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Abstract

The effects of diffraction at terahertz frequencies limit the spatial resolution of imaging

systems. One approach to achieve subwavelength resolution is near-field imaging using a

subwavelength aperture, however, the low transmission through subwavelength apertures

limits the sensitivity of this approach. Plasmonic lenses in the form of bullseye structures,

consisting of a circular subwavelength aperture with concentric periodic corrugations, have

demonstrated enhanced transmission and beam confinement. This thesis discusses the de-

sign criteria of plasmonic lenses optimized for 325 GHz. Fabrication for optical applica-

tions is traditionally achieved by nanolithography. Since the scale of plasmonic structures

depends on the wavelength, precision micromilling techniques are well suited for terahertz

applications. Theoretical simulations are obtained using a finite-difference time-domain

solver and the performance the devices are evaluated using a customized terahertz testbed.

The prospect of using plasmonic lenses in a terahertz imaging configuration for the diagno-

sis of cancer is also discussed.
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Chapter 1

Introduction and Motivation

Terahertz (THz) radiation lies in the gap between microwaves and the near-infrared that

includes frequencies from 300 GHz to 10 THz (wavelengths from 30 µm to 1 mm) [7]. This

relatively unexamined region, historically made difficult by inefficient generation and de-

tection of THz waves, has become increasingly accessible in recent years due to significant

technological advances. Spectroscopic information in the THz band is relatively unex-

plored and the potential exists for spectral signatures of molecules to be used for the early

detection of diseases [8]. Notably, THz radiation has been shown to have an increased

ability to differentiate between cancerous and normal tissue [9]. Additional applications of

THz radiation have been suggested, such as using their ability to penetrate through clothing

to identify concealed explosives or gather spectroscopic information from polymers and

semiconductors [7, 10].

Biomedical applications of THz imaging have gained interest due to the low photon

energy of THz radiation, about 4 meV at 1 THz, which is below the minimum 13.6 eV re-

quired to ionize a hydrogen atom [11]. This is uniquely advantageous when compared

to X-rays, which have photon energies six orders of magnitude higher [8]. Despite the

promising applications of THz imaging, the material to be analyzed is often smaller than

the incident wavelength. Lord Rayleigh’s criterion (Section 1.1) restricts the spatial reso-

lution of conventional far-field microscopy to be on the scale of the wavelength, which for

THz frequencies is on the order of several hundred microns [6]. Near-field imaging tech-

niques can improve matters by introducing a subwavelength aperture as an intermediate
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optical element (Section 1.2), but this method is limited by very low transmission through

the aperture. However, recent advances in the field of plasmonics have allowed for extraor-

dinary transmission that would otherwise not be possible (Section 1.3). The design and

implementation of a near-field THz imaging configuration that makes use of extraordinary

transmission provides a path for the inspection of biological samples and may prove as a

useful tool for the diagnosis of breast cancer (Section 1.4).

1.1 Spatial Resolution and the Limit of Classical Optics

Far-field imaging configuration such as simple and compound microscopes have a spa-

tial resolution that is limited by Fraunhofer diffraction (with the exception of any abbera-

tions caused by imperfect lenses) [6]. Consider the setup shown in Figure 1.1(a). Light of

wavelength λ is emitted from a distant source and incident on an opaque obstruction, Σ,

with a circular aperture of radius r. A viewing screen, σ , is placed a distance L away from

the obstruction.

In the far-field case (L > r2/λ ), light travelling through the circular aperture diffracts

in a pattern with a central bright spot surrounded by alternating dark and light rings, as

shown in Figure 1.1(b) [6]. This intensity distribution, known as the Airy pattern, is given

by [12]:

I = I0

[
2J1(krq/L)

krq/L

]2

, (W ·m−2) (1.1)

where I0 is maximum intensity located at the centre of the pattern, J1 is the Bessel function

of the first kind of order one, k = 2π/λ is the wavenumber, and q is the radial distance to

a point on the screen.

The location of the first dark ring is given by the first zero of the Bessel function,

krq/L = 3.83, such that

2
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(a) (b)

Figure 1.1: (a) An opaque obstruction with a circular aperture of radius r is placed far from
a source (not shown) and at a distance L from a viewing screen. (b) In the far-field case, the
intensity distribution on the viewing screen is known as the Airy pattern [2].

q = 1.22
(

Lλ

d

)
, (1.2)

where d is the diameter of the aperture.

In the case of imaging systems, the diameter of the lens is typically the diffracting

aperture. When the viewing screen is placed a focal length f away, Equation 1.2 becomes

q =1.22λ

(
f
d

)
. (1.3)

The ratio f/d is typically written as f/N, where N is known as the f-number of the lens.

The resolution of the an imaging system can be quantified by the Rayleigh criterion,

which states that two incoherent point sources can be distinguished if the centre of one of

their Airy patterns coincide with the first minimum of the other Airy pattern [6]. That is,

the minimum resolved distance, δ lmin, is

δ lmin = 1.22λ ( f/N). (1.4)

The wavelength of light and the f-number of the optics thus limits the obtainable resolution

of the imaging system, which for conventional optics is at best ≈ λ/2 [6].
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Figure 1.2: The limit of resolution is defined by the Rayleigh criterion as the point where
the centre of an Airy pattern produced by one point source (red) falls on the minimum of a
second Airy pattern produced by another point source (black). These curves were generated
for λ = 922 µm and an f/1 lens, giving δ lmin ≈ 1120 µm (dashed line).

To illustrate the Rayleigh criterion, the Airy pattern of two point sources was generated

for the case of λ = 922 µm illumination on an f/1 lens (Figure 1.2). The motivation behind

these example parameters will be explored shortly, but suffice it to say that the minimum

resolvable distance for this combination is approximately 1120 µm, that is, on the order of

the wavelength.

1.2 Near-Field Aperture Techniques

One method to improve the spatial resolution of conventional optics is to use a sub-

wavelength aperture to reduce the size of the source/detecting element [13]. Since the

distribution of radiation intensity immediately behind a subwavelength aperture is deter-

mined by the size of the aperture rather than the wavelength, the spatial resolution of such

a system is then defined by the aperture size. A schematic of a typical near-field imaging

configuration is shown in Figure 1.3 [13–15]. Light is incident on a subwavelength aper-

ture (often a tapered metal waveguide with a subwavelength exit aperture) and a sample is

placed within a wavelength of the output side. The sample is scanned in a raster motion

and the transmitted radiation is collected by subsequent optics and picked up by a detecting
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element. This technique, initially developed for visible frequencies, is known as near-field

optical microscopy (NSOM) [14].

At THz frequencies, initial attempts at near-field imaging using subwavelength aper-

tures were limited by poor transmission through the hole, scaling as r6/λ 4, where r is the

radius of the aperture and λ the wavelength of light [16]. The thickness of the aperture

further decreases the transmitted power with an exponential dependence. These limitations

are further explored in Chapter 4. Since commonly available room temperature sources are

of relatively low power, the utility of THz subwavelength imaging becomes limited.

Figure 1.3: The typical setup of a near-field scanning microscope. Light is incident on a
sample from a subwavelength aperture and scanned in the horizontal plane. The resolution
of the image is determined by the aperture diameter.

1.3 Plasmonics: A Route to Enhanced Transmission

A radical shift in the physics of subwavelength apertures occurred in 1998 with

T. W. Ebbesen’s report of extraordinary transmission (EOT) orders of magnitude greater

than that predicted through subwavelength hole arrays milled in an opaque metal screen [17].

The enhanced transmission reported by Ebbesen is due to the existence of electromagnetic

waves trapped at a metal-dielectric interface that are interacting with the free electrons of

the metal [18]. These electromagnetic excitations are known as surface plasmon polaritons

(SPPs). Recent applications of SPPs at visible frequencies have been realized by modern

nanofabrication techniques, allowing for the structuring of subwavelength surface features

that generate and guide the electromagnetic wave. A great deal of interest has been shown
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regarding the enhanced transmission of visible wavelengths through subwavelength metal-

lic hole arrays, slits, and bullseye lenses [19].

Figure 1.4: A bullseye lens designed for use at λ = 660 nm with a d = 250 nm diameter
subwavelength aperture surrounded by grooves with 500 nm periodicity [3]. Reprinted with
permission from AAAS.

The bullseye lens is of particular significance. It consists of subwavelength aperture

surrounded by concentric corrugations on both the input and output sides of the metal sur-

face [20–22]. An example of a bullseye lens is shown in Figure 1.4. Surface plasmons are

resonantly excited by periodic corrugations on the input side. Corrugations on the output

side serve to couple surface plasmons back to the radiation field and the geometry of the

grooves can be tuned to focus the output beam [23, 24].

The entertainment and consumer electronics industry, which rely on optical data storage

discs, have shown interest in subwavelength imaging applications [25, 26]. Bullseye lenses

have been considered as a readout device for the ultra-dense storage of optical data [27].

Data, represented as surface pits, is read as reflections of a laser focused on the surface. The

diffraction limited spot size places a limit on the smallest pit, which limits the data packing

density. Subsequently smaller wavelengths have been used to read closer pits to increase

data storage. Near-field techniques could reduce the pit size to be limited by the size of the

readout head and would thereby increase the data packing density and readout rates [28].

Furthermore, data could be encoded in the illuminated spot as subwavelength surface fea-
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tures that resonantly excite surface plasmon modes and modify the spectral content of the

reflected signal [29].

Plasmonic devices have been designed for long wavelength radiation, where metals

begin to behave as perfect electrical conductors and the structural parameters scale with the

wavelength [7, 23, 30–35]. Applications of THz plasmonic devices range from enhancing

detecting elements to biological sensing [36–38]. The work done in this thesis focuses

on the design, fabrication, and performance of bullseye lenses for use at 325 GHz (λ =

922µm), a frequency that has been shown to be optimum for the differential diagnostic for

breast cancer [38, 39].

1.4 A THz Microscope for Cancer Detection

In Section 1.1, it was discussed that the Rayleigh criterion defines the limit of classical

microscopy techniques to be on the order of the wavelength of the incident radiation, which

for 325 GHz is around a millimeter. For edge detection of cancer cells, a resolution of

≈ 100 µm is required, which is subwavelength at THz frequencies [40]. Near-field aperture

techniques lead to improved spatial resolution, however the low transmission through sub-

wavelength apertures, low sensitivity of room temperature detectors, and low output power

of typical sources results in low overall system signal-to-noise. While quantum cascade

lasers provide higher power and hot electron bolometers have high sensitivity, they require

cryogenic cooling [41]. If one were to use room temperature sources and detectors, the

remaining component in the system that could improve matters is the focusing element.

Exploiting the enhanced transmission of a bullseye plasmonic lens provides a means

to address this challenge. When placed immediately before the sample, the resolution is

determined by the aperture size. The enhanced transmission conferred by the input rings

of the bullseye structure results in an increase in the signal transmitted through the lens.

This thesis presents the design, fabrication, and performance of plasmonic lenses operat-

ing at a frequency of 325 GHz. The plasmonic lens will serve as a key optical element
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in a THz microscope with a tunable frequency range between 320− 330 GHz for the ex

vivo detection of breast cancer cells. Our group is working in conjunction with Blue Sky

Spectroscopy, whose expertise in THz instrumentation and optics have assisted us in the

design of the THz imaging configuration [42]. Currently, we are able to scan samples at a

speed of ≈ 5500 px · s−1, more than 30 times faster than previous attempts to scan a tissue

sample [38, 39]. Collaboration with Dr. Roy Goldstein at the University of Lethbridge and

Dr. Jeff Dunn at the University of Calgary has provided our group access to tissue samples

and proper sample preparation techniques [43, 44]. It is our hope that the successful fabri-

cation and characterization of bullseye plasmonic lenses will lead to the development of a

sensitive, fast-scanning THz microscope.

1.5 Thesis Overview

Surface plasmon polaritons are the key phenomenon that leads to enhanced transmis-

sion through subwavelength apertures. The main characteristics of SPPs can be described

by classical electrodynamics. A review of the key concepts from electromagnetic theory

is presented in Chapter 2, which builds a framework to understand the Drude model of

electrical conduction in metals. Chapter 3 begins by solving Maxwell’s equations on a

planar metal-dielectric interface and general equations are derived that govern the unique

properties of SPPs. Included is a discussion of the surface plasmon dispersion relation, the

different types of surface modes, the generation of surface plasmons, and their evanescent

decay. The material properties described Chapter 2 are reintroduced to highlight how SPPs

differ at THz and visible frequencies. Chapter 4 then shifts to examining the transmission

of light through subwavelength circular apertures and its dependence on aperture diameter

and material thickness.

The design of various bullseye plasmonic lenses, which are optimized for enhanced

transmission and beam confinement at 325 GHz, are introduced in Chapter 5. Chapter 6

introduces a tunable THz testbed that I designed for transmission and beam profile measure-
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ments. This is followed by the experimental verification of the response of several bullseye

lenses in Chapter 7.
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Chapter 2

Electromagnetic Interaction with Matter

Surface plasmons can be viewed as electromagnetic modes that exist on the interface of

a metal and a dielectric [45]. The characteristics of these modes are due to the unique

optical properties of each media. Beginning with a review of Maxwell’s equations, the

starting point for classical electrodynamic problems, this chapter builds a framework for the

theoretical description of surface plasmons given in Chapter 3. Included is a discussion on

a material’s response to an applied electric field (electric polarization), which generally is a

function of frequency. The Drude model of electrical conduction is introduced to formulate

this dependency for a non-magnetic metallic medium and the optical properties of metals

at visible and THz frequencies are compared.

2.1 Maxwell’s Equations in Free Space

Electromagnetic fields in free space are expressed in terms of the electric and magnetic

field vectors ~E (N ·C−1) and ~B (T), respectively. The space and time dependence of these

vectors are described by Maxwell’s equations [46]:
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Gauss’ Law for Electric Fields ∇ ·~E =
ρ

ε0
(2.1a)

Gauss’ Law for Magnetic Fields ∇ ·~B = 0 (2.1b)

Faraday’s Law ∇×~E =−∂~B
∂ t

(2.1c)

The Ampère-Maxwell Law ∇×~B = µ0

(
~J+ ε0

∂~E
∂ t

)
. (2.1d)

The constant ε0 (C2 ·N−1 ·m−2) is the permittivity of free space (or vacuum permittivity)

and µ0 (N ·A−2) is the permeability of free space (or vacuum permeability), which are

related to the speed of light in vacuum c (m · s−1) by c = 1 /
√

ε0µ0. In the above form,

Gauss’ law for electric fields states that ~E diverges from areas in space with a volume charge

density ρ (C ·m−3). Conversely, the divergence of the magnetic field at any point is zero.

Faraday’s law of induction states that a time-vary magnetic field produces an electric field.

The Ampère-Maxwell law says that a magnetic field is created by a changing electric field

and/or a current ~J, defined as the current per unit area-perpendicular-to-flow [47],

~J =−Ne~v, (A ·m−2) (2.2)

where N (m−3) is the electron density, e (C) is the elementary charge, and~v (m · s−1) is the

velocity of the electrons.

Maxwell’s equations, together with the Lorentz force law [47],

~F = q(~E +~v×~B), (N) (2.3)

where ~v (m · s−1) is the velocity of a charged particle q (C), describe how electromagnetic

fields are produced and how the fields affect charges.

In the absence of current and volume charge densities, Maxwell’s equations can be

combined to give
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∇
2~E =−µ0ε0

∂ 2~E
∂ t2 , (2.4)

which is the electromagnetic wave equation written in terms of ~E, and describes the propa-

gation of electromagnetic waves.

2.2 Permittivity

Materials can generally be categorized into two broad groups: dielectrics (insulators)

and metals (conductors), both of which are of importance to the discussion of surface

plasmons. Dielectrics are materials where all charges are attached to specific atoms or

molecules [47]. An applied electric field can have the effect of distorting the charge distri-

bution within a dielectric. Consider the case of a single neutral atom. The electric field will

separate the positively charged nucleus and the negatively charged electron cloud such that

they are aligned with the field. When in equilibrium, the atom in this dipole configuration is

said to be polarized. The dipole moment ~p (C ·m) is a measure of the polarity of the single

atom system and is typically proportional to the applied electric field. The cumulative effect

of many polarized atoms can be described by the polarization density,

~P =
〈~p〉
V

, (C ·m−2) (2.5)

which is the average dipole moment 〈~p〉 (C ·m) per unit volume V (m3). Like the dipole mo-

ment of a single atom, the polarization density is often proportional to the applied electric

field and can be written as

~P = ε0χe~E, (C ·m−2) (2.6)

where χe is a unitless proportionality factor referred to as the electric susceptibility of the

material and ~E is the total field due to both the bound charges within the dielectric and

any other free charge contributions. Materials described by Equation 2.6 are called linear
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dielectrics.

The total electric field ~E can be separated from the field produced by the bound charges

~P, leaving the field due to the free charges alone,

~D = ε0~E +~P, (C ·m−2) (2.7)

which is known as the electric displacement. Combining Equations 2.6 and 2.7 gives

~D = ε~E, (C ·m−2) (2.8)

where ε = ε0(1+ χe) is the absolute permittivity of the material and describes the strength

of the polarization induced by the total electric field. A common unitless formulation is

the ratio of the absolute permittivity to the permittivity of free space, called the relative

permittivity or dielectric constant:

εr = 1+χe =
ε

ε0
. (2.9)

In Section 2.3.3, the term “dielectric constant” will be shown to be a misnomer, since the

relative permittivity of a material can be a complex-valued function of frequency. To avoid

confusion with different nomenclature, this thesis will refer to the dielectric constant as the

relative dielectric function or simply the permittivity of the medium.

Equation 2.8 is one of two constitutive relationships for simple homogeneous, isotropic

linear materials [47]. Following a similar process, the total magnetic field ~B can be sep-

arated into field contributions due to the free currents ~H (A ·m−1) and bound currents

~M (A ·m−1):

~B = µ0(~H + ~M) = µ0(1+χm)~H = µ~H. (T) (2.10)

This is the second constitutive relationship with analogous quantities χm (the unitless mag-
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netic susceptibility) and µ (permeability in N ·A−2). Note that for non-magnetic materials,

µ = µ0.

2.3 Maxwell’s Equations in Matter

Maxwell’s equations as given in Section 2.1 are general and apply to fields generated

within a material due to the effects of polarization and magnetization as well as those in

free space [46]. I.e., ~E and ~B are the total fields in the system and account for all the

enclosed charge (both free and bound) and all currents (both free and bound). In the form

of Equations 2.1a-2.1d, it is difficult to separate these two contributions.

In Section 2.2, constitutive relations were given that allow for the electric and magnetic

field to be described in terms of free charge density (Equation 2.8) and free volume current

density (Equation 2.10). Using these expressions, Maxwell’s equations become

∇ ·~D = ρ f (2.11a)

∇ ·~B = 0 (2.11b)

∇×~E =−∂~B
∂ t

(2.11c)

∇× ~H = ~J f +
∂~D
∂ t

, (2.11d)

where ρ f is the free volume charge density and J f is the free current density. In the case of

metals, J f describes the flow of charge within the conductor and is, in general, proportional

to the electric field [47]:

~J f = σ~E. (A ·m−2) (2.12)

The above equation is a form of Ohm’s law. The proportionality factor σ (S ·m−1) is an em-

pirical constant known as the electrical conductivity of the medium and is a measure of the
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material’s ability to conduct an electrical current. The reciprocal of electrical conductivity

is electrical resistivity ρ (Ω ·m).

2.3.1 Electromagnetic Boundary Conditions

Boundary conditions impose restrictions on the electromagnetic field at an abrupt in-

terface between two media. An understanding of these conditions is essential for deriva-

tion surface plasmons modes, which exist on the interface between a metal and dielectric.

Discontinuities in the fields can be determined from Maxwell’s equations in their integral

form, derivations of which can be found in introductory texts on electromagnetism [47].

The general boundary conditions are as follows: let n̂12 be a unit vector pointing from

media 1 to 2 that is perpendicular to an infinitesimal area of the interface. Across the

interface, the tangential components (parallel to the interface) of the ~E-field and ~H-field,

~E‖ = n̂12 × (~E × n̂12) and ~H‖ = n̂12 × (~H × n̂12), behave as [47]

~E‖1 −~E‖2 = 0 (2.13a)

~H‖1 − ~H‖2 = ~K f × n̂12. (2.13b)

I.e., the parallel component of ~E is continuous, whereas the parallel component of ~H is dis-

continuous due to a surface electric current density ~K f (A ·m−1). Two additional boundary

conditions dictate how the normal components of the electric field and the electric displace-

ment, ~D⊥ = (n̂12 · ~D)n̂12 and ~B⊥ = (n̂12 · ~B)n̂12, behave across the interface:

D⊥1 −D⊥2 = σ f (2.14a)

B⊥1 −B⊥2 = 0. (2.14b)

The normal component of ~B is continuous and the normal component of the ~D is discontin-
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uous due to a surface charge density σ f (C ·m−1).

2.3.2 Time-Harmonic Maxwell’s Equations

Maxwell’s equations can be cast in another form by assuming that the four field vectors

~E, ~H, ~D, and ~B can be written as time-harmonic propagating fields. This thesis uses the

general form

~A(~r, t) = ~A0eiφ ei(~k·~r−ωt), (2.15)

where A0 is the field amplitude, ~r (m) is the position vector, λ (m) is the wavelength,

~k = 2π/λ (m−1) is the wave vector, ω = 2π f (rad · s−1) is the angular frequency, and

φ (rad) is the phase.

Maxwell’s equations can then be re-written in the following way by replacing the time

derivatives by ∂

∂ t =−iω:

Gauss’ Law for Electric Fields ∇ ·~D = ρ f (2.16a)

Gauss’s Law for Magnetic Fields ∇ ·~B = 0 (2.16b)

Faraday’s Law ∇×~E = iω~B (2.16c)

The Ampère-Maxwell Law ∇× ~H = ~J f − iω~D. (2.16d)

2.3.3 Effective Permittivity

Consider the Ampére-Maxwell relation for time-harmonic dependence (Equation 2.16d).

