
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2005

Graph coloring in sparse derivative

matrix computation

Goyal, Mini

Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2005

http://hdl.handle.net/10133/260

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185288173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GRAPH COLORING IN SPARSE
DERIVATIVE MATRIX COMPUTATION

MINI GOYAL

M.Sc, Banasthali Vidyapith, 2003

A Thesis

Submitted to the School of Graduate Studies

of the University of Lethbridge

in Partial Fulfilment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science

University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

©Mini Goyal, 2005

A b s t r a c t

There has been extensive research activities in the last couple of years to

efficiently determine large sparse Jacobian matrices. It is now well known

that the estimation of Jacobian matrices can be posed as a graph coloring

problem. Unidirectional coloring by Coleman and More [9] and bidirectional

coloring independently proposed by Hossain and Steihaug [23] and Coleman

and Verma [12] are techniques that employ graph theoretic ideas.

In this thesis we present heuristic and exact bidirectional coloring tech

niques. For bidirectional heuristic techniques we have implemented variants

of largest first ordering, smallest last ordering, and incidence degree order

ing schemes followed by the sequential algorithm to determine the Jacobian

matrices.

A "good" lower bound given by the maximum number of nonzero entries in

any row of the Jacobian matrix is readily obtained in an unidirectional determi

nation. However, in a bidirectional determination no such "good" lower bound

is known. A significant goal of this thesis is to ascertain the effectiveness of the

existing heuristic techniques in terms of the number of matrix-vector products

required to determine the Jacobian matrix. For exact bidirectional techniques

we have proposed an integer linear program to solve the bidirectional color

ing problem. Part of exact bidirectional coloring results were presented at

the "Second International Workshop on Combinatorial Scientific Computing

(CSC05), Toulouse, France."

i

A c k n o w l e d g m e n t s

/ express my deep acknowledgement and profound sense of gratitude to my su

pervisor Dr. Shahadat Hossain, Assistant Professor, University of Lethbridge,

for his inspiring guidance, helpful suggestions and persistent encouragement

as well as close and constant supervision throughout the period of my Masters

Degree.

I would also like to thank my M.Sc. supervisory committee members Dr. Daya

Gaur and Dr. Jim Liu for their guidance and suggestions.

It gives me immense pleasure to acknowledge the financial support from NSERC

and the University of Lethbridge Assistantship and Travel Support. I thank all

the staff, and my colleagues at the University of Lethbridge for their helpful

nature and co-operation.

I dedicate this thesis to my parents, family and Mr. Rahul Jha.

ii

C o n t e n t s

1 Introduction 1

2 Preliminaries 4

2.1 Jacobian Matrices 4

2.1.1 Newton's Method for Systems of Nonlinear Equations . . 5

2.1.2 Newton's Method for Unconstrained Minimization 6

2.2 Matrix Partitioning 7

2.2.1 Unidirectional Partitioning 8

2.2.2 Bidirectional Partitioning 8

2.3 Methods for Recovering Nonzeros 9

2.3.1 Direct Method 10

2.3.2 Substitution Method 11

2.3.3 Elimination Method 11

2.4 Computing Partial Derivatives 12

2.4.1 Finite Difference Approximation 12

2.4.2 Automatic Differentiation 13

2.5 Summary 15

3 Background 16

3.1 Graph Theoretic Definitions and Notations 16

3.2 Problem Definition 17

3.2.1 Graph Coloring 17

iii

3.2.2 Formulating the Partitioning Problem as a Graph Col

oring Problem 17

3.3 Intractability 19

3.4 Graph Coloring Methods 21

3.4.1 Heuristic Methods 21

3.4.2 Exact Methods 21

3.5 Summary 22

4 Coloring Heuristics 23

4.1 Background 23

4.1.1 Unidirectional Graph Coloring 23

4.1.2 Bidirectional Graph Coloring 23

4.2 Bidirectional Heuristic Techniques 25

4.2.1 Largest First Ordering 26

4.2.2 Smallest Last Ordering 29

4.2.3 Incidence Degree Ordering 31

4.2.4 Sequential Algorithm 34

4.3 Summary 38

5 Optimal Bidirectional Coloring 39

5.1 Background 39

5.1.1 DSATUR 39

5.1.2 Branch and Cut Algorithm for Graph Coloring 40

5.2 Exact Bidirectional Coloring 41

5.2.1 Integer Linear Programming 41

5.2.2 Integer Linear Programming Model for Bidirectional p-

coloring 42

5.2.3 Complexities 49

5.2.4 Implementation 51

5.3 Summary 51

iv

6 Experimental Results 52

6.1 Introduction 52

6.2 Unidirectional Heuristic and Exact Coloring 55

6.3 Bidirectional Heuristics 57

6.4 Heuristic and Exact Bidirectional 60

6.5 Unidirectional and Bidirectional 61

6.6 Final Results 64

6.7 Summary 66

7 Conclusion and Future Work 67

7.1 Conclusion 67

7.2 Future Research Directions 68

Bibliography 70

A Extended Heuristic Bidirectional Coloring Results 75

B Example of ILP Model Implementat ion 82

v

L i s t o f F i g u r e s

2.1 Example by Curtis, Powell and Reid 7

2.2 Column Partitioning 8

2.3 Row Partitioning 8

2.4 Bidirectional Partitioning 9

3.1 j>-coloring Example 17

3.2 Sparse Matrix and its Column Intersection Graph Representation 18

3.3 Sparse Matrix and its Bipartite Graph Representation 19

4.1 Sparse Matrix A and its Bipartite Graph Gb(A) 26

4.2 Example to Illustrate Sequential Algorithm 35

5.1 ILP Formulation for Bidirectional p-coloring 44

vi

L i s t o f T a b l e s

6.1 Matrix Statistics 53

6.2 DSM vs DSATUR 56

6.3 Comparison of minLSI with Direct Cover Algorithm 58

6.4 Comparison of minLSI with Bicoloring Algorithm 59

6.5 Comparison of Heuristic and Exact Bidirectional Coloring 61

6.6 Comparison of Unidirectional and Bidirectional Coloring Heuristics . 62

6.7 Comparison of Exact Unidirectional and Bidirectional Coloring . . . 64

6.8 Summary of all the Coloring Techniques 64

A.l LFO Result 76

A.2 SLO Result 78

A.3 IDO Result 80

vii

S y m b o l s

m) Number of equations 1

n) Number of unknowns 1

J or A) Sparse Jacobian matrix 1

'flij) Element in matrix A at row % column j 7

\x) Chromatic number 17

[p) Number of nonzeros in any row of A 28

[K) Number of nonzeros in any column of A 28

viii

C h a p t e r 1

I n t r o d u c t i o n

Problems in science and engineering often require to minimize a nonlinear

function or to find the numerical solution of a system of nonlinear equations

F(x) = 0 where F = (A , / 2 , f m) T is a mapping F : 9?n - • 5 R m . New

ton's method (or a variant of Newton's method) can be employed to solve the

aforementioned problems [14].

Newton's method is an iterative method which may require a large number

of iterations to converge to the solution with desired accuracy. At each iter

ation one needs to calculate the matrix of first partial derivatives also known

as the Jacobian matrix J(x) = {§§:},! < j < n, 1 < i < m at the current

point x. For very large problems these matrices are often sparse i.e. they con

tain nonzero entries at very few positions in the matrix, and for complicated

functions, computing the Jacobian matrix may dominate the overall compu

tational cost per iteration. Assuming that the sparsity pattern of the matrix

is known and it does not change from iteration to iteration, it is important

to design efficient methods that take advantage of known sparsity and other

structure information like symmetry so that the computations involving known

zero entries are avoided in determining the matrix.

The problem of exploiting sparsity in computing the Jacobian matrix can

be viewed as a partitioning problem [13]. With the known sparsity structure

of the given sparse matrix A, we can partition the columns of A into p (p < n)

1

C h a p t e r 1 I n t r o d u c t i o n

groups such that each column belong to exactly one group and the columns in

the same group are structurally orthogonal i.e. they do not contain more than

one nonzero in the same row position. This type of partitioning is called uni

directional partitioning and may not be able to exploit the sparsity effectively.

Alternately, one can partition the rows and the columns of A simultaneously

to obtain pi (j>\ < m) row groups and P2 (P2 < n) column groups. Both

of the above partitioning problems can be posed as graph coloring problems

[10, 12, 17, 23].

Other methods to partition the matrices are column segmenting approach

[22, 26, 27, 28] and bidirectional partitioning technique via greedy approach

using distance 3/2 bi-coloring scheme [18].

The graph coloring problem that we are concerned with in this thesis deals

with the assignment of minimum number of positive integers called labels

(colors) to the vertices of a graph such that no two vertices connected by an

edge get the same label (color).

Graph coloring plays an important role in a variety of fields of computer

science. It models many real-world problems or acts as a part in the overall

solution of the problems. Some of the areas where graph coloring is used are

register allocation [20], frequency assignment and networks [29], timetabling

and scheduling [38], and pattern matching.

In our thesis, the graph coloring problem acts as a tool to determine the

Jacobian matrices. By representing the Jacobian matrices as graphs and then

partitioning the vertices of the graph using graph coloring, we can partition the

rows and columns into groups such that the nonzero entries in each row and

column can be solved from a small linear system. This partition information

can then be used by Finite Differencing (FD) or Automatic Differentiation

(AD) software to estimate the nonzeros of the Jacobian matrix.

Including this introductory chapter, this thesis contains seven chapters.

The outline of the remaining chapters proceeds as follows:

2

C h a p t e r 1 I n t r o d u c t i o n

In Chapter 2, we introduce Jacobian matrices followed by the description

of Newton's method to solve a system of nonlinear equations and for uncon

strained minimization. We then describe unidirectional and bidirectional par

titioning techniques, followed by the methods to recover nonzeros. Finally we

describe the methods to compute partial derivatives.

In Chapter 3, we provide basic graph theory definitions and notations. We

then give the problem definition where we describe graph coloring as related

to the partitioning problem. This is followed by a brief description of com

putational complexities involved with graph coloring, and finally we give the

description of graph coloring methods.

In Chapter 4, we feature the existing heuristic techniques for unidirectional

and bidirectional p-coloring. We then describe Largest First Ordering (LFO),

Smallest Last Ordering (SLO), Incidence Degree Ordering (IDO), and the

sequential algorithms as modified by us for bidirectional p-coloring.

In Chapter 5, we introduce exact methods for finding optimal solution of

the bidirectional p-coloring. We then explicate a new integer linear program

ming model for bidirectional ^-coloring. Finally we give the computational

complexity of the ILP model followed by implementation details.

In Chapter 6, we present experimental results that demonstrate the perfor

mance of the algorithms presented in Chapters 4 and 5. We give a comparison

of various graph coloring techniques for matrix partitioning. The data for the

experiments was provided by the matrix market collection [3].

Finally, in Chapter 7, we provide concluding remarks, as well as possible

and proposed directions for future research in this area.

Detailed experimental results are presented in Appendix A and a sample

ILP model for bidirectional ^-coloring is given in Appendix B. t

3

C h a p t e r 2

P r e l i m i n a r i e s

In this chapter we will identify the problem of determination of sparse Jacobian

matrices. In section 2.1 we will introduce Jacobian matrices and give the mo

tivation to determine them. In section 2.2, we will give techniques to partition

the Jacobian matrices, followed by section 2.3, in which we will demonstrate

methods to recover the nonzeros. In section 2.4, we will describe the methods

to compute partial derivatives and finally in section 2.5, we will conclude this

chapter.

2 . 1 Jacobian Matrices

The Jacobian matrix is the first-order partial derivative matrix of a vector-

valued function. Let F = (/i , / 2 , f m) T be a mapping F : Sftn —»• Um. If F is

continuously differentiate then the Jacobian matrix of F at x is given by

Derivative information is needed, for example in the solution of systems of

nonlinear equations and in the unconstrained minimization problems. New

ton's methods are one of the classical methods to solve the systems of nonlinear

equations and to obtain unconstrained minimization respectively.

J(x) = F\x) = (2.1)

a f n / m (x) /

4

C h a p t e r 2 P r e l i m i n a r i e s

2 . 1 . 1 N e w t o n ' s M e t h o d f o r S y s t e m s o f N o n l i n e a r E q u a

t i o n s

Given F : K n —• 3 ? m , the solution to the associated system of nonlinear equa

tions is attained by finding € 5ft n such that F(x^) = 0 where F is as

sumed to be continuously differentiable [1 4] . In inexact Newton's method, the

solution of the resulting linear system is approximated by a linear iterative

method. Following are the steps for solving this nonlinear system.

Algori thm 1 Newton's Method for Systems of Nonlinear Equations
Let x < ° > € ftn;

for j * — 0 , convergence do

j (x { j }) s O } = -F(x^);

> Compute the Jacobian matrix at current point and solve for step

xti+1} = + s^; > Update the current point

end for

J(x) is known as the Jacobian matrix of F at x.

The following example illustrates Newton's Method to solve the systems of

nonlinear equations.

Given

F(x) =
x\ + xi — 3

with roots at (1 , 2) T and (2 , 1) T .

The Jacobian matrix is given by

" 1 1

- 2xi 2x2

Let x^ = (0 , 3) r . Then the first two iterations of Newton's method are

" 1 1 •
5<°> = -

• o •
, gives —

- 0 6 . . 4 .

C h a p t e r 2 P r e l i m i n a r i e s

+ # = (0.667,2.333) T,

j (x { i }) s { i } = :

" 1 1 '
= -

• o •

4 1 4 loo

3 3 9
gives s { i } _

1 5
_ 4 _

' 1 5 ,{2} = x{1] + s{1} _ (0.933,2.067) T.

If the initial approximation a;̂ 0^ is sufficiently close to the root, it is expected

that the successive iterates will converge to the root.

2 . 1 . 2 N e w t o n ' s M e t h o d f o r U n c o n s t r a i n e d M i n i m i z a

t i o n

Another important problem from optimization where the derivative informa

tion is required is the unconstrained minimization problem

min / : $ n -> K, (2.2)

where / is assumed to be twice continuously differentiable. The algorithm for

Newton's method for unconstrained minimization is given as follows.

Algori thm 2 Newton's Method for Unconstrained Minimization _ _ _ _ _ _ _ _

for j <— 0, minimization do

V 2/foK = - V / (_ ,) ,
, N

Xj+i — Xj + Sj .
end for

> Update the current point

Here V2f(x) is the Hessian matrix and V/ (~) is the gradient of / . The

Hessian of / can be viewed as the Jacobian of V / (_) .

At every iteration of Newton's method we need to determine the Jacobian

matrix at the current point. In many large problems the Jacobian matrix

is sparse i.e. there are very few nonzeros in the matrix. By exploiting this

sparsity, we can efficiently determine the Jacobian matrix and thus significantly

6

C h a p t e r 2 P r e l i m i n a r i e s

reduce the overall computational cost of the solution process. In the next

section we will discuss methods to partition the Jacobian matrices.

2 . 2 M a t r i x P a r t i t i o n i n g

In 1974, Curtis, Powell and Reid [13] noted that the sparsity of the Jacobian

matrices can be exploited if the columns of the matrix can be partitioned into

groups such that columns in each group are structurally orthogonal to each

other.

A =

>2

i i
0 0

aHi
akxl
ak2l

3

3 =

1
0

6 =

"•k-il
ak2l

0
0

O j 2 j
al23

ai*3

ak3l
I 1

0

ak3l
0
0

a*33

Figure 2.1: Example by Curtis, Powell and Reid

Let A € K m x n be the given matrix. In Figure 2.1 we see that columns j

and I of A are structurally orthogonal i.e. there does not exist a row index i

for which both ay ^ 0 and an ^ 0. The corresponding vector s is initialized

as ~] • ej, where 6j is the j ' th coordinate vector and the sum for this vector is

taken over a set of structurally orthogonal columns. Vector b is obtained as

the product b = As by using FD or AD forward mode. We see that b contains

the unique nonzero entries of columns j or I (or a zero) at each position. More

generally, consider structurally orthogonal partitioning of A into p groups. We

can then define a seed matrix S G 5 ? n x p where each column of S corresponds to

a group of structurally orthogonal columns and is defined by —) • ej as discussed

7

C h a p t e r 2 P r e l i m i n a r i e s

earlier. Then the nonzeros of A can be recovered from the product B — AS

obtained through forward automatic differentiation or finite differencing.

2 . 2 . 1 U n i d i r e c t i o n a l P a r t i t i o n i n g

A partitioning scheme in which either the columns or the rows are partitioned

into structurally orthogonal groups is known as unidirectional partitioning.

As shown in Figure 2.2, matrix A can be partitioned into two column groups

such that all the nonzeros of A can be obtained from the product AS.

