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Dedication

To all those who pretended to

know what I was talking about.

And to the few that actually understood.
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Abstract

This thesis introduces unit weighing matrices, a generalization of Hadamard matrices.

When dealing with unit weighing matrices, a lot of the structure that is held by Hadamard

matrices is lost, but this loss of rigidity allows these matrices to be used in the construction

of certain combinatorial objects. We are able to fully classify these matrices for many small

values by defining equivalence classes analogous to those found with Hadamard matrices.

We then proceed to introduce an extension to mutually unbiased bases, called mutually un-

biased weighing matrices, by allowing for different subsets of vectors to be orthogonal. The

bounds on the size of these sets of matrices, both lower and upper, are examined. In many

situations, we are able to show that these bounds are sharp. Finally, we show how these sets

of matrices can be used to generate combinatorial objects such as strongly regular graphs

and association schemes.
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Chapter 1

Introduction

‘Obvious’ is the most dangerous

word in mathematics.

– E. T. Bell

This thesis is a combination of many novel ideas that have been studied in the past

few years. The bulk of the study has been centred around the idea of biangular line-sets

where we impose certain conditions in order to obtain specific combinatorial objects. The

work found within is a combination of published work, [4, 6], submitted work, [5], and

forthcoming publications.

Hadamard matrices have garnered the interest of many mathematicians and physicists

over the past century. With their impeccable structure, it is no surprise that these objects

appear in many seemingly unrelated areas (see [22, 32, 37]). At their historical roots,

Hadamard matrices were studied by James Sylvester in 1867, who focused on a specialized

infinite family of Hadamard matrices [35].

Nearly 25 years later, Jacques Hadamard constructed the first two Hadamard matrices

that did not fit into Sylvester’s specialized case [18]. Furthermore, Hadamard gave an

infinite family of his own. Soon after, a very famous conjecture was formuated: that there

is a Hadamard matrix for every order that is a multiple of 4. This hypothesis has come to

be known as the Hadamard conjecture.

It is now more than a century later, and many more examples of Hadamard matrices have

1



1.1. NOTATION

been found. There have been many steps towards a resolution of the Hadamard conjecture.

However, while we are edging towards a resolution of this conjecture, we are still lacking

the key insight that is needed to finally put a pin in it.

Many generalizations of Hadamard matrices have emerged over the years: orthogo-

nal designs, weighing matrices [16] and unit Hadamard matrices [12] to name a few. In

this thesis, we introduce another extension of Hadamard matrices, unit weighing matrices,

and classify them for many small orders and weights. These matrices give us most of the

structure that is held by Hadamard matrices, as well as the extra flexibility needed to solve

certain problems.

We then utilize these matrices by introducing yet another topic: mutually unbiased

weighing matrices. These are an extension of the well-known mutually unbiased bases [13].

Once again, we lose a little structure by dealing with weighing matrices instead of Hadamard

matrices, but this loss of rigidity allows us to solve some problems that cannot be done with

Hadamard matrices.

Majority of the content in the thesis will be used directly or indirectly to solve problems

related to sets of vectors which have nice pairwise inner products. To be more specific, the

inner product of any two vectors in the set must have a particular absolute value. There is a

well-known upper bound on the size of these sets [9], which we use as the ground work for

our searches. In many small cases, the upper bound can be obtained by vectors which are

taken directly from the objects created in the first few chapters.

In the final chapter, we use these nice sets to generate combinatorial objects. Many of

these objects were previously unknown. For the objects which were already known, the

methods to provide them are novel.

We will split our time in this thesis between the real and the complex case. The reader is

urged to keep this in mind as they progress through this thesis, since many theorems come

in two forms: the real case and the complex case. When it is not specified, it is assumed

that the theorem is true in the complex case (and thus, the real case as well).
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1.1. NOTATION

1.1 A Note on Notation

Mathematicians are notorious for generating acronyms for subject matter. In this thesis,

we will refrain from utilizing these acronyms as most of them will look too similar and are

likely to cause headaches (e.g., MUBs, MUHM, MUCH, MUH, MOLS, MSLS, MUWM,

MUCWM, MUUWM, etc.). With that being said, when these objects are introduced, we

will specify the acronym for any reader who wishes to read other articles within the field

where these acronyms are used heavily.

Any variable which utilizes a capital letter is a matrix. In is the identity matrix of order

n and Jn is the square all-ones matrix of order n. For In, the n will be dropped when it

can be inferred from context. You may also assume, without fault, that any H or W in this

thesis represents a Hadamard matrix or a weighing matrix, respectively. For any matrix X ,

its transpose, entry-wise conjugation and Hermitian transpose are denoted by XT , X and

X∗, respectively. When matrices are explicitly written, any blank entries are zeroes. The

indices of matrices will be 0-based.

The set of unimodular numbers, i.e., complex numbers with an absolute value of 1, will

be denoted T. Furthermore, T0 will be used to denote T∪{0}.

When a “−1” is to appear in a matrix, the shortened “−” within the matrix will be used.

For example, instead of writing

H =

 1 1

1 −1

 ,

we will instead use

H =

 1 1

1 −

 .

We would also like to warn the reader that ω is used in this thesis to mean different

values at different portions of the thesis. You may assume, however, that it will represent

some root of unity.

3



1.1. NOTATION

Finally, we would also like to point out that Jacques Hadamard was a French mathe-

matician, meaning that the ‘H’ at the beginning of his last name is silent. However, for this

thesis, we will use the anglicized version of his name by saying ‘a Hadamard matrix’ in

lieu of the correct ‘an Hadamard matrix’.

4



Chapter 2

Background

The shortest path between two truths

in the real domain passes

through the complex domain.

– J. Hadamard

We begin our campaign by giving a definition, which will lay the foundation for the

entire thesis.

Definition 2.1. A real Hadamard matrix (usually referred to as just a Hadamard matrix

or shortened to be an H-matrix) is an n× n matrix consisting of entries in {±1} such that

HHT = nIn.

Example 2.2. Here are three Hadamard matrices of orders 2, 4 and 8.

H2 =

 1 1

1 −

 , H4 =



1 1 1 −

1 1 − 1

1 − 1 1

− 1 1 1


and

5



2.1. EQUIVALENCE OF HADAMARD MATRICES

H8 =



1 1 1 − − − − 1

1 1 1 − 1 1 1 −

1 1 − 1 1 1 − 1

1 − 1 1 1 − 1 1

1 1 − 1 − − 1 −

− 1 1 1 1 − − −

− 1 1 1 − 1 1 1

1 − 1 1 − 1 − −



.

For the sake of this thesis, it is important to notice that we can view the rows of a

Hadamard matrix as a collection of n vectors in {±1}n that are pairwise orthogonal. This

idea of deconstructing matrices into vectors will be revisited throughout the thesis.

2.1 Equivalence of Hadamard Matrices

At first glance, the locations of the positives and negatives in a Hadamard matrix seem

quite random. We will soon see that we may alter the way that these matrices look to give

us a better sense of the underlying structure of the matrices.

Proposition 2.3. If H is a Hadamard matrix, then so are HT and PHQ, where P and Q are

signed-permutation matrices.

Proof. We will prove both claims directly from the definition of Hadamard matrices. By

the definition of a Hadamard matrix, we have that H−1 = 1
nHT . This implies

HT (HT)T
= nH−1H = nI.

Secondly, (PHQ)(PHQ)T = PHQQT HT PT = nI since P and Q are orthogonal matrices.

6



2.2. EXISTENCE OF HADAMARD MATRICES

With this in our pocket, we will introduce the following.

Definition 2.4. Two Hadamard matrices, H1 and H2, are said to be equivalent if there

exist two signed-permutation matrices, say P and Q, such that H1 = PH2Q. Equivalence is

denoted by H1 ∼= H2.

In a more direct sense, this means that we may permute or negate the rows and the

columns of our matrix without affecting which equivalence class the matrix is in. It is

important to note that the transpose of H is not included in Definition 2.4; some authors do

include HT as part of the equivalence, but we do not.

Definition 2.5. A Hadamard matrix is dephased if the first row and first column contain

only ones.

Which immediately leads us to the following.

Lemma 2.6. Every Hadamard matrix is equivalent to a dephased Hadamard matrix.

Proof. For each column, look at the first entry. If it is −1, then negate that column. Then

repeat the process for the rows. The resulting equivalent matrix will be dephased.

Determining the number of inequivalent Hadamard matrices is a very laborious task.

The classification of Hadamard matrices has been an ongoing process over the past few

decades. In the next section, we will see that Hadamard matrices can only exist if n ≤ 2

or n is a multiple of 4. A very simple program can be written to determine the number

of inequivalent Hadamard matrices of order n ≤ 24. For n = 28, decades were needed to

fully classify all 487 Hadamard matrices of order 28 [26]. In 2013, Kharaghani and Tayfeh-

Rezaie finished the classification of Hadamard matrices of order 32 [25]. The number of

inequivalent Hadamard matrices can be found in Table 2.1.

7



2.2. EXISTENCE OF HADAMARD MATRICES

Table 2.1: Number of inequivalent Hadamard matrices of order n (n≤ 32)

n # Matrices

1 1
2 1
4 1
8 1
12 1
16 5
20 3
24 60
28 487
32 13710027

2.2 Existence of Hadamard Matrices

A few observations can be made about Hadamard matrices. It is immediate to note that

the order of a Hadamard matrix must be even, but it takes a little closer inspection to note

that the order must be small or a multiple of four.

Lemma 2.7. If n > 2 is the order of a Hadamard matrix, then n is a multiple of four.

Proof. Let H be a Hadamard matrix of order n > 2. By Lemma 2.6, we know that H is

equivalent to a dephased Hadamard matrix, say H ′. Let’s examine the first three rows of

H ′. We may permute the columns of this submatrix in such a way that we arrive at the

following

1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1
1 1 · · · 1 1 1 1 · · · 1 1 − − ·· · − − − − ·· · − −
1 1 · · · 1 1 − − ·· · − − 1 1 · · · 1 1 − − ·· · − −

...
...

...
...





a columns b columns c columns d columns

.

That is, we permute the columns in such a way that the the first a columns have exactly

three ones in the first three rows, the next b columns have a one in the first two rows and a

8



2.3. CONSTRUCTION OF HADAMARD MATRICES

−1 in the third row, the next c columns’ first three rows are 1,−1,1, respectively and the

last d columns have 1,−1,−1 in their first three rows.

From the orthogonality of each of the three pairs of rows, as well as imposing that the

order of the matrix is n, we have



a+b+ c+d = n

a+b− c−d = 0

a−b+ c−d = 0

a−b− c+d = 0

which has the unique solution of a = b = c = d = n/4. Since a,b,c,d and n are all integers,

we have that n must be a multiple of 4.

It is a common belief that this is the only obstacle that must be overcome. In fact, we

have the following famous conjecture.

Conjecture 2.8 (Hadamard Conjecture). If n = 4k for some k ≥ 1, then there exists a

Hadamard matrix of order n.

Prior to 2004, Conjecture 2.8 had been verified for all n < 428. In 2004, Kharaghani and

Tayfeh-Rezaie found a Hadamard matrix of order 428 [24], leaving n = 668 as the smallest

order for with the Hadamard conjecture has not been verified.

2.3 Construction of Hadamard Matrices

The study of Hadamard matrices started nearly a century and a half ago when James

Sylvester constructed an infinite family of matrices which satisfied the condition laid out in

Definition 2.1 (even though they were not called “Hadamard matrices” at the time).

9



2.3. CONSTRUCTION OF HADAMARD MATRICES

Theorem 2.9 (Sylvester, [35]). If H is a Hadamard matrix, then

 H H

H −H


is also a Hadamard matrix.

Proof. This can easily be verified straight from the definition.

The observation in Theorem 2.9 was crucial to the generation of the following infinite

class of Hadamard matrices which are today called Sylvester matrices.

Corollary 2.10 (Sylvester, [35]). There exists a Hadamard matrix of order 2k for any k≥ 0.

Proof. H =
(

1

)
is a Hadamard matrix. Apply Theorem 2.9 k times to H.

Jacques Hadamard was the next mathematician to examine these matrices in detail. He

was looking for examples of matrices whose determinants attained the following upper

bound.

Theorem 2.11 (Hadamard, [18]). If {v0, . . . ,vn−1} are the rows of a square matrix A, then

|det(A)| ≤
n−1

∏
i=0
||vi||. (2.1)

Moreover, if every entry’s absolute value is at most B ∈ R, then

|det(A)| ≤ Bnnn/2. (2.2)

It is natural to study the case where B = 1 in Theorem 2.11 since all matrices may be

scaled to this value. With this appropriate scaling, Hadamard showed that the bound (2.2)

is realized in the real case if and only if A is a Hadamard matrix [18]. In the same article,

Hadamard constructed Hadamard matrices of order 12 and 20. These are the smallest order

10



2.3. CONSTRUCTION OF HADAMARD MATRICES

that do not fit into Sylvester’s infinite class. Hadamard also gave a more generalized version

of Sylvester’s construction which can most easily be described through use of the Kronecker

product.

Definition 2.12. Let A = [ai j] and B = [bi j] be m×n and p×q matrices, respectively. The

Kronecker product of A and B, denoted A⊗B, is the following mp×nq matrix


a0,0B · · · a0,n−1B

... . . . ...

am−1,1B · · · am−1,n−1B

 .

The following is an immediate way to construct new Hadamard matrices from old ones.

Lemma 2.13 (Hadamard, [18]). If H1 and H2 are Hadamard matrices of order m and n,

respectively, then H1⊗H2 is a Hadamard matrix of order mn.

Proof.

(H1⊗H2)(H1⊗H2)T = H1HT
1 ⊗H2HT

2 = mIm⊗nIn = mnImn

This new construction method means that when any new Hadamard matrix is formed,

we may use the Kronecker product to give us many (possibly new) Hadamard matrices.

But unfortunately, this construction comes with an inherent problem. Creating Hadamard

matrices of order 4n where n is even is quite a bit easier than when n is odd. With the method

above, Hadamard matrices of order 4a and 4b will be able to construct a new Hadamard

matrix of order 16ab. The following construction allows us to create a Hadamard matrix of

half of that order.

Theorem 2.14 ([1]). If there exist Hadamard matrices of order 4a and 4b, then there exists

a Hadamard matrix of order 8ab.

11



2.3. CONSTRUCTION OF HADAMARD MATRICES

Proof. Let H1 be a Hadamard matrix of order 4a and H2 be a Hadamard matrix of order 4b.

Let A and B be 4a×2a matrices and let C and D be 2b×4b matrices such that

H1 =
(

A 0

)
+
(

0 B

)
and H2 =

 C

0

+

 0

D

 .

We then form

H =
1
2

(A+B)⊗C +
1
2

(A−B)⊗D.

It is important to note that if we examine corresponding entries in A+B and A−B, then

exactly one of them is zero and the other is either 2 or −2. Thus, each entry in H is either

1 or −1. Next, let us examine the following product.

12



2.3. CONSTRUCTION OF HADAMARD MATRICES

HHT =
(1

2 (A+B)⊗C + 1
2 (A−B)⊗D

)(1
2 (A+B)⊗C + 1

2 (A−B)⊗D
)T

=
(1

2 (A+B)⊗C
)(1

2 (A+B)⊗C
)T +

(1
2 (A−B)⊗D

)(1
2 (A−B)⊗D

)T

+
(1

2 (A+B)⊗C
)(1

2 (A−B)⊗D
)T +

(1
2 (A−B)⊗D

)(1
2 (A+B)⊗C

)T

=
(

1
4 (A+B)(A+B)T

)
⊗CCT +

(
1
4 (A−B)(A−B)T

)
⊗DDT

+
(

1
4 (A+B)(A−B)T

)
⊗CDT +

(
1
4 (A−B)(A+B)T

)
⊗DCT

=
(

1
4 (A+B)(A+B)T

)
⊗4bI2b +

(
1
4 (A−B)(A−B)T

)
⊗4bI2b

+
(

1
4 (A+B)(A−B)T

)
⊗02b +

(
1
4 (A−B)(A+B)T

)
⊗02b

=
[(

1
4 (A+B)(A+B)T

)
+
(

1
4 (A−B)(A−B)T

)]
⊗4bI2b

=
[1

2

(
AAT +BBT)]⊗4bI2b

= 1
2 (4aI4a)⊗4bI2b

= 8abI8ab

which implies, from Definition 2.1, that H is a Hadamard matrix.

The first infinite class of Hadamard matrices of order 4n which includes many values

for which n is odd is attributed to Paley. Before stating the result, we must first take a small

detour through some field theory results.

Definition 2.15. Let Fp be a finite field of order p and let a be a nonzero element of Fp. a

is a quadratic residue mod p if there exists b∈ Fp such that a≡ b2 (mod p). The Legendre

symbol mod p, χ : Fp→ Z, is defined as
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2.3. CONSTRUCTION OF HADAMARD MATRICES

χ(a) =


0 if a = 0,

1 if a is a quadratic residue mod p,

−1 otherwise.

Lemma 2.16. If p is an odd prime number, then exactly (p− 1)/2 elements in Fp are

quadratic residues.

Proof. First, we note that for all c∈Fp, c2 = (−c)2, so there are at most (p−1)/2 quadratic

residues. To avoid these trivial collisions, we will examine a,b ∈ Fp such that 1 ≤ a,b ≤

(p−1)/2. If we also assume that a2 = b2, then we have

(a+b)(a−b) = a2−b2 = 0.

Since we are in a field, either a + b = 0 or a− b = 0. The first equality cannot hold since

a + b ∈ {2,3, . . . , p−1}. The second equality is true if and only if a = b. So for any pair

(a,b) such that 1 ≤ a 6= b ≤ (p− 1)/2, we have that a2 6= b2. Thus, there are at least

(p−1)/2 quadratic residues mod p, and the result follows.

Definition 2.17. Let p be an odd prime number. Then we define the Jacobsthal matrix to

be the p× p matrix, Qp = [qi j], such that

qi j = χ(i− j),

where i− j is reduced mod p.

Theorem 2.18. Let p be an odd prime number. Then QpQT
p = pI− J.

Proof. Let vi and v j be the ith and jth rows of Qp. If i = j, then 〈vi,v j〉= p−1 since there

are exactly p− 1 nonzeroes per row (each of which is ±1). Now, assume that i 6= j, then

we have that

14



2.3. CONSTRUCTION OF HADAMARD MATRICES

〈vi,v j〉= ∑
a∈Fp

χ(i−a)χ( j−a) = ∑
b∈Fp

χ(b)χ(b+( j− i)).

From here, we note that when b = 0, χ(b) = 0, so we have

〈vi,v j〉= ∑
b∈Fp\{0}

χ(b)χ(b+( j− i)).

Next, we will use the fact that χ is a multiplicative function to see that

〈vi,v j〉= ∑
b∈Fp\{0}

χ(b)χ(b)χ(1+b−1( j− i)) = ∑
b∈Fp\{0}

χ(1+b−1( j− i))

Since j− i is fixed and nonzero, 1+b−1( j− i) will run through each element in Fp except

1. By using Lemma 2.16 and the fact that χ(1) = 1 for all p,

〈vi,v j〉= ∑
c∈Fp\{1}

χ(c) =

(
∑

c∈Fp

χ(c)

)
−χ(1) = 0−1 =−1.

Thus, the inner product of two distinct rows of Qp are −1, and the result follows.

Theorem 2.19 (Paley, [29]). Let p≡ 3 (mod 4) be an odd prime number. Then

H =

 1 1p

1T
p Qp− I


is a Hadamard matrix of order p+1, where 1p is a row vector of p ones.

15



2.3. CONSTRUCTION OF HADAMARD MATRICES

Proof.

HHT =


1 1p

1T
p Qp− I




1 1p

1T
p Qp− I


T

=


p+1 0p

0T
p J +(Qp− I)(Qp− I)T



=


p+1 0p

0T
p J +QpQT

p −Qp−QT
p + I



=


p+1 0p

0T
p J +QpQT

p + I

 (
since Qp =−QT

p if p≡ 3 (mod 4)
)

=


p+1 0p

0T
p J +(pI− J)+ I

 (by Theorem 2.18)

=


p+1 0p

0T
p (p+1)Ip


= (p+1)Ip+1
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2.3. CONSTRUCTION OF HADAMARD MATRICES

Theorem 2.20 (Paley, [29]). Let p≡ 1 (mod 4) be an odd prime number. Then

H =



1 1p −1 1p

1T
p Qp + I 1T

p Qp− I

−1 1p −1 −1p

1T
p Qp− I −1T

p −Qp− I


is a Hadamard matrix of order 2(p+1), where 1p is a row vector of p ones.

17



2.3. CONSTRUCTION OF HADAMARD MATRICES

Proof.

HHT =



1 1p −1 1p

1T
p Qp + I 1T

p Qp− I

−1 1p −1 −1p

1T
p Qp− I −1T

p −Qp− I





1 1p −1 1p

1T
p Qp + I 1T

p Qp− I

−1 1p −1 −1p

1T
p Qp− I −1T

p −Qp− I



T

=



2(p+1) 0 0 0

0 2(J +QpQT
p + I) 0 2(QT

p −Qp)

0 0 2(p+1) 0

0 2(Qp−QT
p ) 0 2(J +QpQT

p + I)



=



2(p+1) 0 0 0

0 2(J +(pI− J)+ I) 0 0

0 0 2(p+1) 0

0 0 0 2(J +(pI− J)+ I)



=



2(p+1) 0 0 0

0 2(p+1)I 0 0

0 0 2(p+1) 0

0 0 0 2(p+1)I


= 2(p+1)I2(p+1),
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2.3. CONSTRUCTION OF HADAMARD MATRICES

where the third last equality is true since Qp = QT
p when p≡ 1 (mod 4).

Later, a similar idea was used to show that p can be any odd prime power in the previous

two lemmas through the use of finite fields. In 1944, Williamson introduced a new class of

Hadamard matrices which needs the idea of circulant matrices.

Definition 2.21. Given a vector of n elements, (v0,v1, . . . ,vn−1), a circulant matrix, A =

[ai j], is a matrix defined as ai j = vi− j where i− j is reduced modulo n. Circulant matrices

can be represented by their first row by A = Circ(v0, . . . ,vn−1).

From these, Williamson gave the following.

Theorem 2.22 ([16]). Let A, B, C and D be four symmetric circulant matrices of order n

which satisfy

A2 +B2 +C2 +D2 = 4nIn.

Then 

A B C D

−B A −D C

−C D A −B

−D −C B A


is a Hadamard matrix of order 4n.

Proof. This can easily be verified by multiplying out the matrix with its transpose and

utilizing our assumption.

Example 2.23. For example, A = Circ(1 1 1), B = C = D = Circ(− 1 1) satisfies the

conditions laid out in Theorem 2.22, and so we may create a 12×12 Hadamard matrix.

These constructions account for a large portion of the Hadamard matrices that are

currently known, especially for smaller values. There are many other constructions for

Hadamard matrices, most of which are out of the scope of this thesis (see [16] for more

constructions).
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Chapter 3

Generalizations of Hadamard Matrices

Curiosity.

Not good for cats,

but very good for scientists.

– L. Fleinhardt

(This chapter is based on published work, [6].)

In this chapter, we introduce the idea of unit weighing matrices. These matrices are a

generalization of Hadamard matrices. We fully classify the matrices for small orders and

then proceed to show their usefulness in Chapter 4.

When Hadamard matrices were originally studied, they were square matrices with en-

tries in {±1} which contained mutually orthogonal rows (as defined in Definition 2.1).

There have been quite a few generalizations of Hadamard matrices that have appeared over

the years. We will examine two of these generalizations which have been explored exten-

sively in the literature.

3.1 Weighing Matrices

First, we will remove the restriction that the entries must be in the set {±1} by allowing

a third entry, 0.

Definition 3.1. An n×n matrix, W , with entries in {0,±1} such that WW T = wI for some

w is called a weighing matrix of order n and weight w. Weighing matrices are often denoted
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3.1. WEIGHING MATRICES

W (n,w).

Example 3.2. W7 is a weighing matrix of order 7 and weight 4, a W (7,4).

W7 =



1 1 1 1 0 0 0

1 − 0 0 1 1 0

1 0 − 0 − 0 1

1 0 0 − 0 − −

0 1 − 0 0 1 −

0 1 0 − 1 0 1

0 0 1 − − 1 0


We note that a W (n,n) is a Hadamard matrix. Unlike Hadamard matrices, however,

the order of weighing matrices are not restricted nearly as much. For example, the matrix

given in Example 3.2 is of order 7, which is not a multiple of 4. We have the following

extension of the Hadamard conjecture which states that a weighing matrix should exist for

every weight of specific orders.

Conjecture 3.3 ([27]). Let n be any integer multiple of four. Then there exists a weighing

matrix of the type W (n,w) for all w≤ n.

We may define equivalence between weighing matrices in the same way that we define

the equivalence of Hadamard matrices (i.e., row and column permutations and negations do

not change which equivalence class you are in). Using this notion, Chan et al. classified

all weighing matrices with weights smaller than 6 in 1986 [10]. However, while working

on the matrices in the remaining portion of this section, we found a mistake in their clas-

sification of matrices of weight 5. Independently, Harada and Munemasa also discovered

the error. We refer the reader to [19] for the full details of where the matrices were missed.

The classification of real weighing matrices of weights 1, 2, 3 and 4 will be dealt with in

Subsection 3.5.1, Theorem 3.30, Corollary 3.34 and Corollary 3.38, respectively. For this
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3.1. WEIGHING MATRICES

reason, we will jump right to the classification of weight 5 matrices and will deal with the

first four later.

In order to classify these matrices, we must first introduce the direct sum.

