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ABSTRACT 

  Natural resource management in northern boreal forests requires tree species 

identification for improved decision making. Satellite remote sensing provides a more 

cost-effective and time-efficient way to obtain this information in these large, remote, 

inaccessible areas. However, satellite signals are highly mixed due to increased tree 

shadows and visible understory vegetation in higher latitude, lower density open forests. 

Thus, methods used in southern forests are largely unsuitable. Therefore, spectral mixture 

analysis (SMA) was tested as it separates these signal components (trees, understory, 

shadow) at sub-pixel scales, allowing improved forest information. In this study, SMA 

was used to identify the dominant species near Fort Providence NWT using Landsat-5 

Thematic Mapper imagery. An accuracy of 79 % was achieved for four species validated 

against 48 ground plots using multiple-date imagery acquired at different stages of the 

growing season. These positive results indicate SMA’s capability to retrieve species 

information of highly mixed open stands. 
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CHAPTER 1 

Introduction 

  The world’s boreal forests,  which occupy large areas of the northern hemisphere, 

represent a major biogeoclimatic zone that regulates regional and global climates, cycles 

nutrients, and provide renewable resources, habitat, and recreational opportunities 

(Brandt, 2009). Despite the importance of this natural resource, boreal forests are under 

pressure from a variety of stressors, such as land-use conversions and climate change 

induced alterations to hydrological conditions as well as wildfire and insect disturbance 

patterns (Williamson et al., 2009; Natural Resources Canada, 2013). Current and future 

impacts of these stressors require accurate information on the spatial distribution, 

structure, and processes of forests for sustainable forest management. For example, 

government-based forest inventories produce detailed maps of species composition, 

defined as the relative proportion of tree species in a stand to the nearest 10 percent, that 

are important for forest resource reporting and the establishment of forest management 

plans (Gillis & Leckie, 1993; Leckie & Gillis, 1995).  

1.1. Acquisition of Species Composition Information 

 Information about species composition can be difficult to collect on the ground 

due to site access challenges, budget limitations, and the large areas of forested land. 

Therefore, forest inventories are typically undertaken through the use of aerial photo-

interpretation in combination with ground samples and have recently migrated to soft-

copy digital stereo interpretation techniques (Power & Gillis, 2006). Despite these recent 

advancements, aerial photo-interpretation remains a technology whose limits are being 

challenged and is cost prohibitive over large, remote forests. A primary example of the 
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lack of spatial and temporal coverage of species composition information is in the 

Northwest Territories (NWT), Canada. Forests cover 33 million hectares in this territory 

(Government of Northwest Territories, 2011a), of which detailed forest inventories exist 

for less than 10 % of its forests (Hall et al., 2012). Yet in the last decade several territorial 

government policy initiatives such as the NWT Biomass Energy Strategy and Boreal 

Caribou Action Plan have identified a need for more detailed information regarding forest 

resources (Government of Northwest Territories, 2010b, 2010a). To alleviate information 

gaps, forest management agencies increasingly rely on spatial data of land cover derived 

through remote sensing due to its large area coverage (Franklin, 2001; Turner et al., 

2003). While forest cover information exists for the NWT, these inventories characterize 

forested land to coniferous, deciduous, and mixed classes (Wulder et al., 2008), and 

therefore, a more specific characterization of tree species is desired. 

1.2. Remote Sensing of Boreal Tree Species 

  Previous remote sensing approaches have been documented in the scientific 

literature to derive estimations of the spatial distribution of boreal tree species. This 

generally involves the discrete labeling of pixels that are based on the dominant or 

leading species within a stand (Franklin, 1994; Beaubien et al., 1999; Peddle et al., 2007), 

which is less detailed than the information acquired through aerial photo-interpretation. 

There is uncertainty in the degree to which the documented approaches can be integrated 

into current forest inventories, because the approach to determine the species composition 

of a stand (and therefore the leading species) differs among jurisdictions and in the 

literature. Resource management agencies may measure the species composition per 

percentage crown closure, basal area, stem density, or gross volume (Gillis & Leckie, 
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1993). The relative abundance estimations for each tree species present in a stand may 

not be the same among these metrics, and could influence which species is considered 

dominant. Differences in the definition used to estimate the leading species could 

therefore influence image classification results, yet in the remote sensing literature it is 

generally not determined whether an image is sensitive to how the leading species is 

characterized on the ground. It is therefore of particular interest to improve understanding 

of the sensitivity of satellite imagery to field-based descriptions of leading species. 

  It is important to note that the capabilities of the documented approaches are 

unknown for northern boreal forests due to the small number of studies in these regions 

(e.g., Gerylo et al., 2002; Franklin et al., 2003). Forest stands in northern boreal 

environments such as in the NWT vary widely in terms of their composition, structure, 

and spatial distribution, with a predominance of those with complex stand structures and 

open crown closures (Ecosystem Classification Group, 2007). The spectral response from 

these types of forests on 30-m Landsat Thematic Mapper (TM) images is mixed, and as a 

result conventional pixel-level approaches for species mapping are not considered 

suitable as the ground vegetation is a significant contributor to pixel-level reflectance. An 

image classification approach based on spectral mixture analysis (SMA) may be more 

suitable, as this technique decomposes mixed pixels into physically meaningful 

components (i.e., pure materials or so-called endmembers) of sunlit canopy, sunlit 

background, and shadow (Adams et al., 1993; Roberts et al., 1998) which can be related 

to tree species. 

  A key to successfully applying SMA is the appropriate specification of 

endmembers (Tompkins et al., 1997), which involves specifying the number and type of 
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endmembers and their corresponding spectral signatures. Endmember spectra are often 

measured in the field; however, this is not always possible because of technical and 

budgetary limitations (McCoy, 2005). As an alternative, endmember spectra can 

sometimes be derived directly from an image. Although considerable research has 

focused on image endmember extraction algorithms (Boardman, 1994; Winter, 1999; 

Plaza et al., 2012), the proper specification of image endmember spectra is not always 

possible. For example, for the background component there may be no suitable open 

areas that match or exceed the area of one single pixel. It is therefore of interest to 

determine whether endmember spectral impurity would influence the discrimination 

between tree species, and whether forest inventory information can be used to select 

meaningful image endmember spectra. As the degree to which tree species can be 

discriminated may be influenced by its stage of vegetative phenology, the use of multi-

temporal imagery during the growing season was also deemed of interest for its potential 

to improve classification accuracies. 

1.3. Thesis Research Objectives 

  The goal of this thesis is to obtain an improved understanding of the capabilities 

of SMA for mapping the leading tree species in northern boreal forests using Landsat TM 

by addressing four current unknowns: 1) the sensitivity to field-based descriptions of 

leading species, 2) the influence of the type of background endmember used for SMA, 3) 

the use of impure image endmember spectra selected using forest inventory information, 

and 4) the advantage of multi-temporal imagery. The objective of this thesis was to 

address these unknowns, and was achieved by answering five research questions for a 

representative study area in the Taiga Plains Ecozone as follows:  
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1. Is the determination of leading species from Landsat TM imagery influenced by 

its description from field-based inventory metrics? 

2. Does the use of background endmembers defined by single species or mixed 

species spectra influence the discrimination of leading species? 

3. Are there differences in classification performance between image-derived spectra 

and field-based spectra? 

4. Is the performance of image-derived spectra dependent on the type of forest 

inventory information (e.g., by basal area or crown closure) used to select 

representative sunlit canopy and background components? 

5. Would the use of multi-temporal Landsat TM imagery to represent different 

stages of vegetative phenology improve the determination of leading species? 

 

1.4. Thesis Organisation 

To address the five research questions, two studies were undertaken. The first study 

addressed the first and second research questions, and required three different sources of 

validation data and high-quality field spectra of the sunlit canopy and understory 

vegetation. Classification accuracy was estimated for a four-species classification 

scheme, and analyzed to identify patterns of highest agreement with the validation 

datasets. The second study compared the performance of the field spectra to image 

endmember spectra of the sunlit canopy and background components, which were 

selected using two different sets of selection criteria and detailed forest inventory 

information. Both single-date and multi-temporal imagery was evaluated to determine the 

performance of these spectra. 

  This thesis is written in a manuscript format with each Chapter representing a 

stand-alone, yet integrated part of the conducted research. Chapter 2 provides a literature 

overview of the potential and limitations of remote sensing to derive the spatial 

distribution of boreal tree species and highlights current challenges to derive this 

information for operational forest management. Chapter 3 presents the location of the 
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study area, and characterizes its abiotic and biotic components. Chapter 4 addresses the 

first and second research question by evaluating the sensitivity of Landsat TM imagery to 

multiple sources of validation data and its classification performance using various sets of 

understory spectra. Chapter 5 addresses the latter three research questions by evaluating 

the performance of image endmember spectra and multi-temporal imagery. Chapter 6 

synthesizes the results, addresses the implications of this work for the remote sensing 

discipline and operational forest management in the NWT, and provides 

recommendations for future research. Chapter 7 concludes the findings of this research. 
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CHAPTER 2 

Literature Review 

  The overall goal of this literature review is to provide an overview of the potential 

and limitations of remote sensing to derive the spatial distribution of tree species within a 

northern boreal forest context. The work described in this review represents a 

compilation and summary about the methods and data sources used to derive this 

information. This review is subdivided into multiple sections, whereby Section 2.1 

introduces the boreal forests and emphasizes the importance of forest monitoring. Section 

2.2 provides an overview of current forest inventory approaches and highlights current 

challenges. A review of the determinants of compositional and structural heterogeneity in 

boreal forests is provided in Section 2.3 to emphasize ecological considerations for 

mapping purposes. Section 2.4 assesses remote sensing methods to derive the spatial 

distribution of boreal tree species, while Section 2.5 synthesizes this literature and 

highlights current challenges to the derivation of this information, with the intent to 

identify future areas of research. Section 2.6 summarizes the findings. 

2.1. The Boreal Forest and Importance of Forest Monitoring 

 The world’s boreal forests occupy vast areas of the northern hemisphere and are 

mainly found in Canada, Russia, Alaska, and Scandinavia. These forests cover 

approximately 1,890 billion ha and represent one of the largest forest regions in the world 

(Brandt et al., 2013). This circumpolar forest represents a major biogeoclimatic zone, 

which regulates regional and global climates, cycles nutrients, acts at a reservoir for 

biological and genetic diversity, and provides renewable resources, habitat, and 

recreational opportunities (Brandt, 2009). By storing between 84-97 t/ha of carbon in its 
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aboveground and root biomass (Keith et al., 2009), as well as 116-343 t/ha in its soil due 

to the large peat stock (Malhi et al., 1999; Amundson, 2001), the boreal forest represents 

the world’s second largest terrestrial carbon stock (384 Gt) after the tropical and 

subtropical forests (Trumper, 2009).  Over North America, the boreal forest zone forms a 

broad uninterrupted crescent from Newfoundland to Alaska, covering approximately 

6,270,000 km
2
, and representing the most extensive forest-cover type on the continent 

(Brandt et al., 2013).  

 Given the importance of the North American boreal forest and its size relative to 

the entire circumpolar boreal zone (i.e., 25 % to 32 %; Brandt, 2009), an increased 

understanding of the distribution, composition, and structure of these forests is critical for 

sustainable forest management. This information is especially important with regards to 

the direct impacts of climate change on the boreal forest. Competitive relationships will 

change as a result of the gradual northward migration of species (Aitken et al., 2008; 

Walker et al., 2012), the increasing adaptational lags created by the shift in optimal 

climate (McKenney et al., 2011; Gray & Hamann, 2012), and the reduced productivity 

(Zhou et al., 2001) and increased mortality and forest dieback (Hogg et al., 2008; 

Michaelian et al., 2011; Peng et al., 2011) related to moisture stress. 

  Furthermore, the indirect impacts of climate change, such as the broadening and 

intensification of wildfire activity (Girardin & Mudelsee, 2008; Krawchuk & Cumming, 

2010) and insect outbreaks (Berg et al., 2006; Safranyik et al., 2010), could introduce 

changes to the boreal landscape that could exceed the direct influence of climate change 

(Williamson et al., 2009). For example, with increasing fire frequency it is likely that 

more frequent shifts from coniferous to deciduous-dominated forests will occur 
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(Johnstone & Chapin III, 2006; Chen et al., 2009). Changes in the spatial distribution or 

depth of permafrost have altered drainage conditions that have led to subsequent changes 

to fire regimes and vegetation distribution (Hinzman et al., 2005; Jorgenson & 

Osterkamp, 2005). Unprecedented insect outbreaks, such as the recent attack of the 

mountain pine beetle in the boreal forests of north-western Alberta (Cullingham et al., 

2011; de la Giroday et al., 2012), exemplify how climate change contributes to 

population range expansion towards previously unaffected forested environments (Carroll 

et al., 2003; Westfall & Ebata, 2011). Given the impacts of climate change, the 

acquisition of spatially referenced forest inventory information is therefore highly 

relevant to understand the rate of change, predict the outcome of these impacts on 

ecosystem function and diversity, and identify proper adaptation and mitigation strategies 

(Kurz & Apps, 2006; Lemprière et al., 2013; Price et al., 2013). 

2.2. Forest Inventories 

2.2.1. Terms and Definitions 

   In Canada, forest management is provincially regulated, whereby government 

agencies utilize inventory classification systems to extract and store spatially referenced 

information about forest characteristics, such as tree species, height, and density (Leckie 

& Gillis, 1995). Because of the compositional and structural complexity of forested areas, 

relatively homogenous units are established to reduce landscape complexity and to better 

understand attribute variations and determine the effects of management treatments 

(Bailey et al., 1978). Forest managers delineate homogenous forested areas for specific 

purposes of management and science, whereby they are primarily concerned with the 

forest stand as a spatial entity (Spies, 1997). A stand is a contiguous group of trees 
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sufficiently uniform in species composition, age distribution, and structure that can be 

identified as a distinguishable unit that fits the purposes of an intended use (Smith, 1986). 

Species composition is defined as the relevant proportion of tree species in a stand (Gillis 

& Leckie, 1993), and is the main variable of interest in this literature review. Mapping 

the species composition of tree species at a particular location is most relevant to 

operational forest management (Leckie, 1998) and is required to model stand volume and 

biomass (Boudewyn et al., 2007), net primary productivity (Tang et al., 2010), nutrient 

cycling (Prescott, 2002), carbon budgets (Kurz et al., 2013), stand dynamics (Cogbill, 

1985), or successional pathways after disturbance (Amos-Binks et al., 2010). 

2.2.2. Current Inventory Approaches 

  Forest inventories are carried out through an aerial-photo-interpretation process 

whose end goal is a forest inventory map (Hall, 2003). Aerial photographs record the 

radiance of features on the ground at the time of exposure, whereby this raw 

photographic data is subsequently processed through human interpretation (Leckie & 

Gillis, 1995).  The fundamentals of aerial photo-acquisition and characteristics of both 

analog and digital sensors are well established in the literature (e.g., Lillesand & Kiefer, 

1994; Wolf & DeWitt, 2000; Jensen, 2007), and thus the method of deriving species 

composition is of primary concern for this review. Forest species information can be 

extracted from photographs based on tonal, textural, pattern, size, shape, and shadow 

differences, along with spatial association (Lillesand and Kiefer, 1987). Polygons, 

representing areas of similar characteristics, are manually drawn using a stereo pair, 

whereby species composition is determined by dot grids to measure the relative 

abundance of a defined maximum number of most prevalent species to the nearest 10 
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percent (Leckie and Gillis, 1995). During the interpretation process, field checks may be 

performed for verification and calibration purposes. Field programs consisting of ground 

plot surveys are typically conducted as well to determine the agreement of the 

interpretation with field data and whether revisions are needed (Leckie and Gillis, 1995).  

  Because provincial forest inventories are not standardized across Canada, the 

variable used to measure and describe species composition varies between provinces and 

applications. For example, the relative proportion of a species can be given by percentage 

crown closure, stem density, or basal area (Table 1). It is important to note that forest 

inventory protocols are evolving with the need of an increasing number of variables at 

greater precision and accuracy (McRoberts & Tomppo, 2007). This means that the field-

based description of species composition and the number of species reported change over 

time (e.g., British Columbia in Table 1). 

Table 1: Definitions of species composition from forest inventory systems. 

Metric Number 

of species 

Guidelines Province Source 

% Crown closure 6 Minimum 10%, Sum = 100% AB Alberta Environmental Protection 

(1991) 

% Crown closure 5 Minimum 10%, Sum = 100% AB Alberta Sustainable Resource 

Development (2005) 

% Crown closure 3 Minimum 25% NL Gillis and Leckie (1993) 

% Crown closure 4 Sum = 100% NT Government of Northwest Territories 

(2006a) 

% Crown closure 10 Minimum 10% ON Gillis and Leckie (1993) 

% Crown closure 3 1st + 2nd minimum 75% PEI Gillis and Leckie (1993) 

% Crown closure n/a Minimum 50% for species group QB Gillis and Leckie (1993) 

% Crown closure 6 Sum = 100% SK Saskatchewan Environment (2004) 

% Density stems 5 Minimum 6%, young stands BC Gillis and Leckie (1993) 

% Density stems 6 Juvenile stands BC Sandvoss et al. (2005) 

% GMV 3 Minimum 20% NB Gillis and Leckie (1993) 

% GMV 4 Minimum 10% NS Gillis and Leckie (1993) 

% Gross volume  5 Minimum 6%, old stands BC Gillis and Leckie (1993) 

% Gross volume  Cover type specific SK Gillis and Leckie (1993) 

% Gross volume n/a Not reported SK Lindenas (1985) 

% Basal area 6 Older stands BC Sandvoss et al. (2005) 

% Basal area n/a Not reported MB Gillis and Leckie (1993) 

% Basal area 4 Sum = 100% NT Government of Northwest Territories 

(2006a) 

* Crown closure is the percent of ground area covered by a vertical projection of foliage crowns on the 

ground (Alberta Environmental Protection, 1991). 

* GMV: gross merchantable volume 
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   Aerial photo-interpretation is regarded as the most accurate method to inventory 

forests (Hall, 2003; Falkowski et al., 2009). Nevertheless, differences in accuracy exist 

between stands and among inventory programs because the accuracy of a species 

composition classification is dependent on the complexity of the stand, the camera (and 

film) used to acquire the imagery, the skill of the photo-interpreter (Fent et al., 1995; 

Leckie & Gillis, 1995), as well as the data used for validation (Lillesand and Kiefer, 

1987). In general, aerial photo-interpretation was expected to be accurate within 70 % 

and 85 % of the correct order or within ± 25 % of the true proportion of tree species 

(Leckie and Gillis, 1995). Because of the subjective nature of this inventory approach, 

forest inventories may contain significant misclassifications in relative proportion by 

volume in the majority of stands, as for example shown in northwestern Ontario 

(Thompson et al., 2007). While the aerial photo-interpretation approach is continually 

evolving and remains the most appropriate approach to inventory boreal forests, it 

remains a technology whose limits are being challenged, and it is cost prohibitive over 

large, remote forests. 

2.2.3. Forest Inventories in the Northwest Territories – A Case Example 

  A primary example of the lack of spatial and temporal coverage of species 

composition information is in the Northwest Territories (NWT). Forests cover 33 million 

hectares in this territory (Government of Northwest Territories, 2011a), of which detailed 

forest inventories exist for less than 10 % of  its forests (Hall et al., 2012). Where these 

data are available, they may be dated (Government of Northwest Territories, 2011b). The 

GNWT Department of Environment and Natural Resources requires this information to 

manage the forest resources sustainably (Smith, 2002), and multiple territorial 
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government policy initiatives (e.g., Northwest Territories Biomass Energy Strategy, 

Boreal Caribou Action Plan) have identified a need for detailed information regarding 

forest resources and wildlife habitat (Government of Northwest Territories, 2010b, 

2010a). In the NWT, national-scale forest land-cover information is available from the 

Earth Observation for Sustainable Development of Forests (EOSD) project (Wulder et 

al., 2008), along with separate remote sensing -derived forest inventory products that 

include forest structure, stand volume, and above-ground biomass (Hall et al., 2012). 

While these remote sensing-based inventories characterize forest cover in coniferous, 

deciduous, and mixed classes, a more specific characterization of tree species is desired. 

  For the evaluation of remote sensing techniques that are capable of extracting 

information about species composition, it is important to recognize how the spectral 

reflectance of forest stands is influenced by ecological factors. Therefore, Section 2.3 

provides a brief overview of the drivers of compositional and structural heterogeneity in 

boreal forests to develop an understanding of the various spatial and temporal aspects that 

must be considered from the perspective of using remote sensing for mapping forests. 

2.3. Ecological Considerations for Mapping Boreal Forests 

  Although the boreal forest zone may appear uniform in its overall composition 

due to its relatively low-tree diversity, the physical, biological, and ecological factors 

controlling species distribution and stand structure have resulted in a broad range of 

different forest communities (Weber & Van Cleve, 2005). The high spatial heterogeneity 

can be explained by the wide distribution of tree species along environmental gradients 

according to individual genetic and physiologic adaptations and tolerances to soil, 

moisture, and light conditions (Beckingham & Archibald, 1996; Kimmins, 2003). 
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Besides micro-climatic and physiographic factors, the presence or absence of tree species 

may be partially explained by the disturbance history of the landscape. Disturbances are 

events that cause a significant change in the existing pattern in a system (Forman, 1987). 

In the boreal zone, natural disturbances such as wildfire (Brassard & Chen, 2006) and 

insect outbreaks (MacLean & MacKinnon, 1997) are key factors in maintaining 

landscape heterogeneity. The species composition and forest structure may be altered 

little (e.g., low intensity insect damage) or considerably (e.g., stand replacing crown fire) 

depending on the timing, frequency, and severity of a disturbance event (Johnstone & 

Chapin III, 2006; Johnstone et al., 2011). Because of spatial and temporal differences in 

disturbance regimes, boreal forests are highly diverse in terms of successional stage, 

stand structure, and forest health. Furthermore, differences in phenology (e.g., leaf flush; 

Brissette & Barnes, 1984) and morphology (Bond-Lamberty et al., 2002) are similarly 

influenced by abiotic and genetic factors, which add to the spatial complexity. With 

regards to the aforementioned factors, which influence the species composition and 

structure of stands, the boreal zone is relatively complex. 

