
line indicates first contact with the target. Note: 4-6 month infants and unsighted adults 
continue to orient the hand to the target after first contact. 24 month infants and sighted 

adults complete hand orientation prior to target contact. 
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Figure 5.9 Index-thumb aperture, as a function of hand size, at first contact (mean ± se). 
Note: Infants show no improvement in aperture accuracy, even at 24 months, and use an 
exaggerated hand opening at object contact, similar to unsighted adults (* p < 0.05, ***p 

< 0.0001 vs. 4-6 month infants). 
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(p < 0.01), and 24 (p < 0.05) month old infants. In the Vision condtion adults differed 

from all infant age groups except 4 to 6 month old infants (p < 0.001) 

 

Kinematic Profiles of Hand Aperture 

 

 Figure 5.10 shows sample kinematic profiles of changing hand aperture (corrected 

for hand size) as a function of time for a 6 month old infant, 24 month old infant, an adult 

in the No Vision condition, and an adult in the Vision condition. The 6 month old infant 

and unsighted adult did not start closing the hand to grasp until after contact, which 

occurred about half way through the movement. The 24 month old infant only closed the 

hand a small amount before making contact, whereas the sighted adult closed the hand a 

significant amount before making contact. Infants of both ages opened the hand 

proportionately larger than adults. 

 

Grasping Strategies 

 

 Figure 5.11 illustrates the frequency with which the 3 most prominent grasping 

strategies were used by infants and adults in the No Vision and Vision conditions. 

Figure 5.11A illustrates the frequency with which a visual preshape strategy was 

used. Adults favored a preshape strategy in the Vision condition, but never used this 

strategy in the No Vision condition. Infants rarely employed a preshape strategy, but 24 

month old infants used it more than younger infants.  

These results were confirmed by a McNemar test which showed that adults used 
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Figure 5.10 Sample kinematic profiles of aperture from collect to hold. Dashed red line 
indicates first contact. Note: 4-6 month old infants and unsighted adults initiate aperture 

closure after first contact, 24 month old infants at about the time of first contact, and 
sighted adults prior to target contact. Infants at all ages display an exaggerated opening of 

hand aperture prior to and at first contact compared to adults. 
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the preshape strategy significantly more in the Vision compared to No Vision condition 

(p < 0.001, 2-tailed) and an one-way ANOVA that gave a significant effect of Age 

[F(4,34) = 8.680, p < 0.001] for infants. Adult vs. infant comparisons were confirmed by 

a one-way ANOVA that gave a significant effect of Group [F(6,68) = 18.542, p < 0.001]. 

Pairwise comparisons revealed that adults differed only from 24 month old infants (p < 

0.001) in the No Vision condition, but they differed from all infants (p < 0.001) in the 

Vision condition. 

 Figure 5.11B illustrates the frequency with which a haptic touch & release 

strategy was used. Adults slightly favored this strategy in the No Vision condition, but 

never used it in the Vision condition. This was also the preferred strategy among 4 to 6 

month old infants, but decreased with increasing age.  

These results were confirmed by a McNemar test which showed that adults used 

the touch & release strategy significantly more in the No Vision compared to Vision 

condition (p < 0.01, 2-tailed) and a one-way ANOVA that gave a significant effect of 

Age [F(4,34) = 9.647, p < 0.001] for infants. Adult vs. infant comparisons were 

confirmed by a one-way ANOVA that gave a significant effect of Group [F(6,68) = 

8.347, p < 0.001]. Pairwise comparisons revealed that adults differed only from 24 month 

old infants (p < 0.001) in the No Vision condition whereas they differed from all infants 

(p < 0.001, 0.01, 0.05) except 24 month old infants in the Vision condition.  

Figure 5.11C illustrates the frequency with which a haptic capture strategy was 

used. Adults employed this strategy 30% to 40% of the time in both Vision and No 

Vision conditions. While this strategy was not particularly prominent in the youngest 
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Figure 5.11 Grasping strategies. Percentage of trials (mean ± se) on which subjects used 
a visual preshape strategy (A), a haptic touch & release strategy (B), or a haptic capture 
strategy (C). The frequency of adjust and manipulate strategies are not plotted as their 
occurrence was minimal (* p < 0.05, **p < 0.01, *** p < 0.001 vs. 4-6 month infants). 
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infants, it’s use increased with age to become the dominant strategy in 24 month old 

infants.  

These results were confirmed by a McNemar test which showed that the 

frequency with which adults used the capture strategy did not differ between the No 

Vision and Vision conditions (p > 0.05, 2-tailed) and a one-way ANOVA that gave a 

significant effect of Age [F(4,34) = 6.201, p < 0.001] for infants. Adult vs. infant 

comparisons were explored by an one-way ANOVA, which found a significant effect of 

Group [F(6,58.734) = 3.134, p < 0.01]. Pairwise comparisons revealed that in both the No 

Vision (p < 0.05) and Vision (p < 0.01) conditions, adults differed from 24 month old 

infants. 

 

Discussion 

 

Previous work has not fully clarified the relative use of visual guidance for Reach 

and Grasp movements in early infancy. While many studies have compared reaching in 

infants and sighted adults, the present study is the first to compare infant reaching to both 

visual and non visual reaching in adults. Participants were filmed as they reached to grasp 

a vertical rod. Movement component organization, hand orientation, hand aperture, and 

grasping strategy were analyzed to determine the extent to which vision was used to 

orient the Reach vs. close the Grasp prior to target contact. At the youngest ages, infant 

reaching resembled non visual reaching in adults, suggesting that when young infants 

first start reaching, they rely on non visual, haptic, inputs to guide both the Reach and the 

Grasp. Between 9 and 24 months, infant Reach orientation accurately anticipated target 
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contact but Grasp closure did not, suggesting that older infants use vision to guide the 

Reach but still rely on haptics to guide the Grasp. Thus, the main finding indicates that 

infants transition from using a Touch & Release strategy in early infancy, characterized 

by temporal dissociation of the Reach and the Grasp, to a Capture strategy in later 

infancy, characterized by partial integration of the Reach and Grasp. The uncoupling of 

the Reach and the Grasp in early infancy appears related to their differential transition 

from somatosensory to visual guidance throughout development.   

 The present experiment used a number of innovative measures to compare 

movement organization, hand orientation, hand aperture, and grasping strategies across 

infants of different developmental ages and adults with and without vison. The 

movements were recorded using synchronized highspeed video cameras and analyzed 

using Peak Motus 3D video software. This technique avoids the application of physical 

markers or wires to the infant’s arms and hands, which can influence infant reaching 

behaviour (Domellöf et al., 2007). This methodology also allowed the experimenters to 

evaluate deviations from normal visually guided reaching (e.g., extra contacts, 

manipulatory hand movements prior to grasping of the target, etc.), which are difficult to 

interpret from kinematic data derived solely from infrared emitting diodes taped to the 

skin. Visual and haptic grasping strategies were also categorized using previously defined 

methods (Karl et al., 2012a), which have been validated by producing inter-rater 

reliability scores of greater than 96% among 263 naïve raters (Hall et al., 2014). 

Some caveats must be made with respect to the procedures used. First, on a 

minority of trials, infants in the 2 youngest age groups did not always initiate reaching 

with the hand placed on the table. On such trials reaching was often initiated with the 
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hand positioned somewhat closer to the target, which could have slightly reduced the 

proportion of time required to get the hand to the target; however, the effect on overall 

movement time was likely minimal compared to the additional time required by young 

infants to make multiple contacts with the target and who used haptic grasping strategies. 

Second, preliminary work from our lab suggested that adults show a natural tendency to 

orient the hand in the horizontal plane when reaching without vision. To avoid an 

inflation in measures of orientation accuracy related to this tendency, only a vertical rod 

was used as a target. Third, our initial intention was to study infants up to 12 months old, 

which is sometimes considered the upper limit of reaching maturation (Halverson, 1931); 

however, our preliminary results indicated that maturity for this behavior exceeds 12 

months, and so a 24 month group was added. This introduced an age gap between the two 

oldest infant groups. Future work should further clarify the developmental changes that 

take place between 12 and 24 months and beyond 24 months of age. Finally, total hand 

size (from tip of the middle finger to center of the wrist) was used to normalize measures 

of hand aperture across groups. There may be other measures that could be applied, e.g., 

absolute maximum aperture, but the measure used did reveal relative differences in the 

extent to which infants vs. adults opened the hand prior to target contact.  