X ' 1 0 "
X X 0 1
X X , s = 0 1
X X 0 1
X X 0 1

Figure 2.2: Column Partitioning

In Figure 2.3, we see that by partitioning the matrix A into two row groups,

we can obtain all the nonzeros of A from the product WTA.

A =

X X X X X

X

X

X

X

, w 1 1 0 0 0 0
0 1 1 1 1

Figure 2.3: Row Partitioning

2 . 2 . 2 B i d i r e c t i o n a l P a r t i t i o n i n g

For a given matrix A G K m x n , if seed matrices S € 9f t" x p i and W G Rmxp2

can be obtained such that all the nonzeros of A can be determined uniquely

from the products B = AS and CT = WTA, then the resulting partitioning is

known as bidirectional partitioning.

8

C h a p t e r 2 P r e l i m i n a r i e s

Considering Figure 2.4, we notice that unidirectional partitioning (either

row or column) will require at least 5 groups. But if we determine row 1 and

column 1 separately and collect the remaining nonzeros in one column(row)

group then we require only 3 groups.

X X X X X 1 0 "
X X 0 1
X X ,s = 0 1
X X 0 1
X X 0 1

Figure 2.4: Bidirectional Partitioning

2 . 3 M e t h o d s f o r R e c o v e r i n g N o n z e r o s

In this section we briefly describe the techniques to recover the nonzeros from

the product B = AS, where A is the Jacobian matrix to be determined.

For a given matrix A G 3 f t m x n , we want to obtain seed matrices S G 5 f t n x p i

and WT G W2Xm such that all the nonzeros of A can be determined from the

products B _ AS and CT = WTA.

In the following we outline a procedure for unidirectional determination of

a Jacobian matrix A G 3 ? m x n .

• Obtain B = AS as p matrix-vector products using finite differencing or

forward automatic differentiation.

• Identify the reduced seed matrix as G 3 R / 3 i X p , where pi is the number

of nonzeros in row % of A.

• Solve for the nonzeros in row % of A

Si a = (3 (2.3)

9

C h a p t e r 2 P r e l i m i n a r i e s

where a contains the nonzero unknowns in row i and (5 is the correspond

ing vector in matrix B.

If, for every row of A the reduced system (2.2) is a permuted identity matrix

then we have a direct method [23]. If the reduced system can be permuted to a

triangular system then we have a substitution method [24], otherwise we have

an elimination method [25].

2.3.1 D i r e c t M e t h o d

In direct determination method, all the nonzeros of A can be read-off from the

matrix B and CT without any further arithmetic operation. Let us demon

strate the direct determination method with the help of the following example.

Let

an ai2 O13 Ol4 Ol5 1 0

0.21 022 0 0 0 0 1

o 3 i 0 O33 0 0 ,s = 0 1

041 0 0 044 0 0 1

051 0 0 0 055 0 1

,WT = 1 0 0 0 0

Thus we can obtain the matrices B and CT by the matrix-vector product AS

and vector-matrix product WTA respectively.

Oil 0 1 2 + Oi3 + O14 + Oi5

B =

021 a 2 2

031 033

041 044

a 5 i 055

an 012 ai3 014 ai5

The nonzeros of A can thus be read off from B and CT.

10

C h a p t e r 2 P r e l i m i n a r i e s

2.3.2 S u b s t i t u t i o n M e t h o d

In a substitution method the unknown elements of the matrix A are determined

by solving a triangular system of equations i.e. the ordering of the nonzeros

of A is such that every nonzero is determined using formerly computed values.

Let us comprehend this method with the help of an example illustrated in [24].

Let

A l l 0 O13

021 0,22 0

0 a 3 2 a 3 3

The second row of A can be determined by solving for a 2 i and a 2 2 in the

following reduced system

A , and let S

1 0

1 1

0 1

0 2 1 0,22 0

1 0

1 1

0 1

l>21 "22

Eliminating row 3 of 5 and transposing the system, we get

1 1 a 2 i &21

0 1 a 2 2 &22

which is an upper triangular system. The nonzeros of the other two rows

of A can be found in the similar way. Substitution method usually require

fewer number of function evaluation or AD passes but is subject to numerical

instability.

It can be verified that the above example cannot be determined with fewer

than 3 matrix-vector products in any direct methods.

2.3.3 E l i m i n a t i o n M e t h o d

Elimination method is a general method where no special structure is assumed

for a seed matrix. Any square submatrix of the seed matrix S, however, must

11

C h a p t e r 2 P r e l i m i n a r i e s

be nonsingular. Let us view this method with the help of the following example.

Let,

a n 0 ai3 au 0

A = 0 a 2 2 a 23 0 a 25

a 3 i a 3 2 0 a 3 4 0

The successive column merging technique [25] gives the following seed matrix

1 0 0

2 1 0

S = 1 2 1

0 1 2

0 0 1

The matrix B could be obtained by the product B = AS, giving

on + ai3 2ai3 + a u a i 3 + 2an

2 a 2 2 4- a 23 a 2 2 + 2a 23 a 2 3 + a 25

a 3 i + 2 a 3 2 a 3 2 + 034 2034

Then the unknowns for example in row 1 of A can be determined as follows

B =

1 1 0 a n

0 2 1 — 012

0 1 2 014 013

2 . 4 C o m p u t i n g P a r t i a l D e r i v a t i v e s

2 . 4 . 1 F i n i t e D i f f e r e n c e A p p r o x i m a t i o n

Let A denote the Jacobian matrix J(x) of a continuously differentiate map

ping F : 5ft n —• K m . An approximation to the j t h column of A, denoted by a,j,

can be obtained from

d 1
(2.4)

12

C h a p t e r 2 P r e l i m i n a r i e s

where ej is the j t h coordinate vector and e is a positive increment. Assuming

F(x) has already been evaluated, we can estimate the partial derivatives in the

j t h column of matrix A through the additional function evaluation F(x + s e j) .

Note that, if the sparsity information is not exploited then we will need n extra

function evaluations to determine A.

The advantage of finite difference is that it is easy to implement. The finite

difference method can be used as a black box i.e, to obtain an approximation to

the derivatives, we do not need to access the function code. We just need to call

the subroutine that implements the mathematical function. The disadvantage

of finite differencing is that it is prone to numerical instability. If e is taken

to be too large then the approximation is not accurate due to truncation error

and if e is taken to be too small then F(x + eej) — F(x) may cause loss of

precision to round-off errors associated with finite precision calculations.

2.4.2 A u t o m a t i c D i f f e r e n t i a t i o n

Automatic Differentiation (AD) is a chain rule based technique for evaluat

ing the derivatives of functions defined by computer programs. Unlike finite

difference approximation (FD), the derivatives computed using AD are free

from truncation errors. We will now present a brief description of basic AD

techniques. For a comprehensive introduction to AD we refer to the excellent

reference [19] by Andreas Griewank.

A program for evaluating the function

z = F(x),F :Rn (2.5)

can be seen as a series of scalar assignments

Vi = (t>i{vj)j-,u (2.6)

where j i indicates that Vj is computed before Vi. Variables Vj are ordered

13

C h a p t e r 2 P r e l i m i n a r i e s

such that they can be divided into three vectors:

x — (vi,V2, •••,vn)T (independent variables),

y = (vn+i,vN+2, •••vn+p)T (intermediate variables),

z = (vn+P+i,vN+P+2, ...,vn+p+m)T (dependent variables). (2 . 7)

fa represent elementary functions, which can be arithmetic operations or tran

scendental functions. If all these elementary functions fa are well defined and

have continuous elementary partials

<kj = — fa,3 < h (2 . 8)

then by the repeated application of the chain rule, the nonzeros of the Jacobian

matrix J(x) can be computed from the elementary partials cy. AD has two

basic modes of operation namely forward and reverse.

Forward M o d e

In forward mode, intermediate partial derivatives are accumulated in the same

order as the function values are computed. A forward pass is equivalent to

the calculation of the matrix vector product Jv where v is a n-vector. By

initializing v to be unit coordinate vector all the columns of

J can be determined by n forward passes.

Reverse M o d e

In reverse mode, the intermediate partial derivatives are accumulated in reverse

order of function evaluation. A reverse pass corresponds to the computation

wTJ where w is a m-vector. By initializing w to be unit coordinate vectors

ti,i — 1 , 2 , m all the rows of J can be determined by m reverse passes.

In the above descriptions we noticed that the nonzeros of A can be effi

ciently determined from B and CT. By obtaining seed matrices S € K n x p i

1 4

C h a p t e r 2 P r e l i m i n a r i e s

and WT G W2Xm such that p\ and p2 is minimized, we can reduce the number

of function evaluations in FD and the number of forward and reverse passes

in AD, thus minimizing the computational cost of determining the Jacobian

matrix.

2.5 Summary

In this chapter we discussed numerical algorithms where efficient computation

of partial derivatives is crucial. We introduced unidirectional and bidirec

tional partitioning that exploits sparsity and used examples illustrating dif

ferent techniques to "recover" the nonzero entries from the products AS and

WTA, We briefly described FD and AD techniques to obtain approximation

to the nonzero entries. In the next chapter we will present graph coloring

technique to partition the Jacobian matrices.

15

C h a p t e r 3

B a c k g r o u n d

In this chapter we will give the problem definition and all the pertinent ter

minology that will be used in this and the subsequent chapters. In section 3.1

we will give graph notations followed by section 3.2 in which we will define the

problem of bipartitioning the Jacobian matrix using graph coloring. We will

discuss the complexity issues associated with bidirectional p-coloring in section

3.3 and in section 3.4 we will describe the graph coloring methods. Finally, in

section 3.5 we will summarize this chapter.

3 . 1 G r a p h T h e o r e t i c D e f i n i t i o n s a n d N o t a t i o n s

A graph G is an ordered pair (V, E) where V is a finite and nonempty set called

vertices and E is a set of unordered pairs of distinct vertices called edges. Two

vertices u and v are adjacent if and only if {u, v} G E. The degree of a vertex

v is the number, denoted deg(u), of edges with v as an endpoint. A path V of

length I is a sequence { v i , V 2 , o f distinct vertices in G such that Vj is

adjacent to VI+I, for 1 < i < I.

A bipartite graph Gb = (U U V, E) contains two disjoint sets of vertices U

and V such that every edge in G has adjacent vertices in U and V respectively.

16

C h a p t e r 3 B a c k g r o u n d

3 . 2 P r o b l e m D e f i n i t i o n

3 . 2 . 1 G r a p h C o l o r i n g

Graph coloring is an assignment of colors or labels to the vertices of the graph

such that no two adjacent vertices receive the same color.

A p-coloring of a graph G = (V, E) is a function <fi : V —> {1,2, such

that cf)(u) ^ <f>(v) if {u, v} e E. The chromatic number x(G) is the smallest

p for which G has a p-coloring. A coloring that uses x(G) colors is known as

optimal coloring.

Figure 3.1 illustrates p-coloring of the graph G using p = 3 colors.

Figure 3.1: p-coloring Example

3 . 2 . 2 F o r m u l a t i n g t h e P a r t i t i o n i n g P r o b l e m a s a G r a p h

C o l o r i n g P r o b l e m

Direct determination as proposed in this thesis is based on partitioning the

rows and columns of the Jacobian matrix such that the nonzero entries can

be recovered from the matrix-vector products computed via AD or FD. We

can conveniently reformulate the partitioning problem as a coloring problem

of an associated graph. In this section we will discuss graph formulation of the

partitioning problem.

Consider a m x n matrix A . The column intersection graph of A is a graph

G (A) = (V , E) where for each column j , j = l ,2 , . . . , n of A there is a vertex

17

C h a p t e r 3 B a c k g r o u n d

V i V 2 V s V 4 V s .
X X X

X
X

X

X

X

X

X

X
X

(b) G{A)

Figure 3.2: Sparse Matrix and its Column Intersection Graph Representation

3.2(a) depicts the matrix A and Figure 3.2(b) represents its corresponding

column intersection graph.

The following result [9, 35] states the connection between the unidirectional

partitioning problem and graph coloring.

Theorem 3.1 </> is a unidirectional partitioning of the columns (or rows) of

A if and only if 4> induces a coloring of the graph G(A) (or G(AT)).

As has been observed in [12, 23], unidirectional partitioning may not yield

the most effective exploitation of matrix sparsity. In the unidirectional par

titioning the graph defined for a sparse matrix A represents the sparsity of

either columns G (A) or rows G (A T) but not both. To represent both row and

column sparsity a different graph is needed. Specifically, we need to record the

zero-nonzero structure of rows and columns. A bipartite graph is a convenient

data structure for this purpose.

The bipartite graph associated with matrix A e K m x n is a graph Gb{A) =

(U UV,E) where U = {m, u 2 , •••Um}, V = {v\, v2, vn} and {ui,Vj} G E

whenever is a nonzero element of A , for 1 < i < m , 1 < j < n . The size

of the graph Gb(A) is proportional to the size of the matrix A , such that the

number of vertices \U\ + \ V\ = m + n and number of edges \E\ — nnz(A),

where nnz(A) is the number of nonzeros in A.

18

v e V and { v k , v{\ € E if there is a row i such that ajfc ^ 0 and a« ^ 0. Figure

C h a p t e r 3 B a c k g r o u n d

Vi V 2 V3V4 v 5

U, X X X X X

u 2 X x

u 3 X X
U4 X x

u 5 ^ x X

(B)A

Figure 3.3: Sparse Matrix and its Bipartite Graph Representation

Figure 3.3(a) shows a sparse matrix A and Figure 3.3(b) represents its

associated bipartite graph.

A mapping (f> : U U V —> {1,2, ...,p} is called a bidirectional p-coloring of

bipartite graph Gb = (U U V, E) if (j> is p-coloring of Gb and every path of

length 3 in Gb uses at least 3 different colors such that

{(j){u) :ueU}n {(j)(v) : v £ V} = 0. (3.1)

The chromatic number for bidirectional p-coloring is denoted by x(Gb)-

It has been proved that bidirectional partitioning of A is equivalent to

bidirectional j>coloring of Gb(A) [12, 23].

3 . 3 I n t r a c t a b i l i t y

Computational complexity is concerned with analyzing the resources needed

to solve computational problems. Complexity theory is used as a tool to an

alyze algorithms, so that the bounds on the resources required for solving the

computational problem can be determined.

A decision problem is one whose solution is either "yes" or "no". A decision

problem 7r for which the answer (yes or no) can be decided in polynomial time

i.e. the worst case running time for an algorithm solving the problem ir is

0(nk), where n is the size of the inputs and k is some constant, then that

19

C h a p t e r 3 B a c k g r o u n d

problem is said to be in the class P [16, 30]. The problems within class P are

known as tractable. If k is sufficiently small then these problems can be solved

in a reasonable amount of time.

A decision problem 7r for which a solution can be guessed and verified in

polynomial time belongs to the class NP. Some problems in NP are shown to be

the members of the equivalence class NP-complete (NPC). A decision problem

7r belongs to the class NPC if n € NP and for every other problem ir' in NP

there exists a polynomial time algorithm that transforms TT' to ir such that if

the solution to 7r is 'yes' then the solution to 7r' is also 'yes' and viceversa. The

problems in class NPC are most difficult to solve and no algorithm to date is

known which can solve these problems in deterministic polynomial time.

A Combinatorial optimization problem (COP) is either a "minimization

problem" or a "maximization problem". For each instance J of a problem,

there exists a finite set S(I) of "candidate solutions" for / . A function m

is called a "solution value" for each candidate solution if it assigns to each

instance and each candidate solution a rational number. In a minimization

(maximization) problem, an optimal solution for an instance / is a candidate

solution <7* such that for all possible candidate solutions, <r* has the minimum

(maximum) solution value.

The optimization version of the decision problems in NPC belong to the

class NP-hard i.e. a problem is considered as hard as NPC. Also no algorithm

to date exist which can solve NP-hard problems in polynomial time. The class

of NPC and NP-hard are regarded as intractable because problems in these

classes have no known polynomial time algorithms.

In our thesis we are concerned with the optimization version of the coloring

and partitioning problems (unidirectional and bidirectional).

20

C h a p t e r 3 B a c k g r o u n d

3 . 4 G r a p h C o l o r i n g M e t h o d s

We can apply both heuristic techniques as well as exact methods to color

the vertices of the graph. We have applied heuristic techniques to solve the

partitioning problem because they are solvable in polynomial time and give

good solutions but we want to know how good are the heuristics doing and

this has motivated us to investigate exact coloring techniques. We will give a

short description of both the techniques below.