  From the perspective of using remote sensing for mapping, the variation in forest 

composition, structure, as well as tree phenology and morphology, may cause challenges 

for accurate species identification due to larger intra-species spectral differences (e.g., 

Mora et al., 2010). Consequently, it is inappropriate to assume that a single value of an 

attribute (e.g., spectral response of a species), is representative over large regions (Peddle 

et al., 2007). Because age, morphology, stem density, crown closure, and species 

composition influence the spectral reflectance (Guyot et al., 1989; Spanner et al., 1990), 

failure to account for these factors may lower the accuracy of the mapping product when 
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these aspects of landscape heterogeneity are not accounted for. A proper stratification of 

field data ensures that most growing environments and forest types are accurately 

represented. As well, classification procedures that include additional spatial information 

(e.g., image texture, multi-temporal imagery, Digital Elevation Model; DEM) or that 

have expanded the classification scheme have been shown to be effective in accounting 

for environmental factors affecting the spectral response of a stand (Table 2). Such 

approaches allow appropriate inferences about the landscape to be made, and increases 

the confidence of labeling a species class to a spectral signature outside of the training 

and validation sites.  

Table 2: Approaches to improve spectral discrimination between tree species.  

Factor Method Source 

Age 
Image texture: spatial co-occurrence matrix 

Inclusion of “young” age classes (e.g., IGBP/GOFC*) 

Franklin et al. (2001) 

Gamon et al. (2004) 

Phenology Multi-temporal image classification 
Wolter et al. (1995) 

Dymond et al. (2002) 

Topography Inclusion of DEM variables (e.g., slope, aspect) 
Franklin (1994) 

Bolstad and Lillesand (1992) 

Density / Crown 

closure 

Image texture: spatial co-occurrence matrix 

Inclusion of density labels (e.g., IGBP/GOFC) 

Franklin et al. (2000) 

Franklin et al. (2002) 

Gamon et al. (2004) 

Soil moisture Inclusion of both dry and wet species labels Bronge (1999) 

IGBF: International Geosphere-Biosphere Programme, GOFC: Global Observation of Forest Cover. 

2.4. Remote Sensing of Boreal Forests at the Species Level 

  To evaluate the capabilities of remote sensing techniques to extract information 

about species composition in northern boreal forests, the following section provides an 

overview of methods that have been used to classify boreal forests at the species level. To 

increase clarity in the evaluation, this section is subdivided according to the two main 

data types in which the distribution of vegetation can be depicted, mainly: 1) discrete 

classification schemes, and 2) continuous estimates of vegetation cover (DeFries et al., 

1995). Discrete classification schemes characterize each image grid cell as a discrete 
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vegetation type, whereas continuous estimates of vegetation cover are typically expressed 

in percentages. Discrete land cover representations may be of relatively lower data 

volume and feature concise vegetation descriptions (Lambin, 1999), while continuous 

estimates of vegetation distribution may be better capable of capturing landscape 

heterogeneity (DeFries et al., 1995). Discrete image classifications based on the dominant 

or leading species (i.e., the species most abundant in a stand; Cumming & Vernier, 2002) 

may omit other species that are deemed of interest, and its accuracy statistics are not 

directly comparable with continuous estimates of tree species distributions (Plourde et al., 

2007). Therefore, the distinction between the two information types is important from a 

literature review standpoint. The methods used to map the distribution of tree species in 

discrete classes (Section 2.4.1) and as continuous estimates (Section 2.4.2) are described 

separately to highlight differences in optical remote sensing approaches.  

2.4.1. Discrete Image Classification at the Species Level 

2.4.1.1. Medium Spatial Resolution Imagery 

  With respect to discrete image classifications of medium spatial resolution 

imagery (e.g., 30-m Landsat TM), numerous approaches have been used to obtain 

spatially referenced information regarding the distribution of boreal tree species. 

Commonly used supervised classification methods are the maximum likelihood classifier 

(e.g., Goodenough et al., 2003) and discriminant analysis (e.g., Franklin & Peddle, 1990; 

Franklin, 1994). In addition to its independent application, the maximum likelihood 

classifier can also be used in combination with topographic map data to mask regions in a 

stratified approach to increase the spectral separability between classes (Bronge, 1999). 

The unsupervised K-means clustering algorithm can be applied in combination with 
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NDVI thresholds to hypercluster Landsat TM imagery, whereby subsequent clusters were 

automatically labelled with the dominant tree species and structural class using randomly 

sampled photo-inventory pixels (Luther et al., 2006). Furthermore, classification methods 

that filter the imagery and enhance image contrast (Beaubien et al., 1999), or extract 

physical structure information through modeling radiative transfers in canopies (Peddle et 

al., 2004; Peddle et al., 2007) have also been applied. To overcome the limited 

discriminating power of the Landsat TM sensor between tree species (Luther et al., 

2006), multi-temporal analysis or the inclusion of image texture, soil information, or 

Digital Elevation Model (DEM) derivatives, have been shown to increase the statistical 

separability of classes (Franklin, 1994; Wolter et al., 1995; Dymond et al., 2002). These 

studies highlight that numerous processing workflows have been developed to map the 

distribution of boreal tree species using medium-spatial resolution imagery. 

  Before outlining classification accuracies that have been achieved in the literature, 

it is important to note that classification accuracy is dependent on the classification 

method, number and type of assigned land-cover classes, the spatial heterogeneity of the 

forest, and the source data to assess the accuracy of the image classification (Lillesand & 

Kiefer, 1994). Thus, differences in accuracy can be contributed to a multitude of factors. 

When comparing inventory approaches, differences in accuracy should therefore be seen 

as the degree of similarity in classification performance between the evaluated remote 

sensing approach and the approach that represents the “true” stand characteristics. 

  Because the spectral response is affected by complex interactions between species 

composition, density, height, background vegetation, shadow, growing condition, and 

viewing and illumination geometry (Hall et al., 1997; Peddle et al., 2004), image 
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classification of a single variable may not be accurate if other biophysical characteristics 

of the stand are not accounted for. The majority of aforementioned studies have included 

additional biophysical information in the classification scheme, such as density, height, 

age, and moisture conditions (Table 3). The literature has reported a wide range of 

classification accuracies with no discernible patterns of accuracy in relation to the 

number of species related classes, total number of classes, or additional biophysical label 

separations (Table 3). In general, discriminant analysis (Franklin, 1994), the Enhanced-

Classification method (Beaubien et al., 1999), and radiative transfer models (Peddle et 

al., 2004) have attained the highest similarities to reference data. However, because of 

differences in the classification method and detail, as well as quantity and quality of 

reference data between studies it is difficult to identify superior approaches. 

 

Table 3: Overview of classification accuracies of medium spatial resolution imagery. 

Data Source Number of classes: 

species (overall) 1 

Biophysical 

Labels 2 

Inventory 

variable 

Overall 

Accuracy 

Source 

ALI 5 (10) D n/a 75% Goodenough et al. (2003) 

Landsat MSS 20 - % basal area 80% Wolter et al. (1995) 

Landsat MSS 5 (10) M n/a 74% Wilson et al. (1994) 

Landsat TM 9 (11) D, H n/a 81% Franklin (1994) 

Landsat TM + DEM 9 (11) D, H n/a 91% Franklin (1994) 

Landsat TM 5 (5) D, H % density stems 38% Luther et al. (2006) 

Landsat TM 10 (27) A, M n/a 71% Bronge (1999) 

Landsat TM 8 (13) D, A n/a 91% Beaubien et al. (1999) in 

Peddle et al. (2004) 

Landsat TM 8 (13) D, A n/a 85% Peddle et al. (2004) 

Landsat TM 16 (16) D n/a 60, 61% Peddle et al. (2007) 

Landsat TM 16 (16) D n/a 71% Peddle et al. (2007) 

Landsat TM 5 (19) - % crown closure 69% Dymond et al. (2002) 

Landsat TM 5 (19) - % crown closure 68% Dymond et al. (2002) 

Landsat ETM+ 5 (10) D n/a 61% Goodenough et al. (2003) 

SPOT HRV 3 (7) - n/a 51%  Franklin and Peddle (1999) 

SPOT HRV + texture 3 (7) - n/a 87% Franklin and Peddle (1999) 
1
 Only classes in reference to tree species are counted. Total number of classes reported in brackets (i.e., 

additional non-forest classes and cover type classes). Note: One species may be represented by multiple 

classes. 
2
 Biophysical variables: Density (D), Height (H), Age (A), Moisture conditions (M). 
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2.4.1.2. High-Spatial Resolution Imagery 

  High-spatial resolution satellite-based (e.g., 1-m panchromatic, 4-m multispectral) 

or airborne-based sensors offer a spatial refinement of the forest objects to be mapped. 

Numerous methods have been developed to exploit this type of imagery to map forests at 

the species level. Because the spatial resolution is typically smaller than the object of 

interest (i.e., the individual tree), the imagery contains different spectral responses of tree 

parts due to the varying illumination, shading, and understory gaps. The application of 

high-spatial resolution imagery may not universally increase classification accuracies 

because any spatial refinement may reduce the statistical separability between classes 

(e.g., greater within-class variation) and skew the distribution of the spectral responses 

(Marceau et al., 1994; Quackenbush et al., 2000). In such cases, the assumption of 

normality that is required for parametric per-pixel classification algorithms will be 

invalidated (Lillesand and Kiefer, 1987). The unsuitability of the per-pixel classifications 

was highlighted by  Gerylo et al. (1998) and Franklin et al. (2001), who used plot-level 

forest inventory codes as distinct classes and attributed the low performance to the 

constraints of using spectral signatures on a pixel basis to classify entire forest stands that 

often vary slightly in structure or composition. These studies highlight that although 

high-spatial resolution imagery offers a spatial refinement in mapping forest stands, per-

pixel classifications may not be suitable to discriminate between stands of mixed species 

composition and structure due to high between-class variance and non-normality of 

spectral responses. 

  To address non-normality of datasets and reduce inter-class variance, numerous 

studies have aimed to subdivide the image into relatively homogenous regions through 
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image segmentation. In such instances, image objects instead of individual pixels become 

the carriers of image information and representatives of forest stands or individual trees 

(Chubey et al., 2006). For example, these authors used a region-based algorithm to 

segment IKONOS panchromatic and multispectral imagery into homogenous forest stand 

components, and characterized individual pine, spruce, and aspen-dominated stands by 

applying a decision tree using aggregative statistics of image and DEM values. 

Alternatively, individual trees can be delineated through local image maxima filters that 

represent crown apexes (Wulder et al., 2000), which are subsequently assigned a species 

label by using a maximum likelihood classifier of the sunlit side of the crowns (Gerylo et 

al., 1998). Instead of counting and classifying individual trees by finding the brightest 

pixel, Gougeon (1995b) and Gougeon and Leckie (2006) delineated entire individual tree 

crowns by using a valley-following algorithm that exploits the bands of shadow 

surrounding individual crowns. Once obtained, crowns can either be classified using 

spectral signatures and a maximum likelihood classifier (Gougeon, 1995a), or by using 

crown shape metrics derived from panchromatic imagery and a decision tree (Mora et al., 

2010). Besides classification algorithms on a per-pixel basis, the aforementioned studies 

indicate that a variety of procedures exist to exploit high-spatial resolution imagery for 

tree species mapping. 

  A wide range of classification accuracies have been reported for high-spatial 

resolution imagery (Table 4), and with regards to per-pixel classifications, studies that 

used forest inventory plots to train the maximum likelihood classifier have achieved low 

similarities with reference data (Gerylo et al., 1998; Franklin et al., 2000). In contrast, the 

use of broader species classes in the classification scheme have obtained better results 
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(e.g., Franklin, 1994). The table highlights that image classifications at higher spatial 

resolutions do not automatically achieve greater similarities with reference data. 

Nevertheless, higher spatial resolution imagery allows for the generation of image texture 

at the stand and crown level, which has been shown in multiple studies to improve 

classification accuracies. To separate stands of different composition and density, a 

multi-scale texture approach has been shown to achieve the highest similarities with 

reference data (Coburn & Roberts, 2004). With respect to both stand and crown 

segmentation, it is apparent that favourable accuracies have been achieved in the 

classification of individual trees or stands (Table 4). Typical reported classification 

accuracies range between 59 % and 75 % for the classification of individual trees, and at 

the stand level, accuracies between 70 % and 93 % have been reported. Errors in the 

estimation of the relative abundance of tree species in a stand are generally less than 20 

% in stems/ha
-1

 in comparison to reference data (Gerylo et al., 1998; Gougeon et al., 

1999; Leckie et al., 2003), and as such fall within the expected range of errors of aerial 

photo-interpretation (Leckie and Gillis, 1995). Although favourable accuracies have been 

reported through image segmentation, the majority of studies fall short of the widely used 

85-% overall accuracy suggested as a mapping standard (Anderson et al., 1976) or the 0.8 

kappa threshold value of strong agreement with reference data (Landis & Koch, 1977). 

This suggests that spectral confusion between classes remains a considerable limitation to 

the ability for species discrimination. 
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Table 4: Classification types and reported accuracies of high spatial resolution imagery. 

Type Data Source 
Spatial 

resolution 

Number of 

classes: species 

(overall) 1 

Inventory  

variable 

Overall 

Accuracy 
Source 

Per-pixel 

MS Video 0.3 m 15 (15) % stem density 26% Gerylo et al. (1998) 

MS Video 0.3 m 17 (17) % crown closure 15% Franklin et al. (2000) 

MS Video 8.0 m 17 (17) % crown closure 40% Franklin et al. (2000) 

MS Video + texture 0.3 m 17 (17) % crown closure 31% Franklin et al. (2000) 

MS Video + texture 8.0 m 17 (17) % crown closure 44% Franklin et al. (2000) 

Sony XC-7500 4.0 m 3 (6) n/a 61% Coburn and Roberts (2004) 

Sony XC-7500 + 

texture 
4.0 m 3 (6) n/a 75% Coburn and Roberts (2004) 

casi 2.5 m 9 (11) n/a 81% Franklin (1994) 

casi + DEM 2.5 m 9 (11) n/a 90% Franklin (1994) 

casi 1.0 m 17 (17) % crown closure 42% Franklin et al. (2000) 

casi + texture 1.0 m 17 (17) % crown closure 42% Franklin et al. (2000) 

casi 1.0 m 30 (30) % crown closure 54% Franklin et al. (2001) 

casi + texture 1.0 m 30 (30) % crown closure 75% Franklin et al. (2001) 

Segmen-

tation 

IKONOS 4.0 m 3 (8) % crown closure 93% Chubey et al. (2006) 

MEIS 0.4 m 5 Individual trees 74% Gougeon (1995a) 

IKONOS 4.0 m 7 Individual trees 59% Gougeon and Leckie (2006) 

QuickBird (pan) 0.6 m 4 (4) % basal area 73% Mora et al. (2010) 

QuickBird 0.6 m 4 (4) % basal area 67% Mora et al. (2012) 

QuickBird + 

Landsat TM + DEM 
0.6 m 4 (4) % basal area 70% Mora et al. (2012) 

1
 Only classes in reference to tree species are counted. Total number of classes reported in brackets (i.e., 

additional non-forest classes). Note: One species may be represented by multiple classes. 

 

2.4.1.3. Hyperspectral Imagery 

  Besides multispectral imagery, hyperspectral data can be used to derive the spatial 

distribution of tree species, and have been classified with a wide range of approaches. 

Spectral bands have typically been selected based on the sensitivity to leaf pigments, 

water absorption, or foliar chemistry (Martin et al., 1998). These spectral bands have 

been processed with supervised classifiers such as the minimum Euclidean distance, and 

maximum-likelihood, and spectral angle mapper (Martin et al., 1998; Sandmeier & 

Deering, 1999), or through the use of spectral mixture analysis and a maximum 

likelihood classifier (Ustin & Xiao, 2001). With respect to the aforementioned studies, it 

is evident that some hyperspectral approaches have been conducted in boreal forests with 

regards to tree species mapping. However, the number of studies are limited relative to 

multispectral imagery due to the smaller number of hyperspectral satellite sensors 



23 
 

available (Shippert, 2004) and its high costs associated with airborne data collection 

(Youngentob et al., 2011).  

  In comparison to the classification accuracies reported in the literature that used 

multispectral airborne imagery, studies involving airborne hyperspectral sensors achieved 

a similar range of classification results for a similar number of tree species (Table 5). 

This is most likely due to the spatial and spectral complexity of surface reflectance values 

of forest canopies and the inherent spectral and spatial limitations of the sensors (Hu et 

al., 2008). With respect to spaceborne sensors, Goodenough et al. (2003) indicated that 

the classification of hyperspectral data (EO-1 Hyperion) can obtain greater similarities to 

reference data than Landsat ETM+ (61 % compared to 81 %). Thus, although higher 

classification accuracies are generally expected due to greater dimensionality of 

hyperspectral data, the current literature indicates that this may only be the case with 

spaceborne sensors. 

Table 5: Classification types and reported accuracies of hyperspectral imagery. 

Sensor 
Classification 

Method 1 

Number of classes: 

species (overall) 2 

Inventory  

variable 

Overall 

Accuracy 
Source 

AVIRIS MLC 7 (11) % crown closure 75% Martin et al. (1998) 

AVIRIS SMA  MLC 5 (10) n/a 74% Ustin and Xiao (2001) 

ASAS MLC 4 (6) % volume 43% Sandmeier and Deering (1999) 

ASAS MLC + CA 4 (6) % volume 49% Sandmeier and Deering (1999) 

ASAS MED 4 (6) % volume 31% Sandmeier and Deering (1999) 

ASAS MED + CA 4 (6) % volume 44% Sandmeier and Deering (1999) 

ASAS SAM 4 (6) % volume 54% Sandmeier and Deering (1999) 

ASAS SAM + CA 4 (6) % volume 64% Sandmeier and Deering (1999) 

Hyperion MLC 5 (10) n/a 81% Goodenough et al. (2003) 
1
 Classification method acronyms: MLC: Maximum likelihood classifier, CA: Canopy anisotropy 

information, MED: Minimum Euclidian Distance, SAM: Spectral Angle Mapper, SMA: Spectral Mixture 

Analysis. 
2
 Only classes in reference to tree species are counted. Total number of classes reported in brackets (i.e., 

additional non-forest classes). Note: One species may be represented by multiple classes.  
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2.4.2. Continuous Estimation of Species Coverage 

2.4.2.1. Regression Models 

  Regression models use individual image bands and other raster-based information 

(e.g., digital elevation models) as independent variables to estimate the spatial 

distribution of tree species in percentage of crown closure or basal area. Although these 

models may be ideally suited to address the heterogeneity of forests (DeFries et al., 

1995), only one study located within the boreal forest was found. Through the integration 

of different combinations of Landsat, Radarsat-1, PALSAR, and SPOT-5 sensor data,  

Wolter and Townsend (2011) derived 147 variables to estimate the relative basal area of 

12 tree species using partial least squares regression. For remote sensing, partial least 

squares regression combines features of principal component analysis (Byrne et al., 1980) 

and multiple linear regression to predict the response (e.g., abundance per basal area) 

using a greater number of collinear independent variables than there are field 

observations (Wolter et al., 2008). Because each data type discriminates the structural 

and compositional properties of the forest stand differently, combining the discriminative 

power of independent variables increases the separability of classes. As a result, Wolter 

and Townsend (2011) achieved relatively low root mean square errors (RMSE) in relative 

basal area, ranging between a low 2.5 % and high 10.3 % for jack pine (Pinus banksiana) 

and white cedar (Thuja occidentalis), respectively. Because the study has reported errors 

within the expected error of inventories through aerial photo-interpretation (Leckie and 

Gillis, 1995), it appears that regression models may be a viable alternative in deriving the 

relative abundance of tree species of a forested environment. However, due to the lack of 

studies in the boreal forest the capabilities of regression models remain to be investigated. 



25 
 

2.4.2.2. Spectral Mixture Analysis 

 Similar to partial least squares regression, spectral mixture analysis (SMA) can be 

used to determine the relative abundance of features in an image, whereby the spectral 

signal of a pixel can be represented as a mixture of signals contributed by “pure” features 

within the instantaneous field-of-view (IFOV) of the sensor (Adams et al., 1993). SMA 

quantifies the proportion of each pixel that is occupied by a single set of the pure features 

occurring in an image (i.e., endmembers), whereby the output is a fraction image for each 

endmember along with the error of fit. For each pixel, this model can be derived as 

follows: 

    ∑           
 
    ,                  (1) 

where the spectral mixture R’i is the encoded reflectance in band i for each pixel, and 

modeled as the sum of the reflectance in band i for N image endmembers k, whereby 

each endmember is weighted by fraction fk.  The εi term represents the remainder between 

the measured and modelled reflectance, and is expressed as a band residual. The fractions 

of endmembers that are allowed during spectral mixture analysis can be set to 

unconstrained (from –∞ to ∞) or fully constrained (i.e., between 0 and 1). The condition 

that the fractions of endmembers must be summed to 1 for each pixel (i.e., fully 

constrained), or not (i.e., unconstrained) can also be set, whereby weakly constrained 

unmixing (i.e., sum of fractions ≤ 1) have been shown to improve unmixing results when 

not all endmembers are known (Shang et al., 2008). Model fit can be assessed either by 

using this residual term, or via the root mean square error  (RMSE; Roberts et al., 1998) 

over the total number of bands (ν): 

        √∑     
  

    ⁄  .     (2) 
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  Because SMA is a model that converts reflectance values to physical variables, its 

output can be directly incorporated into models to estimate biophysical parameters 

(Peddle et al., 1999). A major obstacle to accurately use SMA is its assumption that the 

mixed pixel is a combination of all of the image-wide endmembers without accounting 

for the spatial heterogeneity of the imaged surface (Roberts et al., 1998). For example, 

the number of features within a pixel and the spectral characteristics of endmembers vary 

across an image. As SMA is limited to a single set of endmembers, studies involving 

vegetation generally extract the abundance of sunlit canopy, sunlit background, and shade 

(e.g., Hall et al., 1996; Peddle et al., 1999). Using these fractional abundances, Ustin and 

Xiao (2001) employed a maximum likelihood classifier to classify six boreal forest cover 

types by species with 74 % accuracy.  