Movement component analyses revealed that adult reaching is structured 

differently depending on whether or not it is guided by vision. This difference provided 

insights into the changing structure of infant reaching throughout development. Early 

infant reaching resembles that of unsighted adults whereas later infant reaching resembles 

that of sighted adults. When vision is available, adults organize reaching in a temporally 

efficient manner: the hand lifts, collects, forms a peak aperture, orients to the target, and 
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begins to close before touching the target. Consequently, the target is securely grasped 

almost immediately after contact. In contrast, in young infants and unsighted adults the 

hand lifts and forms a large peak aperture, contacts the target, and only then orients and 

closes to grasp. Consequently, young infants and unsighted adults spend a significant 

amount of time adjusting the orientation and aperture of the hand after target contact 

before they are able to achieve a secure grasp. These results show that adults flexibly re-

structure the reaching movement depending on the availability of visual feedback. They 

also indicate that very young infants structure their reaching movements similar to 

unsighted adults, suggesting that non visual guidance dominates both Reach and Grasp 

control in early infancy  

In addition to using a non visual reaching structure, both young infants and 

unsighted adults use a number of hand adjustments associated with haptic contact with 

the target. First, they tend to contact the target with distal, rather than proximal, parts of 

the hand, which is not conducive to immediate grasping. Second, they often make extra 

contacts, releasing and then re-establishing contact with the target before they grasp it. 

Third, release after contact is often associated with e-positioning the hand, so that a more 

appropriate target contact can be made (i.e., one in which the thumb and index finger are 

positioned on opposite sides of the vertical target and either the palm or thenar space 

contacts the target). Fourth, although not directly quantified, young infants appeared to 

delay the onset of digit closure until an appropriate contact with the target is established. 

The introduction of these post-contact adjustments results in an increase in total 

movement time, especially in the latter portion of the movement. At older ages, both the 

frequency of post-contact adjustments and total movement time decrease. Together, these 
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results suggest that, like unsighted adults, young infants use haptic feedback associated 

with target contact to facilitate corrections in hand position, orientation, and aperture after 

initial target contact. At older ages, infants rely more on visual information to adjust hand 

orientation and to direct an appropriate part of the hand towards the target prior to 

contact. 

Hand orientation and hand aperture at the time of contact reveal that visual 

guidance develops at different rates for the Reach vs. the Grasp. First, 4 to 6 month old 

infants and unsighted adults fail to align the hand to the target prior to contact. 

Anticipatory hand orientation improves gradually with increasing infant age and by 11 

months infants do orient the hand prior to target contact with an accuracy equivalent to 

that of sighted adults. This result replicates previous work (Hofsten and Fazel-Zandy, 

1984; Lockman et al., 1984; Morrongiello and Rocca, 1989; Schum et al., 2011; 

Wentworth eth al., 2000; Witherington, 2005) and suggests that visual control of the 

Reach develops gradually and is largely mature by 11 to 12 months of age. Second, 4 to 6 

month old infants and unsighted adults fail to initiate Grasp closure before target contact. 

At older ages, infants begin to close the Grasp earlier, but it is not until 12 to 24 months 

that Grasp closure begins to anticipate target contact. Even so, 24 month old infants 

substantially attenuate Grasp closure compared to sighted adults, and continue to 

complete the majority of Grasp closure after target contact. These results are in line with 

previous work (Barrett & Needham, 2008; Hofsten & Rönnqvist, 1988; Schum et al., 

2011) and suggest that visual control of the Grasp is substantially delayed and continues 

to mature beyond 24 months of age even though visual guidance of the Reach is largely 

mature at 11 to 12 months.  
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Infant Reach and Grasp configurations resemble the haptic grasping strategies that 

adults use when reaching without vision. Very young infants tend to use a touch & 

release strategy, which is characterized by a temporal dissociation of the Reach and the 

Grasp. That is, the two movements are executed in sequence, rather than in synchrony. 

The Reach is performed first and is associated with an open hand, which serves to 

establish haptic contact with the target. After contact, haptic feedback guides re-orienting 

of the hand, re-directing of the digits to appropriate contact locations, and re-shaping of 

the hand to Grasp. Thus, the use of a touch & release strategy seems to reflect a high 

reliance on non visual inputs, especially touch, for guiding both the Reach and the Grasp 

in early infancy. At older ages, infants transition to favouring a capture strategy in which 

the Reach and the Grasp partially synchronize. At these ages, the hand usually orients 

prior to target contact and contact is made with an appropriate part of the hand. 

Nevertheless, a wide hand aperture is maintained until target contact and Grasp closure is 

completed largely after contact. In infants, the use of a capture strategy seems to reflect 

an increased use of visual guidance for the Reach, but not the Grasp, which continues to 

rely on tactile feedback associated with target contact. Even at 24 months, infants rarely 

use a preshape strategy, in which the Reach and the Grasp are fully synchronized under 

visual control such that the hand orients, preshapes, and closes prior to target contact.  

The present results are in agreement with a number of previous studies (Berthier 

and Carrico, 2008; Carrico and Berthier, 2010; Fagard, 2000; Konczak and Dichgans, 

1997; Perris and Clifton, 1988; Robin et al, 1996; and Corbetta and Snapp-Childs, 2009; 

Schum et al., 2011) in suggesting that touch contributes to the early development of the 

Reach and the Grasp and that visual guidance of these movements continues to develop 
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into early childhood. The present results also extend this work in a number of ways. First, 

they show that the structure of reaching in early infancy is fundamentally different from 

that of visually guided reaching in healthy adults; however, it features a general 

organization and additional movement adjustments characteristic of adult reaching 

without vision. Second, the present results suggest that visual guidance of the Reach vs. 

the Grasp develop at different rates, with the development of visual guidance for the 

Reach preceding that of the Grasp – a proposition that is also supported by 

neuroanatomical (Gharbawie et al., 2010, 2011) and behavioural work (Karl et al., 2013). 

Elsewhere Karl and Whishaw (2013) have suggested that the Reach is more dependent on 

vision than the Grasp, at least in primates. Third, developmental changes in reaching 

structure appear to be related to the use of different grasping strategies, which capitalize 

on different sensory inputs at different stages of development. Specifically, there appears 

to be a transition from strategies that capitalize almost entirely on somatosensation in 

early infancy, to strategies that use mixed control – vision for the Reach and touch for the 

Grasp – in later infancy.  

An early dependence on haptic inputs for guiding separate Reach and Grasp 

movements may be developmentally advantageous for a number of reasons. First, haptic 

feedback may be more reliable than vision due to the ongoing development of postural 

control (Bertenthal and Hofsten, 1998; Hadders-Algra, 2013; Thelen and Spencer, 1998; 

Van Der Fits and Hadders-Algra, 1998), reaching synergies (Konczak and Dichgans, 

1997), visual inputs to the dorsal stream (Loenneker et al., 2010), and the ability to re-

weight visual and proprioceptive inputs to determine limb location (Bremner et al., 

2013). Second, haptic dissociation of the Reach and the Grasp may facilitate successful 
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acquisition of the target despite significant kinematic inconsistencies within individual 

Reach and Grasp components prior to 24 months of age (Konczak and Dichgans, 1997). 

Third, behavioural dissociation of the Reach and the Grasp under haptic control likely 

facilitates the refinement of distinct Reach vs. Grasp circuits in parietofrontal cortex 

through differential experience (Thelen et al., 1993). In this way, a delay in the onset of 

visual guidance may prevent overly tight coupling between the Reach and the Grasp. 

Neurobehavioural separation of the Reach and the Grasp seems important as it 

allows for the two movements to be flexibly recombined depending on the sensory and 

cognitive demands of various situations. For instance, a variety of pincer, precision, 

power, or hook grasps could be combined with any variety of one handed reaches, two 

handed reaches, swats, pushes, or pulls (Karl and Whishaw, 2013). Thus, separation of 

the Reach and the Grasp, via differential haptic and visual control in early infancy likely 

supports the development of a more diverse behavioural repertoire compared to a 

developmental process that would favour the formation of a singular Reach-to-Grasp 

movement under the control of a single, visual, modality. Interestingly, recent evidence 

suggests that dorsal stream Reach and Grasp pathways develop in the absence of visual 

input in congenitally blind adults (Fiehler et al., 2009; 2010). Thus, future work aimed at 

describing the Reach and Grasp configurations of these patients should reveal whether or 

not they retain and utilize the same haptic grasping strategies as young infants and 

temporarily blind adults. 

