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ABSTRACT 

This dissertation explores a novel statistical technique—information geometric method 

for theory and its application in analysis of multiple neuronal spike data. The previous 

studies have indicated that information-geometric method provides a powerful tool of 

estimating neuronal interactions from observed spiking data. However, these studies were 

conducted based on simplified neural network structure, which has limitations in the real 

brain. We systematically extended the previous studies by using intensive mathematical 

analysis and numerical simulations of realistic and complex neural network. The studies 

show that information geometric approach provide robust estimation for the sum of the 

connection weights between neuronal pairs in a complex recurrent network, providing a 

way of investigating the underlying network structures from neuronal spike data. 
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Chapter 1 General overview: multiple spike data analysis 

 

1.1 General introduction 

 

The brain consists of billions of neurons, one of the elementary units for information 

processing. The brain cortex is a highly complex network that receives signals from 

thousands of neurons and projects their synapses to thousands of other neurons crossing 

multiple cortical regions. The neurons in the brain communicate each other in a highly 

parallel manner by emitting neuronal spikes. Over the past decades, electrophysiological 

recording techniques have been applied in order to observe the neuronal spiking activities 

in the brain from in vitro and in vivo experiments (Buzsaki, 2004; Chapin, et al., 1999; 

Davidson, et al., 2009; Dragoi and Tonegawa; Dragoi and Tonegawa, 2013; Euston, et al., 

2007; Hoffman and McNaughton, 2002; Kudrimoti, et al., 1999; Laubach, et al., 2000; 

Peyrache, et al., 2009; Tatsuno, et al., 2006; Wilson and McNaughton, 1993). Among 

these recording techniques, intracellular recordings were employed to record the 

membrane potentials of individual neurons, extracellular recordings were used to record 

signals from one or more neurons. In recent years, EEG, MEG, or fMRI and other brain 

image methods (e.g.      image, two-photon image) are widely applied to record brain 

activities from larger brain regions (Courchesne, 1975; Daw, 2005; Daw, 2011; Denk, 

1990; Knutson, 2005; Meltzer J, 2008; Strobel, 2008). All these recording techniques 

reflect that assemble dynamics of neuronal interactions and the mechanisms of neural 

information processing play an important role in understanding how the brain processes 

complicated information.
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One rudimentary way of investigating the neuronal interactions is to simultaneously 

record multi-neuronal firing activity from freely behaving animals using multiple 

electrodes, and analyze the correlations between individual recorded neurons (Buzsaki, 

2004; Chapin, et al., 1999; Davidson, et al., 2009; Dragoi and Tonegawa; Dragoi and 

Tonegawa, 2013; Euston, et al., 2007; Hoffman and McNaughton, 2002; Kudrimoti, et al., 

1999; Laubach, et al., 2000; Peyrache, et al., 2009; Tatsuno, et al., 2006; Wilson and 

McNaughton, 1993). Multiple electrode recording techniques make it possible to study 

the simultaneous neuron activity in a given or across different brain regions. Meanwhile, 

the neuronal data from multi-electrode studies present important analysis challenges 

which must be solved for optimal use of these neurophysiological measures, and answer 

the key questions of how the brain processes spatial-temporal sensory information. To 

this end, one can investigate the possible relationship between the external input stimulus 

and the individual or assemble responses from neurons in corresponding cortical regions. 

The stimulus can be physical in nature, such as light used to stimulate retinal or lateral 

geniculate neurons, or sound used to stimulate the auditory cortex, or the odor used to 

stimulate the olfactory cortex. It can also be abstract or cognitive, such as the random 

moving dots discrimination for decision making in prefrontal cortex (Wang, 2008). All 

these stimuli are represented in active brain as nonstationary and irregularly fired spiking 

patterns. Its considerable variability across the multiple tasks and the complex interplay 

of multiple time scales requires advanced statistical theories and methods to handle the 

drastically growing neural spike data. 

In electrophysiology, spike sorting is an important step prior to spike data analysis. 

Individual spikes are not directly recorded, because the electrical voltage potential 
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recorded from any implanted electrodes represent the simultaneous activity from multiple 

neurons near the electrodes. One needs to identify the spike events for each neuron as 

well as the numbers of recorded neurons from these voltage traces. Therefore, prior to 

spike data analysis, spike sorting is the critical first step. It turns out that the accuracy of 

the spike sorting critically affects the accuracy of subsequent analysis (Harris, 2000). 

There are many algorithms used for spike sorting, and different algorithms applied to the 

same data set can yield different results. In present, there is no consensus as to which 

algorithms are the best. In reality, the model-based parametric algorithms are violated by 

the real clusters of voltage traces, which change over time as neuronal properties and 

experimental conditions evolve.  A Monte-Carlo-based strategy has been proposed to 

identify the numbers of neurons in one voltage trace, but it has not been widely used 

(Nguyen, 2003).  In addition, dual intracellular-extracellular recording studies have 

shown that spike sorting for large number of neurons has a non-zero error rate, because 

the probability distribution of spike shapes from different neurons share some degree of 

overlap (Harris, 2000). All these factors illustrate the many complexities of the spike train 

analysis. To overcome these problems in practice, one needs to develop and combine 

different machine learning algorithms such as feature analysis, Bayes methods (Bayesian 

clustering and classification), principle component analysis (PCA), independent 

component analysis (ICA). The detailed discussions for these spike sorting algorithms are 

beyond the scope of the present thesis.  In the following, we review the main-stream 

methods for multiple neural data analysis based on sorted data. 

This chapter is organized as follows. In section 1.2, we introduce the major approaches 

for multiple neuronal spike analysis in the level of neuronal interactions. We discuss the 
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methods which quantify single neuronal firing rate, pairwise correlations, higher-order 

neuronal interactions, and population coding based on information theory. Our aim is to 

discuss the advantage and disadvantage of these existing methods in practical neural data 

analysis. In section 1.3, we introduce the main work in the present thesis: information-

geometric (IG) method. By presenting its solid mathematical basis and applications to 

spike data, we show that IG methods provide robust information for neuronal interactions 

from single neuronal firing rate to higher-order neuronal interactions in a hierarchical 

manner.  

 

1.2 Neuronal spike data analysis: state-of-the-art 
 

Solid data analysis is fundamental for the meaningful evaluation and reliable 

interpretation of experiments. Although the technologies of spike train analysis have been 

developed in the past decades (Abeles and Gerstein, 1988; Aertsen, et al., 1989; Amari, 

2009; Brown, et al., 2004; Czanner, et al., 2005; Fellous, et al., 2004; Gerstein and Perkel, 

1969; Gilestro, et al., 2009; Grun, et al., 2002; Grun, et al., 2002; Lopes-dos-Santos, et al., 

2011; Panzeri and Schultz, 2001; Peyrache, et al., 2009; Shimazaki and Shinomoto, 2007; 

Shimokawa and Shinomoto, 2009; Zhang et al., 1998), they only recently gain the 

attention among electro-physiologists. In this section, we introduce several analytical 

approaches that are often used in neuroscience community and elucidate some aspect of 

brain function on the level of individual neurons and their interactions. 

In section 1.2.1, we first give an overview for the methods of estimating single neuronal 

firing rate which becomes a well-defined statistical procedure. In section 1.2.2, we 
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concentrate on the pairwise correlation techniques of spike trains in time and frequency 

domain, and discuss their advantage and limitations.  Section 1.2.3 discusses the higher-

order neuronal interactions. We discuss the method to quantify the cumulant correlations 

as natural and intuitive higher-order generalization of the covariance, and the unitary 

event analysis for coincidence detection and evaluation. In section 1.2.4, we aim to 

introduce population-based analysis and information entropy methods for encoding and 

decoding of neuronal populations. Shannon information entropy and maximal entropy 

method will be discussed.  

 

1.2.1 Analysis of single neuronal spike trains 
 

In the experiments of living animals, neuron responses may vary considerably from trial 

to trial in temporal and spatial scales. Understanding the nature and origin of neural 

variability at the level of single neuronal firing is fundamental to our understanding of 

how the brain processes reliable information. The starting point to measure the variability 

of single neuron spike train is the interspike intervals (ISI) variability with the coefficient 

of variation (CV) and the trial-by-trial count variability with Fano Factor (FF), including 

the measure of the estimation bias within limited time window of observations, the 

measurement of rate-modulated spike trains, and the time-resolved analysis of variability 

dynamics. 

In practice, we obtain independent measurements of action potentials during repeated 

experimental trails. We consider the empirical observation of a series of spike events 

within a finite time interval      . Suppose that the spikes within this interval are marked 
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as                 . The ISI X is defined as the time difference between 

two subsequent spike time (          ) in each trial (Fig 1.1 A). The CV for a set of 

ISI generated by repeated experiments are typically defined as the standard deviation of 

interval lengths divided by the mean interval length:              , where       is 

the standard deviation of ISI and      is the mean of ISI over the trials. Under the 

assumption that the neuronal firing is stationary, one can first compute the individual     

for each trail j individually, and then calculate the mean             across all trials.  

The CV measures the dispersion of the spike interval distribution. It quantifies the 

irregularity of spike trains and allows us to describe the stochastic nature of the observed 

spike trains. The CV measure, however, has some limitations in practice. First, due to the 

finite length of the observation window, one cannot sample the full interval distribution, 

which introduces a bias of estimation of CV. Second, the CV is a useful measure only if 

the spike rate is constant and the variations of the spike intervals relatively follow the 

Gamma distribution (Fig 1.1B) (Nawrot, 2010). It is because under stationary conditions, 

the generic stochastic process has a constant rate which is all identical in all trials. This 

assumptions allows that      ̅̅ ̅̅ .  Whenever the neuronal firing is modulated by 

nonstationary firing in response to the sensory stimulus, the rate modulation will strongly 

affect the calculation of the CV. For example, the slow rate modulation compared to the 

mean ISI will increase the dispersion of the interval distribution, leading an increased CV 

which no longer reflects the stochastic nature of spike train. 
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Figure 1.1: Bias of the CV analysis for a finite observed window 

(A) Independent empirical observations (trials) of a Gamma process within the 
finite time window in operational time (0, 2]. Orange lines represent the ISI. 
Intervals larger than time window cannot be observed. (B) Gamma distribution. 

Grey curve represents the theoretical Gamma distribution with order    , and 
orange represents the distribution restricted within time interval. The mean and 
variance calculated within time window are different from theory (Adapted from 
Nawrot, 2010). 
 

One remedy to this issue is that one can apply the method of time warping, which 

transfers nonstationary rate to a constant rate by changing the real spike time scale t to 

operational time   (Fig 1.2),     ∫       
 

 
 which is estimated by the calculation of 

integral of instantaneous firing rate      over the time interval [0,T].  In this way, one can 

transfer the experimental time axis to the operational time axis such that the firing rate 

modulation is compensated (Fig 1.2).  It is shown that the transformation of spike times 

from the experimental time axis to the operational time axis can eliminate firing rate 

fluctuations in the spike train (Nawrot, 2006). The time warping method allows us to 

analyze the data using the CV method in operational time axis. 
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Figure 1.2: Transformation from experimental time to operational time. 

A renewal process if unit rate is simulated in operational time (vertical panel). A 
spike event at time t’ is translated into a spike event in real time t by the 

integral     ∫       
 

 
, where      is an instant firing rate at time t. 

 

The time warping method addresses the issue of rate modulation for CV analysis. 

However, it requires a reliable and accurate estimate of the firing rate from spike trains. 

In recent years, much effort has been made on developing approaches of estimating the 

neuronal firing rate from spiking data (Shimazaki, 2007; Shimazaki, 2009; Shimokawa, 

2009). The promising methods for estimating the firing rate from spike train requires 

intensive study of machine learning algorithms and optimization principle. Any method 

for capturing the time varying nature of spikes needs to address the issue of controlling 

the jaggedness of the estimated rate, including the bin size of the time histogram or the 

bandwidth of the kernel smoother (Shimazaki, 2007; Shimokawa, 2009). The existing 
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standard methods for estimating firing rates include peri-stimulus time histogram (PSTH), 

kernel density estimation, or Bayes estimation, and maximum likelihood methods. 

Among these methods, PSTH is the most straightforward method which uses histogram to 

simply count the total spikes over the selected time bin size. In many physiological 

studies, people use the height of PSTH as the raw spike count per bin (Fig 1.3 C). An 

alternative method similar to PSTH is the kernel approach, with which a kernel density 

can be obtained by blurring each spike with a kernel function (Fig 1.3 D). In this scenario, 

the height of the density estimation measures the spike rate per trial, similar to the height 

of PSTH. People usually choose a Gaussian-like function as the kernel (Shimazaki, 2007). 

To obtain the reliable measurements and enhance the accuracy of estimating firing rate, 

researchers have already advanced these basic methods by optimizing the rate estimation 

based on the rule of least squared error and maximum likelihood based on Bayes 

theorem(Shimokawa, 2009). All these efforts to improve the reliability of estimating the 

firing rate reflect the complexities of statistic nature of spike data and the interdisciplinary 

mind from diverse fields inside and outside traditional neuroscience. 
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Figure 1.3: Methods of estimating instant firing rate. 

(A) An underlying spike rate (B)sample spike raster for five trials (C) Peri-stimulus 
time histogram (PSTH) (D) A kernel density estimation (adapted from Shinomoto, 
2010) 
 

To better characterize the stochastic nature of spike train, it is also useful to combine ISI 

and count statistics. The Fano Factor (FF) is a well-established measure of count 

variability from trial to trial and has been repeatedly applied to quantify spike train 

variability (for review, see Nawrot, 2008). The empirical FF is defined as the ratio of the 

variance and the mean of the spike count    as measured within an observed time length 

T:                 . Similarly, the finite time length T introduces the estimation bias 

from theoretical value of    , which is the limit when T approaches the infinity 

theoretically. It is suggested that one should use a longer observation windows to reduce 
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the bias, or use a fixed window in operational time to ensure a constant bias (Nawrot, 

2010). 

In summary, we discussed two standard methods for the analysis of single neuronal spike 

train: CV and FF. The most serious issue of applying these methods are due to the 

nonstationality of real spike train over time. In the typical experimental situation, we 

make repeated observations in time from trial to trial, which allows us to perform 

statistical analysis on the trial ensemble. This design is based on the assumption that the 

observed spike process is stationary in time and across the trials. This is not often true in 

reality. First, some experimental studies are not based on trial to trail measurements such 

as motor skill learning of rats’ reaching tasks. One cannot obtain the repeated spike data 

over multiple trails. Second, neural system in animals’ brain is nonstationary in most 

important behavioral tasks such as the theta oscillation during rats’ navigation and 

Gamma rhythms during higher cognitive tasks (Bragin, 1995). Although the invention of 

time warping method compensates these disadvantages, it still needs advanced algorithms 

for estimating the firing rate reliably. Nevertheless, the methods developed for firing rate 

estimation is still widely used by neuroscientists to grasp the stochastic property of spike 

train at the level of single neuronal firing.  

 

1.2.2 Methods for pairwise correlations of spike trains 

 

The advancement of multineuronal recording techniques has enabled us to simultaneously 

record the spike activities of multiple single neurons. Therefore, the analysis of neuronal 

information processing is not necessarily only localized at the single neuron level. The 



 

12 
 

relationships and associations between pair of neurons have been widely investigated in 

recent years. In general, techniques which measure the association between two neural 

spike trains can be divided into time-domain and frequency-domain methods (Brown, 

2004; Grun, 2010). Sometimes it is easier to see the effects in the time domain 

correlogram, and sometimes the frequency representation gives more insights about the 

neuronal correlations. 

The most commonly used time-domain method for pairwise correlation between neurons 

is unnormalized cross-correlogram (CC) (Fig 1.4 A). After binning the spike times, the 

unnormalized cross-correlogram is calculated by the cross covariance between two 

neuronal spike trains X and Y at a series of time lags over N time bins 

                                       
 

 
∑           

 

   

                                                                    

It analyzes the spike correlation between neuronal pairs by retrieving the probability for 

spike occurrence in spike train X relative to spike train Y, extracting the delayed and near 

coincidences (Grun et al, 2004). This method requires that the stochastic properties of two 

spike trains do not change in time.  

Another often-used time domain method for pairwise correlation is the joint peri-stimulus 

time histogram (JPSTH), which is the logical extension of single neuron PSTH (Abeles, 

1982; Abeles, 1988; Aertsen, 1989; Gerstein, 1969). Let us suppose that the spike 

activities of two cells X and Y are recorded simultaneously for a trial duration T over K 

trials. The average of the spike count over K trials for neuron X at certain time bin t is 

calculated by  (    )   ∑                       
      , and the similar definition  
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holds for neuron Y. The goal of JPSTH is to provide a statistical measure which extracts 

the net degree of interdependence from joint probability            . Thus, the raw 

JPSTH is defined by                (     ) (     ). The JPSTH displays a two-

dimensional histogram which shows the joint spike count per unit time at each time    for 

neuron X and time    for neuron Y (Fig 1.4 B). For each time t, the main diagonal of the 

JPSTH displays the observed rate where both neurons fire simultaneously. As the 

modified version of JPSTH, the normalized JPSTH subtracts from the joint firing rates 

which is expected under independence, and then divides by the normalization term, which 

is the product of the two standard deviations of the firing rates for two neurons X and Y. 

Mathematically, it is written by 

                       
 (          )   (     ) (     )

√          (        )
 
√          ( (     ))

 
                  

This method corrects for the possibility that two independent neurons with jointly 

elevated firing rates can appear to be strongly associated. The normalized JPSTH 

            is called Pearson correlation of the firing of neuron 1 at time    and neuron 2 

at time   . A related measurement, called the normalized cross-correlogram, can be 

calculated by summing the diagonals of the normalized JPSTH. 

 

 

 

 



 

14 
 

 

 

 

 

 

 

 

(A) The cross correlogram with [-1000, 1000] time shift. (B)The PSTH of X and Y 
are represented by green histograms. The red histogram represents the 
coincidence histogram. 

 

Although JPSTH and cross-correlogram are much-used easy methods by neuroscientists, 

they have some limitations. First, the Pearson correlation is only one of many possible 

measures of correlations, and different measures can produce different results. For 

instance, the way to normalize the JPSTH can be different from the standard way 

mentioned above (e.g., Aertsen’s normalization) (Aertsen et al., 1989). Therefore, to find 

the proper normalization of JPSTH that reproduces the parameters in the designed neuron 

model, one needs to know the relationship between the JPSTH and the model parameters 

(for detail, see Ito et al., 2000). The accuracy of these methods depends on the underlying 

mechanism of producing the joint spiking activity. Moreover, if we start the analysis 

directly from experimental spike data without knowing the spike model, the model 

selected would no longer be unique, because there are other possible models generating 

(A) (B) 

Figure 1.4: Cross-correlogram and JPSTH. 
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spike data with the same statistical structure as the given data. Thus, one may need a 

different normalization procedure to reproduce its parameter (Ito et al., 2000). Second, 

one can perform a statistical significance test in multiple ways such as least squared 

regression analysis and student’s t test, which yield the various results depending on the 

assumptions and methods.  Statisticians have developed an approach with smoothing 

procedures and bootstrap test to yield a batter statistical power (Kass, 2003) . Third, the 

normalized JPSTH and cross-correlogram assume that all trails are statistically 

indistinguishable. If there is detectable trial-to-trial variation in neuronal firing rates, this 

variation can appear artifactually as synchrony or time-lagged joint firing (Brody, 1999; 

Kass, 2003). Fourth, it is shown that the cross-correlogram has a limitation in analyzing a 

rapid change of the structure of interdependence due to averaging over the sample 

interval (Ito et al., 2000). Finally, a critical concern, which is related to all measurement 

methods, is that although all spike train analysis is predicated on good spike sorting, the 

accuracy of spike time information is particularly important when searching for 

synchrony or time-lagged joint firing. Therefore, the overlap of spikes, which are issues 

for most spike-sorting algorithms, can produce spurious correlations between neuronal 

pairs (Bar-Gad, 2001). 

Besides the time-domain analysis, Frequency-domain analysis conducted by taking 

Fourier transform of the spike trains is used for processing continuous-valued ensemble 

spiking data under the assumption of stationarity (Brown, 2004). Using this method, the 

spectrum of individual spike trains or coherence between each spike train pair can be 

calculated (Brillinger, 1978; Brillinger, 1992). The coherence is a simple frequency-

dependent correlation measure between two processes. Comparing to the time-domain 
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counterpart, the normalization of frequency power is not bin-size dependent, and it can be 

pooled across neuron pairs.  It also allows for analysis of point process, continuous-

valued process, and hybrid point and continuous-valued pairs using the same measure. 

Error estimates and confidence intervals can be calculated for spectra and coherence 

estimates from theoretical formula which are valid when the numbers of spikes in the 

spike trains are large, or from bootstrap procedures (Thomson, 1991). 

As an important feature of neural spike train data, stimulus-driven non-stationarity may 

be analyzed using moving window estimates of spectra (spectrograms) and coherences 

(coherograms) (Brillinger, 1981). A key technical practical point for use of time-

frequency spectral estimates, including moving window and wavelet-based estimates, is 

that they must obey the uncertainty principle (      ), which puts a lower bound on 

the area of the point spread functions of these estimates at all points in the time-frequency 

plane (Brown, 2004). Moving window estimates calculated in the frequency domain are 

often less biased than the corresponding time-domain estimates. Thus, even time domain 

functions, such as the cross-correlogram and the PSTH, might be improvedby inverse 

Fourier-transforming the corresponding frequency-domain functions (Brown, 2004). One 

principle approach to estimating the frequency-domain quantities is to use multitaper 

techniques (Percival, 2002). These methods have also been proved useful in coherence 

estimation between spike trains and local field potentials (Pesaran, 2002). 

 

 

1.2.3 Multiple neuronal interactions 
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It is suggested that understanding of the cooperative dynamics of populations of neurons 

is critical to obtain the insight into the nature of neuronal computation in the brain (Hebb, 

1949; Gertein et al., 1989; Grun et al,. 2010). Recent advancement in electrophysiological 

and imaging techniques requires the measurement for higher order neuronal correlations 

beyond simple pairwise analysis (Staude et al., 2010). Except the classic view that the 

firing rates play a key role in neural coding, temporal organization of spike discharge 

within functional group of neurons, called neuronal assemblies, contributes to neural 

coding. Accordingly, synchronized spikes are considered a property of neuronal signals 

that can be detected and propagated by other neurons. In this section, we review two 

major approaches for multiple neuronal correlations: the cumulant correlations and the 

unitary event (UE) analysis. A novel statistical approach for multi-neuronal interactions 

—— information geometric method will be introduced separately in section 1.3.  

There is evidence that cooperative computation characterize the neuronal interactions on 

various temporal and spatial scales (Salinas and Sejnowski, 2001; Lestienne, 2001; 

Womelsdorf and Fries, 2007; Kohn et al., 2009). Direct evidence shows that pairwise 

neuronal correlation analysis do not resolve such cooperative population dynamics 

(Martignon et al., 1995; Bohte et al., 2000; Kuhn et al., 2003). Figure 1.5 illustrates the 

limitation of only analyzing pairwise neuronal correlation on spike trains in a 3-neuron 

system. In this example, two types of external inputs generate triple-wise and pair-wise 

correlations (Fig 1.5 A and D). However, the cross- and auto- correlation analysis are 

identical in both cases (Fig 1.5 B and E), failing to show the difference between two 

neuronal population activities. Therefore, the apparent differences between two 

configurations are not captured by mere pairwise correlations. It is the higher-order 
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correlations which determine whether coincident spikes of two neurons are also 

coincident with the spikes of the third neuron. 

 

Figure 1.5: Signature of higher-order correlations. 

Spike trains are generated from different inputs signals in a 3-neuron network. 
Connection diagrams (A, D), cross-and auto correlation functions (B, E), and 
raster plots (C, F) of two populations in a 3 –neuron system. Small black arrows 
represent independent background inputs. In A, the three neurons share one 

common external input     , inducing coordinated spikes in all three spike trains 
(red ticks in C). In D, only pairs of neurons receives correlated signals 

(   ,        ), which produce the correlated spikes (green, red, and blue colored 
ticks). The results based on cross- and auto- correlation analysis are almost 
identical (B and E), failing to show the triple-wise correlation (Adapted from Grun 
et al. 2010). 
 

To study higher-order neuronal interactions, researchers have investigated cumulant-

based correlation analysis (Staude et al., 2010). As discussed in the section 1.2.2, the 

common measure for dependence between two random variables X and Y is characterized 

by Pearson’s correlation coefficient shown in Equation (1.2). As an extension, a 

straightforward generation of covariance as a measure of dependence among three 

random variables X, Y and Z can be expressed by 
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which calculates the probability of observing a coincident spike in all three neurons (first 

term) and subtracts from it the prediction that assumes complete independence (second 

term). However, the three neuronal interactions are far more complicated than pairwise 

interactions. For instance, if X and Y are correlated, but both are independent of Z, we 

have  

                                                                                                     

which shows a non-zero measure even if the dependence in the population is only 

pairwise without any triple wise correlations. To quantify triplet correlations, one needs to 

subtract from          not only the prediction of complete 

independence             , but also the predictions that assume non-zero covariance 

between neuron pairs and independence of the third neuron. Thus, a measure called 

connected cumulant is defined by 

                                                 

                           

                                                                  

The quantity                is called the third-connected cumulant. It measures the 

dependence in the triplet (X, Y, Z) that is not contained in the pairwise correlations. In 

general, in an N-neuron system              , we measure kth-order correlations by 

the kth-connected cumulants, which are defined in terms of the moments for random 

variable S 
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……… 

Since the higher-order expressions of cumulants become increasingly complex, the 

estimation of higher-order cumulant correlations suffers from some limitations. 

Obviously, the number of parameters grows exponentially with the size of the neuronal 

population. Consequently, appropriate sample size is required for the reliable estimation 

of higher-order correlations (Martignon et al., 1995). Researchers have recently studied 

some approaches to avoid the need for such large sample sizes. Rather than directly 

estimating these correlations, Staude et al. proposed the cumulant based inference of 

higher-order correlations (CuBIC)(Staude et al., 2009), providing a lower bound for the 

maximal order of correlation in a given data. This lower bound is inferred by 

investigating the constraining relations between correlations of different orders. Another 

method, called de-Poissonization, is not only to aim for lower bound, but also to estimate 

a quantity called compounded component rates (for detail, see Ehm et al,.2007) from the 

population spike count. The CuBIC method exploits only the first few cumulants of the 

population spike count, while the de-Poissonization method integrates the entire empirical 

characteristic function, which is determined by available data sample (for detail 

discussion see Ehm et al., 2007). Both methods are based on additive Poisson process, 

which assumes that the spike counting of multiple spike train can be decomposed by the 

linear combination of independent Poisson process (Grun, et al., 2010).  
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In addition to cumulant analysis, the unitary event (UE) analysis has been developed to 

detect coincident spike patterns between two or more simultaneously recorded spike 

trains and to assess the significance of the observation (Grun et al., 2002a). This method 

allows us to analyze correlations not only between neuronal pairs but also between 

multiple neurons by considering the various spike patterns among neurons. This method 

is designed to answer the questions of whether the simultaneously recorded neurons show 

correlations of their spike activity and how such correlations are related to subgroups of 

the neurons (Grun, et al., 2010). The first step of the UE analysis is to detect the joint 

spike events by setting up the appropriate time bin    (e.g.,Δ     ) such that spike 

trains can be expressed by binary vectors with  ⃗    0 (no spike) or 1 (spike) for each 

neuron  . Under the assumption of stationarity of firing, the probability of observing 

spikes for neuron i is estimated by its spike frequency, which counts the rate of spikes 

within the observed time interval T (           ). Then one can compute the expected 

the joint probability of occurrence of pattern k over all neuronal spike trains based on null 

hypothesis by  

    
   ∏ ( ⃗   )

 

   

       ( ⃗   )  {
                 ⃗      

           ⃗     
                                       

The expected number of occurrence of pattern k is therefore given by 

                                               
   

 

  
                                                                                

The second step of UE analysis is to evaluate whether empirical coincidence counting 

significantly deviates from the expected value defined above. Grun et al., defined the 
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significance of the empirical number of coincidences      as the p-value (joint p-value), 

which is given by 

          (    |    )   ∑
    

 

  

 

      

    (     )                                                     

If jp is smaller than a predefined significance level  , we infer excess synchrony, and if jp 

is larger than    , we infer significantly missing coincidences. In practice, a 

logarithmical form of jp is used for better visualization because highly significant events 

are indicated by very small jp values (Grun et al., 2002a)  

                                       
    

  
                                                                              

This measure is zero for no deviation from expectation, positive if there are more 

coincidences than expected, and negative if the measurement is lower than the expected 

count. 

The elementary method of UE analysis introduced above is based on the stationary firing. 