  If only a single endmember of interest is known (e.g., one particular tree species), 

approaches such as Mixture Tuned Matched Filtering (MTMF; Boardman, 1998) have 

been developed to determine the fractional abundance of a single cover type when all 

other endmembers are not known. The MTMF approach appears to be a suitable 

alternative to partial least squares regression to map the spatial distribution of deciduous 

tree species, as Plourde et al. (2007) achieved sugar maple (Acer saccharum) and 

American beech (Fagus grandifolia) abundance estimates with RMSEs of 9 - 15 % and 

16 - 18 % using AVIRIS and Hyperion data, respectively. SMA could thus be used to 

detect gradual shifts in land cover and provide a robust estimation of the distribution of 

land-cover features. However, the highlighted study only modeled two species across a 

landscape, irrespective of other tree species and landscape features, and without 

accounting for phenological and stand structure differences. Additional research 
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concerning the estimation of the relative abundance of tree species using SMA is thus 

warranted, but due to the inherent limitations of this approach a method capable of 

dealing with a larger variety of tree species and greater landscape heterogeneity will be 

more relevant to forest management. 

2.4.2.3. Multiple Endmember Spectral Mixture Analysis 

  To address the challenges concerning endmember variability in SMA, a Multiple 

Endmember SMA (MESMA; Roberts et al., 1998) has been developed that is not 

constrained by a single set of endmembers and allows the number and types of 

endmembers to vary on a per-pixel basis to account for spatial heterogeneity. Because 

MESMA is not constricted by the number of spectral bands, it has been successfully 

applied to obtain species abundance maps of a variety of different species in vegetated 

areas such California (Dennison & Roberts, 2003b) and Australia (Youngentob et al., 

2011). In the boreal zone, however, this approach has only been used to improve the 

estimation of leaf area index of peatlands (Sonnentag et al., 2007) and insofar has not 

been quantitatively assessed in its capability to extract information about tree species. 

Although Roberts et al. (1999) introduced MESMA in a preliminary study and indicated 

some level of discrimination between boreal species, no quantitative evaluation was 

conducted. 

   Even though MESMA is capable of addressing endmember variability, tree 

species with a high degree of spectral similarity remain a challenge for accurate class 

discrimination due to the effects of illumination, canopy structure, and the spatial 

resolution of the sensor (Roberts et al., 2004), as well as tree phenology (Dennison & 

Roberts, 2003a). The majority of studies involving MESMA have employed 
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hyperspectral imagery to improve the discriminating ability between species (e.g., 

Roberts et al., 1998; Dennison and Roberts, 2003a,b). The small number of hyperspectral 

satellite sensors and its high costs associated with airborne data collection, however, has 

resulted in limited operational applications of this approach in northern Canada.  

2.5. Synthesis of Literature 

  Through this review it became apparent that numerous remote sensing approaches 

have been used to derive discrete and continues estimations of the spatial distribution of 

boreal tree species under a wide range of forest conditions. Nevertheless, uncertainty 

exists in the application of these approaches in a northern boreal forest context, and three 

main drivers of uncertainty are identified in this review.  

  Firstly, the remote sensing approaches have generally been tested in the southern 

boreal forest and forests in British Columbia (Figure 1). Northern boreal forests, such as 

in the Taiga Plains and Taiga Shield Ecozones, are considered heterogeneous in both 

species composition and structure (Ecosystem Classification Group, 2007), where mixed 

pixels occur as a result of open forest canopies (Franklin et al., 2003; Chasmer et al., 

2011). With respect to mapping the spatial distribution of tree species, the absence of 

remote sensing studies in northern boreal environments introduces uncertainty in the 

identification of appropriate approaches from the aforementioned studies. Conventional 

pixel-level approaches for species mapping using digital satellite imagery are likely not 

suitable for the open stands of northern boreal forests because understory ground 

vegetation is a significant contributor to pixel-level reflectance. Future research in 

northern boreal forests is thus warranted to obtain new insights in the capabilities of 

remote sensing approaches to map the spatial distribution of tree species. 
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Figure 1: Location of aforementioned remote sensing studies.  Shapefile from Brandt (2009) and 

Ecological Stratification Working Group (1995). 

  Second, a wide range of accuracies have been reported in the literature as a result 

of the numerous data sources and processing procedures that have been used in a variety 

of compositional and structural forest settings (Figure 2). Although high accuracies up to 

93 % have been achieved for each image type, on average, remote sensing approaches 

have had only moderate success in approximating the information derived through 

ground inventories or aerial photo-interpretation. This level of success can be attributed 

to two counteracting challenges with regards to image classification: 1) the similarity of 

reflectance spectra between even widely differing tree species, and 2) the large intra-

species variation in reflectance spectra due to the influences of stand structure, 

morphology, health, as well as viewing and illumination angles. These challenges are not 

easily overcome, and given the wide range of classification accuracies reported, data 

processing procedures are at least of similar importance as the data source itself.  
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Figure 2: Median, minimum, and maximum reported accuracies per imagery type. Note: Worst 

and best reported accuracies for each image type deleted to remove outliers. (Source: calculated 

statistics from Tables 3, 4, and 5). 

   Another uncertainty is the degree to which information derived through remote 

sensing approaches can be integrated into current forest inventories. Image classifications 

at the species level generally involve the discrete labeling of pixels that constitute the 

greatest proportion within a stand (i.e., the dominant or leading species). Current forest 

inventories derive the relative abundance of tree species in a stand to the nearest 10 

percent, which is of much greater level of detail than what has been achieved with image 

classifications. The approach used to determine species composition (and thus the leading 

species) differs among jurisdictions and in the literature.  Resource management agencies 

may measure the composition of tree species per percentage crown closure, basal area, 

stem density, or gross volume (Gillis and Leckie, 1995), which may not provide the same 

relative abundance estimations. Therefore, the definition used to estimate the relative 

proportion of tree species and identify the leading species is an important consideration. 

Distinct patterns of classification accuracy can be highlighted when the results of the 

studies are stratified by field-based description of leading species (Figure 3).  
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Figure 3: Median, minimum, and maximum reported accuracies per leading species indicator. 

   

  Half of the referenced studies in this review have not provided information 

regarding the definition of species composition used in the training and validation of the 

classified imagery, and no study was found that discussed if the imagery may be sensitive 

to differences in field-based descriptions of species composition. Both Pontius et al. 

(2005) and Plourde et al. (2007) briefly noted that remote sensing validation data based 

on basal area measurements may be imperfect to determine the relative abundance of tree 

species in temperate and hemi-boreal forests, because the radiance recorded from the top 

of the canopy may not be influenced by sub-canopy individuals for which basal 

measurements are included. However, this observation is likely not valid in all North 

American forest types, as the background reflectance of open canopies characteristic of 

northern boreal forests may contribute considerably to the spectral response. For 

example, differences in Landsat TM spectral signatures can be observed within mixed 

jack pine/black spruce stands (Figure 4a and 4b) and compared to mixed jack pine/white 

spruce stands (Figure 4c and 4d) as a result of differences in tree species composition and 

background vegetation types, even though stand structural characteristics are relatively 
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similar (e.g., stand height: 8 m – 12 m, crown closure: 30 % - 38 %, stem density: 525 - 

750 stems/ha). The complexity with respect to differences in background vegetation 

communities challenge, current remote sensing approaches for northern boreal forest 

applications, and the slight variations in species composition (e.g., Pj9Sw1 versus Pj7Sw3) 

are relevant to operational forest management but have not yet been detected through 

remote sensing in a robust and accurate approach. Evidently, differences in paradigms 

exist in terms of data capture and the representation of information between remote 

sensing approaches and forest inventories for an operational forest management level. 
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Figure 4: Plate highlighting the diversity of stand types and understory compositions.  A: Mixed jack pine 

and black spruce stand (overstory: Pj9Sb1, understory: Pj7Sb3). B: Mixed jack pine and black spruce stand 

(overstory: Pj7Sb3, understory Sb8Pj2). C and D: Mixed jack pine and white spruce stand (overstory: 

Pj9Sw1, understory: Sw6Pj3Bw1). Species composition labels based on Alberta Vegetation Inventory 

Standards. Note the complexity of the background vegetation. 
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2.6. Summary 

  Regarding the direct and indirect impacts of climate change on the North 

American boreal forests, an increased understanding of the factors that influence its 

composition and structure is critical for the protection of social, environmental, and 

economic forest values. Although aerial photo-interpretation is regarded as the most 

accurate method to inventory forests, it is cost prohibitive over large, remote forests, such 

as in the Northwest Territories. Because remote sensing may be used to supplement 

current forest inventory data, the overall goal of this review was to provide an overview 

of the potential and limitations of remote sensing to derive the spatial distribution of tree 

species within a northern boreal forest context. This review focused on techniques, which 

depict the distribution of tree species through discrete classification approaches and 

continuous estimates of vegetation cover. 

  A wide range of sensors and data processing methods have been used to discretely 

estimate the distribution of tree species, with varying degrees of success. With regards to 

Landsat TM/ETM+ imagery, the highest similarities with reference data have been 

obtained through discriminant analysis, the Enhanced-Classification method, and 

radiative transfer models. Although high-spatial resolution sensors allow individual trees 

to be mapped, only through image segmentation at the stand or crown level can this 

spatial refinement be effectively exploited. Similar classification accuracies have been 

reported for both multispectral and hyperspectral airborne imagery, while hyperspectral 

spaceborne sensors of the latter type do appear to perform better than multispectral 

sensors. In general, remote sensing techniques have had only moderate success in 

approximating the information derived through current forest inventory methods. This is 
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due to the spectral similarities between tree species and the large intra-species variation 

in spectral response. 

  To derive continuous estimates of the relative proportion of  tree species a limited 

number of processing methods have been described, namely: 1) partial least squares 

regression and 2) spectral mixture analysis. Both methods have derived estimations with 

relatively low RMS errors (i.e., < 20 %), which fall within the expected error of 

inventories through aerial photo-interpretation. However, due to the lack of studies 

elsewhere in the boreal forest the capabilities of these methods remain to be investigated. 

Particularly the abilities of MESMA to account for background reflectance and shade 

may be exploited to discriminate between tree species. Its potential has not yet been 

evaluated in boreal forests. The assessment of MESMA’s capabilities in northern boreal 

forest conditions may thus bring considerable knowledge gains. 

  Uncertainty exists in the capabilities of remote sensing techniques to derive the 

distribution of tree species in a northern boreal forest context. Due to the absence of 

remote sensing studies conducted in this setting the results presented in this review may 

not be representative of what can be achieved in a northern boreal forest setting. The 

lower availability of hyperspectral and multi-source data in northern Canada and the 

possible sensitivity of imagery to the various field descriptions of species composition 

further increases the uncertainty in the role these approaches may play in the derivation 

of information at an operational forest management level. The robustness of the 

highlighted approaches to greater understory reflectance and stand structural variation 

remains to be investigated. 
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CHAPTER 3 

Study Area 

 The purpose of this Chapter is to describe the characteristics of the study area, 

including its location and both abiotic (e.g., climate, geomorphology, soils) and biotic 

components of the landscape (e.g., forest vegetation, non-forest cover types). To place to 

study area in context with the circumpolar boreal zone, a brief description of the boreal 

zone at an international, national, and Ecozone scale is provided. 

3.1. The Boreal Zone 

  The boreal zone is a circumpolar vegetation zone located at high northern 

latitudes in countries including Canada, Russia, United States of America (Alaska), and 

Scandinavia, and covers approximately 1,890 billion ha (Brandt et al., 2013). The land 

cover in this zone can be characterized primarily by forests and other wooded land, as 

well as lakes, rivers, and wetlands. The trees within the boreal zone belong to cold-

tolerant coniferous and deciduous species, and include the genera Abies (firs), Larix 

(larches), Picea (spruces), Pinus (pines), Populus (poplars), and Betula (birches) (Weber 

& Van Cleve, 2005). Over North America, the boreal forest forms a broad uninterrupted 

crescent from Newfoundland to Alaska, which covers approximately 627 million ha and 

represents the most extensive forest-cover type on the continent (Brandt et al., 2013).  

 The Canadian boreal forest constitutes approximately 88 % of the North 

American boreal forests, and 28 % of the entire circumpolar boreal zone (Brandt et al., 

2013). The boreal forest in Canada covers an estimated 552 million ha, of which forests 

and other wooded land are the predominant land-cover types (270 million ha and 39 

million ha, respectively) (Brandt et al., 2013). Its distribution ranges from Newfoundland 
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to the Arctic coast, extends into British Columbia, and includes the Atlantic Provinces, 

Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, as well as the 

Yukon, Nunavut, and Northwest Territories (Figure 5). Eight ecological zones can be 

identified in the boreal region based on landform and climate, major soil orders, and 

broad vegetation types, and include the Cordillera (Boreal, Taiga, Montane), Shield 

(Boreal and Taiga), and the Plains (Boreal, Taiga, Hudson) (Ecological Stratification 

Working Group, 1995). The Cordilleran Ecozones are typical of vegetative mountainous 

regions, the Shield Ecozones cover the continental Precambrian Shield, and the Plains 

Ecozones are characterized by gently rolling lowland regions. The distinction between 

the Boreal and Taiga Ecozones is related to the length of the growing season, climate, 

and soil productivity, whereby the latter Ecozones have a shorter growing season, colder 

winter temperatures, lower soil productivity, and contain more open canopy forest with 

thinner trees (Ecological Stratification Working Group, 1995). 

 

Figure 5: Distribution of the Canadian boreal zone (Brandt, 2009) with Ecozones. 
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 The Taiga Plains Ecozone, which consists of the Mackenzie River and its 

tributaries, is bordered by Great Slave Lake and Great Bear Lake to the west, Cordilleran 

Mountains to the east, the Boreal Plains Ecozone to the south, and the Mackenzie Delta 

to the north (Ecological Stratification Working Group, 1995). This Ecozone covers over 

480,000 km
2
, drains in the Arctic Ocean, contains over 100,000 water bodies as well as 

extensive peatlands and permafrost (Ecosystem Classification Group, 2007).   

3.2. Location of the Study Area 

  Most of the timber productive forests occur within the southern portion of the 

Taiga Plains Ecozone, which is referred to as the Taiga Plains Mid-Boreal Ecoregion 

(Ecosystem Classification Group, 2007). In this Ecoregion an 18-km by 19-km region of 

interest was selected based on the presence of representative tree species and forest 

stands, accessibility of the terrain, availability of suitable, cloud-free satellite imagery, 

and the availability of ground reference data. The study area is located 20 km south of 

Fort Providence, NWT in the Deh Cho Region (Figure 6), within the Universal 

Transverse Mercator (UTM) Zone 11N, and is bounded by 458,353 mE and 6,773,736 

mN on the southwest to 476,148 mE and 6,792,690 mN on the northeast. The study area 

can be found on the eastern half of the National Topographic System (NTS) 1:50,000 

map sheet 85F/04, and can be characterized as the Great Slave Lowland Mid-Boreal 

Ecoregion according to the Ecosystem Classification Group (2007).  
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Figure 6: Location of the study area with QuickBird extent inset. 

3.3. Climate 

  The Taiga Plains Mid-Boreal Ecoregion is characterized by the mildest climatic 

conditions in the Northwest Territories with short, cool summers, and long, cold winters. 

Average temperatures generally range from -28 °C in January to 16.5 °C in July, with a 

mean annual temperature ranging between -2.0 °C to -5.5 °C (Ecosystem Classification 

Group, 2007). The mean annual precipitation ranges between 310 mm and 410 mm, 

whereby the wettest period occurs between June and August. With regards to long-term 

climatic trends in the Mackenzie District, an increase of 2.4 °C in annual mean 

temperature has been documented between 1948 and 2011 (Environment Canada, 2011), 

whereby in a similar period the maximum temperature of the hottest month and minimum 

temperature of the coldest month increased by 0.7 °C and 5.5 °C, respectively (Lemprière 

et al., 2008). A trend of increasing annual precipitation (+ 23 mm) has also been 

documented (Lemprière et al., 2008).  
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3.4. Geomorphology and Soils 

  The study area is located in a region primarily composed of Upper Devonian 

bedrock, including shale and calcareous sandstone and siltstone (Day, 1968), and 

whereby the surficial geology is predominantly influenced by glacial activity. The entire 

study area was once covered by the Laurentide ice sheet during the last glaciation period, 

which formed Glacial Lake McConnell upon deglaciation. Both the ice sheet and glacial 

lake left fine- to coarse-textured glaciolacustrine and glacial till materials on upland areas 

(Day, 1968). Wave-generated beach ridge features can also be observed in the southern 

portion of the study area (Figure 7), which typically consist of course-textured alluvial 

and wave-washed till deposits (Ecosystem Classification Group, 2007). The soils of the 

upland regions consists of the Brunisolic (e.g., beach deposits) and Luvisolic (well-

drained wooded areas) Orders, while poorly drained lowland areas consists of various 

Gleysolic (e.g., adjacent to wetlands), Organic (e.g., peat), and Crysolic (e.g., permafrost) 

soil orders (Day, 1968; Ecosystem Classification Group, 2007). The distribution of 

permafrost in the region is patchy and largely confined to organic terrain, and no 

observable trend in permafrost temperature and melting increase has been detected since 

1984  (Smith, 2011). In general, the study area can be characterized by gently rolling 

glaciolacustrine plains overlaid by peatlands (Figure 8; Ecosystem Classification Group, 

2007). 
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Figure 7: Beach-ridge landscape features  (Government of Northwest Territories, 2005). 

 
Figure 8: Gently rolling plains with peatlands  (Government of Northwest Territories, 2006b). 
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3.5. Vegetation and Wetlands 

  The tree species considered in this study are distributed across the landscape in 

response of micro-topographical effects (Ecosystem Classification Group, 2007). Early to 

mid-successional mixed-wood forests consisting of white spruce (Picea glauca), balsam 

poplar (Populus balsamifera) and trembling aspen (Populus tremuloides) are dominant 

along the alluvial flats adjacent to rivers and contain diverse herb and shrub understories 

(Figure 9a). In these locations, late successional stands are characterized by white spruce 

and herb-feathermoss understories (Figure 9b). Stands consisting of jack pine (Pinus 

banksiana) and trembling aspen are generally found in dry, coarse-textured soils typical 

of beach ridges, and have sparse shrub, forb, and reindeer lichen (Cladina mitis) 

understories (Figure 10a) . Poorly drained stands are populated by black spruce (Picea 

mariana), tamarack (Larix laricina) and white birch (Betula papyrifera). The understory 

of these sites typically consists of Labrador tea (Ledum groenlandicum), mosses 

(Sphagnum spp., Drepanocladus spp.), leatherleaf (Chamaedaphne calyculata), and 

sedges (Carex spp.) (Figure 10b). Wildfire initiated by lightning strikes is the primary 

forest disturbance agent in the region whereby it alters the successional pathways of 

stands (Government of Northwest Territories, 2011b). However, no forest fire has been 

recorded in the study area since monitoring began in 1965, and the majority of forest 

stands are estimated to be at least 90 years old (GNWT Forest inventory, 1994; Canadian 

Forest Service 2005 ground inventory plots). Besides forests, the region is covered by 

thermokarst lakes and extensive fen complexes that are either treed, shrub, or sedge 

dominated (Ecosystem Classification Group, 2007).  
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A: White spruce and aspen stand with dwarf birch, juniper, willow, buffalo berry understory. 

  
B: White and black spruce stand with feather moss, prickly rose, green alder, juniper understory. 

Figure 9: White spruce mid-succession (A) and late successional (B) overstory and understory 

compositions. 
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A: Well-drained jack pine stand with black spruce, reindeer lichen, juniper, bearberry understory. 

  
B: Poorly drained black spruce stand with sphagnum moss, Labrador tea, lichen understory. 

Figure 10: Jack pine (A) and black spruce (B) overstory and understory compositions. 
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CHAPTER 4 

Classification Using Reference Endmembers 

4.1. Introduction 

  Boreal forests in North America represent a major biogeoclimatic zone, which 

regulates regional and global climates, cycles nutrients, acts as a reservoir for biological 

and genetic diversity and provides renewable resources, habitat, and recreational 

opportunities (Brandt, 2009). Given the importance of the North American boreal forest 

and its size relative to the entire circumpolar boreal zone (i.e., 25 % to 32 %; Brandt, 

2009), an increased understanding of the distribution, composition, and structure of these 

forests is critical for sustainable forest management. This information is especially 

important with regards to long-term changes in temperature and precipitation patterns 

(Williamson et al., 2009; Environment Canada, 2011; Price et al., 2013) and the 

expansion and intensification of natural disturbances in the boreal zone (e.g., Krawchuk 

& Cumming, 2010; Safranyik et al., 2010; Peng et al., 2011). Because of these impacts, 

the acquisition of spatially referenced forest information is highly relevant to understand 

the rate of change, predict the outcome of these impacts on ecosystem function and 

diversity, and identify proper adaptation and mitigation strategies (Kurz et al., 2013; 

Lemprière et al., 2013). 

  Natural resource management agencies utilize spatially referenced inventory 

systems that result in the delineation of forest stands by polygons of similar species 

composition, height, and crown closure (Leckie & Gillis, 1995; Tomppo et al., 2010). 

Species composition, defined as the relevant proportion of tree species in a stand (Gillis 

& Leckie, 1993), is typically derived through an aerial photo-interpretation process 
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whose end goal is a forest inventory map (Hall, 2003). Mapping the species composition 

at a particular location is most relevant to operational forest management (Leckie, 1998), 

and is required to model stand volume and biomass (Boudewyn et al., 2007), net primary 

productivity (Tang et al., 2010), nutrient cycling (Prescott, 2002), carbon budgets (Kurz 

et al., 2013), and stand dynamics (Cogbill, 1985; Amos-Binks et al., 2010). While the 

aerial photo-interpretation approach has been changing with softcopy methods now being 

applied to digital photography, it remains a technology whose limits are being 

challenged, and it is cost prohibitive over large, remote forests such as those in northern 

boreal regions (Falkowski et al., 2009). The distance from major urban areas and general 

lack of infrastructure in northern boreal regions has resulted in very limited forest 

inventories. Therefore, it is partially in these regions that forest inventories must improve 

for regional and global carbon sink modeling (Pan et al., 2011; Chen et al., 2012).  