Substituting in Ohm’s law (Equation 2.12) for the free current density ~J f and the constitu-

tive relation for ~D (Equation 2.8), we are left with [48]
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∇× ~H + iωε~E−σ~E = 0

∇× ~H + iω
(

ε +
iσ
ω

)
~E = 0 (2.17)

∇× ~H + iωε̃(ω)~E = 0,

where

ε̃(ω) = ε +
iσ
ω
. (C2 ·N−1 ·m−2) (2.18)

ε̃(ω) is referred to as the effective permittivity. Analogous to the absolute permittivity of

a dielectric material from Section 2.2, the effective permittivity is now a complex-valued

parameter that accounts for free charge carrier effects associated with the conductivity of a

metal. Furthermore,

εm ≡
ε̃(ω)

ε0
= εr +

iσ
ε0ω

, (2.19)

is the relative dielectric function. For short hand, this thesis will use εm to represent the

relative dielectric function for metals. For a complete functional form of εm, the Drude

model of electrical condition, described in the following section, can be used to give an

expression for the conductivity of a metal.

2.4 The Drude Model of Electrical Conduction in Metals

Drude theory was developed by applying the kinetic theory of gases to a metal in order

to describe electrical conduction [49]. On the simplest level, kinetic theory considers the

molecules of a gas as solid spheres that travel linearly until collisions occur with other

molecules. The time that a single collision takes is assumed to be negligible and it is

also assumed that no other forces act between the particles except those that take place
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during the brief collision time. By analogy, Drude theory assumes that when a metal is

formed by its constitutive element, the valence electrons become detached and are free to

travel through the metal creating an electron “gas”. The remaining metallic ions, which

consist of the positive nucleus and the remaining core electrons, form a lattice of immobile,

indivisible positive ions. Collisions between conduction electrons and the ion lattice are

assumed to be instantaneous events and occur at a frequency ωτ (rad · s−1). Any electron-

electron interactions and electron-ion interactions due to the Lorentz force that occur in

between collisions are ignored.

With these assumptions in mind, the motion of an electron in a metal subject to an

applied electric field, ~E, can be written as the result of two forces [48]. The first is the force

due to the applied field,−e~E. The second is a damping force,−m~v /τ , where~v is the mean

velocity of the electrons and τ = 1/ωτ . The equation of motion for a conduction electron

is then [48]

m
d~v
dt

=−e~E−m
~v
τ
. (2.20)

Substituting the expression for current density (Equation 2.2) into the equation of motion

gives

d~J f

dt
=

(
−Ne2

m

)
~E−

~J f

τ
. (2.21)

For time-harmonic fields,

(
−iω +

1
τ

)
~J f =

(
−Ne2

m

)
~E

~J f =

(
Ne2

m

)
(1/τ + iω)

(1/τ2 +ω2)
~E. (2.22)

Comparing this equation with Ohm’s law (Equation 2.12), the conductivity as a function of
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frequency is

σ(ω) =

(
Ne2

m

)
(1/τ + iω)

(1/τ2 +ω2)
. (2.23)

Substituting this result into relative dielectric function (Equation 2.18) gives [45]

εm = 1−
ω2

p

ω2 + iωτω
, (2.24)

where ωp has been defined to be

ωp =

√
Ne2

mε0
(rad · s−1) (2.25)

and is known as the plasma frequency. The plasma frequency physically corresponds to

the natural oscillation frequency of the collective motion of the free-electron plasma charge

density, a derivation of which can be found in [50]. The quantum mechanical particles

associated with these oscillations are called volume or bulk plasmons [45]. The value of εr

in Equation 2.18 was chosen to be unity to neglect high frequency dipolar interactions with

the bound electrons in the metal [48]. Equation 2.24 can further be separated to give the

real and imaginary parts of the dielectric function:

εm = ε
′
m + iε ′′m (2.26a)

ε
′
m = 1−

ω2
p

ω2 +ω2
τ

(2.26b)

ε
′′
m =

ω2
pωτ

ω(ω2 +ω2
τ )

(2.26c)

An important case to examine is at frequencies less than the plasma frequency

(ω < ωp) with damping that is either small or negligible. When neglected, the relative

dielectric function becomes purely real and negative. The condition ε ′m < 0 is required
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Table 2.1: Values of the plasma frequency, ωp, and damping frequency, ωτ , as described by
the Drude model, for Cu, Al, Au, and Ag. Experimental data was collected and fit by Ordal
et al. [1].

Material ωp/2π ( GHz) ωτ/2π( GHz)
Cu 1.91×106 8.33×103

Al 3.57×106 19.4×103

Au 2.17×106 6.48×103

Ag 2.17×106 4.35×103

for the existence of plasmon resonances such as surface plasmons. In the case of small

damping, the imaginary part is small and positive [45]. ε ′′m is associated with “lossy” ma-

terials and stronger damping due to absorption. The latter point will become more clear in

Chapter 3, where analytical formulas are given for the damping of surface plasmons.

2.4.1 General Properties at Visible and THz Frequencies

Anticipating the characteristics of surface plasmons derived in Chapter 3, it is instructive

to compare the values that the relative dielectric function takes at visible frequencies to

their THz counterparts. For example, at the visible frequency f = 4.74 × 1014 Hz

for λ = 632.8 nm, permittivity data for Au from Johnson and Christy [51] was fitted

with Lumerical FDTD Solutions [52] multi-coefficient model to give a relative dielectric

constant of εm = − 11.7 + i1.2. Low absolute permittivity values are typical at visible

frequencies and lead to the electromagnetic field penetrating into the surface of the metal

at depths that are relatively large with respect to the wavelength (yet small in an absolute

sense). The implications of this will be explored in detail in Chapter 3, but qualitatively

it can be stated that this leads to increased coupling with the free charge density [53].

Consequently, the surface plasmon mode is highly confined to the surface of the metal

(with a small skin depth into the dielectric medium) and propagates at moderate distances

with respect to the wavelength.

In the near- to far-infrared, Ordal et al. compiled a collection of experimental permittiv-

ity values for Cu, Al, Au, and Ag from 900 GHz to 750×106 GHz and made best eyeball
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Figure 2.1: The real and imaginary components of the relative dielectric function, εm, for
Cu, Al, Au, and Ag in a section of the THz regime. The vertical band represents the tunable
bandwidth of our THz line source (Section 6.1.1)

fits for the Drude model parameters ωp and ωτ [1]. These parameters are as summarized

in Table 2.1 and were used to calculate the relative dielectric function for frequencies up

to 500 GHz (Figure 2.1). At our operational frequency of 325 GHz, the Drude model give

a relative dielectric function of εm = − 1.12 × 105 + i2.24 × 106. THz permittivity

values are typically 5-6 orders of magnitude larger than in the visible and approaches that

of a perfect electrical conductor (εm → −∞). This is characterized by the metallic skin

depth approaching zero and minimizes the coupling of incident electromagnetic radiation
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to surface plasmon modes and leads to weak surface confinement (i.e., the field extends far

into the dielectric) and increased propagation lengths.

It should be noted that the experimental data used by Ordal et al. to parametrize the

Drude model are outside the frequency range of the values calculated in Figure 2.1. In

the absence of more experimental data, the Drude model parameters fit by Ordal et al.

were seen as the best available choice and in line with assumptions made by other groups

operating at THz frequencies [53–56].

As a final note, an equivalent discussion on optical properties could be made in reference

to the material’s conductivity (σ = σ ′ + iσ ′′), rather than permittivity, but is left for other

references [45]. Values of conductivity at THz frequencies are shown in Figure 2.2.
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Figure 2.2: The real and imaginary components of the complex conductivity, σ(ω), for Cu,
Al, Au, and Ag in a section of the THz regime. The vertical band represents the tunable
bandwidth of our THz line source (Section 6.1.1).
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Chapter 3

Surface Plasmon Polaritons

In scientific literature, there are many loose, inadequate, or incomplete definitions of surface

plasmons (SPs). This is not uncommon in emerging fields. A general definition typically

states that SPs arise from the collective charge oscillations of the conduction electrons near

the surface of a metal [45]. Other definitions of surface plasmons emphasize the “on”

suffix, implying that SPs are quantized excitations with particle-like properties and should

be described strictly by quantum mechanics [57]. However, the important characteristics

of surface plasmons can found by treating them as simply electromagnetic modes that exist

near the surface of a particular system [45]. This view places the role of the conduction

electrons within the relative dielectric function, εm (Section 2.4).

The system of primary interest, both because of its supported modes and relative sim-

plicity, is that of a planar metal-dielectric interface. Different classifications of surface

modes exist for nearly all values of εm, which complicates matters by introducing a vari-

ety of adjectives to describe the characteristics of various surface modes (e.g., propagating,

pseudo-propagating, localized, radiating, non-radiating, bound, evanescent, etc.). For an

extensive discussion on the evolution of the terminology used in plasmonics, the reader is

directed to [45] and [57].

The exact type of surface mode being discussed is not often addressed when deriving

surface plasmons [50, 58–64]. To address this ambiguity, this chapter introduces the so-

lutions to Maxwell’s equations on a planar interface under general conditions and derives

a dispersion relation that governs many types of surface modes. The material properties
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3.1. SOLVING MAXWELL’S EQUATIONS ON A PLANAR INTERFACE

on both sides of the interface will then be introduced, restricting our discussion to that of

propagating surface plasmon (PSPs). The excitation of PSPs by means of a diffraction

grating is discussed followed by a comparison of the properties of PSPs at visible and THz

frequencies.

Figure 3.1: A schematic of a planar interface between a metal and dielectric. A transverse
magnetic (TM) wave is incident in the xz-plane.

3.1 Solving Maxwell’s Equations on a Planar Interface

Consider two half spaces that are separated by an interface at z = 0 (Figure 3.1). Let

z < 0 consist of medium 1 with optical properties described by a permittivity of ε1 and let

z > 0 consist of medium 2 with optical properties described by a permittivity of ε2. Letting

the plane of incidence be the xz-plane, the general form of an electromagnetic wave in both

media is, via Equation 2.15,

~A(~r, t) = Axx̂+Ayŷ+Azẑ = ~A0ei(kxx±kzz−ωt). (3.1)

kx is the component of the wave vector in the x-direction (parallel to the interface) and

±kz is the component in the z-direction (normal to the interface), with “−” chosen for

medium 1 and “+” chosen for medium 2. Assuming that there are no free charges and
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currents (ρ f = 0, ~J f = 0) and that both materials are non-magnetic (µ = µ0), Maxwell’s

equations in their time-harmonic form (Equations 2.16a-2.16d) become

Gauss’ Law for Electric Fields ∇ ·~E = 0 (3.2a)

Gauss’s Law for Magnetic Fields ∇ ·~B = 0 (3.2b)

Faraday’s Law ∇×~E = iω~B (3.2c)

The Ampère-Maxwell Law ∇×~B =− iωεr

c2
~E. (3.2d)

The partial derivative with respect to x can be replaced with ∂/∂x = ikx and those with

respect to z by ∂/∂ z = ±ikz (with ± chosen using the previously stated sign conven-

tion). Since there is no spatial variation in the perpendicular in-plane direction, ∂/∂y = 0.

Maxwell’s curl equations can then be expanded and simplified as

(~∇×~B)x =
�
�
��7

0
∂Bz

∂y
−

∂By

∂ z
=
−iωεr

c2 Ex ⇒
∂By

∂ z
=

iωεr

c2 Ex (3.3a)

(~∇×~B)y =
∂Bx

∂ z
− ∂Bz

∂x
=
−iωεr

c2 Ey ⇒ ∂Bx

∂ z
− ikxBz =−

iωεr

c2 Ey (3.3b)

(~∇×~B)z =
∂By

∂x
−
�
�
��7

0
∂Bx

∂y
=
−iωεr

c2 Ez ⇒ kxBy =−
ωεr

c2 Ez (3.3c)

(~∇×~E)x =
�
�
��7

0
∂Ez

∂y
−

∂Ey

∂ z
= iωBx ⇒ −

∂Ey

∂ z
= iωBx (3.3d)

(~∇×~E)y =
∂Ex

∂ z
− ∂Ez

∂x
= iωBy ⇒ ∂Ex

∂ z
− ikxEz = iωBy (3.3e)

(~∇×~E)z =
∂Ey

∂x
−
�
�
��7

0
∂Ex

∂y
= iωBz ⇒ kxEy = ωBz (3.3f)

The x- and z-components of the electromagnetic field can then be expressed as
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Ex =−i
(

c2

ω

)(
1
εr

)
∂By

∂ z
(3.4a)

Ez =−
(

c2

ω

)(
kx

εr

)
By (3.4b)

Bx = i
(

1
ω

)
∂Ey

∂ z
(3.4c)

Bz =

(
1
ω

)
kxEy. (3.4d)

To fully define the fields, Ey and By are required. By taking Equation 3.3b and substituting

in the expressions for Bx and Bz and taking Equation 3.3e and substituting in the expressions

for Ex and Ez, two uncoupled equations emerge:

[
∂ 2

∂ z2 + k2
0εr− k2

x

]
Ey = 0 (3.5)[

∂ 2

∂ z2 + k2
0εr− k2

x

]
By = 0. (3.6)

It can be shown that solutions to these fall under two general categories:

if Ey = Bx = Bz = 0 the waves are said to be transverse magnetic (TM) and if

By = Ex = Ez = 0 they are transverse electric (TE) [47]. Furthermore, it can be shown that

surface modes only exist for TM polarizations (the details of which can be found in [50]).

The TM solutions in each media have the following general forms:

In medium 1,

~E1 = (Ex1,0,Ez1)ei(kx1x−kz1z−ωt) (3.7a)

~H1 = (0,Hy1,0)ei(kx1x−kz1z−ωt). (3.7b)
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In medium 2,

~E2 = (Ex2,0,Ez2)ei(kx2x+kz2z−ωt) (3.8a)

~H2 = (0,Hy2,0)ei(kx2x+kz2z−ωt). (3.8b)

The TM field components, along with the assumption of no free-charges or currents at the

interface, reduce the electromagnetic boundary conditions discussed in Section 2.3.1 to

Boundary Condition 1 Ex1 = Ex2 (3.9a)

Boundary Condition 2 By1 = By2 (3.9b)

Boundary Condition 3 ε1Ez1 = ε2Ez2, (3.9c)

where ε1 and ε2 are the relative dielectric functions in each media.

The goal now is to arrive at expressions that relate kx1, kx2, kz1, and kz2. For the x-

components of the wave vector, consider boundary condition 3 with the expressions for Ez

(Equation 3.4b) in both media:

ε1Ez1 = ε2Ez2

−ε1

(
c2

ω

)(
kx1

ε1

)
By1 =−ε2

(
c2

ω

)(
kx2

ε2

)
By2

kx1By1 = kx2By2 (3.10)

Using boundary condition 2 (Equation 3.9b), we are left with

kx1 = kx2 = kx. (3.11)
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A similar process is used to find an expression relating the z-component of the wave vector

in both media. Using boundary condition 1 (Equation 3.9a) with the expression for Ex

(Equation 3.4a),

Ex1 = Ex2

−i
(

c2

ω

)(
1
ε1

)
(−ikz1By1) =−i

(
c2

ω

)(
1
ε2

)
(ikz2By2)

−
(

kz1

ε1

)
By1 =

(
kz2

ε2

)
By2. (3.12)

Along with boundary condition 2 (Equation 3.9b), we arrive at

kz1

kz2
=−ε1

ε2
. (3.13)

The desire now is to find expressions for kx, kz1, and kz2 in terms of the permittivity of

both media. With the aid of Gauss’ law (Equation 3.2a) applied to the fields in both media,

we can write:

Gauss’ Law for Electric Fields
∂Ex

∂x
=−∂Ez

∂ z
(3.14a)

Medium 1 (z < 0) ikxEx1 = ikz1Ez1

Ex1 =

(
kz1

kx

)
Ez1 (3.14b)

Medium 2 (z > 0) ikxEx2 =−ikz2Ez2

Ex2 =−
(

kz2

kx

)
Ez2. (3.14c)

Taking the y-component of Faraday’s law (Equation 3.3e) and substituting in the above
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expressions for Ex1, Ex2, and By from Equation 3.4b gives

Faraday’s Law
∂Ex

∂ z
− ikxEz = iωBy

Medium 1 (z < 0) −ikz1Ex1− ikxEz1 = iωBy

−ikz1

(
kz1

kx

)
Ez1− ikxEz1 =−ik2

0

(
ε1

kx

)
Ez1

k2
x = k2

0ε1− k2
z1, (3.15a)

and similarly,

Medium 2 (z > 0) k2
x = k2

0ε2− k2
z2. (3.15b)

There are now three equations relating the three unknown wave vector components: Equa-

tions 3.13, 3.15a, and 3.15b. Squaring Equation 3.13 and substituting in Equations 3.15a

and 3.15b gives an expression for kx,

k2
x = k2

0

(
ε1ε2

ε1 + ε2

)
, (3.16)

and substituting kx back into Equations 3.15a and 3.15b gives expressions for kz1 and kz2,

k2
z1 = k2

0

(
ε2

1
ε1 + ε2

)
(3.17)

k2
z2 = k2

0

(
ε2

2
ε1 + ε2

)
, (3.18)

which are now expressed in terms of the permittivity of each medium.
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3.2 General Properties of Surface Plasmon Modes

Having solved Maxwell’s equations on a planar interface, we are now in a position to

apply assumptions about the permittivity in both media. Let medium 1 (z < 0) be a metal

with a complex relative dielectric function ε1 ≡ εm such that

εm = ε
′
m + iε ′′m, (3.19)

where ε ′m and ε ′′m are the real and imaginary parts, respectively, with a frequency-dependent

functional form given by the Drude model (Equation 2.26). Let medium 2 (z > 0) be a

dielectric with a constant, positive, and real relative permittivity ε2 ≡ εd . The system now

describes the coupling of an electromagnetic field to the collective plasma oscillations of

the free-electron gas in a metal. These modes are called surface plasmons. As mentioned at

the beginning of this chapter, a variety of terminology is used to describe surface plasmons.

Fortunately, many of these can be clarified by discussing their characteristic lengths, namely

the skin depth into the metal/dielectric and propagation length, that are derived from the

wave vector components kx, kz1, and kz2.

3.2.1 Skin Depth and Confinement

The wave vector components kz1 = kzm in the metal and kz2 = kzd in the dielectric are

both complex due the metal’s complex dielectric function, i.e.,

kzm = k′zm + ik′′zm (3.20a)

kzd = k′zd + ik′′zd. (3.20b)

From Equation 3.1, the imaginary component of the wave vector can be used to deter-

mine a distance normal to the interface where the field amplitude decreases to a factor of

1/e, known as the skin depth:
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δm =
1

k′′zm
(m) (3.21)

δd =
1

k′′zd
. (m) (3.22)

3.2.2 Propagation Length

The x-component of the wave vector is often called the surface plasmon propagation

constant and is given a variety of symbols (kx = kSP = β = q) [50, 57–59]. For future

clarity, this thesis will exclusively use the notation kx. Since εm is complex, kx is also

complex,

kx = k′x + ik′′x = k0

√
εdεm

εd + εm
. (3.23)

The distance (parallel to the interface) that the intensity of the electromagnetic field drops

by 1/e is

L =
1

2k′′x
. (m) (3.24)

Note the subtle distinction between the definition of the propagation length, defined in

terms 1/e field intensity, and the skin depth, defined in terms of the 1/e field amplitude.

3.3 The Surface Plasmon Dispersion Relationship

The solution to Maxwell’s equations in Section 3.1 is an example of a bound or surface

mode, which are modes that exist in the absence of an incident wave and exist only due

to the presence of an interface. It is required that an incident wave excites or couples to

the mode such that the two modes have the same real part of frequency and wave vector in

order to generate and maintain the electromagnetic wave [45]. This is analogous to energy
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and momentum conservation via E = h̄ω and ~p = h̄~k, respectively. Coupling occurs under

specific configurations, i.e., resonant conditions that satisfy the conservation requirements.

These conservation requirements are governed by a dispersion relation that connects ω and

~k.

The conditions required to couple incident light to a surface plasmon mode is often

considered for the case of ideal metals and the imaginary part of εm is neglected [50, 58].

This leads to a specific scenario where kzd and kzm become purely imaginary and kx is real.

Therefore, the dispersion relation that governs the different surfaces modes is given by the

x-component of the wave vector

kx =
ω

c

√
εdεm

εd + εm
(3.25)

and must be matched to the parallel component of the incident wave vector,~k0.

Different types of surface modes can exist depending on the permittivity values on ei-

ther side of the interface, which for metals is a function of frequency. Values for k′x were

calculated for a gold-air interface for different values of ω and plotted in Figure 3.2. The

dashed blue line is known as the light line and represents the linear dispersion relation for

a free space electromagnetic wave ω = ck0.

For a planar interface at a frequency below ωsp = ωp/
√

1+ εd , known as the surface

plasmon frequency, the permittivity of a metal is characterized by ε ′m <−εd . This leads to

a type of surface mode known as propagating surface plasmons (PSPs). At higher frequen-

cies, other surface modes such as localized surface plasmons (LSPs) and Brewster’s modes

exist due to the frequency-dependent nature of permittivity. An in-depth discussion of these

modes can be found in [45], however this thesis will focus on the properties of PSPs at THz

frequencies. At low frequencies in the THz region, PSPs behave like free space waves and

have a propagation constant close to, but larger than, k0. Therefore, light cannot couple into

PSPs (and vice versa). For large wave vectors, the value of ω asymptotically approaches

ωsp.

