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Abstract 

 
Brook trout invasion into bull trout streams is variable, and likely influenced by a suite of 

biotic and abiotic factors. Field observations revealed that brook trout dominated the fish 

community over bull trout in warmer sites that had undercut banks; in contrast, bull trout 

dominated in colder sites that had a high amount of large substrate cover, and where 

alternate non-native species were present. Laboratory studies of competition between the 

two species revealed that bull trout use a scramble foraging tactic, whereas brook trout 

use a territorial tactic. Bull trout outcompeted brook trout when fish density was low and 

habitat complexity was high, as this scenario reduced the effectiveness of the aggressive 

territorial foraging strategy of brook trout. Bull trout from a migratory population 

competed more successfully against brook trout and had higher rates of oxygen 

consumption than those from a resident population. This combined field-lab study points 

to some of the abiotic and biotic factors that affect competition between the two species, 

and may influence the outcome of brook trout invasion into bull trout streams. 
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Chapter 1 Introduction 

 

Species invasions, the ecological niche and salmonids in mountain stream ecosystems 

Species invasions are a topic of wide concern that have garnered significant 

attention in ecology and conservation biology, accelerating through the latter half of the 

20th Century. Invasion science can now be considered its own distinct sub-discipline of 

ecology, and several scientific journals solely devoted to this topic are currently in 

circulation. Beyond the academic community, broadly applied management and 

conservation efforts are expended to control the spread of, or eliminate, invasive species, 

and the topic is commonly addressed in popular media (Simberloff et al. In Press). The 

impact of invasive species on native ecosystems may be destructive in certain cases, 

resulting in loss of biodiversity, productivity and ecosystem services, causing devastating 

economic impacts and long term irreversible damage to native ecosystems (Pimentel et 

al. 2005). Understanding the mechanisms that influence invasion of non-native species, 

and how they may interact with and displace or replace native species, are central topics 

of study in invasion science. 

Successful establishment of non-native species is governed by a succession of 

filters, which prevent most introductions from resulting in an invasion (Williamson and 

Fitter 1996). The probability that a species will become invasive and have a large effect 

on the recipient ecosystem increases with the arrival intensity of the invasive species. 

This is known as propagule pressure and is supported by a large amount of experimental 

and observational evidence (Lockwood et al. 2005). Propagule pressure is defined as the 
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number of non-native individuals arriving per unit time in an area (Simberloff 2009). 

Propagule pressure goes a long way as a null model to predicting the establishment of 

invasive species (Colautti et al. 2006). In-depth knowledge of the ecological attributes of 

the invasive species, together with niche opportunities provided in the recipient 

ecosystem, are essential to predicting which introductions will lead to actual invasions, 

and to predicting the ultimate impact of those invasions (Shea and Chesson 2002; 

Colautti and MacIsaac 2004). This was initially described by Elton (1958), who argued 

that invasion would be most prevalent in disturbed or less diverse ecosystems, where 

biotic resistance is low. Conversely, invasion would be expected to be less successful in 

ecosystems with high diversity because niche opportunities are filled by specialist native 

species that are not easily displaced. Indeed, the concept of an ecological niche contains 

many of the elements required to predict invasion success (Peterson 2003). Despite this, 

there are many exceptions to Elton’s simple view that diversity in the receiving system 

predicts the likelihood of successful invasion; however, these can often be explained by 

an in-depth knowledge of the intrinsic and extrinsic factors of the system (Levine and 

D'Antonio 1999; Shea and Chesson 2002; Fausch 2008). 

In addition to propagule pressure, the factors that influence an invaders’ success 

include the physical environment (abiotic factors), biotic resistance and resource 

availability (Shea and Chesson 2002). Physio-chemical attributes of the invaded system, 

and diseases, predators or competitors in the invaded ecosystem may act as filters that 

limit the spread and success of invasive species, and their resulting displacement or 

replacement of native species. Invaders can displace native species through competition, 

predation, as vectors of pathogens, or through some combination of these mechanisms. In 
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some circumstances, invaders may directly displace native species, and may potentially 

initiate a cascade of effects that alter whole ecosystems. Zebra mussels (Dreissena 

polymorpha) are perhaps the most well known North American example of such an 

invasive species. This species directly displaces native benthic invertebrates by 

competing for space, and indirectly alters whole ecosystems by altering light penetration 

through water by filtering suspended material. The bottom-up photosynthetic pathways 

that drive the food web may be disrupted by this aspect of zebra mussel biology in areas 

that are densely populated (MacIsaac 1996). Physical attachment of mussels has further 

economic consequences, as they damage submerged infrastructure for transportation, 

energy generation and water treatment. Most species invasions are benign when 

compared to the zebra mussel example; however, they may subtly disrupt natural 

ecosystems that provide services to help sustain the functioning of human society and in 

fact provide its basic necessities. 

Inland western North America has seen a distinct homogenization of its 

freshwater fish fauna, with species from the eastern portion of the continent, as well as 

Europe, having been purposefully introduced (Rahel 2000). This came as a result of the 

prevailing fish management policies of the late nineteenth and early twentieth centuries, 

following the newly discovered successful rearing programs of salmonids (among other 

fish species) in hatcheries. Warmwater ecosystems have seen the largest absolute 

numbers of fish invasions, due to the thermal preferences of introduced sportfishes from 

the eastern part of the continent and fishes from the aquarium trade (Rahel 2007).  

Relative to native diversity, however, coldwater ecosystems are also highly invaded, 

mainly through the introduction of salmonid species across biogeographic barriers to 
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increase sportfish opportunities, both within and between continents (Behnke 2002). As a 

result of these introductions, cold headwater ecosystems of inland mountainous regions 

have experienced drastic increases in fish diversity (Dunham et al. 2004). The 

mountainous topography of western North America make natural colonization across 

drainages difficult, and relatively short interglacial periods have limited the time for 

speciation to occur and for new species to colonize from downstream sources (McPhail 

2007). The result is that headwater lakes and streams of inland western North America 

typically contain few native fish species, though many are widely distributed across the 

previously glaciated landscape. Although these environments are relatively resource poor 

with harsh abiotic conditions to which few fish species are adapted, the high propagule 

pressure exerted by intentional introductions, coupled with the fact that many salmonids 

are pre-adapted by chance to many areas within each others’ ranges (Fausch 2008), has 

led to the rapid homogenization of salmonid fish communities with a few easily cultured 

cosmopolitan species (Rahel 2002). As previously introduced, the mechanism by which 

invasive salmonids may displace native species is primarily through competition, 

resulting in the loss or reduction of many genetically unique populations and subspecies 

of inland trout, char and grayling (Behnke 2002). In some species interactions, the 

pathways of displacement may be exacerbated by loss through hybridization and 

introgression (Rhymer and Simberloff 1996).  

From an evolutionary perspective, invasions are conceptually paradoxical because 

natural selection might be expected to render native species better adapted to their local 

environment than invaders (Sax and Brown 2000). Nowhere is this better exemplified 

than in salmonids, as many species become invasive into areas they are introduced at the 
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expense of native species, but are themselves displaced in portions of their own native 

ranges (Fausch 2008). This paradox may be explained and in fact expected by 

considering the evolutionary and zoogeographic history of the native and non-native 

species in the context of adaptations to the niche characteristics and natural disturbance 

regimes in certain portions of each others’ ranges (Korsu et al. 2007; Fausch 2008). In-

depth knowledge of the niche requirements of invasive and native species and the 

opportunities provided in environments that are invaded are therefore especially powerful 

for explaining patterns of invasion (Korsu et al. 2010). This is especially pertinent in the 

heterogeneous environments of headwater streams of inland western North America, 

which are naturally dynamic systems that are often altered further by human land use 

practices and climate change (Rahel et al. 2008).  

 

Brook trout invasion into bull trout streams of western North America 

 Bull trout (Salvelinus confluentus) are one of the most widely distributed native 

salmonid species to inland western North America (Figure 1-1). All bull trout require 

small (second to fourth order) cold streams with significant groundwater input to spawn 

in, as eggs must overwinter before hatching the following spring (McPhail and Baxter 

1996; Baxter and Hauer 2000). During the first several years of life, bull trout remain in 

small, cold nursery streams. Resident forms remain in these streams for their entire 

lifecycles, and if the stream does not have barriers (falls, cascades, dams, etc.), migratory 

life history forms are common. As bull trout reach subadulthood, migratory forms move 

downstream to larger mainstem rivers, lakes, or in coastal regions, estuarine 
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environments. This is usually accompanied by a trophic shift to piscivory where bull trout 

often become the apex predator in their ecosystem (McPhail and Baxter 1996). Resident 

forms may not undergo a trophic shift, and remain primarily non-piscivorous due to the 

limited productivity of their environments. At five to seven years (in the core regions of 

the range for most populations), bull trout reach sexual maturity and migratory forms 

return to their natal streams to spawn.  

 Bull trout have declined greatly throughout the southern and eastern margins of 

their range, with the greatest declines occurring for the migratory form (Fitch 1997; 

Rieman et al. 1997; Dunham et al. 2008). This decline is commonly attributed to four 

major causes (Dunham et al. 2008; Rodtka 2009; ASRD 2012). Firstly, early 

management practices failed to understand the population structure of the bull trout; in 

particular, small units or “demes” of this apex predator are made up of few spawning 

adults (Warnock et al. 2010). This lack of appropriate management, coupled with their 

ease of capture and disdain by the angling and management communities of the time 

resulted in widespread overharvesting of bull trout (Colpitts 1997; Post et al. 2003). 

Secondly, fragmentation due to in-stream infrastructure that impedes migratory passage, 

as well as loss of appropriate downstream habitat, has often led to the collapse of whole 

populations supported by migratory forms or a shift to a less migratory life history 

(Nelson et al. 2002). Thirdly, loss of suitable physical and thermal habitat in spawning 

and rearing areas of headwater streams due to land use practices (e.g., clear-cut logging, 

poorly designed road crossings etc.) has eliminated many appropriate spawning and 

nursery areas for bull trout (Rieman et al. 1997; Ripley et al. 2005). Finally, the 

introduction of non-native species has resulted in the decline of bull trout in many areas 
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of their range (Dunham et al. 2008). Of introduced species, the most commonly 

implicated non-native species in the decline of bull trout are the lake trout (Salvelinus 

namaycush) in lacustrine environments and the brook trout (Salvelinus fontinalis) in 

stream environments. 

Brook trout are a species native to eastern North America (Figure 1-1). Intentional 

introduction into western states and provinces throughout the late-nineteenth and 

twentieth centuries ensured a high amount of propagule pressure during initial stages of 

colonization, and has resulted in the successful naturalization of many populations 

through stream networks (Dunham et al. 2002). Many of these stream networks are, or 

once were, important habitat for bull trout, and the two species now overlap significantly 

throughout the bull trout native range (Figure 1-2). In the Canadian Rockies of Alberta, 

these habitats are often small streams that are characterized as spawning and nursery 

areas for bull trout (or full lifecycle habitat for resident forms). Brook trout invasion is 

widespread in the province, with naturalized populations in all six of the major 

watersheds draining the east slopes of the Canadian Rockies. The only salmonine species 

native to this entire region is the bull trout. Brook trout have been identified as a major 

concern to the sustainability and recovery of bull trout populations in Alberta (Rodtka 

2009; ASRD 2012).  

The outcome of brook trout invasion into bull trout streams appears to be variable, 

as brook trout displacement of bull trout appears to have mixed support from field studies 

examining their co-occurrence (Dunham et al. 2008). Brook trout are presumed to 

potentially exclude bull trout in some habitats by directly competing for limited space or 

resources, via a competitive pathway (Gunckel et al. 2002), and also by limiting 
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reproductive output through hybridization (Leary et al. 1993). For juvenile fish in 

particular, bull trout and brook trout may have similar food web roles in nursery streams 

(Appendix). This may extend to the adult life stage if bull trout are of the stream-resident 

life history (Chapter 4).  

Several studies have attempted to characterize the patterns of brook and bull trout 

occurrence in the field. Some similarly designed studies have not found a dramatic effect 

of brook trout presence on the presence of bull trout (Dunham and Rieman 1999; 

Dunham et al. 2003a; Wenger et al. 2011), whereas others have (Watson and Hillman 

1997; Rich et al. 2003). The mechanisms underlying this variable pattern of invasion has 

been examined further in several studies. When examining the abiotic features of the 

environment that may influence invasion, brook trout have preferentially colonized 

downstream areas of bull trout streams (Paul and Post 2001). This has led to Paul’s 

“elevation refuge hypothesis” of invasion (Paul 2000), in which the presence of native 

and non-native species along an elevation gradient is explained by thermal habitat niche 

segregation (Taniguchi and Nakano 2000). Experimental studies by McMahon et al. 

(2007) and Rodtka and Volpe (2007) attempted to test this hypothesis. Both studies 

confirmed that juvenile brook trout were superior competitors over size-matched bull 

trout in warm (15-16 °C) water; however, neither were able to demonstrate the reciprocal 

competitive advantage of bull trout in cold (8° C) water, casting considerable doubt on 

the elevation refuge hypothesis. Likewise, field observations only provide limited support 

for the hypothesis, and suggest the involvement of many additional local-scale factors 

(Rieman et al. 2006). Temperature has therefore failed as a simple panacea for brook 

trout invasion into bull trout streams, and further research into additional biotic and 
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abiotic factors that may act as filters to brook trout invasion is necessary (Rieman et al. 

2006; McMahon et al. 2007; Rodtka and Volpe 2007). 

Biotic and abiotic factors that may be important in determining the success of 

brook trout invasion into bull trout streams have been explored in few studies. 

Population-level differences in aggression and competitive traits have commonly been 

observed in salmonid fish (Rosenau and McPhail 1987; Dunbrack et al. 1996; Lahti et al. 

2001). It may be reasonable to suspect that this population-level variation influences the 

success of brook trout over distinct populations of bull trout. Population-level differences 

in competitive traits are most likely to be seen in populations exhibiting different 

migratory life histories (Lahti et al. 2001; Lahti et al. 2002). Non-migratory salmonid 

forms often display slower growth rates and lower aggression, food intake levels and 

standard metabolic rates than migratory forms (Metcalfe 1998; Lahti et al. 2001; 

Morinville and Rasmussen 2003; 2006). Therefore, there may be variation among bull 

trout life history forms in behavioural traits that have a direct effect on competition with 

an invader, and this variation may have a physiological basis. Abiotic factors have also 

been proposed to influence brook trout invasion, namely habitat features. Rich et al. 

(2003) concluded, from a carefully designed field study using co-occurrence data, that 

bull trout had successfully resisted brook trout invasion in streams exhibiting a high 

amount of structural complexity and connectivity. In a similarly designed study, 

Benjamin et al. (2007) also found local-scale habitat factors important in predicting the 

establishment of brook trout into cutthroat trout (Oncorhynchus clarkii) streams. Based 

on field observations, Nakano et al. (1998) hypothesized that brook trout have a similar 

ecological niche to bull trout, and that brook trout exhibit competitive superiority over 
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bull trout through interference competition. Rodtka and Volpe (2007) further suggested 

that bull trout compete for resources with brook trout through exploitation rather than 

interference, and that this may be beneficial in certain types of habitats that afford visual 

isolation amongst competitors. Earlier field observations from my own work (Warnock 

2008) also suggested that brook trout and bull trout generally inhabited streams with 

different physical habitat structure. In particular, bull trout appeared to prefer streams 

with a high amount of in-stream complexity in the form of substrate cover (Warnock 

2008), whereas brook trout were most common in small streams with undercut banks, 

and limited substrate cover (Krimmer et al. 2011). Differences in the physical habitat 

niche may explain why brook trout have not always successfully invaded bull trout 

habitat. This stimulated an observational field study, which tests whether physical habitat 

features can be associated with brook trout invasion into bull trout streams (Chapter 2). 

To complement this, an experimental study of competition between the two species was 

conducted to investigate differences in foraging behaviour between the two species and 

biotic and abiotic conditions under which either species gains a competitive advantage 

(Chapters 3, 4).  

 

Objectives and organization of thesis 

 Study design in the biological sciences can be classified as either observational or 

experimental. In observational research, treatments of an independent variable are 

naturally occurring, whereas in experimental studies, those treatments are randomly 

assigned by the researcher (Whitlock and Schluter 2009). Observational studies are 
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associative in nature, and outline potential correlations between an independent 

variable(s) and a dependent variable(s). In ecology, these studies are usually conducted in 

the field, and are useful for generating hypotheses about the cause-and-effect relationship 

between variables in the natural world. While observational field studies therefore never 

definitively prove associations, and are often significantly confounded by natural 

variation and “extraneous” variables, they are carried out within a realistic context.  On 

the other hand, experimental studies directly test the cause-and-effect relationships 

between variables by controlling for confounding factors; however, the often limited and 

simplistic context provided by the laboratory environment or field enclosures, may limit 

ecological relevance of their findings (Fausch 1988). Given the advantages and 

shortcomings of both experimental and observational science, it is apparent that both 

approaches can be highly complementary when combined under one overarching project 

(Blanchet et al. 2007; Korsu et al. 2010). 

This project is designed to use the advantages of both observational and 

experimental science to examine brook trout invasion into bull trout streams. Based on 

the literature described above, several abiotic and biotic factors were identified that may 

influence brook trout invasion into bull trout streams. These were included as 

independent variables that were hypothesized to be associated with brook trout 

invasiveness in an observational field study. An experimental laboratory study was also 

designed to test some of those variables when brook trout and bull trout were subjected to 

competition with one another. By combining both approaches, this project makes both 

ecologically relevant observations of the variables that may be associated with brook 
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trout invasiveness, and provides some experimental evidence as to whether these 

variables have an underlying cause-and-effect basis. 

The remainder of this thesis is organized into three analytical chapters, a synthesis 

chapter and an appendix. Chapter 2 presents the field portion of the study, in which the 

relationships between brook trout invasiveness in streams throughout the Canadian 

Rockies is correlated with a variety of abiotic and biotic features of the environment. 

Chapter 3 is a laboratory test of competition, and describes the foraging mode of the two 

species, as well as how habitat and fish density may influence competition between the 

two species. Chapter 4 is an extension of the laboratory test, and specifically tests 

whether bull trout collected from a migratory population compete differently against 

brook trout than those from a non-migratory population. The final chapter synthesizes the 

information of the three analytical chapters and provides some conservation 

recommendations based on the observations. 

The appendix is divided into two major written sections, but neither is essential 

for understanding the remainder of the thesis. The first section provides a background and 

rationale for some of the analytical design chosen for this dissertation. The second section 

is an additional study that describes some basic biology of juvenile bull trout in the 

Canadian Rockies. This study provides some important supplemental data that furthers 

our understanding of juvenile bull trout life history and food web roles in southern 

Alberta, compared to other areas throughout the bull trout native range. 
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Figures 

 

Figure 1-1: Historic native ranges of the bull trout and brook trout in North America. 

Question marks represent undetermined portions of the bull trout range in its northern 

periphery (Mochnacz et al. In Press; B. Shonewille, EDI Environmental Dynamics; M. 

Connor, Taku River Tlingit First Nation; Lars Jessup, Environment Yukon; Joe De Gisi, 

British Columbia Fish & Wildlife; Nick de Graff, Can-nic-a-nick Environmental 

Services, personal communication). 
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Figure 1-2: Historic range of bull trout into which brook trout have become naturalized. 
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Chapter 2 Abiotic and biotic factors associated with brook trout invasiveness into 

bull trout streams of the Canadian Rockies 

 

Abstract 

 Invasion of brook trout into streams formerly or currently occupied by native 

salmonid fishes is variable and often associated with a suite of local-scale abiotic and 

biotic variables. In this study, 80 sites from 51 streams were sampled. These streams had 

confirmed brook trout invasions, and were identified as current or historical nursery 

habitat for native bull trout in the Canadian Rockies. Sites were classified as having high 

brook trout invasiveness (>60% of the community relative to remnant bull trout) or low 

invasiveness (<40%). Most sites tended to be overwhelmingly or completely dominated 

(95-100%) by one species or the other. An information-theoretic approach was used to 

determine the association between brook trout invasiveness and a suite of measured 

abiotic and biotic features of the site, based on a set of candidate logistic regression 

models. High brook trout invasiveness was positively associated with stream temperature 

and undercut bank habitat, but negatively associated with large in-stream substrate 

(cobbles and boulders). High brook trout invasiveness was also negatively associated 

with co-occurring rainbow trout or brown trout, two alternate non-native species. Brook 

trout appear to dominate the community over native bull trout where thermal or habitat 

niche opportunities are provided for them, although other non-native species may restrict 

their invasion success into bull trout streams. 
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Introduction 

Invasion success for individual species appear to be spatially variable and difficult 

to predict (Moyle and Light 1996b; Alpert et al. 2000). In many situations, species 

invasions result in complete dominance of the invasive species over ecologically similar 

native species; however, invasions can also be unsuccessful or result in coexistence with 

native species. This variation in invasion outcome is particularly apparent in spatially 

heterogeneous environments (Melbourne et al. 2007). Such environments provide a 

variety of abiotic and biotic conditions that may impart niche opportunities to non-native 

species (Shea and Chesson 2002). Although it may seem like a paradox, locally adapted 

native species are often replaced or displaced by non-native species that happen to be pre-

adapted by chance to local conditions of the introduced environment (Sax and Brown 

2000). This may be understood by an in-depth knowledge of the niche requirements of 

both the native species and the invader, and the abiotic and biotic environment of invaded 

habitats (Moyle and Light 1996a; Fausch 2008; Korsu et al. 2010).  

Headwater streams in mountainous regions are highly heterogeneous in abiotic 

conditions, due to spatial variability in geomorphology, landscape cover and climate. 

There is increasing evidence that invasion patterns of salmonid fish in these areas are 

shaped by local conditions that favor the foraging strategy, life history or habitat and 

resource preferences of invading species (Olden et al. 2006; Fausch 2008).  Some 

examples of abiotic conditions that may drive distributions of invading salmonids include 

temperature (Dunham et al. 2002; Rieman et al. 2006), hydrological regime (Fausch et al. 

2001), habitat (Korsu et al. 2007) and presence of migratory barriers (Rahel 2007).  
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Biotic conditions, for example, competitors or predators (Baltz and Moyle 1993; 

Harvey et al. 2004), ecosystem productivity (Westley and Fleming 2011) and food web 

structure and dynamics ("resources", Shea and Chesson 2002), are also variable in 

mountain stream ecosystems, and may influence invasion success.  In fact, the success of 

an invader may depend on which other invaders are present, since worldwide local 

salmonid fish community diversities have been rapidly augmented through introductions 

of non-native species (MacCrimmon and Campbell 1969; Vooren 1972; Fausch et al. 

2001; McDowall 2003; Soto et al. 2006). 

Brook trout (Salvelinus fontinalis) are a salmonid species native to coldwater 

ecosystems of eastern North America, but have been widely introduced to mountainous 

regions of western North America (Figure 1-2).  Of the native species affected by brook 

trout establishment, most of the fourteen sub-species of cutthroat trout (Oncorhynchus 

clarkii) and bull trout (Salvelinus confluentus) are commonly implicated and studied 

(Dunham et al. 2002; Rieman et al. 2006; Fausch 2008). The Canadian Rockies represent 

the largest portion of the non-native range of  brook trout in Canada, and include every 

major watershed draining from the east slopes in Alberta (Figure 1-2).  

Cutthroat and rainbow trout (Oncorhynchus mykiss) are native to restricted ranges 

in Alberta, and the bull trout is native to all major watersheds, often being the only native 

species present in headwater streams. Bull trout have declined greatly throughout their 

range in Alberta, and this has been attributed to angling-related mortality, land-use 

practices that have fragmented or altered stream habitat and through competition with 

introduced species (Rodtka 2009; ASRD 2012). Although many bull trout are large 

bodied migrants that inhabit large rivers, the species obligatory spawns and rears as 
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juveniles in headwater streams that are typical habitats of invading brook trout (McPhail 

and Baxter 1996; Rich et al. 2003). Rearing in nursery streams is a critical period for bull 

trout in the first 1-3 years of their lifecycle (Downs et al. 2006). At the juvenile life stage, 

migratory bull trout populations therefore often overlap in resource and habitat use with 

brook trout (Appendix). In addition to this, resident forms of bull trout are common 

throughout their range, and are the predominant life history in many naturally or 

artificially fragmented watersheds (Fitch 1997; Nelson et al. 2002; Mogen and Kaeding 

2005). These forms do not migrate from headwater streams and remain non-piscivorous 

as adults (McPhail and Baxter 1996), and therefore may overlap in resource and habitat 

use with invading brook trout throughout their life-cycle. The outcome of brook trout 

invasions into bull trout streams is highly variable, ranging from unsuccessful to 

complete replacement of native bull trout; mixed communities are often numerically 

dominated by one species or the other.  

Observational field studies on bull trout and brook trout occurrence have 

generally found that bull trout occur in higher elevation reaches of streams, while brook 

trout are found in lower elevation, warmer reaches (Rieman et al. 2006). This pattern 

occurrs regardless of their original stocking location (Paul and Post 2001). This 

association has led to an “elevation refuge hypothesis,” (Paul 2000) explaining trends of 

native and non-native species occurrence along elevational gradients due to competitive 

superiority of either species in their preferred thermal niches (Taniguchi and Nakano 

2000; Paul and Post 2001; McMahon et al. 2007). This hypothesis has mixed support in 

the field, as brook trout occurrence and displacement of bull trout appears to be highly 

context dependent and only weakly predicted (if at all) by such a model (Rich et al. 2003; 
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Rieman et al. 2006; Wenger et al. 2011). Laboratory studies likewise find incomplete 

support for this hypothesis. Brook trout are indeed superior competitors over bull trout at 

warm water temperatures; however, the reciprocal competitive advantage for bull trout at 

cold temperatures, required by the model, has not been demonstrated experimentally 

(McMahon et al. 2007; Rodtka and Volpe 2007).  

While temperature is no doubt an important abiotic condition in determining 

brook trout invasion outcome, local-scale habitat conditions have been repeatedly 

discussed as important variables (Rich et al. 2003; Shepard 2004; Benjamin et al. 2007; 

McMahon et al. 2007; Rodtka and Volpe 2007). In particular, physical habitat structure 

has been discussed as important correlates of invasion success, with brook trout 

preferentially invading smaller streams and streams of low structural complexity in 

unconstrained valley bottoms (Rich et al. 2003; Benjamin et al. 2007; Wenger et al. 

2011). At the local scale, these habitats are usually typified by narrow channels, slow 

moving meanders with deep pools, small substrate and high bank cover. Such habitats 

may provide niche opportunities that may favor brook trout over native species. Indeed, 

in laboratory experiments, brook trout foraging success relative to bull trout increases as 

habitats become slower, deeper and less structurally complex (Chapter 3). This may 

reflect the different foraging strategy and habitat-use of the two species when under 

direct competition in headwater streams (Chapter 3; Nakano et al. 1998; Rodtka and 

Volpe 2007). 

 Biotic conditions have occasionally been considered in explaining the patterns of 

brook trout invasion in field studies (Benjamin et al 2007; Peterson et al. 2004). As the 

fish community in Rocky Mountain streams has increased in diversity with the 
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introduction of several non-native salmonids, it is reasonable to suspect that competing 

invaders restrict each others’ invasion success. Although biotic resistance of native 

rainbow trout to brook trout invasion may be weak in some streams (Benjamin et al. 