3.4.1 H e u r i s t i c M e t h o d s

Algorithms which give solution in given time, and do not guarantee any upper

or lower bounds but they often find "good" solutions are called heuristics or

inexact methods. The performance measurement for these methods is usually

done by benchmarking i.e. measuring the quality of performance on different

sets of inputs. The weakness of this performance measuring is that it is dif

ficult to predict the results of arbitrary sets of inputs. In our thesis we have

adapted three well-known heuristic algorithms namely largest first ordering

(LFO), smallest last ordering (SLO) and incidence degree ordering (EDO) for

bidirectional p-coloring.

3.4.2 Exac t M e t h o d s

Algorithms that give optimal solution for the given problem are known as exact

methods. These algorithms give upper and lower bounds of the problems and

confirm that no better solution could be found. Exact methods are "hard"

and often not solvable in polynomial time. In our thesis we have formulated

an integer linear programming (ILP) model to implement the bidirectional

p-coloring.

21

C h a p t e r 3 B a c k g r o u n d

3 . 5 S u m m a r y

In this chapter we introduced the notations as used in our thesis. We defined

graph coloring and discussed the formulation of the partitioning problem as

a graph coloring problem. We reviewed unidirectional and bidirectional p-

coloring schemes. We presented intractability and described heuristic and

exact graph coloring methods. In the next chapter we will discuss heuristic

algorithms for bidirectional p-coloring.

22

C h a p t e r 4

C o l o r i n g H e u r i s t i c s

In this chapter we will study heuristic techniques to determine the sparse Ja

cobian matrices. In section 4.1 we will discuss existing unidirectional and

bidirectional heuristic techniques, in section 4.2 we will detail heuristic tech

niques developed for bidirectional graph coloring, and finally in section 4.3 we

will summarize the chapter.

4 . 1 B a c k g r o u n d

4.1.1 U n i d i r e c t i o n a l G r a p h C o l o r i n g

In 1983, Coleman and More [10] suggested that the column partitioning prob

lem could be posed as a graph coloring problem. They proposed algorithms in

which they ordered the vertices of the column intersection graph G(A) using

the largest first ordering (LFO), smallest last ordering (SLO), and incidence

degree ordering (IDO) schemes, and then applied the sequential algorithm on

these ordered vertices [9].

4.1.2 B i d i r e c t i o n a l G r a p h C o l o r i n g

Unidirectional coloring deals with either the rows or columns of the sparse

matrix A while bidirectional coloring involves both rows and columns of A. As

23

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

discussed in section 2.3 it is desirable to minimize p such that all the nonzeros of

A are determined uniquely. The following subsections discuss existing heuristic

techniques for bidirectional p-coloring.

Complete Direct Cover

Hossain and Steihaug [23] proposed row-column consistent partitioning of A

in which the entire set of rows and columns is partitioned. They introduced

complete direct cover for Jacobian matrices as described below.

Let Sc be a collection of subsets of columns and Sr be a collection of subset

of rows. The set {Sc,Sr} is called complete direct cover of A if

• The intersection of any two subsets is empty.

• For each nonzero element ay, there is a subset X € Sc U Sr such that ay-

is directly determined by X.

An algorithm to compute complete direct cover aims to find groups of rows

and columns that satisfy the direct cover property. The algorithm terminates

when all the nonzeros are determined. Maximum number of colors needed to

determine Jacobian matrix directly using complete direct cover algorithm is

| S c | + | S r | + 2 [23].

Bicoloring

Coleman and Verma [11, 12] studied the same problem and suggested that it is

sufficient to partition subsets of rows and columns such that A is determined

directly. The vertices that are not involved in the determination of any nonzero

entry are assigned the neutral color zero. The bipartite coloring scheme applied

by them is illustrated below.

Let Gb — (U U V, E) be a bipartite graph. The mapping cf) : U U V —•

{0,1, ...,p} is a bipartite p-coloring of Gb if the following conditions hold.

24

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

• If u G U and v G V, then cf>(u) <j>{v) or <f>{u) = <f>(v) = 0.

• If {u,v} G E, then ^(u) ^ 0 or <f>(v) ^ 0.

• If vertices u and u are adjacent to vertex w with <j>{w) — 0, then 4>{u) ̂

• Every path of three edges uses at least three colors.

They introduced the concept of bicoloring in which A is permuted and

partitioned. Minimum nonzero count ordering (MNCO) algorithm is built to

partition J to obtain matrix Jc from bottom up and Jr from right to left. At

every iteration in MNCO either a new column is added to J c or a new row is

added to Jr. The coloring is then obtained by partitioning the columns in J c

and partitioning the rows in Jr. This double coloring approach is named as

bicoloring.

4 . 2 B i d i r e c t i o n a l H e u r i s t i c T e c h n i q u e s

In this section we will discuss our bidirectional heuristic techniques. We ini

tially order the vertices of the bipartite graph Gb(A) using one of largest first

ordering (LFO), smallest last ordering (SLO), and incidence degree ordering

(IDO). We then apply sequential algorithm on the ordered vertices to obtain

bidirectional p-coloring of Gb(A).

From Figure 4.1, the degrees of row and column vertices can be enumerated

as follows.

deg(ui) = 3,deg(u2) = 2,deg(uz) = 2,deg{ui) = 2>,deg{uz) = 2

deg{vi) = 2,deg(v2) = 3,deg(v3) = 2,deg(v4) = Z,deg(v5) = 2

25

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

(a) A (b) Gb(A)

Figure 4.1: Sparse Matrix A and its Bipartite Graph Gb(A)

We will illustrate the algorithms using the example matrix given in Figure

4.1.

4.2.1 Largest F i r s t O r d e r i n g

In largest first ordering (LFO) we first sort the vertices in U and V of the bipar

tite graph Gb(A) in nonincreasing order of their degrees such that deg(u\) >

... > deg(um) and deg(v\) > ... > deg(vn). The two sets of sorted vertices are

then merged into one ordering.

Algorithm 3 depicts the sorting routine applied in Algorithm 4 to sort the

row vertices. The same routine is applied to sort the column vertices also. In

Algorithm 3, pmax and pmin represent the maximum and minimum number of

nonzeros in any row or column of A, respectively. The array ndegr holds the

degree of row vertices such that ndegr(i) is the degree of row i of A.

In Algorithms 3 and 4, RowDeg represents the array containing the in

dices of the row vertices in nonincreasing order of their degrees and ColDeg

represents the array containing the indices of the column vertices in nonin

creasing order of their degrees. The arrays RowDeg and ColDeg computed by

Algorithm 3 for the matrix given in Figure 4.1(a) is as follows.

26

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

RowDeg ColDeg

index 1 2 3 4 5

U 1 4 2 3 5

index 1 2

CO 4 5

V 2 4 1 3 5

In Algorithm 3, while sorting the vertices of Gb(A), we take advantage of prior

knowledge of matrix structure.

Algori thm 3 Sorting Algorithm

9

10

11

procedure S o r t i n g (R o w s)

icr = 0;

for j «- pmax,Pmin do

for i <— l , m do

if ndegr(i) = = j then

RowDeg(icr) = i;

icr + +;

end if

end for

end for

end procedure

The outer for loop at line 3 runs (pmax - Pmin) times and the inner for loop

at line 4 runs m times, implying that the running time of the sorting algorithm

is 0(jn{pmax ~ Pmin))' Since pmin

> 0, this sorting runs in 0(mpmax) time.

In Algorithm 4, arrays ListRow and ListCol contain the ordering infor

mation of row and column vertices respectively and together they determine

the combined ordering in which the vertices are processed by the sequential

algorithm. ListCol(i) denotes that column vertex Vi will be processed by the

sequential ordering algorithm after the vertices that are ordered before Vi in

largest first ordering. This combined ordering is computed by the statements

on lines 6-15. The counter inc is incremented by one at each iteration of the

while loop.
27

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

Algori thm 4 Largest First Ordering
1: procedure LFQ(Gb(A))

2: inc <— 1;

3: icr <— 1, ice <— 1;

4: Sort the vertices in U in nonincreasing order of their degrees and put

the result in RowDeg;

5: Sort the vertices in V in nonincreasing order of their degrees and put

the result in ColDeg;

6: while inc < m + n do > Ordering row and column vertices

7: if Degree of vertex at RowDeg(icr) > Degree of vertex at

ColDeg(icc) then

8: ListRow(RowDeg(icr)) <— inc;

9: icr + +;

10: else

11: ListCol(ColDeg(icc)) «— inc;

12: ice + +;

13: end if

14: inc 4- +;

15: end while

16: end procedure

The combined ordering computed by LFO for matrix in Figure 4.1(a) is

shown below.

ListRow ListCol

u 1 2 CO

4 5

Ordering 1 5 6 2 7

V 1 2 CO

4 5

Ordering 8 3 9 4 10

In Algorithm 4, the running time for sorting of row vertices is 0 (m p m a x)

and that of column vertices is 0{nKmax) • Statements on lines 6-15 orders the

vertices in 0(m + n). Thus the total running time for the largest first ordering

28

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

algorithm is 0 (m a x { m p m Q X , nKmax, (m+ri)}) which is 0(max{mpmax, nKmax}).

Without loss of generality, let m — max{m,n} and / 9 m a x = max{pmax, Kmax},

then the run time complexity of LFO algorithm is 0(mpmax).

Before we examine the smallest last ordering and incidence degree ordering,

we will require additional graph terminology. Given a graph Gb = (U U V, E)

and a nonempty subset U\ of U and Vi of V, the subgraph G^ \U\ U Vi] induced

by U\ U V\ has the vertex set U\ U V\ and the edge set

{{u, v} £ E : u e U\, and v € Vi}.

4.2.2 Smal lest Last O r d e r i n g

In smallest last ordering (SLO) the row or column vertex chosen at the kth

stage has minimal degree in the graph induced by the unordered vertices i.e.

fcth vertex Wk is determined after tUfc+i,Wk+2, •••,'wm+n-\,wm+n, where Wi is

either a row vertex Uj or a column vertex vi, have been selected by choosing

uik so that its degree in the subgraph induced by

([/ U V) \ {Wk+i, Wk+2, Wm+n-l,Wm+n}

is minimal.

In Algorithm 5 , inc is the ordering counter which starts from m+n. Arrays

ListRow and ListCol, as described for LFO, store the ordering information of

row and column vertices respectively. Lines 3 and 4 find the minimum degree

row vertex umindeg and column vertex vmindeg- Lines 7 and 1 4 decrease the

degrees of the vertices adjacent to Ummdeg and vmindeg respectively. Lines 8 and

1 5 order the minimum degree vertex and lines 1 1 and 1 7 recompute vmindeg

and umindeg among the remaining unordered vertices.

29

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

Algori thm 5 Smallest Last Ordering
1: procedure SLO(Gb(A))

2: inc <— m + n;

3: Find umindeg <— minimum degree row vertex in U;

4: Find vmindeg *— minimum degree column vertex in V;

5: while inc > 0 do

6: if deg{umindeg) < deg(iWdeg) then

7: Find all column vertices adjacent to w m i n d e g and decrease their

degree by 1;

8: L i s t R o w (w m m d e g) < — inc\

9: inc ;

10: Assign next minimum degree row vertex as umindeg\

11: Recompute vmindeg;

12: end if

13: if deg(vmi„deg) < deg(umindeg) then

14: Find all row vertices adjacent to vmindeg and decrease their de

gree by 1;

15: L i s t C o l (u T O i n d e g) *- inc;

16: inc ;

17: Recompute Ummdeg\

18: Assign next minimum degree column vertex as vmindeg;

19: end if

20: end while

21: end procedure

shown below.

The combined ordering computed by SLO for matrix in Figure 4.1(a) is

30

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

ListRow ListCol

u i—
» 2

CO 4 5

Ordering 6 10 2 4 8

V 1 2 CO

4 5

Ordering 9 5 CO

1 7

The running time of smallest last ordering can be calculated as follows. The

running time of steps at line numbers 3 and 4 is 0(m) and 0(n) respectively.

The while statement on line 5 executes maximum of (m + n) time in worst case.

Inside the while loop, line 11 takes 0(n) time and line 17 takes 0(m) time while

the remaining lines run for constant time. Thus the total running time of the

while loop from statements in lines 5-20 is 0 (max{m,n}(m + n)). Therefore,

the running time of smallest last ordering algorithm is 0 (max{m,n}(m + n)).

Without loss of generality, let m — max{m,n} , then the run time complexity

of SLO algorithm is 0 (m 2) .

4.2.3 Inc idence Degree O r d e r i n g

In incidence degree ordering (IDO) a row or column vertex u>k is determined

after W\,W2, Wk-2,Wk-i, where u>i is either a row vertex Uj or a column

vertex vi, have been selected. The choice of Wk from among the set of unordered

vertices is such that it is adjacent to maximum number of already ordered

vertices {w\,u)2,Wk-2,Wk-i}- The incidence degree of Wk is the degree of

u>k in this subgraph.

In Algorithm 6, inc is the ordering counter which starts from 1. ListRow

and ListCol, as described for LFO, store the row and column vertices already

in the incidence degree and their ordering information. Lines 3, 4 find initial

maximum degree row vertex UinCdeg and maximum degree column vertex v i n c d e g .

Statements in lines 5-11 initialize U j n c d e g or Vincdeg as the first incidence degree

vertex according to initial maximum degree amongst the two. The remaining

incidence degree vertices and their orderings are computed in the statements

of the while loop from lines 13-26. In line 14, degrees of all the column vertices

31

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

adjacent to already ordered row vertices are computed, and in line 15, degrees

of all the row vertices adjacent to already ordered column vertices are com

puted. Lines 16 and 17 calculate Umcdeg and Vincdeg, Le. the unordered row and

column vertices that are adjacent to the maximum number of already ordered

column and row vertices respectively. Statements in lines 18-24 find the new

incidence degree row or column vertex and stores it in ListRow or ListCol with

the ordering assigned to it.

The combined ordering computed by IDO for matrix in Figure 4.1(a) is

shown below.

ListRow ListCol

u 1 2

CO 4 5

Ordering 1 5 9 6 co

V 1 2 3 4 5

Ordering 2 4 10 7 8

The running time of line 3 and 4 is 0(m) and 0(n) respectively. The

while statement on 13 is executed m + n times. Lines 14 and 17 are executed

for maximum of n times each and lines 15 and 16 are executed for maximum

of m times each, the remaining lines run for constant time. Thus the total

running time of the while loop is 0 (max{m,n}(m + n)), where max{m,n}

denotes maximum of m,n. Therefore, the running time of incidence degree

ordering algorithm is 0(max{m, n}(m + n)). Without loss of generality, let

m = max{m, n} and, then the run time complexity of IDO algorithm is 0(m2).

32

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

Algori thm 6 Incidence Degree Ordering
1: procedure lDO(Gb(A))

2: inc <— 1;

3: Find Uincdeg *— maximum degree row vertex in U;

4: Find Vincdeg maximum degree column vertex in V;

5: if deg(uincdeg) > deg(vincdeg) then

6: ListRow (Uincdeg) *~ inc\

7: Remove U{ncdeg from set of unordered vertices;

8: else

9: ListCol(i>i„cdeg) +- inc;

10: Remove vincdeg from set of unordered vertices;

11: end if

12: inc + +;

13: while inc ^ (m + n) do

14: Find all unordered column vertices vl\, v l 2 , v l n adjacent to ver

tices in ListRow and compute their incidence degrees;

15: Find all unordered row vertices u l i , u l 2 , u l m adjacent to vertices

in ListCol and compute their incidence degrees;

16: Find Uincdeg *— maximum degree row vertex from u l i , ...,ulm;

17: Find Vincdeg *— maximum degree column vertex from v i i , v l n ;

18: if Uincdeg ^ Vincdeg then

19: Lis tRow(u i n c d e f l) «- inc;

20: Remove Uincdeg from set of unordered vertices;

21: else

22: L i s tCo l (iw e f l) <— inc;

23: Remove Vincdeg from set of unordered vertices;

24: end if

25: inc + +;

26: end while

27: end procedure

33

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

In the following subsection we will describe the method to find bidirectional

p-coloring using aforesaid ordering techniques.

4.2.4 Sequent ia l A l g o r i t h m

After the vertices have been ordered using one of the ordering algorithms, the

sequential algorithm will access the vertices in the given order and will assign

the smallest available color to the vertices.

Algorithm 7, illustrates the sequential algorithm to assign colors to the

vertices of Gb(A). Variables maxor and maxoc represent the highest order

number, in the combined ordering assigned to a row and a column vertex

respectively. In lines 5 and 6 we construct two arrays Ordr and Ordc of size

m + n each to access the vertices corresponding to the combined ordering. To

explain if the row and column vertices are ordered in the range 1 , 2 , m + n,

then for each position I G {1,2, ...,m + n} there can be exactly one vertex,

either a row or a column, which is assigned the position I. This is implemented

as Ordr(i) > 0, implying that the vertex in position I is a row vertex and

consequently Ordc(Z) is set to -1 indicating that there is no column vertex which

is assigned position / in the combined ordering. Similarly, if Ordc(l) > 0 then

Ordr(Z) = - 1 . Finally, during the running of the algorithm Ordr(Z) = 0 implies

that the row vertex that was assigned order I has already been processed

(colored).