Definition 3.4. Let A and B be two matrices of dimension m× n and p× q, respectively.

Then the direct sum of A and B, denoted A⊕B, is the (m+ p)× (n+q) matrix

 A 0

0 B

 .

Theorem 3.5 ([10, 19]). Any W (n,5) is equivalent to the direct sum of a specific set of

weighing matrices. The set includes 5 sporadic cases and two infinite families.

The set of matrices that make up Theorem 3.5 (including the two that were originally

missed) are in Appendix C.1. Attempts have been made to classify weighing matrices for

larger weights, but even in the next case, w = 6, the complexity involved with the case

analysis is immense. However, I feel that this classification could be completed within the

next few years with a lot of elbow grease.

3.1.1 Circulant Weighing Matrices

One very particular type of weighing matrices are those that are generated from circu-

lating the first row.

Definition 3.6. A circulant weighing matrix is a circulant matrix (see Definition 2.21) that

is also a weighing matrix. In literature, circulant weighing matrices of order n and weight

w are denoted by CW (n,w).

Example 3.7. Here are two examples of circulant weighing matrices. H4 is the lone non-

trivial example of a circulant Hadamard matrix, while W7 is a CW (7,4).
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3.1. WEIGHING MATRICES

H4 = Circ(− 1 1 1 ) =



− 1 1 1

1 − 1 1

1 1 − 1

1 1 1 −



W7 = Circ( 1 0 1 1 − 0 0 ) =



1 0 1 1 − 0 0

0 1 0 1 1 − 0

0 0 1 0 1 1 −

− 0 0 1 0 1 1

1 − 0 0 1 0 1

1 1 − 0 0 1 0

0 1 1 − 0 0 1


Definition 3.8. Given a circulant weighing matrix, W = Circ(a0,a1, . . . ,an−1), the associ-

ated Hall polynomial is defined as f (t) :=
n−1

∑
i=0

ait i.

Lemma 3.9. Let W be a circulant weighing matrix of order n and weight w. If f (t) =

a0 + · · ·an−1tn−1 is the associated Hall polynomial of W, then f (ω) f (ω) = w for all nth

roots of unity, ω.

Proof.

f (ω) f (ω) = (a0 +a1ω+ · · ·+an−1ω
n−1)(a0 +a1ω+ · · ·+an−1ωn−1)

=
n−1

∑
d=0

(
ω

d

[
n−1

∑
i=0

aiai−d

])
,

where the indices are being reduced mod n. In the sum above, the inner summation repre-

sents the inner products of two rows of W . Thus, we have that
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3.2. UNIT HADAMARD MATRICES

f (ω) f (ω) = w+
n−1

∑
d=1

(
ω

d [0]
)

= w.

Theorem 3.10. Let W be a circulant weighing matrix of order n and weight w. Then w

must be a perfect square.

Proof. Let W be a circulant weighing matrix and let f (t) be the associated Hall polynomial.

By Lemma 3.9, we have that f (1)2 = w. Since f (1) is simply the sum of the entries in any

given row of W , it must be an integer, so w is a perfect square.

A lot of interest has been shown in circulant weighing matrices, but most of the results

are outside the scope of this thesis. For further details that are not provided here, we rec-

ommend [30] and the references therein for general knowledge and [2, 14, 33, 34] for the

classification of small circulant weighing matrices.

3.2 Unit Hadamard Matrices

Another generalization of Hadamard matrices is to remove the restriction that the ma-

trices must be real.

Definition 3.11. An n× n matrix, H, with all unimodular entries such that HH∗ = nIn is

called a unit Hadamard matrix.

Other names for unit Hadamard matrices are generalized Hadamard matrices and com-

plex Hadamard matrices1.

Unit Hadamard matrices are the one and only type of matrix that we will discuss that

have no restrictions on the order. In fact, we have the following strong theorem.

Theorem 3.12. There exists a unit Hadamard matrix for any order n≥ 1.

1Be warned that the term “complex Hadamard matrices” has been used by different authors to mean
different things.
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3.4. EQUIVALENCE OF UNIT WEIGHING MATRICES

Proof. The proof is immediate by noting that the Fourier matrix of order n, F = [ f jk], is a

unit Hadamard matrix where

f jk = e jk·2πi/n

for all 0≤ j,k < n.

Example 3.13. Here are the first three Fourier matrices, where ω = e2πi/3.

(
1

)
,

 1 1

1 −

 and


1 1 1

1 ω ω

1 ω ω

 .

For a comprehensive look at unit Hadamard matrices, we refer the reader to Szöllősi’s

Ph.D. thesis [36].

3.3 Unit Weighing Matrices

In this thesis, we combine the previous two sections to introduce a new class of matrices.

Definition 3.14. An n×n matrix, W , with entries in T0 such that WW ∗ = wIn for some w

is called a unit weighing matrix. Unit weighing matrices are denoted UW (n,w).

These matrices take a bit of weighing matrices and a bit of unit Hadamard matrices and

fuse them together. By doing this, we open the door to solving many problems related to

line-sets (these problems will be discussed further in Chapters 4 and 5).

In the rest of this chapter, we will start the classification process for unit weighing

matrices. The classification of unit weighing matrices is much more difficult than the clas-

sification of real weighing matrices due to the fact that each entry of a unit weighing matrix

has infinitely many choices.

3.4 Equivalence of Unit Weighing Matrices

The following proposition will serve as an analogue of Proposition 2.3.

25



3.4. EQUIVALENCE OF UNIT WEIGHING MATRICES

Proposition 3.15. For a given unit weighing matrix, applying any of the following opera-

tions will result in a unit weighing matrix:

(T1) Permuting the rows or columns.

(T2) Multiplying any row or column of the matrix by a number in T.

(T3) Taking the Hermitian transpose.

(T4) Conjugating every entry in the matrix.

Proof. Each of these can be easily verified.

Note that by applying (T 3) followed by (T 4), we have that the transpose of a unit

weighing matrix is also a unit weighing matrix. From Proposition 3.15, we may give a

definition of equivalence similar to that of Definition 2.4.

Definition 3.16. Two unit weighing matrices, W1 and W2, are equivalent if one can be

obtained from the other by performing a finite number of operations (T 1) and (T 2) to it.

Though Definitions 2.4 and 3.16 are stated differently, they are essentially the same if

one introduces the notion of a unimodular permutation matrix. Note that (T 3) and (T 4)

are excluded from the definition in order to maintain consistency between the definitions of

equivalence for Hadamard matrices and unit weighing matrices.

The first large difference between real weighing matrices and unit weighing matrices

is the number of equivalence classes of matrices. In the real case, there are clearly only a

finite number of classes. However, when we are dealing with unit weighing matrices, there

may be infinitely many . In fact, there may be uncountably many, as we will see in the

Example 3.19. But first, we must introduce the following definition.

Definition 3.17 (Haagerup’s Invariant). Let W = [wi j] be a unit weighing matrix. We define
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the following multiset2

Λ(W ) =
{

wi jwk jwklwil : 0≤ i, j,k, l < n
}

.

With this, we can give the following strong theorem.

Theorem 3.18. If two unit weighing matrices, W1 and W2, are equivalent, then Λ(W1) =

Λ(W2).

Proof. We note that the four operations in Proposition 3.15 do not affect this multiset, and

so the result follows.

It is the contrapositive of this statement that is typically used. This has been used quite

heavily to determine the inequivalence of unit Hadamard matrices. By using Theorem 3.18,

we can see that there can be infinitely many inequivalent unit weighing matrices.

Example 3.19. There are infinitely many UW (4,4).

Proof. Let

W4(x) =



1 1 1 1

1 − 1 −

1 1 x −x

1 − −x x


,

which is a family of UW (4,4) with one parameter. Then we have that

Λ(W4(x)) = {(1,148),(−1,44),(x,12),(−x,20),(x,12),(−x,20)} .

From this, we have that Λ
(
W4(eiθ)

)
6= Λ

(
W4(eiφ)

)
for 0 < θ,φ < π/2 and θ 6= φ. By using

Theorem 3.18, we have infinitely many UW (4,4)s.

2When we refer to multisets, we will represent them as a set of ordered pairs of the form “(value,count)”.
For example, {1,1,2,3,4,4,4} would be represented as {(1,2),(2,1),(3,1),(4,3)}.
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Example 3.19 shows us that we must find a different way to classify unit weighing

matrices.

Definition 3.20. A family of unit weighing matrices is a set of unit weighing matrices that

can be parameterized in such a way that any unimodular number may be substituted for

any given variable and the matrix is still a unit weighing matrix. When a matrix has no

parameters, we call the matrix a sporadic case.

W4(x) is an example of a family of weighing matrices.

Definition 3.21. Two weighing matrices, W1(x1,x2, . . . ,xn) and W2(y1,y2, . . . ,ym), are in

the same family (or family equivalent) if there exists w1,w2, . . . ,wn,z1,z2, . . . ,zm ∈ T such

that W1(w1, . . . ,wn) is equivalent to W2(z1, . . . ,zm). We denote the family equivalence by

W1 ∼= W2.

From this point on, when we state that two unit weighing matrices are “equivalent”, we

mean that they are in the same family.

In order to study the number of inequivalent unit weighing matrices (i.e., the number of

distinct families), we define the following ordering, ≺, on the elements of T0.

1. eiθ ≺ 0 for all θ

2. eiθ ≺ eiφ ⇐⇒ 0≤ θ < φ < 2π

Definition 3.22. We say that a unit weighing matrix, W , of order n and weight w is in

standard form if the following conditions apply:

(S1) The first nonzero entry in each row is 1.

(S2) The first nonzero entry in each column is 1.

(S3) The first row is w ones followed by n−w zeroes.

(S4) The rows are in lexicographical order according to ≺.
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To clarify the ordering in (S4) (say we are interested in row i and row j), we denote row

i by Ri = (a0,a1, . . . ,an−1) and row j by R j = (b0,b1, . . . ,bn−1) and let k be the smallest

index such that ak 6= bk. Then Ri < R j ⇐⇒ ak ≺ bk. Definition 3.22 is the analogue to

Definition 2.5.

Theorem 3.23. Every unit weighing matrix is equivalent to a unit weighing matrix that is

in standard form.

Proof. Let W be a unit weighing matrix of weight w. Let ri ∈ T be the first nonzero entry

in row i. Multiply each row i by ri ∈ T, so that the condition (S1) holds. For column j,

let c j ∈ T be the first nonzero entry in the transformed matrix. Multiply each column j

by c j ∈ T, which satisfies condition (S2). Permute the columns so that the first row has

w nonzeroes (each of which must be one since (S2) is satisfied) followed by n−w zeroes,

which satisfies (S3). Finally, sort the rows of the matrix lexicographically with the ordering

≺. Note that the first row will not move since it is the least lexicographic row in the matrix.

The transformed matrix now satisfies condition (S4), and hence, is in standard form.

It is important to note that two matrices that have different standard forms may be

equivalent to one another. Studying the number of standardized weighing matrices will

lead to an upper bound on the number of inequivalent unit weighing matrices.

3.5 Existence of Unit Weighing Matrices

In this section, we will study the existence of unit weighing matrices with small weights.

In all cases, we will describe an upper bound on the number of inequivalent weighing ma-

trices by studying the number of weighing matrices in standard form (see Definition 3.22).

Before we start the analysis of the existence and non-existence of specific types of unit

weighing matrices, we will give a definition which will be used heavily throughout the

remainder of this chapter.
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Definition 3.24. Let S⊂T. S is said to have m-orthogonality if there are a1, . . . ,am ∈ S and

b1, . . . ,bm ∈ S such that ∑
m
i=1 ci = 0, where ci = aibi.

We will be using the following results for a few small values of m in this thesis.

Proposition 3.25. Let S⊂ T and a,b,c,d ∈ T. Then (up to a relabelling of variables),

(a) S has 0-orthogonality.

(b) S does not have 1-orthogonality.

(c) a+b = 0 ⇐⇒ a =−b.

(d) a+b+ c = 0 ⇐⇒ a = eiθ,b = eiθ+ 2πi
3 and c = eiθ− 2πi

3 .

(e) a+b+ c+d = 0 ⇐⇒ a =−b and c =−d.

Proof. Each of these statements can be easily proven geometrically by viewing the uni-

modular numbers as unit vectors in R2.

Note that a set S may have m-orthogonality for many values of m. For example, the set

of all third roots of unity has m-orthogonality for all multiples of 3, whereas the set of all

sixth roots of unity has m-orthogonality for all m 6= 1.

m-orthogonality will be used in a very particular way in this thesis. If we examine two

distinct rows of a unit weighing matrix, then we know that their complex inner product is

0. So the set of entries in our weighing matrix is what we are interested in. The value of m

is the number of columns that contribute a nonzero amount to the inner product of the two

rows (i.e., both rows contain nonzero entries in those columns).
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Example 3.26. Let

W =



1 1 1 1 0 0

1 a b c 0 0

1 d 0 0 1 1

1 e 0 0 f g

0 0 1 h i j

0 0 1 k l m


be a partially filled unit weighing matrix (with all variables in T). Then we know that since

the inner product of the first and second row must be 0, the set {1,a,b,c} must have 4-

orthogonality. Moreover, since the inner product of the second and third row must be 0, the

set {1,a,d} must have 2-orthogonality.

As a shorthand, the phrases “since rows 1 and 2 have 4-orthogonality” or “by the 2-

orthogonality of rows 2 and 3” will be used in lieu of the full statements given in Exam-

ple 3.26.

We begin by extending a result of [16, Proposition 2.5] to unit weighing matrices.

Lemma 3.27. If there is a UW (n,w) and n > z2− z+1, where z = n−w is the number of

zeroes in each row of the matrix, then there is a set that has (n−2z)-orthogonality.

Proof. First, note that the cases where z ≤ 1 are straightforward. Now assume z ≥ 2.

Through appropriate row and column permutations, we may assume that the first z entries

in the first row and first column are 0.

• Let Z(i, j) be the number of zeroes in the first j rows of the ith column.

• Let E(k) be the row that contains the last 0 in column k (i.e., Z(k, j) = w for all

j ≥ E(k) and Z(k, j) < w for all j < E(k)).

By construction, E(1) = z. We know that 1 ≤ Z(2,E(1)) ≤ z, so by appropriate row per-
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mutations, the next z−Z(2,E(1)) rows will have a zero in the second column. This implies

E(2) = E(1)+(z−Z(2,E(1))) = 2z−Z(2,E(1))≤ 2z−1.

Furthermore, 1≤ Z(3,E(2))≤ z. We once again perform row permutations so that the next

z−Z(3,E(2)) rows have a zero in the third column, so

E(3) = E(2)+(z−Z(3,E(2)))≤ (2z−1)+(z−Z(3,E(2)))≤ 3z−2.

In general, following this process, we have

E(k)≤ kz− (k−1)

for k ≤ z. So this gives E( j) ≤ z2− (z−1) for j ≤ z. Thus, if we examine row z2− z + 2,

we know that the first z columns already have z zeroes in them, and thus, all z zeroes must

appear in the last n− z columns of that row. The set of entries in this row and the first

row has (n−2z)-orthogonality. It is noteworthy to mention that n > z2− z+1 implies that

n−2z≥ 0.

Corollary 3.28 (Geramita-Geramita-Wallis, [16]). For odd n, a necessary condition that a

W (n,w) exists is that n≤ (n−w)2− (n−w)+1.

Proof. Let z = n−w. For odd n, n−2z is odd, but {±1} does not have (n−2z)-orthogonality.

The result follows from Lemma 3.27.

With these in our hand, we will begin the classification of unit weighing matrices.

3.5.1 Weight 1

Any weighing matrix of weight 1 is equivalent to the identity matrix. Thus, UW (n,1)

exists for every n ∈ N.
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3.5.2 Weight 2

We begin with the non-existence of a certain type of unit weighing matrices.

Lemma 3.29. There is no UW (3,2).

Proof. By Lemma 3.27, the existence of a UW (3,2) would imply the existence of a set

having 1-orthogonality, which would contradict Proposition 3.25(b).

This leads us to the following theorem.

Theorem 3.30. A UW (n,2) exists if and only if n is even. Moreover, there is exactly one

equivalent class of UW (n,2) for each even n and it contains a real weighing matrix.

Proof. Let W be a UW (n,2). By Theorem 3.23, we may transform W into a weighing

matrix in standard form (we will call this matrix W ′). Thus, the first two entries of the first

column and first row are ones. The second entry in the second row must then be −1 by

2-orthogonality of the first two rows. So we have that

W ′ =


1 1

1 −
0

0 W ′′


where W ′′ is a UW (n−2,2). We may now use the same process on W ′′ and continue until

we arrive at the bottom right corner. If n is even, then we can complete the matrix. However,

if n is odd, then the process would end with a 3×3 block which must be a UW (3,2). But we

know from Lemma 3.29 that it does not exist. Thus, there is no UW (n,2) for n odd. Since

the number of equivalence classes of weighing matrices is bounded above by the number

of standardized matrices and there is only one standardized matrix, every weighing matrix

of order n and weight 2, for n even, is equivalent to

 1 1

1 −

⊕·· ·⊕
 1 1

1 −

=

 1 1

1 −

⊗ In/2.
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3.5.3 Weight 3

Weight 3 is the first example where unit weighing matrices differ from real weighing

matrices.

Lemma 3.31. Every UW (n,3) is equivalent to a weighing matrix whose top leftmost sub-

matrix is either a UW (3,3) or a UW (4,3).

Proof. This proof can be found in Appendix A.1.

Theorem 3.32. Every UW (n,3) is equivalent to a matrix of the following form:


1 1 1

1 ω ω

1 ω ω

⊕·· ·⊕


1 1 1

1 ω ω

1 ω ω

⊕


1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


⊕·· ·⊕



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1



where ω = e
2πi
3 .

Proof. Let W be a UW (n,3). From the proof of Lemma 3.31, we have that W can be

transformed in such a way that the top leftmost block is either a UW (3,3) or UW (4,3).

So the first 3 (or 4) rows and columns of the matrix are complete (i.e., no more nonzero

entries can be added to those rows or columns), and as such, are trivially orthogonal with

the remainder of the matrix. Thus, the lower (n−3)×(n−3) submatrix (or (n−4)×(n−4)

submatrix) is a UW (n−3,3) (or UW (n−4,3)). The top left submatrix will also be of the

desired form (see the proof of Lemma 3.31). Continue inductively. The blocks may then be

permuted such that all of the UW (3,3) submatrices appear above the UW (4,3) submatrices,

and the result follows.
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Corollary 3.33. For n≥ 3, there is a UW (n,3) if and only if n 6= 5. The number of equiva-

lence classes is bounded above by the number of distinct decompositions of n into sums of

non-negative multiples of 3 and 4.

Proof. By Theorem 3.32, we have the general structure of a unit weighing matrix of weight

3. A simple induction can show that for any n ∈ {m|m≥ 3 and m 6= 5}, n can be written as

the sum of threes and fours. We then take one such representation (say n = 3a + 4b) and

construct

W = W3⊕·· ·⊕W3︸ ︷︷ ︸
a items

⊕W4⊕·· ·⊕W4︸ ︷︷ ︸
b items

.

The second assertion is immediate.

Note that an alternate way to show that UW (5,3) does not exist is to use Lemma 3.27.

Corollary 3.34. There is a W (n,3) if and only if n is a multiple of 4. Moreover, there is

only one class of equivalent matrices.

Proof. We may use a proof similar to Corollary 3.33, except we may only use W4, and not

W3.

3.5.4 Weight 4

Similar to UW (n,3), any UW (n,4) can be decomposed as blocks along the main diag-

onal.

Lemma 3.35. Each UW (n,4) are equivalent to a UW (n,4) with diagonal blocks consisting

of the following matrices: W5, W6, W7, W8 and E2m(x) where 2≤ m≤ n
2 and x ∈ T.
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W5 =



1 1 1 1 0

1 ω ω 0 1

1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω


,W6 =



1 1 1 1 0 0

1 ω ω 0 1 0

1 ω ω 0 0 1

1 0 0 − − −

0 1 0 − −ω −ω

0 0 1 − −ω −ω


for ω = e

2πi
3 ,

W7 =



1 1 1 1 0 0 0

1 − 0 0 1 1 0

1 0 − 0 − 0 1

1 0 0 − 0 − −

0 1 − 0 0 1 −

0 1 0 − 1 0 1

0 0 1 − − 1 0



,W8 =



1 1 1 1 0 0 0 0

1 − 0 0 1 1 0 0

1 0 − 0 − 0 1 0

1 0 0 − 0 − − 0

0 1 − 0 1 0 0 1

0 1 0 − 0 1 0 −

0 0 1 − 0 0 1 1

0 0 0 0 1 − 1 −



and
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E2m(x) =



1 1 1 1

1 1 − −

1 − 0 0 1 1

1 − 0 0 − −

1 − 0 0 1 1

1 − 0 0 − −

1 − 0 0

1 − 0 0

. . .

0 0 1 1

0 0 − −

1 − 0 0 1 1

1 − 0 0 − −

1 − x −x

1 − −x x



.

Proof. The case analysis for this is quite long. As such, the full proof can be found in

Appendix A.2.

Example 3.36. To give a better understanding of the E2m, here are the first three orders:
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E4(x) =



1 1 1 1

1 1 − −

1 − x −x

1 − −x x


,E6(x) =



1 1 1 1 0 0

1 1 − − 0 0

1 − 0 0 1 1

1 − 0 0 − −

0 0 1 − x −x

0 0 1 − −x x


and

E8(x) =



1 1 1 1 0 0 0 0

1 1 − − 0 0 0 0

1 − 0 0 1 1 0 0

1 − 0 0 − − 0 0

0 0 1 − 0 0 1 1

0 0 1 − 0 0 − −

0 0 0 0 1 − x −x

0 0 0 0 1 − −x x



.

Corollary 3.37. There is a UW (n,4) for every n ≥ 4. The number of equivalence classes

is bounded above by the number of distinct decompositions of n into sums of non-negative

multiples of 5,6,7,8 and 2m, m ≥ 2. (See Appendix C.2 for the different combinations

available for all n≤ 14.)

Proof. Similar to Corollary 3.33

Corollary 3.38. Every real weighing matrix of weight four is comprised of blocks of W7,W8

and E2m(1) along the main diagonal.

Proof. Let W be a real weighing matrix of order n and weight 4. Clearly, Λ(W ) contains
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only real entries (in particular, only 0 and ±1). Since Λ(W5) and Λ(W6) contain third roots

of unity, W cannot contain W5 or W6 as submatrices. Moreover, if x0 6∈ R, then Λ(E2m(x0))

will contain a non-real entry, and so W cannot contain E2m(x0) as a submatrix either. Com-

bining this with Lemma 3.35, we have that we may only use W7, W8, E2m(1) and E2m(−1)

for real weighing matrices. Note that E2m(1) is equivalent to E2m(−1) by swapping the last

and second last columns. This implies that W (n,4) exists for any n 6= 5,9. Moreover, the

number of equivalence classes of W (n,4) is bounded above by the number of decomposi-

tions of n into sums of non-negative multiples of 7,8, and 2m, m≥ 2.

3.5.5 Weight 5

For weight 5, only a partial classification has been completed. In the following pages,

we will show the results for n≤ 7.

UW(5,5)

Haagerup [17] found that the only unit Hadamard matrix of order five is the Fourier

matrix F5 given here:

F5 =



1 1 1 1 1

1 ω ω2 ω3 ω4

1 ω2 ω ω4 ω3

1 ω3 ω4 ω ω2

1 ω4 ω3 ω2 ω


where ω = e

2πi
5 .

UW(6,5)

Lemma 3.39. Every UW (6,5) is equivalent to the following matrix
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1 1 1 1 1 0

1 − x −x 0 1

1 y a 0 b c

1 −y 0 d f g

1 0 h j k l

0 1 m n p q


where all variables represent unimodular numbers.

Proof. Let W an arbitrary UW (6,5). By appropriate row and column permutations, we

may place the zeroes (one per row and column) along the back diagonal. We may then

multiply each of the first five rows by the multiplicative inverse of the first entry in that row.

We repeat this process on each of the columns, followed by the sixth row to arrive at the

following matrix (note that the variables listed here will be relabelled in the final step of the

proof to match the labels given in the statement).



1 1 1 1 1 0

1 a b c 0 1

1 d f 0 g h

1 j 0 k l m

1 0 n p q r

0 1 s t u v


By 4-orthogonality with row 1, we have that at least one of a,b or c equals −1 and the

other two are negations of one another. In all three cases, we can transform the matrix in

such a way that a =−1.

Case 1: a =−1. This is in the desired form.
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Case 2: b =−1. This can be transformed into the desired form by swapping columns 2,3,

swapping rows 4,5 and multiplying row 6 by s.

Case 3: c =−1. This can be transformed into the desired form by swapping columns 2,4,

swapping rows 3,5 and multiplying row 6 by t.

Now, since column 1 and column 2 must be orthogonal, we have that d = − j. By

appropriate relabelling, we have our result.

Lemma 3.40. There are at most 7 distinct equivalence classes of UW (6,5).

Proof. The proof of this Lemma is a large amount of tedious case analysis. For this rea-

son, the full details are available in Appendix A.3. The cases reveal that all UW (6,5) are

equivalent to at least one of the seven matrices listed in Table 3.1.

We will continue chopping away at the number of equivalence classes of weighing

matrices with the following lemma, which shows that all of the non-sporadic families found

in Lemma 3.40 are equivalent.

Lemma 3.41. Let

W1(x) =



1 1 1 1 1 0

1 1 − − 0 1

1 − x 0 −x x

1 − 0 −x x −x

1 0 −x x − −

0 1 x −x − −


.