  To alleviate information gaps, forest management agencies increasingly rely on 

spatial data of land cover derived from remote sensing data (Franklin, 2001; Turner et al., 

2003), as it allows frequent measurements of forests over a large geographic area. A 

recent review of the literature (Tables 3, 4, and 5) found that numerous remote sensing 

approaches have been documented to classify forest land cover at the tree species level in 

the North American boreal region and noted that a wide range of accuracies has been 

reported as a result of the numerous data sources and processing procedures that have 

been used in a variety of compositional and structural forest settings. With regards to 

Landsat TM/ETM+ imagery, the highest agreements between tree-species classifications 

and reference data have been obtained through discriminant analysis, the Enhanced-

Classification method, and radiative transfer models (Franklin, 1994; Beaubien et al., 
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1999; Peddle et al., 2004). Although high-spatial resolution sensors allow individual trees 

to be detected, only through image segmentation at the stand or crown level can this 

spatial refinement be effectively exploited (Gougeon, 1995a; Chubey et al., 2006; Mora 

et al., 2010). The range of accuracies reported for multispectral airborne imagery (e.g., 61 

- 91 %; Franklin, 1994; Gougeon, 1995a; Coburn & Roberts, 2004) is similar to those 

reported from analysis of hyperspectral airborne imagery (e.g., 64 - 75 %; Martin et al., 

1998; Sandmeier & Deering, 1999; Ustin & Xiao, 2001) for the same number of tree 

species classes (Chapter 2). However, direct comparisons between spaceborne 

multispectral sensors (e.g., Landsat ETM+) and hyperspectral sensors (e.g., EO-1 

Hyperion) indicate that hyperspectral sensors outperform multispectral sensors 

(Goodenough et al., 2003; Staenz & Held, 2012). In general, optical remote sensing 

techniques have had only moderate success in mapping the distribution of tree species 

due to the spectral similarities between tree species and the large intra-species variation 

in spectral response as a result of complex forest canopies. 

   The literature review highlighted that remote sensing capabilities to derive tree 

species information of northern boreal forests are unknown due to the absence of studies 

in these regions (Chapter 2, Figure 1). The performance of the documented remote 

sensing approaches remains to be investigated in forests characterized by lower density, 

open stands where understory ground vegetation is a significant component of pixel-level 

reflectance and where stand structural variation is high. A classification approach based 

on spectral mixture analysis (SMA; Adams et al., 1993; Roberts et al., 1998), whereby 

mixed pixels are decomposed to physically meaningful components of sunlit canopy, 

background, and shadow (i.e., endmembers), may be suited to obtain species information 
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about northern boreal forests. The selection of appropriate endmembers, however, is 

important for successful spectral mixture analysis (Tompkins et al., 1997). With respect 

to the background component of northern boreal forests it is yet to be determined whether 

this can be represented by endmember spectra of the most dominant understory species in 

a stand or if the endmember spectra must consider the heterogeneity of the understory 

(Figures 9 and 10). Because the fractional cover of understory species is often not known, 

requires field observation, and is difficult to estimate consistently. Therefore, it was of 

interest whether endmember spectra require this information to approximate the 

background heterogeneity.  

 Another uncertainty is the degree to which information derived through remote 

sensing approaches can be integrated into current forest inventories, as image 

classifications of boreal forests at the species level generally involve the discrete labeling 

of pixels that constitute the greatest proportion within a stand (i.e., the leading species). 

This indicator is different than what professional foresters refer to as species 

composition, which indicates the relative proportion of most or all tree species in a stand 

to the nearest 10 percent (Gillis & Leckie, 1993). The definition and approach used to 

determine species composition (and thus the leading species) differ among jurisdictions 

and in the literature, whereby it can be measured per percentage crown closure, basal 

area, stem density, or gross volume (Gillis and Leckie, 1995). These definitions may not 

provide the same relative abundance estimates and identify the same tree species as 

dominant in a stand. It is therefore important to determine whether remotely sensed 

imagery is sensitive to how the leading species is characterized on the ground. Although 

Congalton and Biging (1992) found a strong agreement between visual calls of the 
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leading species based on stand volume and basal area field measurements, no further 

research has been conducted regarding this matter. To address unknowns regarding the 

sensitivity of remotely sensed imagery to field-based description of leading species and 

the influence of the type of background endmember used for SMA, this study addressed 

the following two research questions: 

1. Is the determination of leading species from Landsat TM imagery influenced by 

its description from field-based inventory metrics? 

2. Does the use of background endmembers defined by single species or mixed 

species spectra influence the discrimination of leading species? 

 

4.2. Methods 

4.2.1. Study Area 

  A study area within the Northwest Territories, Canada was selected based on the 

presence of representative northern boreal tree species, accessibility of the terrain, 

availability of suitable, cloud-free satellite imagery, and the availability of ground-

reference datasets. The study area is located within the Taiga Plains Ecozone, an Ecozone 

which covers the western Northwest Territories, the northeast corner of British Columbia, 

and northern Alberta (Ecological Stratification Working Group, 1995). Most of the 

timber productive forests occur within the southern portion from which an 18-km x 19-

km study area was located 20 km south of Fort Providence, NWT (Figure 6). This region 

belongs to the Great Slave Lowland Mid-Boreal Ecoregion according to the Ecosystem 

Classification Group (2007).  

  The tree species considered in this study are distributed along environmental  

gradients of soil conditions, drainage, micro-topographical effects, and disturbance 

histories  (Fowells & Means, 1990; Ecosystem Classification Group, 2007). Early to mid-
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successional mixed-wood forests, consisting of white spruce (Picea glauca), balsam 

poplar (Populus balsamifera) and trembling aspen (Populus tremuloides), are dominant 

along the alluvial flats adjacent to rivers, and contain diverse herb and shrub understories 

(Figure 9a; Ecosystem Classification Group, 2007). In these locations, late successional 

stands are characterized by white spruce and herb-feather moss understories (Figure 9b). 

Dense to open stands consisting of jack pine (Pinus banksiana) and trembling aspen are 

found in dry, coarse-textured soils associated with beach ridges, and typically have sparse 

shrub, forb, and reindeer lichen (Cladina mitis) understories (Figure 10a). Colder, poorly 

drained sites are populated by black spruce (Picea mariana), tamarack (Larix laricina) 

and white birch (Betula papyrifera), whereby the understories typically consist of 

Labrador tea (Ledum groenlandicum) and mosses (Sphagnum spp., Drepanocladus spp.) 

(Figure 10b). 

4.2.2. Data Collection 

4.2.2.1. Imagery 

  For this study, imagery was needed which can be used cost-effectively at an 

operational forest-management level. Therefore, a Landsat-5 TM (Table 6) scene 

acquired on July 8, 2004 was downloaded from the United States Geological Survey data 

archive using the GLOVIS interface (Path/Row: 48/17). This scene was the most 

appropriate with respect to the timing of the forest inventory data (July 2005) and the 

phenological stage of the spectral field data (July 16-22, 2013).  Landsat-5 TM radiance 

data were atmospherically corrected to surface reflectance using Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) in ENVI 4.8 with a Sub-Arctic 
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Summer atmospheric model and rural aerosol model. Band 1 and 2 were excluded to 

reduce the influence of atmospheric haze (Chavez, 1988). 

Table 6: Landsat-5 TM sensor characteristics. 

Sensor Specifications TM Bands 

Launch March 1, 1984 Band number Wavelengths (µm) 

Number of bands  7 1 Blue* 0.45 - 0.52 

Spectral range 0.45 – 12.5 µm 2 Green* 0.52 - 0.60 

Revisit time 16 days  3 Red 0.63 - 0.69 

Image size 185 km x 172 km 4 Near-IR 0.76 - 0.90 

Orbit Sun-synchronous (705 km) 5 Near-IR 1.55 - 1.75 

Orbit period 98.9 min 6 Thermal* 10.4 - 12.5 

Status Decommissioned (2013) 7 Mid-IR 2.08 - 2.35 

Source: United States Geological Service (2013). * Bands were not included in the analysis. 

4.2.2.2. Forest Inventory Data 

  Forest inventory data were collected in July 2005, whereby 20-m x 20-m plots 

were distributed in stands of jack pine, white spruce, black spruce, trembling aspen, and 

various mixed-woods (Hall & Skakun, 2007). Forest plots were located at least 100 m 

away from roads, cut lines, water bodies, and non-forested areas, and were generally 

within 500 m of the nearest road for ease of accessibility. Plot centres were established 

using a pigtail with flagging tape, after which the locations were recorded using a 

Trimble differentially corrected GPS system (UTM Zone 11, NAD83). Measuring tape 

and a compass were used to mark the cardinal (i.e., N, W, S, E) and intercardinal (i.e., 

NW, SW, SE, NE) points of the plot with flagging tape and to determine plot boundaries. 

The species, diameter at breast height, and height were recorded for every tree that was at 

least 1.3 m in height and 5 cm in diameter breast height. Because northern boreal forest 

stands typically contain a very large number of small trees, the same measurements were 

recorded for a selection of small trees (i.e., diameter breast height less than 5 cm, and a 

height of 1.3 m or greater) albeit within a smaller 10-m x 10-m quadrant. The stand 

attribute estimations of small trees were subsequently multiplied by 4 to represent the 
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entire contribution of the small trees within the plot. Crown-closure estimates were 

obtained at the intercardinal corners of the plot (n = 4) and within the plot at mid-corner 

locations (n = 5) using a spherical densitometer. Fractional cover of understory species 

was visually estimated for the six most dominant species in 5-% increments for each plot. 

  Using these data, the species composition of each plot was determined using two 

field-descriptions: 1) per fraction of total basal area of all trees >1.3 m in height, 5 cm in 

diameter, i.e., “All trees”, 2) per fraction of total basal area of the dominant/co-dominant 

trees, i.e., “Dom/Co-dom”. Lorey height was selected as the threshold to identify the 

dominant and co-dominant trees, and is defined as the basal area weighted average tree 

height at plot scales (Naesset, 1997). An ocular stand call of the overstory (“Ocular AVI 

Call”) was also made to record the species composition, height, and crown closure of the 

stand following the Alberta Vegetation Inventory Interpretation (AVI) Standards (Alberta 

Sustainable Resource Development, 2005). AVI is an inventory method by which forest 

inventory data is collected on the ground or from aerial imagery. Lastly, species 

composition information for each stand was also extracted from a photo interpretation of 

a 1:20,000 black/white aerial photo (1994), which was conducted by a third-party 

contractor and on file at the GNWT Forest Management Division (“GNWT Photo”).  

  A total of four different field-based descriptions of species composition were 

acquired, which were used to identify the leading species. Because stands are inherently 

open from a spaceborne sensor perspective, of interest was to which field-based 

description the imagery was most sensitive to. The “All trees” field-based description 

represents the leading species when basal measurements of all trees above a minimum 

threshold were included in the determination of species dominance. Spaceborne sensors 



53 
 

may not receive photons from shaded individuals in the lower canopy and, therefore, the 

“Dom/Co-dom” indicator includes a minimum height threshold to limit the determination 

of species dominance to only those individuals that were present in the upper canopy. As 

basal measurements are time consuming, the “Ocular AVI call” description identified the 

leading species through a faster visual estimation of the overstory. The “GNWT Photo” 

indicator expressed the leading species derived through an aerial photo interpretation, and 

enabled the comparison with the conventional method of large-area forest inventories. 

4.2.2.3. Spectral Field Data 

  Spectral endmember data were collected within the forest inventory plots from 

July 16 to 22, 2013, which coincided with the same phenological stage of the Landsat-5 

TM imagery. An Analytical Spectral Devices (ASD) Field Spec Pro spectroradiometer 

was used to record the spectral properties of vegetation samples between 350 – 2,500 nm 

within three hours of local solar noon. Sunlit-background endmember spectra were 

measured in-situ at ground-level, with sunlit-canopy endmember spectra obtained from 

samples extracted from the tree canopy that were arranged in 30-cm diameter optically 

thick stacks to ensure sufficient target coverage given the sensor field-of-view (FOV) 

(McCoy, 2005). Optically thick stacks allow for consistent sampling of vegetation, albeit 

that the natural structure and geometry of branches is not preserved and that reflectance is 

overestimated (Peddle, 1998; Peddle & Smith, 2005). Instrument calibration was 

performed using a levelled Spectralon panel (Labsphere Inc.), after which multiple 

measurements were taken in reflectance mode at various FOV by raising or lowering the 

pointed fore-optic lens (25°) between 15 cm and 40 cm. At these heights, the FOV ranged 

between 7 cm and 19 cm in diameter. Whenever possible, measurements were taken 
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when direct solar flux was the dominant incident radiation, and instrument calibration 

was performed for each vegetation target (< 5 minutes) to avoid differences in 

illumination conditions (Goetz, 2012). The dense understories typical of northern boreal 

forests did not permit the pistol grip to be mounted on a tripod. However, it remained 

handheld in a near-nadir orientation for each sample (Figure 11). The operator was 

positioned behind the Spectralon panel and target directly in line with the solar irradiance 

to maintain a consistent viewing geometry relative to the solar azimuth throughout the 

sampling period (McCoy, 2005). Besides measurements of individual understory species, 

integrated spectra were collected whereby multiple understory species were included in 

the FOV to approximate the heterogeneity of the background component when individual 

cover fractions were not known (Figure 12).  

 
Figure 11: White reference measurement (left) and target measurement (right). 

 
Figure 12: Optically thick stack of jack pine branches (left) and the area of an integrated 

measurement of orange moss and Labrador tea (right).  Spectralon panel included for reference. 
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4.2.3. Data Processing 

4.2.3.1. Field Spectral Data 

  Post-processing of spectral data was necessary to evaluate the quality of 

individual spectra and to prepare the data for spectral mixture analysis. Using metadata 

about the illumination conditions during spectral measurements, the consistency of all 

collected spectra (n = 559) were assessed. Spectra were deemed to be of sufficient quality 

when acquired during: 1) clear sky conditions, 2) or when clouds present did not obstruct 

direct sunlight, 3) or when no atmospheric noise could be seen in the spectra collected 

when the sun was obstructed. A total of 383 spectra were collected under such conditions, 

belonging to 7 tree species identified during the fieldwork campaign as well as 16 

individual understory species and 12 mixed understory species groups (Table 7). A total 

of 129 tree species spectra, 134 individual background spectra, and 120 integrated 

background spectra, were further post-processed and represent many replications for each 

species. To account for the small percentage of incident irradiation not reflected by the 

Spectralon panel (Peddle et al., 2001), a second panel with known reflectance properties 

was used to obtain calibration coefficients using an integrating sphere with an 

illumination source angle of 8° to produce a hemispherical geometry
1
. These calibration 

coefficients were multiplied by the measured reflectance of each acquired spectra. Jumps 

in the spectra between the bordering regions of the three ASD sensors was resolved 

                                                           
 

 

 

1
 C. Coburn, personal communication, August 8, 2013 
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through a multiplicative correction (Dorigo et al., 2006), after which the spectra were 

resampled to Landsat-5 TM spectral bands using the corresponding spectral response 

functions in ENVI 4.8. 

Table 7: Number of endmember spectra for the sunlit canopy and background components. 

Sunlit canopy 
1
  

(n = 129) 

Sunlit background 

Single Species 

(n = 134) 
 
 

 Integrated Species 

(n = 120)  

White spruce  Green moss   Reindeer lichen + Moss  

Black spruce  Leather lichen   Reindeer lichen + Rose + Common bearberry  

Jack pine  Reindeer lichen  Graminoid species + Litter  

Aspen Sphagnum moss  Reindeer lichen + Graminoid species  

Larch Labrador tea   Brown moss + Leather lichen  

White birch  Yellow moss   Reindeer lichen + Red bearberry + Northern toadflax  

Poplar Crowberry   Yellow moss + Common bearberry + Graminoid species  

 Brown moss   Rose + Yellow moss + Juniper  

 Willow   Reindeer lichen + Rose + Common bearberry + Toadflax 

 Juniper   Reindeer lichen + Juniper + Common bearberry  

 Black moss   Reindeer lichen + Yellow moss + Common bearberry  

 Red bearberry   Sphagnum moss + Labrador tea  

 Green alder    

 Snowberry    

 Yellow-marsh 

saxifrage  

  

 Buffaloberry   

 

4.2.3.2. Spectral Mixture Analysis 

  Spectral mixture analysis (SMA) quantifies the proportion of each pixel that is 

occupied by a single set of the pure features occurring on the ground (i.e., endmembers), 

whereby the output is a fraction image for each endmember along with the error of fit 

(Adams et al., 1993). For each pixel, this model can be derived as follows: 

    ∑           
 
       ,               (1) 

where the spectral mixture R’i is the encoded reflectance in band i for each pixel, and 

modeled as the sum of the reflectance in band i for N image endmembers k, whereby 

each endmember is weighted by fraction fk.  The εi term represents the remainder between 
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the measured and modelled reflectance, and is expressed as a band residual. The fractions 

of endmembers that are allowed during SMA can be set to unconstrained (from –∞ to ∞) 

or fully constrained (i.e., between 0 and 1). The condition that the fractions of 

endmembers must be summed to 1 for each pixel (i.e., fully constrained), or not 

(unconstrained) can also be set, whereby weakly constrained unmixing (i.e., sum of 

fractions ≤ 1) have been shown to improve unmixing results when not all endmembers 

are known (Shang et al., 2008). Model fitness can be assessed either by using the residual 

term or via the root mean square error (RMSE; Roberts et al., 1998) over the total number 

of bands (ν): 

        √∑     
  

    ⁄       (2) 

  For this study, Multiple Endmember Spectral Mixture Analysis (MESMA; 

Roberts et al., 1998) was chosen as an alternative to conventional SMA, as MESMA is 

not constrained by a single set of endmembers and allows the number and types of 

endmembers to vary on a per-pixel basis to account for spatial heterogeneity. Because 

MESMA is not constricted by the number of spectral bands, it has been successfully 

applied to obtain species abundance maps of a variety of different species in vegetated 

areas such as California (Dennison & Roberts, 2003b), Australia (Youngentob et al., 

2011), and Hawaii (Somers & Asner, 2012). MESMA was facilitated by the open-source 

software plugin VIPER Tools available for ENVI (Roberts et al., 2007). It estimates sub-

pixel fractions of endmembers and provides a raster image of the endmember models of 

best fit that represents a per-pixel land-cover classification image. MESMA shares 

characteristics of both fully constrained and unconstrained unmixing, whereby the sum of 

the fractions must equal 1.00, but where the individual endmember fractions are allowed 
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to be less than 0.00 and greater than 1.00 (i.e., partially constrained unmixing). A fraction 

criteria of -10 % and 110 % was empirically determined to optimize vegetation class 

accuracies by permitting MESMA to consider models that fit the measured reflectance of 

a pixel despite slightly physically unrealistic endmember fractions (Dennison & Roberts, 

2003a; Thorp et al., 2013). A maximum RMSE criterion of 2.5 % was used to ensure that 

a candidate model was selected for the majority of pixels and to guarantee reasonable 

confidence in the accuracy of the candidate model selected (Roberts et al., 1998).  

  The Landsat TM imagery was unmixed using three-endmember models, whereby 

all possible combinations of sunlit canopy spectra of the four most dominant tree species 

(n = 93) and individual species background spectra (n = 134) were iteratively computed, 

and whereby the best model based on RMSE was selected as a combination of sunlit 

canopy, background, and shadow components. Because understories characteristic of 

northern boreal forests are typically dominated by more than one species, the imagery 

was also unmixed using combinations of sunlit canopy spectra (n = 93), integrated 

background spectra (n = 120), and shadow. To model the average background reflectance 

of the forest stands, the weighted average of individual understory spectra was calculated 

for each plot based on 2013 ocular field estimations of ground cover. Changes in 

understory diversity and relative abundance of species between 2005 and 2013 were 

expected, but due to the slow growth and absence of wildfire and other large forest 

disturbances in the study area (Hart & Chen, 2006), relative differences are assumed to be 

minor and within the expected error envelope of visual estimations. These weighted-

average sunlit-background spectra were used in combination with all possible sunlit- 

canopy spectra and shadow in the third unmixing model. The rationale for the 
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development of three different understory spectral libraries was to determine whether the 

endmember spectra should consider the heterogeneity of the understory (i.e., single 

spectra versus spectra of mixed species), and if cover proportions of understory species 

must be known to approximate this diversity (integrated library versus weighted average 

library). After unmixing, the classification images produced by MESMA were regrouped 

to the four dominant species in the ground-reference dataset (i.e., white spruce, black 

spruce, jack pine, and aspen). 

4.2.4. Accuracy Assessment 

  To assess the accuracy of the per-pixel image classification produced by 

MESMA, the shapefile of the inventory plots were converted to a point shapefile using 

the centroid function in ESRI ArcMap. To test whether differences exist in classification 

accuracy among field-based descriptions of leading species, the four ground-reference 

indicators of leading species were entered in the attribute table of the shapefile. This 

shapefile was used in the contingency matrix to determine the overall accuracy, the 

producer and user accuracy, and the Kappa estimate using the ground-reference plots. 

The overall accuracy of each classified image is the sum of the correctly classified plots 

divided by the total number of plots assessed (Congalton & Green, 2009). Individual 

class accuracies are represented by the producer accuracy (errors of omission) and user 

accuracy (errors of commission). The Kappa statistic is an estimate derived through 

Kappa analysis (Cohen, 1960), which is a measure of the proportional improvement by 

the image classifier over a purely random assignment of pixels to classes (Congalton & 

Green, 2009). The Kappa estimate is recognized as a powerful accuracy measure, 

because it takes non-diagonal elements of the contingency matrix into account and 
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addresses the probability of chance agreement. It can be used along with its variance to 

compare the accuracy of two classified images and determines if the contingency 

matrices are significantly different at a particular confidence level (CL) using the 

standard normal deviate (e.g., 95-% CL; Z-critical value = 1.96; Congalton & Green, 

2009). Accuracy estimates were compared at a global level (i.e., all ground-reference 

plots combined) and for plots grouped by crown closure using ground observations of 

crown closure and range definitions from the Alberta Vegetation Inventory (Table 8). 

Table 8: Crown closure classes of the Alberta Vegetation Inventory. 