The arrays Ordr and Ordc computed by Algorithm 7, using LFO for matrix

in Figure 4.1(a) is shown below.

Ordr

Ordering 1 2

CO 4 5 6 7 8 9 10

U 1 4 -1 -1 2 3 5 -1 -1 -1

34

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

Ordc

Ordering 1 2

CO 4 5
CO 7 8 9 10

V -1 -1 2 4 -1 -1 -1 1 3 5

Let C be a group of columns. We say that C induces direct determination

of the nonzero entries contained in those columns if for any j , k, I such that j , I

are the indices of columns included in C, we have auj ^ 0 and ^ 0, then

there exists a row group C from which the nonzero entries ay and au have

been determined.

(a) A (b) Cb(A)

Figure 4.2: Example to Illustrate Sequential Algorithm

In Algorithm 7, u m i n o r d and Vminord are the vertices with minimum ordering

among the ungrouped row and column vertices respectively. The while loop

from 7-23 assigns the colors to the vertices. In line 8, we calculate the total

number of nonzeros the row vertex uminord can cover along with all other

ungrouped row vertices which can be grouped with u m i n o r d , such that if the

group C is formed, then it induces direct determination of the nonzero entries

in the group. In line 9, we calculate the total number of nonzeros the column

vertex vminord can cover along with all other ungrouped column vertices which

can be grouped with vminord, such that if the group C is formed, then it induces

direct determination of the nonzero entries in the group. In line 10 we check if

35

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

the number of nonzeros covered by vertex uminorci is more than the number of

nonzeros covered by vertex vminord and if this is the case then a new row group

is formed otherwise a new column group is formed. We use tagging scheme as

described by Gustavson [21] to form groups. Initially all the row or column

vertices which can be part of one group are tagged and then the edges incident

from these vertices are deleted. The process of forming groups or assigning

colors continues until all the edges are accounted.

If we exit on line 20, and there still exist some row and column vertices

which were not colored then on line 24 we assign the next available row color

to all the remaining uncolored row vertices, similarly on line 25 we assign

next available column color to all the remaining uncolored column vertices.

The colors assigned on lines 24 and 25 are redundant colors, i.e. the nonzero

entries in these color groups are already determined by other groups.

Proposi t ion 4.1 The sequential algorithm (Algorithm 7) computes a bidirec

tional coloring ofGb(A).

Proof. To show that the sequential algorithm produces a bidirectional coloring

of the graph Gb(A) we need to show that the vertices in every path of length

3 uses atleast three different colors. Now consider an arbitrary path — Vj —

Uk — vi as shown in Figure 4.2(b). Since the grouping of rows and columns

as described in line 11 and 15 are such that the groups formed induce direct

determination of the nonzeros and given the columns (or rows if it is a row

group) in the first group are structurally orthogonal, we must have that either

columns j and I are included in different column groups or the rows i and k are

included in different row groups. Therefore, the total number of colors used

on the vertices Ui,Vj,Uk, vi are atleast three. Hence, the proof. •

36

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

Algori thm 7 Sequential Algorithm
1: procedure SEQUENTlAL(Gb(A))

2: lor *— 1; loc <— 1;

3: Find maxor;

4: Find maxoc;

5: Construct Array Ordr and calculate ummord\

6: Construct Array Ordc and calculate Vminord',

7: while lor < maxor && loc < maxoc do

8: Calculate the number of nonzeros covered by uminord',

9: Calculate the number of nonzeros covered by vminor<i;

10: if Number of nonzeros covered by vertex uminord > Number of

nonzeros covered by vertex uTOmord then

11: Form a new row group;

12: Delete edges in Gb(A) adjacent to the rows in this group;

13: Set lor to the next minimum ordering number amongst the un

grouped row vertices;

14: else

15: Form a new column group;

16: Delete edges in Gb(A) adjacent to the columns in this group;

17: Set loc to the next minimum ordering number amongst the un

grouped column vertices;

18: end if

19: if Gb(A) contains no more edges then

20: Exit from the while loop;

21: end if

22: Find next Uminord and Vminord,

23: end while

24: Assign next available row color to all the uncolored row vertices;

25: Assign next available column color to all the uncolored column vertices;

26: end procedure

37

C h a p t e r 4 C o l o r i n g H e u r i s t i c s

The running time of Algorithm 7, can be discussed as follows. The running

time of lines 5 is O(m) and lines 6 is 0(n). Since maxor or maxoc is equal

to m + n thus the while statement at line 7 executes m + n times. Lines 11

and 12 runs m times each and lines 15 and 16 runs n times each. Rest of the

lines takes constant time. Thus the total running time of the while loop 7-23

is 0(max{m, n}(m + n)), where max{m,n} denotes maximum of m ,n . There

fore, the total running time of sequential algorithm is 0 (max{m,n}(m + n)).

Without loss of generality, let m = max{m,n} , then the run time complexity

of sequential algorithm is 0 (m 2) .

To check the validity of above algorithms, a validity check algorithm has

been implemented that checks that groups formed follow the definition of bidi

rectional p-coloring as stated in section 3.2.2.

4 . 3 S u m m a r y

In this chapter we described unidirectional and bidirectional p-coloring tech

niques. We discussed existing heuristic algorithms for unidirectional and bidi

rectional ^-coloring. We also described largest first ordering, smallest last

ordering and, incidence degree ordering as adapted by us for bidirectional p-

coloring of A. In chapter 6, we will show the experimental results of the

heuristics and will have the comparative study of various coloring heuristics.

In the next chapter we will explain exact coloring method for bidirectional

p-coloring.

38

C h a p t e r 5

O p t i m a l B i d i r e c t i o n a l C o l o r i n g

In this chapter we will describe exact bidirectional p-coloring techniques. In

section 5.1 we will review the current literature. In section 5.2 we will discuss

our exact coloring formulation together with complexity of the ILP model and

implementation details. Finally, in section 5.3 we will conclude this chapter.

5 . 1 B a c k g r o u n d

Exact coloring refers to coloring the graph such that the number of colors

assigned to the vertices of the graph is minimum and no better solution can

be found. Finding this optimal solution is NP-hard [16]. In the following

subsection we will discuss a selection of relevant optimal coloring algorithms.

5.1.1 D S A T U R

DSATUR algorithm was developed by Brelaz [8] which is based on Randall-

Brown's exact graph coloring algorithm [37]. DSATUR divides the graph col

oring instance into a series of subproblems. A subproblem in DSATUR is a

partial coloration of the graph. At each step there is an upper bound (UB)

on the number of colors required to color the graph. If the subproblem uses p

colors such that p < UB, then a better coloring is found and UB is set to p. If

the graph is not completely colored and the number of colors used is less than

39

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

UB, then new subproblems are created. An uncolored vertex Vi is chosen for

branching and for each feasible color out of p colors a subproblem is created

to assign that color to v*. Another subproblem is created to assign color p+ 1

to Vi.

The choice of branch node i is critical and could affect the performance

of the algorithm. Brelaz suggested to choose the node adjacent to the largest

number of differently colored nodes. Sewell [39] suggested a modification to

DSATUR noting that if the first p nodes colored form a clique, then these

nodes would never be recolored. Thus it is useful to find a maximal clique in

the graph and color those nodes first. This approach is a large improvement

when the clique value and the coloring number of the graph are close.

Mehrotra and Trick [33] implemented the DSATUR algorithm by finding a

large clique in the graph. The algorithm generates 10,000 clique subproblems

and the rest of the nodes are dynamically ordered according to the number

of adjacent colors and subproblems are created as in basic DSATUR. The

subproblems are then solved in depth-first search manner to find the optimal

coloring.

5.1.2 B r a n c h and C u t A l g o r i t h m fo r G r a p h C o l o r i n g

Branch-and-cut methods [34] are exact algorithms consisting of a combination

of a cutting plane method with a branch-and-bound algorithm. These methods

solve a sequence of linear programming relaxations of the integer programming

problem. Cutting plane methods improve the relaxation of the problem to

closely approximate the integer programming problem, and branch-and-bound

algorithms proceed by a sophisticated divide and conquer approach to solve

problems.

Diaz and Zabala [15] proposed a branch-and-cut strategy to find optimal

solution of general graph coloring problem. The problem is modelled with an

40

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

integer linear programming (ILP) formulation.

5 . 2 E x a c t B i d i r e c t i o n a l C o l o r i n g

In this section we present the optimal bidirectional determination of Jaco

bian matrices using integer linear programming (ILP) method. The following

subsection will discuss integer linear programming concept, followed by the

presentation of the ILP model. Subsection thereafter will discuss the com

plexities of the model and the final subsection will present the implementation

details.

5.2.1 In tege r L i nea r P r o g r a m m i n g

A linear programming problem [31] is a mathematical program in which the

objective function is linear in the unknowns and the constraints consists of

linear equalities and linear inequalities. It can be expressed in the following

standard form.

minimize cTx

subject to Ax = b

x>0

where x € is the vector of variables to be determined, A € *f t m x n is a matrix

of known coefficients, and c G R " and b € 5Rm are vectors of known coefficients.

The expression cTx is called the objective function, and the equations Ax = b

are called the constraints. The variable x satisfying these constraints is said

to be feasible for these constraints.

Integer linear programming (ILP) models [40] are the ones whose variables

are constrained to take integers or whole numbers (as opposed to fractional

values). The zero-one (or 0-1 or binary) variables restrict their integer variables

to the values zero and one.

41

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

Integer programming is a much harder problem than ordinary linear pro

gramming problem. The problem of determining whether an ILP has an objec

tive value less than a given target is a member of the class of "NP-complete"

problems, all of which are very hard to solve. Since any NP-complete problem

is reducible to any other, virtually any combinatorial problem of interest can

be attacked in principle by solving some equivalent ILP.

Most available general-purpose large-scale ILP codes use "branch-and-bound"

to search for an optimal integer solution by solving a sequence of related LP

"relaxations" that allow some fractional values. It requires more computer

time and memory to solve a ILP problem than to solve the corresponding LP

relaxation. The difficulty of any particular ILP problem is hard to predict.

Some problems with fewer variables can be challenging while other problems

with larger number of variables can be solved readily. The best explanations

of why a particular ILP is difficult often rely on some insight into the system

to be modelled and it is observed that the way the model is formulated is as

important as the actual choice of a solver.

5 . 2 . 2 I n t e g e r L i n e a r P r o g r a m m i n g M o d e l f o r B i d i r e c

t i o n a l p - c o l o r i n g

We have attempted to find the optimal solution of bidirectional p-coloring for

determining Jacobian matrices by developing an Integer Linear Programming

(ILP) model. The detailed description of the model follows.

Let A € R m x n be a sparse matrix with known sparsity pattern and Gb(A) =

(U U V, E) the corresponding bipartite graph where U and V are the sets of

vertices corresponding to the rows and columns of A respectively. We assume

that the vertices in U are indexed 1,2, .. . ,m and the vertices in V are indexed

m + l,m + 2, ...,m+n and the quantities pu and pv denote upper bound on the

number of colors we allow for the row and column vertices respectively. Below

42

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

43

is the description of binary variables (0-1) as used in the ILP formulation of

bi-directional p-coloring.

• 0-1 variable uij denotes whether (uij = 1) or not (vjj = 0) color j , 1 <

j < Pu has been assigned to some vertex u €.U.

• 0-1 variable vjj denotes whether (vjj — 1) or not (uij = 0) color j , p y + 1 <

j < P u + P v has been assigned to some vertex v € V.

• 0-1 variable denotes whether (xij = 1) or not (xij = 0) vertex i,

1 < i < m has been assigned color j , 1 < j < p u -

• 0-1 variable xitj denotes whether (xy = 1) or not (xitj = 0) vertex i,

m + l < i < m + n has been assigned color j,pu + 1 < j < pu + py.

ILP model for the computation of bidirectional chromatic number of Gb(A)

is as follows:

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

PU+PV

minimize ^ vjj (5.1)

Pu

^ 2 x i , j = 1) for i G (7 (5.2)

PU+PV

Hj = 1) for i G V (5.3)
j=pv+l

xp,i + + xr,j + ^ j ' ^ (^i + wj' + !) * (5.4)

*for each path p — q — r — s of length 3 and for each color pair

{j, / } » 1 < J < Pu,Pu + 1 < j ' < Pu + Pv-

Wj < J^Xij for
i€U

Wj < J2Xi,j for -,Pu+Pv

Xij < mvjj for j = h-,Pu
i€U

J2Xi,j < n w j for j = p u + l,.. ;PU +PV
iev

Wj+l < Wj for j =

Wj+l < Wj for j =pu + l,.. ;PU +PV

Wj G {0,1}, for l < j < P u + P v

x i t j G {0,1}, for i € U U V , l < j < p u + .

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Figure 5.1: ILP Formulation for Bidirectional ^-coloring

Expression (5.1) represents the objective function to be minimized. Con

straints (5.2) and (5.3) ensure that each vertex in the respective set of biparti-

tion receives exactly one color. Constraint (5.4) enforce the coloring condition

44

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

for bidirectional p-coloring. Constraints (5.5) and (5.6) state that color uij can

only be greater than 0, if it has been assigned to a vertex. Constraints (5.7)

and (5.8) ensure that the number of vertices assigned color j cannot be greater

than the total number of vertices in the set U and V respectively. Constraint

(5.9) and (5.10) ensure minimal color assignment to the vertices i.e. they

ensure that the colors are assigned in ascending order of their ordering.

Proposi t ion 5.1 Any feasible solution of the bidirectional ILP induces a col

oring of Gb(A) such that each vertex in Gb(A) receives exactly one color.

Proof. We know that 2 y are the binary variables and thus can have value

either 1 or 0. The sum Yl%tPv
 xhi for i G £/ U V can be exactly 1 only if one

of the variables xitj has value 1. Constraints (5.2) and (5.3) ensures that in

any feasible solution of above ILP model only one of x , j , 1 < j < pu + Pv

assumes the value of 1 for each i G U U V. Consequently, vertex i receiving

only 1 color. Thus by analogous reasoning it follows that each vertex in U U V

is assigned exactly one color via constraints (5.2) and (5.3). •

A path P is called bi-colored if the vertices forming P are colored with only

two colors.

Proposi t ion 5.2 The bidirectional ILP has a feasible solution if and only if

it induces a coloring <f> of Gb in which no path of length 3 in Gb is bi-colored.

Proof. We know that the vertices in U and V are assigned two disjoint sets of

colors and any path of length 3 will have at least 2 colors. We will base the

proof on the fact that be assigned values either 1 or 0 in constraint

(5.4) of the above ILP model.