A time-resolved version of the UE analysis has been proposed using a sliding-window 

approach to capture time dependent changes of the correlations between neurons (Grun et 

al., 2002b). The underlying assumption is that the same neuronal computation is 

performed over the neural data across multiple trials. The data can be cut and aligned on 

the corresponding stimulus or behavioral events. Then one has to decide a window width 

   which is sliding along the data (Fig 1.6). The standard UE analysis is then carried out 

within this time window for all trails. The sliding-window UE method has been used for 

the analysis of neuronal populations from motor cortex of awake behaving monkey.  
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In practice, neuronal synchrony is modulated on a various time scales (Vaadia et al., 

1995). The choice of time window size affects how one can appropriately capture such 

modulation. For example, the larger window generates more coincidences. The expected 

number of coincidences also increases with the window size. A critical analysis of 

injection model was used to find out the optimal window size (Grun et al., 2002b). Briefly, 

one needs to find the lower and upper bound value      and      such that         

    . 

 

Figure 1.6: Sketch of the moving window analysis. 

(A) Parallel spike trains of five neurons (marked as dots) for M trials of the same 

experiment. A window with width   centered at a given point in time    defines 
the segment of the data (shaded in grey). (B) From the data in each of such time 

segment, a new time axis    is used to concatenate the windows from all trails. 
The UE analysis is then performed on this new process. The full data set is 
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analyzed by successively moving the window to the next point of time and 
repeating the above procedure (dashing frame). Typically, the window is shifted 
in steps of the time resolution of the data set. 
 

The UE analysis allows us to analyze time-dependent spike correlations, providing 

important insights into principles of multi-neuronal information processing. It also allows 

us to examine the occurrence of excess spike synchrony within simultaneously recorded 

neurons and its relation to sensory stimulus. For instance, Riehle et al. found that neurons 

in monkey motor cortex synchronize their activity at the time when the monkey expects a 

“go” signal to initiate an arm movement, even if the signal does not occur. This 

demonstrates that cortical network is preparing for the upcoming events by activity of 

neuronal assemblies (Riehle et al., 1997). 

In this section, we reviewed the two major approaches for multiple neuronal spike 

analysis. As the first method, the higher order neuronal interactions can be computed by 

k-th corrected cumulants correlation. The assumption of Poisson process for multiple 

spike trains provides a very intuitive relationship between cumulant correlations and 

above-chance coincident firing (“excess synchrony”) in neuronal populations. This makes 

cumulant correlation analysis attractive for parallel spike train analysis. However, the 

calculation of cumulant correlation becomes increasingly complicated as the order of 

neuronal interaction increases, such that many parameters show up in the higher order 

cumulant. Several methods have been developed to obtain the lower bound of maximal 

order that needs to be considered. In the neuroscience literature, It has been shown that 

the role of higher order correlations rely almost on the higher-order parameters of an 

exponential log-linear family (Martignon et al., 1995, 2000; Shlens et al., 2006; 
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Schneidman et al., 2006; Montani et al., 2009; Shimazaki et al., 2009). The exponential 

log-linear family is the base of information geometric method, which is the main work in 

the present thesis. The detailed introduction of information geometric method will be 

presented in section 1.3 separately.  

The second method, the UE analysis, provides a tool to analyze multiple parallel spike 

trains for time dependent synchrony, providing a way of correlating spike synchrony and 

behavioral context. The window-sliding UE analysis is used to analyze the time 

dependent spike trains, enabling the study of nonstationary neuronal spike trains. 

However, one has to carefully select the appropriate width of time window such that the 

excess synchrony can be evaluated properly.  

 

1.2.4 Population approaches based on information theory 

 

Information theory, initially proposed by Shannon (Shannon, 1948), determines the 

ultimate fidelity limits that communication and signal processing systems can achieve. 

The similarity between the communication system and the brain inspires neuroscientists 

to apply information theory on brain information processing. Although Shannon’s 

original formulation of information theory is notoriously vague about how to deal with 

the communication between multiple channels in the real brain system (Doyle et al., 

2007), it is useful to study a model of encoding and decoding in the similar way that a 

communication system does.  From a neuroscience perspective, an information source 

produces an information-bearing signal, which can be either the stimulus in sensory 

system or an intended motion in motor system. In neuroscience, an encoder X represents 
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neural coding scheme: how the external stimulus is represented in the firing pattern of 

neurons. Then the encoded signal passes through the channels with noise such that the 

output signal Y cannot be fully determined by the input signal X. These channels represent 

the population of neurons, and thus, the output signal Y is spike train. Finally, a decoder is 

an estimate of the stimulus X given spike signal Y. In this theoretical scenario, the 

fundamental function of the brain is to calculate how much it can infer from observed 

noisy spike data. In probability theory, it needs to compute the likelihood       . Indeed, 

many of the same issues Shannon addressed have always been research issues in system 

neuroscience. How is information encoded and decoded? What is the fidelity of 

information represented in neural system? To address these questions, people use a 

fundamental model underlying classic information theory.  

In information theory, a stochastic stimulus s is described by their probability 

distributions     . For a discrete-valued stimulus               , the Shannon’s 

information entropy is defined by 

                              ∑              

 

                                                                          

which quantifies the uncertainty of the stimulus S. 

Based on the Shannon entropy, the mutual information is used to quantify the 

relationships between input and output. Typically, the mutual information between two 

random variables X and Y is defined by 

          ∑          
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         when X and Y are statistically independent, and        reaches the maximum 

when X is totally identical to Y. Mutual information completely characterizes the degree 

of similarity between the statistical properties of two random variables, making it a 

powerful measure of statistical dependence. 

Based on the above theory, neuroscientists have developed population coding approach 

for neural information processing in recent years (Panzeri et al., 1999; Panzeri and 

Schultz, 2001; Pola et al., 2003; Schneidman, 2006; Tang et al., 2008). Population coding 

is the quantitative study of which algorithms or representations are used by the brain to 

combine together and evaluate the message carried by different neurons (Grun, 2010). In 

other words, population coding investigates how group of neurons resolve the ambiguity 

of the message carried within a single trial by individual neuron, because the responses of 

individual single neuron in the brain vary trial by trial. The brain itself is highly capable 

of making sense of the noisy responses of individual neurons by evaluating the activity of 

large neural populations such that it can process information and make decisions based on 

single events.  

The population coding methods are mostly information-based approaches. In population 

coding, the Shannon’s mutual information is used to quantify how well the presented 

external stimuli allow us to discriminate among the different stimuli. That is, it quantifies 

the reduction of uncertainty about the stimulus which can be gained from observation of a 

single trial of neural response. The general formula of mutual information introduced 

above can be written alternatively by conditional probability  

                                ∑∑              

      

    
      

                          



 

28 
 

where        is the conditional probability of observing response r when stimulus s is 

presented,      represents the probability of stimulus s, and      is the probability of 

observing r in response of any stimulus s.   

The prototype of mutual information in Equation (1.13) has some limitations. For 

example, it only quantifies the overall information transmitted by the neuronal population 

activity, failing to tell us the contribution of specific correlations. It also fails to inform us 

whether correlations make the code redundant (Grun, 2010). To overcome these 

shortcomings, a method called “information breakdown”, which decomposes the total 

mutual information        into a number of components (Panzeri et al., 1999). Each of 

these components reflects a different way into which signal and noise correlation 

contribute to information transformation (Pola. G., 2003). More specifically, the total 

mutual information can be broke down into a linear component     , the reduction of 

information generated by signal correlation         , and the contribution of noise 

correlation     (Panzeri et al., 1999; Panzeri and Schultz, 2001; Pola et al., 2003). 

                                                            ⏟            
    

                    

where      represents the information that quantifies the independent information each 

neuron conveys,           represents the reduction in total information due to signal 

correlation. The third term      represents the overall effect of noise correlation, which 

contains two parts:          denotes the effect of the average level of noise correlation 

over stimuli,          denotes the contribution of dependence of noise correlation.  



 

29 
 

The linear term of mutual information      gives the total amount of information conveyed 

by all the cells which share neither noise nor signal,  

                                                           ∑  
 

                                                                       

with    ∑ ∑                
       

     
      . The difference between        and      is 

called redundancy. The amount of redundancy produced by signal correlation such as the 

similarity of the stimulus modulation of individual neuron’s response is defined by  
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where      quantifies the signal correlations (       if there is no signal correlations). 

As for the third term      , the first component          reflects the contribution of 

stimulus-independent correlations 

                   ∑〈            〉     

 

      
 

                                                      

where the first multiplicative factor, with a noise correlation strength       , represents 

the effect of noise correlation averaged by stimuli; the second logarithmical factor 

depends on signal similarity. The second component          measures the stimulus-

dependent correlations 

           ∑〈                    
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    , the sum of Equation (1.17) and (1.18), therefore quantifies the total impact of noise 

correlation in information coding (Hatsopoulos et al., 1998), which also equals to the 

difference between the information in the presence of noise and the information without 

noise correlation. 

The information breakdown method has been applied in the study the study of how the 

rat’s somatosensory cortex encodes the identity of the deflected whisker (Petersen et al. 

2001, 2002b). The whisker representation of rat’s somatosensory cortex is organized by 

columns. To gain the insights of how such columnar organization may affect population 

code, Petersen et al. applied information breakdown method on the calculation of 

information of location of deflected whisker. They found that the stimulus-independent 

component          was negative when pairs of neurons are both located in the same 

column, while the contribution of stimulus-dependent noise correlation          was very 

small both for same column and different column neuron pairs. These results suggested 

that the neurons within the same column have similar stimulus selectivity (positive signal 

correlation) and positive noise correlations. While in different columns,           is close 

to zero, showing that neurons in different columns have different stimulus preferences 

(weak signal correlation) and weak noise correlation (Petersen et al. 2001, 2002b). These 

studies suggested that cross-neuronal correlations limit the information encoding capacity 

of single cortical columns, and the noise correlations in somatosensory cortex can be 

ignored during decoding.   

The advantage of this approach is that it allows a detailed characterization of how 

different aspects of neuronal population activity contribute to transmission of information 

on a single trials basis. The limitation is that it is relatively difficult to calculate the 
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accurate information with neuronal populations because it needs the large number of trials 

sample (Panzeri et al., 2007). Therefore, only the populations with small number of 

neurons (5-10) can be calculated accurately. Nevertheless, it is still useful to obtain some 

insights into the details of information processing in some networks.  

In addition to population coding, an entropy-based approach, called the maximum 

entropy (MaxEnt) method, has attracted much attention recently (Schneidman et al., 2006; 

Tang et al., 2008; Tyler et al., 2012). The motivation of this study was to evaluate how 

given pairwise correlations say about the entire network which are mixed with higher-

order interactions.  To this end, they analyzed spike data from retina using a minimal 

model (the exponential family with the expansion up to pairwise interactions) 
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where    and     are associated with the single neuronal firing and pairwise interactions, Z 

is the normalization factor. Using this model, they found that the pairwise correlations 

provide strikingly accurate predictions (>90%) of the collective effects of neuronal 

populations in retina (Schneidman et al., 2006). This study suggests that despite the 

existence of higher-order interactions, the MaxEnt model still captures more than 90% of 

the structure in the retina network. The success of this study provides us with the 

information that in real cortical network with weak neuronal correlations, only pairwise 

interactions provides an enormous simplification of the network. Interestingly, we will 

see that the MaxEnt method is equivalent to the 2
nd

-order information geometric measures, 

which will be discussed in the following sections. 
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In summary, information-based theory for neuronal population analysis gains a lot of 

attention by computational neuroscientists for the analysis of neural spike data. These 

include the entropy to quantify spike train variability, mutual information to measure the 

association between processes such as between two spike trains or between a spike train 

and a stimulus, information breakdown methods to further investigate the effect of 

specific signals and noise correlations, and MaxEnt model to capture the major 

contribution in population activity . These measures are applied extensively in the study 

of how much information multi-spike trains convey about a biological signal. The use of 

information measures is based on thinking about those parts of the nervous system, such 

as somatosensory system and visual pathways that may be modeled as communication 

channels. A major and important challenge for computational neuroscientists is to find 

ways to further extend the feasibility of performing information computations with large 

populations. This is the crucial step to enable us to gain better insights into how 

information is processed in complex brain network. 

 

1.2.5 Summary  

 

We have reviewed the often-used approaches for spike data analysis in the level of 

neuronal interactions.  As the first step of spike data analysis, estimating the single 

neuronal firing rate and its variability plays an important role in understanding the 

stochastic nature of spike trains. In section 1.2.1, we presented the CV and FF analysis 

methods as a starting point to the empirical analysis and interpretation of the variability of 

the single neuronal spike trains. The original implementation of the CV method assumes 
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that the neuronal firing is stationary such that one can reliably compute the CV coefficient 

within a time period over all trials. Such approach, however, suffers from the problem 

due to the fact that the real neuronal data is often nonstationary. To overcome this 

difficulty, researchers have proposed time warping techniques that convert the real spike 

time into operational time. It ensures that the neuronal firing in operational time axis is 

relatively stationary, allowing us to apply the CV analysis in operational time axis. The 

appropriate implementation of time warping methods requires the advances of the 

methods of estimating firing rate. PSTH, kernel smoothing and the combination of 

likelihood principle and Bayes methods have been investigated by computational 

neuroscientists to improve the accuracy of estimating the firing rate from spike train data.  

In section 1.2.2, we discussed the methods for pairwise correlation analysis in the time 

and frequency domain. Two major methods, cross-correlogram and JPSTH were 

introduced. The importance of the analysis of pairwise correlations is that there is a 

unique relationship between known connectivity between two neurons and observed 

cross-correlation. The reverse, however, is not true unfortunately. A given cross-

correlogram of two neurons’ correlation can be result of the change of neuronal 

connectivity and the variability of external inputs on them. From the neural correlation 

analysis, one can only estimate the strength of neuronal interactions under certain 

assumptions with respect to the integration of neural input and the shape on the neuron’s 

response curve, because the estimate of the peak neural correlation is very sensitive to the 

shape and the working point of the neuron’s response curve (Melssen and Epping, 1987). 

Beyond the pairwise correlation analysis, section 1.2.3 introduced several approaches for 

higher order neuronal interactions based on connected cumulant calculation and the UE 

analysis. The kth connected cumulants quantify the k-th order neuronal correlations by 
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calculating the moment of firing probability. As the increase of the order of neuronal 

interactions, the calculation of cumulants becomes difficult. Therefore, one needs to 

evaluate the lower bound of maximal order from the given data. The UE analysis gives us 

the insight into how to evaluate the neuronal synchrony by calculating the joint p-value 

between the empirical and expected coincidences in neuronal populations.  In other words, 

the UE analysis presents the tests for deviations from null hypothesis. In section 1.2.4, 

information-based population analysis was discussed. Inspired by the similarity between 

communication system and the brain, computational neuroscientists have applied 

Shannon information theory in the spike train encoding and decoding. An advanced 

version of information theory—information breakdown method has been proposed on 

quantifying the information from different signal sources. Finally, we briefly discussed 

the minimal model based on maximum entropy, which can be used to capture the 

majority of effect in population coding by only taking into account the pairwise neuronal 

correlations in real neuronal data. 

Our ability to understanding such a complex brain system becomes impossible without 

advanced analysis approaches in the future. As the advancement of recording techniques 

in experimental neuroscience, novel statistical approaches for analyzing neuronal 

interactions at different level are necessary. Information geometric methods, based on 

differential geometry and information theory, gains increasing attention recently, 

providing a way of estimating neuronal interactions in hierarchical manner. Its theoretical 

investigation and potential application in neuronal data analysis constitutes the main work 

in the present thesis. In current work, we show that information geometric method 

provides a promising approach for the estimation of not only single and pair-wise 
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neuronal interactions, but also higher order neuronal interactions. It turns out that 

information geometric methods offers a power statistical tool for analyzing the neuronal 

network structure from observed spiking data. The applications of this method constitute 

the main text of this thesis. Before the detailed discussion of these applications, we first 

introduce its theoretical context and general mathematical treatment in probability space. 

 

1.3 Information-Geometric method 
 

Information geometry (IG) studies a family of probability distributions by using 

differential geometry. IG describes stochastic model of multiple spike trains by a family 

of probability distributions, providing not only intuitive understanding but also useful 

tools for the analysis of multiple spike data (Amari, 2001). By studying the geometrical 

structure of a family of probability distributions in curved space (Riemannian manifold), 

IG gives various relations among probability distributions such as divergence or 

discrepancies between two probability distributions, orthogonal property of two 

distributions (Amari, 2001; Amari, 2000). The most appealing property of IG is that it 

decomposes the joint probability distribution of multiple stochastic variables into 

hierarchical structures in orthogonal manner. In this section, we present the mathematical 

background for the analysis of multi-neuronal spike correlations from the point of view of 

IG theory.   

Given a set of random variables           , interactions among them include not only 

pairwise correlations, but also triplewise and other higher order interactions, which forms 
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a hierarchical structure. Therefore, it is important to find an invariant orthogonal 

decomposition of this structure into pairwise, triplewise, and other higher order 

correlations.  In information geometry, this structure can be established under the 

Riemannian manifold, which was first introduced by Rao (Rao., 1945). Chentsnov further 

developed Rao’s idea and introduced new invariant affine connections in probability 

distribution manifold (Chentsnov, 1982). Later, IG theory was intensively studied by 

Nagaoka and Amari (Amari, 2000), who developed a theory of dual structures and unified 

all of these theories in the dual differential geometrical framework.  IG has been widely 

applied so far not only to mathematical foundations of statistical inferences (Amari, 2000; 

Amari, 1997; Kass, 1997), but also to information theory (Amari, 2000; Campbell, 1985; 

Han, 1998), neural networks (Amari, 1992) , system theory (Ohara, 1996), statistical 

physics(Amari, 2000; Bhattacharyya, 2001; Tanaka.T., 2000) . In the following section, 

we briefly introduce the basic mathematical principle of IG theory, and then discuss how 

IG theory is generally used for the analysis of multiple neuronal spike data. 

 

1.3.1 General theory 

 

In this section, we present the information geometry theory developed by (Amari, 2001), 

which gives an answer of how to formulate an invariant decomposition of the hierarchical 

system of probability distributions. It turns out that this methodology leads to a new 

invariant decomposition of entropy and information. It can be further used to analyze the 

synchronous firing patterns of  -neuron system. 

1.3.1.1 Manifold, Curve and Orthogonality 
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Let us assume a parameterized family of probability distributions            , where   

is a random variable and                 is real vector parameter to specify a 

distribution.   represents an N-dimensional manifold with   as a coordinate system. The 

Fisher information matrix         is then defined as 

                                    [
          

   

          

   
]
 

                                                         

where   denotes the expectation over variable x, the Fisher matrix   plays the role of a 

metric tensor in Riemannian space  . 

The distance between two distributions        and           in a curved Riemannian 

space is given by a quadratic form called geodesic distance  

                                                  ∑                                                                              

One can demonstrate that this squared distance has closer relationship with Kullback-

Leibler (KL) divergence 

                                                 [                ]                                               

where 

                                                  [   ]   ∫       
    

    
                                               

If we consider a curve  ̇    parameterized by t in manifold S.      determined by  
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                                                        ̇   

 
 

  
                                                             which is the 

                                                            〈 ̇      ̇    〉                                                             

That is, the two curves are not correlated. 

 

1.3.1.2. Dually Flat Manifolds 

 

We call a manifold    -flat (exponential flat) when there exists a coordinate system 

parameterized by   such that for all  ,      

                                   [
  

      
         

 

   
         ]                                          

Such parameters   are called e-affine coordinates. The curve      is called an e-geodesic 

if      is given by a linear function           in the   coordinates, where   and   

are constants. 

A typical e-flat manifold is the well-known exponential family distributions 

                                                        {∑            }                                        

where       represents a given function and   is the normalization factor. A typical 

example of exponential family is Gaussian distribution 

          
 

√    
      

      

   
 , which can be expressed according to  (1.27) 
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                                                        {∑            }                                   

where 

            

   
 

  
  

 

   
  

     
 

  
 

    

 
     

In the e-flat coordinates       , the orthogonal relationship holds because  

                                                  
  

      
      

  

      
                                                         

is independent of   and  [
 

  
    ]   . 

Correspondingly, a manifold is said to be  -flat (mixture flat) when there is a coordinate 

system   such that  

                                     [
 

      

  

      
         

 

   
         ]                                     

Here   is called  -affine coordinates. Similarly, a curve is called m-geodesic if it is 

represented by a linear function           in the  -affine coordinates.  

In the theory of information geometry, it has been shown that an exponential family is 

automatically  -flat although it is not necessarily a mixture family(Amari, 2000). A 

mixture family is  -flat, although it is not in general an exponential family. The  -affine 

coordinates ( -coordinates) of an exponential family are given by  



 

40 
 

                                                       [     ]   
 

   
                                                            

which is known as the expectation parameters. The coordinate transformation between 

two coordinates   and   is given by the following rule 

                                                                   
     

   
                                                                        

with the relationship       [         ] and                . 

The tangent vectors of the coordinates curves        
 

   
          and the tangent 

vectors of the coordinates curves   :  
  

 

   
          are orthogonal at any point 

                                           〈     
 〉                                                                                      

where     is the Kronecker delta. 

1.3.1.3 Flat hierarchical structures 

 

We have briefly introduced the basic concept of information geometry and the 

geometrical features of dually flat families of probability distributions. In this subsection, 

we extend them to the geometry of flat hierarchical structures, which is the key idea of 

information geometry. 

A.  -flat structures 

Let T be a submanifold of a dually flat manifold S. it is called an e-flat submanifold if 

T has the linear subspace in the e-affine coordinates   in S. It is called an m-flat 

submanifold if it is linear in the m-affine coordinates   in S. Let us consider a nested 
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series of e-flat submanifolds                where every    is an e-flat 

submanifold of     . Each    is automatically dual flat, but is not an m-flat manifold. 

We call such a nested series an e-flat hierarchical structure, or e-structure (Amari, 

2000). A typical example of the e-structure is the following exponential probability 

distributions: 

                                            ∑                                                                  

where                  is parameter set. 

The expectation parameter in the above equation is correspondingly given by  

                                             [     ]                                                                 

where   [ ] is the expectation with respect to       .  

 

B. Orthogonal structures 

It is convenient that we consider a new coordinate system called the  -cut mixed 

ones, which is the mixture of   and   coordinates: 

                                                                                                         

This new coordinate   consists of a pair of complementary parts of   and  . Let 

us assume two subsets                   and               ). According 

to the orthogonality rule, the two subsets are orthogonal in the sense that 

submanifolds    and    are complementary and orthogonal at any point in the 

manifold  . 

C. Orthogonal Decomposition 
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The exponential family distribution        needs to be singled out in terms of k-

th order effects. It is shown that the amount of effect of order k is given by the KL 

divergence 

                                                    [           ]                                                    

This is called Pythagoras decomposition in curved Riemannian space. In flat 

Euclidean space, let a, b, c are three points of a rectangle triangle, then the 

Pythagoras theorem gives   ̅̅ ̅     ̅̅ ̅     ̅̅ ̅ . In curved probability space, 

consider a nested series  

                     as an example, the corresponding Pythagoras in 

the language of information divergence gives  

                    [    ]   [      ]   [         ]   [         ]                         

which holds under the following coordinates system 

                            

                                             
̅̅ ̅   

̅̅ ̅               ̅̅ ̅                                  

          
̿̿ ̿               ̿̿ ̿   ̿̿ ̿  

 

 

 

1.3.2 Information-geometric measures for multi-spike data analysis 

 

One promising application of information geometry is multi-spike data analysis in 

neuroscience research. Information-geometric (IG) measures refer to the measure for 
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neuronal interactions using the hierarchical structure introduced in section 1.3.1.  IG 

measures has been demonstrated as a promising novel statistical method for the 

estimation of neural network structures, and it gains a lot of attention by neuroscientists 

recently. One of the central challenges in neuroscience is to understand how information 

is carried and processed by a population of neural firing patterns in the brain 

(Georgopoulos, Schwartz et al., 1986; Abeles, 1991; Aertsen and Arndt, 1993; Singer and 

Gray, 1995; Deadwyler and Hampson, 1997; Parker and Newsome, 1998). The single 

neuronal mean firing rate is the most-commonly-studied quantity for brain information 

processing. Many experimental studies show that the mean firing rate of each neuron can 

be modulated by experimental control and thereby carry information about these 

experimental conditions. However, information conveyed by neuronal population maybe 

not only the single neuronal mean firing rate, but also higher order interactions that 

cannot be directly controlled and estimated. Indeed, growing attention has been paid to 

the coincidence firing, triplewise correlations, and other higher-order neuronal 

correlations when analyzing the statistical structures embedded in the neural firing 

(Gerstein et al., 1989; Engel, Konig et al., 1992; Wilson and McNaughton, 1993; Zohary 

et al., 1994; Vaadia et al., 1995; Nicolelis et al., 1997; Riehle et al., 1997; Lisman, 1997; 

Zhang et al., 1998; Maynard et al., 1999; Nadasdy et al., 1999; Kudrimoti et al., 1999; 

Oram et al., 1999; Nawrot et al., 1999; Baker and Lemon, 2000; Reinagel and Reid, 2000; 

Steinmetz et al., 2000; Laubach et al., 2000; Salinas and Sejnowski, 

2001; Oram et al., 2001, Abeles and Gerstein, 1988; Aertsen, et al., 1989; Amari, 2009; 

Brown, et al., 2004; Czanner, et al., 2005; Fellous, et al., 2004; Gerstein and Perkel, 1969; 

Gilestro, et al., 2009; Grun, et al., 2002; Grun, et al., 2002; Lopes-dos-Santos, et al., 2011; 

Panzeri and Schultz, 2001; Peyrache, et al., 2009; Shimazaki and Shinomoto, 2007; 
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Shimokawa and Shinomoto, 2009). One popular research topic towards this purpose is to 

investigate a significant coincident firing between two neurons, which is highly related to 

learning induced synaptic change. In general, however, it is not easy to only test a 

pairwise correlation of neural firing if there are be triplewise and higher-order 

correlations that are mixed into pairwise correlations. For instance, three neurons in a 

neural network may not be independent in general even when they are pairwise 

independent. Therefore, we need to build a new analysis method to distinguish these 

neuronal interactions in different correlation level.   

 

Information geometry decomposes a joint probability distribution into hierarchical 

structures, which can be applied in the analysis of neural firing patterns by taking into 

account not only the second-order (pairwise interactions) but also higher order 

interactions among neurons. As shown previously, information geometry provides useful 

tools and concepts for this purpose.  Using information geometry, complex neuronal 

interactions in a large neuronal system are singled out by purely pairwise, triplewise, and 

higher-order correlations. In this section, we discuss some applications of information 

geometry in multiple neural spike data by showing several examples. As discussed in the 

previous section, the orthogonality of the natural and expectation parameters in the 

exponential family of probability distributions and the hierarchical structure methodology 

provide the key ideas.  

1.3.2.1 Information-geometric (IG) measures in spike train analysis 
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We first present the concept of IG measures. We focus on analyzing the probability 

distribution in an N-neuron network. The firing patterns of a neuron can be represented 

by binary random vector such that the overall probability distribution of the neural 

network can be explicitly expanded by a log-linear model. Let us assume   

               be the states of N neurons, and                     be their 

joint probability distribution. The state of each neuron           represents firing or 

silence, respectively.  Hence,      is given by       possible distributions, forming a  

     dimensional manifold S 

                                                                                           

where          . 

According to information geometry theory, one can choose parameters   as the 

coordinates for expectation, which are written by 

    [  ]              

                                                          [    ]       {       }                                  

        [        ]                         

Accordingly,      can also be given by the natural coordinates  , 

                 ∑     ∑        ∑                              
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where   {                    } are IG measures and   represent a normalization 

factor. All        forms an e-flat structure in S. 

The finding of information geometry shows that the   and   coordinates are dual flat and 

mutually orthogonal. 

Let us first consider how to present pairwise neuronal interaction under this framework. 

For simplicity, a two neuron system with joint probability        ) expands four 

probabilities {               } constrained by                           ) is 

then decomposed into marginal and pairwise correlational components.  In  -coordinate, 

    [  ] and      [    ]     . The covariance of    and    is then expressed by  

                                                  [     ]                                                                  

In IG measure method, we use mixed coordinates           such that   is always 

orthogonal to    and   . In the 2-neuron system, given the log-linear expansion  

                                                                                                    

Where  

                                        
   

   
       

   

   
        

      

      
                                     

It has been shown that     is orthogonal to    and   .The importance here is that the 

quantity     is related the pairwise correlations between two neurons, and 

     corresponds to the single firing rate of neuron 1 and 2, respectively.  In this simplest 

2-neuro system,               is called IG measures for single neuronal firing of each 

neuron and their pair-wise correlation. 
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For a 3-neuron system in a manifold                        , similarly we can 

again write down the log-linear expansion as  

                                            ∑       ∑                                           

with 7-coefficients:  

      
    

    
       

    

    
       

    

    
 

       
        

        
        

        

        
        

        

        
 

        
                

                
 

                                                                                                                                  

The canonical or e-affine coordinates are                               .The 

corresponding m-affine coordinates are given by                               

where  

    [  ]             

                                                           [    ]      {       }                            

      [      ]                   

The quantity      represents the pure triplewise interaction in the sense that it is 

orthogonal to any changes in the single and pairwise marginal in the mixture coordinates 
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1.3.2.2 The application of IG measure on neural spiking data analysis 

 

In this subsection, we describe one example for the application of IG measures on neural 

spike data from Nakahara and Amari (2002). Using modeling techniques, they studied the 

pairwise and triplewise neural correlations. Figure 8 shows the example of detecting the 

significant triplewise interaction in a 3-neuron system. The spikes of three neurons were 

generated such that the probability of finding a spike in each time bin (1ms bin width) 

was determined in each simulation trials, given an assumed probability (         ) in 

each period a-c. Each period was simulated by specifying the firing rates within 100ms. 