Then W1 ∼= T1 ∼= T2 ∼= T3 ∼= T4 ∼= T5.

Proof. To show that two families of unit weighing matrices are equivalent, we must give

the permutation matrices that transform one matrix into another. Moreover, since we are
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Table 3.1: List of standardized UW (6,5).

T1(x) =



1 1 1 1 1 0
1 − x −x 0 1
1 − −x 0 x −
1 1 0 − − −x
1 0 − x −x x
0 1 − −x x x


T2(x) =



1 1 1 1 1 0
1 − − 1 0 1
1 x −x 0 − −
1 −x 0 − x −x
1 0 x − −x x
0 1 − −x x x



T3(x) =



1 1 1 1 1 0
1 − x −x 0 1
1 −x − 0 x −
1 x 0 − −x −
1 0 −x x − 1
0 1 − − 1 1


T4(x) =



1 1 1 1 1 0
1 − 1 − 0 1
1 x − 0 −x x
1 −x 0 x − −
1 0 − −x x −x
0 1 x − −x −x



T5(x) =



1 1 1 1 1 0
1 − x −x 0 1
1 x −x 0 − x
1 −x 0 x − −x
1 0 − − 1 −
0 1 x −x − −


T6 =



1 1 1 1 1 0
1 − i −i 0 1
1 i − 0 −i −
1 −i 0 i − −i
1 0 −i − i i
0 1 − −i i −i



T7 =



1 1 1 1 1 0
1 − −i i 0 1
1 −i − 0 i −
1 i 0 −i − i
1 0 i − −i −i
0 1 − i −i i
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dealing with families of matrices, we must also provide the variable transformation needed

to arrive at the desired matrix. In particular, for each case, we shall show that W1(x) =

Pi(yi)Ti(yi)Qi(yi) by giving Pi,Qi and yi for all 1 ≤ i ≤ 5. These values can be found in

Table 3.2.

Lemma 3.42. There are at least two inequivalent UW (6,5).

Proof. Through a lengthy computation, we have that

Λ(W1(x)) = {(0,666),(1,294),(−1,144),(x,48),(−x,48),(x,48),(−x,48)}

and

Λ(T6) = Λ(T7) = {(0,666),(1,270),(−1,120),(i,120),(−i,120)} .

By Theorem 3.18, W1(x) 6∼= T6 and W1(x) 6∼= T7 for any x ∈ T.

Thus, in determining the total number of equivalence classes of unit weighing matrices

of order 6 and weight 5, we are down to determining whether or not T6 is equivalent to T7.

Lemma 3.43. T6 6∼= T7

Proof. Our goal will be to alter the look of T7 in an attempt to make it look more like T6.

When any row permutation is applied to T7, then there is a unique column permutation that

must be applied to the matrix that places the zeroes along the back diagonal (since there

is exactly one zero in each column). At this point, we must simply make the first entry in

each row and column a one by appropriate row and column multiplications. If T6 and T7

are equivalent, then one of these permutations must result in the same matrix. Thus, there

are only 6! matrices to examine. A quick computer computation determines that these two

matrices are not equivalent.
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Table 3.2: List of Pi,Qi and yi such that W1(x) = Pi(yi)Ti(yi)Qi(yi).

i yi Pi(x) Qi(x)

1 −x



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −x



2 x



1 0 0 0 0 0
0 − 0 0 0 0
0 0 x 0 0 0
0 0 0 0 0 1
0 0 0 −x 0 0
0 0 0 0 x 0





0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −



3 −x



1 0 0 0 0 0
0 0 0 0 0 −
0 x 0 0 0 0
0 0 0 0 −x 0
0 0 − 0 0 0
0 0 0 − 0 0





0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −



4 x



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 x





1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



5 x



1 0 0 0 0 0
0 0 0 0 − 0
0 x 0 0 0 0
0 0 0 0 0 x
0 0 −x 0 0 0
0 0 0 x 0 0





0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
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Theorem 3.44. There are exactly 3 inequivalent unit weighing matrices of order 6 and

weight 5:

1 1 1 1 1 0

1 1 − − 0 1

1 − x 0 −x x

1 − 0 −x x −x

1 0 −x x − −

0 1 x −x − −


,



1 1 1 1 1 0

1 − i j 0 1

1 i − 0 j −

1 j 0 i − j

1 0 j − i i

0 1 − j i j


,



1 1 1 1 1 0

1 − i j 0 1

1 i j 0 − i

1 j 0 − i −

1 0 − i j j

0 1 i − j i


.

W1(x) is given in Lemma 3.41 and the two sporadic cases given in Table 3.1.

Proof. From Lemma 3.40 and Lemma 3.41, we know that there are at most 3 inequivalent

matrices. Lemma 3.42 and Lemma 3.43 show that those three matrices are not equivalent.

Note that if we consider conjugation and transposition as part of the equivalence rela-

tion, then T6 is equivalent to T7 since T6 = T ∗7 .

Proposition 3.45. Every UW (6,5) is equivalent to a symmetric matrix and every non-

sporadic UW (6,5) is equivalent to a Hermitian matrix.

Proof. Let W be a UW (6,5). We know by Theorem 3.44 that W is equivalent to exactly one

of three matrices. The first statement is true since the three matrices given in Theorem 3.44

are symmetric. The second statement is true by noting that W1 ∼= T3 (T3 is given in the proof

of Lemma 3.40 and is the matrix in the second row, first column of Table 3.1). If we swap
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rows 3 and 4 of T3, then we have



1 1 1 1 1 0

1 − x −x 0 1

1 x 0 − −x −

1 −x − 0 x −

1 0 −x x − 1

0 1 − − 1 1


which is Hermitian symmetric.

Lemma 3.46. There is exactly one real W (6,5) (up to equivalence).

Proof. Obviously, the two sporadic cases in Theorem 3.44 are not real, so we may use an

argument similar to the proof Corollary 3.38 to see that the only hope for a real W (6,5) is

W1(1) and W1(−1). By swapping columns 2 and 3 and rows 2 and 3 of W1(1), we note that

these two matrices are equivalent.

UW(7,5)

Lemma 3.47. Any UW (7,5) must include the following rows (after appropriate column

permutations): 

1 1 1 1 1 0 0

1 a b 0 0 1 1

1 0 0 c d f g

0 0 1 h k m n


Proof. To prove this condition, we show that three rows must exist with disjoint zeroes

(two rows have disjoint zeroes if for every column, there is at most one zero between the

two rows).
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Let W be a UW (7,5). We can begin by assuming the standard starting row of five ones

and two zeroes. Permute the rows such that the second row is not disjoint from row 1. Two

cases may occur from this: there is an overlap of either one or two zeroes between the first

and second rows. If there is an overlap of two zeroes, then the third row must be disjoint

from both the first and second rows. If there is single overlap, then permute the rows so

that the third row has one overlap with the first. Then the fourth row must be disjoint from

the first row since the last two columns are complete. Thus, in either case, there are at least

two disjoint rows.

From here, we can easily show that there must be three rows which are mutually disjoint.

To do this, we assume that the first two rows are disjoint (say their zeroes are in columns

1−4). We may only put one more zero in each of those 4 columns, but we have 5 rows left,

so at least one row must have no zeroes in columns 1−4. So this row, along with the first

two, are mutually disjoint.

Theorem 3.48. There is no UW (7,5).

Proof. Any UW (7,5) must contain the submatrix given in Lemma 3.47. We will show that

the rows cannot be mutually orthogonal.

Taking the pairwise standard complex inner product of the rows, we obtain the following

system of equations:



1+a+b = 0

1+ c+d = 0

1+h+ k = 0

1+ f +g = 0

This implies a,b,c,d, f ,g,h,k ∈ {e±2πi/3}where a,c,h, f are the conjugates of b,d,k,g,

respectively. We will now rewrite the submatrix.
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1 1 1 1 1 0 0

1 a a 0 0 1 1

1 0 0 c c f f

0 0 1 h h m n


Now let’s consider the inner product of the second and fourth vectors: a + m + n = 0.

Since a ∈ {e±i 2π

3 }, we have that m,n ∈ {1,a} where m 6= n, by Proposition 3.25 (d). The

inner product of rows 3 and 4 is now the sum of 4 third roots of unity, which cannot be zero.

Thus, no UW (7,5) can exist.

48



Chapter 4

Unbiasedness

Take chances,

make mistakes,

get messy!

– V. F. Frizzle

(This chapter is based on published work, [5].)

In this chapter, we introduce the idea of mutually unbiased unit weighing matrices. This

utilizes the matrices that we introduced in the previous chapter.

Unbiasedness is a topic that has been studied in a variety of different settings. The roots

of unbiasedness can be traced to physics, [23, 31, 37].

We start with the definition of unbiased bases.

Definition 4.1. Let B1 and B2 be two orthonormal bases in Cn. B1 and B2 are called

unbiased if

∀u ∈ B1,v ∈ B2, |〈u,v〉|= 1√
n
.

When we put a number of these bases together, we have the following fundamental

definition.

Definition 4.2. Let B = {B1, . . . ,Bk} be a set of orthonormal bases in Cn. B is called

mutually unbiased if for all 1 ≤ i, j ≤ k, i 6= j, Bi is unbiased with B j. These are often

called “MUBs”.
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To put mutually unbiased bases in different terminology, we are looking for orthonormal

bases whose basis vectors from different bases meet at a specific angle. However, rather

than looking at these objects as bases, we will instead focus on a slightly different set of

objects.

Definition 4.3. Two unit Hadamard matrices, H1 and H2, are unbiased if H1H∗2 =
√

nH,

where H is a unit Hadamard matrix. A set of unit Hadamard matrices is called mutually

unbiased if every distinct pair of matrices is unbiased. This are often called “MUHMs”.

The reason we are able to work with mutually unbiased Hadamard matrices instead of

mutually unbiased bases is due to the following theorem.

Theorem 4.4. There exists k mutually unbiased bases in Cn if and only if there exists k−1

mutually unbiased unit Hadamard matrices of order n.

Proof. First, let B = {B1,B2, . . . ,Bk} be orthonormal bases in Cn. We may perform the

same change of basis on the bases and arrive at another set of mutually unbiased bases,

B ′ =
{

B ′1,B ′2, . . . ,B ′k
}

where B ′1 is the standard basis in Cn. Since B ′1 is unbiased with each

of the other bases, we know that each entry in every other basis vector must have the same

absolute value ( 1√
n ). We can now create k square matrices, B1,B2, . . . ,Bk, such that the rows

of Bi are the vectors in B ′i . We note that B1 = In and that
√

nBi is a unit Hadamard matrix for

any 2≤ i≤ k. Multiplication gives that the magnitude of each entry in L = (
√

nBi)
(√

nB j
)∗

is
√

n. Moreover, the fact that

(
1√
n

L
)(

1√
n

L
)∗

=
1
n

((√
nBi
)(√

nB j
)∗)((√nBi

)(√
nB j
)∗)∗ =

1
n

(
n2I
)

= nI

gives that 1√
nL is a Hadamard matrix. Thus, {

√
nB2, . . . ,

√
nBk} is a set of k mutually

unbiased unit Hadamard matrices.

Next, we let {H1, . . . ,Hk−1} be a set of Hadamard matrices. It is easy to see that

{
In,

1√
n

H1, . . . ,
1√
n

Hk−1

}
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is a set of k mutually unbiased bases (where the vectors of the bases are the rows of the

matrices).

For the remainder of the thesis, we will focus on matrices in lieu of bases. When

studying mutually unbiased objects, there are two main goals: finding lower and upper

bounds on the size of the set of mutually unbiased Hadamard matrices and finding examples

that attain these bounds.

Lemma 4.5. Let r,s∈Tn such that 〈r,s〉= α and define R = r∗r− In and S = s∗s− In. Then

Tr(RS∗) = |α|2−n.

Proof.

Tr(RS∗)=Tr(RS∗)

=Tr((r∗r)(s∗s)∗− r∗r− (s∗s)∗+ I)

=Tr((r∗r)(s∗s)∗)−Tr(r∗r)−Tr(s∗s)+Tr(I)

=Tr((r∗r)(s∗s)∗)−n−n+n

=Tr(r∗(rs∗)s)−n

=α ·Tr(r∗s)−n

=αα−n

=|α|2−n

Lemma 4.6. Let {H1, . . . ,Hk} be a set of mutually unbiased Hadamard matrices of order

n. Then
{

Si j := r∗i jri j− I|1≤ i≤ k,2≤ j ≤ n
}

is linearly independent where ri j is the jth

row of Hi.

Proof. Let a12,a13, . . . ,ak2, . . . ,akn ∈ Cn. Select arbitrary x,y such that 1 ≤ x ≤ k and 2 ≤

y≤ n. (The fifth implication below utilizes Lemma 4.5 in three separate ways.)
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k

∑
i=1

n

∑
j=2

ai jSi j = 0 =⇒

(
k

∑
i=1

n

∑
j=2

ai jSi j

)
S∗xy = 0

=⇒
k

∑
i=1

n

∑
j=2

ai jSi jS∗xy = 0

=⇒ Tr

(
k

∑
i=1

n

∑
j=2

ai jSi jS∗xy

)
= 0

=⇒

(
∑
i 6=x

n

∑
j=2

ai j ·Tr
(
Si jS∗xy

))
+

(
∑
j 6=y

ax j ·Tr
(
Sx jS∗xy

))
+
(
axy ·Tr

(
SxyS∗xy

))
= 0

=⇒

(
∑
i 6=x

n

∑
j=2

ai j · (n−n)

)
+

(
∑
j 6=y

ax j · (0−n)

)
+
(
axy ·

(
n2−n

))
= 0

=⇒ n2 ·axy−n
n

∑
j=2

ax j = 0

Since this must be true for any pair of x and y, it suffices to show

D = Ik⊗



n2−n −n −n −n

−n n2−n −n · · · −n

−n −n n2−n −n

... . . . ...

−n −n −n · · · n2−n


(n−1)×(n−1)
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is non-singular. For this, we need to show

det



n2−n −n −n −n

−n n2−n −n · · · −n

−n −n n2−n −n

... . . . ...

−n −n −n · · · n2−n


6= 0.

By adding the negative of the first row of the matrix to each of the other rows, followed

by subtracting each of the other columns from the first, we see that

det



n −n −n · · · −n

0 n2 0 · · · 0

0 0 n2 0

... . . . ...

0 0 0 · · · n2


= (n · (n2)n−2) = n2n−3 6= 0.

Theorem 4.7. If {H1, . . . ,Hk} be a set of mutually unbiased unit Hadamard matrices of

order n, then k ≤ n.

Proof. Let {H1, . . . ,Hk} be a set of mutually unbiased unit Hadamard matrices of order n.

Let ri j be the jth row of Hi. We define Si j = r∗i jri j− In. Noting that each Si j is Hermitian

and has a zero diagonal gives that Span({Si j}) is a subspace of all Hermitian matrices with

a zero diagonal. By Lemma 4.6, we have that Si j are linearly independent. Combining this

with the fact that the set of Hermitian matrices with zero diagonal has dimension 2(0+1+

2+ · · ·+(n−1)), we have

k(n−1) = |Si j| ≤ 2(0+1+2+ · · ·+(n−1)) = n(n−1),
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whence the result follows.

Theorem 4.8. If {H1, . . . ,Hk} be a set of mutually unbiased real Hadamard matrices of

order n, then k ≤ n
2 .

Proof. We may utilize the same proof as Theorem 4.7 with one small change: since our

matrices are real, we have that {Si j} is a subset of symmetric, zero diagonal matrices,

which has a dimension of (0+1+2+ · · ·+(n−1)).

The next theorem will show that this bound is attained in some cases.

Lemma 4.9. Let p be an odd prime power.

∣∣∣∣∣p−1

∑
k=0

e(ak2+bk)2πi/p

∣∣∣∣∣=


p if a≡ 0 (mod p) and b≡ 0 (mod p),

0 if a≡ 0 (mod p) and b 6≡ 0 (mod p),

√
p otherwise.

Proof. We will only show the proof for odd prime numbers. The proof for prime powers

follows similarly using finite fields. We note that the first case is trivial. Now, if a ≡ 0

(mod p) and b 6≡ 0 (mod p), then

p−1

∑
k=0

e
2πi
p (ak2+bk) =

p−1

∑
k=0

e
2πi
p (bk).

Since p is prime, e
2πi
p b is a primitive pth root of unity. Since we are summing over all powers

of e
2πi
p b, the second equality holds.

The third equality is trickier – we will examine the absolute value squared. In the

following steps, the fact that p is an odd prime is only used in going from the third last

equality to the second last (inside the curly braces, {·}) to ensure that 2am is a primitive

pth root of unity for any choice of m, 1 ≤ m ≤ p− 1. To conserve space, we will use

e(x) := e
2πi
p x.
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∣∣∣∑p−1
k=0 e(ak2 +bk)

∣∣∣2
=

(
∑

p−1
k=0 e(ak2 +bk)

)(
∑

p−1
`=0 e(a`2 +b`)

)
=

(
∑

p−1
k=0 e(ak2 +bk)

)(
∑

p−1
`=0 e(−(a`2 +b`))

)
= ∑

p−1
k=0 ∑

p−1
`=0

[
e
(
a(k2− `2)+b(k− `)

)]
= ∑

p−1
k=0 ∑

p−1
`=0 [e((k− `)(a(k + `)+b)]

= ∑
p−1
m=0 ∑

p−1
`=0 [e(m(a(m+2`)+b)]

= ∑
p−1
m=0

[
e(m(am+b))∑

p−1
`=0 e(2am`)

]
=

[
e(0)∑

p−1
`=0 e(0)

]
+∑

p−1
m=1

[
e(m(am+b))

{
∑

p−1
`=0 e(2am`)

}]
= p+∑

p−1
m=1 [e(m(am+b)){0}]

= p

Theorem 4.10 ([23, 31, 39]). If n is an odd prime power, then there exists n mutually

unbiased unit Hadamard matrices of order n. They are

{H1,H2, . . . ,Hn} ,

where (H j)k` = e( j`2+k`)2πi/n.

Proof. Note that the inner product of the rth row of the H j and the sth row of Hk takes the

following form

n−1

∑
m=0

e( jm2+rm)2πi/ne(km2+sm)2πi/n =
n−1

∑
m=0

e(( j−k)m2+(r−s)m)2πi/n.

We may then utilize the correct case from Lemma 4.9 to give us the desired absolute value

of the inner product.

It is important to note that the size of the sets found in Theorem 4.10 are the same as
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the upper bound given by Theorem 4.7, so our upper bound is sharp in some situations.

However, if we look at any order of unit Hadamard matrices other than a prime power,

we run into a problem. Mutually unbiased unit Hadamard matrices have been looked at

quite extensively, and even in the first case that is not a prime power, n = 6, no example is

known that attains the upper bound in Theorem 4.7. In fact, it is generally believed that the

maximal set of mutually unbiased unit Hadamard matrices of order 6 is 2 (see [3]).

4.1 Mutually Unbiased Weighing Matrices

We now introduce a natural extension to mutually unbiased Hadamard matrices.

Definition 4.11. Two unit weighing matrices, W1 and W2, of order n and weight w are

unbiased if W1W ∗2 =
√

wW , where W is a unit weighing matrix of order n and weight w. A

set of unit weighing matrices that are pairwise unbiased is called mutually unbiased. These

are shortened to be called “MUWM”.

Except the case where n = w, a set of mutually unbiased unit weighing matrices are

not equivalent to a set of mutually unbiased bases (as in Theorem 4.4). Instead, we are

now dealing with a set of orthonormal bases whose vectors meet at two angles (π/2 and

cos−1( 1√
w)) instead of just one (cos−1( 1√

n)). It is for this reason that these sets are termed

biangular.

When we deal with real weighing matrices, we have the following strong restriction on

the weight of the matrices.

Lemma 4.12. Let W1 and W2 be real unbiased weighing matrices of order n and weight w.

Then w must be a perfect square.

Proof. Since both W1 and W2 are integer matrices, W1W T
2 =
√

wL must be an integer matrix

as well.

Note that Lemma 4.12 is a special case of a proof for Hadamard matrices found in [8].
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However, when we are dealing with unit weighing matrices, we have no such restriction. In

fact, we have the following.

4.1.1 Bounds and Assumptions

In this section, we will describe the structure of mutually unbiased unit weighing ma-

trices, as well as examine lower and upper bounds on the size of sets of mutually unbiased

unit weighing matrices. We begin with a construction of mutually unbiased unit weighing

matrices that is built off of other sets (similar to the Kronecker construction for Hadamard

matrices in Lemma 2.13).

Theorem 4.13. Let
{

W1, . . . ,Wk
}

be a collection of sets of mutually unbiased unit weigh-

ing matrices of order ni and weight w. Then there are

min
1≤i≤k

(∣∣Wi
∣∣)

mutually unbiased unit weighing matrices of order ∑
k
i=1 ni and weight w.

Proof. Let Wi =
{

W (i)
1 ,W (i)

2 , . . . ,W (i)
`i

}
for each 1≤ i≤ k and let

m = min
1≤i≤k

(∣∣Wi
∣∣)= min

1≤i≤k
(`i) .

Then the set

{(
W (1)

1 ⊕·· ·⊕W (k)
1

)
,
(

W (1)
2 ⊕·· ·⊕W (k)

2

)
, . . . ,

(
W (1)

m ⊕·· ·⊕W (k)
m

)}

gives the desired result by noting that (A⊕B)(A⊕B)∗ = AA∗⊕BB∗.

Definition 4.14. Let W be a unit weighing matrix of order n and weight w. If W = W1⊕W2

for some W1 and W2 of orders strictly less than n, then W is said to be decomposable3. Note

3The term decomposable matrix is sometimes used to describe a reducible matrix. The reader is warned
not to confuse the two terms in this thesis.
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that since the rows of W must be orthogonal, it follows that W1 and W2 are also weighing

matrices. We may write W in such a way that W = W1⊕W2⊕ ·· ·⊕Wk where each Wi is

indecomposable of order ni. The block structure of W is the k-tuple (n1,n2, . . . ,nk).

When two unit weighing matrices have exactly the same block structure, we will be able

to utilize the following proposition.

Proposition 4.15. If two weighing matrices, W1 and W2, of the same weight have the same

block structure, then W1 is unbiased with W2 if and only if each indecomposable block of

W1 is unbiased with the corresponding indecomposable block of W2.

Proof. This is easily seen by noting that

(W (1)
1 ⊕·· ·⊕W (m)

1 )(W (1)
2 ⊕·· ·⊕W (m)

2 )∗ = W (1)
1 W (1)∗

2 ⊕·· ·⊕W (m)
1 W (m)∗

2 .

The block structures of matrices is repeatedly used in our proofs throughout the thesis

by applying the following proposition.

Proposition 4.16. Let {W1, . . . ,Wk} be a set of mutually unbiased unit weighing matrices

of order n and weight w with the same block structure, say (n1, . . . ,nm). Then k is bounded

above by the maximal size of a set of mutually unbiased weighing matrices of order ni and

weight w, for 1≤ i≤ k.

Proof. This follows from Proposition 4.15.

When we examine an arbitrary set of mutually unbiased unit weighing matrices, they

may not be in a form where Propositions 4.15 and 4.16 may be used. However, we may be

able to apply appropriate row and column permutations in such a way that we may utilize

those propositions. For example,
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W1 =



1 0 1 0

0 1 0 1

1 0 − 0

0 1 0 −


and W2 =



0 1 0 i

1 0 i 0

1 0 −i 0

0 1 0 −i


are two indecomposable weighing matrices which are unbiased with one another. However,

with appropriate row and column permutations4, we may examine

W ′1 =



1 1 0 0

1 − 0 0

0 0 1 1

0 0 1 −


and W ′2 =



1 i 0 0

1 −i 0 0

0 0 1 i

0 0 1 −i


,

which are also unbiased with one another, and where Propositions 4.15 and 4.16 may be

used. We will call the block structure found in W ′1 and W ′2 suitable and the block structure

found in W1 and W2 not suitable. Throughout the article, we will only concern ourselves

with matrices that have a suitable block structure. To this end, we pose an algorithm to

determine a matrix’s suitable block structure.

Lemma 4.17. The suitable block structure of a unit weighing matrix of order n can be

determined in O(n3) steps.

Proof. Let W be a weighing matrix of order n and W ′ be the equivalent weighing matrix

that has a suitable block structure. We define GW be the graph on n vertices with an edge

between vertices i and j if and only if at least one nonzero entry in row i is in the same

column as a nonzero entry in row j in W . Two rows of W are in the same indecomposable

block of W ′ if and only if there is a path between the corresponding nodes in GW . Thus, an

4Note that the column permutations must be the same for both matrices to ensure they are still unbiased
with one another.
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indecomposable block of W ′ can be found by taking the rows corresponding to all vertices

in any connected component of GW and removing all columns that only have zeroes. The

number of indecomposable blocks of W ′ is the number of connected components of GW .

In total, this process involves two parts. First, to build the graph, we look at all pairs of

rows and examining each column, for a time of O(n3). Then, we determine the number of

connected components, which takes O(n2) via depth first search for an overall complexity

of O(n3) steps.

So far, the only upper bounds given are for mutually unbiased Hadamard matrices.

In the following theorems, we will show that the number of mutually unbiased weighing

matrices also has an upper bound. Each of the following theorems were given in [9], but

we provide a more detailed proof here.

For the following four theorems, we will utilize the concept of tensor products, which

the reader only needs a vague understanding of to understand fully5.

Definition 4.18. Let V be a vector space and T be a tensor. T is a symmetric n-tensor if

T (v1,v2, . . . ,vn) = T (vσ1,vσ2, . . . ,vσn)

for all permutations σ : {1, . . . ,n} → {1, . . . ,n}. Let Sk(V ) denote the space of symmetric

n-tensors of V .

