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Abstract

Classification of hyperspectral data is very challenging and mapping of land cover is one of

its applications. Improving the classification accuracy and computation time of hyperspec-

tral data were achieved incorporating contextual information in combination with spectral

information for correcting classification errors along class boundaries and within class. In

the proposed method, the original hyperspectral image was first classified using the Support

Vector Machine (SVM) classifier, followed by the Markov Random Field (MRF) approach

applied to the boundary areas and Unsupervised Extraction and Classification of Homo-

geneous Objects (UnECHO) classifier used for the interior parts of regions to produce the

final classification map. In this study two agricultural (Hyperion and AVIRIS) and one

urban (ROSIS) datasets were used. Investigations of the spectral and various contextual

approaches including feature reduction show that the SVM-MRF method with grid search

works best for all of the datasets. The highest overall accuracy of 97.35% was achieved for

the urban dataset.
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Chapter 1

Introduction

Hyperspectral remote sensing datasets are one of the major sources of land cover informa-

tion, which can be analysed using digital image processing techniques [28, 43]. Remote

sensing data are acquired by sensors on board aircraft, spacecraft or Unmanned Aerial Ve-

hicle (UAV) platforms [30]. The spectral resolution of remote sensing data is defined as the

width of wavelength interval and the number of bands. The number of different intervals,

or bands, which can be detected has increased from panchromatic to multispectral, hyper-

spectral and ultraspectral due to the advancing sensor technology in remote sensing. For

example, hyperspectral sensors can simultaneously acquire data with more than a hundred

bands for a single pixel and can have spectral resolution as high as 0.67 nm [11]. Therefore,

hyperspectral images are a rich source of information for characterizing objects and mate-

rials of the Earth surface. Classification and identification of objects is one of the important

applications of hyperspectral data.

For classifying hyperspectral data, two main approaches are used: unsupervised and

supervised [13]. Unsupervised techniques do not require any information about the data

[28]. In supervised techniques, a training collection of pixels with known correct labels is

used to compute parameters that are used for classification. Each pixel is labelled based on

its spectral information independently of other pixels. The Support Vector Machine (SVM)

method is a supervised classification technique based on statistical learning theory and has

been shown to be a very effective method for the classification of hyperspectral data [19].

Most supervised classification methods including SVM use only spectral information for

classifying images. However, spatial information has also been used for classification [28].

Some classification methods use contextual (i.e., both spectral and spatial) information

[33]. In these cases, a spectral information based classification algorithm is applied at
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first. After that, spatial information from neighbouring pixels is combined with the spectral

information to improve classification results.

Although the amount of information in hyperspectral datasets is large compared to other

remote sensing datasets, sometimes it is difficult to classify these datasets because of the

large number of bands. This is especially true when the number of training samples is small,

and this phenomena is known as Hughes phenomenon [43]. Moreover, the computational

cost is high for processing datasets with a large number of bands. Hence, band reduction of

hyperspectral datasets is very important for improving both accuracy and computation time.

There are two types of band reduction techniques: band extraction and band selection. In

band extraction, the original hyperspectral dataset is transformed into a new smaller dataset

that contains most of the data variance [28]. Band selection algorithms select a best subset

of features by removing noisy and redundant bands [22].

1.1 Problem Formulation

Many of the spectral-spatial classification methods consider the initial classification result

of a neighbourhood to classify a particular pixel. There are also spectral-spatial classifica-

tion methods that work only on the boundary pixels of the spectral classification. In this

case, misclassification is caused by pixels containing multiple classes near the borders of

regions. In both of these cases, misclassified or incorrectly classified pixels may appear

on the boundary as well as the interior parts of the regions. Misclassification may occur

mainly because of noise or mixing of multiple types of objects. These two reasons may

decrease classification accuracies. If we are able to correct both misclassified interior and

boundary pixels, the classification accuracy should be higher.

Band extraction and selection are used in previous studies for improving the accuracy of

mostly spectral information based classifier [43, 50]. The accuracy of contextual classifiers
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may improve after band extraction and selection.

1.2 Objective

The primary objective of this study is hyperspectral image classification by incorporating

contextual (i.e., spectral and spatial) information in order to improve classification accuracy

as well as processing time. At first a standard spectral classification algorithm is applied.

Spatial methods are then investigated to correct errors of both interior pixels of the regions

and boundary pixels that surround the regions in the result of spectral classification. Dif-

ferent band extraction and selection techniques are investigated to determine their effects

on accuracy of both spectral and contextual classification.

1.3 Summary of the Proposed Approach

In this thesis, the SVM method as a spectral classifier is first applied on the original hy-

perspectral data. After this step, two methods are examined: use of the Unsupervised

Extraction and Classification of Homogeneous Objects (UnECHO) classifier for reduc-

ing misclassified pixels inside the constructed class boundaries and the Markov Random

Field (MRF) regularization process to improve classification of mixed spatial boundary

pixels of the first classified image [29, 33]. The spectral and spatial information are com-

bined by both of these methods in this study. If we use both of these methods for reduc-

ing errors in a region and boundary, the classification accuracy may be higher than using

each method individually. For investigating the effect of band extraction and selection

techniques on classification accuracies of these contextual methods, the Principal Com-

ponent Analysis (PCA) and the Independent Component Analysis (ICA) approaches are

evaluated for feature extraction, and the SVM Recursive Feature Elimination (SVM-RFE),
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minimum-Redundancy–Maximum-Relevance (mRMR) and Correlation based Feature Se-

lection (CFS) methods are evaluated for feature selection in this thesis. These methods

have been used in other studies on classification problems [26, 31, 43].

In the literature, many of the classification approaches based on contextual information

have been tested for urban areas or man-made objects only [29]. In this study, the proposed

methods are tested for the classification of both agricultural and urban hyperspectral data.

1.4 Research Findings

Two agricultural and one urban datasets are used in the thesis. One of the agricultural

datasets is used to evaluate the proposed method including SVM, MRF, and UnECHO

methods. The MRF method improved the accuracy of the SVM result. On the other hand,

the UnECHO method failed to improve the accuracy of the SVM classification result and

because of this the accuracy of the final result is not improved.

We also found that a variation of the MRF method applied only on the boundary pix-

els of the SVM classification showed good results both numerically and visually for all

datasets. This variation also reduces the computation time for classification. However, the

classification accuracy is not improved for any of the datasets when the UnECHO method

is applied to the SVM classification result. Feature reduction techniques showed different

results for different datasets. For example, PCA and ICA techniques improved the accu-

racy of the SVM classification for one agricultural dataset to almost 100% but for other

datasets, these techniques could not provide better results. Finally, using the SVM method

with appropriate training parameters can improve the accuracy significantly compared to

using the default parameter values.
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1.5 Overview of this Thesis

This thesis is organized as follows:

Chapter 2 gives some background information on remote sensing as well as an overview

of some spectral classification methods, contextual classification methods, and feature re-

duction techniques.

Chapter 3 briefly describes the problem, proposed methodology and implementation of

all the methods used in this thesis.

In Chapter 4, a description of one agricultural dataset, and all experiments and results

are presented.

Chapter 5 presents all experiments and results of two other datasets.

Finally, in Chapter 6, we summarize our findings and discuss future work.
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Chapter 2

Background

Remote sensing can be defined as gathering information about an object without any physi-

cal contact with it. Terrestrial remote sensing is commonly used to refer to the identification

of features of the Earth’s surface by detecting the characteristics of electromagnetic radi-

ation that is received from the Earth system. The property of electromagnetic radiation,

which is reflected or emitted from the objects, is used to sense the Earth’s surface from

space in order to improve natural resource management, land use, and the protection of the

environment among others [30].

The most important source of electromagnetic radiation is the Sun. Solar radiation is

either reflected from, absorbed by, or transmitted through objects when it interacts with a

surface. The basic property that permits identification of the type of an object in remote

sensing imagery is called spectral signature [30]. An object’s spectral signature is its re-

flectance values in the various wavelengths that are covered by the sensor [6]. The idea

is that each type of object has a unique signature by which it can be identified [30]. For

example, spectral signatures of water, green vegetation and soil are illustrated in Figure 2.1.

Spectral resolution is the sensor’s ability to define wavelength intervals where the finer

spectral resolution represents narrower wavelength range for a band. Each band has its

Relative Spectral Response Function (RSRF) that is characterized by the center wavelength

and bandwidth at the Full-Width Half-Maximum (FWHM) [28]. In the pattern recognition

literature, features can be defined as spectra of remotely sensed data [28]. If there are d

bands, the feature space can be represented as a scatter plot of d-dimensional vectors whose

components are the reflectance values in each band such that each vector represents a pixel

in the scene.

In multispectral sensors, only a few bands are available and for this reason, the spec-
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Figure 2.1: Spectral Signatures of water, green vegetation and soil [6].

tral resolution is low; for example, images obtained from Landsat-8 have 11 bands and

QuickBird-2 have 4 bands [1, 42]. Some multispectral sensors have high spatial-resolution

(area covered by a pixel). For example, each pixel of Quickbird-2 and SPOT-6 imagery

represents an area of 2.4 m × 2.4 m and 6 m × 6 m on the ground, respectively [9, 42].

On the other hand, hyperspectral images are obtained using many narrow contiguous spec-

tral bands. They contain higher resolution information than those of multispectral images.

For example, images obtained from Hyperion have 220 spectral bands with 30 m spatial

resolution [57]. Hyperspectral images can be used for separating land cover classes for

mapping of the Earth’s surface more accurately than multispectral images. The classifi-

cation of hyperspectral datasets has several important applications, such as mapping of

pipeline leakage through vegetation stress, finding sources of water pollution, and mon-

itoring precision agriculture, vegetation health, and mine tailings site re-vegetation [53].

However, classification of this large amount of information from hyperspectral imagery

is very challenging. Before performing classification of hyperspectral data, several pre-

processing steps are mandatory. For example, removal of sensor artifacts and atmospheric

effects that are described in the next Section [28]. The pre-processing steps are important,
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because the classification accuracy depends on the quality of data correction.

2.1 Image Preprocessing

In order to achieve the best classification accuracy, it is necessary to ensure that pre-

processing steps are done properly. Major data pre-processing steps include removal of

atmospheric and geometric effects [28]. In addition, assessment and removal of sensor

artifacts and calibration effects are required. Data can be calibrated by converting Digital

Numbers (DN) to radiance values using calibration coefficients, such as gain and offset in

the metadata file provided by the data provider [46].

Reducing Sensor Artifacts There are a number of common types of sensor-specific

artifacts that can be reduced.

1. Instrument alignment : Sometimes Visible Near-InfraRed (VNIR) and Short-Wave

InfraRed (SWIR) images are not spatially and/or spectrally aligned properly, because

of the misalignment of the VNIR and SWIR detectors. Shifting or rotating one of the

images to the other one and spectrally shifting the VNIR or SWIR portion of the

spectrum remove these artifacts [28].

2. Random Noise : The random influence of various sources, such as sensor electron-

ics, by which the images are affected is called noise. Noise can be removed using

smoothing kernels, convolution filters or by first transforming the data to another

state, such as frequency space [28].

3. Striping : Striping is a systematic noise, which has a pattern to its distribution and

variation [51]. Stripes occur along or across imagery due to improper radiometric
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detector-to-detector calibration, temperature change, etc. The algorithms for de-

striping images can be grouped into two categories: digital filtering and statistical

approaches (histogram matching and moment matching).

4. Smile/Frown : The position of wavelength changes across-track within an image in a

specific band. This occurs because of spatial distortions caused by the diffusion ele-

ment, such as prism or grating and the imaging optics [28]. Atmospheric absorption

features of a radiative transfer model is used to determine the size of the smile/frown.

The smile/frown is corrected by resampling image data based on the wavelength cal-

ibration data.

5. Keystone : Inter-band spatial misregistration in spectrographs means that the exact

same area on the ground is not measured in all the bands due to distortion in camera

lenses [28]. Spatial resampling is used to correct keystone [28].

Atmospheric Correction: Sensor radiance of a target can vary depending on the time

of data acquisition and atmospheric properties. Scattering, transmission and absorption

occur when radiation interacts with the atmosphere [28]. Water vapour and other gases and

particles change the radiation reflected from the objects. Absolute atmospheric correction

of converting the measured at-sensor radiance to surface reflectance is needed for obtaining

accurate spectral characteristics [55]. Generally, two different approaches are used to carry

out this correction. In the first approach, information collected on the ground is used for

removing the effects of illumination, atmospheric scattering, and gaseous absorption [55].

The second approach makes use of atmospheric radiative transfer models to remove the

effects of atmospheric scattering and gaseous absorption under varying illumination and

viewing conditions [55]. Hyperspectral sensors have absorption feature bands, which can

be used to improve the atmospheric correction [55].
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Geometric Correction: Geometric correction is used to reduce or eliminate the distor-

tion in acquired imagery so that individual elements or pixels are in their proper planimetric

map location [28]. This is usually done by co-registering the image with another image or

by adjusting image coordinates to a map reference system.

2.2 Image Classification

Image classification is an information extraction procedure in remote sensing that is used

for mapping land-use and land-cover types. The two main types of classification are super-

vised and unsupervised classification.

Supervised classification requires selecting training areas of remotely sensed data with

assigned labels [24, 28]. The training areas, which represent homogeneous examples of

known land-cover types are identified by an analyst through a combination of ground data

and personal experience. The remainder of the image is classified using the classification

algorithm, which is trained based on these training areas.

In unsupervised classification, classes are produced automatically by grouping similar

pixels into clusters based on their spectral characteristics [28]. In the next step, the user

has to manually label the classes as one land-cover type or another. As a general rule, the

larger the number of classes, the more difficult it is to assign meaningful class labels.

There are various kinds of statistical pattern recognition techniques that can extract

land-cover information for both supervised and unsupervised classification [28]. Generally,

we can divide them as follows:

Per-pixel classification: the whole image is processed pixel by pixel. The labelling of

each pixel depends mainly on the spectral information of that pixel.

Spatial-information based classification: the spatial information of groups of pixels is
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used to classify the pixels. For example, the shape of objects may be used.

Contextual classification: per-pixel classification results of nearby pixels (called a neigh-

bourhood) are examined to determine the classification of each pixel.

In this thesis, only per-pixel and contextual classification methods are examined.

2.3 Classification Accuracy

Image classification algorithms are often evaluated based on the accuracy of the classifica-

tion results. In order to perform the evaluation, “ground-reference” data must be available

for the areas corresponding to the pixels classified.

A number of different measures are used to evaluate the accuracy of a classification

algorithm [28]. The overall classification accuracy is the percentage of correctly classified

pixels:

Overall Accuracy (%) =
number of correctly classified pixels

total number of pixels
×100. (2.1)

Sometimes the classification results are more accurate for some class and not as ac-

curate for others. In these cases, it is useful to also study the classification accuracy for

individual classes. For each individual class y, we define user accuracy and producer accu-

racy as follows [28]:

User Accuracy (%) =
number of pixels correctly assigned to y

total number of pixels classified as y
×100 (2.2)
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and

Producer Accuracy (%) =
number of pixels assigned to y

total number of pixels in y
×100. (2.3)

The user accuracy for a class y is the percentage of pixels classified as class y that are

correct, while the producer accuracy for y is the percentage of pixels in class y that are

classified correctly.

Two closely related types of errors for each class can be defined in terms of user accu-

racy and producer accuracy:

Commission Error (%) = 100%−User Accuracy (2.4)

and

Omission Error (%) = 100%−Producer Accuracy. (2.5)

Commission error for a class y represents the pixels that are incorrectly assigned to y,

while omission error represents the pixels in class y that are assigned to some other class.

2.4 Per-pixel classification

Per-pixel classification is a process in which each pixel of the entire image is classified.

Most image classification techniques are based on per-pixel classification. These tech-

niques include ISODATA and K-means (unsupervised classification), parallelepiped, min-

imum distance to mean, Maximum Likelihood (ML, parametric classifier), Mahalanobis

distance (parametric classifier), Support Vector Machine (SVM), decision tree, and neural
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network [28]. We will only describe the Support Vector Machine (SVM) and Maximum

likelihood methods in details in this study. Previous literature [20] has shown that SVM can

provide high classification accuracies compared to other techniques in many cases. In addi-

tion, many remote sensing data users prefer the ML classifier, because it is also competitive

with other classifiers as shown in the recent literature [3].

2.4.1 Support Vector Machine

SVM was first developed to deal with only two classes. Later multiple-class problems

were handled by the expanded SVM [28]. The goal of SVM is to determine a hyperplane

(decision boundary) between classes based on the training data. In the case of linearly

separable problems, the classes do not overlap in the feature space. However, classes can

often overlap in linearly non-separable problems [28].

In the case of a two-class classification problem, the linear SVM algorithm considers a

training set consisting of N vectors (Xi, i = 1, . . . ,N) from the d-dimensional feature space

Rd [36]. Each vector Xi is associated with a class label or target yi ∈ {−1,+1}. In the case

of linearly separable problems, there exists a hyperplane separating the vectors of the two

classes (−1 and +1). The hyperplane can be described by a normal vector w and a bias

b ∈ R. That is, the hyperplane consists of all vectors X ∈ Rd satisfying the equation

w ·X +b = 0. (2.6)

For any vector X ∈ Rd , we can decide, which class X belongs to by computing a discrimi-

nating function f (X) defined as

f (X) = w ·X +b. (2.7)
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Figure 2.2: Concepts of Support Vector Machine (SVM) classification [28].

If f (X) > 0, then X is labeled as class +1. If f (X) < 0, then X is labeled as class −1. If

| f (X)| is large, then the labelling is likely correct. The value of | f (X)| can be interpreted

as a probability that the labelling is correct [49].

The optimal hyperplane acquired by the SVM approach maximizes the distance be-

tween the separating hyperplane and the closest training samples. The training samples

that are closest to the hyperplane are called support vectors. The distance between these

support vectors and the optimal separating hyperplane is the margin, and is equal to 1/‖w‖

[36]. The concept of margin is essential in the SVM approach, because it is an indica-

tion of its generalization capability and measures how accurately the classifier labels new

input different from the training samples. The larger the margin, the higher the expected

generalization capability. These concepts are illustrated in Figure 2.2.

In the case of linearly non-separable data, the SVM approach allows some training sam-

ples to be incorrectly classified. It chooses a hyperplane to balance between maximizing

the margin and minimizing incorrectly classified samples. This trade-off is controlled by

parameters that are specified by the user or chosen by exhaustive search [36]. Separability
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between classes can also be improved by mapping feature vectors into a higher dimensional

space using nonlinear kernel functions [28]. Kernel functions are used to embed data in a

higher dimensional space and by adding extra dimensions, inseparable data may become

separable. A kernel function, K, is defined as follows:

K(Xi,X j) = φ(Xi) ·φ(X j), (2.8)

where the optimal margin in the feature space can be written by replacing Xi · X j with

φ(Xi) ·φ(X j). Using the kernel function, (2.7) becomes

f (X) = ∑
i

λiyiK(Xi,X j)+b, (2.9)

where λi is a Lagrange multiplier. A detailed description of the computational aspects of

SVM can be found in [10, 60].

Among different types of kernel functions, the Radial Basis Function (RBF) has been

found to provide better classification results. Mathematically, the RBF kernel is defined as

follows:

K(Xi,X j) = exp
(
−γ||Xi−X j||2

)
,γ > 0, (2.10)

where γ is a kernel parameter. The default value of γ = 1
d is commonly used [10].

For multiclass problems, the SVM approach uses a number of two-class SVM classi-

fiers to perform the classification [36]. There are two common strategies of using SVM in

a multiclass problem:

1. One-Against-All Strategy: Each SVM solves a two-class problem defined by one

class against all the others. If one of these SVMs labels an input vector as a particular

class, this class label is given to the vector. If multiple labels are possible, the one
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with the highest probability is chosen.