The present results should not be interpreted as suggesting that vision does not 

influence the Reach and the Grasp at all during early development, just that it does not 

appear to contribute in the same way that it does in adulthood. Clearly reaching in early 



	   226 

infancy can be visually elicited and under a minority of conditions 24 month old infants 

appear to preshape the hand prior to target contact. In addition, previous work (Sacrey et 

al., 2012; Schum et al., 2011; Siddiqui, 1995) shows that 12 month old infants can select 

an appropriate grip posture prior to target contact, i.e. a pincer grip for a cheerio vs. a 

power grip for a plastic toy. We suggest, however, that early grip selection, as has been 

proposed for early selection of Reach orientation (McCarty et al., 2001), could be 

mediated by perceptual mechanisms in the ventral visual stream, while dorsal visual 

control mechanisms, which are needed to accurately synchronize Grasp closure with 

Reach termination (Goodale and Milner, 1992), continue to develop into early childhood. 

Such a proposition is supported by the fact that older infants in the present study selected 

not just a power grip, but an exaggerated power grip, compared even to unsighted adults, 

and also by recent neuroimaging work indicating that connectivity within the dorsal 

visual stream continues to mature beyond 7 years of age (Loenneker et al., 2010). Along 

this line of thinking, one might also consider that visual control of the Reach might 

developmentally precede the Grasp because young children favor vision for 

discriminating object orientation vs. haptics for discriminating object size, at least on 

perceptual tasks (Gori et al., 2008). 

It has generally been accepted that the development of reaching features a progression 

from reflexive whole hand grasping to visually guided reaching using power then 

precision and pincer grips (Butterworth et al., 1997; Halverson, 1931). The present 

results, however, in combination with other work from our lab (Thomas et al., in prep; 

Wallace and Whishaw, 2003), suggests an alternative developmental progression based 

on the sensory control of discrete Reach and Grasp movements (Table 5.1). In stage 1, 
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separate motor control systems for the Reach vs. the Grasp are expressed as vacuous 

preReach and preGrasp movements. In stage 2, separate preReach and preGrasp 

movements become self-directed and are reinforced through haptic feedback from the 

infant’s own body. In stage 3, Reach and Grasp movements are directed towards external 

targets (which may or may not be visual, see Perris and Clifton, 1988; Robin et al., 1996), 

but they are sequentially executed so that haptic feedback associated with target contact 

can guide each movement separately. In stage 4, partially synchronized Reach and Grasp 

movements are directed towards external targets as visual control of the Reach ensures 

proper orienting of the hand prior to contact, but haptic control of the Grasp delays hand 

closure until after target contact. Finally, in stage 5, fully synchronized Reach and Grasp 

movements are directed towards external targets under foveal visual control. 

In summary, the present results support the postulate of the Dual Visuomotor 

Channel theory that the Reach and the Grasp are distinct and derived from different 

neural origins. The present results additionally support the fourth hypothesis of the 

present thesis in suggesting that haptic inputs contribute to the guidance of early Reach 

and Grasp movements and that it is likely these, rather than visual inputs, that shape the 

initial development of separate Reach and Grasp pathways in parietofrontal cortex. 

Developmental changes in infant Reach and Grasp configurations also reflect changes in 

the extent to which haptic vs. visual inputs guide prehension. Specifically, they reveal a 

transition from a dependence on haptic cues for both the Reach and the Grasp in early 

infancy to a dependence on visual cues for the Reach vs. haptic cues for the Grasp in later 

infancy. In this way, sequential Reach and Grasp movements, mediated by different 

sensory inputs, may provide a developmental transition from the discrete preReach and  
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Table 5.1 Developmental progression of sensory control for discrete Reach and Grasp 
movements 

 
* Stage 2 is described in Thomas et al., in prep. 
** Adults also employ Touch & Release and Capture configurations in situations where 
vision is unavailable (Karl et al., 2012a) or degraded (Hall et al., 2014). 
 

Stage Age Movements Sensory Control Temporal Organization 

1 Birth to 
3 months 

preReach & preGrasp 
(vacuous) 

Spontaneous, visually/haptically 
elicited, and ballistic  Discrete 

*2 3 to 4 
months 

preReach & preGrasp 
(self-directed) Haptically reinforced Discrete or Sequential 

(Reach ! Grasp) 

3 4 to 9 
months Touch & Release  Reach = Haptically guided 

Grasp = Haptically guided 
Sequential (Reach ! 

Grasp) 

4 9 to >24 
months Capture Reach = Visually guided 

Grasp = Haptically guided Partially Synchronized 

5 ? to 
adulthood **Preshape Reach = Visually guided 

Grasp = Visually guided Fully Synchronized 
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preGrasp movements of early infancy to the fully synchronized and visually guided 

Reach and Grasp movements of adulthood. Finally, complete integration of the Reach 

and the Grasp into a single prehensile act likely depends on a number of factors, 

including the maturation of visual inputs from the dorsal stream to separate Reach and 

Grasp circuits in parietofrontal cortex. 
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Abstract 

 

Behavioural results from the present thesis support the postulate of the DVC theory that 

the Reach and the Grasp are separate movements mediated by different neural pathways. 

Nevertheless, they additionally suggest that modifications to the DVC theory are 

warranted in order to account for the finding that both vision and somatosensation likely 

access the Reach and Grasp pathways. This new model for the neural substrates of 

prehension leads to interesting questions concerning the evolutionary origins of the Reach 

and the Grasp. Specifically, is there a single evolutionary antecedent for prehension, or 

two different evolutionary antecedents, one for the Reach and one for the Grasp? 

Furthermore, did the antecedent(s) to prehension originate under visual or non-visual 

control? The purpose of the present review is to re-examine previous neuropsychological, 

developmental, and comparative evidence in light of the findings from the present thesis 

with the aim of determing the evolutionary origins of prehension. First, work from the 

present thesis is reviewed to show that the removal of vision in healthy adults causes 

prehension to decompose into its constituent Reach and Grasp components, which are 

then executed in sequence or isolation. Second, evidence is reviewed to show that similar 

decomposition occurs in optic ataxic patients following cortical injury to the Reach and 

the Grasp pathways and after corticospinal tract lesions in non-human primates. Third, 

combined evidence from the present thesis and previous work is presented to show that 

during development early nonvisual PreReach and PreGrasp movements develop into 

mature Reach and Grasp movements but are only integrated under visual control after a 

prolonged developmental period. Finally, a review of comparative studies reveals many 
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behavioural and neuroanatomical similarities between stepping movements and the Reach 

and between food handling movements and the Grasp. Together, the evidence suggests 

that the Reach and the Grasp are derived from different evolutionary antecedents and 

originated under non-visual control. The evidence is discussed in relation to the ideas that 

dual visuomotor channels in primate parietofrontal cortex emerged as a result of distinct 

evolutionary origins for the Reach and Grasp; that foveated vision in primates serves to 

integrate haptic Reach and Grasp movements into a single prehensile act; and, that 

flexible recombination of discrete Reach and Grasp movements under various forms of 

sensory and cognitive control can produce adaptive behavior.  
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Introduction 

	  

	   Prehension, the act of reaching to grasp an object, is used for many everyday 

functions, one of the most common of which is to retrieve a food item and place it in the 

mouth for eating. Prehension is performed with little conscious effort and appears as a 

seamless act. Thus, it is not surprising that it is sometimes considered a single movement 

in experimental research (Desmurget et al., 1996; Grol et al., 2007; Mon-Williams and 

McIntosh 2000; Smeets and Brenner 1999) or that it is proposed to have a single 

evolutionary origin, possibly derived from walking (Georgopoulos & Grillner, 1989), 

climbing through tree branches (Jones 1916; Le Gros Clark 1963), digging (Bracha et al., 

1989), or capturing prey (Cartmill, 1974). 

Nonetheless, distinctive changes in prehension have been reported after brain 

injury as some patients display curious impairments in hand preshaping for grasping 

despite being able to accurately transport the hand to the location of a visual target. To 

explain this phenomenon Jeannerod (1981) proposes that prehension actually consists of 

two distinct but temporally integrated movements, a Reach and a Grasp, each mediated 

by different neural pathways projecting from visual to motor cortex via the parietal lobe. 