To estimate the probabilities from sampled data, they calculated averaged values in each 

time bin over all trials.  This study shows that during the control period when all neurons 

were weakly correlated. The calculation of correlation coefficient (COR) is almost zero in 

this period, while COR in periods b and c are almost the same as each other but both were 

different from zero. Interestingly, when the pairwise correlations between any neuronal 

pairs were calculated more carefully using IG measures (   for all pairwise correlations 

and     for triplewise correlation); one can see that the nature of the interaction is largely 

different between period b and c. 

This modeling study also showed the advantage of taking into accounting IG measures as 

hierarchical structure. IG measures provide a separate measure for all-order neuronal 

interactions which the traditional COR calculation is not capable of. Figure 1.7 (C) 
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indicates that 0-400ms (period a and b) is the purely pairwise correlation period, because 

the triplewise interaction      is nearly zero in this period, as shown in (D). However, 

period d is not purely pairwise correlation since      is negative, which indicates that 

purely triplewise interactions exists in this period. These comparisons cannot be realized 

only by calculating the correlation coefficient. 

 

Figure 1.7: Example of detecting the interactions in a 3-neuron system. 

(A) The firing frequency in each period a-c. (B) Correlation coefficients of three 

pairs of neuronal firing. (C) The second order (pair-wise) IG measures (    

             ). (D) The third-order (triple-wise) IG measure     . (Adapted from 
(Nakahara, 2002)) 
 

Instead, by fully considering all the IG measures (        ), we are able to determine and 

separate the neuronal interactions at the different level from multiple neuronal spiking 

data.  
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In section 1.3, we have presented the theoretical framework of IG measures and discussed 

example for the application of IG approach on detecting pairwise and triple wise neuronal 

correlations separately. The solid mathematical foundation of IG method makes it a 

promising analytical method on the analysis of multiple neuronal spike data. However, 

the understanding of IG approach is far from being well although many studies have been 

conducted previously (Tanaka.T., 2000; Tatsuno, 2009; Tatsuno, 2004). Previous studies 

showed that IG measures provide robust measures for neuronal connection weights, 

indicating that IG methods enable us to estimate the sum of the connection weights 

(       ) by computing the second-order IG measures for neuron pairs i and j (    

       ) (Tatsuno, 2009). This conclusion, however, only holds when a network receives 

uncorrelated external input signals. The relationship between     and         is violated 

when correlated external inputs are imposed on a network. Additionally, how IG 

measures for higher-order neuronal interactions are characterized is still poorly 

understood. Furthermore, existing theoretical studies on IG methods rely on the 

assumption of stationarity of network firing, which is also unrealistic in practical spike 

train analysis. Therefore, further investigations in more complicated and realistic 

situations are necessary and interesting research topics for the IG methods. The following 

chapters 2, 3 and 4 constitute the main part of our present work. In chapter 2, we 

investigated how IG methods can be applied to estimate the pairwise correlations in a 

network that receives correlated external inputs by mathematical analysis and computer 

simulations. In chapter 3, we systematically studied the properties of higher-order IG 

measures for higher-order neuronal interactions by theoretical analysis and numerical 

simulations. In chapter 4, we studied how IG measures estimate the network structures 
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under oscillatory networks by numerical simulations. By the simulations using simple and 

biologically plausible neuronal models, we confirmed that IG measures provide a 

promising way of estimating neuronal connection strength even under oscillatory 

networks, suggesting that IG measures can be a good candidate for multiple neuronal 

spike train analysis in neuroscience research.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

Chapter 2  Information-Geometric Measures for Estimation of   Connection Weight 

under Correlated Inputs 
 

Preface 

 

This chapter is based on Nie, Y. and Tatsuno, M., Information-Geometric Measures for 

Estimation of Connection Weight under Correlated Inputs, Neural Computation (2012). 

This study demonstrated that information-geometric measures with higher-order log 

linear expansion provide a robust estimation of synaptic connection weights in an 

asymmetrically connected recurrent neural network receiving correlated external inputs.  

 

Abstract 

The brain processes information in a highly parallel manner.  Determination of the 

relationship between neural spikes and synaptic connections plays a key role in the 

analysis of electrophysiological data. Information geometry (IG) has been proposed as a 

powerful analysis tool for multiple spike data, providing useful insights into the statistical 

interactions within a population of neurons. Previous work has demonstrated that IG 

measures can be used to infer the connection weight between two neurons in a neural 

network. This property is useful in neuroscience because it provides a way to estimate 

learning-induced changes in synaptic strengths from extracellular neuronal recordings. A 

previous study has shown, however, that this property would hold only when inputs to 

neurons are not correlated. Since neurons in the brain often receive common inputs, this 

would hinder the application of the IG method to real data. We investigated the two-

neuron-IG measures in higher-order log-linear models to overcome this limitation.  First, 

we mathematically showed that the estimation of uniformly connected synaptic weight 
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can be improved by taking into account higher-order log-linear models. Second, we 

numerically showed that the estimation can be improved for more general asymmetrically 

connected networks. Considering the estimated number of the synaptic connections in the 

brain, we showed that the two-neuron-IG measure calculated by the fourth- or fifth- order 

log-linear model would provide an accurate estimation of connection strength within 

approximately a ten percent error. These studies suggest that the two-neuron-IG measure 

with higher-order log-linear expansion is a robust estimator of connection weight even 

under correlated inputs, providing a useful analytical tool for real multi-neuronal spike 

data. 

 

2.1 Introduction         

 

Information processing in the brain is carried out by a large number of connected neurons 

via action potentials. To understand how information is represented and processed in the 

brain, it is important to record simultaneously from as many neurons as possible from 

behaving animals. To this end, multiple electrode recording techniques have been 

developed and widely used in many electrophysiological research studies (Buzsaki, 2004; 

Chapin, et al., 1999; Davidson, et al., 2009; Dragoi and Tonegawa, 2011; Euston, et al., 

2007; Hampson, et al., 1999; Hoffman and McNaughton, 2002; Kudrimoti, et al., 1999; 

Laubach, et al., 2000; Peyrache, et al., 2009; Riehle, et al., 1997; Tatsuno, et al., 2006; 

Wilson and McNaughton, 1993).  At the same time, the theory of neuron population 

activity has advanced the understanding of neural information processing by studying 

pair-wise and higher-order correlations (Abeles and Gerstein, 1988; Aertsen, et al., 1989; 

Amari, 2009; Brown, et al., 2004; Czanner, et al., 2005; Fellous, et al., 2004; Gerstein and 
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Perkel, 1969; Grun, et al., 2002; Grun, et al., 2002; Lopes-dos-Santos, et al., 2011; 

Panzeri and Schultz, 2001; Peyrache, et al., 2009; Shimazaki and Shinomoto, 2007; 

Shimokawa and Shinomoto, 2009; Zhang, et al., 1998).  Among these theoretical 

approaches, information geometry (IG), based on the theory of differential geometry, has 

been proposed as a powerful tool for analyzing neuronal activity (Amari, 2001; Amari 

and Nagaoka, 2000; Amari, et al., 2003; Eleuteri, et al., 2005; Ikeda, 2005; Ince, et al., 

2010; Miura, et al., 2006; Nakahara and Amari, 2002; Nakahara, et al., 2006; 

Ohiorhenuan and Victor, 2011; Shimazaki, et al., 2012; Tatsuno, et al., 2009; Tatsuno and 

Okada, 2004). One of the advantages of the IG approach is that it provides an orthogonal 

decomposition of higher-order interactions (Amari, 2001; Amari, 2009; Nakahara and 

Amari, 2002). Another advantage is the direct relationship between IG measures and 

synaptic connection strengths (Tatsuno, et al., 2009; Tatsuno and Okada, 2004). This 

latter property is useful for neuroscience because it allows an experimenter to estimate the 

connection strength from extracellulary recorded spike data.  However, the previous 

investigations showed that the robust estimation of synaptic connection strengths is 

possible only when the external inputs are not correlated (Tatsuno, et al., 2009).  Since 

neurons in the brain often receive common inputs, this would impede the application of 

IG to real data.  

 

To overcome this difficulty, we extended the IG approach by considering higher-order 

log-linear expansion. First, we analytically showed that the two-neuron IG measure 

calculated with higher-order neural interactions provides a robust estimation of 

connection strengths under correlated inputs. For this analytical calculation, we assumed 

uniformly connected networks and obtained a recursive relationship for the parameters 
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necessary for calculating the IG measures. Exact solutions up to a ten-neuron network 

were obtained and were used to evaluate the estimation accuracy of connection weight 

under correlated inputs.  Second, we numerically showed that the two-neuron-IG measure 

with higher-order neural interactions is robust for more general asymmetrically connected 

neural networks.  From the simulation of different network sizes, we estimated the order 

of the log-linear model that would be necessary for obtaining accurate estimations of 

connection strength within approximately a ten percent error. 

The outline of this paper is as follows. In Section 2, we provide a brief introduction of IG 

theory. In Section 3, we introduce the model of neurons, its stochastic dynamics and the 

method to calculate the IG measures.  In Section 4, we provide the recursive relationship 

and analytical solution for uniformly connected networks.  In Section 5, we provide 

numerical results for asymmetrically connected networks.  In Section 6, we summarize 

our results and discuss future directions for research. 

 

2.2 Information-Geometric Measures 

 

We briefly introduce the IG approach for neural spikes. Amari (Amari, 2001) proposed a 

novel approach for analysis of neural data by a hierarchical decomposition of probability 

distribution of neuronal activities on Riemannian manifold.  Generally, the spike trains 

can be represented by binary random variables. As the simplest example, let us consider 

the case of a two-neuron system. Let    and    be two binary variables where     

            represents neuronal firing or silence respectively. Their joint firing 

probability is given by      
  prob                      with the 
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constraint                    In the IG approach, the logarithm of joint 

probability distribution,         
, is expanded by a polynomial of    and   , 

                        

                    
   

     
     

     
      

     
                                                             

 

where         is a normalization parameter and the first and second part of superscript (2,2) 

represent the order of the log-linear model and the number of neurons in the network, 

respectively.  The coefficients and the normalization parameter can be obtained exactly 

by solving for             and    . The result is given by 

                         

                    
     

    
   

   
     

     
    

   

   
  

                     
     

    
      

      
  

                                                                                                                                                                                                                                                                     

 

Here we call           
        

          
       the information geometric (IG) measures 

(Tatsuno and Okada, 2004). They represent the first and second order interactions, 

respectively. Specifically, we call    
     

 the two-neuron IG measure because it represents 

a pair-wise interaction. The two-neuron IG measure provides correlation information 

similar to that of other correlation measures such as the correlation coefficient.  However, 

note that the advantage of the two-neuron IG measure is its statistical independence from 

the change in the marginal firing distributions of neurons (Amari, 2001; Amari, 2009; 

Nakahara and Amari, 2002). 
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Another advantage of the IG approach is that the IG measures of any order can be 

calculated in a straightforward manner. For example, let us consider a three-neuron 

system. The joint firing probability        
  of the system is represented as  

 

                         
   

          
          

           
          

                                            
     

        
     

         
     

                                  

                                                                                                                                                                                

By solving the equation for                                    and     , we obtain  

                                         

                   
         

    

    
      

         
    

    
      

         
    

    
  

 

                    
         

        

        
       

         
        

        
       

         
        

        
    

                                                                                                                                                          

                                           

                     
         

                

                
  

                

                                                                                  

                                                                                                                          

          
          

           
       represents the single, pair-wise and triple-wise interactions 

among neurons   ,   and   , respectively. Here, note the difference between    
     

 in 
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equation 2.2 and    
     

 in equation 2.4. They both represent a pair-wise interaction 

between neurons   and  , but    
     

 is calculated from the second-order log-linear model 

of the two-neuron network while    
     

 is calculated from the third-order log-linear model 

of the three-neuron network.  Previous work (Tatsuno and Okada, 2004) showed that if 

the number of neurons N in the network is known, the log-linear model of the same order 

N provides a more accurate estimation of the connection strength. That is, for the three-

neuron system discussed above,    
     

 in equation 2.4 provides a more accurate 

estimation of connection weight than the second-order two-neuron IG measure,    
     

,  

  

                                               
     

    
        

        
                                                                      

 

where ' ' represents the marginalization over the third (hidden) neuron and therefore, 

       represents the marginal distribution of    and   .  Note that we use the notation 

  
     

 or     
     

 to denote the general case that the IG measure partly expanded up to the 

kth order in an  -neuron network      . 

 

Generally, the full log-linear expansion for an  -neuron system is given by 

                           

                            
 ∑  

     
  

 

 ∑   
     

    
   

 ∑     
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where       
     

 is the  th-order neuronal correlation. The first few terms of the IG measure 

        and        in equation 2.6 are expressed as  

                                            

              
     

    
                   

            
  

                                            

               
     

    
                                      

                                                    
  

                … … … 

                                         

                                                                                                                                 

 

where          . 

  

In practice, the estimates of  s are obtained by maximum likelihood estimates 

of           
, given by                

                    

                             
 

          

∑                    

                                                                      

                                                                                                                                                                 

where           
 is the number of counts in which the event (                 

  ) occurs. 
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In real experiments, however, it is not possible to specify the total number of neurons in 

the network. Furthermore, because the number of       
 parameters in the log-linear 

model increases as     , it is difficult to obtain a robust estimation of all the 

parameters for a large N. To overcome this difficulty, the previous study (Tatsuno, et al., 

2009) proposed to use the second-order log-linear model regardless of the number of 

neurons N in the network, 

                                            

                    
     

     
     

      
     

                                                

                                                  

where the superscript (2, N) represents that the second-order log-linear model was used 

for an N-neuron system. Note that interactions with other N-2 neurons were included in 

the equation implicitly. The IG measures are then given by 

                         

              
     

    
      

      
     

   
    

      

      
      

   
    

            

            
  

                                            

                                                                                                                                                                                                                                                            

 

where '   ' represents the marginalization over the other N-2 neurons. In general, the IG 

measures partly expanded up to the kth order in an  -neuron network are given by 
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                … … … 

                                       

                                                                                                                             

 

where '   ' represents the marginalization over the other N-k neurons. 

 

With assumption of random asymmetric connections, Tatsuno et al. (Tatsuno, et al., 2009) 

showed that the two-neuron IG measures and the network parameters are related as 

 

                       
     

     (
 

 
)                                                                            

                        
     

 (       )   (
 

 
)                                                                                

 

where hi is an external input to a neuron i and Jij (Jji) is a connection weight from a pre-

synaptic neuron j (i) to a post-synaptic neuron i (j). Equation 12 suggests that the two-

neuron IG measures can estimate an external input and connection strength separately.  

For symmetric connections,        , the two-neuron IG measure reduces to 

 

                       
     

       (
 

 
)                                                                                             
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These relationships are very useful for neuroscience because they can provide a tool to 

estimate the changes of underlying neural network parameters from extracellularly 

recording data. However, it also can be shown that this separation of external input and 

connection strength does not hold true if external inputs are correlated.  Therefore, in the 

following section, we investigated how to overcome this difficulty by taking into account 

higher order neural interactions.  

 

2.3 Model  
 

To investigate the relationship between the IG measures and underlying neural 

architectures mathematically, we adopt a simple model neuron with stochastic dynamics 

(Ginzburg and Sompolinsky, 1994).  Briefly,        the state of the j-th neuron at time t 

takes a binary value, 0 or 1, corresponding to a quiescent and active state, respectively.  

The total input to the ith neuron at time t is given as 

                     

                         ∑   
 

                                                                                                

 

The response of the model neuron depends on the total input ui and is determined 

stochastically. The transition rate w between the binary states is written as, 
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where    is a microscopic characteristic time, and       is a sigmoidal activation function 

whose value is bounded in the interval [0, 1]. The probability of finding the system in a 

state                   at time t is characterized by the following master equation 

  

                   
 

  
 (      )   ∑ (         ) (      )

 

 

                                                  ∑             (  
   

  )

 

                                            

                                                                                                                                                                             

where   
   

                    . 

 

Using the master equation above, the marginal distribution of a neuronal state variable, 

〈     〉                , is shown to obey 

                                              

                   

 

  
〈     〉   〈     〉  〈        〉                                                                  

                                                                                       

Similarly, the coincident firing of the  th and  th neurons, 

〈          〉                         , is expressed as 
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〈          〉    〈          〉  〈             〉  〈             〉               

                                                                                                                                                                                  

In general, the coincident firing of   neurons, 〈                〉                    , 

is written 

 

        

 

  
〈                〉    〈                〉 

                                                          〈                              〉 

                                                          〈                              〉 

                                                            〈                                〉          

 

In this paper, we investigate the properties of the IG measures when the network is in the 

equilibrium state. From equations 2.17, 2.18 and 2.19, the marginal, two-neuron 

coincident firing, and the N-neuron coincident firing at the equilibrium state obey   

                                               

                  〈  〉  〈     〉                                                                                                                                                                                                                                        

                                            

                  〈    〉  
 

 
(〈       〉  〈       〉)                                                                                    

                  〈       〉  
 

 
 〈                              〉 

                                           〈                              〉 

                                             〈                                〉                         
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To calculate the IG measures, we use the relationship between the probability of each 

event,      
        

          
 and the marginal and coincident firings in the 

equilibrium state, 〈  〉 〈    〉   〈       〉 (Tatsuno and Okada, 2004).  For example, 

the IG measures,           
        

          
       , for a two-neuron system in equation 2.2 

can be calculated from 

         

                        〈  〉  〈  〉  〈    〉                                   

                      〈  〉  〈    〉                                                  

                    〈  〉  〈    〉      

                      〈    〉                                                                                                                

 

Similarly, the IG measures,           
          

           
       , for the three-neuron system 

in equation 2.4 can be obtained from 

 

               〈  〉  〈  〉  〈  〉  〈    〉  〈    〉  〈    〉  〈      〉  

              〈  〉  〈    〉  〈    〉  〈      〉  

              〈  〉  〈    〉  〈    〉  〈      〉  

        〈  〉  〈    〉  〈    〉  〈      〉                                                                    

             〈    〉  〈      〉  

             〈    〉  〈      〉  

              〈    〉  〈      〉   

              〈      〉                                                                                                                                                                                                                              

 



 

66 
 

For a general N-neuron system, the IG measures,           
     

     
     

           
     

  , 

in equation 2.7 are obtained by 

        

              ∑〈  〉

 

 ∑〈    〉

   

 ∑ 〈      〉

     

   〈       〉                          

                         〈  〉  ∑〈    〉

   

 ∑ 〈      〉

     

   〈       〉                              

                                  〈    〉  ∑ 〈      〉

     

   〈       〉                  

 

where an upper sign (lower sign) at the last term on the right-hand side is taken when N is 

an even (odd) number. 

For the partly expanded IG measures,           
     

     
     

           
     

  , in equation 

2.11, we have the following formula,   

       

                        ∑〈  〉

 

   

 ∑ ∑ 〈    〉

 

     

   

   

   〈       〉                                   

                          〈  〉  ∑ 〈    〉

 

       

 ∑ ∑ 〈      〉

 

         

   

       

   〈       〉  

            

                                    〈    〉  ∑ 〈      〉

 

         

   〈       〉            
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where an upper sign (lower sign) at the last term on the right-hand side is taken when k is 

an even (odd) number. 

 

 

2.4 Analytical calculations of information-geometric measures for small                

       neural networks 

 

In this section, we first calculated the two-neuron-IG measures for several small networks 

to obtain insight into how the IG measures are affected by correlated inputs. Next, we 

derived a polynomial expansion of a sigmoidal gain function to calculate the IG measures 

for a larger network. Using the polynomial expansion, we then calculated the two-neuron 

IG measures for a ten-neuron network and showed that the estimation errors for the 

connection weight can be reduced by taking into account higher-order neuronal 

interactions.   

 

For mathematical clarity, we considered a neural network with a simple structure. The 

network consists of a layer of recurrently connected N neurons             , where a 

connection strength from a pre-synaptic neuron j to a post-synaptic neuron i is 

represented by    . Each neuron in the layer receives a common input from a single 

neuron   . For simplicity, we assumed that a connection from    to any neuron    is 

uniform, and represent it by W. The activity of the neuron    can be modulated by an 

external input h to it.  

 

Under these conditions, the total inputs to the ith neuron in the layer and to    are written 
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                ∑        

   

      

                                                                                                                                            

 

respectively.  The state of neurons changes following the transition rate in (2.15). For a 

sigmoidal activation function, we used, 

 

                    
            

 
                                                                                    

 

where   is a parameter controlling the firing probability of a model neuron. To 

demonstrate that the IG method is robust in a wide range of firing activity, we 

investigated the IG measures in two representative parameter values. The first parameter 

value,     was used as a high firing example. It corresponds to a firing probability of 

0.7 in a 1000 neuron network. The second parameter value,      was used as a low 

firing example. It corresponds to a firing probability of 0.1 in a 1000 neuron network. 

 

The focus of the present study is to mathematically investigate the relationship between 

the two-neuron IG measures    
     

 of a pair of neurons    and    in the layer and the sum 

of their connection strengths           when they receive correlated inputs from    by a 

connection weight W. 
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2.4.1 Calculations of    
     

,    
     

       
     

 by fully expanded two, three, and four-

neuron log-linear models  

 

To obtain explicit analytical results, we first focused on the two-neuron IG measures of 

simple networks consisting of two, three and four neurons (see Figure 1.1).  For 

mathematical convenience we treat a case that all recurrent connections are uniform:     

 . A more general neural network structure with asymmetric connections (       ) will 

be discussed in the following section.  In the following, we represent the two-neuron IG 

measure using the neurons one and two because any two-neuron IG measures are 

identical due to uniform assumption. 

 

For the simplest two-neuron network (Figure 1.1A), by plugging equation 2.27 into 

equations 2.20, 2.21 and 2.22, the marginal distribution  〈  〉, the two-neuron coincident 

firing 〈    〉 and the three-neuron coincident firing 〈      〉 of   ,    and    are obtained 

as  

           

         〈  〉  〈    〉[                     ]                                           

                       

                       〈  〉[         ]      [         ]        

           

         〈  〉  〈    〉[                     ] 

                       

                       〈  〉[         ]      [         ]        
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        〈  〉        

        

       〈    〉   〈    〉  〈    〉 [           ]   〈  〉  〈  〉                          

          

          〈    〉  〈    〉[           ]  〈  〉               

          

          〈    〉  〈    〉[           ]  〈  〉             , 

 

          〈      〉  〈    〉      〈    〉         

 

 

Figure 2.1: Schematic of neural network architecture. 

For mathematical simplicity, neurons in the upper layer,              , are 

connected uniformly by connection weight  . A single neuron    sends a common 
signal to the neurons in the upper layer by connection weight W. Activity of    
can be modulated by an input h.  Note that due to the uniform connection 

assumption, all two-neuron IG measures     between neurons in the upper layer 

are identical. (A) A two-neuron network. (B) A three-neuron network. (C) A four-
neuron network. 
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By solving equation 2.29 simultaneously, 〈  〉, 〈    〉 and 〈      〉 can be expressed by 

the neural network parameters J, W and h.  To calculate the two-neuron IG measure    
     

, 

we use 〈  〉,  〈  〉 and 〈    〉.  By equations 2.2, 3.10 and 2.29 and after some algebra we 

obtain, 

                                               

                       
     

       (
    

  
 )                                                                                       

 

The explicit form of A2, B2 and C2 is provided in Appendix A. In equation 2.30, the 

second logarithmic term on the right hand side was induced by a correlated input by  . 

In other words, in the absence of common input W,    
     

 reduces to 2J. 

 

Figures 2(A) and 2(D) show how the IG measure    
     

 deviates from the correct 

estimation 2J with the increase of W, for     and    , respectively.  Defining the 

maximum relative estimation error by 

 

              
     

 
        

     
    

  
                                                                                     

 

we see that the maximum error can get larger than 2.  This demonstrates that under 

correlated input,    
     

 is not a good estimator of connection strength.  Note that, however, 

when the common input is zero (   ),    
     

 recovers the appropriate relationship 

   
     

    as was expected from the previous work (Tatsuno, et al., 2009). 
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Figure 2.2: Relationship between the two-neuron IG measure,    
     

 and a 

correlated input W for N = 2, 3 and 4. 
The network parameters are set as       and       . W is modified in the 

range of [     ].  (A)-(C) and (D)-(F) correspond a high firing case (   ) and a 

low firing case (   ), respectively.  (A) The two-neuron IG measure,    
     

, for 

the two neuron network (Figure 1(A)). The horizontal dashed line represents    

    . Note that    
     

    when no correlated input exists (   ). The maximum 

relative estimation error,     
     

, is approximately (1.6-0.5)/0.5=2.20 (220%). (B) 

The two-neuron IG measure,    
     

, for the three neuron network (Figure 1(B)).  

    
     

 is approximately (0.85-0.50)/0.50=0.70 (70%).   (C) The two-neuron IG 

measure,    
     

, for the four-neuron network (Figure 1(C)).      
     

 is approximately 

(0.65-0.50)/0.50=0.30 (30%).  (D) The two-neuron IG measure,    
     

.      
     

, is 

approximately (1.53-0.5)/0.5=2.05 (205%). (E) The two-neuron IG measure,    
     

.  

    
     

 is approximately (1.00-0.50)/0.50=1.00 (100%).  (F) The two-neuron IG 

measure,    
     

.      
     

 is approximately (0.80-0.50)/0.50=0.60 (60%).   

 

 

To investigate how the estimation error changes as the network size increases, we further 

calculated    
     

 in the three-neuron network under correlated inputs (Figure 2.1(B)). 
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Following the same procedure as    
     

, we obtained the two-neuron IG parameters    
     

.  

The result is summarized as 

 

               
            (

    

  
 )                                                                                              

                                

See Appendix A for the form of A3, B3 and C3, and see Appendix B for detailed derivation.  

Similarly, we also obtained the IG measure    
     

 for the four-neuron network (Figure 

2.1(C)), 

                  

                
     

       (
    

  
 )                                                                                             

 

See Appendix A for the form of A4, B4 and C4, and see Appendix C for detailed derivation. 

  

Figures 2.2(B) and 2.2(E) show the relationship between the two-neuron IG measure 

   
     

 and the amplitude of common input W, for     and    , respectively.  

Figures 2.2(C) and 2.2(F) show the relationship between    
     

 and W, for     and 

   , respectively.  As was the case for    
     

, the IG measures are affected by a 

correlated input.  However, as a promising observation, the relative error decreases as the 

network size increases. At the same time, we also encountered the increase of complexity 

of equations (see Appendices A, B, and C).  Thus, in the next section, we developed a 

systematic approach to calculate the IG measures for more neurons.  
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2.4.2   Polynomial expansion of the sigmoid function and recursive relationship  

 

Generally, it is difficult to write down the relationship among all coincident firings 

explicitly for a large number of neurons.  However, for uniformly connected networks, 

we found that the sigmoid gain function in an  -neuron network has the following 

general polynomial relationship, 

            

    〈     〉  〈 ( ∑  
   

    )〉   

 

                            
 〈 〉        

 〈    〉            
   〈      〉                                           

 

                        〈  〉        
 〈   〉        

 〈   
   〉            

   〈   
     〉   

                                                                                                                                                          

 

where   
  is a binomial constant. Here, we use the notation      〈       〉 to 

represent the  th-order coincident firing of all possible combinations of k neurons in the 

recurrent layer and  〈   
   〉  〈         〉 to represent a coincident firing of an input 

neuron     and all possible kth-order firing in the layer. The coefficients are given by the 

following recursive relationships 
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                 … ...           

                        ∑   
   

   

   

               

                          ∑   
   

 

   

 ∑   
   

   

   

                                                      

 

Using equation 2.35, the marginal distribution is then given by 

                               

               〈 〉            
 〈 〉        

 〈    〉        
 〈    〉     

                                    
 〈   〉        

 〈   
   〉        

 〈   
   〉              

                   

Similarly, the several higher-order coincident firings are written as 

 

          〈    〉         〈 〉      
        〈 

   〉      
        〈 

   〉    

                                〈   〉      
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   〉      
        〈   
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        〈   

   〉   

 

           〈   
   〉            [             〈   〉 

                            
              〈   

   〉      
              〈   

   〉

  ] 

 

           〈   
   〉            [                     〈   

   〉 

                             
                      〈   

   〉   ]                             

                 … … …  

 

Using the polynomial expansions above, we can systematically write down the 

relationship among all orders of firings.  We can then solve equations simultaneously and 

represent the firings of all orders by network parameters J, W and h. By plugging them 

into equations 2.11 and 2.13, we can calculate the two-neuron IG measures,    
     

 for an 

arbitrary  -neuron network. 

