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Abstract

In this thesis we explore the centrality rankings of functions in call graphs of scientific

software using spectral method. Dependency Structure Matrix (DSM) is used as a mod-

eling tool to represent and examine pattern of inter-dependencies among functions. We

compute the hubs and authorities in directed networks using functions of matrices. The

non-symmetry nature of the dependency relations is addressed by bipartization, i.e., by

defining a symmetric matrix B using the original matrix and its transpose as shown below:

B =

 0 A

AT 0


We use the matrix exponential method for computing hubs and authorities. We show that

the hub and authority ranking provided by the diagonal entries of the matrix exponential

may vary from the ranking provided using HITS algorithm. These two methods have been

applied on both non-weighted and weighted call graphs of three scientific software and the

results have been analyzed.
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Chapter 1

Introduction

In this thesis we study software systems specifically designed for problems arising in scien-

tific and engineering applications [15]. There are still some significant queries, regarding

the design structure of scientific software, that need to be addressed. The architecture of a

software system involves the specification of the elements it is composed of and the pattern

of interactions among those elements. It is widely accepted that a formal and sound basis

for the representation of software architecture is beneficial for the effective development

and maintenance of software systems.

Network science is an emerging approach for modeling and analyzing large and complex

systems that arise in diverse scientific disciplines from social network analysis to epidemi-

ological studies [7] [3] [4] [5].

A system is a combination of interacting elements organized to achieve one or more stated

purposes [6]. A network is an abstraction of objects called components (of a system) and

their interactions. Network science provides us with algorithmic tools and techniques to

study pattern of interactions between individual components to obtain valuable insights

about the system under study.

In this thesis, we study the architecture of scientific software represented as a component

dependence network. The central research question that we address in this thesis is what

are the important components in the network. In the language of network science the no-

tion of importance of a component is given by its centrality in the network. We employ

spectral techniques to analyze the component dependence network of a selected collection

of scientific software. We present and analyze results from numerical testing.

1



1.1. MOTIVATION AND BACKGROUND

1.1 Motivation and background

In this thesis, we employ a set of quantitative measures to identify important design ele-

ments in scientific software by analyzing the interactions between them. Scientific software

systems are complex products varying from thousands to millions of lines of source code,

embodying implicit design decisions, internal and external constraints, different technical

and non-technical concerns [13]. In our work, the centrality analysis of call graphs has been

extended beyond nodal degree. More precisely, the importance of a node in a call graph

is determined by its ”connectedness”. As a caller, a function’s importance or centrality is

determined by the importance of the functions that it calls. Likewise, as a callee, a func-

tion is considered important if it is called by important functions. Therefore the centrality

measure captures information beyond what is provided by simple in- or out-degree count.

According to Gilbert Strang [25], for a directed graph if each pair of vertices are connected

by a directed path and if its adjacency matrix is irreducible then according to Perron-

Frobenius [23], the result states that the largest eigenvalue of the matrix is positive and

simple.The associated eigenvector has non-negative components and their values represent

relative importance of the respective nodes. We interpret and compare different eigenvec-

tor centrality measures applicable to function call graphs. The dependency structure matrix

(DSM) has been used as a tool to represent, analyze and compare structural metrics. DSM

is a network modeling tool used to represent the elements comprising a system and their

interactions [1]. It is a highly flexible system modeling tool. The DSM has been modified

and extended by many researchers and practitioners since its initial development.

DSM allows us to apply linear algebra techniques to analyze dependency network. DSM

can meaningfully represent a fairly large, complex system in a relatively small space.

In this work, we are trying to determine the importance or centrality of the components

2



1.1. SCIENTIFIC COMPUTING SOFTWARE

of a scientific software which will be helpful in understanding several other things. For

example, if there is a change made in one component, what are the impacts of that change

in the other components. Another example would be if a network is redesigned, which of

the components will be affected the most. Instead of using degree-based centrality we are

using spectral method for the analysis. It is expected for a spectral method to give more

accurate information about centrality.

1.1.1 Scientific computing software

According to Marco A Gonzela [13], software systems are complex products varying

from thousands to millions of lines of source code, embodying implicit design decisions,

internal and external constraints, different technical and non-technical concerns. Though

a number of scientific computing software applications have been developed as a proof-

of-concept tool, powerful hardware resources facilitated scientific software to solve and

simulate large problem. With the rise of more powerful hardware resources and super

computers, an increasing number of scientific applications are being developed to carry out

wide-ranging simulation runs which were previously not possible [16]. Unlike the one-

time throwaway computer code, these simulation software applications are highly complex

and extensive (IPSL-CM5, 2011) containing millions of lines of computer code. The ap-

plications involve substantial investment in time and other computational and manpower

resources, and tend to have life-cycles measured in tens of years. The various importance

of scientific software are re-usability, extensibility, efficiency, portability, correctness, ro-

bustness and ease of use.

Software systems are composed of one or more independently developed modules. Each

module is a segment of the software. When software module A uses another software mod-

ule B then we say module A is dependent on module B. Software dependency can be static

or dynamic. The concept of static dependency is that one module is required to compile

another module. Dynamic dependency, also known as run-time dependency, is a record of

3



1.3. ORGANIZATION OF THE THESIS

an execution of the program. In our work dynamic dependency is not appropriate as not

all subroutines are executed at run time, so complete code dependency will be missing to

some extent.

1.1.2 Software architecture

Software architecture helps to understand the complexity of large software systems. It

is the high level structure of the software system. Software architecture is an ”intellectually

graspable” abstraction of a complex system. This abstraction provides a number of benefits.

For example:

(i) Even before the system is built, the software architecture gives a basis for analysis of

software systems’ behavior.

(ii) It provides a basis for re-use of elements and decisions. A complete software architec-

ture or parts of it can be re-used across multiple systems whose stakeholders require

similar quality attributes or functionality. It saves design costs.