2007), it is possible that in introduced ranges, they and other commonly introduced 

species such as brown trout (Salmo trutta), act as a “biotic barrier” to brook trout 

invasion. Neither of these alternate non-native species is commonly implicated in 

competitively excluding bull trout (Donald and Stelfox 1997; ASRD 2012), but both are 

commonly implicated to interact competitively with brook trout where they co-occur 

(Dunham et al. 2002; Korsu et al. 2007; Fausch 2008). 

 In this study, the relationship between brook trout invasiveness and a suite of 

local-scale abiotic and biotic conditions was examined in bull trout streams of the 

Canadian Rockies. Specifically, temperature, local-scale physical habitat metrics and 

presence of alternate non-native species (rainbow and brown trout) were measured on-

site, given the evidence from previous studies for these as potential factors influencing 

brook trout invasion. I predict that several of these abiotic and biotic conditions may 

provide niche opportunities to brook trout, and will thus be associated with their 

invasiveness. 

 

Methods 

Study area and site selection 

Sites were chosen on streams that had current or historical evidence of juvenile or 

sub-adult bull trout and brook trout occurrence. In essence, only streams that are, or once 
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were, important spawning and/or rearing streams for bull trout that had confirmed brook 

trout invasions were chosen. Candidate streams were selected based on previous 

sampling, interviews with local fisheries biologists, consulting literature and provincial 

fisheries inventory databases (G. Sterling, Alberta Sustainable Resources Development 

[ASRD]; D. Wig, ASRD; J. Stelfox, ASRD; J. Earle, ASRD; S. Herman, ASRD; M. 

Rodtka, Alberta Conservation Association [ACA]; K. Fitzsimmons, ACA, personal 

communication; ASRD 2009; Fitch 1997; Paul 2000) Confirmed brook trout invasions 

were not recent events. Brook trout were introduced primarily to flowing waters of 

Alberta in the first half of the 20th century, with rapidly declining efforts in the second 

half. Although brook trout continue to be stocked in Alberta, the government policy since 

the late 20th century has limited their stocking to waterbodies with limited chance for 

escape into flowing waters containing native fish (ASRD 2012). The Crowsnest River 

drainage was avoided, where bull trout extirpation due to industrial development and 

angling pressure pre-dated brook trout establishment, and natural-re-establishment of bull 

trout is impossible due to a major in-stream migratory barrier (Fitch 1997). I also avoided 

several streams that were significantly altered or impacted by industrial use, including 

watersheds draining current and historic coal mine sites, and streams of the Kananaskis 

River Drainage and upper Bow River drainage, which have a long history of industrial 

and urban development. Multiple sites on the same stream were selected where access 

allowed, but were separated by at least three linear stream kilometers to reduce the 

chance of spatial autocorrelation among sites. To avoid over-representing specific 

streams in the dataset, each stream was represented by a maximum of three sites. Sites on 

all streams were composed of simple fish communities, being dominated by bull trout, 
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brook trout, cutthroat trout, rainbow trout or brown trout. Occasionally, lower elevation 

reaches of streams contained whitefish (Prosopium williamsoni), suckers (Catostomus 

spp.), sculpins (Cottus spp.), burbot (Lota lota) and/or longnose dace (Rhinichthys 

cataractae).  

One hundred twenty-four sites were sampled from 61 streams that drain the East 

slopes of the Canadian Rockies in Alberta, Canada (Figure 2-1) in the summers of 2009, 

2010 and 2011 (Table A-5). A diversity of streams was selected to represent the range of 

stream habitats that face brook trout invasion found throughout the east slopes of the 

Canadian Rockies.  Streams were generally of second, third or small fourth order where 

they were sampled, as these are preferred spawning and rearing habitat for bull trout 

(Baxter and Hauer 2000). Sites spanned a large range in latitude, from Blakiston Creek in 

Waterton Lakes National Park (49°04’N 113°52’W) in the south to Wampus Creek near 

Hinton (53°09’N 117°15’W) in the North, and ranged in elevation from 1137 m to 1970 

m. Sites were all sampled in late summer or early fall (July-Oct) in order to represent 

habitat conditions in base flow, and where electrofishing efficiency is highest.  

 

Brook trout invasiveness 

Fish were enumerated by single-pass backpack electrofishing the full length of the 

sites where habitat data was collected (see subsequent section for a description of 

sampling length). Relative abundance estimates were the basis of invasiveness, and were 

made by the observed percent of brook trout in the site, relative to bull trout. These 

estimates were used to classify a site into one of two categories of brook trout presence, 
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“high” invasiveness (> 60% of brook/bull trout community) or “low” invasiveness (< 

40% of community). These two categories were used because most invaded streams were 

dominated by one species or the other (i.e., approach 100% or 0%), and logistic 

regression may effectively describe the relationship with measured biotic and abiotic 

features of the environment. Only fish 75-400 mm were included in the counts. The lower 

boundary of this size range was chosen in order to reduce bias caused by inefficiency of 

backpack electrofishing to sample small-bodied young of year fish, which do not 

typically exceed 75 mm by midsummer in the study area or other areas in the bull trout 

range (Appendix; McPhail and Baxter 1996). The upper boundary of this size range was 

an estimate of typical minimum length that may indicate migratory adult bull trout 

returning to spawn for fluvial and adfluvial bull trout populations (McPhail and Baxter 

1996; Rodtka 2009). These fish were not included in the count because their seasonal 

presence in a community estimate would be biased by the date in which the site was 

sampled.  

In some streams, concurrent fisheries projects were being carried out by a variety 

of agencies in the years the study was conducted. To avoid excessive electrofishing in 

these streams, efforts were conducted by only one agency and data were shared. Where 

possible, sites were repeat sampled in multiple years or additional electrofishing data 

were obtained from a government fisheries inventory database of sampling efforts within 

the last five years (ASRD 2009). Multiple year data were available for many sites, and 

for these, relative abundance estimates were averaged among years. Where only one year 

of data was available, sites were only included if there was a confident detection of the 

combined total of either of the two species (≥ 8 75-400 mm bull and/or brook trout per 
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300 m). This threshold was obtained from a previous study that calculated the maximum 

number individuals that could go undetected in a single-pass effort according to 95% 

confidence levels (Paul and Post 2001). The authors calculated this threshold from 

capture probabilities based on 34 multiple-pass depletion removal studies, many of which 

were conducted on streams that overlapped with this study area (A. Paul, ASRD, personal 

communication).  

Hybrids between bull trout and brook trout occur in some of the streams sampled, 

and each hybrid encountered was coded as a half count for each species. Hybrids were 

identified based on the presence of pale spotting that extended at least past 50% of the 

height of the dorsal fin (DeHaan et al. 2010), and at least one other of the following 

intermediate traits: distinct vermiculations on the dorsal side of the fish; bright lateral 

side spotting with pale haloes; white and pale black anterior borders of ventral fins; 

intermediate head shape. In-hand identification of hybrids has shown to be highly 

accurate by experts (Rieman et al. 2006; DeHaan et al. 2010; Popowich et al. 2011). An 

example photo of a hybrid fish can be seen in Figure 2-2. 

 

Abiotic and biotic variables measured 

At each site, measurements were taken to quantify abiotic and biotic variables 

considered to be potentially important in describing brook trout invasion into bull trout 

streams. The British Columbia Fish Habitat Assessment Procedure was used as a basis 

for measurement of several abiotic features related to habitat (Johnston and Slaney 1996). 

Sampling length at each site was a critical consideration of sampling design, and aimed to 
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achieve an efficient criteria that would not be biased to under or over-represent different 

major habitat units. Rather than conforming to an arbitrary constant sampling length for 

each site, sampled reaches were minimally 15 times the wetted width of the stream. In 

addition to this, stream habitat is recognized as heterogeneous and can be classified 

coarsely by swift water and slow water major habitat units (Hawkins et al. 1993). Swift 

water units were characterized by turbulent, broken water surface (riffle) or swift, non-

turbulent areas (run/sheet).  Slow-water environments (pools) were recognized by a 

distinct slowing and deepening of the water. In order to properly represent all available 

habitat types, sampling was stratified to represent an equal number of these major habitat 

units, and included at least two of each in every site (Rieman et al. 2006). As a result, 

sites were 180 m +/- 75 in length, an average of 34 times the wetted width.  

Swift water and slow water units were only counted if they were least as long as, 

and occurred over the majority of the wetted width of the channel. The length of each of 

these major habitat units was measured, and the percent of the slow water habitat along 

the entire sampled length was calculated for each site (POOL). This variable was 

selected, as more vigorous competitive traits of brook trout in low velocity, simple pool 

environments were observed (Chapter 3), but also because previous studies have found 

brook trout invasion success to be positively associated with the amount of pool habitat 

(Rich et al. 2003; Shepard 2004). In addition, slow-velocity environments are considered 

important habitat for juvenile bull trout based on field studies (Al-Chokhachy et al. 

2010). Available pool habitat was therefore considered as a potentially important local 

habitat feature in this species interaction. 
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The width of the stream was measured at ten randomly selected transects at each 

site and was used to find the mean wetted width (WIDTH) of the stream. This variable 

might be associated with brook trout invasion, as previous studies have reported greater 

invasion success in smaller streams (Rich et al. 2003), and bull trout positive association 

with wider streams (Dunham and Rieman 1999; Ripley et al. 2005).  

Undercut bank (UCB) was an abiotic variable considered to be important, as it 

represents a cover type that is common in Rocky Mountain streams that are invaded by 

brook trout (Kozel et al. 1989; Krimmer et al. 2011). This variable was measured 

according to the % of the total length of the site that was lined by UCB on either bank 

(possible range of 0-200%). Banks were considered undercut if the bank was cut by > 5 

cm.  

A modified Wentworth scale was used to classify substrate types, including 

sand/fines (< 2 mm), gravel (2-15 mm), pebble (16-63 mm), cobble (64-255 mm) and 

boulder (> 256 mm) classifications. Counts also included bedrock, as this is a commonly 

encountered substrate type found in Rocky Mountain streams. Ten substrate observations 

were made by randomly throwing a 1 m long, 10 mm diameter steel bar with 10 cm 

markings into the wetted portion of the channel and reading the substrate type that lay 

below each marking. Ten of these throws were taken randomly throughout the site, for a 

total of 100 substrate observations per site. This was used to calculate the percent of the 

stream bottom that was covered by large (cobble and boulder) substrate (LGSUB). 

LGSUB was considered a biologically relevant surrogate for complexity of in-stream 

substrate cover, as large substrate may afford cover habitat for juvenile bull trout (Al-

Chokhachy et al. 2010). In-stream substrate complexity appears to affect competition 
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between these two species, particularly conferring a competitive advantage for bull trout 

(Chapter 3). In addition, structural complexity in the form of in-stream cover has been 

associated with bull trout resistance to brook trout invasion in the field (Rich et al. 2003). 

Fine substrate has been associated with brook trout invasion (Shepard 2004). 

Temperature is an abiotic variable that has repeatedly been associated with brook 

trout invasion success (Paul and Post 2001; Dunham et al. 2002; Rieman et al. 2006; 

McMahon et al. 2007). Mean august temperature (TEMP) was measured directly at each 

site in the year it was sampled (with the exception of five sites that were previously 

monitored in 2006) by in-stream data loggers (Onset™) that continuously recorded 

hourly temperatures. Loggers were placed in white impact-resistant PVC housings 

attached to a t-post and installed 15-30 cm deep (base flow) in shallow, swift water 

habitat directly above the stream bottom. Installation areas were chosen where maximum 

shading was available, most often flush against banks with overhanging riparian 

vegetation. Where possible, the t-post was driven in behind in-stream obstacles (e.g., 

boulders) in the hope that such features would deflect debris during high flow events. 

Due to theft and vandalism problems early in the study, no flagging tape or markers were 

used; loggers were subsequently retrieved with GPS marked waypoints and a written 

description of the installation site. While mean summer temperature (June, July and 

August) was recorded at most sites, only mean August temperatures were available at 

others due to spring access and installation issues. To account for inter-annual 

temperature variation throughout the course of the study, a sub-set of representative sites 

that were monitored in 2010 also had data taken in 2009 (4) and 2011 (9). This repeat 
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sampling data was used to develop regression equations that standardized temperatures 

for all sites sampled in 2009 and 2011 to the temperature that would be expected in 2010.   

In order to assess whether multicollinearity would present problems in subsequent 

model selection, individual pairwise regressions were performed for each possible 

variable combination. Variables were considered highly correlated if they displayed a 

Pearson correlation coefficient (R) of > 0.7 (Ripley et al. 2005).  

Although brook trout have been widely introduced into Rocky Mountain streams 

in Alberta, several other salmonid species have also been introduced extensively, most 

commonly including rainbow trout (outside of Athabasca river drainage) and brown trout. 

Although neither of these species is commonly implicated in the decline of bull trout, 

they may have substantial niche overlap with introduced brook trout and be negatively 

associated with them (Kozel and Hubert 1989). Based on electrofishing data, I recorded 

whether one of these two alternate non-native species was present (NONNAT), and used 

this as a biotic variable in explaining invasion of brook trout. 

 

Model construction and analysis 

An information-theoretic approach was used to model brook trout invasiveness as 

a function of the measured abiotic and biotic variables (Burnham and Anderson 2002). 

Rather than using traditional hypothesis tests or searching for the “best” model, this 

method uses a weight-of-evidence approach to rank competing models according to a 

principle of parsimony, as well as estimate the relationship between independent and 

dependent variables (Appendix). The information theoretic approach has emerged over 
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the last decade as the de facto process of relating salmonid species occurrence and 

abundance estimates to a suite of explanatory variables based on a number of potential 

models (Harig and Fausch 2002; Rich et al. 2003; Ripley et al. 2005; Rieman et al. 2006; 

Benjamin et al. 2007; Wenger et al. 2011).  

A global logistic regression model was first fitted to predict brook trout 

invasiveness, including every variable in the model (Equation A-2). Logistic regression 

was chosen as the appropriate statistical model because relative abundance estimates 

were bounded by 100% and 0%, with most sites tending to approach these bounded 

values (Figure A-4). The dependent variable was therefore best described as a categorical 

binary variable (Appendix). The fit of this model was assessed by standard Pearson chi-

square and Hosmer-Lemeshow statistics (Hosmer and Lemeshow 2000). The residuals of 

the global model were then tested for spatial autocorrelation based on Euclidean distances 

among sample sites in ArcGIS™ 9.3.1. Every possible logistic regression model given 

the various combinations of available variables were then analyzed and ranked according 

to Akaike’s information criterion with small sample size adjustment (AICc; Equation A-

9). AICc was used rather than unadjusted AIC, as this value is recommended only when 

the number of observations is at least 40 times the number of explanatory variables 

(Burnham and Anderson 2002). The model with the lowest AICc value was considered 

the model with the highest support. Akaike weights were calculated for each of the ten 

most likely models based on their AICc departure (Δ-AICc) from the model with the 

highest support (Equations A-10, A-11). Weights were used to assess the relative 

plausibility of models, as well as to calculate multi-model weighted estimates of 
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parameters and their associated uncertainties (Equations A-12, A-13) (Burnham and 

Anderson 2002).  

Parameter estimates were derived for each variable by averaging weighted 

estimates from the models that had weights within 1/8 (12.5%) of the model with the 

highest support (Royall 1997). Associated unconditional standard errors for each 

parameter were likewise derived from the same top-ranked models (Burnham and 

Anderson 2002). Parameter estimates and associated unconditional standard errors were 

then used to calculate scaled odds ratios (OR) and associated 95% confidence intervals 

(CI). These values provide an interpretable estimate of the magnitude, direction and 

significance of each variable in explaining brook trout relative abundance. An OR = 1 

indicates no association between an independent variable and brook trout invasiveness; 

OR < 1 indicates negative association and OR > 1, a positive association. The magnitude 

of departure from 1.00 indicates the degree of change in likelihood (or unlikelihood for 

values < 1) of a site having high brook trout invasiveness for a unit change in the 

independent variable.  To increase biological relevance of associations between 

continuous variables and brook trout invasiveness, parameter estimates (Bi) were 

multiplied by a meaningful constant C to calculate a meaningful odds ratio (Hosmer and 

Lemeshow 2000) (Equation A-4). For example, TEMP was not multiplied by a constant 

because a change in 1 °C was considered biologically meaningful according to the range 

of temperatures encountered (4.4-15.3 °C). In contrast, a 1% increase in LGSUB was not 

considered biologically meaningful over the range of values encountered (0-86%) and 

was thus scaled up by a factor of 10. 95% confidence intervals were calculated to 

determine whether variables were significantly associated with brook trout invasiveness. 
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These were calculated (conforming to a z-distribution) for each independent variable 

based on model-averaged parameter estimates and unconditional standard error (SEi) 

where C is the biological relevant scaling factor for continuous variables (Hosmer and 

Lemeshow 2000; Rich et al. 2003) (Equation A-5). 

 

Results 

Brook trout invasiveness 

Of the 124 sites sampled in 61 streams, only 80 sites in 51 streams were 

appropriate for further analysis (Figure 2-1; Table A-5). Sites were not appropriate for 

analysis either because less than the established threshold of 8 fish were caught (25 sites; 

most often for these, no fish were caught), or thermographs were lost (14 sites). Five sites 

were also discarded because the fish community was not dominated by either species 

(relative abundance of 40-60%), and thus could not be confidently classified for the 

logistic regression. Coexistence of the two species was less common than complete 

dominance over the community, as 53 of the 80 sites were overwhelmingly (>95%) 

composed of a single species (Figure A-4). Brook trout invasiveness was high in 45 and 

low in 35 of the 80 sites. Hybridization was rare throughout the province, as hybrids were 

only caught in four of the 80 sites sampled. 

Categories of brook trout invasiveness (high/low) were considered sufficiently 

precise, as 41 repeat sampling events conducted within 5 years never resulted in a 

misclassification between these categories at any site. Based on these repeat sampling 
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events, there was only an average of a 5% difference (± 9%) in relative abundance among 

sampling events in 34 sites for which data were available.  

 

Abiotic and Biotic variables 

 Mean August water temperatures varied substantially among sites, and the median 

temperature of brook trout dominated sites was 1 °C higher than sites where brook trout 

invasiveness was low (Table 2-1). Variability due to instrument differences and logger 

placement according to the protocol was found to be low, as two instruments placed in 

similar locations in one site only differed on average by 0.08 °C. 

Water temperatures were warmer in 2009 (0.4 °C) and 2011 (0.5 °C) than in 

2010. 2009 and 2011 stream temperatures were therefore corrected to the expected 

temperature in 2010 based on their corresponding regression equations from data at the 

representative sites. To increase confidence in the validity of these correction equations, 

the corresponding interannual trends in air temperature were independently considered 

from nearby locations. This analysis was conducted by examining mean August 

temperatures (2009, 2010 and 2011) at 20 meteorological stations with a similar spatial 

and elevational distribution to sites found throughout the study area (ARD 2012). Like 

stream temperature, mean air temperatures were warmer in 2009 (1.2°C; paired t-test: t19 

= 12.1; P < 0.001) and 2011 (1.8°C; paired t-test: t19 = 9.6; P < 0.001) than in 2010.  

Although most sites had temperature measured in 2009-2011, temperatures at five 

sites were measured in 2006. I did not sufficiently repeat sample to derive a regression 

equation for correcting the 2006 year; however air temperature from meteorological 
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station data revealed that 2006 and 2009 had similar mean August temperatures (Mean 

difference = 0.1 °C ± 0.3; paired t-test: t11 = 0.37; P = 0.72). The 2009-2010 correction 

equation was therefore applied to the five sites sampled in 2006.  

Median values of all remaining abiotic variables differed substantially between 

high and low brook trout invasiveness, with the exception of POOL (Table 2-1). UCB 

values for each site were log-transformed after adding one percent to each value. This 

was the appropriate transformation to apply to improve model fit for the logistic 

regression, and appropriately screen for multicollinearity of independent variables. None 

of the abiotic variables were highly correlated with each other (R < 0.6; Table 2-2) 

 For the biotic variable measured, alternate non-native species were present in 18 

of the 80 sites. Of these 18 sites, 6 had high brook trout invasiveness. Alternate non-

native species encountered were brown trout (7 sites), and rainbow trout (12 sites).  

 

Model results 

A global model was built with the six independent variables considered 

biologically relevant to brook trout invasion. The global model fit the data well, 

according to both Pearson chi-square (χ2 = 56.6; df = 73; P = 0.92) and Hosmer-

Lemeshow goodness of fit statistics (χ2 = 1.3; df = 8; P = 0.99). Moran’s I index revealed 

a random spatial pattern of residuals in the global model (I = 0.02; P = 0.79), indicating a 

lack of a spatially dispersed or clustered pattern of autocorrelation. 
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A candidate set of the 10 most likely models was built, and ranked according to 

AICc values (Table 2-3) The model containing the five variables TEMP, WIDTH, UCB, 

LGSUB and NONNAT was the model with the highest support; however, four additional 

models, including the global model, had sufficiently high Akaike weights (within 1/8 of 

largest) that precluded them from being discounted as possible models. All variables 

appeared in at least two of the five possible models, and the parameter estimates and 

associated standard errors from these five models were averaged based on their Akaike 

weights.  TEMP, LGSUB and NONNAT appeared in all five models and thus were 

considered important variables with high support, according to the summed Akaike 

weights of the top four models in which they appeared (Table 2-4).  

The sign of the parameter estimates (Table 2-4) provides the direction of the 

association between the dependent and independent variables. Brook trout invasiveness 

was positively associated with TEMP and UCB and negatively associated with WIDTH, 

LGSUB, POOL and NONNAT.  

 Scaled odds ratios with 95% CIs were calculated from model-averaged parameter 

estimates to give some indication as to whether any of the variables were significantly 

associated with brook trout invasiveness, as well as the minimum magnitude of the 

association (Table 2-4). Highly significant variables did not have scaled odds-ratios of 1 

bounded by their 95% CIs. TEMP, UCB and LGSUB were abiotic variables that were 

significantly associated with brook trout invasiveness. WIDTH was moderately 

associated with brook trout invasiveness, but the relationship was not significant. POOL 

was not strongly or significantly associated with brook trout invasiveness. Based on the 

minimum departure of the scaled odds ratio, a 1 degree increase in temperature was 
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associated with at least a 65% increase (1.65/1) in predicted odds of finding a community 

dominated by brook trout. A 10% increase in large substrate was associated with at least 

a 19% decrease (1/0.84) in the predicted odds of finding high brook trout invasiveness. 

NONNAT was the only biotic variable measured, and was significantly and strongly 

related to brook trout invasiveness; a site was at least 2.3 times less likely (1/0.43) to be 

dominated by brook trout if an alternate non-native salmonid species was present. 

The interpretation of the odds ratio for UCB was more complicated because of its 

transformation. To interpret the odds ratio of this log transformed variable, the formulas 

described in Elswick et al. (1997) were used as follows: 

OR(𝑥 + 𝐶, 𝑥) =  𝑒𝐵𝑖 ln(𝑏) 

Equation 2-1 

where 𝑏 =  �𝑥+𝐶+1
𝑥+1

�, B is the parameter estimate for the transformed variable, C is a 

biologically relevant scaling factor, and x is a quantity of interest in the covariate. 95% 

CIs were also likewise calculated as: 

95% CI = 𝑒𝐵𝑖∗ln(𝑏)±1.96∗𝑆𝐸𝑖∗ln(𝑏)  

Equation 2-2 

According to this formula, there was at least a 2% higher likelihood of a site having high 

brook trout invasiveness, given a 10% increase (C) in UCB from the overall median 

value of 39% (x) (Table 2-4).  
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Discussion 

 Brook trout invasion into bull trout streams appeared to vary in relative success 

over the native species, and most invaded sites were either dominated by brook trout or 

remained dominated by bull trout. This variation of invasion outcome may have been 

responsible for the mixed results of studies examining the association between brook 

trout invasion and bull trout occurrence (Watson and Hillman 1997; Dunham and Rieman 

1999; Rich et al. 2003; Rieman et al. 2006; Wenger et al. 2011). The results suggest that 

brook trout invasion into bull trout streams is associated with local-scale abiotic and 

biotic features of invaded environments. This may reflect the niche opportunities that are 

provided to brook trout in spatially heterogeneous and changing mountain stream 

environments (Shea and Chesson 2002).  

 The results lend partial support to a temperature based hypothesis of brook trout 

invasiveness into bull trout streams. This corroborates previous observational studies in 

western North American streams that have found preferential invasion of brook trout into 

warmer, lower elevation reaches (Paul and Post 2001; Rieman et al. 2006). The positive 

association between temperature and brook trout occurrence has been experimentally 

linked to competitive superiority of brook trout over bull trout in warm (15-16 °C) water 

(McMahon et al. 2007; Rodtka and Volpe 2007), and may point to a thermal niche 

opportunity for the invasive species along an elevation gradient (Taniguchi and Nakano 

2000). This trend of invasion is also apparent in studies considering invasion into 

cutthroat trout streams (Dunham et al. 2002) and is likewise supported by experimental 

evidence (De Staso and Rahel 1994); nevertheless, an hypothesis solely based on 

temperature (or elevation as a surrogate for temperature) does not appear to be a panacea 
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for predicting brook trout invasion (Rieman et al. 2006). A reciprocal competitive 

advantage of bull trout over brook trout in cold (8 °C) water has not been demonstrated 

experimentally (McMahon et al. 2007; Rodtka and Volpe 2007), and there are many 

alternate abiotic and biotic features that appear to be associated with invasion in the field 

(Watson and Hillman 1997; Rich et al. 2003).  

 Metrics that quantified the type of structural habitat complexity and cover were 

significantly associated with brook trout invasiveness. Habitat complexity has been 

recognized as an abiotic feature that may confer resistance of bull trout to invasion by 

brook trout in Montana streams (Rich et al. 2003). The results of this study support this 

finding for in-stream complexity in the form of substrate cover, but not for complexity in 

the form of bank cover. Bull trout were associated with sites containing large in-stream 

substrate complexity, while brook trout were associated with sites containing undercut 

bank habitat. The preference for large substrate cover has long been recognized as a 

critical habitat feature for juvenile bull trout (reviewed in Al-Chokhachy et al. 2010), and 

undercut bank habitat has been recognized as an important feature for brook trout (Kozel 

et al. 1989; Krimmer et al. 2011).  Like temperature, this association may indicate pre-

adapted niche-segregation into preferred habitat types (Fausch 2008; Korsu et al. 2010), 

as bull trout and brook trout may have different competitive foraging strategies that are 

optimal in habitats with different amounts and types of cover (Chapter 3; Nakano et al. 

1998; Rodtka and Volpe 2007). Also like temperature, there is experimental evidence 

suggesting that bull trout foraging success relative to brook trout increases in habitats 

with in-stream substrate complexity (Chapter 3).  Thus, physical habitat structure appears 

to be an important feature in shaping invasion patterns of brook trout into bull trout 
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streams, and the mechanism may involve the relative success of the two species when 

competing for resources from their preferred habitat niches. A fruitful avenue for further 

study would be to examine the microhabitat or mesohabitat characteristics of cover 

occupied by either species on-site, in streams where they are co-dominant (Korsu et al. 

2010).  