 

2.4.3 Calculations of the two-neuron IG measure for a ten-neuron network  

 

By using the recursive formula developed in the previous section, we calculated all orders 

of the two-neuron-IG measures for a ten-neuron network, from    
      

 to    
       

.  Here, 

   
      

 represents the two-neuron IG measure considering only two neurons out of ten 

neurons.  It corresponds to the coefficient of the term x1x2 of the following two-neuron 

log-linear model, 
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Similarly,    
      

 represents the IG measure considering three neurons out of ten neurons 

(two neurons of interest and one additional neuron). It corresponds to the coefficient of 

the term x1x2 of the three-neuron log linear model, 

 

                       
   

           
           

            
           

                                    
              

               
                                              

 

Note that all coefficients of the second order terms,    
      

,    
      

 and    
      

, are 

identical due to uniform connection. The remaining higher-order IG measures,    
      

 

to    
       

, can be treated in the same manner.   

 

Figures 2.3(A) and 2.3(B) summarize how the two-neuron-IG measures of different 

orders are affected by a common input  , for     and    , respectively. First, by 

comparing the fully expanded IG measures     
       

 and    
     

,    
     

 and    
     

 in Figure 

2, we confirmed that the relative estimation error further decreased as the network size 

increased; for     (high firing probability), the error decreases from 220% of the two-

neuron network (Figure 2.2(A)), 70% of the three-neuron network (Figure 2.2(B)), 30% 

of the four-neuron network (Figure 2.2(C)), and to 10% of the ten-neuron network 

(Figure 2.3(A)).  For     (low firing probability), the error decreases from 205% of 
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the two-neuron network (Figure 2.2(D)), 100% of the three-neuron network (Figure 

2.2(E)), 60% of the four-neuron network (Figure 2.2(F)), and to 40% of the ten-neuron 

network (Figure 2.3(B)). This suggests that if a neuron is connected to a large number of 

other neurons, like in the real brain, the estimation of connection strength by the IG 

measures would approach the correct value.  

 

Second, the relative estimation error also decreased when the order of the log-linear 

model increased from 2 to 10; for     (high firing probability), the error decreased 

from 530% for    
      

 to 10% for    
       

 (Figure 2.3(A)). For     (low firing 

probability), the error decreased from 570% for    
      

 to 40% for    
       

 (Figure 2.3(B)).  

This suggests that the estimation can be improved by taking into account the activity of 

other neurons.  Note, however, that the estimation of higher-order two-neuron IG 

measures gets increasingly more difficult as the number of neurons involved increases. 

As was shown in equation 2.8,            
 is obtained by maximum likelihood estimates.  

Therefore, a reliable estimate of             
 (necessary for calculation of    

       
) is much 

more difficult than that of            (necessary for    
      

). 
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Figure 2.3: Relationship between the two-neuron IG measure,    
      

 and a 

correlated input W for a ten-neuron network. 
The network parameters are set as        and       . W is modified in the 
range of [     ].  The horizontal dashed line represents        . The curves 

(from top to bottom) represent    
      

 ,     
      

,     
      

,     
      

 and     
       

, 

respectively. Estimation error decreases monotonically when higher-order log-

linear expansion is taken into account. Note that    
       

    when no correlated 

input exists (   ). (A) The IG measures correspond to a high firing case 
(   ). (B) The IG measures correspond to a low firing case (   ). 
 

 

In the real brain, neurons are connected to many other neurons.  For example, the number 

of synaptic connections of pyramidal neurons in the cortex is estimated in the order of 10
3
 

to 10
4
 (Braitenberg and Schuz, 1999).  In other words, N in the log-linear model can be 

10
3
 to 10

4
.  Inspired by the above theoretical insights that the relative estimation error 

decreases when N becomes large, we speculated that lower-order two-neuron IG 

measures, such as    
     

 or    
     

, can be a good estimator of the connection weight for 

large N.  In the following section, we numerically investigate this possibility by 

increasing the network size to a comparable size of the real brain.  Also, we investigate 

the property of IG measures for more general asymmetric connections. 
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2.5 Numerical simulations 
 

We performed numerical simulations using the Ginzburg and Sompolinsky network 

(Ginzburg and Sompolinsky, 1994). Our aim was to obtain a minimum order of k of log-

linear expansion, 

 

                                ∑  
     

  

 

 ∑   
     

    
   

 ∑     
     

      

     

 

                                                          
     

                                                                 

 

 such that the maximum relative estimation error  

 

                     
     

 
       

     
    

  
                                                                                        

 

can be in a reasonably low range, such as ten percent. We simulated neural networks with 

the size of N=10, 50, 100, 500 and 1000 neurons.  Weights of recurrent connections were 

adjusted to the order of 1/N to prevent saturation of neural activity. For uniformly 

connected networks, the connection weight was set as      .  For asymmetrically 

connected networks, the connection weight was set as              at each trial, 

where a bias term     is a random variable following normal distribution with the mean 

value   and the standard deviation   √ .  
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For each trial, an initial network state was selected randomly with an equal probability of 

a neuronal state of 1 or 0. A network was then updated asynchronously by Ginzburg and 

Sompolinsky dynamics (Ginzburg and Sompolinsky, 1994).  To show that the 

equilibrium states are reached quickly regardless of the initial firing values, Figure 2.4 

shows an example of time evolution of firing probability averaged over 1000 

asymmetrically connected neurons. The network started from three different initial states 

(0.1, 0.5 and 0.9) and converged to three equilibrium states (0.1, 0.4 and 0.7) that were 

realized by setting         and 0 in equation (2.28), respectively. The figure confirms 

that the equilibrium states were reached quickly regardless of the initial firing values, 

typically within 100 updates.  The initial 5000 updates were discarded from the analysis 

to ensure that the network was in the equilibrium state. We then updated the network 10
6
 

times to calculate    
     

,    
     

,    
     

 and    
     

.  Note that multiple    
     

s,    
     

s and 

   
     

s can be calculated from a single simulation trial because they require one or more 

neuronal activities from N-2 other neurons. In this study, the number of simultaneously 

estimated    
     

,    
     

 and    
     

 was [N-2], [(N-2)/2] and [(N-2)/3], respectively. 

Gauss’s symbol [x] represents the greatest integer that is less than or equal to x. The final 

value of    
     

,    
     

 and    
     

 from a single simulation trial was obtained by averaging 

those individual estimations. We repeated 100 simulation trials to calculate the mean, the 

standard deviation, and the standard error. For the strength of a common input W, we 

considered the range that can be observed in the real brain. For example, the mossy-fiber 

from the dentate gyrus to the CA3 region of the hippocampus is known to make a very 

strong synaptic connection. The strength has been estimated five to ten fold compared to 
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the intrinsic recurrent connection in CA3 (Urban, et al., 2001).  Therefore, we varied the 

strength of a common input W within the range of  [     ]  

 

Figure 2.4: An illustration of the time evolution of firing probability into the 
equilibrium states. 
Three initial conditions corresponding to low, intermediate, and high firing 
probability (0.1, 0.5 and 0.9) were plotted by solid, dotted and dashed lines, 
respectively. The three equilibrium firing probabilities (0.1, 0.4 and 0.7) were 

realized by setting the   parameter in equation (4.2) as (1, 0.6 and 0), 
respectively. The network consists of 1000 neurons whose connection is 

distributed subject to         where          and          , respectively. 
The strength of a common input W was set at 5J but variation of W does not 
affect the behavior. A network state was updated according to equation (3.2). The 
equilibrium states were quickly reached, typically within 100 steps, regardless of 
initial firing probabilities. 
 

Figures 2.5 and 2.6 show how    
     

 is affected by common input W when the network 

size N is increased.  Here, we selected    
     

 as a representative example because it was 

expected to achieve the estimation accuracy within ten percent at the network size 

comparable to the real brain (more details in Figure 2.7).  Figures 2.5(A) and 2.5(B), high 
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firing activity (   ) and low firing activity (   ) respectively, compare the 

theoretically calculated    
      

 (filled diamond, taken from Figure 2.3) and numerically 

obtained    
      

 (gray solid line) for a uniformly connected ten-neuron network as a 

function of a common input W.  The error bar represents the standard deviation.  The 

result shows that the numerical simulation has a strong agreement with the theoretical 

calculation, especially a more realistic low firing case (   ), ensuring that the 

numerical simulation can be used for investigation of the estimation errors for larger 

networks. Figures 2.5(C) and 2.5(D), high firing activity (   ) and low firing activity 

(   ) respectively, compare the numerically obtained    
      

 by uniformly connected 

(gray solid line) and asymmetrically connected networks (dashed line). The error bar is 

the standard deviation. These figures  show that    
      

s calculated from uniform and 

asymmetric networks behave similarly. Therefore, the figures  also suggest that the 

theoretical calculation using uniform connection in the previous section will be valid for a 

random asymmetric connection case.  
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Figure 2.5: Effect of a common input W on the two-neuron IG measure, 

   
      

 for a ten-neuron network.   

(A) Comparison between analytical solution (filled diamond) and numerical 

simulation (gray line) for a high firing case (   ).  An error bar represents the 
standard deviation. The network parameters were set          and        , 
and a common input     was varied between 0 and 10J. The accurate estimation 

value is         (dotted horizontal line). Theoretical values are always within a 
range of the single standard deviation of the numerical simulation, suggesting 
that simulation and theory have a strong agreement. (B) Comparison between 
analytical solution (filled diamond) and numerical simulation (gray line) for a low 

firing case (   ).  There is a very strong agreement between theory and 
simulation.  (C) Comparison between numerical simulation by uniform connection 

(gray line) and asymmetric connection (dashed line) for a high firing case (   ). 
An error bar represents the standard deviation. The input parameter to     is set 
       . The connection parameters are selected as         for a uniform 
connection, and               for an asymmetric connection where     is a 

random number drawn from the normal distribution         with the mean 

     and variance        , respectively. Two simulations have a strong 
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agreement. (D) Comparison between numerical simulation by uniform connection 

(gray line) and asymmetric connection (dashed line) for a low firing case (   ).  
Two simulations have a strong agreement. 
 

 

 

Figure 2.6 shows the numerical results of    
     

 for 50-neuron networks (Figure 2.6(A) 

for     and Figure 6(E) for    ), 100-neuron networks (Figure 2.6(B) for     

and Figure 2.6(F) for    ), 500-neuron networks (Figure 2.6(C) for     and Figure 

2.6(G) for    ), and 1000-neuron networks (Figure 2.6(D) for     and Figure 

2.6(H) for    ) as a function of a common input W. The gray line and dashed line are 

uniformly and asymmetrically connected networks, respectively.  The error bar represents 

the standard error.  The results indicate that the relative error of    
     

 decreases as the 

size of the network increases; for N=500 and 1000, the correct value (dashed line) is 

within the standard error. We also observe that for larger networks (N=500 and 1000), the 

estimation error becomes independent from the strength of a common input  . 

Furthermore, the IG estimation also becomes independent from the difference of firing 

activity (    or    ) as the network size is increased. This result is also consistent 

with the finding that the IG measure is statistically independent from firing rate 

modulation (Amari, 2001; Amari, 2009). 
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Figure 2.6: Effect of a common input W on the two-neuron IG measure, 

   
     

, for              and 1000 neurons. 

 

The input parameter to     is set as       . The connection parameters are 
selected as       for a uniform connection, and as              for an 

asymmetric connection where     is a random number drawn from the normal 

distribution         with the mean     and variance       , respectively.  
A common input    was varied between 0 and 10J. A uniform connection and an 
asymmetric connection are shown by gray line and dashed line, respectively. An 

error bar represents the standard error. The accurate estimation value is    
       (dotted horizontal line). ].  (A)-(D) and (E)-(H) correspond to a high firing 

case (   ) and a low firing case (   ), respectively. (A) The two-neuron IG 

measure    
      

 for a 50-neuron network. (B) The two-neuron IG measure    
       

 

for a 100-neuron network. (C) The two-neuron IG measure    
       

 for a 500-

neuron network. (D) The two-neuron IG measure    
        

 for a 1000-neuron 

network. (E) The two-neuron IG measure    
      

 for a 50-neuron network. (F) The 

two-neuron IG measure    
       

 for a 100-neuron network. (G) The two-neuron IG 

measure    
       

 for a 500-neuron network. (H) The two-neuron IG measure 

   
        

 for a 1000-neuron network. 
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In order to summarize how the maximum relative estimation error     
     

 for the different 

order of the two-neuron IG measures    
     

,    
     

,    
     

 and    
     

 changes with the 

network size, we plotted the     
     

 as a function of the network size in Figure 2.7. The 

value of     
     

 was taken from the numerical simulation of asymmetrically connected 

networks.  The nonlinear curves represent the fitting to the data points. Figure 2.7(A), 

corresponding to high firing probability (   ), suggest that    
     

 and    
     

 would 

achieve the estimation accuracy of five to ten percent for the number of connections that 

can be found in the brain (10
3
-10

4
), respectively.  Figure 2.7(B), corresponding to low 

firing probability (   ), suggests that    
     

,    
     

 and    
     

 would achieve the 

estimation accuracy of ten to twenty percent for 10
3
-10

4
 connections, respectively. 

However, note that for    , the data points of    
     

 (filled circle) and    
     

 (filled 

diamond) for larger networks (N=500 and 1000) were clustered around ten percent, 

therefore undershooting the fitted curve significantly. This observation indicates that the 

estimation accuracy for a low firing case would be smaller than the fitted curve and be 

similar to a high firing case. Based on these findings, we have concluded that    
     

 and 

   
     

 can be used as a robust estimator of connection weight under the existence of 

common inputs. 

 



 

88 
 

 

Figure 2.7: Comparison of the maximum relative estimation error of the 

two-neuron IG measure,     
     

, as a function of the network size. 

The data points (plus, filled square, filled circle and filled diamond) corresponds 

to the IG measures (    
     

    
     

    
     

    
     

), respectively. They were obtained 

by the numerical simulation of 10, 50, 100, 200, 500 and 1000-neuron networks. 

The corresponding maximum relative estimation errors,     
     

, are represented in 

percentages. The curve represents a nonlinear fitting for each order of the IG 

measure. (A) and (B) correspond a high firing case (   ) and a low firing case 

(   ), respectively. (A) For the network size of         neurons,    
     

 and 

   
     

 are expected to achieve five to ten percent accuracy. (B) For the network 

size of         neurons, the fitted curves indicate that    
     

     
     

 and    
     

 

are expected to achieve ten to twenty percent accuracy. Note that    
     

 and 

   
     

 for larger networks such as N=500 and N=1000 are well below the fitted 

curves. This observation indicates that actual accuracy would be better than the 
fitted curve. 
 

 

Finally, we also investigated the minimum difference of connection weights that the IG 

method is able to distinguish. Note that the current framework of the IG approach 

estimates the sum of connection weights,          , not an individual weight. We 

simulated a network of 1000 neurons for which the connection was distributed subject to 

           where       . We modified the sum of connection weights           

from -7/N (-7J) to 12/N (12J) in a discrete step size of 1/N, while allowing asymmetry 
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between     and    . Figure 2.8 shows the distribution of     
        

 and    
        

 as the 

function of discrete increment of          .  Figures 2.8(A) and 2.8(B) are examples for 

high firing probability (   ).  Figures 2.8(C) and 2.8(D) are examples for low firing 

probability (   ).  The solid line and error bar represent the mean and the standard 

error, respectively. The dotted line represents the correct value.  Firstly, we observed that 

the mean is very close to the correct value, showing that the estimation of the sum of 

connection weights is accurate over the wide range of modulation. Secondly, comparison 

of the standard error of neighboring distributions suggests that if the sum of connection 

weights is different three-four times or more, the IG measures will be able to distinguish 

the connection weights. To verify this observation, we performed Wilcoxon’s rank sum 

test for two samples and obtained the following results. For the distributions separated by 

three times, such as 1/N (J) and 3/N (3J), 16.7% (Figure 2.8(A)), 16.7% (Figure 2.8(B)), 

5.56% (Figure 2.8(C)) and 5.56% (Figure 2.8(D)) of those distributions can be 

distinguished (p<0.05).  For the distributions separated by four times, such as 1/N (J) and 

4/N (4J), 88.2% (Figure 2.8(A)), 88.2% (Figure 2.8(B)), 82.4% (Figure 2.8(C)) and 76.5% 

(Figure 2.8(D)) of those distributions can be distinguished (p<0.05). For the distributions 

separated by five times, such as 1/N (J) and 5/N (5J) the IG measures were able to 

distinguish all of them (p<0.05). These results suggest that the sum of connection weights 

              and                or 5/N, where N is the number of neurons in 

the network can be distinguished reliably. All these findings show that the IG approach is 

a very useful measure for the estimation of connection weights from the observation of 

spiking activity. 
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Figure 2.8: The minimum difference of the sum of connection weights 
          that can be distinguished by the IG measures.   

A network consists of 1000 asymmetrically connected neurons whose 

connections are distributed subject to         where          and    
      , respectively. The strength of a common input W was set to 5J, but 
variation of W does not affect the result. The solid line and error bar represent the 
mean and the standard error, respectively. The dotted line represents the correct 

value. (A)    
        

 for a high firing case (   ).  (B)    
        

 for a high firing case 

(   ). (C)    
        

 for a low firing g case (   ) (D)    
        

 for a low firing 

case (   ).  The sum of connection weights           can be distinguished if 

they are different by four times or more. 
 

2.6 Discussion  

 

In this study, we investigated how to estimate connection weight under the influence of 

correlated inputs. Our goal was to develop a robust and experimentally applicable 
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measure by which one can infer the synaptic connection strength between any pair of 

neurons from extracellularly recorded spike trains. To this end, we extended the 

previously proposed information geometric approach (Tatsuno, et al., 2009) by taking 

into account higher log-linear expansion.  

 

Using a simple neural network with stochastic dynamics, we analytically showed that the 

IG measure, by fully expanded log-linear model,    
     

, is severely influenced by 

correlated input when N is small (       ). With the aid of a recursive formula, we 

successfully calculated    
     

 for       and       , and showed that the 

estimation error due to a common input decreases as the network size and the order of the 

log-linear model increase. To investigate the property of    
     

 in a more realistic 

condition, including asymmetric connections and larger network size that can be observed 

in the real brain (10
3
-10

4
 connections), we performed numerical simulations. The results 

suggest that    
     

 or    
     

 would provide a robust and accurate estimation of connection 

strength with approximately a ten percent error.  In other words, we found that the two-

neuron IG measures taking into account two (   
     

) or three (   
     

) additional neural 

activities provide a good estimation of connection strength even under the influence of a 

common input. In addition, we also showed that the IG estimation is not dependent on the 

firing probability and that    
     

 and    
     

 can distinguish the sum of connection weights 

if they are different by four times or more. All these results suggest that the IG method is 

a promising approach for multi-neuronal spike trains. 
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In the present study, we investigated the property of the IG measure in an equilibrium 

state. In real electrophysiological experiments, however, neural firing changes 

dynamically over time. To analyze such non-stationary data, it is vital to extend the IG 

approach to a time-dependent situation (Shimazaki, et al., 2012). In addition, the present 

study focuses on coincident firings only. This corresponds to the lag-zero bin of a cross 

correlation function. Therefore, it is interesting to consider extension of the IG measures 

to lagged bins so that a directed connection can be estimated more directly.  

 

Another interesting extension of the present research includes using realistic neuronal 

models to investigate more detailed properties of the IG measure.  Previously, we 

investigated the performance of the IG method using the Hodgkin-Huxley (HH) model 

(Hines and Carnevale, 1997; Hodgkin and Huxley, 1952; Lipa, et al., 2006; Lipa, et al., 

2007).  Under uncorrelated noisy inputs, we showed that the IG measure was linearly 

related to the sum of connection weights that were measured as the probability of firing of 

a postsynaptic neuron by a presynaptic spike. We have not conducted an investigation 

with correlated noisy inputs, but it is a very important question that needs to be answered 

in future research.  Also, it would be worth considering the extension of the IG approach 

to analog signals such as EEG and local field potentials (LFP). 

 

The proposed IG method relies on successful binary representation by binning spike 

trains. One way to select bin size is to use a small enough bin, such as a few milliseconds, 

so that no more than one spike falls in the same bin. Another option would be to calculate 

interspike interval histograms of all recorded neurons and use the minimal interspike 

interval as the bin size of all neurons. One of the authors (Tatsuno) has also conducted a 
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preliminary study on mild violation of binary requirement (allowing a couple of spikes in 

a single bin and converting them into a single spike), and found that it did not affect the 

IG result significantly. In principle, binary representation can be obtained by using a 

small enough bin size. However, in the limit of infinitesimally small bin size, no 

coincident firing will occur and correlation analyses including the IG method will fail. 

Therefore, the size of the bin would need to be selected not only by the requirement of 

binary representation, but also by considering a biologically important time-scale. For 

example, a bin size of a few milliseconds would be appropriate if one wants to study fine 

timescale, possibly mono-synaptic interactions. A larger bin size, within the mild 

violation of binary requirement, would be appropriate if one wants to investigate 

influences of more poly-synaptic interactions. The size of a bin is an important parameter 

for the application of the IG approach to real data.  The authors suggest that an 

appropriate bin size should be selected by considering both binary restriction and the time 

scale of interest. The authors also consider that analysis with different bin sizes should be 

conducted because it would provide more insights into correlation structures. 

 

To advance our understanding of how the brain works according to neuronal population 

dynamics, further theoretical and experimental research would be inevitable. In this paper, 

we showed that the information-geometric approach is a promising analytical tool for 

spike trains and that it will provide useful information about a possible change of the 

underlying networks. We hope that an effort for developing a novel analysis method 

presented here or elsewhere would lead to a break-through finding in neuroscience. 
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Appendix A  

In equations 4.4, 4.6 and 4.7, the second logarithmic terms for high firing probability 

(m=0) are given by  
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Similarly, the corresponding term for lower firing probability (m=1) are given by 

 

                                                                

                                                                   

                                         , 
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Appendix B 

We provide all orders of the coincident firings for the three-neuron network in Figure 

1(B). They can be derived from equations 3.7, 3.8, 3.9 and 4.1 in the same manner with 

the two-neuron case. 

 

   〈  〉  〈  〉  〈  〉 

                                   〈  〉    〈    〉     〈    〉    〈      〉  

   〈  〉                                                                                                                                                 

   〈    〉  〈    〉  〈    〉 

                        〈  〉         〈    〉         〈    〉         〈      〉 

   〈      〉             〈    〉             〈      〉                                       

     〈    〉   〈    〉   〈    〉 
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                            〈  〉              〈    〉         〈      〉  

     〈      〉   〈      〉   〈      〉 

                         〈    〉                    〈    〉              

                                〈      〉   

    〈        〉  〈      〉                            〈      〉                                                                      

 

where 

 

       , 

            , 

            , 

                                                                                                             

                   , 

                                          

 

Appendix C 

We provide all orders of the coincident firings for the four-neuron network in Figure 1(C). 

They can be derived from equations 3.7, 3.8, 3.9 and 4.1 in the same manner with the 

two- and three-neuron cases. 

 

      〈  〉  〈  〉  〈  〉  〈  〉 

                              〈  〉     〈    〉    〈      〉 

                       〈    〉     〈      〉    〈        〉    
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        〈        〉  
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            , 

            , 
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Chapter 3  Influence of external inputs and asymmetry of connections on 

information-geometric measures involving up to ten neuronal interactions 

 

Preface 

 

This chapter refers Nie, Y. Fellous. J.M. and Tatsuno, M., Influence of External Inputs 

and Asymmetry of Connections on Information-geometric Measures involving up to Ten-

neuronal Interactions, in pressing in Neural Computation, 2014. This work is the 

extension of chapter 2, which investigated how information-geometric methods are 

affected by the combination of uncorrelated and correlated external inputs. The higher 

order interaction, rather than only pair-wise correlations, among neurons in large neuronal 

network were systematically studied by both mathematical analysis and numerical 

simulations. This paper is the first investigation of information-geometric methods 

involving up to ten-neuronal interactions. 

 

Abstract 

The investigation of neural interactions is crucial for understanding information 

processing in the brain. Recently, an analysis method based on information geometry (IG) 

has gained increased attention, and the property of the pairwise IG measure has been 

studied extensively in relation to the two-neuron interaction. However, little is known 

about the property of IG measures involving more neuronal interactions. In this study, we 

systematically investigated the influence of external inputs and the asymmetry of 

connections on the IG measures in cases ranging from one-neuron to ten-neuron 

interactions. First, the analytical relationship between the IG measures and external inputs 
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was derived for a network of ten neurons with uniform connections.  Our results 

confirmed that the single and pairwise IG measures were good estimators of the mean 

background input and of the sum of the connection weights, respectively. For the IG 

measures involving three to ten neuronal interactions, we found that the influence of 

external inputs was highly non-linear. Second, by computer simulation, we extended our 

analytical results to asymmetric connections. For a network of ten neurons, the numerical 

simulation showed that the behavior of the IG measures in relation to external inputs was 

similar to the analytical solution obtained for a uniformly connected network.  When the 

network size was increased to one-thousand neurons, the influence of external inputs 

almost disappeared.  This result suggests that all IG measures from one-neuron to ten-

neuron interactions are robust against the influence of external inputs. In addition, we also 

investigated how the strength of asymmetry influenced the IG measures.  By simulation 

with a one-thousand-neuron network, we found that that all the IG measures were robust 

against the modulation of asymmetry of connections.  Our results provide further support 

for an information-geometric approach, and provide useful insights when these IG 

measures are applied to real experimental spike data. 

 

3.1. Introduction 

 

The interaction between neurons plays a key role in information processing in the brain. 

A number of attempts at understanding the contribution of correlations to information 

processing have been made by studying pairwise and higher-order neural correlations 

(Abeles and Gerstein, 1988; Aertsen, et al., 1989; Amari, 2009; Brown, et al., 2004; 

Czanner, et al., 2005; Fellous, et al., 2004; Gerstein and Perkel, 1969; Grun, et al., 2002; 
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Grun, et al., 2002; Lopes-dos-Santos, et al., 2011; Panzeri and Schultz, 2001; Peyrache, et 

al., 2009; Shimazaki and Shinomoto, 2007; Shimokawa and Shinomoto, 2009; Zhang, et 

al., 1998).  Recently, information geometry (IG) has provided an information-theoretic 

approach based on differential geometry, and has been used as a powerful tool for 

analyzing neuronal activity patterns (Amari, 2001; Amari and Nagaoka, 2000; Amari, et 

al., 2003; Eleuteri, et al., 2005; Ikeda, 2005; Ince, et al., 2010; Miura, et al., 2006; 

Nakahara and Amari, 2002; Nakahara, et al., 2006; Nie and Tatsuno, 2012; Ohiorhenuan 

and Victor, 2011; Shimazaki, et al., 2012; Tatsuno, et al., 2009; Tatsuno and Okada, 

2004).  The advantages of the IG approach include an orthogonal decomposition of 

higher-order interactions (Amari, 2001; Amari, 2009; Nakahara and Amari, 2002) and the 

direct relationship between IG measures and connection weights (Nie and Tatsuno, 2012; 

Tatsuno, et al., 2009; Tatsuno and Okada, 2004).  

 

Many of the previous theoretical studies, including information geometry, have focused 

on the pairwise interaction or relatively low orders of interactions. However, since the 

brain may process information with highly coordinated neural activity, the development 

of a correlation measure that is capable of estimating interactions with more neurons is 

important. The IG measures are ideal for this purpose because they can be extended to 

higher-order interactions in a straightforward manner (Amari, 2001). However, a 

systematic investigation of the relationship between different orders of IG measures and 

their dependency on network parameters has not yet been conducted.  In this study, we 

investigated how the IG measures up to ten-neuronal interactions were influenced by a 

correlated input, a background input, and the asymmetry of connections. First, we derived 

the analytical relationship between the IG measures and external inputs using a network 
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of ten neurons that were connected by uniform weights.  Second, we extended our 

investigation to an asymmetrically connected neural network by computer simulation. We 

investigated how the IG measures were influenced by external inputs and the level of 

asymmetry of connections. 

 

This study is organized as follows: in Section 2, we introduce information geometry, a 

model network, and a recursive formula for analytically calculating the IG measures; in 

Section 3, we describe the analytical relationship between the IG measures and the 

external inputs for ten neurons that are uniformly connected; in Section 4, we show the 

numerical results for an asymmetrically connected neural network for up to one-thousand 

neurons; and in Section 5, we summarize the results and discuss the limitations of the 

present work and direction for future studies. 