(iii) It supports early design decisions that impact a system’s development, deployment,

and maintenance life.

1.2 Dependency relationship

Dependency relationship can be viewed as a complex network. This complex network

view has been successfully applied in numerous areas. For example, nature’s most complex

system, the human cerebral cortex has been used in the paper [5]. The initial success

of a new weighted network communicability measure in distinguishing local and global

differences between diseased patients and controls is reported.

4



1.4. CONTRIBUTION OF THE THESIS

1.3 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we discuss the description

of the dependency extraction and Modeling. In this Chapter we discuss about the different

tools that are used to extract and visualize call graphs. And finally says about the tool that

was used for data extraction in our thesis.

Chapter 3 presents detailed description about component centrality using spectral methods.

Numerical experiments are shown in chapter 4. The results have been discussed and com-

pared.

Finally, conclusions drawn from our experiments are discussed in Chapter five. Future

work has also been added in this Chapter.

1.4 Contribution of the thesis

In this thesis, the centrality analysis of call graphs has been extended beyond nodal

degree. Our main objective is to determine the importance or centrality of the components

of a scientific software which will be helpful in understanding several other things. For

example, if there is a change made in one component, what are the impacts of that change

in the other components. Another example would be if a network is redesigned, which of

the components will be affected the most. Instead of using degree-based centrality we have

used spectral method for the analysis. More specifically the thesis addresses the following

issues.

• We extend the notion of centrality of software components, as discussed in [30] [17],

beyond nodal degrees. The spectral techniques employed have yields more accurate

rankings as the methods are based on the entire network topology.

• The ranking methods developed in the paper are directly applicable to engineer-

ing systems design applications. Smith and Eppinger [24] applied DSM model to

a Brake-system Design. The objective of the analysis was to rank the subsystems

5



1.4. CONTRIBUTION OF THE THESIS

in the design space with regard to the convergence of design iteration. The spec-

tral method employed by Smith and Eppinger can be extended to centrality methods

HITS and matrix exponential.

• The spectral ranking methods will be beneficial in analyzing legacy software where

there are a little or no documentation on the code is available. The spectral techniques

can be applied to identify software components that are reusable.

• To the best of our knowledge, the work presented in the thesis is the first time that

spectral analysis has been applied to scientific software domain.

A part of the work presented in this thesis has been accepted for publication as a proceeding

paper in the 17th International Dependency And Structural Modeling Conference, DSM

2015, Fort Worth, Texas, USA.

Title : On Ranking Components in Scientific Software

Author(s) : Hossain, Shahadat; Khan, Soma Farin; Quashem, Rumana
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Chapter 2

Dependency Extraction and Modeling

2.1 Design Structure Matrix

Complexity of product design has been a critical topic for both researchers and man-

agers for many years. However, with the help of a reasonable model, it has become possible

to explore approaches to understand the complexity of the product. This model known as

”Design Structure Matrix (DSM)” was originated by Don Steward in 1981 [19] for un-

derstanding interactions between product design elements. It is a tool used to compactly

represent different types of dependencies that exist between different types of components.

The dependency between one element and other is indicated with an off diagonal mark.

The DSM is a powerful modeling tool that enables visualization of a system architecture

and their interactions. System architecture is the structure of a system that includes com-

ponents relationships to each other and the principle guiding its design and evolution.

An example of simple DSM is shown in Figure 2.1. The five system elements are labeled

A to E. The mark in the off-diagonal cells represents an interaction. For example, reading

across row D, we see that the element D has inputs from element A and B. Reading down

the column D, we see that D has output going to element B. In this thesis, we used DSM

to study the architectural properties of scientific software. It is used as a modeling tool to

capture and analyze pattern of inter-dependencies among functions.

DSM, as a modeling tool, offers some salient advantages. It is a highly flexible system

modeling tool. It allows us to apply linear algebra techniques to analyze dependency net-

work. DSM can meaningfully represent a fairly large, complex system in a relatively small

space. Graphs are used to represent the exactly same information that is in the DSM. But

7



2.2. DEPENDENCY EXTRACTION

Figure 2.1: (a) DSM (b) Its equivalent in diagraph form

graphs can be difficult to understand when the number of nodes and edges grow. The struc-

tured arrangement of elements and interactions provides a compact representation format.

2.2 Dependency Extraction

Examining program dependencies is challenging for large systems [26]. A number of

tools exist for extracting and visualizing call graphs for facilitating software engineers to

understand the program [22]. The two main classes of call graph extractor are identified

by Telea et al [26]. Lightweight and Heavyweight are the two main classes of the call

8



2.2. DEPENDENCY EXTRACTION

graph extractors. Lightweight extraction provides a fraction of the entire static information

whereas Heavyweight extractors provide nearly a complete call graph by performing full

parsing and type checking. Strict and tolerant are the two types of Heavyweight extractors.

Strict heavyweight extractors are based on compiler which stops when there is a lexical

or syntax error. However, tolerant ones are based on Fuzzy or Generalized Left Reduced

(GLR) parsing. GLR parsing is one of the most efficient parsing for context free grammer.

A Tolerant heavyweight extractor provides complete static call graphs.The tool OINK is a

tolerant heavyweight extractor. There exists another tool, called Lattix LDM. In contrast

to the more common dependency analysis tools that use box-and-line diagrams to show the

dependencies among components, this tool uses a DSM.

In [30], the OINK-based call-and-structure extractor was used. As a result, only file and

call graphs could be extracted.

The tool that has been used for data extractions in this thesis is Understand [29] which has

more choice of dependency extraction.

Understand is used to analyze the dependencies between software artifacts in a project.

The application supports a wide range of programming languages, including Ada, C++,

FORTRAN, Java, JOVIAL and Delphi/Pascal.