The Dual Visuomotor Channel Theory (Arbib, 1981; Jeannerod, 1981) has received 

support from electrophysiological, neuroanatomical, brain imaging, and now behavioural 

studies (for reviews see Culham et al., 2006; Jeannerod et al., 1995; Davare et al., 2011; 

Schmidt and Lee, 2011; present thesis). Nevertheless, behavioural results from the 

present thesis argue that vision does not have privileged access to the Reach and Grasp 

pathways in parietofrontal cortex, but rather that non-visual inputs, such as 
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somatosensation, also access these pathways in order to produce Reach and Grasp 

movements in the absence of vision (Dijkermann and de Haan, 2007; Fiehler et al., 2009, 

2010; Karl et al., 2012a,b, 2013; Karl and Whishaw 2013).  

This modification of the original DVC theory raises new questions concerning the 

evolutionary origins of prehension. Specifically, how did the Reach and Grasp come to be 

mediated by different neural substrates and did they originate under visual or non-visual 

control? Various animal species display a wide range of Reach and Grasp specializations 

using the tongue, mouth, neck, tail, trunk, or hand, each of which can be guided by 

various sensory modalities including olfaction, audition, somatosensation, and vision 

(Iwaniuk and Whishaw, 2000; Sustaita et al, 2013). Thus, evolutionary pressures favoring 

either the Reach or the Grasp could explain differences in forelimb specialization in 

different phylogenetic lineages. As an extreme example, the third digit is specialized for 

stepping in the horse (MacFadden, 1992) versus foraging and prey capture in the aye-aye 

(Lhota et al., 2008; Milliken et al., 1991). In primates, the Reach and the Grasp appear to 

have co-evolved and are put to integrated use in the many movements that comprise 

prehension. Nevertheless, distinct functional, biomechanical, and neuroanatomical 

features of the Reach and Grasp suggest that each has its own evolutionary history.  

The Dual Visuomotor Channel Theory is described first. Behavioural results from 

the present thesis are then reviewed in order to reaffirm the contribution of non-visual 

somatosensory inputs to the production of independent Reach and Grasp movements in 

the absence of vision in healthy adults (Experiments 1, 2, and 3). Neuropsychological 

evidence is presented next, which suggests that when visual inputs to the cortical Reach 

and Grasp pathways are disrupted via brain injury, prehension again decomposes into 
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discrete Reach and Grasp components. Developmental evidence is then presented to 

show that independent Reach and Grasp movements are initially established under haptic 

control in early infancy, before being integrated together under vision following a 

prolonged developmental time period (Experiment 4). Finally, comparative evidence is 

presented to show that independent Reach and Grasp movements are not only identifiable 

in the forelimb movements of primates, but also in many non-primate species. 

Collectively, the evidence suggests that the Reach and the Grasp are derived from 

different evolutionary origins and were only recently, in phylogenetic terms, integrated 

together under visual control in primates.  

  

The Dual Visuomotor Channel Theory 

 

 The Dual Visuomotor Channel Theory has its origins in the proposal that pointing 

has two phases. A ballistic movement brings the forelimb to the general location of a 

target and then a visually guided corrective movement positions the hand on the target 

(Woodworth, 1899). Indeed, dual phase guidance may be a general feature of animal 

movement (Hamilton et al, 2004). The distinctive contribution of the Dual Visuomotor 

Channel Theory is that it describes prehension in ethological terms: the Reach serves to 

bring the hand into contact with the target by transporting it to the appropriate location 

whereas the Grasp serves to shape the hand for target purchase. As distinct behaviors, the 

Reach and the Grasp may be subject to different evolutionary pressures and adaptive 

specializations that can be analyzed by comparative methods. 
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Table 6.1 Reach and Grasp Components of the DVC Theory 

 Reach Grasp 

1. Musculature Proximal (Upper Arm) Distal (Lower Arm & Hand) 

2. Function Transport Hand to Target Shape Hand for Target Purchase 

3. Spatial Properties Extrinsic (Location & Orientation) Intrinsic (Size & Shape) 

4. Spatial Coordinates Egocentric Ego- and Non-egocentric 

5. Visuomotor Channel Dorsomedial Parietofrontal Cortex Dorsolateral Parietofrontal 
Cortex 
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Distinctive features of the Reach and the Grasp are summarized in Table 6.1. The 

Reach transports the hand to the location of the target so that the digits align with 

appropriate contact points on the target. It is produced largely by proximal musculature of 

the upper arm, is guided by the extrinsic properties of the target (location and 

orientation), and is coded in egocentric coordinates relative to the reacher. The Grasp 

preshapes the digits by first opening them to a peak aperture that scales to target size, 

then gradually closes them on approach to the target, and finally closes them completely 

for target purchase. The Grasp is produced mainly by distal musculature of the hand and 

digits, is guided by the intrinsic properties of the target (size and shape), and can be 

coded in spatial coordinates intrinsic to the hand irrespective of the hand’s location 

relative to the body. 

The Reach and the Grasp are subserved by largely segregated visuomotor 

pathways in occipitoparietofrontal cortex (Figure 6.1). The dorsomedial Reach pathway 

projects through the superior parietal lobule via the parietal reach region (PRR), which 

includes the superior parieto-occipital cortex (SPOC/V6A), medial intraparietal sulcus 

(mIPS), and anterior precuneous (aPCu). It then projects to dorsal premotor cortex 

(PMd), and finally to primary motor cortex (M1). The dorsolateral Grasp pathway 

projects through the anterior intraparietal sulcus (aIPS) to ventral premotor cortex (PMv) 

and from there to M1 (Cavina-Pratesi et al., 2010b; Culham and Valyear 2006; Davare et 

al. 2011; Filimon 2010; Jeannerod et al., 1995; Rizzolatti and Luppino, 2001). Long-train 

intracortical microstimulation of the dorsomedial pathway elicits reaching movements in 

awake and anesthetized monkeys, whereas microstimulation of the dorsolateral pathway  
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Figure 6.1 The dorsomedial Reach pathway (Blue) and the dorsolateral Grasp pathway 
(Green), adapted from Grafton, 2010 (aIPS – Anterior Intraparietal Sulcus, M1 – Primary 
Motor Cortex, mIPS – Medial Intraparietal Sulcus, PMd – Dorsal Premotor Cortex, PMv 

– Ventral Premotor Cortex, S1 – Primary Somatosensory Cortex, S2 – Secondary 
Somatosensory Cortex, SMA – Supplementary Motor Area, SPOC – Superior Parieto-
Occiptal Cortex, V1 – Primary Visual Cortex, V2 – Secondary Visual Cortex, V3A – 

Visual Area 3A, V6A – Visual Area 6A, * - Intraparietal Sulcus, ** - Parieto-Occipital 
Sulcus). 
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elicits grasping and/or manipulatory movements (Kaas et al., 2012; Gharbawie et al. 

2011; Graziano et al., 2005). 

The Dual Visuomotor Channel Theory posits that concurrent visual inputs to the 

dorsomedial and dorsolateral pathways allow the Reach and the Grasp to be 

simultaneously executed as a single integrated act (Figure 6.2A). The preeminent role of 

vision is illustrated by the act of foveating the target from movement onset until target 

contact (Sacrey and Whishaw, 2012). This visual attention is essential for identifying the 

terminal point of the Reach, i.e., contact locations on the target, and also for coordinating 

closure of the hand on approach to the target. Nevertheless, nonvisual and cognitive 

inputs may act through the visuomotor Reach and Grasp pathways in order to acquire 

targets in the absence of visual guidance (Cohen et al., 2009), to produce pantomime 

Reach and Grasp movements (Goodale et al., 1994; Milner and Goodale, 2008), and also  

to produce spontaneous Reach and Grasp gestures associated with speech (Whishaw et 

al., 2010b).  

 

Visual Occlusion Dissociates the Reach and Grasp in Healthy Adults 

 

One approach to dissociating the Reach and the Grasp is to manipulate the relative 

extrinsic or intrinsic properties of a single visual target, but this manipulation has 

produced ambiguous results. For example, Jeannerod (1981) finds that when the size of a 

visible target is changed unexpectedly, the Grasp is altered but the Reach is not. In 

contrast, Jakobson and Goodale (1991) find that both the Reach and the Grasp are altered. 

The difficulty in dissociating the Reach and the Grasp with this approach is that when the 
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shape or location of the visual target is changed, both extrinsic and intrinsic target 

properties are altered resulting in concurrent adjustments in both the Reach and the 

Grasp.  

