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Abstract 

This thesis systematically develops a computational model to identify the 

conformational and base-pairing preferences of PhOdG, 4-Cl-PhOdG, DCP-OdG, TCP-OdG, 

and PCP-OdG by gradually increasing the size of the system also structural properties 

of unsubstituted O-linked. All adducts at nucleoside level adopted syn 

conformation. Moreover, effect of protonation at N3 and N7 site on the structural 

properties and deglycosilation barrier of adducted guanosine was probed. It was 

highly desirable to include O-linked phenolic as well as C8-dG adducts into a DNA 

strand in order to understand the detrimental effect of them and the 

conformational distortion of double helix duplex the desired modified base into 

NarI DNA duplex through the employment of molecular dynamic simulation (MD) 

was assessed. The anti-conformation against cytosine is preferred with this model 

for all adducts and syn conformer for all unsubstituted O-linked and ortho and para 

Clinked structures against guanine mismatch is the lowest energy structure. 
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Chapter 1. Introduction 

1.1. Overview 

A significant focus of nucleic acids research is on the damage to DNA, the 

formation mechanism of DNA lesions by electrophilic species.  The assessment of 

structural and genotoxic features of mutated complexes is of particular interest. 

Phenols are known to form O-linked and ortho and para C-linked adducts at the C8 

site of deoxyguanosine (dG). This dissertation studies the O-linked class of 

phenolic dG adducts using a bottom-up approach (small nucleobase to large DNA 

duplex) by using quantum mechanical modeling and molecular dynamics 

simulations for small and large models respectively.  Their proton affinity, 

hydrolytic stability, as well as their structural impact on the DNA duplex, has been 

considered. Furthermore, the effect of functionalization with chlorine on the 

conformational preference and glycosidic bond stability will be probed. To assess 

the modified duplex structure, as well as distortions induced to the helix, the O-

linked dG adduct was incorporated into a DNA duplex. Theoretical results indicate 

a destabilizing effect on the natural duplex. Likewise, in order to elucidate the 

effects of the C-linked lesions and expand our knowledge of the relative effect of 

sequence dependence, the stability of the associated hydrogen bonds, base pair 

parameters and sugar puckering, the ortho and para C-linked adducts will be 

compared and contrasted with the O-linked analogues.  
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1.2. General Background 

1.2.1. History of DNA 

The history of deoxyribonucleic acid (DNA) began in the late 1860s via 

structural identification by Swiss chemist Friedrich Miescher via isolation of 

“nuclein” from leukocytes obtained from pus.1 Following Miescher's discovery, 

other scientists such as Phoebus Levene and Erwin Chargaff obtained more 

specific information about the chemistry of the building blocks and their 

topological constructive interactions of the DNA molecule.2 Based on their work, 

American biologist James Watson, English physicists Francis Crick, Maurice 

Wilkins and Rosalind Franklin, postulated their noteworthy conclusion which is 

the three-dimensional structure of the double helix. Later on in 1944, Avery, 

MacLeod, and McCarty proposed the genetical characteristics of DNA.3-7 These and 

other discoveries, over many decades, ultimately resulted in more precise 

information about the importance of DNA to life. 

1.2.2. Components of DNA 

DNA is an integral biopolymer selected by nature to store the information 

required to build organisms (Figure 1.1). These organisms in turn replicate the 

information in DNA. The chemical structure of DNA includes two classes of bases: 

purines and pyrimidines. The purines, having a double-ringed structure, are 

adenine and guanine. Likewise, the pyrimidines bases are cytosine and thymine 

and are single-ringed structures. N1 of the pyrimidines or N9 of the purines are 

attached to deoxyribose by a glycosidic bond to form nucleosides (Figure 1.2).8, 9   
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Figure 1.1. Schematic model of the DNA double helix.  

 

Figure 1.2. The chemical structures of purines and pyrimidines. The sugar moiety can be 
attached to the bases via dashed lines.  

 

 
The only difference between ribose, the sugar component of RNA and the 

deoxyribose sugar in DNA is the absence of a hydroxyl group at the 2-position. 

Each nucleoside base has two different conformations: syn and anti. There is 

reversible equilibrium between these two conformers (Figure 1.3). 
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Figure 1.3. Anti and syn conformation of deoxyguanosine.10 

 

DNA nucleotides are composed of a nitrogenous base, deoxyribose and at least 

one phosphate group, and are the subunits or building blocks of nucleic acids (DNA 

and RNA). Genes are formed by arrangements of the four different nucleotides. The 

nucleosides which are involved in the formation of genes are 2'-deoxyadenosine 

(dA), 2'-deoxyguanosine (dG), 2'-deoxythymidine (dT) and 2'-deoxycytidine (dC) 

(Figure 1.4). 

 

Figure 1.4. Nucleotide can form by reaction of base, sugar and phosphate group and 
releasing water.11 
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The negative charge on the phosphate groups allows positively charged 

histone proteins to interact with them to form chromatin. Also, this property 

makes it possible to separate DNA using gel electrophoresis.  To follow 

conventions, these natural negative charges should be neutralize during the 

process of simulation.  

1.2.3. The DNA Double Helix 

Base pairing two polynucleotide chains by hydrogen bonds in an anti-parallel 

alignment forms the DNA double helix (Figure 1.1).12. The pairing occurs between 

adenine and thymine, guanine and cytosine, which results in the self-encoding 

character of DNA.13 Most DNA double helices are right-handed except Z-DNA which 

is left-handed. One of the unique features of the DNA double helix is pairing of the 

5 end of one strand with the 3 end of its complementary strand via the phosphate 

groups which attach the 3' end of one sugar to the 5 end of the other sugar of 

nucleotide component. On the other hand, intramolecular hydrogen bonds and the 

availability of the outer edges of the nitrogen bases keep the complementary base 

pairs together.  These also provide the possibility of bonding to other molecules 

like the proteins with the helices. In fact, these hydrogen bonds play imperative 

roles in replication and expression. A second important contribution in the 

stability of a duplex is stacking interactions between the flanking bases. The flat 

and relatively water-insoluble bases tend to stack above each other due to 

presence of some weak interactions.14, 15 
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1.2.3.1. Conformations of the Double Helix  

Different geometries and dimensions have been identified for the double helix. 

Early X-ray diffraction studies revealed the B and the A forms of DNA as the two 

major types of duplex structures.14, 16 B-DNA is the most common conformation of 

DNA. DNA also adopts the A conformation which is shorter and wider which cannot 

easily exist under normal physiological conditions. Z-DNA was first discovered in 

1979 and is a left-handed conformation. The Z-DNA helix is left-handed and has a 

structure that repeats every 2 base pairs. The major and minor grooves, unlike A- 

and B-DNA, show little difference in width.17 

 

Figure 1.5. Models of the A, B, and Z Forms of DNA. The sugar-phosphate backbone of 
each chain is located on the outside and the bases oriented inward. (Left) The more 

compact A form of DNA, (middle) The B form of DNA, the usual form found in cells (right) 
Z DNA is a left-handed helix and has a zig zag (hence “Z”) appearance.  
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1.2.3.2. The Minor Groove and Major Groove in DNA Structure 

The DNA molecule is a long extended polymer and the major and minor 

grooves of DNA occur where the backbones are far apart and close together, 

respectively, (Figure 1.6) making the size of two grooves different. The bases are 

oriented inside the helices (inward), nonetheless they are accessible through the 

major and minor grooves. The geometry of the base pairs are determining factors 

in specifying different grooves. In particular, the angle between the glycosidic 

bonds (the angle at which the two sugars protrude from the base pairs) is about 

120° for the narrow angle or 240° for the wide angle. Greater stacking of the 

flanking base leads to  more narrow angles between the sugars on the backbone of 
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the strand, generating a minor groove, and the larger angle on the other edge 

(sugar backbone) causes to the formation of the major groove.11, 18, 19
 

 

Figure 1.6. Space-filling model of the double helix. The typical model of the major and 
minor grooves. The major groove width is around 22 Å whereas this width is reduced to 

12 Å in minor.  
 

The bases which present in the major groove are more accessible because the 

backbones are not in the way. Hence, proteins that regulate biochemical reactions 

in the cell and are involved in transcription (copying DNA to RNA) or replication 

(copying DNA to DNA) more favorably react with bases on the major groove side. 

1.2.3.3. Conformations of Mutated DNA Complexes 

In the context of fully paired duplexes, there are three prototypical 

conformational patterns which have been observed for C8 substituted dG (with 

aromatic amines) which can be extended to other C8 substituted modified 

complexes.20 They are classified broadly as the major groove B-type (B), base 
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displaced stacked (S), and minor groove wedge (W) conformations (Error! 

eference source not found.).21 

 

Figure 1.7. Conformational motifs in duplex DNA (a) B, (b) S (stacked), and (c) W 
(wedge) conformers.10 

 

1.2.4. Bases Can Flip Out from the Double Helix 

The pairings of each base on one polynucleotide strand with the 

complementary base on the other strand are energetically favorable. However, 

exogenous and endogenous agents can induce DNA lesions that alter the chemical 

structure of the nucleobases. This sometimes can cause bases to protrude from the 

double helix, a phenomenon known as base flipping.  As DNA is flexible, it is 

assumed that the process of flipping out one base is not energetically expensive.22 

In addition, distortion of double helix and formation of new hydrogen bonds and 

stacking interactions in some modified complexes are energetically disfavored and 

preferred, respectively.  

1.3. DNA Damage and Mutation 

DNA damage and mutation are fundamentally different concepts. Damage is 

the physical and chemical alteration of DNA structure which causes abnormalities 

in the DNA features. These abnormalities can be recognized by enzymes and 

repaired depending on information that is available in the undamaged sequence of 
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the complementary DNA strand as well as presence of some enzymes that may 

detect/accommodate damage. On the other hand, mutation is an alteration in the 

arrangement of bases which affect the sequence of the DNA and cannot be repaired 

by enzymes, so these mutations are replicated when the cell replicates. Protein 

function and regulation can be altered by mutations. DNA damage can induce 

errors in DNA synthesis during the process of replication or repair. Because these 

errors often mainly lead to mutation, they are considered to be related topics.23 

1.3.1. DNA Damage 

The chemistry of DNA damage is complex and there are various types of DNA 

lesions that can form. Although biological systems are surrounded by a medium 

which they need to survive, there are unfriendly components that are inevitable. 

Reactive oxygen species in the atmosphere, exposure to damaging solar and 

cosmic radiations, and a variety of natural and cooking-induced carcinogens in 

food are other basic sources of damage. In addition to these natural agents, 

technological developments have resulted in man-made hazards from pollution. 

Unfortunately, there is also the possibility that hazards created by humans induce 

damage that may inflict mutations, or cannot be repaired by existing systems.24 

Therefore, both internal and external sources inflict damage to DNA. In addition, 

certain types of damage can be induced by classical chemical reactions. Together, 

they can produce more than 70 distinct chemical modifications of native 

nucleotides. Indeed, about 15 of these have been distinguished in the cell. 

Structural DNA damages can be cytotoxic. It is estimated that DNA damage events 

in a single human cell range from 104–106 per day, requiring about 1016-1018 repair 
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events per day in an adult human, having an average of 1012 cells. DNA damage 

associated with endogenous species is more extensive (greater than 75%) than 

damage caused by environmental factors.23, 25 

 

 

1.3.1.1. Damage to the DNA Backbone and Double-Strand Breaks 

The backbone of DNA is exposed to various types of damage. Deoxyribose 

sugars have several reactive positions toward oxygen radical species.26-28 Single 

strand breaks (SSBs) in the DNA backbone can occur by exposure to ionizing 

radiation or radiomimetic anti-cancer drugs such as bleomycin or 

neocarzinostatin. These modes of damage often induce multiple damaged sites in 

close proximity in the double helix and thus lead to the formation of double strand 

breaks (DSBs).  These are severe lesions because it has been shown that they can 

induce gross chromosomal aberrations (translocations that are known as genetic 

exchange between nonhomologous chromosomes).29-31 These types of mutations 

change the structure of the DNA backbone to phosphate, 3-phosphoglycolate, and 

3-phosphoglycaldehyde end groups.  

1.3.1.2. DNA Interstrand Crosslinks 

A highly cytotoxic lesion which results in a covalent connection between two DNA 

bases on opposite strands of DNA is known as an interstrand crosslink (ICL).ICLs 

block DNA replication and transcription. There is evidence that ICLs occur 

naturally through the reaction of DNA with bifunctional electrophiles which are 

generated by peroxidation of lipids but these lesions are expected to be rare 
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(Figure 1.8).32 Interestingly, a large number of antitumor drugs, such as the 

chloroethyl nitroso ureas, nitrogen mustards, mitomycins, and cisplatin, form 

ICLs.33  

 

Figure 1.8.  N 2-dG cyclic adducts arising from Michael addition of acrolein, 
crotonaldehyde, and 4-HNE to dG and formation of ICL by the generated intermediates.10 
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Figure 1.8 gives examples of the formation of interstrand crosslinks, the 1, N2-

dG adducts of acrolein, crotonaldehyde, and 4-HNE yield interstrand cross-links in 

a specific sequence of DNA. These take place via the opening of the 8–

hydroxypropano ring to the corresponding aldehydes followed by an attack with 

the N2-amino group of dG in the complementry strand in the sequence. The cross-

links arising from acrolein and crotonaldehyde exist in duplex DNA as 

carbinolamine linkages, which enable the cross-linked CG base pairs to maintain 

Watson-Crick hydrogen bonding with minimal distortion of the duplex. The 

crosslinking chemistry of crotonaldehyde and 4-HNE depends upon the 

stereochemistry of the C6 carbon, which orients the reactive aldehydes within the 

minor groove in the sequence.34 

1.3.1.3. Damage to the DNA Nucleobases 

1.3.1.3.1. General Overview 

The DNA nucleobases are particularly susceptible to DNA damage (Figure 1.9). 

Hydrolysis is the simplest reaction that is potentially harmful to DNA (1). Indeed, 

the glycosidic bond of the purine nucleotides is prone to acid-catalyzed 

hydrolysis.35-37 A second hydrolytic reaction (deamination) can occur at the 

exocyclic amine groups of C, 5-MeC, A, and G, forming uracil, thymine, 

hypoxanthine, and xanthine nucleobases, respectively (2).38 Reactive oxygen 

species (ROS) such as superoxide radical anions, hydrogen peroxide, or hydroxyl 

radicals (by-products of oxygen metabolism) can react with DNA to give rise to 

over 100 oxidative DNA modifications found to date (3,4).26, 39 A common example 

of methylation of DNA by some cofactors of enzymatic reactions, such as S-
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adenosylmethionine (SAM), is the formation of 7-methylguanine, a relatively 

harmless lesion, and 3-methyladenine. The latter is highly cytotoxic due to its 

ability to block DNA replication (7, 8).40 In addition, there are numerous 

unavoidable exogenous sources leading to mutation, among them cyclobutane 

dimers which are photoadducts between flanking pyrimidine residues in DNA 

formed by UV radiation from sunlight.41 Other radiation frequencies, like X-rays 

and -rays, may also cause DNA damage (9, 10). Genotoxic compounds, such as 

aromatic amines and aromatic hydrocarbons that can be found in cigarette smoke, 

and manmade chemical compounds such as hair dye can cause DNA damage 

through the formation of bulky DNA adducts (addition products) (11, 12, 13).42 

It has been demonstrated that among the various DNA damage pathways, base 

modification is the most common. DNA base modification generally refers to 

changes in the structures and chemical properties of the bases causing their loss 

of functionality. Guanine has the smallest oxidation potential among all the DNA 

bases guanine (1.29V), adenine (1.42V), cytosine (1.6V), thymine (1.7V). Guanine 

is frequently modified by one-electron oxidants.26, 43 
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Figure 1.9. Various types of damage to the nucleobases.24 

 

1.3.1.3.2. Reactive Oxygen (ROS) Species and Nitrogen Species (RNS)  

The greatest variety of damage is induced by free radicals. Many damaging 

agents, including some beneficial drugs, are capable of generating free radicals. 

ROS and RNS are byproducts of oxygen and nitrogen metabolism, and 
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consequently the response to these types of reagents can lead to DNA lesion 

(Figure 1.10). 

 

Figure 1.10. One electron oxidation reactions of the guanine moiety of DNA and 
hydration reactions of the initially formed guanine radical cations leading to the 

transient generation of the reducing 8-hydroxy-7,8 - dihydroguanyl.10 
 

Free radicals  also have been implicated in the etiology of neurological diseases 

such as Alzheimer’s44 and Parkinson’s.45 It has been shown that oxidatively 

generated DNA damage contributes to aging.46, 47 Cytotoxic lesions may result in 

abnormal cell physiology, apoptosis, and cell death if DNA replication or 

transcription is inhibited. Endogenously generated products of oxidative stress 

can trigger DNA damage. Peroxidation of polyunsaturated fatty acyl moieties on 

phospholipids generates many electrophilic products, including a series of 

bifunctional aldehydes capable of reacting with DNA to form adducts (Figure 1.11).  
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Figure 1.11. Several types of oxidative damage.10 

 

Most adducts from this class contain exocyclic rings that block Watson-Crick 

base pairing. They are highly mutagenic, and can induce a range of base pair 

substitutions and, in some cases, frameshift mutations. In addition to oxidation, 

some nucleoside adducts are subject to glycolytic cleavage, which yields the free 

base.  

1.3.1.3.3. Polycyclic Aromatic Hydrocarbons 

Many environmental chemical substances have been implicated by the World 

Health Organization’s International Agency for Research on Cancer (IARC). Among 



 

18 

 

the different carcinogens are polycyclic aromatic hydrocarbons (PAHs), compound 

that contain two or more fused benzene rings. One example is benzo[a]pyrene 

(B[a]P) which is the product of fossil fuel combustion and is therefore ubiquitous 

in our environment. Fifty carcinogens exist in cigarette smoke, including PAHs, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 1,3-butadiene,48-50 and aromatic 

amines and heterocyclic aromatic amines. All of these compounds are 

metabolically activated to reactive intermediates that form premutagenic covalent 

adducts with DNA. During the twentieth century, a combination of epidemiological 

and animal experiments has provided convincing evidence that polycyclic 

aromatic hydrocarbons (PAHs) and the representative compound benzo[a]pyrene 

(B[a]P), are carcinogenic (Figure 1.12).10  
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Figure 1.12. Structures of PAH carcinogens.10 

 

There are different types of PAH-DNA adducts formed depending on the 

pathways of PAH activation that exist in the target organ (Figure 1.13). 
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Figure 1.13. Different pathways involved in the metabolic activation of PAHs.10 

 

Not only the aforementioned C8 linked dG adducts can damage DNA but also 

addition of PAHs to the different sites of the nucleobases leads to other lesions. For 

instance, bulky B[a]P-6-N7-dG and B[a]P-6-N7-dA adducts result from Michael 

addition of benzo[a]pyrene-7,8-dione (BPQ) to the N2 site of dG and dA, 

respectively. Metabolic activation of PAHs results in the formation of diol epoxides. 

These soluble intermediates react with N2 in dG and N6 in dA. The N2-dG PAH 
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adduct acquires an anti conformation, and consequently forms Watson-Crick 

pairing with complementary bases in the DNA helix.51, 52  

It is difficult to study the carcinogenicity of these species experimentally due 

to the variety of lesions formed by even a single PAH compound. Therefore, 

computational approaches may clarify the structural aspect and biological 

implication of these species.  

The binding of the highly reactive metabolic diol epoxide intermediates of fjord 

and bay region PAHs to the exocyclic amino groups of adenine and guanine in DNA 

lead to a variety of structurally different lesions that are locally distorted and cause 

destabilization of the DNA structure. The acquired conformations depend directly 

on the topology of the polycyclic aromatic ring systems and the stereochemical 

properties of the DNA adduct formed. The variable conformations that have been 

observed can be classified as: intercalation with displacement of the modified and 

partner bases from the interior of the double helix, intercalation without base 

displacement, flipping out the adducts from the duplex and formation of external 

minor groove conformations. The surrounding base sequence context is one of the 

most important limiting factors in local structural DNA perturbations and 

acquiring the different conformations of the PAH diol epoxide DNA.53 Correlations 

between the structural properties of the series of the bay region B[a]P-N2-dG and 

N6-dA adducts, as well as selected fjord region PAH diol epoxide N6-dA adducts, 

have provided new insights into the factors that govern the recognition of the 

structural and biological characteristics of this family of DNA lesions.54, 55 
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1.3.1.3.4. Estrogens 

IARC has classified endogenous human estrogens as carcinogens. Risks of 

estrogen exposure have been determined by experimental and epidemiological 

data, which strongly suggest that exposure to estrogen hormone increases the risk 

of cancer, especially breast and endometrial cancer.56 Reactive intermediates 

derived from estrogen metabolism cause DNA damage by electrophilic and 

oxidative reactions leading to genotoxicity.57 For example, equine estrogens and 

endogenous estrogens are oxidized to o-quinones, which are electrophiles as well 

as potent redox active compounds (Figure 1.14).58 

The mechanism of action involves a genotoxic mechanism that passes through 

the formation of o-quinone intermediates and involves the metabolic activation of 

human estrogens that bind to cellular DNA causing mutations.59, 60 Equilin and 

equilenin, which are known as equine estrogen, and o-quinone metabolites have 

hormone replacement therapy applications and can form covalent adducts with 

DNA.61 Furthermore, a mechanism involving ROS derived from redox cycling 

between the catechol and o-quinone derivatives of endogenous human and equine 

estrogens also leads to oxidatively damaged DNA.62 
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Figure 1.14. Mechanism of reaction of Estrogen with DNA bases.10 

 

1.3.1.3.5. Aflatoxin 

The aflatoxins are mycotoxins that are among the most naturally toxic and 

cancer-causing substances in animals and humans.63 The members of the aflatoxin 

family are produced by a fungal Aspergillus species that grows in stored grains and 

other crops (e.g. maize) particularly when the storage environments are humid.64, 

65 Aflatoxin B1 is metabolized in the liver to an exo-8,9-epoxide that is a highly 

reactive intermediate that binds covalently to DNA. Among different types of 

Ochratoxines, ochratoxin A (OTA) can be found in cereals, coffee, wine and fruit 

juice making OTA the most abundant ochratoxin. It has been determined to be the 

most toxic species.66 On the other hand, ochratoxin B (OTB) is not as toxic and is 

not found in foodstuffs. Among the different toxic effects of OTA, nephrotoxicity67 

and urothelial tract carcinogenesis in rodents and chickens are the most 
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prevalent68, 69 OTA has been suggested to cause testicular cancer in young men.69 

Since OTA is carcinogenic in animals, but there is a lack of evidence for its 

carcinogenicity in humans, OTA is classified as a group 2B carcinogen (possibly 

carcinogenic to humans) by the International Agency for Research on Cancer 

(Figure 1.15).65 

 

Figure 1.15. Structures of different natural ochratoxins.65 

 

Experimental studies have suggested that the C8 position of 2′-

deoxyguanosine (dG) is more reactive with OTA.70-72 Specifically, the 

photoreaction of OTA in the presence of dG forms C-linked OTB-dG adducts.73 The 

possibility of the formation of an O-linked OTA-dG adduct is less likely than C-

linked OTB-dG, since there are not enough electron withdrawing groups on OTA 

and its derivatives for the formation of radical oxygen (Figure 1.16).74  
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Figure 1.16. Two types of adducts formed by photochemical reaction of OTA from 
oxygen atom and carbon atom with C8 site of dG.52, 65 

 

Computational studies on the nucleobase of the OTA adducted DNA helix of the 

C8-modification of 2′-deoxyguanosine (dG) have been performed.65 The 

perpendicular orientation of OTA with respect to the nucleobases is observed in 

OTA. At the smallest level, addition of the deoxyribose sugar moiety could form a 

more twisted structure as well as restricting rotation about the C−C linkage at the 

nucleoside level. This can be rationalized by steric hindrance between OTA and the 

sugar. Therefore, the nucleoside preferentially adopts a syn conformation (by 

10−20 kJ mol−1), which is stabilized by an O5′−H•••N3 hydrogen bond. However, 

elimination of this hydrogen bond provides a better idea about the DNA 

environment, and the computational data show an increase in the energy level of 

anti/syn conformers (<5 kJ mol−1) after removal of the non-native hydrogen bonds. 

According to the theoretical results at the nucleotide level,65 the presence of the 5′-

monophosphate group leads to formation of stable syn conformer. This can be 

related to stabilizing interactions between the amino group of base and the 

phosphate, leading to energy differences of up to 20 kJ mol−1 between the 
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nucleotide syn and anti conformers. However, MD simulation and more specific 

free energy calculations elucidate the comparable stability of the syn and anti 

conformers of OTB-dG adduct in a specific sequence of DNA paired with cytosine.65, 

75, 76 

1.3.1.3.6. Aromatic Amines and Heterocyclic Aromatic Amines 

An important class of aromatic mutagens is the aromatic amines and 

heterocyclic amines, which contribute to the etiology of gastrointestinal cancers.52, 

77 These complexes are produced by broiling or barbecuing meats at high 

temperatures. Aromatic amines (AAs) and heterocyclic aromatic amines (HAAs) 

are common environmental and dietary contaminants and carcinogens. The dye, 

chemical, and rubber manufacturing industries were major sources cancers, such 

as bladder tumors, until the first half of the twentieth century.78-82 Numerous 

epidemiological studies have demonstrated that AAs, such as 4-aminobiphenyl 

(ABP), 2-naphthylamine (2-NA), and benzidine (Bz), all contaminants in aniline 

dyes, were found to lead to DNA damage. 2-Aminofluorene (AF) and N2-

acetylaminofluorene (AAF), which were originally developed as pesticides, 

attracted the attention of scientists more than all other AAs. The biochemistry and 

biological effects of AF and AAF and the genotoxic properties of their DNA adducts 

have shown that they lead to lesions. According to Figure 1.17, mechanisms of the 

formation of dG C8-AA and HAA adducts pass though the formation of N7-dG as 

intermediate.83, 84 



 

27 

 

 

Figure 1.17. Two mechanisms for the formation of AA and HAA adducts at the C8 site of  
dG via an N7-dG intermediate.10 

 

The causal role of HAAs in human cancer remains controversial, however, 

because the amounts of HAAs present in the diet are generally low. Examples of 

common AAs and HAAs and aromatic amine adducts are shown in Figure 1.18.85-87 
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Figure 1.18. Structures of the principal AA and HAA DNA adducts10. 

 

Theoretical and experimental studies have revealed that there are several 

factors which determine the structures of aromatic amine DNA adducts. The 

bulkiness of adducts, their coplanarity and the type of atoms which are involved in 

the formation of covalent linkages between the bulky group and the nucleobase 

(C8, N2, etc.), are among the most significant ones. It has been shown that aromatic 

amine lesions can be categorized in three conformational motifs(S, B, W). 

However, the population balance of each conformer depends directly on the 

sequences surrounding the lesion site. The structural changes at the lesion site 

(e.g., rotamers, C8 versus N2 linkage, etc.) are also distinct factors that can 

influence the S/B/W ratios of aromatic amine adducts. These differences also 
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determine the nature of the conformation-specific repair and mutational 

outcomes.82, 88 

1.3.1.3.7. Aristolochic Acid 

Aristolochic acids are nitrophenanthrene carboxylic acid derivatives 

commonly found in the plants of the Aristolochiaceae and Asarum family. These 

compounds are also found in Chinese herbal medicines used for clinical purposes. 

These compounds mainly include Aristolochic Acid I AAI and Aristolochic Acid II 

(AAII), the first being the most abundant carcinogen.89,90 More than 100 cases of 

Aristocholic acid nephropay (AAN) have been reported in Belgium. Identification 

of many cases of urothelial cancer in AAN patients in Belgium and the U.K 

highlights the potential carcinogenicity of aristolcholic acids in human beings.89  

Aristolcholic acids attack the purine bases in DNA (guanine and adenine, 

Figure 1.19). The nitro group is reduced to form aristolactam, which in turn forms 

an intermediate nitrenium ion that is the ultimate carcinogen and leads to 

adducts.91 While the aristolocholic acid-N2-dG is found to be non-mutagenic, the 

N6-dA adduct is highly mutagenic, predominantly leading to transversions of A to 

T that are rarely observed in other human tumors.92 The dA adduct can 

tautomerise between the imino and amino forms, and molecular modelling, as well 

as NMR studies, have shown that the amino form is more dominant.93 The 

thermodynamic stabilities of adducted DNA show that the aristolocholic acid-dA 

lesion destabilizes the helix and this destabilization is sequence dependent.94 

However, the reason for the sequence dependence is unknown. Within the DNA 

strand, the aristolactam moiety was found to intercalate, pushing the opposing 
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base (dT) out and stacking between the flanking bases of the opposing base. This 

leads to widening in the groove dimension and destabilization of the helix.93, 94 

 

Figure 1.19. Mechanism for adduct formation by the Aristolochic Acids.94 

 

As mentioned above, previous studies of different adducts have shown that the 

conformational preference of the adduct depends on various factors such as the 

site of attachment, flanking bases, opposing bases, etc. Computational studies of 

more adducts (nucleobases modified by phenolic, heteroaromatic as well as bi- and 

polycyclic moieties) can help us predict their carcinogenicity and conformational 

preference based on such factors.  This can be done without actually synthesizing 

modified DNA, saving time, cost and chemicals. With such a large and increasing 

number of DNA lesions, it has not been possible for scientists to focus on all equally. 

Chemically modified purines, and in particular phenoxyl DNA adducts and their 

propensity to mispair, have garnered a great deal of attention. 95-98 This thesis 
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covers descriptions of the computational details of DNA O-linked adducts formed 

due to exposure to phenols.  Understanding the reasons for the detrimental effects 

of phenolic carcinogens is the first step to understanding how these compounds 

lead to disease as well as to the development of strategies to combat such damage. 

1.3.1.3.8. O-linked and C-linked Adducts 

Phenols are organic compounds that not only contain antioxidant properties, 

but also have toxic pro-oxidant properties associated with aging and disease.99 

This pro-oxidant activity is interpreted by initial one-electron oxidation of phenols 

into reactive phenoxyl radical intermediates with peroxidase enzymes or with 

transition metals with redox-active properties. The generated radicals may 

damage lipids, proteins, and DNA.26, 100 Chlorophenols (CPs) are persistent 

environmental toxic chemicals found in pesticides, disinfectants, wood 

preservatives, personal care formulations. Some are substantial by-products of 

wood pulp bleaching with chlorine.101, 102 Experimental studies imply that 

metabolic activation in the case of chlorosubstituted phenol passes through a 

predominant pathway which involves formation of an o-quinone species 

ultimately forming  adducts at the N2/N1 site of dG (Figure 1.20).103 
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Figure 1.20. Proposed mechanisms for DNA adduct formation by PCP.104 

 

Studies have suggested that the possibility of formation of phenoxyl radical 

intermediates in highly chlorinated species results in stable, carbon-bonded or 

oxygen-bonded C8-dG adducts making pentachlorophenol mutated complexes 

very probable (Figure 1.20 and Scheme 1.1).104 Thus, substituted phenolic 

compounds display ambident reactivity at the C8 site of dG,73 which complicates 

the elucidation of their mutagenic profile (Scheme 1.1).  
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Scheme 1.1. Ambident reactivity of phenolic radicals forms O-linked and C-linked 
adducts with the C8 site of 2-deoxyguanosine.95 

 

Previous research has strived to uncover the structural properties of the ortho 

and para C-bonded dG phenolic adducts,95 to provide greater insight into the 

conformational and base-pairing preferences of the adducts in biologically 

relevant systems. Experimental and theoretical calculations on small (nucleobase 

and nucleoside) models of ortho and para C-linked structures (o-PhOHdG and p-

PhOHdG) elucidated a twisted syn conformation as the lowest energy structure of 

the nucleobase adducts.95 The ortho adduct is planar, and contains an O–H•••N7 

hydrogen bond.95, 96, 98, 105 Furthermore, the degree of twist about the C–C linkage 

was determined to be dependent on the adduct (para > ortho) and solvent (polar 

> aprotic as modeled using implicit (PCM) solvation). The thermodynamic stability 
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of the C-bonded phenoxyl DNA adducts and their propensities to mispair have also 

been investigated.97, 98 The conformational preference of the o-PhOHdG and p-PhOHdG 

lesions in two decanucleotide sequences (ODN1=5´-CCATXCTACC-3´ and 

ODN2=5´-GGTAGXATGG-3´ where X denotes the adduct) were determined by MD 

simulations. The experimentally measured melting temperatures of the duplexes 

indicate that both PhOHdG adducts destabilize the duplex when base-paired with C 

(the normal partner of G), but show a sequence dependent increase in duplex 

stability when mismatched with G, which may lead to mutagenic hotspots.52, 106  

A combined experimental and computational approach can give us a greater 

understanding of the structural preference of the phenolic C8 purine adducts. For 

example, it is important to understand the possibility of anti to syn conversion 

since the presence of the syn (unnatural) orientation could create the potential for 

mispairing in the DNA strand. Additionally, the possibility of enhanced abasic site 

formation post-damage is a cause for concern since the effects of the phenolic 

adduction on the stability of the glycosidic bond are uncertain.  