Lemma 4.19. Let V be a vector space of dimension n. Then dim
(
Sk(V )

)
=
(n+k−1

k

)
.

Proof. Let {v1, . . . ,vn} be a basis of V . The basis elements of Sk(V ) are {va1⊗·· ·⊗ vak}

where (a1, . . . ,ak) is any non-increasing sequence in {1, . . . ,n}. It is well known that the

number of non-increasing sequences is
(n+k−1

k

)
[15].

5Kronecker products are a special case of tensor products on matrices, so any reader that is not familiar
with tensor products may wish to view them as Kronecker products (see Definition 2.12).
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Definition 4.20. A positive definite matrix, M, is an n×n matrix such that for any nonzero

vector v ∈ Cn, v∗Mv > 0. Similarly, a positive semi-definite matrix, N, is an n× n matrix

such that for any nonzero vector v ∈ Cn, v∗Nv≥ 0.

Definition 4.21. Let V ⊂ Tn such that |V |= k. Then the Gramian matrix, Gram(V ) = [gi j],

is a k× k matrix where gi j = 〈vi,v j〉.

Lemma 4.22. Let r ∈ R, M be a positive definite matrix, N be a positive semi-definite

matrix and V be a set of unit vectors. Then we have the following.

(a) M +N is a positive definite matrix.

(b) M has an inverse.

(c) If r > 0, then rM is positive definite and rN is positive semi-definite.

(d) Applying simultaneous elementary row and column operations to M gives a positive

definite matrix.

(e) Gram(V ) is a positive semi-definite matrix.

Proof. (a) Let v ∈ Cn\{0}.

v∗(M +N)v = v∗Mv+ v∗Nv > 0+ v∗Nv≥ 0+0 = 0

(b) Let v ∈ Cn\{0}. Since v∗Mv > 0, we have that Mv 6= 0, so 0 cannot be an eigenvalue

of M, and the result follows.

(c) Let v ∈ Cn\{0}.

v∗(rM)v = r(v∗Mv) > r ·0 = 0

and

v∗(rN)v = r(v∗Nv)≥ r ·0 = 0.
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(d) Let v∈Cn\{0}. Let Q represent the elementary row operation you wish to apply. Then

Q∗MQ is the matrix after applying the row operations.

v∗(Q∗MQ)v = (Qv)∗M(Qv) > 0

since Qv ∈ Cn and M is positive definite.

(e) Let V = {v1, . . . ,vm}. And let A be the rectangular matrix of m rows where the ith row

of A is vi. Then Gram(V ) = AA∗. Let v ∈ Cn\{0}. Then

v∗Gram(V )v = v∗(AA∗)v = (v∗A)(v∗A)∗ ≥ 0.

Theorem 4.23 ([9, Equation 3.7]). Let V ⊂ Rn be a set of unit vectors. If |〈v,w〉| ∈ {0,α}

for all v,w ∈V , v 6= w, where α ∈ R and 0 < α < 1, then

|V | ≤
(

n+2
3

)
. (4.1)

Proof. Let A = {Xv := v⊗ v⊗ v|v ∈ V} ⊂ S3(Rn). We claim that A is a set of linearly

independent vectors in S3(Rn), which would immediately give us our result through the use

of Lemma 4.19. To show that A is linearly independent, we will show that the Gram(A) is

non-singular.

To see this, note that 〈Xv,Xw〉 = 〈v,w〉3, which implies that Gram(A) = I + α3C where

Gram(V ) = I +αC. We have that

Gram(A) = I +α
3C = (1−α

2)I +α
2(I +αC) = (1−α

2)I +α
2Gram(V ).

From our assumption, we have that 1−α2 > 0 which means that (1−α2)I is a positive

definite matrix (by Lemma 4.22 (c)). And Gram(V ) is the Gramian matrix of a set of
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vectors, which implies that α2Gram(V ) is a positive semi-definite matrix (by Lemma 4.22

(d) and (e)). The sum of a positive definite matrix and a positive semi-definite matrix is a

positive definite matrix (by Lemma 4.22 (a)). All positive definite matrices have an inverse

(by Lemma 4.22 (b)), so Gram(A) must be non-singular.

Theorem 4.24 ([9, Equation 5.9]). Let V ⊂ Cn be a set of unit vectors. If |〈v,w〉| ∈ {0,α}

for all v,w ∈V , v 6= w, where α ∈ R and 0 < α < 1, then

|V | ≤ n
(

n+1
2

)
. (4.2)

Proof. The proof is nearly identical to Theorem 4.23 on replacing A with A′ = {Xv :=

v⊗ v⊗ v∗|v ∈V} ⊂ S2(Cn)⊗Cn.

If we wish to add a restriction on the value of α, we can obtain a better bound in certain

cases.

Theorem 4.25 ([9, Equation 3.9]). Let V ⊂Rn be a set of unit vectors where |〈v,w〉| ∈ {0,α}

for all v,w ∈V , v 6= w, where α ∈ R and 0 < α < 1. If 3− (n+2)α2 > 0, then

|V | ≤ n(n+2)(1−α2)
3− (n+2)α2 . (4.3)

Proof. Let hv = 1
3 ∑

n
i=1((v⊗ ei⊗ ei)+ (ei⊗ v⊗ ei)+ (ei⊗ ei⊗ v)) and A = {Xv := v⊗ v⊗

v|v ∈V} ⊂ S3(Rn).

We know that

(n+2)(I +α
3C)−3(I +αC)

is positive semi-definite since it may be obtained through simultaneous row and column

permutations of Gram({ha}∪A) (using Lemma 4.22 (d) and (e)). Let v be an eigenvector of

I +αC and let v0 := v∗v for convenience. Since I +αC is positive semi-definite, (I +αC)v =

λv =⇒ λ≥ 0.

63



4.1. MUTUALLY UNBIASED WEIGHING MATRICES

v∗([(n+2)(1−α
2)]I− [3−α

2(n+2)](I +αC))v

= [(n+2)(1−α
2)]v∗v− [3−α

2(n+2)]v∗(I +αC)v

= [(n+2)(1−α
2)]v∗v− [3−α

2(n+2)]v∗λv

= [(n+2)(1−α
2)]v0− [3−α

2(n+2)]λv0.

Since our original matrix was positive semi-definite, we know that this number must be

non-negative, which implies

[(n+2)(1−α
2)]v0− [3−α

2(n+2)]λv0 ≥ 0 =⇒ (n+2)(1−α
2)≥ [3−α

2(n+2)]λ

=⇒ λ≤ (n+2)(1−α2)
3−α2(n+2)

assuming 3−α2(n+2) > 0.

Since this must be true for all eigenvalues of I +αC, we have the following

|V |= Tr(I +αC) =
n

∑
i=1

λ≤
n

∑
i=1

(n+2)(1−α2)
3−α2(n+2)

=
n(n+2)(1−α2)

3−α2(n+2)
.

Theorem 4.26 ([9, Equation 5.9]). Let V ⊂ Cn be a set of unit vectors. If |〈v,w〉| ∈ {0,α}

for all v,w ∈V , v 6= w, where α ∈ R and 0 < α < 1, then

|V | ≤ n(n+1)(1−α2)
2− (n+1)α2 (4.4)

if the denominator is positive.

Proof. Similar to Theorem 4.25.
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It is important to note that in most cases, the bounds involving a specific α are smaller

than the ones without, but not always. For example, if we are looking for real vectors with

n = 9 and α = 1
2 , the first bound, (4.1), gives us |V | ≤ 165 whereas the second bound, (4.3),

gives us |V | ≤ 297.

The following are immediate corollaries to the previous few theorems.

Corollary 4.27. Let W = {W1, . . . ,Wm} be a set of mutually unbiased unit weighing ma-

trices of order n and weight w. Then we have that

m≤ (n−1)(n+2)
2

. (4.5)

Moreover, if 2w− (n+1) > 0, then

m≤ w(n−1)
2w− (n+1)

. (4.6)

Proof. Define V to be the set of all rows of 1√
wW1, . . . ,

1√
wWm (note that |V | = mn). Since

W is a set of mutually unbiased weighing matrices, we set α = 1√
w . Moreover, note that

since all vectors in V come from a weighing matrix of weight w, we may adjoin the rows of

the identity matrix to V without disrupting the bi-angularity (note that now, |V |= mn+n).

By applying Theorem 4.24 and Theorem 4.26 to V (with the rows of the identity matrix

included), we obtain the desired results.

Corollary 4.28. Let W = {W1, . . . ,Wm} be a set of real mutually unbiased weighing ma-

trices of order n and weight w. Then we have that

m≤ (n−1)(n+4)
6

. (4.7)

Moreover, if 3w− (n+2) > 0, then

m≤ w(n−1)
3w− (n+2)

. (4.8)
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Proof. Similar to Corollary 4.27.

4.1.2 The Search For Sets

When we study mutually unbiased weighing matrices, our main goal is to find as many

matrices in a set as possible. From Corollary 4.27 and Corollary 4.28, we have an upper

bound for the number of mutually unbiased weighing matrices. We have also given con-

structions that will provide us with lower bounds, but before we may utilize any of those

constructions, we must find examples of small mutually unbiased weighing matrices. This

section demonstrates the searches that were involved with finding such sets.

With unit weighing matrices, an exhaustive computer search is impractical, if not im-

possible, to perform since each nonzero entry in every matrix has infinitely many choices.

To this end, we restricted the entries to small roots of unity in our computer searches. For

each type of matrix, we searched for matrices over the mth roots of unity, with m≤ 24. The

12th roots of unity seem to be the largest group needed to find some maximal sets. Many

of the maximal sets that we found do not match the upper bound given in Corollary 4.27.

However, for many of these cases, we will prove smaller upper bounds than those given in

Corollary 4.27.

Table 4.1 contains a summary of the various bounds that we have for mutually unbiased

weighing matrices.

4.1.3 Mutually Unbiased Weighing Matrices of Weight 2

In Theorem 3.30, we proved that UW (n,2) do not exist for odd orders. For n even, we

have the following.

Lemma 4.29. Let n be even. Then there are at most 2 mutually unbiased weighing matrices

of order n and weight 2.

Proof. Say we have a set of mutually unbiased weighing matrices of the appropriate order

and weight. From Theorem 3.30, we know that one of the matrices may be transformed
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4.1. MUTUALLY UNBIASED WEIGHING MATRICES OF WEIGHT 2

Table 4.1: A summary of upper bounds and lower bounds on the size of mutually unbiased
weighing matrices. For lower bounds, if the upper bound is attained, we will give an explicit
example of a set attaining the bound. For upper bounds, we will state the appropriate
Theorem, Lemma, etc. Any row that is shaded indicates that there is a gap between the
lower and upper bounds.

Type Lower Bounds Upper Bounds

Largest Root of Unity Example Smallest Rationale

UW(2,2) 2 4 Theorem 4.10 2 Corollary 4.27
UW(3,2) 0 – – 0 Theorem 3.30
UW(3,3) 3 3 Theorem 4.10 3 Corollary 4.27
UW(4,2) 2 4 Lemma 4.29 2 Lemma 4.29
UW(4,3) 9 6 Corollary 4.32 9 Corollary 4.27
UW(4,4) 4 4 Theorem 4.10 4 Corollary 4.27
UW(5,2) 0 – – 0 Theorem 3.30
UW(5,3) 0 – – 0 Corollary 3.33
UW(5,4) 5 6 Theorem 4.34 5 Theorem 4.34
UW(5,5) 5 5 Theorem 4.10 5 Corollary 4.27
UW(6,2) 2 4 Lemma 4.29 2 Lemma 4.29
UW(6,3) 3 3 Corollary 4.32 3 Theorem 4.31
UW(6,4) 20 6 Theorem 4.35 20 Corollary 4.27
UW(6,5) 2 12 – 8 Corollary 4.27
UW(6,6) 2 12 – 6 Corollary 4.27
UW(7,2) 0 – – 0 Theorem 3.30
UW(7,3) 3 6 Corollary 4.32 3 Theorem 4.31
UW(7,4) 8 2 Corollary 4.39 8 Theorem 4.38
UW(7,5) 0 – – 0 Theorem 3.48
UW(7,6) 0 – – 9 Corollary 4.27
UW(7,7) 7 7 Theorem 4.10 7 Corollary 4.27
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4.1. MUTUALLY UNBIASED WEIGHING MATRICES OF WEIGHT 3

into  1 1

1 −

⊗ In/2.

Permute the rows of the second matrix so that there is a nonzero in the top-left entry. The

second entry in the top row must be nonzero, otherwise the inner product of the top row of

the first and second matrices will be neither 0 nor
√

2. Continue this argument so that the

block structure is the same between all matrices in the set of unbiased weighing matrices.

By applying Corollary 4.27 (for 2× 2 submatrices) and Proposition 4.16, we have our

result.

4.1.4 Mutually Unbiased Weighing Matrices of Weight 3

Lemma 4.30. A UW (n,3), W1, is unbiased with W2 if and only if W1 has the same block

structure as W2.

Proof. From Theorem 3.32, we know that W1 may be transformed into a matrix of the

following form:


1 1 1

1 ω ω

1 ω ω

⊕·· ·⊕


1 1 1

1 ω ω

1 ω ω

⊕


1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


⊕·· ·⊕



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


,

where ω = e2πi/3.

We may assume through row and column permutations and normalization by a unimod-

ular number that the first 3 rows of W2 have a 1 in the first column.

Assume that the top left block in W1 is a UW (3,3). In the first row of W2, if the first

three entries are (1,0,0), then the inner product of this row and the first row of W1 can
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obviously not be of the desired form. Moreover, if there are two nonzero entries (i.e., either

(1,a,0) or (1,0,a)), then there must be a third entry in columns 4 through n. The inner

product of this row and three different rows in W1 will simply be a unimodular number (this

is true by the structure of W1), and thus, not in the desired form. This means that the first

three entries must all be nonzero. This argument can be made for the second and third row

of W2, and thus, the topleft corner of W2 is a UW (3,3), as desired.

Now assume that the top left block in W1 is a UW (4,3). If columns 2, 3 and 4 are all

zero in any of the first 3 rows, then the inner product of row 1 in W1 and that row will give

us a unimodular number. If there is exactly 1 nonzero in columns 2, 3 and 4, then the inner

product of that row and the fourth row of W1 will be unimodular. Thus, we know that in the

first 3 rows of W2, all 3 nonzero entries must appear in the first four columns.

We will now show that the first zero in these rows will not be in the same column.

Assume that one column has at least 2 zeroes. This means that at least one of columns 2,3

and 4 will be complete (i.e., no more nonzero entries may go into that column). Column

1 is already complete, so in our fourth row, there are either 1 or 2 nonzeroes in the first

3 columns. By taking the inner product of the fourth row of W2 by the appropriate row

in W1, we will get a unimodular number. Thus, the first zero in the first 4 rows must be

in different columns (note that the first zero in row 4 must be in column 1). Furthermore,

through appropriate row permutations and negations, the second entry in row 4 must be a

1. The next two entries are clearly nonzero or there is 1-orthogonality within W2. Thus, in

the first 4 rows of W2, the three nonzero entries must appear in the first 4 rows, with the first

zeroes of the rows in different columns (i.e., a UW (4,3)).

Once we know that the top left block of W1 and W2 are the same, if we examine the

bottom right (n−3)×(n−3) or (n−4)×(n−4) block, we have a UW (n−3,3) or UW (n−

4,3), and we can recursively use the same argument to obtain the desired result.
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Theorem 4.31. The upper bound on the number of MUWM of the form UW (n,3) is


0 if n = 5

3 if n 6≡ 0 (mod 4) and n 6= 5

9 if n≡ 0 (mod 4)

where n≥ 3.

Proof. Using Lemma 4.30 with Proposition 4.16 and the fact that the upper bound for

UW (3,3) is 3 and UW (4,3) is 9 via Corollary 4.27, we have that if the matrix contains a

UW (3,3) in its block structure, then it acts as a limiting factor, causing the upper bound to

be 3. Otherwise, it is 9, which can only occur when n is a multiple of 4.

Corollary 4.32. The upper bound given in Theorem 4.31 is tight for all n≥ 3 and n 6= 5.

Proof. A computer search has shown the bounds to be tight for UW (4,3) (see Appendix D)

and the bound for UW (3,3) is attained through Theorem 4.10. We may construct the

UW (n,3) by adjoining the appropriate amount of UW (4,3) and UW (3,3) together along

the main diagonals. If n is a multiple of 4, use only UW (4,3)s along the main diagonal.

Otherwise, it does not matter which blocks are used. A simple induction will show that

every integer larger than 5 may be written in the form of 3m+4l.
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4.1.5 Mutually Unbiased Weighing Matrices of Weight 4

UW(5,4)

Lemma 4.33. Let W be a unit weighing matrix that is unbiased with

W5 =



1 1 1 1 0

1 ω ω 0 1

1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω


where ω = ei 2π

3 . Then every nonzero entry in W is a sixth root of unity.

Proof. The proof of this lemma is given in Appendix B.1.

Theorem 4.34. The largest number of mutually unbiased weighing matrices of the form

UW (5,4) is 5. Moreover, this bound is tight.

Proof. By Lemma 3.35, all weighing matrices of order 5 and weight 4 are equivalent to W5

given in Lemma 4.33. Thus, given a set of mutually unbiased weighing matrices, we may

permute and multiply by a unit number the rows and columns of the matrices in such a way

that one of them is W5. By Lemma 4.33, we know that any matrix that is unbiased with W5

must only contain 0 and the sixth roots of unity. Moreover, the case analysis in Lemma 4.33

shows that there are only 60 possible rows in the other matrices in the set that are not in W5.

An exhaustive computer search was done over these rows, which revealed that the maximal

set using only the sixth root of unity contains 5 elements. One collection of these matrices

are included in Appendix D.

Although there are only five matrices, the theoretic upper bound given in (4.4) is at-

tained by vectors that cannot be partitioned into weighing matrices. See Table D.6 in Ap-

pendix D.1.
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UW(6,4)

This is the first case where the upper bound given in Corollary 4.27 seems too large (20

mutually unbiased weighing matrices). However, relatively quickly, our computer program

gave us the following.

Theorem 4.35. There are 20 mutually unbiased weighing matrices of order 6 and weight

4.

Proof. A set of matrices attaining this bound can be found in Appendix D, Table D.3.

Each of the matrices in the set of matrices given are over the sixth root of unity. What is

even more special about this set of matrices is that it attains the upper bounds given in both

(4.5) and (4.6).

The first four matrices given in Table D.3 are real, which falls just short of the upper

bound given in Corollary 4.28. This turns out to be an optimal set of real weighing matrices.

Theorem 4.36. There are no more than 4 mutually unbiased real weighing matrices of

order 6 and weight 4.

Proof. An exhaustive computer search over real weighing matrices was performed and

found that there were no sets of mutually unbiased real weighing matrices of order 6 and

weight 4.
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UW(7,4)

Lemma 4.37. Let W be a unit weighing matrix that is unbiased with

W7 =



1 1 1 1 0 0 0

1 − 0 0 1 1 0

1 0 − 0 − 0 1

1 0 0 − 0 − −

0 1 − 0 0 1 −

0 1 0 − 1 0 1

0 0 1 − − 1 0



.

Then every nonzero entry in W is either 1 or −1.

Proof. The proof of this lemma is included in Appendix B.2.

Theorem 4.38. The maximum number of mutually unbiased weighing matrices of order 7

and weight 4 is 8.

Proof. Similarly to the proof of Theorem 4.34, one matrix in the set may be transformed

into the real weighing matrix W7 given in Lemma 4.37. Every UW (7,4) is equivalent to

this matrix (see Lemma 3.35). By Lemma 4.37, every weighing matrix equivalent to W7

must also be real, so we may use Corollary 4.28 to provide us with this bound.

Corollary 4.39. The bound given in Theorem 4.38 is tight.

Proof. Using a computer search, we find eight real mutually unbiased weighing matrices

W (7,4) given in Appendix D. This achieves the real upper bound given by Corollary 4.28.

By Theorem 4.38, this is also the maximal set of UW (7,4), despite not achieving the upper

bound of 24 given by Corollary 4.27.
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UW(8,4)

Theorem 4.40. The maximum number of real mutually unbiased weighing matrices of or-

der 8 and weight 4 is 14.

Proof. A set of size 14 W (8,4) has been generated in Appendix D. This meets the upper

bound given by Corollary 4.28.

Further investigations into UW (8,4) using large roots of unity have proven fruitless.

Odd roots of unity produce maximal sets smaller than that of the real case, and even roots

of unity become computationally infeasible after the fourth root of unity, which returns the

set of W (8,4) as the maximal set of mutually unbiased unit weighing matrices.

4.2 Unbiased Hadamard Matrices

So far, we have only examined a very special case of unbiasedness. Our selection of

the values of n and α in (4.3) and (4.4), as well as imposing a certain structure to our

matrices, make it possible to append the identity to the set of weighing matrices. More

precisely, considering each row of all weighing matrices in a set of mutually unbiased

weighing matrices of order n and the rows of the identity matrix of order n as vectors in Rn

or Cn, they form a class of bi-angular vectors. We now make a different selection for the

value of α in such a way that it is no longer possible to add the identity matrix and preserve

the bi-angularity. Below, in Table 4.2, we give an example of a set of eight Hadamard

matrices of order 8 that form a bi-angular set of vectors in R8, but no rows of the identity

matrix can be added to the set and preserve bi-angularity. In the following set, α = 1
2 , but if

the identity is added, it would introduce the inner product of 1√
8

(up to absolute value) and

the bi-angularity of the lines would disappear.
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Table 4.2: 8 mutually unbiased Hadamard matrices with α = 1
2

1 1 1 1 1 1 1 1

1 1 − 1 − − 1 −
1 − − 1 1 − − 1

1 − − − − 1 1 1

1 1 − − 1 1 − −
1 1 1 − − − − 1

1 − 1 1 − 1 − −
1 − 1 − 1 − 1 −





1 1 1 − 1 − 1 1

1 − 1 1 1 1 1 −
1 − − 1 − − 1 1

1 1 − 1 1 − − −
1 1 − − − 1 1 −
1 − 1 − − − − −
1 − − − 1 1 − 1

1 1 1 1 − 1 − 1




1 1 − − − 1 − 1

1 − − − 1 1 1 −
1 − 1 − − − 1 1

1 1 1 1 − 1 1 −
1 1 1 − 1 − − −
1 − 1 1 1 1 − 1

1 − − 1 − − − −
1 1 − 1 1 − 1 1





1 − − − − 1 − −
1 1 1 − − − 1 −
1 1 − − 1 1 1 1

1 − 1 1 − 1 1 1

1 − 1 − 1 − − 1

1 1 1 1 1 1 − −
1 1 − 1 − − − 1

1 − − 1 1 − 1 −




1 − 1 − − 1 − 1

1 1 1 − 1 1 1 −
1 1 − − − − 1 1

1 − − 1 − 1 1 −
1 − − − 1 − − −
1 1 1 1 − − − −
1 1 − 1 1 1 − 1

1 − 1 1 1 − 1 1





1 − − 1 − 1 − 1

1 − − − 1 − 1 1

1 1 − 1 1 1 1 −
1 1 1 1 − − 1 1

1 − 1 1 1 − − −
1 − 1 − − 1 1 −
1 1 1 − 1 1 − 1

1 1 − − − − − −




1 1 1 − − 1 − −
1 − 1 − 1 1 1 1

1 − − − − − 1 −
1 1 − 1 − 1 1 1

1 1 − − 1 − − 1

1 − − 1 1 1 − −
1 − 1 1 − − − 1

1 1 1 1 1 − 1 −





1 1 − − 1 − 1 −
1 − 1 1 − − 1 −
1 − − 1 1 1 1 1

1 1 1 1 1 − − 1

1 1 1 − − 1 1 1

1 − 1 − 1 1 − −
1 − − − − − − 1

1 1 − 1 − 1 − −
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The rows of these matrices are generated from the BCH-code [7, 20] of length 7 with

weight distribution {(0,1),(2,21),(4,35),(6,7)} (see [38] for more information about BCH-

codes). Once the codewords are generated, we append a column of zeroes, then perform

the following operation onto each entry of the codewords:

f (i) =


1 if i = 0,

−1 if i = 1.

(4.9)

We were also able to generate 32 Hadamard matrices of order 32 which have inner

products in {0,±8} through a similar process. The weight distribution of the order 32 ma-

trices is {(0,1),(12,310),(16,527),(20,186)}. The partition of the vectors into Hadamard

matrices is shown in Tables D.7–D.10 in Appendix D.2.

In an attempt to continue this, we have generated the 1282 codewords from the BCH-

code of order 127, but were not able to partition them into the 128 Hadamard matrices

needed due to computer memory restrictions. The inner products between the vectors are

all in {0,±16}. We do believe that this set of vectors contains the needed ingredients to

make the Hadamard matrices required. Moreover, we pose the following

Conjecture 4.41. Let n = 22k+1. Then there exists a set of n real Hadamard matrices,

{H1,H2, . . . ,Hn}, so that the entries of HiHt
j (i 6= j) contain exactly two elements, 0 and

2k+1 (up to absolute value).6

It is important to note that the number of vectors found through Conjecture 4.41 is

usually less than the bound given in Theorem 4.25. We believe that the upper bound is

too high in this case because the vectors are flat (i.e., all contain entries that have the same

absolute value). In fact, we think that the upper bounds given in Theorems 4.25 and 4.26

are rarely obtained if V is a set of flat vectors. We feel that there is a different upper bound

available for flat vectors that is (generally) smaller than Theorems 4.25 and 4.26.
6Since the time that we have published Conjecture 4.41, Nozaki and Suda have released an article that

uses coding theory to affirm that this conjecture is true [28, Page 15]. The content of their article, however, is
well beyond the scope of this thesis, so we refer the reader to [28] for the full details.
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Using the terminology from [4], these matrices form a set of weakly unbiased Hadamard

matrices. However, it is important to note that the matrices formed here are a very special

kind of unbiased Hadamard matrices since the entire set of vectors forms a set of bi-angular

lines (whereas the vectors from [4] give possibly tri-angular lines). These matrices seem

to form very nice combinatorial objects, which are discussed in further detail in the next

section.
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Chapter 5

Applications

Life is like a proof,

there is a little box at the end.