2. One-Against-One Strategy: There is a two-class SVM for each pair of classes. Each

SVM assigns a label to an input vector, and the results of all SVMs can be combined

based on the probabilities to obtain the final label.

The training data samples for SVM are considered as independent and identically dis-

tributed. However, in practice, the data is non-gaussian and erroneous, because of many

reasons, such as motion (i.e., externally induced signals in the measurement) and sensor

artifacts, shade and illumination effects, spectral variability, and other environmental ef-

fects [28, 52]. A posterior probability is established to express the uncertainty of labels

assigned using the Bayesian decision theory—a basic method of statistical pattern recog-

nition [61]. For a two-class problem, the distance of a feature vector from the separating

hyperplane can be used to calculate the posterior probability [49], and this can be extended

to the multi-class problem [62]. The formulas to compute these probabilities are similar

to the ones used in the Maximum Likelihood Supervised Classifier described in the next

section.

According to [19], the classification performance of SVM is very satisfactory using

NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data. In

addition, in [44], SVM achieved better accuracy compared to other advanced approaches,

such as neural network and maximum likelihood as shown in Figure 2.3.

2.4.2 Maximum Likelihood Supervised Classifier

One of the most popular supervised classifier in remote sensing is the maximum likelihood

method [28]. It was described by Swain and Davis in 1978 [45] and has been used since

then. The labeling decision is taken based on the likelihood that a pixel belongs to a par-
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Figure 2.3: Classification accuracies of hyperspectral data (training data size = 200 pix-
els/class) using SVM, neural network, and Maximum Likelihood [44].

ticular class [28]. That is, a pixel is assigned to a certain class for which the likelihood or

probability is maximum. In Figure 2.4, the pixel is assigned to Class 3 as this class has the

highest likelihood over all classes for that pixel.

The likelihood function is used in the maximum likelihood method. This function is

derived from Bayes’ theorem [14]. According to Bayes’ theorem, the posterior probability

of a pixel belonging to class y given the feature vector X of that pixel is defined as

p(y|X) =
p(y).p(X |y)

p(X)
, (2.11)

where p(X |y) is the likelihood function or probability density function to observe the at-

tribute values X given that it belongs to class y [14], p(y) is the prior probability of class

y, and p(X) is the probability of the feature vector X being observed. Here, p(X) is the

same for all classes. In the maximum likelihood method, it is usually assumed that each
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Figure 2.4: Maximum likelihood classification with equal probability contours [28].

class has an equal probability of occuring, which makes it possible to eliminate the prior

probability term p(y) [28]. Therefore, likelihood depends only on the probability density

function [28, 41]. Figure 2.5 illustrates an example of probability density functions of two

training classes (e.g., forest and agriculture) overlapping in the feature space, where the

pixel X is assigned to the forest class because the probability density is greater in the forest

class at that point than in the agriculture class.

In this method, the normal distribution or Gaussian distribution of the training data is

assumed for each class in each band [28]. The probability density function in band k for

class yi can be computed using the following formula:

p(xk|yi) =
1

(2π)
1
2 σ̂i

e

(
− 1

2
(x−µ̂i)

2

σ̂2
i

)
(2.12)

where x is the pixel value (e.g., reflectance) in band k, µ̂i is the estimated mean of all pixel
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Figure 2.5: An example of overlapping probability density functions of two training classes
[28].
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values in band k of class yi, and σ̂i is the estimated standard deviation of all the reflectance

values in band k of class yi. Therefore, the probability function of individual reflectance

values is computed based on the mean and standard deviation (variance) of each training

class. In addition, an d-dimensional multivariate normal density function is computed using

the covariance matrix for multiple bands in the training data of each class. For example,

the bivariate probability densitiy functions of normally distributed six hypothetical classes

in red and near infrared feature space are illustrated in Figure 2.6.

2.5 Contextual classification

Contextual classification methods make use of both spectral and spatial information. In

these cases, a spectral class (per-pixel) classification algorithm is initially applied. The

spatial information is then combined with the spectral information. Two methods studied

in this thesis are described in this section.

2.5.1 Classification based on the SVM-MRF method

SVM classification is initially used and the probability of each pixel belonging to each

class is obtained from the SVM. A number of techniques can be obtained to compute the

posterior probabilities. In the next step, certain and uncertain pixels are extracted from the

classified map by applying the erosion technique (an image processing technique). The

pixels that are situated near the borders of regions or spatial boundaries are referred as

uncertain pixels. The assigned labels for these pixels may not be reliable, because the

pixels may contain a mixture of multiple classes. Contextual information is used only for

the uncertain pixels by the application of the Markov Random Field (MRF) regularization

process [33]. The steps of this classification process are shown in Figure 2.7. Applying the
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Figure 2.6: Probability density function derived from the training data [28].
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Figure 2.7: SVM-MRF algorithm layout [33].

MRF method only for uncertain pixels reduces processing time compared to applying it to

the whole image. It also improves the classification accuracy of boundary pixels.

Probabilistic SVM Classification: The SVM assigns a class label to a pixel based on

the posterior probabilities computed as described in Section 2.4.1. Given the posterior

probability p(yi|X) (i = 1,2,...,M, where M is the total number of classes) and the feature

vector X , X is assigned to class yi if

p(yi|X) > p(y j|X) ∀ j 6= i. (2.13)

Certain and Uncertain Pixels Extraction: In this step, certain and uncertain pixels are

separated from the classified image using the erosion technique.
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Erosion is one of the fundamental operations of morphological image processing, which

is related to the shape or morphology of features in an image. Morphological techniques

extract image components, which describe and represent region shape. These components

include skeleton, boundaries and the convex hull. Morphological techniques on shapes only

work on binary images. The pixels are either foreground pixels (containing the objects or

shapes of interest) or background pixels. A binary image may also be represented as the

set of pixel coordinates at which foreground pixels are located. An image is processed

by the morphological techniques with a small shape or template, and this shape is called a

structuring element. It is positioned at all possible locations in the image, and it is compared

with the corresponding neighbourhood of pixels. Some operations shown in Figure 2.8 test

whether the element “fits” within the neighbourhood, while others test whether it “hits” or

intersects the neighbourhood.

The erosion technique produces a new binary image such that the foreground objects

are reduced in size [18]. Let us assume A and B are binary images represented as sets of

pixel coordinates. The erosion of A by B, where A is a binary image and B is a structuring

element, can be written as A	B and defined as A	B = {z|(B)z ⊆ A}. That means erosion

of A by B is the set of all points z such that B, translated by z, is contained in A. In other

words, the result of erosion is the set of points such that the structuring element B fits in A

when placed at those points.

After erosion, the results are the interior parts of a region, which are considered to be

certain pixels [33]. Figure 2.9 shows an example of erosion with a 3×3 square structuring

element. Erosion with a square structuring element shrinks the foreground objects in an

image and the gaps between different regions are enlarged by eliminating small details.

The SVM classified image is considered to be a collection of binary images in which each

binary image has as foreground the pixels labelled as one particular class. The erosion

technique is applied to each binary image to obtain the interior of the regions, and the
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Figure 2.8: Probing of an image with a structuring element [12].

interior is subtracted from the original binary image to obtain the uncertain or boundary

pixels.

MRF-Based Regularization of Uncertain Pixels: This is the final step where uncertain

pixels of the SVM classified image are regularized by incorporating spatial information.

The “energy” at each pixel is defined to measure the uncertainty in the assigned label based

on the posterior probability at that pixel and the labelling of adjacent pixels. The MRF pro-

cess minimizes the total energy over all uncertain pixels until the labelling has stabilized.

This process attempts to integrate spatial information into the per-pixel classification result.

The local energy is defined as

U(ai) =− ln{P(ai|yi)}+ ∑
a j∈ni

β(1−δ(yi− y j)) (2.14)

where P(ai|yi) in the first term is the likelihood of a pixel ai being observed from class yi,

which can be computed from the posterior probability and Baye’s rule. A large likelihood

results in low energy in the first term while a small likelihood results in high energy. The
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Figure 2.9: Erosion is shown using a 3×3 square structuring element [17].

first term is computed only from the spectral information of a pixel. The second term of

(2.14) without β is ∑a j∈ni (1−δ(yi− y j)), where δ(Y ) is defined as

δ(Y ) =

 1 if Y = 0 ,

0 otherwise .
(2.15)

If the class label yi for a pixel ai is the same as the class label of a surrounding pixel,

the energy from that term will be 0, otherwise it will be 1. In the second term, n is the total

number of pixels in a neighbourhood. The more the labels of neighbourhood pixels match

with the given pixel, the smaller the local energy will be from the second term. ni is the

total number of neighbourhood pixels. In the MRF approach, eight neighbourhood pixels

were used [33]. We can consider the second term in (2.14) as a way to incorporate spatial

information. The defined local energy is a combination of spectral and spatial term, and

β controls the balance between the two. For example, a large value of β favours labelling

pixels in a neighbourhood the same way. This minimization of local energies is performed

over uncertain pixels and continues until labelling has stabilized [33].

It has been shown that the classification accuracy improves by incorporating spatial in-
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formation and processing time can be reduced by applying this process only on uncertain

pixels. The authors in [33] used the AVIRIS hyperspectral data of Indiana Pines in North-

western Indiana and sixteen classes of different crop types for experiment. The training

set was selected randomly from ground-reference data and the remaining samples were se-

lected as the test set. The SVM classification with the RBF kernel was applied, and the

probabilistic estimates were then calculated. Certain and uncertain pixels were extracted

after applying the erosion technique on the classified image using a disc structuring ele-

ment with radius 1. Combination of spectral and spatial information improved the SVM

classification accuracy by achieving overall accuracy from 82.52 % to 92.07 % as well as

reduced the processing time by 57 % compared to the conventional SVM-MRF method in

which the MRF method is applied to the entire image instead of only the uncertain pixels.

2.5.2 Integration of Spatial Information Using the

UnECHO Method

The Unsupervised Extraction and Classification for Homogenous Objects (UnECHO) clas-

sification method attempts to enhance pixel homogeneity of local neighbourhoods [29].

This is actually a refinement of the supervised Extraction and Classification for the Ho-

mogenous Objects (ECHO) classifier, where spectrally homogeneous pixels in a local

neighbourhood are enforced to the same class [29]. Pixels in a local neighbourhood are

classified to the same class if their spectral characteristics are similar. The threshold values

required to measure the conditions of homogeneity of all the neighbourhoods are estimated

by the algorithm.

The UnECHO method classifies a set of pixels in a neighbourhood based on the degree

of heterogeneity or homogeneity. High homogeneity and low heterogeneity of a neigh-
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bourhood to a particular class means that all pixels of a neighbourhood belong to that class

[29].

UnECHO has two steps. In the first step, the original image is classified using a per-

pixel based classifier such as C-means. In the second step, the classification results of the

first stage and spectral information in a neighbourhood are used for contextual classifica-

tion. The image is divided into a number of non-overlapping neighbourhoods. All pixels

of neighbourhood t, X̂ (t), belong to the i-th class if

Qi

(
X̂ (t)
)

< Di and Qi

(
X̂ (t)
)

< Q j

(
X̂ (t)
)
∀ j 6= i, (2.16)

where Qi

(
X̂ (t)
)

is the distance between the t-th neighbourhood X̂ (t) to class i and Di is the

threshold for class i. The first part means that the spectral homogeneity of t-th neighbour-

hood is large enough and can be classified as class i. The second part means that the degree

of homogeneity of all pixels of neighbourhood X̂ (t) to class i is the largest compared to any

other class j. Q j

(
X̂ (t)
)

is defined as follows:

Q j

(
X̂ (t)
)

=
1
L

L

∑
m=1

q j (Xm) , (2.17)

where L is the total number of pixels in the t-th neighbourhood, Xm is the m-th pixel of that

neighbourhood and q j (Xm) is the distance of pixel Xm to the j-th class. Various metrics

such as Euclidean distance, Mahalanobis distance, and Maximum likelihood can be used

for the measurement of these distances.

1) Euclidian distance [29] :

q j (Xm) =
(
Xm−µ j

)T (Xm−µ j
)
, (2.18)

2) Mahalanobis distance [29] :
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q j (Xm) =
(
Xm−µ j

)T
∑
−1
j

(
Xm−µ j

)
, (2.19)

3) Maximum likelihood [29] :

q j (Xm) = |∑ j |
(
Xm−µ j

)T
∑
−1
j

(
Xm−µ j

)
, (2.20)

where µ j is the expected value and ∑ j is the covariance matrix of class j. We can use any

one of these based on various situations. For example, the Euclidean distance can be used

when the eigenvalues of covariance matrices are nearly zero. Therefore, Q j

(
X̂ (t)
)

is the

average of the distances of every pixel to the centroid of the j-th class. If the average is too

high, the pixels in the neighbourhood t are not classified to class j.

In the UnECHO method, square neighbourhoods of 2×2, 3×3, or 4×4 are chosen be-

cause they are simple and the computational performance is better. Since using larger

neighbourhoods require more time to compute the threshold, we should select a small

neighbourhood size. However, too small is not good either, because less spatial informa-

tion is considered. Also if we use a overlapping neighbourhoods, it will affect the execution

time, and classification results of overlapping neighbourhoods would need to be merged.

The threshold Di depends on the composition of θ of the neighbourhood. The composi-

tion of a neighbourhood for an M-class problem is defined as the vector θ = [n1,n2, . . . ,nm],

where ni is the number of pixels in the neighbourhood belonging to the i-th class. The vec-

tor θ represents classification distribution of pixels of one neighbourhood. If X̂ (t) has a

composition θ, the corresponding threshold for the ith class is defined as follows:

D(I,θ) =
Λ(I,θ)

Nθ

, (2.21)

where Λ(I,θ) is the sum of the degrees of heterogeneity of all neighbourhoods that have
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the same composition θ and are closer the Ith class than any other class, and Nθ is the

number of neighbourhoods that have the same θ composition.

Let us explain the estimation of threshold Di using an example. Assume we have three

3×3 neighbourhoods with two classes (red and blue) in the initial classified image as shown

in Figure 2.10. Q j

(
X̂ (t)
)

is the average distance of the pixels in the t-th neighbourhood

X̂ (t) to the j-th class. In our example, we define θ = [Number of pixels that belong to

the red class, Number of pixels that belong to the blue class] = [1,8]. X̂ (t) ∈ θ means that

neighbourhood t has a θ composition. In our case θ = [1,8] for t ={1,2,3} and Nθ= 3.

Let I(t) = arg
i

minQi

(
X̂ (t)
)

such that I(t) represent the class having the minimum aver-

age spectral distance to neighbourhood t. Let us suppose for our example that I(1)= blue,

I(2) = blue, and I(3) = red, Q(1)
blue = 3, Q(2)

blue = 2, Q(3)
blue = 4. So Λ(blue, [1,8]) = Q(1)

blue + Q(2)
blue

= 3 +2 = 5. Therefore, D (blue, [1,8] ) = 5 / 3.

A number of experiments were conducted using hyperspectral datasets to test the Un-

ECHO classifier [29]. The first experiment was conducted using a HYDICE hyperspectral

dataset of an urban area with 210 bands and 3.5 m spatial resolution. The UnECHO im-

proved the classification accuracy of C-means clustering by 16 % and detected detailed

spatial structures and shapes of large to small scale objects, such as buildings, roads, ve-

hicles, and narrow lines. The second experiment was conducted using AVIRIS data of the

Kennedy Space Flight Center in Florida that has 224 bands and 20-m spatial resolution.

As in the first experiment, the UnECHO classifier was able to reveal more detailed spatial

structure of civil infrastructure, such as road compared to C-means.

2.6 Feature Reduction

Hyperspectral images are used to classify different land-cover types more accurately than

multispectral images because of the high number of contiguous spectral bands provided in
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Figure 2.10: Example of classification of a 3 × 3 neighbourhood in the initial classified
image [29].
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hyperspectral images. However, the performance of many supervised classification meth-

ods is strongly affected by the increased number of bands or dimensions in the input data

[4, 5]. Every pixel in a hyperspecral image that has hundreds of spectral samples is con-

sidered as a vector. The number of dimensions of the vector is the same as the number of

bands. The contiguity of bands makes spectral samples within a vector highly correlated.

In addition, some bands may contain less discriminative information than others and data

redundancy may occur between bands. Data redundancy may obscure information that is

important for classification. Moreover, the number of training samples available for clas-

sification is limited, but in high dimensional data, a larger number of training samples is

needed to avoid error. This problem is called the Hughes phenomenon [43]. Finally, large

storage space and computation time are required for high dimensional data. Therefore,

dimension reduction without significant loss of essential information is a very important

issue. Dimension reduction techniques are generally categorized into two types: feature

extraction and feature selection.

2.6.1 Feature Extraction

Feature extraction is a process of feature reduction by projecting or transforming a higher

dimensional correlated space into a lower dimensional uncorrelated space [4]. The newly

transformed features are actually a linear combination of the original features. Feature

extraction produces a set of small and rich attributes that contain the maximum informa-

tion. There are many feature extraction methods existing in the literature. Among these,

commonly used feature extraction methods are Principal Component Analysis (PCA) [28],

Independent Component Analysis (ICA) [27], Minimum Noise Fraction (MNF), discrim-

inant analysis feature extraction [16], decision-boundary feature extraction (DBFE) [16],

Euclidian distance measurement (EDM) [59], the discrete measurement criteria function
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(DMCF) [59], the minimum differentiated entropy method (MDE) [59], and the probabil-

ity distance criterion (PDC) [59]. In this thesis, only Principal Component Analysis (PCA)

and Independent Component Analysis (ICA) are investigated.

Principal Component Analysis (PCA): Principal component analysis is one of the clas-

sical dimensionality reduction techniques that can be applied to multispectral and hyper-

spectral datasets. In PCA, a set of correlated spectral bands is transformed into an equiva-

lent set of uncorrelated components in a feature vector, so that the first fewer components

represent most of the information in original data. This technique condenses the informa-

tion of intercorrelated bands into a few bands or features and these features are called the

principal components [28]. To analyze the correlation among the bands, a covariance ma-

trix among the bands is formed. The eigenvectors of this matrix are applied to the band

values as a set of weights to obtain the principal component and the associated eigenvalues

indicate a measure of variance in that component.

Let us assume each pixel of hyperspectral image data is represented as the vector Xi =

[x1,x2, . . . ,xd]T
i , where x1,x2, . . . ,xd are the values of the d bands. Let E = e× r, where e

and r are the number of rows and columns of the image [50]. The mean vector of all image

vectors is denoted as follows:

Mv =
1
E

E

∑
i=1

[x1,x2, . . . ,xd]
T
i . (2.22)

Now, the covariance matrix is calculated by the following formula:

Cx =
1
E

E

∑
i=1

(Xi−Mv)(Xi−Mv)
T . (2.23)

The PCA is dependent on the eigenvalue decomposition, cx = AHAT of the covari-

ance matrix where H is the diagonal matrix composed of the eigenvalues and A is the
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Figure 2.11: PCA transformation process [28].

orthonormal matrix composed of the corresponding eigenvectors. Each feature vector is

transformed by Gi = AT Xi (xi, i = 1, . . . ,d). The principal components are the bands in the

transformed vectors.

The resulting principal components are ordered in a way such that the first few principal

components contain the maximum portion (e.g., 90 %) of the explanatory power or vari-

ance of the original dataset. The remaining components can be dropped in the subsequent

analysis without significant loss of information [28]. Generally the first three principal

components describe the vast majority of the variance within the dataset. If this is true,

the classification process can be performed using just these three principal components. To

compute the principal components, a transformation is applied to reproject the data onto

each principal component. The transformation is performed by rotating original coordinate

axes so that original pixel values are projected onto the principal components (Figure 2.11).

Independent Component Analysis (ICA): In Independent Component Analysis (ICA),

a set of mixed, random signals is transformed into mutually independent components and

is used in both multispectral and hyperspectral datasets. The transform uses higher order

statistics and it is based on the assumption that independent sources are non-Gaussian [26,
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27].