Crown Closure (%) Stand call class Authors’ Interpretation 

6 - 30 A Very open forest 

31 - 50 B Open forest 

51 - 70 C Medium dense forest 

71 - 100 D Dense forest 
Source: Alberta Sustainable Resource Development (2005) 

4.3. Results 

4.3.1. Field Inventory Data 

  A total of 48 field-inventory plots were established whereby their distribution 

highlight site access challenges typical of northern boreal forests (Figure 13). Plots were 

located in both compositionally pure (> 80 % abundance of one species) and mixed 

stands to take into account the heterogeneity of the forests in the study area (Table 9).  

The plots further reflect a wide range of stand structural characteristics common in the 

region. The majority were established in very open (n = 14) to open stands (n = 27) with 

crown closure estimates ranging between 16 % and 61 % (mean = 35 %). The average 

stand height of the inventoried stands was 12 m, with a range between 6 m and 21 m. 

Stem density estimates also indicated that the field inventory plots were selected over a 

wide variety of stands, ranging between 875 stems/ha and 3,600 stems/ha.  
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Figure 13: Distribution of field-inventory plots. 
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Table 9: Species composition and stand structure estimates for field inventory plots. 

 

Species composition 
1
  Stand structure 

2
 

Plot All trees Dom/Co-dom Ocular call GNWT Photo 

 Stand 

Height 

Crown 

closure 

Stem 

Density 

01 Sw9A1 Sw9A1 Sw7Aw2Sb1 Sw7Sb3  15 60 2875 

02 Sw9A1 Sw10 Sw9Aw1 Sb9Sw1  19 59 1075 

03 Sw10 Sw10 Sw10 Sb9Sw1  16 56 2525 

18 Pj5Sb5 Pj8Sb2 Pj10 Sb9La1  7 23 1975 

19 Sb6Pj4 Pj8Sb2 Pj10 Sb9La1  6 21 2675 

25 Pj5Sw5 Pj6Sw4 Pj8Sb2 Sb9La1  9 40 2750 

26 Sb5Pj5 Pj7Sb3 Pj10 Sb9La1  8 39 3550 

27 Sb9La1 Sb8La2 Sb9Lt1 Sb8Sw1L1  7 17 2800 

48 Sw9Po1 Sw10 Sw8Aw2 Sw8Po2  18 61 2075 

49 Sw9A1 Sw9A1 Sw9Aw1 Sw8Po2  19 57 1700 

50 Sw10 Sw10 Sw9Aw1 Sw8Po2  18 53 2000 

51 Sb10 Sb10 Sb10 Sb8La2  8 16 1025 

52 Sb5Sw5 Sw5Sb5 Sb10 Sb10  10 23 1825 

53 Sw10 Sw10 Sb10 Sb10  9 24 2025 

54 Sb7Sw3 Sw8Sb2 Sb10 Sb9La1  9 22 1375 

55 Sb9Pj1 Sb9Pj1 Sb10 Sb9La1  9 27 1700 

56 Sb10 Sb9La8 Sb10 Sb8Sw1La1  10 18 1675 

59 Sw6Sb4 Sw8Sb2 Sb10 Sb9La1  11 32 1575 

60 Pj7Sw3 Pj9Sw1 Pj9Sb1 Pj7Sb2L1  12 27 1850 

62 Pj9Sb1 Pj10 Pj9Sb1 Sb8Pj2  14 31 1950 

63 Pj8Sb2 Pj8Sb2 Pj6Sb4 Pj9Sb1  15 27 1050 

64 Pj10 Pj10 Pj10 Sb8Pj2  15 34 1700 

65 Sb7Pj3 Pj6Sb4 Pj7Sb3 Sb7La2Pj1  8 30 2525 

66 Sb8Pj2 Sb6Pj4 Pj6Sb4 Pj9Sb1  8 30 3600 

67 Pj8Sb2 Pj10 Pj9Sb1 Sb8Pj2  13 34 1625 

68 Sb5Pj5 Pj7Sb3 Pj6Sb4 Sb7La2Pj1  8 31 2575 

69 Sb6Pj4 Pj5Sb5 Pj6Sb4 Sb7La2Pj1  8 25 2675 

70 Sb8Pj2 Sb6Pj4 Pj6Sb4 Sb7La2Pj1  7 28 2825 

71 Sb7Pj3 Sb7Pj3 Pj8Sb2 Sb7La2Pj1  10 32 1650 

72 Sb6Pj4 Pj7Sb3 Pj8Sb2 Pj9Sb1  11 38 2100 

73 Sb9La1 Sb9La1 Sb10Lt1 Sb8Sw1L1  8 24 2450 

74 Pj8Sb2 Pj9Sb1 Pj9Sb1 Pj5Sb3Sw1L1  13 42 2200 

75 Sb8Pj1Sw1 Sb5Pj3Sw2 Sb9Pj3 Sb7L1Sw1Pj1  9 38 2700 

76 Pj10 Pj10 Pj9Sb1 Pj5Sb3Sw1L1  16 37 1075 

77 Pj8Sb2 Pj9Sb1 Pj9Sb1 Pj5Sb3Sw1L1  13 38 2000 

80 Pj6Sw4 Pj5Sw5 Pj8Sw2 Pj5Sb3Sw1L1  14 34 975 

81 Pj8Sw2 Pj8Sw2 Pj7Sb3 Pj5Sb3Sw1L1  16 31 1450 

82 Pj10 Pj10 Pj10 Pj5Sb3Sw1L1  15 31 1525 

83 Pj8Sw2 Pj9Sw1 Pj9Sw1 Pj9Sw1  12 35 1825 

84 Pj10 Pj10 Pj9Sw1 Pj9Sw1  14 34 1375 

85 Pj9Sw1 Pj10 Pj10 Pj10  13 33 1850 

86 Pj8Sb2 Pj8Sb2 Pj9Sb1 Sb6Pj3Sw1  10 34 2600 

87 Pj7Sb3 Pj8Sb2 Pj8Sb2 Sb6Pj3Sw1  10 32 2100 

88 Sw8Pj1A1 Sw8Pj2 Sw8Pj2 Sb8Pj2  17 33 875 

89 A5Sw5 A6Sw3Pj1 Sw6Aw4 Sb8Pj2  18 53 1825 

90 Sw10 Sw10 Sw10 Sw9Sb1  21 44 1275 

91 Sw5Pj5 Pj7Sw3 Sw6Pj4 Sb8Pj2  12 45 2325 

92 Pj6Sw4 Pj7Sw3 Sw6Pj4 Sw9Sb1  15 32 900 
1
 Refer to Chapter 4.2.2.2. for species composition descriptions. 

2
 Stand height (Lorey height) in metres, Crown closure in percentages, and stem density in stems per 

hectare. 
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  The species composition estimates for each of the field-based descriptions were 

used to derive the leading species of stands. The results indicate that the descriptions do 

not provide the same relative abundance estimations nor identify the same tree species as 

dominant in a stand (Table 9). Considerable differences exist in the total number of plots 

belonging to each species (Figure 14), and although the Dom/Co-dom and Ocular AVI 

call indicators appear similar, a total of 10 plots were not labelled the same. These 

observed differences in leading species estimations therefore warrant the objectives of 

this study, and indicate that it was important to determine whether remotely sensed 

imagery was sensitive to how the leading species is characterized on the ground. 

 

Figure 14: Number of plots belonging to each species for the four field-based descriptions. 

 

4.3.2. Classification Accuracies for Entire Ground-Reference Dataset 

  The classification accuracies achieved in this study were relatively low, with 

overall accuracies ranging between 20 % and 50 %, and Kappa ranging from 0.00 to 0.31 

(Table 10), and indicate the considerable challenges to which the leading species can be 
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identified in northern boreal forests using field reflectance spectra. Despite the low 

accuracies, clear patterns of classification results can be highlighted regarding the 

research objectives. Among the different field-based descriptions of leading species, the 

Landsat TM imagery was most sensitive to the indicator of leading species per fraction of 

total basal area of the Dominant/Co-dominant trees. This observation was consistent 

regardless of which understory library was used, which highlighted that consistent results 

can be obtained and that the use of this field-based description warrants adoption in 

subsequent studies.  

  As the leading species identified by the ocular AVI call of the overstory was the 

same as the Dominant/Co-dominant indicator in 38 of the 48 inventory plots, this field-

based description performed second best among the field-based descriptions of leading 

species. The difference between these two indicators was only significant (80-% 

confidence level, Z-score = 1.332, Z-critical = 1.282) for the single understory spectral 

library. This significant difference was primarily due the improved agreement with black 

spruce leading stands, although those stands were highly mixed with jack pine. The 

differences in accuracy between the All Trees and Dom/Co-dom indicators ranged 

between 7 % and 19 % in overall accuracy and 0.09 and 0.26 in Kappa for all understory 

spectral libraries, yet was only significant for the weighted understory spectral library 

(90-% confidence level, Z-score = 1.716, Z-critical = 1.64). These differences were a 

result of a better discrimination of stands where jack pine was dominant in the overstory 

and black spruce was dominant in the understory. As the classification images 

consistently labelled such stands as jack pine dominant, it indicated that Landsat TM is 

most sensitive to trees present in the overstory. The results also highlighted that the 
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image classification show a low agreement with the GNWT Photo indicator of leading 

species (16 % - 34 % overall accuracy). 

Table 10: Classification accuracies per field-based description and understory spectral library. 

Understory 

library 

AVI Call 
1
  All trees 

1
  Dom/Co-dom 

1
  GNWT Photo 

1
 

OA (%) Kappa  OA (%) Kappa  OA (%) Kappa OA (%) Kappa 

Single  27 -0.03  35 0.09  42 0.18  27 -0.04 

Integrated  33 0.04  23 -0.12  33 0.04  16 -0.32 

Weighted  40 0.15  33 0.05  52 0.31  34 0.10 
1
 Refer to Chapter 4.2.2.2. for leading species descriptions. 

OA: Overall accuracy 

 

  The development of three different understory spectral libraries was to determine 

whether the endmember spectra should consider the heterogeneity of the understory and 

if cover proportions of understory species must be known to approximate this diversity. 

Interpretation of the results suggested that the weighted understory library performed the 

best in terms of overall accuracy and Kappa regardless if which field-based description of 

leading species was used (Table 9). For the ocular AVI call reference dataset, a gradual 

but consistent improvement in classification accuracy was observed when the understory 

spectra used for unmixing represent a greater diversity of vegetation components. 

Although this general pattern was not present for the other field-based descriptions of 

leading species, the best results achieved with the weighted spectra highlighted that 

approximated the complex understory vegetation better than the other two libraries, and 

that cover fractions must be known to generate representative spectra. The library 

containing spectra of individual vegetation components mapped the aspen stand 

correctly, but the lack of aspen dominated stands in the study area precludes any 

investigations as to why this is the case. 
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4.3.3. Classification Accuracies of Plots Grouped by Crown Closure 

  To determine whether the field-based description of leading species was 

dependent on crown closure, overall accuracy estimates were stratified by crown closure 

ranges using ground observations of crown closure and range definitions from the Alberta 

Vegetation Inventory. The results highlighted that Landsat TM imagery was most 

sensitive to the indicator of leading species per fraction of total basal area of the 

Dominant/Co-dominant trees regardless of crown closure range, and that this observation 

is consistent among understory libraries (Table 11). The image classification had the 

second highest correspondence to the leading species identified by the ocular AVI call of 

the overstory, yet only for very open (A) and open (B) stands. No differences in overall 

accuracy existed between the All Trees and Dom/Co-dom descriptions of leading species 

for medium dense stands because they identified the same species as dominant. Although 

some differences existed on a case-by-case basis, no apparent pattern of accuracy as 

influenced by crown closure can be highlighted regardless of approach used to 

characterize understory spectra (Table 11).  

Table 11: Overall classification accuracy grouped by crown closure class. 

Understory 

library 

Crown 

closure 
1, 2

 

Overall accuracy for field-based descriptions (%) 

AVI Call All trees Dom/Co-dom GNWT Photo 

Single 

background 

A 21 29 36 29 

B 26 33 41 22 

C 43 57 57 29 

Integrated 

background 

A 50 36 57 29 

B 30 19 26 11 

C 14 14 14 0 

  

Weighted 

background 
  

A 43 43 71 29 

B 33 22 41 22 

C 57 57 57 71 
1
 Crown closure classes: A: 6 % to 30 %, B: 31 % to 50 %, C: 51 % to 70 %.  

2
 Sample size: A (n = 14), B (n = 27), C (n = 7). 
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4.3.4.   Fitness Metrics 

  Besides estimations of classification accuracy, the performance of the understory 

libraries can also be measured through fitness metrics that are indicative of how well the 

modeled reflectance derived through MESMA matches the measured reflectance of the 

pixels. The RMSEs for the single and integrated spectral library were less than 0.00025
 
of 

the original pixel reflectance when all inventory plots were grouped together as well as 

for individual crown closure classes (Figure 15). The RMSEs for the weighted spectral 

library were substantially larger (0.001), but remains small relative to the overall pixel 

reflectance. In general, the RMSE of open stands (B) was twice as large as the RMSE of 

very open (A) and medium dense stands (C). These reported RMSEs were much smaller 

than the established threshold and accepted norm of good results (i.e., 0.025; Roberts et 

al., 2007), and indicate the appropriate use of spectral endmembers in this study. It is 

evident that the higher RMSE for the weighted spectral library is primarily due to the 

larger band residuals in TM band 5 (1.67 μm centre wavelength) and band 7 (2.24 μm 

centre wavelength) located in the shortwave-infrared spectrum (Figure 16).  
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Figure 15: Fitness (in RMSE) of SMA for each understory spectral library. 

 
Figure 16: Mean and standard deviation of band residuals for each spectral library. 
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4.3.5. Distribution of Tree Species 

  Because each individual pixel was classified according to the endmember model 

with lowest RMSE, noticeable pixelation is present in the species distribution maps 

(Figure 17). This pixelation was expected given the complexity of stand structure and 

species composition typical of northern boreal forests, and is not necessarily a mapping 

error. When the single understory spectral library was used for MESMA (Figure 17a), no 

noticeable spatial patterns of tree species can be observed. Figure 17b depicts the image 

classification produced when the integrated spectra of the understory was used, and 

shows the over-representation of black spruce (user accuracy = 17 %) and the under-

representation of white spruce (reduction in producer accuracy from 50 % to 25 % 

between Figures 17a and 17b). In comparison, the image classification generated using 

the weighted understory spectra (Figure 17c) shows more distinct patterns for white 

spruce, black spruce, and jack pine.  
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Figure 17: Tree species distribution maps using field-based spectra. Spectral libraries of the 

understory for: (A) single spectra, (B) integrated spectra, and (C) weighted spectra. A 

multispectral QuickBird image is provided for spatial reference (D). 

  To highlight the challenges regarding the discrimination between tree species, a 

contingency matrix for the image classification results was generated based on the 

weighted understory spectra and the Dominant/Co-dominant indicator of leading species 

as this combination was most successful of those evaluated (Tables 10 and 11; See 



71 
 

Appendix 1 for other matrices). Spectral confusion occurred to varying degrees 

depending upon tree species. The producer accuracy highlights the number of field plots 

that were classified to their known value. The low producer accuracy of jack pine is a 

result of confusion with black spruce and white spruce (Table 12). The confusion with 

black spruce was expected given that upland black spruce and jack pine often occur on 

the same well-drained sites with reindeer lichen understories (Figure 18). Among the 

field plots sampled for example, varying amounts of jack pine and black spruce was 

observed in 11 of the 26 jack pine dominant stands (Table 9). Jack pine dominated stands 

were also confused with white spruce, affecting 7 of the 26 jack pine stands (Table 9). 

Black spruce dominated stands were also confused with white spruce to a lesser degree. 

The confusion among these three species was expected as productive, well-drained sites 

often support all three species. The user accuracies, which indicate the reliability of the 

derived tree species map, show that the greatest confidence exists in the distribution of 

jack pine (i.e., 11 of the 14 jack pine labelled stands were actually jack pine dominant). 

Lower user accuracies exist for white and black spruce because of the predominant 

spectral confusion with jack pine. For example, even though 75 % of white spruce 

dominated stands were correctly classified, only 47 % of the pixels labelled as white 

spruce were actually white spruce dominant. 

Table 12: Contingency matrix of the weighted understory image classification. 

 Ground reference (# of stands)  User 

accuracy Map prediction Aspen Jack pine Black spruce White spruce Total 

Aspen 0 2 0 1 3 0 % 

Jack pine 1 11 1 1 14 79 % 

Black spruce 0 6 5 1 12 42 % 

White spruce 0 7 3 9 19 47 % 

Total 1 26 9 12 48  

Producer accuracy 0 % 42 % 56 % 75 %   

Overall accuracy = (25/48) 52 %    

Kappa = 0.31     
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Figure 18: Well-drained upland mixed jack pine and black spruce stand (Plot 68). 

 

4.4. Discussion 

  Three advancements were reported in this study. This study represented one of the 

first documented cases of tree-species classification using medium spatial resolution 

imagery in a northern boreal forest context. Second, it was determined that remotely 

sensed imagery was sensitive to how the leading species was characterized on the ground. 

Third, the degree to which the background endmember should approximate the 

complexity of northern boreal forest understories was assessed. 

4.4.1. Field-based Descriptions of Leading Species 

  In this study, Landsat TM imagery was most sensitive to the indicator of leading 

species per fraction of total basal area of the Dominant/Co-dominant trees, whereby this 

observation was consistent among understory libraries and crown closure ranges. The 
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radiant energy received by the Landsat TM sensor was therefore mainly influenced by the 

upper forest canopy level and the highly reflective background vegetation at the expense 

of sub-canopy individuals. A total of 8 plots were labelled differently between the All 

Trees and Dominant/Co-dominant indicators of leading species, whereby a greater 

correspondence between the image classification and the latter indicator was achieved for 

plots of both very open (n = 3) and open (n = 5) stands. These results compared well with 

trends reported by other published studies (Chen et al., 2012), and expand upon general 

comments made by Pontius et al. (2005) and Plourde et al. (2007) who discarded basal-

area related indicators of species composition as sub-canopy individuals were included in 

those accuracy assessments. The findings of this study also indicate that the Landsat TM 

image classification is consistent with, and meets the compliance for, forest inventories 

for operational-forest management which focus on the dominant/co-dominant trees in a 

stand (Government of Northwest Territories, 2006a). 

 Image classifications had the second highest agreement with the ocular AVI call 

indicator of leading species. When the results of the basal field measurements and ocular 

AVI call were expressed in a contingency matrix, an overall accuracy of 79 % and Kappa 

of 0.69 was obtained (i.e., 38 out of 48 plots were labelled the same). The strong 

agreement between the ocular call of the overstory and the basal-area indicator of leading 

species and their similarity in respective accuracy estimations suggests that Landsat TM 

is sensitive to both indicators of leading species. The majority of plots that were labelled 

differently were highly mixed in terms of species composition, which clarified the 

discrepancies between the two ground-reference indicators (e.g., a Sw6Pj4 ocular AVI call 

for a Pj7Sw3 plot by basal area of the Dominant/Co-dominant species). These results are 



74 
 

similar to preliminary work conducted by Congalton and Biging (1992), who reported an 

85 % correspondence between field measurements and ocular calls.  

 This study further emphasized caution in the assumption that the results of the 

GNWT aerial photo-interpretation were sufficient for use as reference data. The lowest 

agreement between the Landsat TM image classifications was obtained with this 

indicator of leading species. When the leading species defined by ocular AVI calls and 

Dom/Co-dom are compared to the photo-interpreted map, overall accuracies were 60 % 

and 56 %, respectively. Similar accuracies (64 %) were obtained when a subset of 25 

pure plots (> 80-% relative abundance for one species) were compared. These 

comparisons assume that the ground inventory plots were representative of the forest 

inventory polygons (e.g., species composition, structure), and that no micro-type or 

scaling differences occurred. The low user accuracies of black spruce (32 % – 34 %) 

suggests that the disagreements were predominantly a factor of the over-representation of 

black spruce in the photo-interpreted map as a result of its misidentification (e.g., black 

spruce label in a stand with a Sw9Aw10 overstory and Sw10 understory) and over-

estimation of its contribution to the overstory. The accuracy to which boreal tree species 

have been successfully mapped using aerial photo-interpretation generally ranges 

between 60 % and 80 % (Fent et al., 1995; Leckie & Gillis, 1995; Luther et al., 2006), 

whereby significant differences in relative proportions of tree species (by volume) can 

occur (e.g., in Ontario; Thompson et al., 2007). Although sufficient correspondence 

between aerial photo-interpreted maps and image classifications of tree species have been 

achieved in boreal forests in southern Canada (e.g., Peddle et al., 2004), the results of this 

study suggest that the forest inventory derived through aerial photo-interpretation was not 
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sufficient to assess the accuracy of image classifications in this study area. The low 

correspondence to field observations can to a certain degree be attributed to the time 

difference between the photo interpretation (1994) and the field measurements (2005) 

wherein stands have encountered structural and compositional changes through 

succession. However, from a tree species point-of-view, a 10-year difference would be 

minimal in areas of slow growth. 

4.4.2. Understory Complexity 

 Considerable increases in classification accuracy and more distinct patterns of 

leading species were obtained when the weighted spectra were used for the background 

endmember. It is evident that good knowledge of the understory leads to a better 

characterization of the spectral response of this endmember and thereby improved 

classification results.  The weighted spectral library outperformed the integrated spectral 

library, which suggests that field estimations of ground cover are necessary for improved 

species discrimination. Although field estimations of ground cover are time consuming 

and neither practical nor representative for large-scale forest mapping, it may be possible 

to link overstory compositions with understory compositions whereby a range of 

representative understory spectra can be generated using sets of slightly different relative 

abundances. Such weighted spectra could more easily accommodate the greater variation 

in understory compositions and relative abundances found at increased mapping extents. 