33



3.3. THE SURFACE PLASMON DISPERSION RELATIONSHIP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k'x /(ωp / c)

0.0

0.5

1.0

1.5

ω
/ ω

p

PSPPs

ε' 
m
 < − ε

d

Brewster
Modes

ε' 
m
> 0

LSPs

0 > ε'
m
  > −ε

d
 

k'x 

ωsp

ωp
Light line

Figure 3.2: The surface plasmon dispersion relation (solid) written as ω(k′x). k′x was gener-
ated for various frequencies using permittivity values for Au calculated using Drude model
parameters (Section 2.4). The dispersion relation can be separated into different modes for
different values of εd and εm. Surface modes that propagate along the surface (PSPPs) exist
for εd < εm (solid, red, lower right) and have a wave vector that is greater than a free space
electromagnetic wave (dashed, blue).

As a final note, a polariton is defined as the coupled state between an elementary excita-

tion and a photon [45]. A distinction can now be made between the term “surface plasmon”,

which refers to a type of electromagnetic surface mode, and a “surface plasmon polariton”,

which is the coupled state between incident light and the surface plasmon mode. This thesis

will use the term surface plasmon polariton (SPP) to refer to a propagating surface plasmon

polariton (PSPP).

3.3.1 Excitation of PSPPs with Surface Gratings

Different coupling mechanisms exist depending on the particular application. These in-

clude attenuated total internal reflection techniques using prisms (e.g., the Otto and

Kretschmann configuration), point defects, surface roughness, and, of particular interest
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to bullseye lenses, surface gratings [45].

Diffraction gratings are structures with periodic surface corrugations that scatter light

with specific interference conditions (Figure 3.3) [6]. The location of diffracted maxima

are given by the grating equation

λg(sinθm− sinθi) =±mλ0 (3.26a)

or

k0 sinθm− k0 sinθi =±mkg (3.26b)

where m = 1, 2, 3, · · · describe the different diffracted orders at angles θm, λg is the

grating period, and λ0 is the incident wavelength at an angle θi. The grating equation has

been re-written in terms of wavenumbers via k = 2π/λ . Note that the first term on the left

is the component of the diffracted wave vector that is parallel to the surface k‖m = k0 sinθm

and the second term is the component of the incident wave vector parallel to the surface

k‖0 = k0 sinθi. Matching the parallel component of the diffracted wave vector to the surface

plasmon wave vector k‖m = kx gives

kx = k‖0±mkg. (3.27)

At normal incidence, θi = 0 and k‖0 = 0. Equation 3.27 can be simplified and arranged to

find the required grating period,

λg =±mλSP, (3.28)

where λSP = 2π/kx is known as the surface plasmon wavelength.

The efficiency of the coupling is directly related to the geometric parameters of the
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Figure 3.3: The coupling of an incident photon (black) to a SP mode (blue) with a
diffraction grating. The grating vector, kg, (brown) matches the parallel component of the
diffracted wave (red) to the SP propagation constant, k′x.

grating. Simulations using the Maxwell equation solver Lumerical FDTD Solutions were

performed to optimize this coupling and will be further discussion in Chapter 5 [52]. This

coupling process also occurs in the opposite manner allowing surface plasmons to radiate

into the dielectric medium [50].

The use of surface gratings modifies the simple geometry of a planar interface as solved

in Section 3.1 and, to be strict, SPPs would not have the same characteristics. For shallow

surface structures (i.e., less than the incident wavelength) the nature of the mode is not

substantially altered, however the coupling of the surface mode to incident photons has

shown that radiative losses into the dielectric medium can affect the propagation length [45].

3.4 Surface Plasmons at Visible and THz Frequencies

It is instructive at this point to highlight the different length scales associated with visi-

ble and THz PSPPs. These differences arise due to the large magnitude of THz permittivity

compared to its visible counterpart. A Lumerical multi-coefficient model (Appendix B) fit

to data from Johnson and Christy [51] for λ ∈ [500 nm,700 µm] yields εm =−11.7+ i1.2

at λ = 633.08 nm. At THz frequencies, the complex permittivity of metals is orders of

magnitude greater than in the visible, tending to that of perfect electrical conductor. For
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example, using the Drude model parameters given in Section 2.4.1, the permittivity of Au

at 325 GHz is εm = − 1.12 × 105 + i2.24 × 106. The characteristic lengths for these

permittivity values in the visible and THz regime are given in Table 3.1. Skin depths and

propagation lengths have been calculated up to 500 GHz for the metals Cu, Al, Au, and Ag

in air as shown in Figures 3.4 and 3.5

Table 3.1: The skin depth in the metal, δm, skin depth in the dielectric, δd , and propagation
length, L, of visible and THz SPPs on a Au-air interface.

λ (m) δm (m) δd (m) L (m)
Visible SPPs 6.33 × 10−7 3.00×10−8 ≈ 10−2λ 3.00×10−7 ≈ 0.5λ 1.00×10−5 ≈ 16λ

THz SPPs 9.22 × 10−4 1.35×10−7 ≈ 10−4λ 3.00×10−1 ≈ 102λ 3.30×102 ≈ 105λ

For noble metals at visible frequencies, PSPPs are typically characterized by strong con-

finement of their electromagnetic field near the interface (i.e., δd ≈ 0.5 λ ) with moderately

long propagation lengths. Comparably, THz PSPPs extend far into the dielectric medium

and have propagation lengths many orders of magnitude larger than the wavelength.

Low permittivity values in the visible leads to a large penetration within the metal with

respect to the wavelength, which leads to increased coupling with the free charge density.

In the THz region, δm is small with respect to the wavelength. Since only the material

properties within approximately one skin depth significantly contribute to the operation of

a plasmonic device, this allows for thin THz plasmonic devices [54].

While THz bullseye devices have been made using nano-techniques, this requires access

to a nano-fabrication facility [30,34,54]. In addition, the metallic deposition depths required

are large compared to typical applications at optical wavelengths. Since the required preci-

sion of a THz plasmonic lens scales with wavelength and is thus low when compared to an

optical equivalent, it is possible to achieve the same relative accuracy at THz wavelengths

using a micro-machining approach. This is further discussed in Appendix C.
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Figure 3.4: Surface plasmon skin depths into Cu, Al, Au, and Ag and into the dielectric
medium (air) in a section of the THz regime. The vertical band represents the tunable
bandwidth of our THz line source (Section 6.1.1). The excited surface plasmons have little
penetration into the metal and extend far into the dielectric.
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Figure 3.5: The propagation length of excited surface plasmons for the metals Cu, Al, Au,
and Ag on an air interface. The vertical band represents the tunable bandwidth of our THz
line source (Section 6.1.1).
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Chapter 4

Transmission of Light Through
Subwavelength Circular Apertures

A single subwavelength aperture plays an important role in the operation of high resolution

near-field imaging systems (Section 1.2). The diffraction properties of subwavelength holes

have been a source of discussion since their first observation by Grimaldi in 1665 and

are still debated in contemporary theoretical and experimental studies [65–68]. Solutions

to diffraction problems are mathematically challenging and analytical solutions in general

do not exist. This chapter presents simple approximations that depend on the size of the

incident wavelength relative to the size of the geometry of the problem.

4.1 Diffraction Regimes

The Huygens-Frensnel principle has classically been a powerful tool that describes the

majority of diffraction effects [6]. This construction states that every point of a wavefront

can be considered as a source of a secondary emission of spherical waves known as Huygen

wavelets. The wavefront of a propagating wave of light at any instant is defined by the

envelope of the wavelets. The resulting amplitude of the wave is the vector sum of the

amplitude of all secondary waves. This theory was later mathematically formulated as

Kirchhoff’s scalar diffraction theory.

The simple case of an opaque screen with a single aperture of radius r at a distance L

from a viewing screen was introduced in Section 1.1. Kirchhoff’s theory can be reduced

to useful approximate forms in the near-field (Fresnel) regime (L < r2/λ ) and far-field
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4.2. BETHE’S TRANSMISSION EFFICIENCY

(Fraunhofer) regimes (L > r2/λ ), where λ is the incident wavelength. Diffraction patterns

of circular apertures that are large compared to the wavelength, i.e., kr � 1, where k is the

wavenumber of the incident light, fall in the far-field regime and have intensity distributions

described by the Airy pattern [12]. This model is valid up to kr ∼ 1 [69].

4.2 Bethe’s Transmission Efficiency

Kirchhoff’s theory does not take into account the polarization of the incident light.

In the extreme subwavelength regime, kr � 1, this basic scalar assumption fails and a

full vectorial approach using Maxwell’s equations is required, as addressed by Bethe in

1944 [16]. Bethe applied Maxwell’s equations in an infinitesimally thin perfect electrical

conductor with a single subwavelength aperture and presented two main predictions. The

first was an expression for the power Pout transmitted through the aperture:

Pout = σe f f Ii, (W) (4.1)

where Ii (W ·m−2) is the incident intensity and σe f f (m2) is the effective diffraction cross

section. The effective diffraction cross section was calculated for polarized light with the

electric field in the plane of incidence, perpendicular to the plane of incidence, and for

unpolarized light. In all cases, the effective diffraction cross section for light at normal

incidence is [16]

σe f f =
64

27π
k4r6

∝
d6

λ 4 . (m2) (4.2)

The definition of transmission can be ambiguous in the technical literature due to differ-

ent conventions used when normalizing the transmitted power. For clarity, this thesis will

define absolute transmission T as the ratio of the transmitted power Pout to the total source

power P0:
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4.2. BETHE’S TRANSMISSION EFFICIENCY

T = Pout/P0. (4.3)

Another common representation of transmission is the effective diffraction cross section

normalized to the area of the aperture,

η =
σe f f

Aa
=

Pout

IiAa
=

Pout

Pin
, (4.4)

which is equivalent to the ratio of the transmitted power to the power Pin = IiAa incident

on the aperture area Aa. This thesis will define η as the transmission efficiency. When

η = 1, all of the light impinging on the aperture is transmitted. For η > 1, more power is

transmitted than is incident on the hole (e.g., for η = 2 twice as much power is transmitted).

Using Bethe’s expression for σe f f ,

η =
σe f f

Aa
=

64
27π2 (kr)4

∝

(
d
λ

)4

. (4.5)

Later, additions by Bouwkamp included higher order terms [70]:

η =
64

27π2 (kr)4
[

1+
22
25

(kr)2 +
7312

18375
(kr)4 + · · ·

]
. (4.6)

Bethe’s second prediction addressed the angular pattern that emerged from the aperture.

The angular distributions in the far-field depend on the orientation of the polarization of

the incident light relative to the direction that the pattern is measured. If a detector was

scanned parallel to the polarization direction, the intensity is constant, whereas if scanned

perpendicular to the polarization the intensity has an angular dependence of cos2 θ .
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4.3. GAUSSIAN BEAMS

Figure 4.1: A finite plane wave incident on an aperture of area Aa in an opaque screen. The
measured transmission, T , can be used to calculate the transmission efficiency, η .

4.2.1 Transmission Efficiency of a Plane Wave

An ideal plane wave is a monochromatic wave with wavefronts that are infinite, paral-

lel surfaces of constant phase and amplitude that extend in a direction normal to the wave’s

propagation. Anticipating the discussion in Chapter 5 regarding numerical methods to solve

Maxwell’s equations, it is practical to consider a plane wave of finite extent and, conse-

quently, finite power injected in an arbitrary region of interest (Figure 4.1). The power of

a finite plane P0 is the product of the intensity of the plane wave I0 and its finite area A0.

The absolute transmission T of a plane wave incident on an aperture can be converted to a

transmission efficiency by:

η =
Pout

I0Aa
= T

(
A0

Aa

)
. (4.7)

Therefore, with the absolute transmission T , aperture area Aa, and the source area A0, the

transmission efficiency can be calculated.
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4.3 Gaussian Beams

A Gaussian beam is a type of electromagnetic wave that is spatially localized along

its axis of propagation, i.e., they are paraxial. Gaussian beams arise as solutions to the

electromagnetic wave equation (Equation 2.4) by assuming solutions of the form given in

Equation 2.15 and applying separation of variables. Paraxial approximations and a full

derivation can be found in [71]. The main result is a wave with an intensity distribution

given by

I(r,z) = I0

[
w0

w(z)

]2

exp
[
−2r2

w2(z)

]
, (W ·m−2) (4.8)

where I0 is the maximum beam intensity and r = x2 + y2 is the radial distance from the

propagation axis.

Equation 4.8 represents an intensity distribution that is circularly symmetric in the trans-

verse plane and falls off with a Gaussian cross-section. Figure 4.2 shows the main properties

and parameters that describe a Gaussian beam. The beam propagates along the z-direction

and has a minimum cross-sectional radius called the beam waist w0 (m) at z = 0. The full

cross-sectional width, 2w0, is known as the spot size. The radial size of any cross section

along the axis of propagation is known as the beam radius w(z) and is defined as the radial

distance where the beam intensity falls to I0/e. The beam radius is calculated at any point

using

w(z) = w0

√
1+
(

z
zR

)2

, (m) (4.9)

where zR is the Rayleigh range. The Rayleigh range is wavelength dependent and is given

by

zR =
πw2

0
λ

. (m) (4.10)

At a distance of zR, the beam radius increases by a factor of
√

2 and the cross sectional area
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increases by a factor of 2. A related parameter is the depth of focus:

b = 2zR. (m) (4.11)

For a given wavelength, a focused beam with a small spot size has a short depth of focus,

which increases the accuracy required when locating the image plane.

Figure 4.2: Diagram of the parameters that define the propagation of a Gaussian beam. The
red line is the location where the intensity in the radial direction drops to I0/e. The light
grey lines show the curvature of the wavefront, which is planar at the location of the beam
waist and become spherical as the beam diverges.

Far from the Rayleigh range, z� zR, the approximated beam radius is given by

w(z)≈ w0

zR
z. (m) (4.12)

The beam width increases linearly and the resulting beam is cone-shaped with a divergence

half-angle of

θ =
w0

zR
=

λ

πw0
. (rad) (4.13)

Since the divergence half-angle is directly proportional to the wavelength, λ , and inversely
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proportional to the beam waist, w0, a beam with a tight spot size has increased divergence.

In general terms, the width of a function is defined as the location at which its dependent

variable falls to a fraction of its maximum value. Common examples are the full-width at

half-maximum (FWHM) and standard deviation σ of a Gaussian distribution. For the case

of Gaussian beams, the radial distance where the beam intensity falls to I0/e is the typical

measure of width. However, it is useful to derive expressions that relate the beam radius

w(z) of a Gaussian beam to its FWHM.

The FWHM of the Gaussian beam occurs when the intensity is at half its maximum

value:

1
2

I0

[
w0

w(z)

]2

= I0

[
w0

w(z)

]2

exp
[
−2r2

w2(z)

]
1
2
= exp

[
−2r2

w2(z)

]
(4.14)

ln
(

1
2

)
=
−2r2

w2(z)
.

Since r is the radial distance from the axis of the Gaussian beam, it represents the half-width

at half maximum, i.e., r = FWHM/2. Substituting this to the above equation gives

w(z)≈ 0.8493 FWHM. (4.15)

4.3.1 Beam Power

The total power P0 carried by the beam is the integral of the intensity distribution at a

given axial position z in the transverse plane:
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P0 =
∫

IdA

=
∫

∞

0
I(r,z) 2πr dr

=
∫

∞

0
I0

[
w0

w(z)

]2

exp
[
−2r2

w2(z)

]
2πr dr

= I0

[
w0

w(z)

]2 ∫ ∞

0
exp
[
−2r2

w2(z)

]
2πr dr

= 2π I0

[
w0

w(z)

]2 ∫ ∞

0
r exp

[
−2r2

w2(z)

]
dr. (4.16)

Letting

u =−
(

2r2

w(z)2

)
du =−

(
4r

w(z)2

)
dr

dr =
(

w(z)2

4r

)
du,

the integral can be simplified to

P0 =−2π I0

[
w0

w(z)

]2 ∫ ∞

0
r
(

w(z)2

4r

)
exp [u] du

=−1
2

π I0w2
0

∫
∞

0
exp [u] du

=−1
2

π I0w2
0(0−1)

=
1
2

π I0w2
0. (4.17)

Note that this result is independent of z since the total power in any transverse plane is

conserved.

47



4.4. MATERIAL THICKNESS

4.3.2 Transmission Efficiency of a Gaussian Beam

To calculate the transmission efficiency η = Pout/Pin through an aperture under Gaus-

sian beam illumination, the power incident on an aperture Pin is no longer given by the

simple expression for a plane wave (Section 4.2.1) since intensity distribution of a Gaus-

sian beam falls off as a function of radial distance. Using Equation 4.17, the intensity

distribution of a Gaussian beam can be rewritten in terms of the total beam power P0 as

I(r,z) =
2P0

πw(z)2 exp
[
−2r2

w2(z)

]
. (4.18)

The power within a circle of radius r is given by

P(r,z) =
∫ r

0
I(r,z)2πr′ dr′

=
∫ r

0

2P0

πw(z)2 exp
[
−2r′2

w2(z)

]
2πr′ dr′

= P0{1− exp[−2r2/w2(z)]}. (4.19)

Figure 4.3 shows the fractional power contained in a Gaussian beam for a given radii nor-

malized to the beam waist. Approximately 86% of the total beam power is contained within

a circle of radius r = w(z) and approximately 99% within a circle of radius r = 1.5w(z).

The transmission efficiency through an aperture illuminated by a Gaussian beam can

now be calculated by using Pin ≡ P(r,z), where the radial coordinate r is equivalent to the

aperture radius, when normalizing the measured output power in Equation 4.4.

4.4 Material Thickness

Waveguide theory can be applied to a circular aperture to describe how the power trans-

mitted depends on the material thickness, t. Consider a hollow, cylindrical waveguide

consisting of perfectly conducting walls surrounding a lossless interior (Figure 4.4). By
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Figure 4.3: The fraction of total Gaussian beam power as a function of the normalized
aperture radius.

Figure 4.4: A simple cylindrical waveguide of radius r and thickness t.

assuming time-harmonic variation and solving Maxwell’s equations in cylindrical coordi-

nates, it can be shown that the dominate mode that exists in the waveguide (i.e., the mode

with the longest wavelength at which light can propagate) is the TE11 mode [72]. The cutoff

wavelength λco for this mode, which defines a transition where longer wavelengths become

exponentially attenuated, is given by

λco =
2πr
1.84

, (4.20)

where 1.84 is the first root of the derivative of the first order Bessel function. The attenua-

tion of average power within the waveguide as a function of the distance z along the central

axis is
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P = Pin exp(−2αz), (4.21)

where Pin is the power incident on the front waveguide and the amplitude attenuation con-

stant, α , is given by

α =
2π

λ0

√(
λ0

λco

)2

−1. (4.22)

Applying this analogy to a circular aperture cut in a substrate of thickness t, the effect of

the thickness on the transmitted power P = Pout is

Pout = Pin exp(−2αt). (4.23)

It should be noted that for real metals, λco is increased by taking into account the metal-

lic skin-depth, as the electromagnetic fields will penetrate inside the walls of the waveg-

uide. However, as noted in Section 3.4, the skin depth at THz frequencies is on the order of

100 nm and metals begin to behave as perfect electrical conductors [1].

4.5 Validity of Approximations

Both Bethe’s theory for subwavelength apertures and the treatment of an aperture as a

cylindrical waveguide are useful approximations that quantify the transmitted power as a

function of aperture size and material thickness. The regimes in which both theories are

valid were briefly discussed in the preceding sections. To properly apply these approxima-

tions to the results of simulations or experimental observations, it is important to explicitly

state their respective cutoff wavelengths for a given aperture diameter d (or, alternatively,

their cutoff diameters for a given incident wavelength λ ).

Bethe’s theory is valid in the extreme subwavelength region defined as kr� 1. The

corresponding cutoff wavelength λco,b and diameter dco,b are
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λco,b� πd and (4.24a)

dco,b� 0.318λ . (4.24b)

Waveguide theory is valid below the cutoff condition

kr = 1.84, (4.25)

which corresponds to a cutoff wavelength λco and a cutoff diameter of

λco ≥ 1.707d and (4.26a)

dco ≤ 0.586λ . (4.26b)

Figure 4.5 shows a plot of the aperture cutoff diameter as a function of wavelength. The

cylindrical waveguide approximation is valid below the dashed line (including the blue and

green regions). Bethe’s theory, with the additions made by Bouwkamp, are valid below

the solid line (green). Consider the THz microscope described in Section 1.4 with a THz

source that emits a predominately Gaussian beam with a a frequency from 320-330 GHz,

corresponding to wavelengths of 908-937 µm. This is represented as the vertical band

in Figure 4.5. Bethe’s theory would be valid for an incident wavelength of 908 µm for

diameters well below 289 µm. Apertures with a diameter less than 532 µm will be subject

to the power losses given by Equation 4.23.

4.6 Simulated Transmission Through a Circular Aperture

Although the equations that govern electromagnetic phenomena are well established,

full theoretical approaches are difficult to solve. To address this, different numerical meth-
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Figure 4.5: Regions in the diameter-wavelength space that are valid for Bethe’s approxima-
tion for subwavelength transmission (below the solid line, green) and for waveguide theory
(dashed line, blue and green). The vertical band represents the tunable bandwidth of our
THz line source.

ods have been used to calculate the transmitted power as a function of aperture diameter,

thickness, and wavelength [67, 73–75]. In this thesis, the finite-difference time-domain

(FDTD) method was used to simulate the optical response of single apertures using Lumer-

ical FDTD Solutions [52]. More details about this software, including common simulation

consideration, testing of numerical convergence, and a full list of simulation parameters,

can be found in Appendix B. Simulations were performed with a linearly polarized plane

wave over a bandwidth of 722-1122 µm for a practical range of aperture diameters and

thicknesses that could be used in a THz near-field imaging configuration.