ICA has been developed to find a linear representation or transformation of the origi-

nal data so that the transformed components are mutually independent. Let us assume an

observed data vector X = [x1,x2, . . . ,xd]T which has a zero mean and d-dimensions or fea-

tures. The o-dimensional transform of the data vector is s = [s1,s2, . . . ,so]T , where si is the

coefficient of the i-th feature. The linear transformation of the observed vector is then as

follows:

s = WX, (2.24)

where W is the weight matrix and it is constant. An optimal dimension or feature reduc-

tion is computed by estimating the transformation. Therefore, the main objective of ICA

is to find a representation by estimating the transformation so that the transformed com-

ponents become statistically independent as much as possible. In this manner ICA can be

considered a special case of redundancy reduction. The matrix W can be computed by

considering the following standard generative model:

X = Fs, (2.25)

where s is an u-dimensional random vector. The components of s can not be directly

observed and these components are mutually independent. F is a constant matrix that

needs to be estimated. The weight matrix W in equation (2.24) can be obtained as the

inverse of F. Non-Gaussianity of the independent components is necessary, because the

matrix F is not identifiable for Gaussian independent components. In fact the ICA model

can be estimated if at most one of the independent components is Gaussian.

The definition of ICA based on the concept of mutual information is provided in [26].

The natural information-theoretic measure of the independence between random variables
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is called mutual information and is used as a criterion to find the ICA transformation.

According to this transformation, the matrix W is found in such a way that the mutual

information among the transformed components si is minimized. Mutual information is

non-negative and equals zero when the variables are statistically independent.

2.6.2 Feature Selection

In feature selection techniques, a subset of features is selected to represent the entire feature

space. The original representation of the features is not altered. That is, the feature space is

not transformed, but instead a subset of the original features is selected that maintains the

useful information for separating the classes. Feature selection is a common technique in

pattern recognition and machine learning to remove irrelevant, redundant, or noisy features

to get a good classification result. A wide variety of feature selection methods have been

applied to remotely sensed data. The methods that we used in this thesis, are described in

this section.

SVM-Recursive Feature Elimination (SVM-RFE): The SVM-RFE method is a fea-

ture selection technique using SVM as a base classifier. SVM-RFE is an efficient, scalable

method for many feature selection applications including feature selection of hyperspectral

data. SVM-RFE was proposed in [21] for gene selection using linear SVM in a backward

elimination procedure. The weight value calculated in the training stage of SVM is used

by this method as a feature ranking criterion to produce a list of features ordered by ap-

parent discriminatory ability. The ranking score of feature k is (Vk)2, where Vk is the k-th

component of the weight vector defining the hyperplane in equation (2.6). The magnitude

of Vk indicates the importance of the feature. At each step, the feature with the smallest

ranking score is eliminated. This process is repeated until the desired number of features is
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reached.

Correlation based Feature Selection (CFS): The CFS method is a simple and fast algo-

rithm proposed by Hall [22] and can be applied to both discrete and continuous problems

[23]. The CFS algorithm searches for the best subset of features based on the following

hypothesis: “Good feature subsets contain features highly correlated with the classifica-

tion, yet uncorrelated to each other” [22]. A subset of features is selected on the basis of a

correlation-based heuristic evaluation function. The heuristic algorithm considers two con-

cepts: the usefulness of individual features for predicting the class (called feature classifica-

tion correlation) and the level of intercorrelation among the features (called feature-feature

correlation). The following equation describes the heuristic function:

Juv =
d ¯Juk√

d +d(d−1) ¯Jkk
, (2.26)

where Juv is the correlation between summed features and class variable, d is the number of

feature, ¯Juk is the average correlation between feature and class, ¯Jkk is the average feature-

feature intercorrelation. Both ¯Juk and ¯Jkk are computed based on conditional entropy. The

numerator of this equation indicates how predictive a subset of features is to the class and

the denominator indicates the redundancy among the features. The heuristic evaluation

function selects the best subset of features that are highly predictive with the class and

contains less redundant information. Thus irrelevant features are discarded because of the

poor prediction with the class and high correlation with one or more of the other features.

The procedure starts with the complete set of features and repeatedly removes one feature

at a time to maximize the quantity in equation (2.26).

Minimum-Redundancy–Maximum-Relevance (mRMR): The mRMR method is an

improved version of the Max-Relevance feature selection method that implements the max-
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dependancy scheme [43, 47]. In the mRMR method, features are selected in a way so that

they are maximally dissimilar to each other and have the largest dependency on the tar-

get class [39, 47]. Mutual information is used in this method to calculate the dependency

between features.

Let us assume that fk represents the feature k and y is the class label. The mutual

information of fk and y in terms of their probabilistic density functions p( fk), p(y), p( fk,y)

is defined as follows:

I( fk;y) =
ZZ

p( fk,y) log
p( fk,y)

p( fk)p(y)
d fkdy. (2.27)

According to Max-Relevance, the selected feature fk should have the highest mutual

information value, Z( fk;y), with the target class y. For the best classification result, it

is necessary to consider the dependency between features beside relevance of features on

the target class because dependent features create redundancy. In order to minimize the

redundancy, a series of calculations of relevance and redundancy is used to select features

in mRMR.

In Max-Relevance, a set G of m features are selected in the descending order of Z( fk;y)

or by computing the maximum of the average of all mutual information value of the indi-

vidual features fk and class y:

max
G

1
|G| ∑

fk∈G
Z( fk;y). (2.28)

Because these selected features using the Max-Relevance method may contain high

correlation or redundant information, these are not the best selected features. In order to

remove redundant information, the Min-Redundancy criterion is used to select the top fea-

tures. The mutual information is considered in this case too for determining the dependency
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between each pair of features as follows:

min
G

1

|G|2 ∑
fk, f j∈G

Z( fk; f j). (2.29)

Both of the above optimization equations (2.28) and (2.29) are combined in mRMR

to get the final set of features. A sequential incremental algorithm is used to perform the

simultaneous optimizations, starting from an empty set of features. At each step, a feature

is added to the selected subset. Let Fd be the set of all features, and Gm be the set of features

selected after the m-th step. Then the m-th feature to be added to Gm is

argmax f j∈Fd−Gm−1

[
Z( f j;y)− 1

m−1 ∑
fk∈Gm−1

Z( f j; fk)
]
. (2.30)

Alternatively, the m-th feature can also be selected by maximizing the ratio of relevance

and dependency as follows:

argmax f j∈Fd−Gm−1

[
Z( f j;y)

1
m−1 ∑ fk∈Gm−1 Z( f j; fk)

]
. (2.31)

38



Chapter 3

Method

3.1 Problem and Solution Description

Various classification techniques based on the spectral properties alone have been proposed

in the literature [28]. Among these, two efficient methods are described in Section 2.4. In

particular, SVM classification has shown good performance in terms of classification accu-

racy even if there is a limited number of training samples available for hyperspectral images

[44]. Therefore, SVM is used in the proposed method as a spectral classifier. However, this

technique classifies pixels without giving attention to the spatial information or the labels

of neighbouring pixels.

For any particular pixel, the imaging sensor acquires a significant portion of radiant

energy from neighbouring pixels, and for this reason, pixels in the neighbourhood are likely

to be assigned the same labels. Spatial information can be used to overcome the salt-and-

pepper artifacts of the classification result. These misclassified pixels can be corrected

by spatial information to improve classification accuracy. Furthermore, some important

information can be extracted from the spatial domain. This includes the shape and the

size of the ground-cover type to which a pixel belongs. It is also possible to discriminate

between various structures made of the same materials. For example, the roof of a small

house and a large building is detected as the same type using spectral information alone, but

using spatial information it is possible to classify them into two separate classes in terms

of the size of the roof. Therefore, integration of spectral and spatial information is very

important.

Many of the existing contextual (spectral and spatial) based approaches consist of one

type of spectral and one type of spatial classifiers and spatial information is used either only
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for the boundary pixels or the whole image of the spectral based classified image (Section

2.5). However, one spatial classifier may not be appropriate for correcting pixels of both

the boundaries and the interior parts. The former are found along the class boundaries.

These pixels usually contain mixed spectral or class information from adjacent regions due

to rasterization of vector data [8]. Consequently, these boundary pixels may have different

properties from the pixels found in the interior parts of regions. As a result, classification

accuracy may be significantly affected.

The MRF approach is a probabilistic model that is commonly used to integrate spatial

context into the image classification process. It is used for correcting misclassified pix-

els situated in the boundary parts. For correcting errors in the interior part, the UnECHO

method is selected, because it integrates spatial information by enhancing pixel homogene-

ity of local neighborhoods. This process labels a set of pixels in a neighborhood to a class

based on the degree of heterogeneity or homogeneity. High homogeneity and low hetero-

geneity of a neighborhood to a particular class comparing with a threshold means that all

pixels of neighborhood belong to that class. Interior parts of regions of a spectral class

classified image always have high homogeneity even if any entire region is misclassified.

The MRF method may not be able to correct the entire misclassified region as this method

labels a pixel examining the probability values and labels of its surrounding pixels. In this

case, the UnECHO method may correct the entire region or a group of pixels of this region.

3.2 Proposed Method

The proposed method is divided into the following several steps.

Step 1: The original hyperspectral image is initially classified using the SVM classification

algorithm as described in Section 2.4.1. The probability values for each pixel and
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every class are also obtained from this classification.

Step 2: The erosion technique is applied to the SVM classified image to extract the bound-

ary pixels of each region for each class. The remaining non-boundary pixels are

considered to be the interior pixels of those regions.

Step 3: The MRF regularization method is employed only to the boundary pixels of the

SVM classified image obtained from step 2. The boundary pixels are regularized by

this method in this step.

Step 4: In order to incorporate spatial information, the UnECHO approach is employed

in the interior of every region of every class of the SVM classified image.

Step 5: The result of the boundary pixels from applying the MRF method and the result

of the interior part of each region from the UnECHO method are combined into one

final classification map. The entire process of creating the final classification map is

illustrated in Figure 3.1.

The proposed approach (steps 1, 2, 3, 4 and 5), MRF method (steps 1 and 3), UnECHO

method (steps 1 and 4) and SVM method (step 1) were investigated separately in order to

compare the results.

3.3 Training and Test Data

For supervised classification, ground-reference data, which are used for both the training

and test data, are essential. These classification algorithms require training data before

the classification procedure can be carried out. The pixels of the unclassified input image

are then classified using these training data, which represent the spectral signature of each
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Figure 3.1: Flowchart of the proposed method.
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class. Testing data is used for comparing the result of classification or for the accuracy

assessment.

The ground-reference data, such as from an agricultural area, forest area or man-made

area, are collected at the same time of the acquisition of airborne data. From this data,

classes of homogenous regions are created using Regions of Interest (ROIs) by visual ex-

amination of the images and with the help of local knowledge of the area from field ex-

perts. ROIs can be any combination of polygons, points, or vectors. Therefore, these ROIs

or ground-reference data contain all the spectral values with known correct class labels.

In this thesis, ground-reference data are split into two parts. One part (10 % of ground-

reference data) is used for training and the other part (the ground-reference data excluding

the training part) is used for testing.

Supervised classification techniques require a large amount of training data so that the

classes are accurately represented but this is very time consuming. However, SVM can

perform well even with a small number of training data. Therefore, small ground-reference

ROIs data are created, and training ROIs are used as input to the SVM for classification

in this thesis. SVM, as a supervised classification method, is trained in order to find the

optimal hyperplane for the classification as described in Section 2.4.1. In this thesis, only

the SVM method needs to be trained and the reflectance values of training samples are

used to compute the centroid of each class for the UnECHO classification. MRF does not

require any training data because it is completely unsupervised.

3.4 Spectral Classification (SVM)

The original hyperspectral data is classified using a SVM classifier. The reason for choos-

ing this classifier is that the SVM classifier has performed very well for the classification

of remote sensing multispectral and hyperspectral datasets as described in Section 2.4.1.
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The SVM classification is carried out using the ENVI remote sensing software [54]. Al-

though SVM was first developed to deal with two-class classification problems, we know

from Section 2.4.1 that it can function as a multi-class approach by combining several

binary-class classifiers. In ENVI, the One-Against-One Strategy is used by the SVM clas-

sifier for the multi-class problem. In addition, ENVI produces the probability values of

each pixel for each class, which are actually the decision values stored in ENVI as “rule

images”. A pixel is classified to a class for which the probability value is highest. The per-

formance of the SVM classification method relies on several parameters such as the kernel

type, K, and penalty parameter, C.

The kernel embeds data into a higher dimensional feature space. It also requires kernel

specific parameters. The ENVI SVM classifier has four types of kernels: linear, polyno-

mial, Radial Basis Function (RBF), and sigmoid. Among these four types, the RBF kernel

is used, because it works well in most cases [48]. It requires a small number of parameters

compared to the other kernels and has shown better results for classifying various satellite

imageries [48, 54]. The value of γ in the RBF kernel is a real value greater than zero and by

default, it is set as the inverse of the number of spectral bands of the original image [48].

The penalty parameter C, which was mentioned in Section 2.4.1, is used in case of non-

separable data to control the trade-off between allowing training errors and forcing rigid

margins. The penalty parameter allows some misclassifications. The cost of misclassified

pixels is increased according to the increasing value of the penalty parameter. The default

value in ENVI is C = 100, which allows a few misclassification during the training process,

and an accurate model is created [48, 54].

There is an optional threshold that allows pixels with probability values less than the

threshold to remain unclassified. In this thesis, the value of the classification probability

threshold is set to 0 so that no pixel becomes unclassified [48, 54].
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3.5 Boundary Pixels Extraction

The boundary pixels are extracted from the SVM classified image by applying the erosion

technique as described in Section 2.5.1. The rule images of each class obtained from the

SVM classification are used for this purpose. As the erosion technique works only on

binary images, every rule image is converted to a binary image of the pixels belonging to

a class for first extracting the interior parts. The boundary pixels were then obtained by

subtracting the interior pixels from the rule images. A circular structuring element with

radius 1 is used so that one pixel thick boundaries are extracted. Finally, all resulting

images containing boundaries of each class are combined into a single image.

3.6 Spectral-Spatial Classification (SVM + UnECHO)

The UnECHO method is applied to the interior pixels, which are obtained using the erosion

technique to incorporate spatial information. Using this method, pixel spectral homogene-

ity is improved in a local neighborhood. The class label of all pixels in a neighborhood are

the same if these pixels are spectrally homogeneous.

At the first stage of this method, the entire SVM classified image is divided into a

square and non-overlapping neighborhoods. Non-overlapping and square neighborhoods

are recommended for this method in order to achieve better results [29]. In this study, 2×2,

3×3, and 4×4 neighbourhoods are examined. The distance is then measured from each

neighborhood to every class mean spectrum. The class mean is extracted from the training

ROI classes.

Each of the distance measurement techniques in (2.18), (2.19) and (2.20) is examined.

The average distance of each neighborhood to each class is computed. Among all of the

classes, the class for which the average distance is minimum from the neighborhood is
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obtained. This class will be assigned to that neighborhood if the distance is less than the

threshold computed as described in Section 2.5.2. The overall process of the UnECHO

method is shown in Figure 3.2.

3.7 Spectral-Spatial Classification (SVM + MRF)

The MRF regularization method is applied to the SVM classified image consisting of only

the boundaries of all classes. In the MRF method, the probability of a pixel belonging

to a certain class obtained from the SVM classification, and the number of neighbouring

pixels whose labels are the same as that pixel’s label, are combined. This is achieved by

the MAP-MRF framework where MAP (Maximum A Posteriori) estimate computation of

the classification map is carried out by the adopted Metropolis algorithm [33]. As the

MRF approach labels each pixel based on its both spectral properties and the labels of its

surrounding pixels, it should be effective for correcting misclassified boundary pixels of

the SVM classified image.

The main idea of MRF is the minimization of the local energy. Recalling from Section

2.5.1, the computation of the local energy can be rewritten as follows:

U(ai) = Uspectral(ai)+Uspatial(ai), (3.1)

where Uspectral(ai) is the spectral energy function from the observed data and Uspatial(ai)

is the spatial energy term computed over the local neighbourhood. The spectral energy

function is defined as

Uspectral(ai) =− ln{P(ai|yi)}, (3.2)

where, P(ai|yi), the posterior probability of pixel ai for class yi, is estimated from the SVM
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Figure 3.2: Flowchart of UnECHO algorithm.
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classification. The spatial energy term is computed as follows:

Uspatial(ai) = ∑
a j∈ni

β(1−δ(yi,y j)), (3.3)

where δ(yi,y j) is the Kronecker delta function (δ(g,h) = 1 if g = h, and δ(g,h) = 0 if

g 6= h). The label of a given pixel is matched with the labels of each neighbouring pixels.

If the labels are same, the value of this term is 1 and because of (1−δ(yi,y j)), the value

becomes 0, otherwise, 1. All the values are then summed up. For minimizing the spatial

energy, the number of neighbouring pixels whose labels are the same as the given pixel

should be greater than the number of neighbouring pixels whose labels are different from

the label of the given pixel. The lowest spatial energy is obtained when all the neighbours

are labeled as the same as the given pixel. The term Uspatial(ai) is proportional to the

number of neighbouring pixels of ai assigned to one of the classes different from yi. In the

equation of minimizing the local energy, the importance of the spectral and spatial energy

term is controlled by the parameter β. The value of β is set based on the priority of spectral

and spatial part. In this thesis, the value of the β parameter is examined separately by

starting at 1 and then gradually decreasing it by 0.1.

This method works better for images with large spatial structures because of its depen-

dency on the labels of neighbouring pixels. On the other hand, if there is a one-pixel object,

which is different from its neighbouring pixels’ object, the spatial term then labels this pixel

to the class of the surrounding pixels. In this situation, emphasizing the importance to the

spectral term might be efficient for keeping the pixel’s class label the same as before.

The process of labeling pixels using this method is not an easy problem, because chang-

ing the label of a specific pixel may affect the labels of neighbouring pixels. The chain ef-

fect makes it difficult to minimize energy for all pixels. Trying to minimize the energy for

a pixel might increase the energy of other pixels. Therefore, two approaches are considered
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to minimize the energy in (3.1) for all pixels.

MRF applied to all pixels of boundaries The energy function (3.1) is applied to every

boundary pixel. For each pixel, the local energy is computed for every class label. The

class label for which the local energy is the minimum is assigned to the pixel. The entire

process for minimizing the energy for all pixels is examined over a number of iterations

until the labels stabilizes or if a maximum number of iteration is reached. The drawback of

this approach is the large amount of computations required to minimize the energy for all

pixels. However, it should provide a good result, because every pixel label is considered.

A flowchart of the method is shown in Figure 3.3.

MRF applied to randomly selected pixels of boundaries The minimization of the

energy function (3.1) is processed mainly based on the Metropolis algorithm [58]. In this

algorithm, the computation of the local energy is done over randomly chosen pixels and the

potential new class label for this pixel is also chosen randomly. It is argued that this is an

efficient algorithm and takes less computation time. A brief summary of the optimization

of the energy function is described in the following paragraph.

In the optimization process, a boundary pixel ai is randomly chosen repeatedly. Using

equation (3.1) the local energy of this pixel U(ai) is computed. A new class label yi is

randomly selected for this pixel and the new local energy Unew(ai) of this pixel is then

computed. The difference between the old and the new local energy is as follows:

∆U = Unew(ai)−U(ai). (3.4)

If ∆U , is less than zero, a new (randomly chosen) class label ynew
i is assigned to that

pixel. Otherwise, the new class assignment is accepted with a probability:
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Figure 3.3: Flowchart of the MRF regularization method (Algorithm 1).
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p = exp(−∆U/T ), (3.5)

where T is a global control parameter called the temperature. This probability is used

to determine if the new label is accepted. As the temperature decreases, it is less likely

for the new label to be accepted if it does not improve local energy. T is varied during

the Metropolis relaxation procedure [58]. At first, the value of T is kept high and is then

gradually decreased after every l iterations. In this thesis, initially the temperature was set

to T = 1.5, because using lower initial temperature value results in less computation time.