However, the performance of these spectra would be an area worthy of further 

investigation.  
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4.4.3. Challenges 

  The achieved classification accuracies were lower than average in the context of 

other studies conducted in the southern boreal forests using Landsat TM or similar 

sensors (e.g., Franklin, 1994; Dymond et al., 2002; Peddle et al., 2004). Due to the 

frequency of cloud cover at high latitudes (Rees et al., 2002), it was difficult to obtain 

cloud or haze free imagery for the phenological stage in which the spectral field data 

were acquired (e.g., one appropriate scene within a 10-year window). The imagery used 

in this study contained considerable haze over much of the study area that could not be 

reduced through atmospheric correction. Although the vegetation samples used for the 

collection of endmember spectra were controlled, they may have not matched the tree 

species in the image because of differences in atmospheric conditions (Song & 

Woodcock, 2003). Furthermore, reflectance spectra were acquired at a branch scale while 

image classification was conducted at the stand scale. This difference in scale causes 

spectral confusion among tree species, as it has been shown that the separability of 

coniferous tree species at the branch scale is greater than at the stand scale (Roberts et al., 

2004). Because of scaling differences and atmospheric influences, the application of 

image endmembers is worthy to investigate further. 

 Stand structure also influenced the classification performance of MESMA. In this 

study area, stand height is inversely related to stem density (R = -0.55, P < 0.001), similar 

to other forests in the Northwest Territories and elsewhere in the boreal whereby older 

stands are taller and at lower densities than younger, shorter, and more dense stands 

(Gerylo et al., 2002; Brassard & Chen, 2006). The distribution of stand height between 

correctly and incorrectly classified was significantly different for very open stands (Table 
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13), whereby challenges with successful species discrimination were encountered in 

stands taller than 8 m (Figure 19). Taller stands often exhibit greater multiple scattering 

of photons between the canopy and forest background, which causes non-linear mixing of 

scene components which affects spectral mixture models (Borel & Gerstl, 1994; 

Gemmell, 2000; Chen et al., 2012). MESMA cannot accommodate multiple scattering as 

it assumes that photons interact with a single component within the FOV (Roberts et al., 

1998). Multiple scattering may have led to fractional abundance errors or higher RMSEs 

in these very open stands, which when exceeded beyond user-defined thresholds could 

have caused MESMA to model a particular pixel with an incorrect sunlit canopy 

endmember. Therefore, when stands become more structurally complex, multiple 

scattering complicates the radiant energy received by the Landsat TM sensor and 

influences MESMA’s ability to label plots according to its most dominant species. Non-

linear spectral mixture models may lead to some incremental improvements in 

classification accuracy as such approaches typically improve endmember fraction 

estimations (Somers et al., 2009a; Quintano et al., 2012). 

Table 13: Strength (p-values) of Independent Samples Mann-Whitney U-test for equal 

distributions between correctly and incorrectly classified stands. 

  Field-based description of leading species 

Crown closure Variable AVI call 
1
 All trees 

1
 Dom/Co-dom 

1
 B/W Photo 

1
 

A (6%-30%) 

Stem density 0.23 0.23 0.11 0.30 

Stand height 0.01 0.08 0.03 0.14 

Crown closure 0.11 0.57 0.24 0.64 

B (31%-50%) 

Stem density 0.22 0.49 0.22 0.93 

Stand height 0.15 0.79 0.10 0.44 

Crown closure 0.36 0.38 0.64 0.98 

C (51%-70%) 

Stem density 0.63 0.63 0.63 0.86 

Stand height 0.86 0.86 0.86 0.57 

Crown closure 0.63 0.63 0.63 0.38 
1
 Refer to Chapter 4.2.2.2. for leading species descriptions. 
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Figure 19: Distribution of stand height for correctly classified and incorrectly classified very open 

stands.  * Indicates a significant difference at a 90-% confidence level.  

 

4.5. Conclusions and Future Research 

  Satellite-based remote sensing is increasingly used to derive information products 

of forests over large areas. However, documented approaches are either untested or not 

suitable for the open forest stands of northern boreal forests. Due to the open and 

complex character of forest stands at higher latitudes, of interest was whether Landsat 

TM was sensitive to how the leading species of a stand can be described on the ground, 

and whether the endmember spectra representing the background component in MESMA 

should approximate the heterogeneity of the background vegetation. Interpretation of the 

results suggested that Landsat TM imagery was most sensitive to the indicator of leading 

species per fraction of total basal area of the dominant/co-dominant trees, and that this 

observation was consistent among crown-closure ranges. Inclusion of all the trees in the 

determination of leading species was not necessary. This finding indicated that the image 
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classification was consistent with forest inventories for operational-forest management, 

as they typically focus on the dominant/co-dominant trees in a stand. As well, the highest 

similarities with ground-reference data were obtained when the full heterogeneity of the 

understory was approximated through the calculation of a weighted average of individual 

spectra with ground-cover abundances known. Knowledge of understory compositions 

and relative abundances led to a better characterization of the spectral response of the 

background endmember and thereby improved classification results to 71 %, 41 %, and 

57 % for very open, open, and medium dense forest stands, respectively (overall accuracy 

= 52 %, Kappa = 0.32).  

  The identified atmospheric and scaling issues associated with the use of reference 

endmembers warrant an investigation in the application of image spectral endmembers. 

The use of image spectral endmember avoids these challenges, and could leverage multi-

temporal imagery to exploit phenological differences among tree species early and late in 

the growing season as a means of improving the image classification results reported in 

this study.  
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CHAPTER 5 

Classifications Using Image Endmembers 

5.1. Introduction 

  Forests are key ecosystems that host high levels of biodiversity, influence 

biogeochemical cycles, and provide ecosystem services (Kimmins, 2003). Forest 

management decisions often require information about species composition as an 

important component of government-based forest inventories (Leckie & Gillis, 1995), 

where species composition is defined as the relevant proportion of tree species in a stand 

(Gillis & Leckie, 1993).  In the boreal forest zone, this information is especially relevant 

given the susceptibility of particular tree species to large-scale insect disturbances 

(Cullingham et al., 2011; de la Giroday et al., 2012), moisture stress (Michaelian et al., 

2011; Griesbauer & Green, 2012), and climate-induced alterations to the wildfire regime 

which have the potential to introduce changes to the boreal landscape that could exceed 

the direct influence of climate change on species composition and structure (Williamson 

et al., 2009; Price et al., 2013). Information about species composition can be difficult to 

collect on the ground due to site access challenges and budget limitations. The use of 

aerial photo-interpretation techniques for forest inventory purposes is common for large-

area forest inventories (Michalak et al., 2002; Hall, 2003), and despite recent transitions 

to softcopy methods being applied to digital photography, it remains a technology whose 

limits are being challenged and is cost prohibitive over large, remote forests (Falkowski 

et al., 2009). This lack of complete and up-to-date forest inventories is especially 

apparent in northern boreal forests (Government of Northwest Territories, 2011b; Pan et 

al., 2011), which subsequently drives the need to alleviate information gaps using remote 

sensing. 
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  Northern boreal forests can be characterized by lower density, open forest stands 

(i.e., crown closure generally less than 60 %) where understory ground vegetation is a 

significant component of pixel-level reflectance and where stand structural variation is 

high (Franklin et al., 2003; Ecosystem Classification Group, 2007). Given the small 

crowns typical of tree species in the northern boreal zone, the canopy, understory, and 

shadow components mix together spectrally and create mixed pixels at both high- and 

medium- spatial resolution (e.g., 2-m, 30-m). Therefore, conventional pixel-level 

approaches for image classification at the tree species level (e.g., Franklin, 1994; 

Dymond et al., 2002; Dalponte et al., 2008)  are not considered suitable for the open 

stands. Instead, a classification approach based on spectral mixture analysis (SMA; 

Adams et al., 1993), whereby mixed pixels are decomposed to physically meaningful 

components of sunlit canopy, background, and shadow (i.e., endmembers), may be suited 

to derive information about tree species in northern boreal forests (Roberts et al., 1999).  

  A key to successful spectral mixture analysis is the appropriate selection of 

endmembers (Tompkins et al., 1997), which involves identifying the number and type of 

endmembers and their corresponding spectral signatures. An endmember is an idealized 

pure signature of a class, and should represent a fundamental spectral component to the 

image analysis process (Adams et al., 1993). Endmembers may be derived through field 

measurements with a spectroradiometer (i.e., reference endmembers), directly from the 

image data (i.e., image endmembers), or through canopy reflectance models (Peddle et 

al., 1999). While endmember spectra are often measured in the field, this is not always 

possible because of technical and budgetary limitations. Because of differences in 

atmospheric conditions between the reference endmembers and the image and the scale at 
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which the endmember spectra are applied (Chapter 4; Drake et al., 1999), the use of 

reference endmembers may not be suitable to discriminate among coniferous tree species 

at the stand scale (Roberts et al., 2004). As an alternative, endmember spectra can 

sometimes be derived directly from an image, which avoids these challenges. 

  Although numerous endmember extraction algorithms (EEA) exist to find pure 

image endmembers, such as N-FINDR (Winter, 1999), pixel purity index (Boardman, 

1994), orthogonal subspace projection (Harsanyi & Chein, 1994), principal component 

analysis (Bateson & Curtiss, 1996), vertex component analysis (Nascimento & Bioucas 

Dias, 2005), and iterative error analysis (Neville et al., 1999), the proper specification of 

image endmember spectra is not always possible. As an example, for the background 

component there may be no suitable open areas that match or exceed the pixel area 

(spatial resolution). The inherent wide variability in the diversity and composition of 

understory vegetation (Figures 9 and 10) would challenge the selection of homogenous 

spectra for both the sunlit canopy and background endmembers. Therefore, an important 

question was whether endmember spectral impurity would influence image 

classifications at the tree species level?  

  Within a forest context, pixels at almost any spatial resolution are inherently 

mixed at the branch, crown, and stand scale due to the three-dimensional architecture of 

foliage and non-photosynthetic tissue, which subsequently creates variations in radiation 

regime (Asner, 1998). With respect to image endmembers, because they can be 

“expressed as mixtures of spectra of meaningful scene components, defined by the field 

scientist” (Smith et al., 1990, p. 7), they may not be spectrally pure. Other EEA methods 

do not assume the presence of pure endmembers in the imagery, and generate virtual 
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endmembers which are not necessarily present in the imagery itself (Tompkins et al., 

1997; Plaza et al., 2012).  While considerable research has been undertaken to 

automatically extract pure image endmembers using EEAs, little is known about the 

application of meaningful image endmembers identified using forest inventory 

information, and how the performance of these endmember spectra compare with field-

based spectral measurements for image classifications at the leading species level (i.e., 

the tree species most dominant in a stand). Furthermore, as the degree to which tree 

species can be discriminated may be influenced by the stage of vegetative phenology at 

the time of image data collection (Schriever & Congalton, 1995; Mickelson et al., 1998; 

Wolter & Townsend, 2011), of interest was whether multi-temporal imagery acquired 

during the growing season improves discrimination of leading species in northern boreal 

forests. The objective of this study was to investigate these unknowns, and was achieved 

by answering the following research questions: 

 Are there differences in classification performance between SMA-based image 

classifications using image-derived spectra and field-based spectra? 

 Is the performance of image-derived spectra dependent on the type of forest 

inventory information (e.g., by basal area or crown closure) used to select 

representative sunlit canopy and background components? 

 Would the use of multi-temporal Landsat TM imagery to represent different 

stages of vegetative phenology improve the determination of leading species? 
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5.2. Methods 

5.2.1. Study Area 

  A study area within the Northwest Territories, Canada was selected based on the 

presence of representative tree species, accessibility of the terrain, availability of suitable, 

cloud-free satellite imagery, and the availability of ground-reference data. The study area 

is located within the Taiga Plains Ecozone, an Ecozone that covers the western Northwest 

Territories, the northeast corner of British Columbia, and northern Alberta (Ecological 

Stratification Working Group, 1995). Most of the timber productive forests occur within 

the southern portion of the Ecozone from which an 18-km x 19-km study area was 

located 20 km south of Fort Providence, NWT (Figure 6). This region belongs to the 

Great Slave Lowland Mid-Boreal Ecoregion (Ecosystem Classification Group, 2007).  

  The tree species considered in this study are distributed across the landscape in 

response of micro-topographical effects (Ecosystem Classification Group, 2007). Early to 

mid-successional mixed-wood forests, consisting of white spruce (Picea glauca), balsam 

poplar (Populus balsamifera) and trembling aspen (Populus tremuloides), are dominant 

along the alluvial flats and contain diverse understories (Figure 9a). In these locations, 

late successional stands are white spruce dominant with herb-feather moss understories 

(Figure 9b). Stands consisting of jack pine (Pinus banksiana) and trembling aspen are 

found in dry, coarse-textured soils associated with beach ridges, and typically have sparse 

shrub, forb, and reindeer lichen (Cladina mitis) understories (Figure 10a). Cold, poorly 

drained sites are populated by black spruce (Picea mariana), tamarack (Larix laricina) 

and white birch (Betula papyrifera), with Labrador tea (Ledum groenlandicum) and 

mosses (Sphagnum spp., Drepanocladus spp.) understories (Figure 10b). 
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5.2.2. Data Collection 

5.2.2.1. Imagery 

  To represent different stages of vegetative phenology within the study area region, 

a total of five Landsat-5 TM scenes were downloaded from the United States Geological 

Survey data archive using the GLOVIS interface (Table 14). The scenes were the most 

appropriate with respect to the year of the forest inventory data (± 1 year). All Landsat-5 

TM radiance data were atmospherically corrected to surface reflectance using Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) in ENVI 4.8 

(Atmospheric model: Mid-Latitude Winter / Sub-arctic Summer, Aerosol model: Rural). 

To create the multi-temporal dataset, all scenes were subsequently layer-stacked. 

Table 14: Processed Landsat-5 TM scenes. 

Scene ID Date Year Path/Row Sun Elevation (°) 

LT50480172006131PAC01 May 11 2006 48 / 17 45.6 

LT50480172006163PAC02 June 12 2006 48 / 17 50.6 

LT50480172004190PAC01 July 8 2004 48 / 17 49.1 

LT50470172005233PAC01 August 21 2005 47 / 17 39.1 

LT50470172005249PAC01 September 6 2005 47 / 17 33.7 

Source: United States Geological Service (2013). 

5.2.2.2. Forest Inventory Data 

  Forest inventory data was collected in July 2005 within the study area, whereby a 

plots (20 m x 20 m in size) were distributed in stands of jack pine, white spruce, black 

spruce, trembling aspen, and various mixed-woods (Hall & Skakun, 2007). Forest plots 

were located at least 100 m away from roads, cut lines, water bodies, and non-forested 

areas, and were generally within 500 m of the nearest road for ease of accessibility. Plot 

centres were established using a pigtail with flagging tape, after which the locations were 

recorded using a Trimble differentially corrected GPS system (UTM Zone 11, NAD83). 

Measuring tape and a compass were used to mark the cardinal (i.e., N, W, S, E) and 
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intercardinal (i.e., NW, SW, SE, NE) points of the plot with flagging tape and to 

determine plot boundaries. Every tree that was at least 1.3 m in height and 5 cm in 

diameter breast height was measured, whereby the species, diameter at breast height, and 

height were noted. Because northern boreal forest stands typically contain a very large 

number of small trees, the same measurements were recorded for a selection of small 

trees (i.e., diameter breast height less than 5 cm, and a height of 1.3 m or greater) 

although within a smaller 10-m x 10-m quadrant. The stand attribute estimations of small 

trees were subsequently multiplied by 4 to represent the entire contribution of the small 

trees within the plot. Crown closure estimates were obtained at the intercardinal corners 

of the plot (n = 4) and within the plot at mid-corner locations (n = 5) using a spherical 

densitometer. An ocular Alberta Vegetation Inventory (AVI) stand call attribute was also 

made to record the species, height, and crown closure of the stand following the Alberta 

Vegetation Inventory Interpretation Standards (Alberta Sustainable Resource 

Development, 2005). Fractional cover of understory species was visually estimated for 

the six most dominant species in 5-% increments for each plot. 

5.2.3. Data Processing 

5.2.3.1. Spectral Libraries 

  Spectral libraries, which contained image spectral endmembers, were required to 

meet the objectives of this study. Image endmember selection criteria were formulated to 

test whether the application of image endmembers was feasible and evaluate if their 

performance was dependent on the method used to develop spectral libraries using 

relevant forest inventory information. Representative sunlit canopy spectra were selected 

either by basal area of crown closure, while representative background spectra were 
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selected either outside or inside of forest cover (Table 15 and 16). Spectra for plots of 

relatively high species purity (e.g., Sw9A1) and mixed abundance (e.g., Pj6Sb4) were 

collected to meet the mapping needs of operational forest management, whereby plots 

lower than 80-% relative abundance for one species were designated as mixed. 

Table 15: Criteria for the establishment of sunlit canopy spectral libraries. 

Spectral library  Criteria 

By basal area 

“Basalarea” 

Pure: Plots selected where the relative abundance of a particular tree species 

exceeded 95 % of total basal area of the dominant trees above stand height 

 

Mixed: Plots of mixed abundance by total basal area of the dominant trees above 

stand height, where the leading species contributed between 50 % and 70 %. 

By crown closure 

“HighestCC” 

Pure: Plots selected that were relatively pure by species (> 80 %), and that had the 

highest crown closure estimates within each species group. 

 

Mixed: Plots of mixed abundance were selected that had the highest crown closure 

estimates within each mixed-species group. 

Table 16: Criteria for the establishment of background spectral libraries. 

Spectral library  Criteria 

By spectral purity 

“PurestBg” 

Using a fishnet vector file at the exact resolution and extent of the Landsat TM 

imagery, homogenous areas of low vegetation outside of forested areas were 

selected using the panchromatic QuickBird image as visual reference 

By crown closure 

“LowestCC” 

Pure: Plots selected that were relatively pure by species (> 80 %), and which had 

the lowest crown closure estimates within each species group. 

 

Mixed: Plots selected of mixed abundance were selected that had the lowest crown 

closure estimates within each mixed-species group. 

 

   The overall goal of the selection of image endmember spectra was to include the 

overall heterogeneity of the forest stands, but because many inventory plots met the 

selection criteria, an effort was made to reduce the number of endmember spectra to 

increase computational efficiencies and increase the number of independent plots used 

for validation. To select pure plots that met the basal area criterion, the spectra of the 

closest pixel that overlaid each of the 14 candidate plots were obtained and analyzed to 

derive a subset of candidate spectra using strategies highlighted in Roberts et al. (2007). 

A total of 7 coniferous plots were identified that were spectrally most similar to other 
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plots of the same species and most dissimilar with plots of other species (count-based 

endmember selection; Roberts et al., 2003), had the lowest average root-mean-square 

error in modeling all other spectra within their species class (endmember average RMSE; 

Dennison & Roberts, 2003b), and had the lowest average spectral angle in modeling all 

other spectra within their species class (minimum average spectral angle; Dennison et al., 

2004). These 7 pure plots were therefore spectrally most similar for all other pure plots 

belonging to their species class and were most dissimilar with other species classes.  

  No semi-automated methods were used to select representative mixed stands, 

which were manually selected on the basis of the AVI data whereby the heterogeneity of 

the mixed plots for each species group was incorporate. The forest inventory data did not 

contain any pure aspen stands that met the criteria of the sunlit canopy, and as such, two 

20-m by 20-m plots were manually drawn in ESRI ArcMap where dominant patches of 

aspen appeared using a panchromatic QuickBird scene as a visual aid. Once the optimal 

plots for species discrimination were known, image endmember spectra were acquired 

through the “Create Spectral Library from ROIs” module in the open-source software 

plugin VIPER Tools available for ENVI (Visualization and Image Processing for 

Environmental Research; Roberts et al., 2007). In cases where forest inventory polygons 

overlaid multiple pixels, all individual spectra were extracted without averaging to 

preserve the spectral variability. To test whether multi-temporal imagery improves 

species discrimination, the same optimized plots were used to extract multi-temporal 

spectral signatures. 
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5.2.3.2. Spectral Mixture Analysis 

  SMA quantifies the proportion of each pixel that is occupied by a set of pure 

features occurring in an image, whereby the output is a fraction image for each 

endmember along with the error of fit (Adams et al., 1993). For each pixel, this model 

can be derived as follows: 

    ∑           
 
      ,                (1) 

where the spectral mixture R’i is the encoded reflectance in band i for each pixel, and 

modeled as the sum of the reflectance in band i for N image endmembers k, whereby 

each endmember is weighted by fraction fk.  The εi term represents the remainder between 

the measured and modelled reflectance, and is expressed as a band residual. Model 

fitness can be assessed either by using this residual term, or via the root mean square 

error (RMSE; Roberts et al., 1998) over the total number of bands (ν): 

        √∑     
  

    ⁄   .    (2) 

  For this study, Multiple Endmember Spectral Mixture Analysis (MESMA; 

Roberts et al., 1998) was chosen as an alternative to conventional SMA, as MESMA is 

not constrained by a single set of endmembers and allows the number and types of 

endmembers to vary on a per-pixel basis to account for spatial heterogeneity. Because 

MESMA is not constricted by the number of spectral bands it has been successfully 

applied to obtain species abundance maps in vegetated areas in California (Dennison & 

Roberts, 2003b), Australia (Youngentob et al., 2011), and Hawaii (Somers & Asner, 

2012). MESMA was facilitated by the open-source software plugin VIPER Tools, where 

it returns estimates of sub-pixel fractions of endmembers and a raster image of the 
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endmember model of best fit that represents a per-pixel land-cover classification. 

MESMA shares characteristics of both fully constrained and unconstrained unmixing, 

whereby the sum of the fractions must equal 1.00, but where the individual endmember 

fractions are allowed to be less than 0.00 and greater than 1.00). Minimum and maximum 

fractions of -10 % and 110 % were empirically determined to optimize vegetation class 

accuracies by permitting MESMA to consider models that fit the measured reflectance of 

a pixel despite physically unrealistic endmember fractions (Dennison & Roberts, 2003a; 

Thorp et al., 2013).  A maximum RMSE criterion of 2.5 % was used to ensure that a 

candidate model was selected for the majority of pixels and to guarantee reasonable 

confidence in the accuracy of the candidate model selected (Roberts et al., 1998).  

  Both the July and multi-temporal dataset were unmixed using three-endmember 

models, whereby all possible combinations of sunlit canopy spectra and background 

spectra were iteratively computed, and whereby the best model based on RMSE was 

selected as a combination of sunlit canopy, background, and shadow components. A 

variety of spectral library combinations were tested in a three-endmember model setup 

(Table 17). The classification images produced by MESMA were regrouped to four pure 

species classes to compare the classification images derived through image endmember 

spectra and endmember spectra acquired with the spectroradiometer. 