It offers code navigation using a detailed cross-referencing, a syntax-colorizing ”smart”

editor, and a variety of graphical reverse engineering views. Understand has architecture

features that help us create hierarchical aggregations of source code units. We can name

these units and manipulate them in various ways to create interesting hierarchies for anal-

ysis.

The Dependency Browser helps to examine which items are dependent on others. The

Dependency Browser can be used with architecture nodes, files, classes, packages, and in-

terfaces. With the help of the dependency browser different types of dependencies can be

extracted. A brief explanation of the dependencies that can be extracted using Understand

is given below. We have used a small project to show the dependencies.

9



2.2. DEPENDENCY EXTRACTION

Call Dependency:

Figure 2.3 shows all the call dependencies of a Scanner project. The files with the outgoing

edges are dependent on the files with the incoming edges. For example, by looking at Fig-

ure 2.3 we can tell that the file symtable.cc is dependent on the file token.cc and token.h,

as there is an edge from symtable.cc to token.h and token.cc. The integer value on the edge

represents the total number of dependencies. For instance, there are total 11 function calls

from symtable.cc to token.cc. The details of these calls or dependencies can be found in

the Information Browser.

The 11 call dependencies are:

1) search() calls getLexeme() 4 times in symtable.cc (line 44,49,54,56)

2) insert() calls getLexeme() 4 times in symtable.cc (line 93,114,118,133)

3) insert() calls token() 4 times in symtable.cc (line 105,122,136)

Figure 2.2 shows the two functions, Search() and Insert(), and the calls that have been made

within those functions.

Uses Dependency:

The Uses Dependency Graph shows the various uses between two files. For example by

looking at the use dependency graph we can tell that token.cc uses token.h 5 times. Figure

3 shows the Uses Dependency Graph. The edge from token.cc to token.h with the integer

value 5 shows that token.cc uses 5 entities or objects from token.h. When we look at it

closer we can see the following:

1) Token::getLexeme() returns svalue at token.cc

2) Token::getLexeme() returns lexeme at token.cc

10



2.2. DEPENDENCY EXTRACTION

Figure 2.2: Two functions : search() and insert()

3) Token::getSymbol() returns Token:sname at token.cc

4) Token::getValue() returns Token:svalue

11



2.2. DEPENDENCY EXTRACTION

Figure 2.3: Call dependency

5) Token::getValue() returns Token:value

Thus making 5 Uses Dependency. These information are shown clearly on the Dependency

Browser. The information of the dependency browser is saved in a comma separated value

(csv) file called usesdb.csv. The csv file contains 4 columns in this case. To File represents

the file name along with its path. References, From Entities, To Entities represents the

total number of uses , number of function that uses other functions or objects, number of

functions or objects that are being used by other functions respectively.

Init Dependency:

The init dependency focuses on the initialization of an object. In Figure 2.5 we can see

that there is only one edge from token.cc to token.h with an integer value of 2. The picture

12



2.2. DEPENDENCY EXTRACTION

Figure 2.4: Uses dependency

below gives a closer view of the initialization of an object.

There are 2 initialization. Both are Token constructor (Token()::Token()) initializing svalue.

Set Dependency:

The set dependencies are shown in Figure 2.6. There are 12 set dependencies. The default

constructor, Token, Sets the object sname 3 times at token.cc(line 10,11,12). Token Sets

lexeme at token.cc(line 12) and Token Sets the object value at token.cc(line 11). Similarly,

the other constructor also sets objects. Thus making 12 set dependencies.

13



2.3. MATRICES AND GRAPHS

Figure 2.5: Init dependency

Include Dependency

Figure 2.7 portrays the files with include dependency. The include Dependency graph

shows the files that are needed to be included for implementation. For example, in Figure

2.7 we can see that symtable.h is dependent on token.h. It means that symtable.h has

included the file token.h.

14



2.3. MATRICES AND GRAPHS

Figure 2.6: Set dependency graph

Figure 2.7: Include dependency graph

2.3 Matrices and Graphs

An English mathematician named James Josheph Sylvester was the first to introduce

the term Graph in a paper published in 1878 in an interdisciplinary scientific journal called

Nature, where he draws the correlation between ”quantic invariants” and ”co-variants” of

algebra and molecular diagrams. Graphs have been used in an extensive range of applica-

15



2.3. MATRICES AND GRAPHS

tions since then.

In graph theory, a graph G = (V,E) consists of two sets V and E . The set V is a finite

set of vertices and the set E represents the pairwise relationship between the vertices in V.

This pairwise relationship is called edge. For each edge e = (u,v) where the two end points

u,v ∈V are said to be neighbors or adjacents.

A weighted graph is a graph where a number is associated with an edge. These numbers

are called weight or cost of the edge [20].

Graphs can be directed or undirected. In a directed graph the vertices are connected using

an arrow like edge. An edge e = (u,v) in a directed graph, u is the tail and v is the head of

the edge. As a result, the pairs (u,v) and (v,u) represent two different edges in the graph.

Directed graphs are also called digraphs. On the other hand, in an undirected graph the

vertices u,v ∈ e are un-ordered. Therefore, the pair (u,v) and (v,u) represents the same

edge. Figure 2.8 and Figure 2.9 displays an undirected graph and directed graph respec-

tively. Subgraph G′ of G is a graph such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G) where

Figure 2.8: Undirected graph Figure 2.9: Directed graph

E(G′) = (u,v) ∈ E(G)|u,v ∈V (G′). A path in a graph is a sequence of edges that connect

sequence of distinct vertices. For example, 1,3,2 is a path in Figure 2.9. The sequence of

vertices are 1,3 and 2, and the sequence of edges are (1,3) and (3,2).

The length of a path is the number of edges in the path. A path is simple if all the vertices

in the path are distinct.