Constraint (5.4) with path p — q — r — soi length 3 where p, q, r, s G U U V

and the color pair {j,j'}, j G {l,...,pu} and f G {pu + l,-,Pu + Pv} is

associated with the feasible solution of bidirectional ILP. The following cases

45

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

will illustrate the possible ways to assign coloring to Xij using constraint (5.4)

i xPj = xrj = 1 and xqji = xSj> = 1 such that <p(p) = <j>(r) = j and

4>(q) = <f>(s) = f. Then xPij + xqj> + xrj + xs>y = 1 + 1 + 1 + 1 = 4

while Wj + Wji = 1 + 1 making the linear program infeasible and thus

preventing bi-coloring of path P.

ii xPij = xr,j — 0 and xg,ji — xaj> — 1 such that <j>(p) = </>(r) — I ^ j and

4>(q) = 4>(s) = f. Then xPtj + xQiji + xr<j + xs,j> = 0 + 1 + 0 + 1 = 2 while

and hence satisfying the constraint (5.4) for {j, j'} while bi-coloring the

path P. But then the color pair {I, j'} the inequality reduces to case (i)

and hence making the solution infeasible as a result preventing bi-coloring

of path P. Similarly, the assignment xq<j> = xs>j> = 0 and xPtj = xrj = 1

such that <f>(p) = (f>(r) = j and <f>(q) = (f>(s) = I' ^ j corresponds to an

infeasible solution too and thus disallowing bi-coloring of P.

iii xPtj — xr>j = 0 and = xr,j> — 0 such that (f>(p) = </>(r) = I ^ j ' and

<f)(q) = (j>(s) = I' 7^ / . However, in this assignment of variables for the

pair {I, I'} results in the inequality which can be reduced to case (i), thus

making the solution infeasible.

iv xPtj = I, xrj = 0 and xqji = xa,j> = 1 such that <j)(p) = j,<p(r) — I ^ j

and <f)(q) = (p(s) = f. Then xPtj + xqji + xr<j + xs>ji = 1 + 1 + 0 + 1 = 3

and Wj + Wji = 1 + 1 and hence satisfying constraint (5.4) for {j , j ' } while

path P is colored using 3 different colors

v xPtj = 0, xrj = 0 and xqj> = xSji = 1 such that 4>(p) = k ^ j , <j>(r) = I ^

j and 4>(q) = 4>(s) — f. Then xPj + xqj< + xrj + xSj> = 0 + 1 + 0 + 1 = 2

Xpj + Xqji + Xrj + Xsji < (uij + Wji + 1)

46

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

and

Wj +Wj> =
1 + 1 = 2 if xitj = 1 for some i €UUV

0 + 1 = 1 if x^j = 0 for all i G U U V

and hence satisfying constraint (5.4) while path P is colored using 3

different colors k, l,f. This case is symmetric to case(ii).

vi xPj — Q,xrj = 0 and xqj> = l,xSj> = 0 such that <f>(p) — k ^ j,<f>(r) =

I ^ j and <j)(q) = j ' , (j>(s) = I' ^ f. Then xPj + xqj> + xrj + xaj> =

0 + 1 + 0 + 0 = 2 and

Wj + Wji —
1 + 1 = 2 if xu = 1 for some % G U U V

0 + 1 = 1 if x^j = 0 for all i G U U V

and hence satisfying constraint (5.4) while path P is colored using 4

different colors k,l,j',l'. This case is symmetric to case(ii).

vii xPj = 0,xrj = 0 and xqji = 0,xSj> = 0 such that 4>(p) = k ^ j,<t>{r) =

I ^ j and <j)(q) = k ^ f, <p(s) = I' ^ f. Then xPj + x ?) y + xrj + x s >j/ =

0 + 0 + 0 + 0 = 0 and

1 + 1 = 2 if x^j = 1 for some i G t7 U V

and a?j/j/ = 1 for some i' £ UUV

0 + 1 = 1 if x^j = 0 for all i G U U V

and Xi'ji = 1 for some i' G 17 U V
Wj + U>,'' = {

1 + 0 = 1 if Xij = 1 for some i G U U V

and Xj/j' = 0 for all i' G t7 U V

0 + 0 = 0 if Xij = 0 for a l i i G (7 U V

and Xj ' j ' = 0 for a lH' G 17 U V

and hence satisfying constraint (5.4) while path P is colored using 4

different colors k,l,k',l'.

The above cases represents all the distinct assignments to variables x^j

47

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

associated with each path of length 3. In each case the infeasible solution cor

responds to an invalid bidirectional p-coloring while a feasible solution corre

sponds to a valid bidirectional p-coloring. By proposition 1, a feasible solution

induces a coloring of Gb where each vertex receives exactly one color. Hence

this proves the proposition. •

We call color j positive if Wj — 1.

Proposi t ion 5.3 A vertex is assigned a color if and only if that color is pos

itive

Proof. Suppose color j with 1 < j < pu is positive. Then uij = 1. For

inequality (5.5) to hold we must have some vertex Vi,i £ U such that xy = 1.

Since the color j can be used by at most \U\ — m vertices, constraint (5.7) also

holds. With a similar reasoning for constraint (5.6) and (5.8) we can show the

result for i £ V with pu < j <Pu +Pv-

Conversely, suppose color j , 1 < j < pu, is not positive. Then Wj = 0. For

inequality (5.7) to hold we must have that for all 1 < i < m, xy = 0. With

a similar reasoning for constraint (5.8) we can show the result for i £ V with

Pu < j < Pu + Pv- Hence the proof. •

Denote by zm\n the value of the objective function in the optimum solution

< 7 m i n of the ILP of Figure 5.1.

Since a feasible solution to the ILP of Figure 5.1 induces a bidirectional

p-coloring of Gb{A) the following result is the direct consequence of the propo

sitions 5.1, 5.2 and 5.3.

Theorem 5.4 Given A £ K m x n , crmin is the optimum solution of the ILP

corresponding to Gb(A) if and only if crmin induces a bidirectional p-coloring of

Gb(A) such that zmin = x(Gb{A)).

48

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

5.2.3 Comp lex i t i e s

In this section we will derive the computational complexity associated with

the optimal bidirectional coloring. Following are the attributes related to our

ILP model.

• Maximum number of variables for row color is pu and for column color

is pv- Each row vertex can be assigned maximum of pu colors. Thus

for m rows maximum number of variables will be m x py. Similarly,

each column vertex can be assigned maximum of pv colors. Thus for n

columns maximum number of variables will be n x pv. Total number of

variables in the ILP model are:

(n + l)pv + (m + l)pu (5.13)

• Number of 3-paths:

num3paths — E (^ * — 1)
i = l

E to - 1) (5.14)

pi represents the number of nonzeros in row i and Kj denotes the number

of nonzeros in column j . Path of length 3 in a bipartite is denoted by

"num3paths" and is of the order 0 (nnz 2) , where nnz are the number of

nonzeros in the matrix.

• (5.2) have m constraints, (5.3) have n constraints, (5.4) have (num3paths*

Pu * Pv) constraints, (5.5) and (5.7) have pn constraints each and (5.6)

and (5.8) have pv constraints each. (5.9) have pu — 1 constraints and

(5.10) have pv — 1 constraint. Thus the total number of constraints are:

(num3paths *pu *Pv) + (m + n) + 2(pv +pv) + (pu +Pv - 2) (5.15)

While solving a coloring problem, there are two kinds of symmetries [6, 36]

that can be present in a solution. In the ILP model, the colors can be arbitrarily

49

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

permuted (instance-independent symmetries), and some graphs may remain

unchanged under some permutations (instance-dependent symmetries). These

symmetries affect the time and space complexities of the ILP model. One

such kind of instance-independent symmetry occurring in our ILP model is

discussed below.

Definition 5.5 Null Color Symmetry [36]. Consider a p-coloring problem

with colors l...p for a graph. Assuming that G can be optimally colored with

p — 1 colors, consider a solution where color i is not used:

where n, denotes the number of vertices receiving color i. This assignment is

equivalent to another assignment,

where i ^ j and n» = n j . The color i for which = 0 is called null color. For

example, the assignment (1,0,2,3) is equivalent to (1,3,2,0), (0,1,2,3), (1,2,0,3).

This is due to the existence of null colors, which create symmetries in an

instance of p-coloring because any color can be swapped with a null color.

Constraints (5.9) and (5.10) deals with removing the null-color symmetries

occurring in our ILP formulation.

Proposi t ion 5.6 The ILP in Figure 5.1 does not allow null colors.

Proof. In a minimum coloring assignment, of the row vertices by constraint

(5.9), color j can be positive only if color j —1 is positive and thus the colors not

used in a solution automatically appear at the end of the coloring assignment

and hence eliminating null colors. Similar argument can be applied to using

constraint (5.10) for column vertices. Hence the proof. •

(ni . . . ,n,_i, (rii =) 0 , n i + i , . . . ,n p) ,

50

C h a p t e r 5 O p t i m a l B i d i r e c t i o n a l C o l o r i n g

5.2.4 I m p l e m e n t a t i o n

In this section we will discuss the implementation details of the model described

above.

Given a sparse matrix in Harwell-Boeing or Matrix Market format [2], we

designed a program in C + + that generated the corresponding ILP instance for

the bi-directional coloring of the associated graph. The generated ILP model

was compatible with the CPLEX MIP solver [4]. A sample of the ILP model

for a 2 x 2 arrowhead matrix is given in Appendix B.

5 . 3 S u m m a r y

In this chapter we described the optimal bidirectional ^-coloring. We presented

an ILP model for bidirectional p-coloring and discussed the complexities in

volved. We also looked into the implementation details of this model. We

will present the experimental results for this implementation as well as for the

heuristic bidirectional coloring in chapter 6.

5 1

C h a p t e r 6

E x p e r i m e n t a l R e s u l t s

In this chapter we will present computational results for coloring algorithms

proposed in this thesis. For the purpose of comparison we also include unidi

rectional heuristic and exact coloring results. A more elaborate presentation

of computational results is given in Appendix A. In section 6.1 we will pro

vide the relevant features of the test problems. In section 6.2 we will give the

heuristic and exact unidirectional coloring test results, followed by section 6.3

where we will give test results of various bidirectional heuristic techniques. In

section 6.4 we will compare experimental results of heuristic and exact bidi

rectional coloring, followed by section 6.5 where we will compare results of

unidirectional and bidirectional coloring. In section 6.6 we will summarize the

coloring techniques for the determination of Jacobian matrices and finally in

section 6.7 we will conclude the chapter.

6 . 1 I n t r o d u c t i o n

The details of the experimentation environment are as follows.

Machine: SUNW,Sun-Blade-100;sparc;sun4u

Operating system: SunOS Release 5.9 Generic.l 12233-12

Desktop: CDE 1.5.5, x l l Version 6.6.1

52

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Physical memory (RAM): 256 Megabytes

Virtual memory (Swap): 681 Megabytes

For experimenting with our heuristic and exact techniques, matrices from

Harwell-Boeing test matrices [1, 2, 3], and netlib library [5] were taken. Table

6.1 illustrates the properties of the matrices.

Table 6.1: Matrix Statistics

Matr ix n m nnz D N S M pmax Pmin "max

a b b 3 1 3 176 313 1557 2 .83 6 1 26 2

adl i t t l e 138 56 4 2 4 5.49 27 1 11 1

agg 615 488 2862 0 .954 19 2 4 3 1

agg2 758 516 4 7 4 0 1.21 49 2 43 1

agg3 758 516 4756 1.22 49 2 43 1

a r c l 3 0 130 130 1282 7 .59 124 1 124 1

a sh219 85 219 438 2.35 2 2 9 2

ash292 292 292 2208 2 .59 14 4 14 4

ash331 104 331 662 1.92 2 2 12 3

a sh608 188 608 1216 1.06 2 2 12 2

a sh958 292 958 1916 0 .685 2 2 13 3

b lend 114 74 522 6.19 29 2 16 1

bore3d 334 233 1448 1.86 73 1 28 1

bpO 822 822 3276 0.485 266 1 20 1

bplOOO 822 822 4661 0.69 308 1 21 1

b p l 2 0 0 822 822 4726 0 .699 311 1 21 1

b p 1 4 0 0 822 822 4790 0 .709 311 1 21 1

b p l 6 0 0 822 822 4841 0 .716 304 1 21 1

b p 2 0 0 822 822 3802 0 .563 283 1 21 1

b p 4 0 0 822 822 4028 0 .596 295 1 21 1

b p 6 0 0 822 822 4 1 7 2 0 .617 302 1 21 1

b p 8 0 0 822 822 4 5 3 4 0 .671 304 1 21 1

c a n l 0 5 4 1054 1054 12196 1.1 35 6 35 6

c a n l 0 7 2 1072 1072 12444 1.08 35 6 35 6

c an256 256 256 2916 4 .45 83 4 83 4

c a n 2 6 8 268 268 3082 4 .29 37 4 3 7 4

c a n 2 9 2 292 292 2540 2.98 35 4 35 4

c a n 6 3 4 634 634 7228 1.8 28 2 28 2

c a n 7 1 5 715 715 6665 1.3 105 2 105 2

curt i s54 54 54 291 9.98 12 3 16 3

53

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix n m nnz DNSM Pmax Pmin Kmax ^min

dwtl007 1007 1007 8575 0.846 10 3 10 3

dwtl242 1242 1242 10426 0.676 12 2 12 2

dwt2680 2680 2680 25026 0.348 19 4 19 4

dwt419 419 419 3563 2.03 13 6 13 6

dwt59 59 59 267 7.67 6 2 6 2

erisll76 1176 1176 18552 1.34 99 2 99 2

fs541-l 541 541 4285 1.46 11 1 541 5

fs541-2 541 541 4285 1.46 11 1 541 5

gent113 113 113 655 5.13 20 1 27 1

ibm32 32 32 126 12.3 8 2 7 2

impcol-a 207 207 572 1.33 8 1 5 1

impcol-b 59 59 312 8.96 7 2 12 1

impcol-c 137 137 411 2.19 8 1 8 1

impool-d 425 425 1339 0.741 10 1 10 1

impcol-e 225 225 1308 2.58 12 1 23 1

israel 316 174 2443 4.44 119 2 136 1

lundA 147 147 2449 11.3 21 5 21

lundB 147 147 2441 11.3 21 5 21

scagr25 671 471 1725 0.546 10 1 9 1

scagr7 185 129 465 1.95 10 1 9 1

shlO 663 663 1687 0.384 422 1 4 1

shl200 663 663 1726 0.393 440 1 4 1

shl400 663 663 1712 0.389 426 1 4 1

stair 614 356 4003 1.83 36 34 1

standata 1274 359 3230 0.706 745 10 1

strO 363 363 2454 1.86 34 1 34 1

str200 363 363 3068 2.33 30 1 26 1

str400 363 363 3157 2.4 33 1 34 1

str600 363 363 3279 2.49 33 1 34 1

tuff 628 333 4561 2.18 113 25 1

vtp-base 346 198 1051 1.53 38 1 12 1

watt2 1856 1856 11550 0.335 128 1 65

west0067 67 67 294 6.55 6 1 10

west0381 381 381 2157 1.49 25 1 50 1

west0497 497 497 1727 0.699 28 1 55 1

will 199 199 199 701 1.77 6 1 9 2

wi!157 57 57 281 8.65 11 2 11 2

n - Number of columns in A

m - Number of rows in A

nnz - Number of nonzeros in A

54

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzeros in any row

«max - Maximum number of nonzeros in any column

«min - Minimum number of nonzeros in any column

6 . 2 U n i d i r e c t i o n a l H e u r i s t i c a n d E x a c t C o l o r

i n g

In this section we will be presenting the computational test results of unidirec

tional heuristic and exact coloring. In unidirectional coloring a lower bound on

the number of colors is the size of the largest clique in the graph as computed

by DSM. The DSATUR [33] algorithm was implemented in C while DSM [9]

was implemented in Fortran, and the running time of DSM was calculated

using Perl code.

In table 6.2, column 2 depicts the lower bound found by DSM. Columns 3

and 4 give the number of colors and time taken by DSM and columns 5 and 6

illustrate the number of colors and time taken by DSATUR algorithm.

We observe that DSATUR algorithm is able to solve almost all the problems

except fs541-l, fs541-2, dwtl007 and dwt268Q. Leaving the above mentioned

test problems, we find that the total of lower bound for all the matrices is

6429, the total number of colors for all matrices by DSM is 6444 and the total

number of colors for all matrices by DSATUR algorithm is 6436. Thus we see

that DSM is almost optimal.

The running time for both the algorithms is given in seconds. DSM takes 13

seconds to execute all the matrices while DSATUR takes 66.4 seconds. Since

the algorithms were implemented in different languages. We cannot compare

the running times of DSM and DSATUR accurately. However, roughly speak

ing we can say that the running times for the two algorithms are quite close

to each other.