Pool habitat was found to be a non-significant environmental feature associated 

with brook trout invasiveness. Although low-velocity habitats are important for juvenile 

bull trout (Al-Chokhachy et al. 2010), they are important habitat for brook trout as well 

(Chisholm et al. 1987; Kozel et al. 1989), and both species prefer pools when in sympatry 

(Dambacher et al. 1992). When brook trout are sympatric with brown trout or Atlantic 

salmon (Salmo salar), they tend to preferentially occupy slow water habitats (Gibson et 

al. 1993; Korsu et al. 2010). Given the preference for both brook trout and bull trout to 

occupy slow velocity habitats, it is of no surprise that pool habitat is not significantly 

associated with brook trout invasiveness.  

Invasive brook trout are usually found to occur in smaller tributary streams than 

native species (Rich et al. 2003; Korsu et al. 2007), and although this relationship was 

apparent, it was not significant. This discrepancy could have resulted from site selection 

criteria, as only streams that had confirmed bull trout juvenile (historical or current) 

presence were included in the analysis. Many smaller streams containing brook trout 

were present throughout the study range (ASRD 2009), but these were not included in the 

study design as there is no evidence that they were ever important bull trout habitat. 

While brook trout probably do have an ecological advantage in smaller streams (Rieman 

et al. 2006), many such streams are not typical habitat for bull trout (Dunham and 
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Rieman 1999). Brook trout invasion into smaller streams observed in previous studies 

may therefore be the result of filling of a habitat niche that is marginal or vacant for 

native bull trout (sensu Korsu et al. 2007). This may further affect patterns of invasion as 

small streams may act as propagules from which brook trout can colonize (Peterson et al. 

2004). 

A common research topic in invasion science is how biotic resistance from native 

species may influence invasion patterns (Moyle and Light 1996b); however, how 

multiple invasive species influence each others’ invasion success is less commonly 

addressed, and interactions among invasive species are often in fact positive (Simberloff 

and Von Holle 1999). Brook trout were found to be negatively associated with alternate 

non-native species that had become naturalized in bull trout streams. This is not 

surprising, given that brook trout are themselves often replaced or displaced by rainbow 

and brown trout in their own native range (Korsu et al. 2007; Fausch 2008). Brook trout 

are hypothesized to have a resource and habitat use niche that is intermediate to that of 

bull trout and other stream resident salmonid species such as cutthroat trout (Nakano et 

al. 1998). The results of this study indirectly support such an hypothesis, and imply that 

alternate non-native species may restrict the spread of brook trout into some bull trout 

streams. Rainbow trout and brown trout are not commonly associated with the decline of 

bull trout, but their presence in bull trout streams may act as a biotic barrier to brook trout 

dominance over the fish community (Benjamin et al. 2007). Assessing the positive and 

negative interactions among all introduced species and native species in shaping 

contemporary stream fish communities is a subject that I encourage further research into. 
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 It should be noted that invasion is a population-level process (Peterson et al. 

2004). When considering population demographics, source sink dynamics and movement 

patterns, there may be alternate influences on invasion patterns that could not be captured 

in this study. For instance, this study did not quantify side channel habitats or beaver 

ponds which may be an important source from which brook trout may colonize 

(Benjamin et al. 2007). More sophisticated modeling procedures that capture such 

processes at varying spatial scales may be able to better predict patterns of species’ 

invasiveness. Although this study provides features that are associated with relative 

success of brook trout over bull trout, they do not necessarily imply that brook trout are 

responsible for the displacement of bull trout in all areas where they were found to be 

dominant. Many of the streams in Alberta have continuing and historical impacts to bull 

trout populations in addition to negative interactions with non-native species. These may 

include impacts from land use practices and historical angling-related harvest. Landscape 

disturbance, fragmentation and climate change are all known to affect stream habitat, 

temperature, fish migratory routes and life history. In this sense, the spread of brook trout 

and their success in some streams may have been facilitated by a changing environment 

driven by such impacts. Brook trout may have simply replaced or been greatly aided in 

the competitive displacement of a declining bull trout population in many areas of 

Alberta. If this bull trout decline was due to degraded habitat features or overharvest, then 

brook trout may simply be passengers rather than the drivers of further bull trout decline 

in many of the sites where the native species formerly dominated (sensu MacDougall and 

Turkington 2005). Nevertheless, occupation of these sites by brook trout may be a biotic 

obstacle for recolonization of bull trout and hence inhibit their recovery.  
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Knowledge of the abiotic and biotic features that are associated with low brook 

trout invasion success may be used strategically to rehabilitate habitats that are designed 

to accommodate the niche requirements of the native species. For bull trout, cold water 

temperatures and maintenance of in-stream habitat complexity are critical. Some land use 

practices (forestry, grazing, road networks, etc.) embed large substrate with fine 

sediment, which may reduce the rearing areas preferred by juvenile bull trout (Al-

Chokhachy et al. 2010). The intricate mechanisms controlling the temperature of small 

mountain streams limits our understanding of how stream temperature might change 

given the effects of landscape disturbance and climate change (Moore et al. 2005; 

Arismendi et al. 2012). Further research into these topics are required to predict how 

potential changes in thermal habitat may drive fish distributions, and how to best restore 

or conserve habitat in watersheds to maintain the cold water temperatures required for 

bull trout. To be most effective, conservation efforts in highly invaded habitats should 

focus on a combination of both brook trout suppression and habitat restoration tailored to 

the requirements of bull trout (sensu Shepard et al. 2003). Knowledge of the niche 

opportunities for brook trout will also be useful to predict their further spread into bull 

trout ranges as disturbed habitats change further or novel range expansions occur for 

unforeseen reasons (Rahel 2007; Rahel et al. 2008).  

Generalist native species such as bull trout were incredibly successful at being the 

first colonizers of cold post-glacial streams of the Canadian Rockies. While they continue 

to dominate many of these streams, they are now superseded by introduced brook trout in 

specific environments where niche opportunities for the invasive species appear to be 

provided (Shea and Chesson 2002). Domination over fish communities may result from 
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pre-adaptation of invading species to specific combinations of the variable abiotic and 

biotic conditions present in mountain streams (Fausch 2008; Korsu et al. 2010). The 

conditions that provide niche opportunities to brook trout in the bull trout native range 

may include warmer waters, type of cover available and whether or not the stream is 

invaded by an alternate non-native species. Stream thermal regime, physical habitat 

structure and fish community all fluctuate and change naturally, but this is occurring at an 

accelerated pace due to shifts in climate and land use practices. Managers need to be 

particularly cognizant about how this may result in niche opportunities for non-native 

species in environments currently occupied by native species. Alternatively, managers 

may use this information for strategic conservation and habitat rehabilitation efforts 

directed towards the niche requirements of native species. 
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Tables 

 

Table 2-1: Median values and ranges of encountered for each continuous independent 

variable (mean August temperature [TEMP], stream wetted width [WIDTH], percent 

undercut bank [UCB], percent of large stream-bottom substrate [LGSUB], and percent 

pool [POOL]) for sites containing high (n = 45) and low (n = 35) brook trout relative 

abundance. 

 TEMP (°C) WIDTH (m) UCB (%) LGSUB (%) POOL (%) 
High brook 

trout 
9.1 (5.7-

14.2) 4.4 (1.6-9.3) 54.1 (0-
194.4) 38.3 (0-75.6) 48.4 (10.5-

95.4) 
Low brook 

trout 
8.1 (4.4-

15.3) 
6.2 (1.9-

11.9) 
21.9 (0-
141.7) 

55.6 (12.7-
86.1) 

43.2 (10.3-
71.2) 

 

 

Table 2-2: Correlation matrix (Pearson's R) of five abiotic independent variables (mean 

August temperature [TEMP], stream wetted width [WIDTH], percent undercut bank 

[UCB], percent of large stream-bottom substrate [LGSUB], and percent pool [POOL]) 

for inclusion into models predicting brook trout invasiveness. 

 TEMP WIDTH UCB LGSUB POOL 
TEMP -     

WIDTH 0.11 -    
UCB -0.22 -0.58 -   

LGSUB -0.17 0.31 -0.37 -  
POOL 0.12 -0.29 0.52 -0.45 - 
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Table 2-3: List of the 10 most likely candidate logistic regression models for predicting brook trout dominance in sites of bull trout 

streams, ranked from most plausible to least plausible according to AICc values. Models are named according to the independent 

variables used , where the global model includes all six variables (mean August temperature [TEMP], stream wetted width [WIDTH], 

percent undercut bank [UCB], percent of large stream-bottom substrate [LGSUB], percent pool [POOL] and presence of an alternate 

non-native salmonid species [NONNAT]). K refers to the number of parameters estimated in each model, which includes an intercept 

term. Δ-AIC is the difference between the model AICc value and that of the most plausible model, and is used to calculate Akaike 

weights for assessing the relative plausibility of each model.  

Model k  AICc Δ-AIC 
Akaike 
weight 

% of highest 
weight 

TEMP, WIDTH, UCB, LGSUB, NONNAT 6 58.38 0 0.34 100.0 
Global 7 59.06 0.68 0.24 71.2 

TEMP, UCB, LGSUB, NONNAT 5 59.69 1.31 0.18 51.9 
TEMP, UCB, LGSUB, POOL, NONNAT 6 60.08 1.7 0.15 42.7 

TEMP, WIDTH, LGSUB, NONNAT 5 62.49 4.11 0.04 12.8 
TEMP, WIDTH, UCB, NONNAT 5 64.48 6.1 0.02 4.7 

TEMP, WIDTH, LGSUB, POOL, NONNAT 6 64.71 6.33 0.01 4.2 
TEMP, UCB, NONNAT 4 65.6 7.22 0.01 2.7 

TEMP, UCB, POOL, NONNAT 5 67.15 8.77 <0.01 1.2 
TEMP, LGSUB, NONNAT 4 73.31 14.93 <0.01 0.1 
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Table 2-4: Logistic regression model-averaged parameter estimates with associated standard errors (Unconditional SE) and summed 

Akaike weights (Σ weight) for each of the six variables (mean August temperature [TEMP], stream wetted width [WIDTH], percent 

undercut bank [UCB], percent of large stream-bottom substrate [LGSUB], percent pool [POOL] and presence of an alternate non-

native salmonid species [NONNAT]) according to their appearance in the most plausible models. Odds ratios and 95% confidence 

intervals were calculated from the parameter estimates and associated standard errors, respectively, which were multiplied by a 

biologically relevant scaling factor for continuous variables.  

Parameter Σ weight Parameter 
estimate Unconditional SE Scaling 

factor Scaled odds-ratio Confidence interval for 
scaled odds-ratio 

Intercept 0.96 -10.147 4.65 
   TEMP 0.96 1.167 0.34 1 3.21 1.65-6.22 

WIDTH 0.63 -0.407 0.23 1 0.67 0.42-1.04 
UCB 0.91 1.353 0.64 10 1.35 1.02-1.79 

LGSUB 0.96 -0.070 0.03 10 0.50 0.29-0.84 
POOL 0.39 -0.045 0.04 10 0.64 0.32-1.27 

NONNAT 0.96 -2.032 0.61 N/A 0.13 0.04-0.43 
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Figures 

 

Figure 2-1: Map of sample locations (filled circles) for brook trout invaded bull trout 

streams of the Canadian Rockies. Several sites that were sampled (open circles) could not 

be included in the analysis because of temperature logger loss or lack of fish presence.
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Figure 2-2: Example of a bull trout X brook trout hybrid. Hybrids were identified based on the presence of pale spotting that extended 

at least past 50% of the height of the dorsal fin (DeHaan et al. 2010), and at least one other of the following intermediate traits: distinct 

vermiculations on the dorsal side of the fish; bright lateral side spots with pale haloes; white and pale black anterior borders of ventral 

fins; intermediate head shape. The fish in the example photograph displayed all of these traits.
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Chapter 3 Assessing the effects of fish density and habitat on interference 

competition between bull trout and brook trout in an artificial stream 

 

Abstract 

 Territorial, drift foraging salmonids interfere with their competitor for access to 

resources, but the success and intensity of this tactic may be dependent on the physical 

environment and number of competitors in close proximity. Within-species and between-

species competitions were observed with field-collected native bull trout and non-native 

brook trout in laboratory streams. In within-species competitions in simple pool habitats, 

brook trout foraging success was correlated with occupying the lead position in the 

stream, implying a territorial foraging tactic. In contrast, bull trout foraging success was 

not correlated with occupancy of the lead position, implying a scramble foraging tactic. 

In between-species competitions, four stream environments were constructed in which 

the number of competitors and habitat complexity were altered. Bull trout outcompeted 

brook trout for food in simple pool environments when the competition involved two 

competitors (head-to-head; density = 3 fish m-2). When competitor number was doubled 

in this habitat (density = 5.9 fish m-2), the two became equal competitors. At this higher 

density, bull trout again outcompeted brook trout for food when the habitat was changed 

to a complex riffle. Brook trout were more aggressive than bull trout throughout the 

experiment, and aggression of both species was lowest in head-to-head competitions and 

in complex riffle environments. The manner in which the scramble foraging tactic of bull 

trout may allow them to outcompete territorial brook trout in complex or low density 

environments where interference competition is less intense is discussed. 
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Introduction  

Competitive interactions between invaders and native fishes can be an important 

determinant of invasion success, and if invaders are to propagate and spread, it is often at 

the expense of native competitors.  It is therefore important to understand the 

mechanisms that influence both intra and interspecific interactions, if we are to 

understand why invasive species are in some situations successful and in others not. 

Laboratory experiments are a common venue for investigating competition between lotic 

salmonid fishes, allowing both biotic and abiotic conditions to be manipulated and 

controlled in order to gain insight into the mechanisms of interaction between individuals 

and species (Fausch 1988).  Abiotic features tested often include habitat complexity/type 

(Hasegawa and Maekawa 2008; Korsu et al. 2010), stream temperature (De Staso and 

Rahel 1994; McMahon et al. 2007) or current velocity (Cunjak and Green 1984) or a 

combination thereof (Magoulick and Wilzbach 1998). Biotic features can also affect 

competitive interactions among fish species, and tested variables include population of 

origin of competitors (Sabo and Pauley 1997), fish density (Rodtka and Volpe 2007) and 

fish community (Hasegawa and Maekawa 2006).  

Biotic and abiotic factors may interact to determine the intensity of competition, 

as well as its outcome (Dunson and Travis 1991). While the intensity of competitive 

interactions among fish usually increase with competitor density (Cole and Noakes 1980; 

Blanchet et al. 2006; Kaspersson et al. 2010; Wipf and Barnes 2011), habitat complexity 

and current velocity are often inversely related to interaction intensity (Eason and Stamps 

1992; Basquill and Grant 1998; Sundbaum and Naslund 1998; Imre et al. 2002; Danley 

2011), suggesting that they may be buffering or dampening the effects of density. Such 
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buffering would be most evident for territorial species that directly interfere with their 

competitor’s ability to access key resources through aggressive interactions. This is 

because complex, high velocity habitats reduce encounter rates by visual isolation or 

make it costly to defend large territories (Grant and Noakes 1988; Höjesjö et al. 2004; 

Hasegawa and Yamamoto 2010). Thus, intense interference competition among fish may 

be mitigated by increases in habitat complexity or current velocity, even in situations of 

high density where multiple competitors are in close proximity (Blanchet et al. 2006). 

 Brook trout (Salvelinus fontinalis) are a species native to eastern North America, 

but have been introduced extensively throughout the native range of bull trout (Salvelinus 

confluentus) in mountainous regions of western North America. The two species now 

overlap considerably and compete for similar resources, particularly at the juvenile life 

stage. Several studies have examined juvenile competition under manipulated 

experimental conditions, and have generally found that brook trout are superior 

competitors over bull trout, which is especially evident at warmer water temperatures 

(Gunckel et al. 2002; McMahon et al. 2007; Rodtka and Volpe 2007). All these studies 

were performed at high fish densities (1.2-20.7 fish m-2) relative to natural densities 

found in western North American streams (<0.2 fish m-2 for bull trout [see references in 

Rodtka and Volpe 2007] and <0.98 fish m-2 for brook trout when species are in allopatry 

[Johnson et al. 1992; Thompson and Rahel 1996; Benjamin and Baxter 2010]). All 

studies were also conducted in artificial enclosures that simulated simple pool habitats 

with predictable sources of drift forage; environments that provide ideal conditions to test 

which species is a superior territorial forager. The prevalent result, that brook trout 

outcompete bull trout, is predictable when one considers the interference mode of 
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competition that brook trout generally exhibit when in competition with bull trout, which 

involves aggressive defense of profitable feeding territories (Gunckel et al. 2002; Rodtka 

and Volpe 2007). In contrast, bull trout have been observed to forage in a haphazard 

manner, opportunistically scrambling for food when competing with brook trout, often 

from behind cover (Nakano et al. 1998; Rodtka and Volpe 2007). Since habitat 

complexity and high current velocities appear to disrupt the effectiveness of territorial 

foraging tactics (Rodriguez 1995; Hasegawa and Maekawa 2008; Hasegawa and 

Yamamoto 2010), there may be reason to suspect that complex or high velocity 

environments may favor the cover-based scramble foraging mode of bull trout. Such an 

hypothesis has not been tested under controlled conditions, but there is some field 

evidence that bull trout may resist invasion of brook trout in streams with high habitat 

complexity (Chapter 2; Rich et al. 2003). 

 In this study, the first aim was to test the hypothesis that bull trout and brook trout 

have different innate foraging strategies by specifically testing whether occupancy of the 

lead position in the stream is correlated with foraging success. If foraging strategy results 

in territorial fish occupying the most profitable feeding position, the two are strongly 

correlated (Grant 1990; De Staso and Rahel 1994). In contrast, a lack of correlation 

implies that fish may be using alternate tactics to acquire food. Given the previous 

literature described above, brook trout foraging success is predicted to be correlated with 

occupying the lead position, whereas bull trout foraging success is not.  

Following the first aim, the second aim of this study was to address whether 

native bull trout outcompete non-native brook trout under different environments where 

competitor number and physical habitat structure are altered. This aim was chosen to 
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directly test to some variables associated with invasion of brook trout into bull trout 

streams (Chapter 2). Competition between the two species was observed in four 

treatments designed to simulate scenarios of altered fish density and habitat structure, and 

foraging success and interspecific aggression were observed. If brook trout dominate bull 

trout through territorial aggressive behaviors, they may be more aggressive in low 

complexity, pool habitats where there are a large number of competitors. This may help 

explain some of the patterns of brook trout invasion into bull trout streams in wild 

settings (Chapter 2; McMahon et al. 2007). 

 

Methods 

Fish collection, housing and tank design 

 Juvenile brook and bull trout were collected from wild populations in the fall of 

2010 by backpack electrofisher. Non-native brook trout were collected from Beaver 

Mines Creek (49°22’ N, 114°15’ W). Size-matched native bull trout were collected from 

nearby Mill Creek (49°22’ N, 114°10’ W) and the upper Livingstone River (50°7’ N, 

114°26’ W). Bull trout in these two populations express different migratory life histories, 

one is resident and the other is migratory. These distinct populations of bull trout were 

selected to represent opposite ends of the migratory life history spectrum that bull trout 

display (Warnock et al. 2011). All three selected streams are headwaters of the Oldman 

River Drainage in southwestern Alberta, Canada.  

Upon return to the Aquatic Research Facility at the University of Lethbridge, each 

species was transferred to separate holding tanks and was gradually adjusted to laboratory 
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conditions. Water temperature was maintained at 8°C, photoperiod was 12:12 hours 

(light:dark) and fish were fed on a maintenance diet of frozen Mysis shrimp at 3% body 

weight per day. This ration and diet allowed fish to gain weight and maintain their initial 

condition factor. Tanks were cleaned and 10 % of the water was renewed daily and pH, 

temperature, ammonia, nitrite and nitrate levels were continuously monitored to ensure 

optimal housing conditions. Following a two week quarantine period, each fish was 

anaesthetized and marked with a unique combination of adipose fin clips and colored 

elastomer tags (NMT technology™) for quick visual individual identification. Fish were 

allowed three weeks of further acclimation and recovery before experimental trials began. 

 Experimental trials were carried out in a laminar-flow flume that was divided in 

the middle to allow simultaneous observation of two replicate chambers. The flume had a 

flow-through diversion to a filtration unit that continuously cleaned and chilled the water 

to 8°C. Each experimental area was 135 cm long by 50 cm wide. These areas were 

divided by medium and low density Matala™ media placed at the upstream and 

downstream ends (Figure 4-1). This material acts as a sieve to prevent visual contact 

between fish in different replicates and filter any food and/or waste that would otherwise 

end up in the downstream experimental area.  

 

Behavioural observations 

Before conducting each experimental trial, fish were introduced to the flume and 

allowed to acclimate to conditions in the artificial stream for 25-26 hours prior to 

observations. A black polypropylene isolation curtain was suspended around the flume 
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when fish were present to ensure minimal disturbance. Observations were made through 

viewing windows (20 cm X 20 cm) that were opened during experimental trials. 

Behavioural observations of aggression towards an interspecific competitor (nips, 

chases and lateral displays) were measured continuously throughout the experimental 

trials (Newman 1956; Keenleyside and Yamamoto 1962). Two periods of observation 

were conducted in the 24 hours that followed acclimation time.  Each replicate was 

observed for one hour in the daytime (08:00-10:00), and one hour in the night time 

(20:00-22:00) and the two observational periods were averaged to avoid 

pseudoreplication. Aggression counts were then square-root transformed for subsequent 

data analysis. Proportion of time in lead position was measured by observing the fish in 

the lead position at one-minute intervals throughout each one hour observation period. 

Foraging success was measured by the proportion of the total number of 20 food items 

supplied that were successfully captured, relative to the competitor. Night time 

observations were made with the aid of 4 deep red light bulbs (Rodtka and Volpe 2007). 

Video cameras recorded the full length of each experiment and were used to review 

observations. 

 

Foraging strategy of species  

 In order to test whether bull and brook trout might have innate differences in 

foraging strategy, the relationship between foraging success and occupying the lead 

position in the stream was assessed for each species. Fish were placed in head-to-head 

competition trials, in within-species competitions and between-species competitions. The 
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environment simulated a simple pool habitat, with average current velocities of 7 (+/- 1) 

cm s-1, a water column depth of 40 cm, and small substrate (gravel, mean particle size = 

20 mm) that did not impede visual contact among fish. Nine replicates were run for each 

species in within-species trials and thirteen replicates in between-species trials. For all 

between-species replicates, fish of both species were re-used from intraspecific 

competitions, except for two replicates in which naïve fish were used. Thus, competitors 

always had the same amount of experience in the flume. Fish were size matched to the 

nearest mm for both within-species (mean absolute size difference between competitors 

within a replicate: 1 mm, 1.8 g) and between-species competitions (bull trout: 135 mm 

[mean], 25.9 g; brook trout: 135 mm, 26.2 g; mean absolute size difference between 

competitors within a replicate: 2 mm, 2.2 g). Fish were fed via a nylon tube located at the 

most upstream end of each experimental area. Food was passed down these tubes from a 

funnel suspended behind the isolation curtain. 25% of the water was continuously 

renewed daily for the whole unit, and following each trial 75 % of the water was 

replaced. This ensured that subsequent trials were always conducted in fresh water. 

Filtration media and substrate were cleaned between each trial and temperature, pH, 

ammonia, nitrite and nitrate levels were continuously monitored to ensure optimal 

housing conditions.  

The relationship between foraging success and occupancy of the lead position in 

the streams was analyzed by linear regression. In both within and between-species 

competitions, only one fish was randomly selected from each replicate for this analysis in 

order to avoid pseudoreplication.  
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Effects of fish density and habitat type on between-species competition 

In addition to the thirteen head-to-head between-species competitions (fish 

density = 3.0 fish m-2) described above, three additional experimental treatments were 

conducted, and interspecific competition was observed. The subsequent three treatments 

were two-on-two competition experiments (fish density = 5.9 fish m-2) in which the 

stream habitat was altered, in order to simulate different habitat complexity and density 

scenarios. The same competitors were used across all treatments. These treatments had 

more limited sample sizes due to the difficulty in size matching a larger group of fish, 

and limited numbers of fish that were collected. All four treatments used size-matched 

fish (bull trout: 142 mm [mean], 29.9 g; brook trout: 142 mm, 30.5 g; mean absolute size 

difference between competitors within a replicate: 1.5 mm, 2.2 g). The four experimental 

treatments were thus named as: simple pool low number (SP-L; n = 13), simple pool high 

number (SP-H; n = 5), complex pool high number (CP-H; n = 5) and complex riffle high 

number (CR-H; n = 5). Simple pool habitats (Figure 3-1a,b) had average current 

velocities of 7 (+/- 1) cm s-1, a maximum water column depth of 40 cm, and small 

substrate (gravel, mean particle size = 20 mm) that did not impede visual contact among 

fish. The complex pool habitat (Figure 3-1c) had the same velocity and depth 

characteristics as the simple pool habitat, but visual contact among fish was reduced by 

adding large substrate (cobble, mean particle size = 165 mm). The complex riffle habitat 

(Figure 3-1d) had the same substrate characteristics as the complex pool habitat, but 

water column depth was reduced to 20 cm and average velocity was increased to 14 (+/- 

4) cm s-1. Complex habitats were constructed to reduce visual encounter rates and 

territory size of fish due to increases in substrate size (relative to the depth of the water 
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column) and water velocity (Hasegawa and Yamamoto 2009; Steingrimsson and Grant 

2011). Average velocity (+/- s.d.) was calculated by measuring current at 18 equally 

spaced standardized locations in the stream. 

 Foraging success of either species was observed in each replicate, and aggression 

was measured as the average per-capita number of aggressive acts for each species. 

Foraging success for bull trout was analyzed according to 95% confidence intervals (CI) 

around each mean estimate of foraging success in each treatment. Since 0.5 is the value 

in which the both species are equal competitors, one species significantly outcompeted 

the other if the 95% CI did not overlap with 0.5. The analysis of foraging success was 

conducted in this manner rather than comparing one species to another, since the value of 

one is the inverse of the other and thus species effects are not independent. Aggression 

was compared between species and among the four treatments with a two-way ANOVA.   

 

Results 

Foraging strategy of species 

For brook trout within-species competitions, successful foraging was predicted by 

occupying the lead position in the stream (Foraging success = 0.17 + 0.70 Proportion of 

time in lead position, R2 = 0.71, F1,8 = 17.16, P = 0.0043) (Figure 3-2a). No such pattern 

was observed in bull trout within-species competitions (R2 = 0.02, F1,8 = 0.13, P = 0.73) 

(Figure 3-2b).  
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For between-species trials, foraging success was not significantly correlated with 

the proportion of time spent in the lead position (R2 = 0.15, F1,12 = 1.87, P = 0.20) (Figure 

3-2c). Bull trout were the more successful forager in these trials, consuming a higher 

proportion of food than brook trout in 10 of 13 replicates. A summary of data can be 

found in Tables A-6 and A-7. 