A cycle is a path where the first and last vertices are the same. A tree is a connected acyclic

16



2.3. MATRICES AND GRAPHS

graph . If there is an edge (u,v) then u is said to be the parent of v and v is said to be the

child of u. Directed Acyclic Graph is a directed graph which does not contain any cycles.

The degree of a vertex v is the number of edges incident to that vertex v in a graph

G = (V,E). For a directed graph, the number of incoming edges are known as in-degree

and the number of outgoing edges are known as out-degree.

A DSM is used to represent the exactly same information that is in the graph. The rea-

son of using two different ways, graph and DSM, to represent the same information is

because there is a trade-off. Graphs are more intuitive than DSM but they can be difficult

to understand when the number of nodes and edges grow. A few dozens nodes can be

enough to produce a graph too complex. On the other hand, large and complex graphs can

be very efficiently represented by a DSM. In this thesis, we use the duality of a graph and

Figure 2.10: Large and complex graph efficiently represented by a DSM

matrix to effectively represent and compute quantitative information about the architecture

of a software system using Graph Theory and Linear Algebra. Technically, the differences

between matrix and graphs representations are minimal because data can be stored and

presented in a variety of ways [21]. However, in practical applications in which software

tools are being created to support new design methods, it has been found that the choice

between using a matrix-based or graph-based representation has implications for the way

the product information is captured, evaluated, and used [28].
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Common product representation models can be generally classified as being matrix-based

or graph-based model. Two such representations are High Definition Design Structure

Matrix (HDDSM) and Component Flow Graph (CFG). The HDDSM modeling process re-

duces the effort required from the examiners and allows the creation of the model to be

distributed across many people or completed at different points in time. A hierarchical sys-

tem approach is used in which, at the beginning of the model creation process, the system

is divided into groups. The system model is created using each group as a system element.

Then for each group, the HDDSM can be created separately and merged back into the sys-

tem model. After merging the group HDDSM into the system HDDSM, only a subset of

interactions between elements of the group and other elements of the system needs to be

reviewed [28].

The original intent of the CFG was to formally represent concepts derived from a func-

tion structure. In engineering design, the term function depicts the intended input/output

relationship of a system whose purpose is to perform a task. If the overall task can be ad-

equately defined, then it is possible to integrate input/outputs of all the quantities involves

in an overall function. An overall function can usually be divided into identifiable sub-

functions. The meaningful and compatible combination of sub-functions into an overall

function produces a so called function structure. For details we refer to [11]. It has been

established in Andrew’s et al. paper that the formalized structure and systematic process of

the HDDSM matrix-based model is found to be extremely valuable during capture phase

and for mathematical evaluation, whereas, the CFG graph-based model strongly supports

automated model transformation and intuitive interpretation for the user [28].
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Chapter 3

Spectral Analysis of Dependencies

In this thesis our objective is to determine the centrality of the components of a scientific

software. Instead of using degree-based centrality we are using spectral method for the

analysis. Spectral methods rely on the eigenvalues of matrix representations of networks,

and capture global information on structure. The basic premise is that networks have dis-

tinct spectra and hence the spectra are ’fingerprints’ of network topology [9].

In this Chapter we will discuss about the two methods, namely HITS and Benzi et al.

method, that we have applied to analyze the relative importance of components in scien-

tific software.

3.1 Spectral Centrality

The idea of centrality as applied to human communication was first introduced by Bave-

las in 1948 [10].

Jarod P.Benowitz defined centrality as a measure in which the nodes of a network are as-

signed a rank with respect to vertices from most important to least important. The idea of

centrality has been applied by the researchers in many areas such as communication net-

work, analysis of the organizational and technological structure.

Complex networks appear frequently in various technological, social and biological sce-

narios. These networks include the Internet, the World Wide Web, social networks, sci-

entific collaboration networks, lexicon or semantic network, neural networks, food web,

metabolic networks , and Proteinprotein interaction networks [8]. In complex networks it

is a common phenomenon to focus on the pattern of the interactions between individual

components in a system and hence the idea of centrality has been used in large networks.
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For example the extension of this measure has been introduced in [5]. In this paper, Crofts

and Higman have judged the size of the cluster not by the number of nodes, but by the total

weight of connections that they possess [5].

Centrality is an important structural attribute of social network. One common question in

network analysis is to determine the most important nodes in the network, also called node

or vertex centrality. Due to this, over the years, a great many different measures of central-

ity have been proposed [2].

There are topological properties from where centrality can be measured. One of the most

sophisticated way to measure centrality is by using spectral methods. Spectral methods rely

on the eigenvalues of matrix representations of networks, and capture global information

on structure. In linear algebra, an eigenvector v of a square matrix A is such that

Av = λv

where λ is the eigenvalue associated with the eigenvector v.

Networks have distinct spectra (eigenvalue pattern) and hence the spectra are the finger-

prints of the network topology [9].

3.2 Eigenvalues and Eigenvectors

Let A∈Cnxn be a matrix of complex numbers. A nonzero vector x∈Cn is an eigenvector

of Matrix A with corresponding eigenvalue λ ∈C if x and λ satisfy the equation

Ax = λx (3.1)

Equation 3.1 has a nonzero solution if and only if the determinant of A−λIn is zero.

The set of eigenvalues of matrix A can be characterized as roots of the characteristic poly-

nomial PA(λ) = det(A−λIn)

The spectrum of matrix A is defined as the collection of all eigenvalues of A. The degree of
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polynomial PA(λ) is n, so, altogether A has n eigenvalues, some of which may be complex,

and some eigenvalues may be repeated.

The algebraic multiplicity of an eigenvalue λ of A is the number of times λ is repeated

as a root of the characteristic equation PA(λ) = 0

The spectrum of the DSM of call graph and the associated eigenvectors can reveal a wealth

of structural information about the underlying network as we demostrate in this thesis. The

two spectral ranking methods that are used in the thesis are obtained from the eigenvectors

associated with selected eigenvalues of the associated DSM.