Table 17: Endmember model setup. 

Source of 

spectra 

Spectral library 

Sunlit canopy Background Shade 

Field 
1
 Dominant tree spectra Weighted average spectra Yes 

Image Basalarea PurestBg Yes 

Image Basalarea LowestCC Yes 

Image HighestCC PurestBg Yes 

Image HighestCC LowestCC Yes 
1
 This model represents the best combination of sunlit canopy and background endmember types using 

spectral data acquired by a spectroradiometer, as identified in Chapter 4. 
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5.2.4. Accuracy Assessment and Experimental Design 

  Because the Landsat TM imagery acquired in July showed highest sensitivity to 

the dominant species per fraction of total basal area of the dominant and co-dominant 

trees (Chapter 4), this field-based description of leading species was used for accuracy 

assessment purposes. In ENVI 4.8, contingency matrices were obtained to determine the 

overall accuracy, the producer and user accuracy, and the Kappa estimate using the 48 

ground-reference plots. The overall accuracy of each classified image is the sum of the 

correctly classified points divided by the total number of points assessed (Congalton & 

Green, 2009). Individual class accuracies are represented by the producer accuracy 

(errors of omission) and user accuracy (errors of commission). The Kappa measure is an 

estimate derived through Kappa analysis (Cohen, 1960), which is a measure of the 

proportional improvement by the image classifier over a purely random assignment of 

pixels to classes (Congalton & Green, 2009). The Kappa estimate is recognized as a 

powerful accuracy measure, because it takes non-diagonal elements of the contingency 

matrix into account and addresses the probability of chance agreement. It can be used 

along with its variance to compare the accuracy of two classified images and determines 

if the contingency matrices are significantly different at a particular confidence level 

(CL) using the standard normal deviate (e.g., 95-% CL; Z-critical value = 1.96; 

Congalton & Green, 2009). To determine whether differences existed between image 

endmember selection criteria, the accuracy estimates were compared at a global level 

(i.e., all 48 ground-reference plots combined) and for plots grouped by crown closure 

using ground observations of crown closure and range definitions from the Alberta 

Vegetation Inventory (Table 18). 
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Table 18: Crown closure classes of the Alberta Vegetation Inventory. 

Crown Closure (%) Stand call class Authors’ Interpretation 

6 - 30 A Very open forest 

31 - 50 B Open forest 

51 - 70 C Medium dense forest 

71 - 100 D Dense forest 
Source: Alberta Sustainable Resource Development (2005) 

5.3. Results 

5.3.1. Field Inventory Data 

  A total of 48 field-inventory plots were established in both compositionally pure 

(> 80 % abundance of one species) and mixed stands to take into account the 

heterogeneity of the forests in the study area (Table 9).  The plots reflected a wide range 

of stand structural characteristics common in the region. The majority were established in 

very open (n = 14) to open stands (n = 27) with crown closure estimates ranging between 

16 % and 61 % (mean = 35 %). The average stand height was 12 m, with a range between 

6 m and 21 m. Stem density estimates also indicated that the field inventory plots were 

selected over a wide variety of stands, ranging between 875 stems/ha and 3,600 stems/ha. 

  Candidate endmember spectra were chosen using forest inventory information by 

either basal-area or crown-closure criteria, and captured the range of compositional and 

stand structure characteristics for both pure and mixed stands (Table 19). The landscape 

heterogeneity was to a certain degree less represented by the HighestCC spectral library 

because plots were selected by highest crown closure estimates within each species group 

(pure and mixed), regardless of composition. For example, the Basalarea spectral library 

represented mixed jack pine stands by both a PjSw spectra and a PjSb spectra, while the 

HighestCC spectral library contained two PjSw plots for this species class. 
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Table 19: Selected plots for image endmember spectra. 

Species 

By basal area “Basalarea” 
1
  By crown closure “HighestCC” 

1
 

Plot 

ID 

Species 

Composition 

Crown 

closure 

Stand 

height 

Stem 

density 
 

Plot 

ID 

Species 

Composition 

Crown 

closure 

Stand 

height 

Stem 

density 

Jack pine 

60 Pj9Sw1 27 12 1850  74 Pj9Sb1 42 13 2200 

64 Pj10 34 15 1700  77 Pj9Sb1 38 13 2000 

84 Pj10 34 14 1375  25 Pj6Sw4 40 9 2750 

26 Pj7Sb3 39 8 3550  91 Pj7Sw3 45 12 2325 

91 Pj7Sw3 45 12 2325       

White 

spruce 

03 Sw10 56 16 2525  01 Sw9A1 60 15 2875 

90 Sw10 44 21 1275  48 Sw10 61 18 2075 

52 Sw5Sb5 23 10 1825  59 Sw8Sb2 32 11 1575 

54 Sw8Sb2 22 9 1375  88 Sw8Sb2 33 17 875 

Black 

spruce 

51 Sb10 16 8 1025  55 Sb9Pj1 27 9 1700 

55 Sb9Pj1 27 9 1700  73 Sb9La1 24 8 2450 

70 Sb6Pj4 28 7 2825  71 Sb7Pj3 32 10 1650 

75 Sb5Pj3Sw2 38 9 2700  75 Sb5Pj3Sw2 38 9 2700 

Aspen 

89 A6Sw3Pj1 53 18 1825  89 A6Sw3Pj1 53 18 1825 

Image n/a n/a n/a n/a  n/a n/a n/a n/a n/a 

Image n/a n/a n/a n/a  n/a n/a n/a n/a n/a 
1 
Species composition by relative fraction of total basal area of the dominant trees above stand height, Stand 

height in metres, Crown closure in percentages, and stem density in stems per hectare. 

5.3.2. Classification Accuracies for July Imagery 

 Classification accuracies were relatively low, with overall accuracies ranging 

between 44 % and 52 %, and Kappa ranging from 0.24 to 0.29 (Table 20). The results 

achieved using single-date image endmembers were similar to the results obtained using 

reference endmembers acquired with a spectroradiometer (i.e., 52 % accuracy). This 

suggests that endmember spectral impurity does not influence the discrimination between 

tree species, and that the image spectral endmembers identified using forest inventory 

information were viable alternatives to reference endmembers collected in the field. 

Together the low accuracies achieved highlight the considerable challenges to which the 

leading species can be identified in northern boreal forests using either field reflectance 

or image-derived endmember spectra.  

  When all 48 forest inventory plots were included in the accuracy assessment, it 

was evident that there were no considerable differences existed in overall accuracy and 
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Kappa between the combinations of sunlit canopy and background spectral libraries 

(Table 20). When individual class accuracies were compared, the differences in 

classification performance between different types of sunlit canopy libraries were 

generally less than 15 %. One notable difference was the 57 % improvement in the user 

accuracy of black spruce when the Basalarea sunlit spectral library was used instead of 

the HighestCC spectral library (43 % versus 100 %). In general, however, the results 

indicated that the criteria used to select candidate sunlit canopy spectral signatures were 

of minor influence to the overall classification accuracy. Except for the 60 % 

improvement in user accuracy of black spruce when the PurestBg background spectral 

library was used instead of the LowestCC library (40 % versus 100 %), the influence of 

candidate background spectral signatures to accuracy was minor.  

Table 20: Overall classification accuracies and class accuracies (%) of July imagery per spectral 

library combination. 

 Image endmember spectra   

Species 
1
 

Basalarea +  

PurestBg 
2
 

 Basalarea + 

LowestCC 
2
 

 HighestCC + 

PurestBg 
2
 

 HighestCC +  

Lowest CC 
2
 

 Field 

spectra 

PA
3
  UA

3
  PA UA  PA UA  PA UA  PA UA 

Jack pine 35 75  54 70  19 83  35 69  42 79 

Black spruce 56 100  44 40  67 43  56 26  56 42 

White spruce 67 31  50 50  75 35  67 57  75 47 

Aspen 100 20  100 17  100 50  100 50  0 0 

               

OA 
3
 48  52  44  48  52 

Kappa 0.26  0.29  0.24  0.26  0.31 
1  

Size of vegetation classes. Jack pine (n = 26), black spruce (n = 9), white spruce (n = 12), aspen (n = 1). 
2
 Refer to Tables 15 and 16 for spectral library descriptions. 

3
 OA: overall accuracy, PA: producer accuracy, UA: user accuracy. 

 

  Recognizing the influence of small sample sizes, only minor variations in overall 

accuracy existed among the different combinations of spectral libraries for each crown 

closure class, albeit that the small sample sizes precluded any meaningful patterns to be 
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observed (Table 21). The HighestCC sunlit canopy spectral library outperformed the 

Basalarea library for medium dense stands (+ 14 % improvement for both combinations), 

while the latter library outperformed the former library for very open stands (7 % and 14 

% improvement). The field spectra performed similarly for open and medium dense 

stands, yet outperformed image endmember spectra when very open stands were 

unmixed. No patterns in classification accuracy were observed among spectral libraries 

representing the understory. Based on these results, the criteria used to select candidate 

spectra for the sunlit canopy and background endmembers were of little influence to 

classification accuracy.   

Table 21: Overall accuracy (%) grouped per crown closure (July imagery). 

Crown 

closure 

Class 
1,2 

 

Image endmember spectra  

Basalarea +  

PurestBg 
3
 

Basalarea + 

LowestCC 
3
 

HighestCC + 

PurestBg 
3
 

HighestCC +  

LowestCC 
3
 

Field spectra 

A 57 50 43 43 71 

B 41 56 37 48 41 

C 57 43 71 57 57 
1
 Crown closure classes: A: 6 % to 30 %, B: 31 % to 50 %, C: 51 % to 70 %. None of the ground inventory 

plots had an estimated crown closure larger than 70 % (i.e., the D class). 
2
 Sample size: A (n = 14), B (n = 27), C (n = 7). 

3
 Refer to Tables 15 and 16 for spectral library descriptions. 

5.3.3. Classification Accuracies for Multi-temporal Imagery 

  Multi-temporal imagery improved the discrimination of vegetation classes among 

all spectral library combinations as multi-temporal imagery increased spectral differences 

among tree species (Figure 20). However, the improvements in Kappa were only 

significant at the 95-% confidence level when the Basalarea sunlit canopy spectral 

library was used (Table 22). Greater differences in classification accuracy existed among 

the spectral library combinations using the multi-temporal imagery, whereby on average 

the Basalarea sunlit canopy spectral library performed better than the HighestCC sunlit 
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canopy spectral library, and whereby the PurestBg spectral library outperformed the 

LowestCC spectral library. Consequently, the best results were achieved using the 

Basalarea sunlit canopy spectral library in combination with the PurestBg background 

spectral library (overall accuracy: 79 %, Kappa: 0.67). The considerable differences in 

classification accuracy among spectral library combinations suggested that the criteria by 

which candidate image endmembers were selected definitely influenced the classification 

accuracy of multi-temporal imagery. 

 
Figure 20: Classification accuracies for July and multi-temporal imagery. 

 

Table 22: Pairwise comparison of Kappa estimates of July and multi-temporal imagery. 

Spectral libraries 
Kappa 

Z-score 
July imagery Multi-temporal imagery 

Basalarea + LowestCC 0.29 0.50 1.47 

Basalarea + PurestBg 0.26 0.67 2.61 
*
 

HighestCC + PurestBg 0.24 0.47 1.41 

HighestCC + LowestCC 0.26 0.32 0.39 
*
 Significant at 95-% confidence level (Z-score > 1.96). 

  Similar patterns in terms of overall accuracy per crown closure class were 

observed between the July and multi-temporal imagery (Tables 21 and 23). The 

HighestCC sunlit canopy spectral library outperformed the Basalarea library for medium 
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dense stands (+ 14 % improvement for PurestBg combination), while the latter library 

outperformed the former library for very open stands (21 % and 31 % improvement) and 

open stands (7 % and 11 % improvement). Given these larger differences among spectral 

libraries, it appears that the criteria used to select image endmembers influenced tree 

species classifications. Although the field spectra performed the best when very open 

stands were unmixed, they achieved worse results than image spectral endmembers for 

open and medium dense stands. This again highlighted that spectral impurity did not 

affect the discrimination between tree species. 

Table 23: Overall accuracy (%) grouped per crown closure (multi-temporal imagery). 

Crown 

closure 

Class 
1,2 

 

Image endmember spectra  

Basalarea +  

PurestBg 
3
 

Basalarea + 

LowestCC 
3
 

HighestCC + 

PurestBg 
3
 

HighestCC +  

LowestCC 
3
 

Field spectra 

A 64 64 43 33 71 

B 85 70 74 63 41 

C 86 57 100 57 57 
1
 Crown closure classes: A: 6 % to 30 %, B: 31 % to 50 %, C: 51 % to 70 %. None of the ground inventory 

plots had an estimated crown closure larger than 70 % (i.e., the D class). 
2
 Sample size: A (n = 14), B (n = 27), C (n = 7). 

3
 Refer to Tables 15 and 16 for spectral library descriptions. 

5.3.4. Fitness Metrics 

  The RMSE output of SMA is an indication of how well the modeled reflectance 

matches the measured reflectance of the pixels. The RMSEs achieved using July image 

endmembers were similar among spectral library combinations, and were comparable to 

the RMSE obtained when field spectral measurements were used for spectral unmixing 

(e.g., both 0.001 on average; Figure 21). No discernible differences among spectral 

library combinations were observed for the average RMSE when all plots were grouped 

together. Considerable increases in RMSE were observed when the multi-temporal 

imagery was unmixed, which average between 0.002 and 0.0025 of the measured pixel 
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reflectance (Figure 21). Among the different combinations of spectral libraries, 

combinations with the PurestBg background spectral library had the largest RMSE on 

average. Based on these results, spectral impurity did not influence the fitness of 

unmixing, and the criteria used to select candidate endmember spectra only affected the 

fitness of unmixing for the multi-temporal imagery. 

 
Figure 21: RMSE for July (4 bands) and multi-temporal imagery (36 bands). 

 An analysis of band residuals of the multi-temporal imagery indicated that 

seasonal patterns in SMA fitness occurred within this dataset (Figure 22). The band 

residuals in July were much smaller than the residuals in the other months as the 

locations for optimal candidate image endmembers (i.e., the forest inventory plots) were 

entirely based on the July dataset to maintain the same locations for image endmembers. 

It was also evident that residuals were predominantly positive earlier in the growing 

season and negative later in the growing season. A distinct pattern of residuals was 
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identified for the June 12 dataset (positive VIS, negative NIR and SWIR2) and 

September 6 dataset (negative VIS, positive NIR and SWIR2), as well as in the SWIR1 

band (positive in May and June, negative in August and September). This suggests that 

residuals were wavelength dependent and were a result of phenological changes in the 

sunlit canopy and understory. 

 
Figure 22: Average band residuals of the four spectral library combinations for each image date. 

 

5.3.5. Distribution of Tree Species 

  Patterns of species distribution were not similar among datasets and spectral 

library combinations, with noticeable differences between the best July image 

classification (Figure 23a) and the best multi-temporal image classification (Figure 23b). 

The July dataset was classified with an overall accuracy of 52 % and Kappa of 0.29 when 

the Basalarea sunlit canopy and LowestCC background spectral libraries were used 

(Table 24; See Appendix 2 for other July matrices). A distinct pattern of aspen was 

observed, yet its low user accuracy of 17 % suggested that this vegetation class was over-
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represented. This can be further highlighted through a comparison of its distribution in 

the multi-temporal classification. This dataset was classified with an overall accuracy of 

79 % and a Kappa of 0.67 when the Basalarea sunlit canopy and PurestBg spectral 

libraries were used (Table 25; See Appendix 3 for other multi-temporal matrices). 

Relative to the July imagery, the distribution of aspen was much smaller and more 

closely agreed with the validation data (user accuracy improved from 17 % to 50 %).  

  Moreover, substantial improvements in producer and user accuracy were observed 

for jack pine (54 % to 77 % and 70 % to 87 %, respectively), white spruce (50 % to 83 % 

and 50 % to 91 %, respectively), and black spruce (44 % to 78 % and 40 % to 58 %, 

respectively) in compared to the July imagery (Tables 24 and 25). When the distributions 

of leading species between the multi-temporal classification and the classification based 

on field spectral measurements (Figure 23c) were compared, the significant increases in 

the producer accuracy of jack pine (42 % to 77 %) and black spruce (56 % to 78 %) as 

well as the user accuracy of white spruce (42 % to 91 %) were worth noting (Tables 12 

and 25). On the basis of these results, multi-temporal image classifications are of definite 

benefit in the discrimination among leading species in northern boreal forests. 

  For the multi-temporal image classification, confusion between tree species 

occurred mainly between jack pine and black spruce (Table 25). This confusion was 

expected given that upland black spruce and jack pine often occur on the same well-

drained sites with reindeer lichen understories (Figure 18). Among the field plots 

sampled for example, varying amounts of jack pine and black spruce was observed in 11 

of the 26 jack pine dominant stands (Table 9), of which 5 stands were misclassified. 
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Figure 23: Tree species distribution maps generated using image and reference endmembers. (A) 

July image endmembers, (B) multi-temporal image endmembers, and (C) July reference 

endmembers. A multispectral QuickBird image is provided for spatial reference (D). 
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Table 24: Contingency matrix of the best July image classification. 

Map prediction 
Ground reference (# of stands) 

1
 

Total 
User 

accuracy Aspen Jack pine White spruce Black spruce 

Aspen 1 1 3 1 6 17 % 

Jack pine 0 14 3 3 20 70 % 

White spruce 0 5 6 1 12 50 % 

Black spruce 0 6 0 4 10 40 % 

Total 1 26 12 9 48  

Producer accuracy 100 % 54 % 50 % 44 %   

Overall accuracy = (25/48) 52 %    

Kappa = 0.29     
1
 The leading species was identified per fraction of total basal area of the dominant/co-dominant trees. 

 

Table 25: Contingency matrix of the best multi-temporal image classification. 

Map prediction 
Ground reference (# of stands) 

1
 

Total 
User 

accuracy Aspen Jack pine White spruce Black spruce 

Aspen 1 0 1 0 2 50 % 

Jack pine 0 20 1 2 23 87 % 

White spruce 0 1 10 0 11 91 % 

Black spruce 0 5 0 7 12 58 % 

Total 1 26 12 9 48  

Producer accuracy 100 % 77 % 83 % 78 %   

Overall accuracy = (38/48) 79 %    

Kappa = 0.67     
1
 The leading species was identified per fraction of total basal area of the dominant/co-dominant trees. 

 

5.4. Discussion 

  Three advancements were reported in this study. This study represented one of the 

first documented cases of tree-species classification using medium spatial resolution 

imagery in a northern boreal forest context. Second, impure, yet meaningful image 

endmember spectra selected through forest inventory information were compared with 

pure reference endmember spectra for mapping the leading species using spectral mixture 

analysis. Third, the benefits of multi-temporal imagery were assessed. 
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5.4.1. Impure Image Endmember Spectra for Classification Purposes 

  Because of the structural and compositional heterogeneity of northern boreal 

forests, EEAs which automatically select purest image endmembers of the sunlit canopy 

and background component are of limited use for species discrimination given that the 

assumptions of object and spectral purity cannot be met. Nevertheless, this study 

highlights that positive classification results can be obtained when impurity in 

representative sunlit canopy and background spectra is accepted and when meaningful 

endmember selection criteria are used based on a priori knowledge. There is a need to 

improve descriptions of the physical meaning of endmembers derived by methods which 

do not assume pixel purity (Plaza et al., 2012), which forest inventory information can 

provide. Because of the similarities in classification accuracy and unmixing fitness 

between image endmembers and reference endmembers, this study indicated that non-

pure but meaningful endmember spectra can be appropriate even when field-based 

measurements of reflectance are not available. Although phenology, bi-directional 

reflectance, and solar zenith angles limit the portability of single-scene image 

endmembers between different images (Dennison & Roberts, 2003a), they are more 

easily obtained and unlike reference endmembers, are selected at the same scale and 

atmospheric conditions as the imagery (Drake et al., 1999).  

5.4.2. Multi-temporal Imagery 

  Challenges regarding the similarity of reflectance spectra of differing tree species 

and the large intra-species variation in reflectance spectra often limit the capabilities of 

medium-spatial resolution sensors for discriminating among leading tree species (Treitz 

& Howarth, 1999; Cochrane, 2000). As a result, remote sensing approaches conducted 
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within the North American boreal zone have on average achieved only moderate success 

in approximating the information derived through ground inventories or aerial photo-

interpretation (Tables 3, 4, and 5). Imagery acquired at key phenological periods can 

reduce spectral similarity among tree species, and when combined, could exploit 

phenological differences among tree species. In this study, multi-temporal imagery 

significantly improved the discrimination of leading species in northern boreal zones and 

reached a similar classification accuracy as achieved by Franklin (1994), Wolter et al. 