To verify that cylindrical waveguide theory is a valid method to calculate power losses as

a function of material thickness, an aperture with a diameter of d = 300 µm was simulated

for thicknesses ranging from 60-300 µm (Figure 4.6). Note that the simulated wavelength

range is above the waveguide cutoff wavelength of λco = 512 µm (Equation 4.26a).

The power transmitted at 922 µm was taken from this data set and plotted as a function of
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Figure 4.6: Simulated power transmission through 300 µm diameter apertures in a perfect
electrical conductor of varying thickness. Circles denote simulated data points.
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Figure 4.7: Simulated transmitted power of a λ = 922 µm plane wave through a 300 µm
diameter aperture in a perfect electrical conductor of varying thickness. An exponential fit
was made to the simulated data (solid line).

substrate thickness, as shown in Figure 4.7. For light of wavelength λ = 922 µm incident

on an aperture of diameter d = 300 µm, the amplitude attenuation constant predicted

by Equation 4.22 is α ≈ 10.21 mm−1. A fitted exponential function with the form of

Equation 4.21 gave an amplitude attenuation of α = 10.02 ± 0.04 mm−1, a 2% difference,

demonstrating that FDTD Solutions reasonably simulates a circular aperture as a cylindrical

waveguide and that the equations given in Section 4.4 can be used as a good approximation

for the thickness dependence on transmission. A full convergence test of various settings
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in Lumerical FDTD Solutions, including mesh and simulation region size, would provide

more accurate results with a better estimate of the absolute error in the simulated value

of α .

To examine how the transmission efficiency varies as a function of diameter and wave-

length, apertures with a thickness of 100 µm and diameters from 100-600 µm were sim-

ulated and the transmission efficiency was plotted as a function of d/λ . A subset of this

data is shown in Figure 4.8, where the diameter has been expressed as the ratio t/d. As

expected, the transmission efficiency approaches 1 in the small wavelength limit. For each

simulated diameter, a peak in the transmission efficiency is observed. Similar peaks have

been observed in subwavelength slits for incident light with a polarization perpendicular to

the slit edge [76–78]. The origin of this phenomenon was first theoretically described by

Takakura as a result of Fabry-Pérot-like resonances due to standing wave patterns formed

within the slit [76]. In the context of subwavelength circular apertures, incident linear po-

larized light is not perpendicular to the all of the aperture edge, leading to lower resonant

values of η compared to resonances within slits [67]. It is also noted that the peak shifts

to smaller wavelengths for an increased relative thickness t/d, is in agreement with other

numerical calculations [67, 73, 74].

0.2 0.4 0.6 0.8 1.0 1.2
d/λ

0.0

0.5

1.0

1.5

2.0

T
ra

ns
m

is
si

on
 E

ff
ic

ie
nc

y t⁄d =  0.333
t⁄d =  0.286
t⁄d =  0.250
t⁄d =  0.222

Figure 4.8: The transmission efficiency of a 100 µm thick subwavelength circular aperture
of various diameters plotted as function of d/λ . Vertical lines represent the cutoffs for
Bethe’s theory and the waveguide approximation.

54



4.6. SIMULATED TRANSMISSION THROUGH A CIRCULAR APERTURE

0.1 1.0
d/λ

10-8

10-6

10-4

10-2

100

102

T
ra

ns
m

is
si

on
 E

ff
ic

ie
nc

y Bethe
Bethe-Bouwkamp
t⁄d =  1.000
t⁄d =  0.667
t⁄d =  0.500
t⁄d =  0.400
t⁄d =  0.333
t⁄d =  0.286
t⁄d =  0.250
t⁄d =  0.222
t⁄d =  0.200
t⁄d =  0.182
t⁄d =  0.167

Figure 4.9: A log-log plot of the transmission efficiency of t = 100 µm thick apertures for
various radii, expressed as the relative thickness t/d, compared to Bethe’s theory. Vertical
lines represent the cutoffs for Bethe’s theory and the waveguide approximation.

Figure 4.8 was plotted on a log-log scale to verify Bethe’s predicted (d/λ )4 dependence

on the transmission efficiency. The slope of the curves below the cutoff d/λ ≈ 0.3 was

then calculated. Bethe’s prediction is better approximated for small (d/λ ) values. E.g., for

t/d = 1.00 (d = 100 µm), the fitted slope was found to be 4.56 ± 0.01. This increases

to 6.33 ± 0.03 for t/d = 0.333 (d = 300 µm). In all cases, Bethe’s theory overestimates

the transmission efficiency for thick apertures and is a more accurate approximation as the

relative thickness vanishes.

These numerical calculations highlight the complicated nature of diffraction theory out-

side of the regions where simple approximations can be applied. For a THz near-field

imaging configuration with an operational wavelength of λ = 922 µm and a subwave-

length aperture with a modest diameter of d = 300 µm, the ratio d/λ ≈ 0.3 allows for the

attenuation due to thickness to be reasonably approximated by waveguide theory. However,

this wavelength and diameter combination exists on the edge of where Bethe’s theory can

be applied and numerical simulations are required to calculate the transmission efficiency.
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Chapter 5

The Bullseye Plasmonic Lens

The phenomenon of extraordinary transmission through subwavelength circular apertures

has been widely attributed to the resonant interaction of incident light with surface plasmon

modes [17, 79]. As discussed in Section 3.3, light incident on a diffraction grating with a

period that is similar or commensurate with the wavelength couples light into SPPs. When

an aperture is surrounded by an annular grating, a configuration known as a bullseye plas-

monic lens, the excited SPPs propagate radially inwards and outwards along the surface.

Surface waves travelling towards the centre of the structure result in a large enhancement of

the electric field above the aperture and, consequently, transmission efficiencies are orders

of magnitude larger than expected from standard diffraction theory [17,22,27,80,81]. This

has raised interest in the use of bullseye lenses at visible wavelengths for subwavelength

imaging techniques and for high-density optical data storage [20–22, 74, 82].

Bullseye lenses typically have two main types of cross-sectional profiles. The surface

can be patterned with grooves/indentations, as shown in Figure 5.1(a), or with ridges/protru-

sions, as shown in Figure 5.1(b). These models are parameterized as follows. The aperture

is defined by its diameter, d, and its thickness, t. Let N be the total number of grooves/ridges

and i ∈ {1,2, . . . ,N} be the index number of the feature. The distance a is measured from

the centre of the aperture to the centre of the first groove/ridge. For regularly spaced surface

features, the period, p, is the centre to centre spacing between grooves/ridges. The radial

position, ri, is measured from the centre of the aperture to the centre of surface feature i.

The depth/height of the groove/ridge is denoted by s and the width by w.
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5. THE BULLSEYE PLASMONIC LENS

(a) Grooves (or indentations)

(b) Ridges (or protrusion)

Figure 5.1: The definition and cross-sectional profile of the two types of bullseye lenses
discussed in this thesis.

The transmission process through bullseye lenses can be broken into three independent

steps: coupling of the incident light into SPPs, evanescent transmission through the aper-

ture, and coupling back into the radiation field [22]. This chapter begins with a systematic

examination of the performance of different grating structures using Lumerical FDTD So-

lutions (Appendix B) [52]. These devices are optimized for enhanced transmission at a

frequency of 325 GHz (λ = 922 µm), coinciding with the desired operational frequency

of the THz imaging configuration described in Section 1.4. The performance of various

bullseye designs are quantified in terms of their transmission efficiency, η , as discussed in

Sections 4.2.1 and 4.3.2. A useful figure of merit is the enhancement factor, G, defined

as [20]

G =
ηbe

ηap
, (5.1)

where ηbe and ηap are the transmission efficiencies of a single aperture of the same thick-

ness and diameter with and without gratings, respectively. If the value of ηbe is larger than

unity, then more power is transmitted through the aperture than is directly incident.

Attention will then be turned to output diffraction gratings, which have been shown
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5.1. INPUT GROOVE OPTIMIZATION

to modify the beam profile emitted from the plasmonic lens such that the output beam is

focused/collimated for distances of several wavelengths [3,83,84]. Two final manufactured

devices and their simulated response are then presented. A discussion of the fabrication

procedure can be found in Appendix C.

5.1 Input Groove Optimization

The wavelength of light that is resonantly excited is mainly determined by the peri-

odicity of the grating. Numerical and experimental studies have shown that other struc-

tural parameters can be chosen for optimized coupling of incident light with surface plas-

mon modes [85–88]. In 2010, Mahboub et al. explored, both experimentally and theoreti-

cally, the structural parameter space of a visible-frequency bullseye lens with input surface

grooves, demonstrating that the parameters describing the grating are interlinked and that

simple scale laws can be used as “rules of thumb” when designing a bullseye lens [88]:

λ ≈ 1.1p
w
p
≈ 0.5

s
w
≈ 0.4

s
p
≈ 0.2. (5.2)

Since the optical properties of metals at visible frequencies differ from those in the THz

regime (Section 2.4.1), a perfect electrical conductor with input grooves was simulated us-

ing Lumerical FDTD Solutions [52]. The above relationships were used to determine initial

groove parameters for a resonant wavelength of λR = 922 µm and are given in Table 5.1.

Each parameter was then swept over a range of values to optimize the transmission effi-

ciency with grooves illuminated by a linearly polarized plane wave. While a thin substrate

increases the power transmitted through the aperture (Section 4.4), a large thickness of

1000 µm was intentionally chosen to accommodate a sufficient span of groove depths.

In Appendix B.2, it is shown that simulations converged for a mesh size of 19 µm in
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5.1. INPUT GROOVE OPTIMIZATION

Table 5.1: Initial groove parameters chosen via Equations 5.2 and the final, optimized pa-
rameters found using Lumerical FDTD Solutions (distances in µm). Note that an increasing
number of grooves and a thinner aperture leads to further enhancement (see text). A full
list of the simulation parameters can be found in Appendix B.4.

Input Face Initial Parameters Optimized Parameters
Type – Groove Groove
Number of Features N 4 6
Initial Distance a 839 1332
Period p 839 890
Width w 419 445
Depth s 168 134

the xy-direction and 4 µm in the z-direction. For optimization of groove parameters, a

mesh size of 10 µm was chosen in all directions as a tradeoff between acceptable error

and computation time. At this point in the analysis, it was assumed that the error in any

optimized parameter, and consequently, the error in resonant peak wavelength, λR, was

approximately on the order of the mesh size, which was chosen to be 10 µm.

In the following sections, the method used to optimize each of the bullseye design pa-

rameters is discussed.

Period Sweep

The model given in Table 5.1 was simulated for periods from 860-940 µm. The recorded

transmission efficiency is shown in Figure 5.2. For p = 890 µm, a transmission peak was

observed at λ = 922 µm. To compare this result with the basic scale laws in Equation 5.2,

the peak wavelength was found for each period by interpolating 1000 points over the sim-

ulation bandwidth and locating the wavelength with a maximum transmission efficiency.

The ratio λR/p was calculated for each curve. The mean and standard deviation determined

from the λR/p value from each curve is λR/p= 1.041±0.004. For a desired λR = 922 µm,

this corresponds to a period of p = 886 ± 3 µm. A shift in the resonant wavelength could

be attributed to the mesh precision of 10 µm.

Note that while the transmission efficiency at 922 µm for a groove period of 890 µm
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Figure 5.2: Simulated transmission efficiency of a bullseye structure with input grooves of
varying periodicity. Points represent simulated values.

is lower than for periods from 860-880 µm, the smaller resonance at 922 µm could be

attributed to the remaining groove parameters being unoptimized. For the remaining pa-

rameter sweeps, the period was set to 890 µm.

Number of Grooves Sweep

The number of grooves was initially set to 4 to reduce the size of the simulation volume

and, consequently, simulation times. To ensure that the resonant wavelength did not change

with an increased number of grooves, the number of features was swept from 1-6, as shown

in Figure 5.3(a). Strong transmission resonances were observed for 3-6 grooves. For each

groove, the ratio λR/p was ≈ 1.04 mm, in agreement with the results from the previous

section. The transmission efficiency was then plotted at 922 µm as a function of the num-

ber of grooves (Figure 5.3(b)). A parabolic fit was made, demonstrating the transmission

increases proportionally with N2 dependence. This could be attributed to the constructive

interference of SPPs at the aperture. If each groove contributes a linear sum of amplitudes

at the aperture, then the intensity at the aperture increases by the amplitude squared. Final

bullseye designs were fabricated with 6 input surface features.
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Figure 5.3: (a) Simulated transmission efficiency of a bullseye structure with an increasing
number of input grooves. (b) Transmission values were taken at λ = 922 µm and plotted
for an increasing number of input grooves, exhibiting N2 dependence.

Groove Width Sweep

Following a similar methodology, a width sweep was simulated for ratios of w/p from

0.1 to 1.0 with a constant period of p = 890 µm (Figure 5.4(a)). Note that the simulations

performed for this parameter sweep and in the remaining optimization simulations was set

to d = 445 µm.

The data shown in Figure 5.4(a) was plotted at a wavelength of λ = 922 µm as a

function of the relative width-to-period, as shown in Figure 5.4(b). A cubic spline was

calculated over the data set and a maximum ratio of w/p≈ 0.5 was found. This ratio is in
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agreement with the scale laws given in Equation 5.2.
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Figure 5.4: (a) Simulated transmission efficiency of a bullseye structure with grooves of
constant period and varying width. (b) For each curve, the transmission efficiency was
taken at λ = 922 µm and plotted as a function of the ratio w/p. A cubic spline was made
over all points and a maximum ratio was found to be w/p ≈ 0.5.

Groove Depth Sweep

The groove depth was then systematically varied for ratios of s/p from 0.1 to 1.0 with

a constant period p = 890 µm and constant width of w = 455 µm (Figure 5.5(a)). The

transmission efficiency at λ = 922 µm was plotted as a function of s/p and a maximum

value of interpolated data was found for a ratio s/p ≈ 0.14.
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Figure 5.5: (a) Simulated transmission efficiency of a bullseye structure with grooves of
constant period, constant width, and varying depth. (b) For each curve, the transmission
efficiency was taken at λ = 922 µm and plotted as a function of the ratio s/p. A cubic
spline was made over all points and a maximum ratio was found to be s/p ≈ 0.14.

Material Thickness

The material thickness of the bullseye was then changed to verify that waveguide the-

ory (Section 4.4) can be used to approximate the thickness dependence on the transmitted

power, as shown in Figure 5.6(a). A slice of the data in Figure 5.6(a) was taken at 922 µm

and plotted as a function of aperture thickness, as shown in Figure 5.6(b). An exponential fit

using the same procedure described in Section 4.6 gave an amplitude attenuation constant

of αbe = 3.97 ± 0.03 mm−1.
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For comparison, a single aperture with an identical diameter was simulated for corre-

sponding thicknesses. The simulated amplitude attenuation constant of the single aperture

was found to be αbe = 4.05 ± 0.02 mm−1, which differs from the bullseye by approx-

imately 1%. I.e., the thickness dependence of power transmitted through the bullseye is

approximately independent of the surface corrugations.
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Figure 5.6: (a) Simulated transmission efficiency of a bullseye structure with varying aper-
ture thickness. (b) An exponential fit was made to a slice of the data in (a) at 922 µm. The
amplitude attenuation constant was fit to 4.05 ± 0.02 mm−1.

Basic waveguide theory predicts the amplitude attenuation constant of the single aper-

ture with a diameter of 445 µm to be αtheo = 4.7 µm−1. Both values have an error of

approximately 15% compared to the theoretical value. This is larger than the 2% discrep-
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ancy between theory and simulation in Section 4.6, which adopted a 4 µm simulation mesh.

This optimization procedure was performed by simply choosing a uniform 10 µm mesh to

reduce simulation times. As previously noted, it is expected that a finer mesh in z-direction

would show improvement, however, these results show the anticipated trend.

The transmission enhancement, G (Equation 5.1), was then calculated by simulating

apertures of identical diameters and thickness. As shown in Figure 5.7, the enhancement

profile remains constant for all thicknesses. This is expected, as it implies that the trans-

mission process through the aperture is independent of enhancement mechanism due to the

input corrugations [22]. Therefore, once a transmission enhancement curve is generated for

a given bullseye structure, cylindrical waveguide theory can be applied to the enhancement

profile to predict the transmission loss as a function of thickness.
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Figure 5.7: The transmission enhancement of the bullseye structure compared to a single
aperture. Simulations were performed for substrates of different thicknesses. The transmis-
sion enhancement remains the same for all thicknesses.

Ridge Model and Distance to First Ridge

Since the difficulty to micromachine thin structures was unknown, the first fabricated

design was an optimized groove model with a thickness of 300 µm was chosen to primarily

determine if bullseyes could be fabricated by this method. The details of these results

are not presented here, but ultimately, low transmission was observed because of strong
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attenuate due to thickness.
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Figure 5.8: Increasing the distance from the centre of the aperture to the first ridge. Lower
transmission resonances were observed at λ = 922 µm for a = mp and larger resonances
for a = (2m + 1)p/2, where m is an integer.

As a result, a ridge model was adopted that has a thin, internal aperture (Figure 5.1(b)).

The optimized parameters used for groove designs were applied to the ridge model, where

the groove depth s now represents the ridge height. In the ridge simulations that follow,

modest variations in the ridge parameters of approximately 2 µm were made as the result of

additional small optimization tests. These changes were within converged simulation mesh

(4 µm in z and 19 µm in x and y) and were not expected to have a significant change in

simulation results.
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Table 5.2: The design of the bullseye model that was simulated for Gaussian beams of
increasing waist radii (distances in µm). A full list of the simulation parameters can be
found in Appendix B.4.

Input Face Simulated Parameters
Type – Ridge
Number of Features N 6
Initial Distance a 888
Period p 888
Width w 445
Depth s 130

The final input grating parameter that was optimized was the distance a to the centre

of the first groove (Figure 5.1(b)). Figure 5.8 shows two ranges over which a was varied.

Two smaller resonances were observed at a = 888 µm and 1776 µm, which correspond to

integer multiples of the period. Larger resonances are found at a = 1332 µm and 2220 µm,

which correspond to odd multiples of half the period. A distance of 1332 µm displayed the

highest transmission at λ = 922 µm and was chosen in the final bullseye designs.

Gaussian Illumination

Up to this point in the parameter optimization, the simulations have all considered the

illumination of the bullseye structure with a linearly polarized plane wave. In other words,

all of the rings were illuminated. Investigating the effect of illuminating a different number

of rings required the use of a Gaussian beam source. The behaviour of the Gaussian source

in Lumerical FDTD Solutions is detailed in Appendix B. The Gaussian beam source is of

particular interest, as the experimental THz source used to characterize the bullseye devices

is predominately Gaussian (Section 6.1.1).

Table 5.2 gives the parameters of a bullseye ridge-model that was simulated with Gaus-

sian beams with waist radii from 2 mm to 5 mm, illuminating approximately 2−5 rings.

The absolute transmission is plotted as a function of wavelength in Figure 5.9(a). Since the

total power contained within a traverse plane of the beam is conserved as the spatial extent

of the beam is increased, less power is incident on the area of the aperture. The remain-
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ing power is spread across the input ridges. Simulations showed that for waist radii above

3 mm, the power transmitted through the aperture remains approximately the same, despite

the energy density on the aperture falling as approximately 1/w2
0. It must be emphasized

that this is due an increased transmission enhancement that continues to rise as more ridges

are illuminated, as shown in Figure 5.9(b).
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Figure 5.9: (a) The absolute transmission through bullseye lens with input ridges. The trans-
mission for waist sizes above 3 mm was approximately constant due to (b) the increased
transmission enhancement, G.
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5.2 Bragg Reflector

When an incident wave couples to a surface plasmon mode, SPPs propagate towards the

centre of the structure, enhancing the electromagnetic field at the aperture, as well as prop-

agating radially outward. These outward travelling waves can contribute to the resonant

transmission if they are reflected in phase with the inward travelling wave. In an experi-

mental study by Ishihara et al., the transmission of THz radiation through bullseye devices

was further enhanced with the introduction of a Bragg reflector [30]. Bragg reflectors are

half-period concentric grooves that are placed outside of the main bullseye structure and

reflect SPPs back towards the central circular aperture, therefore improving transmission.

Table 5.3: Structural parameters of the simulated Bragg reflector. The Bragg reflector
surrounds the ridges given in Table 5.2. Distances are in µm.

Bragg Reflector Optimized Parameters
Type – Ridge
Number of Features Nr 3
Initial Distance ar 444
Period pr 444
Width wr 222
Depth sR 130

Simulated reflection gratings were parametrized by the number of grating structures, Nr,

the distance to the first feature, ar , the grating period, pr, their width, wr, and their depth,

sr. The ridge model described in the preceding sections was surrounded by three Bragg

reflectors with half-periods and half-widths of pr = 444 µm and wr = 222 µm, respectively

(see Table 5.3), and simulated using Lumerical FDTD Solutions with a Gaussian beam

with a 5 mm waist. Converged simulation parameters were used and error propagation was

calculated assuming a 6% error in simulated transmission, as detailed in Appendix B.2.

A comparison of the regular bullseye device with an identical device surrounded by

the reflector is shown in Figure 5.10. Table 5.4 summarizes the transmission efficiency η

and enhancement factors G of each structure at their resonant wavelength. Although the

69



5.3. FOCUSING WITH PHASE TUNED OUTPUT STRUCTURES

700 800 900 1000 1100
Wavelength (µm)

0.0

0.1

0.2

0.3

0.4

0.5

A
bs

ol
ut

e 
T

ra
ns

m
is

si
on

 (
10

−3
)

Single Aperture
Input Ridges
With Reflection Grating

Figure 5.10: The absolute transmission of a w0 = 5 µm Gaussian beam through an aperture
(d = 300 µm, t = 200 µm), a bullseye device with input ridges, and with ridges surrounded
by Nr = 3 reflection gratings.

peak wavelength is shifted to 915 µm with the addition of the Bragg reflector, which may

be due to the reflected SPPs not being entirely in phase, the reflector further increased the

transmission efficiency by approximately 25%.