3.3 Hubs and Authorities

Hubs and Authorities are the two types of important nodes in a network. Hubs are

nodes which point to many nodes of the type important. Authorities are these important

nodes. From this comes a circular definition: good hubs are those which point to many

good authorities and good authorities are those pointed to by many good hubs [2].

3.4 Hypertext Induced Topics Search

Jon Kleinberg, a professor in the Department of Computer Science at Cornell, devel-

oped an algorithm called hypertext-induced topic search (HITS), which made use of the

link structure of the web in order to discover and rank pages relevant for a particular topic

[18]. The HITS ranking relies on an iterative method converging to a stationary solution.

In the network, each node i is assigned two non negative weights. One is authority weight(xi)

and the other is hub weight (yi). Initially, each xi and yi is given an arbitrary nonnegetive

value. Then the weights are updated in the following way:

x(k)i = ∑
j:( j,i)∈E

y(k−1)
j and y(k)i = ∑

j:(i, j)∈E
xk

j for k = 1,2,3 · · ·
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3.4. HYPERTEXT INDUCED TOPICS SEARCH

• In the kth iteration, node i is assigned a new authority weight (x(k)i ) equal to the sum

of y(k−1)
j where the sum runs over each node j which points to node i. This is repeated

for all nodes in the graph.

• The new hub weight y(k)i is the sum of (x(k)i ), where the sum runs over the nodes j to

which node i points. This is repeated for all nodes in the graph.

• The hub weights are computed from the current authority weights, which in turn were

computed from the previous hub weights.

This iteration sequence shows the natural dependency relationship between hubs and au-

thorities. If a node i points to many nodes with large x-values, it receives a large y-value.

Similarly, if it is pointed to by many nodes with large y-values, it receives a large x-

value[20].

After new weights are computed for all nodes, the weights are normalized so that:

√
n
∑

i=1
x2

i =

√
n
∑

i=1
y2

i = 1

In order to construct a linear algebra formulation of this method two vectors are created.

Vector xk of the authority weights at iteration k and vector yk of the hub weights, where

~xk = [xk(1),xk(2), ...,xk(n)]T ,

~yk = [yk(1),yk(2), ...,yk(n)]T .

A popular choice of the initialization of the vectors ~x(0) and ~y(0) would be the constant

vectors
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~x(0) = ~y(0) = [1/
√

n,1/
√

n, ...,1/
√

n]T

When A is the adjacency matrix of the directed graph G, the algorithm becomes

~x(k) = ckAT~y(k−1) , ~yk = c′kA~xk ,

where ck and c′k are the normalization constants chosen such that the sum of the squares of

the authority weights, as well as that of the hub weights, is 1 in the kth iteration.

Combining the above two formulas, we get

~x(k) = ckc′(k−1)A
T A~x(k−1) for k > 1

~y(k) = c′(k−1)ckAAT~y(k−1) for k > 0

Hence, HITS is an iterative power method to compute the dominant eigenvector for AAT

and AT A [12]. The hub scores are determined by the entries of the dominant eigenvector

of AAT and the authority scores are determined by the entries of the dominant eigenvector

of AT A [2].

We explain the HITS algorithm with an example.

Consider the small directed network in Figure 3.1

The adjacency matrix is given by

A =



0 1 1 0

1 0 1 1

1 1 0 0

0 0 1 0
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Figure 3.1: Directed network

Just by looking at the graph and the connectivity of the nodes we can see that in terms of

hubs there is a tie between the nodes 1,2 and 3. All three nodes are ranked as number one. In

terms of authorities, node two is ranked number one followed by node 3. There is a tie be-

tween node 1 and node 4. We obtain somewhat different results using the HITS algorithm.

The eigenvectors of AAT and AT A corresponding to the largest eigenvalue λmax ≈ 3.9563,

yield the following ranking for hubs and authorities:

Figure 3.2 shows the ranking for hubs is : 1;3;4;2. The ranking for authority is : 2;3;4;1.

Figure 3.2: Ranking using HITS algorithm
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3.4.1 Convergence of the hub-authority computation

In the HITS algorithm there are some numerical issues that need to be pointed out. First,

one needs to know if the iterative process converges (to be useful for ranking purposes, the

iterations must converge to limiting vectors).

Furthermore, if the process does converge, it is useful to know the conditions required for

convergence. For a symmetric matrix AAT (AT A), the eigenvalues are real numbers [12].

Since the entries of AAT and AT A are nonnegetive, the eigenvalues can be ordered as

λ1 = λ2 = · · ·= λl ≥ λl+1 ≥ ·· · ≥ λn ≥ 0

The largest eigenvalue (in absolute value) can be of multiplicity l. If l = 1, the HITS

algorithm converges to unique hub and unique authority vectors.

For l ≥ 2 the hub and authority vectors need not be unique. The vectors that the HIYS

iteration converges to in general will depend on the initial vectors x(0) and y(0).

Figure 3.3: Converging to the eigenvector

By looking at Figure 3.2 and Figure 3.3, we see that the hub and authority values are

converging to the eigenvector corresponding to the largest eigenvalue.
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3.5 Benzi’s Method

According to Freeman , the degree of a node is an indicator to represent centrality or

importance of a node in a graph. However, the degree of a node represents its connect-

edness to other nodes in its immediate neighborhood only. Since then several researchers

have extended the notion of well-connectedness, i.e many other nodes can be reached from

the nodes in question, giving more accurate calculation of node centrality. In particular,

researchers have exploited the duality between a graph and its associated matrix.

Given an undirected graph G and its adjacency matrix A which is symmetric, the entries of

powers of matrix A contains important topological information about the graph.