1.3.1.3.9. O-linked benzylic Adducts  

DNA benzylation can take place by generation of benzylic radicals from N-

nitrobenzylmethylamine in tobacco107 as well as other organic species such as 

alcohol and some chemical compounds in plants. Since the alkylation of guanine at 

O6 is common and also cytotoxic,108  it would be worthwhile to understand the 

mutagenicity and toxicity properties of these adducts.109 Computational modeling 

of benzylic adducts by Wetmore and coworkers110 indicate the significant 

flexibility of the benzylic moiety due to the presence of methylene group which 
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reduces the steric clashes between the ring and guanosine.  In addition the CH2 

linkage increases the number of dihedrals which should be considered. On the 

other hand, the small size of the aromatic ring decreases the bulkiness of this 

adduct, ultimately resulting in a lower barrier to rotation of the aromatic ring with 

respect to the nucleobase. Hence, different conformational preferences has been 

induced in this mutated complex. T-shaped conformations and some intercalated 

structures are among the imperative ones. This diversity makes the mutagenic 

properties of this modified adduct complex. However due to the less notable bulky 

effect of the benzylic moiety, other factors such as the type of complementary and 

flanking bases and the solvation of the benzyl moiety can be considered as 

determining factors (Figure 1.21).110 

 

Figure 1.21. The benzylic adduct by attachment to the O6 site of Guanosine. 

1.4. DNA Damage and Chemotherapeutic Applications 

Assessment of mutation has different aspects. At first glance, DNA damage by 

genotoxic exogenous and endogenous agents implies that such damage must be 

avoided for maintaining the integrity of the genome while probing the cancer 

therapy applications of DNA lesions is also worthwhile. In other words, we may 
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wish to damage DNA in order to diminish the survival of tumor cells. 

Chemotherapy methods are commonly employed based on ionizing radiation 

which mainly causes double strand breaks. Other intracellular and intercellular 

signaling pathways are induced that also play a critical role in destroying tumor 

tissue.111 Platinum-based compounds  are commonly used in cancer 

chemotherapy.112 

1.5. Experimental verses Computational Techniques  

Different techniques can help scientists gain structural information on site-

specific DNA lesions. The most important ones are high resolution nuclear 

magnetic resonance (NMR) methods, X-ray crystallography, and molecular 

dynamic simulation methods (MD). These techniques can provide valuable 

insights into the relationships between the structural features of DNA lesions and 

their impact on DNA replication. MD simulation, which studies the evolution in 

time of dynamic ensembles, provides insights into the dynamics of structural 

characteristics of DNA lesions. Over the past two decades, NMR methods have 

elucidated new insights into the structural properties of bulky PAH derived DNA 

adducts, adducts derived from aromatic amines and many other DNA lesions.113, 

114 These techniques have some pros and cons. Lesions in solution can be highly 

mobile and heterogeneous which can make studying and defining the structures of 

DNA lesions difficult and even impossible in some cases. Crystallography can 

provide outstanding resolutions of the structural properties of DNA lesions in 

proteins. Growing crystals of sufficient quality to yield high resolution structures 

(resolutions below 2 Å) is challenging. DNA-containing lesions exhibit 
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conformational flexibility and heterogeneity that diminish resolution.115 Molecular 

dynamic simulations are an effective and complementary method that can provide 

essential information for the interpretation of NMR data at the atomic level. 

Indeed, modeling techniques can expand our knowledge about structural 

properties where experimental data has not yet been acquired. Dynamic 

trajectories provide unique information on lesion mobility and ensemble analysis 

using statistical mechanical methods can give us insights relating to the 

thermodynamics.116 

Since very little is known about the corresponding O-linked adduct, this thesis 

represents a milestone to gain deeper insight into understanding the structural 

properties, conformational preference, and stability of O-linked adducts. Likewise, 

improving our perception into biological processes provides valuable information 

for evaluating the interaction between nucleotides in a duplex by applying MD 

simulations to the study of adducted DNA strands. 

1.6. Thesis Approach and Summary 

The purpose of this thesis is to provide a comprehensive computational 

overview of the structural properties and conformational preferences of oxygen-

bonded C8-dG phenoxyl adducts by initial modeling using a small model and 

progressively increasing the size of system to the DNA helix. New understandings 

of the geometrical properties and conformational flexibility of phenoxyl adducts in 

a DNA environment is distinguished. In addition, the favored conformation of 

various chlorosubstituted adducts is compared and contrasted with that of 

unsubstituted species. The effect of protonation on adduct degradation by 
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destabilization of the glycosidic bond is determined. However, the direct 

dependence of protonation and functionalization of phenoxyl moiety with chlorine 

on the heterolytic cleavage of glycosidic bond is demystified. Another aspect of this 

project was to determine the influence of this damage when it is incorporated into 

a duplex, and how phenoxyl adducts may contribute to genotoxicity in cells. These 

theoretical results on adducted DNA strands can inspire new research 

developments on how to combat the detrimental effects of these adducts. 

The aim of Chapter 2 is to provide information regarding the geometrical 

properties of unsubstituted adducts using small models such as nucleobase and 

nucleoside and nucleotide models by implementing density functional theory 

(DFT) calculations. The structural properties of unsubstituted O-linked adducts 

are compared and contrasted with ortho95 and para95 C-linked mutated complexes 

which were performed by Andrea Millen in the Wetmore research group. 

Chapter 3 focuses on implementing the structural properties of the small 

models to draft a DNA model. The adduct structure is inserted into a specific site 

(G3) of a 12mer NarI recognition sequence (5CTCG1G2CG3CCATC3). This will 

clarify different aspects of the impact of duplex environment on the 

conformational heterogeneity and structural favorability of unsubstituted O-

linked adducts and ortho and para C-linked mutated species. Base-pairing 

preferences are considered in order to rationalize the results from free energy 

calculations. 

Finally, Chapter 4 will address the stability of chloro substituted O-linked 

adducts at the nucleobase, nucleoside and nucleotide level. The influence of 
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chlorine substitution on the hydrolytic stability of protonated biaryl ether 

nucleoside adducts is investigated by determining the deglycosylation barrier 

associated with the formation of abasic sites. In both Chapters 2 and 4, the further 

expansion of the computational model to a deoxynucleoside monophosphate lead 

us to a better understanding of the anti/syn conformational preferences and 

energy barriers between conformers of adducts at this level.  

Modeling the structure of modified nucleobases with phenoxyl adducts and 

improving the size of the system from a small nucleobase to a large DNA duplex 

perspective allows for comparison between small models and the double helix. 

This clarifies the importance of small computational models and what these results 

specifically tell us about conformation that can be relevant when they are applied 

to larger models such as the DNA double helix. Furthermore, one of the main aims 

with the smaller computational models is the availability of experimental evidence 

(provided by the Manderville research group) with which we can establish the 

accuracy of theoretical results, as well as facilitating the interpretation of 

experimental results. The Future Work section, Chapter 5, outlines other studies 

that can be done to determine the mutagenicity of O-linked adducts, and how we 

might improve the efficiency of computational systems in order to develop new 

methodologies which may be useful in answering important questions about 

related systems. 
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Chapter 2. Insights into the Main Features of Damaged DNA O-linked 

Adducts: A DFT Study on the Conformational Behavior and Mutagenicity 

Associated with Unsubstituted Phenolic Carcinogens and Their Structural 

Difference with ortho and para C-linked Phenolic Adducts 

2.1. Introduction:  

Since DNA damage can alter genome integrity, understanding DNA damage 

mechanisms at the molecular level is of profound interest in chemistry, biology, 

toxicology, and medicine. The chemical bonds in DNA are exceptionally stable and 

their relative reactivity with electrophiles, nucleophiles, and light is low. The 

aqueous environment of the cell can alter the structure of DNA by formation of 

covalent bonds on nucleobases, dimers from the initial radicals, and other mutated 

complexes. The chemical modification of only a single nucleobase by various 

endogenous and exogenous factors can cause DNA damage. As explained in detail 

in chapter 1, damage to DNA can be classified in terms of base modifications, strand 

breaks, inter- or intrastrand crosslinks, and DNA–protein crosslinks.1 In the three 

billion nucleotide human genome, DNA damage can have a catastrophic effect on 

the life of an individual. Due to loss of nucleobase functionality, damage to the 

nucleobases is a distinct and prevalent cause of DNA mutation. Among the four 

canonical DNA bases, guanine has the lowest oxidation potential (G (1.29V)  A 

(1.42V)  C (1.6V)  T (1.7V), and therefore guanine lesions are the most 

abundant.2 Indeed, a diverse set of genotoxic compounds, such as those found in 
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cigarette smoke, manmade aromatic amines and aromatic hydrocarbons, 

commonly form addition products (adducts) by attacking guanine.3-7 

Phenolic compounds have two opposed properties, they can show beneficial 

effects and they  can be toxic, which refer to their damaging pro-oxidant properties 

that are associated with aging and disease.8 Oxidative metabolism of phenols 

produces reactive phenoxyl radicals which rationalize their toxicity. Peroxidase 

activates enzymes with or redox-active transition metals catalyze oxidation of 

phenols by removal of one electron.9 The formation, detection, and roles of these 

DNA C and Olinked adducts have been reviewed,10, 11 and they are believed to be 

critical lesions in phenolic-induced carcinogenesis. Ambient reactivity of 

substituted phenolic compounds at the C8 site of dG leads to the formation of ortho 

and para C8-phenoxyl-2′-deoxyguanosine (o-PhOHdG and p-PhOHdG), as well as O-

linked adducts (PhOdG) (Scheme 2.1).  
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Scheme 2.1. Ambident reactivity of phenoxyl radical leading to the formation of O-linked 
and C-linked adducts.10 

Additionally, it would be interesting to understand the possibility of the post-

damage effects, since modification of nucleoside model by phenoxyl radical may 

increase the possibility of abasic site formation via deglycosylation.12  

While several factors complicate the elucidation of their mutagenic profile, 

structural features and conformational preference can create a potential for 

mispairing in the DNA strand. The study of conformational heterogeneity allows 

us to assess the biological effects of induced damage, which derives from Watson-

Crick and Hoogsteen hydrogen-bonding interaction between complementary 

nucleobases in DNA strands.13-15 Nucleobases occupy two principal orientations 

about the sugar ring in nucleosides and nucleotides (Figure 2.1). The glycosidic 
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dihedral torsion angle (χ) acquires the anti conformation in most unmutated 

species where the H8 atom of the purines and the H6 of the pyrimidines is located 

above 2′-deoxyribose. Conversely, in the syn conformation, which is often the most 

stable conformer of damaged complexes, the N3 of purines and the O2 of 

pyrimidines are found in that position. There is a rapid interchange between syn 

and anti conformers in solution the speed of this interchange depends on the 

assembly and chemical conditions (Figure 2.1). One of the conformers can exist 

preferentially in a specific DNA structure. The furanose ring of (2′-deoxy) ribose at 

room temperature typically interconverts between the two conformations and 

ultimately assumes one of two: north (also known as C3′-endo) and south (or C2′-

endo).16 In B-DNA, the 2′-deoxyribose sugar acquires a C2′-endo conformation 

with the nucleobases exclusively in the anti position (Figure 2.1).14, 17 

The sugar puckering C2′-endo and C3′-endo in Figure 2.1 is instructive just for 

disclosing two important different types of sugar puckering in the furanose ring 

while it is C2′-endo in both anti and syn conformers of natural guanosine in B-

DNA.18 
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Figure 2.1. Equilibration between anti and syn conformations by rotating around 
glycosidic bond of 2′-deoxyguanosine and typical structures of sugar puckering for 2′-

deoxyguanosine (C2′-endo, south). 

The structural features and conformational properties of C-linked phenoxyl 

adducts have been studied experimentally and theoretically.10, 19 The topological 

properties and stability of O-linked phenolic adducts at nucleobase, nucleoside, 

and nucleotide levels identified by performing DFT calculations. However, 

comparing and contrasting the structural properties of O-linked modified species 

with previously studied C-linked homologous10, 20 provided a deeper insight in to 

conformational behaviour, stabilizing interactions and impact of oxygen-linkage in 

O-bonded adducts. Regarding the ortho- and para-C-linked structures, the 

experimental results demonstrated the most stable structure of the nucleobase 

adducts is planar.10 Though, DFT calculations and particularly generation of the 

PESs by using scans command, and rotation about the glycosidic bond and the C–

C linkage between the nucleobase and the phenoxyl moiety illustrate the twisted 

syn lowest energy structure conformation for both nucleoside adducts.10 

To investigate the conformational and structural changes induced by 

formation of unsubstitued O-linked phenoxyl adduct (PhOdG) at the nucleobase, 
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nucleoside, and nucleotide level, quantum mechanical calculations were 

performed. Furthermore in order to evaluate the consequence of bridged oxygen, 

the structures of ortho- and para-phenolic C-linked (o-PhOHdG and p-PhOHdG) which 

previously has been studied by Dr. Wetmore and coworkers theoretically and 

experimentally, was take into account.10, 13, 19, 21  

In this work we tried to gain deeper insight into the structural properties, 

conformational preference, and stability of PhOdG, o-PhOHdG10 and p-PhOHdG10 adducts. 

2.2. Computational Details 

2.2.1. Nucleobase Model.  

To gain insight into the structural characteristics of the unsubstituted PhOG 

adduct, the B3LYP density functional method22 in conjunction with the 6-31G(d) 

basis set was implemented to search the potential energy surface (PES). First, all 

local minima and transition states with respect to rotation about the dihedral 

angles  (the angle controlling the relative orientation of the phenoxyl moiety at 

the C8-position and the nucleobase or (N9C8OC10)) and  (the angle 

controlling the orientation within the O–substituted phenyl or 

(C8OC10C11)) were considered (Scheme 2.2). Specifically,  and  were 

systematically rotated and fixed in 20 increments from 0 to 360. All minima and 

corresponding transition states were identified on the PES, and subsequently fully 

optimized and characterized using frequency calculations at the B3LYP/6-31G(d) 

level. B3LYP/6-311+G(2df,p) single-point energy calculations were performed 

and all corresponding relative energies include scaled (0.9806) zero-point 
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vibrational energy corrections.  Calculations on the nucleobase model were carried 

out using Gaussian 09 (Revision A.02).23  

2.2.2. Nucleoside Model 

Minima for the PhOdG nucleoside adduct were initially identified through a 

conformational search using the internal coordinate Monte Carlo algorithm24 in 

HyperChem 8.0.8. The AMBER molecular mechanics force field, with PM325, 26 

charges, was implemented in the conformational search12 and the following 

dihedral angles were scanned (Scheme 2.2):  (N9C8OC) and  

(C8OCC4), (O4C1N9C4), as well as the endocyclic torsion angles of 

the sugar, namely υ0 (O4C1C2C3), υ1 (C1C2C3C4), υ2 

(C2C3C4O4), υ3 (C3C4O4C1), υ4 (C4O4C1C2), β 

(C4C5OH), ε (C4C3OH), and γ (O3C4C5O). This procedure led 

to more than 200 conformers, with the 50 lowest energy conformers subsequently 

fully optimized with B3LYP/6-31G(d). Finally, B3LYP/6-311+G(2df,p) single-point 

energy calculations were carried out on the resulting ten lowest energy structures 

to identify the most stable conformer.  
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Scheme 2.2. Structures of (a) PhOdG, (b) o-PhOHdG, and p-PhOHdG and different  
(N9C8OC),  (C8OCC4), and (O4C1N9C4) dihedrals. 

Sstarting from the most stable conformer of the HyperChem conformational 

search, the PES of the nucleoside model was investigated by initially scanning  

and χ (the angle controlling the orientation of the nucleobase about the glycosidic 

bond or (O4C1N9C4)), as done in previous work for the related o-PhOHdG10 

and p-PhOHdG10 adducts.27 Specifically,  and χ were systematically altered and fixed 

in 10 increments from 0 to 360, while the sugar puckering was constrained to 

C2–endo which is the common sugar puckering in B-DNA.  A conformational 

search also provided evidence for the preference of C2–endo sugar puckering. The 

C3–hydroxyl group was oriented such that (HC3OH) approximately equaled 

–60°, and the C5–hydroxyl group was directed toward the nucleobase 

((C4C5OH) approximately equals 50–90°). All the aforementioned 

constraints reserved similar to parameters in a previous research on ortho- and 

para- C-linked structures,10 to be able to compare and contrast the structural 

properties of O-linked and C-linked modified species. A PES scan was also 
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conducted with respect to the χ and ϕ dihedral angles to determine the effect of 

the ϕ torsion. All stationary points on these PESs were fully optimized and 

characterized with B3LYP/6-31G(d). Scaled (0.9806) zero-point vibrational 

energies were added to the reported relative energies. All nucleoside calculations 

were performed using Gaussian 09 (Revisions A.02 or C.01).23 

2.2.3. Nucleotide Model 

Adding the 5′-monophosphate group to the β-constrained nucleoside models 

of the global (syn) and local (anti) minima identified from the PESs, generate the 

nucleotide model. Natural dG nucleotide, as well as C8-bonded phenoxyl dG 

adducts, has been investigated previously which provided a precise developed 

approach for including environmental effects and the representative model of the 

phosphate group that led us to the most biologically relevant nucleotide 

conformations.28-32 Although other protocols use larger basis sets that include 

diffuse functions (6-31+G(d,p)), the mentioned computational model results are 

consistent with those obtained using larger basis sets that include diffuse functions 

(6-31+G(d,p)). There were minimal differences between the geometries obtained 

with the two basis sets (considering the diffuse functions or not).20 Specifically, 

nucleotides can be accurately characterized by taking solvent effects (water) into 

account with PCM-B3LYP/6-31G(d) optimizations in water (ε = 78.4), and 

including an anionic phosphate model that is neutralized by a Na+ counterion. For 

the nucleobase and nucleoside models, reported relative energies were obtained 

from gas-phase B3LYP/6-311+G(2df,p) single-point calculations, whereas the 
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corresponding calculations were carried out in water for the nucleotide models. 

All relative energies include scaled (0.9806) zero-point vibrational energy (ZPVE) 

corrections. All quantum chemical calculations were performed using Gaussian 09. 

2.3. Results and discussions 

2.3.1. Nucleobase Model 

The PES was scanned as a function of  versus  at the nucleobase level for the 

unsubstituted O-linked adduct (PhOG) with a goal to identify the preferred 

orientation of the phenoxyl moiety with respect to guanine in the absence of the 

sugar (Figure 2.2). This will not only illuminate the structural properties of the 

inserted phenoxyl group, but also shed light on the influence of the sugar segment 

on the preferred conformation and orientation of the mutated moiety with respect 

to the nucleobase. Following the PES scan, all minima and transition states were 

fully optimized by removing all restraints.  
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Figure 2.2. B3LYP/6-31G(d)  versus  potential energy surface for PhOG; The relative 
energy (kJ mol−1) and color change is in 20 kJ mol−1 increments where the lowest energy 

regions are red. 

On the PES for the nucleobase model, there is only one minimum (θ ∼179.8°,  

∼179.8°) in which the phenoxyl moiety adopts a coplanar conformation, and is 

repeated after 180 rotation with respect to  (θ ∼180.0°,  ∼359.8°). A weak 

C−H•••N7 hydrogen bond stabilizes the planar minimum. Two transition states ((θ 

∼180°,  ∼91.8°) and (θ ∼180°,  ∼267.6°)) connect the symmetry-equivalent 

minima, which have a very small (3.0 kJ mol-1) associated rotational barrier about 

 (Figure 2.3). 
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Figure 2.3. Comparison of relative energies (kJ mol-1) between selected minima and 
transition states of PhOG at B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) as well as  and  

angles. 

Previous computational findings regarding the ortho C-bonded structure10 

suggested that the planar global minimum (θ =180.0°, o-PhOHG) is stabilized by a 

slightly strong O−H•••N7 hydrogen bond while a lack of hydrogen bonding 

interactions between the hydroxyl on the aromatic ring and electronegative atoms 

of guanine in the para-nucleobase (p-PhOHG) renders a less stable global minimum. 

The two local minima identified for the o−PhOHG have the bulky moiety twisted 

approximately 25° from planarity with respect to the nucleobase (θ ∼23.4° and 

∼336.3°), leading to destabilizing steric interactions between the N9 hydrogen of 

guanine and phenolic OH. Two skew transition states with an energy barrier of 

~48 kJ mol−1 connect the global minimum and local minima. Efforts to clarify the 

structural features of the para C−linked10 complex demonstrate that the 

perpendicular transition states connecting the local minima (θ ∼359.5° and ~1.3 

kJ mol−1) have an associated rotational barrier of 20.8−20.9 kJ mol−1.10 
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DFT calculations suggest that the bridged oxygen in the O-linked substituted 

adduct increases the flexibility of this species compared to o−PhOHG and p−PhOHG, 

which results in less steric and electronic interaction between the aromatic moiety 

with the bonded and nonbonded electrons on the nucleobase. 

2.3.2. Nucleoside Model 

There have been computational studies on the structural properties of C-

linked adducts at the nucleoside level10, 20 while unsubstituted O-linked mutated 

complexes have not been studied yet at the nucleoside level. In order to further 

explore the geometrical properties of PhOdG and provide a better understanding of 

oxygen as a bridging atom, the optimized structures of PhOdG was determined, and 

the structural properties are compared and contrasted with previously studied o-

PhOHdG10, 32, and p-PhOHdG10, 33 adducts. Theoretical calculations were performed 

using the B3LYP method in conjunction with the 6-31G(d) and 6-311+G (2df, p) 

basis set and the most stable conformers were compared and contrasted. 

Understanding the properties of the these adducts at the nucleoside level in the 

presence of the sugar moiety is an important step in evaluating the effect of sugar 

moiety, and assessing the factors that may contribute to the conformation and 

binding preferences of these adducts in DNA helices.   

The molecular geometry of mutated complexes of deoxyguanosine can be 

discussed in terms of the different structural units, the guanine ring and the 

furanose ring conformation. The furanose ring puckering can be defined via endo 

and exo, which refer to the displacement of an atom above or below the mean plane 
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of the ring (endo: on the same side as C5 atom, exo: on the opposite side).34 

Rotation around the C4–C5 bond leads to three possible conformers: ‘‘gauche-

trans’’ (gt), ‘‘trans-gauche’’ (tg), and ‘‘gauche–gauche’’ (gg) (Scheme 2.3).35 The 

intramolecular hydrogen bonds involving hydroxyl groups depend on the endo or 

exo character of the ribose and the nature of the possible interaction of the 

hydroxyl group and the guanine heterocyclic ring. 

 

Scheme 2.3. Three possible conformations about C4–C5 bond.34 

To probe the intrinsic properties of the PhOdG,  versus , PESs were generated 

(Figure 2.4).  Different conformers have different electronic structures and, in 

principle, may display significant variations in their physical properties, so the 

conformational preference of unsubstituted Olinked nucleobases have been 

examined by analyzing the relative stability of these structures in the gas phase. 

The same work has been performed on ortho and para Cbonded mutated 

complexes.10 

Subsequently, PES for the fully optimized (B3LYP/6-311+G(2df,p)//B3LYP/6-

31G(d)) structures of neutral unsubstituted O-linked deoxyguanosine (PhOdG) 

identified from  versus  and ϕ versus  appear in Figure 2.4 and Figure 2.7. 
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Global and local minima of ortho and para C-bonded structures (o-PhOHdG, and p-

PhOHdG)10 which were identified from the same procedure and level of theory are 

sketched in Figure 2.5 this model shows the important structural features of these 

types of damage to DNA.  

The result of conformational search using HyperChem demonstrate that the 

most stable conformer acquire the C2–endo sugar puckering which is the expected 

sugar puckering in B-DNA. Interestingly, the sugar puckering remained intact in 

unsubstituted O-linked adduct by implementing more accurate quantum 

mechanical method (DFT). This illuminates the determined sugar puckering in 

PhOdG modified complex, and it is consistent with the adopted sugar puckering of o-

PhOHdG,10 and p-PhOHdG.10 

The orientation of the nucleobase about the glycosidic bond can be categorized 

as anti or syn according to , where anti is defined by  values ranging from 90° to 

270° and syn refers to  values of 0–90° and 270–360°. The lowest energy 

conformer in PhOdG is C2–endo/syn which namely (1.83 Å) N3•••HO5 and N7•••H 

(2.23 Å), intramolecular hydrogen bonds. The syn orientation of the base unit with 

respect to the sugar is strongly stabilized by the formation of the N3•••HO5 

intramolecular hydrogen bond. Gauche–gauche (gg) is the stable conformer 

around the C4–C5 bond (Figure 2.5).  
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Figure 2.4. B3LYP/6-31G(d)  versus  potential energy surface for (a) PhOdG, (b) o-

PhOHdG10, and (c) p-PhOHdG10; the relative energy (kJ mol−1) is represented by color, where 
the lowest energy regions are red, and each change in color represents a 10 kJ mol−1 

increase in the relative energy. 

 

 

 

Figure 2.5. Fully optimized global and local minima of PhOdG, o-PhOHdG,10 and p-PhOHdG10 at 
B3LYP/6-31G(d) and relative energies of anti/syn conformers at B3LYP/6-311+G(2df,p) 

in kJ mol−1. 
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As seen in Figure 2.4 and Figure 2.5, the geometrical variations involving 

increasing energies on the PESs and formation of local minima involve structural 

changes in hydrogen bonding. The guanine should turn around the glycosidic 

linkage, leading to cleavage of the intramolecular N3•••H-O5 hydrogen bond in 

the mutated complex and formation of a new hydrogen bond between O•••H-O5 

in an anti (gg) conformer. Previous study of o-PhOHdG,10 and p-PhOHdG10 analogues 

suggest syn and anti global and local minima in a gg conformer around the C4–C5 

linkage (Scheme 2.3 and Figure 2.5).10, 36 

Structural properties and conformational preference of these molecules PhOdG, 

o-PhOHdG,10 and p-PhOHdG10 at the nucleoside level can be interpreted by geometrical 

changes. Almost all adducts possess a certain degree of twist about the θ dihedral 

whereas it has been demonstrated that PhOdG (∼53.7, ϕ∼85.1, ∼4.2) 

undergoes less deformation or conformational change. The phenoxyl moiety is less 

twisted with respect to the nucleobase, when compared to o-PhOHdG (=71.0, 

=207.0), and p-PhOHdG (=67.1, =217.0). This suggests that the sugar unit 

induces a further twist in the ortho and para C-linked10 adducts and that its impact 

is not important due to the presence of the bridging oxygen which alleviates steric 

effects between the phenoxyl and guanosine units. In particular, the spatial 

orientation of phenoxyl and sugar moieties with respect to guanine result in less 

influential interactions compared to ortho and para C-linked structures. The 

alteration of dihedrals is not obvious in by gradually increasing the size of system 

from nucleobase (Figure 2.3) to nucleoside. Structural distortions of the ortho and 
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para C-linked structures become more obvious when changing the type of model 

due to closer weak (hydrogen bonding) and slightly strong (Van der Waals) 

interactions of the aryl moiety with the sugar segment and nucleobase.10 In 

addition, the strength of hydrogen bonds should be taken into account, specifically 

the H-bond between the hydroxyl group of o-PhOHdG10 and N7 as well as the 

hydrogen atom of the aryl moiety and the oxygen atom of the sugar in p-PhOHdG.10 

The latter is not as substantial leading to more twisted structures in o-PhOHdG10 and 

p-PhOHdG10 rather than PhOdG. 

 

Figure 2.6. Fully optimized minima and transition states identified from PES of PhOdG, 
different dihedrals (θ, , and  deg) and relative energies at B3LYP/6-311+G(2df,p) in kJ 

mol−1. 
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Results of DFT calculations indicate that the phenoxyl unit is fairly planar with 

respect to guanosine in all global and local minima of the contour plots. The global 

minimum is connected to the local minima by three skew transition states on the 

blue regions of the counter plots: two syn (∼53.7, ϕ∼85.1, ∼4.2), (∼329.5, 

ϕ∼17.4, ∼187.0) and one anti conformer (∼166.7, ϕ∼173.6, ∼182.2) with 

energy barriers of ~4145 kJ mol−1. There is a lower barrier to rotation (~16 kJ 

mol−1) between the global and local minima for PhOdG in comparison with o-PhOHdG 

(~26.7 kJ mol−1)10 and p-PhOHdG (~25.0 kJ mol−1)10 as a result of less steric clashes 

and the higher flexibility of the phenoxy group (Figure 2.6). To provide better 

insight in to the effect of ϕ on the conformational flexibility and preference of 

PhOdG, quantitative analysis was conducted by generating a  verses  PES (Figure 

2.7). The same global and local minima were identified from the new PES, and the 

greater flexibility of  in comparison with  observed in the nucleobase model ,was 

verified. 
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Figure 2.7. B3LYP/6-31G(d)  verses  potential energy surface for PhOdG; The relative 
energy (kJ mol−1) is represented by color, where the lowest energyregions are red, and 

each change in color represents a 5 kJ mol−1 increase in the relative energy. 

2.3.3. Nucleotide Model 

The previous section suggests that fully optimized nucleoside models predict 

the syn orientation to be favored due to the presence of a non-native O5′H•••N3 

hydrogen bond. However, the nucleoside model cannot provide all essential 

information regarding the structure of damaged bases because the presence of the 

phosphate group can induce more steric hindrance which may lead to alteration in 

the conformational preference of modified bases at the nucleotide level. This 

increases the possibility of distorted DNA. To determine these effects, the 

nucleoside model is first exposed to a geometric constraint to yield the so-called 

βconstrained nucleoside model, which prevents the intramolecular hydrogen-

bonding interaction between the C5′OH and N3 site of mutated guanosine. This 
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renders the syn conformation less important than the initially predicted 

conformation at the nucleoside level.  

  To better predict the structure of the damaged bases in DNA helices, a 

nucleotide model is made by the including the 5′-monophosphate group. Previous 

computational methodology was developed for the accurate treatment of bulky 

adducts which could predict the correct and the biologically relevant anti/syn 

preference for the natural dG nucleotide as well as (damaged) ortho and para C8-

phenoxyl-2′-deoxyguanosine 5′-monophosphate adducts.20 Computational 

modeling reveals that the anti conformation is dominated for both types of damage 

at the nucleotide level. It seems that due to steric hindrance imposed by flanking 

and adjacent bases, there is an equilibrium between both the anti and syn 

conformations in the helix.11 In the case of the O-linked unsubstituted structure, 

the nucleoside model preferentially adopts a syn orientation (by 16.0 kJ mol−1) due 

to the presence of an O5′−H•••N3 interaction. Nevertheless, elimination of the 

mentioned hydrogen bond can better simulate the actual DNA environment, 

leading to a very small (<3.0 kJ mol−1) anti/syn energy difference. Overall, inclusion 

of the 5′-monophosphate group leads to around 6.5 kJ mol−1 preference for the syn 

(nucleotide) conformation, due to a pseudoskew structure of the syn conformer 

(=67.0, =191.9, =60.3 and = 162.4) stabilizing hydrogen bonding and less 

steric effects, while a pseudoplanar conformer with more steric effects was 

identified for the anti structure (=258.8, =168.1, =150.3 and =191.9) at the 

nucleotide level (Figure 2.8). 