For every new iteration l, the temperature is then recomputed as follows:

T new = 0.98.T old. (3.6)

For each T value, the number of random pixels and class labels are equal to the total

number of boundary pixels and the total number of classes, respectively, in the image. This

approach is illustrated in Figure 3.4.
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Figure 3.4: Flowchart of the MRF regularization method (Algorithm 2).
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3.8 Band Extraction

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are

used as band extraction techniques in this thesis.

Principal Component Analysis (PCA) PCA is used to produce uncorrelated output

components, to set apart noise components, and to reduce the dimensionality of datasets

(Section 2.6.1). As hyperspectral data are often found highly correlated, PCA is one of the

efficient methods that can produce uncorrelated output components. Band extraction using

PCA is performed by the ENVI remote sensing software. In ENVI, PCA finds a new set

of orthogonal axes that have their origin at the data mean and that are rotated so the data

variance is maximized along the axes. As described in Section 2.6.1, Principal Components

(PCs) are linear combinations of the original spectral bands and are uncorrelated.

The PCA transformation is mainly a computation of the covariance matrix. There is an

option provided by ENVI for performing spectral and spatial subsetting. If there are any

bad bands present in the dataset, spectral subsetting is used to exclude them from PCA.

Spatial subsetting is controlled by the stats subset parameter. It is used to calculate the

covariance matrix based on a spatial subset or the area under an ROI. In this thesis, the

covariance matrix is computed from the entire ROI instead of from a spatial subset of the

image. Afterwards, ENVI performs the PCA transformation. We generated a number (i.e.,

Total number of bands - 10) PCs. Initially, 10 of the most important PCs are selected for

the experiments (e.g., SVM, MRF, UnECHO) in this thesis. All experiments are performed

every time by repeatedly adding 10 PCs of the next most important PCs to the previous set

of output PCs.

Independent Component Analysis (ICA) ENVI is used for the ICA transformation as

well. As described in Section 2.6.1, ICA is a linear transformation of the input data. The
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ENVI software performs the following steps:

• The sample data is centered (subtract the mean to create a zero mean signal) and

whitened (transform the observed vector linearly to a new vector in order to obtain

uncorrelated components and equal unity variances) using the mean, eigenvectors,

and eigenvalues of the data, and the PC rotation is applied for data whitening [54].

• The dimension of the data is reduced by subsetting the whitened sample data when

the number of output components is changed.

• Negentropy maximization is performed using the whitened sample to estimate the

Independent Component (IC) transform matrix.

• The input image is transformed using the forward IC transform matrix.

Similar to the PCA, the forward ICA transform in ENVI can be customized by a number

of options including spatial and spectral subsetting as for the PCA. There are a number of

parameters, which control the number of iterations and the accuracy of the IC optimization

process. The default values provided in ENVI are used. Among three contrast functions,

Logcosh, Kurtosis and Gaussian, we select Logcosh because it is a good general-purpose

contrast function and the coefficient value for this function is set 1.0 [54]. Similar to the

PCA approach, 10 of the most important ICs are selected for the experiments at first. The

experiments are performed every time by repeatedly adding 10 ICs of the next important

ICs to the previous set of output ICs.

3.9 Band Selection

SVM-RFE, CFS and mRMR are used as band selection techniques in this thesis.
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SVM-RFE The SVM-RFE method described in section 2.6.2 is used for selecting fea-

tures or bands in this thesis. The main goal of this method is to find a good subset of bands

in order to improve the classification accuracy. In a first step, SVM is trained with all the

bands and all the training data. The weight values (wi) are computed for each band in the

training stage. If there are m classes, the number of weight values for each band is (m−1).

The ranking scores (wi)2 are then computed. After that two things are investigated. The

first one is to find the maximum score for each band and the second one is to sum up all

those scores for each band. For both of these cases, the feature with the smallest ranking

score is eliminated. The SVM is then trained again with the rest of the surviving bands and

the band with the smallest ranking score is eliminated. This process is repeated (d− 10)

times where d is the total number of bands. The proposed method for the classification is

examined at first for the 10 highest ranked bands and then by gradually adding 10 bands

according to the rank of up to (d−10).

CFS CFS is implemented according to the description of Section 2.6.2. Inter-correlation

between bands, and correlation between a band and a class is considered by the CFS al-

gorithm in order to find a best subset of bands. The heuristic merit of a band subset is

calculated using equation (2.26) and evaluated based on a search algorithm. A standard hill

climbing approach is used for searching. The current node is expanded and moved to the

child node with maximum evaluation in the hill climbing approach. Search space operator

is used to expand nodes by deleting one band at a time where the hill climbing approach

starts working with a full set of bands. Deletion of bands is continued until a child node is

not worse than its parents and finally, the remaining bands are considered as best subset of

bands. This band subset is used for the experiments.
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mRMR The mRMR approach is a combination of Max-Relevance and Min-Redundancy

approaches and selects maximally relevant and minimally redundant features or bands.

This approach is implemented based on the mutual information (Section 2.6.2). Mutual

information between two variables is computed by (2.27) and used to calculate both crite-

ria: Max-Relevance and Min-Redundancy. Max-Relevance, which uses Max-Dependency

scheme finds a set of bands using (2.28) by taking mean of all mutual information be-

tween individual band and class, and therefore have greatest relevance or largest mutual

information with the target class. These set of bands are not best in order to achieve good

classification accuracy, because there might be redundancy among these. Hence, the condi-

tion of Min-Redundancy is considered and calculated using (2.29), which results mutually

exclusive bands. Both Max-Relevance and Min-Redundancy criteria are combined and op-

timized using an incremental search condition (2.30) in order to add one band at each step

with the selected bands. All experiments are performed using band subsets 10 at first and

then adding 10 bands at a time of up to (d-10).
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Chapter 4

Experiments for Hyperion Dataset

4.1 Hyperion Dataset

The EO-1 Hyperion and ground-reference data of an agricultural area near Lethbridge,

Southern Alberta (4944’N, 11234’W) provided by the Agriculture and Agri-Food Canada

(AAFC) was used in our experiment. The Hyperion data were acquired on July 2, 2005

and the spatial resolution is 30 m. The Hyperion data have 242 contiguous bands from

350 to 2582 nm with a 10-nm bandwidth. A subset of this data (Figure 4.1) is used in

this experiment in order to reduce the computation time. This subset has dimensions of

200 pixels × 145 pixels × 160 bands. Ground-reference data was collected through a field

survey and provides information of 10 different crop types and fellow for 53 fields. The

crop types are alfalfa (Medicago sativa L.), barley (Hordeum vulgare L.), beans (Phaseolus

vulgaris L.), canola (Brassica napus L.), corn (Zea mays L.), flax (Linum usitatissimum L.),

grass (mixed grass species), potato (Solanum tuberosum L.), sugar beet (Beta vulgaris L.),

and wheat (Triticum aestivum L.). In the chosen subset, six of these crop types are present

as shown in Figure 4.2 and Table 4.1, and were used in this thesis. Figure 4.3 shows the

spectral signature of the six ground-reference crop types (classes). The crop fields in this

imagery were damaged by flooding, hailstorms, leaf diseases, and fertilizer leaching [2]. A

few other, non-agricultural land-cover types are present in the image, including uncultivated

grassland, roads, and water.

The preprocessing of the Hyperion data was performed by [45] in the Imaging Spec-

trometer Data Analysis System (ISDAS) [56]. The preprocessing steps are shown in Fig-

ure 4.4. At first, the right half of the image is shifted up by one-pixel in the Short-Wave In-

frared Region (SWIR) band in order to correct the vertical offset. Next, the auto-destriping
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Figure 4.1: Subset of the Hyperion image used for the experiments.
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Figure 4.2: Regions of interest for the 6 crop types.

Figure 4.3: Spectral signatures of the 6 crop types.
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Table 4.1: Regions of interest for the 6 crop types.

ROI Name Color Pixels
Barley (1 and 5) Red 594
Beans (2 and 3) Blue 323
Canola (6 and 7) Yellow 418
Grass (2 and 3) Sea Green 593
Sugarbeets (3 and 4) Coral 178
Wheat (1 and 5) Aquamarine 428

tool in ISDAS was used to remove striping artifacts and the mixed dropouts. An angular

shift of 22 degrees between the Visible Near Infrared Region (VNIR) and SWIR datasets

is then corrected by the Align Detector tool in ISDAS. According to the procedure of [34]

bands 1–7 and 221–242 were removed because of insufficient signal and information in

those bands. Bands 56 to 76 were deleted because this is where the two Hyperion sensors

(VNIR and SWIR) overlap. Bands 120 to 133 and band 165 to 182 were removed because

they carry no useful information. Solar radiation in this two regions (1346 - 1477nm and

1800 - 1972 nm) is absorbed by water vapor in the atmosphere (these are water absorption

features).

The remaining bands (160 bands) are treated as follows. Random noise is removed and

Signal-to-Noise Ratio (SNR) is increased by the Average Smooth tool in ISDAS. The at-

mospheric correction was performed by the central element (MODTRAN radiative transfer

model) in ISDAS in order to convert Hyperion-corrected at-sensor radiance data to surface

reflectance. Altitude of sensor, latitude and longitude of the image centre, ground elevation,

atmospheric and aerosol model are used to perform the atmospheric correction. An across-

track wavelength shift shows the form of spectral line curvature or smile/frown artifacts.

Smile/frown artifacts cause slightly different band centre wavelengths from the leftmost to

the rightmost column in a single band. This effect was detected before atmospheric cor-
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Figure 4.4: Preprocessing steps of the Hyperion data [45].

rection and removed after atmospheric correction. Finally, in order to remove remaining

spikes, which may occur due to systematic calibration and atmospheric correction errors,

ENVI’s EFFORT (Empirical Flat Field Optimal Reflectance Transformation) polishing tool

was used.
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Figure 4.5: Random pixel selected from each class ROI.

4.2 Hardware and Software

The experiments were conducted on a laptop with an Intel Core i7–3517U 2.40–GHz pro-

cessor and 6.00 GB of RAM, running under the Windows 8 operating system. The SVM

classification, the feature extraction methods (PCA and ICA) and the accuracy assessment

of all experiments were performed using ENVI version 4.7 [54]. The MRF and UnE-

CHO methods, and SVM-RFE feature selection algorithm were implemented in MATLAB

(Mathworks 2011) [35]. Finally, The CFS and mRMR feature selection algorithms were

implemented in the C++ programming language.

4.3 SVM Experiment

As a supervised classification method, SVM needs appropriate training samples for classi-

fying the data and 10 % of the pixels from each class ROI region of Hyperion data (barley,

beans, canola, grass, sugarbeets, and wheat) were randomly selected to train the SVM clas-

sifier (Figure 4.5).

The SVM classified image of Hyperion data is shown in Figure 4.6. The accuracy

assessment of the classification is carried out using the ground-reference ROI of the 6

classes in the subset scene excluding the random training samples (Figure 4.7). The overall

accuracy of SVM classification is 89.35 %, which is quite satisfactory. Tables 4.2 and 4.3
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Figure 4.6: Resulting classification using the SVM.

Figure 4.7: Testing ROIs without the training random samples.

show the confusion matrices, and producer and user accuracies of the SVM classification,

respectively, in number of pixels and percentages for all classes. Among these classes

all the bean pixels are classified correctly and 68.05 % of the wheat pixels are correctly

classified, which was the lowest percentage.

Although the performance of SVM is good, there are errors when we compare the

SVM classification result against the the ground-reference ROI (Figure 4.8). For example,

Table 4.2: Confusion matrix (pixels) of SVM experiment using Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat Total

Barley 491 0 19 15 0 7 532
Bean 0 291 0 0 0 0 291
Canola 3 0 357 0 19 4 383
Grass 41 0 0 496 0 112 649
Sugarbeets 0 0 0 0 141 0 141
Wheat 0 0 0 23 0 262 285
Total 535 291 376 534 160 385 2281
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Table 4.3: Confusion matrix (percent) of SVM experiment using Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat User Acc. (%)

Barley 91.78 0.00 5.05 2.81 0.00 1.82 92.29
Bean 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Canola 0.56 0.00 94.95 0.00 11.88 1.04 93.21
Grass 7.66 0.00 0.00 92.88 0.00 29.09 76.43
Sugarbeets 0.00 0.00 0.00 0.00 88.13 0.00 100.00
Wheat 0.00 0.00 0.00 4.31 0.00 68.05 91.93
Prod. Acc. (%) 91.78 100.00 94.95 92.88 88.13 68.05

the entire wheat region (shown in the double circle in Figure 4.8) is classified as grass and

barley. We can see that the spectral signature of grass, barley and wheat crops are very

similar (Figure 4.3). The image data was acquired in early July and at this time barley and

wheat crops look similar to grass. For this reason the wheat region is classified as grass

and barley. Moreover, the two ground-reference wheat regions are actually two different

types of wheat, which are trained as one crop type. Different crop fields of the same type

of crop might have different phenological stages as well as flood damages. These factors

can change the spectral characteristics of same crops in different fields. If the SVM is

trained with both types of wheat separated into two classes, it can classify correctly both

wheat regions. Figure 4.9 shows the SVM classification result where 7 classes (including

both types of wheat) were used and the correctly classified wheat region is shown in circle.

The overall accuracy then increases to 94.17%. Although the accuracy is better by training

the SVM with more types of crops, the quality of the classifier might be lower because

of overtraining. For example, the ground-reference information is only available for two

types of wheat but there could be more types of wheat with more phenological variation

despite having similar spectral characteristics. The success of a classifier depends on how

better it performs using smaller number of ground-reference pixels for each class type. If

we consider this factor, SVM produced better result for each crop type without using their

subtypes except for the wheat crop.
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Figure 4.8: Visual comparison of SVM classification result against ground-reference ROI.
(a) Ground-reference ROI . (b) Corresponding areas (circled) in the SVM classified image.

Figure 4.9: Result image using the SVM classification where both types of wheat pixels
were used for training.
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Figure 4.10: Examples of misclassified pixels of SVM.

There is a lot of salt and pepper noise in the SVM classified image where pixels are

classified differently from their neighbouring pixels. Some examples of misclassified pixels

are shown in Figure 4.10 where grass is misclassified as wheat and barley, barley as canola,

and sugarbeets as canola. The Hyperion data set covers an agricultural area and the regions

of this data should be quite homogeneous, unless there is poor vegetation health due to

natural disasters, fertilizer leaching, and leaf diseases. It is very unlikely to have one type

of crop inside another crop field covering at least a 30 m × 30 m area (i.e., a pixel).
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4.4 MRF Experiment on All Boundary Pixels

In this experiment, we apply only the MRF method to the boundary pixels after the SVM

classification is done. The MRF regularization is applied to all boundary pixels (Algo-

rithm 1 in Figure 3.3). In addition, this method is also applied to the entire image of the

SVM classification for comparison. The probability values of each pixel for every class of

the SVM classification obtained from the rule images, which were produced during SVM

classification, are used in the MRF method.

All the rule images of the SVM classification of the Hyperion dataset are shown in

Figure 4.11. These rule images of each class give the probability of each pixel belonging

to a class and are also used in the erosion technique (Section 3.5) to extract the interior

pixels of regions of the SVM classified image. The resulting interior pixels of the regions

are shown in Figure 4.12. The boundary pixels of the regions are obtained by subtracting

the interior pixels from the SVM image (Figure 4.13).

Different values of β in equation (2.14) for local energy computation are tested to ex-

amine the sensitivity of this algorithm to this parameter value and the results are shown in

Tables 4.4 and 4.5. Table 4.4 shows the overall accuracies and run time (in seconds) of the

MRF classification applied to the boundary pixels of the SVM classification and Table 4.5

presents the overall accuracies and run time (in seconds) of the MRF classification applied

to the entire image of the SVM classification for different β values. We used 15 iterations

in the regularization process for both cases. From these tables we can see that increasing

the value of β increases the accuracy. That means better accuracies are achieved by giving

priority to the spatial correlation although after a certain point (β = 0.80) the accuracies do

not improve. The issue of whether the improvement of the overall method is significant,

will be examined later. We also examined different number of iterations for regularization

in the MRF method and the results are shown in Tables 4.6 and 4.7. Table 4.6 shows the
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Figure 4.11: SVM Rule images produced by ENVI for each crop type shown in gray scale
using a probability range from 0 to 1.

Figure 4.12: Interior pixels of regions of the SVM classified image.
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Figure 4.13: Boundary pixels of regions of the SVM classified image.

accuracies and run time (in seconds) of the MRF classification applied to the boundaries

and Table 4.7 presents the accuracies and run time (in seconds) of the MRF classification

applied to the entire image of the SVM classification. For both cases the value of β is set to

0.80. Table 4.7 shows that the accuracy improves initially when the number of iterations is

increased, but does not improve for more than 15 iterations. In Table 4.6, we can see that

the best accuracy is achieved using only 5 iterations. Based on this, we assume that using

the value β = 0.80 for both cases, 5 iterations for the MRF on boundaries and 15 iterations

for the MRF on the entire image gives the best accuracies for the Hyperion data. We use

these values in our remaining experiments.

Table 4.4: Examination of the MRF method applied to the boundary pixels for different
values of β.

Value of β Overall accuracy (%) Run time (s)
1 92.81 26.60

0.90 92.81 26.29
0.80 92.81 26.56
0.70 92.72 26.64
0.60 92.20 26.37
0.50 91.98 26.79
0.40 91.98 26.60
0.30 91.45 26.59
0.20 91.32 26.42
0.10 90.62 26.64
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Table 4.5: Examination of the MRF method applied to the entire image for different values
of β.

Value of β Overall accuracy (%) Run time (s)
1 93.42 55.73

0.90 93.42 55.62
0.80 93.42 55.75
0.70 93.34 55.48
0.60 92.24 55.40
0.50 92.02 55.22
0.40 92.02 55.70
0.30 91.45 55.18
0.20 91.32 55.02
0.10 90.62 55.48

The resulting image using the MRF method on the boundaries of the SVM classification

is shown in Figure 4.14. The overall accuracy is 92.81 % and the processing time is 8.84

seconds. The overall accuracy is improved by 3.46 % compared to using only the SVM

classification. This improvement is not so high numerically. However, if we compare this

result visually with the SVM result, we can see that the MRF result is more homogeneous

and contains less salt and pepper noise than the SVM result (Figure 4.15). The MRF

method corrects many misclassified pixels. For example, all of the misclassified pixels by

SVM shown in Figure 4.10 are corrected by MRF (Figure 4.16). The confusion matrices,

producer accuracies and user accuracies of the MRF experiment are shown in Tables 4.8

(in pixels) and 4.9 (in percentages), respectively. It is noticeable from the diagonals of the

confusion matrices that the number of correctly classified pixels is improved for most of

the crop types such as barley, canola, grass and sugerbeets. The producer accuracies of

these crop types are also increased, with the best improvement of 9.37 % for sugarbeets.

Because SVM could not classify one entire wheat region, the MRF method cannot improve

the accuracy of this region due to the fact that the MRF method uses the classified labels
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Table 4.6: Examination of the MRF method applied to the boundaries for different number
of iterations.

Number of iterations Overall accuracy (%) Run time (s)
2 91.80 3.72
5 92.81 8.84

10 92.76 17.71
15 92.81 26.55
20 92.76 34.92
25 92.81 44.25
30 92.76 55.54
35 92.81 61.60
40 92.76 65.35

Figure 4.14: Result image using the MRF method applied only to the boundaries.

of the surrounding pixels to perform the correction. In this case, all surrounding pixels are

misclassified.