An alternative way to dissociate the Reach and the Grasp is to remove vision, 

such that the extrinsic and intrinsic properties of the target must be determined 

nonvisually. Karl et al. (2012a – Experiment 1) asked blindfolded participants to reach 

for targets of varying size: a blueberry, doughnut ball, and orange slice. Targets were 

randomly presented, one at a time, on a pedestal in front of the participants so that they 

would not know which target they were reaching for on any given trial. In performing the 

task, participants advanced an open hand above and then down onto the target, often 

palpitating in the region of the target until touching it. The dorsal trajectory and open 

digits appeared to enhance the chances of target contact. After touching the target, the 

participants used haptic cues to shape the digits for grasping. Sometimes the hand 

released contact with the target before the digits preshaped and closed to Grasp. Other 

times, the target was stabilized or manipulated by some digits while the remaining digits 

shaped to Grasp. Hand scaling after target contact was equal to that of visually guided 

hand preshaping. Thus, when the extrinsic and intrinsic properties of the target cannot be 

visually determined, the prehensile act decomposes into sequential Reach and Grasp 

movements, each guided by somatosensation. The Reach, likely mediated by 

proprioception, is performed first and serves to locate the target by touching it. Only after 

contact do the hand and digits shape to haptic cues in order to Grasp the target. This two-

staged act is termed a Touch-then-Grasp strategy and is illustrated in Figure 6.2B. 
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Figure 6.2 Representative still frames illustrating (A) the Preshape strategy used to 

acquire a visible target and (B) the Touch-then-Grasp strategy used to acquire an unseen 
and unknown or uncertain target. Note: For the Preshape strategy the Reach and the 

Grasp are temporally integrated such that the hand preshapes and orients to the intrinsic 
properties of the target before touching it. For the Touch-then-Grasp strategy the Reach 

and the Grasp are temporally dissociated such that the hand does not shape to the intrinsic 
properties of the target until after touching it. 
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A variation of this experiment had participants learn about the extrinsic and 

intrinsic properties of the target through repeated nonvisual experience (Karl et al. 2013 – 

Experiment 2). Blindfolded participants reached 50 times for a doughnut ball. Although 

initially unknown, both the location and size of the target could be learned through 

repetition. As was found in the unknown target experiment, participants persisted in using 

a dorsal Reach trajectory, in which the hand approached the target from above and an 

open hand and digits were used to locate the target by touching it. Nevertheless, within a 

few trials the participants began to preshape hand aperture to the size of the target before 

touching it. Scaling of hand aperture became indistinguishable from that of sighted 

participants. Thus, previous nonvisual experience had differential effects on the Reach 

and Grasp such that a dorsal Reach trajectory became coupled with a preshaped Grasp. 

Another experimental variation had participants perform the task using peripheral vision, 

a manipulation that provided enough visual information to identify each target while still  

degrading information about target size and location (Hall et al., 2013). Similar results 

were obtained, participants maintained a dorsal Reach trajectory but could scale hand 

aperture to target size before touching it. 

The finding that previous somatosensory experience can instruct accurate hand 

preshaping for the Grasp raises the question of whether online haptic inputs could 

produce fully integrated Reach and Grasp movements similar to that of visually guided 

prehension (Karl et al., 2012b – Experiment 3). Online haptic feedback is known to be 

available in acts such as reaching for a part of the body or objects on the body. Thus, 

participants were asked to reach for one of three different sized food targets that were 

randomly placed in their mouth by the experimenter. When reaching to grasp the target, 
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participants preshaped and oriented the hand prior to target contact, closed the digits in 

anticipation of target contact, and successfully grasped the target on the first attempt. 

Scaling of hand aperture was as accurate, and for some food items, more accurate, than 

that of visually guided grasping. Thus, online haptic information from a target held in the 

mouth is as informative as online vision for guiding integrated Reach and Grasp 

movements. 

The behaviors called upon in these studies resemble many everyday actions in 

which people reach for and manipulate objects under degraded visual conditions. Such 

acts include reaching for objects in the dark, reaching for objects contacting the body 

(Edwards et al., 2005), or sequential reaching acts in which one object is grasped while 

visual attention is directed to a subsequent target. Collectively, these studies support the 

idea that somatosensation and vision both have access to the Reach and Grasp pathways 

(Dijkerman and de Haan, 2007; Fiehler et al., 2007a,b, 2008, 2010). As will be discussed 

below, this conclusion further suggests that somatosensation may have been formative in 

the evolution of distinct Reach and Grasp movements and their underlying neural 

substrates. 

 

Visuomotor Impairment Dissociates the Reach and Grasp after Brain Injury 

 

 The Reach and the Grasp are also dissociated after localized brain injury that 

disrupts visual input to one or both of the visuomotor pathways. Patients with such injury 

display optic ataxia; an impairment in visually guided hand movements despite normal 

visual perception (Balint, 1909; Jakobson et al., 1991). Recent work with optic ataxic 
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patients support the postulate of the Dual Visuomotor Channel Theory that the 

visuomotor pathways of the Reach and the Grasp are subject to a double dissociation.  

A number of patients with damaged visual inputs to the Grasp, but not Reach, 

pathway have been described (Binkofski et al., 1998; Jeannerod et al., 1994). These 

patients have no problem reaching to the location of a visual target and consistently touch 

it on the first attempt; however, they use an open hand to do so and only close their digits 

to grasp the target after touching it. Thus, these patients seemingly adopt a modified 

Touch-then-Grasp strategy. They use vision to determine the target’s extrinsic properties 

(location) but are unable to use vision to determine the target’s intrinsic properties (size 

and shape) and thus cannot preshape the hand to Grasp prior to target contact. Instead 

they rely on haptic cues after target contact to shape their digits to the contours of the 

target in order to Grasp it.  

Cavina-Pratesi and colleagues (2010a) describe the reverse condition, in which a 

patient cannot perform a visually guided Reach but can perform a visually guided Grasp. 

The patient, M.H., suffered an anoxic episode, disrupting visual inputs to the Reach but 

not the Grasp pathway. M.H. accurately opens, preshapes, and closes his hand to Grasp a 

visual target, but only if the target is located adjacent to his hand; i.e., if he doesn’t have 

to Reach for it. If he does have to Reach for it, he must first locate it by touch before 

shaping his hand to Grasp it: “Presumably M.H., wittingly or unwittingly, compensates 

for the direction and distance errors resulting from his damaged visual reaching network, 

by habitually opening his hand widely: the wider the hand aperture, the higher the 

probability of successfully acquiring the object.” M.H.’s visually guided Reach 

movements are inaccurate regardless of whether the movement is directed inward 
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(towards his body) or outward (away from his body), indicating that his deficit is related 

to visual guidance of the Reach and not the location of the target within egocentric space. 

Thus, M.H. can use vision to guide his hand in relation to the intrinsic (size and shape) 

but not extrinsic (location) properties of a target.  

The neural substrates that integrate the Reach and the Grasp under visual control 

may extend beyond the cortex into the spinal cord. Karl and Whishaw (2013a) re-

examined the Reach and the Grasp movements of monkeys with bilateral corticospinal 

tract (CST) lesions, first described by Lawrence and Kuypers (1968). The analysis 

suggests that these monkeys may also use a Touch-then-Grasp strategy to acquire visual 

targets. They Reach towards the target using an open and extended hand and often miss 

the target on the first attempt. They then palpitate the hand in the vicinity of the target 

until they touch it. After initial contact, the hand releases contact with the target, re-

shapes, re-orients, and finally closes to Grasp the target (Figure 6.3). Impairments in hand 

preshaping have also been reported following more selective corticospinal tract lesions in 

monkeys (Alstermark and Isa, 2012; Isa et al., 2007; Pettersson et al., 2007) 

Taken together these lesion studies suggest that the visuomotor pathways of the 

Reach and the Grasp are separate. They also suggest that if brain injury deprives a subject 

of visual information, somatosensory mediated Reach and Grasp movements are adopted. 