The (i,j)th entry of the lth power of the matrix, A′(i, j), counts the number of different walks

of length l from node i to node j. A′(i, j) gives the number of closed walks of the length l

that begins and end in node i. We get the identity matrix for l = 0. The diagonal can be

interpreted as each node in the graph being connected to itself with a walk of length zero.

For l = 1, a non zero entry in the diagonal indicates a self-loop. The diagonal entries give

the degree of nodes for l = 2. Thus, the concept of degree of a node can be extended to

the concept of well-connectedness or centrality by counting the number of different paths

passing through the node. Assuming that the flow of information between the nodes in a

graph is more likely to occur along walks of shorter length, the longer walks are penalized

by a scaling factor. One of the many scaling factors employed by researchers is the factorial

of the length of the walk, giving rise to the infinite series of the matrix exponential [2].

eA = 1+A+A2/2!+A3/3!+ ...+A′/l!+ ...

The diagonal entries of the matrix eA provide important information of the node. The larger

the value, the more important the node.

Benzi proposed a method where the matrix exponential formulation has been extended to

directed graphs. The directed graph is transformed into a symmetric matrix B using the
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3.5. BENZI’S METHOD

original matrix and its transpose as shown below.

B =

 0 A

AT 0


In the undirected case, i.e the network A, each node has only one role to play in the net-

work. And that is any information that came into the node could leave by the edge.On the

other hand, the directed network, B, has two roles for each node: hub and authority. It is

unlikely that a node with high hub ranking will also have high authority ranking, but each

node can still be seen as acting in both of these roles. In the network B, the two aspects of

each node are separated. Nodes 1 to n in V (B) represent the original nodes in their role as

hubs, and nodes n+1 to 2n in V (B) represent the original nodes in their role as authorities

[2].

The eigenvalues of B can be ordered as λ1 > λ2 ≥ λ3 ≥ ...≥ λ2n

Since B is symmetric matrix its eigenvectors span the ℜ2n. Therefore, it has orthogonal

eigenvectors and the matrix B can be written as:

B = ∑
2n
i=1 λiuiuT

i

where u1,u2, ...,u2nare the normalized eigenvectors of B. Taking the exponential of B, we

get:

eB =
2n
∑

i=1
eλ

i uiuT
i ,

The diagonal entries of eB indicates the hub and authority rankings.

The use of the matrix exponential for ranking hubs and authority amounts to using the en-

tries of all eigenvectors of B, weighted by the exponential of the corresponding eigenvalues

[2].

eB =
k
∑

i=1
eλ

i uiuT
i ,

where 1 < k < n
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Chapter 4

Numerical Experiments

4.1 Measuring Centrality

As discussed in Chapter 3, we are trying to determine the centrality of the components

of scientific software. Instead of using degree-based centrality we are using spectral method

for the analysis. Spectral methods rely on the eigenvalues of matrix representations of

networks, and capture global information on structure. The basic premise is that networks

have distinct spectra and hence the spectra are ’fingerprints’ of network topology [9]. It is

expected that spectral method will provide more accurate results.

The matrix exponential method for computing hubs and authorities is compared to HITS

algorithm both on small examples and on three open source scientific research software. In

this Chapter we will show the results of our experiments that we have computed and we

will then discuss and compare the pattern of those results.

All the numerical experiments presented in this Chapter are performed in octave on a two

core Intel Xeon CPU running at 2.4 GHz.

For eigenvalue decomposition we used octave function eig. The matrices are small enough

so the running time was not recorded.

4.2 Experimental Results

4.2.1 Small examples

In this section we compare degree-based, HITS and our proposed method to obtain hub

and authority rankings. The following two examples are taken from the paper ”Linear Al-

gebra and its Application” by Michele Benzi, Ernesto Estrada and Christin Klymko.
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Example # 1:

A =



0 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0


The corresponding bipartite graph is shown in Figure 4.1.

A plot of the eigenvalues of the matrix A can be found in Figure 4.2

Figure 4.1: Example 1 - bipartite graph

Table 4.1: Degree centrality score

Node Outdegree Indegree
1 1 1
2 2 2
3 1 1
4 1 1
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Figure 4.2: Example 1 - graph plot of eigenvalues

Figure 4.3: Example 1 - change in ranking using benzi’s method

The hubs and authorities that are determined by using in-degree and out-degree are

displayed in Table 4.1. Under this criterion, the hub and authority rankings are both

2;1,3,4(tie). While it is intuitive that node 2 should be given a high score for both hub

and authority, just by looking at the degrees does not allow one to distinguish the remain-

ing nodes.

According to HITS algorithm, the largest eigen value of AAT and AT A is 2. The rank-
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Table 4.2: Ranking using HITS algorithm

Node Hub Rank Authority Rank
1 0 0.333
2 0.5 0.333
3 0.25 0
4 0.25 0.333

ing suggested by the dominant eigen vectors is reported in Table 4.2. In terms of hubs,

node 2 is ranked number one followed by node 3 and 4 which are ranked number two. On

the other hand, in terms of authorities, node 1,2 and 3 are all ranked number 1.

In Figure 4.3 we report the change in ranking of the hubs and authority scores obtained

by the method of Benzi et al. The first four values represent the hub scores and the bottom

four represents the authority scores. By looking at the first column, we can see that node 3

and 4 are ranked number 1 followed by node 1 and 2. On the other hand, node 2 of column

2 is ranked number one. From column three onwards node 2 is ranked number 1. Ranking

of the last two columns are the same. Node 3 and 4 are ranked number two followed by

node one.

In terms of authority,the ranking is as following. Node 2 is ranked number 1 followed by

node 1 and 4.

With Benzi’s method, the hub ranking of the nodes is the same as in HITS. The hub ranking

is given as, rank one: node 2, rank two: node 3 and node 4, rank three: node 1. However,

in authority ranking the results are much more transparent. Node 2 is the clear winner than

being part of a three-way tie for first place:{2;1,4(tie);3}.