Figure 4.17 shows the result of the boundary pixels only without interior regions of

the MRF classification that applied only to the boundary pixels. Although there is no

ground-reference data for most boundary pixels, some of them are artifacts due to salt and

pepper noise introduced by the SVM classification. From the experimental results, we can

conclude that these pixels are effectively corrected by the MRF method.

The resulting image using the MRF method on the entire image of the SVM classified

result is shown in Figure 4.18 along with a visual comparison to the result of the MRF

method applied to the boundaries. Both of these provide very similar results. The overall
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Figure 4.15: Visual comparison of results achieved with SVM (left), and MRF on bound-
aries (right).

Figure 4.16: Examples of corrected misclassified pixels by MRF.
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Table 4.7: Examination of the MRF method applied to the entire image for different number
of iterations.

Number of iterations Overall accuracy (%) Run time (s)
2 91.80 7.52
5 92.94 18.48

10 93.16 36.90
15 93.42 54.52
20 93.42 72.32
25 93.42 92.18
30 93.42 109.75
35 93.42 126.56
40 93.42 144.95

Table 4.8: Confusion matrix (pixels) of the MRF experiment (on boundaries) of Hyperion
data.

Barley Bean Canola Grass Sugarbeets Wheat Total
Barley 516 0 13 3 0 0 532
Bean 0 291 0 0 0 0 291
Canola 0 0 363 0 4 0 367
Grass 19 0 0 529 0 123 671
Sugarbeets 0 0 0 0 156 0 156
Wheat 0 0 0 2 0 262 264
Total 535 291 376 534 160 385 2281

accuracy increased by only 0.61% to 93.42 % compared to the MRF boundary approach.

The confusion matrices, producer accuracies and user accuracies of the MRF classifica-

tion on the entire image are shown in Tables 4.10 (in pixels) and 4.11 (in percentages),

respectively. It can be observed that there are only 13 more correct barley pixels and 1

more correct grass pixel in Table 4.10 compared to Table 4.8. The MRF classification on

the entire image requires 55 seconds processing time whereas the MRF classification on

the boundaries needs only 8 seconds. Therefore, it is quite acceptable to apply the MRF

method only to the boundaries rather than the whole image even though the accuracy is

slightly lower.
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Table 4.9: Confusion matrix (percent) of the MRF experiment (on boundaries) of Hyperion
data.

Barley Bean Canola Grass Sugarbeets Wheat User Acc. (%)
Barley 96.45 0.00 3.46 0.56 0.00 0.00 96.99
Bean 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Canola 0.00 0.00 96.54 0.00 2.50 0.00 98.91
Grass 3.55 0.00 0.00 99.06 0.00 31.95 78.84
Sugarbeets 0.00 0.00 0.00 0.00 97.50 0.00 100.00
Wheat 0.00 0.00 0.00 0.37 0.00 68.05 99.24
Prod. Acc. (%) 96.45 100.00 96.54 99.06 97.50 68.05

Figure 4.17: MRF (applied to boundaries) classified image showing the boundary pixels
without the interior parts.

Figure 4.18: Visual comparison of MRF results: a) classified image using MRF on the
entire image and b) classified image using MRF on the boundaries.
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Table 4.10: Confusion matrix (pixels) of the MRF experiment on the entire image of Hy-
perion data.

Barley Bean Canola Grass Sugarbeets Wheat Total
Barley 529 0 13 4 0 0 546
Bean 0 291 0 0 0 0 291
Canola 0 0 363 0 4 0 367
Grass 6 0 0 530 0 123 659
Sugarbeets 0 0 0 0 156 0 156
Wheat 0 0 0 0 0 262 262
Total 535 291 376 534 160 385 2281

Table 4.11: Confusion matrix (percent) of the MRF experiment on the entire image of
Hyperion data.

Barley Bean Canola Grass Sugarbeets Wheat User Acc. (%)
Barley 98.88 0.00 3.46 0.75 0.00 0.00 96.89
Bean 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Canola 0.00 0.00 96.54 0.00 2.50 0.00 98.91
Grass 1.12 0.00 0.00 99.25 0.00 31.95 80.42
Sugarbeets 0.00 0.00 0.00 0.00 97.50 0.00 100.00
Wheat 0.00 0.00 0.00 0.00 0.00 68.05 100.00
Prod. Acc. (%) 98.88 100.00 96.54 99.25 97.50 68.05
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The statistical difference between the MRF method applied to the boundaries and the

MRF method applied to the entire image is also evaluated using the McNemar’s test [7]. It

is a non-parametric test, which can be used to compare the accuracy of two classification

algorithms and has been used in previous studies [7]. It is based on a 2×2 matrix with 4

possible outcomes in confusion matrices of two algorithms. The z score employed by the

McNemar’s test is calculated using the following formula:

z =
(|Ns f −N f s|−1)√

Ns f +N f s
, (4.1)

where, Ns f and N f s are the numbers of pixels that one algorithm correctly classified and

also the other algorithm failed to correctly classify. A value of z = 0 means the performance

of two algorithms are similar and a larger value than +1.645 means that their performance

differs significantly at a confidence level of 95 %.

Note that the z score is large in cases where one of Ns f or N f s is close to zero, even if

the other value is small. For example, if Ns f = 5 and N f s = 0, the z score is 1.79, which

indicates that the two algorithms are statistically different. The McNemar’s test does not

take into consideration whether Ns f + N f s represents a large portion of the sample data.

Thus, this test may indicate a statistically significant difference even though the overall

accuracies of the two algorithms are very close numerically.

The four possible results from the confusion matrices of the MRF method applied to the

boundaries and to the entire image are shown in Table 4.12. According to the McNemar’s

test, the z score of the MRF method applied to the boundaries and the MRF method applied

to the entire image is 3.47, which indicates that there is a significant difference between

these algorithms even the difference of the overall accuracies is just 0.61 %.
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Table 4.12: Results of the MRF method applied to boundaries and entire image ( Method
A = MRF on boundaries and Method B = MRF on entire image).

Method A failed Method A succeeded
Method B failed 150 0
Method B succeeded 14 2117

4.5 MRF on Randomly Selected Boundary Pixels

In this section, the MRF method is applied only on the boundary pixels of the SVM clas-

sification result. However, the energy minimization is performed over randomly selected

pixels and randomly selected classes using Algorithm 2 in Figure 3.4. The result of this

method is compared with the result of the MRF method applied to all boundary pixels

(Algorithm 1 in Figure 3.3).

Different values of β and numbers of iterations (iteration l in Section 3.7) were tested

in this method to determine the best values of these parameters, and the results are listed in

Tables 4.13 and 4.14. Table 4.13 presents the overall accuracies (in percent) and run time

(in seconds) for different values of β where the number of iterations is set to 20. Table 4.14

shows the overall accuracies (in percent) and run time (in seconds) for different numbers

of iterations where β = 0.80. We found from these tables that increasing the values of β to

more than 0.80 and increasing the number of iterations to more than 20 does not improve

the overall accuracy. Moreover, we see that a large number of iterations increases the run

time significantly. Consequently, we choose β = 0.80 and 20 iterations for our experiments

in this section.

The result of the MRF method with energy minimization carried out on randomly se-

lected boundary pixels is shown in Figure 4.19. The overall accuracy of this classification

result is 91.02 % and the run time is 591 seconds. This method improves the accuracy of

the SVM classification by 1.67 %. The confusion matrices of this classification are shown
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Table 4.13: Examination of the MRF method (randomly selected pixels) applied to the
boundaries of the SVM classification for different values of β.

Value of β Overall accuracy (%) Run time (sec)
1 90.84 696

0.90 90.66 680
0.80 91.02 591
0.70 89.43 653
0.60 87.33 603
0.50 87.42 579
0.40 86.19 457
0.30 85.18 238
0.20 83.95 512
0.10 83.65 475

Figure 4.19: Result image using the MRF method on randomly selected boundary pixels.

in Tables 4.15 (in pixels) and 4.16 (in percentage along with the producer and user accu-

racies). These tables show that the accuracies of all classes including the wheat class are

improved. Note that the MRF method applied on all boundary pixels and entire image

(Section 4.4) could not improve the accuracy of the wheat class at all.

A visual comparison of the result from the MRF method applied to the randomly se-

lected boundary pixels with the one from the MRF method applied to all boundary pixels is

shown in Figure 4.20. It is obvious much of the salt and pepper noise are still present when

the MRF method is only applied to the randomly selected boundary pixels. The accuracy

of this classification is also 1.80 % lower than that of the MRF classification applied to
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Table 4.14: Examination of the MRF method (randomly selected pixels) applied to the
boundaries of the SVM classification for different number of iterations.

Number of iterations Overall accuracy (%) Run time (sec)
10 90.31 128
20 91.02 512
30 89.04 588
40 90.05 654
50 90.09 681
60 89.52 769
70 89.48 1023
80 90.53 874
90 89.65 995

100 90.84 1098

Table 4.15: Confusion matrix (pixels) of the MRF experiment applied to the randomly
selected boundary pixels of Hyperion data.

Barley Bean Canola Grass Sugarbeets Wheat Total
Barley 497 0 9 10 0 0 516
Bean 1 291 0 1 4 0 297
Canola 1 0 364 1 11 1 378
Grass 16 0 2 515 1 119 653
Sugarbeets 1 0 0 0 144 0 145
Wheat 19 0 1 7 0 265 292
Total 535 291 376 534 160 385 2281

all boundary pixels. The confusion matrices also show that the individual class accuracies

are also higher than the method applied to randomly selected boundary pixels except for

the wheat pixels. The z score of these two algorithms (Algorithm 1 and 2) is 4.39 which

indicates that the classification accuracy using Algorithm 1 is significant. Moreover, the

processing time of the MRF method applied to randomly selected boundary pixels is 591

seconds, which is 73 times longer than that of the MRF method applied to all boundary

pixels where it takes only 8 seconds.

According to the above discussion we can conclude that the MRF method (Algorithm 1)
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Table 4.16: Confusion matrix (percent) of the MRF experiment applied to the randomly
selected boundary pixels of Hyperion data.

Barley Bean Canola Grass Sugarbeets Wheat User Acc. (%)
Barley 92.90 0.00 2.39 1.87 0.00 0.00 96.32
Bean 0.19 100.00 0.00 0.19 2.50 0.00 97.98
Canola 0.19 0.00 96.81 0.19 6.88 0.26 96.30
Grass 2.99 0.00 0.53 96.44 0.63 30.91 78.87
Sugarbeets 0.19 0.00 0.00 0.00 90.00 0.00 99.31
Wheat 3.55 0.00 0.27 1.31 0.00 68.83 90.75
Prod. Acc. (%) 92.90 100.00 96.81 96.44 90.00 68.83

Figure 4.20: Visual comparison of the classification result of the MRF method applied to
randomly selected boundary pixels (left) with the one of the MRF method applied to all
boundary pixels (right).
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applied to all boundary pixels is better than the MRF method applied to randomly selected

boundary pixels (Algorithm 2) in terms of processing time and accuracy. For the MRF

algorithm applied to randomly selected boundary pixels, it is unlikely to choose the right

pixel and also the right class for correcting the label, because one pixel among all boundary

pixels and also one class among all classes are randomly selected repeatedly. Sometimes,

it might take many iterations to attempt to correct the proper pixel with the proper class,

which is also time consuming.

4.6 UnECHO Experiment

The UnECHO method described in Section 3.6 is applied to the entire image of the SVM

classification. It is tested for the following different types of distance measures: Euclidean

distance (2.18), Mahalanobis distance (2.19), and Maximum likelihood distance (2.20).

The overall accuracies of the UnECHO method for these distance measures are listed in

Table 4.17. This method actually decreases the overall accuracy of the SVM classification

for all distance measures. Among them, the choice of maximum likelihood distance de-

creases the accuracy (84.04 %) by 5.31 % (z score = 9.29), which is less than the other

distance measures.

The result of the UnECHO method applied to the entire image of the SVM classifica-

tion where the maximum likelihood distance is used, is shown in Figure 4.21 along with

a visual comparison with the SVM classification result. We see that the result image of

the UnECHO method is worse compared to the SVM classification. Most of the areas of

the image are classified as canola (yellow). However, some of the misclassified sugarbeets

and canola pixels using SVM are corrected by this method, but there are many pixels that

remain misclassified. Figure 4.22 shows that many grass pixels are misclassified as canola,

while misclassified barley pixels by SVM remain almost unchanged. However, some sug-
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Table 4.17: Overall accuracies of the UnECHO experiment of Hyperion data for different
distance measures and window sizes.

Name of distance measures and size of window Overall accuracy (%)
Euclidean distance and 2×2 window size 82.24
Euclidean distance and 3×3 window size 82.46
Euclidean distance and 4×4 window size 82.81
Mahalanobis distance and 2×2 window size 81.76
Mahalanobis distance and 3×3 window size 81.24
Mahalanobis distance and 4×4 window size 82.90
Maximum Likelihood distance and 2×2 window size 83.91
Maximum Likelihood distance and 3×3 window size 84.04
Maximum Likelihood distance and 4×4 window size 83.34

Figure 4.21: Visual comparison of the UnECHO classified image (left) and SVM classified
image (right).

arbeets pixels misclassified by SVM (Figure 4.10) are corrected by the UnECHO method.

The confusion matrices, producer accuracies and user accuracies of the UnECHO ex-

periment are shown in Tables 4.18 in pixels and 4.19 in percentages, respectively. These

tables show that the accuracies of all classes decreased compared to using only SVM, ex-

cept for the bean, canola and sugarbeets classes. All the bean pixels remain the same, while

the accuracy of canola pixels and sugarbeet pixels is improved by 3.45 % and 6.25 %, re-

spectively. The accuracy of grass pixels declined significantly (22.09 %) and, therefore, the

overall accuracy is significantly decreased. The wheat region, which was misclassified as

grass by the SVM is also misclassified as canola by the UnECHO method. This happens
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Figure 4.22: Example of corrected and uncorrected pixels by the UnECHO method.
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Table 4.18: Confusion matrix (pixels) of the UnECHO experiment of Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat Total

Barley 467 0 6 14 0 5 492
Bean 0 291 0 0 0 0 291
Canola 31 0 370 125 9 88 623
Grass 37 0 0 378 0 32 447
Sugarbeets 0 0 0 0 151 0 151
Wheat 0 0 0 17 0 260 277
Total 535 291 376 534 160 385 2281

Table 4.19: Confusion Matrix (Percent) of the UnECHO experiment of Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat User Acc.

Barley 87.29 0.00 1.60 2.62 0.00 1.30 94.92
Bean 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Canola 5.79 0.00 98.40 23.41 5.63 22.86 59.39
Grass 6.92 0.00 0.00 70.79 0.00 8.31 84.56
Sugarbeets 0.00 0.00 0.00 0.00 94.38 0.00 100.00
Wheat 0.00 0.00 0.00 3.18 0.00 67.53 93.86
Prod. Acc. 87.29 100.00 98.40 70.79 94.38 67.53

because the amount of differences between the spectral signatures of wheat and grass is

slightly higher than that between the spectral signatures of grass and canola (for example

in the 700 nm–1100 nm range), and the UnECHO method chose the canola class instead of

wheat class to correct the grass pixels (Figure 4.3).

4.7 Combination of MRF and UnECHO Results

In this section, labels extracted from the boundary pixels from the MRF classification result

were combined with labels extracted from the interior pixels from the UnECHO classifica-

tion to produce the final classification map. Using the UnECHO method, the whole image

is divided into 3×3 windows, and each window may be classified as one class depending

on the distance from the mean of each class and a computed threshold. For this reason, it

84



Figure 4.23: Boundary pixels of the MRF (left) and interior pixels of the UnECHO classi-
fication results (right).

Figure 4.24: Combined image of the MRF and UnECHO results.

is not possible to apply the UnECHO method only on the interior parts of the SVM clas-

sification. However, we can extract the labels (obtained from the result of the UnECHO

method) corresponding to the interior pixels and combine them with the labels attained on

the boundary pixels using the MRF method. The boundary pixels of the MRF classifica-

tion and the interior pixels of the UnECHO classified image are shown in Figure 4.23. The

final result image is shown in Figure 4.24 and the accuracy is 87.59 %, which is 1.76 %

lower (z score = 2.67) compared to the SVM classification. Although the MRF method

improved the accuracy of the SVM classification, the UnECHO method decreased the ac-

curacy significantly because of the grass pixels. For this reason, the accuracy of the final

result decreased. The confusion matrices of the final result are shown in Tables 4.20 in

pixels and 4.21 in percentages, respectively.
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Table 4.20: Confusion matrix (pixels) of the final result of Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat Total

Barley 500 0 9 3 0 0 512
Bean 0 291 0 0 0 0 291
Canola 16 0 367 105 4 70 562
Grass 19 0 0 424 0 55 498
Sugarbeets 0 0 0 0 156 0 156
Wheat 0 0 0 2 0 260 262
Total 535 291 376 534 160 385 2281

Table 4.21: Confusion matrix (percent) of the final result of Hyperion data.
Barley Bean Canola Grass Sugarbeets Wheat User Acc.

Barley 93.46 0.00 2.39 0.56 0.00 0.00 97.66
Bean 0.00 100.00 0.00 0.00 0.00 0.00 100.00
Canola 2.99 0.00 97.61 19.66 2.50 18.18 65.30
Grass 3.55 0.00 0.00 79.40 0.00 14.29 85.14
Sugarbeets 0.00 0.00 0.00 0.00 97.50 0.00 100.00
Wheat 0.00 0.00 0.00 0.37 0.00 67.53 99.24
Prod. Acc. 93.46 100.00 97.61 79.40 97.50 67.53

4.8 Experiments using Principal Component Analysis

(PCA)

The Principal Component Analysis method is tested in this section as a band extraction

method. As described in Section 2.6.1, PCs are uncorrelated. The Hyperion dataset con-

taining the most important PCs is used as the input to the SVM classification to study the

effects of the number of PCs on overall accuracies. The MRF and UnECHO methods are

also applied to the SVM classification results derived from these PCs. Table 4.22 lists

the overall accuracies of all these experiments for different number of PCs. The overall

accuracies of the SVM classification is more than 99 % for all numbers of extracted PCs

listed in the table. The wheat region, which was classified as grass by the SVM method

using original all the bands, is now classified correctly by the SVM method using the PCs.
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Figure 4.25 shows a visual comparison of the SVM and MRF classifications using 10 PCs

against the ground reference ROI regions. All the regions of the ground reference ROIs are

classified almost correctly by the SVM method, and the very few errors in the SVM clas-

sification are corrected by the MRF method. The PC band extraction approach improved

the SVM results, because there is less redundancy of information among PCs and the first

few PCs contain more than 90 % of the data variance. The rest of the components contain

insignificant information and noise. Figure 4.26 shows the coefficient values of PCs for

each ground truth crop type. As the values of PCA are very different for each crop type

for the first few PCs, it is easy to distinguish the classes. The MRF results are the same for

all numbers of PCs listed in Table 4.22 with 100 % accuracy giving slight improvements

to the SVM classification. The UnECHO method performed worse than the other methods

for all numbers of PCs as shown in Table 4.22.

Table 4.22: List of overall accuracies obtained by the SVM, MRF, and UnECHO methods
using Hyperion dataset with different numbers of PCs.

Number of PCs SVM (%) MRF (%) UnECHO (%)
10 99.17 100.00 84.00
20 99.74 100.00 84.61
30 99.87 100.00 85.80
40 99.87 100.00 84.66
50 99.74 100.00 84.52
60 99.74 100.00 84.52
70 99.78 100.00 84.52
80 99.82 100.00 84.66
90 99.82 100.00 83.87
100 99.78 100.00 84.61
110 99.78 100.00 83.82
120 99.78 100.00 84.48
130 99.74 100.00 84.44
140 99.74 100.00 83.69
150 99.74 100.00 83.38
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Figure 4.25: Visual comparison of SVM (middle) and MRF classification results (right)
using 10 PCs with ground-reference ROIs (left).