(1995), and Peddle et al. (2004) in other boreal forest settings. Even though Landsat TM 

has a limited spectral and spatial resolution relative to hyperspectral imagery, spectral 

mixture analysis and multi-temporal imagery could partially compensate for these 

limitations. For resource mapping purposes, the multi-temporal image classification 

corresponded better to ground-reference data than the black/white aerial photo 

interpretation for leading species (GNWT Forest Management Division) with significant 

improvements at the 95-% confidence level when all 48 plots were considered (79 % 

versus 56 %; Z-score = 2.01) as well as for a compositionally pure subset of plots at the 

90-% confidence level (85 % versus 64 %; Z-score = 1.65). Much more detailed 

information about forest stands are collected through an aerial photo interpretation (e.g., 

the relative abundance of tree species to the nearest 10 percent, height, moisture regime) 

and, therefore, multi-temporal image classifications such as described in this study could 

supplement but not replace inventory approaches for operational forest management. For 

example, the information produced in this study could function as a stratification tool to 

aid forest inventories, highlight areas of interest, and provide opportunities to refine 

predictive models of specific stand parameters (sensu Gerylo et al., 2002). 
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5.4.3. Importance of Background Endmember Spectra 

  The best spectral library of the background component contained spectra acquired 

just outside of forest cover. Even though they may not be representative of the understory 

species typical of northern boreal forests (e.g., reindeer lichen), they are of value in the 

spectral mixture analysis approach. To differentiate between different vegetation types 

using MESMA, studies typically analyze the performance of two-endmember models 

whereby one forest vegetation class endmember is combined with a shade endmember 

(Dennison & Roberts, 2003a; Schaaf et al., 2011; Youngentob et al., 2011). For example, 

Roberts et al. (1999) achieved encouraging yet anecdotal results for mapping dominant 

vegetation types in the Canadian boreal forest using a two-endmember model. Two-

endmember models are primarily used because of difficulties with the characterization of 

the understory, whereby it is assumed that the combined sunlit canopy and understory 

components are spectrally dissimilar among leading species classes. Some exploration 

between two-endmember models and three-endmember models was undertaken in this 

study, and highlighted that for the multi-temporal data in this study, two-endmember 

models underperform in overall classification accuracy, Kappa, and RMSE (not shown) 

in comparison to the most accurate three-endmember classification (Figure 24). These 

results emphasize the necessity of background spectra to discriminate among tree species, 

and that three-endmember models could  improve classification results in areas where the 

understory component increased confusion among tree species (e.g., Cho et al., 2010). 
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Figure 24: Classification accuracies of two- and three-endmember models. 

  

5.4.4. Challenges 

  In the examination of unmixing fitness, it was evident that band residuals in July 

were much smaller than the residuals in the other months. This was likely because the 

locations for optimal candidate image endmembers were entirely based on the July 

dataset in order to make meaningful comparisons with the multi-temporal dataset. 

Positive and negative band residuals occurred early and late in the growing season, 

respectively, and highlighted that the best model fit had a reflectance higher/lower than 

the measured reflectance. These differences can be attributed to temporal changes in 

reflectance of the sunlit canopy and background components, of which the latter is 

spectrally brighter than the former and dominates the radiance signals received by 

medium-spatial resolution sensors (Bubier et al., 1997; Gerylo et al., 2002). Within 
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mature coniferous stands, the amount of photosynthetic active radiation and simple ratio 

(SR = red / near-infrared) of the background component steadily decreases throughout the 

growing season as a result of canopy development and foliar display early in the growing 

season and decreasing solar angle later in the growing season (Ross et al., 1986). As 

reported by Miller et al. (1997), seasonal phenology can be characterized by decreasing 

reflectance in the visible spectrum and increasing reflectance in the near-infrared 

wavelengths, which closely resembles the patterns of band residuals of the June and 

September imagery (Figure 18). As well, the positive residuals in the SWIR1 band early 

in the growing season were most likely a result of understory development where the 

foliage, due to its water content, absorbs radiance in the short-wave infrared portion of 

the electromagnetic spectrum (Carter, 1991; Gemmell et al., 2001). When these 

phenological changes are taken into account during the optimization process of the 

candidate image endmembers, smaller band residuals would be expected for the multi-

temporal imagery, which could consequently lead to incremental improvements in RMSE 

and ultimately classification accuracy.  

  Within MESMA all spectral bands are weighted equally during model inversion, 

and as a result, the estimated cover fractions are mainly influenced by the high 

reflectance values which dominate the near-infrared spectrum. The visible spectrum, 

which have showed to be of great importance for discriminating among coniferous 

species (Peddle & Franklin, 1991; van Aardt & Wynne, 2007; Dalponte et al., 2013), is 

therefore of little influence in the image classification approach. A band weighting 

scheme may emphasize differences in reflectance at wavelengths that are characterized 

with low reflected energy (Somers et al., 2009b). An alternative to this solution would be 
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the creation of an integrated time-series spectral image that captures the seasonal 

phenology per spectral region in the most responsive months, which subsequently 

maximizes the spectral separability between tree species (Somers & Asner, 2012). 

5.5. Conclusion 

  Northern boreal forests are characterized by open stands whereby understory 

ground vegetation and shadows are significant contributors to pixel-reflectance. In these 

forest settings, an accurate characterization of the sunlit canopy and background 

component is required for accurate modelling of the pixel reflectance through SMA, yet 

this is difficult to achieve if field-based spectral measurements are not available. 

Alternatively, the detection of image-derived endmembers is challenging because the 

canopy layer prohibits pure reflectance measurements from the understory vegetation to 

be made, and vice versa.  

  This study highlighted that satisfactory classification results of leading species 

can be obtained through the use of non-pure, but meaningful image endmember spectra. 

It was demonstrated that variability owing to surface heterogeneity can be tolerated, and 

may in fact be desirable in terms of providing SMA inputs that are more representative 

over larger areas. Although no clear differences in overall accuracy (± 50 %) and Kappa 

(± 0.30) were observed between reference and image-derived endmembers for single-date 

imagery, the improvements for multi-temporal imagery were significant at the 95-% 

confidence level (overall accuracy = 79 %, Kappa = 0.67). The criteria by which image 

endmembers of the sunlit canopy and background components were selected affected 

considerably the classification accuracy and unmixing fitness for multi-temporal imagery. 

The sunlit canopy endmember was best described through a basal-area purity criterion 
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whereby the compositional diversity of forest stands was most accounted for, whereas 

spectra obtained outside of the forest canopy best approximated the background 

endmember. These image-based endmember spectral protocols become viable 

alternatives when field-based measurements of reflectance are not available, and it was 

shown that these outperformed field-based spectral endmembers when multi-temporal 

imagery was used. In conclusion, image-derived spectral endmembers are suitable for 

leading tree-species classifications in these northern boreal forests using Landsat TM 

imagery, and imagery acquired throughout the growing season increased classification 

accuracies significantly to the extent that the information product is relevant to 

operational forest management.  
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CHAPTER 6 

Discussion 

  This thesis described a study of mapping the leading species in an area 

representative of northern boreal forests, and investigated four aspects relevant to obtain 

this information through remote sensing: 1) the sensitivity of Landsat TM imagery to 

field-based descriptions of the leading species, 2) performance differences between field-

based training spectra and spectra derived from the image itself, 3) the method used to 

obtain these representative field spectra (e.g., dominant understory species or an mixed 

understory spectra) and image spectra (e.g., by basal-area based species composition or 

by crown closure), and 4) the benefits of using multi-temporal imagery collected at 

various stages throughout the growing period. The basis for these investigations was a 

literature review, which provided an overview of the potential and limitations of remote 

sensing to derive tree-species information within a northern boreal forest context. 

6.1. Key Findings 

 This study indicated that Landsat TM imagery is most sensitive to the indicator of 

leading species per fraction of total basal area of the dominant/co-dominant trees, and 

that this observation is consistent among crown closure ranges. The sensitivity of image 

classifications to field-based descriptions of leading species is typically not assessed in 

remote sensing studies due to general lack of multiple validation datasets. However, it is 

important to understand this sensitivity for operational forest management as it 

encourages relevance of the generated information product for professional foresters and 

promotes the integration of this information in existing forest inventory databases. For 

example, the findings of this study indicated that the Landsat TM image classification 
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labels the leading species of a forest stand consistent with forest inventories for 

operational-forest management in the Northwest Territories that focus on the 

dominant/co-dominant trees in a stand (Government of Northwest Territories, 2006a). 

Landsat TM also showed a strong agreement with the ocular calls of the overstory, which 

therefore can be used to identify the leading species when field measures of basal area 

and height are not available due to time and budget limitations. However, it was shown 

that some differences exist between the two validation datasets for highly mixed stands, 

and that Landsat TM is more sensitive to the leading species identified by quantitative 

measurements of basal area than by qualitative measurements in these cases. This finding 

was expected as ocular calls generally have an acceptable range of species composition 

of 85 % of the composition correctly identified (Government of Northwest Territories, 

2006a). This indicates that a hybrid validation dataset, consisting of species information 

derived through basal-area ground measurements for highly mixed stands and ocular calls 

for relatively pure stands, could be formulated to increase the number of validation 

samples and improve the confidence in the derived information product. 

  For field-based spectra of the background component, this study indicated that the 

highest similarities with ground-reference data were obtained when the heterogeneity of 

the understory was approximated through the calculation of a weighted average of 

individual spectra at the stand level. Knowledge of understory compositions and relative 

abundances lead to a better characterization of the spectral response of the background 

endmember, with higher classification accuracies as a result. Because the composition of 

the understory in different forest types should be similar within ecologically similar units, 

general associations between the overstory of a stand and understory compositions can be 
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made (e.g., Beckingham & Archibald, 1996; Ecosystem Classification Group, 2007). 

Therefore large, a regionally representative spectral library could be developed through 

expert knowledge that contain weighted spectra of slightly different compositions and 

relative abundances. Such libraries could more easily accommodate the complexity of the 

understory at regional scales, and are less complicated to develop than the acquisition of 

new field spectra. 

  As a result of time, budget, site access, and data challenges, the usefulness of 

reflectance data collected with a spectroradiometer is limited for mapping large, remote 

forests in the Northwest Territories. Therefore, investigations with regards to the 

performance of image spectra selected using forest inventory information were 

conducted. Although these spectra are not pure due to the patchiness of the forest canopy, 

results indicate that impurity in representative sunlit canopy and background image 

endmembers is tolerated for leading species discrimination. These endmember spectra are 

appropriate when field-based measurements of reflectance are not available, and 

outperform the latter when multi-temporal imagery was used. However, forest inventory 

plots are required to identify optimal spectra for image classification. Because the 

availability of such forest inventory data is typically greater than ground-reflectance data, 

the need for forest inventory information is not necessarily a limiting factor, especially 

when only one or two pixels are required to characterize the image endmember spectra 

for each species class. The criteria to select representative image endmember spectra only 

influenced the classification performance of multi-temporal imagery. The best results 

were achieved when the representative sunlit canopy spectra of pure stands were selected 

using a basal area purity measure (> 95-% abundance), and representative spectra of 
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mixed stands were selected in a way that included highly mixed stands irrespective of 

crown closure. As the best understory spectral library contained spectra collected just 

outside forest stands using high-resolution QuickBird imagery as a visual aid, it suggests 

that image endmembers of the background component should not be affected by the 

sunlit canopy. When high-spatial resolution imagery is not available, Google Earth 

(Google Inc.) could potentially be used. Because three-endmember models (sunlit canopy 

+ background + shade) improved classification results over two-endmember models 

(vegetation component + shade), the importance of background spectra was emphasized. 

6.2. Future Research 

  This work presents incremental advances towards the overall goal of a partnership 

between Natural Resources Canada – Canadian Forest Service (NRCan-CFS) and the 

Government of the Northwest Territories (GNWT) to meet information needs regarding 

forest structure, stand volume, and aboveground biomass (Hall et al., 2012). The 

objective of the partnership is to develop a multi-sensor remote sensing inventory system 

within the framework of EOSD (Earth Observation for Sustainable Development of 

Forest) land cover maps, and integrate the derived information with the GNWT forest 

inventory into a combined Multisource Vegetation Inventory (MVI) in vector polygon 

format. EOSD characterizes forest cover in coniferous, deciduous, and mixed classes, and 

a more specific characterization of tree species is desired for polygon labelling. 

  This study needs to be repeated across a broad range of northern boreal forests 

(e.g., Fort Simpson, Fort Liard, Hay River) to increase confidence in the results and 

observations made in this study. Within the study area of this research, the raster-based 

leading species classification needs to be integrated into the existing MVI. Within the 
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existing MVI polygons, the leading species pixels should be enumerated to generate a 

species composition label for each polygon. These labels should be evaluated against 

independent field information to assess consistency among forest inventory methods. 

  To extend the work undertaken in this research, Landsat TM image classifications 

are required at much larger geographic extents to meet the objective of the NRCan-CFS 

and GNWT partnership (e.g., the southern most productive forests span more than 90,000 

km^2; Hall et al., 2012). Due to the frequency of cloud cover at high latitudes (Rees et 

al., 2002), it was difficult to obtain cloud-free imagery that captured the phenological 

stages of the forests and that were appropriate with respect to the timing of the forest 

inventory data (2005 ± 1 year). Therefore, an assessment to find those phenological 

stages and image bands that maximize the spectral separability between tree species is a 

worthy investigation (e.g., Somers & Asner, 2012). Such data reduction facilitates easier 

data retrieval (i.e., less imagery needed to achieve similar classification results), pre-

processing (e.g., atmospheric correction, image normalization) and faster spectral mixture 

analysis. When these optimal phenological stages are known, image mosaics are required 

that span the study area of the NRCan-CFS and GNWT partnership. These can be 

generated through a Landsat TM normalization to MODIS (Moderate Resolution Imaging 

Spectroradiometer) imagery (Hall et al., 2012). Once available, the MESMA approach 

highlighted in this study can be used to derive the leading species over larger areas. 

Because spectral weighing of image bands can emphasize differences in reflectance at 

visible and shortwave-infrared wavelengths (Somers et al., 2009b), it is worthwhile to 

investigate whether spectral differences between coniferous tree species can be increased 

to improve the image classification results reported in this study. 
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CHAPTER 7 

Conclusions 

 There is a need for accurate information on the spatial distribution, composition, 

structure, and processes of forests. However, information regarding the spatial 

distribution of tree species is prohibitively expensive and a challenge to obtain over large, 

remote forests, such as the northern boreal forests in the Northwest Territories. Although 

an inventory approach based on remote sensing may be used to supplement current forest 

inventory data, the capabilities of such approaches to map the leading species of forest 

stands are unknown due to the absence of studies in these regions. A challenge is that the 

approach by which the leading species is determined differs among jurisdictions and in 

the scientific literature, and it is not known whether imagery is sensitive to how species 

composition is characterized in the field. Because the spectral response from these types 

of forests are noticeably mixed in 30-m Landsat TM images, an image classification 

based on Spectral Mixture Analysis may be a viable approach to identify the leading 

species using representative spectra of physically meaningful components (i.e., 

endmembers). The objectives of this thesis were to improve the understanding of the 

extent Landsat TM could be related to field-based descriptions of leading species, and 

determine whether differences in classification performance exist between: 1) field-based 

and image-derived endmember spectra, 2) endmember selection methods based on forest 

inventory information, and 3) single-date and multi-temporal imagery. 

  Interpretation of the results suggested that Landsat TM imagery is most sensitive 

to the indicator of leading species per fraction of total basal area of the dominant/co-

dominant trees, and that this observation is consistent among crown closure ranges. This 
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finding is relevant as it indicates compliance to forest inventories for operational-forest 

management in the Northwest Territories which also focus on the dominant/co-dominant 

trees. With regards to the use of field spectra for classification purposes, the highest 

similarities with ground-reference data were obtained when the heterogeneity of the 

understory was approximated through the calculation of a weighted average of individual 

spectra and whereby individual cover fractions were known. Therefore, good knowledge 

of the understory leads to a better characterization of the spectral response of the 

background endmember and thereby improved classification results.   

  This study also highlighted that satisfactory classification results can be obtained 

when impurity in representative sunlit canopy and background image endmembers is 

accepted and when meaningful endmember selection criteria are selected based on forest 

inventory information. These image endmember spectra are appropriate when field-based 

measurements of reflectance are not available, and can outperform the latter using multi-

temporal imagery. Although previous studies have classified leading species using two-

endmember models, this study emphasizes the need for a separate background spectral 

component to improve the discrimination of tree species in open canopy forests. In this 

study, the image classification obtained with the MESMA approach are encouraging 

(overall accuracy = 79 %) and highlights its applicability for other areas in northern 

boreal forests. To use the generated information product for operational forest 

management, the raster-based image classification requires integration into the existing 

Multisource Vegetation Inventory (a NRCan-CFS and GNWT partnership) and 

subsequent validation at the vector polygon level before expanding the mapping area. 
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APPENDIX 1: Contingency matrices Chapter 4 

Ocular AVI-Call indicator used as ground-reference data. 

Single spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 8 2 3 13 

Black spruce 0 9 2 3 14 

White spruce 0 8 5 3 16 

Total 0 25 9 9 43 

Overall accuracy = (13/43) 30 %   

Kappa = -0.03    

 

Integrated spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 11 1 4 16 

Black spruce 0 8 4 6 18 

White spruce 0 7 2 1 10 

Total 0 26 7 11 44 

Overall accuracy = (16/44) 36 % 

Kappa = 0.04 

  

 

Weighted spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 10 1 3 14 

Black spruce 0 7 4 1 12 

White spruce 0 9 5 5 19 

Total 0 26 10 9 45 

Overall accuracy = (19/45) 42 %   

Kappa = 0.15    

 

Note: the number of total plots used in the determination of classification accuracy was dependent 

on the number of species included in the reference dataset. If a species was not included in the 

reference dataset (e.g. aspen) but was labelled in the classification image, ENVI 4.8 Contingency 

matrix function only assessed the plots that belong to the species instead of assessing the mis-

labelled plots as “Unclassified”. The accuracies posted in Chapter 4 were adjusted accordingly 

and were based on a 48 plot sample size. This appendix reflects the original accuracies. 
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All trees indicator used as ground-reference data. 

Single spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 2 1 1 5 

Jack pine 0 6 5 2 13 

Black spruce 0 6 5 3 14 

White spruce 0 5 6 5 16 

Total 1 19 17 11 48 

Overall accuracy = (17/48) 35 %   

Kappa = 0.09    

 

Integrated spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 3 1 4 

Jack pine 1 6 7 2 16 

Black spruce 0 7 4 7 18 

White spruce 0 6 3 1 10 

Total 1 19 17 11 48 

Overall accuracy = (11/48) 23 % 

Kappa = -0.12 

  

 

Weighted spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 2 0 1 3 

Jack pine 1 4 7 2 14 

Black spruce 0 6 5 1 12 

White spruce 0 7 5 7 19 

Total 1 19 17 11 48 

Overall accuracy = (16/48) 33 %   

Kappa = 0.05    
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Dominant/Co-dominant indicator used as ground-reference data. 

Single spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 2 2 0 5 

Jack pine 0 10 1 2 13 

Black spruce 0 6 6 4 16 

White spruce 0 8 3 3 14 

Total 1 26 12 9 48 

Overall accuracy = (20/48) 42 %   

Kappa = 0.18    

 

Integrated spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 1 1 2 4 

Jack pine 1 10 1 4 16 

Black spruce 0 7 3 0 10 

White spruce 0 8 7 3 18 

Total 1 26 12 9 48 

Overall accuracy = (16/48) 33 % 

Kappa = 0.04 

  

 

Weighted spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 2 0 1 3 

Jack pine 1 11 1 1 14 

Black spruce 0 6 5 1 12 

White spruce 0 7 3 9 19 

Total 1 26 9 12 48 

Overall accuracy = (25/48) 52 %   

Kappa = 0.31    
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GNWT Photo indicator used as ground-reference data. 

Single spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 3 7 2 12 

Black spruce 0 4 7 2 13 

White spruce 0 3 10 2 15 

Total 0 10 24 6 40 

Overall accuracy = (12/40) 30 %   

Kappa = -0.04    

 

Integrated spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 2 11 1 14 

Black spruce 0 7 5 5 17 

White spruce 0 2 7 0 9 

Total 0 11 23 6 40 

Overall accuracy = (7/40) 17.5 % 

Kappa = -0.32 

  

 

Weighted spectral library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 0 0 0 0 0 

Jack pine 0 2 10 1 13 

Black spruce 0 2 9 0 11 

White spruce 0 6 7 4 17 

Total 0 10 26 5 41 

Overall accuracy = (15/41) 37 %   

Kappa = 0.10    
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APPENDIX 2: Contingency matrices Chapter 5 (July imagery) 

Basalarea sunlit canopy library + PurestBg background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 1 2 1 5 

Jack pine 0 9 2 1 12 

Black spruce 0 16 8 2 26 

White spruce 0 0 0 5 5 

Total 0 26 12 9 48 

Overall accuracy = (23/48) 48 %   

Kappa = 0.26    

 

Basalarea sunlit canopy library + LowestCC background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 1 3 1 6 

Jack pine 0 14 3 3 20 

Black spruce 0 5 6 1 12 

White spruce 0 6 0 4 10 

Total 1 26 12 9 48 

Overall accuracy = (25/48) 52 % 

Kappa = 0.29 

  

 

HighestCC sunlit canopy library + PurestBg background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 1 0 2 

Jack pine 0 5 1 0 6 

Black spruce 0 14 9 3 26 

White spruce 0 7 1 6 14 

Total 1 26 12 9 48 

Overall accuracy = (21/48) 44 %   

Kappa = 0.24    

 

HighestCC sunlit canopy library + LowestCC background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 1 0 2 

Jack pine 0 9 2 2 13 

Black spruce 0 4 8 2 14 

White spruce 0 13 1 5 19 

Total 1 26 12 9 48 

Overall accuracy = (23/48) 48 %   

Kappa = 0.26    
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APPENDIX 3: Contingency matrices Chapter 5 (Multi-temporal imagery) 

Basalarea sunlit canopy library + PurestBg background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 1 0 2 

Jack pine 0 20 1 2 23 

Black spruce 0 1 10 0 11 

White spruce 0 5 0 7 12 

Total 1 26 12 9 48 

Overall accuracy = (38/48) 79 %   

Kappa = 0.67    

 

Basalarea sunlit canopy library + LowestCC background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 3 0 4 

Jack pine 0 16 1 2 19 

Black spruce 0 5 8 0 13 

White spruce 0 5 0 7 12 

Total 1 26 12 9 48 

Overall accuracy = (32/48) 67 % 

Kappa = 0.50 

  

 

HighestCC sunlit canopy library + PurestBg background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 0 0 1 

Jack pine 0 17 4 2 23 

Black spruce 0 2 7 0 9 

White spruce 0 7 1 7 15 

Total 1 26 12 9 48 

Overall accuracy = (32/48) 67 %   

Kappa = 0.48    

 

HighestCC sunlit canopy library + LowestCC background library 

 Ground reference (# of stands)  

Map prediction Aspen Jack pine Black spruce White spruce Total 

Unclassified 0 0 0 0 0 

Aspen 1 0 3 2 6 

Jack pine 0 12 1 2 15 

Black spruce 0 5 7 0 12 

White spruce 0 9 1 5 15 

Total 1 26 12 9 48 

Overall accuracy = (25/48) 52 %   

Kappa = 0.32     