 

73 

 

The sugar puckering in the anti conformations of o-PhOHdG20 and p-PhOHdG20 at 

the nucleotide level changed to C1exoO4endo, while no significant change has 

observed in the sugar puckering of the unsubstituted structure at the nucleotide 

level. C2 endo sugar puckering is retained for both anti and syn conformers of O-

linked mutated adducts after optimization. The steric effects, between the 

5′phosphate group and the phenoxyl moiety in the anti conformations destabilize 

this conformer in comparison with syn.  Also, since the 5OH and the amino group 

of the nucleobase are far away, there is no distinctive stabilizing interaction. In 

contrast, the syn conformations of the PhOdG nucleotide adduct, which are 

stabilized by an O5′−H•••N3 intramolecular Hbond interactions, are preferred 

over the anti conformations by 6.3 kJ mol−1. Nevertheless, a small energy difference 

has been identified between the syn and anti conformations. Since the energy 

difference in both anti and syn conformers of unsubstituted O-linked as well as 

ortho and para C-linked structures is low at the nucleotide level, both conformers 

may exist in more complicated systems such as the DNA model. Damage caused by 

C8-methylation of adenosine37 and halogenation at the C8 position38 results in 

stabilization of the syn conformation in both the gas phase and in solution in 

nucleotide models. On the other hand, C8-substitution is not the determining 

factor for the formation of the syn conformation at the nucleotide level. The 

presence of bulkier groups at the C8-site of guanosine results in the formation of 

the anti conformation in nucleotide models. Similar results has been identified for 

adenosine 5′-monophosphate modified at the C8-position by an n-butylamino 

group.39 These observations can be interpreted as stabilizing effects, such as 
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hydrogen-bonding interactions between the C-8 substituent and the sugar, that 

combine to be greater than the destabizing impact of unfavorable steric effects. On 

the contrary, stacking interactions between flanking bases in the helix may affect 

the spatial orientation and interactions of the base−phosphate group. Ultimately, 

the impact of damage in the alteration of interactions among the nucleobase, sugar 

and modified moiety determines the overall structure of damaged DNA helices and 

the relative stability of each conformer. Particularly, the insignificant energy 

difference between the syn and anti conformers of unsubstituted O-linked, ortho 

and para C-linked adducts at the nucleotide level, emphasizes the importance of 

considering the larger DNA model and investigating the structures of larger DNA 

oligomers and their hydrogen-bonding ability. This will be discussed in detail in 

the next Chapter 3. 
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Figure 2.8. The conformations, syn (top) and anti (bottom), of PhOdG, o-PhOHdG20 and p-

PhOHdG20 at the nucleotide level described by the counterion Na+ HPO4 model. Hydrogen-
bonds (Å), dihedral angles (deg.), relative energies (kJ mol-1), and sugar puckering are 

determined by optimized structures at B3LYP/6-31G(d). 

 

2.4.  Conclusion 

The unsubstituted adduct at the nucleobase level, adopts a planar minimum 

conformation and the transition state adopt a perpendicular arrangement of the 

rings. DFT calculations suggest that the barrier to rotation from the global 

minimum to transition state is greater in o−PhOHG and p−PhOHG (20-50 kJ mol-1)20 

than PhOG (3 kJ mol-1), which suggests that the bridged oxygen in the O-linked 
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adduct increases the flexibility of these species in comparison with o−PhOHG and 

p−PhOHG. 

The nucleoside model shows that the gas-phase global minimum for PhOdG 

possesses a syn conformation with O5H•••N3 hydrogen bond and that the aryl 

ring is planer with respect the guanosine. The same is true for ortho and para C-

linked structures (syn conformer as global minima).  Due to the presence of a 

hydrogen bond between the hydroxyl group on the aromatic ring and N7 of the 

nucleobase in o−PhOHdG10 and more steric effects in p−PhOHdG,10 the aryl moiety is 

perpendicular with respect to guanosine giving a more twisted structure than the 

O-linked adduct. The impact of ϕ on the conformational flexibility and structural 

preference of PhOdG is identified by by generating a  verses  PES which resulted 

in the felexibility of  dihedral and the same global and local minima. 

At the nucleotide level, the syn conformer is the most stable structure for PhOdG 

mono phosphate, whereas both o−PhOHdG mono phosphate20 and p−PhOHdG mono 

phosphate20 adopt anti conformations.  There is more variation in the sugar 

puckering in both conformers of C-linked20 structures, while in the unsubstituted 

O-linked adduct the sugar puckering remained C2-endo. The observed variation 

in the most stable conformer from small model perspective (nucleobae and 

nucleoside) to larger models (nucleotide) demonstrate that the sugar, phosphate, 

and the aryl substituent can affect the conformational flexibility. The situation can 

be more complicated due to more steric hindrance in the DNA double helix where 

the small models cannot provide a comprehensive perspective about the structural 
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properties of the adducts. In addition, the low energy difference at nucleotide level 

between anti and syn conformers of substituted O-linked adduct and ortho and 

para C-linked structures suggests that these modified species can acquire either or 

both of the aforementioned conformers in the double helix, so the details of 

conformational preferences will address in Chapter 3. 
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Chapter 3. Molecular Dynamics Simulations of DNA Containing 

Unsubstituted O-linked, Ortho and Para C-Linked Adducts Paired with 

Cytosine and Guanine Mismatch 

3.1. Introduction 

It is known that modification of dG at the C8 position not only can affect the 

barrier between the syn and anti conformation for the free nucleoside, but also that 

these lesions have an apparent impact when they are incorporated within the DNA 

duplex.1, 2  

Studies have shown that modification of the C8 site of 2-deoxyguanosine 

results in the formation of the syn conformation. Calculations show that for a class 

of C8-aryl-dG adducts there is an 25 kJ mol−1 preference for the syn conformer of 

all nucleoside adducts.3, 4 The most important factors that stabilize the syn 

conformer are the steric bulk of the adducted moiety, as well as an intermolecular 

hydrogen bond between O5'H•••N3.1, 5 

Within the duplex, the syn/anti conformation equilibration is more 

complicated due to the complexity of the helix environment. The steric and 

electronic effects result in three major conformations, which are in equilibrium.1, 6, 

7 There are various factors affecting the conformations including the preference 

for the formation of  the Watson-Crick H-bonding interaction vs. possible 

Hoogsteen H-bonding, as well as bulkiness, spatial orientation and planarity of the 

attached moiety to the nucleobase, which determine the π-stacking ability of the 

adducted moiety.6 
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Conformational heterogeneity for the N-linked C8-dG adducts, specifically for 

the carcinogens 2-(acetylamino)fluorene (AAF-dG), 2-aminofluorene (AF-dG) and 

1-aminopyrene (AP-dG) have been investigated meticulously.8, 9 Three main 

conformations identified for C8-arylamine dG adducts within the duplex have been 

determined by using techniques such as 1H and 19F NMR spectroscopy, 

crystallographic analysis, and circular dichroism. The “B-type" (B) conformer 

emerge from the anti conformation of the modified guanine residue. While, the 

Watson-Crick hydrogen-bonding interaction with the complementary base in the 

opposing strand is maintained. The adducted moiety is located in the solvent 

exposed major groove. "B-type" is the least perturbed conformation. A base-

displaced "stacked" (S) conformer has been termed as a second conformer in 

which the modified guanine residue acquires the syn orientation, as the adducted 

moiety is flipped into the interior of the helix. The opposing base is flipped out of 

the helix, so the Watson-Crick hydrogen-bonding interaction is ruptured. On the 

other hand, there is often a modification in stacking interactions between adducts 

and  the flanking bases. Flipping of the adducted moiety into the minor groove 

leads to the adoption of the third conformation, known as the “wedge” (W) 

(Scheme 3.1). In this case, the modified guanine is mispaired opposite another 

purine base and acquires a syn conformation. However the guanine portion 

remains stacked within the helix.10 Therefore, a variety of mutated nucleotides are 

capable of forming more than one conformer.11-16 Also, it is well known that there 

might be conversion between conformations within the duplex because both syn 

and anti conformers can be considered as stable helices. Different factors are 
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involved in the proportions of each conformer. For instance, the influence of ring 

size on the conformational equilibrium regarding the N-linked aromatic adducts 

has been studied by Shapiro et al.6 N-linked aniline (AN-dG), aminofluorene (AF-

dG) and aminopyrene (AP-dG) are examples of specific C8 modified N-linked 

structures. 1H NMR data supplemented with computational analyses was 

performed for different mutated sequences. The results prove that the AN-dG 

modified duplex embraces the B conformation, while the AP-dG adopts mainly the 

S conformer in the duplex, with a minority of the W conformer. Of the three B, W, 

and S, conformations identified for the modified duplex with AF-dG, the major 

(70%) conformer is determined to be the S.6 

 

Scheme 3.1. Different three major conformations formed after insertion of mutated 
nucleobase in DNA double helix.17 

In general, larger planar ring systems have preference for a stacked, 

intercalated conformation. Zhou and coworkers (using 19F NMR) performed a 

conformational analysis for fluorinated substrates.18 They investigated the 

conformational heterogeneity of C8-fluoroaminophenyl modified dG (FAF-dG) and 

C8-fluoroaminobiphenyl modified dG (FABP-dG) (FAF without the methylene 

linkage to keep the phenyl rings planar relative to each other). Freely rotatable 
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FABP-dG, has only a B conformer, while the S:B ratio of 55:45 was identified for 

FAF-dG. This consequence is in accordance with previous 1H NMR structural 

studies of a specific sequence using 19F NMR spectroscopy.19 Base sequence is 

another key feature in the conformational preferences for this class of adducts. For 

instance, analysis of the conformers for FAAF-dG based on 19F NMR resonances by 

Cho et al., uncovered a ratio of 5:65:30 for the conformational preference of B:S:W 

with two cytosines flanking the modified base, and a 5:30:65 proportion with a 

thymine and adenosine flanking the mutated base.20   

Conformation and structure of N-linked adducts and C-linked adducts has had 

the attention of many scientists.1, 3, 21, 22 Molecular dynamics simulations 

implemented by Wetmore et al. illustrated that the energy level of syn and anti 

conformers of each ortho and the para C-linked phenolic adducts were similar.11, 

23 Hence, more than one conformation within the duplex was expected.  

Experimental results provided by circular dichroism experiments involving C8-

aryl adducted species revealed regular B-form DNA for both ortho and para phenol 

mutated complexes. In the case of the 8-benzothiophenyl-dG adduct, the acquired 

syn conformer and following S-structure in the double helix can be verified by the 

induced CD band.24 Further investigations on the effect of the opposing base on the 

conformations of phenolic-, furanyl-, and benzothiophenyl-dG modified duplexes 

revealed that C8-aryl adducts incorporated opposite the correctly paired C were 

found to prefer anti B-type structures, while base pairing to a mismatched G lead 

to W structures.22, 25 



 

87 

 

It is worth considering the toxicological properties of C8 Adducts. Genes are 

expressed by codons which are made up of three nucleobases, the insertion or 

deletion of a nucleotide can change the reading frame, known as a frameshift 

mutation. In general, a frameshift mutation, causes a disorder in the reading of the 

codons. Frameshift mutations are apparent in some severe genetic diseases such 

as Tay-Sachs disease and Cystic Fibrosis.26, 27 They also increase susceptibility to 

certain cancers and classes of familial hypercholesterolaemia.28  A frameshift 

mutation is also involved in the resistance to infection by the HIV retrovirus.29 

Principally, frameshift mutations often result from the bulge stabilization by base 

displaced S structures. 

The unpredictability of C8 adduct conformation, flanking sequences and 

opposing bases are distinct features emerging from the flexibility of the DNA 

double helix. For instance, different conformers which are structurally similar in 

the case of aromatic amines, cause a wide range of toxicity.30 It has been observed 

that there is a direct dependence between mutagenicity and conformational 

preference. The promutagenic conformations of C8 aryl-amine adducts are 

determined to be the syn conformations which trigger S and W conformers in the 

DNA double helix while the anti conformer does not show any toxic effect. 

Similarly, in modified duplexes with AAF adducts, exclusively the syn conformer of 

the adducted nucleobase can form frameshift mutations. Heterogeneous, syn/anti 

AF mutated duplexes generally cause to G↔T transversions rather than frameshift 

mutations.8 AF is known to stabilize G:A mismatches through the exclusive 
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adoption of the W conformer which evolves when it is mispaired against A.31 Also, 

stabilization of the G:G mismatch by AF-dG rationalizes G↔C transversions.8  

Frameshift mutations occur with especially high frequencies in regions of 

repeated base sequences, the hexanucleotide 5-G1G2CG3CC-3 which forms the 

recognition sequence of the NarI is the most vulnerable hot spot for this type of 

mutation.32 The name Narl is derived for Nocardia aregentinesis which is the name 

of a bacterium in E-coli carrying this sequence. Modification at the C8 position of 

the G3 guanine by bulky arylamines is known to induce -2 frameshift mutations. 

Frameshift mutation occurs when nucleobases are deleted or inserted in a DNA 

sequence and the number of nucleotides added or removed are not a multiple of 

three,  leading to a shift in the way that the sequence is read).33-35  

Rizzo’s findings suggest that modification of the NarI sequence at G3 by the 

bulky arylamine IQ, removes two bases from the mutated sequence in the 5 

direction during replication, which leads to a frameshift mutation.36 Misalignment 

of base pairing in regions where base repeats can be stabilized by bulky adducts 

like IQ, increases the probability of this type of lesion. Formation of the S 

conformation by IQ stabilizes the bulged out sequence, due to loss of two base pairs 

from the replicated strand. Likewise, acquiring the S conformation in the case of 

N-linked arylamine adducts accounts for the propensity of this lesion to form -2 

frameshift mutations.37  

Moreover, MD and DFT calculations indicated that the C-linked phenoxyl 

adducts against guanine mismatch is stable. The decanucleotide with flanking 

purine bases are more affected by the stabilization phenomenon of guanine 
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mismatch. This is interpreted mainly by stronger base-base interactions.11, 23 

These results are further confirmed by experimental melting temperatures. Hence 

there are several factors in determining the mutagenic properties of modified C-

linked species among them the specific preferred conformation (syn), and the 

variety of complementary base (adduct against guanine mismatch) while taking 

the specific type of the sequence in to account which can delineate the impact of 

flanking bases. These results are comparable with aforementioned corresponding 

N-linked C8-dG adducts derived from arylamine carcinogens.8 Specifically, since 

the phenoxyl adduct lesions are better able to stabilize G:G mismatches when 

flanked by purine bases, purine-rich sites would be expected to show a greater 

propensity for misincorporation of G opposite the adduct.  

This allows for comparison with the N-linked aromatic amine adducts, which 

have been well-studied within this sequence context. However, the work in this 

chapter indicates that the conformational and base-pairing preferences of the 

adducts in Narl oligonucleotides can be identified by MD simulations. 

In summary, it is known that C8-dG adducts when are incorporated in a double 

helix against the normal pyrimidine partner C, will typically exist in either the B-

form or S-form conformation, or a combination of both in fast exchange. Studies 

has elucidated that preference of an S-conformation leading to stabilization of the 

2-base bulge damage. In the other word, a 12mer NaI sequence in complement 

with NarI′(-2) 10mer sequence due to this damage. For the modified duplex with 

4F-PhOdG studied in NarI, there was no stabilization of the bulge. This implies 

unfavourablity para- flouro substituted phenolic moiety of modified guanosine to 
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flip out of the helix and acquiring a base displaced stacked S conformation.17 The 

experimental data showed that the conformation of the adduct 4F-PhOdG within the 

duplex hybridized to the complementary strand containing a normally base-

pairing C opposite was a B-type conformation. To further support this argument, 

incorporation of the modified residues in the sequence with abasic strand implied 

the disfavouring the S conformation is typical of adducts containing small ring 

systems, or ring systems with considerable flexibility.11, 17, 23, 38 Conformational 

studies on the structurally similar aniline adduct (AN-dG) indicates the exclusive 

preference of B conformer opposite C.12, 13, 23  

In the B conformation, the adduct exists in an anti glycosidic orientation. 

Experimental studies (measuring melting point of strand, Tm) on AN-dG modified 

with complementary cytosine base pair confirms the computational results,13, 15 

whereas the 4F-PhOdG adduct induced a greater destabilization in the studied 

sequence. This similar impact on the duplex stability can be ascribed to the uptake 

of the same B conformation. An extra energy is required for solvation of the 

hydrophobic aromatic ring. This is due to the adduct in major groove which is 

exposed to solvent. Moreover, the steric interactions of the modified nucleobase 

with complementary and flanking bases contributes to in stabilization of the 

double helix. 39 

To investigate the conformational and structural changes induced by the 

formation of unsubstitued O-linked phenoxyl adduct (PhOdG) at the nucleobase and 

nucleoside level,40 quantum mechanical calculations were performed. To evaluate 

the consequence of bridged oxygen, the structure of ortho- and para- phenolic C-
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linked mutagenic products (o-PhOHdG and p-PhOHdG) previously studied 

experimentally and theoretically, were taken into account.3, 22, 41, 42 Furthermore, 

molecular dynamics simulation (MD) are presented in this chapter to evaluate 

important physical features of mutated adducts in the NarI sequence duplex at 

molecular time scales. The high probability of -2 deletion mutation, caused by 

modification of guanine at G3 site of NarI sequence, is due to the nature of 

nucleobase and position of the G3 site. 

Mutation of the guanine in the G3 position induces an especially high frequency 

of -2 deletion mutations. Tendency to mutate of guanine is modulated by the 

nature of the nucleotide in the G3 position. Free energies were assessed relative to 

natural NarI sequence for each mutation to provide the most stable conformer of 

adducts after incorporation in double helix. 

In this chapter we try provide valuable information for evaluating interaction 

between nucleotides in a duplex by MD simulations on unsubstituted O-linked, as 

well as ortho- and para- C-linked adducted DNA strand. 

3.1.1. Molecular simulation approaches 

Molecular dynamics is proven versatile tool for investigating normal and 

damaged DNA oligonucleotides. Molecular models are capable of providing insight 

into chemical and biological function by giving information about conformation, 

hydration, and even thermodynamic quantities.  

Perhaps the most noted success of this approach was discovering the structure 

of DNA by Watson and Crick using a wire model.40 The concept of extending 
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molecular modeling to dynamic systems was triggered by the advent of computers. 

The first attempt at applying a molecular dynamics approach had poor accuracy 

and necessarily involved many simplifications, such as in vacuo simulation, as well 

as removing explicit hydrogen atoms due to the inadequate computational 

resources. Fundamentally, MD modeling of a system is based on using classical 

Newtonian mechanics. Indeed, it is an eminent methodology in identifying the 

dynamics, and thermodynamics of macromolecules. Following the advent of 

modern computers, simulations on large systems with over 106 atoms43 and also 

timescales of around one microsecond44 have become possible. The improvement 

of hardware and software have produced promising results using this method. 

In molecular mechanics and dynamics, the total energy of a system consists of 

the kinetic energy plus the potential energy. The energy of atoms while moving 

determines the kinetic energy. On the other hand, the potential energy is defined 

as the sum of the electrostatic and van der Waals energies. Several simplifications 

have been taken into account in molecular mechanics and dynamics calculations 

to achieve more tractable computations than quantum mechanical methods. 

Atoms are considered as soft or hard spheres, whereas in quantum mechanical 

methods, atoms are collections of electrons and nuclei. Newton’s laws of motion 

(classical potential energy equations) are used instead of the quantum Schrödinger 

equation. The kinetic energy of each atom is defined as half of the mass (m) of the 

object times the velocity (v) squared  

𝐾 =
1

2
𝑚𝑣2 
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A computer program sums various forces acting upon each atom, such as 

electrostatic interactions and van der Waals forces, which have an effect on the 

bonds that constrain atoms, and finally calculates the positions that the atoms will 

occupy in a specific time interval. When a system is evaluated within multiple time 

steps, a trajectory is produced that shows the dynamic behavior of the system over 

time (position as function of time). In fact, molecular dynamic trajectories contain 

snapshots of the simulated system. 

3.1.1.1. Force fields 

MM and MD use potential energy equations that are defined to calculate the 

energy. They describe the atoms and their connections parameters (bond lengths, 

torsions etc.) that are used in the potential energy equations. In other words, 

energetic properties can be described by force fields which illustrate the forces 

acting on each atom of the molecule. There are many force fields designed for 

different purposes based on the type of system that is investigated (protein, DNA, 

inorganic complexes, and small drug molecules) such as OPLS, MMFF, SIBFA, 

GROMACS, CHARMM, and AMBER. 

Popular modern force fields include those associated with the Assisted Model 

Building with Energy Refinement (AMBER)45 and Chemistry at HARvard Molecular 

Mechanics (CHARMM)46 software suites. A modern force field attempts to mimic 

the behavior of molecules as precisely as possible while taking into account the 

cost of computation. 
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3.1.1.2. The AMBER potential energy function  

In this study we have employed the AMBER force fields and associated 

simulation software. 45 The total energy in the Amber force field consists of the 

following function to describe the potential energy of the system:  

𝑉(𝑟) = ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝐵𝑜𝑛𝑑𝑠

+  ∑ 𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ 

∑ (
𝑉𝑛

2
)

𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠

 (1 + cos(𝑛𝜙 − 𝛿)) + ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12

) − (
𝐵𝑖𝑗

𝑟𝑖𝑗
6

) + (
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
)

𝑛𝑜𝑛𝑏𝑖𝑗

 

There are three terms which include the energy of the bonds between atoms 

in the system, plus a nonbonded term that accounts for van der Waals and 

electrostatic interactions. With the intention of making the calculations tractable a 

cutoff is used for the van der Waals term. This cutoff is usually between 7 and 10 

Å, and in the 2008 version of AMBER the cutoff is employed at 8 Å by default.47 This 

cutoff is also applied in the Ewald summation for the electrostatic calculations. 

This function results in the potential energy of a molecule for a given physical 

conformation, so the flexibility and dynamics of the molecule leads to a change in 

the initial potential energy. 

The first and second terms describe the energy of the bond, bond length and 

bond angle. The bond length constant, Kb(kcal/mol·Å2), and the angle constant, 

Kθ(kcal/mol·rad2),  come from experimental data. The balanced bond length is 

denoted by b0(Å) and the measured equilibrium bond angle is denoted by θ0(rad). 

In molecular dynamic simulations, b(Å) and θ(rad) are the temporal bond length 

and angle. As a bond can be modeled by a spring with its own equilibrium length, 
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so can the energy required for stretching or compressing approximated by Hooke’s 

law for an ideal spring. The quantity Vn (kcal/mol) is derived to reproduce the 

torsional profile where n is the period between the maxima and minima. The phase 

angle Φ (rad) gives the location of the minima and maxima, and the torsion angle 

is denoted by δ (rad). The nonbonded term consists of two important components: 

an electrostatic term using Coloumb’s law, and the van der Waals potential, which 

is given by the Lennard-Jones function. It is well known that one of the most 

commonly used functions for the van der Waals potential is the Lennard-Jones 

approximation, representing the attractive and repulsive van der Waals forces 

between atoms with no net electrostatic charge. These forces vary for different 

atom types. rij (Å) is the distance between two atom centers, Aij(kcal·Å12/mol) and 

Bij (kcal·Å6/mol) are the roots of the product of the A and B van der Waals 

parameters of the two interacting atoms.  

𝐴𝑖𝑗 = √𝐴𝑖𝐴𝑗   

𝐵𝑖𝑗 = √𝐵𝑖𝐵𝑗 

The constant parameters A and B stem from experimental data, whereas the 

van der Waals radius (r (Å)) and potential energy (ε(kcal/mol)) are determined 

from the following relationships: 

                                                                    A=4εr12                          B=4εr6  

q0 is known as the atomic point charge, and the sign of the combination of the 

charges determines whether the electrostatic force is attractive or repulsive 

𝐹 =
𝑞1𝑞2

4𝜋휀𝑟2
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3.1.1.3. Parameter development 

An important process which is involved in molecular dynamic calculations is 

the development of appropriate atom and bond parameters. As explained in the 

previous section there are constant values in the AMBER force fields 48-50 and they 

are taken from empirical parameters. The other parameters are calculated 

theoretically using quantum mechanical methods. The empirical constants for the 

bond length Kb and the bond angle Kθ are identified using experimental techniques, 

such as high-resolution X-ray crystal structures, NMR studies, Raman spectroscopy 

and infrared spectroscopy. There is a direct correlation between the force constant 

and the force needed to deviate from the equilibrium value, namely, the more rigid 

the bond or angle the larger the force constants. This is related to the rigidity of an 

ideal spring based on Hooke’s law. 

Since, in this study we modeled DNA lesions containing bonds or atom types 

that are not found in the force field parameter set, we developed new parameters. 

Bond parameters and atom types are usually assigned by comparison with 

chemically similar bonds and atoms which are defined by default in the force field. 

One of the most difficult steps is to assign correct partial charges to new molecules. 

We calculated the electrostatic potential using the HF method with the 6-31G* 

basis set51 using Gaussian software.52 Subsequently, during MD simulations the 

restrained electrostatic potential (RESP) algorithm48, 53 was then used to fit the 

charges to atomic centers. From the dependence of the partial charges on the 

conformation of the molecule, we can determine the partial charges from multiple 

conformations of the flexible mutated complexes by rotating the glycosidic bond 
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to adopt both syn and anti conformers. Since there is no change in the partial 

charges during the MD simulation, we can use the geometrical parameters of 

conformations which can be calculated through the quantum mechanical method. 

3.1.1.4. Electrostatics 

Because of complexity, stochastic relations and other variables, not all real 

world problems can be represented in a model. Attempting to use analytical 

models for such systems usually require too many assumptions so that the 

resulting solutions are likely to be inferior and inadequate for implementation. In 

order to render more approachable force fields in this study, some simplifications 

are exerted on the electrostatic component which contributes to the reduction of 

the computational complexity. Firstly, the charges on atoms are assigned as a 

single point charge at the center of the atoms. Secondly, the surrounding 

electrostatic environment does not affect the fixed point charges during the phase 

of the simulation and finally, the particle mesh Ewald approximation (a method for 

computing long-range interactions, e.g. Coulombic interactions) is employed 

during calculating the electrostatic interactions. The cutoff which has been applied 

to the electrostatic interaction is quite similar to the cutoff used for the Lennard-

Jones simplification. An overview of typical molecular modeling and dynamics 

procedures 

To accurately model a large system such as the damaged DNA described in this 

work, it is necessary to first obtain reasonable starting coordinates for the atoms 

in the system. The topological properties which describe the covalent connectivity 
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of the molecules are the starting coordinates for the atoms in the system. In 

addition, structural properties of the starting conformation of the molecule (taken 

from physical measurements such as X-ray structures, NMR data or a theoretical 

model) should be considered as well. 

Some modifications are often applied to these coordinates for various 

purposes such as altering DNA sequences, substituting covalent DNA adducts, 

addition of ions to neutralize the system, and solvation with explicit water 

molecules. Subsequently the system is subjected to energy minimization, which 

leads to relaxation of the solute and solvent. During subsequent equilibration, the 

system is slowly heated to the desired temperature, and decreasing restraints are 

used to allow the solute to slowly move toward a lower-energy state. Once the 

desired temperature has been reached, all molecules are unrestrained and the 

actual production molecular dynamics can begin. The simulation is run for a length 

of time, often on the nanosecond timescale, and then the trajectory is analyzed for 

structural features of interest. 

3.1.1.5. Energy minimization 

These factors raise the potential energy of mutated complexes, which prohibit 

generation of appropriate atomic velocities, bond lengths, and other quantities 

when a force field is applied. It is essential to adjust the conformation of the 

damaged bases prior to performing the production step in molecular dynamics. 

During the minimization step, the geometrical and topological parameters (bond 

lengths, angles, and dihedrals) are improved. This reduces the number of atomic 
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collisions, which assists in forming hydrogen bonds, and ultimately decreases the 

potential energy of the system to a reasonable level. During this process, the 

potential energy of a system decreases. Another significant highlight in this step is 

that there is no restriction placed on the total energy while atoms are moved and 

bonds are changed. Also, time is not taken in to account in minimization. An 

algorithm needs to be defined for minimization. Steepest descent (SD) and 

conjugate gradient descent (CG)54, 55 are among the most common minimization 

algorithms employed in molecular modeling and dynamics. Reaching a local 

energetic minimum is possible via a combination of both of these algorithms. The 

SD algorithm is more efficient in the beginning of a process, but as we get closer to 

the local minimum the CG algorithm becomes more efficient. In other words, SD is 

implemented for the preliminary minimizations of a structure, because the initial 

energy of a molecule is expected to be very high. At this time, moving towards a 

local minimum will result in a significant drop in the level of total potential energy. 

However the CG algorithm for minimization can handle shallow gradients more 

appropriately than SD minimization, so SD is usually followed by CG descent 

minimization. 

3.1.1.6. Molecular dynamics simulations 

Due to the complex nature of bio molecular systems which usually consist of a 

large number of particles, it is analytically impossible to calculate the properties of 

these systems. A possible technique to circumvent and examine a complex system 

at the atomic level, and model the changes of that system within a specific time, is 
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Molecular Dynamics (MD). During the process of a simulation, a force field is 

applied to a molecular system, so the interaction of atoms in a limited period of 

time under the common laws of physics are considered. MD simulation is a virtual 

laboratory and connects experiments with theory precisely, which can help 

scientists develop new drugs and medical technologies, and prompt experimental 

research by creating new hypotheses. 

Molecular dynamics simulations calculate the motion of the atoms in a 

molecular assembly. A MD trajectory is generated using Newton’s second law of 

motion to determine the atoms’ positions, velocities, net force and acceleration in 

different times. 

𝑑2𝑥𝑖

𝑑𝑡2
=

𝐹𝑥𝑖

𝑚𝑖
 

The above equation shows that the acceleration of an atom in the system in a 

direction equals the force in that direction divided by the atomic mass. In the initial 

step of MD, the velocities of the atoms in the starting structure are assigned 

velocities drawn from Boltzman distribution reflecting atomic velocities at the 

temperature of the simulation. This is a Boltzman distribution generated around 

the average velocity, υ0, at temperature T, given by the following equation: 

𝑣0 = (
𝐾𝐵𝑇

𝑚
)

1
2 

KB is the Boltzman constant, T is the temperature (K), and m is the atomic mass. 

The force F acting on an atom at position x, can be determined using the potential 

energy V(x), generated by the force field: 
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𝐹 =
− ∂𝑉 (𝑥)

∂𝑥
 

If the force acting on an atom is known, the acceleration a, can be determined 

using Newton’s Second Law: 

𝑎 =
𝐹

𝑚
 

Once the initial velocity and acceleration of an atom are known, the new 

velocity after one time step can be determined for each atom.  The potential energy 

function for the new conformation leads to evaluating a new acceleration. By 

repeating this process over the duration of the simulation, the velocities and 

acceleration can be obtained. The fastest motions of the system are limiting factors 

of the time step. Vibration of bonds with hydrogen atoms are among the fastest 

motions. In general, the SHAKE algorithm56 is used to constrain the fast vibrations, 

which allow a longer time step, and result in the generation of long trajectories 

more efficiently. However, to make the calculations more feasible for modeling the 

solvent, the angle between the hydrogens of water is kept fixed. Insertion of 

constrained on hydrogen atoms of water and mobile hydrogen atoms of the DNA 

are essential because they decrease inaccuracies in the calculations. These 

restriction allow to increase time steps without facing instability in the simulation.  