Figure 4.26: PC Coefficients for each ground-reference crop type.
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We also experimented the SVM, MRF and UnECHO method for 4, 5, and 6 PCs,

because the coefficient values of PCA are mostly different up to these numbers of PCs

(Figure 4.26). The overall accuracies of these experiments are listed in Table 4.23. The

improvement of the accuracy of the SVM and MRF method is only slightly better using

the 4 PCs compared to the SVM and MRF results using original all bands. Although the

accuracy of the SVM and MRF using 5 and 6 PCs is significant, the highest accuracy is

achieved using all numbers of PCs starting from 10 as shown in Table 4.22.

Table 4.23: List of overall accuracies obtained by the SVM, MRF, and UnECHO methods
for the Hyperion dataset using 4, 5 and 6 PCs.

Number of PCs SVM (%) MRF (%) UnECHO (%)
4 91.32 93.47 81.37
5 97.94 99.82 82.90
6 98.07 99.78 83.12

The overall accuracies of the SVM and MRF methods are improved significantly us-

ing different number of PCs compared to using all the bands (e.g., z score = 14.52 of the

SVM method using 10 PCs and all bands). Even though the overall accuracies of the SVM

and MRF methods using different number of PCs are statistically similar (e.g., z score =

0.89 between the SVM methods using 20 PCs and 30 PCs, which indicates a insignificant

difference) compared to each other using available ground-reference information, visual

comparison of individual crop fields of the entire images shows better accuracy improve-

ment using 10 PCs. When 20 or more PCs are used, many regions are classified as one crop

type (i.e., canola). Figure 4.27 shows the SVM and MRF classification results using 10,

30, and 140 PCs. We see that classifications of SVM and MRF using the 10 PCs are more

reasonable than those using 30 and 140 PCs, because result images derived from more than

20 PCs consist of an increasing area of canola regions. In the MRF classification using the

140 PCs, it is clear that several canola fields are contiguous with each other and there is
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no boundary between these crop fields, which is not desirable. In contrast, some separate

regions are more homogeneous outside the ground-reference ROIs in the MRF classifica-

tion using 140 PCs than in the MRF image using the 10 PCs (shown in circles in the MRF

images of Figure 4.27), which may be correct. Therefore, it is not clear which one is true

due to the lack of ground reference data for those crop fields. However, based on the gen-

eral knowledge about individual fields, the results using the 10 PCs are better, because the

fields in the result images are separate, homogeneous and also have good accuracy with

available ground-reference.

4.9 Experiments using Independent Component Analysis

(ICA)

The Independent Component Analysis (ICA) is tested on the Hyperion dataset. The overall

accuracies of the SVM, MRF, and UnECHO experiments using different number of Inde-

pendent Component (IC) are reported in Table 4.24. The overall accuracies of the SVM

and MRF experiments using different number of ICs show similar trends as the PCA (i.e.,

z score = -0.71 between the SVM methods using 20 PCs and 20 ICs). However, the overall

accuracies of the UnECHO results for some different number of ICs are better compared to

using the PCs (Section 4.8). Like PCA, all ground-reference regions including the wheat

region are classified quite correctly by the SVM method with very few salt and pepper

noise. The overall accuracies of the MRF methods are 100 % for almost all number of ICs

with insignificant improvement of the SVM results based on the ground-reference regions.

However, the SVM and MRF classification results using 10 ICs are visually better, because

most of the regions are either canola or barley in the classification results using more than

10 ICs. The classification results of SVM and MRF using 10, 40 and 120 ICs are pre-
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Figure 4.27: The SVM and MRF classification results using 10, 30, and 140 PCs.
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sented in Figure 4.28. The classification results for 10 ICs are more realistic than the others

because most of the regions should not be only barley or canola without any boundaries

between crop fields like the images using 40 or 120 ICs.

Table 4.24: List of overall accuracies obtained by the SVM, MRF, UnECHO methods for
Hyperion dataset with different numbers of ICs.

Number of ICs SVM (%) MRF (%) UnECHO (%)
10 99.39 99.91 82.55
20 99.74 100.00 93.34
30 99.74 99.96 87.29
40 99.82 100.00 85.14
50 99.74 100.00 85.93
60 99.74 100.00 94.30
70 99.78 100.00 89.08
80 99.82 100.00 86.85
90 99.82 100.00 87.64
100 99.87 100.00 88.95
110 99.82 100.00 84.92
120 99.74 100.00 84.17
130 99.87 100.00 88.69
140 99.87 100.00 94.34
150 99.82 100.00 93.47

4.10 Experiments using SVM-RFE Bands

In this section, the SVM-RFE method, which was described in Section 2.6.2, is tested using

the Hyperion dataset as a feature selection technique. The SVM is trained with 160 bands

and 6 classes with 10 % randomly selected pixels. In each iteration (150 iterations for

Hyperion data) one band is eliminated according to the ranking score. The weight vector

of SVM is used as a ranking criterion, and the band with the smallest ranking score is

eliminated. After eliminating each band, the SVM is trained again with the selected bands

92



Figure 4.28: The SVM and MRF result images: (a) SVM classification result using 10 ICs,
(b) MRF classification result using 10 ICs, (c) SVM classification result using 40 ICs, (d)
MRF classification result using 40 ICs, (e) SVM classification result using 120 ICs, and (f)
MRF classification result using 120 ICs.
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containing pixel values and classes and, thus, a subset of best selected bands is obtained.

The Hyperion dataset with different numbers of selected bands acquired from the SVM-

RFE algorithm is tested for the experiments. Each of the SVM, MRF and UnECHO meth-

ods were applied on the dataset containing different number of selected bands (10, 20, ....

,150). The resulting overall accuracies are shown in Table 4.25. We know from the SVM

experiment (Section 4.3) that the accuracy of the SVM using 160 bands is 89.35 %. From

the table, we see that at first after eliminating 10 bands (with 150 bands) the accuracy

of SVM is improved slightly by 0.13 %. The accuracies of SVM are higher for 60–150

bands but lower for 10–40 bands. The best accuracy of SVM is achieved using 90 selected

bands and the improvement is 0.39 % (z score = 0.40) compared to the SVM using all the

bands. This result is improved to 92.99 % by the MRF method. Therefore, the accuracy

is improved by 0.18 % compared to the accuracy (92.81 %) of the MRF result using the

all bands. The best accuracy of 93.2% of the MRF method is attained using 120 selected

bands. The SVM and MRF classification results using the 90 and 120 selected bands are

shown in Figure 4.29. Although the accuracy of the MRF classification using 120 selected

bands is the highest, the SVM classification result using 90 selected bands is more homo-

geneous, and contain less salt and pepper noise than the SVM classification result using

the 120 selected bands (shown in circles) if we look at the outside of the ground reference

regions. That means reducing the number of bands decreases some of these classification

errors accordingly. In addition, there is no significant numerical difference between the

classification results using the 90 and 120 selected bands. However, there are some notable

qualitative differences especially in the outside of ground-reference ROIs of the MRF im-

ages. For example, one region (shown in the green circle in the MRF images) is classified

as grass using the 90 band set. On the other hand, this region is classified as canola using

the 120 band set. Because of the unavailability of the ground-reference of this region, it is

hard to say which one is correct. However, some fields are completely homogeneous in the
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MRF image using the 90 selected bands compared to the MRF image using 120 selected

bands (shown in the red circle in the MRF images). Because these data cover agricultural

areas, it is acceptable to be classified as homogeneous areas. Moreover, the McNemar’s test

(z score = 6.25 between the SVM methods using 90 and 120 selected bands) also shows a

significant difference.

Table 4.25: Overall accuracies of the SVM, MRF, and UnECHO methods obtained from
the Hyperion dataset with SVM-RFE selected bands.

Number of bands SVM (%) MRF (%) UnECHO (%)
10 70.19 75.19 71.77
20 73.04 77.86 70.45
30 80.49 85.53 73.69
40 86.32 89.08 75.49
50 88.21 90.36 78.61
60 89.65 92.42 81.76
70 89.22 92.55 80.93
80 89.52 92.85 82.20
90 89.74 92.99 82.03
100 89.61 92.99 81.46
110 89.57 92.94 81.94
120 89.61 93.20 82.33
130 89.47 93.03 82.68
140 89.61 92.72 84.13
150 89.48 92.68 84.88

For the case of the UnECHO method all the listed accuracies are lower than the ac-

curacy of the experiment with 160 bands except for 140 and 150 selected bands. The

accuracy using the 150 band set is 84.88 % which is a 0.84 % improvement compared to

the result with 160 band set. Again the UnECHO experiment could not improve the SVM

classification results.
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Figure 4.29: The SVM and MRF result images for the 90 and 120 bands selected by SVM-
RFE.

4.11 Experiments using CFS Bands

The Correlation-based Feature Selection (CFS) technique is applied to select a best band

subset from the 160 bands of Hyperion data. In the CFS algorithm, features or bands are

selected based on the correlation with the class and the other bands as described in Section

2.6.2. Noisy and redundant bands are identified and removed, and the remaining subset of

bands are correlated with the class, but not correlated with each other. The SVM method

is applied to the resulting band subset selected by the CFS algorithm from the Hyperion

dataset. Afterwards, the MRF and UnECHO methods are applied on the SVM classification

results.

The CFS algorithm selected 18 bands from the Hyperion dataset. The overall accura-

cies obtained from the SVM, MRF, and UnECHO methods are presented in Table 4.26.

The overall accuracies of the SVM and MRF classifications are improved by 1.97 % (z

score = 4.00) and 1.31 % (z score = 2.82), respectively, compared to the SVM and MRF
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classifications using all bands. The accuracy of UnECHO classification is not improved

compared to the SVM and MRF classifications.

Table 4.26: Overall accuracies obtained from the the SVM, MRF, UnECHO methods for
the Hyperion dataset with the CFS selected bands.

SVM (%) MRF (%) UnECHO (%)
91.32 94.13 84.00

The result images of the SVM and MRF classifications derived from the Hyperion

dataset with CFS selected bands are shown in Figure 4.30 along with a visual comparison

of the SVM and MRF classifications without band selection. Some regions are classified as

barley and grass by the SVM classification when all bands are considered. However, some

pixels in those regions are classified as wheat by the SVM classification using the CFS

selected bands. The wheat region, which was totally misclassified as grass by the SVM

is partly classified correctly when the CFS band set is used. The number of misclassified

pixels is less when CFS is used. The MRF method corrected these misclassified pixels and

improved the accuracy. Therefore, noisy and redundant bands are removed by the CFS

method and, hence, experimental results provided by the SVM and MRF methods for the

Hyperion dataset using CFS, show better accuracies.

4.12 Experiments using mRMR Bands

In this section, we apply the SVM, MRF and UnECHO methods on the Hyperion dataset

with the selected bands provided by the Minimum-Redundancy–Maximum-Relevance

(mRMR) feature selection method (Section 2.6.2).

The overall accuracies for different number of mRMR selected bands are shown in

Table 4.27. The accuracies of the SVM, MRF and UnECHO classification results are not

97



Figure 4.30: The SVM and MRF classification results: (a) SVM result image for 160 bands,
(b) MRF result image for 160 bands, (c) SVM result image for CFS selected bands, and (d)
MRF result image for CFS selected bands.

improved for almost all the cases when mRMR is used for band selection purposes. Among

the listed experiments, only the accuracy of the SVM classification using 150 mRMR se-

lected bands is improved slightly (0.04 %) compared to the SVM classification using all

the bands (z score = 0), which is negligible. The accuracy of the subsequent MRF classifi-

cation is lower than the accuracy of the MRF classification using all bands. The accuracies

of the SVM and MRF classifications using the 150 mRMR selected bands are the high-

est among all number of bands listed in the table. The second highest accuracy of MRF

method is obtained using the 20 mRMR selected bands. The classification results of SVM

and MRF using both 20 and 150 mRMR selected bands in Figure 4.31, show that many

regions are classified as barley using the 20 mRMR selected bands. Many regions in the

SVM and MRF classification results using 20 mRMR selected bands are classified as one

type of homogeneous crop field (shown in circles). Visually these regions remain distinct

in the SVM and MRF classification results using 150 mRMR selected bands. On the other

98



hand, the numerical classification accuracy using 150 mRMR selected bands are similar to

the classification results using all the bands (Figure 4.6). Based on our knowledge of the

scene and accuracy, we can conclude that the best result is attained for the SVM with 150

mRMR selected bands.

Table 4.27: List of overall accuracies obtained by the SVM, MRF, and UnECHO methods
for Hyperion dataset using different number of mRMR bands.

Number of mRMR Bands SVM (%) MRF (%) UnECHO (%)
10 86.54 90.39 74.09
20 87.06 92.15 74.44
30 83.99 88.20 71.15
40 81.06 83.29 68.47
50 86.01 90.97 73.70
60 85.97 91.31 73.47
70 84.74 90.75 72.03
80 84.39 89.96 72.07
90 85.92 88.95 81.37

100 86.27 90.66 81.14
110 87.11 91.58 81.24
120 87.81 91.05 83.03
130 87.46 90.57 80.97
140 88.68 92.10 83.60
150 89.39 92.72 84.26

4.13 Summary of Experiments without Feature Reduction

Table 4.28 shows the best accuracies obtained using the SVM, MRF, UnECHO and pro-

posed methods. After the SVM experiment we see that there are many pixels misclassified,

and salt and pepper noise is present in the classification result. To reduce these noise and

improve the accuracy, the MRF and UnECHO methods are chosen as spatial classification

techniques. Boundary and interior pixels of the SVM classification result are separated us-
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Figure 4.31: The SVM and MRF classification results using mRMR selected bands, (a)
SVM classification result using 20 bands, (b) MRF classification result using 20 bands,
(c) SVM classification result using 150 bands, and (d) MRF classification result using 150
bands.

ing the erosion technique. We tried two algorithms of the MRF method where Algorithm

1 computes the local energy over all boundary pixels and Algorithm 2 computes the local

energy over randomly selected boundary pixels. We conclude that Algorithm 2 actually

resulted in lower accuracy and higher computation time compared to the Algorithm 1. The

highest accuracy acquired from the UnECHO method by using the maximum likelihood

distance measure is lower and reduces the accuracy of the SVM classification significantly

even though some of the misclassified pixels are corrected. Finally, the accuracy of the

combination of the MRF method on the boundaries and the UnECHO method on the inte-

rior pixels did not improve the SVM classification.

To conclude about the experiments using the Hyperion dataset without feature selection

or extraction, we can say that according to the accuracy and computation time, SVM+MRF

(Algorithm 1) for only boundary pixels is the best combination compared to the other clas-
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sification approaches.

Table 4.28: Overall accuracies obtained by SVM, MRF, and UnECHO experiments using
Hyperion dataset without Feature Reduction.

SVM (%) SVM + MRF (%) SVM + UnECHO (%) SVM + MRF + UnECHO (%)
89.35 92.81 84.04 87.59

4.14 Summary of Experiments with Feature Reduction

The accuracies of the best results achieved from experiments after applying different indi-

vidual feature reduction techniques are summarized in Table 4.29 including the number of

component or band subsets used for the classification. These results are taken considering

not only the accuracy but also the visual examination.

The accuracies improved very significantly using the SVM and MRF methods after ap-

plying both feature extraction techniques, PCA and ICA. The accuracies of the SVM and

MRF classification results are 99.17 % and 100.00 %, respectively using 10 PCs. The ac-

curacies of the SVM and MRF classification results are 99.39 % and 99.91 %, respectively

using 10 ICs. We concluded after visual comparison that the results using both 10 PCs and

10 ICs are the best.

Among all feature selection techniques, CFS with 18 bands provided the best accuracy.

The improvements of the accuracies of the SVM and MRF methods are not significant

when the SVM-RFE technique is used with 90 bands compared to using all bands. The

improvement of the SVM classification is very insignificant using 150 mRMR selected

bands compared to the SVM using all the bands. There is no improvement of the MRF

method using 150 mRMR selected bands compared to the MRF method using all the bands.

The UnECHO method could not improve the SVM result for any of the feature re-
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duction techniques and also for any of the number of bands. Finally, we can say that for

the Hyperion dataset, PCA and ICA feature extraction techniques provided the best results

among all feature reduction techniques.

Table 4.29: List of overall accuracies obtained by SVM, MRF, UnECHO experiments for
Hyperion dataset with Feature Reduction.

Feature Reduction Techniques SVM (%) SVM + MRF (%) SVM + UnECHO (%)
PCA (10 bands) 99.17 100.00 84.00
ICA (10 bands) 99.39 99.91 82.55
SVM-RFE (90 bands) 89.74 92.99 82.03
CFS (18 bands) 91.32 94.13 84.00
mRMR (150 bands) 89.39 92.72 84.26
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Chapter 5

Experiments for Other Datasets

5.1 AVIRIS Dataset

Another agricultural hyperspectral dataset used in this thesis is an Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) dataset collected over northwest Indiana’s Indian Pines

test site in June 1992 [32, 33, 37, 40]. This dataset has been widely used for classifica-

tion studies in the remote sensing community, because the scene with ground-reference

information is publicly available from the Purdue University’s MultiSpec site [37]. The

scene is a subset of a larger image with 145×145 pixels and 200 spectral bands between

0.4 and 2.45 µm with 20-m spatial resolution and calibrated radiance values [38]. A total

of 20 bands (104–108, 150–163, 220) are excluded from the original 220 bands due to

noise and water absorption phenomena [33]. The scene mostly contains agricultural ar-

eas where crops (e.g., corn and soybeans) were in early growth stage with few forested

areas and natural perennial vegetation, and very few impervious surfaces or infrastructure.

The ground-reference data of the scene contain 16 classes with a total of 10,366 labeled

samples.

5.2 Experiments for the AVIRIS Dataset without Feature

Reduction

In this section, experiments are conducted with the SVM, MRF and UnECHO classifiers

on the Indian Pines dataset without applying any feature or band reduction techniques.

The Indian Pines scene with false-color composite and the scene with the 16 classes (all
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Figure 5.1: AVIRIS Indian Pines dataset [32]; (a) false-color composite (R: NIR, G: Red,
B: Blue), and (b) ground-reference of 16 classes.

classes) ground-reference data is shown in Figure 5.1. The class names of the 16 classes,

the corresponding colour of these classes, the total number of ground-reference pixels for

every class and the total number of training pixels selected for each class are reported in

Table 5.1. The training pixels are selected randomly and the number of training pixels

for each class are the same as in a previous study [33]. The accuracy assessment of all

classification is done with the remaining pixels of the ground-reference dataset.

The randomly selected 16-class training samples and their corresponding spectral sig-

natures used to train the SVM are shown in Figure 5.2. The overall accuracy of the SVM

experiment is 62.54 % when all default parameters values are used (Section 4.3). Because

the accuracy is not high, different values of the penalty parameter C and kernel parameter

γ are tried to improve the overall classification accuracy of the SVM experiment. A com-

mon method to obtain good parameter values is a grid search [25]. Table 5.2 shows that

increasing the value of C increases the overall accuracy up to the value of C = 2000 and
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Table 5.1: Ground-reference classes for the Indian Pines scene and their respective total
number of pixels, number of training samples and associated colour.