55

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Table 6.2: DSM vs DSATUR

Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time

abb313 10 10 0 10 0.1

adlittle 27 27 0 27 0.0

agg 19 19 0 19 0.6

agg2 49 49 0 49 0.8

agg3 49 49 0 49 0.8

arcl30 124 124 0 124 0.0

ash219 3 4 0 4 0.0

ash292 14 14 0 14 0.2

ash331 6 6 0 6 0.0

ash608 5 6 0 6 0.1

ash958 6 6 0 6 0.1

blend 29 29 1 29 0.0

bore3d 73 73 0 73 0.1

bpO 266 266 1 266 0.7

bplOOO 308 308 1 308 0.8

bpl200 311 311 0 311 0.8

bpl400 311 311 0 311 0.8

bpl600 304 304 1 304 0.8

bp200 283 283 1 283 0.8

bp400 295 295 0 295 0.7

bp600 302 302 0 302 0.8

bp800 304 304 1 304 0.8

canl054 35 35 0 35 4.7

canl072 35 35 0 35 4.9

can256 83 83 0 83 0.1

can268 37 37 0 37 0.4

can292 35 35 0 35 0.1

can634 28 28 0 28 1.0

can715 105 105 0 105 0.6

curtis54 12 12 0 12 0.0

dwtl007 10 11 0 - -
dwtl242 12 15 0 - -
dwt2680 19 19 1 19 25.0

dwt419 14 15 0 15 6.0

dwt59 6 6 0 6 0.0

erisll76 99 99 1 99 1.8

fs541-l 11 13 0 - -
fs541-2 11 13 0 - -
gent113 20 20 0 20 0.0

ibm32 8 8 0 8 0.0

56

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix Lower Bound DSM DSM Time DSATUR DSATUR Time

impcol-a 8 8 0 8 0.1

impcol-b 10 11 0 10 0.0

impcol-c 8 8 0 8 0.0

impcol-d 10 11 0 10 0.3

impcol-e 20 21 0 21 0.1

israel 119 119 0 119 0.1

lundA 21 22 0 21 0.1

lundB 21 24 0 21 0.1

scagr25 10 10 0 10 0.8

scagr7 10 10 0 10 0.1

shlO 422 422 0 422 0.5

shl200 440 440 0 440 0.5

shl400 426 426 0 426 0.5

stair 36 36 1 36 0.5

standata 745 745 1 745 1.9

strO 34 34 0 34 0.1

str200 30 30 0 30 0.1

str400 33 33 0 33 0.1

str600 33 33 0 33 0.2

tuff 113 114 0 114 1.0

vtp-base 38 38 0 38 0.1

watt2 128 128 1 128 4.2

west0067 7 9 1 8 0.0

west0381 27 29 1 28 0.2

west0497 28 28 0 28 0.3

willl99 7 7 0 7 0.1

will57 11 11 0 11 0.0

Total 6429 6444 13 6436 66.4

- Represents that no result was found in 10 hours

6 . 3 B i d i r e c t i o n a l H e u r i s t i c s

In this section we present experimental test results of the heuristic techniques

we implemented and compare these results with the existing bidirectional

heuristics. Our heuristic algorithms were implemented in C + + on Sun So

laris Unix platform.

57

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Table 6.3 compares our bidirectional heuristics results with complete direct

cover [23] results. For each matrix we have taken the minimum of the number

of colors obtained from LFO, SLO and IDO and this result is reported in the

column named minLSI. Direct cover results are listed under the column named

CDC. We find that for most of the matrices the number of colors are almost

comparable. The total number of colors for all matrices in minLSI are 571(33)

and total number of colors for all matrices in Direct Cover are 580(33). Also

we notice that LFO results are more in agreement with that of complete direct

cover as is expected since complete direct cover ordering is also based on the

number of nonzeros (degrees) in rows and columns. The number inside the

parentheses are the extra or redundant colors which were given to the vertices

already covered by other colors. There could be at most two extra redundant

colors, one for row and one for column vertices as described in section 4.2.4.

Table 6.3: Comparison of minLSI with Direct Cover Algorithm

Matrix LFO SLO IDO minLSI CDC

abb313 13(1) 10(1) 10(1) 10(1) 13(1)

arcl30 26(1) 131(1) 43(1) 26(1) 26(1)

ash219 5(1) 5(1) 5(1) 5(1) 5(1)

ash292 9(1) 8(1) 8(1) 8(1) 10(1)

ash331 6(1) 6(1) 6(1) 6(1) 6(1)

ash608 7(1) 6(1) 6(1) 6(1) 7(1)

ash958 7(1) 6(1) 6(1) 6(1) 6(1)

bpO 16(1) 20(1) 20(1) 16(1) 16(1)

bplOOO 23(1) 25(1) 21(1) 21(1) 22(1)

bpl200 23(1) 21(1) 21(1) 21(1) 22(1)

bpl400 28(1) 21(1) 22(1) 21(1) 22(1)

bpl600 28(1) 21(1) 21(1) 21(1) 21(1)

bp200 17(1) 20(1) 21(1) 17(1) 18(1)

bp400 20(1) 21(1) 21(1) 20(1) 19(1)

bp600 22(1) 21(1) 21(1) 21(1) 18(1)

bp800 23(1) 22(1) 21(1) 21(1) 21(1)

curtis54 16(1) 16(1) 12(1) 12(1) 10(1)

erisll76 80(1) 81(1) 81(1) 80(1) 80(1)

fs541-l 16(1) 14(1) 15(1) 14(1) 15(1)

58

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix LFO SLO IDO minLSI CDC

6541-2 16(1) 14(1) 15(1) 14(1) 15(1)

gent l l3 19(1) 27(1) 24(1) 19(1) 18(1)

ibm32 8(1) 9(1) 8(1) 8(1) 8(1)

lundA 13(1) 13(1) 13(1) 13(1) 14(1)

lundB 15(1) 12(1) 13(1) 12(1) 14(1)

shlO 4(1) 4(1) 4(1) 4(1) 4(1)

shl200 4(1) 4(1) 4(1) 4(1) 4(1)

shl400 4(1) 4(1) 4(1) 4(1) 4(1)

strO 26(1) 26(1) 27(1) 26(1) 24(1)

str200 33(1) 30(1) 32(1) 30(1) 31(1)

str400 36(1) 33(1) 34(1) 33(1) 36(1)

str600 38(1) 33(1) 36(1) 33(1) 35(1)

willl99 9(1) 8(1) 8(1) 8(1) 7(1)

will57 11(1) 11(1) 11(1) 11(1) 9(1)

Total 571(33) 580(33)

In Table 6.4 we compare our bidirectional heuristics results with bicoloring

algorithm [12]. Again for each matrix we have taken the minimum of the

number of colors obtained from LFO, SLO and IDO and this result is reported

in column named minLSI. The results of bicoloring are reported in the column

named Bi-col. For nearly all the considered matrices the results of minLSI

and bicoloring are comparable except for israel, watt2 and west0497 where the

results of minLSI are far better than that of bicoloring. The total number of

colors for all matrices from minLSI is 595(29) and the total number of groups

for bicoloring is 602.

Table 6.4: Comparison of minLSI with Bicoloring Algorithm

Matrix LFO SLO IDO minLSI Bi-col

adlittle 11(1) 12(1) 12(1) 11(1) 11

agg 22(1) 20(1) 21(1) 20(1) 19

agg2 33(1) 31(1) 50(1) 31(1) 26

agg3 34(1) 29(1) 36(1) 29(1) 27

arcl30 26(1) 131(1) 43(1) 26(1) 25

blend 20(1) 17(1) 22(1) 17(1) 16

59

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix LFO SLO IDO minLSI Bi-col

bore3d 25(1) 28(1) 28(1) 25(1) 28

canl054 30(1) 38(1) 38(1) 30(1) 31

canl072 31(1) 36(1) 37(1) 31(1) 32

can256 29(1) 30(1) 56(1) 29(1) 32

can268 30(1) 40(1) 36(1) 30(1) 18

can292 19(1) 23(1) 37(1) 19(1) 17

can634 29(1) 29(1) 29(1) 29(1) 28

can715 21(1) 34(1) 27(1) 21(1) 22

gent l l3 19(1) 27(1) 24(1) 19(1) 19

impcol-c 6(1) 10(1) 9(1) 6(1) 6

impcol-d 6(1) 12(1) 12(1) 6(1) 6

impcol-e 22(1) 23(1) 23(1) 22(1) 21

israel 50(1) 55(1) 54(1) 50(1) 61

scagr25 8(1) 9(1) 9(1) 8(1) 8

scagr7 8(1) 9(1) 9(1) 8(1) 8

stair 38(1) 48(1) 36(1) 36(1) 36

standata 9(1) 10(1) 10(1) 9(1) 9

tuff 20(1) 26(2) 25(2) 20(1) 21

vtp-base 12(1) 16(1) 17(1) 12(1) 12

watt2 13(1) 65(1) 14(1) 13(1) 20

west0067 11(1) 11(1) 10(1) 10(1) 9

west0381 12(1) 12(1) 14(1) 12(1) 12

west0497 18(1) 16(1) 29(1) 16(1) 22

Total 595(29) 602

6 . 4 H e u r i s t i c a n d E x a c t B i d i r e c t i o n a l

ILP instances were generated using Perl and C + + on Sun Solaris Unix plat

form. The generated ILP model was compatible with CPLEX MIP solver

[4, 32] which was run under Windows XP Home Edition with AMD Athlon

processor with 1GB RAM. Each problem was run for a maximum of 10 hours.

For small matrices the coloring results obtained are generally better than

the heuristic coloring results. The current formulation of our ILP avoids null

colors via a set of inequalities. By implementing null color symmetry breaking

in our ILP model we have reduced the running time by approximately 3 folds.

60

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Table 6.5 shows the results of minLSI and the ILP formulation. Due to time

and memory constraints, we were able to get the results only for six matrices.

We find that for 3 out of 6 matrices the number of colors found by exact

ILP are fewer than the bidirectional heuristics. Also we see that the results

of ash331, ash608 and impcol-a are same for both heuristic and bidirectional

coloring and thereby optimal.

Table 6.5: Comparison of Heuristic and Exact Bidirectional Coloring

Matrix minLSI exact ILP Matrix
RG CG TG RG CG TG

ibm32 1(1) 7(0) 8(1) 1(1) 6(0) 7(1)
ash219 0(1) 5(0) 5(1) 0(1) 4(0) 4(1)
ash331 0(1) 6(0) 6(1) 0(1) 6(0) 6(1)
ash608 0(1) 6(0) 6(1) 0(1) 6(0) 6(1)

impcol-a 5(1) 1(1) 6(2) 6(0) 0(1) 6(1)
impcol-c 1(1) 5(0) 6(1) 1(1) 3(0) 4(1)

Total 37(7) 33(6)

RG - Total number of row groups

CG - Total number of column groups

TG - RG + CG

6 . 5 U n i d i r e c t i o n a l a n d B i d i r e c t i o n a l

In this section we compare the results of unidirectional and bidirectional heuris

tics. In Table 6.6 we see that for most of the matrices bidirectional techniques

are far superior to unidirectional techniques with regard to the number of col

ors to completely determine the Jacobian matrices. Over 67 test problems,

the total number of colors required by DSM and minLSI is 6496 and 1254(68)

respectively. This is approximately a 5 fold reduction in the number of colors.

The total running time of all matrices for unidirectional matrices is 13

seconds while the total running time of all matrices for bidirectional heuristic

is 19017 seconds.

61

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix DSM DSM Time minLSI minLSI Time

abb313 10 0 10(1) 7

adlittle 27 0 11(1) 1

agg 19 0 20(1) 88

agg2 49 0 31(1) 137

agg3 49 0 29(1) 139

arcl30 124 0 26(1) 2

ash219 4 0 5(1) 1

ash292 14 0 14(1) 13

ash331 6 0 6(1) 4

ash608 6 0 6(1) 25

ash958 6 0 6(1) 95

blend 29 1 17(1) 1

bore3d 73 0 25(1) 14

bpO 266 1 16(1) 309

bplOOO 308 1 21(1) 283

bpl200 311 0 21(1) 282

bpl400 311 0 21(1) 286

bpl600 304 1 21(1) 288

bp200 283 1 17(1) 287

bp400 295 0 20(1) 286

bp600 302 0 21(1) 288

bp800 304 1 21(1) 282

canl054 35 0 30(1) 487

canl072 35 0 31(1) 512

can256 83 0 29(1) 8

can268 37 0 30(1) 10

can292 35 0 19(1) 12

can634 28 0 29(1) 114

can715 105 0 21(1) 146

curtis54 12 0 12(1) 0

dwtl007 11 0 11(1) 409

dwtl242 15 0 15(1) 772

dwt2680 19 1 21(1) 8419

dwt419 15 0 16(1) 34

dwt59 6 0 7(1) 0

erisll76 99 1 93(1) 732

fs541-l 13 0 14(1) 82

fs541-2 13 0 14(1) 84

gent l l3 20 0 19(1) 1

ibm32 8 0 8(1) 0

62

Table 6.6: Comparison of Unidirectional and Bidirectional Coloring Heuristics

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix DSM DSM Time minLSI minLSI Time

impcol-a 8 0 6(2) 4

impcol-b 11 0 11(1) 0

impcol-c 8 0 6(1) 1

impcol-d 11 0 6(1) 35

impcol-e 21 0 22(1) 5

israel 119 0 50(1) 9

lundA 22 0 26(1) 1

lundB 24 0 26(1) 1

scagr25 10 0 8(1) 94

scagr7 10 0 8(1) 2

shlO 422 0 4(1) 177

shl200 440 0 4(1) 169

shl400 426 0 4(1) 175

stair 36 1 36(1) 55

standata 745 1 9(1) 250

strO 34 0 26(1) 26

str200 30 0 30(1) 24

str400 33 0 33(1) 27

str600 33 0 33(1) 26

tuff 114 0 20(1) 52

vtp-base 38 0 12(1) 11

watt2 128 1 13(1) 2840

west0067 9 1 10(1) 0

west0381 29 1 12(1) 28

west0497 28 0 16(1) 61

willl99 7 0 8(1) 4

will57 11 0 11(1) 0

Total 6496 13 1254(68) 19017

Finally, in Table 6.7 we see that 4 out of 6 matrices have fewer number of

colors in case bidirectional exact coloring as compared to unidirectional exact

coloring. Notably, for the problem impcol-c we find that the number of colors

required by bidirectional p-coloring is one-half of the number of colors required

by unidirectional p-coloring.

63

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix DSATUR ILP
ibm32 8 7(1)
ash219 4 4(1)
ash331 6 6(1)
ash6Q8 6 6(1)

impcol-a

oo 6(1)
impcol-c 8 4(1)

Total 40 33(6)

6 . 6 F i n a l R e s u l t s

Table 6.8 summarizes the results of Unidirectional heuristic and exact color

ing, bidirectional heuristic results for LFO, SLO, IDO, and bidirectional exact

coloring.

Table 6.8: Summary of all the Coloring Techniques

Matrix DSM DSATUR LFO SLO IDO Bi-Dir

abb313 10 10 13(1) 10(1) 10(1) -
adlittle 27 27 11(1) 12(1) 12(1) -
agg 19 19 22(1) 20(1) 21(1) -
agg2 49 49 33(1) 31(1) 50(1) -
agg3 49 49 34(1) 29(1) 36(1) -
arcl30 124 124 26(1) 131(1) 43(1) -
ash219 4 4 5(1) 5(1) 5(1) 4(1)

ash292 14 14 15(1) 15(1) 14(1) -
ash331 6 6 6(1) 6(1) 6(1) 6(1)

ash608 6 6 7(1) 6(1) 6(1) 6(1)

ash958 6 6 7(1) 6(1) 6(1) -
blend 29 29 20(1) 17(1) 22(1) -
bore3d 73 73 25(1) 28(1) 28(1) -
bpO 266 266 16(1) 20(1) 20(1) -
bplOOO 308 308 23(1) 25(1) 21(1) -
bpl200 311 311 23(1) 21(1) 21(1) -
bpl400 311 311 28(1) 21(1) 22(1) -
bpl600 304 304 28(1) 21(1) 21(1) -
bp200 283 283 17(1) 20(1) 21(1) -

64

Table 6.7: Comparison of Exact Unidirectional and Bidirectional Coloring

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix DSM DSATUR LFO SLO IDO Bi-Dir

bp400 295 295 20(1) 21(1) 21(1) -
bp600 302 302 22(1) 21(1) 21(1) -
bp800 304 304 23(1) 22(1) 21(1) -
canl054 35 35 30(1) 38(1) 38(1) -
canl072 35 35 31(1) 36(1) 37(1) -
can256 83 83 29(1) 30(1) 56(1) -
can268 37 37 30(1) 40(1) 36(1) -
can292 35 35 19(1) 23(1) 37(1) -
can634 28 28 29(1) 29(1) 29(1) -
can715 105 105 21(1) 34(1) 27(1) -
curtis54 12 12 16(1) 16(1) 12(1) -
dwtl007 11 - 11(1) 11(1) 11(1) -
dwtl242 15 - 16(1) 15(1) 16(1) -
dwt2680 19 19 22(1) 21(1) 21(1) -
dwt419 15 15 16(1) 17(1) 19(1) -
dwt59 6 6 8(1) 7(1) 7(1) -
erisll76 99 99 93(1) 93(1) 100(1) -
fs541-l 13 - 16(1) 14(1) 15(1) -
fs541-2 13 - 16(1) 14(1) 15(1) -
gent113 20 20 19(1) 27(1) 24(1) -
ibm32 8 8 8(1) 9(1) 8(1) 7(1)

impcol-a 8 8 8(1) 6(2) 8(1) 6(1)

impcol-b 11 10 " (1) 11(1) 12(1) -
impcol-c 8 8 6(1) 10(1) 9(1) 4(1)

impcol-d 11 10 6(1) 12(1) 12(1) -
impcol-e 21 21 22(1) 23(1) 23(1) -
israel 119 119 50(1) 55(1) 54(1) -
lundA 22 21 26(1) 28(1) 28(1) -
lundB 24 21 26(1) 26(1) 28(1) -
scagr25 10 10 8(1) 9(1) 9(1) -
scagr7 10 10 8(1) 9(1) 9(1) -
shlO 422 422 4(1) 4(1) 4(1) -
shl200 440 440 4(1) 4(1) 4(1) -
shl400 426 426 4(1) 4(1) 4(1) -
stair 36 36 38(1) 48(1) 36(1) -
standata 745 745 9(1) 10(1) 10(1) -
strO 34 34 26(1) 26(1) 27(1) -
str200 30 30 33(1) 30(1) 32(1) -
str400 33 33 36(1) 33(1) 34(1) -
str600 33 33 38(1) 33(1) 36(1) -
tuff 114 114 20(1) 26(2) 25(2) -

65

C h a p t e r 6 E x p e r i m e n t a l R e s u l t s

Matrix DSM DSATUR LFO SLO IDO Bi-Dir

vtp-base 38 38 12(1) 16(1) 17(1)

watt2 128 128 13(1) 65(1) 14(1)

west0067 9 oo

11(1) 11(1) 10(1)

west0381 29 28 12(1) 12(1) 14(1)

west0497 28 28 18(1) 16(1) 29(1)

wiU199 7 7 9(1) 8(1) 8(1)

wi!157 11 11 11(1) 11(1) 11(1)

- Represents that no result was found in 10 hours

6 . 7 S u m m a r y

In this chapter we presented the experimental results of unidirectional and

bidirectional p-coloring. In most of the cases bidirectional techniques were

found to be superior to the unidirectional techniques in terms of the number of

colors needed to color the graph associated with the Jacobian matrix. For uni

directional coloring, the results of exact and heuristic methods are nearly the

same. Also in case of unidirectional and bidirectional exact coloring method,

exact bidirectional method needed fewer colors than the unidirectional exact

method. On the basis of limited test results, we see that the heuristic bidirec

tional coloring results are not far from the exact bidirectional results. But this

requires further investigation. In the next chapter we will conclude this thesis

and give suggestions for future research.