 

3.2. Information geometry, model network, and a recursive formula for  

       analytically calculating the IG measures 

 

3.2.3 Information Geometry 

 

In this section, we describe an information-geometric approach (for further details see 

(Amari and Nagaoka, 2000).     is a binary variable that represents the state of the  -th 

neuron in cases where it is silent (    ) or has a spike (    ).         
 is the 

probability of an N-neuron system where we assume         
  .  The full N-th order 

log-linear model (LLM) of an N-neuron system is given by: 
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 ∑  

     
  

 

 ∑   
     

    
   

  

 ∑        
     

       

       

         
     

                           

 

where        
     

 (     ) represents the  -neuron interaction and           is the 

normalizing factor so that ∑           
    (Amari and Nagaoka, 2000). The first and 

second superscripts represent the order of LLM and the number of neurons in the system, 

respectively. We call       
     

 the  –neuron IG measure of the fully expanded LLM 

(Tatsuno and Okada, 2004).  For simplicity, we also refer to the one-neuron IG measure 

as the single IG measure, and the two-neuron IG measure as the pairwise IG measure. 

The first few IG measures and the normalizing factor are expressed as: 
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)  

                … … …  

                    

                                                                                                                               

 

where            . Note that for     
     

 and      
     

, we used the following 

form of representation: 

                                                                                      

                                                                                                        

 

In general terms, the partially expanded k-th order LLM of an N-neuron system is 

expressed by: 

 

              
 ∑  
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where       
     

 (       ) is the  -neuron IG measure of the partially expanded k-

th order LLM. The first few terms and normalizing factor are given as follows: 
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where '   ' represents the marginalization over the (N-k) neurons. Also note that for 

    
     

 and      
     

, we used the following form of representation: 
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Both       
     

 (the IG measure from the full model) and       
     

 (the IG measure from the k-

th order partial model) represent the m-neuron interactions.  However, note the difference 

between them;       
     

 is calculated from the full information of all N neurons. By contrast, 

      
     

 is calculated from the partial information of k neurons by marginalizing (N-k) 

neurons. It has been shown that       
     

 is statistically orthogonal to any 〈  〉 where 〈  〉 

represents the expectation of   . On the other hand,       
     

 is orthogonal to 〈  〉 for i that is 

included in the k neurons (Amari, 2001; Nakahara and Amari, 2002).  

 

To calculate the IG measures, it is often convenient to use the relationship between the 

marginal and coincident firings (〈  〉 〈    〉   〈       〉  and the probability of events 

      
        

          
).  For the IG measures with the full LLM, by extending the 

previous study (Nie and Tatsuno, 2012), we have 
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                                           〈      〉  ∑ 〈        〉

       

   〈       〉  

                     

                     〈       〉                                                                                                 

where an upper sign (lower sign) at the last term on the right-hand side is taken when N is 

an even (odd) number. Similarly, for the partly expanded k-th order IG measures, the 

formula becomes 
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where an upper sign (lower sign) at the last term on the right-hand side is taken when k is 

an even (odd) number. 

In summary, the probability of events (     
        

           
           

) can be 

calculated from the marginal and coincident firings 

(〈  〉 〈    〉   〈       〉   〈       〉) using equation 3.7 for the full LLM, and 

using equation 3.8 for the partially expanded LLM. The IG measures with any neuronal 

interactions can be then calculated with equation 3.2 for the full LLM, and with equation 

3.5 for the partially expanded LLM.  However, performing these calculations for large   

is difficult.  In addition, obtaining the relationship between 

(〈  〉 〈    〉   〈       〉   〈       〉) and network parameters such as external 

inputs for an arbitrary network structure is not straightforward.  Therefore, in the 

analytical part of this study, we focused on a uniformly connected network of ten neurons. 

Our goal was to obtain an insight into how the IG measures of up to ten-neuron 

interactions were related to external inputs. We also expanded the study to include 

asymmetric connections and a network with more neurons through the use of computer 

simulation.  In the next section, we describe the structure and dynamics of the neural 

network that we used in this study. 
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3.2.2 Model Network 

3.2.2.1 General Description 

 

We begin with a general description of a network (see Figure 3.1). The network consists 

of a layer of recurrently connected   neurons             , where a connection 

strength from a pre-synaptic neuron     to a post-synaptic neuron     is represented by    . 

Each neuron in the layer receives a correlated input from a single up-stream neuron    

with a connection strength represented by    . It also receives a background input   . The 

up-stream neuron    receives a background input   . We assume that a background input 

is a random variable             where          is the normal distribution with the 

mean (    and variance    
  . If we let       be the state of the  -th neuron at time t, the 

binary value, 0 or 1, correspond to a quiescent and active state, respectively.  Under these 

conditions, the total input to the  -th neuron    in the layer and to the up-stream neuron    

are written as follows: 

 

                   ∑        

   

                                                                                 

                                                                                                                                         

 

The first term on the right-hand side of equation 3.9 represents inputs from the neurons in 

the same layer.  The second and third terms on the right-hand side of equation 3.9 

represent a correlated input from the up-stream neuron    and uncorrelated background 

input, respectively. 
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Figure 3.1: Schematic of a network. 

Neurons in the upper layer             are connected by the connection 

weight     from a pre-synaptic neuron     to a post-synaptic neuron    . Each 

neuron in the layer receives a correlated input from a single up-stream neuron    
with a connection strength represented by    . It also receives a background 
input   . The up-stream neuron    receives a background input   . A background 
input is a random variable             where          is the normal distribution 

with the mean (    and variance    
  . 

 

 

The response of the model neuron is stochastic, depending on the total input   .  

Following the work of Ginzburg and Sompolinsky (1994), the transition rate   between 

the binary states is written as: 

                  (         )  
 

   

          [        ]                                      
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where    is a microscopic characteristic time and       is a monotonically increasing 

sigmoidal function whose value is bounded in the interval [0, 1]. The firing probability of 

a neuronal state variable 〈     〉 is: 

                   

 

  
〈     〉   〈     〉  〈        〉                                                                   

Note that 

                           〈     〉                                                                                                     

is the marginal probability distribution of       where the i-th neuron takes the value 1, 

while all the other N-1 neurons take arbitrary values (0 or 1). Similarly, the coincident 

firing of the  -th and  -th neurons, 〈          〉                               , is expressed 

as: 

       

 

  
〈          〉    〈          〉  〈             〉  〈             〉            

The coincident firing of   neurons, 〈                〉                             , is 

written as: 

        

 

  
〈                〉    〈                〉 

                                                          〈                               〉 

                                                          〈                               〉 

                                                            〈                                 〉            
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For mathematical clarity, we investigate neural interactions when the network is in the 

equilibrium state. Equations 2.12, 2.14, and 2.15 then reduce to 

            〈  〉  〈     〉                                                                                                                       

            〈    〉  
 

 
(〈       〉  〈       〉)                                                                                 

           〈       〉  
 

 
 〈                〉 

                                           〈                〉 

                                             〈                  〉                                                       

Note that 〈  〉               , 〈    〉                         and 〈       〉  

                  do not depend on  . 

 

3.2.2.2 Simplified Network 

 

Our goal for the analytical part of this study is to find the explicit relationship between 

(〈  〉 〈    〉   〈       〉   〈       〉) in equations 3.16, 3.17, and 3.18 and 

external inputs (a correlated input     and a background input   ). To help facilitate the 

analytical investigation, we set all recurrent connections to be equal (uniform):       . In 

addition, for mathematical clarity, we assumed that a connection weight from the up-

stream neuron    ) to a neuron    ) is uniform, and that the background input to a neuron 

     has the same mean (   and variance    (         ). These assumptions simplified 

equation 2.9 as follows: 
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                    ∑     

   

                                                                                     

 

For a sigmoidal activation function      , we used: 

 

                    
            

 
                                                                                        

 

where   is a parameter controlling the firing probability of a model neuron. 

 

In the equilibrium limit, the influence of the background input is characterized by its 

mean value  .  In the following section, we investigate how the strength of a correlated 

input     and the mean of a background input     influence the IG measures. 

 

 

3.2.3 Derivation of System Equations in the Equilibrium Limit 

 

3.2.3.1 Two-neuron System 

 

Before we investigate the ten-neuron network, it is instructive to consider a simpler case 

where the layer contains only two neurons. In the equilibrium limit, equation 3.16 for the 

two neurons in the layer is written as: 

 

                      〈  〉  〈     〉  〈            〉                                                          
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                      〈  〉  〈     〉  〈            〉                                                          

 

By taking advantage of the relationship 

 

    (         )                              

                                         (    )         (    )                                 

 

and considering 〈  〉  〈  〉 〈    〉  〈    〉,  equations 3.21 and 3.22 reduce to one 

equation, 

 

       〈  〉  〈    〉{                (           )} 

                   〈  〉              〈  〉                                         

 

For an up-stream neuron   , we have 

 

                                                          〈  〉                                                                           

 

For the joint firing of two neurons, equation 3.17 becomes: 

 

〈    〉  
 

 
[ 〈    〉  〈    〉                  

  〈  〉  〈  〉       ]                                                                            

〈    〉  
 

 
[〈    〉                  〈  〉       〈  〉    ]     
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〈    〉  
 

 
[〈    〉                  〈  〉       〈  〉    ]     

                                                                                                                                                      

 

Considering 〈  〉  〈  〉 〈    〉  〈    〉, equations 3.27 and 3.28 become identical. 

Therefore, equations 3.26, 3.27, and 3.28 reduce to two equations, 

 

〈    〉  〈    〉                  〈  〉                                            

〈    〉  
 

 
[〈    〉                  〈  〉       〈  〉    ]     

                                                                                                                                                     

 

For the coincident firing of three neurons, equation 3.18 translates to: 

 

            〈      〉  
 

 
[ 〈    〉  〈    〉          〈    〉     ] 

                              
 

 
[ 〈    〉         〈    〉     ]                                       

 

Note that we used 〈    〉  〈    〉 from the first to the second lines on the right-hand 

side of the equation. 

We now have five equations (3.24, 3.25, 3.29, 3.30, and 3.31) for five marginal and 

coincident firings  〈  〉, 〈  〉, 〈    〉, 〈    〉 and 〈      〉 . By solving these equations 

simultaneously, we represent the marginal and coincident firings in terms of the network 
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parameters  ,  ,  ,    and  .  We then use these parameters in equations 3.7 or 3.8 to 

obtain the probability of events such as    
      

          
. Finally, the IG measures 

for the full LLM are calculated by using equation 3.2 and the IG measures for the 

partially expanded LLM are calculated by using equation 3.5.   

In the following section, we use a simplified notation such as 〈    〉 for 〈    〉 and    
     

 

for    
     

 because all IG measures of the same order in the layer are identical due to the 

uniform connection assumption. 

 

3.2.3.2 Ten-neuron System 

 

The equations for a ten-neuron system can be obtained by expanding the procedure in the 

previous section. Therefore, we solved twenty-one equations simultaneously for the 

following twenty-one marginal and coincident firings: 〈  〉, 〈  〉, 〈    〉, 〈    〉, 

〈      〉, 〈      〉, 〈        〉, 〈        〉, 〈          〉, 〈          〉, 

〈            〉, 〈            〉, 〈              〉, 〈              〉, 

〈                〉, 〈                〉, 〈                  〉, 

〈                  〉, 〈                    〉, 〈                     〉 and 

〈                       〉. Since space does not allow us to write all twenty-one 

equations, we provide an equation for the first-order marginal 〈  〉 as an example in the 

Appendix.  

 

Next, we analytically calculated the IG measures with all possible neuronal interactions: 

the one-neuron IG (  
      

 -   
       

   the two-neuron IG (   
      

 -    
       

   the three-
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neuron IG (    
      

 -     
       

 , the four-neuron IG (     
      

 -      
       

 , the five-neuron IG 

(      
      

 -       
       

 , the six-neuron IG (       
      

 -        
       

 , the seven-neuron IG (        
      

 - 

        
       

 , the eight-neuron IG (         
      

 -          
       

 , the nine-neuron IG (          
      

 - 

          
       

), and the ten-neuron IG (            
       

 .  To this end, we took advantage of a 

simplified network structure where equation 2.2 for the full LLM reduces to: 

 

                         
     

    

    ⏟
  

    ⏟
    

     ⏟
    

      ⏟
    

(
  
 

)
     ⏟

    

        ⏟
    

(
  
 

)
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    ⏟
    

     ⏟
    

(
  
 

)
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       ⏟
    

(
  
 

)
      ⏟

    

    ⏟
    

(
  
 

)
               

  

                       
     

    

(

 
 

    ⏟
    

    ⏟
        

     ⏟
    

      ⏟
        

(
    

 
)

    ⏟
  

     ⏟
        

(
    

 
)
    ⏟

    

       ⏟
        

(
    

 
)
  

                                               

    ⏟
    

        ⏟
        

(
    

 
)
      ⏟

  

    ⏟
        

(
    

 
)

    ⏟
    

       ⏟
        

(
    

 
)
     ⏟

 )

 
 

                  

 

where   is the integer and (
 
 
) represents a binomial coefficient.  Note that 

                  

(
    

 
)
 expresses possible combinations on the first        variables.  

Similarly, equation 2.5 for the partial LLM reduces to: 
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In the next section, we describe how   (the strength of a correlated input to neurons in 

the layer) and   (the mean of a background input to the neurons in the layer) influence the 

IG measures using a simplified ten-neuron network. 
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3.3. Analytical Study of IG Measures by Uniformly Connected Ten 

Neurons 
 

In the analytical study in this section, we vary the strength of the correlated input   

between 0 and 50J where J is the strength of the intrinsic connection between neurons in 

a layer. J is set to 1/10 following the general scaling rule of       where N is the 

number of neurons. The range of values is chosen to cover the strength of correlated 

inputs that could be observed in the brain. For example, the mossy-fiber from the dentate 

gyrus to the CA3 region of the hippocampus is known to make a very strong synaptic 

connection. This strength has been estimated to be five to ten fold of the intrinsic 

recurrent connections in CA3 (Urban, et al., 2001). Therefore,   [     ] is wide 

enough to cover the vast majority of correlated inputs that could be observed 

experimentally. The strength of the mean background input   is varied between 0 and 5J. 

The difference of the range between   and   comes from the different implementation of 

these inputs. While the correlated input   was modeled with an up-stream neuron   , the 

background input   was implemented as a direct input to each neuron in a layer (see 

equation 3.19).  This was done so that the model was consistent with previous studies 

(Ginzburg and Sompolinsky, 1994; Nie and Tatsuno, 2012; Tatsuno, et al., 2009; Tatsuno 

and Okada, 2004). The parameter   that controls the firing probability of a model neuron 

in equation 3.24 was set to 1. It corresponds to the firing probability of approximately 

0.15 when the network receives the weakest inputs            and approximately 

0.64 when the network receives the maximum inputs             . 
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In the following section, we summarize the results in four categories of the IG measures: 

the IG measure for a single neuron (  
      

), the IG measure for a two-neuron interaction 

(   
      

), the IG measures for three to five-neuron interactions (    
      

,      
      

,       
      

), 

and the IG measures for six to ten-neuron interactions (       
      

,         
      

,          
      

, 

          
      

,             
       

). 

 

3.3.1 The IG Measure for a Single Neuron Interaction,   
      

 

 

The IG measure for a single neuron is the coefficient   
     

 in the full LLM (equation 3.1) 

and   
     

 in the partially expanded LLM (equation 3.4). Under the condition that there is 

no correlated input (   ), a previous study (Tatsuno, et al., 2009) showed that   
     

 

can be related to an uncorrelated background input    such as:   

 

                       
     

          (
 

 
)                                                                            

 

Below, we investigate the influence of a correlated input   and the mean of a 

background input   to   
     

 where   is systematically varied from one to ten. For a 

simplified ten-neuron network,   
     

 reduces   
     

, and is given by: 
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      ⏟
   

    ⏟
    

      ⏟
   

    ⏟
    

                                                                        

 

Figures 3.2A shows how   
      

 is influenced by a correlated input   in the absence of a 

background input   (data with a background input was not shown because the overall 

tendency was the same). The calculation shows that   
      

 is linearly related to the 

strength of   initially, but that it becomes insensitive to it (asymptotic flat line). In 

addition, the influence of   was decreased with the increase of the order of LLM. In 

contrast, we found that a background input   was related to   
      

 linearly regardless of 

the existence of  (Figure 3.2B for    . Data where     was not shown because 

the overall tendency was same). Furthermore, the figures showed that the linear 

relationship between   
      

 and   described in equation 3.1 holds stronger for the higher-

order LLM; the exact relationship   
               being obtained at      (full 

LLM, Figure 3.2B).  In summary, the analytical calculation shows that the single IG 

measure   
      

 is not sensitive to the strength of a correlated input    but that it is 

linearly related to the strength of the background input  .  In practice, this property could 

be useful to estimate the relative amount of background input that a neuron receives. 
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Figure 3.2: Relationship between the IG measures (  
      

,    
      

,     
      

, 

     
      

,       
      

), a correlated input   ), and a background input     for a ten-

neuron uniformly connected network 

The network parameters are set as        and       .   is modified in the 

range of [     ] and   is modified in the range of [    ]. (A)   
      

 when a 
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correlated input     is varied in the absence of a background input (   ). (B) 

  
      

 when background input (   is varied in the absence of a correlated input 

(   ).    
      

,   
      

,   
      

,   
      

,   
      

,   
      

,   
      

,   
      

,   
      

  and 

  
       

 are represented by a black solid line, a black dashed line, a black dotted 

line, a black dash-dot line, a gray solid line, a gray dashed line, a gray dotted line, 
a gray dash-dot line, a light-gray solid line, and a light-gray dashed line. (C) 

   
      

when a correlated input     is varied in the absence of a background input 

(   ). (D)    
      

 when a background input     is varied in the absence of a 

correlated input (   ).    
      

,    
      

,    
      

,    
      

,    
      

,    
      

,    
      

, 

   
      

  and    
       

 are represented by a black solid line, a black dashed line, a 

black dotted line, a black dash-dot line, a gray solid line, a gray dashed line, a 

gray dotted line, a gray dash-dot line, and a light-gray solid line. (E)     
      

when a 

correlated input     is varied in the absence of a background input (   ). (F) 

    
      

 when a background input     is varied in the absence of a correlated input 

(   ).     
      

,     
      

,     
      

,     
      

,     
      

,     
      

,     
      

  and     
       

 are 

represented by a black solid line, a black dashed line, a black dotted line, a black 
dash-dot line, a gray solid line, a gray dashed line, a gray dotted line, and a gray 

dash-dot line. (G)      
      

 when a correlated input     is varied in the absence of 

a background input (   ). (H)      
      

 when a background input     is varied in 

the absence of a correlated input (   ).       
      

,      
      

,      
      

,      
      

,      
      

, 

     
      

  and      
       

 are represented by a black solid line, a black dashed line, a 

black dotted line, a black dash-dot line, a gray solid line, a gray dashed line, and 

a gray dotted line.  (I)       
      

 when a correlated input     is varied in the absence 

of a background input (   ). (J)       
      

 when a background input     is varied in 

the absence of a correlated input (   ).        
      

,       
      

,       
      

,       
      

,       
      

  

and       
       

 are represented by a black solid line, a black dashed line, a black 

dotted line, a black dash-dot line, a gray solid line, and a gray dashed line. 
 

 

3.3.2 The IG Measure for a Two-neuron Interaction,    
      

 

 

The IG measure for a two-neuron interaction    
     

 has been extensively studied because 

it represents an interaction between two neurons (Amari, 2001). It has been shown that 

the measure is statistically independent from firing rate modulation (Amari, 2009; 
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Nakahara and Amari, 2002). Under the assumption that there is no correlated input 

(   ), it has also been shown that it is directly related to the sum of connection 

weights (Tatsuno, et al., 2009), 

 

                               
     

 (       )   (
 

 
)                                             

                               
     

       (
 

 
)                                                          

 

Furthermore, even under the influence of a correlated input  , it has been shown that the 

pairwise measure with the fourth or fifth-order LLM,    
     

 or    
     

, is able to estimate 

the connection weight provided that the size of the network is sufficiently large (  

       ) (Nie and Tatsuno, 2012).  

 

For the simplified ten-neuron network, the pairwise IG measure is calculated as: 

 

                     
     

    
                         

                         
                                                     

                     
     

    

       ⏟
   

    ⏟
    

       ⏟
   

    ⏟
    

       ⏟
   

    ⏟
    

       ⏟
   

    ⏟
    

                                                     

 

Here, we analytically investigated the influence of a correlated input   and a background 

input   on    
      

 where   was systematically varied from two to ten. When   was 

modified,    
      

 was affected but to a lesser extent for higher-order   of the LLM (see 
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Figure 2C). Interestingly, when a background input existed,    
      

 was less likely 

affected by the correlated input (data not shown).  Note that    
      

        is the 

correct answer for estimating the sum of the connection weights (a horizontal dashed line). 

When   was modified,    
      

 was weakly affected when there was no correlated input 

(see Figure 4.2D).  For the full LLM (    ),    
      

 was completely independent from 

the modulation of  , providing the correct answer of 0.2 (      , the horizontal dashed 

line).  When a correlated input existed, the value of    
      

 was affected more severely, 

especially when the order of LLM   was low (data not shown).   

 

In summary, the analysis shows that the pairwise IG measure    
      

 is a good estimator 

of the sum of connection weights, even under the influence of both a correlated input   

and a background input  .  This is especially true if the order of LLM   is high.  In 

practice, the calculation of    
       

 might not be easy to obtain because of the limited size 

of experimental data.  However, as we previously discussed,    
     

 or    
     

 would 

provide a reasonable estimation of connection weights provided that the size of the 

network is large (for example, N=1000) (Nie and Tatsuno, 2012). Therefore,    
     

 could 

be a useful measure for estimating the sum of connection weights in electrophysiological 

recordings. 

 

 

 



 

128 
 

3.3.3 The IG Measures for Three to Five-Neuron Interactions, (    
      

,      
      

, 

      
      

) 

 

To investigate whether the brain processes information with higher-order neural 

interactions, several studies have started using the IG measures with a couple of neuronal 

interactions (Ganmor, et al., 2011; Ohiorhenuan, et al., 2010; Shimazaki, et al., 2012). 

Therefore, it is important to understand how the IG measures at these interaction levels 

are influenced by correlated and background inputs.  For the simplified ten-neuron 

network, they are calculated as: 
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Note that (
 
 
) represents a binomial coefficient and that                

(
 
 
)
 runs over 

the possible combinations on the first   variables. 

 

The analytical results for     
      

,      
      

 and       
      

 are plotted from Figures 4.2E to 4.2J. 

When a correlated input   is 0, all the measures are zero regardless of the existence of a 

background input   (see Figures 4.2E, 4.2G and 4.2I).  Since the network reduces to a 

Hopfield-type network where    , the result is consistent with the finding that the 

energy function has terms only up to the second order. For    , the IG measures 

deviate from 0 because a non-zero   introduces higher-order interactions.  The analytical 

calculation shows that     
      

 is affected monotonically by   (see Figure 4.2E) while 

     
      

 and       
      

 are influenced in a non-linear manner (see Figures 4.2G and 4.2I). 

Interestingly,     
      

 was less affected by   if there was a background input   (data not 

shown), as was the case for the pairwise IG measure    
      

.  This tendency was not 

obvious for the other IG measures      
      

 and       
      

. For all the IG measures investigated 

here, the values approach zero when the order of LLM   increases.  When a background 

input   is varied, the IG measures stay very close to 0 if there is no correlated input   

(see Figures 4.2F, 4.2H and 4.2J).  However, when    , the IG measures are more 



 

130 
 

strongly influenced (data not shown).  The range of modulation for     was 

approximately on the order of 0.1, almost        times larger than when    . The 

values approach zero when the order of LLM   increases, suggesting that the IG 

measures calculated by higher-order LLM may be more robust to interferences from a 

background input  .   

 

In summary, the analysis shows that the IG measures for three to five-neuron interactions 

are affected by a correlated input   in a highly non-linear manner. The influence by a 

background input   was insignificantly small if the correlated input did not exist, but it 

increased significantly when the correlated input was present. 

 

 

3.3.4 The IG Measures for Six to Ten-Neuron Interactions, (       
      

,         
      

, 

         
      

,           
      

,             
       

) 

 

The IG measures with this many neuronal interactions have not yet been used in data 

analysis.  However, recent developments in recording technology should allow for the 

simultaneous recording of a large number of neurons in the near future. Therefore, it is 

important to investigate how these IG measures are influenced by correlated and 

background inputs.  They are calculated as follows: 
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Please note that the IG measure for a nine-neuron interaction           
      

 has only one 

partially expanded LLM (   ) and the IG measure for a ten-neuron interaction 

            
       

 has the full LLM (    ) only. 

 

The analytical results for        
      

,         
      

,          
      

,           
      

 and             
       

 are 

shown in Figure 3.3.  The general trend of dependency of these measures on correlated 

and background inputs was similar to that of      
      

 and       
      

. When    , all the 

measures are zero regardless of the existence of a background input   (see Figures 3.3A, 

3.3C, 3.3E, 3.3G and 3.3I). However, when    , especially when            , the 

IG measures deviated from zero in a highly non-linear manner. The values tended to 

approach zero when the order of LLM   increased; although the trend was less obvious as 

compared to IG measures involving three to seven neurons. When a background input   

is varied, the IG measures stay very close to zero if there is no correlated input   (see 

Figures 3.3B, 3.3D, 3.3F, 3.3H and 3.3J).  When    , the IG measures are more 

strongly influenced (data not shown).  The range of modulation was almost         

fold larger than when    . When the order of LLM   increased, the values became 

less variable. 
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In summary, this analysis shows that the IG measures for six to ten-neuron interactions 

are affected by a correlated input   in a highly non-linear manner. The influence by a 

background input   was insignificantly small if      but increased significantly for 

   .  

 

Figure 3.3: Relationship between the IG measures (       
      

,         
      

, 

         
      

 ,          
      

 ,            
       

), a correlated input   ), and a background 

input     for a ten-neuron uniformly connected network. 
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The network parameters are set as        and       .   is modified in the 

range of [     ] and   is modified in the range of [    ]. (A)        
      

 when a 

correlated input     is varied in the absence of a background input (   ). (B) 

       
      

 when background input (   is varied in the absence of a correlated input 

(   ).         
      

,        
      

,        
      

,        
      

  and        
       

 are represented by a black 

solid line, a black dashed line, a black dotted line, a black dash-dot line, and a 

gray solid line. (C)         
      

 when a correlated input     is varied in the absence 

of a background input (   ). (D)         
      

 when a background input     is varied 

in the absence of a correlated input (   ).          
      

,         
      

,         
      

  and 

        
       

 are represented by a black solid line, a black dashed line, a black dotted 

line, and a black dash-dot line. (E)          
      

 when a correlated input     is varied 

in the absence of a background input (   ). (F)          
      

 when a background 

input     is varied in the absence of a correlated input (   ).          
      

, 

         
      

  and          
       

 are represented by a black solid line, a black dashed line, 

and a black dotted line. (G)           
      

 when a correlated input     is varied in the 

absence of a background input (   ). (H)           
      

 when a background input 

    is varied in the absence of a correlated input (   ).            
      

 and 

          
       

 are represented by a black solid line and a black dashed line.  (I) 

            
       

 when a correlated input     is varied in the absence of a background 

input (   ). (J)             
       

 when a background input     is varied in the 

absence of a correlated input (   ).              
       

 is represented by a black 

solid line. 
 

3.4. Simulation Study of IG Measures with Asymmetric Connections 

 

Although the analytical relationship between the IG measures and network parameters is 

useful, we had to apply a strong constraint of uniform connectivity between neurons.  We 

also had to use a small network size of ten neurons to obtain the analytical solutions.  

These constraints made it difficult to obtain further insights into a more general situation 

such as asymmetric connections.  Therefore, we extended our investigation by using 

computer simulation.  
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First, to demonstrate the accuracy of computer simulation, we numerically calculated the 

IG measures for a uniformly connected ten-neuron network and compared them with the 

analytical results that were obtained in the previous section.  Second, we extended the 

connections from uniform to asymmetric. We investigated how external inputs (correlated 

input   and background input  ) influenced the IG measures and how the network size 

affected the relationship.  In addition, we also investigated how the magnitude of the 

asymmetry of connection weights influenced the IG measures. 

 

3.4.1 Comparison between Computer Simulations and Analytical Results 

 

We performed numerical simulations using ten uniformly connected Ginzburg and 

Sompolinsky neurons (1994).  We computed the IG measures from one-neuron 

interaction (  
      

) to ten-neuron interactions (            
       

) with all possible LLM 

orders  , corresponding to Figures 3.2 and 3.3. We calculated the IG measures by 

sampling a correlated input   from 0 to 50J with an increment of 5J.  We also calculated 

the IG measures by sampling a background input   from 0 to 5J with an increment of 0.5J.  

At each value of   and  , we performed one-hundred simulation trials where each trial 

consisted of 10
6
 updates.  The parameter   that controls the firing probability of a model 

neuron in equation 3.24 was set to 1.  The results are reported as the mean   SEM.   