Class No. Class Name Colour # of pixels # of training pixels
Class 1 Alfalfa Red 1 46 15
Class 2 Corn-notill Red 2 1428 50
Class 3 Corn-mintill Green 830 50
Class 4 Corn Blue 237 50
Class 5 Grass-pasture Yellow 483 50
Class 6 Grass-trees Cyan 730 50
Class 7 Grass-pasture-mowed Magenta 28 15
Class 8 Hay-windrowed Maroon 478 50
Class 9 Oats Sea Green 20 15
Class 10 Soybean-notill Purple 972 50
Class 11 Soybean-mintill Coral 2455 50
Class 12 Soybean-clean Aquamarine 593 50
Class 13 Wheat Orchid 205 50
Class 14 Woods Sienna 1265 50
Class 15 Buildings-Grass-Trees-Drives Chartreuse 386 50
Class 16 Stone-Steel-Towers Thistle 93 15

after that the overall accuracy started decreasing. We also selected different values of γ and

found that changing γ value for any particular C value does not affect the overall accuracy

at all. Therefore, we found that the value of C = 2000 and the default γ value (i.e., 1/total

number of bands) are the best parameters values for this dataset. Accordingly the overall

accuracy of the SVM experiment is 72.84 % with an improvement of 10.30 % using the

value of C = 2000. The overall accuracy is not particularly high but the improvement is

significant (z score = 22.39). If we look at the confusion matrix in Table 5.3, we see that the

producer accuracies of most of the classes (10 classes) are above 80 %. Among these, Hay-

windrowed (class 8) obtained the highest accuracy (99.07 %). The producer accuracies of

only 2 classes are less than 60 % and the class with the least producer accuracy (51.43

%) is soybean-mintill (class 11). The spectral signatures of the classes with poor producer

accuracies are very similar to the spectral signatures of other classes. For example, the
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Figure 5.2: AVIRIS Indian Pines data set; (a) randomly selected training samples and (b)
spectral signature of the 16 classes.

soybean-mintill (class 11) is mostly labeled as Corn-mintill (class 3) and Soybean-notill

(class 10), because the spectral signatures of these three classes are very similar as shown

in Figure 5.3. Figure 5.4 shows the result image of the SVM experiment along with the

ground reference image. It is noticeable that a significant amount of salt and pepper noise

are present in the result image compared to the ground-reference image even with good

producer accuracies of the individual classes.

After the SVM classification, the MRF method is applied on the classification of the

SVM. We applied the MRF (Algorithm 1) just on the boundaries of the SVM classification

in this section after extracting the boundary pixels using the erosion technique just as we

did in Section 4.4 for the Hyperion dataset. For this experiment, 5 iterations are used and

the value of the β parameter is set to 0.80 as this value and this number of iteration showed

the best performance based on the accuracy and execution time.

The overall accuracy of the MRF experiment is 83.34 % which improved the SVM

result by 10.50 %. This is a significant improvement (z score = 26.28). The individual class

accuracies are also improved as shown in the confusion matrix of Table 5.4. The highest

accuracy improvement is 29.04% for Alfalfas (class 1). In Figure 5.5, the MRF classified
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Figure 5.3: Spectral signatures of classes 3, 10 and 11.

Figure 5.4: (a) The SVM result image of AVIRIS Indian Pines data set, and (b) ground-
reference image of AVIRIS Indian Pines dataset.
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Table 5.2: Overall accuracies of the SVM experiment for different values of the penalty
parameter C.

Value of C Overall accuracy (%)
20 53.90
60 59.71

100 62.54
200 67.37
400 70.66
700 71.67

1000 72.07
1500 72.44
1700 72.72
2000 72.84
2200 72.82
2500 72.83
3000 72.79
5000 72.22

50000 72.06
500000 72.06

image shows more homogeneous regions and almost no salt and pepper noise compared to

the SVM classified image.

The UnECHO method applied on the Hyperion data in Section 4.6 was unable to im-

prove the accuracy of the SVM result. In this section, we evaluated the performance of

this method for different distance measures and different window sizes. The overall accu-

racies of this method are listed in the Table 5.5 for different distance measures and also

for different window sizes. None of the experiment could exceed the overall accuracy of

the SVM classification. Among these experiments, the UnECHO with Euclidean distance

measure using a 4×4 window size achieved the highest accuracy and is almost the same as

the overall accuracy of the SVM classification.
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Table 5.3: Confusion matrix in percentage of the SVM experiment (PA = Producer Accu-
racy and UA = User Accuracy).

Table 5.4: Confusion matrix in percentage of the MRF experiment (PA = Producer Accu-
racy and UA = User Accuracy).
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Figure 5.5: Classification maps of AVIRIS Indian Pines dataset; (a) SVM classified image
and (b) MRF classified image.

5.3 Experiments for the AVIRIS Dataset with Feature Re-

duction

All feature reduction techniques (i.e., PCA, ICA, SVM-RFE, CFS, and mRMR) that were

applied to the Hyperion dataset (Sections 4.8 to 4.12) are also applied to the AVIRIS dataset

in this section for only 10, 20, 30, 40, 60, 80, 100, 140, and 180 bands. The grid search

method is used in the SVM experiment for some of the band subsets of each feature re-

duction technique. It is found that changing the parameters values in the SVM experiment

(i.e., different values of C and γ) with these feature reduction techniques shows very in-

significant improvement in accuracies compared to the results with the corresponding band

subsets where the same parameters values are used that were selected as best in Section 5.2

(i.e., C = 2000 and γ =1/total number of bands ). Therefore, we used the same parameters

values and choices for the SVM, MRF and UnECHO experiments as in Section 5.2.

At first, the SVM, MRF and UnECHO methods are applied for different number of PCs.
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Table 5.5: Overall accuracies of the UnECHO experiment for different distance measures
and window sizes.

Name of distance measures and size of window Overall accuracy (%)
Euclidean distance and 2×2 window size 70.96
Euclidean distance and 3×3 window size 71.13
Euclidean distance and 4×4 window size 71.58
Mahalanobis distance and 2×2 window size 70.85
Mahalanobis distance and 3×3 window size 71.04
Mahalanobis distance and 4×4 window size 71.62
Maximum Likelihood distance and 2×2 window size 35.42
Maximum Likelihood distance and 3×3 window size 42.14
Maximum Likelihood distance and 4×4 window size 52.97

The overall accuracies of all experimental results are listed in Table 5.6. None of the results

of SVM using PCs exceeded the accuracy of the SVM method using all the bands. The

highest accuracy of SVM is achieved for the 40 PCs and it is lower by 4.32 % compared

to the SVM method using all the bands. However, for the MRF method, accuracies for

some PCs (i.e., 40, 60 and 100 PCs) exceeded the accuracy of the MRF result using all the

original bands. Among these, the 60 PCs shows the highest accuracy that is improved by

1.11 % compared to the MRF method using all original bands. The improvement is 16.12

% compared to the SVM method using the 60 PCs, which is a significant improvement.

Figure 5.6 shows the visual comparison of the SVM and MRF classification results using

the 60 PCs together with the SVM and MRF result images using the all original bands

along with the ground-reference data. We can see that the SVM result image using 60 PCs

contains more salt and pepper noise than the SVM result image using all original bands and

the overall accuracy of the SVM method using PCs is lower than the overall accuracy of

the SVM method using all the bands, because PCs are noisy except the first few bands. The

salt and pepper noise and misclassified pixels in the SVM result image for the 60 PCs are

randomly distributed, but in the SVM result image for original bands mostly occurred as
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clusters. As the MRF method classify pixels to the class of its neighbouring pixels, it is easy

for this method to correct the misclassified pixels, which are randomly distributed without

clusters. For example, some pixels of the region of class 11 (Figure 5.6) are misclassified as

class 5 (mostly clustered) in the SVM classified image using all original bands. However,

in the SVM classified image using the PCs the misclassified pixels are not clustered. The

MRF method could correct all the misclassified pixels of the SVM with the PCs, but could

not correct all the misclassified pixels of the SVM using the original bands. The UnECHO

method showed similar results as in the previous experiments. However, the accuracy

for the experiment using the 140 PCs is improved by 0.43 % which is not a significant

improvement.

Table 5.6: List of overall accuracies obtained by the SVM, MRF, and UnECHO experi-
ments for AVIRIS data with different number of PCs.

Number of PCs SVM (%) MRF (%) UnECHO (%)
10 64.08 73.59 63.75
20 67.80 79.60 67.73
30 66.59 80.86 65.89
40 68.52 83.76 68.08
60 68.33 84.45 67.87
80 66.66 83.17 65.65

100 64.83 83.51 64.25
140 59.87 81.85 60.30
180 55.75 79.03 55.06

Table 5.7 lists the overall accuracies of all experimental results (SVM, MRF and Un-

ECHO) for the different number of ICs. It shows almost similar trends as the PCA. The

highest accuracy of SVM is obtained using the 20 ICs. The MRF method is improved

by 0.23 % for 40 ICs compared to the MRF result using the original bands and 17.40 %

compared to the SVM result using 40 ICs, which is also a significant improvement and the

reason is the same as for the PCA.
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Figure 5.6: (a) MRF classification using all the original bands, (b) SVM classification using
all the original bands, (c) ground-reference data, (d) SVM classification using the 60 PCs,
(e) MRF classification using the 60 PCs, (f) misclassified pixels (class 5) in the region (class
11) of the MRF classification using all the bands, (g) misclassified pixels mostly clustered
based on the region (class 11) of the SVM classification using all the bands, (h) ground-
reference region of class 11, (i) misclassified pixels mostly scattered in the the region (class
11) of the SVM classification using all the bands, and (j) all misclassified pixels corrected
in the region (class 11) of the MRF classification using the 60 PCs
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Table 5.7: Overall accuracies obtained by the SVM, MRF, and UnECHO experiments for
the AVIRIS data using different number of ICs.

Number of ICs SVM (%) MRF (%) UnECHO (%)
10 63.40 72.97 63.39
20 68.18 80.58 68.86
30 66.87 81.82 67.54
40 66.17 83.57 66.88
60 63.78 83.22 64.30
80 62.75 82.69 63.45

100 59.51 78.88 59.92
140 58.58 80.82 59.78
180 53.98 79.15 54.25

The overall accuracies of the SVM, MRF, and UnECHO experiments obtained from

the AVIRIS dataset for the different numbers of SVM-RFE selected bands are reported in

Table 5.8. All the accuracies of the SVM result for the SVM-RFE selected bands 10 to 60

are above the accuracy of SVM result using all the bands. The highest accuracy improved

by 1.69 % for the 20 and 30 SVM-RFE selected bands compared to the SVM result using

all original bands. The accuracy of MRF method improved by 0.02 % for only the 60

SVM-RFE selected bands compared to the MRF result using all the bands.

The CFS method selects 35 bands from the dataset. From the Table 5.9 we see that

none of the experiments (SVM, MRF, UnECHO) using the 35 CFS selected bands could

improve the accuracies of the experiments using all the bands.

Using 80, 100, 140, 180 mRMR selected bands for the SVM classification improved

the accuracies noticeably as shown in Table 5.10. The accuracies of the corresponding

MRF results except for the 100 mRMR selected bands are also improved. The highest

accuracy improvements of SVM and MRF results are 3.40 % and 1.75 % for 140 mRMR

selected bands compared to the accuracies of SVM and MRF results using all the bands.

These accuracies of SVM and MRF results are the highest among all feature reduction
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Table 5.8: Overall accuracies of the SVM, MRF, and UnECHO experiments obtained from
the AVIRIS data using SVM-RFE selected bands.

Number of bands SVM (%) MRF (%) UnECHO (%)
10 74.10 83.17 73.47
20 74.53 82.19 73.42
30 74.53 82.58 73.21
40 74.25 82.81 73.55
60 73.56 83.36 72.70
80 69.85 78.69 69.72

100 68.08 77.13 67.84
140 65.48 75.26 64.75
180 57.30 65.29 55.17

Table 5.9: Overall accuracies obtained by the SVM, MRF, and UnECHO experiments for
the AVIRIS data using the CFS selected bands.

SVM (%) MRF (%) UnECHO (%)
71.26 82.10 71.06

band subsets (i.e., PCA, ICA, SVM-RFE, CFS, and mRMR). The result images of the

SVM and MRF are shown in Figure 5.7 along with a visual comparison with the SVM and

MRF classifications using all bands. Most regions are less noisy in the images for the 140

mRMR selected bands than the images for all original bands (e.g., class 11 region is shown

in circle).

We also experimented with the SVM method for different number of PCs and ICs of

the data where all default parameters values were used. After that all the subsequent MRF

and UnECHO methods were tested for those number of PCs and ICs. A summary of the

overall accuracies of the SVM, MRF and UnECHO experiments are shown in Tables 5.11

and 5.12, respectively for different numbers of PCs and ICs. In both of these tables, none

of the accuracies of the SVM experiments are better than the accuracy of SVM using all

bands where all default values were set. However, it can be seen that most of the accuracies
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Table 5.10: Overall accuracies obtained by the SVM, MRF, and UnECHO experiments for
the AVIRIS data using different number of mRMR bands.

Number of mRMR Bands SVM (%) MRF (%) UnECHO (%)
10 46.91 55.69 46.07
20 65.41 76.05 63.60
30 66.44 76.49 64.96
40 69.04 78.63 66.72
60 71.47 81.20 69.52
80 74.08 83.45 72.78

100 74.11 83.04 72.19
140 76.24 85.09 73.56
180 74.36 83.87 73.04

of the MRF experiments for both PCs and ICs are more than 70 % where the accuracy of

the MRF experiment using all the bands was 68.85 %. Among all PCs and ICs, the highest

accuarcy of the MRF method is 79.82 % using the 140 ICs. The improvement is 20.64

% compared to the SVM result using 140 ICs and 10.97 % compared to the MRF result

using all the bands. This is the most significant improvement and the reason of this MRF

improvement is similar to the case for the 60 PCs where the value of C = 2000 is set.

Table 5.11: Overall accuracies obtained by the SVM (with default parameter values), MRF,
and UnECHO experiments for the AVIRIS data using different number of PCs.

Number of PCs SVM (%) MRF (%) UnECHO (%)
10 55.80 63.19 57.03
20 61.62 72.28 62.04
30 61.07 72.64 61.15
40 62.38 74.20 61.63
60 61.76 74.67 60.91
80 61.75 73.78 60.34

100 60.75 73.80 59.13
140 59.59 75.84 59.12
180 56.89 77.14 56.69
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Figure 5.7: Classification maps of the AVIRIS Indian Pines dataset: (a) SVM classification
for 140 mRMR selected bands, (b) MRF classification for 140 mRMR selected bands, (c)
SVM classification for all original bands, and (d) MRF classification for all original bands.

All experimental results that are presented so far for the AVIRIS dataset can be grouped

according to whether feature reduction is used, and whether the dafault parameter values

are used in the SVM training. According to the accuracy assessment, the best result is

achieved by searching for the best parameters values of SVM. However, it is computa-

tionally very intensive to find the best parameters values of SVM. Sometimes 100 SVM

experiments might be required to determine the best values of parameters, which is very

time consuming. Instead, if we apply SVM classification with all default parameter values

of the data with ICs and then apply the MRF method, we can obtain accuracies much closer

to those obtained by using the best parameters values. Therefore, one may choose to use

the SVM method (with default parameters values) in combination with the MRF method,

because of the reduced processing time even if the result is slightly less accurate.
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Table 5.12: Overall accuracies obtained by the SVM (with default parameter values), MRF,
and UnECHO experiments for the AVIRIS data using different number of ICs.

Number of ICs SVM (%) MRF (%) UnECHO (%)
10 56.15 63.19 56.53
20 60.13 70.63 59.95
30 58.71 68.55 58.01
40 58.65 69.75 58.47
60 57.95 73.07 58.28
80 59.80 75.51 58.92

100 58.69 71.96 57.86
140 59.18 79.82 58.34
180 54.27 77.52 54.18

5.4 Summary of Experiments using the AVIRIS Dataset

The accuracy of the SVM classification using the AVIRIS dataset was not satisfactory

(62.54 %) with all default parameter value settings in the SVM experiment. Hence, the grid

search technique (testing accuracy using different values of the SVM parameters) was ap-

plied in the SVM experiment and the best accuracy (72.84 %) was achieved using C = 2000.

The accuracy improvement was significant (10.30 %) with satisfactory individual class pro-

ducer accuracies. The overall accuracy of the subsequent MRF method was 83.34 % with

an improvement of 10.50 % compared to the accuracy of the SVM classification result

using best parameters values.

The best parameters values obtained from the SVM experiment using all bands were

also applied to all experiments for all feature reduction techniques. All the accuracies of

the SVM classification using different PCs were less than the accuracy of the SVM classi-

fication using all bands. However, the MRF method using 40, 60, and 100 PCs improved

the accuracy of the MRF method using all the bands. The improvement is 1.11 % using 60

PCs compared to the MRF using all the bands and 16.12 % compared to the SVM using 60
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PCs. The experiments using different ICs showed similar accuracies as the PCs. The MRF

using 40 ICs showed an improvement of 0.23 % compared to the MRF using all the bands

and 17.40 % compared to the SVM using 40 ICs. Among all experiments using different

SVM-RFE selected bands, the SVM using 20 and 30 SVM-RFE selected bands showed the

highest improvement (1.69 %) compared to the SVM using all the bands. MRF showed an

improvement of 0.02 % using 60 selected bands compared to the MRF using all the bands.

The SVM and MRF experiments using CFS selected bands was unable to improve the ac-

curacy compared to the SVM and MRF using all the bands. mRMR showed the best result

among all feature reduction techniques. The accuracy of the SVM and MRF result using

140 selected bands improved by 3.40 % and 1.75 % respectively, compared to the accuracy

of the SVM and MRF classification using all the bands.

All the experiments were conducted using different PCs and ICs where all default pa-

rameters values were set in the SVM experiment. The accuracies were not improved by

the SVM method compare to the SVM using all the bands where default parameters values

were used. However, the MRF method improved the accuracies of the corresponding SVM

classification significantly, which are closer to the accuracy of the MRF result where best

parameters values were used in the SVM experiment. The highest accuracy, 79.82 % was

achieved by the MRF method using 140 ICs with an improvement of 20.64 % compared to

the SVM method using the same number of ICs and 10.97 % compared to the MRF using

all bands where all default parameters values were used. We concluded that it is benefi-

cial to apply the SVM method with default parameters values with a combination of the

MRF method using PCA/ICA instead of applying the SVM with grid search and the MRF

method.
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5.5 ROSIS Dataset

An urban hyperspectral dataset acquired by the Reflective Optics System Imaging Spec-

trometer (ROSIS) over the University of Pavia, Pavia, Italy was used for this experiment

[32, 40]. The flight was operated by the German Aerospace Centre under the European

Union’s HySens project. This airborne hyperspectral dataset with ground-reference in-

formation is publicly available from the Purdue Universitys MultiSpec website [32]. The

scene was already atmospherically corrected [15] and has 610×340 pixels with 103 bands

covering the spectral range from 0.43 to 0.86 µm with 1.3 m spatial resolution. Ground-

reference data include 9 classes with 42,776 samples that comprise urban properties and

few soil and vegetation areas.

5.6 Experiments for the ROSIS Dataset without Feature

Reduction

In this section, we describe experiments using the SVM, MRF and UnECHO methods

on the ROSIS dataset without feature reduction. A false-colour composite of the dataset

together with the ground-reference of the 9 classes and the randomly selected training sam-

ples used to train the SVM are shown in Figure 5.8. The name of all classes of this dataset,

the corresponding colours, the number of total samples of each class present in the ground-

reference data, and the number of training samples selected for the SVM experiment are

reported in Table 5.13. The training pixels are selected randomly and the number of the

training pixels is the same as used in a previous work [32].

The accuracy of the SVM classification using all default parameters values is 76.24 %.

The accuracy of the subsequent MRF classification is 81.37 % with an improvement of

5.13 %. Because the accuracy is not satisfactory, different values of the penalty parameters
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Figure 5.8: ROSIS University dataset: (a) false-color composite (R: NIR, G: Red, B: Blue),
(b) ground-reference of the 9 classes, and (c) training samples.

Table 5.13: Ground-reference classes for the ROSIS dataset and their respective total num-
ber of samples, number of training samples and colour.