Finally, it is possible that direct corticomotoneurons in primates mediate the motor output 

for visual control of the Reach and the Grasp pathways. It is instructive that direct 

corticomotoneurons and the dorsal visual stream evolved concurrently in the primate 

lineage.  
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Figure 6.3 Representative still frames illustrating the Touch-then-Grasp strategy used by 
a macaque monkey to acquire a visible target 5 months after a bilateral corticospinal tract 
lesion. Note: even though vision is available the monkey advances an open hand towards 

the target, and only shapes and closes the hand to grasp the target after it has been 
touched (videos provided by D.G. Lawrence; Lawrence and Kuypers, 1968a). 
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Dissociation of the Reach and Grasp in Early Infancy 

 

 At about 5 months of age human infants begin to haphazardly reach for visual targets, 

gradually becoming more accurate at bringing a single hand to the target, and finally 

developing precision grips to grasp (Berthier et al., 1999; Bower, 1974; Halverson, 1931; 

Sacrey et al., 2012; Twitchell, 1970; Wimmers et al., 1998). We have re-examined the 

development of infant reaching in order to determine whether the Reach and the Grasp have 

different developmental profiles. Our results show that the Reach and the Grasp emerge 

independently as PreReach and PreGrasp movements in early development and require a 

significant length of time to become fully integrated under visual control.  

Young infants produce a variety of PreReach movements before they can direct a 

single hand to the location of a visual target. From birth infants can orient the eyes and head 

to a visual target (Greenman, 1963; Kremenitzer et al., 1977). Soon after, they reach for the 

target with the mouth by thrusting the head forward and flexing the abdominals (Foroud and 

Whishaw, 2012; Supplementary Video 1), eventually they use a fisted hand to swipe and 

wave at a target (White et al., 1964). Consummation of these PreReach movements into a 

targeted, visually guided Reach only emerges at about 5 months of age. Initially an open hand 

advances along a jerky trajectory to make imprecise contact with the target (Sacrey et al., 

2012). This ability develops equally whether the infant has sight of their hand or not and 

successful contact with the target is signaled by haptic rather than visual feedback (Clifton et 

al., 1993; Schlesinger and Parisi, 2001). However, by 7 to 9 months, visual control of the 

Reach improves significantly such that the location and orientation of the open hand 
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accurately reflects the extrinsic properties of the target at the moment of target contact (Karl 

& Whishaw, 2014; Lockman et al., 1984; von Hofsten and Fazel-Zandy, 1984).  

Young infants also produce a variety of PreGrasp movements before they can 

preshape the hand and digits to match the contours of a visual target. At birth the digits 

display a closed and flexed posture, but by one month they adopt a collected posture in which 

the hand is relaxed and partially open (Sacrey and Whishaw, 2010). Nevertheless, newborn 

infants will close the digits on an object that makes haptic contact with the palm (Twitchell, 

1965) and by at least 4 months of age infants can use haptic cues to shape the hand to match 

the contours of an object (Newell et al., 1989). By 2 months of age infants start “hand 

babbling”, producing a variety of spontaneous but complex digit movements that form a 

variety of Grasp configurations. Movements include extension and flexion of individual 

digits, sequential digit movements, and pressing individual digit pads together to form 

vacuous pincer and precision grips (Wallace and Whishaw, 2003; supplementary video 2). At 

4 months, these movements become self-directed and are used to grasp the infant’s own body 

or clothing. In performing these movements, infants do not look at their hands, suggesting that 

the movements are shaped by somatosensation rather than by vision.  

Not only do the Reach and the Grasp emerge independently in early development, but 

they require a long developmental period to be integrated under online visual control. When 

infants first start to Reach to visual targets, they advance an open hand along a jerky 

trajectory, often missing the target on the first attempt or making multiple contacts between 

the open hand and target before closing to Grasp it. Thus, they do not preshape the hand to the 

target and use a Touch-then-Grasp strategy similar to that described above for unsighted 

adults. As infants age, they become more accurate at using vision to direct an open handed 
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Reach to the target on the first attempt; however, they do not preshape the hand and haptic 

contact with the target continues to instruct shaping of the Grasp, similar to the first set of 

optic ataxic patients described above (Figure 6.4; Clifton et al., 1993; McCarty et al., 2003). 

Thus, the Reach and the Grasp are dissociated in early development and complete integration 

of the two movements under visual control, such that the hand accurately preshapes prior to 

target contact, does not appear to be complete until at least 2 years of age (Karl and Whishaw, 

2014 – Experiment 4). 

In summary, analyses on the development of prehension provide evidence that the Reach 

and the Grasp follow independent developmental profiles. Initially, both the Reach and 

the Grasp emerge under somatosensation and only later come under visual control. Even 

then, visual guidance of the Reach develops before visual guidance of the Grasp. Finally, 

integration of the Reach and the Grasp under visual control only appears after a 

protracted developmental time course lasting into early childhood.  

 

Comparative Evidence for Distinct Evolutionary Origins for the Reach and Grasp 

 

The preceding lines of evidence show that somatosensory and visual information have 

equal access to the neural pathways that control the Reach and the Grasp. When vision is 

removed or limited, as occurs with visual occlusion, brain injury, or early in development, the 

Reach and the Grasp are dissociated by a Touch-then-Grasp strategy that maximizes the use 

of haptic feedback for guiding each movement independently. Nevertheless, the Reach and 

the Grasp can be integrated under nonvisual control, similar to visually guided prehension, if 

online haptic feedback concerning the target is available. In the following section we will 
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Figure 6.4 Representative still frames illustrating the Touch-then-Grasp strategy used by 
a 7 month old human infant in order to acquire a visible target. Note: even though vision 
is available the infant advances an open hand towards the target, touches the target, and 

then re-orients, shapes, and closes, the hand to Grasp it. 
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consider evidence that haptically mediated Reach and Grasp movements are 

phylogenetically older than those guided by vision.  

In phylogenetically early quadrupeds, the neural control of the forelimbs and 

hindlimbs is tightly coupled to subserve locomotion, but even when stepping a forelimb 

has independence. Forelimb stepping is achieved by first flexing the forelimb to release 

contact with the substrate and then extending it to re-establish contact at another location 

(Grillner, 1975). Semi-independent control of a single forelimb likely evolved to allow 

animals to circumvent obstacles and to navigate over uneven terrain (Armstrong, 1988; 

Beloozerova and Sirota, 1993; Georgopoulos and Grillner, 1989; Krouchev and Drew, 

2013). Complete independence of a single forelimb allowed the stepping movement to be 

adapted for a variety of non-locomotor functions such as pushing, swatting, or digging. 

For instance, a polar bear may flex and extend a single forelimb in order to pin a slippery 

fish to the ground, a cat may flex and extend a single forelimb to swat at a fly, or a boar 

may flex and extend a single forelimb to uncover a food item covered by soil. Thus, the 

wide range of independent forelimb movements produced by various animals, including 

Reach movements, may be derived from a common origin, stepping. 

Our behavioral and kinematic analyses reveal similarities between forelimb 

stepping and the Reach movement which support the idea of common origin (Figure 6.5). 

We have examined a variety of movements in rodents and primates, including walking in 

rats, crawling in humans, and climbing and reaching in both species. In all of these 

behaviors, the forelimb movement is initiated by flexing the elbow and lifting the hand 

from the substrate. The digits then flex and close in a collected posture as the limb is 

transported forward. The digits then open and extend as they approach the target. The 
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Figure 6.5 Representative still frames illustrating the kinematic structure of (A) a rat 
forelimb stepping movement, (B) a rat Reach movement, and (C) a human nonvisual 
Reach movement. Note: all three movements share a common kinematic structure in 

which the hand is first lifted from the underlying substrate, the digits collect and extend as 
the arm is advanced forward, and the hand pronates before being placed on the new 

substrate. Adapted from Whishaw et al., 2010 and Karl et al., 2012a. 
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hand then pronates in the lateral to medial direction and is finally placed on the target or 

substrate (Karl et al., 2012; Sacrey et al., 2009; Whishaw et al., 2010a). Thus a number of 

kinematic similarities shape both forelimb stepping and the Reach movement. 

For movements of stepping and its derivatives, vision is not essential. Vision is 

usually directed ahead of the limb’s target (Patla and Vickers, 2003; Wilkson and Sherk, 

2005). Thus, the step is performed in the absence of online sensory control until it 

receives haptic confirmation associated with limb placement. A rat may use vibrissae 

cues to signal where to step (Whishaw et al., 2010a) but in its forward movement, this 

sensory signal precedes the step. Likewise, a rat may use olfactory cues to locate a food 

item that it will retrieve with a Reach, but the animal must displace its head in order to 

clear a path for the hand to the target (Whishaw and Tomie, 1989). As a result, rats 

perform both stepping and Reach movements in the absence of online visual control 

(Hermer-Vazquez et al., 2007; Whishaw et al., 2010a). Thus, like a blindfolded human  

reaching for an unknown target, the rat does not preshape the hand prior to target contact 

and cannot learn to do so even with extended training (Metz and Whishaw, 2000). 