 

Figure 3.4 shows the representative examples in which we compare the values of 

numerical simulations and the corresponding analytical results. For clarity, we showed 

the results only for the single IG measure   
      

 (Figures 3.4A and 3.4B), the pairwise IG 
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measure    
      

 (Figures 4C and 4D), the nine-neuron IG measure           
      

 (Figures 

3.4E and 3.4F), and the ten-neuron IG measure             
       

 (Figures 3.4G and 3.4H). We 

also plotted the results only for the lowest and highest LLM orders  
      

; and   
       

 for 

the single IG measure (Figures 3.4A and 3.4B),    
      

 and    
       

 for the pairwise IG 

measure (Figures 3.4C and 3.4D) ,           
      

 and           
       

 for the nine-neuron IG 

measure (Figures 3.4E and 3.4F), and             
       

 the ten-neuron IG measure (Figures 

4G and 4H).  Figure 3.4 shows that the numerical simulations and analytical results 

strongly agree; all analytical results are included within the mean ± SEM of the values 

obtained with the numerical simulations.  We also confirmed that the same relationship 

holds true for all the IG measures that were not included in Figure 3.4 and for all possible 

LLM orders. Taken together, these results demonstrate that the numerical simulation 

reproduces the analytical result accurately, and that it could be used for investigating the 

relationship between the IG measures and network parameters in more general settings 

such as asymmetric connections. 
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Figure 3.4: Comparison between a numerical simulation and an analytical 
solution.   

The results of one-hundred simulation trials (mean   SEM) are plotted against 
the theoretical calculation in Figures 2 and 3.  The network parameters are set 

as        and       .   is modified in the range of [     ] and   is modified 
in the range of [    ]. The numerical simulations are represented by solid lines 
with error bars.  The analytical solutions are represented by gray lines.  (A) 

Comparison for the single IG measures   
      

 and   
       

 when correlated input 

    is varied in the absence of a background input (   ). (B) Comparison for 

the single IG measures   
      

 and   
       

 when background input     is varied in 

the absence of a correlated input (   ).  (C) Comparison for the pairwise IG 
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measures    
      

 and    
       

 when correlated input     is varied in the absence 

of a background input (   ). (D) Comparison for the pairwise IG measures 

   
      

 and    
       

 when background input     is varied in the absence of a 

correlated input (   ).  (E) Comparison for the nine-neuron IG measures 

          
      

 and           
       

 when correlated input     is varied in the absence of a 

background input (   ). (F) Comparison for the nine-neuron IG measures 

          
      

 and           
       

 when background input     is varied in the absence of a 

correlated input (   ).  (G) Comparison for the ten-neuron IG measures 

            
      

 and             
       

 when correlated input     is varied in the absence of 

a background input (   ). (H) Comparison for the ten-neuron IG measures 

            
      

 and             
       

 when background input     is varied in the absence 

of a correlated input (   ). 
 

3.4.2 Relationship between the IG Measures and External Inputs for 

Asymmetrically Connected Networks 

 

In this section, we extended a uniformly connected neural network to an asymmetrically 

connected one.  We numerically calculated the IG measures up to ten-neuronal 

interactions with      and one-thousand neurons. Asymmetric connections were set as 

            at each simulation trial, where     was a random number drawn from the 

normal distribution         with the mean     and variance       , respectively.  

Without losing generality, we calculated the IG measures for a specific neuron group as 

follows. For the pairwise IG measure    
     

, we selected the neurons 1 and 2, and set their 

connection weights to             and     
 

 
    .  In this way, the magnitude of 

their total connections was kept constant (           ).  The rest of the connections 

were set following            .  Similarly, for the three-neuron IG measure     
     

, 

we selected the neurons 1, 2 and 3, and set their connection weights to (            

and            ), (            and            ), and (            
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and            ). The rest of the connections were set following            .  

We used the same procedure for all the other IG measures with four or more neuronal 

interactions.  The influence of a common input    was investigated at two representative 

values 0 and 10J.  Similarly, the influence of a background input      was investigated 

at 0 and 5J.  Each simulation trial consisted of 10
6
 updates and one-hundred trials were 

performed at each    and   values.  The parameter   that controls the firing probability 

of a model neuron in equation 2.24 was set to 1. The results are presented as the mean   

SEM. 

 

3.4.2.1 The IG Measures for Single and Pairwise Interactions, (  
     

,    
     

) 

 

Figures 3.5A and 3.5B show how the single IG measure   
      

 is influenced by a 

common input    and a background input  , for an asymmetric network of ten neurons.  

For clarity, we showed the results for the lowest and highest LLM orders only (    

(dashed line) and      (solid line)), but we confirmed that the IG measures with     

to     reside between     and     .  The simulation showed that   
      

 (dashed 

line, lowest LLM order) was affected by both the common input and the background 

input.  However,   
       

 (solid line, highest LLM order) was robust against the common 

input and was related to the background input only. Note the similarity between the 

simulation results in Figure 3.5 and the analytical results for a uniformly connected 

network in Figure 3.2;   
      

 and   
       

 at     and       in Figure 3.5A and 

those at      and at      in Figure 3.2A are similar.  Also,   
      

 and   
       

at 

    and      in Figure 3.5B and those at      and at        in Figure 3.2B have 
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similar values.   When the size of the network was increased to N=1000, the influence of 

a common input became significantly smaller (Figure 5C), even for   
        

 (dashed line, 

lowest LLM order).  Note that the values of   
       

 and   
         

 were more consistent 

than those of   
      

 and   
        

, although their network size was one-hundred times 

different (Figures 3.5A-3.5D).  Furthermore, we also confirmed that the values of   
       

 

and   
         

 were close to the values predicted from equation 3.1, even under the 

influence of both the common input and the background input (data not shown). This 

result suggests that   
      

 and   
         

, the single IG measure with the highest LLM 

order in this study, was able to detect the background input correctly even under the 

influence of the common input. 
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Figure 3.5: Relationship between the IG measures (  
     

,    
     

), a 

correlated input   ), and a background input     for an asymmetrically 
connected network.   

For a ten-neuron network (N=10), the network parameters are set as     
   and       .  For a one-thousand neuron network (N=1000), the network 

parameters are set as          and         .    is sampled at 0 and     
and   is sampled at 0 and   .  The IG measures with the lowest LLM order (e.g., 



 

143 
 

  
      

) are represented by a dashed line.  The IG measures with the highest LLM 

order (e.g.,   
       

)  are represented by a solid line.  (A) The single IG measures 

for a ten-neuron network   
      

 and   
       

 when a correlated input     is varied 

in the absence of a background input (   ). (B) The single IG measures for a 

ten-neuron network   
      

 and   
       

 when background input (   is varied in the 

absence of a correlated input (   ).  (C) The single IG measures for a one-

thousand neuron network   
        

 and   
         

 when a correlated input     is 

varied in the absence of a background input (   ). (D) The single IG measures 

for a 1000-neuron network   
        

 and   
         

 when background input (   is 

varied in the absence of a correlated input (   ).  (E) The pairwise IG 

measures for a ten-neuron network    
      

 and    
       

 when a correlated input 

    is varied in the absence of a background input (   ). (F) The pairwise IG 

measures for a ten-neuron network    
      

 and    
       

 when background input (   
is varied in the absence of a correlated input (   ).  (G) The pairwise IG 

measures for a one-thousand neuron network    
        

 and    
         

 when a 

correlated input     is varied in the absence of a background input (   ). (H) 

The pairwise IG measures for a one-thousand neuron network    
        

 and 

   
         

 when background input (   is varied in the absence of a correlated input 

(   ). 
 

 

For the pairwise IG measure    
     

, the results for an asymmetric network of ten neurons 

is shown in Figures 3.5E and 3.5F.  The desired property of the pairwise IG measure is to 

detect the two-neuron interaction correctly;                 for N=10. 

We observed that    
      

 (the measure with the lowest LLM order), was strongly 

influenced by a common input (Figure 3.5E, dashed line), but the influence of a 

background input was much weaker (Figure 3.5F, dashed line).  In contrast, the influence 

of external inputs to    
       

 (the measure with the highest LLM order), was much weaker, 

and    
       

 was able to estimate the connection weight almost correctly (Figures 3.5E 

and 3.5F, solid lines).  It is also important to note the similarity of    
      

 values to the 

corresponding analytical results for a uniform connection (Figures 3.2C and 3.2D).  When 
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the size of the network was increased to N=1000, we observed a similar tendency 

(Figures 3.5G and 3.5H);    
         

 (solid line) was more robust against the external 

inputs than    
        

 (dashed line).   Also note that    
         

  estimated the connection 

weight almost correctly;    
         

               .   

 

In summary, the numerical simulation demonstrated that the single IG measure   
      

 

and the pairwise IG measure    
      

 (highest LLM order) were able to detect the 

background input and the sum of connection weights, for an asymmetrically connected 

network.  We also found that the influence of external inputs became less significant for a 

larger network.   

 

3.4.2.2 The IG Measures for Three to Six-Neuron Interactions, (    
     

,      
     

,       
     

, 

       
     

         
     

          
     

           
     

             
     

)  

 

The influence of external inputs to the IG measures with intermediate neural interactional 

levels,     
     

,      
     

,       
     

,        
     

, is summarized in Figure 3.6, and that with many 

neural interactional levels,         
     

,          
     

,           
     

,             
     

, is summarized in 

Figure 3.7.  
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Figure 3.6: Relationship between the IG measures (    
     

,      
     

,       
     

, 

       
     

), a correlated input   ), and a background input     for an 

asymmetrically connected network.   

For a ten-neuron network (N=10), the network parameters are set as     
   and       .  For a one-thousand neuron network (N=1000), the network 
parameters are set as          and         .    is sampled at 0 and     
and   is sampled at 0 and   .  The IG measures with the lowest LLM order 

(e.g.,     
      

) are represented by a dashed line.  The IG measures with the 

highest LLM order (e.g.,     
       

)  are represented by a solid line.  (A) The three-

neuron IG measures for a ten-neuron network      
      

 and     
       

 when a 

correlated input     is varied in the absence of a background input (   ). (B) 

The three-neuron IG measures for a ten-neuron network     
      

 and     
       

 when 

background input (   is varied in the absence of a correlated input (   ).  (C) 

The three-neuron IG measures for a one-thousand neuron network     
        

 and 

    
         

 when a correlated input     is varied in the absence of a background 

input (   ). (D) The three-neuron IG measures for a one-thousand neuron 
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network     
        

 and     
         

 when background input (   is varied in the 

absence of a correlated input (   ).  (E) The four-neuron IG measures for a 

ten-neuron network      
      

 and      
       

 when a correlated input     is varied in 

the absence of a background input (   ). (F) The four-neuron IG measures for 

a ten-neuron network      
      

 and      
       

 when background input (   is varied in 

the absence of a correlated input (   ).  (G) The four-neuron IG measures for 

a one-thousand neuron network      
        

 and      
         

 when a correlated input 

    is varied in the absence of a background input (   ). (H) The four-neuron 

IG measures for a one-thousand neuron network      
        

 and      
         

 when 

background input (   is varied in the absence of a correlated input (   ).  (I) 

The five-neuron IG measures for a ten-neuron network       
      

 and       
       

 when a 

correlated input     is varied in the absence of a background input (   ). (J) 

The five-neuron IG measures for a ten-neuron network       
      

 and       
       

 when 

background input (   is varied in the absence of a correlated input (   ).  (K) 

The five-neuron IG measures for a one-thousand neuron network       
        

 and 

      
         

 when a correlated input     is varied in the absence of a background 

input (   ). (L) The five-neuron IG measures for a one-thousand neuron 

network       
        

 and       
         

 when background input (   is varied in the 

absence of a correlated input (   ).  (M) The six-neuron IG measures for a 

ten-neuron network        
      

 and        
       

 when a correlated input     is varied in 

the absence of a background input (   ). (N) The six-neuron IG measures for a 

ten-neuron network        
      

 and        
       

 when background input (   is varied in the 

absence of a correlated input (   ).  (O) The six-neuron IG measures for a 

one-thousand neuron network        
        

 and        
         

 when a correlated input     

is varied in the absence of a background input (   ). (P) The six-neuron IG 

measures for a one-thousand neuron network        
        

 and        
         

 when 

background input (   is varied in the absence of a correlated input (   ). 
 

 

For the three-neuron IG measure     
      

 with a ten neuron network,     
      

 (lowest LLM 

order) was strongly influenced by the common input (Figure 3.6A, dashed line) but the 

influence of the background input was much weaker (Figure 3.6B, dashed line).      
       

 

(highest LLM order) was more robust for both common and background inputs (Figures 

3.6A and 3.6B, solid lines).  Also, the     
      

 values are similar to the corresponding 
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analytical values in Figures 3.2E and 3.2F.  When the size of a network was increased to 

N=1000, the influence of external inputs on     
        

 almost disappeared and the values 

of     
        

 stayed around zero (Figures 3.6C and 3.6D).  This result suggests that the 

three-neuron IG measure     
     

 for an asymmetrically connected network is robust 

against external inputs, and that its value is likely to be found around zero if the size of 

the network is sufficiently large. 

 

The results for the four-neuron IG measure      
      

 with a ten neuron network are 

summarized in Figures 3.6E and 3.6F.       
      

 (lowest LLM order) was strongly 

influenced by the common input (Figure 3.6E, dashed line) but the influence of the 

background input was much weaker (Figure 3.6F, dashed line).  The influence of both 

external inputs      
       

 (highest LLM order) was negligibly small (Figures 6E and 6F, 

solid lines).  The      
      

 values were similar to the corresponding analytical values in 

Figures 3.2G and 3.2H. For example, the downward change for      
      

 in Figure 3.6E 

corresponds to the bump where     in Figure 3.2G.  When the size of the network was 

increased to N=1000, the influence of external inputs on      
        

 disappeared (Figures 

3.6G and 3.6H).  These results suggest that the nonlinear relationship between      
     

 and 

the external inputs observed for a small asymmetric network is likely to disappear for a 

large asymmetric network.  

 

The results for the five-neuron IG measure       
      

 with a ten neuron network are 

summarized in Figures 6I and 6J.  We found that the results were very similar to the four-
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neuron IG measure      
      

.  Mainly,       
      

 (lowest LLM order) was strongly influenced 

by the common input (Figure 6I, dashed line), but the influence of the background input 

was much weaker (Figure 3.6J, dashed line).  The influence of both external inputs to 

      
       

 (highest LLM order) was negligibly small (Figures 6I and 6J, solid lines).  The 

downward change for       
      

 in Figure 6I corresponds to the bump where     in 

Figure 3.2I.  For a network of N=1000, the influence of both external inputs on       
        

 

disappeared (Figures 3.6K and 3.6L).  These results suggest that the nonlinear 

relationship between        
     

 and the external inputs observed for a small asymmetric 

network is likely to disappear for a large asymmetric network. 

 

The results for the six-neuron IG measure        
      

 with a ten neuron network are 

summarized in Figures 3.6M and 3.6N and those for        
        

 with a one-thousand neuron 

network in Figures 3.6O and 3.6P.  As with the other intermediate IG measures, we found 

that        
      

 (lowest LLM order) was strongly influenced by the common input (Figure 

3.6M, dashed line), but the influence of the background input was much weaker (Figure 

3.6N, dashed line).  The influence of both external inputs to        
       

 (highest LLM order) 

was negligibly small (Figures 3.6M and 3.6N, solid lines).  The        
      

 values were 

similar to the corresponding analytical values in Figures 3.3A and 3.3B.  For a network of 

N=1000, the influence of both external inputs on        
        

 disappeared (Figures 3.6O and 

3.6P).  These results suggest that the nonlinear relationship between        
     

 and the 

external inputs observed for a small asymmetric network is likely to disappear for a large 

asymmetric network. 
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In summary, the IG measures with intermediate neural interactional levels,     
     

,      
     

, 

      
     

,        
     

, for a small asymmetrically connected network (N=10) are strongly 

influenced by a common input. This finding was similar to the analytical solution for a 

uniformly connected network.  However, when the size of the network becomes large 

(e.g., N=1000), the influence by the external inputs becomes negligibly small, and these 

IG measures are likely to fluctuate around zero. 

 

The influence of external inputs to the IG measures with many neural interactional levels, 

        
     

,          
     

,           
     

,             
     

, is summarized in Figure 3.7.  In short, the 

results were very similar to those found for the IG measures with intermediate 

interactional levels. 
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Figure 3.7: Relationship between the IG measures (        
     

,          
     

, 

          
     

,            
     

), a correlated input   ), and a background input     

for an asymmetrically connected network.   

For a ten-neuron network (N=10), the network parameters are set as     
   and       .  For a one-thousand neuron network (N=1000), the network 
parameters are set as          and         .    is sampled at 0 and     
and   is sampled at 0 and   .  The IG measures with the lowest LLM order (e.g., 

        
      

) are represented by a dashed line.  The IG measures with the highest 

LLM order (e.g.,         
       

)  are represented by a solid line.  (A) The seven-neuron 

IG measures for a ten-neuron network         
      

 and         
       

 when a correlated 

input     is varied in the absence of a background input (   ). (B) The seven-

neuron IG measures for a ten-neuron network         
      

 and         
       

 when 

background input (   is varied in the absence of a correlated input (   ).  (C) 

The seven-neuron IG measures for a one-thousand neuron network         
        

 and 

        
         

 when a correlated input     is varied in the absence of a background 
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input (   ). (D) The seven-neuron IG measures for a one-thousand neuron 

network         
        

 and         
         

 when background input (   is varied in the 

absence of a correlated input (   ).  (E) The eight-neuron IG measures for a 

ten-neuron network          
      

 and          
       

 when a correlated input     is varied 

in the absence of a background input (   ). (F) The eight-neuron IG measures 

for a ten-neuron network          
      

 and          
       

 when background input (   is 

varied in the absence of a correlated input (   ).  (G) The eight-neuron IG 

measures for a one-thousand neuron network          
        

 and          
         

 when a 

correlated input     is varied in the absence of a background input (   ). (H) 

The eight-neuron IG measures for a one-thousand neuron network          
        

 and 

         
         

 when background input (   is varied in the absence of a correlated input 

(   ).  (I) The nine-neuron IG measures for a ten-neuron network           
      

 

and           
       

 when a correlated input     is varied in the absence of a 

background input (   ). (J) The nine-neuron IG measures for a ten-neuron 

network           
      

 and           
       

 when background input (   is varied in the 

absence of a correlated input (   ).  (K) The nine-neuron IG measures for a 

one-thousand neuron network           
        

 and           
         

 when a correlated input 

    is varied in the absence of a background input (   ). (L) The nine-neuron 

IG measures for a one-thousand neuron network           
        

 and           
         

 when 

background input (   is varied in the absence of a correlated input (   ).  (M) 

The ten-neuron IG measure for a ten-neuron network             
       

 when a 

correlated input     is varied in the absence of a background input (   ). (N) 

The ten-neuron IG measure for a ten-neuron network             
       

 when 

background input (   is varied in the absence of a correlated input (   ).  (O) 

The ten-neuron IG measure for a one-thousand neuron network             
         

 

when a correlated input     is varied in the absence of a background input 

(   ). (P) The ten-neuron IG measure for a one-thousand neuron network 

            
         

 when background input (   is varied in the absence of a correlated 

input (   ). 
 

 

The IG measures with the lowest LLM orders (        
      

,          
      

,           
      

, 

            
       

) were strongly influenced by a common input (Dashed line in Figures 3.7A, 

3.7E, 3.7I, and solid line in Figure 3.7M), but the influence of a background input was 

negligible (Dashed line in Figures 3.7A, 3.7E, 3.7I, and solid line in Figure 3.7M). The 
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influence of both external inputs to the highest order IG measures (        
       

,          
       

, 

          
       

) were negligibly small (Figures 3.7A,3.7B, 3.7E, 3.7F, 3.7I and 3.7J, solid 

lines). When the size of a network was increased to N=1000, the influence of both 

external inputs on the IG measures disappeared (Figures 3.7C, 3.7D, 3.7G, 3.7H, 3.7K, 

3.7L, 3.7O and 3.7P).  These results suggest that the nonlinear relationship between the 

IG measures with many neuronal interactions,         
     

,          
     

,           
     

, 

            
     

, and the external inputs observed for a small asymmetric network is likely to 

disappear for a large asymmetric network.   

 

In summary, the numerical simulation demonstrated that if the size of network is 

sufficiently large (e.g., N=1000), the influence of common and background inputs to the 

IG measures with three or more neuronal interactions becomes negligible even for an 

asymmetrically connected network.  For the simulations in this section, we used     

        where     is a random number drawn from the normal distribution         

with the mean     and variance       .  These results suggest that the single and 

pairwise IG measures provide sufficient information for the network property as long as 

the asymmetry of connections is moderate. 

 

3.4.3 Relationship between the IG Measures and Asymmetry of Connections 

 

In this section, we investigate if the IG measures are influenced by higher asymmetry of 

connections.   
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To modify the level of asymmetry of connections, we introduced a parameter  ; 

asymmetric connections were set as              where     is a random number 

drawn from the normal distribution         with the mean     and variance    

   , respectively, and   is an integer between 1 and 5.  Note that     corresponds to 

the connection setting in the previous section.  Similar to the procedure in Section 4.2, 

without losing generality, we calculated the IG measures for a specific neuron group as 

follows. For the pairwise IG measure    
     

, we selected neurons 1 and 2, and set their 

connection weights to              and     
 

 
    .  In this way, the asymmetry 

of connections between neurons 1 and 2 was controlled by the parameter  , but the 

magnitude of their total connections was kept constant (           ).  The rest of the 

connections were set following             .  Similarly, for the three-neuron IG 

measure     
     

, we selected neurons 1, 2, and 3, and set their connection weights to 

(             and            ), (             and            ), and 

(             and            ). The rest of the connections were set 

following             .  We used the same procedure for all the other IG measures 

with four or more neuronal interactions.  We set N=1000 because we are interested in the 

behavior of networks in a biologically realistic size.  To investigate the behavior under 

the influence of both common and background inputs, we used the magnitude of a 

common input as           , and the magnitude of a background input as   

        . The parameter   controlling the firing probability of a model neuron in 

equation 2.24 was set to 1. For each   value, we performed one-hundred simulation trials 

where each trial consisted of 10
6
 updates.  For clarity, we show the results for the lowest 
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and highest LLM orders only. For example,   
        

 and   
         

 for the single IG 

measure and    
        

 and    
         

 for the pairwise IG measure.  However, we 

confirmed that the IG measures for all other LLM orders fell between the IG measures 

with the lowest and highest LLM orders.  The results are reported as the mean   SEM. 
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Figure 3.8: Relationship between the IG measures and asymmetry of 
connections. 

An integer parameter   that controls the level of asymmetry of connections is 
modified between 1 and 5.  The number of neurons is set to       , a 

common input is set to            and the magnitude of a background input 
is set to           . 

The IG measures with the lowest LLM order (e.g.,   
        

) are represented by a 

dashed line.  The IG measures with the highest LLM order (e.g.,   
         

)  are 

represented by a solid line.  (A) The single IG measures   
        

 and   
         

 

when the asymmetry parameter     is varied. (B) The pairwise IG measures 

   
        

 and    
         

 when the asymmetry parameter     is varied. (C) The 

three-neuron IG measures     
        

 and     
         

 when the asymmetry parameter 

    is varied. (D) The four-neuron IG measures      
        

 and      
         

 when the 

asymmetry parameter     is varied.  (E) The five-neuron IG measures       
        

 

and       
         

 when the asymmetry parameter     is varied.  (F) The six-neuron 

IG measures        
        

 and        
         

 when the asymmetry parameter     is varied.  

(G) The seven-neuron IG measures         
        

 and         
         

 when the asymmetry 

parameter     is varied.  (H) The eight-neuron IG measures          
        

 and 

         
         

 when the asymmetry parameter     is varied.  (I) The nine-neuron IG 

measures           
        

 and           
         

 when the asymmetry parameter     is varied.  

(J) The ten-neuron IG measure             
         

 when the asymmetry parameter     is 

varied. 
 

 

Figure 3.8 shows how the IG measures are influenced by the level of asymmetry of 

connections.  The figure is organized in ascending order; the result for   
        

 is in 

Figure 8A and the result for             
         

 is in Figure 3.8J. Solid and gray lines represent 

the results for the IG measures with the lowest and highest LLM orders, respectively.  We 

found that all the IG measures were robust against the change of asymmetry of 

connections in the range from     to     (Figures 3.8A-3.8J).  We also found that 

the IG measures with the highest LLM order provided the best result; for the single IG 

measure,   
         

 fluctuated between -2 and -1.8 (Figure 3.8A, gray line). According to 
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equation 3.1, a predicted value of   
        

 is -1.99.  Figure 3.8A shows that   
         

 has 

a strong agreement with the theoretical prediction, even under a strong asymmetry of 

connections. Similarly, for the pairwise IG measure,    
         

 fluctuated around   

     (Figure 3.8B, gray line).  According to equation 3.4, the predicted value of 

   
         

 is       , which was exactly the value we found in Figure 3.8B.  For the IG 

measures with three or more neuronal interactions, the IG measures with the highest LLM 

order (    
         

 to             
         

) fluctuated around zero. 

 

In summary, the main findings in this section are that all the IG measures are robust 

against the increased asymmetry of connections, and that the IG measures with the 

highest LLM order provides the best results because they have a strong agreement with 

the theoretical predictions.  These results suggest that the IG measures provide useful 

insights into the network parameters, even for strongly asymmetric connections. The 

single IG measure   
     

 is linearly related to a background input and the pairwise IG 

measure    
     

 is linearly related to the sum of connection weights.  Furthermore, the fact 

that the IG measures with three or more neuronal interactions fluctuates around zero 

indicates that the single and pairwise IG measures contain the majority of information for 

the asymmetric network investigated in this paper. 

 

3.5 Discussion  

 

In this study, we investigated the influence of external inputs (a correlated input and an 

uncorrelated background input), and the asymmetry of connections to the IG measures 
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beyond pairwise interactions. Our goal was two-fold.  First, we aimed at finding the 

analytical relationships between the IG measures for up to ten neuronal interactions and 

external inputs. For mathematical clarity, we investigated the dynamics of a network of 

ten uniformly connected binary model neurons. By investigating the relationships in the 

equilibrium limit, we obtained the explicit relationship between the IG measures and the 

strength of correlated input   and the background input  . We confirmed that the single 

and pairwise IG measures were good estimators of the background input and of the sum 

of connection weights, respectively. In contrast, for the IG measures with three or more 

neuronal interactions, the influence of a correlated input was stronger than a background 

input, and it was highly non-linear. Second, we aimed at extending the findings for a 

uniformly connected small network to an asymmetrically connected network.  By 

numerical simulation, we found that the influence of external inputs, that was evident for 

a small-sized asymmetric network, became much weaker for a larger network (e.g., one-

thousand neurons). We also found that all the IG measures from one-neuron to ten-neuron 

interactions were robust against the increased asymmetry of connections, and that the IG 

measures with the highest LLM order provided the best result.  Taken together, this 

investigation demonstrated that the single and pairwise IG measures were good estimators 

of a background input and of the sum of connection weights, even under a strong 

asymmetry of connections. Our study also showed that the IG measures with three and 

more neuronal interactions were not influenced by the network parameters if a network 

was sufficiently large.  All these findings support the usefulness of the IG approach and 

provide further insights when the IG method is used for neural data analysis. 
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One of the important claims of the information-geometric approach is that the single- and 

pairwise-IG measures are good estimators of the background input and of the sum of 

connection weights, respectively.  In other words, the coefficients in the log-linear model 

can be related to the network parameters in the model.  From a neuroscientific point of 

view, the relationship between the pairwise IG measure and the connection weights 

would be particularly interesting (Schneidman, et al., 2006; Tang, et al., 2008; Tyler, et 

al., 2012).  However, we have to be careful as to whether the coefficients in the log-linear 

model actually reflect the real neuronal interaction strength.  We also need to be cautious 

about whether the obtained complicated analytical relationship between the IG measures 

and external inputs is due to an oversimplified or inappropriate neural network model.  

We have previously investigated these questions using the Hodgkin-Huxley model 

(Hodgkin and Huxley, 1952). Using the NEURON simulator, we constructed a small 

network of cortical neurons in which each neuron was driven by an uncorrelated noisy 

input. The neurons were asymmetrically connected by conductance-based AMPA 

receptors (Hines and Carnevale, 1997; Lipa, et al., 2006; Lipa, et al., 2007).  We were 

able to show that the pairwise IG measure was linearly related to the sum of the AMPA 

receptor’s connection weights between the neurons.  In addition, we also found that the 

single IG measure was linearly related to the mean amplitude of noisy input.  Recently, 

we have also conducted numerical simulations using a spiking neuron model (Izhikevich, 

2003).  One-thousand cortical pyramidal neurons and two-hundred-and-fifty inhibitory 

neurons were connected and driven by oscillatory external inputs.  We found again that 

the pairwise IG measure was linearly related to the sum of the connection weights (Nie et 

al., under review).  These studies, which were conducted using more realistic neuron 

models and synaptic connections, suggested that the coefficients in the log-linear model 
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may be able to extract information about the real neuronal interaction strength.  However, 

further investigation is necessary to clarify the relationship. 