Class No. Class Name Colour Pixels Training pixels
Class 1 Asphalt Red 6631 548
Class 2 Meadows Green 18649 540
Class 3 Gravel Blue 2099 392
Class 4 Trees Yellow 3064 524
Class 5 Painted metal sheets Cyan 1345 265
Class 6 Bare Soil Magenta 5029 532
Class 7 Bitumen Maroon 1330 375
Class 8 Self-Blocking Bricks Sea Green 3682 514
Class 9 Shadows Purple 947 231

C and kernel parameter γ are selected in a grid search for the SVM classification to obtain

better accuracy. The highest accuracy, 91.81 % is achieved using the value of the penalty

parameters C = 27000 and the kernel parameter γ = 0.01, which lead to an improvement

of 15.57 % compared to the SVM experiment with default parameter value settings. This

is a very significant improvement (z score = 66.09). The producer accuracies of most of

the classes (Table 5.14) are also over 90 %. It is lowest for class 3 (83.13 %). There are

15.35 % of pixels in class 3 misclassified as class 8. On the other hand, there are 10.26 %

of pixels in class 8 misclassified as class 3. The reason behind this is the similar spectral
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Table 5.14: Confusion matrix of the SVM classification in percent for the ROSIS data (PA
= Producer Accuracy, UA = User Accuracy).

Class 1 2 3 4 5 6 7 8 9 UA (%)
1 90.63 0.03 1.05 0.08 0.00 0.11 10.16 1.55 0.14 96.89
2 0.21 92.45 0.47 2.24 0.09 7.61 0.00 0.22 0.00 97.51
3 1.46 0.01 83.13 0.00 0.00 0.00 0.00 10.26 0.00 77.37
4 0.00 1.26 0.00 97.52 0.00 0.31 0.00 0.00 0.00 91.07
5 0.00 0.00 0.00 0.04 99.35 0.00 0.00 0.00 0.00 99.91
6 0.15 6.07 0.00 0.12 0.09 91.35 0.00 0.38 0.00 78.50
7 4.36 0.00 0.00 0.00 0.28 0.00 89.74 0.16 0.00 75.84
8 3.17 0.18 15.35 0.00 0.19 0.62 0.10 87.44 0.00 84.25
9 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.86 99.86
PA (%) 90.63 92.45 83.13 97.52 99.35 91.35 89.74 87.44 99.86

signature of class 3 and class 8 (Figure 5.9).

The MRF method improved the accuracy to 97.35 % with an improvement of 5.54 %

(z score = 42.55). The confusion matrix of the MRF experiment is shown in Table 5.15.

The producer accuracies of all classes are very high and improved compared to the SVM

classification result. The SVM and MRF classification results are shown in Figure 5.10

along with the ground-reference data. It is clear that most of the ground-reference regions

are classified correctly by the SVM with a small amount of salt and pepper noise and the

MRF method corrected those noise and provided homogeneous regions.

The UnECHO method could not improve the accuracy of the SVM for any of distance

measures and window sizes. The highest accuracy is 87.34 % with the Euclidean distance

measure and a 3×3 window size.
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Figure 5.9: Spectral signatures of the 9 classes.

Table 5.15: Confusion matrix of the MRF classification in percent for the ROSIS data (PA
= Producer Accuracy, UA = User Accuracy).

Class 1 2 3 4 5 6 7 8 9 UA (%)
1 96.89 0.00 0.64 0.08 0.00 0.00 3.77 0.47 0.00 98.93
2 0.00 97.98 0.18 0.67 0.00 1.42 0.00 0.19 0.00 99.50
3 0.35 0.00 88.52 0.00 0.00 0.00 0.00 4.04 0.00 91.02
4 0.00 0.13 0.00 99.06 0.00 0.00 0.00 0.03 0.00 99.02
5 0.00 0.00 0.00 0.00 99.91 0.00 0.00 0.00 0.00 100.00
6 0.05 1.88 0.00 0.20 0.09 98.58 0.00 0.16 0.00 92.59
7 0.15 0.00 0.00 0.00 0.00 0.00 96.23 0.00 0.00 99.03
8 2.56 0.00 10.66 0.00 0.00 0.00 0.00 95.11 0.00 89.91
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00
PA (%) 96.89 97.98 88.52 99.06 99.91 98.58 96.23 95.11 100.00
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Figure 5.10: (a) SVM classified image, (b) MRF classified image, and (c) ground-reference
data.

5.7 Experiments for the ROSIS Dataset with Feature Re-

duction

In this section, the SVM, MRF and UnECHO methods are applied to the ROSIS dataset

using different band subsets with 10, 20, 30, 40, 60 and 80 bands after applying all feature

reduction techniques one at a time just as we did to the AVIRIS dataset (Section 5.3).

Because there is very insignificant improvement using the grid search method in the SVM

experiment with feature reduction, we used the same parameter values as in Section 5.6 for

all feature reduction techniques. The default values are then used only for the PCs and ICs.

The accuracies of all experimental results with best parameters values in the SVM ex-

periment using different PCs are listed in Table 5.16. All accuracies are lower than the

accuracies of experiments using all bands. The highest accuracies are achieved by the

SVM and MRF methods using 20 PCs. The accuracy of the SVM method declined the

accuracy of the SVM method using all bands by 3.40 % and the accuracy of the MRF

method declined the accuracy of the MRF method using all bands by 2.53 %. The accura-

cies of all methods shown in Table 5.17 for the different ICs are lower than the accuracies

achieved using PCs. Among all the accuracies listed in the Table 5.18 for different SVM-
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RFE band subsets, the highest accuracy is achieved by the SVM and MRF methods using

10 SVM-RFE selected bands which are very close to the accuracy of the SVM and MRF

method using all bands. However, the accuracy of the SVM method is declined by 0.66

% compared to the accuracy of the SVM method using all bands and the accuracy of the

MRF method is declined by 0.26 % compared to the accuracy of the MRF method using

all bands. The accuracies of all experiments using CFS selected bands (31 bands) shown

in Table 5.19. The accuracies are not improved compared to the accuracies using all bands.

Table 5.20 shows the accuracies of all experiments using different mRMR selected bands,

which are also less than the accuracies using all bands.

Table 5.16: Overall accuracies obtained by the SVM, MRF, and UnECHO experiments for
the ROSIS data using different number of PCs.

Number of PCs SVM (%) MRF (%) UnECHO (%)
10 84.00 92.54 80.17
20 88.41 94.81 85.50
30 88.03 94.46 85.40
40 87.87 94.52 85.35
60 87.63 94.18 84.93
80 87.21 94.10 84.03

Table 5.17: Overall accuracies obtained by the SVM, MRF, and UnECHO experiments for
the ROSIS data using different number of ICs.

Number of ICs SVM (%) MRF (%) UnECHO (%)
10 71.28 88.05 73.24
20 78.29 91.80 78.42
30 79.56 92.74 79.81
40 80.75 93.36 80.18
60 81.24 93.18 80.51
80 84.12 94.45 82.05

Tables 5.21 and 5.22 represent the accuracies of all experiments using different PCs and
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Table 5.18: Overall accuracies of the SVM, MRF, and UnECHO experiments obtained
from the ROSIS data with SVM-RFE selected bands.

Number of bands SVM (%) MRF (%) UnECHO (%)
10 91.15 97.09 87.94
20 90.81 96.83 87.65
30 89.83 96.14 86.79
40 89.48 95.84 86.32
60 86.34 94.05 83.59
80 79.62 89.95 79.04

Table 5.19: Overall accuracies obtained by the SVM, MRF, and UnECHO experiment for
the ROSIS data with the CFS selected bands.

SVM (%) MRF (%) UnECHO (%)
90.06 96.69 86.65

ICs where all default values were set in the SVM experiment. Among all the accuracies,

the accuracies of the SVM and MRF methods using 30 ICs are highest. The accuracy of the

SVM method is improved by 4.96 % compared to the SVM classification using all bands

where all default parameters values were used. The subsequent MRF method improved the

accuracy by 7.78 % compared to the SVM classification using 30 ICs and 7.61 compared

to the MRF classification using all the bands. Although the accuracy of the MRF method

(88.98 %) is not close to the accuracy of the MRF classification (97.35 %) using best

parameters values in the SVM experiments, it is satisfactory. Sometimes it will be time

efficient to apply the SVM and MRF method using PCs/ICs with default parameter value

settings in the SVM experiment instead of applying the SVM with grid search and MRF

method.
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Table 5.20: Overall accuracies obtained by the SVM, MRF, UnECHO experiments for the
ROSIS data using different number of mRMR selected bands

Number of mRMR Bands SVM (%) MRF (%) UnECHO (%)
10 64.82 76.17 66.47
20 75.10 83.47 72.17
30 82.90 90.56 80.09
40 84.91 91.87 82.41
60 88.33 95.38 85.14
80 90.19 96.90 86.65

Table 5.21: Overall accuracies obtained by the SVM (with default parameter values), MRF,
and UnECHO experiment for the ROSIS data using different number of PCs

Number of PCs SVM (%) MRF (%) UnECHO (%)
10 75.65 80.99 69.04
20 77.19 82.55 72.56
30 75.58 80.76 71.02
40 74.96 80.20 68.56
60 73.29 78.24 65.98
80 71.95 76.92 64.34

5.8 Summary of Experiments using the ROSIS Dataset

The SVM experiment was conducted with the grid search technique (accuracy was 91.81 %

with a significant improvement of 15.57 %) using the ROSIS dataset because the accuracy

(76.24 %) was not satisfactory using default parameter settings in the SVM experiment.

The subsequent MRF method improved the accuracy from 91.81 % to 97.35 %. This is

also a satisfactory improvement (5.54 %). None of the feature reduction techniques (i.e.,

PCA, ICA, SVM-RFE, CFS, mRMR) improved the accuracy of the experiments using all

the original bands. The accuracies of the experiments using the 30 ICs with default param-

eter settings in the SVM experiment were quite satisfactory. The accuracy was improved

to 88.98 % using the MRF method. Therefore, considering the computational time, some-
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Table 5.22: Overall accuracies obtained by the SVM (with default parameter values), MRF,
and UnECHO experiments for the ROSIS data using different number of ICs

Number of ICs SVM (%) MRF (%) UnECHO (%)
10 77.43 85.36 72.21
20 79.46 85.60 73.98
30 81.20 88.98 76.63
40 76.52 86.12 73.46
60 79.82 88.27 74.83
80 77.65 87.17 72.32

times it is better to apply the SVM and MRF method using PCs/ICs with default parameters

values rather than the SVM method with grid search in a combination of the MRF method.
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Chapter 6

Conclusion And Future work

6.1 Summary and Conclusion

In this thesis, a new spectral-spatial or contextual classification approach is proposed. It is

a combination of one spectral and two spatial methods. The main objective of this thesis

is to improve classification accuracy. However, computation time is also considered. We

examined and compared individual spectral-spatial classification methods with each other

and also with the spectral method alone. The proposed method was investigated for differ-

ent sets of hyperspectral data. We also tried different types of feature reduction techniques

to select features or bands in order to improve the accuracy and computation time.

The SVM classification method was chosen as the spectral method. Next, a spatial

method using MRF was applied to boundary pixels of the SVM classification where the

boundary pixels were extracted using the erosion technique. We also used another spatial

method called the UnECHO method. It was applied on the SVM classification and the

resulting labeled pixels were extracted from the interior parts. The labels of the boundary

pixels extracted from the MRF classification and the interior pixels from the UnECHO

classification were then combined to produce the final classification map. Three different

hyperspectral datasets were used. The first one is a Hyperion dataset (agriculture), the

second one is an AVIRIS dataset (agriculture), and the third one is a ROSIS dataset (urban).

We tried two types of feature reduction techniques: feature extraction and feature selection

for all datasets. PCA and ICA were applied as feature extraction techniques and SVM-

RFE, CFS and mRMR were applied as feature selection techniques. The five main findings

that have been made in this thesis are as follows:
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SVM + MRF effect: For the Hyperion dataset, the MRF method applied only to the bound-

aries of the SVM classification improved the accuracy from 89.35% to 92.81%, when

the MRF regularization algorithm minimizes the local energy of all boundary pixels.

The improvement was not substantial with the small amount of ground-reference in-

formation available. However, it was noticeable in the visual comparison that the

MRF method corrected most of the salt and pepper noise of the SVM classification

and made regions more homogeneous. This method improved the accuracy of the

SVM classification of the AVIRIS dataset significantly (10.50 %) with almost no salt

and pepper noise and more homogeneous regions. The accuracy of the SVM classifi-

cation was already above 90% for the ROSIS dataset and the MRF method improved

the accuracy by 5.54 %, which was a satisfactory improvement. Therefore, we can

conclude that the MRF method is an effective method when applied to the boundary

pixels of the SVM classification because the performance of this method was very

good for all datasets. The main drawback of this method is that it will not be able to

improve the accuracy of a non-homogeneous datasets.

SVM + UnECHO effect: The accuracy of the SVM classification was not improved by

the UnECHO method for any of the datasets and for any cases. We can conclude

that this method does not provide better accuracy in combination with supervised

classification techniques such as SVM.

Feature reduction effect: The SVM, MRF and UnECHO methods were applied for dif-

ferent numbers of bands of the datasets and compared after applying all 5 individual

feature reduction techniques. The accuracies of the SVM and MRF classifications

improved significantly for the Hyperion dataset to almost 100% for all numbers of

PCs. However, after visual comparison of the results for three different PCs (i.e.,

10, 30 and 140 PCs) we concluded that the results using 10 PCs were the best. In
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case of the ICA, we obtained similar accuracies as with the PCA. The results us-

ing the 10 ICs were considered to be the best result after visually comparing it with

two other different numbers of ICs (i.e., 40 and 120 ICs). Therefore, experiments

of SVM and MRF methods with both PCA and ICA showed excellent performance

for the Hyperion dataset. Among all feature selection techniques, CFS showed the

highest performance (accuracy of the MRF classification is 94.13 %) for this dataset

although the improvement was not significant.

All feature reduction techniques were applied to the AVIRIS dataset for all experi-

ments using different numbers of PCs/ICs where the best parameter values for SVM

were found with a grid search. Although the accuracies of the SVM classification

were lower using all numbers of PCs compared to the accuracy of the SVM classifi-

cation using all bands, the MRF method improved the accuracies for three different

numbers of PCs compared to the MRF method with all bands. Among these, the

highest improvement was achieved with 60 PCs, but this was a very slight improve-

ment. The ICA method showed similar results. The mRMR method showed the

highest accuracy improvement using 140 bands among all feature reduction tech-

niques for this dataset, however this was also not a significant improvement. All the

experiments were considered with different numbers of PCs and ICs where all de-

fault values were used in the SVM experiment. Although the accuracies of the SVM

classifications were not better than the accuracy of the SVM classification with all

bands, the MRF method improved all accuracies of the SVM classifications signifi-

cantly for almost all numbers of PCs and ICs. The highest accuracy was close to the

accuracy of the MRF classification using all bands where the best parameter values

were found with a grid search in the SVM experiment. Therefore, for a large dataset,

PCA and ICA may be used with the SVM and MRF method to reduce running time
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without significantly reducing accuracy. Although it is slightly more accurate, it is

very time consuming to use the grid search for the best SVM training parameters

when all bands are used.

None of the feature reduction techniques could improve the accuracy for the ROSIS

dataset when the grid search was used to obtain the best parameters for the SVM ex-

periment. However, PCA and ICA experiments using default parameter values in the

SVM experiment showed significant accuracy improvement of the SVM classifica-

tions using the MRF method. Although the highest accuracy of the MRF classifica-

tion using the 30 ICs was still lower than the accuracy of the MRF classification with

all bands, it is less computationally intensive to apply the SVM and MRF method

with the ICs with all default parameter settings.

Among all feature reduction techniques, the experiments with PCA and ICA work

very well when all default parameter values are used. However, these techniques are

unable to improve the accuracy when experiments are conducted with the grid search

result.

Computation time and accuracy trade-off: After applying the SVM method to the Hy-

perion dataset using all the bands, two types of MRF algorithms (Algorithm 1: for

all boundary pixels and Algorithm 2: for randomly selected pixels) were applied to

the SVM classification results, and compared with each other for this dataset only.

At first, the MRF method with Algorithm 1 was applied to the entire image and also

to the boundaries of the SVM classification, and they were compared with each other

based on the accuracy and computation time. Experimental results with best param-

eter values showed that Algorithm 1 applied to the entire image, provided slightly

more accurate result, but took 7 times longer in execution time than when it was ap-

plied to only the boundaries. Therefore, it is worthwhile to apply the MRF method
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for all pixels only to the boundaries instead of the entire image even with a slightly

less accurate result. The MRF method for randomly selected pixels was then applied

only to the boundaries of the SVM classification and compared with the MRF method

for all pixels applied to the boundary pixels. The accuracy of the MRF method for

randomly selected pixels was lower and this method took 73 times more computation

time than the MRF method for all pixels. The MRF method for randomly selected

pixels has been used in previous studies in order to improve the accuracy, but the

experimental results of this thesis showed that the MRF method for all pixels is bet-

ter than MRF method for randomly selected pixels in terms of both accuracy and

computation time.

Grid search vs. no grid search: Because the accuracy of the SVM method with all bands

for the AVIRIS dataset was not satisfactory using the default SVM training parame-

ters values in the experiment, the grid search technique was applied to select the best

training parameters for this experiment. The accuracy of this method improved sig-

nificantly (10.30 %) using the best parameter values from the grid search result. For

the ROSIS dataset the accuracy of the SVM method was improved by 15.57 % after

applying the grid search technique. Hence, we can say that grid search technique is a

very effective way of improving the accuracy of the SVM method when the accuracy

of the SVM method is not satisfactory using default values.

SVM + MRF + UnECHO effect: The final classification map resulting from the combi-

nation of the MRF and UnECHO results was shown only for the Hyperion dataset.

The accuracy of the final result did not improve mainly because of the UnECHO

method.
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6.2 Future Work

In the future, the following investigations can be carried out to examine the effectiveness

of spectral-spatial methods used in this thesis.

Multispectral datasets: In this thesis, the proposed method is applied only to different hy-

perspectral datasets. All methods that are used in this thesis can be used for different

multispectral datasets.

Other Spectral Methods: Only one method (i.e., SVM) is used as a spectral class clas-

sifier in this study. Other methods (e.g., Maximum Likelihood and Random Forest)

can be tested and compare with the SVM method. Spatial methods such as MRF

and UnECHO can also be applied on the result image derived from other spectral

methods to examine the results for accuracy improvement.

Spatial Methods for the Interior Pixels: Different spatial techniques such as partitioning

homogenous regions based on majority vote (i.e., adaptive neighbourhood) can be

applied to the interior parts of spectrally classified imagery, because the UnECHO

method cannot improve the accuracy of the SVM classification result.

Segmentation Process: Segmentation process which partitioned the image into multiple

segments may classify the hyperspectral image more accurately, because this method

labels pixels based on the locating objects and boundaries.

Spectral Unmixing for the Boundary Pixels: Sub-pixel level information extraction tech-

nique, such as spectral unmixing can be applied to the hyperspectral data. Spatial-

Spectral Endmember Extraction (SSEE) algorithm can be applied to extract endmem-

ber (i.e., pure pixel) spectrum for each class. Dominant abundances (i.e., proportion

of endmembers) from spectral unmixing results can be assigned to particular classes

of the boundary pixels to improve the accuracy.
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Class Mean Spectra from Cluster: The class mean spectra is required in the UnECHO

method. It can be acquired from cluster or a contiguous group of pixels of ground-

reference regions or by applying endmember extraction methods in order to examine

the result of the UnECHO method.

Modify Energy Minimization Equation: The energy minimization equation of the MRF

method with randomly selected pixels can be modified in order to improve the accu-

racy.

Other Feature Reduction Techniques: Other feature reduction techniques (e.g., MNF)

may improve the accuracy of the methods used in this thesis.
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