 

Effects of fish density and habitat type on between-species competition 

 According to 95% CIs, in simple pool environments, bull trout captured the 

majority of presented food (average proportion = 0.70) when the competition was one-

on-one, but did not capture the majority of food (average proportion = 0.49) when the 

fish density was doubled (Figure 3-3). When the pool habitat had complex substrate 

introduced, bull trout did not capture a higher proportion of food (0.58); however, when 

the habitat was altered to be a complex riffle environment, bull trout again became the 

more successful competitor (average proportion = 0.67; Figure 3-3). Aggression of both 

species appeared to be affected by treatment type (F7,48 = 3.87; P = 0.0021). Effect tests 

of the two-way ANOVA revealed that brook trout were more aggressive than bull trout 

overall (P = 0.010), and that aggression of both species was different among treatments 

(P < 0.001); however, an interaction term between species and treatment was not 

significant (P = 0.48). A Tukey post-hoc test revealed that aggression of both species was 

lower in SP-L than in SP-H and CP-H treatments, but not than the CR-H treatment 

(Figure 3-4) 
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Discussion 

As hypothesized, bull trout and brook trout used different foraging tactics to 

acquire food resources. In within-species competitions, dominant brook trout were 

qualitatively observed to defend profitable feeding territories at the upstream end of the 

stream, while subordinate brook trout generally occupied the rear position in the stream, 

and foraging success was strongly correlated with the time spent in the lead position. This 

lends support to the observation that brook trout placed in contest competition (Ward et 

al. 2006) will defend profitable feeding territories in pools in accordance with their rank 

in a dominance hierarchy (Fausch and White 1986). In contrast, bull trout did not show 

the same relationship between foraging success and time spent in the lead position in 

within-species competition trials. This was also apparent in between-species 

competitions, as bull trout were the superior forager in most head-to-head trials, yet there 

was still no relationship of foraging success with time spent in the lead position. The 

foraging strategy of bull trout was variable. Qualitatively, while bull trout were 

occasionally observed defending territories at the upstream portion of the stream, they 

mostly employed scramble behaviours to capture food that could be described as 

“ambush” or “sit-and-wait” from the stream bottom or behind cover and others that could 

be described as “active,” “searching” or “cruising” (Hasegawa and Yamamoto 2010; 

Steingrimsson and Grant 2011).  This experiment was not designed to quantify such 

operationally defined behavioural foraging modes for each individual, but I do 

hypothesize that bull trout may invoke a variety of flexible foraging tactics to optimally 

forage when in competition (Nakano et al. 1999).  It should be noted that brook trout 

have also been observed to have variable foraging tactics, and some individuals may sit-
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and-wait for food, while others will actively search (Grant and Noakes 1987). These 

different foraging tactics may be temporally flexible even at the individual level (Biro 

and Ridgway 2008). Therefore, it is important to recognize that the observations in this 

study should not be taken as evidence that bull trout and brook trout have different, 

rigidly defined foraging tactics at the whole species level; only that under the conditions 

tested and for the fish collected, brook trout are more inclined to territorial defense of the 

lead position to secure resources.  

The lack of correlation between foraging success and lead position occupancy for 

bull trout implies that they were able to successfully compete, both with their own 

species and against brook trout, by being the first to scramble for food, rather than 

preventing their competitors’ access through territoriality. The hypothesis that bull trout 

are predominantly scramble foragers, both when in intraspecific competition and with 

brook trout, is supported by previous observations. In field-based behavioural studies, 

bull trout have been observed to forage in a mobile, haphazard manner or by intercepting 

drifting food from behind cover (Nakano et al. 1992; Bonneau and Scarnecchia 1998; 

Nakano et al. 1998). Laboratory studies have likewise commented on the apparent 

scramble foraging tactic of bull trout (Rodtka and Volpe 2007). Furthermore, the non-

territorial exploitative competition mode has been suggested to account for the density-

dependent pattern of survival and growth seen in wild populations of juvenile bull trout 

(Paul et al. 2000), as size classes do not have growth patterns or survival expected if 

intercohort interactions were territorial (Post et al. 1999). 

Between-species competition was affected by the treatment type. In simple pool 

environments, bull trout outcompeted brook trout when the competition was head-to-
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head, but when the number of competitors was doubled there was no clear winner. 

Previous laboratory studies that have observed competition between bull trout and brook 

trout in cold (8 degree) water temperatures have generally found that there is no clearly 

dominant species, and these studies were conducted in simple pool environments with 

multiple competitors (i.e., not head-to-head) at greater densities than the two-on-two 

competitions used in this study (Rodtka and Volpe, 2007: 8.2 fish m-2; McMahon et al., 

2007: 20.7 fish m-2). When competition was tested with multiple competitors in complex 

riffle habitats, bull trout again were observed to outcompete brook trout. This may be due 

to being released from aggressive interference that brook trout were able to display in the 

pool environments (Nakano et al. 1998). 

Aggression was also used to quantify competition between bull trout and brook 

trout, and increased overall for both species as competitor number was doubled in pool 

habitats. At these higher fish densities, aggression was again reduced when the habitat 

was changed to a complex riffle. This supports the observation that aggressive 

interactions among salmonids in streams increase with fish density, but this can be 

mitigated in high complexity, swift water environments (Blanchet et al. 2006). When 

comparing species, brook trout were more aggressive than bull trout. Higher aggression 

levels in brook trout relative to bull trout are supported by previous studies (Gunckel et 

al. 2002), especially at high fish densities (McMahon et al. 2007) and warm water 

temperatures (Rodtka and Volpe 2007) when the two are in direct competition. The 

higher aggression levels in brook trout are likely associated with their disposition to 

territorial, foraging behaviour, often in situations of high density (Dunham et al. 2002).  
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Density is a term that can be thought of more usefully as an adjusted “effective” 

or “relative” value that fish actually experience when in direct competition (Grant et al. 

1998; Berger and Gresswell 2009). Adjusting fish density in a quantitative manner, for 

visual isolation between competitors or territory size reduction due to high current 

velocities, may be an informative avenue for further study. This may have widespread 

use considering that density-dependent processes may be affected by the physical 

structure of the habitat available for fish in streams (Blanchet et al. 2006), and 

structurally complex environments may support higher densities of territorial fish 

(Dolinsek et al. 2007; Venter et al. 2008). 

The apparent success of either species according to competitor density or habitat 

type may be due to inherent costs or benefits of aggressive territoriality in different 

environments (Grant and Noakes 1988). Territorial behaviour displayed by brook trout in 

this study may not be an optimal foraging strategy under complex environments where 

visual contact with competitors is reduced (Sundbaum and Naslund 1998; Höjesjö et al. 

2004). Visual contact between competitors was most reduced in the complex riffle 

environment, as large substrate nearly reached the surface of the water column. 

Territorial behaviour may be less effective in the higher current velocities of this habitat, 

as defense becomes more energetically costly (Mcnicol and Noakes 1984). The benefits 

of territoriality may also be further reduced in this habitat by the chaotic flow patterns 

created through large substrate, which make the drifting pattern of forage unpredictable 

(Hasegawa and Yamamoto 2009). In contrast, scramble foraging strategies displayed by 

bull trout may be advantageous under these complex, higher velocity environments where 

sources of drift forage are unpredictable and defending a territory is a costly and 
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ineffective strategy to obtain resources (see discussion of Hasegawa and Yamamoto 

2010). This highlights the importance of an “arena effect” in testing competition between 

species that may have different habitat preferences or conditions under which foraging is 

optimal (sensu Korsu et al. 2010). This may explain why previous studies of competition 

between bull trout and brook trout have not found the conditions under which bull trout 

become the superior competitor (Gunckel et al. 2002; McMahon et al. 2007; Rodtka and 

Volpe 2007).  

Unlike previous studies, none of the scenarios tested here showed brook trout to 

be the superior competitor. This may be due to the fact that all treatments of this 

experiment were conducted at cold (8°C) water temperatures. Brook trout territorial 

behaviour has been observed to be especially intense at higher (15-20°C) temperatures, 

where they will typically dominate bull trout (McMahon et al. 2007; Rodtka and Volpe 

2007) and cutthroat trout (De Staso and Rahel 1994) competitors in simple pool habitats. 

It would be interesting to replicate the higher temperatures tested in these studies in 

complex, high velocity habitats or in especially low fish densities to assess whether brook 

trout still hold a competitive advantage. 

When examining patterns of brook trout invasion into bull trout streams, warm 

water temperature appears to largely explain a general trend of invasion at lower 

elevation reaches of streams (Chapter 2; Paul and Post 2001; Rieman et al. 2006). This 

may be due to a competitive advantage for brook trout at higher water temperatures 

(Rodtka and Volpe 2007). In high elevation, cold reaches of streams, the success of brook 

trout invasion is variable, and likely dependent on a suite of additional abiotic and biotic 

factors (Chapter 2; McMahon et al. 2007). Brook trout have been observed to occur at 
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greater densities than the native species they replace or displace (Benjamin and Baxter 

2010), which may create favorable density situations for the brook trout foraging strategy 

in the context of interference competition with bull trout (sensu Dunham et al. 2002). 

Quantitative measures of habitat complexity have also been observed to be a possible 

variable in explaining brook trout occurrence in the field, as brook trout invasion seems 

to be commonly resisted in environments showing higher structural complexity (Rich et 

al. 2003). Juvenile bull trout have been shown to be positively associated with in-stream 

substrate cover and complexity (Al-Chokhachy et al. 2010). Indeed, large in-stream 

substrate cover is a factor associated with limited success of brook trout invasion into bull 

trout streams of the Canadian Rockies (Chapter 2). The results of this lab study suggest 

that limited brook trout invasion in these areas may be due to the foraging disadvantage 

that they hold relative to bull trout in such environments. 

Large in-stream substrate has been recognized as an important habitat feature that 

bull trout use as cover from which to forage (Watson and Hillman 1997). Rodtka and 

Volpe (2007) hypothesized that the scramble foraging tactic of bull trout is an advantage 

over the territorial tactic of brook trout in common environmental conditions of high 

elevation mountain streams where bull trout resist invasion; as drift forage is 

unpredictable and less abundant, reducing the profitability of the brook trout territorial 

foraging strategy. This hypothesis is consistent with the patterns observed in this study, 

where chaotic flow pattern caused by in-stream obstacles and higher stream velocity 

simulated such environments. In a similar species interaction, native white-spotted charr 

(Salvelinus leucomaenis; an Asiatic salmonid species that is the closest phylogenetic 

relative of the bull trout) are inferior interference competitors to exotic brown trout in 
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simply designed experimental tanks (Hasegawa et al. 2004), but the effect can be 

mitigated in structurally complex environments (Hasegawa and Maekawa 2008). The 

authors hypothesized that such structural complexity may confer biotic resistance to 

invasion by releasing the native species from interference foraging interactions with 

exotic salmonids (Hasegawa and Maekawa 2008). The results of this study support an 

identical hypothesis in the case of the brook trout and bull trout competitive interaction. 

This further emphasizes the role that a suite of abiotic and biotic variables may play in 

determining the relative foraging success invaders hold over native species, which could 

influence invasion outcome. 
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Figures 

 

Figure 3-1: Experimental treatments for assessing competition between brook trout (filled fish icons) and bull trout (not filled). 

Treatments assessed various habitats, including simple pool (SP), complex pool (CP) and complex riffle (CR), either in head-to-head, 

low number (L) competitions, or two-on-two, high number competitions (H). The stream velocity (V) was increased to 14 cm s-1 in the 

CR habitat. Competition for food was assessed by introducing food items through a tube on the upstream portion that was attached to 

a funnel behind a viewing screen.
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Figure 3-2: Relationships between foraging success and proportion of time spent in the 

lead position for within-species competitions of brook trout (a; R2 = 0.71) and bull trout 

(b; R2 = 0.02) and between-species competitions, where one fish was randomly selected 

from each replicate (c; R2 = 0.15). A regression line indicates a significant relationship. 
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Figure 3-3: Proportion of food captured for bull trout (with 95% CI), relative to total 

captured when in competition with brook trout through the four treatments. Bull trout 

outcompeted brook trout in the SP-L and CR-H treatments, as the 95% CI do not overlap 

with the proportion expected if the two were equal competitors (dashed line). 
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Figure 3-4: Number of aggressive acts per fish of both brook trout (closed circles) and 

bull trout (open circles), +/- SEM when in competition through the four treatments. 

Brook trout were more aggressive than bull trout throughout the experiment (P = 0.010). 

Aggression differed among treatments for both species overall (P < 0.001). Treatments 

sharing the same letter are not significantly different in post-hoc tests (P < 0.05). 
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Chapter 4 Comparing competitive ability and associated metabolic traits between 

two populations of bull trout, one migratory and one resident, against brook trout 

 

Abstract 

Juvenile bull trout from two geographically and ecologically distinct populations were 

compared with regard to their ability to compete with invasive brook trout in an artificial 

stream, and with respect to their rates of oxygen consumption. Bull trout collected from a 

migratory population competed more effectively against brook trout for food resources 

and were more aggressive than fish collected from a resident population. The superior 

competitive ability of the migratory population of bull trout against an invasive species 

relative to the resident population was positively associated with metabolic rate. Bull 

trout from the migratory population had a higher oxygen consumption rate (203 mg O2 

kg•hr-1) in the field than similar sized fish from the resident population (183 mg O2 

kg•hr-1). These results suggest that these two distinct populations of bull trout compete 

differently against an invasive species and such competitive ability may be associated 

with physiology or their migratory life history. 

 

Introduction 

Interspecific competition is an important determinant of species’ population 

dynamics and can influence the success of species invasions. As such, experimental 

observations of interspecific competition are commonplace in ecology and invasion 
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science. Experimental studies often concentrate on variable abiotic factors that influence 

competition (e.g. temperature, habitat etc.); although variable biotic factors including 

competitive ability of individuals and populations may also influence interactions among 

native and invasive species (Leisnham and Juliano 2010; Rossong et al. 2012).  

Competitive ability, as commonly measured by food consumption and aggression, 

varies greatly, both within and among populations of many animal taxa (Reale et al. 

2010). This has been well studied and documented in several species of salmonid fishes 

(Metcalfe et al. 1995; Lahti et al. 2001; Morinville and Rasmussen 2003). Competitive 

ability is also shown to be positively linked with metabolic rates (Metcalfe et al. 1995; 

Cutts et al. 2001). Variation in both competitive ability and associated physiology has 

been attributed to many underlying factors, including artificial selection, predation, 

resource abundance and migratory status (Biro and Stamps 2008; Reale et al. 2010). 

Whole populations may therefore be expected to vary in their competitive ability with 

other species, and this has important implications for interactions among native and non-

native species with overlapping niches. For invading species, variation in competitive 

behavior of founding populations may influence invasion success, severity and 

competitive dominance over native species (Abbott et al. 2007; Duckworth and Badyaev 

2007; Rossong et al. 2012). Alternatively, for native species, variation in competitive 

ability among populations may determine pathways of successful biotic resistance to 

invasion (Leisnham and Juliano 2010). 

Bull trout (Salvelinus confluentus) spawn and rear in headwater streams of 

mountainous regions of western North America, and display fine-scale genetic population 

structure that is associated with ecological variation and unique population attributes 
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(McPhail and Baxter 1996; Costello et al. 2003; Warnock et al. 2010). Bull trout express 

a variety of migratory life histories (both within and among populations), and occupy a 

variety of geographically and ecologically diverse watersheds throughout their native 

range. These diverse aspects of their biology may be reflected in population-level 

variability in competitive behavior and associated metabolic traits. To this point there 

have been no attempts to discern whether distinct populations vary in their ability to 

compete with invasive species, but this may influence the success of invading 

competitors with overlapping niches (sensu Leisnham and Juliano 2010). Of invading 

species in headwater streams of mountainous regions of Western North America, brook 

trout (Salvelinus fontinalis) are the most commonly implicated species in the competitive 

displacement or replacement of bull trout. 

The purpose of this study was to assess whether bull trout from two distinct 

populations compete differently against invasive brook trout in a controlled setting, and if 

competitive differences can be associated with physiological differences between the two 

populations.  

 

Methods 

Competition experiment 

Juvenile bull trout and brook trout were captured from wild populations in 

September of 2010 by backpack electrofisher. Eleven bull trout (size range: 115-136 mm 

fork length) were captured from Mill Creek (Mi) (49°22’ N, 114°10’ W; 1400 m 

elevation), which supports a robust annual spawning run of large-bodied migrant bull 
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trout and high juvenile fish densities (Warnock et al. 2011). Twelve bull trout (size range: 

102-121 mm) were caught from the Livingstone River (Li) (50°7’ N, 114°26’ W; 1700 m 

elevation), which supports an isolated resident population of bull trout above a migratory 

barrier. Adult fish in this population live amongst juveniles year-round, rarely exceed 350 

mm in length and are not found in downstream migrant fisheries (Warnock et al. 2010; 

Warnock et al. 2011). Twenty-three size-matched brook trout (size range: 101-138 mm) 

from a single population were captured in nearby Beaver Mines Creek (49°22’ N, 

114°15’ W; 1350 m elevation). All three streams are situated in the headwaters of the 

Oldman River watershed in Alberta, Canada. Brook trout were introduced in the 1940s, 

and bull trout are native to the watershed and exist in an arrangement of unique 

hierarchical populations among which gene flow can be limited; the Mi and Li 

populations are genetically distinct (Warnock et al. 2010). 

 Each species was housed in an isolated, chilled 425 L tank that was gradually 

adjusted to 8 °C upon transfer of fish to the Aquatic Research Facility at the University of 

Lethbridge. Photoperiod was set to a 12:12 hr light:dark cycle. After a two week 

quarantine period, fish were anaesthetized in clove oil and each was tagged with a unique 

combination of adipose fin clips and colored elastomer tags (NMT technology™) in the 

caudal, dorsal and anal fins for quick visual individual identification. Fish were 

acclimated to the lab in two species-specific tanks for another three weeks following 

tagging before the experiment began. Fish were fed on a maintenance diet of frozen 

Mysis shrimp at 3% body weight per day. This ration was selected during the acclimation 

period, as every fish gained weight and maintained or gained condition factor according 

to this ration (data not shown).  
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 Trials of two simultaneous replicates were held in a laminar-flow artificial stream 

of chilled water (8°C +/- 0.1) (Figure 4-1). Medium and low density Matala™ filtration 

media was placed at upstream and downstream ends of the experimental areas to prevent 

fish movement and visual contact between replicates, as well as filter any food and/or 

waste that would otherwise end up in the downstream experimental area. The substrate 

used in these trials was smooth round gravels (mean particle size of 20 mm) and the 

water velocity was calibrated to a mean of 7 cm s-1 after measuring in 27 standardized 

locations throughout the water column in each experimental area (range of 6-9 cm s-1).  

Water velocity did not differ between experimental areas (t-test: t52 = 0.33; P = 0.74). 

This environment simulated a typical pool habitat in a headwater stream and replicated 

stream pool characteristics that have often been tested in an artificial setting for salmonid 

interspecific competition (De Staso and Rahel 1994; Rodtka and Volpe 2007). 

An opaque black polypropylene isolation curtain was placed around the steam so 

that fish could not detect experimenters. A small viewing window was cut into the curtain 

in front of each experimental area and opened during the experimental periods so that fish 

could be observed. Feeding was accomplished through nylon tubing attached to a funnel, 

which was suspended behind the isolation curtain so that fish could not detect 

experimenter movements during feeding periods. A flow-through supply of fresh water 

was set so that 25% of the water was made up of new origin every day. In addition to 

this, 75% of the water was replaced at the end of each experimental trial, so that 

subsequent trials (conducted at least two days apart) would be conducted in fresh water. 

The unit was not entirely drained between trials, as a biofilter relying on circulating 

bacteria was present for ammonia oxidation. Filtration media and gravel were cleaned 
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and ammonia, nitrite and nitrate levels were measured weekly and pH and temperature 

daily to maintain optimal housing conditions for fish.  

Thirteen replicates of interspecific competition were run in head-to-head trials of 

size matched fish, with population of bull trout as the treatment of interest. This included 

six replicates where the bull trout competitor was from the Li population treatment and 

seven replicates where the bull trout competitor was from the Mi population treatment. 

All fish of both species had equivalent previous experience in a prior competition 

experiment (Chapter 3; Table A-7) where each species was assessed in intraspecific 

competitions, except for two replicates (one for each treatment) in which naïve fish were 

used. This experiment was of roughly the same design, and fish were allowed at least 

three weeks to recover before the current experiment was conducted. Fish were most 

often within 1-2 mm of one another, and size differences between fish never exceeded 4 

mm in any replicate. Treatments were randomly assigned to either flume section and 

randomly ordered. 

Pairs of fish for each replicate were transferred to the artificial stream between 

07:00-08:00. Fish were acclimated to the stream environment for 25-26 hours prior to 

experimental observations, and feeding was performed at a random time between 09:00-

11:00 and again at 21:00-23:00 during this period. Observations began the following day 

at 09:00-11:00 and nighttime observations at 21:00-23:00 (two hours of total 

observations per replicate). Nighttime observations were made with the aid of four 60W 

deep red light bulbs, which turned on automatically during the dark cycle of the 

photoperiod and provided low ambient lighting in which observations were still possible 

(Rodtka and Volpe 2007). Observations were made during, 10 min before, and after 
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addition of food, in two separate rounds spaced one hour apart during both day and night 

periods. Fish were fed 10 Mysis shrimp (average size: 17 +/- 5mm [mean +/- SD]; 0.044 

+/- 0.017 g), at one-minute intervals in each round. Foraging success was expressed as 

the total number of food items successfully captured by each bull trout population per 

hour when competing against brook trout. Behavioural observations of aggression (nips, 

chases and lateral displays) were measured continuously throughout the experimental 

rounds  and were expressed as the total number of aggressive acts of each bull trout 

population per hour. Brook trout aggression was also evaluated and compared between 

treatments. Although direct monitoring of behavior was generally reliable, video cameras 

recorded the full length of each experiment to ensure that no behaviors were missed. 

 

Oxygen consumption 

 Oxygen consumption rates (OCR) were measured in the field for both the Mi and 

Li populations. The procedure used was a non-lethal, simple and repeatable method that 

examines “routine resting” metabolic rates for comparison purposes, rather than active or 

basal resting metabolism (described in Rasmussen et al. 2012).  Juvenile fish (23 for each 

population; size: 94-185 mm) were captured by backpack electrofisher on mild settings 

and transferred to a covered, flow-through enclosure that was placed in the stream. Fish 

were allowed to recover for approximately 30 minutes before performing oxygen 

consumption trials. To measure oxygen consumption, fish were placed in a sealed 600 

mL bottle filled with stream water. Fish were all simultaneously tested for oxygen 

consumption, in order to ensure equivalent recovery times from the initial capture effort. 
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A YSI™ 85 meter was used to measure bottle oxygen concentration (mg L-1) and 

temperature (°C) before the test began, and once every 10 minutes for a maximum of one 

hour. A control bottle was also measured at the same intervals to correct for any 

instrument drift that might occur. Trials were terminated early for some fish that dropped 

below a threshold bottle oxygen concentration of 2 mg L-1 before the 60 minute test 

period elapsed. After the trials were completed, fish were measured, weighed and 

allowed to recover in the enclosure for at least 30 minutes before being released. 

 

Results 

Competition experiment 

Bull trout collected from Mi consumed more food than those collected from Li 

when competing against brook trout (t-test: t11 = 2.25; P = 0.046) (Figure 4-2). Bull trout 

collected from Mi were more aggressive to brook trout competitors than those collected 

from Li (t-test: t11 = 5.77; P < 0.001) (Figure 4-3). This was not simply an artifact of 

brook trout aggression differences between treatments, as aggression of this species did 

not differ when competing with the two populations of bull trout (t-test: t11 = 0.79; P = 

0.44). For a summary of data, refer to Table A-6. 

 

Oxygen consumption 

 Analysis of covariance was significant (F3,45 = 321.8; P < 0.001) and revealed 

significant effects of population and a log-weight covariate on log-OCR; however, an 
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interaction term between population and log-weight was not significant and was 

discarded from further analyses. Bottle temperature varied little among tested fish 

(10.3°C +/- 0.6 [mean +/- SD]) and was discarded from further analysss as it was not a 

significant covariate. While body size explained the majority of the variation in the model 

(F = 973.7; P < 0.001), the effect of population was also significant (F = 16.5; P < 0.001) 

(Figure 4-3). A post-hoc test comparing populations revealed that mean size-standardized 

fish from Mi had a higher OCR than fish from Li (Figure 4-4). 

 

Discussion 

 This study provides evidence that juvenile bull trout from the Mi population 

competed more successfully for resources and were more aggressive against brook trout 

than bull trout from the Li population. This supports the hypothesis that bull trout exhibit 

population-level variation in competitive behavior against an invasive species. These 

differences observed between populations may be associated with metabolic differences, 

as the Mi population consumed more oxygen than Li population fish when under similar 

holding conditions. The positive link between food consumption, aggression and 

metabolic rate supports previous research on a variety of animal taxa and salmonid 

species, and all these aspects appear to vary at the population level (Lahti et al. 2001; 

Reale et al. 2010). 

Distinct differences in metabolic traits or behaviour between bull trout 

populations is not surprising, given the strong genetic and life history differences seen 

between these two populations (Warnock et al. 2010; Warnock et al. 2011). Strong 
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genetic divergence at fine spatial scales is common among bull trout populations, and 

may be mirrored by differences in locally adapted phenotypes (Costello et al. 2003; 

Whiteley et al. 2004). Invading salmonids such as brook trout may have different “races,” 

which may have variable success invading depending on their competitive ability (Fausch 

2008). Differences in competitive ability among populations of native species should be 

considered at least equally important when examining the variable success of non-native 

species (Leisnham and Juliano 2010). 

The higher food acquisition and greater aggression levels observed for the Mi 

population may reflect a more active or bolder foraging strategy in this population 

(Stamps 2007). There may be several ultimate factors that are driving the differences in 

competitive ability and associated metabolic traits between these populations. The most 

striking ecological difference between these two populations is that Mi is migratory and 

Li is resident. The positive association between metabolic, feeding and aggression rates 

and migratory life history is a general phenomenon, having been documented in birds 

(Duckworth and Badyaev 2007) and a variety of salmonid fish species (Metcalfe et al. 

1995; Forseth et al. 1999; Cutts et al. 2001; Lahti et al. 2001; Morinville and Rasmussen 

2003). A more active foraging strategy in migratory populations would make sense from 

an energetic point of view, as these morphs may need higher food consumption rates in 

order to fuel the high metabolic demands that motivate migration (Forseth et al. 1999; 

Morinville and Rasmussen 2003). Alternatively, higher food consumption rates and 

sustained activity in migratory individuals may produce higher metabolisms and therefore 

the higher oxygen consumption observed is simply a product of rather than the basis of 

the behavioural differences (Biro and Stamps 2010). Disentagling the cause-and-effect 
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relationship between metabolism, behaviour and migratory life history is clearly an 

avenue of continuing basic research (Biro and Stamps 2010; Reale et al. 2010); however, 

the potential association between migratory life history variation and variation in 

competitive ability against non-native species should be of particular relevance to 

population-level pathways of biotic resistance to invasion (Leisnham and Juliano 2010). 

Along with competitive ability between migratory life histories, there are several 

other reasons to suspect that resident bull trout are more susceptible to displacement by 

brook trout. As adults, resident and migratory bull trout are ecologically distinct forms. 

At 1-3 years of age, migrants outmigrate (potentially long distances) from natal 

headwater streams (Warnock 2008)) and shift trophic level by becoming piscivorous in 

downstream mainstem rivers (Appendix); whereas residents exploit a primarily 

invertebrate food resource base and remain in their natal or closely associated streams 

throughout their lifecycle (McPhail and Baxter 1996). In their native range, brook trout 

also display a diversity of migratory life histories and ecological specialization (Ridgway 

2008), but this is less variable for introduced populations in the Canadian Rockies.  