 

In addition, neural firing exhibits non-stationary changes in real electrophysiological 

experiments. The extension of the present research to a time-dependent domain would be 

a necessary step for the analysis of real neural data (Shimazaki, et al., 2012). Toward this 

end, we have recently investigated the property of IG measures under oscillatory inputs 

and found that the pairwise IG measure could estimate neural interactions (Nie et al., 

2014). Finally, the proposed IG measures rely on the successful binary representation by 

binning spike trains. As previously discussed in (Nie and Tatsuno, 2012), the problem of 

binning needs to be treated with caution. 

 

Despite these limitations, the present study is the first attempt to provide an analytical 

relationship between the IG measures involving up to ten neuronal interactions and 

external inputs for a uniformly connected small network. It also demonstrates numerically 

that the IG measures are robust against the influence of external inputs and the asymmetry 

of connection weights if the size of the network is sufficiently large.  These findings 

further support that the single and pairwise IG measures are robust estimators of a 

background input and the sum of the connection weights. We believe that this study 

provides useful information for the future use of IG measures. We also hope that the 

development of theoretical analyses including information-geometric approaches could 

lead to further insights into neural information processing. 
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Appendix  

For a ten-neuron system, we solved twenty-one equations for twenty-one marginal and 

coincident firing variables. Below is an equation for the first-order marginal 〈  〉. The 

equation corresponds to equation 3.28 for a two-neuron system. Equations for other 

marginal and coincident firings can be written in a similar manner. 
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Chapter 4  Information-geometric measures estimate neural interactions during 

oscillatory brain states 

 

Preface 

This chapter refers the publication Nie,Y. Fellous J.M., and Tatsuno. M. Information-

geometric measures estimate neural interactions during oscillatory brain states. 

Frontiers in Neural Circuits (2014). This work investigated how IG measures are related 

to the structure of a network with different oscillatory frequencies. We show that the IG 

measures provide robust estimation for the connection weights and single neuronal firing 

even if the neuronal firing is non-stationary. 

 

 

Abstract 

The characterization of functional network structures among multiple neurons is essential 

to understanding neural information processing. Information geometry (IG), a theory 

developed for investigating a space of probability distributions has recently been applied 

to spike-train analysis and has provided robust estimations of neural interactions. 

Although neural firing in the equilibrium state is often assumed in these studies, in reality, 

neural activity is non-stationary. The brain exhibits various oscillations depending on 

cognitive demands or when an animal is asleep. Therefore, the investigation of the IG 

measures during oscillatory network states is important for testing how the IG method can 

be applied to real neural data. Using model networks of binary neurons or more realistic 

spiking neurons, we studied how the single- and pairwise-IG measures were influenced 

by oscillatory neural activity. Two general oscillatory mechanisms, externally driven 

oscillations and internally induced oscillations, were considered.  In both mechanisms, we 
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found that the single-IG measure was linearly related to the magnitude of the external 

input, and that the pairwise-IG measure was linearly related to the sum of connection 

strengths between two neurons.  We also observed that the pairwise-IG measure was not 

dependent on the oscillation frequency. These results are consistent with the previous 

findings that were obtained under the equilibrium conditions.  Therefore, we demonstrate 

that the IG method provides useful insights into neural interactions under the oscillatory 

condition that can often be observed in the real brain. 

 

4.1 Introduction 

 

The dynamics of neural interactions have been conjectured to play an important role in 

neural information processing. One way to investigate the neural interactions is to record 

multi-neuronal firing activity from a freely behaving animal, and analyze the correlations 

between individual units. In past decades, electrophysiological studies have significantly 

been advanced by the use of multi-electrode recording techniques (Buzsaki, 2004; Chapin, 

et al., 1999; Davidson, et al., 2009; Dragoi and Tonegawa; Dragoi and Tonegawa, 2013; 

Euston, et al., 2007; Hoffman and McNaughton, 2002; Kudrimoti, et al., 1999; Laubach, 

et al., 2000; Peyrache, et al., 2009; Tatsuno, et al., 2006; Wilson and McNaughton, 1993). 

In order to analyze such high-dimensional multi-neuronal datasets, a number of statistical 

methods have also been developed (Abeles and Gerstein, 1988; Aertsen, et al., 1989; 

Amari, 2009; Brown, et al., 2004; Czanner, et al., 2005; Fellous, et al., 2004; Gerstein and 

Perkel, 1969; Grun, et al., 2002; Grun, et al., 2002; Lopes-dos-Santos, et al., 2011; 

Panzeri and Schultz, 2001; Peyrache, et al., 2009; Shimazaki, et al., 2012; Shimazaki and 
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Shinomoto, 2007; Shimokawa and Shinomoto, 2009; Zhang, et al., 1998). Recently, a 

method based on information geometry (IG) has been applied to the analysis of neural 

data (Amari, 2001; Amari and Nagaoka, 2000; Amari, et al., 2003; Brown, et al., 2011; 

Eleuteri, et al., 2005; Ikeda, 2005; Ince, et al., 2010; Miura, et al., 2006; Nakahara and 

Amari, 2002; Nakahara, et al., 2006; Ohiorhenuan and Victor, 2011; Shimazaki, et al., 

2012; Tatsuno, et al., 2009; Tatsuno and Okada, 2004). It has been demonstrated that IG 

provides a powerful statistical tool for analyzing spiking data. Some of the advantages of 

IG approach include the orthogonal decomposition of neural interactions (Amari, 2001; 

Nakahara and Amari, 2002), and its direct relationship to underlying connections (Brown, 

et al., 2011; Tatsuno, et al., 2009; Tatsuno and Okada, 2004); the single-IG measure is 

related to the amount of external inputs and the pairwise-IG measure is related to the 

amount of direct neural interactions between two neurons. 

 

These IG properties were often investigated under the assumption that the network is in 

an equilibrium state. However, in the brain, the equilibrium assumption does not hold true. 

Instead, the brain undergoes a variety of non-equilibrium states such as oscillations. For 

example, the slow-wave oscillation (~1Hz) was discovered during non-REM sleep 

(Crunelli and Hughes, 2010; Steriade, et al., 1993), and evidence suggests that it plays an 

important role in memory consolidation (Diekelmann and Born, 2010; Huber, et al., 2004; 

Stickgold, 2005).  The theta (6-10 Hz) rhythm is a prominent coherent oscillation 

observed in the hippocampus, and its surrounding area during rat spatial navigation 

(Bland, 1986; Buzsaki, 2002; Vanderwolf, 1969). The theta rhythm has also been 

observed in various human neocortical areas during the delay period of working memory 

tasks (Meltzer, et al., 2008; Raghavachari, et al., 2001). The beta (15-30Hz) oscillation is 
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conjectured to play a key role in action preparation and inhibitory control in the motor 

system (Baker, et al., 1997). The gamma (30-80Hz) oscillation has been shown to play a 

role in the integration of sensory information (Gray, et al., 1989; Singer and Gray, 1995). 

The fast hippocampal sharp wave ripples (100-200 Hz) were also reported during an 

animal’s awake immobility and slow-wave sleep (Buzsaki, et al., 1992). Therefore, it is 

important to investigate if the IG measures can be applied to neural data under oscillatory 

conditions.  

 

In this study, we investigated how the single- and pairwise-IG measures are influenced by 

a network oscillation. Under an equilibrium assumption, previous studies have shown that 

the single- and pairwise-IG measures provide a robust estimation of the magnitude of 

external input and direct neural interactions (Brown, et al., 2011; Tatsuno, et al., 2009). 

We also focused on these IG measures in this study because the external inputs and 

intrinsic neural interactions are the two main factors for characterizing network dynamics. 

For the oscillation mechanisms, we have considered two representative cases; one is an 

external driven oscillation where a network is influenced by external oscillatory inputs. 

The other is an internally induced oscillation where interactions between excitatory and 

inhibitory neuron populations produce an oscillation.  By computer simulations using 

simple binary model neurons or more biologically plausible spiking neurons, we 

investigated whether the properties of the IG measures that were established with the 

equilibrium condition still hold true under oscillatory network states. 

 

In Section 2, we briefly introduce an information-geometric analysis of neural spikes. In 

Section 3, we describe the model and network structure used in the numerical simulation. 



 

168 
 

In Section 4, the simulation results for both externally driven and internally induced 

oscillations are described in detail.  In Section 5, we summarize our findings and discuss 

future directions of research on this topic. 

 

4.2 Methods 

 

4.2.1 Information-geometric method  

 

We briefly introduce the information-geometric method for spiking data analysis (for 

details see (Amari and Nagaoka, 2000)). Generally, in an  -neuron system, the state of  -

th           neuron is represented by a binary random variable    , where      or 0 

representing neuronal firing or silence, respectively. The joint probability distribution of 

the  -neuron system can be described by a fully expanded  -th order log-linear model 

(LLM) 

           
 ∑  

     
  

 

 ∑   
     

    
   

         
     

                           

 

where       
     

        represents the  -neuron interaction and           with 

  {  
     

    
     

         
     

} is a normalization constant such that ∑        
  . The 

first and the second superscripts in       
     

 represent the order of the LLM and the number 

of neurons in the system. We use   
     

,    
     

, and       
     

  to describe the single-IG 

measure, the pairwise-IG measure and the  -neuron IG measure with the  -th order 

LLM for a  -neuron system, respectively (Nie and Tatsuno, 2012).  The joint probability 

of   neurons is calculated by 
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∑                    

                                                            

 

where           
 is the count of events                     ) that occur. 

 

However, in reality, it is difficult to calculate the statistical information from all neurons 

in a large network. Therefore, the partially expanded LLM is often used for the estimation 

of neuronal interactions. The partially expanded  -th order LLM in an  -neuron network 

is given by 

 

                

 ∑  
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where    {  
     

    
     

         
     

}.  The first few terms of   and normalization factor 

are given as follows:  
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where       represents the marginalization over the (   ) neurons. 

  

The single-IG measure    
     

  and the pairwise-IG measure     
     

 are the two main 

focuses in this study because    
     

 is related to the amount of external inputs and    
     

 

is related to the amount of direct neural interactions between two neurons (Brown, et al., 

2011; Tatsuno, et al., 2009; Tatsuno and Okada, 2004).  Using a network of simple binary 

neurons, and the assumption of an equilibrium state, the previous study has shown that 

the single-IG measure    
     

  and the pairwise-IG measure    
     

 with the 2
nd

-order LLM 

are related to the network parameters as 

 

                      
     

      (
 

 
)     

     
 (       )   (

 

 
)                             

 

where    represents the magnitude of constant external input to a neuron i, and            is 

the connection weight from a neuron   to   (from a neuron   to  ), respectively (Tatsuno, 

et al., 2009). If a network receives correlated inputs, the relationship for    
     

 in 

Equation 5 does not hold true anymore. However, we have also shown that    
     

 with 

the higher k-th order LLM provides a better estimation of neural interactions (Nie and 

Tatsuno, 2012). For example,    
     

 was shown to have the relationship 

  

                                              
     

 (       )                                                                           
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within approximately a 10% error if the number of neurons N is      or larger; a typical 

size of network in a cortical column (Braitenberg and Schuz, 1999).  We have also 

confirmed that the relationship   
     

     holds true within approximately a 10% error 

(unpublished data). 

 

These properties could be useful for the field of neuroscience because the IG measures 

can estimate the changes of underlying network parameters (   and    ) separately, while 

other correlation measures have not yet been shown to have such a property (Amari, 

2009). However, these results were derived under the equilibrium limit, and little is 

known if the similar relationship holds under the oscillatory condition. 

 

 

 

4.2.2 Neuron model and network structure  

 

4.2.2.1 Neuron model 

 

 

We investigated the influence of oscillations using a network of simple binary neurons 

with stochastic dynamics (Ginzburg and Sompolinsky, 1994) and biologically plausible 

spiking neurons (Izhikevich, 2003). Using simple binary model neurons, we first 

investigated whether the property of the IG measures that were shown under the 

equilibrium condition also held true for the oscillatory condition. We then extended our 

investigation to more realistic spiking neurons. 
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For a binary model neuron, the transition between the binary states is given by the 

transition rate   as 

                                                            
     

  
    

               
       

  
          

                              

                                                                                                          

where    is a microscopic characteristic time and     represents the total input to the  -th 

neuron. 

 

                                                 
            

 
                                                          

 

is the sigmoidal function in the bounded interval [0,1] where   is a parameter controlling 

the firing probability of a model neuron.  

 

For a biologically more plausible neuron model, we adopted the Izhikevich model 

because it is known to be computationally efficient and biologically plausible (Izhikevich, 

2003). The Izhikevich model reduced the complex dynamics of the Hodgkin-Huxley (HH) 

neuronal models to two coupled differential equations as 
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Here the variable    represents the membrane potential of neuron  , and    represents a 

membrane recovery variable which correlates with the activation of    ionic currents and 

inactivation of     (for detail see (Izhikevich, 2003)).    and    are reset after a spike: if 

     mV, then               .     represents a total input to neuron  ; 

            are dimensionless adjustable parameters which are usually taken as         

           and                          
  for excitatory neurons,         

                           and                 for inhibitory neurons.    is a 

uniformly distributed random variable on the interval [0, 1] (Izhikevich, 2003). 

 

 

4.2.2.2 Network structure 

 

We considered two mechanisms for generating oscillatory network states; one is the 

oscillation driven by external inputs (Figure 4.1A), and the other is the oscillation induced 

by the intrinsic interaction between excitatory and inhibitory neuron populations (Figure 

4.1B). The former mechanism can be a model for hippocampal theta oscillation in which 

the projections from the medial septum to the hippocampus play a central role (Dragoi, et 

al., 1999). The latter structure where excitatory and inhibitory neuron pools interact is 

widely observed in cortical areas (Buzsaki and Wang, 2012). It can be a model for 

cortical oscillations (such as in a gamma-range) that rely on the interplay between 

excitatory and inhibitory neuron pools. 
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Figure 4.1: A schematic of two mechanisms for generating network 
oscillations. 

(A) Oscillation is generated by an external oscillatory input (externally driven 
oscillation).  A neuron   in the network of   neurons with recurrent connections     

receives a sinusoidal external input                   where   ,    and    
represent the amplitude, angular speed, and phase of the sinusoidal input, 
respectively. (B) Oscillation is generated by the interaction between excitatory 
and inhibitory neuron pools (internally induced oscillation).  Excitatory neurons 

are connected by positive connections    , inhibitory neurons are connected by 

negative connections    , inhibitory neurons receive positive connections     from 
excitatory neurons, and excitatory neurons receive negative connections     from 
inhibitory neurons. In addition, excitatory and inhibitory neurons receive external 

constant input   
  and   

 , respectively. 
 

 

In the first scenario (externally driven oscillation, Figure 4.1A), a sinusoidal external 

input                      for the i-th neuron was used to generate oscillatory states 
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in a network, where   ,    and    represent the amplitude, angular speed, and phase of 

sinusoidal signals, respectively. Note that     and   are common to all neurons, but    

can be different for individual neurons. The explicit expression of an input signal allows 

one to produce different network oscillations systematically. For the binary neuron model, 

the total input to the i-th neuron is written as, 

 

                                           ∑        

 

                                                                          

 

where     represents a connection weight from the j-th neuron to the i-th neuron.  The 

neuronal state       was then updated following the transition rate   in Equation 4.7.  

Note that model neurons are identical, whether they are excitatory or inhibitory.  

 

For the Izhikevich model in the first scenario, we considered a population of excitatory 

neurons. Although it has been demonstrated that a network of excitatory neurons can 

synchronize, a network of Izhikevich neurons that were connected in this particular way 

cannot produce an intrinsic oscillation (Han, et al., 2008; Miri, et al., 2011). This allows 

us to investigate the relationship between the IG measures and an externally driven 

oscillation in a more realistic setting.  The total input to an Izhikevich neuron   is given 

by, 

 

                                        
     ∑   
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where     represent positive weights between excitatory neurons and   
        

 
  is 

the delta function representing the existence of a spike emitted from an excitatory 

neuron   at time   
 

.  The neuronal state was then updated by Equation 4.9 and the 

associated reset dynamics.  In the numerical simulation, we used a small bin width of one 

millisecond so that it would contain no more than one spike. 

Figures 4.2A, 4.2B, and 4.2C show example spike trains and multi-unit activity of binary 

model neurons driven by external sinusoidal inputs of 1 Hz, 6 Hz, and 100 Hz oscillations, 

respectively.  Izhikevich neurons also exhibited very similar activity (data not shown).  It 

can be clearly seen that neural activity is entrained to external input.  Using these two 

models, we investigated how the IG measures are affected by externally driven 

oscillations. 

In the second scenario (internally induced oscillation, Figure 4.1B), interaction between 

excitatory and inhibitory neuron pools generates an oscillation. For the binary neuron 

model, the total input to the i-th excitatory neuron and the k-th inhibitory neuron are 

written as, 

     
     ∑   

    
    

 

 ∑   
    

    

 

   
   

                                            
     ∑   

    
    

 

 ∑   
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Figure 4.2: Average firing probability and raster plot of representative 
oscillatory activity.   

(A) Average firing probability of 1,000 binary neurons (top panel) and a raster plot 
of one-hundred randomly sampled neurons (bottom panel) over one-thousand 
milliseconds under the influence of an external sinusoidal input of 1 Hz (slow 
oscillation) are shown. (B)  Average firing probability of 1,000 binary neurons (top 
panel) and a raster plot of one-hundred randomly sampled neurons (bottom panel) 
for an external sinusoidal input of 6 Hz (theta oscillation) are shown. (C) Average 
firing probability of 1,000 binary neurons (top panel) and a raster plot of one-
hundred randomly sampled neurons (bottom panel) for an external sinusoidal 
input of 100 Hz (ripple oscillation) are shown.  (D) One-thousand milliseconds of 
average firing probability of 1,250 Izhikevich neurons (top panel) and a raster plot 
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(bottom panel) with approximately a 6-Hz oscillation are shown. In the top panel, 
spikes from an excitatory neuron and an inhibitory neuron are represented by a 
black dot and a grey dot, respectively. (E) One-thousand milliseconds of average 
firing probability of 1,250 Izhikevich neurons (top panel) and a raster plot (bottom 
panel) with approximately a 40-Hz oscillation are shown.  
 

 

where          and     represent negative weights between inhibitory neurons, positive 

weights from excitatory neurons to inhibitory neurons, and negative weights from 

inhibitory neurons to excitatory neurons, respectively.  The excitatory and inhibitory 

neurons receive constant external inputs   
  and   

 , and maintain sustained oscillatory 

activity. The neuronal state was updated following the transition rate   in Equation 4.7.   

For the Izhikevich model in the second scenario, a similar relationship exists for the total 

inputs for the i-th excitatory neuron and the k-th inhibitory neuron, 

 

     
     ∑   

    
    

 

 ∑   
    

    

 

   
   

                                           
     ∑   

    
    

 

 ∑   
    

    

 

   
                                        

 

The neuronal state was then updated following Equation 4.9 and the associated reset 

dynamics. Figures 4.2D and 4.2E provide examples of spike trains and multi-unit activity 

of Izhikevich neurons that exhibited approximately 6 Hz and 40 Hz oscillations, 

respectively.   Binary neurons also exhibited a very similar activity (data not shown).  
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Neural activity was synchronized, but the degree of entrainment was weaker than the 

externally driven mechanisms.  Using these two models, we investigated how the IG 

measures were influenced by the internally induced oscillation. 

 

 

4.3 Results 
 

4.3.1 Externally driven oscillation  

 

We investigated the relationship between the IG measures,   
     

 and    
     

, and the 

connection weights,          , using a network of 1,000 binary neurons and 1,000 

Izhikevich neurons.  We focused on the IG measures with 4
th

-order LLM because they 

have been shown to estimate connection weights (Nie and Tatsuno, 2012) and external 

inputs (unpublished data) within a 10% error under an equilibrium assumption.  In the 

simulation, we kept the amplitude of external input at a value such that the overall 

network firing probability is relatively low (   
    ).  Connection weights were set to the 

order of     to prevent saturation of neuronal activity. For a binary neuron model, we 

used        ⁄      where     is a random variable from a normal distribution       

   with a mean of 0 and the standard deviation of   √ ⁄ . For the Izhikevich model, we 

restricted the simulations to a pool of only excitatory neurons to ensure that no internally 

induced oscillation occurred. The connection weights were assigned as     
     ⁄       

where      is a random variable following uniform distribution          within the 

interval of [     ].    
     

 and    
     

were calculated by     updates of the network. 

With the time resolution of one millisecond, the simulation corresponds to approximately 
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fifteen minutes of recordings.  To obtain the mean and variances of the IG measures, we 

performed one-hundred independent simulations. Error bars in the figure represent the 

standard error of mean (SEM). 

 

We investigated the oscillation frequencies that have often been observed in the brain; 

slow oscillation (~1 Hz), theta oscillation (6-10 Hz), and ripple oscillation (100-200 Hz).  

The left column of Figure 4.3 (Panels A, D and G) shows the results for the slow 

oscillation.  The multi-unit activity of the binary neurons exhibits a slow oscillation of the 

frequency of external input (Figure 4.3A) and the neurons were entrained to this 

frequency (Figure 4.2A). The spiking activity of Izhikevich neurons also showed almost 

identical activity (data not shown).  To investigate how   
     

  and    
     

 are related to 

the change of connection weights, we systematically modified the sum of connection 

weights between two neurons (1 and 2) from      to    . Due to the randomness of the 

connectivity, focusing the neurons (1 and 2) did not affect the generality. We found that 

   
     

 was linearly related to the sum of the connection weights, and that the values of 

   
     

 for both the binary and Izhikevich models were very close (Figure 4.3D, black line 

for a binary model and grey line for the Izhikevich model). On the other hand,   
     

 (and 

  
     

) were independent from the change of synaptic weights (Figure 4.3G). These 
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results 

 

Figure 4.3: Relationship between the IG measures and the sum of 
connection weights for an externally driven oscillation. 

(A) Average firing probability of 1,000 binary neurons with a 1-Hz oscillatory 
modulation is shown. (B) Average firing probability of 1,000 binary neurons with a 
6-Hz oscillatory modulation is shown. (C) Average firing probability of 1,000 
binary neurons with a 100-Hz oscillatory modulation is shown. (D) Relationship 

between the pairwise IG measure     
          and the sum of connection weights 

(          under a 1-Hz oscillation. Black and grey lines represent the simulation 
results by binary neurons and Izhikevich neurons, respectively. (E) Relationship 

between the pairwise IG measure (   
          and the sum of connection weights  

          under a 6-Hz oscillation. (F) Relationship between the pairwise IG 

measure (   
        

  and the sum of connection weights (         under a 100-Hz 
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oscillation. (G) Relationship between the single IG measure     
        

  and the 

sum of connection weights            under a 1-Hz oscillation. Black and grey 
lines represent the simulation results by binary neurons and Izhikevich neurons, 

respectively. (H) Relationship between the single IG measure    
        

  and the 

sum of connection weights (         under a 6-Hz oscillation. (I) Relationship 

between the single IG measure     
          and the sum of connection weights  

          under a 100-Hz oscillation. 
 

 

 

are consistent with the previous findings under the equilibrium assumption; showing that 

IG measures can also provide useful insights in conditions where the network oscillates. 

The middle and right columns of Figure 4.3 show the results for theta oscillations 

(Figures 4.3B, 4.3E and 4.3H) and ripple oscillations (Figures 4.3C, 4.3F and 4.3I), 

respectively. We found that the relationship between the IG measures and connection 

weights was robust against a different frequency of external inputs.  This confirmed that 

the IG measures can also provide useful information for externally driven theta and ripple 

oscillations.  

 

To further investigate if the robust property of the IG measures for slow, theta, and ripple 

oscillations holds true for other frequencies, we varied the frequency over 1 Hz to 200 Hz, 

the range that can be typically observed in the brain. We set             .  Figure 4.4 

shows that     
     

 and    
     

 did not depend on oscillation frequencies (Figures 4.4A and 

4.4B for a binary model, and Figures 4.6C and 4.6D for Izhikevich model).  The results 

confirmed that the IG measures would be useful for neural data analysis when the brain 

exhibits a variety of oscillations depending on cognitive demands and the sleep stages.  
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The previous analyses (Figures 4.3 and 4.4) were performed under the zero relative phase 

difference between two neurons   and  , namely       |     |   . This corresponds 

to the synchronous neural firings that were depicted in Figures 4.2A, 4.2B, and 4.2C. 

Neurons can, however, exhibit phase differences. For instance, sequential neural activity 

was observed in the natural and anesthetized brain states (Dombeck, et al., 2010; Euston, 

et al., 2007; Lee and Wilson, 2002; Luczak, et al., 2007).  Therefore, we calculated IG 

measures with phase differences. Figure 4.5 shows the results of the 6-Hz simulations in 

which the phase difference between sinusoidal inputs to the neurons 1 and 2 was set to 

  ⁄  (Figures 4.5A and 4.5C) and   ⁄  (Figures 4.5B and 4.5D). The rest of the neuron 

pairs have random phases in the range of [0,   ].  Figures 4.5A and 4.5B show that 

   
        

 is linearly related to the sum of synaptic weights, suggesting that the relationship 

observed in zero phase difference condition also holds for the non-zero phase difference 

condition.  Similarly, Figures 4.5C and 4.5D show that   
        

 does not depend on the 

connection weights, even when neurons fire with phase differences.  By comparing these 

results with Figures 4.3E and 4.3H where there was no phase difference, we also found 

that phase difference produced the shift of the actual values of IG measures.  This 

suggests that if the phase relationship drastically changes between the two recording 

epochs, the values of the IG measures cannot be directly comparable. However, if their 
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difference is not large or if phase difference can 

 

Figure 4.4: Dependency of the IG measures for an oscillation frequency for 
an external drive oscillation. 

The values of the single-IG measure   
        

and the pairwise-IG measure 

   
        

  were calculated for different oscillatory frequencies (1, 5, 6, 10, 20, 50, 

100, and 200 Hz). Parameters were set as           ,           and     . 

(A) The relationship between    
        

and the oscillation frequency by binary 

model neurons. (B) The relationship between    
        

and the oscillation 

frequency by Izhikevich neurons. (C) The relationship between   
        

and the 

oscillation frequency by binary model neurons. (D) The relationship between  

  
        

and the oscillation frequency by Izhikevich neurons. 
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Figure 4.5: Relationship between the IG measures and the sum of 
connection weights for non-zero phase differences. 

An external oscillation mechanism was used, and the oscillation frequency was 

set to 6 Hz. (A) Relationship between the pairwise IG measure (   
          and the 

sum of connection weights (       ) for the phase difference of         ⁄ . 
Black and grey curves represent the simulation by binary neurons and Izhikevich 
neurons, respectively. (B) Relationship between the pairwise IG measure 

(   
          and the sum of connection weights,            for the phase difference 

of        . (C) Relationship between the single-IG measure (  
        

  and the 

sum of connection weights (         for the phase difference of         ⁄ . (D) 

Relationship between the single-IG measure (  
          and the sum of 

connection weights (         for the phase difference of         ⁄ . 
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be estimated beforehand, we could use the information for adjusting the IG values. We 

also confirmed that these relationships held true for slow (1 Hz) and ripple (100 Hz) 

frequencies (data not shown). 

 

So far we have focused on the relationship between the IG measures and the connection 

weights. Another important parameter is the magnitude of sinusoidal input   .  Therefore, 

we have analyzed how   
        

 and    
        

 are related to   . Figure 4.6 shows the 

result when the external sinusoidal input has a frequency of 6 Hz (theta oscillation). We 

found that    
        

 was nearly independent from the change of    (Figure 4.6A), but 

  
        

 was almost linearly related to it (Figure 4.6B).  We also confirmed that almost 

identical relationship holds true for other frequencies such as slow oscillation and ripple 

oscillation if there is no phase difference.  For non-zero phases between neurons, we 

observed that the IG values were shifted, like the case for the IG values and connection 

weights, but that the same linear and independent relationship in Figure 4.6 was sustained.  

The results under the oscillatory condition are consistent with the previous findings under 

the equilibrium condition;   
     

 was linearly related to the magnitude of the constant 

input and that    
     

 was almost independent from it (Nie and Tatsuno, 2012).  The 

investigation here provides further evidence that   
     

is useful for the estimation of the 

magnitude of external input. 

 

In summary, we investigated how the IG measures were influenced by an externally 

driven oscillation.  Using a simple binary neuron model, and a more realistic Izhikevich 
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model, we found that    
     

 had a linear relationship with the sum of the connection 

weights, and that it was almost independent from the magnitude of a sinusoidal input. In 

contrast,   
     

 was almost independent from the connection weights, but was linearly 

related to the magnitude of the sinusoidal input. These properties were not affected by the 

frequency of the oscillations or the relative phase differences between neurons. 