3.1.1.7. Temperature and pressure regulation 

An important facet of MD simulations is treating the system under actual 

temperature, pressure, and energy conditions leading to statistical mechanical 

ensembles. In ensembles, several properties of the system are constant for the 
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duration of the simulation. A microscopic state of the system is given by a point 

space of the system, which is defined by the positions and the momenta of the N 

atoms of the system. The macroscopic state is defined by the number of particles, 

volume, energy, pressure, temperature, etc. A thermodynamical ensemble is a 

collection of microscopic states that all feel an identical macroscopic state. 

In this research we sought to represent the conditions inside a cell, and 

therefore “isothermal-isobaric” or “NPT” ensembles were employed which 

clarifies that the number of molecules in the system N, the temperature T, and the 

pressure P, are held constant. Normally, the pressure and temperature are set at 1 

atm and 310 K, respectively. 

Several methods57 are used to mimic a heat bath, and a thermostat attempts to 

keep and stabilize the temperature. The Berendsen thermostat57 used for the 

production step in MD, and also the Langevin thermostat58 for equilibration in 

some simulations are the most common. The latter is employed in this survey. 

Absorbing the energy/heat or contributing the kinetic energy of the system is the 

key feature of a heat bath which helps to maintain the temperature. Thereby, a 

system which has been properly equilibrated during simulation has an even 

temperature, with very small fluctuations (up to ~1C around the desired 

temperature in each time step). A barostat keeps the pressure constant by 

increasing or decreasing the volume of the system.59 The fluctuation of pressure is 

approximately 200 atms which, on average, is at or very close to the target 

pressure. A user-supplied coupling constant adjusts the temperature of the heat 

bath and the pressure at the determined interval. It is possible to apply more 
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computationally efficient larger constants, but deviations from the target 

temperature and pressure should be taken into account. 

3.1.1.8. Modeling of the solvent 

Explicit modeling of water molecules is employed in this project. Several 

common explicit water models have been specified which vary in the defined 

parameters for bond angles, charge, and van der Waals radius. In the MD 

simulations of DNA, the TIP3P water model is often applied.60 In the TIP3P water 

model, a rigid triangle is defined in which three point charges are centered on the 

oxygen atom and the two hydrogens. For computing Lennard-Jones interactions, 

only the van der Waals radius of the oxygen is considered while the hydrogens are 

excluded. 

1.1.1.1.1. Periodic boundary methodology  

Since explicit modeling of a realistic volume of water for biochemical reactions 

is difficult computationally, periodic boundary conditions are used in MD 

simulations. This technique allows the modeling of very large systems, but 

introduces a level of periodicity that is not present in nature. The periodic 

boundary approach in simulations represents a box that contains the solute and 

surrounding solvent. Subsequently, replication of this box in an infinite lattice of 

images of itself means that any given solvent atom has neighbors on all sides, with 

no solvent/vacuum boundaries in the system.61 Identical boxes are an important 

condition of this model, which allows those atoms or particles that are leaving the 
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central box to reenter from an image box that is directly opposite their exit point. 

Interactions between atoms are calculated using only the closest replicas, so 

interactions are not double counted.  Adjusting the size of the box is an important 

condition when using a periodic boundary as it prevents the atoms of the solute 

from interacting with image atoms. This gives rise to the concept of so-called 

boundary effects. Ultimately a box in which walls are at least 10 Å (in this project 

it set to 8 Å as mentioned in computational details section) the from the nearest 

solute molecule is depicted in MD simulations. 

3.1.1.9. Particle mesh Ewald evaluation of electrostatic interactions 

Imposition of the periodic boundary condition has the advantage of facilitating 

the use of the particle mesh Ewald (PME) method, which considers particles in a 

finite distance and applies some modification to the Coulomb's law to evaluate 

electrostatic interactions.62, 63 The basis of PME is that the sum of the short-range 

potential and the long-range potential of an atom is equal to the total electrostatic 

potential of the given atom. As there is a direct ratio between of the number of 

atoms and an increase in electrostatic potential, considering both components 

during calculation would not be tractable for models that may exceed 50,000 

atoms. In order to decrease the computational complexity, only short range 

interactions, atoms with a cutoff distance similar to the Lennard-Jones 

calculations, are considered and calculated directly. PME requires the generation 

of a charge distribution mesh for the simulation volume, with the local charge 

distribution represented as a point in the mesh within periodic boundary 
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conditions. A distinct disadvantage of PME is the introduction of some error into 

MD simulations which can be rationalized by the described approximations.45 

3.1.1.10. Limitations of molecular dynamics simulations 

MD simulations are a very beneficial and important tool for modeling a wide 

variety of large systems of proteins, nucleic acids and their complexes. It can give 

us information about small and large scale conformational changes, dynamic 

processes such as ion transport in biological systems and can determine and 

construct 3D structures. However, there are some limitations to this method that 

mostly stem from restricted computational resources. On the other hand, 

simplifications applied in the molecular mechanical force fields cause error. 

Furthermore, the basis of this approach, which treats the system using Newton’s 

laws of motion, may be inaccurate due to the inevitable presence of features (e.g. 

Bond formation and dissociation) that would require quantum mechanical 

calculations to get precise results. Limitations in timescale, especially in many 

interesting cell-level biological events, are another source of error. The study of 

systems of very large size, such as the DNA and some (cell-level protein/substrate 

complexes), is precluded as a result of computational limitations.  

Finally, traditional MM/MD simulations facilitate treating larger systems for 

longer timescales. Increasing the power and decreasing the cost of computational 

resources, providing greater detail and longer timescales in all kinds of simulations 

is the main purpose and future of MD simulation.  
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3.2. Computational details 

3.2.1. DNA Model  

Classical molecular dynamics (MD) simulations were performed on the 

canonical 5-CTCG1G2CG3CCATC 12-mer oligonucleotide from the NarI recognition 

sequence, while sequences with the unsubstituted O-linked (PhOdG), ortho (o-

PhOHdG) or para C–bonded (p-PhOHdG) adducts at the G3 site were also considered. 

The G3 site in the NarI sequence was specifically chosen since this is a hot spot for 

frameshift mutations induced by N–linked C8-dG adducts.12, 16 These have similar 

properties to the phenoxyl dG adducts of interest in the present work. The initial 

coordinates for the  and  dihedral angles in the syn and anti-conformations of 

PhOdG were set as close to the values in the DFT nucleoside minima as possible 

based on steric constraints imposed by the duplex environment (the steric 

hindrances from flanking and complementary bases in DNA do not allow to set the 

angles based on the calculated results from nucleoside or nucleotide models). 

Partial atomic charges for the O and Clinked dG phenoxyl adducts were 

determined using the RED.v.III.464 program. MD simulations were conducted for 

20 ns (as the result of 40 ns and 20 ns simulations were pretty similar based on 

RMSD plots, to save the time and computational cost we performed 20 ns 

simulations) using the PMEMD module of the AMBER 11 or 12 software.65 The 

parmbsc0 modification to the parm9966 force field was implemented for natural 

DNA, while generalized AMBER force field (GAFF)67 parameters were used to 

describe the adducts and assigned using ANTECHAMBER 1.4.68 Initial structures 
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were prepared using the NAB65 program and GaussView to modify G3 to the 

adducts. The LEaP module of AMBER 11 was used to prepare the systems for MD. 

The adducted NarI sequences were solvated with modified TIP3P69 water in an 

octahedral box extending up to 8.0 Å from each solute species. The SHAKE70 

method was used to constrain all bonds to hydrogen. To avoid edge effects, the 

periodic boundary condition was applied in all calculations. The addition of 22 Na+ 

ions neutralized the system. The nonbonded cutoff was set at 10 Å for the Lennard-

Jones interactions, while long-range electrostatic interactions were treated with 

the particle-mesh Ewald (PME) method. A force of 500.0 kcal mol–1 was used to 

restrain the positions of the adduct atoms. Within these constraints, initial 

minimization of the system was performed for a total of 1000 steps (500 steps 

under the steepest descent algorithm followed by another 500 steps under the 

conjugate gradient minimization algorithm with the DNA helix held fixed via a 

force constant of 500 kcal mol–1 Å–2). In addition, 1000 steps of steepest descent 

minimization followed by 1500 steps of conjugate gradient minimization were 

performed on the entire system and the system was minimized without restraints. 

The system was then gradually heated from 0 to 300 K. The temperature-bath 

coupling was achieved by the Langevin temperature equilibration, and a 10 kcal 

mol–1 Å–2 force constant of was applied to restrain the solute over the first 20 ps. 

However, heating followed by maintaining the temperature and pressure constant 

at 300 K and 1 atm, during a total of 20 ns unrestrained MD simulation. The DNA 

helix in the solvated systems was restrained to the initial coordinates using a weak 

force constant of 10 kcal mol–1 Å–2 while warming. The isobaric condition was 
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enforced for each system in order to relax the positions of the solvent molecules. 

Finally, MD simulations were performed without position restraints for 20 ns with 

2 fs time steps. 

The stability of the MD trajectories was assessed using the root mean square 

deviations (RMSD). The results were analyzed using the ptraj module of Amber 11 

or 12. The PyMOL and VMD software were used to visualize the trajectories and 

depict structural representations. Clustering with respect to the atoms forming the 

θ,  and χ dihedral angles of PhOdG was performed using the ptraj module of AMBER 

to obtain the representative structure of the adduct.  H–bonding and stacking 

interactions were evaluated for MD structures. H–bonding interactions and 

stacking binding strengths were determined using DFT calculations. 

3.2.2. Free energy calculations 

Free energy calculations were performed using the molecular 

mechanics/Poisson–Boltzmann surface area method (MM-PBSA method).71 

Specifically, snapshots were taken every 400 and 40 ps, and water was removed to 

calculate the entropy and other free energy terms, respectively. Furthermore, the 

total free energy (GTot) was estimated as the sum of the molecular mechanics 

energy (EMM), the solvation free energy (Esol) and the entropy as: 

GTot = EMM + Esol – TS 

where T is the temperature and S is the sum of the rotational, translational and 

vibrational entropies for DNA as estimated using the MMPBSA method. The EMM 
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term was calculated as the sum of the internal energy (Eint), the van der Waals 

interaction (EvdW) and the electrostatic energy (Eelec): 

EMM = Eint + EvdW + Eelec. 

Eint is the sum of the energy terms stemming from deviations of the bond 

lengths (Ebonds), bond angles (Eangles) and dihedral angles (Edihedrals) in the DNA helix 

from their equilibrium values: 

Eint = Ebonds + Eangles +Edihedrals 

Esol was estimated from the electrostatic solvation energy (EPB) and the 

nonpolar contribution to the solvation free energy (ENP): 

Esol = EPB + ENP 

The EPB term was calculated using the Poisson-Boltzmann method as 

implemented in the MMPBSA program and distributed as a part of AMBERTOOLS. 

  

3.3. Results and discussion 

Carefully designed computational models are of great importance. Since 

nucleobase and nucleoside models cannot provide a realistic picture about 

conformational flexibility of bulky adducts meticulously, their geometrical 

properties identified by incorporating into the duplex. 

Theoretical and experimental results show that, the Watson-Crick hydrogen 

bonding, which forms normally with anti conformers is generally stronger than the 

Hoogsteen bonding, which stabilizes the syn conformer in DNA. However, the 

modified guanine with ortho substituted aryl moiety against cytosine prefers 
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Hoogsteen hydrogen bonding regardless of adopted anti/syn. Consequently, 

substitution of the ortho adduct in the (ODN1 = 5-CCATXCTACC-3 and ODN2 = 5-

GGTAGXATGG-3) DNA sequences, irrespective of the type of the studied DNA 

sequence, may not lead to base-substitution mutations in DNA.22, 23 In contrast, in 

the case of the para adduct there is not any noticeable difference in the stability 

level of Watson–Crick and Hoogsteen pairs with cytosine. Interestingly, the 

probability of forming Hoogsteen pairs of the para adducts with guanine and 

cytosine is similar. It is worth noting that in this sequence para adduct prefers syn 

conformation which may lead to stability of base mismatch in DNA.22, 23  

There is a direct relation between the conformational flexibility of some bulky 

adducts such as N-linked adducts, and the type of sequence.72-76 Steric clashes are 

among the most important determining factors in analyzing the conformational 

preference of bulky adducts in DNA.77 MD simulations on the anti or syn con-

formation of o-PhOHdG or p-PhOHdG in two types of DNA sequences (ODN1 = 5-

CCATXCTACC-3 and ODN2 = 5-GGTAGXATGG-3) differ in the type of flanking 

bases (pyrimidines or purines) with the damaged base; and complementary bases 

do not have any effect on the conformational preference of modified bases.22, 78 

These results indicate that the phenoxyl moiety resides inside the DNA helix, which 

is different from other bulky groups. In addition, MD simulation provided 

complementary data that explains the observed experimental differences in the 

strand such as melting temperatures. Experimental evidence shows that in the 

case of C8-dG adducts the complementary base has a significant effect on stability 

of the double helix, which leads to less decrease in duplex stability when the adduct 
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is mismatched against quinine compared to cytosine. A syn preference of the 

adducts is determined theoretically in both duplexes in agreement with 

experimental results. DFT (B3LYP and M06–2X) calculations on MD structures 

were implemented to evaluate the specific stacking interactions between the 

adduct and the flanking and surrounding nucleobases. De facto, the conformation 

adopted by the adducts in DNA could not be determined based only on the 

measured melting temperatures, and these experimental results should be used 

along with the DFT stabilities to confirm a syn preference regardless of the 

sequence or opposing base. 

MD and complementary DFT calculations also suggested the stabilization of 

the G:G mismatch by the C-linked phenoxyl adducts. These results clarify the 

mutagenic properties of Clinked phenoxyl adducts which are comparable with 

the formerly studied corresponding Nlinked C8dG adducts derived from 

arylamine carcinogens. Purine-rich sites may induce G:G mismatch stabilization, 

because the phenoxyl adduct flanked by purine bases shows more stability. MD 

simulations will be crucial to provide greater insight into the conformational and 

base-pairing preferences of the adducts in biologically relevant systems which will 

aid in explaining and interpreting the experimental results. 

Molecular dynamics (MD) simulations were conducted with the PhOdG, o-PhOHdG, 

and p-PhOHdG adducts placed in the syn and anti conformations at the G3 position in 

the NarI  (5CTCG1G2CG3CCATC3) sequence and paired against either the 

complementary C or G mismatch. Two possible orientations of the phenoxyl 

moiety with respect to the nucleobase, corresponding to θ values of 0° and 180° 
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(Figure 3.1 definition of θ), were considered for the syn and anti conformations of 

the adduct. Because of structural symmetry in p-PhOHdG, rotation of the  dihedral 

to 0 and 180 lead to the same structure, so θ values were not considered for the 

para adduct. The two orientations of θ deviate from planarity (0° and 180°) 

around 10−55° to eliminate the steric clashes with neighboring residues in the 

initial structures for the minimization step (the first step in MD simulation).17 

 

Figure 3.1. anti−syn equilibrium for C8-dG adducts PhOdG (R = phenoxy) and o-PhOHdG and 
p-PhOHdG (R = aryl). Dihedral angle χ [(O4′−C1′−N9−C4)] defines the glycosidic bond 
orientation to be anti (χ = 180 ± 90°) or syn (χ = 0 ± 90°), and θ defines the degree of 

twist between the nucleobase and the C8 substituent R. 

3.3.1. Adducts against cytosine 

Figure 3.2 summarizes the distribution of , , and , which was achieved by 

performing ptraj calculations on the results gathered from the production step of 

the MD simulation. 

The distribution of , , and  of PhOdG:C show a unimodal distribution of , and 

bimodal distribution of  and  for the anti (~0) structure. In the case of the anti 

(~180) structure, a bimodal distribution of  and  is identified, while the 

distribution of  is unimodal. As explained, the distribution of , , and  is similar 

in syn (~0), syn (~180) and anti (~0). The  dihedral is not defined in Clinked 
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adducts (o-PhOHdG, and p-PhOHdG), so a bimodal distribution of  and  is determined 

for anti (~0) and anti mutated species of ortho and para Clinked adducts 

respectively. In contrast, the distribution of  and  is unimodal for anti (~180), 

syn (~0) and syn (~180) of o-PhOHdG.  In the case of p-PhOHdG, unimodal and 

bimodal distribution of  and  is observed, respectively. Overall, each mutated 

species with a specific theta value can be separated into various types based on the 

distributions of different dihedrals.  

 

Figure 3.2. Percent distribution of the χ (degrees) θ (degrees) and  (degrees) dihedral 
angles throughout the 20 ns trajectories for the (a) PhOdG, (b) o-PhOHdG and (c) p-PhOHdG 
adducts paired against cytosine, anti-0 (blue), anti-180 (red), syn-0 (green), syn-180 

(purple). 
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3.3.1.1. The free energy calculations 

To investigate the affinity for binding of all mutated compounds when paired 

against cytosine in the intercalation binding site, the free energies of these 

compounds were calculated by the MM-PBSA method. The calculated free energies 

suggest that the anti conformation of the adduct is more stable than the syn 

conformation as is known for natural dG (Table 3.1). Based on the distribution of 

dihedral angles, the lowest energy conformer calculated for PhOdG is anti (180)-

2 with 151.4, 225.69 and 268.18 and the most stable 

 

 conformer for o-PhOHdG is anti (180) with 270.79, 304.35. Finally, the 

anti-3 conformer identified for p-PhOHdG with 231.06 and 283.81, 

comparable to the average χ (249°) adopted by dG at the G3 position in the same 

sequence.  

It has been shown from NMR studies with C8-dG adducts of N-linked adducts 

that it is possible to have more than one conformation in the same DNA 

sequence.79, 80 Based on this,  the structure of the lowest energy (<5 kcal/mol) has 

the same characteristics.81 The O-linked and C-linked adducts are predicted to 

show behavior similar to N-linked adducts; thus, in addition to the conformer 

selected as the global conformer, there are also some other stable conformers. 

Based on the Gibbs free energy values obtained (see Table 3.1 and Figure 3.4), 

there are five coexistent stable conformers for PhOdG (i.e. four conformers plus the 

global conformers), three coexistent stable conformers for p-PhOHdG (i.e. two 
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conformers plus the global conformers). Moreover, based on the same table, there 

is no stable conformer for o-PhOHdG. 

On the other hand, the syn (180)-1 (237.38, 59.33 and 292.43, 

ΔE=84.43 kJ mol−1), anti (0)-4 (111.48 and 249.59, ΔE=90.27 kJ mol−1), 

and syn-1 (234.82 and 60.92, ΔE=44.31 kJ mol−1) are the least stable 

structures for PhOdG, o-PhOHdG, and p-PhOHdG respectively (Table 3.1). The stability of 

the most stable structures can be explained by less steric hindrance between the 

modified nucleoside and its complementary base (cytosine), and less distortion of 

the dihedral angles mutated nucleotide. In the case of O-linked adducts, anti 

(~0)-2 (148.34, 215.17 and 287.73, ΔE=12.55 kJ mol−1). So the 

mutated residue could assume a number of orientations (syn/anti), in the global 

minimum and other mentioned local minima.  
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Table 3.1. MM-PBSA total free energy (kJ mol−1) for the NarI sequence with the mutated adduct incorporated at the G3 position 
opposing cytosine from 20 ns MD simulations. 

Adduct 
Adduct 
conformation 

E Eint Eelec EvdW EMM ENP EPB Esol –TS G ΔE 

PhOdG:C 

anti (~0)-1 -21247.94 4761.81 15879.66 -1804.78 18932.43 107.49 -26073.56 -25966.07 -2607.47 -23855.41 18.03 

anti (~0)-2 -21252.80 4747.46 15900.25 -1801.69 18941.60 107.32 -26100.71 -25993.39 -2608.10 -23860.89 12.55 

anti (~0)-3 -21248.40 4752.90 15880.92 -1810.04 18919.80 107.19 -26079.63 -25972.43 -2610.10 -23858.51 14.93 

anti (~0)-4 -21245.72 4758.46 15866.02 -1798.02 18921.85 107.32 -26060.80 -25953.48 -2607.30 -23853.03 20.41 

anti (~180)-1 -21225.52 4787.96 15961.00 -1819.41 19026.07 106.48 -9051.92 -8945.43 -2599.85 -23825.33 48.11 

anti (~180)-2 -21261.00 4740.76 15908.99 -1805.05 18940.47 107.61 -26081.72 -25974.10 -2612.45 -23873.44 0.00 

anti (~180)-3 -21251.04 4765.32 16006.02 -1821.40 19046.61 106.69 -26214.56 -26107.87 -2598.93 -23849.93 23.51 

anti (~180)-4 -21249.32 4750.47 15955.22 -1808.50 18993.18 107.32 -26141.46 -26034.15 -2608.39 -23857.71 15.73 

syn (~0)-1 -21233.38 4737.71 16042.67 -1813.62 19062.97 106.11 -26180.38 -26074.27 -2600.27 -23833.65 39.79 

syn (~0)-2 -21228.07 4743.74 16077.86 -1814.68 19103.18 106.15 -26226.86 -26120.71 -2600.36 -23828.42 45.02 

syn (~0)-3 -21227.02 4737.33 16090.41 -1808.67 19115.02 106.40 -26223.60 -26117.20 -2603.83 -23830.85 42.59 

syn (~0)-4 -21225.35 4748.88 16110.62 -1812.60 19143.06 106.02 -26267.65 -26161.63 -2595.84 -23821.19 52.25 

syn (~180)-1 -21188.86 4757.04 16198.65 -1806.90 19244.64 105.77 -26337.82 -26232.05 -2600.15 -23789.01 84.43 

syn (~180)-2 -21224.93 4740.18 16121.87 -1811.72 19146.44 105.86 -26255.48 -26149.62 -2599.94 -23824.87 48.57 

syn (~180)-3 -21220.79 4732.48 16371.62 -1819.32 19381.29 105.27 -26511.79 -26406.52 -2594.29 -23815.08 58.36 

syn (~180)-4 -21219.32 4746.20 16156.01 -1819.32 19179.41 105.90 -26290.04 -26184.14 -2599.52 -23818.84 54.60 

o-PhOHdG:C 

anti (~0)-1 -21195.93 4755.87 15726.48 -1802.44 18775.53 106.69 -26029.71 -25922.98 -2603.87 -23799.81 85.22 

anti (~0)-2 -21204.51 4743.23 15746.40 -1790.82 18793.77 107.07 -26030.04 -25922.93 -2602.36 -23806.88 78.13 

anti (~0)-3 -21204.68 4762.19 15850.04 -1816.67 18891.93 106.36 -26152.05 -26045.73 -2599.02 -23803.74 81.27 

anti (~0)-4 -21188.74 4756.66 15756.36 -1802.71 18805.95 106.94 -26018.66 -25911.72 -2606.00 -23794.74 90.27 

 anti (~180) -21283.51 4772.02 15968.40 -1723.33 19017.21 106.70 -26320.15 -26213.50 -2589.11 -23885.01 0.00 

 syn (~0) -21238.60 4749.45 16117.14 -1708.13 19158.30 107.11 -26395.75 -26288.63 -2588.72 -23839.62 45.39 

 syn (~180) -21226.82 4762.84 15563.57 -1677.90 18648.45 108.40 -25873.31 -25764.91 -2610.03 -23849.35 35.66 

p-PhOHdG:C 

anti-1 -21196.40 4752.31 15798.41 -1807.13 18839.42 106.98 -26229.79 -26122.80 -2602.41 -23798.76 25.61 

anti-2 -21193.47 5107.99 15518.25 -1790.25 18930.97 107.36 -25931.01 -25823.65 -2602.36 -23795.83 28.54 

anti-3 -21223.55 4726.16 15834.10 -1816.27 18840.34 106.65 -26251.55 -26144.85 -2600.86 -23824.37 0.00 

anti-4 -21202.67 4742.27 15428.17 -1803.28 18462.82 106.90 -25841.43 -25734.53 -2603.24 -23805.91 18.46 

 syn-1 -21171.00 4746.62 15470.34 -1781.28 18530.18 107.24 -25881.72 -25774.49 -2609.06 -23780.06 44.31 

 syn-2 -21199.66 4724.15 15915.85 -1810.35 18925.70 106.11 -26298.87 -26192.76 -2600.69 -23800.35 24.02 
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3.3.1.2. Structure analysis 

3.3.1.2.1. Clustering 

Clustering is used to get the representative structures, which provide 

information about geometrical properties, hydrogen bonding, adduct location and 

ultimately structural stability. Figure 3.3 and Figure 3.5 depict the representative 

structures for the most stable and the least stable structures of PhOdG, o-PhOHdG, and 

p-PhOHdG when paired against cytosine. In all the preferred structures (Olinked 

and Clinked), the adduct adopts a B conformer and consequently the 

phenoxyl/phenyl moiety is located in the solvent-exposed major groove and does 

not stack with the neighboring bases.  It is nonplanar with respect to the 

nucleobase. Conversely, the least stable conformers (based on the free energy 

calculations) in the case of PhOdG and p-PhOHdG is syn, in which the adduct adopts a 

W-type wedge conformation. Nevertheless, the orientation of the phenoxyl moiety 

with respect to the nucleobase is nonplanar while for the o-PhOHdG conformer, the 

aryl moiety in the anti conformer is located in a major groove and is a B type 

conformer (Table 3.2 and Table 3.4). It is important to note that in the case of the 

syn (180) (346.01 and 64.22, ΔE=35.66 kJ mol−1) and syn-2 (41.55 

and 70.26, ΔE=24.02 kJ mol−1) the guanine flipped out of the helix to provide 

the vacancy for residing the phenoxyl moiety inside the double helix which leading 

to an intercalated conformer.  
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Figure 3.3. Representative structures of the most stable conformers of the (a) PhOdG, (b) 
o-PhOHdG and (c) p-PhOHdG adduct in the NarI helix paired against the complementary 

cytosine identified from clustering calculations. 
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Figure 3.4. Representative structures of the other stable conformers of the PhOdG and p-PhOHdG adduct in the NarI helix paired 
against the complementary cytosine identified from clustering calculations. 
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Figure 3.5. Representative structures of the least stable conformers of the (a) PhOdG, (b) 
o-PhOHdG and (c) p-PhOHdG adduct in the NarI helix paired against the complementary 

cytosine identified from clustering calculations. 
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Figure 3.6. Representative structures of the pseudo base displaced stacked conformers 
of the (a) o-PhOHdG and (b) p-PhOHdG adduct in the NarI helix paired against the 

complementary cytosine identified from clustering calculations. 

For both o-PhOHdG:C (syn-180) and p-PhOHdG:C (syn-2), the pseudo-base-

displaced stacked conformation is identified in the NarI sequence (Figure 3.6). The 

representative structures illustrate that intercalated conformer in the duplex 

which pushes the complementary nucleobase away from the initial position 

(flipping out a little) may increase the probability for the formation of the 2-base 
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bulge mutation and therefore result in greater mutagenicity for C-linked adducts 

in comparison to O-linked structures (Figure 3.6 and Table 3.4). 

In the case of PhOdG in the natural (paired with cytosine) NarI sequence, the 

oxygen bridge allows more conformational flexibility and results in fewer steric 

collisions.  In contrast, the ortho and para Clinked structures lack this flexibility 

due to direct attachment of aryl moiety to the C8 site of guanosine. 

The average C1′–C1′ distance is slightly wider in the p-PhOHdG:C pair (11.5±0.4 

Å) than in the canonical G:C variant (10.9±0.4 Å).  It also slightly wider than the 

distance in many adducts against cytosine and the structures adopted by 

nucleobase pairs in natural helices (10.6 ±0.2 Å, see Table 3.2).38 

3.3.1.2.2. RMSD and sugar puckering 

B-DNA is the most flexible conformer compared to the other common DNA 

structures.82 Flexibility within the duplex structure can take place at different sites. 

Defined sites of rotation for a nucleotide within the duplex are given in Scheme 3.2, 

which illustrates that the torsional flexibility within the duplex mainly occurs 

within the backbone. However these sites are not freely rotatable, so each 

backbone angle is restricted to a discrete range of rotation.83 The largest degree of 

rotational freedom is commonly identified for the δ and χ torsional angles. The 

conformation of the furanose (C2-endo vs. C3-endo) is determined by δ angle. 

Furthermore, this conformation is highly dependent on the glycosidic angle, χ.84 

Four atoms, O4C1N9C4 in purines are involved in the glycosidic angle χ.  
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Scheme 3.2. Different sites of rotation for a nucleotide within the duplex. 

It has been suggested that guanine exhibits the highest energy barrier for 

anti/syn interconversion.85  This can be explained by electrostatic contacts 

between exocyclic N2 amino group of guanosine and the 5 phosphate.85 Table 3.2 

demonstrates the probability of finding C2-endo conformers during the 20ns 

simulation. The percentage of finding this sugar puckering is the highest 

percentage (37.33%) in PhOdG anti (0)-3. The percentages of finding C2-endo 

sugar puckering are 2.96, 18.47, and 32.18 in PhOdG anti (180)-2, o-PhOHdG anti 

(180), and p-PhOHdG anti-3 correspondingly.  The RMSDs as a function of the 

simulation time for the species bound to the G3 base in NarI sequence were 

analyzed. The average RMSD was in the range of 1.0–3.5 A° during the simulation 

time as shown in Table 3.2. These results show the equilibrium state of the 

simulation for the mutated complexes. All simulations showed reasonable stability 

over 20ns; however, the deviation of RMSD in some mutated complexes from the 

normal range implies that these are more flexible.   The fluctuations in RMSDs are 

mainly assigned to the mobility of 3 and 5 end of the duplex.  
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Table 3.2. Parameters from 20 ns MD simulations of the PhOdG, o-PhOHdG, and p-PhOHdG adducts against cytosine, incorporated into 
the G3 position of the NarI DNA sequence. 