Successfully established brook trout are primarily invertebrate feeders, and although 

some fish can move several km (Gowan et al. 1994; Gowan and Fausch 1996), the 

movement patterns and spatial ranges of these invasive populations are generally 

restricted (Dunham et al. 2002) and are similar to typical stream resident morph bull 

trout. Brook trout are thus generally restricted to small headwater streams, and are rarely 

found in downstream mainstem rivers (ASRD 2009). Ecologically, resident bull trout 

therefore have more of a direct niche overlap with the invasive species which is sustained 

throughout the entire lifecycle; whereas migrant bull trout are released from competitive 
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interactions once they outmigrate to far downstream areas of higher stream order and 

undergo a trophic level shift to piscivory. Resident bull trout may therefore be more 

vulnerable to competitive displacement by brook trout than migrants at adult life stages in 

particular.  

Demographic differences between resident and migratory populations will have 

perhaps an even greater influence than competitive differences in determining brook trout 

displacement of bull trout. Relative to migratory forms, resident salmonids may have 

lower fish densities and recruitment rates (Morita et al. 2009). This is because migrants 

subsidize their reproductive output with the richer biomass of downstream areas, while 

resident forms rely on the limited productivity of the headwater stream. Brook trout 

invasion success has been attributed to additional demographic reasons in other species 

interactions (Dunham et al. 2002); brook trout mature earlier than the native species they 

displace (Adams 1999; Paul 2000) and can attain higher densities and biomass than 

native species (Benjamin and Baxter 2010). If resident bull trout populations have lower 

recruitment rates, population sizes and densities than migrant populations in general, they 

may be more susceptible to the reproductive advantage exhibited by invasive brook trout 

at the population level (Peterson et al. 2004; Rieman et al. 2006). Furthermore, the size at 

which resident bull trout mature at may theoretically make resident populations more 

susceptible to displacement via hybridization and backcrossing. Mate choice in salmonids 

closely related to bull trout is strongly size-selective (Maekawa et al. 1994) which can act 

as a pre-zygotic hybridization barrier between large bodied migratory bull trout and small 

brook trout. As resident bull trout reach sexual maturity at much smaller sizes, the chance 

of successful pairings with brook trout or their hybrids may be greater. Despite this 
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theoretical basis, the observational evidence for this is weak, and hybridization rates 

observed are probably due more to relative species abundance or spawning time overlap 

in specific streams (Kanda et al. 2002; DeHaan et al. 2010). Interestingly, there are many 

populations of bull trout that exhibit patterns of partial migration (Northcote 1992), 

where resident and migratory forms are sympatric (McPhail and Baxter 1996; Nelson et 

al. 2002; Homel et al. 2008). Whether one sympatric form is more resilient in an invaded 

environment is not apparent, but further research should focus on these populations in 

particular. This is important when considering the potential for invasion to reduce life 

history variation not only among, but within populations as well. 

Although the primary ecological difference between the two populations from 

which bull trout were sampled is that they express opposite migratory life histories, it is 

possible that competitive differences between the two populations may have arisen from 

alternate unrelated reasons. One such possible reason is resource availability. The Mi 

population comes from a stream of lower elevation and latitude, which could make it a 

more productive environment with a longer growing season than the Li population 

stream. Fish with more active and aggressive foraging strategies may be selected for in 

such environments, as abundant resources ensure less of an energetic tradeoff to these 

behaviors (Lahti et al. 2002; but see Dunbrack et al. 1996). In contrast, low food 

abundance may select for fish that have high growth efficiency, but low energetic costs 

and that do not engage in costly foraging behaviors (Metcalfe et al. 1995). Variation in 

aggressiveness and foraging strategy may also be affected by predation, as fish with bold 

foraging strategies and high growth have lower survival under increased predation 

pressures (Biro et al. 2004). If there is a difference in predation risk between the bull trout 
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populations, it may influence the differences seen in competitive traits. The Li population 

contains adult bull trout that live amongst rearing juveniles year-round; in contrast, the 

Mi population hosts adult bull trout for a shorter period of the year during their spawning 

migration. If the Li population has higher rates of piscivory due to cannibalism from 

adult fish, it may have a higher pressure of predation and therefore would select against 

fish with active, bold foraging strategies in the juvenile stage.  

 In the field, invasive brook trout appear to actively displace native species 

through aggressive interference (Nakano et al. 1998). If some populations of bull trout 

are less aggressive in general and cannot compete as effectively for resources then they 

may be more susceptible to displacement via interference competition from invasive 

species. Ultimately, the hypothesis of different sensitivities of populations of native 

species (especially those with different migratory life histories) to displacement by 

invasive species will need to be subjected to critical testing in the field, among multiple 

populations. Declines in bull trout abundance have resulted in a decline of population and 

life history diversity (Nelson et al. 2002). An understanding of potential differences in 

susceptibility of distinct populations to the threat of species invasions is critical for 

conserving diversity and thus pathways of biotic resistance to invasion for native species. 
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Figures 

 

Figure 4-1: Side-view of artificial stream used for experiment (total unit volume of 940 L). The habitat unit was divided into two 

experimental areas (135 cm l X 50 cm w X 30 cm d) used for competition trials. A flow-through diversion to a filtration unit 

continuously cleaned and chilled the water. Feeding was performed via feeding tubes attached to funnels that were suspended above 

the stream.
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Figure 4-2: Foraging success (+/- SEM) of bull trout from each population when faced 

with a brook trout competitor. An asterisk indicates a significant difference (P < 0.05). 
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Figure 4-3: Aggression (+/- SEM) of bull trout from each population when faced with a 

brook trout competitor. An asterisk indicates a significant difference (P < 0.001). 

 



87 
 

 

Figure 4-4: Oxygen consumption rates (OCR; mg O2 hr-1) across body weights of tested 

fish for the Mi (open circles) and Li (closed circles) bull trout populations determined by 

analysis of covariance. Both axes are log-transformed.  

Log OCR = -0.278 + �−0.023 Li
0.023 Mi�+ 0.619 Log weight 

Equation 4-1 

Inset plot shows mean OCR of each population (+/- SEM) adjusted to the mean size of 

the fish tested. Values above each point represent mean OCR expressed in mg O2 kg-1 hr-

1. An asterisk indicates a significant difference (t-test: t43 = 4.06; P < 0.001). 
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Chapter 5 Conclusions  

 

Rocky Mountain stream ecosystems are relatively young. Following the 

Pleistocene glaciation, bull trout were successful at often being the first colonizers of this 

aquatic frontier. Following receding glaciers, the adaptations bull trout had to cope with 

harsh abiotic conditions of the most upstream reaches and migrate long distances, 

allowed them to rapidly colonize inland western North America. Headwater drainage 

transfers occurred and continue to occur though low-lying headwater sections across the 

divide of drainages. These drainages become connected when hydrological conditions are 

favorable for fish movement. The period of glaciation and deglaciation greatly facilitated 

such movements, and a combination of stream capture, glacial lakes and isostatic rebound 

allowed movement across drainages and established new populations (McPhail 2007). In 

addition, the long distances adult bull trout move through watersheds could result in 

straying into novel spawning tributaries from their far downstream confluences1

                                                 
1 Salvelinus confluentus; there is no more fitting name for this species, in capturing the role that watershed 
connectivity has played as a central factor in their evolutionary history, ecology, and persistence. The fact 
that George Suckley gave the species such an apt name in 1858 - without any of the current knowledge 
built upon by generations of hundreds of fisheries scientists - is truly remarkable. 

. The 

result was that bull trout colonized a larger range in this area than any other salmonine of 

inland western North America, including in the Canadian Rockies (Behnke 2002). In 

these novel environments throughout their range, bull trout could maintain a broad 

ecological niche at the species level, with populations that were locally adapted to the 

various conditions found in such a heterogeneous landscape. With landscapes that are 

heterogeneous such as the Canadian Rockies, similar introduced species were also pre-

adapted by chance to the various combinations of abiotic and biotic factors present in 
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streams that bull trout colonized (Fausch 2008; Korsu et al. 2010). The immature 

communities in these ecosystems poorly resisted invasion by specialists that exploited 

local resources more effectively than native generalists (Shea and Chesson 2002). This 

was facilitated by the myriad of co-occurring negative impacts to native species, 

including overharvest, habitat alteration and fragmentation. Brook trout appear to now 

supersede bull trout in much of their former range, and this dissertation provides 

observational and experimental evidence for several abiotic and biotic factors that may be 

involved. 

Invasive populations of brook trout have passed through a series of filters 

according to their physio-chemical requirements and interactions with the community, 

allowing the species to become widespread and dominant in suitable streams throughout 

the Canadian Rockies (Colautti and MacIsaac 2004). Filters may be thought of as abiotic 

or biotic aspects of the environment to which a non-native species may be well, or else 

poorly, adapted. Mountainous regions of Western North America are heterogeneous 

environments; many streams or reaches within streams have unique communities or 

physio-chemical attributes that are influenced by factors such as the local climate, 

elevation, surficial geology, aspect, forest cover, or in-stream movement barriers. In 

many of these unique environments, introduced brook trout may be pre-adapted by 

chance based on their evolutionary history within their own native range (Fausch 2008). 

Bull trout and brook trout both require small streams with groundwater input for parts of 

their lifecycles, as these streams provide critical spawning and juvenile nursery habitat 

(Curry and Noakes 1995; Baxter and Hauer 2000). Within such streams that were 

historically bull trout habitat, this project identified that brook trout now dominated in 
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selected areas, and that these sites had specific attributes that appeared to provide niche 

opportunities to pre-adapted brook trout (Shea and Chesson 2002; Fausch 2008).  

There appears to be a suite of abiotic factors that may influence invasion of brook 

trout into bull trout streams. In the same way that that low calcium concentrations and pH 

may provide unsuitable habitats that are resistant to zebra mussel (Dreissena 

polymorpha) invasion (Ramcharan et al. 1992), certain physio-chemical attributes of 

some rocky mountain stream environments may be unsuitable for brook trout. Bull trout 

remained the dominant species of the two, in sites that were colder and had a large 

amount of large in-stream boulder and cobble substrate. Water temperature is clearly an 

important determinant of species distributions, as fish species are poikilotherms that have 

narrow, physiologically determined optimal temperature ranges. Brook trout are the 

warmest adapted of the charrs (Behnke 2002), and they were rarely observed in bull trout 

streams that were especially cold (average daily temperature of < 7 °C; Chapter 2). The 

adaptation to different temperature ranges is perhaps the dominant theory invoked in 

previous literature to explain brook trout invasion into bull trout streams (Paul and Post 

2001; Rieman et al. 2006; McMahon et al. 2007; Rodtka and Volpe 2007); however, it is 

clearly not the only abiotic feature that appears to influence brook trout invasion 

(McMahon et al. 2007). In the observational study, habitat type was found to be at least 

as important as temperature in explaining brook trout invasiveness (Chapter 2).  

Two types of major in-stream habitat were associated with brook trout 

invasiveness. Brook trout dominance over bull trout was associated with undercut bank 

habitat. This specific habitat type may be used by both species (Cunjak 1996; Watson and 

Hillman 1997), but has been identified as especially important habitat for brook trout 
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outside their native range (Kozel and Hubert 1989; Krimmer et al. 2011). In contrast to 

undercut bank habitat, the presence of large in-stream substrate cover was negatively 

associated with brook trout dominance over bull trout (Chapter 2). The success of bull 

trout over brook trout in sites with large in-stream substrate may be fundamentally based 

on the two species’ foraging behavior, which may be optimal under different habitat 

types. Experimental evidence in this study suggests that bull trout compete for resources 

with a competitor primarily by using scramble foraging tactics, rather than by 

aggressively defending a territory (Chapter 3). This may allow bull trout to outcompete 

brook trout in stream environments that have a large amount of in-stream substrate 

complexity (Chapters 2 and 3), as these environments reduce the benefits of aggressively 

defending a territory (Hasegawa and Yamamoto 2009). Measuring habitat preferences of 

species in situ where they are sympatric and communities are mixed represents a next 

logical step from this research. 

Biotic factors involved in determining invasion success primarily relate to 

interactions with the community that may facilitate or else inhibit the establishment, 

spread and abundance of brook trout. In the field, brook trout were negatively associated 

with alternate non-native species (Chapter 2). Interactions with alternate competitors that 

have overlapping niches may limit brook trout invasion into some streams. This is the 

opposite of a phenomenon known as an invasional meltdown, whereby invasive species 

may facilitate each others’ invasion success (Simberloff and Von Holle 1999). In the 

laboratory, competitive interactions between the two species were affected by fish density 

(Chapter 3) and population-level variation in bull trout behaviour (Chapter 4). In head-to-

head competitions, bull trout outcompeted brook trout, but not when an additional pair of 
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competitors was introduced, whereupon fish became more aggressive. Territorial 

behaviour of trout and aggressive interactions among competitors increases with 

increasing fish densities (Blanchet et al. 2006; Hasegawa and Yamamoto 2009). The 

territorial nature of brook trout and their social behaviour that allows them to compete at 

such high densities may allow them to effectively outcompete native species in streams in 

which they achieve much higher densities (Dunham et al. 2002; Benjamin and Baxter 

2010). The behaviour that allows these fish to tolerate and compete at such high densities 

has been invoked to explain possible displacement of cutthroat trout (Schroeter 1998), 

and may have a similar relationship to bull trout in some situations. Another result of 

competition experiments was that bull trout outcompeted brook trout and were more 

aggressive when they were collected from Mill Creek, but not the Livingstone River. The 

Mill Creek population is migratory, whereas the Livingstone River population is non-

migratory (Warnock et al. 2011). These differences in behaviour between these 

populations expressing different migratory life histories were linked to physiological 

traits. Population-level differences in competitive ability may explain some of the 

apparent differences among populations in their biotic resistance to invasion (Leisnham 

and Juliano 2010); however the generality of this phenomenon requires further 

investigation. In particular, the possibility that migratory populations are more resistant to 

invasion (Dunham et al. 2008) may be due to a variety of underlying reasons (Chapter 4) 

that remain unexplored. 

In addition to the abiotic and biotic factors observed and tested that may influence 

invasion of brook trout into bull trout streams, there are many additional underlying 

mechanisms that may influence invasion that were not considered. In particular, invasion 
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may be viewed as a population-level process that begins with initial arrival intensity (i.e., 

propagule pressure) of the non-native species. Because of incomplete documentation in 

most areas, this study did not examine how historic stocking intensity related to current 

trends of brook trout invasiveness. Initial propagule pressure, local dispersal and 

establishment are critical components in the successive stages that determine invasion 

outcome (Colautti and MacIsaac 2004). Initial propagule pressure was high in Alberta, 

the result of thousands of introductions throughout the eastern slopes that spanned over 

half a century, with declining efforts through the 1970s and 1980s (Paul 2000). Brook 

trout locally dispersed and generally established after several generations into 

downstream areas that were independent from their stocking location (Adams et al. 2001; 

Paul and Post 2001), in sites that were suitable to their physical requirements (McMahon 

et al. 2007). A similar situation was found for cutthroat trout in Colorado and New 

Mexico, in which stocking intensity was not related to success of establishment (Harig 

and Fausch 2002). Therefore, it is most likely that the current distribution of brook trout 

observed is mostly related to occupying suitable niche environments to which they are 

pre-adapted (Fausch 2008; Korsu et al. 2010). 

Additional population-level processes are also likely important to influencing 

invasion of brook trout, as the species may have reproductive, survival or dispersal 

advantages that facilitate invasion. Regardless of any asymmetries in competitive abilities 

at the individual level, outnumbering the competitor is always an advantage. Where they 

are naturalized in streams of western North America, brook trout tend to mature quickly, 

at a demographic advantage that allows them to swamp the community over native 

species (Dunham et al. 2002; Paul et al. 2003; Rodtka 2009; Benjamin and Baxter 2012). 
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In addition, the local dispersal of brook trout likely contributes to continual invasion in 

many areas (Adams et al. 2002), and may result in a slow and persistent spread of the 

species (Westley and Fleming 2011). This may be facilitated by changing mountain 

stream environments due to human disturbance. When considering brook trout invasion 

from a biogeographical perspective, further invasion or even current patterns of 

occurrence of brook trout may be influenced by source-sink dynamics at the population 

level (Peterson et al. 2004). Brook trout appear to establish especially well in 

unconstrained valley bottoms, first order streams, and areas showing a high amount of 

beaver activity (Benjamin et al. 2007). This may again reflect another niche opportunity 

that brook trout are well adapted to, since beaver density is high in low gradient Canadian 

Shield streams, and brook trout appear to have well suited adaptations to spawning and 

carrying out their lifecycles in the highly fragmented, sedimented stream sections that 

beavers engineer. In western North America, beaver ponds and first order streams may 

act as sources that provide a continual supply of brook trout into surrounding sink 

habitats (McCaffery 2009). Therefore, many areas in which brook trout were detected, 

even in great numbers, may actually be influenced by inputs from nearby sources from 

which they can colonize. Research into population-level mechanisms that supply 

continual propagules of brook trout to sink areas may greatly advance our understanding 

of their pattern of occurrence and spread, and I encourage further research into this topic. 

 

 

 



95 
 

Conservation implications and recommendations 

 Results of the field study in this project (Chapter 2) and previous literature (Paul 

and Post 2001; Rieman et al. 2006; McMahon et al. 2007; Rodtka and Volpe 2007) point 

to water temperature as one of the most important determinants of brook trout invasion 

into bull trout streams. This is not surprising, given that brook trout have the greatest 

optimum temperature range and are the most warmwater tolerant of the charrs (Behnke 

2002). Maintaining suitable thermal habitat for bull trout is critical (Dunham et al. 

2003a), especially as anticipated climate warming may result in range expansions of 

brook trout into regions formerly occupied by bull trout (Rieman et al. 2007). This is 

especially pertinent in areas of Alberta that face receding glacial input to streams which 

keep water temperatures cool (Schindler and Donahue 2006). Other effects of in-stream 

and landscape disturbance (e.g., logging, wildfire, livestock grazing, road networks) that 

are shown to increase stream temperature must be carefully considered (Johnson and 

Jones 2000; Hitt 2003; Webb et al. 2008). Such disturbances may alter stream 

temperature through the mechanisms that influence the heat budget of streams (e.g., 

incoming solar radiation, stream flows etc.) (Poole and Berman 2001). Cool stream 

temperatures may be maintained either by limiting disturbance, or strategic restoration of 

habitats; however, our understanding of how climate change and disturbance may alter 

stream thermal regime is limited and sometimes paradoxical in small streams (Moore et 

al. 2005; Arismendi et al. 2012). Future research is needed to understand the variety of 

complex underlying mechanisms that govern stream temperature, if we are to apply 

stream-specific measures to maintain cool stream temperatures. 
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 Both field and laboratory observations from this study revealed that physical 

habitat structure may influence invasion of brook trout into bull trout streams. Streams 

with a high amount of habitat complexity are important for juvenile bull trout (Al-

Chokhachy et al. 2010), and bull trout appear to resist invasion in sites that have a large 

amount of in-stream cover (Chapter 2; Rich et al. 2003). Timber harvest, road network 

construction, livestock grazing and off highway vehicle traffic may increase sediment 

loading. This may embed substrate that juvenile bull trout use as preferred cover (Watson 

and Hillman 1997). In addition to landscape disturbance, direct (e.g., altered hydrograph) 

and indirect effects (e.g., increase of wildfire occurrence and severity) of climate change 

may alter sediment loading into some streams and reorganize channel structure 

(Schindler 2001; Rood et al. 2005; Dunham et al. 2007). If disturbed habitats shift to 

favor the preferred habitat niche of brook trout over bull trout, then this may facilitate 

their invasion (Dunham et al. 2003b; Gresswell and Vondracek 2010). Maintaining 

critical habitat components directed to the niche requirements of bull trout should be a 

goal for sustaining populations, especially those that are currently invaded by brook trout. 

 Brook trout may continue to spread in Alberta, and this study represents a 

snapshot in time that has lagged several decades after brook trout have already 

established (Paul 2000). Most sites tended to be dominated by one species or the other. 

Sites with mixed communities were not specifically examined, but may have enough 

environmental heterogeneity to allow niche differentiation of the two species and their 

coexistence (Nakano et al. 1999); conversely, some of these sites may not be in a state of 

fixed equilibrium, but rather the initial, or progressive stages of invasion. This may be 

influenced by ongoing changes in stream habitat structure and migratory connectivity, or 
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further decline of bull trout populations due to human disturbance and climate change. 

Future trends should be monitored in occurrence and abundance of brook trout, to see if 

the current distribution changes, and if we are witnessing their slow and persistent spread 

(Westley and Fleming 2011). In particular, I did not consider any stream environments 

that drain the west slopes of the Canadian Rockies, or any other drainage basins 

throughout the Canadian western cordillera that brook trout have invaded. Brook trout are 

present in the upper Peace, Columbia and Fraser River basins in British Columbia, which 

represent some core areas for native populations of bull trout. There are concerns with the 

spread of brook trout and possible displacement of bull trout in these basins (Hagen and 

Decker 2011). The results of this thesis may be used to identify areas of high risk to 

further invasion in British Columbia.  

Fully integrated remediation efforts to habitat and native species recovery, along 

with brook trout removal should be prioritized to particular sites that have the highest 

chances of success (Roni et al. 2002; Gresswell and Vondracek 2010; Kolar et al. 2010; 

Dunham et al. 2011). Applied conservation efforts to remove brook trout may be most 

successful in sites that are poor habitat for this species. A successful, extensive brook 

trout removal project was conducted in a lake-stream system in Banff National Park 

where the species had been established for decades (Parks Canada 2012: 

http://www.pc.gc.ca/media/nature_e.asp?video=79). The habitat structure in the stream 

segment of this system was relatively high gradient, cold, and contained a high amount of 

large in-stream substrate, with little undercut bank or connectivity to areas from which 

brook trout could recolonize (C. Pacas, Parks Canada, personal communication). In many 

other systems, removal of brook trout by electrofishing may be ineffective (Meyer et al. 

http://www.pc.gc.ca/media/nature_e.asp?video=79�
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2006), especially in systems with a large amount of undercut bank habitat (Thompson 

and Rahel 1996). Alternate methods of brook trout removal may be accomplished by 

managers using tools that are already at their disposal through engaging the public with 

strategic angling regulations (Paul et al. 2003). Directed harvest using anglers may 

provide an efficient, cost effective and continuous source by which brook trout may be 

controlled, with a resulting recovery of native species (Stelfox et al. 2004). In sites that 

may have a poor chance of recovery due to unsuitable or degraded native habitat, high 

densities of brook trout or difficult removal by electrofishing, netting or angling, the use 

of explosives or piscicides may be the only option available for managers. This may be 

an appropriate option in densely populated habitats that are marginal for native species 

(e.g., beaver ponds in side-channels), but supply continual propagules of invading brook 

trout to adjacent areas inhabited by native species.  

Properly identifying priority sites for integrated remediation efforts will benefit 

from preliminary on-site research and feasibility analysis (Dunham et al. 2011). 

Temperature data loggers may be placed in-stream and habitat surveys may be conducted 

as preliminary research to assess the specific requirements and logistics of removal 

and/or remediation projects. These surveys could identify areas that are associated more 

closely with the niche requirements of bull trout as having the highest likelihood of 

success. In areas needing restoration of habitat, surveys before and after could determine 

whether efforts were successful at altering habitat to target these requirements, providing 

they are achievable in the first place; follow-up long-term monitoring is critical to assess 

whether the target of native fish recovery has been achieved (Billman et al. In Press). 

Restoration efforts may include fencing of stream habitat where livestock grazing occurs, 
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riparian canopy recovery, and limiting watershed disturbance, which are practices that 

may recover stream temperature and sediment size (Platts et al. 1989; Platts 1991; Moore 

et al. 2005). In concert with habitat rehabilitation, efforts to re-establish or facilitate the 

recovery of the native species may then be more successful when combined with direct 

removal of brook trout. For example, bull trout were extirpated from Willow Creek in the 

20th century (Fitch 1997). Attempts to re-introduce bull trout to this watershed were 

attempted in 2000 and 2007, with the stocking of fingerlings hatched from a wild-

stripped stock from a nearby population. Sampling efforts indicate that natural 

reproduction was unsuccessful in this watershed, as no juvenile bull trout were captured 

in this study or in any other sampling efforts in the watershed since the initial stocking 

efforts (ASRD 2009). Willow Creek, and many of its tributaries, are currently dominated 

by high densities of brook trout. Sites on the stream were found to have smaller substrate, 

higher temperatures and a large amount of undercut bank habitat relative to the average 

conditions encountered throughout the study. All these conditions were associated with 

high brook trout invasiveness. The stream is subject to heavy grazing activity and a large 

amount of off highway vehicle traffic in all but the highest reaches, which may have 

altered the stream habitat and thermal regime to its present state. In addition, the 

watershed is isolated from neighboring bull trout populations, which makes natural 

supplementation from connectivity unlikely. Recovery potential of a bull trout population 

in this watershed is low (ASRD 2012), especially considering that the habitat is currently 

saturated with non-native brook trout, and may no longer be suitable for the native 

species. Had a feasibility study been conducted prior to re-introducing bull trout 

(Dunham et al. 2011), it would have been clear that there would be a low chance of 



100 
 

success unless efforts were combined with a campaign of both non-native removal as 

well as habitat rehabilitation. These management objectives can be greatly aided by 

collaborative partnerships among multiple stakeholders that allow both public and private 

involvement in the process of native fish recovery and habitat restoration (Gresswell and 

Vondracek 2010). 

 In the western United States, artificial barriers are proposed as a management tool 

to limit further spread of invasive species (Thompson and Rahel 1998; Peterson et al. 

2008; Fausch et al. 2009). While clearly of use in many circumstances, there are no areas 

encountered throughout the Alberta Rockies in this study where I would recommend they 

be used to limit the further spread of brook trout into bull trout streams. Natural in-stream 

barriers and steep stream gradients may restrict the spread of brook trout in some stream 

networks (Adams et al. 2001; Dunham et al. 2002), but artificial barriers would lead to a 

loss, or limit the recovery of the migratory form of native bull trout (Morita et al. 2009), 

and connectivity to neighboring populations has in fact been recognized as increasing 

bull trout resistance to brook trout invasion (Rich et al. 2003). This life history may be 

more resistant to brook trout invasion for many underlying reasons (Chapter 4), and is a 

vital component to the long-term genetic and demographic sustainability of many bull 

trout populations (Swanberg 1997; Dunham and Rieman 1999; Nelson et al. 2002; 

Warnock 2008). Therefore, while well-intentioned, purposeful fragmentation may cause 

greater harm than good in most cases for bull trout. Where natural barriers exist, 

enforcement and public education efforts to curb unauthorized movement of non-native 

fish above barriers may be undertaken to protect isolated bull trout populations (Rahel 

2007).  
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Former stream habitat restoration or conservation efforts had rarely taken into 

account future scenarios imposed by climate change or other disturbances, but there is an 

increasing shift in recent literature to account for potential changes (Rahel and Olden 

2008; Jonsson and Jonsson 2009; Milner et al. 2009). By considering future changes, 

inland managers may be able to strategically implement and prioritize conservation or 

restoration efforts to targeted areas at greatest risk of deterioration (Battin et al. 2007). 

Maintaining watershed integrity, habitat complexity, thermal refugia, demographic 

connectivity and restoring or augmenting particular niche environments of native species 

may buffer habitat loss and confer biotic resistance to invasion, even as climate change or 

disturbance may shift stream temperature and habitat in favor of the non-native species 

(Rieman et al. 2006; Gresswell and Vondracek 2010). Salmonid fishes have an incredible 

ability to rapidly adapt to local environments (Hendry et al. 2000; Koskinen et al. 2002); 

it is what has made possible their current diversity and historic success as one of the 

dominant holarctic fish families since the late cretaceous. Remaining populations of bull 

trout are no exception, and despite their susceptibility, they can be naturally resilient. 