The method based on the matrix exponential is able to identify a top authority node by

making use of additional spectral information.
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Example # 2:

A =



0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 1 1 1 0


The corresponding bipartite graph is shown below.

Figure 4.4: Example 2 - bipartite graph

If hubs and authorities are determined using only in-degrees and out-degrees, the result

is:

A plot of the eigenvalues of the matrix A can be found in Figure 4.5.
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Table 4.3: Degree centrality score

Node Outdegree Indegree
1 0 4
2 1 1
3 1 1
4 1 1
5 1 1
6 4 0

Figure 4.5: Example 2 - graph plot of eigenvalues
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Figure 4.6: Example 2 - change in ranking using benzi’s method

By looking at Table 4.4 and figure 4.6 we see that the hub ranking provided by HITS

algorithm and and Benzi’s algorithm are same. In case of authority, HITS does not dif-

ferentiate between node 1 and nodes 2,3,4 and 5. When eB is used to calculate the hub

and authority scores, node 1 gets a higher authority ranking than all the other nodes. This

appears as a failure of HITS.
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Table 4.4: Ranking using HITS algorithm

Node Hub rank Authority rank
1 0 .2
2 .125 .2
3 .125 .2
4 .125 .2
5 .125 .2
6 .5 0

Example # 3:

This example has been taken from the paper ” On Ranking Components in Scientific Soft-

ware”.

Let the adjacency matrix be:

A =



0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 1 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 1 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0
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Figure 4.7: Example 3 - graph plot of eigenvalues

Figure 4.8 portrays the directed network of the above adjacency matrix. Based on the

out-degree, nodes 4 and 6 are tied for rank one. All the other nodes have out-degree one and

therefore tied for rank two. In terms of in-degree, node 6 is ranked number one followed

by nodes 1,4,5 and 9. The remaining nodes, with degree 1 are tied for rank three.

Figure 4.8: Example 3 - directed graph

The largest eigenvalue of matrix AAT and AT A is 5.6. The ranking suggested by the

dominant eigenvectors is shown in Figure 4.9. In terms of hubs, node 4 is ranked number

one followed by node 6 which is ranked number two. As in the out-degree based hub rank-
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Figure 4.9: Example 3 - ranking using HITS algorithm

Figure 4.10: Example 3 - change in ranking using benzi’s method

ing, nodes 5 and 7 are ranked number three. In case of authority scores, we can see that

node 5 is ranked number one followed by node 6. This ranking is more consistent with the
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actual topology of the graph as node 5 is being pointed by important hub node 6 receives

the highest authority ranking. Nodes 1 and 3 are ranked number 3.

In Figure 4.10 we report the change in hub and authority scores using Benzi’s method.

The ranking obtained by Benzi et at. gives a similar picture as in the HITS ranking. In

terms of hubs, node 4 has rank number one followed by node 6. Nodes 5 and 7 are ranked

as three. Rank four is given to nodes 2,3 and 8 followed by nodes 1 and 9. The authority

ranking is given as, rank one:node 6, rank two:node 5, rank three: nodes 1,4,9, rank four:

nodes 3 and 8, rank five: nodes 2,7.

Comparing HITS with Benzi’s method, we see that Benzi’s method gives node 5 second

highest authority score which is one rank lower than the one provided by HITS.

4.2.2 Large examples

Computational infrastructure for Operation Research (COIN-OR) is one of the largest

and most widely studied open source communities for scientific research software. We

studied open source software projects from COIN-OR.

The three scientific computing C/C++ projects that we have used for our experiments are

ADOL-C, CppAD and CSparse. In this section we will first briefly introduce these soft-

wares one by one and then display the results that we got from our experiments and discuss

and compare those results. In order to work with these softwares we first downloaded the

original source codes of these scientific computing projects. Later we used the tool Under-

stand for data extraction.

The DSM of the call graphs provides a convenient tool so that linear algebraic techniques

can be applied to identify important callers and callees through the calculation of matrix

exponentials. We also tried to explore the extension of HITS and Benzi et al. methods to

incorporate edge weights in determining the relative ranking of the function nodes. For

instance, if a function calls another function multiple times from within its body, it is im-
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portant to incorporate this information in the analysis as edge weights.

ADOL-C:

Automatic Differentiation by OverLoading in C++ (ADOL-C) is an open-source package

for the automatic differentiation of C and C++ programs [14]. The first and higher deriva-

tives of vector functions are evaluated using operator overloading method by ADOL-C [27]

It is developed by a team of researchers from Argonne National Lab,Dresden University of

Technology, and Humboldt University over a period of more than 20 years.

Figure 4.11: ADOL-C, sparse matrix

Figure 4.11 shows the sparse matrix of ADOL-C. A plot of the eigenvalues of the bipar-

tite matrix of ADOL-C can be found in Figure 4.12. Figure 4.13 portrays the architectural

dependency of ADOL-C. The top 5 hubs and authorities of ADOL-C, as determined using

the diagonal entries of eB and HITS are shown in Figure 4.14 and Figure 4.15. The algo-
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Figure 4.12: ADOL-C, graph plot of eigenvalues

rithms have been applied on both non-weighted call graph as well as weighted call graph.

We observe that there is a good deal of agreement between the eB rankings and the HITS

rankings. In fact, both methods ranked the functions myalloc1(), myfree1(), myalloc2(),

myfree2(), myfree3() as number one, two , three, four and five respectively in terms of

hubs.

Concerning the authorities, just like hubs, we get similar picture for both the methods.

Comparing Benzi’s method for non-weighted call graph with weighted call graph, in Fig-

ure 4.15, we can see that for the non-weighted call graph, in terms of authority score, the

two functions free loc() and next loc() both are ranked number three. On the other hand,

for weighted call graph, the rankings are much more transparent and clearly shows that the

function free loc() is ranked number three and the function next loc() is ranked as number

two.