Table 5.4: The absolute transmission, T , transmission enhancement, η , and gain, G, of a
Gaussian beam (w0 = 5 µm) through an aperture (d = 300 µm, t = 200 µm) and bullseye
device with input ridges at λ = 922 µm, and with ridges surrounded by Nr = 3 reflection
gratings at λ = 915 µm.

T (×10−4) η G
Aperture Only 0.248 ± 0.009 0.14 ± 0.01 –
Input Ridges 4.0 ± 0.2 0.22 ± 0.01 16 ± 1
Input Ridges with Reflector 5.0 ± 0.3 0.28 ± 0.02 20 ± 2

5.3 Focusing with Phase Tuned Output Structures

In a similar way that geometrical structures on the input side couple incident light into

SPPs, structures on the output side of the lens can collimate, focus, or directionally beam

the emerging light. This has been shown by mirroring the input corrugations to the output

surface [3, 23, 83] and by modulating the radial position [89] or depths of grooves [82,

84, 90, 91]. These reports have attempt to relate the structural parameters to the focusing
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behaviour, however, a full design methodology is not often discussed.

(a) Simulated phase locations for the groove model.

(b) Simulated phase locations for the ridge model.

Figure 5.11: For groove designs, the phase was recorded in the output plane of the aperture.
For ridge designs, the phase was recorded at the top of the ridge and at the centre of the
aperture in the plane defined by the top of the ridge.

Phenomenological phase modulation models have been recently developed for nano-

scaled slit-groove devices and bullseye lenses [24, 92–94]. In these simple models, light

diffracted at the output face couples with SPP modes and propagate along the surface, scat-

ters off an output surface structure, and couples back into the radiation field (see Figure5.11(b)).

I.e., individual grooves/ridges can be considered as a Huygen emitter with a specific ini-

tial phase, ϕi. The relative phase difference between light travelling through the central

aperture, ϕ0, and that of SPPs scattered off of surface corrugations, ϕi, can be found using
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5.3. FOCUSING WITH PHASE TUNED OUTPUT STRUCTURES

numerical techniques.

To illustrate this principle, in order to produce a focal spot at a distance f from the

bullseye structure, the path length of the scattered SPP is calculated using

L =
√

f 2 +(nri)2 (5.3)

and the path difference with a directly transmitted photon is

∆L = L− f =
√

f 2 +(nri)2− f . (5.4)

The corresponding phase difference due to ∆L is given by k∆L, where k is the wavenum-

ber. Using the condition of constructive interference, the sum of the phase due to the path

difference and the phase difference due to the scattering off of the groove/ridge must be an

integer multiple of 2π:

(
√

f 2 +(nri)2− f )k+ϕi,0 = 2πm,m = 0,±1,±2, . . . , (5.5)

where ϕi,0 = ϕi−ϕ0 is the difference between the wave directly transmitted through the

aperture and a secondary wave emitted from surface corrugation i.

Figure 5.12: Simulations were performed by shifting one concentric ridge radially outward.

To investigate the variation in phase of the secondary sources as a function of ridge

radius and width, simulations were performed at λ = 922 µm for an aperture diameter

of 200 µm and thickness of 50 µm. A single ridge with a width of 445 µm and a height

of 100 µm was placed on the output side of the device with increasing radial positions, as

shown in Figure 5.12. The phase at the location of the ridge and the aperture, as shown in
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Figure 5.11(b), was recorded to find the phase difference ϕi,0 as a function of r. The raw

simulated data is shown in Figure 5.13(a). The phase difference ϕi,0 increases linearly as a

function of groove radius and is wrapped around ±π . This data was unwrapped, as shown

in Figure 5.13(b), and a linear fit was performed.
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(b) Unwrapped phase values with linear fit.

Figure 5.13: (a) The phase difference between light transmitted through a d = 200 µm
aperture, ϕ0, and that light scattered off a s = 100 µm, w = 445 µm ridge at increasing
radial distances. (b) The phase difference was unwrapped and fit with a linear function.

The fitted slope and intercept were mr = 6.80 ± 0.01 mm−1 and br = −2.85 ± 0.1,

respectively. This procedure was repeated for a ridge height of 180 µm with a fitted param-

eters mr = 6.90 ± 0.09 mm−1 and br = −9.1 ± 0.1. The average of both the simulated

slopes was found to be mr = 6.8 ± 0.1 mm−1. This value was used as the radial depen-

dence on the phase difference ϕi,0.

A single ridge was then simulated at r = 700,1150, and 2500 µm for different widths

of constant height s = 100 µm. Linear fits were made following a similar procedure and

the average slope was found to be mw = −3.5 ± 0.3 mm−1.

It was assumed that ϕi,0 is a sum of the linear contributions due to each structural pa-

rameter, i.e.,

ϕi,0 = ϕr +ϕw, (rad) (5.6)
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where ϕr = mrr + br and ϕw = mww+ bw. Combining the independent contributions of

ridge location and width gives a general form of

ϕi,0 = mrr+mww+b, (rad) (5.7)

where the intercept

b = br +bw (rad) (5.8)

was found to be b = − 1.3 ± 0.1 by combining simulated values for ϕr and ϕw. The

final equation describing the phase difference ϕi,0 for ridges of varying radial positions and

widths is

ϕi,0 = (6.8 mm−1)r− (3.5 mm−1)w−1.3. (rad) (5.9)

Using this phase relationship, Equation 5.5 was solved numerically for a wavelength of

922 µm, a constant width of w = 445 µm, and a focal length of f = 3 mm, for inte-

gers multiples of 2π to obtain the required radii of each ring. This procedure is shown

graphically in Figure 5.14 and the simulated beam profile is shown in the following section.

For completeness, a similar model was also generated for output grooves as a function

of radial position and groove depth:

ϕi,0 = (6.85 mm−1)r+(10.0 mm−1)s−6.61. (5.10)
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(b) The phase difference between light travelling
through the aperture and SPPs scattered from ridges.
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Figure 5.14: (a) The phase contributions ϕ∆L for f = 3 mm and (b) ϕi,0 were summed and
(c) solved for 2πm to obtain radial positions of 5 ridges.
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5.4 Fabricated Bullseye Designs

As a result of the optimization procedure described in this chapter, two final bullseye

lenses were designed and fabricated, as shown in Figures 5.15 and 5.19. Both designs

have input ridges that were chosen for maximum transmission efficiency and have identical

aperture diameters of 300 µm and thicknesses of 50 µm. The first design consists of only

input ridges and a planar output face. The second design is patterned with a radially-tuned

output surface to focus outgoing radiation approximately 3 mm away from the output face.

An outer support ring was placed around the bullseye structure with dimensions chosen for

mounting purposes (Section 7.1). The distance from the last groove to the inner wall of the

support ring was chosen to be an integer multiple of ridge periods away from the reflection

grating, however simulations showed that this was not a relevant parameter.

The theoretical performance of each device was determined by simulating their trans-

mitted powers and the beam profiles when illuminated by a linearly polarized Gaussian

beam of w0 = 5.1 mm. A single aperture with the same diameter and thickness was also

simulated to calculate the transmission enhancement, G, of each device. The transmission

enhancement through the single-sided and double-sided devices are shown in Figures 5.16

and 5.20, respectively. Since the input ridges on both devices were identical, it was expected

that transmission enhancement curves for each device would be identical. Although some

variation in the simulation results is apparent, the transmission enhancement values are

within the 8% estimated simulation error (discussed in Appendix B). The reported theoret-

ical transmission enhancement is presented as the average of values from both curves. The

maximum transmission enhancement occurs at λ = 915 µm with a value of G = 37 ± 3.

At λ = 922 µm, the simulated enhancement has a value of G = 29 ± 2.

The simulated beam profile at λ = 922 µm for the double-sided device is shown in Fig-

ure 5.21. Data along x = 0 was interpolated to locate the focus at a distance of z ≈ 3.5λ ,

or 3.2 mm, away from the output surface of the device. A cross-section in the x-direction

through the location of the focus was fitted to a Gaussian function to find a FWHM of
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864 ± 7 µm (Figure 5.22). It should be noted that the phase modulation model described

in Section 5.3 was determined for ridges with a height of 100 µm, while the final fabricated

devices have ridge heights of 130 µm. Despite the height discrepancy in the analysis, the

phase distribution model provided a good estimate of the location of the simulated focal

spot.

Fabrication was performed at NRC Automotive and Surface Transportation using mi-

cromachining techniques [95]. Since metals behave as perfect electrical conductors at THz

frequencies, the type of metal used in the machining of the device was not a limiting factor,

and copper was chosen for all designs. Information regarding the fabrication procedure of

a double-sided bullseye, results from which are not presented in this thesis, can be found

in Appendix C. Photographs of the final devices are shown in Figures 5.18 and 5.23. A

fabrication report can be found in Appendix C that details accuracy of the critical design

parameters, which were within ± 1 µm.
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Figure 5.16: Simulated transmission enhancement through the designed single-sided bulls-
eye illuminated with a λ = 922 µm linearly polarized Gaussian beam of w0 = 5.1 mm.
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Figure 5.17: Simulated beam profile of the designed single-sided bullseye illuminated with
a λ = 922 µm linearly polarized Gaussian beam of w0 = 5.1 mm. Dashed lines represent
the acceptance angle of f/1 parabolic mirrors.
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(a) Input face.

(b) Output face.

Figure 5.18: Photographs of the final single-sided bullseye with ridges and a Bragg reflector
on the input side of the device.
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Figure 5.20: Simulated transmission enhancement through the designed double-sided
radially-tuned bullseye illuminated with a λ = 922 µm linearly polarized Gaussian beam
of w0 = 5.1 mm.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
x (nλ)

1

2

3

4

5

6

z 
(n

λ)

0.000 0.001 0.002 0.003 0.004 0.005
|E|2 (V/m)2

Figure 5.21: Simulated beam profile of the designed double-sided radially-tuned bullseye
illuminated with a λ = 922 µm linearly polarized Gaussian beam of w0 = 5.1 mm.
Dashed lines represent the acceptance angle of f/1 parabolic mirrors.
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Figure 5.22: A cut in the x-direction through the focus was fitted to a Gaussian function to
find a FWHM of 864 ± 7 µm.

Figure 5.23: Photograph of the output face of the double-sided radially-tuned bullseye.
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Chapter 6

Design of a THz Testbed

In Chapter 5, the design and simulated performance of bullseye plasmonic lenses, op-

timized for enhanced transmission and beam confinement at THz frequencies, was pre-

sented. To verify the performance of the fabricated devices, an optical testbed consisting of

a room temperature THz source and detector was designed and developed. A photograph

of the system is shown in Figure 6.1. The testbed makes use of a line source whose beam

profile is predominately Gaussian and whose frequency can be tuned over the range of

320−330 GHz, corresponding to wavelengths of 908−937 µm. Two 90◦ off-axis parabolic

(OAP) mirrors re-image the beam from the horn at the location of the bullseye lens. Af-

ter the lens, two additional OAPs collect the transmitted light and focus it on the detector.

Details pertaining to the design of the THz testbed are given in Section 6.1. Signal acqui-

sition was accomplished using standard lock-in techniques and is described in Section 6.2.

Section 6.3 details beam profile measurements of the THz source. The frequency depen-

dent power of the THz source is discussed in Section 6.4. A ubiquitous feature of optical

systems at these wavelengths is resonant cavities that are unavoidable. Due to the reso-

nant nature of the system, transmission measurements as a function of a frequency require

careful interpretation and is further discussed in Chapter 7.
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Figure 6.1: A top-down photograph of the THz testbed configuration used for source power
measurements. The THz beam produced by the source is collected by mirror M1, focused
by M2 to an intermediate image plane, collimated by M3, and brought to a focus by M4 on
the detector. LP: a linear polarizer is rotated approximately 30◦ with respect to the trans-
verse xy-plane to minimize reflections within the system. DT: digital-to-analogue converter.

Figure 6.2: A schematic diagram of the testbed configuation shown in Figure 6.1.
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6.1 Testbed Components

A schematic diagram of the testbed is shown in Figure 6.2. The z-direction is defined

as the axis of propagation. Perpendicular to the propagation axis, x and y correspond to

the horizontal and vertical directions, respectively. Specific components of the optical con-

figuration, including the source, detector, and polarizing elements, are described in the

following sections. Different configurations of the testbed were used to measure: beam

profiles, source power, and transmission through single apertures and bullseye lenses. This

discussion will highlight the common features of each configuration.

6.1.1 THz Line Source and Corrugated Horn

The THz signal is produced by a Virginia Diodes, Inc. (VDI) line source transmitter

with a frequency bandwidth of 320-330 GHz (908−937 µm) [96]. The source is based on

the principle of frequency multipliers, which takes advantage of the nonlinear response of

a GaAs Schottky diode to incident microwave radiation produced by a 10 GHz oscillator,

which is stabilized to a 10 MHz crystal oscillator [96, 97]. The diode generates an output

signal that contains harmonics of the input frequency, a portion of which is selected as the

desired output frequency. There are several multiplier stages that produce a resulting gain

of 32. Tuning the 10 GHz source results in a frequency range of 320-330 GHz. The source

is rated to have a maximum power output of approximately 10 mW, however, the output

power varies with frequency, as discussed Section 6.4. Two key features of the system are

a BNC attenuation input that accepts up to 5V to control the output power and a BNC input

for modulating the source up to 20 kHz.

To produce a single mode Gaussian beam, a corrugated feedhorn is required [98]. How-

ever, they are difficult to manufacture. It has been shown that a split-block rectangular feed-

horn (Figure 6.3(a)) is easier to fabricate and emits a horizontally polarized Gauss-Hermite

beam with approximately 84.3% of its power in the fundamental Gaussian mode [98]. A

schematic of the VDI source/detector horn is shown in Figure 6.3(b). The characteristics of
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the Gaussian beam can be derived from the geometry of the horn using waveguide theory.

The Gaussian beam waist, w0, and location of the beam waist inside the throat of the horn,

za, are given by: [98]

w0 =
κa√

1+
(

πκ2a2

λL

)2
(6.1)

za =
L

1+
(

λL
πκ2a2

)2 , (6.2)

where

κa≈ 0.863191 (6.3)

was calculated numerically in [98] to optimize the power in the fundamental Gaussian

mode.

The VDI horn has a length of L = 21.4 mm and an aperture opening of d = 4.6 mm.

(a) (b)

Figure 6.3: (a) Photograph of the split-block diagonal horn. (b) Horn dimensions and
location of beam waist.
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The beam waist and waist location were calculated as a function of the source frequency

and are summarized in Table 6.1.

Table 6.1: The beam waist radius, w0, and its location within the horn, za, as mea-
sured from the horn output, as a function of source frequency. To a good approxima-
tion, it can be assumed that the mean values can be used (za = 6.04± 0.09 mm and
w0 = 1.682 ± 0.005 mm).

f (GHz) λ (µm) za (mm) w0 (mm) FWHM (mm)
320 937 5.909 1.689 1.989
321 934 5.936 1.688 1.987
322 931 5.963 1.686 1.985
323 928 5.990 1.685 1.984
324 925 6.016 1.683 1.982
325 922 6.043 1.682 1.980
326 920 6.070 1.680 1.978
327 917 6.096 1.679 1.977
328 914 6.123 1.677 1.975
329 911 6.150 1.676 1.973
330 908 6.180 1.675 1.972

6.1.2 Zero Biased Diode Detector

The detector used is a zero-biased diode (ZBD) with an optical noise-equivalent power

of 2.9 pW/
√

Hz. The horn on the detector is identical to that on the source and accepts

horizontal polarized light. The diode response is intrinsically nonlinear, however when the

diode is not biased and the incident power is sufficiently small, on the order of 0−10 µW, the

diode is well approximated by a linear response. Furthermore, by not applying an external

bias, there is no additional noise associated with a necessary power supply.

Manufacturer specifications give the responsivity R of the detector between

320−330 GHz to be R ≈ 1500 V/W. Using this responsivity, a maximum signal of 15 mV

ensures that the power incident on the detector lies within the linear regime. Safe operation

of the ZBD requires the input signals to be less than 1 mW (1.5 V).
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6.1.3 Stage Optics

Optics were mounted on a Newport Scientific Grade Optical Breadboard using New-

port M-VPH no-slip optical post holders, M-SP stainless steel optical mounting posts,

and LH-2 2” diameter lens mounts [99]. Four 50.8 mm diameter aluminum 90◦ off-axis

parabolic (OAP) mirrors were configured in an arrangement to provide an intermediate

imaging plane [97]. The OAPs were orientated such that rays from a single field point

strike identical coordinates on each parabolic mirror (i.e., in a “tip-to-tip” fashion) to avoid

a tilted image plane [100].

The source and detector horns were aligned such that the location of the Gaussian beam

waist within the horn was at a focal length away from mirrors M1 and M4 (Figure 6.1).

Although the input waist size and its location within the horn change with frequency (Ta-

ble 6.1), mean values of w0 = 1.682 ± 0.005 mm and za = 6.04 ± 0.09 mm were

adopted.

6.1.4 Linear Polarizers

Wire-grid polarizers, consisting of parallel conducting wires whose width and spacing

are smaller than the incident wavelength, provide a simple means to attenuate the THz

beam [6]. Consider the wire-grid orientated vertically; the component of the electric field

parallel to the wires drives conduction electrons to accelerate and re-radiate an electric field

that results in the reflection of the incident wave. Electrons in the perpendicular direction

are not free to move and the perpendicular component is transmitted. When the axis perpen-

dicular to the wires, i.e., the transmission axis, is rotated by an angle, θ , the transmission

through the polarizer follows Malus’ Law [6],

I
I0

= cos2
θi, (6.4)

where I0 (W ·m−1) is the intensity of the light incident on the polarizer, I (W ·m−1) is

the transmitted intensity, and θi (rad) is the angle between the light’s initial polarization
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and the transmission axis of the polarizer. For unattenuated source power measurements,

a polarizer with its transmission axis crossed with the incident polarization to effectively

reduce the source power to a value that can be safely measured by the ZBD.

6.2 Signal Detection with a Lock-in Amplifier

Lock-in detection is a method used to measure small amplitude AC signals in the pres-

ence of a high background noise. A lock-in amplifier has two inputs: a modulated signal

from the detector and a reference signal with the same frequency. The two signals are then

multiplied and integrated for a time longer than their period (usually on the order of mil-

liseconds). Making use of the orthogonality of sinusoidal functions, if the frequencies of

the two signals are not equal, the integrated product is zero. When the two functions have

identical frequency, the integrated result is half the product of the amplitudes. That is, the

lock-in produces a DC output that filters out Fourier components of the signal that are not

equal to the modulated frequency. This filtering occurs over a very narrow frequency range,

leading to high signal-to-noise.

A 5 kHz TTL modulation was applied to the source using a Stanford Research Systems

Model DS335 3.1 MHz Synthesized Function Generator [101]. Lock-in techniques were

applied using a Stanford Research Systems Model SR830 DSP Lock-In Amplifier to extract

the THz signal referenced against the 5 kHz modulation. The modulated signal measured by

the ZBD, the reference signal, and the output from the lock-in were viewed on a Tektronix

DPO 4034 Digital Phosphor Oscilloscope, as shown in Figure 6.4 [102]. The top green

line shows the modulating signal applied to the THz source. The middle blue line shows

raw signal from the ZBD, which is a slightly asymmetric square wave (i.e., the marked-to-

space ratio is not 50:50). Nevertheless, it has a fundamental frequency that the lock-in can

determine when provided the reference signal.

The bottom, pink signal is the DC signal that is output from the lock-in. As is common

with all lock-in amplifiers, the output signal is related to the signal displayed on channel 1,
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Figure 6.4: A screenshot of the oscilloscope when performing lock-in measurements. Top,
green: modulating signal. Middle, blue: raw signal from the ZBD. Bottom, pink: the DC
signal output from the lock-in.

X , and the sensitivity setting:

Output = (X/Sensitivity)×10 V. (6.5)

It is important to consider this gain, as the lock-in output was measured using a Data Trans-

lation DT9804 analogue-digital-to converter with a bipolar input range of ± 10 V [103].

The source attenuation and the sensitivity scale of the lock-in amplifier were carefully cho-

sen such that the output of the lock-in does not exceed this allowable input range.

6.3 Beam Profile Measurements

It is common practice to determine the quality of a beam by measuring the integrated

power as a straight- or knife-edge is translated through the focus. This is referred to as a

knife-edge test. The signal measured as a function of the knife-edge position takes the form

of:

P = PT [1− erf(
√

2(y− y0)/w0], (6.6)
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This corresponds to the integrated beam intensity profile of the Gaussian beam and is com-

monly referred to as an S-curve.

The knife-edge apparatus consists of a standard utility blade mounted to a three-axis

piezo CONEX-AGP Agilis-P Controller with Encoder Feedback placed near the focus [99].

This apparatus is shown in Figure 6.5. The three-axis stage allowed the knife to be moved

with a minimum incremental motion of 0.2 µm with a travel range of 27 mm. The back side

of the arm-razor configuration was covered with THz-absorbing Eccosorb to limit stray

reflections. A control and data-acquisition program was written in IDL that recorded the

output DC voltage from the Data Translation unit as a function of position as the knife

was moved across the aperture [103, 104]. In a typical configuration, the knife was moved

vertically (y) until the entire beam was blocked. This was performed at successive locations

along the propagation axis to determine the location of the focus.

Figure 6.5: The knife-edge testing apparatus used to measure the integrated beam intensity.

To illustrate this method, Figure 6.6 shows the S-curve measured at the location of the

focus. An error function was fit to the S-curves with a fixed total power PT to obtain the

Gaussian beam waist, w0, and the height of the optical axis, y0. Since this measurement

represents the integrated beam intensity, the derivative is taken to obtain the corresponding

Gaussian profile.
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This can be repeated as a function of z and obtain the full beam profile, as shown in

Figures 6.7(a) and 6.7(b). The location of the focus can be determined by locating the

beam profile with a minimum waist size, as shown in Figure 6.8(a).