Strategic conservation efforts directed to their requirements, and suppression of invasive 

competitors, may augment this resiliency, and ensure their continued success and 

diversity in the future.  
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Appendix 

A  
Analysis of data 

All data chapters of this thesis contain a variety of statistical methods to analyze 

data. While the majority of the analyses used in this thesis are basic statistics that can be 

easily reviewed in introductory biometry texts, this section introduces two more 

complicated analytical approaches I took to analyze data. These two approaches are 

logistic regression, and the information theoretic approach to multiple regressions. I have 

given these two statistical methods a special description here because the literature base 

in ecology is recently founded, and most is beyond what might be covered in a basic 

graduate level university course on statistics for biological data. The majority of the basis 

for my descriptions of these analyses comes from the books of Hosmer and Lemeshow 

(2000) and Burnham and Anderson (2002) for logistic regression and the information-

theoretic approach, respectively. I have also learned the applied approach to these 

analyses mainly from a literature base that is related to my own work (Dunham and 

Rieman 1999; Paul and Post 2001; Harig and Fausch 2002; Rich et al. 2003; Ripley et al. 

2005; Rieman et al. 2006; Benjamin et al. 2007; Rasmussen 2007; McCleary and Hassan 

2008; Muhlfeld et al. 2009; Kitanishi et al. 2010). For a particularly good example of the 

use of both of these for field observational studies, you may wish to read the paper of 

Rich et al. (2003), which provides an excellent but succinct explanation of these analyses 

in the methods and results. 
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Logistic Regression 

Regression analyses are the mainstay of observational studies in ecology where 

the aim is to statistically model relationships between variables that are suspected to be 

dependent. Simple regression is used when there is one independent variable, but the 

model can easily be extended into a multiple regression to account for more independent 

variables. In this thesis, simple and multiple regressions are used. The following section 

provides a little background on the types of regression tests performed, and why they are 

appropriate for the analyses used in the aforementioned chapters. 

 If the dependent variable is largely unbounded and continuous (e.g. growth rate, 

tissue concentration of a metal, time spent foraging etc.), an ordinary least squares 

regression is appropriate. Ordinary least squares regression is covered in many basic 

statistics reference books and is a common analysis in the biological sciences (Whitlock 

and Schluter 2009).  Logistic regression is a special consideration when the dependent 

variable is discrete. This is often the case for fish species presence data, in which 

presence or absence of a species is modeled as a function of several independent 

variables (Dunham and Rieman 1999; Paul and Post 2001; Rich et al. 2003; Ripley et al. 

2005; Rieman et al. 2006; Benjamin et al. 2007). In this instance, the relationship 

between the dependent variable and independent variable(s) can be characterized by a 

sigmoidal relationship between the probability of occurrence and the independent 

variable(s). 
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In order to describe this relationship, a logit transformation is applied to the 

probability p of having an outcome, given a set of k1,…,kx independent variables:  

logit (𝑝) =  ln �
𝑝

1 − 𝑝
� = 𝛽0 + 𝛽1k1 + ⋯+  𝛽xkx 

Equation A-1 

by exponentiating both sides, we can model the probability of having a successful 

outcome in the binary dependent variable by: 

𝑝 =  
𝑒𝛽0+𝛽1k1+⋯+ 𝛽xkx

1 −  𝑒𝛽0+𝛽1k1+⋯+ 𝛽xkx
 

Equation A-2 

In ordinary least squares regression, the parameters for the equation (β0, β1,…, βx) would 

be estimated by the values that minimized the sum of squared deviations of the observed 

values from those predicted by the model equation. In logistic regression, these 

parameters are instead estimated by a maximum likelihood method that is calculated by 

iterative procedures that are automated in statistical software packages. 

 One assumption of the logistic regression is that the logit is linear in its 

parameters, that is, the relationship between the logit and covariate(s) are linear. 

Screening the distributions of each continuous covariate, and their relationship with the 

logit in advance may allow the most appropriate transformation to be applied and thus 

model the best linear fit.  

 Assessing overall model fit is an important step in the modeling procedure, as it 

provides information on how well the logistic regression describes the relationship 

between the covariate(s) and the dependent variable, and if data are overdispersed. Two 
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goodness-of-fit values that are commonly used to assess model fit in logistic regression 

are the Pearson chi-square and Hosmer-Lemeshow statistics. These are both described in 

greater detail in Hosmer and Lemeshow (2000), and are commonly encountered in output 

of statistical software packages. 

 Once an appropriate model has been fit, the next stage is to interpret the 

coefficients of the independent variables. Coefficients are either positively or negatively 

associated with the dependent variable, having either positive or negative values, 

respectively. The most meaningful approach to interpreting the coefficients is through the 

odds ratio, which is valuable because it provides a biologically meaningful measure of 

how a change in the independent variable affects the probability of a successful outcome 

in the binary dependent variable. Like a linear regression, this represents the slope of a 

change in the logit corresponding to a unit change in the independent variable. In 

addition, 95% confidence intervals may be calculated for each based on the standard error 

estimates to ascertain whether coefficients are statistically significant (Rich et al. 2003). 

How the odds ratio is calculated depends on if the independent variable is binary, ordinal 

or continuous.  

The value of the odds ratio is centered around 1, with a value of 1 corresponding 

to no relationship between the dependent variable and independent variable (i.e., a slope 

of 0). Negative relationships take on values that asymptotically approach 0 from 1, while 

positive relationships take on values that asymptotically approach ∞ from 1. The odds 

ratio, relative to one, then can be thought of as the likelihood (or unlikelihood for values 

< 1) of a successful outcome in the dependent variable, given a unit change in the 

independent variable. 
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 For binary independent variables, odds ratio may be calculated according to: 

OR =  𝑒𝛽𝑖 

Equation A-3 

where β is the model-estimated coefficient (parameter estimate) of the ith independent 

variable. This represents how a successful outcome in the binary independent variable 

affects the probability of a successful outcome in the dependent variable.  

For continuous independent variables, odds ratios are calculated by first 

multiplying βi by a biologically relevant scaling factor C: 

OR =  𝑒𝐶∗𝛽𝑖 

Equation A-4 

This now represents how an increase of C units in the independent variable affects the 

probability of a successful outcome in the dependent variable. 

In order to test for significance of each variable, we can use the standard error 

estimate from the model and by assuming a z-distribution we can calculate a 95% 

confidence interval: 

95% CI = 𝑒𝐶∗𝐵𝑖±1.96∗𝐶∗𝑆𝐸𝑖 

Equation A-5 
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where C is used as a biologically relevant scaling factor for continuous independent 

variables. If this confidence interval does not bound 1, then we can assume significance 

of the variable, as 95% of the predicted observations will not have a slope of 0. 

Consider the following hypothetical example where we are trying to model the 

occurrence of an invertebrate species that are in streams draining aluminum mines in a 

mountainous coastal region. These mining sites span a wide range in elevation; from 

previous research, we suspect that the invertebrate prefers higher elevation streams. We 

design a study to look at the presence or absence of the species in mining and non-mining 

impacted sites throughout a range of elevations. After collecting the data on occurrence 

from randomly selected sites (Table A-1), a logistic regression is run predicting species 

occurrence from both the independent variables of elevation (continuous) and mining 

impact (discrete and binary). After confirming that the model fits appropriately, we get 

the following parameter estimates and associated standard errors for each independent 

variable (Table A-2) 

Using Equation A-3, we find that the estimated odds ratio for mining impact is 

0.37. This means that sites with mining impact have 2.7 times (1/0.37) higher probability 

of finding the species absent relative to sites without mining impact. Applying Equation 

A-5, we find that this impact of mining is significant, as over 95% of the time (based on a 

z-distribution from the observations) the odds ratio will fall between 0.21 and 0.67. 

Unlike mining impact, the positive sign of our parameter estimate indicates that 

elevation is positively associated with the presence of the invertebrate species. Because 

elevation is a continuous variable, we must calculate the odds ratio by multiplying the 
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parameter estimate by a biologically relevant scaling factor C (in this case, I chose 

100m), since an increase in 1m elevation is not conceptually meaningful or useful in 

making predictions. Using Equation A-4, we find that an increase in 100m elevation 

results in an odds ratio of 1.23. Thus with every 100m elevation gain, we have a 23% 

(1.23/1) increase in the odds of the invertebrate species occurring. By applying Equation 

A-5, we find that this variable is also significant, as 95% of the time, the odds ratio falls 

between 1.01 and 1.51 for an increase of 100m elevation. From this example, we may 

conclude that mining activity is negatively associated with the occurrence of the 

invertebrate species, but elevation also may naturally dictate the species range across 

longitudinal stream gradients. One could further run an interaction term on the 

independent variables to determine whether mining has a disproportionately higher 

negative association with species occurrence, depending on the elevation. 

In addition to using logistic regression for a binary dependent variable, there may 

be special cases in which it can be applied to analyze proportion data (Rasmussen 2007). 

Since a proportion or percentage is bounded and can never be less than 0 or more than 1 

or 0% and 100%, the relationship with the dependent variable is often highly sigmoidal. 

This type of data is commonly encountered in social sciences, economics and 

epidemiology but less so in ecology and thus specific techniques for dealing with 

proportion data is not as well developed (but see Warton and Hui 2011). Logistic 

regression is an appropriate technique to analyze proportion data in biology, especially 

when proportions are derived from underlying discrete outcomes in (e.g., presence or 

absence of a species, presence of one species or the other, death or survival, deformity or 

no deformity, success or failure at crossing a supposed migration barrier etc.). 



131 
 

How proportion data is best analyzed in regression is dependent on the way the 

data in which the dependent variable is distributed and can be expressed. There are three 

approaches I have come across that have dealt with proportion data in regressions, and 

each may be optimal under different circumstances. Given the nature of the data and 

research question, the approach that yields the best fitting model may be chosen. This 

may be objectively assessed by looking at standard goodness of fit tests and examining 

the distribution of the residuals.  

The first, and simplest approach, is to analyze the data as if it is a linear 

regression. This approach may work if the proportion data is centered around the middle, 

linear section of the sigmoidal curve (i.e., lots of ~50% values with not many 

approaching the bounds) and there is no interest in the study to extrapolate the 

proportions towards extreme values. Such a dataset might be possible, for example, in an 

ecotoxicological experiment examining the proportion of animals that die due to 

predation over a realistic gradient of contaminant concentrations (Table A-3). If the 

sigmoidal shape of the relationship is not pronounced and responds like a linear 

relationship across the range of values tested, then linear regression might model this 

relationship well for the realistic gradient tested (Figure A-1). In this example, the 

realistic range over which the concentration of the contaminant is found happens to itself 

be bounded to the linear part of the curve and thus may be appropriately modeled by a 

linear regression. 

Unfortunately, most regression models are developed to predict proportions 

approaching the bounds, or data is very sigmoidally distributed with small sections of the 

linear portion of the slope.  In this instance, linear regression would not optimally model 
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this relationship. Take, for instance, the same situation in our fist example except we now 

wanted to either predict the proportion that died due to predation at an extreme water 

concentration value, or the data was highly sigmoidal across the range tested (Table A-4). 

Linear regression poorly characterizes this relationship, underestimating the slope 

through the threshold level, and providing nonsensical predictions of the relationship at 

extreme values (Figure A-2). 

This type of data distribution and analysis is far more likely to be encountered in 

biological datasets. Traditionally, the arcsine transformation was applied to proportion 

data, as recommended in biometry texts (Sokal and Rohlf 1995; Zar 1999); however, 

recent literature has cast doubt on the appropriateness of arcsine transformations for 

proportion data (Warton and Hui 2011), and logit transformations appear to be the 

preferred approach of logistic regression that characterize the best statistical relationship. 

This brings us to the second approach of analyzing proportion data. In the previous 

example (Table A-4), linear regression underestimates the slope for where the threshold 

occurs, and overestimates the slope towards and beyond the bounded proportion values of 

0 and 1. This is because the linear section of the curve happens to fall over a small 

threshold range in the covariate. Running a best fit linear function through it does 

approximate, but cannot capture the true sigmoidal relationship (Figure A-2). In addition, 

the linear regression equation exceeds the bounds rather than approaching them to 

positive or negative ∞. In order to arrive at the best fit and approximate the sigmoidal 

relationship, we may logit-transform the dependent variable according to: 

logit(𝑝) = ln �
𝑝

1 − 𝑝
� 
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Equation A-6 

The analysis then follows the normal procedure of ordinary least squares regression: 

logit (𝑝) = 𝛽0 + 𝛽1k1 + ⋯+  𝛽xkx 

Equation A-7 

When the dependent variable is transformed as such, a better fit with the same example 

dataset (Table A-4) may be achieved (Figure A-3), when we compare to the linear 

regression approach (Figure A-2). An innovative example where this was used on data in 

fisheries science was by Muhlfeld et al. (2009), where the dependent variable was the 

proportion of rainbow trout (Oncorhynchus mykiss) admixture into hybridized cutthroat 

trout populations. The authors found that logit-transformed rainbow trout admixture was 

positively associated with warm water temperatures and fish density in a multiple 

ordinary least squares regression. 

If we are especially interested in the threshold values, and have a robust dataset 

with many proportion values falling towards the middle of the distribution, we may 

describe the least biased relationship of the threshold response by downweighting the 

values towards the bounds of the distribution: 

weighting factor =  𝑝 ∗ (1 − 𝑝) 

Equation A-8 

This is extremely valuable in toxicology studies when there is interest in describing the 

slope of the threshold response, as there is less skewing introduced from overdispersed 

values towards the bounds of the distribution (Rasmussen 2007).  
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An important caveat of the logit transformation, and especially the weighted 

approach, is that it cannot transform values that are actually on the bounds (i.e., if there 

are 0 or 1 values), therefore like other log-transformed datasets, one must adjust extreme 

values of these (for example, by adding 0.01 to 0 values or subtracting 0.01 from 1 

values). If boundary values are very common in the dependent variable, this analysis 

usually provides a poor fit, and the binary logistic regression should provide a much 

better fit to the data. This is the third approach used, and is the procedure I used in the 

analysis of the association between brook trout invasiveness and local-scale 

environmental variables (Chapter 2). As we can see, data was distributed towards the 

bounds (Figure A-4a), with most relative abundance values of brook trout at either 0 or 1 

(Figure A-4b). 

In this case, I simply treated the dependent variable as a binary value by 

discarding the uncommon middle values (those lying between 0.4 and 0.6), and treating 

all the values around the boundaries as separate categories. In the case of Chapter 2, these 

are categories of “low” and “high” brook trout invasiveness. This provides a much better 

fit than any other type of model, and is appropriate when proportions are derived from 

discrete values, such as presence of one species or the other. Although this does ignore 

some potentially important values in the middle of the logistic regression, these cannot be 

expressed by a binary logistic regression. Where values are more common, the logistic 

regression may be extended to accommodate them by adding “middle” category(s), and 

running an ordinal polytomous logistic regression (e.g. Harig and Fausch 2002). Such 

analyses are beyond the scope of this thesis, but may be found in Agresti (1996). 

 



135 
 

Multiple regression and the information-theoretic approach 

Studies that attempt to examine the associations between species occurrence or 

abundance with several environmental variables at a large spatial scale are confronted 

with some common analytical issues (Mac Nally 2000). There are a variety of parametric 

and non-parametric alternatives that may be used to analyze such data (Rahel and 

Jackson 2007). Parametric approaches generally refer to the use of linear models to 

examine the association between the dependent variable and independent variables. Non-

parametric alternatives that are more recent include decision trees and artificial neural 

networks, and a good introduction to these methods can be found in Rahel and Jackson 

(2007). 

Multiple regression is a parametric approach that models the association between 

a single response variable, and any number of multiple predictor variables. This is a 

common analytical method in large-scale studies concerned with exploring the 

dependency between fish species occurrence or abundance and a suite of environmental 

variables that are hypothesized to be important. The goal of such studies is usually to 

predict how changes in X result in a change of Y, and/or explain the relative importance 

of a variety of X variables that are hypothesized to affect Y, and their potential 

interactions (Mac Nally 2000). Complex models are then often constructed, in which 

many predictor variables (sometimes dozens or even hundreds) are included in the model. 

As models include more independent variables, the fit of the model is improved simply 

by mathematical artifact, as R2 is artificially inflated. Such is an “overfitted” model. This 

may occur even if explanatory variables are not biologically relevant, possibly leading to 

spurious conclusions. Interpreting more complicated models also becomes exponentially 
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more difficult with the addition of more variables, especially if interaction terms are 

involved. The problem is often compounded when few observations are made, relative to 

the number of variables included. A commonly cited target for sufficiently powerful 

analysis is to have between 10 and 20 observations per independent variable included in 

the model (StatSoft 2012). Hence, a simple model is most preferred, in which few but 

meaningful terms are included as independent variables. 

An additional complication of multiple regression is the presence of correlation 

among the independent variables, termed multicollinearity. This may complicate the 

interpretation of parameter estimates, which may change dramatically as correlated 

variables are added or removed from the model. This may be compounded if there is not 

a high enough sample size, relative to the number of variables (Flack and Chang 1987). 

Multicollinearity may therefore lead to spurious conclusions about the magnitude or even 

direction of association between independent and dependent variables (Rahel and Jackson 

2007). Multicollinearity is often present if closely related variables are measured, that are 

not independent from one another. This can often be recognized by the researcher a 

priori, and variables may be chosen accordingly. For example, stream temperature and 

size are dependent variables with elevation in mountainous environments. Elevation is an 

easily measured (field data collection is not even necessary) surrogate for temperature 

and stream size, as temperatures will become lower and streams will become smaller as 

elevation increases. Elevation is therefore a commonly used independent variable in field 

studies using multiple regressions (Paul and Post 2001; Rich et al. 2003; Ripley et al. 

2005; Rieman et al. 2006; Kitanishi et al. 2010). The problem is that elevation does not 

carry any biological relevance; species occur in areas according to the physio-chemical 
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environment that fits their fundamental ecological niche. Stream size and temperature are 

direct measures of these, and including an additional term that is likely to covary with 

them complicates the model needlessly and may lead to multicollinearity issues. Thus, 

the number of measures can often be reduced a priori by including only the most 

biologically relevant variables, which fulfils the need both for a simple model, and often 

reduces multicollinearity.  There are several approaches of screening for 

multicollinearity, with objective methods for determining whether it is a major problem 

in the analysis (Rahel and Jackson 2007).  Three methods are commonly used: Firstly, 

screening the relationships of all variables with a correlation matrix and using a threshold 

R value to determine whether any two variables are highly correlated (Ripley et al. 2005). 

Secondly, multicollinearity can be assessed by using the variance inflation factor (VIF) 

(Dunham and Rieman 1999; Benjamin et al. 2007). This quantity can be calculated for 

each variable, based on the amount any predictor variable is correlated with any other 

variable in the dataset. Threshold VIF values are suggested by Rahel and Jackson (2007), 

among other authors (Dunham and Rieman 1999). Thirdly, multicollinearity may be 

detected as variables are included or removed from the model. If the addition or removal 

of any variables greatly changes the parameter estimate of any other variable, the two are 

likely dependent (Rahel and Jackson 2007).   

In order to select the variables that are most important, and arrive at a simple 

model for interpreting their association with the dependent variable, a traditionally used 

approach is stepwise regression. Though widely used, this sequential method suffers from 

compromised type-1 error rates and artificially inflated R2 values, and is highly criticized 

(Mac Nally 2000; Whittingham et al. 2006). Likewise, a researcher cannot perform 
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regressions on each predictor variable (and combination thereof) independently to find 

the best fitting model, due to multiple comparison issues. These iterative processes of 

searching for a single “best” model by hypothesis testing generally result in overfitted 

models that are tailored to the data (a form of data dredging) (Burnham and Anderson 

2002). Rather than performing multiple hypothesis tests on all possible models, an 

alternative approach is to rank models, based on their weight of evidence. Weight of 

evidence of all models may then be used to arrive at meaningful and unbiased parameter 

estimates and interpret the relative importance of variables. An approach of ranking 

multiple regression models according to this framework is the information-theoretic 

approach (Burnham and Anderson 2002).  

The information-theoretic approach is rooted in information theory, and the 

principle of parsimony. The modeling approach starts with the assumption that every 

model resulting from every combination of variables may be possible, and provide 

valuable information. When considering a dataset with k independent variables, the 

number of possible models (not including interaction terms) is 2k– 1.  A large number of 

such possible competing models (preferably all of them) are analyzed and ranked 

according to their maximized log likelihood, while penalizing models for having 

additional terms due to their artificially inflated fit. Akaike (1973) pioneered this with a 

resulting ranking value referred to now as AIC (Burnham and Anderson 2002). AIC 

provides the most weight to the model with the highest explanatory power, which uses 

the fewest number of terms in the model. In most cases in ecology, AICc should be used, 

which is an extension of the original method to account for small sample size (Burnham 
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and Anderson 2002). This threshold cutoff of sample size is when the n number of 

observations is under 40 times the number of k independent variables 

AICc = AIC + 
2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1

 

Where  

AIC = -2(log-likelihood) + 2k 

Equation A-9 

The model with the lowest AICc value is deemed as the most parsimonious model 

(AICcmin). As the number of variables increases, the overall term becomes larger, hence 

we can see the 2k term penalizes the addition of further included variables; thus the 

formula can be seen as a parsimonious balance between model fit and variable number.  

After AICc values are derived for each model, the Δi value is then calculated, 

which is the difference between the AICc value of the ith of R possible models, and the 

most parsimonious model 

∆𝑖= AICc𝑖 − AICc𝑚𝑖𝑛,     for 𝑖 = 1,2, … ,𝑅. 

Equation A-10 

Models are then ranked based on their Δi values, from smallest to largest for R models. If 

a model has a value that approaches 0, it has relatively high support as being plausible. 

Values that are above approximately four to seven are less plausible, and values above 14 

are implausible, with little empirical support (Burnham et al. 2011). The actual 

probability of each model given the data can be estimated from Δi by its Akaike weight 
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wi, which is a convenient term that assigns a probability to each model so that they sum 

to 1: 

 

𝑤𝑖 =
𝑒(−∆𝑖2 )

∑ 𝑒(−∆𝑟2 )𝑅
𝑟=1

 

Equation A-11 

in a set of r=1,…,R possible models. Akaike weights can be used to calculate parameter 

estimates and associated confidence intervals that are averaged across many models, as 

well as determine which independent variables are the most important. This effectively 

gives the researcher an option to include as many models as they wish, rather than only 

using one model, which discards the useful information that may be present in any other 

plausible model. A commonly used metric to assess whether a model has sufficient 

support, and should be included for model averaging is the 1/8 cutoff recommended by 

Royall (1997); whereby all models that have weights of more than 1/8 (>12.5%) of the 

largest are included (Rich et al. 2003; Benjamin et al. 2007). Model averaged parameter 

estimates (�̂̅�) may be calculated as a weighted mean from the regression coefficients (�̂�) 

of all ith of R selected models 

�̂̅� =  �𝑤𝑖�̂�𝑖

𝑅

𝑖=1

 

Equation A-12 
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For estimating associated unconditional standard errors of parameter estimates, we also 

include a term for the conditional variance, given model gi  

 

Unconditional SE = �𝑤𝑖

𝑅

𝑖=1

�var� (�̂�𝑖|𝑔𝑖) + (�̂�𝑖 − �̂̅�)2 

Equation A-13 

from this value, we may now calculate 95% confidence intervals around the parameter 

estimate of each variable. This can be used to determine the significance of each 

independent variable, while including all of the plausible models that describe its 

relationship with the dependent variable (Rich et al. 2003; Benjamin et al. 2007). 

 The information-theoretic approach has emerged as a commonly used objective 

way to make inferences about the relationships between fish occurrence or abundance, 

with a suite of possible explanatory variables (Harig and Fausch 2002; Rich et al. 2003; 

Ripley et al. 2005; Rieman et al. 2006; Benjamin et al. 2007; Wenger et al. 2011). Its use 

extends far beyond this, and some authors assert that using this approach to model 

alternative hypotheses is a foundation of a new paradigm for empirical science (Burnham 

et al. 2011). 
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Diet and early growth of juvenile bull trout in headwater streams of the Oldman River 

drainage, Alberta. 

 

Abstract 

Ninety-one bull trout from six streams in the Oldman River drainage were sampled for 

diet and back-calculation of size-at-age. Bull trout throughout the study area primarily 

consumed aquatic invertebrates, and only a single case of piscivory was observed from 

83 fish that had food in their stomachs. Back-calculated size-at-age one was negatively 

associated with elevation, and was significantly associated with the year bull trout turned 

one year of age. Fish that turned one in 2007 and 2008 were significantly larger (76.1 mm 

and 73.9 mm, respectively; P < 0.05) than those that turned one in 2009 (67.6 mm). After 

reviewing previous literature, diet and size-at-age patterns in the Oldman River drainage 

were typical of those observed through the core and southern area of the bull trout native 

range. These results suggest that juvenile bull trout in inland headwater streams overlap 

in resource use with other invertebrate consuming stream salmonids, including invasive 

brook trout. Early growth pattern may be heavily dependent on local rearing conditions 

that affect stream productivity and thermal regime. 

 

Introduction 

Bull trout (Salvelinus confluentus) are one of the most widely distributed native 

salmonid species in western North America, once occupying a wide known range in 
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latitude (40°N - 65°N; Behnke 2002; Mochnacz et al. In Press), longitude (133° W – 

111° W; McPhail 2007; Rodtka 2009) and elevation (sea level – 2400 m; Allen et al. 

2010). Given this large native range, bull trout are present in dramatically different 

aquatic environments and diverse ecosystems; however, regardless of where they occur in 

this range, all bull trout must reproduce in cold, second to fourth order headwater streams 

due to their specialized spawning requirements (McPhail and Baxter 1996; Baxter and 

Hauer 2000). Migratory adults may occupy downstream areas in rivers, lakes, and 

estuaries, but headwater streams serve as critical rearing areas for the first few years of 

life. Stream rearing fish have higher survival to adulthood than fish that migrate early in 

life, despite the fact that early migrants may be more numerous (McPhail and Murray 

1979; Fraley and Shepard 1989; Ratliff 1992; Stelfox 1997; Downs et al. 2006). In this 

early stage of life, bull trout are an integral part of headwater stream food webs, and their 

growth trajectories may be influenced by their trophic position and the stream 

environment.  

While adult bull trout ecology is relatively well studied, significant gaps in 

knowledge are present in juvenile ecology. Most recent work to this end has been 

conducted on understanding patterns of juvenile habitat use and movement (Homel and 

Budy 2008; Al-Chokhachy et al. 2010). By comparison, studies on some aspects of basic 

ecology, including size-at-age, growth and food web roles are difficult to research from 

the literature. Most information can be found in reports, theses and conference 

proceedings from local scale studies conducted between the late 1970s and the mid-

1990s. Given the wide geographic range over which bull trout occur, and difficult access 

to such limited circulation documents, it is difficult to assess general patterns of juvenile 
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ecology throughout the species’ range. Clearly, such knowledge is important for 

determining trends in growth and the role of juvenile bull trout in headwater stream food 

webs. 