In this example, the method based on the matrix exponential, applied on weighted call

graph, has produced more transparent and distinct authority score, relative to rankings ob-
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Figure 4.13: ADOL-C, dependency graph

Figure 4.14: ADOL-C, ranking using HITS algorithm

tained from non-weighted call graph, by making use of the additional information.

CSPARSE

CSparse is a C library which implements a number of direct methods for sparse linear sys-

tems, by Timothy Davis (htt ps : //people.sc. f su.edu/ jburkardt/csrc/csparse/csparse.html).

It is a library of functions, with regard to our call graph we can extract valuable information
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Figure 4.15: ADOL-C, ranking using benzi’s method

about the importance of the functions implemented in the library using our technique. The

sparse matrix of CSparse can be found in Figure 4.16. Figure 4.17 portrays a plot of the

eigenvalues of the bipartite matrix of csparse.

The architectural dependency graph of CSparse can be found in Figure 4.18. Figure 4.19

and 4.20 shows the highest hub and authority scores for the functions in CSparse library

computed using HITS and Benzi’s method for both non-weighted and weighted call graphs.

We see less agreement between HITS and Benzi’s method. When comparing the two meth-

ods for the non-weighted call graph, the results are as follows:

In terms of hubs, both methods agree that the function cs malloc() is the most impor-

tant hub and ranked it as number one. However, the method based on eB identifies the

functions cs spalloc() and cs free() as third most important hub and fourth most important

hub respectively. Whereas, using HITS algorithm, the functions cs free() and the function

cs spalloc() are ranked as number three and four. The two methods agree on the hub and

ranked the function cs spfree() as number five. Concerning authorities, both the methods

are giving similar picture.
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Figure 4.16: CSparse, sparse matrix

Figure 4.17: CSparse, graph plot of eigenvalues
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Figure 4.18: CSparse, dependency graph

Figure 4.19: CSparse, ranking using HITS algorithm

Comparing the results of the non-weighted and weighted call graphs (Benzi’s method),

we see that, in terms of hubs, the function cs malloc() is ranked number one for the non-
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Figure 4.20: CSparse, ranking using benzi’s method

weighted call graph whereas the function cs free() is ranked as number one in weighted

call graph.

In terms of authority, two functions in the non-weighted call graph has a tie. Both the

functions cs add() and cs multiply() are ranked as number three. But for the weighted call

graph, we can see that all the five functions has distinct ranks making it unambiguous.

CppAD

Given a C++ algorithm that computes function values, CppAD generates an algorithm that

computes its derivative values. A brief introduction to Algorithmic Differentiation(AD)

can be found in Wikipedia . The web site ”autodiff.org” is dedicated to research about, and

promoting the use of, AD (http://www.coin-or.org/CppAD/Doc/cppad.htm). Figure 4.21

shows the sparse matrix of CppAD. A plot of eigenvalues of the bipartite matrix can be

found in Figure 4.22. Figure 4.23 shows the architectural dependency graph of CppAD.
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Figure 4.21: CppAD, sparse matrix

Figure 4.24 and Figure 4.25 displays the results obtained from applying HITS and

Benzi’s method on the non-weighted and weighted call graphs of CppAD. The ranking

obtained by the method of Benzi et al. gives a similar picture as in the HITS ranking for

the non-weighted call graph.

If we compare Benzi’s method for the weighted and non-weighted call graph, the result is

as follows:

Hub: The two functions, call() and operator[]*() are ranked number one and number two

respectively for the non-weighted call graph. For the weighted call graph, the function op-

erator[]*() and the function call() are ranked as number one and number two respectively.

Authority: In terms of non-weighted call graph, if we look at Figure 4.25, we can see some

ambiguity for the functions hes fg map() and jac g map(). Both the functions have the

same authority score and ranked as number three. Whereas, for weighted call graph, all the
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Figure 4.22: CppAD, graph plot of eigenvalues

Figure 4.23: CppAD, dependency graph

five authority scores are distinct and hence the ranking is ambiguous.
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Figure 4.24: CppAD, ranking using HITS algorithm

Figure 4.25: CppAD, ranking using benzi’s method
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Chapter 5

Summary and Future Work

In this thesis we have reviewed and applied ranking methods based on spectral analysis of

the static call graphs portraying the relationship between caller and callee. We reviewed

two sophisticated methods, HITS and method of Benzi et al. The DSM of the call graph

provides a convenient tool so that linear algebraic techniques can be applied to identify im-

portant callers and callees through the calculation of matrix exponential. We applied these

ranking methods on different sizes of networks. We tried to explore and extend the HITS

and Benzi et al. methods by including the edge weights of the call graphs in determining

the relative ranking of the function nodes.

We have used several networks for our experiments to demonstrate the effectiveness of

Benzi et al. method relative to HITS and degree-based ranking. HITS and Benzi et al

method was applied on both non-weighted call graph and weighted call graph. Our ex-

periments imply that Benzi’s method results in rankings that are often different from those

computed by HITS. Our experiments also indicate that the the rankings obtained from

Benzi et al method that was applied on non-weighted call graph differs from the rankings

obtained from weighted call graph. As we have seen in Chapter 4, there are some ambiguity

in the rankings obtained from non-weighted call graph, but later resolved, by producing all

distinct values, when applied on weighted call graph. This is to be expected, since weighted

call graph holds more information than non-weighted call graph.

In terms of further research, we would like to include more test problems on larger net-

works. It would be interesting to include problems from different scientific domain. Also,
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in future, we would like to apply our method to software library of legacy code, where very

little or no documentation is available about the code. The method that we developed in

this thesis is likely to be useful for these types of library.

We would also like to work on other spectral techniques like PageRank and reverse PageR-

ank.
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