Adduct 
Adduct 
conformation 

Clustera RMSD (Å) C2-endo (%) Sugar Pucker Sugar Pucker () Adduct-θ () Adduct- () Adduct- () C1′-C1′ (A) 

PhOdG:C 

anti (~0)-1 Bimodal (, ) 4.38±0.82 34.75 1E (C1-exo) 123.72±44.49 153.11 227.84 286.37 10.78±0.17 

anti (~0)-2 Bimodal (, ) 2.04±0.37 32.90 1E (C1-exo) 120.38±45.43 148.34 215.17 287.73 10.78±0.17 

anti (~0)-3 Bimodal (, ) 4.15±0.67 37.33 1E (C1-exo) 127.17±41.09 137.11 212.50 103.31 10.81±0.26 

anti (~0)-4 Bimodal (, ) 3.09±0.58 25.66 1E (C1-exo) 115.82±41.59 136.69 224.76 111.72 10.77±0.17 

anti (~180)-1 Bimodal (, ) 1.97±0.44 32.13 1E (C1-exo) 138.72±11.90 182.02 278.28 315.02 10.67±0.19 

anti (~180)-2 Bimodal (, ) 4.18±0.68 2.96 0E (C4-endo ) 102.96±21.31 151.46 225.69 268.18 10.73±0.17 

anti (~180)-3 Bimodal (, ) 2.17±0.52 35.29 1E (C1-exo) 139.80±11.89 150.67 269.24 126.65 10.69±0.18 

anti (~180)-4 Bimodal (, ) 3.67±0.76 4.30 0E (C4-endo ) 105.05±22.03 141.53 233.69 92.05 10.73±0.17 

syn (~0)-1 Bimodal (, ) 1.98±0.46 13.02 1E ( C1-exo) 124.13±21.77 171.77 54.28 249.76 11.71±0.27 

syn (~0)-2 Bimodal (, ) 3.89±0.86 27.49 1E ( C1-exo) 134.11±18.76 112.50 56.05 266.78 11.79±0.37 

syn (~0)-3 Bimodal (, ) 2.10±0.45 21.01 1E ( C1-exo) 128.82±22.09 166.97 54.89 91.52 11.73±0.27 

syn (~0)-4 Bimodal (, ) 3.93±0.86 30.34 1E ( C1-exo) 136.12±17.35 84.96 57.82 40.30 11.81±0.38 

syn (~180)-1 Bimodal (, ) 4.36±1.11 3.21 1E ( C1-exo) 109.55±20.87 237.38 59.33 292.43 11.02±0.87 

syn (~180)-2 Bimodal (, ) 4.09±0.82 7.65 1E ( C1-exo) 124.74±14.44 158.44 64.62 265.05 11.63±0.41 

syn (~180)-3 Bimodal (, ) 4.39±0.97 1.14 0E (C4-endo ) 100.83±19.47 218.71 39.67 71.36 10.27±0.96 

syn (~180)-4 Bimodal (, ) 4.02±0.82 7.78 1E (C1-exo) 125.16±14.22 147.56 57.31 80.82 11.65±0.38 

 
 
 
o-PhOHdG:C 

anti (~0)-1 Bimodal (, ) 2.71±0.54 15.06 1E (C1-exo) 130.16±16.47 129.51 271.73  10.64±0.20 

anti (~0)-2 Bimodal (, ) 2.88±0.75 3.12 0E (C4-endo ) 102.74±20.75 128.26 252.67  10.70±0.18 

anti (~0)-3 Bimodal (, ) 3.50±0.74 16.03 1E ( C1-exo) 133.72±10.65 99.10 285.91  10.62±0.20 

anti (~0)-4 Bimodal (, ) 4.50±0.88 6.75 1E (C1-exo ) 109.91±22.09 111.48 249.59  10.72±0.18 

 anti (~180) Unimodal 4.26±0.81 18.47 1E (C1-exo) 133.49±14.20 270.79 304.35  10.65±0.22 

 syn (~0) Unimodal 4.59±0.65 3.67 1E (C1-exo) 113.69±18.55 59.92 56.75  11.57±0.31 

 syn (~180) Unimodal 4.08±0.68 13.18 1E (C1-exo) 129.49±13.90 346.01 64.22  10.58±0.89 

p-PhOHdG:C 

anti-1 Bimodal (, ) 4.16±0.90 15.74 1E (C1-exo) 132.03±13.00 268.40 281.98  10.63±0.20 

anti-2 Bimodal (, ) 4.52±0.66 0.05 0E (C4-endo) 89.58±16.00 280.73 234.87  10.71±0.17 

anti-3 Bimodal (, ) 3.25±0.80 32.18 1E (C1-exo) 138.95±11.46 231.06 283.81  10.64±0.21 

anti-4 Bimodal (, ) 2.12±0.48 0.00 0E (C4-endo) 77.60±10.41 217.70 210.33  10.67±0.16 

 syn-1 Bimodal () 2.64±0.64 11.87 1E (C1-exo) 125.58±18.01 234.82 60.92  10.75±0.40 

 syn-2 Bimodal () 4.09±0.79 20.81 1E (C1-exo) 129.92±20.75 41.55 70.26  11.49±0.43 
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3.3.1.2.3. Hydrogen bond occupancy 

To study the influence of mutations on direct hydrogen bonds between 

adducts and complementary nucleobases, and for detailed information regarding 

hydrogen-bonding properties, the percentage of hydrogen-bond occupancy was 

calculated between donor and acceptor atoms (Table 3.3). In the hydrogen-bond 

analysis, a certain criterion for a hydrogen bond has defined by donoracceptor 

distance (dDA) 3.4 Å and the donorhydrogenacceptor angle (αDHA) 120. The 

stability of hydrogen bonds was measured by the percentage of their presence 

during the simulation, where interactions populated over 15 % in the 20 ns-long 

trajectories were considered. In the natural helix, Watson−Crick hydrogen bonds 

have ~100% occupancy. Upon mutation, the overall pattern of hydrogen bond 

interactions and Watson−Crick hydrogen bonds between the opposing C and each 

of PhOdG, o-PhOHdG, and p-PhOHdG is maintained intact throughout the simulation 

(100% occupancy). The important hydrogen bond interactions in native and 

mutated complexes are portrayed in representative structures shown in Figure 

3.7. The number and types of hydrogen bonds formed between nucleobases in 

adducted structures and those in natural DNA are nearly the same whereas there 

is slightly more bonding in the native duplex (Table 3.3, Table 3.4 and Figure 3.7). 

Overall, the results illustrate strong H-bonding interactions between modified 

guanosine at G3 position and the complementary base which decreases from anti 

to syn conformers. Indeed, intra5′ and intra3′ interactions are stronger than inter5′ 

and inter3′ contacts which expectedly reduces from anti to syn conformers. 
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Figure 3.7. Portion of the representative structure from MD simulations which depicts 
the hydrogen bonds and stacking interactions of intrastrand base at the 5′-side, 

intrastrand base at the 3′-side, interstrand base at the 5′-side, and interstrand base at the 
3′-side consciously for all PhOdG, o-PhOHdG and p-PhOHdG adducts with anti-G paired against 

cytosine in the B-DNA conformation, syn-G Hoogsteen hydrogen bonded with the 
guanine mismatch, 
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Table 3.3. AMBER interaction energies (kJ mol−1) between PhOdG, o-PhOHdG, and p-PhOHdG 
adducts against cytosine in the G3 position of the NarI sequence and the surrounding 
nucleobases from 20 ns MD simulations. 

Adduct 
Adduct 
conformation 

EHbonda Eintra5
b Eintra3

c Einter5
d Einter3

e 

PhOdG:C 

anti (~0)-1 -110.92±6.86 -28.53±7.49 -59.32912±6.99 -21.17±5.86 20.88±5.10 

anti (~0)-2 -111.04±6.86 -28.41±7.53 -59.16±6.74 -22.47±6.44 -21.13±5.19 

anti (~0)-3 -109.95±9.37 -27.78±6.94 -59.50±6.99 -22.59±6.40 -21.59±5.56 

anti (~0)-4 -110.62±7.07 -28.79±7.03 -59.83±6.90 -22.17±6.32 20.84±5.06 

anti (~180)-1 -110.08±7.32 -39.58±8.37 -54.18±7.11 -14.02±7.20 20.29±6.32 

anti (~180)-2 -110.21±7.15 -28.12±6.78 -60.29±6.74 -24.39±6.36 20.67±5.06 

anti (~180)-3 -110.75±7.15 -34.35±6.86 -53.14±7.07 -17.07±6.82 18.24±6.07 

anti (~180)-4 -110.67±6.95 -27.45±6.95 -60.84±7.07 -24.10±6.32 20.42±5.48 

syn (~0)-1 -45.10±20.46 -4.14±5.27 -8.83±7.57 -13.81±6.53 -8.91±11.84 

syn (~0)-2 -33.26±15.98 -7.32±6.19 -2.176±6.99 -11.38±8.66 -12.34±12.34 

syn (~0)-3 -36.86±29.45 -2.89±5.65 -7.61±7.70 -14.64±6.69 -12.01±12.09 

syn (~0)-4 -30.42±17.74 -7.49±5.98 -1.088±6.69 -10.25±8.16 -12.51±12.72 

syn (~180)-1 -46.02±11.46 -7.49±6.78 -8.41±6.95 -9.92±5.44 -9.08±13.97 

syn (~180)-2 -48.91±7.61 -5.36±5.06 -7.11±6.69 -13.60±7.07 -9.71±10.84 

syn (~180)-3 -52.13±9.25 -12.30±7.87 -9.29±6.53 -8.62±4.94   0.50±15.31 

syn (~180)-4 -50.08±7.78 -4.77±5.19 -8.45±6.69 -14.69±7.28 -8.66±11.17 

 
o-PhOHdG:C 

anti (~0)-1 -112.34±7.32 -40.96±6.57 -55.81±7.45 -10.71±7.66 19.62±5.86 

anti (~0)-2 -112.55±7.11 -37.07±7.32 -61.04±7.24 -15.31±7.61 20.75±5.15 

anti (~0)-3 -111.13±7.53 -36.90±6.95 -59.16±8.37 -10.04±7.78 19.08±6.53 

anti (~0)-4 -112.63±7.20 -34.22±7.78 -60.04±7.20 -16.19±8.58 20.29±5.48 

 anti (~180) -108.83±7.53 -47.45±12.89 -50.88±8.24 -5.69±8.70 -11.46±6.28 

 syn (~0) -41.09±7.82   3.56±4.48 -6.15±6.36 -17.32±6.99 -5.82±11.51 

 syn (~180) -18.99±11.92 -35.69±8.19 -33.22±9.50 -2.55±5.56 -0.25±6.99 

p-PhOHdG:C 

anti-1 -107.86±7.78 -35.94±6.95 -46.82±8.12 -11.38±7.28 19.62±6.19 

anti-2 -108.78±6.95 -24.85±9.33 55.35±6.90 -19.79±6.40 21.13±5.19 

anti-3 -107.90±7.36 -34.4332±6.57 -45.61±8.12 -11.97±6.53 18.07±5.82 

anti-4 -109.54±6.57 -25.65±6.02 -56.94±5.94 -20.96±5.27 21.84±5.19 

 syn-1 -39.96±12.22 -8.58±6.53 -5.10±7.41 -7.03±6.90 -11.09±12.76 

 syn-2 -46.19±8.03 -37.36±9.41 -28.41±8.33 -11.51±5.69 -2.55±5.98 

 

aΔEHbond is the hydrogen bond strength in the dimer consisting of the nucleobase at the G3 
position and the opposing base. bΔEintra5′ is the stacking interaction energy between the 
nucleobase at the G3 position and the intrastrand base at the 5′-side of the adduct. cΔEintra3′ 
is the stacking interaction energy between the nucleobase at the G3 position and the 
intrastrand base at the 3′-side of the adduct. dΔEinter5′ is the stacking interaction energy 
between the nucleobase at the G3 position and the base in the opposing strand at the 5′-
side of the adduct. eΔEinter3′ is the interaction energy between the nucleobase at the G3 
position and the base on the opposite strand stacked at the 3′-side of the adduct. 

Duplex stability can be rationalized precisely by determining the distinctive 

base-pairing energies which are intrastrand and interstrand stacking interactions 
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between the adduct and the flanking bases. The data obtained from the hydrogen 

bond analysis indicate that the there is a slight decrease in the H-bonding 

interaction energy for the most stable conformer of PhOdG, o-PhOHdG, and p-PhOHdG 

with ΔEHbond –110.2, –108.8, –107.9 kJ mol−1, respectively (Table 3.1 and Table 3.4). 

An opposite trend is observed with ΔEintra5 and ΔEinter5 with the lowest –28.12 kJ 

mol−1 and –24.39 kJ mol−1 for intra5 and inter5 interactions of PhOdG anti 

(~180°)-2, respectively. Due to the helical twist, intrastrand stacking (Table 3.3) 

at the 3-side of the adduct (60.29 kJ mol−1) is greater than at the 5-side (28.12 

kJ mol−1). Significant interstrand stacking is observed at the 5-side of the adduct 

(24.39 kJ mol−1), but the interstrand contact at the 3–side (inter3) is more 

repulsive (by ~ 10 kJ mol−1) than in the unmodified duplex. The same trend is 

observed for p-PhOHdG anti-3. Conversely, this contact is favorable and somewhat 

strong in o-PhOHdG (-11.46 kJ mol−1). This can be justified by stabilizing hydrogen 

bonding between the hydroxyl group and the oxygen of phosphate backbone. In 

the case of the ortho adduct, the Hoogsteen face forms a plausibly strong pairing 

with cytosine which results in preferential binding of the ortho adduct to cytosine 

regardless of the type of acquired conformation (anti/syn). Consequently, 

substitution of the ortho adduct in (ODN1 = 5-CCATXCTACC-3 and ODN2 = 5-

GGTAGXATGG-3) sequence, irrespective of the type of the studied DNA sequence, 

may not lead to base-substitution mutations in DNA.15, 58  In contrast, the anti 

conformer, with strong Watson-Crick hydrogen-bond, is stable for the ortho 

adduct in the NarI sequence. Interestingly, the probability of forming Hoogsteen 

pairs of para adducts with guanine and cytosine is similar. It is worth noting that 
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the syn conformation of the para adduct is preferred in DNA double helix which 

may cause to base mismatches.1558 While, again for para adduct in NarI sequence 

the anti conformer is stable against cytosine. This clarifies the importance of 

considering different sequences as a result of encountering to different steric and 

electrostatic interactions and definitely new conformational behaviors. 
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Table 3.4. Hydrogen bonding occupancies (%) for the hydrogen bonds between the adduct and the opposing base (cytosine) over 
the duration of the MD Simulations also the type of hydrogen bonds, position of adduct in a specific groove and conformation of 
DNA provided. 

Adduct Adduct conformation N2-H(G3)···O2 N1-H(G3)···N3 N4-H···O6(G3) N3-H(C)···N7(G3) H-bond 
Position 
adduct 

DNA conformation 

PhOdG:C 

anti (~0)-1 99.67 99.99 98.74  Watson-Crick major groove B 

anti (~0)-2 99.72 99.92 98.75  Watson-Crick major groove B 

anti (~0)-3 98.60 98.80 98.38  Watson-Crick major groove B 

anti (~0)-4 99.65 99.95 98.36  Watson-Crick major groove B 

anti (~180)-1 99.67 99.85 98.74  Watson-Crick major groove B 

anti (~180)-2 99.94 99.94 98.11  Watson-Crick major groove B 

anti (~180)-3 99.88 99.95 98.44  Watson-Crick major groove B 

anti (~180)-4 99.85 99.96 98.62  Watson-Crick major groove B 

syn (~0)-1   85.84 45.68 Hoogsteen minor groove W 

syn (~0)-2   76.58 47.83 Hoogsteen minor groove W 

syn (~0)-3   74.84 39.99 Hoogsteen minor groove W 

syn (~0)-4   73.36 43.59 Hoogsteen minor groove W 

syn (~180)-1   73.19 28.81 Hoogsteen minor groove W 

syn (~180)-2   92.36 43.15 Hoogsteen minor groove W 

syn (~180)-3   59.44 37.17 Hoogsteen minor groove W 

syn (~180)-4   93.12 46.20 Hoogsteen minor groove W 

 
o-PhOHdG:C 

anti (~0)-1 99.66 99.96 98.34  Watson-Crick major groove B 

anti (~0)-2 99.61 99.97 98.69  Watson-Crick major groove B 

anti (~0)-3 99.67 99.95 98.55  Watson-Crick major groove B 

anti (~0)-4 99.71 99.97 98.42  Watson-Crick major groove B 

 anti (~180) 99.50 99.87 98.56  Watson-Crick major groove B 

 syn (~0)   92.14 51.55 Hoogsteen minor groove W 

 syn (~180)   46.93 23.78 Hoogsteen inside helix S 

p-PhOHdG:C 

anti-1 99.58 99.88 98.06  Watson-Crick major groove B 

anti-2 99.76 100.00 98.12  Watson-Crick major groove B 

anti-3 100.00 100.00 98.09  Watson-Crick major groove B 

anti-4 99.92 99.92 99.05  Watson-Crick major groove B 

 syn-1   86.35 45.84 Hoogsteen minor groove W 

 syn-2   84.84 31.69 Hoogsteen inside helix S 

The implemented H-bond distance cutoff was a 3.40 Å heavy atom separation and a 120° X−H−X angle. Only H-bonds with occupancy of >15% are reported. 
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3.3.2. Adducts Against Guanine Mismatch 

According to Figure 3.8, the distributions of , , and  of PhOdG:G show a 

unimodal distribution of , and bimodal distribution of  and  for the anti (~0) 

structure. In the case of anti (~180) only a bimodal distribution of  is seen, while 

the distribution of  and  are unimodal. A similar distribution of , , and  is 

identified for syn (~0) and syn (~180) where the distribution of  is unimodal 

and the distribution of  and  are bimodal. Since the  dihedral is not defined in 

Clinked adducts o-PhOHdG and p-PhOHdG, unimodal distribution of  and  is 

observed for anti (~0), anti (~180), syn (~0), and syn (~180) conformers of 

o-PhOHdG. On the other hand, in the case of p-PhOHdG bimodal distribution of  and  

is observed for the anti conformer while a bimodal distribution of  and  is 

observed for syn conformer. Based on the distributions of different dihedrals, each 

mutated species with specific theta value can be separated into various types.   
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Figure 3.8. Percent distribution of the χ (degrees) θ (degrees) and  (degrees) dihedral 
angles throughout the 20 ns trajectories for the (a) PhOdG, (b) o-PhOHdG and (c) p-PhOHdG 

adducts against guanine mismatch, anti-0 (blue), anti-180 (red), syn-0 (green), syn-180 
(purple). 

As explained above, the free energies of all adducts against a guanine mismatch 

were calculated by the MM-PBSA method. Although adducts in complement with 

cytosine in NarI sequence adopt an anti conformation, the lowest energy structure 

of the adduct is a syn conformation when it is mismatched with guanine (Table 3.5). 

Based on the distribution of dihedrals, the lowest energy calculated free energy of 

PhOdG is syn (180)-3 with 201.57, 50.63 and 114.06.  The most stable 

conformer for o-PhOHdG is syn (0) with 58.15, 67.68. Finally, the syn-1 

conformer is identified as the structure with lower energy for p-PhOHdG compound, 



 

133 

 

with 53.45, 59.44. The average χ (53.4°) for natural dG is consistent with 

the  values of Olinked and ortho and para Clinked adducts. Based on the 

obtained  Gibbs free energy values (see Table 3.5 and Figure 3.10), there are eight 

coexistent stable conformers for PhOdG (i.e. seven conformers plus the global 

conformers), two coexistent stable conformers for p-PhOHdG (i.e. one conformer plus 

the global conformers), and two coexistent stable conformers for o-PhOHdG (i.e. one 

conformer plus the global conformers). 

The anti (0)-3 (168.32, 280.97 and 117.47, ΔE=74.06 kJ mol−1), 

anti (180) (242.18 and 211.88, ΔE=47.40 kJ mol−1), and anti-2 (80.52 

and 223.72, ΔE=61.23 kJ mol−1) are the least stable structures for PhOdG, o-

PhOHdG, and p-PhOHdG respectively (Table 3.5). 
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Table 3.5. MM-PBSA total free energy (kJ mol-1) for the NarI sequence with the mutated adducts incorporated at the G3 position 
opposing guanine from 20 ns MD simulations. 

Adduct 
Adduct 

conformation 
E Eint Eelec EvdW EMM ENP EPB Esol –TS G ΔE 

PhOdG:G 

anti (~0)-1 -21079.47 4760.40 16000.46 -1738.34 19022.51 106.94 -26277.29 -26170.33 -2613.61 -23693.07 42.89 

anti (~0)-2 -21077.64 4751.55 15955.61 -1726.83 18980.34 107.79 -26201.03 -26093.26 -2613.80 -23691.44 44.52 

anti (~0)-3 -21046.53 4775.76 16021.50 -1732.08 19065.18 107.57 -26290.63 -26183.05 -2615.36 -23661.90 74.06 

anti (~0)-4 -21072.18 4762.33 15972.69 -1730.47 19004.55 107.73 -26206.23 -26098.49 -2614.68 -23686.84 49.12 

anti (~180)-1 -21064.60 4763.19 15990.70 -1734.08 19019.81 107.65 -26244.22 -26136.57 -2620.74 -23685.33 50.63 

anti (~180)-2 -21067.47 4758.38 15952.51 -1723.51 18987.38 107.77 -26209.23 -26101.47 -2616.49 -23683.95 52.01 

syn (~0)-1 -21098.83 4750.46 15891.43 -1737.52 18904.36 106.68 -26139.83 -26033.14 -2618.55 -23717.38 18.58 

syn (~0)-2 -21106.97 4752.10 15830.13 -1743.60 18838.63 106.27 -26092.77 -25986.49 -2614.12 -23721.10 14.85 

syn (~0)-3 -21111.84 4740.31 15879.95 -1742.46 18877.79 106.65 -26126.51 -26019.88 -2619.07 -23730.89 5.06 

syn (~0)-4 -21099.43 4757.04 15919.66 -1745.24 18931.46 106.27 -26166.90 -26060.63 -2615.68 -23715.12 20.84 

syn (~180)-1 -21109.29 4746.04 15880.86 -1739.34 18887.56 106.29 -26144.26 -26037.95 -2613.21 -23722.49 13.47 

syn (~180)-2 -21105.34 4748.58 15884.52 -1748.56 18884.54 106.16 -26131.29 -26025.15 -2614.93 -23720.27 15.69 

syn (~180)-3 -21123.35 4735.31 15871.19 -1739.26 18867.24 106.27 -26139.88 -26033.60 -2612.59 -23735.96 0.00 

syn (~180)-4 -21113.58 4746.99 15811.89 -1741.79 18817.08 106.35 -26069.86 -25963.52 -2611.40 -23725.00 10.96 

anti (~0) -21036.92 4744.30 15901.20 -1728.09 18917.41 107.25 -26258.36 -26151.09 -2617.05 -23653.99 32.43 

anti (~180) -21024.64 4757.59 15763.39 -1727.30 18793.67 107.25 -26112.18 -26004.94 -2614.38 -23639.01 47.40 

o-PhOHdG:G 

syn (~0) -21075.63 4732.08 15814.73 -1738.19 18808.63 106.78 -26177.77 -26070.96 -2610.79 -23686.42 0.00 

syn (~180) -21056.82 4734.26 15863.00 -1732.49 18864.76 107.00 -26201.65 -26094.65 -2612.17 -23669.01 17.41 

anti-1 -21017.59 4760.22 15679.07 -1729.40 18709.90 107.09 -26183.42 -26076.32 -2613.21 -23630.81 43.45 

anti-2 -21006.11 4765.21 15683.14 -1724.64 18723.71 107.24 -26133.22 -26025.99 -2606.90 -23612.99 61.23 

anti-3 -21021.61 4736.90 15658.08 -1710.77 18684.21 107.37 -26186.50 -26079.12 -2606.83 -23628.43 45.80 

anti-4 -21030.21 4749.50 15540.23 -1727.41 18562.32 107.01 -26007.22 -25900.22 -2609.80 -23640.02 34.23 

p-PhOHdG:G 
syn-1 -21066.28 4744.26 15708.82 -1741.89 18711.19 106.28 -26213.13 -26106.86 -2607.96 -23674.24 0.00 

syn-2 -21044.08 4766.60 15624.97 -1740.91 18650.66 105.83 -26142.81 -26036.99 -2608.69 -23652.78 21.47 
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Clustering and representative structures show that in mutated complexes with 

the anti conformer, the DNA adopts a B-type conformer and the phenoxyl or aryl 

moiety is located in solvent exposed major groove. In adducts that adopt the syn 

conformer, the phenoxyl/aryl moiety is in the minor groove and the DNA adopts 

the Wedge conformation. 

Steric interactions between adduct (modified bases) and the opposing G 

induce a slight non-planarity to the phenoxyl moiety (Figure 3.9, Figure 3.11 and 

Table 3.6). 

 

Figure 3.9. Representative structures of the most stable conformers of the (a) PhOdG, (b) 
o-PhOHdG and (c) p-PhOHdG adduct in the NarI helix paired against a guanine mismatch 

identified from clustering calculations. 
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Figure 3.10. Representative structures of the other stable conformers of the  PhOdG, o-PhOHdG and  p-PhOHdG adduct in the NarI helix 
paired against the complementary guanine identified from clustering calculations.
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Figure 3.11. Representative structures of the least stable conformers of the (a) PhOdG, (b) 
o-PhOHdG and (c) p-PhOHdG adduct in the NarI helix paired against guanine mismatch, 

identified from clustering calculations. 

The C1′-C1′ distance for all adducts against a guanine mismatch (11.5 Å) is 

greater than the corresponding distance in adducts paired with cytosine (10.9 Å), 

which can be explained by the presence of guanine instead of cytosine, as the 

complement base (Table 3.6).  
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Table 3.6. Parameters from 20 ns MD simulations of the PhOdG, o-PhOHdG, and p-PhOHdG adducts against guanine mismatch, 
incorporated into the G3 position of the NarI DNA sequence. 

Adduct 
Adduct 
conformation 

Cluster RMSD (Å) C2-endo (%) Sugar Pucker Sugar Pucker () Adduct-θ () Adduct- () Adduct- () C1′-C1′ (Å) 

 anti (~0)-1 Bimodal (, ) 3.17±0.79 53.64 2E (C2-endo) 145.57±11.67 168.72 281.07 116.40 11.20±0.37 

 anti (~0)-2 Bimodal (, ) 4.58±0.86 4.47 0E (C4-endo) 101.27±25.34 151.15 233.47 94.98 11.13±0.40 

 anti (~0)-3 Bimodal (, ) 2.59±0.53 49.31 2E (C2-endo) 142.43±24.13 168.32 280.97 117.47 11.16±0.40 

 anti (~0)-4 Bimodal (, ) 4.80±0.76 4.04 0E (C4-endo) 98.69±25.19 132.99 234.96 96.80 11.10±0.42 

 
anti (~180)-
1 

Bimodal ( ) 3.89±0.87 30.35 0E (C4-endo) 94.42±89.48 179.06 214.01 102.66 11.45±0.71 

 
anti (~180)-
2 

Bimodal( ) 3.79±0.85 21.36 1E (C1-exo) 114.81±40.65 124.22 227.32 102.60 11.78±0.87 

PhOdG:G syn (~0)-1 Bimodal( , ) 1.86±0.34 3.13 0E (C4-endo) 96.80±28.44 208.76 48.63 314.77 10.71±0.49 

 syn (~0)-2 Bimodal (, ) 4.57±0.80 30.67 1E (C1-exo) 132.46±23.87 156.99 57.76 297.43 11.60±0.46 

 syn (~0)-3 Bimodal (, ) 1.98±0.36 4.33 0E (C4-endo) 97.64±31.37 202.48 51.30 113.22 11.79±0.54 

 syn (~0)-4 Bimodal (, ) 4.59±0.87 22.07 0E (C4-endo) 127.41±23.02 156.02 48.47 95.99 11.55±0.49 

 syn (~180)-1 Bimodal( , ) 4.31±0.70 2.35 0E (C4-endo) 103.08±20.44 213.03 38.91 295.95 10.75±0.55 

 syn (~180)-2 Bimodal (, ) 3.72±0.58 10.99 1E (C1-exo) 125.55±16.57 163.70 62.31 280.67 11.66±0.44 

 syn (~180)-3 Bimodal (, ) 2.70±0.55 1.03 0E (C4-endo) 103.31±21.08 201.57 50.63 114.06 10.91±0.54 

 syn (~180)-4 Bimodal (, ) 2.30±0.44 9.34 1E (C1-exo) 125.53±15.39 109.30 62.52 151.83 11.70±0.37 

 anti (~0) Unimodal 3.97±0.78 50.62 1E (C1-exo) 141.55±27.91 87.76 300.7  11.69±0.60 

 anti (~180) Unimodal 4.11±0.77 2.67 0E (C4-endo) 78.16±24.07 242.18 211.88  11.33±0.49 

o-PhOHdG:G syn (~0) Unimodal 4.53±0.74 16.95 1E (C1-exo) 129.01±16.93 58.15 67.68  11.62±0.34 

 syn (~180) Unimodal 4.47±0.81 17.83 1E (C1-exo) 126.98±21.52 230.49 68.35  11.53±0.41 

 anti-1 Bimodal (, ) 3.78±0.70 34.65 1E (C1-exo) 137.71±21.44 92.81 301.28  11.52±0.59 

 anti-2 Bimodal (, ) 4.08±1.03 0.00 0E (C4-endo) 77.42±13.41 80.52 223.72  11.20±0.33 

p-PhOHdG:G anti-3 Bimodal (, ) 3.41±0.91 45.63 1E (C1-exo) 138.99±36.71 59.04 320.62  11.67±0.52 

 anti-4 Bimodal (, ) 4.14±0.78 0.03 0E (C4-endo) 74.44±10.16 44.77 213.49  11.08±0.31 

 syn-1 Bimodal () 4.03±0.73 24.34 1E (C1-exo) 126.09±30.96 53.45 59.44  11.68±0.27 

 syn-2 Bimodal () 2.21±0.44 3.89 0E (C4-endo) 95.55±27.91 62.83 13.12  11.66±0.20 

aSee Figure 1 for definitions of important dihedral angles. bPercentage of the simulation that mutated adduct adopts the C2′–endo pucker and the most common 
sugar pucker adopted by the deoxyribose . cDistance between C1′ of mutated complex and C1′ of the pairing nucleotide. 
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In the case of the lowest energy structure of PhOdG:G, syn (180)-3, two 

strong Hoogsteen H-bonds [N1-H•••O6 (71.40% occupancy) and N2-H•••N7 

(35.75% occupancy)] are formed between the adduct and guanine. A third H-bond 

(N2-H•••O6) that is present for a smaller portion of the simulation (43.49% 

occupancy) is also identified. Although the N2-H•••O6 H-bond also appears over 

the course of the simulation of the natural sequence (19.8%), the occupancy is 

greater in adducted DNA because steric interactions between the phenoxyl moiety 

and the opposing G are slightly alleviated when the G shifts toward the major 

groove and forms the N2-H•••O6 H-bond with the adduct. The same 

rationalization can be applied to o-PhOHdG:G syn-0 with [N1-H•••O6 (96.91% 

occupancy), N2-H•••N7 (81.75% occupancy), N2-H•••O6 (41.68)] and p-PhOHdG:G 

syn-1 with  [N1-H•••O6 (98.81% occupancy), N2-H•••N7 (88.54% occupancy), N2-

H···O6 (30.17)].  In comparison, the hydrogen-bond occupancies of dG against a 

guanine mismatch are N1-H•••O6 (86.20% occupancy), N2-H•••N7 (90.70% 

occupancy) and N2-H•••O6 (19. 80) (Table 3.7). The N1-H•••O6 occupancy is 

higher in p-PhOHdG:G because of less steric effects and symmetry in the structure 

while increasing the steric interactions of the hydroxyl group in o-PhOHdG:G reduces 

the occupancies. The N1-H•••O6 occupancy reduces to 71.40% in PhOdG:G which is 

even less than dG:G. This suggests that the distortion of the double helix structure 

results from a reduction of this H-bonding interaction with the phenoxyl moiety 

present during the course of the simulation. 
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Table 3.7 Hydrogen bonding occupancies for the hydrogen bonds between the adduct and the opposing base (guanine) over the 
duration of the MD Simulations also the type of hydrogen bonds, position of adduct in a specific groove and conformation of DNA 
provided. 