Detailed information on the sensory control of the forelimb for most actions in most 

animal species is not available, but available evidence suggests that visual guidance is not 

prominent in species other than primates. Taken together, comparative evidence for 

kinematic similarities in the structure of forelimb transport, collection, and lateral to 

medial pronation, coupled with the distinct absence of hand preshaping, argues that only 

the Reach movement, not an integrated Reach-to-Grasp movement, is derived from 

forelimb stepping.  

 The Grasp action, especially grasping a food item, is a common forelimb 
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movement in many vertebrate orders (Iwaniuk & Whishaw, 2000; Reghem et al., 2011; 

Sustaita et al., 2012). Grasping not only involves holding a food item and bringing it to 

the mouth with a hand, but taking an item from the mouth with a hand or taking it from 

one hand with the other hand, as well as manipulating the item in preparation for 

consumption. Furthermore, in various non-primate species, specialized hand and digit 

movements may be used to Grasp and remove the hard shell from a sunflower seed, the 

spiky legs from a cricket, or the fleshy peel from an orange (Allred et al., 2008; Ivanco et 

al., 1996; Whishaw et al., 1998; Whishaw and Coles, 1996). In all of its manifestations 

these Grasp movements are guided by hapsis. Thus, the demands of a diverse diet have 

led to the evolution of dexterous and haptically sensitive hands (Dominy, 2004; Iwaniuk 

et al., 2000; Whishaw, 2003).   

The many manipulations made by the hand in handling food require preshaping 

by both the hand and the mouth to receive the food item (Whishaw et al., 1992). These 

preshaping movements are the likely origin of hand preshaping for the primate Grasp. 

Comparisons of rat and human hand preshaping prior to retrieving a food item from the 

mouth are illustrated in Figures 6.6 and 6.7. The human is blindfolded and the location of 

the rodent’s eyes prevent it from observing its hands. For both species, online haptic 

feedback from the food in the mouth guides hand preshaping in order to Grasp the food 

item. The movement is initiated by lifting the hand from a substrate, preshaping the hand 

to the size of the target, and closing the digits on approach to the target in order to Grasp 

it (Figure 6.6). Even though rodents are unable to preshape the hand when reaching to a 

distal target; they, like primates, are able to use oral hapsis to scale hand aperture to the 

size of a target in the mouth (Figure 6.7), which is also similar to visually guided hand 
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Figure 6.6 Representative still frames illustrating the kinematic structure of (A) a rat 

food handling movement and (B) a human food handling movement. Note: both 
movements share a common kinematic structure in which the hand is first lifted from the 
substrate, then digits then preshape to the target, and finally the digits close on approach 

to the target in order to grasp it. White arrows indicate hand preshaping in the rat. 
Adapted from Whishaw et al., 1992 and Karl et al., 2012a,b. 
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Figure 6.7 Representative still frames illustrating hand preshaping before touching the 
target in (A) rat food handling movements, (B) human food handling movements, and (C) 
human visually guided Grasp movements. Note: in all three situations online haptic (food 
handling) or visual (Grasp) information is available to guide hand preshaping such that a 
large peak hand aperture is used to Grasp a large food item, an intermediate peak hand 
aperture is used to Grasp a medium-sized food item, and a small peak hand aperture is 
used to Grasp a small food item. Adapted from Whishaw et al., 1992 and Karl et al., 

2012b. 
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Figure 6.8 Representative still frames illustrating specialized grip configurations and 
independent digit movements in rodents during food handling. (A-B) A rat eating 

spaghetti, the left hand holds the pasta near the mouth with the digit tips (a modified 
precision grip) while the right hand uses a scissor grip between digits 4 and 5 to push the 
pasta towards the mouth. (C-D) A hamster eating a sunflower seed, both hands hold the 
seed in a modified precision grip between digit 1 (the thumb) and digits 2 and 3 as the 
mouth bites into the shell. Two objects can also be held at once, the seed is held in a 
modified (bilateral) pincer grip between digits 1 and 2, the shell is held in a bilateral 

power grip between the palm and digits 3 and 4, while digit 5 is positioned on the ventral 
surface of the seed, likely to stabilize the grip on both objects. (E-F) A Mongolian gerbil 
eating a sunflower seed. A bite from the incisors is used to open the shell (not shown). 

The bottom half of the shell is held in the digit tips as the left hand uses a precision grip 
to grasp and discard the top portion of the shell. The left hand then grasps the bottom half 

of the shell in the digit tips (precision grip) and discards it as the right hand uses a 
precision grip to hold the seed in the mouth. Adapted from Whishaw et al., 1996, 1998. 
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preshaping displayed by primates (Karl et al., 2012b; Whishaw et al., 1992).  

After the target is grasped a variety of specialized grip configurations and 

independent digit movements may be used to manipulate, explore, or stabilize the food 

item (Figure 6.8). For further descriptions in nonprimates see (Whishaw and Coles, 1996; 

Whishaw et al., 1992, 1998; Ivanco et al., 1996 Sustaita et al., 2012). For descriptions in 

primates see (Elliot and Connolly, 1984; Lederman and Klasky, 1998; Macfarlane and 

Graziano, 2009). That both rodents and primates use haptic information to Grasp a food 

item in the mouth suggests that haptically guided hand preshaping, as well as a 

manipulatory digit movements, predate visually guided Grasp movements in primates 

(Karl et al., 2012b; Whishaw 2003). 

 

Distinct Neuroanatomical Origins for the Reach and Grasp 
 

In addition to classic work (Georgopoulos & Grillner, 1989), recent 

electrophysiological and brain imaging studies in non-human primates and humans 

support the notion that cortical control of the Reach could be derived from a pre-existing 

locomotion pathway in parietofrontal cortex. Like the Reach, stepping appears to be 

mediated by a dorsomedial pathway in parietofrontal cortex. Electrical stimulation of this 

pathway elicits bilateral movements of the forelimbs and hindlimbs that resemble 

spontaneous running or leaping in monkeys (Gharbawie et al., 2011; Graziano et al., 

2005; Kaas et al., 2012; Stepniewska et al., 2009). In humans, regions of dorsomedial 

posterior parietal cortex (PPC) mediate reaching to visible targets with the arms and 

hands, but also subserve pointing and stepping movements to visible targets with the foot 

(Cavina-Pratesi et al., 2013; Evans et al., 2013; Heed et al., 2011; Hollnagel et al., 2011; 
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Michel & Henaff, 2004; Rondot et al., 1977). Although the stepping and Reach pathways 

overlap in dorsomedial PPC, they appear to diverge in frontal cortex. Thus, regions of 

overlap (SPOC/V6A, mIPS) may code for a specific behavioral function; i.e., transport of 

a limb to a different spatial location, whereas regions of divergence (PMd/SMA and M1) 

might specify the body part used to execute that behavior, i.e., the foot (stepping) or the 

hand (forelimb stepping/Reach; Heed et al., 2011).  

Food handling, like grasping, may be mediated by a dorsolateral pathway in 

parietofrontal cortex. Electrical stimulation of this dorsolateral pathway elicits hand-to-

mouth movements, in which the hand is lifted towards an open mouth and the digits 

shape to Grasp (Gharbawie et al., 2011; Graziano et al., 2005; Kaas et al., 2012; 

Stepniewska et al., 2009). In humans, a similar region in the inferior parietal lobule is 

activated when performing grasping movements with either the mouth or hands (Castiello 

et al., 1999). Futhermore, aIPS, the parietal region of the dorsolateral Grasp pathway, 

receives strong somatosensory inputs (Borra et al., 2008; Gharbawie et al. 2010, 2011; 

Lewis and Van Essen, 2000) and mediates grasping and manipulatory digit movements 

directed towards both visual and haptic targets (Binkofski et al., 1999; Fiehler 2007a,b, 

2008; Gardner et al., 2007). Thus, it is possible that, like the stepping and Reach 

pathways, the food handling and Grasp pathways may overlap in parietal cortex (aIPS), 

which might code for a specific behavioral function, i.e., shaping a body part to 

grasp/manipulate a target, whereas regions of divergence (M1) could specify the body 

part used to execute that behavior, i.e., the mouth (bite) or the hand (Grasp).  