 

Figure 4.6: Relationship between the IG measures and the amplitude of an 
external sinusoidal input for an externally driven oscillation. 

Oscillation frequency was set to 6 Hz and phase difference was        . (A) 

Relationship between the pairwise-IG measure,    
        

, and the amplitude of a 

sinusoidal input,   . Black and grey lines represent the simulation results by 
binary neurons and Izhikevich neurons, respectively. (B) Relationship between 

the single-IG measure,   
        

, and the amplitude of a sinusoidal input,   . 

 

4.3.2 Internally induced oscillation  

 

As another mechanism for generating an oscillatory network behavior, we also 

investigated the interactions between excitatory and inhibitory neuron pools.  We 

analyzed the network structure in Figure 4.1B by simple binary model neurons and 

Izhikevich neurons.  Unlike the first oscillation mechanism, where an oscillation 
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frequency and phase differences could be explicitly controlled, it was not easy to generate 

an oscillation with desired parameters. However, we were able to generate two examples 

that were often observed in the brain. Figures 4.7A and 4.7B show multi-unit activity 

corresponding to theta frequency (approximately 8 Hz) and gamma frequency 

(approximately 40 Hz), respectively. The same examples with a raster plot were also 

depicted in Figures 4.2D and 4.2E. To avoid saturation in neural activity, we have set the 

connection weights to the order of    . For a theta oscillation, we set the connection as 

   
        

      
         

      
         

   and     
         

   where        ⁄  

      ⁄ , and      is a random variable following a uniform distribution        within 

the interval [0,1]. For a gamma oscillation, we used     
        

      
         

   

   
         

   and     
          

  . The stronger     was necessary to induce 

oscillation (Adini, et al., 1997). The external constant inputs to excitatory and inhibitory 

neurons were set as   
       and   

      , respectively. The simulation of     

update was performed with         excitatory neurons and        inhibitory 

neurons. The mean and variance was estimated using one-hundred independent 

simulations. 

 

To investigate the relationship between the IG measures and the sum of connection 

weights, without losing the generality, we modified             between the neurons (1 

and 2) in the range of [      ]. Firstly, we focused on the connections within the 

excitatory neuron population and within the inhibitory neuron population. In other words, 

both connections,     and    , were positive for the range of              and both 

were negative for             .  Figures 4.7C and 4.7E show the relationship between 
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 and   
        

, and the sum of connection strengths            under the theta 

oscillation. The results clearly show that    
        

 is linearly related to the sum of the 

connection weights and that   
        

 was independent from the modulation of the 

connection weights.  Furthermore, the dependency of the IG measures on the connection 

weights was continuous in both positive and negative ranges. This suggests that IG 

measures can be applicable to both positive and negative connections.  Figures 4.7D and 

4.7F show results for gamma oscillation.  Similar results were obtained for both    
        

 

and   
        

.  

 

Secondly, we investigated the interaction between excitatory and inhibitory neurons.  

Namely, we selected the neuron 1 from the excitatory neuron pool and the neuron 2 from 

the inhibitory neuron pool. The sum of connection weights was modified from -9J to 9J.  

Figures 4.8A and 4.8B are the same with Figures 4.7A and 4.7B, showing the multi-unit 

activity for theta and gamma oscillation, respectively.  Figures 4.8C and 4.8E show the 

relationship between the IG measures and the sum of the connection weights under the 

theta oscillation.  Similarly, Figures 4.8D and 4.8F are for gamma oscillation. The results 

show that the linear dependency of    
        

 on the sum of the connection weights holds 
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true for an excitatory and inhibitory neuron pair. We also found that 

 

Figure 4.7: Relationship between the IG measures and the sum of 
connection weights for an internally induced oscillation. 

Both connections,     and    , were positive for the range of              and 
they were negative for             . (A) Average firing probability of 1,250 
Izhikevich neurons with approximately a 6-Hz oscillatory oscillation is shown. (B) 
Average firing probability of 1,250 Izhikevich neurons with approximately a 40-Hz 
oscillatory oscillation is shown. (C) Relationship between the pairwise-IG 

measure (   
        

  and the sum of connection weights (         under a 6-Hz 

oscillation. Black and grey lines represent the simulation results by binary 
neurons and Izhikevich neurons, respectively. (D) Relationship between the 

pairwise-IG measure (   
          and the sum of connection weights (         

under a 6-Hz oscillation. (E) Relationship between the single-IG 
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measure   
        

  and the sum of connection weights (         under a 6-Hz 

oscillation. (F) Relationship between the single-IG measure    
        

  and the 

sum of connection weights (         under a 40-Hz oscillation. 
 

  
        

 had almost no relationship with the sum of connection weight.  For the 

relationship between the IG measures and the magnitude of constant input   
  and   

 , we 

confirmed that   
        

 was linearly related to their magnitude, but    
        

 was 

independent from them (data not shown).   

In summary, for internally generated oscillations, we demonstrated that the relationship 

between the IG measures and the connection weights that were found under equilibrium 

assumption also held true. 
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Figure 4.8: Relationship between the IG measures and the sum of 
connection weights for an internally induced oscillation. 

Neuron 1 was selected from the excitatory neuron pool and Neuron 2 was 
selected from the inhibitory neuron pool. In other words, one of the connections in 

        was positive and the other was negative. (A) Average firing probability of 
1,250 Izhikevich neurons with approximately a 6-Hz oscillatory oscillation is 
shown. (B) Average firing probability of 1,250 Izhikevich neurons with 
approximately a 40-Hz oscillatory oscillation is shown. (C) Relationship between 

the pairwise-IG measure (   
          and the sum of connection weights (         

under a 6-Hz oscillation. Black and grey lines represent the simulation results by 
binary neurons and Izhikevich neurons, respectively. (D) Relationship between 

the pairwise-IG measure (   
          and the sum of connection weights (         

under a 6-Hz oscillation. (E) Relationship between the single-IG measure 

    
          and the sum of connection weights (         under a 6-Hz oscillation. 

(F) Relationship between the single-IG measure    
        

) and the sum of 

connection weights (       ) under a 40-Hz oscillation. 
 
 

4.4 Discussion 
 

Previous studies have shown that the IG measures provided useful information about 

network structures (Brown, et al., 2011; Tatsuno, et al., 2009; Tatsuno and Okada, 2004). 

Specifically, the single-IG measure   
     

 was related to the magnitude of external 

constant input, and the pairwise-IG measure    
     

 was related to the sum of the 

connection strengths. Although these studies were conducted under the equilibrium 

assumption, the real neural signals exhibit various oscillations depending on cognitive 

demand of the task or the state of the brain. Therefore, we studied the relationship 

between the IG measures and the neural network parameters under oscillatory network 

states.  

 

We have considered two general oscillation mechanisms; one was the oscillation driven 

by external input, and the other was the oscillation induced internally due to interactions 
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between excitatory and inhibitory neuron pools. Numerical simulation was performed by 

the network of a simple binary neuron model and the Izhikevich neuron model. The 

former model was used so as to compare the results with that of previous studies, and the 

latter was used to investigate the relationship with more realistic model neurons. 

 

For the external oscillation, our investigation showed that    
     

 was linearly related to 

the sum of the connection strengths, and that   
     

 was independent from it over a wide 

range of frequency from 1 Hz to 200 Hz. We also showed that the relationship holds true 

when there are phase differences between neurons. In addition, we demonstrated that 

  
     

 was almost linearly related to the magnitude of sinusoidal input, but that     
     

 

was almost independent from it. For the internally induced oscillation, we have also 

confirmed that    
     

 was linearly related to the sum of the connection strengths, and that 

  
     

 was independent from it. We have also shown that the same relationship holds true 

for any neuron pairs (within excitatory population, within inhibitory population, and 

across excitatory and inhibitory populations). 

 

In summary, this study and previous studies have demonstrated that the IG measure 

provides useful information for analyzing neural circuits; not only for the equilibrium 

condition, but also for the oscillatory condition.  The single-IG measure is useful for 

estimating the relative strength of external inputs. In addition, the single-IG measure is 

better than using the change in firing rate because the firing rate can be modulated both 

by the change in synaptic coupling strength and the magnitude of external inputs. Studies 

show that the appropriately selected single-IG measure is capable of estimating the 
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external inputs with relatively small influence from synaptic interactions. Similarly, the 

pairwise-IG measure can provide more direct information about the synaptic interactions 

between neurons than other correlation measures (Amari, 2009).  It has been also shown 

that the pairwise-IG measure is statistically independent from the change in firing rate 

and that it provides pure neural interactions (Amari, 2001; Nakahara and Amari, 2002). 

Together with the findings in this study, the pairwise-IG measure is a very useful measure 

to study direct neural interactions between neurons. 

 

This study suggests that the actual values of the IG measures depend on the mechanisms 

of oscillation. For an externally driven oscillation,     
     

     was obtained for       

        . For an internally induced oscillation, the same connection strength produced  

   
     

      . Within the same oscillation mechanism, the selection of model neurons 

(binary model or Izhikevich model), or a small difference in network parameters such as 

phase differences also produced a difference in the actual value of the IG measures.  

Nonetheless, as long as the network is in one of the oscillation mechanisms, and the phase 

difference is kept the same, the IG measures can provide useful insights into network 

structures regardless of the oscillation frequencies.   

 

In the study of memory consolidation, one of the key questions is to understand how the 

changes in synaptic connections are related to learning and memory formation. Evidence 

suggests that neural activity during slow-wave sleep plays an important role in learning 

(Diekelmann and Born, 2010). Specifically, there is increasing evidence supporting the 

hypothesis that replay of neural activity during subsequent sleep is positively correlated 
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with memory formation (Euston, et al., 2007; Girardeau, et al., 2009; Kudrimoti, et al., 

1999; Lee and Wilson, 2002; Pavlides and Winson, 1989; Peyrache, et al., 2009; 

Ponticorvo and Miglino; Wilson and McNaughton, 1994). However, the direct 

information about synaptic change is not available from multi-unit recordings of a freely 

behaving animal because spikes and local field potentials are the two main observables.  

In this study, we showed that    
     

 was linearly related to the sum of the connection 

weights, and that   
     

  was linearly related to the magnitude of external inputs, even 

under the oscillatory conditions. We have also verified these relationships not only with a 

simple binary model neuron, but also with a more realistic spiking model neuron.  This 

finding would allow us to analyze neural activity during slow-wave sleep before and after 

the task;    
     

 would be a good measure for the change of connection weight, and   
     

  

for the magnitude of background input that would be influenced by local field potentials.  

By comparing the relative change of    
     

 between slow-wave sleeps before and after the 

task, and the strength of memory replay/improvement of behavior performance, the IG 

measure may provide a way to estimate the relationship between the synaptic 

modification and memory formation without having direct access to information of 

synaptic change.  

 

As a related approach to the IG method, the maximum entropy (MaxEnt) has attracted 

much attention recently (Schneidman, et al., 2006; Szuts, et al., 2011; Tang, et al., 2008). 

The philosophy of the MaxEnt approach is not to assume anything other than what we 

know from the data. For example, if firing rate and pairwise correlation are the only 
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information we have, the distribution with maximum entropy is given as the Boltzmann 

distribution,  

 

                                        
 

 
   (∑     

 

 ∑        
   

)                                     

 

where     is a bias term for the neuron  ,      is the symmetric coupling strength between 

neurons   and  , and the partition function   is given by, 
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We see that the MaxEnt is equivalent to the IG with the 2
nd

-order LLM,  
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where the relationship between the parameters are given as, 

 

                           
     

           
     

                                                            

 

As was discussed in Tatsuno and Okada (2004) and in Tatsuno et al. (2009), it is possible 

to relate these IG measures,   
     

 and    
     

, to the network structure even for a network 
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with asymmetric connections (Equation 4.5).  However, under the influence of correlated 

inputs, we have also shown that the relationship in Equation 4.5 broke down, and that it 

was necessary to use the IG measures with the higher-order LLM such as the 4
th

-order 

(Equation 4.6) (Nie and Tatsuno, 2012). In other words, it was necessary to take into 

account neural activity of two additional neurons to estimate the direct neural interaction 

between neuron   and  . In summary, we see that the MaxEnt approach and the IG method 

are closely related. In addition, we also see that the MaxEnt can be considered a part of 

the IG method that provides a more general analysis framework for the space of the 

probability distributions. 

 

In this study, we used the synchronous neural activity for estimating the direct neural 

interaction as the form of          . However, in the real learning processes such as 

sequential learning, it is possible that synaptic modification occurs differently for each 

direction; e.g.,      increases, while     decreases.  The proposed method is not able to 

estimate the directed synaptic change. As one possible remedy for this difficulty, 

calculation of the pairwise-IG measure using the time-lagged spiking activity between 

neurons was suggested (Brown, et al., 2011; Tatsuno and Okada, 2004).  Another 

limitation of the present study is not including the effect of delay; e.g., axonal conduction 

delay or synaptic transmission delay.  It is possible that these delays dramatically change 

the firing patterns as well as increase a variety of coexisting patterns (Izhikevich, 2006). 

Little is known about the relationship between the IG measures and direct neural 

interactions with conduction delay.  In addition, it has not been clear how IG measures 

with more neuronal interactions such as triplewise-IG measures     
     

 or quadruple-IG 
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measures      
     

 behave under oscillatory conditions. It would be interesting to extend the 

current study to include more neuronal interactions. 

 

Despite these limitations, the IG method is one of the most promising statistical tools for 

spike train analysis (Amari, 2001; Nakahara and Amari, 2002). Its direct relationship with 

the network parameters would provide useful information for the estimation of structural 

changes (Tatsuno and Okada, 2004; Tatsuno et al., 2009; Nie and Tatsuno, 2012). We 

hope that an advancement of novel analysis methods including information geometry will 

lead to a break-through finding in neuroscience. 
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Chapter 5  Conclusion, discussion and future work 

 

5.1 Novel findings 

 

The primary goal of the present work was to extend the previous studies on IG approach 

to more realistic and complex cases, and develop applicable neuronal spike data analysis 

methodology based on theoretical and numerical investigation. To this end, we 

systematically investigated the properties of IG method on the measurement of single 

neuronal firing rate, pair-wise correlation (synaptic connection weights), and higher-order 

(triple-wise, fourth-order, etc.) neuronal interactions by studying small and large recurrent 

neural networks. To make our findings solid, we started from the mathematical analysis 

for a symmetrically connected small neural network (10-neuron) using simplified model 

neurons—binary neuron, which only has 0 or 1 states. The advantage of this model is that 

we are able to derive the detailed analytical results for the relationship between IG 

measures and multiple network parameters, including the external uncorrelated inputs h, 

recurrent connection weights J from the same layer, and the correlated background inputs 

W projected from neurons in another layer. By detailed mathematical analysis, we 

obtained the insights of how IG measures are affected by these parameters. The range of 

the parameters is adjustable such that we are capable of observing the behavior of the IG 

measures. In the realistic brain network, however, neurons are connected asymmetrically. 

The detailed mathematical solution for such a complicated system becomes impossible. 

Therefore, computer simulations for IG measures were carried out in both symmetrically 

and asymmetrically connected network (10- and 1000-neuron network). By comparing 

out simulation results with the theoretical calculations using small network (10-neuron 



 

200 
 

network), we confirmed the validity and correctness of our simulation strategy. By the 

large network simulations (1000-neuron network), we confirmed the robustness of IG 

measures on the estimation of synaptic connection weights and external inputs.  

Specifically, by numerical simulations of large asymmetric network, we found that 4
th

 

and 5
th

 log-linear expansions of IG measure    
     

 or    
     

 in a N-neuron network 

receiving correlated inputs provide a robust estimation of the sum of the connection 

weights         with approximately a ten percent error (for detail, see the Fig.8 in 

chapter 2). In contrast, the previous studies for IG method showed that 2-th order log-

linear expansion    
     

 is sufficient to estimate         in an N-neuron network that only 

receives uncorrelated external inputs h.  The existence of correlated background inputs W, 

therefore, violates the correct estimation of          using    
     

.  Our novel analysis 

suggests that higher-order log-linear expansion could offset this estimation error. This 

finding indicates that in realistic neuronal data sets, we can estimate the change of 

synaptic connection weight between neuron pair i and j by taking into account the spiking 

data from additional  2 or 3 neurons, together with the spike data from neuron i and j. 

This solution makes it possible to analyze massive neuronal data set in reasonable time 

and space. 

Since the IG theory proposes hierarchical structure of neuronal interactions, we further 

extended the study of IG methods to higher order neuronal interactions.  In chapter 3, we 

thoroughly studied the relationship between external inputs (correlated and uncorrelated) 

and the asymmetry of connections on IG measures involving up to ten neuronal 

interactions. In this chapter, we again performed analytical and numerical calculations. 
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We aimed to obtain how measures of up to ten neuronal interactions are characterized by 

external inputs. We not only confirmed the single and pair-wise IG measures were good 

estimators of the background input and of the synaptic connection weights, but also 

confirmed that for higher order IG measures, the influence of external inputs was highly 

nonlinear. In addition, by introducing a new parameter  , which characterizes the 

asymmetry of a network, we also found that all the IG measures from the single-neuron 

IG to the ten-neuron IG measures were robust against the increased asymmetry of 

connection weights, and the IG measures with the higher log-linear model provide a 

better result. The single-neuron IG    and the two-neuron IG     always are good 

estimators of external input h and the sum of the connection weights         even under a 

strong asymmetrically connected network (  is large). The simulation results also indicate 

that higher-order neuronal interactions (triple-wise IG     , 4-neuron IG      , etc.) are 

trivial comparing to the 1-and 2-neuron IG measures.  These results are consistent with 

those which are derived from information theory such as maximum entropy analysis for 

neuronal spike data (see section 1.2.4).  

To summarize, chapter 2 and 3 showed that IG measures provide useful information on 

network structure. We demonstrated that the single-IG (1-neuron IG) measure   
     

 is 

related to the amplitude of external constant input, while the pair-wise (2-neuron) IG 

   
     

 gives the robust measure of the connection weights.  These findings are important 

and attractive to neuroscientist, because in the neuroscience point of view, estimating the 

single neuronal firing rate and the synaptic change play a key role in understanding the 

brain functions. Nevertheless, these extensive studies of IG methods were mainly based 

on the assumption of stationarity. That is, we assume that the network firing exhibits a 
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stable feature, which is not always true in realistic brain unfortunately. Instead, neural 

firing exhibits non-stationary changes in real electrophysiological experiments. The real 

neuronal signals observed from experiments contain various oscillations depending on 

cognitive demand of animals’ behaving tasks.  Therefore, it is natural to ask the question 

of whether and how IG methods proposed here provide the measure for network 

parameters in an oscillatory network.  To answer this question, chapter 4 studied the 

single-neuron IG    
     

 and two-neuron IG    
     

 by considering two general network 

oscillation mechanisms: the oscillation driven by external fluctuating inputs and the 

oscillation induced by the interplay between excitatory and inhibitory neuronal pool in a 

network. For the nonstationary network, we only performed numerical simulations by the 

network of a binary neuron and Izhikevich neuron. Using binary neuron, it is easy to set 

up a sinusoidal external input and change the input frequencies, and phases of oscilations , 

it is again less realistic. By using Izhikevich neuron, which can produce more biologically 

plausible neuronal firing patterns, it is convincing to visualize how IG measures behave in 

oscillatory networks. From both scenarios, we found that the two-neuron IG    
     

 keeps 

the linearity to the sum of connection weights, and the single-neuron IG    
     

 was 

almost linearly related to the magnitude of external input, and these characters are 

independent from the network oscillation frequencies. These findings indicate that the 

properties of IG measure found under stationary assumption still hold true under 

oscillatory network states. 
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5.2 Future studies in multiple spike data analysis 

 

The advanced recording techniques of multiple spike trains from freely behaving animals 

offer a way to record the neuronal population activity from as many neurons as possible. 

As the development of these techniques, it is impossible to quantitatively analyze the 

neuronal activity from the massive spiking data without substantial statistical methods. 

The study of IG measures discussed in the present thesis provides one way of estimating 

both pair-wise and higher-order neuronal interactions. Nevertheless, this method has not 

been verified by large number of real experiments. The future challenge, therefore, is still 

to verify the validity of IG methods that truly allow neuroscientists to extract the useful 

information from the real experimental data.  

In practice, cross correlation approach is still a widely accepted method for the analysis of 

neuronal interactions. One of the most recent studies using cross correlation was the 

analysis of weak connection between excitatory cortical neurons (Schwindel et al., 2014).  

In this study, due to the weakness of excitatory neuronal interactions, a long-time 

recorded data (~25h) from rat prefrontal cortex was analyzed to improve the poor 

sampling. The limitation of cross correlation approach, however, is that the method 

assumes the stationarity of spike trains. In addition, cross correlations are affected by 

firing rate differences between neurons (de la Rocha et al., 2007; Amari, 2009). 

Comparing to cross correlation method, IG method might overcome these difficulties in 

practice.  In the present thesis, we have shown that IG approach may not need the 

assumption of stationarity. In chapter 3, our modeling study indicates that the linear 

relationship between 2-neuron IG measures holds under different network oscillations. 
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This property is useful for real spike data analysis, because the stability of IG measures 

allows us to treat segments of spike data from different oscillation periods as an 

integrated set. For instance, in the study of memory consolidation during sleep, rats are 

trained to perform reaching tasks in the pre-learning period. After the sleeping period, the 

rats will be trained to take the same reaching actions again in the post-learning period. 

This procedure will be repeated many days until the rats learn a skilled reaching task, and 

neuronal activity in the motor cortex will be recorded each day. The main purpose of this 

experiment is to find whether memory in the motor cortex is consolidated during non-

REM sleep. It is believed that the corresponding neuronal synaptic plasticity during 

learning is a slow and asymptotic process. During the learning procedure, evident 

plasticity has not occurred in the first several training days. Instead, there would be a 

remarkable synaptic plasticity during the last several training days. In both pre and post-

learning phases, the rats might experience multiple brain oscillation states. It is because 

the rats take not only reaching actions, but also other behaviors such as walking and 

resting during the entire recording. Based on the study in chapter 3, it is possible to treat 

data segments recorded from pre-learning phase as one set, and the data from post-

learning phase as another set.  The calculations of IG measures for the two big data sets 

provide us with reliable information, indicating whether synaptic plasticity occurs or not 

during the training.  Therefore, in real spike data analysis using IG method, we might be 

able to divide spike data in terms of learning stages. A preliminary study has been 

conducted for rat’s parietal cortex using IG approach (unpublished work). 38 neurons 

from parietal cortical area are recorded for rat’s sequential learning and memory 

consolidation during sleep. We tested the computational efficiency on IG approach. For 

example, one calculation using 4
th

 order IG measures for 30min spike data of 38 neurons 
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(703 neuronal pairs) requires about 20 minutes computational time. Although the average 

computational time by IG approach is longer than the time by cross correlation analysis in 

a single CPU, we are capable of completing 3h spike data through six CPUs 

simultaneously in 20 minutes with the help of parallel computing techniques. Thus, 

parallel computing techniques might allow neuroscientists to apply IG approach in a more 

efficient way for multi spike data analysis under different brain states.The present study 

of IG measures focused on coincident firings only, which corresponds to the zero time-

lagged bin of a cross correlation function. The most appealing property of IG method is 

that the two-neuron IG measure     is only linearly related to the sum of the connection 

weights        . This property indicates that the calculation of     can estimate the 

change of total synaptic connection weights between neuron pairs in current study. 

Recent behavioral experiments show the evidence of directional plasticity during animals’ 

sequential learning in rat’s hippocampal place cells (Zenata, 2012). When a rat is placed 

in an open field environment, the firing of place cells is statistically independent of the 

direction of traverse through the place field. However, if the rat’s path is strict on a track, 

the firing rates in the two directions substantially diverged. This directionality also 

developed in an open environment when rats learned to run along a specified path. The 

study indicated that the effect is almost due to positive and negative changes in direction-

specific firing rates of the neurons. This evidence suggests the importance of estimating 

the directional plasticity of synaptic connection change. The IG method developed here 

has limitation of calculating the directional change of synaptic connections. The current 

studies on IG measures only showed the relationship between     and        . That is,  

    is incapable of calculating     and     individually. The IG measure was calculated by 
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the time bins with zero time delay. For instance, the IG measure in a two-neuron system 

is calculated by  

             
〈          〉   〈     〉  〈     〉  〈          〉 

 〈     〉  〈          〉  〈     〉  〈          〉 
 

(5.1) 

A time-lagged IG measure can be defined by         ,   represents the delayed time 

relative to t. Here          represents zero-legged IG measure. The state    and    for 

neuron 1 and 2 are calculated within the same time bin t with a zero delay time. To extend 

this method, the non-zero time lagged IG measure          (   ) could be one future 

research direction so that a directed connection can be estimated more directly. Tatsuno et 

al. (Tatsuno, 2004) has conducted a preliminary study on the time-delayed IG measure. 

They calculated          for the analysis in a two-neuron system. This study showed that 

the asymmetry of connection weights cannot be determined when using only the 

information at time lag zero, whereas this ill-posed nature can be reduced by taking into 

account a time-delayed IG measure        (Tatsuno, 2004). Therefore, we speculate that 

a future investigation and extension of the time-delayed IG could be the study of higher 

order IG                                 mathematically and numerically. Interestingly, 

the simulations of neural networks with time delay is a necessary step not only for 

verifying a theoretical calculation of time delayed IG, but also for uncovering more 

attractive properties related to IG measures. It is because a network with neuronal axonal 

time delay plays an important role for neuronal synchronization, brain rhythm generation, 

and pattern formation in the brain (Izhikevich, 2006) . We expect that these future 
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exciting computational modeling studies give insight into how IG measures can be 

applied in a dynamic neural network. 

Another limitation of IG method is that it is applicable only for discrete signals (0 and 1 

spike data). For example, in a 2-neuron system, IG methods only compute four different 

patterns                 for all-or-none (0 or 1) neuronal firing states. Therefore, it is an 

interesting theoretical change that how IG measures might be applied to provide measures 

for continuous patterns     with continuous values   and  . Inspired by quantum field 

theory, we speculate that one possible way could be quantization of probability space. 

More specifically, one can expand the continuous pattern     by basic patterns 

                 with multiple quantization factors. Since IG measures for discrete 

patterns are solved, one might be able to solve the issue under continuous patterns. 

Admittedly, the detailed theory needs to be intensively studied in the future theoretical 

research of IG measures.  

We currently performed numerical simulation study for IG method using simplified 

neural network in which the synaptic dynamics is ignored. It has been shown that 

conductance-based neuronal receptors such as AMPA and NMDA play a key role in 

network properties. Therefore, from modeling point of view, it is necessary to investigate 

how IG measures are influenced by these biological parameters by simulating more 

complex networks. NEURON simulator would be a good candidate tool for this purpose 

(Lipa et al., 2006, 2007). Furthermore, we currently only consider a single layer neural 

network simulations. It is interesting to investigate IG method by the simulation of multi-

layered feedforward and feedback networks.  
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Graphic models recently attract neuroscientists for neuronal modeling and data analysis. 

The graph, a mathematical representation of a set of variables with vertices and edges, 

play a key role in analysis of railroads, airlines, web, social networks, and neural 

networks. A combination of graphic theory and information-geometric measures was 

proposed to identify the intrinsic network structures (Atsushi, et al. 2013). Thus, one 

future advanced algorithm for neural data analysis might come from the combination of 

advanced machine learning techniques and IG methods. 

As multivariate point processes, analysis methods for multiple spike trains is far from 

being well developed. Therefore, as the improvement of spike sorting algorithms, it is 

critical for neuroscientists to further develop novel methodologies for multiple spiking 

data analysis. Whatever the approach, the objective must be to design tractable methods 

for estimating high-dimensional neuronal interactions from their spike trains. Furthermore, 

due to the high nonstationality of neuronal dynamics, it is important to develop explicit 

adaptive algorithms for estimation of the neuronal activity through highly dynamic time-

series processes. 

In summary, the current work of IG method covers the study of the single-neuron, pair-

wise, and higher-order interactions under network with stationary firing and oscillatory 

firing.  The methodologies used here involve mathematical analysis, nonlinear analysis, 

statistical analysis and numerical estimations. We show that IG measures provide 

promising estimation for network structure from its multiple neuronal spike data. IG 

measures root deeply in the differential geometry and information theory, and can be 

calculated directly from the calculation of probability of spike events. The hierarchical 

property of IG measures separates the single-neuron firing, pair-wise firing, and other 
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higher-order interactions, providing an advanced data analysis methodology. Despite 

some limitations in current method, the IG method is one of the advanced statistical tools 

for multiple spike data analysis. Its direct relationship with the network parameters 

provides useful information for the estimation of structural changes. We expect that an 

advancement of novel analysis methods combining information geometry and other 

statistical methods will lead to a break-through finding in the future. 
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