Adduct 
Adduct 
conformation 

N1-
H(G3)···O6 

N1-
H(G3)···N7 

N2-
H(G3)···N7 

N1-
H···O6(G3) 

N2-
H···N7(G3) 

N2-
H···O6(G3) 

H-bond 
Position 
adduct 

DNA 
conformation 

 anti (~0)-1 67.66 34.28 94.62    Hoogsteen major groove B 

 anti (~0)-2 54.03 87.36 95.89    Hoogsteen major groove B 

 anti (~0)-3 65.21 33.80 96.41    Hoogsteen major groove B 

 anti (~0)-4 52.08 51.04 95.66    Hoogsteen major groove B 

 anti (~180)-1 56.93 45.94 79.14    Hoogsteen major groove B 

 anti (~180)-2 70.78 30.55 62.17    Hoogsteen major groove B 

PhOdG:G syn (~0)-1    81.13 18.93 24.95 Hoogsteen minor groove W 

 syn (~0)-2    88.23 80.49 36.92 Hoogsteen minor groove W 

 syn (~0)-3    72.23 27.81 33.09 Hoogsteen minor groove W 

 syn (~0)-4    84.49 66.00 35.43 Hoogsteen minor groove W 

 syn (~180)-1    78.61 23.59 30.40 Hoogsteen minor groove W 

 syn (~180)-2    91.48 83.47 33.90 Hoogsteen minor groove W 

 syn (~180)-3    71.40 35.75 43.49 Hoogsteen minor groove W 

 syn (~180)-4    93.64 84.54 36.07 Hoogsteen minor groove W 

 anti (~0) 38.84 70.07 89.56    Hoogsteen major groove B 

 anti (~180) 66.96 34.39 93.04    Hoogsteen major groove B 
o-

PhOHdG:G syn (~0)    96.91 81.75 41.68 Hoogsteen minor groove W 

 syn (~180)    95.70 74.44 53.19 Hoogsteen minor groove W 

 anti-1 26.95 80.74 80.62    Hoogsteen major groove B 

 anti-2 63.21 39.22 96.42    Hoogsteen major groove B 
p-

PhOHdG:G 
anti-3 39.30 74.46 88.07    Hoogsteen major groove B 

 anti-4 53.70 54.61 96.46    Hoogsteen major groove B 

 syn-1    98.81 88.54 30.17 Hoogsteen minor groove W 

 syn-2    99.06 95.31 13.87 Hoogsteen minor groove W 

The implemented H-bond distance cutoff was a 3.40 Å heavy atom separation and a 120° X−H−X angle. Only H-bonds with occupancy of >15% are reported. 
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 The strength of Hoogsteen H-bonding is enhanced by 23 kJ mol−1 in PhOdG:G, 

syn (180)-3 compared to that of the natural strand, which is likely due to the 

greater planarity of paired bases in the adducted helix in the representative 

structure. The stacking interactions are slightly enhanced for intra 3 (Figure 3.7) 

by ∼15 kJ mol−1 in the adducted syn (180)-3 helix compared to those in the 

natural helix. Changes in the relative arrangement of the flanking bases help 

accommodate the additional phenoxyl moiety in the duplex. Conversely, the 

reduction in stacking interactions in intra 5 of ~7 kJ mol−1 is attributed to the new 

orientation of adducted guanosine in the double helix. Subsequently, the inter 3 

interactions are more repulsive. The same trend is observed for the lowest energy 

structure of the ortho and para Clinked structures with the presence of less 

attractive inter 3 interactions in the case of syn-0 o-PhOHdG:G adduct in comparison 

to other counterparts against a guanine mismatch (Table 3.8). Ultimately, the same 

trend identified for adducts in the duplex against a guanine mismatch compares 

with their counterparts in complement with cytosine. Strong hydrogen-bonding 

interaction energies, which are lower than the identified values due to Hoogsteen 

hydrogen-bonding and guanine-guanine interactions.  Regarding the stable 

conformers, stronger intra 3 and 5 and inter 3 and 5 interaction energies is 

determined which are consistent with the stability of the conformers. 
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Table 3.8. AMBER interaction energies (kJ mol−1) between PhOdG, o-PhOHdG, and p-PhOHdG 
adducts against guanine mismatch in the G3 position of the NarI sequence and the 
surrounding nucleobases from 20 ns MD simulations. 

Adduct Adduct conformation EHbond
a Eintra5

b Eintra3
c Einter5

d Einter3
e 

 anti (~0)-1 -42.47±16.23 -28.12±3.39 -24.81±3.76 -13.18±4.35 -8.49±2.47 

 anti (~0)-2 -39.12±16.28 -30.46±6.20 -58.20±7.49 -29.162±6.32 -13.60±7.57 

 anti (~0)-3 -43.64±15.52 -39.75±7.20 -53.30±7.74 -20.17±5.77 12.59±7.20 

 anti (~0)-4 -38.49±16.53 -30.54±6.53 -59.79±6.86 -28.37±6.15 -14.56±6.57 

 anti (~180)-1 -42.68±19.33 -33.97±9.08 -59.16±7.15 -22.17±10.12 17.32±6.15 

 anti (~180)-2 -49.62±19.83 -36.41±10.08 -58.99±7.20 -19.75±11.88 17.03±6.23 

PhOdG:G syn (~0)-1 -59.96±7.49 -9.79±5.27 -19.71±8.74 -11.30±4.73 3.01±5.10 

 syn (~0)-2 -65.35±7.87 -5.27±5.69 -10.29±7.45 -11.42±6.69 -4.56±7.74 

 syn (~0)-3 -59.83±7.95 -9.08±5.23 -19.21±8.91 -10.54±4.85 3.64±6.11 

 syn (~0)-4 -63.43±8.49 -5.61±5.15 -12.10±7.66 -11.42±6.69 -2.34±8.53 

 syn (~180)-1 -60.33±7.36 -10.29±5.94 -18.33±8.53 -12.05±5.10 2.13±5.73 

 syn (~180)-2 -64.94±8.37 -5.73±5.15 -9.79±7.071 -11.13±6.32 -5.69±8.16 

 syn (~180)-3 -61.17±7.78 -8.91±5.15 -17.49±8.33 -10.88±4.64 2.89±5.56 

 syn (~180)-4 -64.39±8.58 -5.27±4.81 -10.88±6.74 -11.46±6.78 -4.64±7.32 

 anti (~0) -55.65±13.60 -42.38±8.37 -59.25±8.62 -16.53±7.49 12.93±7.53 

 anti (~180) -47.82±16.15 -37.36±7.03 -56.90±6.690 -28.24±7.24 15.27±6.82 

o-PhOHdG:G syn (~0) -57.82±8.16 -17.07±10.67 -7.82±5.77 -7.03±5.94 -3.18±7.95 

 syn (~180) -70.71±9.25 -2.51±6.82 -9.29±10.04 -8.95±7.95 -4.10±9.41 

 anti-1 -50.84±15.56 -41.46±8.83 -48.12±7.49 -13.05±8.49 11.42±7.82 

 anti-2 -40.46±15.65 -25.86±5.90 -54.77±6.44 -29.20±5.23 14.69±8.12 

p-PhOHdG:G anti-3 -55.02±14.23 -46.19±8.99 -44.85±8.03 -6.02±9.46 -8.45±7.61 

 anti-4 -33.47±15.56 -30.50±5.98 -55.23±6.40 -27.28±5.48 15.82±5.94 

 syn-1 -59.71±8.41 -7.03±6.69 -13.51±6.53 -8.07±6.32 2.26±9.08 

  syn-2 -57.45±8.58 -12.092±5.98 -16.23±6.11 -7.82±5.86 10.21±7.49 

 

aΔEHbond is the hydrogen bond strength in the dimer consisting of the nucleobase at the G3 
position and the opposing base. bΔEintra5′ is the stacking interaction energy between the 
nucleobase at the G3 position and the intrastrand base at the 5′-side of the adduct. cΔEintra3′ 
is the stacking interaction energy between the nucleobase at the G3 position and the 
intrastrand base at the 3′-side of the adduct. dΔEinter5′ is the stacking interaction energy 
between the nucleobase at the G3 position and the base in the opposing strand at the 5′-
side of the adduct. eΔEinter3′ is the interaction energy between the nucleobase at the G3 
position and the base on the opposite strand stacked at the 3′-side of the adduct. 
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3.4. Conclusion  

Since molecules are dynamic, experimental structures alone may not give the 

entire picture. Furthermore, the limitations in synthetic methods, facilities and 

difficulties in interpreting spectra, to provide clear idea for structural, 

conformational, and chemical properties of molecules, result in an increased 

demand for theoretical calculations. So an interdisciplinary approach is required. 

Molecular simulations are a necessary complement to experimental studies. 

The results of our studies suggest that the single-ring oxygen linked C8-

phenoxy-dG adduct (PhOdG) adopts an anti conformation opposite C within the G3 

position of the 12mer NarI recognition sequence (5CTCG1G2CG3CCATC3). In 

this conformation, the phenoxyl moiety resides in the major groove. No evidence 

of additional stacking interactions with PhOdG in a syn conformation opposite C was 

obtained. In contrast, both o-PhOHdG:C (syn-180) and p-PhOHdG:C (syn-2) showed an 

interclated conformation in the NarI sequence, which may result in the formation 

of the 2-base bulge mutation.  As a result, greater mutagenicity may expect for C-

linked adducts in comparison to O-linked structures.  

Within the double helix where the PhOdG:G is guanine mismatched, the PhOdG 

adopts a syn conformation and the phenoxyl ring is twisted from planarity.17 

Furthermore, the phenoxy moiety is residing in the minor groove and PhOdG adopts 

a “W-type” wedge conformation.. The same result is observed for the o-PhOHdG and 

p-PhOHdG adducts against a guanine mismatch. Induction of frameshift mutation is 

more probable in ortho and para Clinked structures. This is thought to be the 

effect of the oxygen bridge that allows more conformational flexibility and less 
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steric collisions in PhOdG in natural (paired with cytosine) NarI sequence (pairing 

with cytosine) and against a guanine mismatch. 

Overall, the syn conformer of the O-linked adduct induces more steric clashes 

when it is mismatched against a guanine complementary base compared to 

cytosine. However, the phenoxyl moiety does not cause a significant distortion of 

the double helix due to the small size of the aromatic link while the deformation of 

the double helix is more apparent in ortho and para C-linked structures. 
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Chapter 4. DFT Calculations on the Stability of Chloro Substituted Olinked 

Adducts, at Nucleobase, Nucleoside, and Nucleotide Levels. The Influence of 

Chlorine Substitution and Protonation on the Hydrolytic Stability of Biaryl 

Ether Nucleoside Adducts Produced from Phenolic Toxins 

4.1. Introduction 

The basic hypothesis of chemical carcinogenesis is that formation of a covalent 

bond between a chemical and DNA to form a DNA adduct represents the first 

essential step in the tumor initiation process. Nucleobases, especially 2-

deoxyguanosine (dG), are preferential targets of electrophilic attachment.1 A single 

electrophile can react with different sites on the guanine nucleobase of DNA. 

Various carbon and nitrogen atoms on dG can be modified by several electrophiles 

derived from chemical carcinogens. Exocyclic and endocyclic N and the O6 site of 

dG are reactive towards electrophilic addition by alkylating agents which can be 

derived from aflatoxins, nitroamines and mustards. Endocyclic N1 and N3 can 

react with α, unsaturated carbonyl groups. PAHs undergo bioactivation to 

electrophiles which tend to react with the exocyclic N2 site of dG. The C8 site of dG 

is also a target site for modification formation of lesions (Scheme 4.1).2 This is an 

interesting aspect of C8 reactivity because this site is not thought to be highly 

nucleophilic and does not react with most electrophilic species. However, it is the 

preferred site of certain radical addition reactions. This preference stems, in part, 

from the fact that dG has the lowest oxidation potential (1.3 V vs. NHE, pH 7) of all 

four nucleobases making it most susceptible to oxidation. Hydroxyl radicals, 
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nitrogen dioxide, alkyl radicals, arylamines, nitroaromatics, and phenoxyl radicals 

are all known to form covalent adducts at C8 of dG.3-5 

 

Scheme 4.1. Preferential sites of reactivity with 2’-deoxyguanosine by various 
electrophiles.2 

In addition to carcinogenesis, the relationships between cellular DNA damage 

caused by endogenous and environmental genotoxic agents, the cellular response, 

and the development and prevention of human diseases and aging have recently 

attracted great interest in the medical, biological, and chemical research 

communities.6, 7   

Phenols, as common organic compounds, show beneficial biological activities 

which are observed in vitamin E and other phenolic counterparts that possess 

antioxidant properties.8 On the other hand the carcinogenicity of phenol is evident 

in the chlorophenols, which are among the external causes of DNA damage. 

Chlorophenols can be found in pesticides, herbicides and wood preservatives.1 

Breakdown of some natural products can produce some agents that can display 

deleterious pro-oxidant properties. These agents and enzymes with peroxidase 

activity can initiate oxidation of phenols by elimination of one electron and 

formation of phenoxyl radicals as intermediates. Examples include 
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pentachlorophenol (PCP), 2,4,6-trichlorophenol, 2,4-dichlorophenol, other 

isomers and the mycotoxin ochratoxin A. Experimental studies on modification of 

DNA by chlorophenols clarify the tendency of adduction at C8 site of guanosine.9, 

10 It has been identified that phenols undergo peroxidase-mediated oxidation into 

phenoxyl radicals.11, 12 Chlorophenol carcinogenesis could also be linked with 

metabolic activation to phenoxyl radicals and quinones that covalently bind to 

DNA. Likewise, quinone metabolites of simple chlorophenols, react with DNA and 

multiple adducts can be formed.10, 11, 13 In vitro reactivity profiles for chlorophenol 

metabolites indicate the potential for direct DNA adduction by oxygen-based 

radicals, carbon-based radicals and quinones (Scheme 4.2).  
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Scheme 4.2. Summary of HRP/H2O2-Mediated Reaction of a CP with dG.11 

Depurination is known to play a major role in cancer initiation.14, 15 Hydrolytic 

cleavage of β-N-glycosidic bond (1′-N9) of purines which lead to releasing a nucleic 

base is known as depurination. The second fragment formed in the depurination 
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of deoxyribonucleosides and ribonucleosides is the sugar, e.g. 2deoxyribose and 

ribose (Figure 4.1). Larger molecules which are more complex, such as nucleoside 

residues, nucleotides and nucleic acids, also undergo depurination. 

Deoxyribonucleosides and their derivatives are substantially more prone to 

depurination than their corresponding ribonucleoside counterparts. 15 

 

Figure 4.1. Acid-catalyzed hydrolysis of dG; the same mechanism for O-linked, C-
linked and N-linked adducts.16 

Purine is a good leaving group via the N9-nitrogen, hence depurination takes 

place easily and is not an uncommon reaction. Studies estimate that around 5,000 

purines are lost in this way each day in a typical human cell.3, 16 In cells, one of the 

main causes of depurination takes place by reaction with endogenous metabolites. 

The anomeric carbon is especially reactive towards nucleophilic substitution: the 

carbon-oxygen bond is shorter, stronger and more polar, while the carbon-purine 
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bond is longer and weaker. This makes the bond especially susceptible to 

hydrolysis. In the chemical synthesis of oligonucleotides, depurination is one of the 

major factors limiting the length of synthetic oligonucleotides.17 

Proton transfer reactions are of great importance in chemistry and in the 

biomolecular processes of living organisms. The latter include most enzymatically 

catalyzed reactions. The protonation state of chemical groups, e.g. the side chains 

of amino acids, is fundamentally related to their biomolecular function. It has been 

identified that acid can accelerate the rate of the depurination in unmodified 2′-

deoxyguanosine (dG).   

Protonation increases the rate of depurination for unmodified 2′-

deoxyguanosine. A stepwise mechanism is proposed for the acid-catalyzed 

hydrolysis of dG (Figure 4.1). The protonation occurs in the first step and is defined 

by the acid dissociation constant Ka1. The second step, which is the rate 

determining step, is the cleavage of the glycosidic bond and proceeds in a 

unimolecular fashion and is defined by k1. Protonation makes the guanine a good 

leaving group. An oxocarbenium ion converts to the 1′-hydroxylated sugar after a 

hydration step. Finally, this sugar is tautomerized to the aldehyde isomer which 

may lead to the formation of an interstrand DNA cross-link lesion in duplex DNA.18, 

16 Covalent modification of dG, by affecting the accumulation of electrons at N9 site 

of guanosine, increases the rate of depurination and forms abasic site. It has been 

demonstrated that N7 position of guanosine is the most nucleophilic site and this 

is due to resonance.19 Therefore, the protonation of guanosine at the N7 site by 

formation of a positive charge on guanosine forms a better leaving group; also, 
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alteration of the C8 site of guanosine with other electrophiles can accelerate the 

depurination. 

Interestingly, C8 of dG is also susceptible to covalent modification by 

numerous electrophiles. The type of C8-substituent is a determining factor in 

inducing the properties that make the 8-guanine adduct an excellent leaving group 

for depurination. In general, electron-withdrawing substituents at the 8-position 

of dG can stabilize the developing negative charge at N9 during rate-limiting 

cleavage of the glycosidic bond.20 Bulky aryl ring systems can be attached to C8 of 

dG to form nitrogen-, carbon-, or oxygen-linked adducts. N-linked adducts are 

generated from reaction of the DNA nucleobases with nitrenium ion metabolites 

derived from arylamine carcinogens.21, 22 N-linked adducts can easily be 

depurinated under mildly acidic to neutral conditions, where dG has little 

reactivity.21 The corresponding C-linked adducts having direct attachment of the 

aryl ring at C8 of dG has a small impact on pKa1.23 Nevertheless, protonation of 

adducts and increasing acidity of solution enhance the reactivity of adducts in 

comparison with dG. As a matter of fact, functionalization of the phenyl ring with 

electron-withdrawing substituents causes an increase in the rate of hydrolysis 

related to natural guanosine. Although there are several factors accelerating 

depurination, the relief of steric strain during the process of depurination by 

removal of sugar moiety is the most important factor.23 Finally, substitution of the 

aromatic ring of phenoxyl by chlorine atoms, as electron withdrawing groups, 

enhances the rate of hydrolysis.  
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Olinked C8-dG adducts bearing electron-deficient polychlorinated phenoxyl 

ring systems were expected to have enhanced susceptibility to hydrolysis. In this 

chapter, the structural features of chloro substituted Olinked adducts are studied 

computationally. In addition, a theoretical approach to determine proton affinities 

and deglycosylation barriers and draw comparisons between the hydrolysis rates 

of all chloro Olinked complexes and protonated structures is presented. This will 

shed light on the impact of modified mutated complexes, functionalization of the 

aryl group on the rates of depurination and formation of abasic sites.  

4.2. Computational Details 

4.2.1. Nucleobase Model  

To characterize the conformations of the functionalized Olinked phenol 

adducts, the same procedure used for unsubstituted adducts was applied to the 

chloro substituted Olinked structures. DFT (density functional theory)24 was 

used in the form of the B3LYP functional. The use of B3LYP in this project was 

justified based on past work done on the related C-bonded adducts in the Wetmore 

laboratory.25 Specifically, the B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) level of 

theory was found to provide accurate geometries. For all chloro-substituted 

mutated complexes, B3LYP/6-31G(d) potential energy surfaces were initially 

searched for selected adducts. First, all local minima and transition states for 

systematic rotation about the C8O () and OC bonds () for the Olinked 

(unsubstituted) G adduct were considered. Specifically, the dihedral angles  

(theta) and  (phi) were rotated and fixed in 20 increments from 0 to 360. In 
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the case of the 4-Cl-PhOdG monochlorosubstituted adduct, one chlorine atom was 

added to the phenoxyl ring of the fully optimized minima and transition states of 

the unsubstituted Olinked G adduct. The geometries of the PCP-OG (pentachloro) 

adduct were found by addition of two chlorine atoms to the minima and transition 

state structures of the TCP-OG (trichloro) adduct. B3LYP/6-31G(d) full optimizations 

followed by B3LYP/6-31G(d) frequency and B3LYP/6-311+G(2df,p) single- point 

calculations were then run on the new fully-optimized structures in each case.  

4.2.2. Nucleoside Model  

The lowest energy conformation of the nucleobase adducts were used to build 

the nucleoside model. Minima for the 4-Cl-PhOdG, DCP-OdG, TCP-OdG, PCP-OdG nucleoside 

adducts were initially identified through a conformational search using the 

internal coordinate Monte Carlo algorithm in HyperChem 8.0.8. The AMBER 

molecular mechanics force field, with PM3 charges, was implemented in the 

conformational search and the  (N9C8OC) and  (C8OCC4), 

(O4C1N9C4), as well as the endocyclic torsion angles of the sugar, namely 

υ0 (O4C1C2C3), υ1 (C1C2C3C4), υ2 (C2C3C4O4), υ3 

(C3C4O4C1), υ4 (C4O4C1C2), β (C4C5OH), ε 

(C4C3OH), and γ (O3C4C5O) dihedral angles were scanned.26, 27 This 

procedure led to more than 200 conformers, out of which the 50 lowest energy 

conformers subsequently fully optimized with B3LYP/6-31G(d). Finally, B3LYP/6-

311+G(2df,p) single-point energy calculations were carried out on the resulting 

ten lowest energy structures to identify the most stable conformer. In order to 
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identify the global minima and local minima and transition states, systematic gas-

phase B3LYP/6-31G(d) PES scans were performed with the θ (N9C8OC) and 

(O4C1N9C4) dihedral angles constrained in 10° increments from 0° to 

360°. Upon addition of the 2′-deoxyribose sugar the sugar puckering must be 

considered. The starting models for these PES scans were optimized with C2′-endo 

sugar puckering, which is present in the B-form of DNA and is the preferred pucker 

in the related C8-phenoxyl-2′-deoxyguanosine adducts. Moreover, the 5′−OH was 

allowed to adopt the lowest energy orientation, which involves interactions with 

the nucleobase (denoted as β-unconstrained), and is relevant when the nucleoside 

is at the 5′-terminal position in a duplex. As a result of this process, the PESs for all 

the chloro-substituted O-linked nucleoside models were generated. 

4.2.3. Nucleotide Model 

Previous studies on the natural dG nucleotide, as well as C8-bonded phenoxyl 

dG adducts indicate that nucleotide conformations28 can be accurately 

characterized when solvation (water, ε = 78.4) is taken into account during PCM-

B3LYP/6-31G(d) optimizations (further explanation about PCM is provided in 

4.2.4. Proton affinity and deglycosilation barriers), and an anionic phosphate model 

is neutralized with a Na+ counterion. Geometries obtained from this approach are 

compatible with the structures that were generated by using larger basis sets and 

specifically including diffuse functions (6-31+G(d,p)) to take the charge of the 

phosphate into account.28, 29 This developed protocol was used for the nucleotide 

models. The nucleotide model was generated by adding a 5′monophosphate 



 

164 

  

group to the lowest energy anti and syn conformations identified using the 

βconstrained nucleoside model. For the nucleobase and nucleoside models, 

reported relative energies were obtained from gas-phase B3LYP/6-311+G(2df,p) 

single-point calculations, whereas the corresponding calculations were carried out 

in water for the nucleotide models. All relative energies include scaled (0.9806) 

zero-point vibrational energy (ZPVE) corrections. 

4.2.4. Proton affinity and deglycosilation barriers  

The resulting gas-phase global minima from PESs for 4-Cl-PhOdG, DCP-OdG, TCP-OdG, 

PCP-OdG were optimized by IEF-PCM B3LYP/6-31G(d) in water to obtain the 

corresponding structures (further explanation about IEF is provided in 4.2.4. 

Proton affinity and deglycosilation barriers). The lowest energy gas and solvent 

phase structures were then used to determine the proton affinities (PA) and the 

deglycosylation barrier of O-linked structures. The B3LYP/6-311+G(2df,p) PA 

(including B3LYP/6-31G(d) ZPVE corrections) at the N3 and N7 sites of the O-

linked 8-dG adducts were determined in the gas and solvent (water) phases as the 

negative of the enthalpy change for protonation. To scrutinize the effects of the 

phenoxyl moiety, Cl-substitution and protonation on sugar loss, the 

deglycosylation reaction at the nucleoside level was investigated by altering and 

fixing the glycosidic bond length (1′−N9) in 0.1 Å increments from 1.4 Å to 3.5 Å in 

both the gas phase and water for all chloro substituted adducts and N3 and N7 

protonated species. All quantum chemical B3LYP calculations were performed 

using Gaussian 09 revisions A.02 and C.01.30 
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The type of model which was used for determining the solvent effect is 

distinctive. Indeed, in the Self-Consistent Isodensity Polarized Continuum Model 

(SCI-PCM), the cavity is an isodensity surface of the molecule. The isodensity PCM 

model (SCRF=IPCM) are calculations that are used for determining the PA in water.  

It employs a converged SCF numerically, and iterates until the cavity shape no 

longer changes. The Self-Consistent IPCM model (SCRF=SCIPM) is implemented 

based on the different embedded cavity in the SCF calculation and includes the 

effect of solvation.  

The Polarizable Continuum Model (PCM) using the integral equation 

formalism variant (IEFPCM) is the default SCRF method.   

Explicit solvent (all-atom description) methods, which reflects the realistic 

physical picture of the system, was not used since it is computationally expensive 

due to consideration of the full details of molecular structure.  Processing many 

atoms requires long runs in order to equilibrate solvent and solute which is time 

consuming and requires lots of memory. Additionally, this model cannot specify 

the polarizability of solvent and solute. In addition, large fluctuations are provoked 

due to the small system size. Therefore, we used the implicit solvent (continuum 

description) approach. The implicit solvent method has also some disadvantages 

compared to QM, the highest possible level accredited for treating the solute.  

Second, an artificial boundary between the solute and solvent in the implicit 

solvent model reduces the efficiency of this method in treating short range effects. 

To address these issues we modeled the solvent as a polarizable continuum and 

not as individual molecules which also makes ab initio computations feasible. 
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4.3. Results and Discussions  

4.3.1. Nucleobase Model 

4.3.1.1. Structure of PhOG 

The structural and conformational properties of unsubstituted O-linked 

guanine adducts has been discussed in Chapter 2. According to the B3LYP potential 

energy surface (Figure 4.2) the lowest energy structure (global minimum) was 

found to have a theta (θ) value of 180 ° and a phi (Φ) value of 359.8°. Another 

planar minimum (local minimum) resulting from molecular symmetry appears at 

~179.8 () and ~179.9 () which is quite similar to the global minimum. In the 

transition state the nucleobase and the phenol ring are approximately 

perpendicular, with a θ 180° and Φ 91.8°, were also characterized (Figure 2.3). 

Thus, in summary, the O-linked unsubstituted adduct has one planar global 

minimum that is connected to a mirror image of itself by one perpendicular 

transition state, which is only 3 kJ mol−1 higher in energy than the global minimum. 

Thus, the barrier to rotation about  is very small. The planar minima and 

perpendicular transition states identified for the ortho and para C- linked 

nucleobase adducts support the conclusions in the present work that the O-linked 

adduct also adopts such conformations. 



 

167 

  

 

Figure 4.2. Potential energy surfaces of PhOG, DCP-OG and TCP-OG. 

4.3.1.2. Structure of 4-Cl-PhOG 

 According to B3LYP/6-31G(d) full optimizations, the monochloro adduct 

adopts a planar geometry. Indeed, with all constraints released, the monochloro 

substituted adduct acquire the following geometrical parameters  = 180 and  = 

180 (and 360). This global minimum is connected by two identical perpendicular 

transition states at  = 180 and  = 95 (or 265) due to molecular symmetry. 

Thus, the monochloro substituted adduct has one planar global minimum 

connected by a transition state with perpendicular ring arrangements. The barrier 

for rotation about  is again very low (~4.5 kJ mol−1). 

The minimum identified for the monochloro adduct is comparable to the 

unsubstituted O-linked adduct due to the lack of intramolecular attraction 

between the nucleobase and the chlorine atom on the phenoxyl ring. The planar 

orientation and small barrier for rotation is maintained upon chlorination. 

Ultimately, the similar structural and conformational properties for the 

monochloro substituted adduct and unsubstituted adduct leads us to conclude that 
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the exchange of one chlorine atom at the para position of the phenoxyl ring does 

not have a significant impact on the molecular structure (Figure 4.3).  

 

Figure 4.3. Comparison of relative energies (kJ mol−1) between selected minima and 
transition states of 4-Cl-PhOG at B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) as well as  and 

 angles. 

4.3.1.3. Structure of DCP-OG 

The adduct DCP-OG has two chlorine atoms on the phenoxyl ring of the 

unsubstituted mutated complex at the ortho and para positions. The B3LYP 

potential energy surface was searched (Figure 4.2). A planar global minimum with 

θ = 180° and Φ = 180° was identified. Geometrical properties of the fully optimized 

distinguished minima, without any constraints, are consistent with this prediction 

(θ = 180° and Φ = 180°). This shows that the global minimum for this adduct is 

again planar, which directly correlates with the global minima found for both the 

unsubstituted and monochloro substituted adducts. It also shows the negligible 

effect of functional groups at a single ortho position of the aromatic ring. This is a 
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result of the flexibility of the phenoxyl moiety as a result of the bridging oxygen. 

Therefore, the dichloro mutated nucleobase adopts a conformation in which the 

ortho chlorine atom has the least interactions with the atoms of nucleobase. The 

transition state geometries identified from the potential energy surface has θ = 

180° and Φ = 0°. Conversely, when the constraints on χ dihedral and sugar 

moiety dihedrals were released on this structure, a geometry with θ = 80.1° and Φ 

= 89.6° was determined. The topological properties and orientations are not 

consistent with the point identified on the potential energy surface. A B3LYP 

frequency calculation was used to get more information about the speculated 

transition state and revealed a single imaginary frequency at  25 cm-1. This 

frequency is too small to be assigned to a transition state. To gain more information 

about the nature of the optimized geometry, an IRC (Intrinsic Reaction Coordinate) 

calculation was run. In the input, the default step size was decreased to half the 

original value, and the step size was increased to 30. However, after only 5 

optimization steps, the structure converged and the structures in both directions 

looked very similar. Additional calculations will be required to confirm the nature 

of this point on the potential energy surface and its connection to other minima 

(Figure 4.2 and Figure 4.4).   
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Figure 4.4. Comparison of relative energies (kJ mol−1) between a selected minimum and 
transition state of DCP-OG at B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) as well as  and  

angles. 

4.3.1.4. Structure of TCP-OG  

Chlorination of the phenoxyl ring by less than three chlorine atoms slightly 

alters the geometries and energies of the unsubstituted and monochloro adducts. 

This is not true for the addition of the third chlorine atom at the second ortho 

position since it leads to conspicuous interactions between the halogen atom and 

the nucleobase. Specifically, the lone pairs of the ortho chlorine atom interact with 

the N7 site of guanine. From the B3LYP potential energy surface (Figure 4.2), two 

identical minima were found at θ = 180° and Φ = 100° (or 260°). Additionally, 

two identical transition states were seen at θ = ~180° and Φ = 0° (or 180°). Once 

all constraints on χ dihedral and sugar moiety dihedrals were released, a slight 

change in the geometrical properties of minima and transition states was 

identified. The minima fell to θ = 180° and Φ = 267.7° (or 92.3°) (Error! Reference 

ource not found.) while the transition states adopt θ = 265° and Φ = 189.3° or θ = 

85.5° Φ = 9.3° (Error! Reference source not found.). Therefore, there are two 

identical minima connected by two identical transition states that are 
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approximately 31 kJ mol−1 higher in energy.  Thus, the θ rotational barrier found 

for the trichloro adduct is substantially higher than that for both the monochloro 

and unsubstituted counterparts. This increase in relative energy is likely due to the 

interaction between the chlorine atoms in the ortho position and the nucleobase. 

Since both ortho sites are functionalized with two chlorine atoms, the flexibility of 

the phenoxyl moiety does not have a significant effect on arbitrating the steric and 

electronic interactions (Figure 4.2 and Figure 4.5).     

 

Figure 4.5. Comparison of relative energies (kJ mol−1) between selected minima and 
transition States of TCP-OG at B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) as well as  and  

angles. 