– K. B.

5.1 Strongly Regular Graphs

In [9], Calderbank et al. determined a way to construct strongly regular graphs from a

full line set, namely, a set of vectors that meet the upper bounds in (4.3) or (4.4). They used

unit vectors that met the conditions and bounds of Theorem 4.25. Before we can construct

our objects, we will need a few definitions.

Definition 5.1. A simple graph G(V,E) on v vertices is called strongly regular if for any

vertex w ∈V ,

1. The degree of w is k,

2. For each u ∈ V such that u is adjacent to w, u and w have exactly λ common neigh-

bours.

3. For each x ∈ V such that x is not adjacent to w, x and w have exactly µ common

neighbours.

Strongly regular graphs are denoted SRG(v,k,λ,µ).
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The following theorems can be found in most elementary graph theory textbooks.

Theorem 5.2. Let G be a strongly regular graph of type SRG(v,k,λ,µ). Then

(a) (v− k−1)µ = k(k−λ−1)

(b) The adjacency matrix of G has exactly 3 distinct eigenvalues:

(i) k with multiplicity 1 and

(ii) 1
2

(
λ−µ±

√
(λ−µ)2 +4(k−µ)

)
with multiplicity 1

2

(
v−1∓ 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)

)
.

(c) The complement of a strongly regular graph is a strongly regular graph with param-

eters (v,v− k−1,v−2−2k +µ,v−2k +λ).

Next, we define a special type of strongly regular graph.

Definition 5.3. A finite set of points, P, lines, L, and incidences, I ⊂ P× L, is a partial

geometry, denoted pg(s, t,α), if

• Each point is incident with t +1 lines.

• Each line is incident with s+1 points.

• For each pair of distinct points, there is at most one line incident with both of them.

• If p ∈ P and ` ∈ L are not incident, then there are exactly α pairs (q,m) ∈ I such that

p is incident with m and q is incident with `.

Theorem 5.4. A pg(s, t,α) generates an

SRG((s+1)(st +α)/α , s(t +1) , s−1+ t(α−1) , α(t +1)) .

For a good summary of strongly regular graphs and partial geometries, we refer the

reader to [11] and the references therein. Strongly regular graphs can be found in [11,

Section VII(11)] and partial geometries can be found in [11, Section VI(41)].
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A strongly regular graph that satisfies the conditions laid out in Definition 5.3 is called

geometric graph. If a strongly regular graph’s parameters match Theorem 5.4, but the graph

does not satisfy the conditions laid out in Definition 5.3, then it is called a pseudogeometric

graph.

Lemma 5.5. Let V ⊂ Rn be a spanning set whose cardinality matches the upper bound

given in (4.3). Moreover, let G = Gram(V ) = I + αC, where C is a {0,±1} matrix and

0 < α < 1. Then C has two distinct eigenvalues, − 1
α

and |V |−n
nα

with multiplicities |V |− n

and n, respectively.

Proof. Since V spans Rn, we know that the nullity of Gram(V ) is |V |−n, so 0 is an eigen-

value with that multiplicity. Therefore, C has |V | − n eigenvalues equal to − 1
α

. For the

remaining n eigenvalues, we have that each eigenvalue, λ, of G satisfies 0≤ λ≤ (n+2)(1−α2)
3−α2(n+2)

(through the proof of Theorem 4.25). Since we have attained the upper bound, the last line

in the proof of Theorem 4.25 tells us that each λ = (n+2)(1−α2)
3−α2(n+2) . Using the cardinality of our

set, and simplifying the expression, we arrive at our result.

Theorem 5.6 ([9, Proposition 3.12]). If equality holds in (4.3) and V spans Rn, then ‘per-

pendicularity’ defines a strongly regular graph.

Proof. Let V ′ = {v⊗v|v ∈V} ⊂ S2(Rn). Since |〈a⊗a,b⊗b〉|= |〈a,b〉|2, Gram(V ′) = I +

α2D, where D is a {0,1}matrix. Since V spans Rn, we know that the nullity of Gram(V ′) is

|V |−
(n+1

2

)
, so 0 is an eigenvalue with that multiplicity. Therefore, D has at least |V |−

(n+1
2

)
eigenvalues equal to − 1

α2 . Next, note that the diagonal entries of C2 are the row sums of D.

By the Cayley-Hamilton theorem, we have that
(
C + 1

α
I
)(

C− |V |−n
nα

I
)

= 0. By expanding

this out, and noting that C has a zero diagonal, we have that each diagonal entry of C2 is

exactly |V |−n
nα2 . Thus, since all row sums are identical, we have that |V |−n

nα2 is an eigenvalue of

C. At this point, we are missing exactly
(n+1

2

)
−1 eigenvalues.

First, let us examine the trace of A and A2.
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0 = Tr(A) =
|V |−n

nα2 +(|V |−
(

n+1
2

)
)(− 1

α2 )+∑λ.

|V |−n
α2 = n

|V |−n
nα2 = Tr(A2) =

|V |−n
nα2

2

+(|V |−
(

n+1
2

)
)(− 1

α4 )+∑λ
2.

For simplicity, let K = (n+2)(n−1)
2 and ∆ = 3− (n+2)α2. From these, we have

K

∑
j=1

λ =−K
1−nα2

α2∆

and
K

∑
j=1

λ
2 = K

(
1−nα2

α2∆

)2

.

Thus, by the Cauchy-Schwarz inequality, we have

(
K
(

1−nα2

α2∆

))2

=
(
−K

(
1−nα2

α2∆

))2

=

(
K

∑
j=1

λ

)2

=

(
K

∑
j=1

λ ·1

)2

≤

(
K

∑
j=1

λ
2

)
·

(
K

∑
j=1

12

)
=

(
K
(

1−nα2

α2∆

)2
)

(K) =
(

K
(

1−nα2

α2∆

))2

,

which implies that each λ = 1−nα2

α2∆
. Since this matrix has exactly three eigenvalues (one of

which being the row sums), A is the adjacency matrix of a strongly regular graph.

Theorem 5.7 ([9, Section 5]). If equality holds in (4.4) and V spans Cn, then ‘perpendicu-

larity’ defines a strongly regular graph.

Proof. Similar to Theorem 5.6.

When we use the term ‘perpendicularity’, we refer to the graph where each node repre-

sents a row of a weighing matrix, and there is an adjacency between two vertices (say i, j)

if vi is orthogonal with v j. Of note, in Theorem 5.6, the proof gives the eigenvalues of the

complement of the graph defined by ‘perpendicularity’ (i.e., it gives the eigenvalues of the
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graph defined by ‘non-perpendicularity’). For the following theorems, we will be interested

in ‘perpendicularity’.

Corollary 5.8. Let W be a set of m mutually unbiased unit (resp. real) weighing matrices

of order n and weight w. If m matches the upper bound given in (4.6) (resp. (4.8)), then the

‘perpendicularity’ of the rows of the matrices forms a strongly regular graph.

Proof. Since W is a set of mutually unbiased weighing matrices, the inner product between

any two rows falls in {0, 1√
w}, up to absolute value. So we may apply Theorem 5.6 or

Theorem 5.7.

Theorem 5.9. Let W be a set of m mutually unbiased unit (resp. real) weighing matrices

of order n and weight w. If m matches the upper bound given in (4.6) (resp. (4.8)), then

the strongly regular graph generated in Corollary 5.8 has parameters corresponding to the

following partial geometry:

pg
(

n−1,
w(n−w)

∆
,n−w

)
where ∆ = 2w− (n+1) (resp. ∆ = 3w− (n+2)).

Proof. Using Theorem 5.6, we can construct a graph (say G) which is strongly regular.

Theorem 5.7 gives us the three eigenvalues of our graph. We will be interested in the

complement of this graph. We may then use each point in Theorem 5.2 to arrive at the

parameters of our strongly regular graph. Then, Theorem 5.4 can be used to give us our

result.

Thus, anytime we have a set of mutually unbiased weighing matrices which meet the

bounds given in (4.3) or (4.4), we are able to generate either a pseudogeometric graph or a

geometric graph.

Corollary 5.10. The following SRGs exist:

(a) SRG(40,12,2,4) which is geometric.
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(b) SRG(45,12,3,3) which is pseudogeometric.

(c) SRG(63,30,13,15) which is geometric.

(d) SRG(120,63,30,36) which is geometric.

(e) SRG(126,45,12,18) which is pseudogeometric.

Proof. As seen in Table 4.1, we have sets of UW (4,3), W (7,4), W (8,4) and UW (6,4)

that attain the needed upper bound. By applying Corollary 5.8, we get the desired graphs

(a),(c),(d) and (e). Each graph which is geometric was checked via computer computation.

Interestingly, even though Theorem 4.34 limits the number of mutually unbiased weigh-

ing matrices, it does not put a restriction on the number of vectors whose pairwise inner

products’ absolute value are in {0,2}. In fact, we have found 40 vectors over the sixth root

of unity (all having weight 4) such that the inner products’ absolute value remain in {0,2}.

These vectors are given in Appendix D.1, and they form the strongly regular graph given in

(b).

It is important to note that strongly regular graphs with all of these parameters have been

previously found, but this is a new method for finding them. The first case where a full set

of mutually unbiased weighing matrices will give a strongly regular graph with parameters

that are currently unknown is UW (8,5), which will generate an SRG(288,175,110,100).

5.2 Association Schemes

We will now examine sets of vectors that contain more than two angles between them

(multi-angular vectors). The following definition gives a generalization of strongly regular

graphs. General information about association schemes can be found in [11, Section VI(1)].

Definition 5.11. An m−association scheme is a set A = {A0, . . . ,Am} of (0,1)–matrices of

order n that satisfy the following conditions:
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(a) A0 = I

(b) ∑
m
i=0 Ai = J

(c) Ai = AT
i

(d) AiA j = A jAi ∈ SpanZ(A)

Note that a 2-association scheme is equivalent to a strongly regular graph. We can

utilize Hadamard matrices and mutually orthogonal Latin squares to construct association

schemes with very large parameters.

Definition 5.12. A Latin square is an n× n matrix defined on the alphabet {a1, . . . ,an} if

every row and every column contains exactly one ai for each 1≤ i≤ n.

Example 5.13. 

a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1


is a Latin square of order 4.

Normally, the alphabet {1,2, . . . ,n} is used in Latin squares. However, for our construc-

tions below, we will be using matrices as our alphabet to construct block matrices.

Definition 5.14. Let L1 and L2 be two Latin squares of order n defined over the same

alphabet. Let r1 and r2 be arbitrary rows from L1 and L2, respectively. L1 and L2 are suitable

Latin squares if exactly one entry is in common between r1 and r2 (for every choice of r1

and r2). A set of Latin squares that are pairwise suitable are called mutually suitable Latin

squares (or MSLS).

Mutually suitable Lain squares are very similar to the more common mutually orthogo-

nal Latin squares (more commonly known as “MOLS”).
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Example 5.15. 


2 0 1

1 2 0

0 1 2

 ,


2 1 0

0 2 1

1 0 2




is a set of mutually suitable Latin squares over the alphabet {0,1,2}.

Construction 5.16. As input, we need a Hadamard matrix, H, of order m, k ∈ Z, ` ∈ Z, M ,

a set of mutually suitable Latin squares and L , a Latin square of order K. The association

scheme constructed is of order mK2.

(a) Let Ci = rt
iri where ri is the ith row of H, 0≤ i < m.

(b) Redefine C0 = kJ.

(c) Use {Ci} as the alphabet of M of order n (giving you n−1 matrices called Mi, 1≤ i <

n).

(d) Define M0 to be `J.

(e) Use {Mi} as the alphabet of L and call this matrix G.

(f) We will examine G2, which is mn2×mn2. The different classes for our association

scheme are the distinct values in this matrix.

Note that part ( f ) in Construction 5.16 is looking at the Gramian matrix of the vectors

that are represented as the rows of G. The association schemes that are constructed have

an immense amount of structure associated with them. The various objects used in this

construction are included in Appendix E.
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Table 5.1: Association schemes created via Construction 5.16

H M L k ` Order of Association Scheme

H4 M3 L3 2 2 5

H4 M3 L3 3 2 6

H4 M4 L4 1 1 2

H4 M4 L4 1 0 3

H4 M4 L4 0 0 4

H4 M4 L4 2 0 5

H8 M7 L7 2 2 5

H8 M7 L7 2 0 6

H12 M11 L11 2 2 5

H12 M11 L11 2 0 6

H20 M19 L19 2 2 5

H20 M19 L19 2 0 6

When deciding on values for k and `, we do not believe that the value of 2 and 3 impact

the fact that the matrices generate association schemes. Instead, we feel that one could use

any combination of sufficiently large distinct values.

This area of research was inspired by the many applications that can be found in physics,

and has grown into a very interesting mathematical area. Knowledge from many areas of

mathematics are required to fully explore this field. We have introduced these objects in

hopes that we, and others, will utilize them to explore new and interesting areas of mathe-

matics, draw connections to existing areas of mathematics and grasp a deeper understanding

of the structure behind such combinatorial objects.
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[36] F. Szöllősi. Construction, classification and parametrization of complex Hadamard
matrices. PhD thesis, Central European University, 2011.

[37] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from orthog-
onal designs. Information Theory, IEEE Transactions on, 45(5):1456–1467, 1999.

[38] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992.

[39] W. K. Wootters and B. D. Fields. Optimal state-determination by mutually unbiased
measurements. Annals of Physics, 191(2):363–381, 1989.

89



Appendix A

Detailed Proofs from Chapter 3

A.1 Standardized UW (n,3)
(This is a proof of Lemma 3.31.)

Lemma A.1. Every UW (n,3) is equivalent to a weighing matrix whose top leftmost sub-
matrix is either a UW (3,3) or a UW (4,3).

Proof. By Theorem 3.23, we alter W so that it is in standard form. This means that the
second row has three possibilities, listed below as Case 1, 2 and 3, after further appropri-
ate column permutations (Note that these permutations should leave the shape of the first
row intact). When we say that a row is not orthogonal with another row with no further
context, it is because it would imply that the set of elements in the two rows would have
1-orthogonality.

1.
(

1 a b 0 0 0 · · · 0
)

2.
(

1 a 0 1 0 0 · · · 0
)

3.
(

1 0 0 1 1 0 · · · 0
)
, 1-orthogonality with row 1, so not possible.

For case 1, 3-orthogonality implies b = a, where a ∈ {e 2πi
3 ,e−

2πi
3 }, and four further

subcases arise for the third row:

(a)
(

1 c d 0 0 0 · · · 0
)

(b)
(

1 c 0 1 0 0 · · · 0
)

(c)
(

1 0 c 1 0 0 · · · 0
)

(d)
(

1 0 0 1 1 0 · · · 0
)
, 1-orthogonality with row 1, so not possible.

For case (b), we have c = −1 by orthogonality with the first row and c = −a by
orthogonality with the second row. Similarly, in case (c), we have c =−1 and c =−a.
Both of these are not possible. However, case (a) produces a viable option when
c = d = a, finishing case 1 and implying that the top 3× 3 submatrix is a UW (3,3)
of the following form:  1 1 1

1 a a
1 a a
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A.2. STANDARDIZED UW (N,4)

Note that if a = e−
2πi
3 , then swap rows 2 and 3, so we assume a = e2πi/3.

For case 2, a =−1 and we have six subcases for the third row:

(a)
(

1 b c 0 0 0 · · · 0
)
, with −1≺ b.

(b)
(

1 b 0 c 0 0 · · · 0
)

(c)
(

1 b 0 0 1 0 · · · 0
)

(d)
(

1 0 b c 0 0 · · · 0
)

(e)
(

1 0 b 0 1 0 · · · 0
)
, 1-orthogonality with row 2, so not possible.

(f)
(

1 0 0 b 1 0 · · · 0
)
, 1-orthogonality with row 1, so not possible.

(g)
(

1 0 0 0 1 1 0 · · · 0
)
, 1-orthogonality with row 1, so not possible.

In subcase (a), b = 1 by orthogonality with row 2 and b∈ {e 2πi
3 ,e−

2πi
3 } by orthogonal-

ity with row 1. In case (b), b =−1 by orthogonality with row 1 and−b∈ {e 2πi
3 ,e−

2πi
3 }

by orthogonality with row 2. In case (c), b =−1 by orthogonality with row 1, which
implies row 2 is not orthogonal with row 3. In case (d), we have a valid configura-
tion by setting b = c = −1. We now construct the next row, which gives four more
subcases:

(i)
(

0 1 d f 0 0 · · · 0
)

(ii)
(

0 1 d 0 1 0 · · · 0
)
, 1-orthogonality with row 3, so not possible.

(iii)
(

0 1 0 d 1 0 · · · 0
)
, 1-orthogonality with row 3, so not possible.

(iv)
(

0 1 0 0 1 1 0 · · · 0
)
, 1-orthogonality with row 3, so not possi-

ble.

In case (i), we have a valid row if d = − f = −1, finishing all of the cases above,
and giving a UW (4,3) in the upper left 4×4 submatrix of the form:

1 1 1 0
1 − 0 1
1 0 − −
0 1 − 1



A.2 Standardized UW (n,4)
(This is a proof of Lemma 3.35.)

Lemma A.2. All UW (n,4) are equivalent to a UW (n,4) with diagonal blocks consisting
of the following matrices: W5, W6, W7, W8 and E2m(x) where 2 ≤ m ≤ n

2 and x is any
unimodular number.
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A.2. STANDARDIZED UW (N,4)

W5 =


1 1 1 1 0
1 ω ω 0 1
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω

 , W6 =


1 1 1 1 0 0
1 ω ω 0 1 0
1 ω ω 0 0 1
1 0 0 − − −
0 1 0 − −ω −ω

0 0 1 − −ω −ω

 for ω = e
2πi
3 ,

W7 =



1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −
0 1 0 − 1 0 1
0 0 1 − − 1 0


, W8 =



1 1 1 1 0 0 0 0
1 − 0 0 1 1 0 0
1 0 − 0 − 0 1 0
1 0 0 − 0 − − 0
0 1 − 0 1 0 0 1
0 1 0 − 0 1 0 −
0 0 1 − 0 0 1 1
0 0 0 0 1 − 1 −


,

E2m(x) =



1 1 1 1
1 1 − −
1 − 0 0 1 1
1 − 0 0 − −

1 − 0 0 1 1
1 − 0 0 − −

1 − 0 0
1 − 0 0

. . .
0 0 1 1
0 0 − −
1 − 0 0 1 1
1 − 0 0 − −

1 − x −x
1 − −x x



,

where x is any unimodular number.

Proof. To classify all unit weighing matrices of weight four, we apply a brute force depth
first search on the rows of our weighing matrices. At each step, we will provide an m× n
matrix which will give m mutually orthogonal rows consisting solely of four unimodular
numbers per row (and zeroes otherwise). For convenience, we will only show the columns
of the vectors that contain at least one nonzero entry. For example,(

1 1 1 1 0 0
1 − 0 0 1 1

)
represents two rows of a unit weighing matrix of order n for some n≥ 6.
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A.2. STANDARDIZED UW (N,4)

We begin our case analysis by starting with four sequential ones:(
1 1 1 1

)
For the second row, we place a 1 in the first column and then only be concerned with

the how many nonzero entries there are in the next three columns. Obviously, if there are
no nonzero entries, then the first two rows cannot be orthogonal. Thus, we have three cases.

Case 1: Four nonzero entries in the first four columns.
By four orthogonality, we know that one of those entries is −1. We permute the columns
to place that negative in the second column and make the other columns negations of one
another. (

1 1 1 1
1 − x −x

)
For the third row, we will list all candidates that are orthogonal with the first row. These

rows can easily be listed by m-orthogonality (see Table A.1). Note that we swap the third
and fourth columns and relabel x by −x and arrive at a similar weighing matrix, so those
duplicates will be left out of Table A.1. In each case, a is a primitive third root of unity and
b ∈ T. We use µ3 to denote the set of third roots of unity.

Table A.1: Case analysis part 1 for Lemma 3.35

Row Inner product with row two implies Subcase(
1 − b −b 0 0 0

)
b =−x =−1 1A(

1 b − −b 0 0 0
)

x = 1 1B(
1 a a 0 1 0 0

)
Contradiction since −a 6∈ µ3(

1 0 a a 1 0 0
)

Contradiction since a · (−a) =−1 6∈ µ3(
1 − 0 0 1 1 0

)
Contradiction since 2 6= 0(

1 0 − 0 1 1 0
)

x = 1 1C

So we are left with three subcases.
Case 1A:

In the first subcase, we have a 3× 4 matrix to which we append one more row. Since
columns of a weighing matrix must also be orthogonal, we can fully fill in the final row of
the matrix uniquely. 

1 1 1 1
1 − 1 −
1 − − 1
1 1 − −


Case 1B:

We use a similar process as Case 1A in this subcase.
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1 1 1 1
1 − 1 −
1 b − −b
1 −b − b


By rearranging the second matrix above, we arrive at

E4(x) =


1 1 1 1
1 1 − −
1 − x x
1 − x −x

 .

Case 1C:
We have the following submatrix: 1 1 1 1 0 0

1 − 1 − 0 0
1 0 − 0 1 1


which can be extended in the same was as above:

1 1 1 1 0 0
1 − 1 − 0 0
1 0 − 0 1 1
1 0 − 0 − −


We will swap the second and third column since the third column is now filled. When

we insert the next two rows, we will have a one in the third column. This will force the
entries in the fourth column.

E6(x) =


1 1 1 1 0 0
1 1 − − 0 0
1 − 0 0 1 1
1 − 0 0 − −
0 0 1 − x −x
0 0 1 − −x x


For the block in the bottom right corner, we have two options: we can either have x = 0

or a unimodular number. If we take the latter choice, then we have completed our weighing
matrix. If we take the second choice, then we are in a similar situation as before.
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E8(x) =



1 1 1 1 0 0 0 0
1 1 − − 0 0 0 0
1 − 0 0 1 1 0 0
1 − 0 0 − − 0 0
0 0 1 − 0 0 1 1
0 0 1 − 0 0 − −
0 0 0 0 1 − x −x
0 0 0 0 1 − −x x


This process can be continued inductively for any value of 2m, m≥ 2. The matrix that

is generated will be called E2m(x).

Case 2: Three nonzero entries in the first four columns.
By three orthogonality, we know that the two nonzero entries are distinct primitive third
roots of unity. We consider all rows that can be appended to the following submatrix:(

1 1 1 1 0
1 ω ω 0 1

)
Note that we ignore any case where there are two rows with the exact same zero place-

ment, since it would have been taken care of in the first case. All cases listed in Table A.2
are from orthogonality with the first row.

Table A.2: Case analysis part 2 for Lemma 3.35

Row Inner product with row two implies Subcase(
1 a a 0 0 1 0

)
a = ω 2A(

1 a 0 a b 0 0
)

a = ω and b = ω 2B(
1 a 0 a 0 1 0

)
Contradiction since aω 6=−1(

1 − 0 0 b 1 0
)

Contradiction since −ω 6∈ µ3(
1 − 0 0 0 1 1

)
Contradiction since 1−ω 6= 0(

1 0 a a b 0 0
)

a = ω and b = ω 2C(
1 0 a a 0 1 0

)
Contradiction since aω 6=−1(

1 0 − 0 b 1 0
)

Contradiction since −ω 6∈ µ3(
1 0 − 0 0 1 1

)
Contradiction since −ω 6=−1(

1 0 0 − b 1 0
)

b =−1 2D(
1 0 0 − 0 1 1

)
Contradiction since 1 6= 0

We will now work through the four subcases. In each of the subcases to follow, the
submatrix on the left is the matrix which we obtained from our analysis above. We then
append subsequent rows to each of these by placing a one in the left most column that is
not full (i.e., does not already have four nonzeroes). In all of the subcases, placing a one
into the appropriate column will make that column full. Since the column is full, we will
be able to fill in each entry in the rest of the row by orthogonality with that full column.
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Case 2A:

 1 1 1 1 0 0
1 ω ω 0 1 0
1 ω ω 0 0 1

−→W6 =


1 1 1 1 0 0
1 ω ω 0 1 0
1 ω ω 0 0 1
1 0 0 − − −
0 1 0 − −ω −ω

0 0 1 − −ω −ω


Case 2B:

 1 1 1 1 0
1 ω ω 0 1
1 ω 0 ω ω

−→W5 =


1 1 1 1 0
1 ω ω 0 1
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω


Case 2C:  1 1 1 1 0

1 ω ω 0 1
1 0 ω ω ω

−→


1 1 1 1 0
1 ω ω 0 1
1 0 ω ω ω

1 ω 0 ω ω

0 1 ω ω ω


By swapping the third and fourth row, we get W5.
Case 2D:

 1 1 1 1 0 0
1 ω ω 0 1 0
1 0 0 − − 1

−→


1 1 1 1 0 0
1 ω ω 0 1 0
1 0 0 − − 1
1 ω ω 0 0 −
0 1 0 − −ω ω

0 0 1 − −ω ω


By swapping rows 3 and 4, followed by negating the sixth column, we arrive back at

W6.
This takes care of all subcases of Case 2.