Figure 6.6: Measured (black, dotted) S-curve with an error function fit (red, solid) at the
focus of the Gaussian beam. Inset: the corresponding Gaussian beam profile overlaid with
the derivative of the error function fit.

In anticipation of the results in Section 6.4, it is worth noting that oscillations in Fig-

ures 6.7 and 6.8 occur when the blade position is translated by a distance of ≈ λ/2, where

λ ≈ 1 mm, along the axis of propagation. This can be attributed to the presence of a

resonant cavity in the optical system (further discussed in Section 6.4.1).

6.4 Source Power

As mentioned in Section 6.1.1, the output power of the VDI source is a function of the

source frequency. In order to calculate the transmission through an aperture as a function

of frequency, a reference power curve is required to normalize the transmitted signal.

When the testbed is used to study the transmission through single apertures and bulls-

eye lenses, the source was unattenuated to maximize the signal-to-noise. However, without

a device in place, the voltage across the ZBD would exceed the safe limit of 1.5 V (Sec-

tion 6.1.2). Since the source attenuation is frequency dependent, reference power measure-
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ments were made by placing a linear polarizer near the ZBD with its transmission axis at

an angle of ≈ 65◦ with respect to the incident horizontal polarization. An IDL program

was written to step through the source frequency from 320-330 GHz in steps of 1/64 GHz

(∆λ ≈ 0.18 µm) [104]. A 20 ms wait between steps allowed for output power to stabi-

lize before a measurement was made. An average of 100 data points was taken and error

bars are presented as one standard deviation. The measured output power as a function of

(a)

(b)

Figure 6.7: (a) The measured S-curves at positions along the axis of propagation. (b) The
derivative of the S-curves was taken to obtain the Gaussian profile.
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(a) (b)

Figure 6.8: (a) The beam waist radius (left) and maximum Gaussian beam intensity (right)
from corresponding error function fits (black, dotted) along the propagation axis (z). The
waist radius was also calculated using a 90%-10% (blue, squares) and 80%-20% (red, tri-
angles) analysis. The oscillations seen are due to resonant cavities formed in the optical
system.

frequency is shown in Figure 6.16, exhibiting resonant fringes.

Figure 6.9: Measured power output from the VDI source with a polarizer placed perpendic-
ular to the optical axis (rotation of 0◦). Error bars are suppressed for clarity and are shown
in Figure 6.10.

95



6.4. SOURCE POWER

Figure 6.10: A subsection of the data from Figures 6.9 and 6.16 between 323.0-323.5 GHz.
The power measured for a perpendicular polarizer (black) shows fringes with a spacing of
∆ f̄ = 0.15±0.03 GHz. Error bars represent 10× the standard deviation of 100 data points.

6.4.1 Fabry-Pérot Resonances

The resulting interference pattern is analogous to that produced by a Fabry-Pérot

etalon [6]. The Fabry-Pérot etalon is device that consists of two parallel reflecting sur-

faces separated by a fixed distance, l, that encloses a medium with a refractive index, n.

Incident light at an angle, θ , undergoes multiple reflections between the two reflecting

surfaces. Considering only the first reflection, an optical path difference between primary

transmitted beam, T1, and the secondary transmitted beam due to a reflection, T2, results in

a phase difference

φ =

(
2π

λ

)
2lncosθ . (6.7)

When the φ = 2mπ , the electric fields of the primary and secondary transmitted waves

interfere constructively, resulting in a maximum field amplitude of (E2 +E1) and intensity

(E2 +E1)
2.

In terms of the THz testbed, any resonant cavity within the system that could allow

for the propagation of multiple reflected beams to reach the detector will cause resonant
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Figure 6.11: Multiple internal reflections R in a Fabry-Pérot etalon of length, l, with an
internal medium of index n [4]. Light is incident at an angle θ . Transmitted light, T , has
phase differences given by Equation 6.7.

Figure 6.12: Transmission in a Fabry-Pérot etalon with a constant cavity length, l [5].
Narrow peaks are said to have a high finesse, F , which is the result of more reflections that
interfere constructively [6].

fringes similar to that in a Fabry-Perot elaton, as shown in Figure 6.12. Considering that

the incident beam is at approximately normal incidence (θ = 0◦) and air is the medium

between the reflecting surfaces, the phase difference in terms of the frequency of light, f , is
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Table 6.2: Lengths of potential resonant cavities in the THz testbed, as shown in Fig-
ure 6.13. Error is the largest standard deviation in measured distances. Distance PD was
difficult to measure due to the polarizer being close to the ZBD and is given as an approxi-
mation.

Path Length (cm)
SD 98.36±0.03
PD ≈ 2.5
SP 100±1

φ =

(
2π f

c

)
2l. (6.8)

Potential cavities in the testbed with a physical length l have been identified in Figure 6.13,

where “S” denotes the front face of the input horn,“P” the location of the wire-grid polarizer,

and “D” the front face of the detecting horn. Table 6.4.1 summarizes the measured physical

path lengths associated with potential cavities.

For an unknown, fixed round-trip path length 2l, the ZBD will measure maxima at

frequencies when Equation 6.8 satisfies the condition of constructive interference. The

spacing between fringes in the system, given by ∆ f , can be used in Equation 6.8 to calculate

the corresponding length l of the cavity.

Figure 6.13: Potential reflective surfaces in the THz testbed.

Furthermore, the interference pattern in Figure 6.16 resemble two unequal-amplitude
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harmonic waves of different frequencies superimposed to produce a beat pattern. This

implies that there are two resonant cavities with fringe spacings ∆ f1 and ∆ f2. Together,

these cavities result in a modulated fringe pattern with a modulated and average fringe

spacing given by

∆ fm =
2(∆ f1∆ f2)

∆ f2−∆ f1
(6.9)

and

∆ f̄ =
2(∆ f1∆ f2)

∆ f2 +∆ f1
, (6.10)

respectively. The measurement of these values are given in the next section.

6.4.2 Fringe Spacing

To calculate the fringe spacing, local extrema were found by noting where the derivative

of the measured data with respect to frequency changed sign. A cubic spline was used to

interpolate the data in a region of approximately ±2 points surrounding the local extrema.

The interpolated data were again checked for a maximum/minimum value. An average

fringe spacing of ∆ f̄ = 0.149± 0.005 GHz was calculated by taking the mean difference

between the location of successive minima and maxima. Using these minima and maxima,

the modulation envelope was plotted in Figure 6.15. The fringe spacing of the envelope

was calculated to be ∆ fm = 2.8±0.2 GHz.

The spacings ∆ f̄ and ∆ fm correspond to two individual fringe patterns with spacings of

∆ f1 = 0.1452 GHz and ∆ f2 = 0.1531 GHz. However, propagating the errors in ∆ fm and

∆ f̄ leads to a high 8% error. Consequently, ∆ f1 and ∆ f2 are only known to ±0.01 GHz

and ∆ f1 ≈ ∆ f2 = 0.15 GHz. This corresponds to a physical path length of l = 100±8 cm,

which is within error of both SP and SD.

Further evidence that these are the two contributing paths is shown in Figure 6.16,

where the modulation was significantly reduced by tilting the polarizer approximately 30◦
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Figure 6.14: Visual representation of the routine to find local extrema. The black curve is a
subsection of the ZBD data from Figure 6.16 with the polarizer placed perpendicular to the
optical axis. Blue and green curves show the interpolated data over a small region. Open
blue and green circles show the extracted local extrema. The difference between successive
minima/maxima was taken to determine ∆ f̄ = 0.149±0.005 GHz.

Figure 6.15: The envelope of the power measurements. Local extrema were found using
the method described in the text. Extrema around 327 GHz were incorrectly extracted
by the routine and were visually inspected. The fringe spacing was found to be ∆ fm =
2.8±0.2 GHz.
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with respect to the plane perpendicular to the optical axis. This would cause unwanted

reflections to reflect at an angle of 30◦, thereby not contributing to the observed interference,

leaving the path between the source and detector as the primary source of fringing. In this

configuration, a measured fringe spacing of ∆ f = 0.146±0.003 GHz gives a physical path

length of l = 103±2 cm. Therefore, it is evident that reflections between the detector and

source is the primary optical cavity in the system.

Figure 6.16: Measured power output from the VDI source for different optical configu-
rations. Black: polarizer placed perpendicular to the optical axis (rotation of 0◦). Blue:
polarizer rotated 30◦ CCW from the optical axis. Orange: polarizer rotated 30◦ with a
≈ 17 mm diameter stop placed in the parallel beam between mirrors M1 and M2 (see Fig-
ure 6.1). Error bars are suppressed for clarity and are shown in Figure 6.10.

To investigate this further, an aperture stop with a diameter of approximately 17 mm

was then placed in the parallel beam between mirrors M1 and M2, reducing the available

beam power that can contribute to the observed fringing (Figure 6.16, black curve). Fringe

spacing was measured to be ∆ f = 0.14± 0.06 GHz (l = 100± 5 cm), which has a larger

error due to the small amplitude of the fringe.

As a final test, the ZBD was replaced by a pyrometer. A pyrometer is a bolometric

detector with a flat frequency response. Although less sensitive, these measurements had

an overall similar result.

The source power measured with different testbed configurations highlights the diffi-
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culty measuring transmission as a function of frequency. The changing fringe pattern be-

tween the reference power measurement and that with an aperture placed at the focus would

introduce errors if used to directly normalize the transmitted signal. An optical isolator ar-

rangement, consisting of a quarter wave plate and linear polarizer, is a potential solution.

However, the frequency-dependent nature of quarter wave plates limits the efficiency of the

isolator unless operating at its designed wavelength.

Due to these challenges, transmission measurements through single apertures and bulls-

eye lenses, presented in the following chapter, are performed at a single frequency. With a

device placed at the focus, the optical cavity is optimized for to the nearest fringe.

102



Chapter 7

Transmission Measurements

This thesis has concerned itself with the development of plasmonic lenses. The primary

goal of plasmonic lenses is to increase the transmission over that obtained with a single

aperture of identical diameter and thickness. To confirm that the response of a lens agrees

with the simulated model, transmission measurements are required. Considering that the

source power varies with frequency, as discussed in the previous chapter, all measurements

were taken at a fixed frequency. Furthermore, since fringes arise due to resonant cavities

within the system, an alignment procedure was followed to optimize the signal on a specific

resonance (Section 7.1). Since the output power of the source cannot be determined with

accuracy, the signal measured through a plasmonic lens will be compared to that of a single

aperture to confirm enhanced transmission (Section 7.3).

7.1 Aperture Mounting and Alignment

The error bars presented in this chapter are a measure of the stability of the source (as

will be shown in Section 7.3). However, the highly resonant nature of the system leads

to larger errors due to the misalignment of apertures. The testbed is a multiply reflecting

cavity, as discussed in Section 6.4.1, and misalignments along the z-direction correspond

to a change in the physical path length of the cavity. A rule of thumb is to align the system

within 10◦ of phase, which corresponds to ≈ 30 µm for our THz source. Furthermore,

because of the multiply reflecting beams, misalignments are amplified. The required align-

ment precision of components in the cavity, both in position and tilt, becomes increasingly
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important.

To position the central aperture with precision control, all devices were placed on a 3-

axis assembly consisting of two Newport M-SDS40 Metric Linear Translation Stages with

10 µm divisions and an Edmund Metric Z-Axis Stage [99, 105]. An optical axis, used to

define the height of each component, was established using a vernier height gauge. Single

apertures milled in shim stock were fastened to a Newport LH-2 lens mount on an optical

post and holder. Bullseye devices were mounted in a custom machined frictional mount

designed to induce minimal stress on the lens, which consists of a metal frame with a screw

used to release the bullseye.

Figure 7.1: The testbed configuartion used to measure transmission through the bullseye
lenses. The Gaussian source is collected and collimated by f/1 and f/3 mirrors, respectively.
The bullseye device is placed at the location of the focus and the input rings are illuminated
with a magnified beam waist of w0 ≈ 5.1 mm.

With a device placed at the focus, an alignment procedure was adopted to maximize the

signal by iteratively adjusting the position in the z-direction, the position in xy-direction,

and the rotation of the device. This was performed by carefully making adjustments and

viewing the lock-in signal on an oscilloscope until no further improvements were observed.

The shifts in the xy-direction aligned the aperture with the axis of the beam. Alignment

errors in this direction are more forgiving; a 100 µm change in the transverse directions
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lowered the measured signal by ≈ 7.5%. In the z-direction, it was noted that a shift of

10 µm also lowers the measured signal by ≈ 7.5%, showing the increased sensitivity when

the cavity length is changed.

7.2 Subwavelength Apertures

Circular apertures with diameters from 200− 800 µm were milled in brass shims with

measured thicknesses of 25 ± 1 µm and 51 ± 1 µm. An image of a typical aperture is

shown in Figure 7.2. Diameters were measured by using imaging software to calculate the

area of the circular aperture and subtracting the area of irregularities along the contour of

the aperture [106]. An effective diameter was then calculated and scaled using a reference

µm ·px−1 measurement. Error in the aperture diameter was calculated assuming 2% error in

the measured scale. A summary of the measured aperture dimensions are given in Table 7.1.

Figure 7.2: A d = 398 ± 11 µm aperture milled in 25 ± 1 µm shim.

The optics of the THz testbed were configured to re-image the emitted THz beam with

unit magnification. The source wavelength was set to λ = 922 µm. Knife-edge beam

profiling measurements, as discussed in Section 6.3, determined the location of the focus

and the waist size. The waist was measured to be 1.7 ± 0.2 mm, which is in excellent

agreement with the predicted value of 1.682 mm. Individual apertures were then placed at

the location of the focus and aligned as described in Section 7.1.

The transmitted signal was represented as the mean and standard deviation of a 10 s
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Table 7.1: The measured diameters of circular apertures milled in brass shim.
Thickness = 25±1 µm

Target Diameter (µm) Measured Diameter (µm)
200 200 ± 6
300 299 ± 8
400 398 ± 11
500 497 ± 14
600 597 ± 17
700 695 ± 19
800 793 ± 22

Thickness = 51±1 µm
Target Diameter (µm) Measured Diameter (µm)
200 199 ± 6
300 294 ± 8
400 397 ± 11
500 495 ± 14
600 593 ± 17
700 697 ± 20
800 796 ± 22

measurement sampled at 1 kHz. As discussed in Section 4.2, the transmission efficiency,

η , is defined as the ratio between the transmitted power, Pout , and the power incident on

the aperture area, Pin. Since the absolute power from the source, P0, is only known with

an accuracy of 20%, measured transmission values were normalized by the fraction of the

source power incident on the aperture, Pin/P0, from Equation 4.19:

Pout

(
P0

Pin

)
= P0 ·η , (7.1)

That is to say, the transmission efficiency was scaled by the source power. Scaled transmis-

sion efficiencies are plotted as a function of d/λ in Figure 7.3.

As can be seen, the transmission increases as the diameter becomes larger and begins to

level off. For all measurements, thicker apertures attenuate the transmission. Furthermore,

there is another dependency that is difficult to ascertain; as the aperture size increases, the

surface area able to reflect light back into the cavity becomes less. Furthermore, wrinkles
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Figure 7.3: The measured transmission efficiency, η , scaled by the source power, P0,
through circular apertures milled in 25 µm and 51 µm shim (Table 7.1).

in the surface of these thin samples would further reduce the number of reflections. These

results serve to show the general trends when performing aperture measurements. It is clear

that the transmission depends on the diameter and thickness of the aperture.

7.3 Performance of Bullseye Plasmonic Lenses

Section 5.1 presented the simulated response of bullseye plasmonic lenses to incident

Guassian beams of varying radii. Results showed that the transmission enhancement in-

creased as an increasing number of ridges were illuminated. Given the limited choice of the

off-axis parabolic mirrors available to us, the system was configured as shown in Figure 7.1

to illuminate 5 ridges (i.e., a waist of w0 ≈ 5.1 mm). The source wavelength was set to

λ = 922 µm. The bullseye devices were then aligned at the location of the focus and the

signal was optimized using the procedure given in Section 7.1.

As discussed in Section 5.4, in the final fabrication, two bullseye lenses were made:

(1) a single-sided device with ridges on the input face and (2) a double-sided device with

identical input ridges and radially-tuned output ridges. The transmission enhancement of

these devices was calculated under the assumption that the transmission through the single-

sided bullseye lens with the planar side facing the incident beam would be identical to that
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of a hole in a thin aperture. However, it was noted that transmission through this reversed

structure could be increased due to the beaming pattern produced by the input grooves on

the reverse side, which may allow for more light to be collected within the acceptance angle

of the collecting mirror.

The interpretation of the transmission measurements depends on the stability of the con-

figuration. Despite the fact that Fabry-Perot cavities exist, which make the setup sensitive

to vibrations, the system has proven to be extremely stable. Measurements of the source

alone showed that the output power is stable to 1 part in 25 million.

By way of illustration, Figure 7.4 shows the signal recorded through the single-sided

bullseye with ridges illuminated, from which a signal-to-noise ratio (SNR) of 1000 was

derived. The digitization of the signal output from the digital-to-analogue converter is con-

tained within the high-frequency hash. The large swings in the signal are believed to be due

to variations in atmospheric transmission, such as changes in air currents, density, or water

vapour content.
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Figure 7.4: A 10 s measurement of the signal transmitted through the single-sided bullseye
with input ridges illuminated (sampled at 1 kHz).

As discussed in Section 5.4, the transmission enhancement predicted from FDTD sim-

ulations was G = 29 ± 2 at λ = 922 µm. Table 7.2 show the measured gain through the

single-sided lens. We are realizing gains on the order of 20. While this is lower than the

108



7.3. PERFORMANCE OF BULLSEYE PLASMONIC LENSES

Table 7.2: Transmission measurements of the single-sided bullseye in two configurations.
Pout is the measured signal, ∆T is the measurement time, and fs is the sampling rate. A
λ = 922 µm incident Gaussian beam with a waist radius of approximately 5.1 mm was
incident on the input ridge surface and the planar output surface. The transmission enhance-
ment, G, was calculated with respect to the illumination of the planar side. In each case,
the calculated error in G was approximately 1%, dominated by the SNR of the single-sided
planar measurement.

Device Side Illum. Pout (µV) ∆T (s) fs (kHz) SNR G
Single-sided Planar 110±1 20 1.0 200 –
Single-sided Input 2300±2 10 1.0 1000 21.0±0.2
Single-sided Input 2350±4 20 1.0 600 21.4±0.2

predicted value, it validates that a plasmonic lens has been built.

Table 7.3 summarizes transmission measurements through the double-sided bullseye.

Although the transmission was enhanced, it was lower than the single sided device. It was

noted that the surface of the lens around the rings was dimpled due to challenges in milling

on both sides of the device. The output surface of the lens was clearly concave, as shown in

Figure 7.5. Knowing that the surface was convex on the input side, it was hypothesized that

the transmission could be increased by matching the wavefront to the curvature of input

face of the lens. This required moving the bullseye out of focus, as shown in Figure 7.6.

Table 7.3: Transmission measurements of the radially tuned bullseye. Measurements were
performed with the same source settings as described in Table 7.2. The signal of the
radially-tuned device increased by a factor of approximately 2.3 when defocused to match
the incident wavefront with the curvature of the surface.

Device Side Illum. Pout (µV) ∆T (s) fs (kHz) SNR G
Single-sided Planar 110±1 20 1.0 200 –
Rad. Tuned Input 1349±2 10 1.0 600 12.3±0.1
Rad. Tuned, Defocused Input 3055±2 1 0.1 1700 27.8±0.3

The lens was then translated towards the source. Despite that the energy density on the

aperture had been lowered as the lens is moved out of focus, the transmitted signal increased

by a factor of approximately 2.3 and reached a maximum gain of 27.8 ± 0.3. This is in

excellent agreement with the simulated G = 29 ± 2, clearly demonstrating the designed
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plasmonic effects.

Figure 7.5: The output surface of the double-sided bullseye. It was noted that the output
surface had concave curvature. I.e., the input surface would have convex curvature.

Figure 7.6: The convex input plane of the radially-tuned device was shifted from the loca-
tion of a planar wavefront towards the source to match the curvature of the wavefront.

To examine this further, a wavelength sweep was performed over the region of the local

fringe at 922 µm for all bullseye configurations, as shown in Figures 7.7. The in-focus

double-sided bullseye (yellow) exhibited a wider fringe than the single-sided device (blue).

This implies that double-sided device, in this configuration, is not matched with the planar

wavefront due to its concave surface. This de-resonates the system and reduces the number

of constructive reflections and therefore the sharpness of the fringe. When translated away

from the focus, the curvature of double-sided bullseye roughly matches that of the incident

wavefront and the width of the peak decreases.
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Figure 7.7: A wavelength sweep around resonant fringe where transmission measurements
were performed. The transmitted signal has been normalized to unity and the wavelength
scale has been normalized to the peak location.

The double-sided bullseye exhibited plasmonic effects, but the structuring of the surface

on both sides evidently poses problems. In future devices, care will be taken to ensure that

the surface of the lens is planar to maximize the cavity resonances. Despite this difficulty,

the enhancement gain achieved agrees with that predicted by simulations confers a large

system signal-to-noise .
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Chapter 8

Conclusions

Plasmonics is an emerging field, one often made more difficult to understand due differ-

ences in terminology. The fundamental properties of SPPs can be described using elec-

tromagnetic theory. The majority of research is focused at visible frequencies, for rea-

sons partially due to data storage applications driven by the entertainment industry, where

devices are manufactured with nanofabication techniques. Fewer groups work at longer

wavelengths. However, it has been shown that the optimum frequency for differentially

diagnosing breast cancer occurs around 325 GHz (Chapter 1). At this frequency, the spa-

tial resolution of conventional imaging configurations is on the order of 1 mm and could

benefit from near-field imaging using subwavelength apertures. This thesis set out to show

that we could design, fabricate, and evaluate a plasmonic lens that would provide enhanced

transmission at THz frequencies to allow such measurements.