As adults, bull trout are generally recognized as piscivores where sufficient 

productivity can support such a trophic position (McPhail and Baxter 1996). Reviews on 

bull trout biology highlight that the shift to piscivory in these populations begins 

sometime between 100 and 200 mm in length (Pratt 1992; McPhail and Baxter 1996; 

Stewart et al. 2007); however, the evidence for this in headwater streams appears to be 

lacking, with few studies throughout the species’ range reporting fish as a common diet 

item for juveniles (Shepard et al. 1984; Boag 1987; Hagen and Baxter 1992; Nakano et 

al. 1992; Underwood et al. 1995; Wilhelm et al. 1999; Ben-James 2001; Hagen and 

Taylor 2001; Mochnacz et al. 2004; Stantec 2004). Whether bull trout are opportunistic 

generalists on seasonally available prey (Brown 1994), or rapidly become specialized 

piscivores is essential knowledge when considering their role in food webs of headwater 

streams. This is particularly important when considering potential competitive or 

predatory interactions with introduced species, which are now common throughout the 

bull trout native range (Popowich 2005). Given the large geographic range over which 

bull trout exist and productivity gradients in headwater streams, there may be variation in 

diet and incidence of piscivory. 

In addition to large scale trends in resource use, there may be geographic 

gradients in growth of bull trout occupying areas of different elevations. Warmer 

environments may support higher productivity for growth, longer growing seasons and/or 

shorter incubation periods for eggs and developing alevins, resulting in earlier fry 
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emergence and more rapid growth trajectories. This in turn may promote piscivory, as 

bull trout become increasingly piscivorous with increasing size (Stewart et al. 2007). 

Indeed, bull trout early growth trajectory is variable among populations, and this may be 

attributed to environmental influences over productivity of the rearing environment (Carl 

et al. 1989). Generally, growth should be slower and fry emergence later with increasing 

elevation and latitude (Parra et al. 2009).  

In this study, the diet and size-at-age patterns of juvenile (75-200 mm) bull trout 

are assessed in sites collected throughout a wide elevation range from several Southern 

Alberta streams, and compared to those documented throughout the species’ range. Given 

that fish community becomes less diverse with increasing elevation, juvenile bull trout 

were expected to be rarely piscivorous in all but the lowest elevation sites. High elevation 

sites were expected to have the smallest size-at-age and lowest elevation sites to have the 

largest size-at-age.  

 

Methods 

Study area  

 Bull trout are one of two salmonine species native to headwater streams of the 

Oldman River drainage (OMR) in Alberta, Canada (Figure A-5). This area supports 

several local populations on the easternmost periphery of the bull trout native range 

(Warnock et al. 2010). Although adult migratory forms are found throughout the drainage 

in low elevation mainstem rivers, second and third order tributary streams are used for 

spawning, provided they contain suitable habitat. These streams are also used by 
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juveniles as critical rearing habitat for the first one to three years of life, during which 

bull trout generally appear to be < 200 mm (Warnock 2008). There are several primary 

spawning and rearing streams in the OMR above the Oldman River Dam (Warnock 

2008), and these span a considerable range of elevation. Spawning areas are found from 

~1400 m to ~1750 m (Gerrand and Watmough 1998; Hurkett et al. 2011), and bull trout 

juveniles are found rearing in tributaries spanning an elevation range between ~1200 m 

(Mill Creek) and ~1800 m (Livingstone River) (Warnock 2008). All bull trout spawning 

streams are relatively cold (Chapter 2), with simple fish communities containing a 

combination of native and introduced salmonid species, including cutthroat 

(Oncorhynchus clarkii), brook (Salvelinus fontinalis) and rainbow (Oncorhynchus 

mykiss) trout. Lower elevation reaches of some streams also contain mountain whitefish 

(Prosopium williamsoni), sculpins (Cottus spp.), suckers (Catostomus spp.) and/or 

longnose dace (Rhinichthys cataractae). 

While a growing body of literature exists on basic bull trout ecology in the OMR 

drainage, like elsewhere throughout the bull trout native range, there is little published 

work on basic juvenile ecology, including their role in food webs.  

 

Fish sampling 

Juvenile bull trout from six spawning and rearing streams were sampled from the 

OMR in July-October of 2009 (Figure A-5). Sampling in Hidden Creek occurred above a 

migratory barrier, which may separate a small resident population. Fish from all sites 

were 75-200mm, in order to not sample young of the year or adult life stages. Previous 
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sampling has shown that bull trout in the OMR fall in between one and three years of age 

for this size range (Warnock 2008; Warnock unpublished data). Sampling was conducted 

by single-pass backpack electrofishing on 150-300 m stretches of stream per site, 

between 09:00 and 17:00. Mill, Lost and Dutch Creek and the Carbondale River 

contained multiple collection sites. Fish were euthanized in a lethal dose of clove oil, and 

individually packaged and frozen immediately for future dissection in the laboratory. 

 

Diet analysis 

 Stomach contents were retrieved from frozen fish, and each individual food item 

was counted and identified into major groupings, including fish, terrestrial insects and 

aquatic invertebrates by taxonomic order. Stomachs were flushed with water to ensure all 

food items were counted. Larval aquatic invertebrates were further identified to family 

using Clifford (1991). Invertebrates were only counted if a full head was intact. Particular 

attention was devoted to identifying fish skeletal structures if present, as these are the 

least easily digested structures that can successfully identify cases of piscivory.   

 The frequency of occurrence for each major food resource was calculated (Chipps 

and Garvey 2007) based on the number of fish containing a food item of an aquatic 

invertebrate order, terrestrial insect or fish (Ji), divided by the total number of fish 

containing food in their stomachs (P): 

 
𝐽𝑖
𝑃

 

Equation A-14 
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To further describe the diet of aquatic invertebrates to a finer taxonomic level, the 

percent of food items by number within each aquatic invertebrate order was calculated: 

100% 
𝑁𝑓
𝑁𝑜

 

Equation A-15 

Where Nf is the total number of food items for each family within an order and No is the 

total number of food items in the taxonomic order (Chipps and Garvey 2007). 

 

Comparing size-at-age among populations 

 All lethally sampled bull trout had both right and left sagittal otoliths extracted, 

which were subsequently cleaned and prepared for aging. The otolith displaying the 

clearest annuli was chosen for aging. With few exceptions, most fish had otoliths that 

displayed clear annuli, and these were aged fully intact under a compound microscope 

with reflected light (Figure A-6). Ethanol immersion was used to bring out the contrast 

between light and dark bands on otoliths. Unreadable otoliths were usually caused by 

extensive vaterite deposition or broken sections, and these were not used for further 

analysis. Otoliths were photographed under the microscope lens and aged in the graphics 

editing program Adobe Acrobat Professional® 9 (Adobe Systems Inc. 2010). The editing 

program was used to gauge radius length of the whole otolith, as well as the length to the 
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end of the first annulus (winter growth period). Bull trout are fall spawners and emerge 

from gravels in the spring before high summer flow period. The deposition of the first 

annulus in this species thus corresponds closely to a full year of growth. This can be used 

to calculate the size of bull trout starting from their hatch time in the spring of the 

previous year. 

The Fraser-Lee formula (Isely and Grabowski 2007) was employed to back-

calculate the size-at-age (La) for all fish sampled from the measured radius at the end of 

each otolith annulus (Oa): 

𝐿𝑎 =  
𝐿𝑐 − 𝛼
𝑂𝑐

𝑂𝑎 + 𝛼 

Equation A-16 

Where Lc and Oc are the length of the fish and whole otolith at the time of capture, 

repectively, and α is a correction factor derived from the intercept of a regression 

predicting Lc from Oc from the whole dataset (Isely and Grabowski 2007). Size-at-age 

was described for each of the back-calculated ages for all streams sampled. Literature 

values of back-calculated size-at-age were researched for comparative purposes with 

other studies conducted throughout the species’ range. Since size was back-calculated to 

the time of annulus formation, size-at-age was not confounded by capture date. 

 An analysis of covariance (ANCOVA) was built to determine the factors that may 

be associated with size-at-age one from the pooled dataset. Emergence time, growing 

season and stream productivity are the main pressures that were assumed to control size-

at-age one; therefore a model was built based on two predictor variables that would 
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theoretically be a good surrogate to represent the variability caused by these pressures. 

The covariate used was elevation at the site of capture, since elevation is highly 

correlated with stream temperature (Rieman et al. 2006) and hence may drive the time of 

fry emergence, the length of the growing season and the productivity of the stream. 

Although a similar effect may be expected with latitude, this varied less than a degree 

through the study area and was not assumed to cause large scale differences among sites. 

Fish that were captured at higher elevations were predicted to be smaller at age one. In 

addition to elevation, there may be significant differences in size-at-age between each 

unique cohort. Bull trout that were different ages were categorized into the year they 

turned age one, and this was used as a second predictor variable. For example, fish that 

were caught in 2009 that were aged as one, turned one year of age in the same year, while 

fish that were aged as three turned one year of age in 2007. 

 In order to compare interannual differences in size-at-age one with corresponding 

large trends in climate, time series temperature data was collected from five 

meteorological stations run by the Government of Alberta (ARD 2012). These stations 

spanned a similar elevation range to the range tested in this study and were in close 

geographical proximity to the sites sampled (Figure A-5). Mean daily air temperature was 

taken from each station for the period spanning the vernal equinox of the previous year 

(March 20 for 2006-2009 period), to the day before the vernal equinox of the following 

year. This period was chosen to roughly conform to the full possible growing season of 

bull trout, and capture the mean temperature for each growing season for sampled bull 

trout. Data was screened for artifacts or processing errors by examining outliers from 

minimum and maximum daily temperature values throughout each time series (<-40°C or 
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>30°C). The mean annual temperature from all five sites were averaged, and plotted with 

marginal means of size-at-age one for each year (as estimated by the general linear model 

described above). All statistical analyses were conducted in JMP™ 8.0 (SAS Institute 

Inc. 2008) and R 2.15 (R Foundation for Statistical Computing 2012).  

 

Results 

Of the 91 fish caught, 85 were successfully aged (Table A-8). Sixteen were three 

year-olds (turned one in 2007), 34 were two year-olds (turned one in 2008) and 35 were 

one year-olds (turned one in 2009). Of the 91 fish caught, 8 had empty stomachs and 

were removed from further diet analysis.   

 

Diet 

Bull trout stomachs contained four orders of aquatic insects, terrestrial insects and 

fish. The food resource that was the most frequently encountered was Ephemeroptera, 

occurring in the majority of stomachs (Figure A-7). Fish was the least commonly 

encountered food resource, as there was only one case of piscivory. This fish was a two 

year old (146 mm) caught in the lowest elevation site in the study area (1375 m, Mill 

Creek; Figure A-5) and was not exclusively piscivorous, as aquatic invertebrates were 

also found in its stomach. 
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 The four aquatic insect orders encountered included Plecoptera, Tricoptera, 

Ephemeroptera and Diptera (Tipulidae only). Within these orders, some families were 

more commonly ingested than others (Figure A-8). 

 

Size-at-age 

 Back-calculated sizes at each age showed relatively linear growth trajectory in 

OMR streams throughout the first three years of life (Figure A-9). Mean size-at-age in 

the populations of the study area spanned a range that was similar to those encountered in 

other studies that have back-calculated bull trout size-at-age from aging structures (Table 

A-9).  

 The overall model predicting size-at-age one from elevation and year was 

significant (Figure A-10; R2 = 0.50 F3,81 = 26.7, P < 0.0001). An interaction term 

between year and elevation was not significant (P = 0.55) and was dropped from the 

model. Elevation was negatively associated with size-at-age (P < 0.001) and year was 

significant (P < 0.01). A Tukey post-hoc test (α = 0.05) on the model-estimated marginal 

means of the year variable revealed that fish that turned one in 2007 and 2008 were 

significantly larger (76.1 mm and 73.9 mm, respectively) than fish that turned one in 

2009 (67.6 mm). These marginal means and associated standard errors were plotted with 

the mean air temperatures encountered in the corresponding years (Figure A-11). The 

warmest year corresponded with the largest size of one year old bull trout, and the coldest 

year corresponded with the smallest size.  
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Discussion  

 As predicted, bull trout fed primarily on aquatic invertebrates, although piscivory 

was less common than expected (one out of 83 cases where stomachs were not empty), 

especially at lower elevation sites. Reviews of bull trout biology suggest that bull trout, 

given sufficient forage, begin to shift to a piscivorous diet as they become larger than 110 

mm and move downstream to more productive environments (Pratt 1992; McPhail and 

Baxter 1996; Stewart et al. 2007). Although some studies report juvenile bull trout as 

being primarily piscivorous (Horner 1978; Goetz 1997), upon reviewing all available 

studies conducted on bull trout diets, cases of piscivory in this size and age class are 

absent or rare (Shepard et al. 1984; Boag 1987; Hagen and Baxter 1992; Nakano et al. 

1992; Underwood et al. 1995; Wilhelm et al. 1999; Ben-James 2001; Hagen and Taylor 

2001; Mochnacz et al. 2004; Stantec 2004). Therefore, the shift to piscivory for most 

populations likely occurs when juveniles outmigrate from rearing streams and/or when 

they attain larger sizes and subadulthood (> 200 mm). Non-migratory populations often 

never make this shift due to a lack of fish forage in spawning streams, and migratory fish 

may still continue to supplement their diet into subadulthood with aquatic invertebrates 

and other available forage (Boag 1987). This was found to be the case in two 

independently conducted studies of adfluvial populations, where a shift to a 

predominantly piscivorous diet occurred well into adulthood, at over 500 mm in both 

cases (Connor et al. 1997; Guy et al. 2011).  Piscivory in juveniles may be more common 

in some headwater streams of the bull trout range that have more abundant food resources 

and seasonally available fish forage. This supports the notion that juvenile bull trout are 

opportunistic foragers that will exploit any abundant food resource available that is 
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within their gape limit (Brown 1994; Stewart et al. 2007). For example, juvenile bull 

trout in coastal headwater systems with stream rearing salmon parr may have greater 

seasonal piscivory rates than in inland streams, where juvenile fish production is not 

supplemented by marine productivity. More thorough studies throughout the bull trout 

range are needed to determine the role of juvenile bull trout in headwater stream 

foodwebs. Modern foodweb analysis techniques using stable isotope analysis should 

serve particularly useful for assessing this (Vander Zanden and Rasmussen 1999; 

Popowich 2005; Meeuwig et al. 2011). 

 Cold inland headwater stream foodwebs are generally very simple, and limited 

resources are available for fish in these relatively unproductive environments. Given that 

most populations of juvenile bull trout are secondary consumers that feed primarily on 

aquatic invertebrates, they are likely to overlap in resource use with co-occurring non-

piscivorous foragers. Bull trout in headwater streams of inland drainages do not usually 

co-occur with diverse native communities of salmonid fishes; however, introductions of 

exotic species have greatly increased encounters between juvenile bull trout and a much 

more diverse fish community. The most commonly occurring non-native salmonid 

species that is naturalized throughout the range of historic bull trout spawning and rearing 

streams is the brook trout (Chapter 1). Additional species introduced include rainbow 

trout, cutthroat trout and brown trout, but these are less commonly implicated in 

ecological niche overlap with bull trout (Nakano et al. 1998). Streams in the OMR in 

which this may occur between bull trout and brook trout include Mill Creek and Beaver 

Mines Creek. Brook trout have been present in these streams for at least 60 years as of 

the time of this study and have not spread further thus far, although no significant barriers 
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are present that would preclude the further spread of brook trout further throughout the 

Castle River drainage (Figure A-5). Brook trout are widely introduced through every 

other major river drainage in the bull trout native range in Alberta. It is a reasonable 

assumption that all populations of these two species in Alberta overlap in food resource 

use where they co-occur, at least during the juvenile stage. Despite similar resource use, 

co-occurring species may have divergent benthic and drift foraging behaviours which 

lead to capture of distinct prey types, leading to potential co-existence (Nakano et al 

1999). More detailed studies are needed to quantify the actual diet overlap and foraging 

mode between the two species in the field (sensu Hagen and Taylor 2001); although 

stable isotope analysis shows indirect evidence for this, as there is overlap in trophic 

position between co-occurring stream rearing juvenile bull trout and exotic brook trout in 

the Elbow River drainage, Alberta (Popowich 2005). 

Bull trout size-at-age indicated that juvenile growth during the rearing phase is 

relatively constant through the first few years of life (Carl et al. 1989). The growth spurt 

seen in some populations by age three was not seen, further supporting the lack of a 

trophic shift to piscivory (Stewart 2007). Many studies report size-at-age or growth of 

juvenile bull trout, but these are usually based on size at the time of capture, with age 

assigned by length-frequency histograms or aging structures (Dietz 1971; Sterling 1978; 

McPhail and Murray 1979; Boag 1987; Carl et al. 1989; Hagen and Baxter 1992; Ratliff 

1992; Slaney 1992; Connor et al. 1997; Mogen and Kaeding 2005; Allen et al. 2010). 

Fewer studies that have back-calculated size at the time of annulus formation were 

available for comparison to this study (Table A-9). Although the aging structures used 

and methods of back-calculation were not always consistent between studies, bull trout 
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from the OMR fell in between the extremes of mean size reported for one year olds, 

depending on the stream they were sampled from. Local-scale influences over size-at-age 

between locations within major watersheds (e.g., elevation, stream productivity etc.) are 

therefore likely more important influences than large-scale influences between major 

watersheds (e.g., latitude, surficial geology etc.). Similar results were found in other 

studies, where bull trout size-at-age and early growth trajectory is markedly different 

between streams within the same watershed (Fraley and Shepard 1989), and the streams 

spanning the lowest elevation range have the most rapid growth trajectories (Underwood 

et al. 1995). 

The ANCOVA indicated that bull trout were observed to be smaller at age one as 

elevation increased. This supports previous work that has found smaller sizes of bull trout 

and other salmonids early in life at higher elevations and less productive environments 

(Carl et al. 1989; Underwood et al. 1995; Parra et al. 2009). At the earliest stages of 

development, hatch time and alevin development and size is thermally dependent 

(Ojanguren and Brana 2003). In the OMR, the lowest elevation areas in which bull trout 

spawn may have earlier emergence times, resulting in larger size-at-age by the time of 

their first annulus formation. Larger size-at-age could also be observed in lower, warmer 

sites due to longer and more productive growing seasons and/or thermal dependency of 

metabolic and feeding rates. Of course, there may be an upper thermal limit in which bull 

trout development is inhibited, leading to a decline in growth in some streams that 

approach the upper thermal tolerances for developing bull trout (Parra et al. 2012). This 

may explain the opposite trend seen in Shepard et al. (1984), in which cooler streams 

were observed to have the fastest bull trout growth rates. Throughout the range of the 
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species, latitude may also play an important role in determining early bull trout growth 

trajectory. There have been no attempts thus far to generalize the influence of latitude on 

bull trout growth, but a similar phenomenon could be expected to occur as with elevation. 

Further variability in the ANCOVA could be explained by the year in which bull 

trout turned age one, as bull trout that turned one in 2007 and 2008 were larger than bull 

trout that turned one in 2009. Interannual variability in size-at-age may be explained by 

several hypotheses. Since the sampling occurred in a single season, variation in growth 

among years may be attributed to differences associated with each unique cohort. For 

example, 2009 may have the smallest observed size-at-age because of intra or intercohort 

interactions causing more intense situations of intraspecific competition in this season, 

thus limiting growth (Paul et al. 2000; Parra et al. 2012). If population estimate data were 

available for each year, this could be included in the model as an additional covariate. 

Alternatively, fish that do remain in the stream longer may have more rapid growth than 

younger fish, as they may be more territorial foragers; thus, the fact that three year olds 

were larger at age one may simply reflect the fact that fish that rear in the stream for the 

longest period of residency are the most territorial with the fastest growth rates 

(Hutchison and Iwata 1997; but see Morinville and Rasmussen 2003 and Chapter 4). 

Given the strong qualitative association between temperature and size-at-age (Figure A-

11), I consider inter-annual temperature variation to be the most likely explanation for the 

variability observed between years. The fact that bull trout were the largest after the 

warmest growing season may indicate an indirect influence via the same thermally 

coupled mechanism as elevation. A multiple year study ideally using capture-mark-

recapture to measure growth would adequately test this hypothesis. 
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 The year in which bull trout turned age one, as well as the elevation of the 

collection site predicted bull trout size-at-age; nevertheless, there was a large amount of 

variability that could not be accounted for by the ANCOVA. Elevation was used as a 

surrogate in this study to explain differences in the environmental factors (i.e., stream 

thermal regime, productivity, etc.) considered most likely to influence bull trout size after 

their first year. Although phenotypic variation is bound to introduce model variability, 

other environmental factors, including land-use practices, aspect, stream hydrology, inter 

and intra-specific competition may also directly or indirectly influence bull trout size-at-

age, and are no doubt important influences over bull trout emergence time and growth. 

Another important consideration that cannot be accounted for in the model is the fact that 

juvenile bull trout move (Homel and Budy 2008; Warnock 2008), and back-calculated 

size may be a record of growth from an alternate area. Fish that spent an earlier stage of 

life rearing in an upstream source may underestimate the size at age in lower elevation 

reaches (or vice-versa). Juvenile fish that move among tributaries (Warnock et al. 2010) 

would likewise be poor representatives of the stream/site in which they were captured. 

Studies using stream enclosures and capture-mark-recapture may adequately control for 

this. 

 When compared to previous studies conducted at the core and southern range of 

the bull trout, juveniles rearing in streams of the OMR have fairly typical non-piscivorous 

food web roles and early growth patterns. Size-at-age appears to be negatively associated 

with the local elevation of the rearing site at the time of capture. Studies on the coastal 

and northern periphery of the bull trout range are lacking, and particular attention should 

be paid to these populations in the future, as the ecology of these populations is poorly 
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documented. This is particularly important given the different food web structure, and 

physical stream environment in these areas compared with those in the core and eastern 

periphery of the inland bull trout range.  
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Tables 

 

Table A-1: Example dataset for logistic regression, examining the effect of both stream 

temperature and mining impact on the presence of an invertebrate species 

Elevation 
(m) 

Number of sites 
where present, 

controls 

Number of sites 
where present, 

impacted 

Number of sites 
where absent, 

controls 

Number of sites 
where absent, 

impacted 

100 0 0 5 5 
200 1 0 4 5 
300 2 1 3 4 
400 3 1 2 4 
500 3 1 2 4 
600 4 2 1 3 
700 4 2 1 3 
800 5 3 0 2 
900 5 3 0 2 

1000 5 5 0 0 
 

 

Table A-2: Parameter estimates and errors from a logistic regression examining the 

relationship between the presence of an invertebrate species and both elevation and 

mining activity. 

Term   Estimate Std Error 
Intercept  -1.1719202 0.5882104 
Mining impact  -0.9787228 0.2971716 
Elevation  0.00213261 0.0009984 
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Table A-3: Proportions of an organism that died along a realistic gradient of contaminant 

water concentrations, with a linear relationship. 

Proportion 
died 

Water 
concentration  

of contaminant 
(mg/L) 

0.3 3 
0.3 3.4 

0.34 3.5 
0.38 4 
0.4 4.1 

0.45 3.9 
0.46 4.8 
0.49 5 
0.5 4.9 

0.52 5 
0.53 5.3 
0.54 5.5 
0.57 5.9 
0.59 6 
0.62 6.3 
0.64 6.1 
0.66 6.5 
0.67 6.2 
0.68 7.1 
0.72 7 
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Table A-4: Proportions, and logit-transformed proportions of an organism that died along 

a gradient of contaminant water concentrations, with a sigmoidal relationship. 

Proportion 
died 

Water 
concentration  

of contaminant 
(mg/L) 

logit-
transformed 
proportion 

died 
0.01 3 -4.60 
0.03 3.4 -3.48 
0.02 3.5 -3.89 
0.04 4 -3.18 
0.06 4.1 -2.75 
0.04 3.9 -3.18 
0.36 4.8 -0.58 
0.5 5 0.00 

0.45 4.9 -0.20 
0.51 5 0.04 
0.7 5.3 0.85 

0.85 5.5 1.73 
0.95 5.9 2.94 
0.96 6 3.18 
0.97 6.3 3.48 
0.96 6.1 3.18 
0.98 6.5 3.89 
0.96 6.2 3.18 
0.99 7.1 4.60 
0.99 7 4.60 
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Table A-5: Locations and characteristics of all sites sampled for field study of brook trout invasiveness into bull trout streams 

throughout the Alberta Rockies. If caught, species listed for the purposes of this study include bull trout (BLTR), brook trout (BKTR), 

rainbow trout (RNTR) and brown trout (BNTR). Of the 124 sites listed, 44 were not included in the analysis (sites listed as N/A), most 

often because temperature data was not successfully collected, or there was an insufficient number of fish caught. Where included in 

the analysis, sites were categorically classified as high (H) or low (L) invasiveness. For a spatial representation of these sites, refer to 

Figure 2-1. 

Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Baril Creek Bow Ba-1 2010 11 668071 5581285 1570 NO FISH CAUGHT  N/A1 

Beaver Mines Creek Oldman Bm-1 2011 11 701138 5478777 1320 BLTR, BKTR, RNTR 7.69 H 

Beaver Mines Creek Oldman Bm-2 2011 11 699390 5476963 1351 BKTR, RNTR 13.17 H 

Blakiston Creek Oldman Bl-2 2009 12 289577 5440128 1316 BLTR, BKTR  N/A2,3 

Blakiston Creek Oldman Bl-3 2009 12 286966 5442760 1361 BLTR, BKTR 9.24 N/A1,2 

Blakiston Creek Oldman Bl-4 2009 12 285080 5442960 1381 BLTR  N/A1,2 

Blakiston Creek Oldman Bl-5 2009 12 282578 5443422 1413 BLTR 8.48 L 

Blakiston Creek Oldman Bl-6 2009 11 716648 5445780 1478 BLTR 7.15 L 

Bragg Creek Bow Br-1 2009 11 669742 5647113 1331 BLTR, BKTR, RNTR, BNTR 13.68 H 

Bragg Creek Bow Br-2 2009 11 667024 5647003 1347 BKTR, RNTR, BNTR  N/A2 

Bragg Creek Bow Br-3 2009 11 664867 5647288 1369 BKTR  N/A2 

Bragg Creek Bow Br-4 2009 11 662332 5646640 1410 BKTR  N/A2 

Bragg Creek Bow Br-5 2009 11 660282 5646650 1430 BKTR 11.07 H 

Bragg Creek Bow Br-6 2009 11 658092 5648024 1468 BKTR  N/A1,2 
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Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Brown Creek North Saskatchewan Bn-1 2010 11 533250 5845084 1380 BLTR 9.79 L 

Brown Creek North Saskatchewan Bn-2 2010 11 529583 5844361 1430 BLTR 9.1 L 

Cat Creek Bow Ct-1 2010 11 662571 5586555 1579 BLTR, BKTR 7.56 L 

Chungo Creek North Saskatchewan Ch-1 2010 11 542173 5840965 1315 BLTR  N/A2 

Chungo Creek North Saskatchewan Ch-2 2010 11 535800 5838409 1458 BLTR 9.39 L 

Colt Creek North Saskatchewan Co-1 2010 11 566964 5826517 1389 BLTR, BKTR 7.68 N/A3 

Colt Creek North Saskatchewan Co-2 2010 11 565706 5824513 1426 BLTR, BKTR 7.82 H 

Colt Creek North Saskatchewan Co-3 2010 11 564961 5822054 1458 BKTR 7.25 H 

Cutoff Creek North Saskatchewan Cu-1 2010 11 605750 5762485 1387 BLTR, BKTR, BNTR 8.18 L 

Cutoff Creek North Saskatchewan Cu-2 2010 11 598433 5761660 1442 BLTR, BKTR, BNTR 8.98 L 

Cutoff Creek North Saskatchewan Cu-3 2010 11 594842 5759309 1477 BLTR, BKTR, BNTR 6.28 N/A3 

Deerlick Creek Athabasca De-1 2011 11 483665 5889539 1274 BKTR, RNTR 9.96 H 

Deerlick Creek Athabasca De-2 2011 11 483526 5885913 1342 BKTR, RNTR 8.57 N/A1 

Dry Creek North Saskatchewan Dy-1 2011 11 613870 5789740 1196 BLTR, BKTR 10.83 H 

Dry Creek North Saskatchewan Dy-2 2011 11 608484 5786756 1296 BLTR, BKTR 8.05 H 

Dry Creek North Saskatchewan Dy-3 2011 11 606840 5784403 1351 BKTR 7.8 H 

Drywood Creek Oldman Dr-2 2009 12 291067 5464951 1311 RNTR 13.94 N/A1 

Drywood Creek Oldman Dr-3 2009 12 288171 5464669 1372 RNTR  N/A1,2 

Drywood Creek Oldman Dr-4 2009 12 283854 5464549 1426 BLTR, BKTR 12.07 H 

Drywood Creek Oldman Dr-5 2009 11 717734 5462713 1492 BKTR 8.55 H 

Drywood Creek Oldman Dr-6 2009 11 714825 5459925 1565 BLTR, BKTR 9.37 L 

Elbow River Bow Eb-3 2011 11 643029 5615613 1970 BLTR 5.87 L 

Elbow River seepage channel Bow ESC 2010 11 654538 5631837 1577 BLTR, BKTR 7.24 H 

Elk Creek North Saskatchewan El-1 2010 11 590022 5771038 1518 BLTR, BNTR 10.94 L 

Elk Creek North Saskatchewan El-2 2010 11 585736 5769379 1583 BLTR, BNTR 10.42 L 
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Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Elk Creek North Saskatchewan El-3 2010 11 582525 5767988 1611 BLTR, BKTR, BNTR 8.09 L 

Etherington Creek Bow Et-1 2010 11 667201 5583286 1520 BLTR, BKTR, RNTR 7.86 L 

Eunice Creek Athabasca Eu-1 2011 11 484496 5889496 1247 NO FISH CAUGHT 5.85 N/A1 

Eunice Creek Athabasca Eu-2 2011 11 485356 5884867 1395 NO FISH CAUGHT 8.17 N/A1 

Ford Creek Bow Fo-1 2010 11 651839 5630418 1606 BLTR, BKTR 7.59 L 

Gladstone Creek Oldman Gl-1 2009 11 704680 5475565 1353 RNTR  N/A1,2 

Gonika Creek North Saskatchewan Go-1 2010 11 552425 5808758 1356 BKTR 8.03 H 

Hansen Creek North Saskatchewan Hn-1 2010 11 544114 5836301 1371 BLTR, BKTR 8.8 H 

Haven Creek North Saskatchewan Ha-1 2010 11 553884 5808367 1318 BLTR, BKTR 9.3 H 

Haven Creek North Saskatchewan Ha-2 2010 11 554002 5809260 1325 BLTR, BKTR 10.57 H 

James River Red Deer Jr-1 2011 11 615494 5735861 1490 BKTR 8.59 H 

Johnson Creek Bow Jo-1 2011 11 631858 5694547 1586 BLTR, BKTR 9.37 H 

Jumpingpound Creek Bow Ju-1 2011 11 644664 5651629 1621 BKTR 9.16 H 

Jumpingpound Creek Bow Ju-2 2011 11 643637 5647260 1730 BKTR 7.02 N/A1 

Jumpingpound Creek Bow Ju-ACA 2011 11 657376 5656724 1394 BKTR, RNTR 9.85 N/A2 

Leseur Creek Bow Le-1 2011 11 641746 5681730 1363 BKTR 13.36 H 

Leseur Creek Bow Le-2 2011 11 638077 5682636 1462 BKTR 13.34 H 

Lick Creek North Saskatchewan Lc-1 2011 11 604494 5788019 1341 BLTR, BKTR 6.87 H 

Limestone Creek North Saskatchewan Lm-1 2011 11 605083 5756421 1475 BLTR, BKTR 10.33 H 

Limestone Creek North Saskatchewan Lm-2 2011 11 605533 5751638 1543 BLTR, BKTR 9.29 H 

Little Elbow River Bow Leb-1 2011 11 647269 5629163 1680 BLTR 6.47 L 

Little Elbow River Bow Leb-2 2011 11 644260 5627311 1750 BLTR  N/A2 

Little Elbow River Bow Leb-3 2011 11 641707 5625357 1803 BLTR  N/A2 

Little Red Deer River Red Deer LRD-1 2011 11 643491 5700667 1388 BKTR 11.12 H 

Little Red Deer River Red Deer LRD-2 2011 11 639105 5701362 1454 BKTR 12.41 H 
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Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Lookout Creek North Saskatchewan Lk-1 2010 11 546289 5829321 1359 BKTR 10.95 H 

Lookout Creek North Saskatchewan Lk-2 2010 11 547750 5824634 1402 BKTR 10.72 H 

Margaret Creek Bow Ma-1 2011 11 630891 5696248 1588 BLTR, BKTR 9.12 H 

Meadow Creek Bow Me-1 2011 11 638654 5693371 1463 BKTR 10.49 H 

Meadow Creek Bow Me-2 2011 11 634090 5692057 1532 BLTR, BKTR 10.05 H 

Mill Creek Oldman Mi-1 2009 11 707604 5483035 1203 BLTR, RNTR 14.59 L 

Mill Creek Oldman Mi-3 2009 11 707529 5474437 1375 BLTR, RNTR  N/A2 

Mill Creek Oldman Mi-4 2009 11 705215 5472669 1419 BLTR, BKTR, RNTR 9.14 L 

Mill Creek Oldman Mi-5 2009 11 705238 5469933 1473 BLTR, BKTR 7.22 L 

Mill Creek Oldman Mi-6 2009 11 704394 5465588 1544 NO FISH CAUGHT  N/A1,2 

Nordegg River North Saskatchewan No-1 2010 11 558514 5832930 1271 BLTR, BKTR 8.85 L 

Nordegg River North Saskatchewan No-2 2010 11 556550 5829022 1323 BLTR 8.86 L 

North Burnt Timber Creek Red Deer NBT-3 2011 11 613779 5710730 1688 BLTR 6.33 L 

North Burnt Timber Creek Red Deer NBT-4 2011 11 610882 5709046 1724 BLTR  N/A2 

North Drywood Creek Oldman NDr-1 2010 11 712298 5462003 1600 BKTR 8.15 N/A4 

Pincher Creek Oldman Pi-1 2009 11 712691 5465936 1543 BLTR, RNTR 9.31 N/A4 

Prairie Creek Bow Pr-1 2010 11 655566 5637349 1516 BKTR 9.52 H 

Prairie Creek Bow Pr-2 2010 11 648369 5638371 1690 BLTR 4.42 L 

Rapid Creek North Saskatchewan Ra-2 2010 11 571236 5829934 1322 BKTR 5.73 H 

Rough Creek North Saskatchewan Ro-1 2010 11 593906 5798554 1278 BLTR, BKTR, BNTR 9.86 N/A3 

Rough Creek North Saskatchewan Ro-2 2010 11 592034 5797508 1333 BLTR, BKTR, BNTR 9.08 L 

Rough Creek North Saskatchewan Ro-3 2010 11 588265 5797136 1400 BLTR, BKTR 8.08 L 

Scalp Creek Red Deer Sc-1 2011 11 598990 5732936 1593 BLTR, BKTR 8.17 L 

Sheep Creek Red Deer Sh-1 2011 11 610041 5718429 1560 BLTR  N/A2 

Sheep Creek Red Deer Sh-2 2011 11 610556 5716402 1620 BLTR 7.58 L 
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Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Sheep Creek Red Deer Sh-3 2011 11 609688 5714664 1664 BLTR  N/A2 

Spionkop Creek Oldman Sp-1 2009 11 718009 5459423 1506 BLTR, BKTR, RNTR 10.93 L 

Storm Creek Bow St-1 2010 11 652821 5598159 1762 BLTR 8.53 L 

Storm Creek Bow St-2 2010 11 647974 5598390 1873 BLTR 6.84 L 

Storm Creek Bow St-3 2010 11 645348 5600770 1956 BLTR 5.84 L 

Sturrock Creek North Saskatchewan Sk-1 2010 11 545259 5821171 1472 BLTR, BKTR 9 H 

Swale Creek North Saskatchewan Sw-1 2010 11 565412 5825440 1424 BLTR, BKTR 6.52 L 

Swale Creek North Saskatchewan Sw-2 2010 11 560894 5825222 1518 NO FISH CAUGHT 4.26 N/A1 

Trout Creek North Saskatchewan Tr-1 2010 11 593569 5805919 1265 BNTR 9.75 N/A1 

Trout Creek North Saskatchewan Tr-2 2010 11 591319 5806117 1247 BNTR 8.9 N/A1 

Unnamed tributary to Elk Creek North Saskatchewan El-t 2010 11 582276 5768152 1607 BLTR, BKTR 9.37 N/A3 

Unnamed tributary to the Brazeau River North Saskatchewan Un-1 2010 11 548792 5454888 1137 BLTR 12.31 N/A1 

Unnamed tributary to Waiparous Creek Bow Wpt-1 2011 11 623121 5694925 1750 BLTR 7.38 L 

Unnamed tributary to Willson Creek Red Deer Wst-1 2011 11 610773 5744716 1527 BLTR, BKTR 10.72 L 

Waiparous Creek Bow Wp-1 2011 11 624106 5694816 1717 BLTR  N/A2 

Wampus Creek Athabasca Wm-1 2011 11 482495 5889773 1271 BKTR, RNTR 9.14 H 

Wampus Creek Athabasca Wm-2 2011 11 479209 5885225 1374 BKTR, RNTR 10.37 N/A2 

Wawa Creek North Saskatchewan Wa-1 2010 11 559517 5839819 1179 NO FISH CAUGHT 11.3 N/A1 

Whitney Creek Oldman Wh-1 2009 11 706468 5470175 1460 BLTR, RNTR 10.66 L 

Wigwam Creek Red Deer Wg-1 2011 11 617585 5721035 1523 BKTR 9.65 H 

Wildhorse Creek Red Deer Wd-1 2011 11 614189 5724378 1497 BLTR, BKTR 9.61 H 

Wildhorse Creek Red Deer Wd-2 2011 11 613105 5727587 1626 BLTR, BKTR  N/A2 

Willow Creek Oldman Wi-1 2009 11 698956 5564193 1302 NO FISH CAUGHT  N/A1,2 

Willow Creek Oldman Wi-2 2009 11 693517 5565266 1376 RNTR  N/A1,2 

Willow Creek Oldman Wi-3 2009 11 691063 5567785 1416 BKTR, RNTR 12.48 H 
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Stream Watershed Site 
code 

Year 
sampled 

UTM 
Zone UTM E UTM N Elevation 

(m) 
Species present (BLTR, 

BKTR, RNTR, BNTR) 

Daily 
temp, 
Aug 
(°C) 

High 
or Low 
BKTR 

Willow Creek Oldman Wi-4 2009 11 687401 5569466 1497 BKTR 10.16 H 

Willow Creek Oldman Wi-5 2009 11 684571 5571787 1546 BKTR 9.1 H 

Willson Creek Red Deer Ws-1 2011 11 613616 5743096 1478 BLTR, BKTR  N/A2 

Willson Creek Red Deer Ws-2 2011 11 611431 5745499 1518 BLTR, BKTR 10.61 N/A3 

Willson Creek Red Deer Ws-3 2011 11 610559 5747555 1578 BKTR 7.23 H 

Yara Creek Red Deer Yr-1 2011 11 618473 5726549 1514 BKTR 9.29 H 

Yarrow Creek Oldman Ya-2 2009 12 291978 5462825 1304 BLTR, BKTR, RNTR 13.68 N/A1 

Yarrow Creek Oldman Ya-5 2009 12 282020 5453480 1546 BLTR, RNTR 10.09 L 

Yarrow Creek Oldman Ya-3 2010 12 288870 5461562 1357 BLTR, BKTR, RNTR  N/A2 

Yarrow Creek Oldman Ya-4 2010 12 284610 5457748 1448 BLTR, BKTR, RNTR 10.78 H 
1 Site could not be included in analysis of Chapter 2 because an insufficient number of bull trout and/or brook trout were caught 
2 Site could not be included in analysis of Chapter 2 because temperature data was not successfully collected 
3 Site could not be included in analysis of Chapter 2 because the fish community of bull trout and brook trout was mixed 
4 Site could not be included in analysis of Chapter 2 because the site was deemed inappropriate due to failure to meet suitable site 
criteria outlined in the methods of Chapter 2  
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Table A-6: Raw data of night and daytime averaged between-species competitions 

through four treatments of varying fish densities (H = high density, L = low density) and 

habitat types (SP = simple pool, CP = complex pool, CR = complex riffle). 

Species Treatment Replicate 
Population 
of bull trout 
competitors 

Fork 
length 
(mm) 

Food 
capture 
(number 
captured) 

Per capita 
aggressive 

acts 
(number) 

Proportion 
of time 
spent in 

lead 
position 

BKTR SP-H SP-H-1 Mill 149.25 9 7.75 0.48 
BKTR SP-H SP-H-2 Mill 153 14.5 22 0.75 
BKTR SP-H SP-H-3 Mill 144 5.5 11.25 0.18 
BKTR SP-H SP-H-4 Livingstone 135.5 12 33.25 0.59 
BKTR SP-H SP-H-5 Livingstone 129.75 10.5 6.25 0.12 
BLTR SP-H SP-H-1 Mill 148.5 11 4 0.52 
BLTR SP-H SP-H-2 Mill 153.5 5.5 4.75 0.25 
BLTR SP-H SP-H-3 Mill 144 14.5 9 0.82 
BLTR SP-H SP-H-4 Livingstone 135.75 8 11 0.41 
BLTR SP-H SP-H-5 Livingstone 128.75 9.5 4.75 0.88 
BKTR CP-H CP-H-1 Mill 151 9.5 10.75 0.24 
BKTR CP-H CP-H-2 Mill 155 9 8.5 0.69 
BKTR CP-H CP-H-3 Mill 145.5 7.5 25.25 0.13 
BKTR CP-H CP-H-4 Livingstone 136 11.5 28 0.78 
BKTR CP-H CP-H-5 Livingstone 132 4.5 0 0.07 
BLTR CP-H CP-H-1 Mill 151.25 10.5 4 0.76 
BLTR CP-H CP-H-2 Mill 156.5 11 2.75 0.31 
BLTR CP-H CP-H-3 Mill 147.5 12 9.5 0.87 
BLTR CP-H CP-H-4 Livingstone 136.5 8.5 2.75 0.22 
BLTR CP-H CP-H-5 Livingstone 131.5 15.5 1.75 0.93 
BKTR CR-H CR-H-1 Mill 153 9 3.5 0.49 
BKTR CR-H CR-H-2 Mill 146 6.5 4.75 0.33 
BKTR CR-H CR-H-3 Mill 157.5 6 3.25 0.33 
BKTR CR-H CR-H-4 Livingstone 137.75 4 19.75 0.22 
BKTR CR-H CR-H-5 Livingstone 133 5.5 3.75 0.29 
BLTR CR-H CR-H-1 Mill 153 9 1 0.51 
BLTR CR-H CR-H-2 Mill 148 13.5 3.5 0.68 
BLTR CR-H CR-H-3 Mill 158.5 12 1.5 0.67 
BLTR CR-H CR-H-4 Livingstone 138 14 7 0.78 
BLTR CR-H CR-H-5 Livingstone 132.5 13.5 8.25 0.71 
BKTR SP-L SP-L-1 Livingstone 124 3 2 0.67 
BKTR SP-L SP-L-2 Livingstone 121 14 1.5 0.49 
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Species Treatment Replicate 
Population 
of bull trout 
competitors 

Fork 
length 
(mm) 

Food 
capture 
(number 
captured) 

Per capita 
aggressive 

acts 
(number) 

Proportion 
of time 
spent in 

lead 
position 

BKTR SP-L SP-L-3 Livingstone 133 8 2.5 0.43 
BKTR SP-L SP-L-4 Mill 133 1.5 10.5 0.03 
BKTR SP-L SP-L-5 Livingstone 131 11 7.5 0.68 
BKTR SP-L SP-L-6 Livingstone 130 9 4 0.77 
BKTR SP-L SP-L-7 Mill 129 6 6.5 0.37 
BKTR SP-L SP-L-8 Mill 150.5 3.5 4 0.29 
BKTR SP-L SP-L-9 Mill 142 0 0 0.69 
BKTR SP-L SP-L-10 Livingstone 112 0 0 0.56 
BKTR SP-L SP-L-11 Mill 142 6 5 0.29 
BKTR SP-L SP-L-12 Mill 153 1.5 0.5 0.03 
BKTR SP-L SP-L-13 Mill 151 13 3.5 0.35 
BLTR SP-L SP-L-1 Livingstone 121 17 0 0.33 
BLTR SP-L SP-L-2 Livingstone 124 6 0.5 0.51 
BLTR SP-L SP-L-3 Livingstone 129 11 0 0.57 
BLTR SP-L SP-L-4 Mill 134.5 18.5 4.5 0.97 
BLTR SP-L SP-L-5 Livingstone 133 9 1 0.32 
BLTR SP-L SP-L-6 Livingstone 131 11 1.5 0.23 
BLTR SP-L SP-L-7 Mill 130 13.5 3.5 0.63 
BLTR SP-L SP-L-8 Mill 152 16 3 0.71 
BLTR SP-L SP-L-9 Mill 143 19.5 3 0.31 
BLTR SP-L SP-L-10 Livingstone 113 6 0 0.44 
BLTR SP-L SP-L-11 Mill 143 14 7.5 0.71 
BLTR SP-L SP-L-12 Mill 150 18.5 5.5 0.97 
BLTR SP-L SP-L-13 Mill 148 7 5 0.65 

 

 

 

 

 

 

 

 

 



171 
 

 

Table A-7: Raw data of night and daytime averaged within-species competitions 

Species Replicate Fish 
number 

Population of 
bull trout 

competitors 

Fork 
length 
(mm) 

Food 
capture 
(number 
captured) 

Per capita 
aggressive 

acts 
(number) 

Proportion 
of time 
spent in 

lead 
position 

BKTR BK-1 1 N/A 124 0 0 0.00 
BKTR BK-2 1 N/A 121 8.5 0 0.34 
BKTR BK-3 1 N/A 127 13 26.5 0.82 
BKTR BK-4 1 N/A 126 0 0 0.00 
BKTR BK-5 1 N/A 132.5 4 4 0.94 
BKTR BK-6 1 N/A 129 0 0 0.02 
BKTR BK-7 1 N/A 136 14.5 10 0.96 
BKTR BK-8 1 N/A 136.5 10.5 3 0.98 
BKTR BK-9 1 N/A 150 6.5 0 0.24 
BKTR BK-1 2 N/A 123 14 4 1.00 
BKTR BK-2 2 N/A 119 10.5 0 0.66 
BKTR BK-3 2 N/A 127 2 0 0.18 
BKTR BK-4 2 N/A 127.5 20 16.5 1.00 
BKTR BK-5 2 N/A 132 4.5 0 0.06 
BKTR BK-6 2 N/A 132 18 0 0.98 
BKTR BK-7 2 N/A 136 1.5 0 0.04 
BKTR BK-8 2 N/A 137 9 1.5 0.02 
BKTR BK-9 2 N/A 150.5 10 6.5 0.76 
BLTR BL-1 1 Mill 126 4.5 0 0.47 
BLTR BL-2 1 Mill 120 10 1.5 0.65 
BLTR BL-3 1 Mill 129 5 6.5 0.29 
BLTR BL-4 1 Mill 138 0 0 0.94 
BLTR BL-5 1 Livingstone 120.5 11 0.5 0.90 
BLTR BL-6 1 Livingstone 115 3 0 0.42 
BLTR BL-7 1 Livingstone 123 6 0 0.33 
BLTR BL-8 1 Livingstone 127 3.5 0 0.40 
BLTR BL-9 1 Mill 158 4.5 0 0.84 
BLTR BL-1 2 Mill 126 15 2 0.53 
BLTR BL-2 2 Mill 123 8 2.5 0.35 
BLTR BL-3 2 Mill 132 14 18 0.71 
BLTR BL-4 2 Mill 138 20 0.5 0.06 
BLTR BL-5 2 Livingstone 118 6 0 0.10 
BLTR BL-6 2 Livingstone 115 10.5 0 0.58 
BLTR BL-7 2 Livingstone 125 13.5 0 0.67 
BLTR BL-8 2 Livingstone 126 16.5 0 0.60 
BLTR BL-9 2 Mill 155 15 23.5 0.16 
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Table A-8: Summary of the number of all fish caught (n) at sampled sites in bull trout 

spawning and rearing streams of the Oldman River drainage, and the number of those 

that could be aged successfully (na) and had food items in stomachs (nf). 

Stream Sites Elevation range (m) n na nf 
Carbondale River 3 1412-1554 13 13 12 

Lost Creek 3 1433-1489 17 17 14 
Mill Creek 3 1375-1474 21 19 20 

Whitney Creek 1 1460 3 3 2 
Dutch Creek 2 1438-1546 17 15 15 

Hidden Creek 1 1660 20 18 20 
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Table A-9: Back-calculated bull trout size-at-age data from previous literature.  

Reference 
This 

study 
This 

study 
This 

study 
This 

study 
This 

study 
Oliver 
1979 

Oliver 
1979 

Fraley 
and 

Shepard 
1989 

Fraley and 
Shepard 

1989 

Fraley and 
Shepard 

1989 

Fraley and 
Shepard 

1989 

Fraley 
and 

Shepa
rd 

1989 
Bjornn 
1961 

Bjornn 
1961 

Underw
ood et 

al. 1995 

Underw
ood et 

al. 1995 

Underw
ood et 

al. 1995 

stream 

Carbon
dale 
River 

Lost 
Creek 

Dutch 
Creek 

Hidden 
Creek 

Mill 
Creek1 

Ram 
creek 

Wigwa
m 

River 

North 
Fork 

drainag
e Coal Creek 

Red 
Meadow 

Creek Trail Creek 
Whale 
Creek 

Lower 
Priest 
Lake 

Upper 
Priest 
Lake 

Mill 
Creek, 

WA 
Tucanno
n River 

Wolf 
Fork 

Size age 1 
(mm) 75 72 70 59 81 78 64 73 75 64 74 56 71 66 96 66 88 
Size age 2 
(mm) 119 101 108 95 121 137 114 117 124 113 119 98 114 102 139 105 136 
Size age 3 
(mm) 155 

 
149 124 164 233 176 155 202 168 158 139 183 155 196 150 192 

Size age 4 
(mm) 

     
303 

 
228 323 360 228 

 
310 239 241 247 

 
Elevation 

1412-
1554 

1433-
1494 

1438-
1546 1660 

1375-
1419 1010 1120 

not 
given not given not given not given 

not 
given 

not 
given 

not 
given 760-890 

850-
1180 

820-
1030 

Aging 
structure otoliths otoliths otoliths otoliths otoliths scales scales scales scales scales scales scales scales scales otoliths otoliths otoliths 

n2 (age 
1,2,3) 13, 5, 1 17, 2 

15, 12, 
2 

18, 18, 
12 

22, 13, 
1 

not 
given 

not 
given 

525, 
298, 52, 

4 
145, 62, 
23, 14 

145, 113, 
29, 7 

473, 264, 
46, 4 

52, 34, 
6 61* 41* 

26, 21, 
5, 4 

20, 16, 
6, 2 20, 5, 1 

back-
calculation 
method 

fraser-
lee 

fraser-
lee 

fraser-
lee 

fraser-
lee 

fraser-
lee 

dahl-
lea 

dahl-
lea 

not 
given not given not given not given 

not 
given 

modifi
ed 

fraser-
lee 

modifi
ed 

fraser-
lee Dahl-lea Dahl-lea Dahl-lea 

1 Includes three samples from nearby Whitney Creek 
2 Fish that were two or three years of age also 
contributed to sample sizes from previous age 
classes, since sizes were back-calculated 

             * Sample sizes for each age class were not 
given 
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Figures 

 

Figure A-1: A hypothetical example where linear regression fits the data (Table A-3) 

appropriately, as the realistic water concentrations of an environmental contaminant 

affects the proportion of an organisms’ mortality due to predation (R2 = 0.96; F1,19 = 

449.2; P < 0.001). 
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Figure A-2: A hypothetical example where linear regression does not characterize the 

sigmoidal relationship between water concentrations of an environmental contaminant 

and proportion of an organisms’ mortality due to predation (Table A-4). The overall 

model fit is sufficient in this case, although not optimal (R2 = 0.92; F1,19 = 209.2; P < 

0.001). In addition, the regression equation will provide unsuitable estimates of the 

proportion died at or close to the boundaries, and will inappropriately predict proportions 

beyond the boundary limits for extreme water concentration values. 
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Figure A-3: A hypothetical example where logit-transforming the dependent variable fits 

the sigmoidal relationship between water concentrations of an environmental 

contaminant and proportion of an organisms’ mortality due to predation (Table A-4). The 

overall model is optimal in this case (R2 = 0.98; F1,19 = 966.8; P < 0.001), providing a 

better fit than the untransformed dependent variable (Figure A-2).  

 

 

 

 



177 
 

a  

b  

Figure A-4: Sites (n=99) on bull trout streams that contained invasive brook trout tended 

to have fish communities that were dominated by either brook trout or bull trout (a), 

resulting in a normal quantile plot of the dependent variable that clearly demonstrates a 

sigmoidal response, with most data points distributed towards or on the bounds (b). 
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Figure A-5: Study area, displaying sites in which juvenile bull trout were sampled on 

spawning streams for bull trout in the Oldman River drainage above the Oldman River 

Dam for aging and diet data. Data were used from nearby weather stations to derive the 

mean air temperature for each bull trout growing season. 
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Figure A-6: Photo of an otolith from a 3 year old bull trout. Annuli (dark bands) were 

used to back-calculate the size-at-age for each fish. 
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Figure A-7: Frequency of occurrence of major food resources for bull trout that had food 

in stomachs (n = 83). 
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a.  

b.  

c.  

Figure A-8: Taxonomic composition by number of bull trout diets for each order ([a] 

Plecoptera [b] Tricoptera and [c] Ephemeroptera) containing multiple insect families.  
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Figure A-9: Bull trout back-calculated mean sizes at each age, for each stream sampled 

(three fish sampled from Whitney Creek were included in the nearby Mill Creek sample). 
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Figure A-10: ANCOVA (R2=0.50, F3,81=26.7, P < 0.0001) of back-calculated size at age 

one for bull trout throughout the elevation gradient of the study area for fish that turned 

one in 2007 (dotted line), 2008 (solid line) and 2009 (dashed line). Fish that turned one in 

2009 were smaller than those in the other two years (P < 0.05). 
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Figure A-11: Model estimated marginal means (+/- SE) for each year that bull trout 

turned one year of age, plotted with the mean air temperature found throughout the 

previous years’ growing season. 
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