66

C h a p t e r 7

C o n c l u s i o n a n d F u t u r e W o r k

7.1 Conclusion

In this thesis we studied methods to determine sparse Jacobian matrices. We

saw that by partitioning the Jacobian matrices, the sparsity information could

be efficiently exploited. Two ways to partition the matrices were described

namely unidirectional partitioning and bidirectional partitioning. We observed

that the partitioning problem could be formulated as a graph coloring problem.

Unidirectional and bidirectional p-coloring techniques were described to

color the vertices of column intersection graph and bipartite graph respectively

such that the nonzero entries of the Jacobian matrices could be determined di

rectly. We discussed the existing unidirectional exact and heuristic techniques

and bidirectional heuristic techniques. We detailed our heuristic bidirectional

p-coloring methods and proposed an exact ILP model for bidirectional deter

mination. To the best of our knowledge this is the first attempt at using ILP

techniques to solve the bidirectional determination of Jacobian matrices.

We tested the unidirectional and bidirectional p-coloring algorithms on se

lected problems from Harwell-Boeing test matrices [1, 2, 3] and netlib library

[5]. We found that in most of the cases the bidirectional techniques did far

better than the unidirectional methods. On the test problems considered our

67

C h a p t e r 7 C o n c l u s i o n and F u t u r e W o r k

bidirectional heuristic techniques require fewer (although not by a large mar

gin) row and column groups than the complete direct cover [23] and bicoloring

[12]. Our bidirectional p-coloring results were compared to the results obtained

from exact ILP formulation. In 3 out of 6 cases the results were the same.

However only a few of the ILP instances could be solved in the allotted time.

Therefore, it is not quite clear how the bidirectional heuristics are performing

in general. We note that while the bidirectional heuristics required more CPU

time as compared with DSM, it is to be emphasized that the coloring step is

done only once in an iterative scheme e.g. the Newton's method.

7 . 2 F u t u r e R e s e a r c h D i r e c t i o n s

For future research on this work we would like to give the following suggestions.

• In case of bidirectional heuristic techniques we would like to improve the

code such that the time taken by incidence degree ordering algorithm is

decreased and in turn the overall running time is decreased.

• We would like to profile the code for bidirectional heuristic techniques

by looking into variants of the ordering algorithms and by employing

different tie-breaking strategies. We would also like to implement an

efficient data structure so that the running time can be decreased further.

• Memory requirement in the ILP model can be improved by implementing

heuristics such that the complete branch and bound tree is not stored

while the CPLEX solver is searching for the solution. This can be done

by changing the settings of the solver and experimenting accordingly.

• As evidenced by the computational tests, by removing the null color

symmetry we were able to reduce the running time. Another idea to

break symmetries existing in the model is by ordering [7] the colors.

68

C h a p t e r 7 C o n c l u s i o n and F u t u r e W o r k

Fixing colors of the clique vertices in the bipartite graph can also help

in reducing symmetries. Both the ideas could result in a reduction of

running time.

• We would like to perform more elaborate numerical testing for exact ILP

bidirectional p-coloring.

69

B i b l i o g r a p h y

[1] ftp://ftp.cerfacs.fr/pub/algo/matrices/harwelLboeing/ (2005).

[2] http://math.nist.gov/raatrixrnarket/collections/hb.html (2005).

[3] http://math.nist.gov/matrixmarket/matrices.html (2005).

[4] http://www.ilog.com/products/cplex/ (2005).

[5] http:/ /www.netl ib.org/lp/data/ (2005).

[6] F.A. Aloul. Solving difficult SAT instances in the presence of symmetry.

In IEEE Trans, on CAD, volume 22, pages 1117-1137. 2003.

[7] Rob H. Bisseling, Jaroslaw Byrka, Selin Cerav-Erbas, Nebojsa Gvozden-

ovic, Mathias Lorenz, Rudi Pendavingh, Colin Reeves, Matthias Roger,

and Arie Verhoeven. Partitioning a call graph. Technical report, Univer-

siteit Utrecht, June 2005.

[8] Daniel Brelaz. New methods to color the vertices of a graph. Commun.

ACM, 22(4):251-256, 1979.

[9] Thomas F. Coleman, Burton S. Garbow, and Jorge J. More. Software

for estimating sparse Jacobian matrices. ACM Trans. Math. Softw.,

10(3):329-345, 1984.

70

ftp://ftp.cerfacs.fr/pub/algo/matrices/harwelLboeing/
http://math.nist.gov/raatrixrnarket/collections/hb.html
http://math.nist.gov/matrixmarket/matrices.html
http://www.ilog.com/products/cplex/
http://www.netlib.org/lp/data/

[10] Thomas F. Coleman and Jorge J. More. Estimation of sparse Jacobian

matrices and graph coloring problems. SIAM J. Numer. Anal., 20(1):187-

209, 1983.

[11] Thomas F. Coleman and Arun Verma. Structure and efficient Jacobian

calculation. Technical report, Computer Science Department, Cornell

University, 1996.

[12] Thomas F. Coleman and Arun Verma. The efficient computation of sparse

Jacobian matrices using automatic differentiation. SIAM J. Sci. Comput,

19(4):1210-1233, July 1998.

[13] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse

Jacobian matrices. J. Inst. Math. Appl, 13:117-119, 1974.

[14] J. E. Dennis and Robert B. Schnabel. Numerical Methods for Uncon

strained Optimization and Nonlinear Equations. Prentice-Hall, Englewood

Cliffs, NJ, 1983.

[15] Isabel Mendez Diaz and Paual Zabala. A branch-and-cut algorithm for

graph coloring. Technical report, Universidad de Buenos Aires - Ar

gentina, 2002.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability;

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New

York, NY, USA, 1990.

[17] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. Graph

coloring in optimization revisited. Technical report, Department of Infor

matics, University of Bergen, 2003.

[18] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What

color is your Jacobian? Graph coloring for computing derivatives. Tech

nical report, Accepted by SIAM Review, 2004.

71

[19] Andreas Griewank. Evaluating derivatives: principles and techniques of

algorithmic differentiation. Society for Industrial and Applied Mathemat

ics, Philadelphia, PA, USA, 2000.

[20] Rajiv Gupta, Mary Lou Soffa, and Denise Ombres. Efficient register

allocation via coloring using clique separators. ACM Trans. Program.

Lang. Syst, 16(3):37Q-386, 1994.

[21] F. G. Gustavson. Sparse Matrix Computations, chapter Finding the block

lower triangular form of a sparse matrix, pages 275-289. Academic Press,

New York, 1976.

[22] A. K. M. Shahadat Hossain. On The Computation of Sparse Jacobian

Matrices and Newton Steps. PhD thesis, Department of Informatics, Uni

versity of Bergen, Norway, 1997.

[23] A. K. M. Shahadat Hossain and Trond Steihaug. Computing a sparse Ja

cobian matrix by rows and columns. Optimization Methods and Software,

10:33-48, 1998.

[24] Shahadat Hossain and Trond Steihaug. Reducing the number of AD passes

for computing a sparse Jacobian matrix. In Automatic Differentiation of

Algorithms: From Simulation to Optimization, Computer and Information

Science, chapter 31, pages 263-270. Springer, New York, NY, 2001.

[25] Shahadat Hossain and Trond Steihaug. Sparsity issues in the computation

of Jacobian matrices. In ISSAC '02: Proceedings of the 2002 international

symposium on Symbolic and algebraic computation, pages 123-130, New

York, NY, USA, 2002. ACM Press.

[26] Shahadat Hossain and Trond Steihaug. Optimal direct determination of

sparse Jacobian matrices. Technical Report 254, University of Lethbridge

and University of Bergen, October 2003.

72

[27] Shahadat Hossain and Trond Steihaug. Graph coloring in the estimation

of sparse derivative matrices: Instances and applications, 2004. University

of Lethbridge, Canada.

[28] Shahadat Hossain and Zhenshuan Zhang. CsegGraph: Column segment

graph generator, 2003. University of Lethbridge, Canada.

[29] Sven 0 . Krumke, Madhav V. Marathe, and S. S. Ravi. Models and ap

proximation algorithms for channel assignment in radio networks. Wirel.

Netvj., 7(6):575-584, 2001.

[30] Yaw-Ling Lin and Steven S. Skiena. Algorithms for square roots of graphs.

SIAM J. Discret. Math., 8(1):99-118, 1995.

[31] David G. Luenberger. Introduction to linear and nonlinear programming.

Addison-Wesley Publishing Company, 1973.

[32] Irvin Lustig. Embedding cplex using the ILOG CPLEX callable library.

Technical report, http://optimization.ilog.com.

[33] Anuj Mehrotra and Michael A. Trick. A column generation approach for

graph coloring. INFORMS Journal on computing, 8(4):344-354, 1996.

[34] John E. Mitchell. Branch-and-cut algorithms for combinatorial optimiza

tion problems. In Notebook of Applied Optimization,. Oxford University

Press, 2000.

[35] G. N. NewSam and J. D. Ramsdell. Estimation of sparse Jacobian matri

ces. In SIAM J. Alg. Disc. Meth., volume 4, pages 404-417. 1983.

[36] Arathi Ramani, Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah.

Breaking instance-independent symmetries in exact graph coloring. In De

sign Automation and Test Conference in Europe, pages 324-329, February

2004.

73

http://optimization.ilog.com

[37] J Randall-Brown. Chromatic scheduling and the chromatic number prob

lems. In Management Science, volume 4 of Part I, pages 456-463. De

cember 1972.

[38] Timothy Anton Redl. A Study of University Timetabling that Blends

Graph Coloring with the Satisfaction of Various Essential and Preferential

Conditions. PhD thesis, Rice University, 2004.

[39] Edward C. Sewell. An improved algorithm for exact graph coloring. In

DIM ACS Series on Discrete Mathematics and Theoretical Computer Sci

ence. 1995.

[40] Robert J. Vanderbei. Linear Programming, foundations and extensions.

Kluwer Academic Publishers, 2003.

74

A p p e n d i x A

E x t e n d e d H e u r i s t i c

B i d i r e c t i o n a l C o l o r i n g R e s u l t s

This appendix gives complete results of heuristic bidirectional coloring tech

niques.

75

Table A.l : LFO Result
Matr ix n m nnz D N S M Pmax Pmin ^max C G R G T G

abb313 176 313 1557 2.83 6 1 26 2 12(0) 1(1) 13(1)

adlittle 138 56 424 5.49 27 1 11 1 0(1) 11(0) 11(1)

agg 615 488 2862 0.954 19 2 43 1 22(0) 0(1) 22(1)

agg2 758 516 4740 1.21 49 2 43 1 31(0) 2(1) 33(1)

agg3 758 516 4756 1.22 49 2 43 1 32(0) 2(1) 34(1)

arc130 130 130 1282 7.59 124 1 124 1 16(1) 10(0) 26(1)

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1)

ash292 292 292 2208 2.59 14 4 14 4 0(1) 15(0) 15(1)

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1)

ash608 188 608 1216 1.06 2 2 12 2 7(0) 0(1) 7(1)

ash958 292 958 1916 0.685 2 2 13 3 7(0) 0(1) 7(1)

blend 114 74 522 6.19 29 2 16 1 14(0) 6(1) 20(1)

bore3d 334 233 1448 1.86 73 1 28 1 3(1) 22(0) 25(1)

bpO 822 822 3276 0.485 266 1 20 1 2(1) 14(0) 16(1)

bplOOO 822 822 4661 0.69 308 1 21 1 19(0) 4(1) 23(1)

bpl200 822 822 4726 0.699 311 1 21 1 18(1) 5(0) 23(1)

bpHOO 822 822 4790 0.709 311 1 21 1 23(1) 5(0) 28(1)

bpl600 822 822 4841 0.716 304 1 21 1 15(1) 13(0) 28(1)

bp200 822 822 3802 0.563 283 1 21 1 7(0) 10(1) 17(1)

bp400 822 822 4028 0.596 295 1 21 1 15(1) 5(0) 20(1)

bp600 822 822 4172 0.617 302 1 21 1 13(1) 9(0) 22(1)

bp800 822 822 4534 0.671 304 1 21 1 20(0) 3(1) 23(1)

canl054 1054 1054 12196 1.1 35 6 35 6 8(1) 22(0) 30(1)

canl072 1072 1072 12444 1.08 35 6 35 6 9(1) 22(0) 31(1)

can256 256 256 2916 4.45 83 4 83 4 8(1) 21(0) 29(1)

can268 268 268 3082 4.29 37 4 37 4 7(1) 23(0) 30(1)

can292 292 292 2540 2.98 35 4 35 4 3(1) 16(0) 19(1)

can634 634 634 7228 1.8 28 2 28 2 0(1) 29(0) 29(1)

can715 715 715 6665 1.3 105 2 105 2 1(1) 20(0) 21(1)

curtis54 54 54 291 9.98 12 3 16 3 0(1) 16(0) 16(1)

dwtl007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11(1)

dwtl242 1242 1242 10426 0.676 12 2 12 2 0(1) 16(0) 16(1)

dwt2680 2680 2680 25026 0.348 19 4 19 4 0(1) 22(0) 22(1)

dwt419 419 419 3563 2.03 13 6 13 6 0(1) 16(0) 16(1)

dwt59 59 59 267 7.67 6 2 6 2 0(1) 8(0) 8(1)

erisll76 1176 1176 18552 1.34 99 2 99 2 85(0) 8(1) 93(1)

fs541-l 541 541 4285 1.46 11 1 541 5 13(0) 3(1) 16(1)

fs541-2 541 541 4285 1.46 11 1 541 5 13(0) 3(1) 16(1)

gent l l3 113 113 655 5.13 20 1 27 1 16(0) 3(1) 19(1)

ibm32 32 32 126 12.3 8 2 7 2 7(0) 1(1) 8(1)

76

M a t r i x n m nnz D N S M Pmax Pmin Kmax Kmin C G R G T G

impcol-a 207 207 572 1.33 8 1 5 1 8(0) 0(1) 8(1)

impcol-b 59 59 312 8.96 7 2 12 1 10(0) 1(1) 11(1)

impcol-c 137 137 411 2.19 8 1 8 1 5(0) 1(1) 6(1)

impcol-d 425 425 1339 0.741 10 1 10 1 5(0) 1(1) 6(1)

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 2(1) 22(1)

israel 316 174 2443 4.44 119 2 136 1 11(1) 39(0) 50(1)

lundA 147 147 2449 11.3 21 5 21 0(1) 26(0) 26(1)

lundB 147 147 2441 11.3 21 5 21 0(1) 26(0) 26(1)

scagr25 671 471 1725 0.546 10 1 9 1 3(0) 5(1) 8(1)

scagr7 185 129 465 1.95 10 1 9 1 3(0) 5(1) 8(1)
shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1)