Interestingly, lesions to V6A, a crucial node in the dorsomedial Reach pathway, 

disrupt both Reach and Grasp movements (Battaglini et al., 2002), although, as 
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demonstrated by Cavina-Pratesi et al., (2010a), the Grasp impairments could emerge as a 

secondary consequence of misreaching. Nevertheless, V6A receives inputs from AIP (the 

macaque homologue of human aIPS; Borra et al., 2007; Gamberini et al., 2009) and 

contains orientation- and grip-selective neurons (Fattori et al., 2009, 2010; Galletti et al., 

2003). Thus, V6A could have originally evolved to serve the Reach, but through its 

connections with AIP, it may also monitor preshaping of the Grasp as the hand is 

advanced towards the target. Thus, primate V6A may serve as a visuoproprioceptive 

“integrator”, ensuring that visually guided Reach and Grasp movements unfold in 

temporal synchrony (Fattori et al., 2010). Indeed, the neural substrate that integrates the 

Reach and the Grasp must emerge early in the visuomotor pathways in order to integrate 

the two movements from action onset. One way to determine whether the grip-selective 

properties of neurons in V6A are intrinsic to this cortical area, or emerge in response to 

inputs from AIP, would be to selectively lesion AIP while observing the effect on grip-

selective neurons in V6A. 

Although non-primate species do not display visually guided hand preshaping 

during reaching, behavioral evidence suggests that the sensorimotor representations of the 

Reach and the Grasp should be similar to that of primates with respect to motor control. 

For instance, the rat has a well-developed forelimb representation in anterior motor cortex 

consisting of a relatively smaller rostral forelimb area (RFA) and a larger caudal forelimb 

area (CFA; for a reviews see Neafsey et al, 1986; Wise and Donoghue, 1986). 

Microelectrical stimulation of these regions produces brief movements of distal and 

proximal regions of the contralateral forelimb, respectively. Longer train electrical 

stimulation in the RFA is more likely to elicit movements involving the hands, including 
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grasping, whereas stimulation in the CFA elicits whole limb movements (Bonazzi et. al, 

2013), some of which resemble reaching. Inactivation of these regions disrupts Grasp and 

Reach movements respectively (Brown and Teskey, in preparation). Additionally, results 

from brainstem stimulation in freely moving rats suggest separate subcortical regions 

mediate the Reach (stepping movements) and the Grasp (food handling movements). For 

example, forced forelimb movements are obtained by electrical stimulation in the region 

of nucleus gigantocelluralis whereas fictive eating (the rats sits on its haunches and 

engages in food handling and eating without food) from the region of the locus coerulelus 

(Robinson, 1978).  

It is also suggested that descending projections from cortical motor regions may 

form the efferent control of the cortical visuomotor Reach and Grasp pathways. The 

direct projections of the corticospinal tract are distinctive in primates (Kuypers, 1981) but 

have been associated with the production of independent digit movements (Lawrence and 

Kuypers, 1968a,b; Courtine et al., 2007). Yet there are many difficulties with the 

independent digit theory, including definitional difficulties related to independent digit 

movements as well as evidence that deficits following cortical injury are related to 

movement synergies, not independent digit control (Ben Hamed et al., 2007; Schieber 

and Santello, 2004). Independent digit movements are also distinctive in the hand 

babbling movements of infants as young as two months of age (Wallace and Whishaw, 

2003), well before maturation of the direct connections of the corticospinal tract is 

complete (Armand et al., 1994; Olivier et al., 1997). In the earliest stages of development 

and following corticospinal tract lesions in primates, prehension resembles optic ataxia in 

that the Reach and the Grasp do not appear to integrate under visual control, but are 
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characterized instead by a distinct absence of hand preshaping as well as the use of a 

Touch-then-Grasp strategy. The prolonged developmental period required to integrate the 

Reach and the Grasp also seems to parallel the long maturational period characteristic of 

the direct projections of the corticospinal tract. Taken together, this evidence seems to 

suggest that, in primates, visual control of the Reach and Grasp co-evolved with direct 

corticospinal projections from motor cortex.  

Collectively, anatomical studies confirm predictions from behavioral work that 

separate pathways should subserve the Reach and the Grasp in non-primate species and 

that these species could be further examined to identify the neural origins of primate 

Reach and Grasp movements. Specifically, it is proposed that the neural circuits for 

stepping are the evolutionary antecedent for the Reach whereas the neural circuits for 

food handling are the evolutionary antecedent for the Grasp. Early in their evolution these 

movements were importantly dependent on nonvisual guidance, including 

somatosensation and olfaction, whereas visual control of the Reach and Grasp appears to 

have emerged later as a primate specialization. The proposition that visually guided 

Reach and Grasp movements might be derived from pre-existing nonvisual stepping and 

food handling circuits fits well with recent evidence that movement representations in 

primate parietofrontal cortex are both effector- and modality-independent (Heed et al., 

2011; Sabes, 2011). 

 

Conclusion 
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Healthy adults use vision to integrate the Reach and Grasp into a unified 

prehensile act by preshaping the hand and digits to the size and shape of a target as the 

hand is advanced towards it. This behavior is critically dependent on foveal vision. 

Nevertheless, when visual inputs are limited or disrupted as occurs during early 

development, under visual occlusion, or following brain injury, prehension decomposes 

into its constituent movements: a Reach that advances an open hand in order to haptically 

locate the target and a haptically guided Grasp that shapes the hand and digits for target 

purchase.  

The independence of the Reach and the Grasp under nonvisual control supports 

the proposition of the Dual Visuomotor Channel Theory that the neural substrates of the 

Reach and the Grasp are distinct and derived from different evolutionary origins. 

Collective evidence suggests that the primate Reach is one of a number of species-

specific adaptations derived from forelimb stepping, whereas the primate Grasp is one of 

a number of species-specific adaptations derived from food handling. Thus, distinct 

motor circuits for the “Reach” and the “Grasp” may have emerged relatively early in 

evolution and were likely influenced more by nonvisual than visual inputs. Expansion of 

the primate visual system would have given rise to a number of new connections between 

occipital and parietofrontal cortex, allowing vision to harness these pre-existing “Reach” 

and “Grasp” circuits resulting in multiple visuomotor pathways from occipital to 

parietofrontal cortex (Figure 6.9). No longer constrained by the necessity of haptic 

control, the Reach and Grasp could be executed simultaneously, rather than sequentially, 

giving primates the unique ability to preshape the hand to the intrinsic properties of a 

visual target before touching it.  
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Finally, distinct neural and evolutionary origins for the Reach and the Grasp 

would allow for a multiplicity of Grasp movements including various single handed 

pincer, precision, or power grasps, as well as any combination of two handed grasps to be 

combined with a multiplicity of Reach movements including single handed reaches, two 

handed reaches, pushes, throws, or swats, all of which can executed under various forms 

of sensory or cognitive control. Thus, the proposition that distinct motor circuits for the 

Reach and the Grasp evolved separately and only came under visual control late in the 

evolutionary process supports the idea that the Reach and the Grasp pathways in 

parietofrontal cortex are accessed not only by vision, but also by a variety of nonvisual 

and cognitive inputs in order to produce a diverse repertoire of adaptive behaviours upon 

which natural selection may act.   
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Figure 6.9 A model illustrating the proposed evolutionary origins for dual visuomotor 
Reach and Grasp channels in primate parietofrontal cortex. The original dorsomedial 
stepping/Reach circuit (blue) and the dorsolateral food handling/Grasp circuit (Green) 
evolved first and were subsequently harnessed by the primate visual system (Orange) 
through neural re-use (Anderson, 2010). (aIPS – Anterior Intraparietal Sulcus, M1 – 
Primary Motor Cortex, mIPS – Medial Intraparietal Sulcus, PMd – Dorsal Premotor 
Cortex, PMv – Ventral Premotor Cortex, S1 – Primary Somatosensory Cortex, S2 – 

Secondary Somatosensory Cortex, SMA – Supplementary Motor Area, SPOC – Superior 
Parieto-Occiptal Cortex, V1 – Primary Visual Cortex, V2 – Secondary Visual Cortex, 
V3A – Visual Area 3A, V6A – Visual Area 6A, * - Intraparietal Sulcus, ** - Parieto-

Occipital Sulcus). 
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