While much work is done at visible wavelengths, there is little data in the published

literature for the material properties at THz frequencies. Fortunately, at these long wave-

lengths most metals behave as perfect electrical conductors, as established in Chapter 2 us-

ing Drude model parameters. A theoretical description of SPPs was given in Chapter 3 and

a description of how the transmission through subwavelength circular apertures depends on

the aperture diameter and thickness was given in Chapter 4. The design of bullseye lenses

was systematically studied using FDTD techniques by adapting basic scale laws to perfect

metals (Chapter 5).

A THz testbed was developed (Chapter 6) to measure the performance of the designed
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devices. Initially, a prototype bullseye lens with surface grooves was fabricated. Results

from this lens have not been reported here, as this model inherently has a thick aperture

that leads to low power transmission. Nonetheless, it verified the working principle of the

testbed and that thinner devices were required.

Subsequently, a ridge model was adopted, whose thickness was reduced to 50 µm. De-

signs and their experimental response were presented (Chapter 7). From the first results, it

was clear that enhanced transmission had been achieved that could only be explained by the

presence of surface plasmon polaritons. The theory showed estimated gains over an aper-

ture with identical diameter and thickness of G = 29 ± 2 . With a single-sided lens, a gain

of 21.4± 0.2 was observed. With a double-sided lens, a gain of 12.3± 0.1 was observed.

Upon further inspection of the double sided device, the fabrication of both sides of the

device resulted in a convex surface on the input side. To validate this argument, the double-

sided device was moved out of focus in an attempt to roughly match the curvature of the

lens to the curvature of the wavefront. The resulting signal increased to 27.8 ± 0.3. This

marked increase, when the energy density on the aperture was decreasing, clearly showed

that curvature of device was playing an important role.

More importantly, with the designed system a signal-to-noise ratio on the order of 1000

was achieved in a 20 second measurement. This time was chosen to because it represents the

time it takes to scan a 1 cm by 1 cm biopsy sample in steps of 100 µm. In order to ascertain if

this sensitivity was sufficient to differentiate cancer from non-cancerous material, attention

must be turned to absorption spectroscopy. The attenuation of light travelling through a

sample is described by the Beer-Lambert law to be I = I0 e−αx (W ·m−2), where I0 is

the intensity of the incident radiation, α (mm−1) is the intensity attenuation coefficient and

x (mm) is the distance the light travels through the material [107].

For the diagnosis of cancer, the imaging system must be able to distinguish the adsorp-

tion coefficients of cancerous tissue (10.5 mm−1) from that of fibrous tissue (8.25 mm−1) [39].

If a slide was cut with a thickness of 20 µm, 81% of the incident power is transmitted
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through tumours and 85% transmission through fibrous tissue. These quantities are sepa-

rated by approximately 4 parts in 80, requiring a minimum signal-to-noise ratio of approx-

imately 20. The designed system surpasses this by nearly 2 orders of magnitude, allowing

a difference of 0.08% to be measured.

This thesis has cumulated in the fabrication a bullseye plasmonic lens whose aperture

diameter would confer a spatial resolution of 300 µm in a near-field imaging configuration.

The device that shows a transmission enhancement of 27.8 ± 0.3, providing a sensitivity

50 times larger than required. The next immediate step is to migrate the plasmonic lens in

a THz microscope in an attempt to measure breast cancer.

To our knowledge, this is the first time a plasmonic lens has been made using micro-

machining techniques. Several lessons were learned in the process. While the cost of these

devices are not dissimilar from nanofabrication, nanofabrication lends itself to mass pro-

duction. Additionally, a silicon wafer would maintain a planar surface.

This thesis has explored the new area of THz plasmonic devices. Theory has allowed

us to not only confirm, but extend the rules of thumb for the design of lenses, such as the

inclusion of Bragg reflectors for further enhancement and the tailoring of output ridges to

produce a spatially confined output beam. It has been shown that devices can be fabricated

using micromachining techniques. The lenses produced have been shown to agree well with

the theoretical prediction and have set the stage for the subwavelength imaging of cancer.

During the course of this study, it was found that the system is currently limited by the

digital-to-analogue converter that outputs the lock-in signal. Future work will be focused

on the use of a higher resolution digital-to-analogue converter to further reduce the noise.

The next round of fabrication will explore the use of a single-sided device with a smaller

aperture and look at ways to maintain an even, planar surface.
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Appendix A

Surface Plasmon Approximations at
THz Frequencies

A.1 Propagation Length
Due to the large permittivity values of materials at THz frequencies, useful approxima-

tions can be made for the propagation length and skin depths of surface plasmons. The
SP propagation constant given by Equation 3.16 can be simplified by first considering the
quantity

εmεd

εm + εd
=

ε ′mεd + iε ′′mεd

(ε ′m + εd)+ iε ′′m

=
ε ′mεd + iε ′′mεd

(ε ′m + εd)+ iε ′′m
× (ε ′m + εd)− iε ′′m

(ε ′m + εd)− iε ′′m
(A.1)

=
ε ′2m εd + ε ′mε2

d + ε ′′mεd

(ε ′m + εd)2 + ε ′′2m
+ i

ε ′′mε2
d

(ε ′m + εd)2 + ε ′′2m
.

For an air-metal interface at THz frequencies, εd = 1 and metallic permittivity values are on
the order of 105 to 106 (Section 2.4) with ε ′′m > |ε ′m|. The above can then be approximated
as

εmεd

εm + εd
≈ 1+

i
ε ′′m

. (A.2)

The square root in Equation 3.16 can then be approximated by making use of the Taylor
expansion

√
1+ x = 1+

x
2
− x2

8
+

x3

16
− . . . (A.3)

Letting x = i 1
ε ′′2m

and taking only the first two terms leaves
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kx = k0

√
εdεm

εd + εm

≈ k0 + i
k0

2ε ′′m
. (A.4)

At these long wavelengths, the real part of kx approaches the free space wave vector, as can
also be seen by the dispersion relation plotted in Figure 3.2. The imaginary part can then
be used to approximate the propagation length as

L =
1

2k′′x
≈ ε ′′m

k0
. (A.5)

A.2 Metallic Skin Depth
The metallic skin depth can be approximated by taking Equation 3.15a (using the ap-

propriate subscript m = 1) and noting that the k2
x ≈ k2

0:

k2
zm = k2

0εm− k2
x

≈ k2
0(εm−1). (A.6)

Noting that ε ′m � −1,

kzm = k0
√

εm (A.7)

= k0
√

ε ′m + iε ′′m. (A.8)

The square root of εm can be re-written as

√
εm =

√√
ε ′2m + ε ′′2m + ε ′′m

2
+

ε ′′m
|ε ′′m|

√√
ε ′2m + ε ′′2m − ε ′′m

2
. (A.9)

Making use of the fact that ε ′′m > |ε ′m|, the imaginary part of kzm is approximated as

k′′zm ≈ k0

√
ε ′′m
2
. (A.10)

The metallic skin depth is then

δm ≈
1
k0

√
2

ε ′′m
. (A.11)
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Appendix B

Finite-Difference Time-Domain
Simulations

Predicting the behaviour of light in the presence of complicated boundaries is challenging
and, in general, analytically solutions to Maxwell’s equations do not exist. The finite-
difference time-domain (FDTD) method is a state-of-the-art numerical technique used to
compute the electromagnetic response of a device with complex geometry by solving Maxwell’s
equations on a discrete spatial and temporal rectangular grid [57]. The simulations pre-
sented in this were accomplished using Lumerical FDTD Solutions [52].

Figure B.1: The FDTD Solutions simulation region (orange) containing a bullseye lens with
input grooves (dark green). A plane wave source (grey box) illuminates the bullseye lens,
which is surrounded by a fine mesh region (centre).

I developed a fully parametrized bullseye lens model within FDTD Solutions that can
be used to sweep the geometric parameters of the lens and simulation settings in a con-
sistent manner. This model has the ability to simulate a single aperture surrounded by a
combination of input/output grooves/ridges. Custom scripts were written to automate pa-
rameter sweeps and export relevant power, electric field, and phase data. To illustrate the
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use of FDTD Solutions, Figure B.1 shows a cross section of the simulation region. Lo-
cated at the centre is a bullseye lens with input grooves. The simulation methodology can
be complicated and may lead to mistakes in the setup of the simulation itself and in the
interpretation of results. Important considerations are: the simulation meshing, boundary
conditions, electromagnetic sources, simulation monitors, and material properties. These
individual issues are discussed in Section B.1. Convergence testing by systematically vary-
ing each parameter is essential to ensure that the simulation produces meaningful results.
An example of convergence testing is presented in Section B.2. Lastly, a complete table of
all simulations performed for this thesis is given in Section B.4 and includes the design of
the simulated structure and simulation settings. For more information regarding the use of
FDTD Solutions, the reader is directed to the Lumerical Knowledge Base [52].

B.1 Simulation Considerations

Meshing
A small spatial mesh allows for a more accurate calculation of the electromagnetic fields

at the cost of increased simulation times and memory requirements. Since the mesh size
is a measure of the precision of the geometric features, the precision of the manufacturing
process places a pragmatic limit on the minimum mesh size (e.g., on the order of 10 nm for
visible applications and 10 µm for THz applications).

FDTD Solutions generates an automatic, non-uniform mesh in the FDTD region (the
orange grid shown in Figure B.1) based on the simulation wavelength, structure geome-
try, and material properties. This can be controlled by assigning a mesh accuracy value,
which is related to the number of mesh points per wavelength. Different mesh refinement
methods can be selected, including a staircased regular grid and conformal variants (which
can resolve sub-mesh cell features). Conformal variants, however, can lead to numerical
problems with coarse meshes. Early simulations showed predictable results with a staircase
mesh. An additional mesh override region with a user defined mesh size was placed around
the structure with features that must be resolved.

Boundary Conditions
The boundary of the simulation region was set to absorb all outgoing incident light from

the simulation region so that reflected waves would not affect the computation. This is
achieved by using a perfect matched layer (PML) boundary condition (shown in Figure B.1
as the thick, outer orange region). The PML effectively absorbs light at normal incident
with a small, non-zero amount of reflection. This reflection increases for larger angles of
incidence. Large reflections can reduce the accuracy of simulated power values. Therefore,
it is crucial to ensure that reflections from the PML are low and that sources and structures
are placed correctly within the simulation region. It is recommended that the PML boundary
is at least half a wavelength away from the structure in either direction and that structures
are extended through the PML boundary. Additional PML layers can be added, which aids
in reducing reflections with the trade off of increased simulation time.

To reduce simulation times and memory requirements, symmetric boundary conditions
(the light green region in Figure B.1) can be chosen, which allows the bullseye model to
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simulate 4 times faster compared to a simulation without symmetric boundary conditions.

Plane Wave Sources
FDTD Solutions can inject plane waves and Gaussian beams into the simulation re-

gion. The use of these sources are subject to certain restrictions depending on the boundary
conditions used at the edge of the simulation region. For example, a simple plane wave
source injects a uniform electromagnetic field across the entire simulation region. When
truncated at PML boundaries, this source exhibits diffraction effects analogous to a plane
wave passing through an aperture. A total-field scattered-field source (TFSF), shown as a
grey box in Figure B.1, addresses this by separating the field into two regions. Within the
TFSF boundary is the total field, which includes incident wave plus the scattered wave, and
outside is the scattered field.

Gaussian Sources
FDTD Solution has a Gaussian source that allows the user to specify either the beam

waist radius, w0, and distance, d, from the injection plane to the waist or by providing the
beam radius, wz, at the injection plane and the divergence half-angle, θ (Figure B.2). The
values w0 and d are internally converted to wz and θ , and vice-versa, allowing the user to
specify the pair that best describes the optical system. d > 0 corresponds to a diverging
beam, i.e., the beam waist is behind the injection plane, and that d < 0 corresponds to a
converging beam, i.e., the beam waist is ahead of the injection plane.

Figure B.2: The parameters used to specify a Gaussian beam in FDTD Solutions.

For example, to produce an Gaussian beam with beam waist incident at a desired lo-
cation, the injection plane of the Gaussian source is placed at an arbitrary distance behind
the aperture and d is chosen to be negative with an absolute value that is equal to the dis-
tance from the plane containing the beam waist. For a plane aperture or bullseye with input
grooves, this plane is at the front of the aperture. For ridge designs, the waist is placed at
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the plane defined by the top of the ridge. When comparing the transmission of Gaussian
beams of different waist sizes, the amplitude of electric field must be normalized by 1/w0
to ensure that the output power of each source is the same.

Power Monitors
A frequency-domain field and power monitor is placed entirely in the scattered field re-

gion. To record all of the transmitted power, the collection angle of the monitor is increased
by placing the monitor as close to the aperture as the simulation will allow. Monitors can be
extended past the edge of the simulation boundary, in which case the software automatically
truncates the monitor to the appropriate size.

While not immediately apparent, the TFSF source injects a plane wave into the entire
simulation region. The absolute transmission value measured by power monitors only ac-
counts for the power injected in primary injection plane, i.e., the size of the TFSF, not the
total injected power. Care must be taken when calculating transmission efficiency described
in Section 4.2.1 by normalizing the absolute transmission using the area of TFSF source.

Material Properties
FDTD Solutions includes a material database that can be fit with a proprietary multi-

coefficient function or material models such as the Drude model. Since the primary usage of
FDTD Solutions is for optical applications, the frequency dependent permittivity data that
is included with the software, taken from public literature, falls outside of the simulation
bandwidth required for THz applications. Since the properties of metals approaches that
of a perfect electrical conductor at THz frequencies (Section 2.4), all simulated structures
were assumed to be perfect metals. The surrounding medium was chosen to be vacuum.

Far-Field Projections
FDTD Solutions can perform post-simulation calculations that projects recorded near-

field electromagnetic fields to the far-field. By recording the electromagnetic fields every-
where on a plane placed in a homogeneous material, the far-field projection calculates the
field anywhere beyond the surface. This allows for the straightforward calculation of beam
profiles at any distance beyond the aperture. This calculation was used to generate the beam
profiles presented in this thesis.

B.2 Convergence Testing
The main parameters that contribute to simulation errors are the proximity of the PML

boundary conditions, the allowed reflectivity of the PML boundary, the number of PML
layers, the mesh-points per wavelength of the auto non-uniform mesh, and the grid size of
the refined, uniform mesh. Each of these parameters were systematically varied over for a
series of values. To quantify the convergence of the simulation when a given parameter was
stepped from i = 1, . . . ,N, where i is the current step and N is the final step, the difference
in the recorded transmission across the simulation bandwidth Ti(λ ) was compared to the
transmission at the previous step using
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∆Ti =

√∫
[Ti(λ )−Ti−1(λ )]2 dλ∫

Ti(λ ) dλ
. (B.1)

The quantity ∆T approaches zero as the model becomes converged or oscillates if another
parameter is primary responsible for the error. If it is assumed that TN(λ ) is close to the
exact solution, and we are at the current step i � N, the error can be estimated as

∆Tn =

√∫
[Ti(λ )−TN(λ )]2 dλ∫

Ti(λ ) dλ
, (B.2)

but is underestimated as i ∼ N. Individual simulation parameters are examined in the fol-
lowing sections, the results of which are summarized in Table B.3.
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PML Proximity
The span of the FDTD region in the z- and xy-directions were increased independently.

By default, the parametrized bullseye design sets the span in the z-direction equal to the
longest simulated wavelength and sets the xy-span to be 2.5 grating periods from the last
groove. The parameters PML z-padding and PML xy-padding were introduced to increase
the simulation span in either direction by a value in millimetres. A final value of 2 mm was
chosen, contributing less than 0.01% error. In both directions, the PML distance was not a
significant source of simulation error.
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Figure B.3: Convergence test of the proximity to the PML boundaries in z-direction.
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Figure B.4: Convergence test of the proximity to the PML boundaries in the xy-direction.
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PML Reflectivity and Minimum Layers
As previously discussed, the PML boundary in Lumerical FDTD has non-zero reflectiv-

ity. If the amplitude of the reflected wave is non-negligible, reflections can re-interfere with
the source or scattered fields, leading to incorrect transmission measurements and incorrect
power normalization. The accepted reflectivity was swept on a log-scale and was shown
not to be a significant source of error (Figure B.5), contributing approximately 0.01% error
for a reflectivity of 1 × 10−10.
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Figure B.5: Convergence test of the allowed PML reflectivity.

Likewise, the number of PML layers is not a significant parameter (Figure B.6). 12 PML
layers contributes 0.01% error.
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Figure B.6: Convergence test of the minimum number of PML layers.
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Auto-Non Uniform Mesh Accuracy
The accuracy of the auto-non uniform mesh governs the number of points-per-wavelength

(ppw) in the simulation region (excluding the refined mesh). A mesh accuracy of 1 corre-
sponds to 6 ppw, an accuracy of 2 corresponds to 10 ppw, and onwards in steps of 4 ppw. It
was not expected that this parameter would significantly contribute to the simulation error,
as a refined mesh is placed around the structure of interest. A mesh accuracy of 2 was
chosen, contributing an error of approximately 0.02%.
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Figure B.7: Convergence test of the mesh ppw via the mesh accuracy setting.
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Mesh Size
Intuitively a large source source of error, the size of the finite sized simulation mesh

must be small enough to resolve the geometric features of the simulated structures. The
peak of the resonance is shifted to lower wavelengths until the z-mesh size is reduced to
4 µm. Furthermore, absolute transmission values for coarser meshes, while qualitatively
approximately the correct resonant behaviour, are over estimated. For mesh sizes below
4 µm, the absolute transmission oscillates around a mean value of T = 8.7 × 10−4 with
2% error. With this mesh size, smallest simulated surface feature in the xy-direction is
sampled with ≈ 16 mesh points.
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Figure B.8: Convergence test of the mesh size in the z-direction.
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Figure B.9: Convergence test of the mesh size in the xy-direction.

A similar shift in the peak wavelength and in the converging of transmission values also
is evident when the mesh size in the xy-direction is reduced to 19 µm, corresponding to 40
mesh points in smallest feature in the z-direction. The mean absolute transmission for mesh
sizes smaller than 19 µm was T = 5.8 × 10−4 with 6% error.

B.3 Converged Parameters, Estimated Error, and Simulation Time
The results of each convergence test are summarized in Table B.3. The highlighted

cells give the converged parameter values used in final simulations. The chosen converged
simulation parameters each contributed approximately 0.01% to the total simulation er-
ror when simulating the absolute transmission across the entire bandwidth of 722 µm to
1122 µm. However, as noted when testing the effect of the mesh size in the xy-direction,
the transmission at the resonant wavelength fluctuated with approximately 6% error. Since
this simulation was performed with the other simulation parameters set at values that do
not significantly contribute to the simulation error, this 6% error was assumed to be a best
estimate of approximate of the error in the simulated transmission. Since the transmission
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enhancement G is the ratio of the transmission efficiency of two simulations, the 6% error
was used in error propagation to give an 8% error in G.

Table B.1: Converged simulation parameters of the simulated bullseye lens. Highlighted
values were chosen for final simulations.

Z-Pad XY -Pad PML Reflec. ∆Z ∆XY Acc. PML Min.
Mesh Size XY (µm) ∆xy 40 40 40 40 19 39 39
Mesh Size Z (µm) ∆z 40 40 40 4 4 5 7
Mesh Acc. 2 2 2 2 2 2 2
XY -Pad (mm) – 3 2 2 2 2 2 2
Z-Pad (mm) – 2 2 2 2 2 2 2
PML Min. – 64 64 12 12 64 12 12
PML Reflec. – 1×10−4 1×10−4 1×10−10 1×10−10 1×10−30 1×10−10 1×10−10

Error Contribution 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.01%

Simulations presented for this thesis were performed with a Linux machine with 50 GB
of RAM and an Intel Xeon X5680 64-Bit, 3.33 GHz processor with 24 cores. FDTD Solu-
tions splits a single simulation into multiple independent computations across all processor
cores, thereby reducing the simulation time. The desired mesh size and the required RAM
and simulation time is the primary tradeoff that must be made. For example, the time to
perform each simulation when convergence testing the xy-mesh size for a constant ∆z of
4 µm is shown in Figure B.10. The simulation time varies as 1/(∆xy)2 dependence. At
a value of ∆ xy = 38 µm, the simulation was completed after approximately 40 minutes,
increasing to about 1 hour and 30 minutes for the converged value of 19 µm.
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Figure B.10: The time taken to simulate each parameter step in the convergence testing of
∆xy (Figure B.9).

The long simulation times needed for small meshes requires that mesh sizes are often
chosen to be larger than optimal. Therefore, it difficult to assign a margin of error to the
simulated transmission. To address this, the enhancement ratio G, is calculated with identi-
cal simulation settings. While the value of G does not give an absolute power measurement,
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it is emphasizes the enhancement due to plasmonic effects and can be experimentally mea-
sured, as discussed in Chapter 6.
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B.4 Table of Simulations
The following table summarizes the settings used in the simulations discussed in Chap-

ter 5. The ridge optimization settings were used to optimizing the initial ridge distance, to
simulate the Bragg grating, and to simulate the effect of different Gaussian illuminations.
The fabricated double-sided settings were also used in the single-sided simulation with a
planar output face.