Case 3: Two nonzero entry in the first four columns of the second row.
By two orthogonality, we know that this entry must be −1. We will look at all rows that
may be appended to the following submatrix:(

1 1 1 1 0 0
1 − 0 0 1 1

)
Similar to before, we will only look at rows that are orthogonal with the first row, as well

as intersect the first two rows in exactly two places (note that 4-intersection was taken care
of in Case 1, while 3-intersection was taken care of in Case 2 and 1-intersection implies 1-
orthogonality). Moreover, we may swap either columns 3 and 4 or columns 5 and 6 freely.
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These rows can be found in Table A.3.

Table A.3: Case analysis part 3 for Lemma 3.35

Row Inner product with row two implies Subcase(
1 − 0 0 0 0 1 1

)
Contradiction since 2 6= 0(

1 0 − 0 b 0 1 0
)

b =−1 3A

Case 3A:  1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1


From here, we will append one more row and fill out the next row via orthogonality

with the first column. 
1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −


When filling in the next row, there are only a few choices. We are still looking for rows

that intersect with each of the first few rows in at most 2 locations (possibly zero) and the
first nonzero should be in the second column. A quick search can tell you that there are only
four rows that satisfy these conditions (in terms of zero placement). These can be found in
Table A.4.

Table A.4: Case analysis part 4 for Lemma 3.35

Row Row in the partial matrix that implies
a ∈ {±1} b ∈ {±1} c ∈ {±1} Subcase(

0 1 a 0 0 b c 0
)

1 2 3 3AA(
0 1 a 0 b 0 0 c

)
1 2 N/A 3AB(

0 1 0 a 0 b 0 c
)

1 2 N/A 3AC(
0 1 0 a b 0 c 0

)
1 2 3 3AD

Note that when we append either of the second or third rows into our matrix, c will be
the first nonzero entry in the eighth column, so this implies that c = 1 in both cases. We
will append this row, and in a manner similar to that of Case 2, we will be able to force the
rest of the entries in each matrix by orthogonality with the first few full columns.
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Case 3AA:


1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −

−→W7 =



1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −
0 1 0 − 1 0 1
0 0 1 − − 1 0


Case 3AB:


1 1 1 1 0 0 0 0
1 − 0 0 1 1 0 0
1 0 − 0 − 0 1 0
1 0 0 − 0 − − 0
0 1 − 0 1 0 0 1

−→W8 =



1 1 1 1 0 0 0 0
1 − 0 0 1 1 0 0
1 0 − 0 − 0 1 0
1 0 0 − 0 − − 0
0 1 − 0 1 0 0 1
0 1 0 − 0 1 0 −
0 0 1 − 0 0 1 1
0 0 0 0 1 − 1 −


Case 3AC:


1 1 1 1 0 0 0 0
1 − 0 0 1 1 0 0
1 0 − 0 − 0 1 0
1 0 0 − 0 − − 0
0 1 0 − 0 1 0 1

−→



1 1 1 1 0 0 0 0
1 − 0 0 1 1 0 0
1 0 − 0 − 0 1 0
1 0 0 − 0 − − 0
0 1 0 − 0 1 0 1
0 1 − 0 1 0 0 −
0 0 1 − 0 1 1 −
0 0 0 0 1 − 1 1


If we swap rows 5 and 6, and negate the eighth row, we get W8.
Case 3AD:


1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 0 − 1 0 1

−→


1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 0 − 1 0 1
0 1 − 0 0 1 −
0 0 1 − − 1 0


By swapping rows 5 and 6, we arrive at W7.
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A.3 Standardized UW (6,5)
This section is, by far, the most tedious portion of the thesis. The case analysis that

follows will lead to a full classification of UW (6,5). Enough detail will be provided so
that, with a pen and paper, the reader can follow along verifying each step.

(This is the proof of Lemma 3.40.)

Lemma A.3. There are at most 7 inequivalent UW (6,5).

Proof. By Lemma 3.39, every UW (6,5) is equivalent to
1 1 1 1 1 0
1 − x −x 0 1
1 y a 0 b c
1 −y 0 d f g
1 0 h j k l
0 1 m n p q


We will systematically place constraints on the variables given based on the fact that the

rows and columns on the matrix must be orthogonal. Lemma 3.39 has given the structure for
the first two rows and columns. The cases will be processed in a depth-first manner by first
placing constraints on the third row, simplifying the expressions, then repeating the same
process on the fourth row. When we append the fifth row, we will use the orthogonality of
the first column with the ith column to give a simplified possibility for each entry (h, j,k and
l). Similarly, when adding the final row, we will use orthogonality of the second column
and the ith column to determine m,n,p and q.

When appending the third and fourth row, there will be three cases. We know that the
first row must be orthogonal to these rows, so we know that by 4-orthogonality that one of
the entries in the first five columns must be a −1 and the other two nonzero entries must be
the negation of one another.

To make the proof easier to follow, the variables a,b,c,d, f ,g,h, j,k,l,m,n,p and q will only
be used as placeholders. Once one of these variables has a relationship to another variable,
a different variable will be introduced into the matrix. Only x,y and z will be needed to
complete the analysis. You may assume that a variable name given in one case is the same
as in all children cases (but not sibling cases). A horizontal line will be drawn to signify the
current depth of the analysis. ri will denote the ith row of the current matrix.

Case 1: y =−1. This immediately implies that a =−b (we will relabel a to be z).
1 1 1 1 1 0
1 − x −x 0 1
1 − z 0 −z c
1 1 0 d f g
1 0 h j k l
0 1 m n p q

 (A.1)

Since 〈r2,r3〉= 0, we have that z =−x and c =−1.
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1 1 1 1 1 0
1 − x −x 0 1
1 − −x 0 x −
1 1 0 d f g
1 0 h j k l
0 1 m n p q

 (A.2)

At this point, since 〈r1,r4〉= 0, we have that d = f =−1.
1 1 1 1 1 0
1 − x −x 0 1
1 − −x 0 x −
1 1 0 − − g
1 0 h j k l
0 1 m n p q

 (A.3)

Next, 〈r3,r4〉= 0 implies that g =−x.
1 1 1 1 1 0
1 − x −x 0 1
1 − −x 0 x −
1 1 0 − − −x
1 0 h j k l
0 1 m n p q

 (A.4)

We will fill in the fifth row and sixth row uniquely from orthogonality with columns 1
and 2 and temporarily name this matrix T1(x).

T1(x) :=


1 1 1 1 1 0
1 − x −x 0 1
1 − −x 0 x −
1 1 0 − − −x
1 0 − x −x x
0 1 − −x x x

 (A.5)

Case 2: a =−1. This immediately implies that b =−y.
1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y c
1 −y 0 d f g
1 0 h j k l
0 1 m n p q

 (A.6)

We must now branch into three distinct subcases. The three cases represent all of the
possibilities for where the negative appears in the fourth row.

Case 2a: y = 1. This implies that d =− f (and we will relabel d to z).
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1 1 1 1 1 0
1 − x −x 0 1
1 1 − 0 − c
1 − 0 z −z g
1 0 h j k l
0 1 m n p q

 (A.7)

At this point, we swap rows 3 and 4 followed by columns 3 and 4 and after appropriate
relabelling, arrive at the matrix given in (A.4) so we arrive at T1(x) from this branch.

Case 2b: d =−1. This implies that f = y.
1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y c
1 −y 0 − y g
1 0 h j k l
0 1 m n p q

 (A.8)

Since 〈r2,r3〉 = 0 and 〈r2,r4〉 = 0, then 〈r2,r3〉 - 〈r2,r4〉 = 0. We deduce that y = −x.
From here, 〈r2,r3〉= 0 implies that c =−1 and then 〈r3,r4〉= 0 gives c = g.

1 1 1 1 1 0
1 − x −x 0 1
1 −x − 0 x −
1 x 0 − −x −
1 0 h j k l
0 1 m n p q

 (A.9)

We fill in the final two rows to arrive at the following matrix which we label as T3(x).

T3(x) :=


1 1 1 1 1 0
1 − x −x 0 1
1 −x − 0 x −
1 x 0 − −x −
1 0 −x x − 1
0 1 − − 1 1

 (A.10)

Case 2c: f =−1, which implies that d = y.
1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y c
1 −y 0 y − g
1 0 h j k l
0 1 m n p q

 (A.11)

We will simplify c and g by noting that 〈r3,r4〉= 0 gives g =−yc. We will relabel c to
be z.
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1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y z
1 −y 0 y − −yz
1 0 h j k l
0 1 m n p q

 (A.12)

We now append the fifth row to our search, which only resolves the value of h and k,
1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y z
1 −y 0 y − −yz
1 0 −x j y l
0 1 m n p q

 (A.13)

Some simplification is possibly from 〈r3,r5〉 = 0 giving l = −xz and then 〈r2,r5〉 = 0
gives j = x2z. 

1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y z
1 −y 0 y − −yz
1 0 −x x2z y −xz
0 1 m n p q

 (A.14)

Append the final row to give
1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y z
1 −y 0 y − −yz
1 0 −x x2z y −xz
0 1 m −x −y q

 (A.15)

We reduce this to two variables by using 〈c3,c4〉 = 0, 〈c3,c6〉 = 0 and 〈c4,c6〉 = 0 (in
that order) to give m = z, q =−xz and z =±xy, respectively.

1 1 1 1 1 0
1 − x −x 0 1
1 y − 0 −y ±xy
1 −y 0 y − ∓x
1 0 −x ∓xy y ∓y
0 1 ±xy −x −y ∓y

 (A.16)

Using the fact that 〈r4,r5〉 = 0 = 〈r3,r6〉, we have that −y + xy = y− xy =⇒ y + y =
x(y + y). Thus, we have two possibilities: x = 1 or y + y = 0. We further branch into
subcases (2ca will deal with the x = 1 and 2cb will deal with y+ y = 0).
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Case 2ca: x = 1 =⇒ x = 1. Thus, we have the following.
1 1 1 1 1 0
1 − 1 − 0 1
1 y − 0 −y ±y
1 −y 0 y − ∓1
1 0 − ∓y y ∓y
0 1 ±y − −y ∓y

 (A.17)

With x out of the picture, we can now see that the lower signs on the ± and ∓ is invalid
(see, for example, 〈r1,r5〉). So we arrive at a UW (6,5) which we will label as T4(y).

T4(y) :=


1 1 1 1 1 0
1 − 1 − 0 1
1 y − 0 −y y
1 −y 0 y − −
1 0 − −y y −y
0 1 y − −y −y

 (A.18)

Case 2cb: y+ y = 0 =⇒ y =±i. As to not confuse the different ±s, we will split this
into two cases again, the first where y = i (case 2cba) and the second where y = −i (case
2cbb).

Case 2cba: 
1 1 1 1 1 0
1 − x −x 0 1
1 i − 0 −i ±ix
1 −i 0 i − ∓x
1 0 −x ∓ix i ∓i
0 1 ∓ix −x i ±i

 (A.19)

Since 〈r2,r3〉= 0, then 〈r2,r3〉−〈r2,r3〉= 0. Thus, we have the following

〈r2,r3〉−〈r2,r3〉= 0 =⇒ 2i− (x− x)∓ i(x+ x) = 0
=⇒ 2i−2iℑ(x)∓2iℜ(x) = 0
=⇒ ±ℜ(x)+ℑ(x) = 1
=⇒ ℜ(x)2 +ℑ(x)2±2ℜ(x)ℑ(x) = 1
=⇒ ℜ(x)ℑ(x) = 0
=⇒ x ∈ {±1,±i}

(A.20)

The fifth implication comes from the fact that x is unimodular. When x = −1 or x = −i,
then 〈r2,r3〉 6= 0. When x = 1, then the lower signs of the ± does not work (〈r2,r3〉 6= 0),
and using the upper sign gives T4(i). When we plug in x = i, the upper sign does not work
(〈r2,r3〉 6= 0), and using the lower sign gives the following matrix, which we will denote T6.
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T6 :=


1 1 1 1 1 0
1 − i −i 0 1
1 i − 0 −i −
1 −i 0 i − −i
1 0 −i − i i
0 1 − −i i −i

 (A.21)

Case 2cbb: 
1 1 1 1 1 0
1 − x −x 0 1
1 −i − 0 i ∓ix
1 i 0 −i − ∓x
1 0 −x ±ix −i ±i
0 1 ±ix −x −i ∓i

 (A.22)

The case analysis for this section is nearly identical to Case 2cba. We use the same pairs
of rows’ inner products to allow us to find the same contradictions as above. Moreover,
x ∈ {±1,±i} and when x = 1, we get T4(−i) and when x =−i, we get a new matrix which
we denote T7 (note that T T

6 = T7).

T7 :=


1 1 1 1 1 0
1 − −i i 0 1
1 −i − 0 i −
1 i 0 −i − i
1 0 i − −i −i
0 1 − i −i i

 (A.23)

Case 3: b =−1. This implies that a =−y.
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − c
1 −y 0 d f g
1 0 h j k l
0 1 m n p q

 (A.24)

In the next row, we have three possibilities for the location of the negative.
Case 3a: y = 1, which implies that d =− f . We then relabel d to be z.

1 1 1 1 1 0
1 − x −x 0 1
1 1 − 0 − c
1 − 0 z −z g
1 0 h j k l
0 1 m n p q

 (A.25)

The orthogonality of rows 2 and 4 give g = −1 and x = z. Then, the orthogonality of
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rows 3 and 4 gives c = x. 
1 1 1 1 1 0
1 − x −x 0 1
1 1 − 0 − x
1 − 0 x −x −
1 0 h j k l
0 1 m n p q

 (A.26)

The next row can be filled in accordingly.
1 1 1 1 1 0
1 − x −x 0 1
1 1 − 0 − x
1 − 0 x −x −
1 0 −x − x −x
0 1 m n p q

 (A.27)

And finally, the last row. 
1 1 1 1 1 0
1 − x −x 0 1
1 1 − 0 − x
1 − 0 x −x −
1 0 −x − x −x
0 1 x − −x −x

 (A.28)

When we swap rows 3 and 4 as well as columns 3 and 4, we get T1(−x).
Case 3b: d = −1. This implies that f = y. The fact that 〈r3,r4〉 = 0 gives g = yc. We

will relabel c to be z. 
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 − y yz
1 0 h j k l
0 1 m n p q

 (A.29)

We now fill in the fifth row to arrive at the following.
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 − y yz
1 0 h x −y l
0 1 m n p q

 (A.30)

From 〈r2,r5〉= 0, we have that h =−xl. And then since 〈r4,r5〉= 0, l = xyz.
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1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 − y yz
1 0 −x2yz x −y xyz
0 1 m n p q

 (A.31)

We can fill in the final row in the following way.
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 − y yz
1 0 −x2yz x −y xyz
0 1 x n y q

 (A.32)

Based on the fact that 〈c3,c4〉 = 0, n = yz. Then 〈c5,c6〉 = 0 gives q = xyz. Finally,
〈r2,r6〉= 0 reveals that z =±x. Putting these three facts together, we arrive at

1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − ±x
1 −y 0 − y ±xy
1 0 ∓xy x −y ±y
0 1 x ±xy y ±y

 (A.33)

Let’s look at the upper and lower signs on the ±s separately. First, let us examine the
upper signs. 〈r3,r5〉+ 〈c2,c6〉 = 0 =⇒ x = ±1 and 〈c2,c6〉 =⇒ x 6= 1, so x = −1. We
then have the following matrix, which we will denote T2(y).

T2(y) =


1 1 1 1 1 0
1 − − 1 0 1
1 y −y 0 − −
1 −y 0 − y −y
1 0 y − −y y
0 1 − −y y y

 (A.34)

When we look at the lower signs of the ± in (A.33), we note that 〈r1,r5〉− 〈c2,c6〉 =
0 =⇒ x = y, and 〈r1,r6〉−〈c1,c6〉= 0 =⇒ x =±i. Thus, we have the following matrix:

1 1 1 1 1 0
1 − ±i ∓i 0 1
1 ±i ∓i 0 − ±i
1 ∓i 0 − ±i −
1 0 − ±i ∓i ∓i
0 1 ±i − ∓i ±i

 (A.35)

But if we look carefully, the top of the±s is equivalent to T7 and the bottom is equivalent
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to T6 (one must simply swap rows 3 and 4 as well as columns 3 and 4).
Case 3c: f =−1. This implies that d = y. The fact that 〈r3,r4〉= 0 gives g =−c. We

will relabel c to be z. 
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 y − −z
1 0 h j k l
0 1 m n p q

 (A.36)

We adjoin in the fifth row, which will introduce many simplifications.
1 1 1 1 1 0
1 − x −x 0 1
1 y −y 0 − z
1 −y 0 y − −z
1 0 h j 1 −
0 1 m n p q

 (A.37)

First, 〈r1,r5〉= 0 gives h = j =−1, then 〈c1,c3〉= 0 gives x = y and finally, 〈r2,r3〉= 0
gives z = x. We will then append the sixth and final row to arrive at the unique matrix,
which we will denote T5(x).

T5(x) :=


1 1 1 1 1 0
1 − x −x 0 1
1 x −x 0 − x
1 −x 0 x − −x
1 0 − − 1 −
0 1 x −x − −

 (A.38)
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Appendix B

Detailed Proofs from Chapter 4

B.1 Sets of UW (5,4)
(This is the proof of Lemma 4.33.)

Lemma B.1. Let W be a unit weighing matrix that is unbiased with

W5 =


1 1 1 1 0
1 ω ω 0 1
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω


where ω = ei 2π

3 . Then every nonzero entry in W is a sixth root of unity.

Proof. Since W5W ∗ = 2L for some weighing matrix L, we know that each row of W must
be orthogonal with exactly one row of W5 and unbiased with the other four. Moreover,
we know that the first nonzero entry in each row of W may be a one. To show the stated
lemma, we will show that any viable vector (i.e., a vector in C5 with exactly four nonzero
unimodular entries) that is orthogonal with one row of W5 and unbiased with the other four
only contains entries that are sixth roots of unity.

Using the definition of m-orthogonality and the results given in Proposition 3.25, we can
determine that there are at most 11 different rows that are orthogonal to each of the rows
of W5, each with exactly one free variable. We will break up the analysis into five distinct
cases. Each case will represent the full set of vectors which are orthogonal to a specific row
in W5. For ease, we will use Ri to be the the ith row of W5. Moreover, the rows of W that we
are considering will be labelled ri for 1 ≤ i ≤ 55. The standard brackets around the vector
will be dropped for convenience.

Let b ∈ T and α a primitive third root of unity (either ω or ω). The five main observa-
tions that are used throughout the proof are:

(O1) |1−α+b|= 2 =⇒ b ∈ {±α},

(O2) |1+α+b|= 2 =⇒ b =−α,

(O3) |3+b|= 2 =⇒ b =−1,

(O4) 1+α+α = 0.
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(O5) |1+α+α+αb|= 2 =⇒ |αb|= 2, which is a contradiction since |αb|= 1.

In each of the five cases, we will examine all rows that are orthogonal to the ith row
of W5 (it turns out there are 11 candidates each time). Then, we will show that any free
variable (b) is a sixth root of unity or arrive at a contradiction by using one of the five
observations above. Note that we will stop each case as soon as a contradiction is found or
all free variables are shown to be a sixth root of unity.

Case 1: Consider all rows that are orthogonal with row 1 of W5:

(r1) 1 − b −b 0
(r2) 1 b − −b 0
(r3) 1 b −b − 0
(r4) 1 ω ω 0 b
(r5) 1 ω ω 0 b
(r6) 1 ω 0 ω b
(r7) 1 ω 0 ω b
(r8) 1 0 ω ω b
(r9) 1 0 ω ω b

(r10) 0 1 ω ω b
(r11) 0 1 ω ω b

Then,

(a) |〈R2,r1〉|= 2 =⇒ |1−ω+ωb|= 2 =⇒ ωb =±ω =⇒ b ∈ {±1} .
(b) |〈R2,r2〉|= 2 =⇒ |1+ωb−ω|= 2 =⇒ ωb =±ω =⇒ b ∈ {±1} .
(c) |〈R3,r3〉|= 2 =⇒ |1+ωb−ω|= 2 =⇒ ωb =±ω =⇒ b ∈ {±1} .
(d) |〈R2,r4〉|= 2 =⇒ |1+1+1+b|= 2 =⇒ b =−1 =⇒ b =−1.

(e) |〈R2,r5〉|= 2 =⇒ |1+ω+ω+b|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
( f ) |〈R3,r6〉|= 2 =⇒ |1+ω+ω+ωb|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(g) |〈R3,r7〉|= 2 =⇒ |1+1+1+ωb|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(h) |〈R4,r8〉|= 2 =⇒ |1+1+1+ωb|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(i) |〈R4,r9〉|= 2 =⇒ |1+ω+ω+ωb|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
( j) |〈R5,r10〉|= 2 =⇒ |1+ω+ω+ωb|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(k) |〈R5,r11〉|= 2 =⇒ |1+1+1+ωb|= 2 =⇒ ωb =−1 =⇒ b =−ω.

Case 2: Consider all rows that are orthogonal with row 2 of W5:
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(r12) 1 1 1 b 0
(r13) 1 ω ω b 0
(r14) 1 −ω −ωb 0 b
(r15) 1 −ωb −ω 0 b
(r16) 1 b −b 0 −
(r17) 1 1 0 b ω

(r18) 1 ω 0 b ω

(r19) 1 0 ω b ω

(r20) 1 0 1 b ω

(r21) 0 1 ω b ω

(r22) 0 1 1 b 1

Then,

(a) |〈R1,r12〉|= 2 =⇒ |1+1+1+b|= 2 =⇒ b =−1 =⇒ b =−1.

(b) |〈R1,r13〉|= 2 =⇒ |1+ω+ω+b|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(c) |〈R1,r14〉|= 2 =⇒ |1−ω−ωb|= 2 =⇒ −ωb =±ω =⇒ b ∈ {±1} .
(d) |〈R1,r15〉|= 2 =⇒ |1−ωb−ω|= 2 =⇒ −ωb =±ω =⇒ b ∈ {±ω} .
(e) |〈R3,r16〉|= 2 =⇒ |1+ωb+ω|= 2 =⇒ ωb =−ω =⇒ b =−ω.

( f ) |〈R3,r17〉|= 2 =⇒ |1+ω+ωb+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(g) |〈R3,r18〉|= 2 =⇒ |1+1+ωb+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(h) |〈R4,r19〉|= 2 =⇒ |1+1+ωb+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(i) |〈R4,r20〉|= 2 =⇒ |1+ω+ωb+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
( j) |〈R5,r21〉|= 2 =⇒ |1+1+ωb+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.
(k) |〈R5,r22〉|= 2 =⇒ |1+ω+b+ω|= 2 =⇒ |b|= 2. →←

Case 3: Consider all rows that are orthogonal with row 3 of W5:

(r23) 1 ω b ω 0
(r24) 1 1 b 1 0
(r25) 1 ω b 0 1
(r26) 1 1 b 0 ω

(r27) 1 −ω 0 −ωb b
(r28) 1 −b 0 −ω b
(r29) 1 −ωb 0 b −ω

(r30) 1 0 b 1 1
(r31) 1 0 b ω ω

(r32) 0 1 b ω ω

(r33) 0 1 b 1 ω

110



B.1. SETS OF UW (5,4)

Then,

(a) |〈R1,r23〉|= 2 =⇒ |1+1+1+b|= 2 =⇒ b =−1 =⇒ b =−1.

(b) |〈R1,r24〉|= 2 =⇒ |1+ω+ω+b|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(c) |〈R2,r25〉|= 2 =⇒ |1+1+ωb+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(d) |〈R2,r26〉|= 2 =⇒ |1+ω+ωb+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(e) |〈R1,r27〉|= 2 =⇒ |1−ω−ωb|= 2 =⇒ −ωb =±ω =⇒ b ∈ {±ω} .
( f ) |〈R1,r28〉|= 2 =⇒ |1−b−ω|= 2 =⇒ −b =±ω =⇒ b ∈ {±ω} .
(g) |〈R2,r29〉|= 2 =⇒ |1−b−ω|= 2 =⇒ −b =±ω =⇒ b ∈ {±ω} .
(h) |〈R4,r30〉|= 2 =⇒ |1+ωb+ω+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(i) |〈R4,r31〉|= 2 =⇒ |1+ωb+1+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

( j) |〈R5,r32〉|= 2 =⇒ |1+ωb+1+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(k) |〈R5,r33〉|= 2 =⇒ |1+ωb+ω+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←

Case 4: Consider all rows that are orthogonal with row 4 of W5:

(r34) 1 b 1 1 0
(r35) 1 b ω ω 0
(r36) 1 b 1 0 ω

(r37) 1 b ω 0 1
(r38) 1 b 0 ω ω

(r39) 1 b 0 1 1
(r40) 1 0 −ω −ωb b
(r41) 1 0 −b −ω b
(r42) 1 0 −ωb b −ω

(r43) 0 b 1 ω 1
(r44) 0 b 1 1 ω

Then,

(a) |〈R1,r34〉|= 2 =⇒|1+b+1+1|= 2 =⇒ b =−1 =⇒ b =−1.

(b) |〈R1,r35〉|= 2 =⇒|1+b+ω+ω|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(c) |〈R2,r36〉|= 2 =⇒|1+ωb+ω+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(d) |〈R2,r37〉|= 2 =⇒|1+ωb+1+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

(e) |〈R3,r38〉|= 2 =⇒|1+ωb+1+1|= 2 =⇒ ωb =−1 =⇒ b =−ω.