4.3.1.5. Structure of  PCP-OG 

Functionalization of the phenoxyl moiety with two other chlorine atoms at the 

meta positions forms the pentachloro adduct. To model this, we began with the 

global minima (θ = 180°, Φ = 92°) and transition states (θ = 85.5°, Φ = 9.3°) that 

were identified from the trichloro adduct and added two chlorine atoms. Since the 

addition of these two extra chlorine atoms did not lead to additional interactions 
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with the nucleobase, no distinctive change was discerned in the geometrical 

properties of the PCP-OdG adduct. After full optimization, the global minimum for 

the pentachloro adduct was found at θ = 180° and Φ = 92.2°, which is identical to 

the minimum found for the trichloro example. Therefore, these results indicate 

that the addition of the chlorine atoms in the meta position had no effect on the 

geometry of the minima. Similarly, with the additional chlorination, the transition 

states of the pentachloro adduct are not drastically different in geometry or energy 

from that found in the trichloro adduct. Releasing all constraints in the pentachloro 

transition state (Figure 4.6) gave structures with θ = 86.1° and Φ = 8.9°. The 

rotational barrier about θ in the pentachloro structure is 33 kJ mol−1, which is 

only 23 kJ mol−1 more than the barrier in the trichloro structure. It can be 

inferred that the pentachloro adduct has a similar geometry and relative energies 

as the trichloro adduct due to molecular symmetry, and negligible interaction 

between chloro atoms at the meta position and the nucleobase.  

 

Figure 4.6. Comparison of relative energies (kJ mol−1) between selected minimum and 
transition states of PCP-OG at B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) as well as  and  

angles. 



 

173 

  

Consequently, analyzing both the unsubstituted and chlorosubstituted O-

linked G adducts, it is apparent that the addition of chlorine atoms to the aromatic 

ring of the phenoxyl moiety of the unsubstituted template may generate new 

interactions with the nucleobase. The type and implication of this interaction 

depend on whether the halogen atoms are added to the ortho, meta or para 

position. Ortho substitution has a greater impact since there are more interactions 

with the atoms of the nucleobase. With increasing the number of chlorine atoms 

on the ortho positions, the barrier to rotation (change in θ) increases. The 

conformations adopted by the unsubstituted adduct show that, without a 

discernible nucleobase–Cl interaction, both θ and Φ fall to a planar minimum, 

while the transition states correlating to this planar minimum adopt a 

perpendicular orientation of phenoxyl relative to θ. A planar minimum and 

perpendicular transition state are also seen in the para-monochloro adduct due to 

a lack of interaction between the nucleobase and the halogen atom at the para site.  

Rotation of the phenoxyl about  results in a specific orientation of phenoxyl in 

which the ortho chlorine of DCP-OG has the least interactions with the nucleobase 

atoms whereas the second ortho chlorine atom. This causes a change in the planar 

and perpendicular geometries in the trichloro adduct.  Additional chlorine atoms 

at the meta position of the phenoxyl ring introduces no additional outstanding 

interactions with the nucleobase, therefore geometries and relative energies are 

quite similar for TCP-OG and PCP-OG.  
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4.3.2. Nucleoside Model 

Examination at the nucleoside level can provide insight into the mechanism of 

toxicity for adduct-forming toxins by investigating the hydrolytic stability of chloro 

substituted phenolic O-linked adducts. As clarified in Chapter 2, modification of dG 

at the C8 position is known to affect the barrier between the syn and anti 

conformation for the free nucleoside. Studies have shown that modification at the 

C8 site of 2'-deoxyguanosine often results in a favourable syn conformation.25,29 

Computational analyses of a class of C8-aryl-dG adducts demonstrated a 25 kJ 

mol−1 preference for the syn conformer for all nucleoside adducts. This preference 

was rationalized due to the steric bulk of the adducted moiety as well as an 

intramolecular hydrogen bond between the 5OH and N3 site of guanosine 

(Figure 2.4, 2.5 and 2.6).25 

After examining the structures of both the unsubstituted and 

chlorosubstituted Olinked guanine adducts, the next step should be adding the 

deoxyribose sugar moiety as previously employed for the ortho and para 

Cbonded 2deoxyguanosine (dG) adducts. It is assumed that the deoxyribose 

sugar moiety may impose a twist by further interactions that alter the geometry of 

the adducts and greater steric clashes. In this section a comparison is made 

between chlorosubstituted Olinked adducts and each of o-PhOHdG and p-PhOHdG and 

PhOdG. 

Chapter 2 clarified the structural properties of unsubstituted adduct as well as 

a conformational assessment of C-linked adducts at the nucleoside level.25, 28 There 
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is no theoretical evidence about the lowest energy conformers of chloro 

substituted O-linked mutated complexes at the nucleoside level.29 In the present 

study, we extend our models to represent the structural properties and 

conformational flexibility of some Cl-substituted O-linked mutated species (4-Cl-

PhOdG, DCP-OdG, TCP-OdG, and PCP-OdG). To better demonstrate the effect of the oxygen 

linkage between the functionalized aromatic ring and guanosine, the impact of  is 

considered specifically. DFT calculations using B3LYP/6-31G(d) were performed 

to generate PESs for each structure to provide insight into the stability, flexibility, 

preferred conformations and the effects of the sugar moiety on the conformational 

distortion of the desired nucleobases.  

To understand the role of steric strain, the discussion will focus on the more 

stable regions of the surface, since it is anticipated that the corresponding high-

energy structures do not play a significant role. The contour plot (Figure 4.7) for 4-

Cl-PhOdG is quite similar to PhOdG which reveals that the global minimum (red 

region) adopts the syn conformation (=54.12°, = 175.62°, =5.02°). Indeed, there 

is another minimum with (= 248.37°, =164.00°, =10.50°) known as local 

minimum that is higher in energy than the syn minimum. Three transition states 

are identified in the range of 42.6646.30 kJ mol−1 with = 54.11°, =4.05° 

E=43.90 kJ mol−1, = 166.55°, =181.65° E=42.66 kJ mol−1, and = 330.40°, 

=185.28° E=46.30 kJ mol−1. Rotational barriers between minima can also be 

estimated from the graph to be 15.89 kJ mol−1 for conversion between syn (anti) 

minima (Figure 4.7 and Figure 4.8).  
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Figure 4.7. Potential energy surfaces of unsubstituted and chloro substituted O-linked 
adducts. 
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Figure 4.8. Fully optimized minima and transition states identified from PES of 4-Cl-PhOdG, 
different dihedrals (θ, , and  deg) and relative energies at B3LYP/6-311+G(2df,p) in kJ 

mol−1. 

There is no significant difference in the stability of the global minimum in the 

case of 4-Cl-PhOdG in comparison with PhOdG because addition of a chlorine atom at 

the farthest site will incur the least interactions with sugar segment and the other 

atoms on the nucleobase. Important geometrical parameters, as well as the relative 

energies, for fully optimized minima and transition states are provided in Figure 

4.8 when full optimizations (i.e., all constraints released) are performed on 

important regions of contour plot (i.e. global minima, local minima and transition 

states), the geometries change very little.  and  deviate by approximately 5° in 

the minima and less than 10° in the transition states. The PES of DCP-OdG illustrates 
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(Figure 4.7 and Figure 4.9) that one ortho chlorine cannot distort the structure of 

the new mutated complex in comparison with PhOdG and 4-Cl-PhOdG. This again 

identifies the significance of the conformational flexibility of O-linked adducts and 

the effect of oxygen as the bridge, which decrease the spatial interactions of the 

sugar moiety and the phenoxyl moiety, so that the global minimum is almost planer 

(= 53.08°, =176.07°, and =1.47°). Perpendicular transition states are found (= 

54.50°, =3.50°, and =90.87°), (= 165.56°, =178.16°, and =171.20°), and (= 

329.32°, =168.30°, and =158.88°) with energy barriers of E = 44.48, E = 45.73 

and E = 46.91 kJ mol−1, respectively. The barrier to rotation for syn to anti 

conversion is 18.14 kJ mol−1 which has increased as the result of the ortho 

chlorine. The anti and syn minima are connected by a transition state with = 

244.28°, =173.06°, and =115.86°.  
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Figure 4.9. Fully optimized minima and transition states identified from PES of DCP-OdG, 
different dihedrals (θ, , and  deg) and relative energies at B3LYP/6-311+G(2df,p) in kJ 

mol−1. 

More significant deviations in structural properties from unsubstituted and 

mono chloro substituted adducts occur in some instances, which will be discussed 

in more detail below. The sugar moiety and functionalization of the aromatic ring 

have more impact on the geometrical properties of TCP-OdG, and particularly PCP-

OdG. In the case of TCP-OdG, the second chlorine atom at the ortho site of aromatic 

ring, as well as steric crowding which the phenoxyl ring passes over the sugar 
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moiety by adopting a twisted conformation, induces an obvious distortion. The syn 

conformer is the lowest energy minimum for TCP-OdG with geometrical parameters 

of = 53.26°, =178.92°, and =93.09°. The anti local minimum has interactions 

between the C5OH and the oxygen atom of phenoxyl (= 247.19°, =175.06°, and 

=96.73°). These interactions lead to steric crowding of the ortho chlorine atom 

which is partially alleviated by inducing a greater degree of twist in the molecule 

and less stability (14.25 kJ mol−1) in comparison with the global minimum. Figure 

4.7 and Figure 4.10 show the energy minima (global and local minima) and the 

transition states which connect these structures. Two transition states with energy 

barriers of 40.09 kJ mol−1 and 43.68 kJ mol−1 connect the global and local minima. 

Another transition state with the energy barrier of 43.62 kJ mol−1 connects the 

global minimum to itself. 
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Figure 4.10. Fully optimized minima and transition states identified from PES of TCP-OdG, 
different dihedrals (θ, , and  deg) and relative energies at B3LYP/6-311+G(2df,p) in kJ 

mol−1. 

Functionalization of the aromatic ring at the meta position did not lead to any 

conspicuous significant interaction, so they did not affect the lowest energy 

conformations significantly in the global minimum (= 53.50°, =177.39°, and 

=89.54°), and local minimum (= 246.51°, =175.89°, and =90.69° E=14.45 kJ 

mol−1). The phenoxyl substituent is twisted with respect to the nucleobase by 

approximately 90.69° and this conformer exhibits a perpendicular orientation of 

the aromatic ring (Figure 4.11). Despite this twisting, both global and local minima 

of the mutated nucleoside contain an O5H•••N7 hydrogen bond (1.83 Å), and 

O5-H•••O (oxygen atom of phenoxyl moiety) hydrogen bond (2.21 Å). Barriers to 

rotation from the global minimum to the local minima were predicted to be around 
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14.45 kJ mol−1, indicating that conversion of the global minimum to local minimum 

might be experimentally difficult. The sugar puckering generally remains C2-endo 

in all the chloro substituted Olinked adducts; this result was obtained from 

HyperChem conformational search without applying any constraint on sugar 

moiety of nucleoside model.  

 

Figure 4.11. Fully optimized minima and transition states identified from PES of PCP-OdG, 
different dihedrals (θ, , and  deg) and relative energies at B3LYP/6-311+G(2df,p) in kJ 

mol−1. 

The barrier to rotation between anti and syn conformers is quite similar for 

unsubstituted and monochloro mutated complexes whereas there is a sharp 

decrease in stability for the local minima of the dichloro species since the global 

minimum is planar and local minimum is perpendicular. This barrier includes the 

required energy for deviation from the planar orientation of the phenoxyl moiety 
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to the perpendicular alignment. There is a reduction in this barrier for TCP-OdG and 

PCP-OdG in comparison with PhOdG and 4-Cl-PhOdG. This can be rationalized by an 

initial perpendicular orientation of the phenoxyl moiety in the global minima of 

both tri- and pentachloro adducts that remains unchanged in the local minima 

(anti conformer). The stability of the local minimum is comparable with the global 

minimum in TCP-OdG and PCP-OdG. 

Although the PESs have been generated for all Cl substituted O-linked adducts, 

the creation of PESs for the monochloro and pentachloro adducts was deemed 

unnecessary since all previous structures adopted a planar (θ) 180° orientation 

which indicated that the extra chlorine atoms would do not have a conspicuous 

interaction with the nucleobase or sugar moiety.  

After determining the optimal orientations about the glycosidic and C8–O 

bonds, other PES scans were performed with respect to the  and  bonds for all 

unsubstituted and chloro substituted  adducts in an effort to determine the 

possible dependence of these dihedral angles on each other. Indeed, there was no 

significant change in the geometrical properties of mutated complexes. 

Comparison of the global minima for the nucleobase and nucleoside models 

allowed us to determine the effect of the deoxyribose moiety on the structure of 

the adducts. In all nucleosides, the syn conformer of the base is stabilized by an 

intramolecular O5–H•••N3 hydrogen bond and the anti conformer of the base is 

stabilized by an intramolecular O5–H•••O phenoxyl hydrogen bond (Figure 4.12). 
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Figure 4.12. B3LYP/6-31G(d)  versus  potential energy surface for unsubstituted and 
chloro substituted; The relative energy (kJ mol−1) is represented by color, where the 

lowest energy regions are red, and each change in color represents a 5 kJ mol−1 increase 
in the relative energy. 

4.3.3. Proton Affinity (PA) 

Protonation reactions, i.e., A + H+ → AH+, are among the most important 

reactions in chemistry and biology. Many fundamental chemical rearrangements 

in most enzymatic reactions are initiated with protonation or deprotonation. The 

ability of a molecule to accept a proton in the gas phase can be determined by two 

quantities. The first is the gas-phase basicity, which is the negative of the free 

energy change associated with the protonation reaction. The other and more 
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frequently used index is the proton affinity defined as the negative of the enthalpy 

change under standard conditions. Experimental determination of these 

parameters is not easy, so with the recent phenomenal growth in computer power, 

a growing attention has been given to the possibility of calculating these 

parameters by quantum methods. Ab initio approaches are very successful in 

providing reliable values of proton affinities and gas-phase basicities for small 

molecules even at lower levels of theory. However, the computational expense of 

this method limits the application of ab initio methods to estimate the proton 

affinities and it is still impractical for larger molecules. On the other hand, 

semiempirical methods such as AM1, MNDO and PM3, are not consistently reliable 

in calculations of proton affnities.  DFT methods are more prevalent since, in 

principle, they include electron correlation energy.27, 31-37 

It is well-known that the formation of positive charge on N7 of natural dG by 

protonation or methylation, which lead to formation of four covalent bonds on 

nitrogen atom, facilitates the rate of hydrolysis. It has been identified that the acid-

catalyzed hydrolysis of dG involves equilibrium protonation; and therefore, 

monomolecular cleavage of the C-N9 bond is the rate limiting step. 21, 22, 38   

DFT calculations were used to determine structures of the protonated species 

(Figure 4.13) in the gas phase and solvent phase (water). Proton affinities (PA, 

kcal·mol−1) for both N7H+ and N3H+ adducts are shown in Table 4.1. The anti 

conformation is the most stable structure for both the neutral and N7H+ species of 

dG, however the syn conformation is favored for the N3H+ species due to an H-

bonding interaction between 5′-O of the sugar moiety and hydrogen at the N3 site 
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of the nucleobase (Table 4.1). The same conformer is identified for all the chloro 

substituted N7 protonated species (syn-skew) with the difference that there is a 

stabilizing hydrogen bond between O5-OH and N3. As previously explained, 

neutral O-linked 8-dG adducts prefer the syn conformer (Figure 4.13, Table 4.1). In 

all protonated and neutral structures, adopting the syn conformation reduces 

steric interactions between the phenolic ring and sugar moiety. Hydrogen bonding 

between 5′-OH and N3 is a stabilizing interaction (Figure 4.13).  

The conformation around the diaryl ether bond is governed by both the 

substituent electronic effect on the π-electronic system and steric effects. An 

electron-withdrawing substituent at the para position of a benzene ring leads to 

the formation of a stable skew conformation (1= 90 and 1= 0) while 

derivatives with an electron-donating substituent prefer the twist or skew form in 

which the C-O bond to ring B is planar (Scheme 4.3). The preferable skew form of 

diphenyl ethers with an electron-withdrawing substituent is stabilized by 

interaction between the bridging oxygen π-lone pair and the substituent through 

ring B. A competition between the substituent and the ether oxygen for an 

intramolecular charge-transfer interaction allowed the twist or skew (1=0°, 

2=90°) conformation. In the case of alkyl substituents at para position of aromatic 

ring, their electronic effect is insufficient to affect the conformation of diaryl 

ethers.39 



 

187 

  

O

A B

X

O

X

O

X

O

X

O

X

 

Scheme 4.3. Typical conformations for 4-Substituted diphenyl ethers.39 

It has been mentioned that neutral PhOdG, 4-Cl-Ph-OdG and DCP-OdG were present 

in a planar conformation, while neutral TCP-OdG and PCP-OdG (Figure 4.4, Figure 4.5, 

Figure 4.6, and Figure 4.7) (Table 4.1) adopted a skew conformation to diminish 

interactions between the dG moiety and the TCP and PCP ring system. To explore 

another aspect of the damaged structures, each adduct was protonated at the N3 

and N7 site. Addition of a proton to the minimum structure would allow us to 

identify whether the adducts are stable in acidic environments or whether 

deglycosylation occurs. To evaluate the effect of solvent on the stability of charged 

nucleosides, PCM computations were carried out in water. As anticipated, 

protonation at N7 and N3 of all O-linked 8-dG adducts leads to a preferred skew 

conformation attributable to steric and electronic interactions between the added 

proton and substituted phenoxyl (Table 4.1 and Error! Reference source not 

ound.). In the gas-phase the calculated N7 PA for dG (non-adducted) is 232.1 kcal 

mol−1 (Table 4.1) consistent with the experimental PA (234.4 kcal mol−1).40 This is 
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15.5 kcal mol−1 above the gas-phase N3 PA which can be explained by alteration 

of the anti conformer of dG to syn conformer by protonation at N3 site. These 

results illustrate that dG is the only base that undergoes a conformational change 

(anti → syn) upon N3-protonation.  

Protonated unsubstituted adduct (N3H+) has a gas-phase PA of 219.8 kcal 

mol−1 which increases to 257.8 kcal mol−1 in water. The same trend is seen for the 

N7H+ adduct with PA values of 227.8 kcal mol−1 and 259.6 kcal·mol−1 in the gas and 

solvent phase, respectively. Addition of one chlorine changed the N3H+ PA to 217.9 

kcal mol−1 in gas phase and 257.4 kcal mol−1 in water. The N7 PA is 225.2 and 258.8 

kcal mol−1 in gas phase and solvent, respectively. According to Table 4.1 chlorine 

substitution of the phenoxyl moiety reduces the electron density on N3 and N7 of 

the nucleobase in the case of di-, tri- and pentachloro substituted adducts. The 

calculated proton affinities for N3 and N7 of DCP-OdG (which include an ortho 

chlorine atom) are 219.1 and 223.9 in the gas phase and 259.1 and 258.0 kcal mol−1  

in solvent phase, respectively (Table 4.1). 

In comparison to the dichloro mutated complex, the second ortho chlorine of 

TCP-OdG did not have any significant effect on the N3H+ PA in the gas phase. PAs of 

N3 (water) and N7 (water) and N7 (in the gas phase) adducts reduced to 257.4, 

223.2  and 254.8 kcal·mol−1, respectively. However, the computational values show 

that in PCP-OdG, there is a reduction in N7 PA in the gas phase and solvent with 

values equal to 257.4 and 218.0 kcal mol−1, respectively, while the PA of the N3 

adduct in water did not change.  The decrease in the N7 PA in the gas and water 
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phase upon increasing the number of Cl atoms on the phenolic ring shows the 

expected inductive effect of chlorine (Table 4.1). 

The DFT calculations show that the most favorable site for protonation is N7 

in water which is attributed to higher PA values in comparison with the gas phase 

as well as N3 protonated counterparts in solvent and gas phase. There is only a ∼5 

kcal·mol−1 energy difference between the PA at N7 and N3 sites in water for natural 

guanosine (Table 4.1). Attachment of the phenoxyl substituent to C8 of dG to form 

PhOdG reduces the gas-phase N7 PA by 4.3 kcal mol−1, and enhances N3 PA by 3.2 

kcal mol−1.  The N7 proton affinity in the gas and water phase indicates that 

protonation at N7 is favored. The PA for N7 of PhOdG is 8 kcal·mol−1 higher than N3 

of the same analogues. In water, the preference of protonation at the N7 site is only 

1.8 kcal·mol−1. Calculations indicate attachment of Cl-substituents to the phenyl 

ring further diminishes the N7 PA, giving a PA of 221.3 kcal mol−1 for PCP-OdG in the 

gas-phase which is 6.5 kcal mol−1 less than the N7 PA for PhOdG in the same phase. 

In contrast, functionalization of the aromatic moiety with chlorine did not affect 

the PA at N3 site of guanosine in the gas phase, which is just around 1.4−3.2 

kcal·mol−1 more than the N3 PA calculated for dG.  

The effect of solvent has been considered by performing calculations in water 

which demystifies that the PA at N3 is greater than N7 site especially for DCP-OdG, 

TCP-OdG and PCP-OdG. Thus, it can be concluded that the protonation is preferred at 

the N3 site rather than at N7. This can affect abasic site formation. There were no 

changes in conformations, all of them being syn-skew structures because of the 

steric effects of the proton at N7. It is assumed that the substitution of the other 
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chlorine atoms at ortho position on the aromatic ring of phenoxyl moiety have 

caused this big drop in PA from DCP-OdG to TCP-OdG. Chlorine attached to phenyl 

exerts an inductive effect but the resonance effect is small. The inductive effects of 

ortho Cl will be greater than meta and para due to proximity. So the drop in PA was 

not notable in PCP-OdG.  

For the neutral species PhOdG, 4-Cl-PhOdG, DCP-OdG, TCP-OdG, all adopt syn-planar 

conformers, while TCP-OdG and PCP-OdG acquired syn-skew conformers because of 

the steric effects of the second ortho chlorine. 

All N3 protonated structures are more folded than the N7 protonated 

structures as a result of the formation of new hydrogen bonds between O5 

hydroxyl and the inserted proton at N3 site of adducted guanosine, as well as steric 

interactions between proton at N7 site and chlorine atoms on aromatic ring, which 

leads to more steric interactions. All of the protonated adducts adopt syn-skew 

conformers except protonated dG. In summary, DFT calculations highlight that 

when water is the solvent, modification of the C8 site of the guanosine with highly 

chlorinated phenoxyl moiety significantly affects the basicity of N7 and results in 

favorability of protonation at N3 site. The computational values are in accordance 

with experimental findings. 

There are different effects that account for the identified trends for 

unsubstituted, and chloro substituted species; the effect solvent as well as site of 

protonation (N3 and N7 protonation). Furthermore, contribution of 
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intramolecular hydrogen bonds in syn and anti conformers (steric effects) can 

induce distortion in mutated complexes.  

Calculations demonstrated that the PA strongly depends on the site of 

protonation on the nucleoside as well as functional groups on the aromatic ring of 

phenoxyl. The protonated structures are stabilized through resonance, hydrogen 

bonding and electronic interactions with chlorine(s) on the phenoxyl. 
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Figure 4.13. The most stable B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) conformers for 
the PhOdG and PCP-OdG adducts, as well as their N3-(N3H+) and N7-(N7H+) protonated 

analogues (Select hydrogen bond lengths (Å) are provided). 
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Table 4.1. Low-Energy Conformationsa and Proton Affinities (PA, kcal mol1) at the N3 
and N7 Site of O-linked C8-dG adducts.b 

Adduct Neutral N7H+ N3H+ 
N3 

PA(gas) 

N3 

PA(Water) 

N7 

PA(gas) 

N7 

PA(Water) 

PhOdG syn-planar syn-skew syn-skew 219.8 257.8 227.8 259.6 

4Cl-PhOdG syn-planar syn-skew syn-skew 217.9 257.4 225.2 258.8 

DCP-OdG syn-planar syn-skew syn-skew 219.1 259.1 223.9 258.0 

TCP-OdG syn-skew syn-skew syn-skew 219.1 257.4 223.2 254.8 

PCP-OdG syn- skew syn- skew syn- skew 218.0 257.4 221.3 253.8 

dG anti anti syn 216.6 255.7 232.1 260.8 

aThe most stable B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) conformers for the neutral,  
N7-(N7H+) and N3-(N3H+) protonated analogs. bN3 and N7 proton affinity (PA) was 
calculated as the negative of the enthalpy change for protonation (kcal mol-1). 

 

4.3.4. Deglycosylation and the influence of the protonation site on 

deglycosylation  

The hydrolytic stability of O-linked phenolic C8-dG adducts is of great interest 

which we address in this section. We focused on adducts that carry electron-

deficient polychlorinated phenoxyl ring systems, because they are expected to 

have high susceptibility to hydrolysis. This high susceptibility is due to 

stabilization of the negative charge at N9 site of guanosine, which is caused by 

presence of the electron deficient groups of chlorine. We studied the properties of 

O-linked C8-dG adducts as well as N3 and N7 protonated structures 

computationally and compared them with previous results on hydrolysis rates of 

dG and the corresponding C and Nlinked 8dG adducts.18, 41, 42  
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Electron-withdrawing substituents at the para position of the attached phenyl 

ring caused the greatest increase the rate of hydrolysis relative to dG. As 

mentioned before, relief of steric strain upon removal of the deoxyribose sugar 

moiety is one of the main reasons of increasing the rate of hydrolysis. Another 

prevailing factor is stabilization of the developing negative charge at N9 by 

electron-withdrawing para-substituents.23 

4.4. Acidic Hydrolysis  

The N7 nitrogen is often targeted by electrophiles as it has the most electron 

density of all atoms in deoxyguanosine.2 Bond formation at this site consigns a 

formal positive charge on the nitrogen. The formation of this formal positive 

charge greatly accelerates the rate of glycosidic bond cleavage during the 

depurination process. It is well known that hydrolysis of dG under acidic 

conditions occurs through a two-step process which is kinetically pseudo-first 

order (Figure 4.1).21, 43, 44 This mechanism can be expanded for depurination, 

which is the most common type of damage to the nucleobase (in single or double 

stranded DNA). Step 1 is a preequilibrium which involves the protonation at N7 

(N7H+dG denoted by Ka1). Step 2 is the unimolecular rate-limiting SN1-type 

dissociation of the base from the sugar moiety, represented by k1, followed by the 

cleavage of the glycosidic bond.21  

Overall, acidic conditions enhance the favorability of depurination since the 

heterolytic breakage of the glycosidic bond leads to the neutralization of the charge 

at N7. In the other step, the short lived (10-12 to 10-11 s)21 charged oxocarbenium 
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ion is created and readily undergoes reaction with water. It is well known that the 

presence of the positive charge on the nucleobase makes it a better leaving group 

than the neutral base.45  

Modification of dG at the C8 site can also affect the hydrolytic stability. 

Increases in the rate of hydrolysis by electron withdrawing groups at the C8 

position has been observed.16 Chlorine atoms can be used as electron withdrawing 

group; thus, functionalization of the phenol ring with chlorine enhances 

favorability of the O-linked adduct formation. This enhancement of O-linked 

adduct formation preference occurs by increasing electrophilicity of the phenolic 

radical intermediate and reducing the rate of bimolecular phenolic radical 

coupling.10 It is known that attachment of electron withdrawing groups to the 8-

position of dG can increase rates of hydrolysis to afford abasic sites.  

DFT calculations predict a greater N3 PA than N7 PA for DCP-OdG, TCP-OdG and 

PCP-OdG in water (Table 4.1). Error! Reference source not found. illustrates the 

alculated deglycosylation profile for neutral PhOdG (purple trace), 4-Cl-Ph-OdG (blue 

trace), DCP-OdG (green trace), TCP-OdG (orange trace) and PCP-OdG (red trace), as well 

as the corresponding N3- and N7-protonated species (kJ mol−1). The theoretical 

results show that in both water and the gas phase, N7-protonation has a more 

conspicuous effect on the barrier for deglycosylation than does N3-protonation. 

This can be attributed to the direct effect of the protonation and positive charge at 

N7 site on the N9C1 glycosidic bond.16 In water (Figure 4.14), the deglycosylation 

barrier for the N7-protonated O-linked adducts is in the range of 60−70 kJ mol−1, 
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while the barrier for deglycosylation in N3- protonated adducts is 100 kJ mol−1. 

There is a further increase to 120 kJ mol−1 in the case of the neutral adducts in 

water. So we have three groups: neutral, N3H+ and N7H+ species, and each group 

specifically consist of five types of adducts (PhOdG, 4-Cl-PhOdG, DCP-OdG, TCP-OdG, PCP-

OdG). In all the groups it has been found computationally that PCP-OdG has the lowest 

barrier, followed by TCP-OdG, DCP-OdG, 4-Cl-PhOdG and finally PhOdG.  This trend shows 

the impact of the electron-withdrawing chlorine as a substituent on phenoxyl. It is 

worth to mention that as a general rule in organic chemistry, the electron-

withdrawing substituents to the C8-position of dG increases the rate of 

depurination through stabilization of the developing negative charge at N9 during 

rate-limiting step which is the cleavage of the glycosydic bond. For neutral dG there 

is negative charge development in the ionization transition state that is stabilized 

by electron withdrawing groups.  For the cations, the ionization step involves a loss 

of positive charge.  This is facilitated by electron-withdrawing groups because they 

destabilize the cation starting material more than they destabilize the TS (which 

has less positive charge). 

To provide a better understanding of the phenomena which occur during 

deglycosylation, the process was compared in solvent (water) and the gas phase. 

In the gas phase (Figure 4.14Error! Reference source not found.), the 

eglycosylation barrier is slightly diminished for the N7-protonated adducts versus 

the corresponding barrier in water, while the barrier for the N3-protonated 

adducts is increased sharply in the gas phase and becomes comparable to the 

neutral adducts. It has been found that there was no change in the trend for chloro 
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substituted adducts in solvent and the gas phase.  In essence, the quantum 

chemical data imply that the chlorophenoxyl substituents can play a determining 

role on the site of protonation in that N3H+ adducts are relatively more stable to 

hydrolysis compared to their N7H+ analogues.  

We probed the deglycosylation barriers in the gas phase by DFT calculations 

which suggested PCP-OdG to be the most reactive. In the DFT calculations, barriers 

were determined for the monoprotonated species (Figure 4.14) showing that the 

monoprotonated adduct was the least reactive.  

Regardless of the exact mechanism, removal of the sugar moiety from the 

phenoxy C8-substituted O-linked adducts at 1-N9 can proceed. Despite the fact 

that it is unlikely that steric factors resulting from chlorine substitution affect the 

deglycosylation rate, it has been identified that electronic factors play a main role. 

A distinct justification for the resistance to hydrolysis emerges from the impact of 

the phenoxyl substituent to diminish N7 proton affinity in comparison with natural 

guanosine. However, DFT calculations imply that the barrier to deglycosylation 

becomes progressively smaller for neutral, N3H+, and N7H+ adducts bearing 

increased numbers of Cl-substituents. This observation suggests that the trend for 

hydrolysis of 8-dG adducts stems from the electron withdrawing properties of the 

C8-substituents that accelerate the rate of depurination through stabilization of 

the developing negative charge at N9 during rate-limiting cleavage of the glycosyl 

bond. DFT calculations suggest that N3-protonation may compete effectively with 

N7-protonation for both TCP-OdG and PCP-OdG. Also, the monoprotonated N3H+ 
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species possess much greater barriers to deglycosylation than their N7 protonated 

counterparts. This is because of the direct effect of the positive charge at N3 

stabilizing the negative charge at N9 atom after removing the sugar moiety.  

 

Figure 4.14. Constrained IEF-PCM-B3LYP/6-31G(d) deglycosylation barriers calculated 
in (a) water and (b) Fthe gas phase for PhOdG (purple), 4Cl-PhOdG (blue), DCP-OdG (green), TCP-

OdG (orange) and PCP-OdG (red), as well as the corresponding N3 (N3 H+) and N7 (N7 H+) 
protonated species (kJ mol-1). 
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4.4.1. Nucleotide 

Studies of the nucleoside and nucleotide adducts will aid in establishing a 

protocol for using small models to predict the preferred conformation of bulky 

damaged bases in physiological environments. To better predict the structure of 

the damaged bases in DNA helices, a nucleotide model that includes the 5-

monophosphate group was studied.28, 29 However, as discussed for the PhOdG, o-

PhOHdG, and p-PhOHdG nucleotide adducts, the 5'-monophosphate group was added 

to the lowest energy syn and anti conformations, determined by the (-

constrained) nucleoside model, to generate the nucleotide model. 