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1)

shl400 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1)

stair 614 356 4003 1.83 36 34 1 26(0) 12(1) 38(1)

standata 1274 359 3230 0.706 745 10 1 K D 8(0) 9(1)

strO 363 363 2454 1.86 34 1 34 1 18(1) 8(0) 26(1)

str200 363 363 3068 2.33 30 1 26 1 26(0) 7(1) 33(1)

str400 363 363 3157 2.4 33 1 34 1 32(0) 4(1) 36(1)

str600 363 363 3279 2.49 33 1 34 1 31(0) 7(1) 38(1)

tuff 628 333 4561 2.18 113 25 1 4(1) 16(0) 20(1)

vtp-base 346 198 1051 1.53 38 1 12 1 7(1) 5(0) 12(1)
watt2 1856 1856 11550 0.335 128 1 65 1(1) 12(0) 13(1)

west0067 67 67 294 6.55 6 1 10 3(1) 8(0) 11(1)

west0381 381 381 2157 1.49 25 1 50 1 4(1) 8(0) 12(1)

west0497 497 497 1727 0.699 28 1 55 1 8(1) 10(0) 18(1)

willl99 199 199 701 1.77 6 1 9 2 9(0) 0(1) 9(1)

will57 57 57 281 8.65 11 2 11 2 1(1) 10(0) 11(1)

n - Number of columns in A

m - Number of rows in A

nnz - Number of nonzeros in A

DNSM - Matrix Density

pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzeros in any row

«max - Maximum number of nonzeros in any column

«min - Minimum number of nonzeros in any column

RG - Total number of row groups

CG - Total number of column groups

TG - RG + CG

77

Table A.2: SLO Result

M a t r i x n m nnz D N S M Pmax Pmin ^ max Kmin C G R G T G

abb-313 176 313 1557 2.83 6 1 26 2 10(0) 0(1) 10(1)

adlittle 138 56 424 5.49 27 1 11 1 0(1) 12(0) 12(1)

agg 615 488 2862 0.954 19 2 43 1 20(0) 0(1) 20(1)

agg2 758 516 4740 1.21 49 2 43 1 25(0) 6(1) 31(1)

agg3 758 516 4756 1.22 49 2 43 1 25(0) 4(1) 29(1)

arcl30 130 130 1282 7.59 124 1 124 1 124(0) 7(1) 131(1)

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1)

ash292 292 292 2208 2.59 14 4 14 4 15(0) 0(1) 15(1)

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1)

ash608 188 608 1216 1.06 2 2 12 2 6(0) 0(1) 6(1)

ash.958 292 958 1916 0.685 2 2 13 3 6(0) 0(1) 6(1)

blend 114 74 522 6.19 29 2 16 1 0(1) 17(0) 17(1)

bore3d 334 233 1448 1.86 73 1 28 1 0(1) 28(0) 28(1)

bpO 822 822 3276 0.485 266 1 20 1 0(1) 20(0) 20(1)

bplOOO 822 822 4661 0.69 308 1 21 1 2(1) 23(0) 25(1)

bpl200 822 822 4726 0.699 311 1 21 1 0(1) 21(0) 21(1)

bpl400 822 822 4790 0.709 311 1 21 1 0(1) 21(0) 21(1)

bpl600 822 822 4841 0.716 304 1 21 1 0(1) 21(0) 21(1)

bp200 822 822 3802 0.563 283 1 21 1 6(1) 14(0) 20(1)

bp400 822 822 4028 0.596 295 1 21 1 8(0) 13(1) 21(1)

bp600 822 822 4172 0.617 302 1 21 1 0(1) 21(0) 21(1)

bp800 822 822 4534 0.671 304 1 21 1 1(1) 21(0) 22(1)

canl054 1054 1054 12196 1.1 35 6 35 6 2(1) 36(0) 38(1)

canl072 1072 1072 12444 1.08 35 6 35 6 36(0) 0(1) 36(1)

can256 256 256 2916 4.45 83 4 83 4 26(0) 4(1) 30(1)

can268 268 268 3082 4.29 37 4 37 4 40(0) 0(1) 40(1)

can292 292 292 2540 2.98 35 4 35 4 5(1) 18(0) 23(1)

can634 634 634 7228 1.8 28 2 28 2 29(0) 0(1) 29(1)

can715 715 715 6665 1.3 105 2 105 2 12(1) 22(0) 34(1)

curtis54 54 54 291 9.98 12 3 16 3 0(1) 16(0) 16(1)

dwtl007 1007 1007 8575 0.846 10 3 10 3 0(1) 11(0) 11(1)

dwtl242 1242 1242 10426 0.676 12 2 12 2 15(0) 0(1) 15(1)

dwt2680 2680 2680 25026 0.348 19 4 19 4 21(0) 0(1) 21(1)

dwt419 419 419 3563 2.03 13 6 13 6 17(0) 0(1) 17(1)

dwt59 59 59 267 7.67 6 2 6 2 7(0) 0(1) 7(1)

erisll76 1176 1176 18552 1.34 99 2 99 2 87(0) 6(1) 93(1)

fs541-l 541 541 4285 1.46 11 1 541 5 2(1) 12(0) 14(1)

fs541-2 541 541 4285 1.46 11 1 541 5 2(1) 12(0) 14(1)

gent113 113 113 655 5.13 20 1 27 1 0(1) 27(0) 27(1)

ibm32 32 32 126 12.3 8 2 7 2 8(0) 1(1) 9(1)

78

M a t r i x n m nnz D N S M Pmax Pmin ftmax ^min C G R G T G

impcol-a 207 207 572 1.33 8 1 5 1 1(1) 5(1) 6(2)

impcol-b 59 59 312 8.96 7 2 12 1 10(0) K l) 11(1)

impcol-c 137 137 411 2.19 8 1 8 1 8(0) 2(1) 10(1)

impcol-d 425 425 1339 0.741 10 1 10 1 11(0) 1(1) 12(1)

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 3(1) 23(1)

israel 316 174 2443 4.44 119 2 136 1 20(1) 35(0) 55(1)

lundA 147 147 2449 11.3 21 5 21 27(0) 1(1) 28(1)

lundB 147 147 2441 11.3 21 5 21 25(0) 1(1) 26(1)

scagr25 671 471 1725 0.546 10 1 9 1 0(1) 9(0) 9(1)

scagr7 185 129 465 1.95 10 1 9 1 0(1) 9(0) 9(1)

shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1)

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1)

shWOO 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1)

stair 614 356 4003 1.83 36 34 1 32(0) 16(1) 48(1)

standata 1274 359 3230 0.706 745 10 1 0(1) 10(0) 10(1)

strO 363 363 2454 1.86 34 1 34 1 19(0) 7(1) 26(1)

str200 363 363 3068 2.33 30 1 26 1 30(0) 0(1) 30(1)

str400 363 363 3157 2.4 33 1 34 1 33(0) 0(1) 33(1)

str600 363 363 3279 2.49 33 1 34 1 33(0) 0(1) 33(1)

tuff 628 333 4561 2.18 113 25 1 1(1) 25(1) 26(2)

vtp-base 346 198 1051 1.53 38 1 12 1 4(1) 12(0) 16(1)

watt2 1856 1856 11550 0.335 128 1 65 0(1) 65(0) 65(1)

west0067 67 67 294 6.55 6 1 10 9(0) 2(1) 11(1)

west0381 381 381 2157 1.49 25 1 50 1 4(1) 8(0) 12(1)

west0497 497 497 1727 0.699 28 1 55 1 9(0) 7(1) 16(1)

willl99 199 199 701 1.77 6 1 9 2 8(0) 0(1) 8(1)

will57 57 57 281 8.65 11 2 11 2 11(0) 0(1) 11(1)

n - Number of columns in A

m - Number of rows in A

nnz - Number of nonzeros in A

DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzeros in any row

Kmax - Maximum number of nonzeros in any column

«min - Minimum number of nonzeros in any column

RG - Total number of row groups

CG - Total number of column groups

TG - RG + CG

79

Table A.3: IDO Result

M a t r i x n m nnz D N S M Pmax Pmin ^max Kmin C G R G T G

abb-313 176 313 1557 2.83 6 1 26 2 10(0) 0(1) 10(1)

adlittle 138 56 424 5.49 27 1 11 1 0(1) 12(0) 12(1)

agg 615 488 2862 0.954 19 2 43 1 21(0) 0(1) 21(1)

agg2 758 516 4740 1.21 49 2 43 1 48(0) 2(1) 50(1)

agg3 758 516 4756 1.22 49 2 43 1 33(0) 3(1) 36(1)

arcl30 130 130 1282 7.59 124 1 124 1 35(0) 8(1) 43(1)

ash219 85 219 438 2.35 2 2 9 2 5(0) 0(1) 5(1)

ash292 292 292 2208 2.59 14 4 14 4 0(1) 14(0) 14(1)

ash331 104 331 662 1.92 2 2 12 3 6(0) 0(1) 6(1)

ash608 188 608 1216 1.06 2 2 12 2 6(0) 0(1) 6(1)

ash958 292 958 1916 0.685 2 2 13 3 6(0) 0(1) 6(1)

blend 114 74 522 6.19 29 2 16 1 21(0) 1(1) 22(1)

bore3d 334 233 1448 1.86 73 1 28 1 0(1) 28(0) 28(1)

bpO 822 822 3276 0.485 266 1 20 1 0(1) 20(0) 20(1)

bplOOO 822 822 4661 0.69 308 1 21 1 0(1) 21(0) 21(1)

bpl200 822 822 4726 0.699 311 1 21 1 0(1) 21(0) 21(1)

bpl400 822 822 4790 0.709 311 1 21 1 0(1) 22(0) 22(1)

bpl600 822 822 4841 0.716 304 1 21 1 0(1) 21(0) 21(1)

bp200 822 822 3802 0.563 283 1 21 1 0(1) 21(0) 21(1)

bp400 822 822 4028 0.596 295 1 21 1 0(1) 21(0) 21(1)

bp600 822 822 4172 0.617 302 1 21 1 0(1) 21(0) 21(1)

bp800 822 822 4534 0.671 304 1 21 1 0(1) 21(0) 21(1)

canl054 1054 1054 12196 1.1 35 6 35 6 3(1) 35(0) 38(1)

can1072 1072 1072 12444 1.08 35 6 35 6 1(1) 36(0) 37(1)

can256 256 256 2916 4.45 83 4 83 4 53(0) 3(1) 56(1)

can268 268 268 3082 4.29 37 4 37 4 34(0) 2(1) 36(1)

can292 292 292 2540 2.98 35 4 35 4 2(1) 35(0) 37(1)

can634 634 634 7228 1.8 28 2 28 2 0(1) 29(0) 29(1)

can715 715 715 6665 1.3 105 2 105 2 22(0) 5(1) 27(1)

curtis54 54 54 291 9.98 12 3 16 3 12(0) 0(1) 12(1)

dwtl007 1007 1007 8575 0.846 10 3 10 3 11(0) 0(1) 11(1)
dwtl242 1242 1242 10426 0.676 12 2 12 2 0(1) 16(0) 16(1)

dwt2680 2680 2680 25026 0.348 19 4 19 4 21(0) 0(1) 21(1)

dwt419 419 419 3563 2.03 13 6 13 6 0(1) 19(0) 19(1)

dwt59 59 59 267 7.67 6 2 6 2 7(0) 0(1) 7(1)

erisll76 1176 1176 18552 1.34 99 2 99 2 1(1) 99(0) 100(1)

fs541-l 541 541 4285 1.46 11 1 541 5 1(1) 14(0) 15(1)

fs541-2 541 541 4285 1.46 11 1 541 5 1(1) 14(0) 15(1)

gent113 113 113 655 5.13 20 1 27 1 17(0) 7(1) 24(1)

ibm32 32 32 126 12.3 8 2 7 2 7(0) 1(1) 8(1)

80

M a t r i x n m nnz D N S M Pmax Pmin ^max Kmin C G R G T G

impcol-a 207 207 572 1.33 8 1 5 1 8(0) 0(1) 8(1)

impcol-b 59 59 312 8.96 7 2 12 1 11(0) 1(1) 12(1)

impcol-c 137 137 411 2.19 8 1 8 1 9(0) 0(1) 9(1)

impcol-d 425 425 1339 0.741 10 1 10 1 10(0) 2(1) 12(1)

impcol-e 225 225 1308 2.58 12 1 23 1 20(0) 3(1) 23(1)

israel 316 174 2443 4.44 119 2 136 1 19(1) 35(0) 54(1)

lundA 147 147 2449 11.3 21 5 21 0(1) 28(0) 28(1)

lundB 147 147 2441 11.3 21 5 21 0(1) 28(0) 28(1)

scagr25 671 471 1725 0.546 10 1 9 1 0(1) 9(0) 9(1)

scagr7 185 129 465 1.95 10 1 9 1 0(1) 9(0) 9(1)

shlO 663 663 1687 0.384 422 1 4 1 0(1) 4(0) 4(1)

shl200 663 663 1726 0.393 440 1 4 1 0(1) 4(0) 4(1)

shl400 663 663 1712 0.389 426 1 4 1 0(1) 4(0) 4(1)

stair 614 356 4003 1.83 36 34 1 0(1) 36(0) 36(1)

standata 1274 359 3230 0.706 745 10 1 0(1) 10(0) 10(1)

strO 363 363 2454 1.86 34 1 34 1 20(0) 7(1) 27(1)

str200 363 363 3068 2.33 30 1 26 1 29(1) 3(0) 32(1)

str400 363 363 3157 2.4 33 1 34 1 33(0) 1(1) 34(1)

str600 363 363 3279 2.49 33 1 34 1 33(0) 3(1) 36(1)

tuff 628 333 4561 2.18 113 25 1 0(1) 25(1) 25(2)

vtp-base 346 198 1051 1.53 38 1 12 1 4(1) 13(0) 17(1)

watt2 1856 1856 11550 0.335 128 1 65 1(1) 13(0) 14(1)

west0067 67 67 294 6.55 6 1 10 9(0) 1(1) 10(1)

west0381 381 381 2157 1.49 25 1 50 1 4(1) 10(0) 14(1)

west0497 497 497 1727 0.699 28 1 55 1 28(0) 1(1) 29(1)

willl99 199 199 701 1.77 6 1 9 2 8(0) 0(1) 8(1)

will57 57 57 281 8.65 11 2 11 2 0(1) 11(0) 11(1)

n - Number of columns in A

m - Number of rows in A

nnz - Number of nonzeros in A

DNSM - Matrix Density

Pmax - Maximum number of nonzeros in any row

Pmin - Minimum number of nonzeros in any row

«max - Maximum number of nonzeros in any column

«min - Minimum number of nonzeros in any column

RG - Total number of row groups

CG - Total number of column groups

TG - RG + CG

81

A p p e n d i x B

E x a m p l e o f I L P M o d e l

I m p l e m e n t a t i o n

A sample of the ILP model for a 2 x 2 arrowhead matrix is given below.

/ / M o d e l File

range boolean 0..1;

enum rown ...;

enum coin ...;

enum rowc ...;

enum cole

/ / D e c i s i o n Variables

var boolean xr[rown,rowc];

var boolean xc[coln,colc];

var boolean wr[rowc];

var boolean wc[colc];

/ / O b j e c t i v e Function

minimize

sum(r in rowc) wr[r] + sum(c in cole) wc[c]

/ /Constra ints

subject to (

82

forall(r in rown) sum(row in rowc) xr[r,row] = 1;

forall(c in coin) sum(col in cole) xc[c,col] = 1;

forall(r in rowc, c in cole) (

xr[rO,r] + xc[cO,c] + xr[rl,r] + xc[cl,c] < = wr[r] + wc[c] + 1

xr[rO,r] + xc[cl,c] + xr[rl,r] + xc[cO,c] < = wr[r] + wc[c] + 1

xr[rl,r] + xc[cO,c] + xr[rO,r] + xc[cl,c] < = wr[r] + wc[c] + 1

xr[rl,r] + xc[cl,c] + xr[rO,r] + xc[cO,c] < = wr[r] + wc[c] + 1

);

forall(r in rowc) wr[r] < = sum(row in rown) xr[row,r];

forall(c in cole) wc[c] < = sum(col in coin) xc[col,c];

wr[rcO] > = wr[rcl];

wc[ccO] > = wc[ccl];

forall(r in rowc) sum(row in rown) xr[row,r] < = 2*wr[r];

forall(c in cole) sum(col in coin) xc[col,c] < = 2*wc[c];

);
/ / D a t a File

rown = (rO,rl);

coin = (cO,cl);

rowc = (rcO,rcl);

cole = (ccO,ccl);

83