( f ) |〈R3,r39〉|= 2 =⇒|1+ωb+ω+ω|= 2 =⇒ |ωb|= 2 =⇒ |b|= 2.→←
(g) |〈R1,r40〉|= 2 =⇒|1−ω−ωb|= 2 =⇒ −ωb =±ω =⇒ b ∈ {±ω} .
(h) |〈R1,r41〉|= 2 =⇒|1−ω−b|= 2 =⇒ −b =±ω =⇒ b ∈ {±ω} .
(i) |〈R2,r42〉|= 2 =⇒|1−b−ω|= 2 =⇒ −b =±ω =⇒ b ∈ {±ω} .
( j) |〈R5,r43〉|= 2 =⇒|b+ω+ω+ω|= 2 =⇒ |1−ω−b|= 2=⇒ b ∈ {±ω} .
(k) |〈R5,r44〉|= 2 =⇒|b+ω+ω+1|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←

Case 5: Consider all rows that are orthogonal with row 5 of W5:
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(r45) b 1 ω ω 0
(r46) b 1 1 1 0
(r47) b 1 ω 0 ω

(r48) b 1 1 0 1
(r49) b 1 0 1 ω

(r50) b 1 0 ω 1
(r51) b 0 1 ω 1
(r52) b 0 1 1 ω

(r53) 0 1 −ω −b b
(r54) 0 1 −ωb −ω b
(r55) 0 1 −ωb b −ω

Then,

(a) |〈R1,r45〉|= 2 =⇒ |b+1+ω+ω|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(b) |〈R1,r46〉|= 2 =⇒ |b+1+1+1|= 2 =⇒ b =−1 =⇒ b =−1.

(c) |〈R2,r47〉|= 2 =⇒ |b+ω+ω+ω|= 2 =⇒ |1−ω−b|= 2=⇒ b ∈ {±ω} .
(d) |〈R2,r48〉|= 2 =⇒ |b+ω+ω+1|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(e) |〈R3,r49〉|= 2 =⇒ |b+ω+ω+1|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
( f ) |〈R3,r50〉|= 2 =⇒ |b+1+ω|= 2 =⇒ b =−ω =⇒ b =−ω.

(g) |〈R1,r51〉|= 2 =⇒ |b+1+ω|= 2 =⇒ b =−ω =⇒ b =−ω.

(h) |〈R4,r52〉|= 2 =⇒ |b+ω+ω+1|= 2 =⇒ |b|= 2 =⇒ |b|= 2.→←
(i) |〈R1,r53〉|= 2 =⇒ |1−ω−b|= 2 =⇒ −b =±ω =⇒ b ∈ {±ω} .
( j) |〈R5,r54〉|= 2 =⇒ |1−ωb−ω|= 2 =⇒ −ωb =±ω =⇒ b ∈ {±ω} .
(k) |〈R5,r55〉|= 2 =⇒ |a−ωb−ω|= 2 =⇒ |1−b−ω|= 2=⇒ b ∈ {±ω} .

B.2 Sets of UW (7,4)
(This is the proof of Lemma 4.37.)

Lemma B.2. Let W be a unit weighing matrix that is unbiased with

W7 =



1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −
0 1 0 − 1 0 1
0 0 1 − − 1 0


.

Then every nonzero entry in W is either 1 or −1.

Proof. We can easily see that there are only
(7

3

)
= 35 possible zero placements that are

valid in a row of W . We will break up the proof into two different sections. In the first, we
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will examine all rows that have the same zero placement as one of the rows in W7. Then, in
the second, we will look at the other 28 rows.

For each possible row in the first portion, we will show that any nonzero entry in each
row must be real. We will work through the first example in full detail, then put all seven
cases in an encoded form into Table B.1. Each case follows very similar to the example
shown. In all cases, let a,b and c be arbitrary unimodular numbers that are independent of
the other cases.

For example, consider the following row:
(

1 a b c 0 0 0
)

• Taking the complex inner product with row 2 of W7, we have that |1 + a| ∈ {0,2}
which implies a ∈ {±1}.

• Taking the complex inner product with row 3 of W7, we have that |1 + b| ∈ {0,2}
which implies b ∈ {±1}.

• Taking the complex inner product with row 4 of W7, we have that |1 + c| ∈ {0,2}
which implies c ∈ {±1}.

Table B.1: Case analysis part 1 for Lemma 4.37

Row Row in W7 that implies
a ∈ {±1} b ∈ {±1} c ∈ {±1}(

1 a b c 0 0 0
)

2 3 4(
1 a 0 0 b c 0

)
1 3 4(

1 0 a 0 b 0 c
)

1 2 4(
1 0 0 a 0 b c

)
1 2 3(

0 1 a 0 0 b c
)

1 2 6(
0 1 0 a b 0 c

)
1 2 5(

0 0 1 a b c 0
)

1 3 5

Then, for the second portion of the case analysis, we will create a table of the remaining
28 zero placements. In each case, the inner product of the row and a specific row in W7
gives us a single unimodular value, which cannot equal two.

For example, consider the following row:
(

1 a b 0 c 0 0
)
. Taking the com-

plex inner product with row 4 of W7, we have that |1| ∈ {0,2} which is clearly a contradic-
tion. Table B.2 shows which row in W7 does not work with the corresponding case.
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Table B.2: Case analysis part 2 for Lemma 4.37

Row Row in W7 that gives
a contradiction(

1 a b 0 c 0 0
)

4(
1 a b 0 0 c 0

)
6(

1 a b 0 0 0 c
)

7(
1 a 0 b c 0 0

)
5(

1 a 0 b 0 c 0
)

3(
1 a 0 b 0 0 c

)
7(

1 a 0 0 b 0 c
)

7(
1 a 0 0 0 b c

)
7(

1 0 a b c 0 0
)

5(
1 0 a b 0 c 0

)
6(

1 0 a b 0 0 c
)

2(
1 0 a 0 b c 0

)
6(

1 0 a 0 0 b c
)

6(
1 0 0 a b c 0

)
5(

1 0 0 a b 0 c
)

5(
1 0 0 0 a b c

)
1(

0 1 a b c 0 0
)

4(
0 1 a b 0 c 0

)
3(

0 1 a b 0 0 c
)

2(
0 1 a 0 b c 0

)
4(

0 1 a 0 b 0 c
)

4(
0 1 0 a b c 0

)
3(

0 1 0 a 0 b c
)

3(
0 1 0 0 a b c

)
1(

0 0 1 a b c 0
)

2(
0 0 1 a b 0 c

)
2(

0 0 1 0 a b c
)

1(
0 0 0 1 a b c

)
1
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Appendix C

List of Real and Unit Weighing Matrices

C.1 Real Weighing Matrices of Weight 5
Every real weighing matrix of weight 5 is equivalent to one that is the direct sum of the

following 7 families of matrices, W6,W8,W12,W14,W16,W4t+4 and W4t+2.

W6 =


1 1 1 1 1 0
1 1 − − 0 1
1 − − 0 1 −
1 − 0 1 − 1
1 0 1 − − −
0 1 − 1 − −



W8 =



1 1 1 1 1 0 0 0
1 1 − − 0 1 0 0
1 − − 1 0 0 1 0
1 − 1 − 0 0 0 1
1 0 0 0 − − − −
0 1 0 0 − − 1 1
0 0 1 0 − 1 1 −
0 0 0 1 − 1 − 1



W12 =



1 1 1 1 1 0 0 0 0 0 0 0
1 − 0 0 0 1 1 1 0 0 0 0
1 0 − 0 0 − 0 0 1 1 0 0
1 0 0 − 0 0 − 0 − 0 1 0
1 0 0 0 − 0 0 − 0 − − 0
0 1 − 0 0 0 0 1 0 − 0 1
0 1 0 − 0 1 0 0 0 1 − 0
0 1 0 0 − 0 1 0 0 0 1 −
0 0 1 − 0 − 1 0 0 0 0 1
0 0 1 0 − 0 − 1 1 0 0 0
0 0 0 1 − 0 0 0 − 1 0 1
0 0 0 0 0 1 0 − 1 0 1 1
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W14 =



1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 − 0 0 0 1 1 1 0 0 0 0 0 0
1 0 − 0 0 − 0 0 1 1 0 0 0 0
1 0 0 − 0 0 − 0 − 0 1 0 0 0
1 0 0 0 − 0 0 − 0 − − 0 0 0
0 1 − 0 0 1 0 0 0 0 0 1 1 0
0 1 0 − 0 0 0 1 0 0 − 0 − 0
0 1 0 0 − 0 1 0 0 0 1 − 0 0
0 0 1 − 0 0 0 0 1 0 0 0 1 −
0 0 1 0 − 0 0 0 0 1 0 1 0 1
0 0 0 1 − 0 − 1 0 0 0 0 0 −
0 0 0 0 0 1 − 0 1 0 0 − 0 1
0 0 0 0 0 1 0 − 0 1 0 0 − −
0 0 0 0 0 0 0 0 1 − 1 1 − 0



W16 =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 − 0 0 0 1 1 1 0 0 0 0 0 0 0 0
1 0 − 0 0 − 0 0 1 1 0 0 0 0 0 0
1 0 0 − 0 0 − 0 − 0 1 0 0 0 0 0
1 0 0 0 − 0 0 − 0 − − 0 0 0 0 0
0 1 − 0 0 1 0 0 0 0 0 1 1 0 0 0
0 1 0 − 0 0 1 0 0 0 0 − 0 1 0 0
0 1 0 0 − 0 0 1 0 0 0 0 − − 0 0
0 0 1 − 0 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 − 0 0 0 0 1 0 0 1 0 − 0
0 0 0 1 − 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 − 0 1 0 0 − 0 0 0 1
0 0 0 0 0 1 0 − 0 1 0 0 − 0 0 −
0 0 0 0 0 0 1 − 0 0 1 0 0 − 0 1
0 0 0 0 0 0 0 0 1 − 1 0 0 0 − −
0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1
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W4t+2 =



1 1 1 1 1 0
1 1 − − 0 1
1 − 0 0 0 0 1 1 1 0
1 − 0 0 0 0 − − 0 1
1 0 0 0 − − 0 0 − −
0 1 0 0 − − 0 0 1 1

1 − 0 0 1 1 1 0
1 − 0 0 − − 0 1
1 0 − 1 0 0 − −
0 1 − 1 0 0 1 1

1 − 0 0
1 − 0 0
1 0 − 1
0 1 − 1

. . .
1 1 1 0
− − 0 1
0 0 − −
0 0 1 1

1 − 0 0 1 0 − 1
1 − 0 0 0 − 1 −
1 0 − 1 − 1 0 0
0 1 − 1 1 − 0 0
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W4t+4 =



1 1 1 1 1 0
1 1 − − 0 1
1 − 0 0 0 0 1 1 1 0
1 − 0 0 0 0 − − 0 1
1 0 0 0 − − 0 0 − −
0 1 0 0 − − 0 0 1 1

1 − 0 0 1 1 1 0
1 − 0 0 − − 0 1
1 0 − 1 0 0 − −
0 1 − 1 0 0 1 1

1 − 0 0
1 − 0 0
1 0 − 1
0 1 − 1

. . .
1 1 1 0
− − 0 1
0 0 − −
0 0 1 1

1 − 0 0 1 − 0 0 1 0
1 − 0 0 − 1 0 0 0 1
1 0 − 1 0 0 0 0 − −
0 1 − 1 0 0 0 0 1 1

1 0 − 1 − 1
0 1 − 1 1 −


C.2 List of Unit Weighing Matrices

Given here is a list of unit matrices of weight 4. Recall that all unit weighing matrices
of weight 4 are equivalent to a weighing matrix that is made up of W5, W6, W7, W8 and
E2m. We now give examples of UW (n,4) with n small. Note that we make no claim
about equivalence of the matrices, only that this list is an upper bound on the number of
inequivalent matrices.

The following table gives the number of decompositions of n without showing the de-
compositions.
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Table C.1: Decompositions of unit weighing matrices of type UW (n,4)

UW (4,4)

E4

UW (5,4)

W5

UW (6,4)

E6
W6

UW (7,4)

W7

UW (8,4)

E4⊕E4
E8
W8

UW (9,4)

E4⊕W5

UW (10,4)

E4⊕E6
E4⊕W6
W5⊕W5
E10

UW (11,4)

E4⊕W7
W5⊕E6
W5⊕W6

UW (12,4)

E4⊕E4⊕E4
E4⊕E8
E4⊕W8
W5⊕W7
E6⊕E6
E6⊕W6
W6⊕W6
E12

UW (13,4)

E4⊕E4⊕W5
W5⊕W8
W5⊕E8
E6⊕W7
W6⊕W7

UW (14,4)

E4⊕E4⊕E6
E4⊕E4⊕W6
E4⊕W5⊕W5
E4⊕E10
E6⊕E8
E6⊕W8
W6⊕E8
W6⊕W8
W7⊕W7
E14
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Table C.2: Number of decompositions of unit weighing matrices of type UW (n,4)

n # n # n # n #

1 0 26 91 51 2401 76 49960
2 0 27 73 52 3445 77 46836
3 0 28 128 53 3089 78 61251
4 1 29 103 54 4379 79 57587
5 1 30 173 55 3952 80 74976
6 2 31 142 56 5563 81 70630
7 1 32 236 57 5034 82 91488
8 3 33 194 58 7015 83 86422
9 1 34 313 59 6391 84 111485
10 4 35 265 60 8852 85 105496
11 3 36 424 61 8082 86 135445
12 8 37 357 62 11087 87 128477
13 5 38 555 63 10177 88 164323
14 10 39 476 64 13884 89 156137
15 7 40 737 65 12778 90 198849
16 16 41 634 66 17296 91 189343
17 11 42 961 67 15987 92 240258
18 23 43 837 68 21517 93 229138
19 17 44 1256 69 19937 94 289613
20 34 45 1098 70 26647 95 276750
21 25 46 1621 71 24789 96 348615
22 46 47 1433 72 32967 97 333611
23 36 48 2102 73 30731 98 418702
24 68 49 1860 74 40607 99 401394
25 52 50 2687 75 37987 100 502179
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Appendix D

Sets of Mutually Unbiased Weighing
Matrices

This section includes a library of sets of weighing matrices whose size equal the smallest
upper bound that is known. To save space, we define ω := e2πi/3 and ω :=−ω.

Table D.1: 9 mutually unbiased weighing matrices of order 4 and weight 3, UW (4,3).
1 1 1 0
1 − 0 1
1 0 − −
0 1 − 1




1 1 ω 0
1 − 0 ω

1 0 ω ω

0 1 ω ω




1 1 ω 0
1 − 0 ω

1 0 ω ω

0 1 ω ω




1 ω 0 1
1 ω ω 0
1 0 ω −
0 1 ω ω




1 ω 0 ω

1 ω ω 0
1 0 ω ω

0 1 − ω




1 ω 0 ω

1 ω 1 0
1 0 − ω

0 1 ω 1




1 ω 1 0
1 ω 0 ω

1 0 − ω

0 1 ω 1




1 ω ω 0
1 ω 0 ω

1 0 ω ω

0 1 − ω




1 ω ω 0
1 ω 0 1
1 0 ω −
0 1 ω ω



Table D.2: 5 mutually unbiased weighing matrices of order 5 and weight 4, UW (5,4).
1 1 1 1 0
1 ω ω 0 1
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω




1 1 1 − 0
1 ω ω 0 −
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω




1 1 − 1 0
1 ω ω 0 −
1 ω 0 ω ω

1 0 ω ω ω

0 1 ω ω ω




1 ω 0 ω ω

1 − 1 1 0
1 ω ω 0 −
1 0 ω ω ω

0 1 ω ω ω




1 ω 0 ω ω

1 − − − 0
1 ω ω 0 1
1 0 ω ω ω

0 1 ω ω ω
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Table D.3: 20 mutually unbiased weighing matrices of order 6 and weight 4, UW (6,4).
1 1 1 1 0 0
1 1 − − 0 0
1 − 0 0 1 1
1 − 0 0 − −
0 0 1 − 1 −
0 0 1 − − 1




1 1 1 − 0 0
1 1 − 1 0 0
1 − 0 0 1 −
1 − 0 0 − 1
0 0 1 1 1 1
0 0 1 1 − −




1 1 0 0 1 1
1 1 0 0 − −
1 − 1 − 0 0
1 − − 1 0 0
0 0 1 1 1 −
0 0 1 1 − 1


1 1 0 0 1 −
1 1 0 0 − 1
1 − 1 1 0 0
1 − − − 0 0
0 0 1 − 1 1
0 0 1 − − −




1 ω ω 0 ω 0
1 ω ω 0 ω 0
1 0 ω ω 0 1
1 0 ω ω 0 −
0 1 0 1 ω ω

0 1 0 − ω ω




1 ω ω 0 ω 0
1 ω ω 0 ω 0
1 0 ω ω 0 −
1 0 ω ω 0 1
0 1 0 1 ω ω

0 1 0 − ω ω


1 ω ω 0 ω 0
1 ω ω 0 ω 0
1 0 ω ω 0 −
1 0 ω ω 0 1
0 1 0 1 ω ω

0 1 0 − ω ω




1 ω ω 0 ω 0
1 ω ω 0 ω 0
1 0 ω ω 0 1
1 0 ω ω 0 −
0 1 0 1 ω ω

0 1 0 − ω ω




1 ω 0 ω 0 ω

1 ω 0 ω 0 ω

1 0 ω ω 1 0
1 0 ω ω − 0
0 1 1 0 ω ω

0 1 − 0 ω ω


1 ω 0 ω 0 ω

1 ω 0 ω 0 ω

1 0 ω ω − 0
1 0 ω ω 1 0
0 1 1 0 ω ω

0 1 − 0 ω ω




1 ω 0 ω 0 ω

1 ω 0 ω 0 ω

1 0 ω ω − 0
1 0 ω ω 1 0
0 1 1 0 ω ω

0 1 − 0 ω ω




1 ω 0 ω 0 ω

1 ω 0 ω 0 ω

1 0 ω ω 1 0
1 0 ω ω − 0
0 1 1 0 ω ω

0 1 − 0 ω ω


1 ω ω 0 0 ω

1 ω ω 0 0 ω

1 0 0 1 ω ω

1 0 0 − ω ω

0 1 ω ω 1 0
0 1 ω ω − 0




1 ω ω 0 0 ω

1 ω ω 0 0 ω

1 0 0 1 ω ω

1 0 0 − ω ω

0 1 ω ω − 0
0 1 ω ω 1 0




1 ω ω 0 0 ω

1 ω ω 0 0 ω

1 0 0 1 ω ω

1 0 0 − ω ω

0 1 ω ω − 0
0 1 ω ω 1 0


1 ω ω 0 0 ω

1 ω ω 0 0 ω

1 0 0 1 ω ω

1 0 0 − ω ω

0 1 ω ω 1 0
0 1 ω ω − 0




1 ω 0 ω ω 0
1 ω 0 ω ω 0
1 0 1 0 ω ω

1 0 − 0 ω ω

0 1 ω ω 0 1
0 1 ω ω 0 −




1 ω 0 ω ω 0
1 ω 0 ω ω 0
1 0 1 0 ω ω

1 0 − 0 ω ω

0 1 ω ω 0 −
0 1 ω ω 0 1


1 ω 0 ω ω 0
1 ω 0 ω ω 0
1 0 1 0 ω ω

1 0 − 0 ω ω

0 1 ω ω 0 −
0 1 ω ω 0 1




1 ω 0 ω ω 0
1 ω 0 ω ω 0
1 0 1 0 ω ω

1 0 − 0 ω ω

0 1 ω ω 0 1
0 1 ω ω 0 −
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Table D.4: 8 mutually unbiased real weighing matrices of order 7 and weight 4, W (7,4).

1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −
0 1 0 − 1 0 1
0 0 1 − − 1 0





1 1 − − 0 0 0
1 − 0 0 − 1 0
1 0 1 0 1 0 1
1 0 0 1 0 − −
0 1 1 0 0 1 −
0 1 0 1 − 0 1
0 0 1 − − − 0





1 1 0 0 − − 0
1 − 1 − 0 0 0
1 0 − 0 1 0 1
1 0 0 1 0 1 −
0 1 1 0 0 1 1
0 1 0 − 1 0 −
0 0 1 1 1 − 0




1 1 0 0 1 1 0
1 − − − 0 0 0
1 0 1 0 − 0 −
1 0 0 1 0 − 1
0 1 − 0 0 − −
0 1 0 − − 0 1
0 0 1 − 1 − 0





1 1 1 − 0 0 0
1 − 0 0 1 − 0
1 0 − 0 − 0 −
1 0 0 1 0 1 1
0 1 − 0 0 − 1
0 1 0 1 1 0 −
0 0 1 1 − − 0





1 1 0 0 1 − 0
1 − − 1 0 0 0
1 0 1 0 − 0 1
1 0 0 − 0 1 −
0 1 − 0 0 1 1
0 1 0 1 − 0 −
0 0 1 1 1 1 0




1 1 − 1 0 0 0
1 − 0 0 − − 0
1 0 1 0 1 0 −
1 0 0 − 0 1 1
0 1 1 0 0 − 1
0 1 0 − − 0 −
0 0 1 1 − 1 0





1 1 0 0 − 1 0
1 − 1 1 0 0 0
1 0 − 0 1 0 −
1 0 0 − 0 − 1
0 1 1 0 0 − −
0 1 0 1 1 0 1
0 0 1 − 1 1 0
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Table D.5: 14 mutually unbiased real weighing matrices of order 8 and weight 4, W (8,4).

1 1 1 1 0 0 0 0
1 1 − − 0 0 0 0
1 − 1 − 0 0 0 0
1 − − 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 − −
0 0 0 0 1 − 1 −
0 0 0 0 1 − − 1





1 1 1 − 0 0 0 0
1 1 − 1 0 0 0 0
1 − 0 0 1 − 0 0
1 − 0 0 − 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 − −
0 0 0 0 1 1 1 −
0 0 0 0 1 1 − 1





1 1 0 0 1 1 0 0
1 1 0 0 − − 0 0
1 − 1 1 0 0 0 0
1 − − − 0 0 0 0
0 0 1 − 0 0 1 −
0 0 1 − 0 0 − 1
0 0 0 0 1 − 1 1
0 0 0 0 1 − − −




1 0 0 1 0 1 − 0
1 0 0 1 0 − 1 0
1 0 0 − 1 0 0 −
1 0 0 − − 0 0 1
0 1 1 0 1 0 0 1
0 1 1 0 − 0 0 −
0 1 − 0 0 1 1 0
0 1 − 0 0 − − 0





1 1 0 0 1 − 0 0
1 1 0 0 − 1 0 0
1 − 0 0 0 0 1 1
1 − 0 0 0 0 − −
0 0 1 1 0 0 1 −
0 0 1 1 0 0 − 1
0 0 1 − 1 1 0 0
0 0 1 − − − 0 0





1 0 0 1 1 0 0 1
1 0 0 1 − 0 0 −
1 0 0 − 0 1 1 0
1 0 0 − 0 − − 0
0 1 1 0 0 1 − 0
0 1 1 0 0 − 1 0
0 1 − 0 1 0 0 −
0 1 − 0 − 0 0 1




1 1 0 0 0 0 1 −
1 1 0 0 0 0 − 1
1 − 0 0 1 1 0 0
1 − 0 0 − − 0 0
0 0 1 1 1 − 0 0
0 0 1 1 − 1 0 0
0 0 1 − 0 0 1 1
0 0 1 − 0 0 − −





1 0 0 1 1 0 0 −
1 0 0 1 − 0 0 1
1 0 0 − 1 0 0 1
1 0 0 − − 0 0 −
0 1 1 0 0 1 1 0
0 1 1 0 0 − − 0
0 1 − 0 0 1 − 0
0 1 − 0 0 − 1 0





1 0 0 1 0 1 1 0
1 0 0 1 0 − − 0
1 0 0 − 0 1 − 0
1 0 0 − 0 − 1 0
0 1 1 0 1 0 0 −
0 1 1 0 − 0 0 1
0 1 − 0 1 0 0 1
0 1 − 0 − 0 0 −




1 0 1 0 0 1 0 −
1 0 1 0 0 − 0 1
1 0 − 0 1 0 1 0
1 0 − 0 − 0 − 0
0 1 0 1 1 0 − 0
0 1 0 1 − 0 1 0
0 1 0 − 0 1 0 1
0 1 0 − 0 − 0 −





1 0 1 0 1 0 1 0
1 0 1 0 − 0 − 0
1 0 − 0 1 0 − 0
1 0 − 0 − 0 1 0
0 1 0 1 0 1 0 1
0 1 0 1 0 − 0 −
0 1 0 − 0 1 0 −
0 1 0 − 0 − 0 1





1 1 0 0 0 0 1 1
1 − 0 0 0 0 − 1
1 0 1 0 0 − 0 −
1 0 − 0 0 1 0 −
0 1 0 1 − 0 − 0
0 1 0 − 1 0 − 0
0 0 1 1 1 1 0 0
0 0 1 − − 1 0 0




1 1 0 0 0 0 − −
1 − 0 0 0 0 1 −
1 0 1 0 0 1 0 1
1 0 − 0 0 − 0 1
0 1 0 1 1 0 1 0
0 1 0 − − 0 1 0
0 0 1 1 − − 0 0
0 0 1 − 1 − 0 0





1 0 1 0 1 0 − 0
1 0 1 0 − 0 1 0
1 0 − 0 0 1 0 1
1 0 − 0 0 − 0 −
0 1 0 1 0 1 0 −
0 1 0 1 0 − 0 1
0 1 0 − 1 0 1 0
0 1 0 − − 0 − 0
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D.2. HADAMARD MATRICES OF ORDER 32

D.1 Vectors of Dimension 5 and Weight 4
A set of 40 vectors in C5 such that there are exactly 4 unimodular entries (and one zero)

whose pairwise inner product falls within {0,2} can be found in Table D.6. Based on the
structure, we may add the rows of the identity, normalize all of the vectors and attain the
upper bound given in (4.4) for n = 5 and α = 1

2 .