The importance of including diffuse functions is clear due to the presence of 

negative charge in these structures. Ultimately, minimal differences between the 

geometries for a specific adduct are obtained regardless of the basis set 

implemented so the basis set without diffuse functions was used for simplicity.  

The anti/syn conformational preference of the o-PhOHdG, p-PhOHdG and PhOdG 

nucleotide adducts was investigated in Chapter 2 of this thesis. Nucleoside models 

predict the syn conformation to be favored due to the presence of a C5'-H•••N3 

hydrogen bond, which cannot occur in DNA. When an additional geometric 

constraint is imposed on the C5-hydroxyl group that prevents this interaction, the 

syn conformation becomes less important than initially predicted. Furthermore, 

when this constraint is released in subsequent optimizations, the resulting anti 

structures are nearly thermoneutral with the original syn global minimum. Hence, 

even though the nucleoside model has certain advantages and can be implemented 
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to get some valuable information about the structure of damaged bases, it is not 

giving a comprehensive picture the anti/syn conformational preference of 

modified nucleobases in DNA. To overcome this deficiency nucleotide model that 

includes the 5-monophosphate group was used. 

This methodology was subsequently applied to the damaged nucleotides to 

determine whether the o-PhOHdG and p-PhOHdG mono phosphate adducts share the 

natural preference for anti or whether they adopt a syn conformation, which would 

suggest a greater potential for mutagenicity. Although various types of damage 

show a weak preference for the anti conformation, the o-PhOHdG monophosphate 

adduct has a stronger preference for the anti conformation than the natural 

nucleotide. The smallest anti/syn energy difference in the adducts is 2.5 kJmol-1, 

observed for DCP-OdG mono phosphate which preferred the syn conformer. This 

suggests that the preferred structure of bulky nucleotide adducts in DNA may 

depend on small structural differences (i.e., the location of the chlorine or other 

functional group on the phenyl group) (Figure 4.15).  

The same approach was used to explore the conformers at the nucleotide level 

of all chloro substituted O-linked structures (PhOdG, 4-Cl-PhOdG, DCP-OdG, TCP-OdG and 

PCP-OdG). It has been identified that all chloro O-linked adducts prefer syn 

conformers relative to anti conformers at the nucleotide level, except TCP-OdG and 

PCP-OdG which adopt anti conformations at the nucleotide level with energy 

differences of 33.0 and 0.7 kJ mol−1 relative to the syn conformer, respectively. 
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Figure 4.15. The biologically relevant anti (right) and syn (left) structures optimized in 
water for natural 2′- deoxyguanosine 5′-monophosphate (described by the counterion 

Na+ HPO4-) of unsubstituted and all chlorosubstituted structures. 
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Table 4.2. Dihedral angles ( and  deg.), and B3LYP/6-311+G(2df,p) relative energies (kJ 
mol−1) for the biologically relevant unsubstituted and all chlorosubstituted structures. 

Adducts Conformation   Erel 

PhOdG 
syn 66.9 60.3 0.0 

anti 258.8 150.3 6.3 

4-Cl-PhOdG 
syn 67.3 186.5 0.0 

anti 250.8 78.8 7.7 

DCP-OdG 
syn 68.1 230.7 0.0 

anti 247.1 88.4 2.5 

TCP-OdG 

syn 68.5 93.3 33.0 

anti 243.9 88.7 0.0 

PCP-OdG 

syn 67.3 186.5 0.7 

anti 250.8 178.8 0.0 

 

As discussed for the other nucleotide models, the biologically-relevant anti 

conformation isolated using the counterion model for 4-Cl-PhOdG has an anti 

conformation that is 7.7 kJ mol−1 higher in energy than the syn nucleotide. 

Nevertheless, the preference for the syn conformer is actually less for PhOdG (6.3 kJ 

mol−1) and DCP-OdG (2.5 kJ mol−1) adducts than the anti structure. This prefrence is 

changed to anti conformer for tri- and penta- chloro mutated complexes. The 

energy difference between the preferred syn and anti conformer is quite similar 

for natural dG mono phosphate and the unsubstituted O-linked structure. In the 

case of 4-Cl-PhOdG, the chlorine atom at the para position of the aromatic ring is too 

far away to alter the topological properties of the monochloro adduct perceptibly. 

Thus, no more steric and electronic interactions are created which increase the 

stability of syn conformer more than PhOdG.  
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On the other hand, the ortho chlorine in DCP-OdG directly influences the 

structural properties of this mutated complex. In particular, we note the steric 

effects of the lone pairs of ortho chlorine with the guanosine as well as attractions 

and repulsions between atoms, and other intermolecular forces. Figure 4.15shows 

that the interactions between anti and syn are much more comparable in dichloro 

substituted adducts. This leads to the lowest difference between anti and syn 

energies (2.5 kJ mol−1) while, more steric and electronic effects are seen for the syn 

conformer in unsubstituted and monochloro mutated complexes. 

Manifest attractive or repulsive electrostatic interactions as well as London 

dispersion forces in the TCP-OdG and PCP-OdG lead to a contrary trend in their 

conformational stability compared to unsubstituted, mono, and di chloro 

counterparts.  This changes the structural properties of the nucleotide mono 

phosphate model such that the anti conformer is more stable than syn. However 

the impact of two chlorine atoms at ortho site is distinctly different in that a high 

barrier of 33.0 kJ mol-1 exists between syn and anti adducts. The interactive forces 

between the produce a very big difference between the stability of anti and syn 

structures, even though the ortho chlorine atoms still play the main role in 

stabilizing the anti conformer with an energy difference of 0.7 kJ mol−1 relative to 

syn.              

This hypothesis is supported by the geometrical data in the Table 4.2. The  

and  dihedral angles, which can reveal the geometrical and structural properties 

of mutated adducts, confirm the thermodynamic results.  The C2endo sugar 



 

204 

  

puckering remained unchanged in all chloro substituted structures.  The syn 

conformer of all Cl substituted O-linked adducts at nucleotide level shows an 

increase in  values from 66.9 in PhOdG to 68.5 in TCP-OdG.  In the case of PCP-OdG, 

= 67.3 is fairly similar to the  value for 4-Cl-PhOdG. Conversely, there is a decrease 

in  values for anti chloro substituted nucleotide monophosphate models which 

changes to =250.8 in PCP-OdG, the same value found in 4-Cl-PhOdG. 

Interactions that are present between the chlorine of the aromatic ring of the 

bulky phenoxyl group and the phosphate emphasizes the importance of 

considering nucleotide models. 

4.5. Conclusion 

The computational approach outlined in this chapter has provided greater 

knowledge of the structure of the chloro substituted adducts which are formed due 

to exposure to phenolic carcinogens, as well as a better understanding of the likely 

stability, structural and conformational properties of these adducts at the 

nucleobase, nucleoside, and nucleotide level. However, the implications of these 

findings within the context of DNA have not yet been fully explored. Since all 4-Cl-

PhOdG, DCP-OdG, TCP-OdG, and PCP-OdG adducts adopt the syn conformer at the 

nucleoside level, there could be a potential for mispairing in the DNA strand. 

Furthermore, investigating the nucleotide model implies that the syn conformer is 

preferred for 4-Cl-PhOdG and DCP-OdG species, whereas the anti conformer is 

dominant for TCP-OdG, and PCP-OdG mutated O-linked complexes. Therefore, it will be 

indispensable to investigate the hydrogen-bonding base pair preferences of the 
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adducts in both the anti and syn conformations to determine the potential for 

mismatch stabilization in the DNA double helix. 

Experimental and computational data show that overall, the adducts were 

found to hydrolyze ~4 to 30 times faster than native dG under similar conditions. 

Although all chloro substituted O-linked adducts have more affinity to protonation 

at N7 rather than N3 on guanosine, an increase in the electron withdrawing 

character of the adducted moiety causes a decrease in the experimental rate of 

acidic hydrolysis. This is inconsistent with the theoretical results and the proposed 

reaction mechanism and the rate-determining step cleavage of the glycosidic 

bond.16  

Although protonation at N7 can decrease the deglycosylation barriers, the 

hydrolytic stability of the O-linked adducts are considerable enough to attribute 

the toxicity of phenols to the frameshift mutation and generation of abasic sites 

through the acid catalyzed mechanism at physiological pH. In fact, a comparison of 

unsubstituted and chloro substituted adducts indicates that PCP-OdG is the most 

toxic adduct, and should be considered more in carcinogenesis studies.46 

Other sources of stabilization (such as intrastrand interactions or steric 

clashes) may play an important role in determining adduct structure in damaged 

DNA helices, where a complex conformational heterogeneity may exist depending 

on the sequence context of the adduct. Therefore, it will be imperative to consider 

intrastrand interactions with flanking bases in a larger model. 

 



 

206 

  

4.6. References 

1. Sturla, S. J., DNA Adduct Profiles: Chemical Approaches to Addressing the 
Biological Impact of DNA Damage from Small Molecules. Current Opinion in 
Chemical Biology 2007, 11 (3), 293-299. 

2. Manderville, R. A., Structural and Biological Impact of Radical Addition 
Reactions with DNA Nucleobases. Richard, J. P., Ed. 2009; Vol. 43, pp 177-218. 

3. Scharer, O. D., Chemistry and Biology of DNA Repair. Angewandte Chemie 
International Edition 2003, 42 (26), 2946-74. 

4. Millen, A. L.; Sharma, P.; Wetmore, S. D., C8-Linked Bulky Guanosine DNA 
Adducts: Experimental and Computational Insights into Adduct Conformational 
Preferences and Resulting Mutagenicity. Future Medicinal Chemistry 2012, 4 (15), 
1981-2007. 

5. Broyde, N. E. G. a. S., The Chemical Biology of DNA Damage. © 2010 WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim: New York University. 

6. Benigni, R.; Bossa, C., Mechanisms of Chemical Carcinogenicity and 
Mutagenicity: A Review with Implications for Predictive Toxicology. Chemical 
Reviews 2011, 111 (4), 2507-2536. 

7. Lukin, M.; de los Santos, C., Nmr Structures of Damaged DNA. Chemical 
Reviews 2006, 106 (2), 607-686. 

8. Burton, G. W.; Ingold, K. U., Vitamin-E - Application of the Principles of 
Physical Organic-Chemistry to the Exploration of Its Structure and Function. 
Accounts of Chemical Research 1986, 19 (7), 194-201. 

9. Dai, J.; Park, G.; Perry, J. L.; Il'Ichev, Y. V.; Bow, D. A. J.; Pritchard, J. B.; Faucet, 
V.; Pfohl-Leszkowicz, A.; Manderville, R. A.; Simon, J. D., Molecular Aspects of the 
Transport and Toxicity of Ochratoxin A. Accounts of Chemical Research 2004, 37 
(11), 874-881. 

10. Dai, J.; Wright, M. W.; Manderville, R. A., An Oxygen-Bonded C8-
Deoxyguanosine Nucleoside Adduct of Pentachlorophenol by Peroxidase 
Activation: Evidence for Ambident C8 Reactivity by Phenoxyl Radicals. Chemical 
Research in Toxicology 2003, 16 (7), 817-821. 



 

207 

  

11. Dai, J.; Sloat, A. L.; Wright, M. W.; Manderville, R. A., Role of Phenoxyl 
Radicals in DNA Adduction by Chlorophenol Xenobiotics Following Peroxidase 
Activation. Chemical Research in Toxicology 2005, 18 (4), 771-779. 

12. Kornyushyna, O.; Stemmler, A. J.; Graybosch, D. M.; Bergenthal, I.; Burrows, 
C. J., Synthesis of a Metallopeptide - Pna Conjugate and Its Oxidative Cross-Linking 
to a DNA Target. Bioconjugate Chemistry 2005, 16 (1), 178-183. 

13. Advances in Molecular Toxicology. Fishbein, J. C., Ed. Elsevier Science 
Amsterdam, 2006; Vol. 1, pp 1-188. 

14. Lindahl, T., Instability and Decay of the Primary Structure of DNA. Nature 
1993, 362 (6422), 709-715. 

15. Cavalieri, E.; Saeed, M.; Zahid, M.; Cassada, D.; Snow, D.; Miljkovic, M.; Rogan, 
E., Mechanism of DNA Depurination by Carcinogens in Relation to Cancer 
Initiation. Iubmb Life 2012, 64 (2), 169-179. 

16. Kuska, M. S.; Majdi Yazdi, M.; Witham, A. A.; Dahlmann, H. A.; Sturla, S. J.; 
Wetmore, S. D.; Manderville, R. A., Influence of Chlorine Substitution on the 
Hydrolytic Stability of Biaryl Ether Nucleoside Adducts Produced by Phenolic 
Toxins. The Journal of Organic Chemistry 2013, 78 (14), 7176-7185. 

17. Roger, M.; Hotchkiss, R. D., Selective Heat Inactivation of Pneumococcal 
Transforming Deoxyribonucleate. Proceedings of the National Academy of Sciences 
of the United States of America 1961, 47 (5), 653-&. 

18. Zoltewicz, J. A.; Clark, D. F.; Sharpless, T. W.; Grahe, G., Kinetics and 
Mechanism of the Acid-Catalyzed Hydrolysis of Some Purine Nucleosides. Journal 
of the American Chemical Society 1970, 92 (6), 1741-1750. 

19. Gates, K. S.; Nooner, T.; Dutta, S., Biologically Relevant Chemical Reactions 
of N7-Alkylguanine Residues in DNA. Chemical Research in Toxicology 2004, 17 (7), 
839-856. 

20. Hovinen, J.; Glemarec, C.; Sandstrom, A.; Sund, C.; Chattopadhyaya, J., 
Spectroscopic, Kinetic and Semiempirical Molecular-Orbital Studies on 8-Amino-
Adenosines, 8-Methylamino-Adenosines and 8-Dimethylamino-Adenosines. 
Tetrahedron 1991, 47 (26), 4693-4708. 

21. Novak, M.; Ruenz, M.; Kazerani, S.; Toth, K.; Nguyen, T. M.; Heinrich, B., 
Kinetics of Hydrolysis of 8-(Arylamino)-2 '-Deoxyguanosines. Journal of Organic 
Chemistry 2002, 67 (7), 2303-2308. 



 

208 

  

22. Patel, D. J.; Mao, B.; Gu, Z. T.; Hingerty, B. E.; Gorin, A.; Basu, A. K.; Broyde, S., 
Nuclear Magnetic Resonance Solution Structures of Covalent Aromatic Amine-DNA 
Adducts and Their Mutagenic Relevance. Chemical Research in Toxicology 1998, 11 
(5), 391-407. 

23. Schlitt, K. M.; Sun, K. W.; Paugh, R. J.; Millen, A. L.; Navarro-Whyte, L.; 
Wetmore, S. D.; Manderville, R. A., Concerning the Hydrolytic Stability of 8-Aryl-2'-
Deoxyguanosine Nucleoside Adducts: Implications for Abasic Site Formation at 
Physiological Ph. The Journal of Organic Chemistry 2009, 74 (16), 5793-802. 

24. Becke, A. D., Density-Functional Thermochemistry .4. A New Dynamical 
Correlation Functional and Implications for Exact-Exchange Mixing. Journal of 
Chemical Physics 1996, 104 (3), 1040–1046. 

25. Millen, A. L.; McLaughlin, C. K.; Sun, K. M.; Manderville, R. A.; Wetmore, S. D., 
Computational and Experimental Evidence for the Structural Preference of 
Phenolic C-8 Purine Adducts. Journal of Physical Chemistry A 2008, 112 (16), 3742-
3753. 

26. Stewart, J. J. P., Optimization of Parameters for Semiemperical Methods. 1. 
Method. Journal of Computational Chemistry 1989, 10 (2), 209–220. 

27. Rezac, J.; Fanfrlik, J.; Salahub, D.; Hobza, P., Semiempirical Quantum 
Chemical Pm6 Method Augmented by Dispersion and H-Bonding Correction Terms 
Reliably Describes Various Types of Noncovalent Complexes. Journal of Chemical 
Theory and Computation 2009, 5 (7), 1749–1760. 

28. Millen, A. L.; Manderville, R. A.; Wetmore, S. D., Conformational Flexibility of 
C8-Phenoxyl-2 '-Deoxyguanosine Nucleotide Adducts. Journal of Physical 
Chemistry B 2010, 114 (12), 4373-4382. 

29. Sharma, P.; Manderville, R. A.; Wetmore, S. D., Modeling the Conformational 
Preference of the Carbon-Bonded Covalent Adduct Formed Upon Exposure of 2′-
Deoxyguanosine to Ochratoxin A. Chemical Research in Toxicology 2013, 26 (5), 
803-816. 

30. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, 
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; 
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr., J. A. M.; Peralta, J. E.; 
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; 
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; 



 

209 

  

Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, 
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; 
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. 
G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; 
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; 
Gaussian, Inc.: Wallingford CT, 2009. 

31. Yang, S. Y.; Hristov, I.; Fleurat-Lessard, P.; Ziegler, T., Optimizing the 
Structures of Minimum and Transition State on the Free Energy Surface. Journal of 
Physical Chemistry A 2005, 109 (1), 197–204. 

32. Dal Peraro, M.; Ruggerone, P.; Raugei, S.; Gervasio, F. L.; Carloni, P., 
Investigating Biological Systems Using First Principles Car-Parrinello Molecular 
Dynamics Simulations. Current Opinion in Structural Biology 2007, 17 (2), 149–
156. 

33. Becke, A. D., Density-Functional Exchange-Energy Approximation with 
Correct Asymptotic-Behavior. Physical Review A 1988, 38 (6), 3098–3100. 

34. Becke, A. D., Density-Functional Thermochemistry .3. The Role of Exact 
Exchange. Journal of Chemical Physics 1993, 98 (7), 5648–5652. 

35. Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.; Frisch, 
M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J., Molecular-Orbital Studies of 
Vibrational Frequencies. International Journal of Quantum Chemistry 1981, 269–
278. 

36. Amos, T.; Snyder, L. C., Unrestricted Hartree-Fock Calculations .I. Improved 
Method of Computing Spin Properties. Journal of Chemical Physics 1964, 41 (6), 
1773–1774. 

37. Stewart, J. J. P., Optimization of Parameters for Semiempirical Methods V: 
Modification of Nddo Approximations and Application to 70 Elements. Journal of 
Molecular Modeling 2007, 13 (12), 1173–1213. 

38. Dipple, A., DNA-Adducts of Chemical Carcinogens. Carcinogenesis 1995, 16 
(3), 437-441. 

39. Uno, B.; Iwamoto, T.; Okumura, N., Importance of Substituent 
Intramolecular Charge-Transfer Effect on the Molecular Conformation of Diphenyl 
Ethers. The Journal of Organic Chemistry 1998, 63 (26), 9794-9800. 



 

210 

  

40. Greco, F.; Liguori, A.; Sindona, G.; Uccella, N., Gas-Phase Proton Affinity of 
Deoxyribonucleosides and Related Nucleobases by Fast-Atom-Bombardment 
Tandem Mass-Spectrometry. Journal of the American Chemical Society 1990, 112 
(25), 9092-9096. 

41. Hevesi, L.; Wolfson-Davidson, E.; Nagy, J. B.; Nagy, O. B.; Bruylants, A., 
Contribution to the Mechanism of the Acid-Catalyzed Hydrolysis of Purine 
Nucleosides. Journal of the American Chemical Society 1972, 94 (13), 4715-4720. 

42. Zoltewicz, J. A.; Clark, D. F., Kinetics and Mechanism of the Hydrolysis of 
Guanosine and 7-Methylquanosine Nucleosides in Perchloric Acid. The Journal of 
Organic Chemistry 1972, 37 (8), 1193-1197. 

43. Hevesi, L.; Wolfsond.E; Bruylant.A; Nagy, J. B.; Nagy, O. B., Contribution to 
Mechanism of Acid-Catalyzed Hydrolysis of Purine Nucleosides. Journal of the 
American Chemical Society 1972, 94 (13), 4715-+. 

44. Romero, R.; Stein, R.; Bull, H. G.; Cordes, E. H., Secondary Deuterium-Isotope 
Effects for Acid-Catalyzed Hydrolysis of Inosine and Adenosine. Journal of the 
American Chemical Society 1978, 100 (24), 7620-7624. 

45. Schlitt, K. M.; Sun, K. W. M.; Paugh, R. J.; Millen, A. L.; Navarro-Whyte, L.; 
Wetmore, S. D.; Manderville, R. A., Concerning the Hydrolytic Stability of 8-Aryl-2 
'-Deoxyguanosine Nucleoside Adducts: Implications for Abasic Site Formation at 
Physiological Ph. The Journal of Organic Chemistry 2009, 74 (16), 5793-5802. 

46. Michalowicz, J.; Duda, W., Phenols - Sources and Toxicity. Polish Journal of 
Environmental Studies 2007, 16 (3), 347-362. 

 

 
 
 
 
 



 

211 

  

Chapter 5. Concluding Remarks and Future Perspectives 

5.1. Concluding Remarks 

The aim of this thesis was to develop a computational model for the study of 

Olinked DNA adducts, which predicts their conformational flexibility and base-

pairing preferences by following a bottom-up approach (small nucleobase model 

to large DNA duplex perspective). Investigating the structural properties of 

unsubstituted and chloro substituted Olinked species and comparing the results 

with the geometrical properties of ortho and para Clinked counterparts 

provides a better understanding of steric and electronic effects involving the sugar 

segment and the effects on the backbone of DNA. This provides information that is 

complementary to experimental results that are available for some of these 

models. Ultimately, the stability and conformational pattern in the context of DNA 

duplexes containing phenoxyl damaged lesions were investigated by employing 

molecular dynamic simulation. 

Theoretical results involving the small (nucleobase, nucleoside) models 

implied an expected twisted syn conformation of the adducts at the nucleoside 

level and also showed the presence of an O5H•••N3 hydrogen bond as the 

predicted favoured conformer. To understand the effect of protonation on the 

destabilization of the glycosidic bond, proton affinity at N3 and N7 of guanosine 

were determined. Computational models in both solvent and gas phase illustrate 

the structural changes in the orientation of the phenoxyl moiety with respect to 
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the nucleobase from planar to skew. The PA decreases upon functionalization of 

the aromatic ring with increasing numbers of chlorine. The probability of abasic 

site formation was explored by determining the deglycosylation barrier which 

becomes progressively smaller for N7H+ and N3H+ adducts bearing increased 

chlorine substitution. Nevertheless, accumulation of electron density at N7 

enhances basicity. Since formation of a positive charge on the nucleobase makes it 

a better leaving group, this enhances the favorability of depurination. In fact, the 

monochloro substituted N3H+ species possesses a much greater barrier to 

deglycosylation than the N7H+ counterparts. In addition, chlorine substitution of 

the phenoxyl ring will inductively stabilize the negative charge on N9 nitrogen 

during the process of heterolytic cleavage of the glycosidic bond. 

Due to conformational alteration which can arise from steric constraints 

imposed by phosphate group, the nucleoside model cannot necessarily provide all 

the essential structural information. We expanded the model to include the 

phosphate component of the backbone. Calculations at nucleotide level identified 

a syn conformer for unsubstituted, mono and di  chloro Olinked adducts as 

the most stable. Conversely, tri and pentachloro- substituted  Olinked species as 

well as ortho and para Clinked homologs preferred anti  conformers. However, 

steric and electronic effects of the phenoxyl moiety are more obvious in C-linked 

mutated complexes via alteration in sugar puckering. Taken together, this model 

predicted a greater stability for the syn conformation of unsubstituted, 

monochloro, and dichloro species, whereas tri- and pentachloro species prefer anti 

conformers for ortho and para adducts. Therefore, small calculated energy 
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differences suggest the possibility of a complex conformational heterogeneity in 

DNA helices.1-2 

Structural properties and the mutagenicity of the adducts can be extrapolated 

to biological systems by studying their stability in the DNA duplex (NarI sequence) 

which was addressed in Chapter 3. Conformational flexibility of the adducts can 

affect the base-pairing preferences of the adducts which may increase the 

possibility of mispairing in the helix. While the anti conformation exhibited a 

preference for base-pairing with cytosine, the syn conformation formed stable base 

pairs with a guanine mismatch. This illuminates the importance of steric effects 

particularly from the backbone of DNA; complementary and flanking bases cause 

to reverse the trends in the relative energies of the anti and syn conformations 

compared to the nucleoside and nucleotide model. The NarI sequence represents 

a major area for frameshift mutation especially by Nlinked structures. As a result 

of the availability of extended studies on the other adducts in this sequence, it has 

also attracted attention as the specific sequence in this project.3-5 In addition, the 

structural dependence of the adducts sequence can be proved by comparing its 

structural properties with previous studies in other sequences of DNA which are 

new arrangements of nucleotides and definitely varying the type of flanking and 

complementary bases. Indeed, the anti conformation against cytosine is preferred 

with this model for all adducts. This suggests that the neighboring sugar and 

backbone play an important role in destabilizing the predicted syn conformation 

of phenoxyl adducts at the nucleoside level and in the DNA model. This suggests 

that the anti conformation may be more relevant to the NarI sequence of the DNA 
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double helix. On the other hand, the syn conformer for unsubstituted O-linked and 

Clinked structures against a guanine mismatch is the lowest energy structure.  

This endorses the significance of studying mutated complexes at the DNA level and 

that insufficient structural information is obtained from small nucleoside and 

nucleotide models. For both o-PhOHdG:C (syn-2: 346.0 and 64.2) and p-

PhOHdG:C (syn-180:41.6 and 70.3), the base-displaced stack conformation is 

identified in the NarI sequence which causes the frameshift mutation. These 

results suggest greater mutagenicity for C-linked adducts in comparison with O-

linked structures. Furthermore, in the case of ortho and para C-linked adducts in 

two decanucleotides (oligonucleotide (ODN1) and (ODN2)), the simulations 

predicted that the adducts preferentially adopt a syn conformation in DNA 

regardless of sequence or the identity of the base in the complementary strand. 6 

Although the small models could not precisely predict the conformational 

preference of adducted nucleobases in the DNA double helix, nucleotide and 

nucleoside models were able to provide insight into other questions, such as the 

preferred orientation of the bulky group with respect to dG, sugar puckering, and 

preferred values of  for both the anti and syn conformations. Therefore, small 

nucleoside, nucleotide monophosphate models can provide different structural 

information leading to a better understanding about base-pairing preferences and 

hydrogen bonding. 

Due to adopting mainly B or W type conformations against both cytosine and 

guanine, little distortion of the backbone was observed in the duration of 

simulation for all phenoxyl adduct lesions, which decreases the possibility of 
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repairing by enzymes. Hoogsteen bonding to guanine resulted in mismatch 

stabilization, however hydrogen bonding occupancies and base pairing energies 

clarified that the guanine mismatch cannot stabilize the double helix as effectively 

as full complementary duplexes. Alternatively, ortho and para C-linked adducts in 

two decanucleotides ODN1 and ODN2 sequences, show evidence for mismatch 

stabilization leading to preferential insertion of  guanine opposite of the C-linked 

phenoxyl adducts, or G↔C mutations upon replication. The same outcome has 

been monitored for structurally-related (PhdG) adducts.7 Computational studies in 

this thesis tried to shed light on the importance of geometrical and conformational 

properties of mutated complexes in stabilizing/destabilizing interstrand and 

intrastrand interactions which influence the duplex stability. It would be striking 

to consider other imperative factors in stabilizing helices more comprehensively 

For instance, by examination of the impact of flanking and complementary bases 

on the duplex stability in different bulky adducted DNA sequences in the future. 

5.2. Future Work 

In the very beginning, modeling consisted of putting balls and sticks together 

by hand to visualize molecules. With today’s amazing advances in computer 

technology, it is possible to not only visualize static molecules but also to follow 

conformational changes, vibrations of atoms, and to examine different segments of 

molecules over time. A disadvantage of standard MD simulations is that it cannot 

properly explore conformational properties due to sampling for an inadequate 

length of time. Many different enhanced sampling methods have been developed 

to address this problem. As computational power increases over time and more 
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efficient algorithms are developed, more accurate MD simulations may identify 

new conformational and geometrical changes other than those observed 

experimentally. 

Overall, previous computational studies on bulky C8-dG adducts8-10 show that 

MD simulation is an efficient tool in verifying the structural properties and the 

presence or lack of discrete interactions within adducted duplexes. This can 

provide deeper and complementary rationalizations for experimental 

observations. As a result of the complexity of calculation and computational 

expense, QM and DFT calculations provide more accurate results for small models 

which are limited in the specific strand flanking and complementary bases, so they 

are not able to reproduce a thorough picture of all interactions in larger models. In 

the absence of NMR data or crystal structures, structural data obtained from (MD) 

calculations in combination with experimental melting temperatures can reveal 

the preferred conformation of mutagenic DNA lesions. 

The identification of related DNA adducts that can serve as biomarkers for 

measuring carcinogenic exposure is also an important future goal. Indeed, such 

molecules could permit the exploration of other biological implications of bulky 

adducts. 

For every question answered, more questions appear that are equally 

interesting and important. For example, when different chloro substituted adducts 

are incorporated in the double helix does the conformation remain the same as the 

geometrical properties obtained from small nucleobase, nucleoside or nucleotide 

models? Since chlorine atoms can cause significant steric and electronic effects, 
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chloro-substituted and especially highly chloro substituted species may cause the 

formation of S conformer in DNA and induce formation of abasic sites which are 

among the most serious distortions in the duplex.  

To what extent are the MD simulations of Cl-substituted adducts consistent 

with results obtained from unsubstituted and ortho and para C-linked structures? 

How do the steric and electronic effects of chlorine substitution on the aromatic 

ring distort the double helix? In MD simulation, what will be the effect of the second 

ortho chlorine atom in comparison to the monochloro adduct and unsubstituted 

species adduct? Since MD simulation of unsbstituted O-linked adduct 

demonstrated B and W conformers for the aforementioned adduct against cytosine 

and guanine, respectively we may expect other types of conformers or more 

conspicuous distortion of double helix by presence of heavy Chlorine atom at para- 

and ortho- position of aromatic ring of phenoxyl moiety. Can we observe similar 

results about the effect of the chlorine atom as identified in small models? The 

same questions apply to the effect of meta chlorine atoms of the pentachloro 

substituted species in comparison with trichloro mutated complexes. Since 

protonation of modified guanosine could increase the probability of formation of 

abasic sites, it would be worthwhile to consider the effect of N7 and N3 protonation 

of chloro substituted adducts against an abasic site. Subsequently, effects of the 

bulky lesions should be taken into account through studies on large models (MD 

simulation of DNA) while investigating other sequences of DNA except NarI, that 

will determine the significance of flanking bases in determining adduct 

conformation and base-pairing properties. Finally duplex stability should be 



 

218 

  

investigated in other types of sequences. Understanding the function of Nucleotide 

Excision Repair (NER) or Base Excision Repair (BER) enzymes would be 

interesting, so the in vivo biological effects of these adducts can be addressed in the 

future. Although there is a direct relationship between DNA adducts and human 

cancer, very few studies on understanding adduct structure and formation have 

been undertaken. Expanding the studies in this field may lead to the development 

of innovative medicinal strategies for earlier detection and prevention of cancer. 

 Although a conformational search using Hyperchem established that the 

most stable conformers acquire the C2' sugar puckering, it would be interesting to 

generate new PESs for unsubstituted and all chloro substituted O-linked adducts 

without considering any constraints during scan calculations. This may result in 

more realistic results for the conformational preferences of modified guanosine 

with respect to sugar puckering. 

These future research avenues may be helpful for researchers interested in 

repairing the damage induced by exposure to certain molecules, so that they are 

no longer detrimental to the human population. Molecular dynamic simulations 

will hopefully be more widely applied in different fields of research such as 

chemistry and the pharmaceutical sciences, where this technique may lead to new 

possibilities in drug design. 
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