Groove Opt. Ridge Opt. Phase Tuning Convergence Double-Sided
Aperture
Diameter d 419 µm 150 µm 200 µm 300 µm 300 µm
Thickness t 1000 µm 200 µm 50 µm 200 µm 50 µm
Input Face
Type – Grooves Ridge Planar Ridges Ridge
Number of Features N 6 6 – 6 6
Initial Distance a 839 µm 1332 µm Varied 860 µm 1332 µm
Period p 839 µm 888 µm – 860 µm 888 µm
Width w 419 µm 445 µm Varied 445 µm 445 µm
Depth s 168 µm 130 µm 100 µm 130 µm 130 µm
Output Face
Type – Mirrored Planar Ridge Planar Radius Tuned
Tuned Value 1 – – – – – 1134 µm
Tuned Value 2 – – – – – 1777 µm
Tuned Value 3 – – – – – 2367 µm
Tuned Value 4 – – – – – 2923 µm
Tuned Value 5 – – – – – 3457 µm
Tuned Value 6 – – – – – 3976 µm
Bragg Reflector –
Type – None Input None None Input
Number of Features Nr – 3 – – 3
Initial Distance ar – 444 µm – – 444 µm
Period pr – 444 µm – – 444 µm
Width wr – 222 µm – – 222 µm
Depth sr – 65 µm – – 65 µm
Illumination
Type – TFSF TFSF TFSF Gaussian Gaussian
Polarization – Linear Linear Linear Linear Linear
Waist Radius w0 – – – 5000 µm 5100 µm
Focus Location – – – – In Focus In Focus
Wavelength Start λi 722 µm 722 µm 922 µm 722 µm 722 µm
Wavelength End λ f 1122 µm 1122 µm 922 µm 1122 µm 1122 µm
# of Wavelengths n 31 61 1 61 61
Simulation
Mesh Type – Staircase Staircase Staircase Staircase Staircase
Mesh Size XY ∆xy 10 µm 32 µm 10 µm 19 µm 19 µm
Mesh Size Z ∆z 10 µm 8 µm 10 µm 4 µm 4 µm
Mesh Accuracy 2 2 3 2 2
PML Padding XY – 0 2 0 2 2
PML Padding Z – 0 2 0 2 2
PML Min. Layers – 12 12 12 12 12
PML Reflectivity – 1×10−20 1×10−20 1×10−4 1×10−4 1×10−4
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Fabrication of Bullseye Lenses
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ABSTRACT 

A major limitation in terahertz (THz) imaging applications is the relatively poor diffraction limited spatial resolution. A 

common approach to achieve subwavelength resolution is near-field imaging using a subwavelength aperture, but the 

low transmission efficiency through the aperture limits the sensitivity of this method. Bullseye structures, consisting of a 

single subwavelength circular aperture surrounded by concentric periodic corrugations, have been shown to enhance 

transmission through subwavelength apertures. At optical wavelengths, the fabrication of bullseye structures has been 

traditionally achieved by lithographic or chemical processes. Since the scale of plasmonic structures depends on the 

incident wavelength, precision micromilling techniques are well suited for THz applications. In this paper we describe a 

diamond micromilling process for the fabrication a plasmonic lenses operating at 325 GHz. Theoretical simulations are 

obtained using an FDTD solver and the performance of the lens is measured using a customized THz test bed. 

Keywords: Plasmonics, bullseye lens, terahertz, micromilling, subwavelength imaging, surface plasmons  

 

1. INTRODUCTION  

In recent years, terahertz (THz) radiation has been shown to be a useful differential diagnostic for breast cancer detection 

around 325 GHz (   922 μm)
1
. In classical optics, the spatial resolution as expressed by the Rayleigh criterion is on the 

order of the wavelength of the incident radiation, in this case around a millimeter. For edge detection of cancer cells a 

resolution of ~ 100 μm is required, which is subwavelength at THz frequencies. Initial attempts at near field imaging at 

these long wavelengths using subwavelength apertures resulted in poor transmission efficency
2
. For an infinitesimally 

thin perfect electrical conductor (PEC) in the extreme subwavelength regime       1, the transmitted power through 

the hole scales as       , where        ,   is the radius of the aperture, and   the wavelength of light
3
. For films of 

finite thickness and larger apertures the relationship is more complex
4
. In either case, the low transmission efficiency 

combined with weak THz sources limits the utility of THz subwavelength imaging unless cryogenic detector systems are 

used. 

The discovery of extraordinary transmission (EOT) of light through subwavelength hole arrays by Ebbesen
5
 stimulated a 

dramatic increase in research in the field of plasmonics. The vast majority of this research has occurred at visible 

wavelengths to enhance the transmission through subwavelength metallic hole arrays, slits, and bullseye lenses
6-9

. The 

bullseye consists of concentric corrugations on both the input and outputs sides of the lens, at the center of which is a 

small aperture. The mechanism that leads to EOT has been attributed to the presence of surface plasmon polaritons 

(SPPs) that are resonantly excited by periodic corrugations on the input side of the surface of the metal
8,10

. Corrugations 

on the output side serve to couple SPPs back to the radiation field. Phase delays induced by the structure lead to 

interference effects that can be used to control the propagation direction of the output beam
6-9

. Plasmonic devices have 

also been designed for long wavelength radiation, where metals begin to behave as perfect electrical conductors (PECs) 

and the structural parameters scale with the wavelength
1,11-13

. In this paper, we present the design, fabrication, and initial 

performance of a plasmonic lens operating at a frequency of 325 GHz. 

1.1 Terahertz plasmonics 

Surface plasmon polaritons are solutions to Maxwell’s equations solved at the interface of metal and a dielectric, 

occurring when incident electromagnetic waves couple to the oscillation of free charge carriers near the surface of a 

conductor
10

. The excited electromagnetic surface wave propagates along the interface and decays evanescently into both 

media. The characteristic length scales of SPPs are derived from the components of the SPP wave vector, namely the 

propagation constant 



 

 
 

 

 

     
     

     √
    

     
   

(1) 

 

where    is the free space wave vector,    is the permittivity of the dielectric, and           
   is the complex 

permittivity of the metal, defines the propagation length   of SPPs along the interface. This distance, where intensity of 

the wave drops to  e⁄  its maximum value, is given by 

 
  

 

   
  
   (2) 

The z-component of the wave vector into the metal     is 
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and defines the skin depth of the surface wave as the point where the field amplitude decreases to a factor of  e⁄ , 
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A matching equation for the SPP skin depth in the dielectric    is found by replacing    with    in Equation 3 and     

with    . By way of illustration, for noble metals at visible wavelengths, SPPs are characterized by strong confinement 

of their electromagnetic field near the interface. Using permittivity data for Au given by Johnson and Christy
14

 fit using 

Lumerical’s
15

 multi-coefficient model, the permittivity of Au at    632.8 nm is               . At this 

wavelength, the SPP penetrates      30 nm (~10
-2  ) and     300 nm (~0.5   into the metal and dielectric, 

respectively, and has a decay length of    10 μm (~16 ). 

The principle difference at THz wavelengths lies in the fact that the properties of metals differ significantly at these low 

frequencies. The complex permittivity of metals is orders of magnitude greater at THz wavelengths than in the visible, 

tending to that of a PEC. The Drude model has been shown to be a good fit to the experimental THz response of free 

charge carriers to an applied electric field in terms of the plasma frequency,         
       , where    is the free 

electron density,   is the elementary charge,    is the effective electron mass, and    is the free space permittivity, and 

the electron damping frequency   
16  
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Using the values    = 1,       = 2.17   10
3
 THz, and       = 6.48 THz from Ordal

16
, the Drude permittivity of Au at 

   922 μm is calculated to be:                        . The resulting SPP is characterized by weak 

confinement to the surface with relatively small extent into the metal    135 nm (~10
-4  ), larger extent into the 

dielectric     30 cm (~10
2  ), and a long propagation length    330 m (~10

5  ). 

Since only the material properties within approximately one skin depth contribute to the operation of a plasmonic device, 

the above numbers show that at THz frequencies such devices can be made thin compared to the wavelength. While THz 

bullseye devices have been made using nano-techniques, this requires access to a nano-fabrication facility. In addition, 

the metallic deposition depths required are large compared to typical applications at optical wavelengths. Since the 

required precision of a THz plasmonic lens scales with wavelength and is thus relatively low when compared to an 

optical equivalent, it should be possible to achieve the same relative accuracy at THz wavelengths using a micro-

machining approach.  

2. BULLSEYE PLASMONIC LENS 

2.1 Lens design 

Bullseye plasmonic lens designs for both visible and THz applications typically have surface structures that are either 

grooves (indentations) or ridges (protrusions)
 
along the input and/or output faces of the lens

11,12
. Thin, asymmetric 

designs have also been fabricated
13

. Our design uses annular ridge structures with a rectangular cross-section centered on 



 

 
 

 

a thin 50 μm central aperture of 300 μm diameter. The ridge structure allows the thickness of the aperture to be dictated 

by the machining capabilities, whereas for a groove structure the depth of the corrugations limits the minimum thickness. 

Since transmission through a subwavelength aperture is attenuated with increasing thickness, the substrate thickness 

must be minimized
7
. 

 

 
Figure 1. Cross-section of the bullseye plasmonic lens (not to scale). 

 

A cross-sectional view of our lens design is shown in Figure 1. The geometrical parameters of the ridges were chosen to 

maximize the coupling of the incident radiation into SPPs via appropriate input corrugations. Parameters were selected 

during simulation to maximize the enhanced transmission at    922 μm for plane wave illumination. The central 

aperture is surrounded by 6 concentric grooves with a periodicity of 890 μm, width of 445 μm, and depth of 134 μm. The 

full diameter of the lens is    mm. An integral outer support ring was fabricated for structural integrity during machining 

and is used to mount the lens. 

The beam exiting the aperture is diffracted in all directions with a range of near-field wave vectors. Wave vectors that 

match Au-Air SPPs couple to the interface and propagate radially outward, scattering from the surface corrugations. By 

varying the geometrical parameters of the ridge, a phenomenological phase modulation model can be developed that 

describes the relative phase difference between photons travelling through the central aperture and those scattered from 

the ridge wall
9
. In principle, the output groove structure can be tuned by varying the groove spacing, width, and/or depth 

to modify the focal length of the lens. For simplicity, in our initial design we adopted the same output pattern as the input 

side of the device. The theoretical response of this lens is shown in the next section. 

2.2 Simulated response 

Since analytical solutions to Maxwell’s equations do not exist for complicated interfaces, Lumerical FDTD Solutions, a 

commercial-grade simulator based on the finite-difference time-domain method, was used to find solutions to these 

equations
15

. 

 

Figure 2. Simulated beam profile of the bullseye lens. Dashed white lines indicate the acceptance angle of the focusing 

optics (Section 4). 



 

 
 

 

The simulated beam profile of the fabricated plasmonic lens (Section 3)  illuminated by a circularly polarized Gaussian 

beam with a waist radius of 0.56 mm is shown in Figure 2. Since the lens has axial symmetry, the use of circularly 

polarized light leads to an axially symmetric spot
9
. The beam is shaped by the output corrugations.  

 

3. FABRICATION OF PLASMONIC LENS 

Fabrication of the bullseye plasmonic lens was performed on a modular multi-functional Kugler Microgantry nano5X 

micromachining system. This system integrates several micromachining technologies along with measurement 

instrumentation. The Microgantry nano5X and its components are shown in Figure 3. 

Three micromachining technologies are used: fly cutting with a 2,000 rpm spindle, micromilling with an 180,000 rpm 

spindle, and micromachining with a picosecond laser. A Renishaw touch probe with a measurement accuracy of 

±500 nm is used for measuring workpiece geometry before and after machining and during alignment. The system is also 

equipped with a Blum laser tool setting sensor for measuring cutting tool geometry (e.g. diameter and overhang length) 

having a measurement repeatability (2σ) of 100 nm.  Motion stages in this system are composed of air bearings with a 

position measuring resolution of 10 nm and a positioning accuracy within ±250 nm in XY-direction and ±500 nm in Z-

direction. Straightness is within ±800 nm per 100 mm travel for all linear axes. The system is also equipped with an 

automatic tool changer able to accommodate up to 60 cutting tools.  

In general, micromachining technologies, such as fly cutting, micromilling, and laser micromachining bring significant 

benefits to the fabrication of micro/nano-scale optical parts, structures and geometries. These benefits range from 

fabricating functional part prototypes and tooling (e.g. inserts, molds, dies, stamps, electrodes, etc.) with optical surface 

quality (Ra < 10 nm), high aspect ratio components (e.g. 1:280 between wall width and height
17

), and advanced 

micromachining processes (e.g. picosecond laser polishing
18

).  

 

 

Figure 3. The modular, multi-functional micromaching system Microgantry nano5X and its components. 

 

The design of the plasmonic lens is presented in Figure 1. The device poses three main challenges for fabrication. Firstly, 

accuracy on all dimensions of ±10 µm. Secondly, precise axial alignment between inner and outer faces is required. The 



 

 
 

 

third and most challenging aspect was to keep the thickness at the center of the lens as thin as possible to enhanced 

throughput while maintaining structural integrity
4
. 

 

 

Figure 4. Steps in fabricating the bullseye plasmonic lens (not to scale). (a) Fabrication of a main blank; (b) fabrication of an 

outer lens; (c) fabrication of a support structure; (d) fabrication of an inner lens. 

 

The process flow diagram for the fabrication of the plasmonic lens is shown in Figure 4. The first step involved 

fabricating a copper main blank of diameter 25 mm and thickness 3 mm. The main challenge here was to achieve a 

plane, parallel device. This step was performed through micromilling using a diamond flat cutter with a diameter of 

2 mm, rotational speed of 30,000 rpm, and a feed rate of 240 mm/min, which achieved a thickness deviation better than 

±5 µm. Greater precision is possible with the micromill, but was not required. The flatness achieved allowed the center 

of the blank to be determined precisely and ensured axial alignment in all further micromachining operations. 

 

 

Figure 5. Photographs of the inner (a) and outer (b) faces of the fabricated bullseye plasmonic lens. 

 

In the next step, shown in Figure 4b, the main blank was fixed and circular channels with a rectangular cross-section 

were micromilled with a flat end diamond cutter having a diameter of 300 µm. Micromilling was performed with a 

rotational speed of 30 000 rpm and a feed rate of 120 mm/min removing 20 µm depth for each cutting path within a 

channel. Before the input surface of the lens could be machined, the output surface was filled with PMMA acrylic, 

fabricated using a hot embossing process, to provide structural integrity. A Chrystal Digital Load Cell E-Z Press 

equipped with temperature controlled heated platens and a controlled applied force was used in this embossing process, 

as shown in Figure 4c. During this step, a 1 mm thick PMMA plate was placed between a one-side fabricated plasmonic 

lens (used as a die) and platens that were heated above PMMA glass transition temperature (e.g. 107°C). The back 



 

 
 

 

supporting plate was made under 300 N force applied for a period of 10 minutes to ensure an accurate match with lens 

geometry. In the final step, the inner lens was micromilled as it shown in Figure 4d using the same cutting parameters 

and machining strategy as during micromilling of outer lens. The plasmonic lens prototype is shown in Figure 5. The 

accuracy of geometrical features of the output surface is shown in Figure 6. Metrology measurements were obtained 

using Veeco WYKO NT1100 Optical Profilometer with a resolution of 0.1 nm. 

 

Figure 6. Examples of achieved accuracy of geometric features on the output lens face: (a) channel depth, (b) diameter of the 

first circular cavity, (c) width of the first circular wall, and (d) diameter of the central hole. 

 

Circular channels were fabricated with an measured depth of 134.5 µm versus a design depth of 134.0 µm (see 

Figure 6a), a variance of 0.5 µm; the measured diameter of first circular cavity was 13 345 µm versus a design diameter 

of 13 350 µm (see Figure 6b); the measured width of the wall separating inner cavity and first circular channel was 

measured as 444.8 µm versus a design width of 445.0 µm (see Figure 6c) corresponding to a variance of ±1 µm. Finally, 

the diameter of the central hole was measured to be 295.3 µm versus a design diameter of 300.0 µm (see Figure 6d). 

The final geometric feature in the lens design was the residual metal thickness at the center of the lens. The design 

thickness was 50 µm, however in this prototype fabrication we took a conservative approach to prevent potential 

damage. As a result, the estimated thickness was determined to be 66 µm. After milling, a 1 μm thick Au coating 

(~10  ), was electroplated on the copper surface to prevent oxidation. These results show that micromaching techniques 

are capable of fabricating THz plasmonic devices to the required accuracy. 

 

4. EXPERIMENTAL PROCEDURE 

To measure the performance of the plasmonic lens at THz wavelengths, a test bed was setup as shown in Figure 7. The 

THz signal is produced by a Virginia Diodes, Inc. (VDI) line source transmitter with an operating range of 320-330 

GHz
19

. The operating frequency was set to 325 GHz and has a maximum-power output of ~10 mW. The THz source 

makes use of a split-block diagonal horn that emits a Gauss-Hermite beam with approximately 84.3% of its power in the 

fundamental Gaussian mode
20

. The Gaussian beam at this frequency has a waist radius of 1.68 mm located 6.04 mm 

inside of the horn.  

 

 



 

 
 

 

 

 
 

Figure 7. Schematic diagram of the THz knife-edge measurement system. A predominantly Gaussian THz beam is produced 

by a line source that is optically isolated using a QWP. The beam is collected by the input optics (f/3 and f/1     OAP 

mirrors) and produces a focus with a waist of         mm at the location of the knife. The output optics (f/1 and f/3 

    OPA mirrors) carry the beam through an identical QWP and polarizer arrangement before detection by the ZBD. 

 

A quartz quarter-wave plate (QWP) was placed in the collimated beam creating a circularly polarized beam to optically 

isolate the source from unwanted reflections. Four 50.8 mm diameter aluminum     off-axis parabolic (OAP) mirrors 

were configured in a telescope arrangement to provide an intermediate image. The OAPs were orientated such that rays 

from a single field point strike identical coordinates on each parabolic mirror (i.e. in a “tip-to-tip” fashion) to avoid a 

tilted image plane. The beam passes through a second QWP to restore linear polarization and power is measured by a 

VDI zero bias detector with a diagonal horn identical to that of the source
19

. Standard lock-in techniques were applied 

using a lock-in amplifier to extract the THz signal referenced against the   k   modulation frequency.  

The spatial profile of the THz beam was characterized by knife-edge measurements using a three-axis piezo CONEX-

AGP Agilis-P Controller with Encoder Feedback placed near the focus. The three-axis stage allows the knife to be 

moved with a minimum incremental motion of 0.2 μm. The blade was translated vertically (y) and successively blocked 

the beam. A control and data-acquisition program was written that recorded the output DC voltage as a function of 

position of the knife was moved across the aperture. In theory, the signal measured as a function of the knife-edge 

position takes the form of a typical S-curve error function
21

, 
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which corresponds to the integrated beam intensity profile of the Gaussian beam. Error functions were fitted to the S-

curves with a fixed total power    to obtain the Gaussian beam waist    and the optical axis   .  



 

 
 

 

 

Figure 8. Knife-edge measurements as a function of knife position (y) for cuts along the axis of propagation (z) leading to 

the focus at z = 0 mm. 

 

An example of measured S-curves in the absence of a plasmonic lens is shown in Figure 8. Beam profiles were measured 

along the axis of transmission (z). The focus was defined by the position of minimum fitted beam waist and maximum 

beam intensity, as plotted in Figure 9, and a minimum fitted beam waist of   = 0.77 mm was compared to that found 

using the 90%-10% criterion,   = 0.74 mm, and the 80%-20% criterion,   = 0.72 mm. The measured and fitted S-curve 

and intensity profile at the location of the focal point can be found in Figure 10. 

 

Figure 9. Maximum Gaussian beam intensity (left) and beam waist radius (right) from corresponding error function fits 

(black, dotted) along the propagation axis (z). The waist radius was also calculated using a 90%-10% (blue, squares) and 

80%-20% (red, triangles) analysis. The oscillations seen are due to resonant cavities formed by the QWPs in the optical 

system. We are in the process of antireflection coating the QWP to minimize these effects.  



 

 
 

 

 

 

Figure 10. Measured (black, dotted) S-curve with an error function fit (red, solid) at the focus of the Gaussian beam.         

Inset: the corresponding Gaussian beam profile overlaid with the derivative of the error function fit. 

 

5. RESULTS AND DISCUSSION 

The performance of the plasmonic lens was measured by placing the midpoint of the lens aperture at the location of the 

focus (z = 0 mm), as determined by the above procedure. The knife-edge was brought to 50 μm in front of the output 

face and translated vertically across the transmitted beam at various distances along the optical axis. Beam intensity 

functions were fit to a Gaussian distribution, and the resulting FWHM was plotted as a function of translated distance. 

Similar measurements were made for a single aperture with a diameter of 300 μm and thickness of 50 μm, illuminated by 

linearly polarized light and are compared with the plasmonic lens in Figure 10. Although the results are preliminary they 

clearly show that the transmitted beam from the plasmonic lens remains close to the design width of 300 μm out to a 

distance of ~600 μm. By comparison, the beam from the single aperture of the same diameter is more than twice as large.   



 

 
 

 

 

Figure 11. Fitted FWHM of the measured beam transmitted through the bullseye lens and through a comparable single 

aperture (d = 300 μm, t = 50 μm). 

 

6. CONCLUSIONS 

In this paper, we describe a method to fabricate a plasmonic lens optimized for THz wavelengths using precise 

micromachining techniques. Our fabrication technique allows for precision geometrical features at the level of  1 μm 

(~10
-3

 λ). A THz test bed has been developed that produces the well-defined and stable beam necessary to characterize 

the performance of plasmonic lenses. Preliminary measurements of the fabricated bullseye structure show evidence of 

subwavelength beaming compared to a single aperture. Measurements of the increased transmission expected from the 

plasmonic lens have been hampered by the uncertainties of the residual thickness at the center of the plasmonic lens. We 

are currently exploring ways to optimize the design of the lens by precise tuning of the surface structures, to focus THz 

radiation several wavelengths from the output surface. Adjusting the geometrical parameters of the output face (by 

tuning the ring spacing, width and depth) confers tunable focusing. Parameters can be chosen to produce a more robust 

lens with a thinner central aperture.  
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