D.2 Hadamard Matrices of Order 32
In Tables D.7,D.8,D.9 and D.10, we show the partition of the 322 vectors into 32

Hadamard matrices of order 32 (denoted by H1,H2, . . . ,H32). Each section represents one
Hadamard matrix, and each hexadecimal number represents one row of the matrix (where
each digit represents four entries). The most significant binary digit represents the left-most
entry of the 4-tuple and the least significant binary digit represents the right-most digit. For
example, 4259F1BA represents

0100︸︷︷︸
4

0010︸︷︷︸
2

0101︸︷︷︸
5

1001︸︷︷︸
9

1111︸︷︷︸
F

0001︸︷︷︸
1

1011︸︷︷︸
B

1010︸︷︷︸
A

.

Then, we apply (4.9) to give us

1−11︸ ︷︷ ︸
4

11−1︸ ︷︷ ︸
2

1−1−︸ ︷︷ ︸
5

−11−︸ ︷︷ ︸
9

−−−−︸ ︷︷ ︸
F

111−︸ ︷︷ ︸
1

−1−−︸ ︷︷ ︸
B

−1−1︸ ︷︷ ︸
A

.
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D.2. HADAMARD MATRICES OF ORDER 32

Table D.6: 40 vectors in C5 that meet the upper bound in Theorem 4.26. ω = e
2πi
6 .

(1 1 1 1 0)
(1 1 1 − 0)
(1 1 − 1 0)
(1 1 − − 0)
(1 ω ω2 0 1)
(1 ω ω2 0 −)
(1 ω ω5 0 1)
(1 ω ω5 0 −)
(1 ω2 0 ω ω2)
(1 ω2 0 ω ω5)
(1 ω2 0 ω4 ω2)
(1 ω2 0 ω4 ω5)
(1 − 1 1 0)
(1 − 1 − 0)
(1 − − 1 0)
(1 − − − 0)
(1 ω4 ω2 0 1)
(1 ω4 ω2 0 −)
(1 ω4 ω5 0 1)
(1 ω4 ω5 0 −)
(1 ω5 0 ω ω2)
(1 ω5 0 ω ω5)
(1 ω5 0 ω4 ω2)
(1 ω5 0 ω4 ω5)
(1 0 ω ω2 ω)
(1 0 ω ω2 ω4)
(1 0 ω ω5 ω)
(1 0 ω ω5 ω4)
(1 0 ω4 ω2 ω)
(1 0 ω4 ω2 ω4)
(1 0 ω4 ω5 ω)
(1 0 ω4 ω5 ω4)
(0 1 ω2 ω ω)
(0 1 ω2 ω ω4)
(0 1 ω2 ω4 ω)
(0 1 ω2 ω4 ω4)
(0 1 ω5 ω ω)
(0 1 ω5 ω ω4)
(0 1 ω5 ω4 ω)
(0 1 ω5 ω4 ω4)
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D.2. HADAMARD MATRICES OF ORDER 32

Table D.7: H1 through H8

H1

00000000 4259F1BA 203AEEB5 50967C6E 59F1BA84 47FC04A7
4E9BC24D 4B3E3750 62631F0F 7C6EA12C 1E0DBE23 259F1BA8
32F56361 750967C6 176A78C9 67C6EA12 6EA12CF8 70AC92DB
55338973 0CC233F7 12CF8DD4 05A5F51D 3B92A58B 79CB5431
1BA84B3E 5C544F99 6B04D9E5 3E375096 2CF8DD42 0967C6EA
3750967C 295D285F

H2

6EF49ECD 2D2FA8E1 755CD5F3 1BFDF90B 31A55E78 7C3B1319
3FE02535 5826CF27 727E6854 4DCBFF54 5663B46A 7B19AEBE
129A3FE1 0055B235 24486E0B 44AC39BE 0E10C978 38C29892
4AE942F3 15B88246 438E8419 514109CD 67935827 2A0D1546
69D6236A 3687E3DF 093274DF 1CDF44AC 60B1E580 5F047280
236AD3AC 07770F92

H3

477DB9D5 1F0EC4C7 6A07A301 182C7960 0384325E 5CD5F2EB
5BF74F4C 529089A6 636065EB 114BBF8A 7FEA9372 2EFE288A
405F0472 71AFE83F 4E1A7F3F 2799EE60 0AE3F4B4 0DC14913
355663B4 20BB53C7 78C82ED5 29DC952D 768D5598 3274DE13
1669022D 3C31A55E 4938C298 04A68FF9 6D251EA6 6442D84C
55B23401 3B1318F9

H4

050E9174 10E3A107 19D1D5D8 475760CE 7935826D 20C438E9
6BAFBD8C 629DC953 2E8143A4 3529089A 4E651411 7770F920
52BA50BD 02799EE6 3C1B7C45 40206F5C 5CFF2BF0 7E428DFF
27B3377B 29F64C36 65EAC6C1 1EA6DA4A 0B4BEA39 325E0708
3B6C73D7 5B882462 7007F6B2 49121B83 6CD8B21E 1794AE95
0C3CE5AB 55CD5F2F

H5

7357CBAB 66BAFBD8 7475760C 017C11CA 5FD07DC7 2AA6712F
3F342A72 5FAF16E9 14EE4A97 3F4B415C 61E72D51 4D1FF013
0621C743 381697D5 4A3D4DB4 149121B9 7328A085 740A1D22
01037AE4 66C590F6 2D84CC88 58F2C060 065EAC6D 4A42269A
13CCF730 2DFBA7A6 3869FCFB 4D609B3D 2AD91A01 588DAB4E
13B39C1E 6198467F

H6

76595ADF 03503D19 53C64177 1CF59DB7 0D154654 0E3A1063
4C63E1D9 1FDACB80 288A5DFC 5EAC6C0D 372FFD52 4109CCA3
12B0E6FA 6496D70B 119FB0CD 4F4CB7EE 396A861F 007F6B2E
50E91740 69FCFA71 781C2192 5D833A3A 3400AB65 42269A94
25E07086 75760CE8 3A45D028 2BA50BCB 26CF26B1 7B3377A5
67B9813C 6AD3AC46

H7

7A4F666F 0F4601A9 5195068A 7A300D41 56B7BB2D 23BEDCEB
44075DD7 3171513F 24E30A62 56C8D003 0864BC0E 435A8B5E
1DF6E753 1AAB31DA 23C1B7C5 6880EBBB 0F396A87 7D6DDBC8
7D12B0E6 447836F9 4325E070 310E3A11 68FF8095 362C87B6
1AD45AF4 3653EC98 6FDD3D32 249C614C 1D898C7D 51EA6DA4
081BD720 6FA2561C

H8

0BCA574B 621C7421 70864BC0 4993A6F1 27328A09 2E00FED6
523BEDCF 32DFBA7A 5C7E9682 7EC3308D 77F14452 3C9AC137
171513E7 10621C75 4EE4A963 1E276738 058F2C06 195068AA
02F82394 3BEDCEA5 0CBD58D9 2045859B 5B099910 79B43F1F
47D6DDBC 656B7BB3 554CE25D 6C590F6C 35A8B5E8 6B2E00FE
40A1D22E 2977F144
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Table D.8: H9 through H16

H9

09B3C9AD 7B9813CC 7DC6BFA1 2C2CD205 2A727E68 513E62E3
74A1794B 13679359 00D40F47 254B14EF 2315B882 3F9F4E1B
4DB4947A 44D35290 0FED65C0 1A0055B3 614C4938 5859A409
72FFD526 6712E555 068AA32A 6E7523BF 36F888F1 1C5EF9DE
30A6249C 5760CE8E 682B8FD2 428DFEFD 5E070864 4BEA3817
39C1E276 15393F34

H10

1853124E 16166903 146FF7E5 4680156D 78B745FB 0FC7BCDB
241DDC3E 1A2A8CA8 266442D8 2A58A773 6F23EB6E 631F0EC5
3DCC09E6 3FB59700 48C56E20 4ABCF0C6 61669023 6D5A7588
0182C796 28213995 0DBE223D 536D251E 5F51C0B5 5114BBF8
76F23EB6 03FB5970 5D285E53 338972AB 31F0EC4D 7ACEDB1D
748BA050 44F98B8B

H11

1FA5A0AE 2FD78B75 111E0DBF 347FC04B 5347FC05 789D9CE0
46541A2A 040DEB90 48116167 216C2664 6D70AC93 5D028748
3AC46D5A 1F5B76F2 6D8E7ACF 46AACC76 0AB64681 0A4890DD
53B92A59 48EFB73B 2F295D29 76D8E7AD 3A3ABB06 6335D7DE
2192F038 762631F1 04F33DCC 78634ABC 34811617 63CB0182
5DFC5114 11E0DBE3

H12

6C0CBD59 3BB87C90 1740A1D2 2E554CE3 47836F89 05DA9E33
35FD07DD 40F4601B 526E5FFA 201037AE 77A4F667 1E72D50D
2767383C 29224371 49C614C4 6249C614 4EB11B56 3CCF7302
5C2B24B7 1037AE40 7E9682B8 5B5C2B25 6B7BB2CB 02AD91A1
0B9FE57E 0CE8EAEC 653EC986 79E18D2A 70D3F9F5 1905DA9F
328A084F 55195068

H13

5017C11C 3D32DFBA 11CA02F8 7CEF1C5E 415C7E96 784993A7
0427328B 37D12B0E 69022C2D 4F1905DB 5E52BA51 63E1D899
760CE8EA 5AF435A8 0081BD72 39945043 28DFEFC9 223C1B7D
1B29F64C 269A9484 45FAF16F 0EC4C63F 2C796030 54B14EE5
72AA6713 4BBF8A22 67475760 3377A4F7 156C8D01 6DA4A3D4
0A6249C6 1F8F79B5

H14

702D2FA9 3DB362C8 0524486F 33F61985 6B856497 6CA7D930
41DDC3E4 34D4A422 261B29F6 0206F5C8 0B613322 0C438E85
1E8C0351 794AE943 53124E30 62E2A27D 4F98B8A9 770F920E
2F7CEF1C 5430F397 17EBC5BB 3A91DF6F 46FF7E43 65C01FDA
7E6854E4 48BA050E 21399451 285E52BB 19AEBEF6 10C9781C
5D57357D 5A7588DA

H15

50C3CE5B 01D775A3 1A7F3E9D 37052449 08B0B349 3E62E2A3
39405F04 7DB9D48F 66119FB1 4C4938C2 2B8FD2D0 25CAA99D
6F76595B 74DE1265 06F5C804 61332216 302799EE 6854E4FC
4B6B8565 1318F877 73FCAFC2 7A9B6928 0F920EEE 1D5D833A
452EFE28 59A408B1 22E8143A 5E86B516 143A45D0 57E173FC
420C438F 2CAD6F77

H16

2DAE1593 24C9D379 1DDC3E48 669022C3 61B29F64 442D84CC
2A8CA834 58A77255 430F396B 745FAF17 1AFE83EF 36065EAD
08310E3B 737D12B0 0156C8D1 0F13B39C 3124E30A 06747576
384325E0 56E20918 23EB6EDE 68D5598E 7A1AD45A 13994505
7D3869FD 14BBF8A2 51C0B4BF 4D4A4226 6FF7E429 4A68FF81
3F619847 5F85CFF2
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Table D.9: H17 through H24

H17

22977F14 1CA02F82 7AB1B033 3FCAFC2E 2CD20459 580C163C
01FDACB8 3E1D898D 74F4CB7E 1332216C 4B14EE4B 0E6FA256
59DB639F 1D775A21 3058F2C0 579E18D2 0FB8D7F5 4486E0A5
67EC3309 23400AB7 002AD91B 687E3DE7 12E554CF 2D0571FA
45519506 4AC39BE8 663B46AA 7523BEDD 69A94844 7B66C590
56496D71 318F8763

H18

25B5C2B3 60CE8EAE 7201037A 2A27CC5D 06DF111F 2462B710
377A4F67 427328A1 5F2EAB9B 2BF0B9FE 6E8BF5E3 094D1FF1
73D676D9 6F5C8040 1A55E786 36AD3AC4 089A6A52 1B829225
6119FB0D 50BCA575 516BD0D6 43A45D02 7C447837 070864BC
14109CCB 15C7E968 4DE1264F 7D930D94 38E84189 4C3653EC
5EF9DE38 393F342A

H19

13E62E2B 39BE8958 1DA35566 503D1807 0129A3FF 7A65BF74
2216C266 571FA5A0 4CB7EE9E 25347FC1 7D4702D3 37FBF215
45D02874 14C4938C 6F888F07 61CDF44A 2C53B92B 7302799E
0F6CD8B2 595ADEED 5E78634A 3E9C34FF 4B955339 060B1E58
2B71048C 66EF49ED 1A81E8C1 084E6515 68AA32A0 30D94FB2
7420C439 42F295D3

H20

028748BA 1048C56E 0E457B4D 49B97FEA 722BDA61 3CB0182C
0722BDA7 2E7F95F8 2BDA60E5 35D7DEC6 7EE9E996 40DEB900
778E2F7C 6983915F 30722BDB 3915ED31 7B4C1C8B 5ED30723
60E457B5 6541A2A8 6C266442 15ED3073 22BDA60F 27185312
4C1C8AF7 192F0384 0BE08E50 1C8AF699 457B4C1D 57B4C1C9
521134D4 5B76F23E

H21

4844D352 11B569D6 71513E63 0D3F9F4F 4F666EF5 64BC0E10
4601A81F 3D4DB494 18D2AF3C 21C7420D 2F823940 5DA9E321
639EB3B7 1697D471 7836F889 037AE402 5A8B5E86 045859A5
6DDBC8FA 6AF9755D 767383C4 412315B8 54CE25CB 1FF0129B
7F14452E 26E5FFAA 3308CFD9 3A6F0933 342A727E 53EC986C
28A084E7 0A1D22E8

H22

2F563607 4CE25CAB 39EB3B6D 308CFD87 4BC0E10C 3EC986CA
75F7B19A 11616691 64680157 0EBBAD11 42A727E6 1806A07B
099910B6 541A2A8C 07DC6BFB 7C907770 28748BA0 2631F0ED
5D7DEC66 1F241DDC 1643DB36 21134D4A 72D50C3D 6D0FC7BD
6A2D7A1A 00FED65C 7BB2CAD7 634ABCF0 5A5F51C1 45859A41
37AE4020 5338972B

H23

78E2F7CE 1B569D62 4FB261B2 41F71AFF 22437053 76A78C83
2561CDF4 5E2DD17F 67383C4E 1513E62F 2B24B6B9 697D4703
590F6CD8 03AEEB45 4890DC15 574A1795 46D5A758 34FE7D39
0AC92DAF 12315B88 71853124 2C060B1E 6E5FFAA4 0DEB9008
601A81E9 048C56E2 3D99BBD3 5068AA32 7FC04A69 1C7420C5
3ABB0674 33DCC09E

H24

075DD689 598ED1AA 332216C2 7F3E9C35 0A37FBF3 0918ADC4
7254B14F 5AA1879D 609B3C9B 3D676D8F 4B415C7E 717BE778
15925B5D 21ED9B16 462B7104 7C11CA02 6EDE47D6 3E483BB8
22C2CD21 54E4FCD0 2C87B66C 486E0A49 18F87627 16BD0D6A
1BD72010 300D40F5 63B46AAC 57CBAAE7 6DF111E1 45042733
047280BE 2FA8E05B
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Table D.10: H25 through H32

H25

16E8BF5F 597007F6 483BB87C 712E554D 2FFD526E 5393F342
3A10621D 42D84CC8 251EA6DA 0D40F461 4C9D3785 3EB6EDE4
467EC331 7BCDA1F9 5DD6880F 6E20918A 6A861E73 57357CBB
124E30A6 64C3653E 07A300D5 7F6B2E00 7588DAB4 03058F2C
30F396A9 21B82923 1C0B4BEB 34551950 18ADC412 09E67B98
6065EAC7 2B5BDD97

H26

47A9B692 27CC5C55 20EEE1F2 62B71048 3BC717BE 70789D9C
173FCAFC 02D2FA8F 775A203B 799EE604 32216C26 4E4FCD0A
29089A6A 6C73D677 524486E1 55663B46 0C163CB0 05F04728
101D775B 19FB0CC3 408B0B35 0B348117 6595ADEF 496D70AD
3503D181 5BA2FD79 7EBC5BA3 3CE5AA19 6B516BD0 2E2A27CD
1ED9B164 5C8040DE

H27

58737D12 680156C9 4FE7D387 7F95F85C 38972AA7 7DEC66BA
1F71AFE9 6A78C82F 4D9E4D61 2F038432 544F98B9 71D08311
3AEEB441 41A2A8CA 06A07A31 0A9C9F9A 134D4A42 1134D4A4
34ABCF0C 04D9E4D7 5636065F 2146FF7F 1D08310F 66442D84
73A91DF7 36D251EA 43DB362C 08E5017C 233F6199 5A0AE3F4
643DB362 2D7A1AD4

H28

2EAB9ABF 109CCA29 274DE127 791F5B76 4ECE7078 5C01FDAC
70F920EE 32A0D154 55E78634 6CF26B05 0571FA5A 77DB9D49
49ECCDDF 47280BE0 1E580C16 6BD0D6A2 206F5C80 3B46AACC
5B23400B 6236AD3A 7E3DE6D1 0C9781C2 6514109D 025347FD
29892718 52C53B93 197AB1B1 17BE778E 0BB53C65 400AB647
3C64176B 35826CF3

H29

4947A9B6 29A3FE03 10B61332 6BFA0FB9 27E6854E 5BDD9657
320BB53D 1EF3687F 20918ADC 022C2CD3 4075DD69 62C87B66
5CAA99C5 3C4ECE70 65BF74F4 5598ED1A 70524487 79603058
7E173FCA 52EFE288 198467ED 3B39C1E2 0B1E580C 6C8D002B
357CBAAF 77254B15 055B2341 2ED4F191 17C11CA0 4702D2FB
0C69579E 4E30A624

H30

0EEE1F24 239405F0 1C2192F0 6E0A4891 1546541A 4A1794AF
7BE778E2 75A203AF 51BFDF91 0789D9CE 3F1EF369 2AF3C31A
315B8824 4452EFE2 6928F536 676D8E7B 7CC5C545 09CCA283
2DD17EBD 7280BE08 58D8197B 43705245 4D352908 24B6B857
604F33DC 1B032F57 1264E9BD 36793583 00AB6469 5FFAA4DC
383C4ECE 569D6236

H31

5A203AEF 163CB018 64E9BC25 1879CB55 33A3ABB0 6AACC768
71048C56 0D6A2D7A 5ADEECB3 7FBF2147 0D94FB26 7F41F71B
4FCD0A9C 280BE08E 71FA5A0A 4F33DCC0 18871D09 26B04D9F
28F536D2 546541A2 03D1806B 549B97FE 418871D1 032F5637
335D7DEC 3D1806A1 264E9BC3 16C26644 64176A79 4176A78D
6A521134 3DE6D0FD

H32

24370525 4A9629DD 08CFD867 3EE35FD1 50427329 561CDF44
3784993B 01A81E8D 2D50C3CF 69579E18 75DD6881 7CBAAE6B
121B8293 7383C4EC 0E91740A 1B7C4479 07F6B2E0 31DA3556
1D22E814 4CC885B0 6F093275 666EF49F 5925B5C3 38BDF3BC
45AF435A 14452EFE 603058F2 43F1EF37 2269A948 5F7B19AE
7AE40206 2B0E6FA2
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Appendix E

Combinatorial Objects Used in
Construction 5.16

These are the objects that were used in Construction 5.16 in Table 5.1.

E.1 Hadamard Matrices

H4 =


1 1 1 1
1 − 1 −
1 − − 1
1 1 − −



H8 =



1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 − − 1 1 − − 1
1 1 − − 1 1 − −
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 − − 1 − 1 1 −
1 1 − − − − 1 1



H12 =



1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − 1 1 1 − − − 1 −
1 − − 1 − 1 1 1 − − − 1
1 1 − − 1 − 1 1 1 − − −
1 − 1 − − 1 − 1 1 1 − −
1 − − 1 − − 1 − 1 1 1 −
1 − − − 1 − − 1 − 1 1 1
1 1 − − − 1 − − 1 − 1 1
1 1 1 − − − 1 − − 1 − 1
1 1 1 1 − − − 1 − − 1 −
1 − 1 1 1 − − − 1 − − 1
1 1 − 1 1 1 − − − 1 − −
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E.2. LATIN SQUARES

H20 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − − 1 1 1 1 − 1 − 1 − − − − 1 1 −
1 − − 1 − − 1 1 1 1 − 1 − 1 − − − − 1 1
1 1 − − 1 − − 1 1 1 1 − 1 − 1 − − − − 1
1 1 1 − − 1 − − 1 1 1 1 − 1 − 1 − − − −
1 − 1 1 − − 1 − − 1 1 1 1 − 1 − 1 − − −
1 − − 1 1 − − 1 − − 1 1 1 1 − 1 − 1 − −
1 − − − 1 1 − − 1 − − 1 1 1 1 − 1 − 1 −
1 − − − − 1 1 − − 1 − − 1 1 1 1 − 1 − 1
1 1 − − − − 1 1 − − 1 − − 1 1 1 1 − 1 −
1 − 1 − − − − 1 1 − − 1 − − 1 1 1 1 − 1
1 1 − 1 − − − − 1 1 − − 1 − − 1 1 1 1 −
1 − 1 − 1 − − − − 1 1 − − 1 − − 1 1 1 1
1 1 − 1 − 1 − − − − 1 1 − − 1 − − 1 1 1
1 1 1 − 1 − 1 − − − − 1 1 − − 1 − − 1 1
1 1 1 1 − 1 − 1 − − − − 1 1 − − 1 − − 1
1 1 1 1 1 − 1 − 1 − − − − 1 1 − − 1 − −
1 − 1 1 1 1 − 1 − 1 − − − − 1 1 − − 1 −
1 − − 1 1 1 1 − 1 − 1 − − − − 1 1 − − 1
1 1 − − 1 1 1 1 − 1 − 1 − − − − 1 1 − −


E.2 Latin Squares

Each of the Latin squares of order n are defined on the alphabet {0,1, . . . ,n−1}.

L3 =

 0 1 2
2 0 1
1 2 0



L4 =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0



L7 =



0 1 2 3 4 5 6
1 3 5 2 0 6 4
2 5 4 6 3 0 1
3 2 6 5 1 4 0
4 0 3 1 6 2 5
5 6 0 4 2 1 3
6 4 1 0 5 3 2
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E.3. MUTUALLY SUITABLE LATIN SQUARES

L11 =



0 1 2 3 4 5 6 7 8 9 10
1 2 9 5 7 10 0 6 4 3 8
2 9 3 10 6 8 1 0 7 5 4
3 5 10 4 1 7 9 2 0 8 6
4 7 6 1 5 2 8 10 3 0 9
5 10 8 7 2 6 3 9 1 4 0
6 0 1 9 8 3 7 4 10 2 5
7 6 0 2 10 9 4 8 5 1 3
8 4 7 0 3 1 10 5 9 6 2
9 3 5 8 0 4 2 1 6 10 7

10 8 4 6 9 0 5 3 2 7 1



L19 =



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 14 17 9 11 8 4 12 18 0 10 5 16 3 7 6 15 13
2 14 3 15 18 10 12 9 5 13 1 0 11 6 17 4 8 7 16
3 17 15 4 16 1 11 13 10 6 14 2 0 12 7 18 5 9 8
4 9 18 16 5 17 2 12 14 11 7 15 3 0 13 8 1 6 10
5 11 10 1 17 6 18 3 13 15 12 8 16 4 0 14 9 2 7
6 8 12 11 2 18 7 1 4 14 16 13 9 17 5 0 15 10 3
7 4 9 13 12 3 1 8 2 5 15 17 14 10 18 6 0 16 11
8 12 5 10 14 13 4 2 9 3 6 16 18 15 11 1 7 0 17
9 18 13 6 11 15 14 5 3 10 4 7 17 1 16 12 2 8 0

10 0 1 14 7 12 16 15 6 4 11 5 8 18 2 17 13 3 9
11 10 0 2 15 8 13 17 16 7 5 12 6 9 1 3 18 14 4
12 5 11 0 3 16 9 14 18 17 8 6 13 7 10 2 4 1 15
13 16 6 12 0 4 17 10 15 1 18 9 7 14 8 11 3 5 2
14 3 17 7 13 0 5 18 11 16 2 1 10 8 15 9 12 4 6
15 7 4 18 8 14 0 6 1 12 17 3 2 11 9 16 10 13 5
16 6 8 5 1 9 15 0 7 2 13 18 4 3 12 10 17 11 14
17 15 7 9 6 2 10 16 0 8 3 14 1 5 4 13 11 18 12
18 13 16 8 10 7 3 11 17 0 9 4 15 2 6 5 14 12 1


E.3 Mutually Suitable Latin Squares

The mutually suitable Latin squares that were used in the thesis were generated from
mutually orthogonal Latin squares. These sets of mutually orthogonal Latin squares can be
obtained through the use of finite fields (see [11, Construction 3.29]). Once we have ob-
tained the full set, we may make the transformation ((i, j),k)−→ ((k, j), i), where ((i, j),k)
that the (i, j) entry is a k. The set obtained is a set of mutually suitable Latin squares (see
[21, Lemma 9] for a proof of this).
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