
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2015

Templates for positive and negative

control Toffoli networks

Rahman, Md Zamilur

Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science

http://hdl.handle.net/10133/3727

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185287866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TEMPLATES FOR POSITIVE AND NEGATIVE CONTROL TOFFOLI
NETWORKS

MD ZAMILUR RAHMAN
Bachelor of Science, Jahangirnagar University, 2005
Master of Science, Jahangirnagar University, 2007

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©MD ZAMILUR RAHMAN, 2015

TEMPLATES FOR POSITIVE AND NEGATIVE CONTROL TOFFOLI NETWORKS

MD ZAMILUR RAHMAN

Date of Defense: December 16, 2014

Dr. Jacqueline E. Rice
Supervisor Associate Professor Ph.D.

Dr. Stephen Wismath
Committee Member Professor Ph.D.

Dr. Hua Li
Committee Member Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Committee Associate Professor Ph.D.

Dedication

To my beloved parents

iii

Abstract

Circuit realizations obtained from existing logic synthesis approaches may not be optimal

and thus one commonly applies post-synthesis optimization techniques to get better realiza-

tion of the circuits. This thesis proposes two new templates (templates 4 and 7) for positive

and negative control Toffoli gates as well as proposing algorithms for post synthesis op-

timization of reversible positive and negative control Toffoli networks by utilizing the set

of templates. When applying the templates to circuits generated by the improved shared

cube synthesis approach [23] a reduction in quantum cost was achieved for 86 of the 110

circuits. On average a 21.34% reduction in quantum cost was achieved, and in some cases

up to 53.58% reduction was obtained.

iv

Acknowledgments

At first, I would like to take the opportunity to express my gratitude and appreciation to

my supervisor, Dr. Jacqueline E. Rice for her continuous support, encouragement, and in-

valuable guidance throughout my M.Sc. program. I would also like to thank my committee

members Dr. Stephen Wismath and Dr. Hua Li for their time, constructive comments, and

suggestions.

Special thanks to my colleagues in the research group and in the lab for their help and

inspiration during the program.

I am also thankful to Natural Sciences and Engineering Research Council of Canada

(NSERC) for funding this research.

Finally I would like to thank my parents, brother, wife, and relatives for their constant

support and encouragement.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Introduction . 1
1.2 Organization of the Thesis . 2

2 Background 3
2.1 Boolean Logic Functions . 3
2.2 Traditional Logic . 3
2.3 Reversible Logic . 4
2.4 Reversible Gates . 5

2.4.1 Toffoli Gates . 6
2.4.2 Fredkin Gates . 6
2.4.3 Peres Gate . 7

2.5 Reversible Gate Library . 8
2.6 Reversible Circuit . 8
2.7 Self-reversible and Conservative . 9
2.8 Cost Metrics . 9

2.8.1 Gate Count . 10
2.8.2 Garbage Output . 10
2.8.3 Quantum Cost . 10

2.9 Summary . 12

3 Reversible Logic Synthesis and Post-Synthesis Approaches 13
3.1 Logic Synthesis . 13
3.2 Logic Synthesis Approaches of Reversible Logic 14

3.2.1 Transformation-based Synthesis 14
3.2.2 Binary Decision Diagram-based Synthesis 15
3.2.3 ESOP-based Synthesis . 16
3.2.4 Shared Cube Synthesis . 17

3.3 Post-synthesis Optimization . 18
3.4 Summary . 23

vi

CONTENTS

4 Template Matching with Negative Controls 24
4.1 Proposed Approach . 24

4.1.1 Template 1 . 26
4.1.2 Template 2 . 27
4.1.3 Template 3 . 27
4.1.4 Template 4 . 28
4.1.5 Template 5 . 29
4.1.6 Template 6 . 30
4.1.7 Template 7 . 31

4.2 Basic Template Matching Algorithm . 33
4.2.1 Experimental Results and Discussion 35

4.3 Summary . 37

5 Improved Template Matching Algorithm 38
5.1 Gate Rearrangements . 38

5.1.1 Moving Rule . 38
5.2 Basic Algorithm with Moving Rule . 39

5.2.1 Experimental Results and Discussion 40
5.3 Improved Template Matching Algorithm 44

5.3.1 Quantum Cost Savings in Templates 44
5.3.2 Improved Template Matching Algorithm 47
5.3.3 Experimental Results and Discussion 50

5.4 Summary . 54

6 Conclusion 55
6.1 Conclusion . 55
6.2 Future Work . 55

Bibliography 57

vii

List of Tables

2.1 Truth table of a full adder function . 3
2.2 Truth table of a reversible full adder function 5
2.3 Quantum cost of Toffoli gates . 11

4.1 Applying templates using basic algorithm 36

5.1 Applying templates using basic algorithm with moving rule 41
5.2 Quantum cost savings of different templates 46
5.3 Applying templates using improved template matching algorithm 51
5.4 Comparison of [32] and the improved template matching algorithm 52
5.5 Comparison of [4], [5] and the improved template matching algorithm . . . 53

viii

List of Figures

2.1 A traditional and reversible full adder . 5
2.2 Toffoli gates . 7
2.3 A swap gate and a 3-bit Fredkin gate . 7
2.4 A 3-bit Peres gate . 8
2.5 A reversible circuit . 9
2.6 Self-reversibility of Toffoli gate . 9
2.7 Truth table of (a) the 3-bit Toffoli gate and (b) the 3-bit Fredkin gate 10

3.1 General flow in reversible logic synthesis approaches 13
3.2 Full Adder ESOP cube list . 16
3.3 Gate count comparison of two circuits . 19
3.4 Some reversible templates [19] . 19
3.5 Some reversible templates [15] . 20
3.6 An example of identity template matching 21
3.7 Brother (child) gates and parent gate [2] 21
3.8 Substitution of a cascade of positive control Toffoli gates with an equivalent

single negative control Toffoli gate [4] . 22

4.1 Possible ways for two Toffoli gates to appear in a circuit. 25
4.2 Template 1 . 26
4.3 Template 2 . 27
4.4 Template 3 . 27
4.5 Template 4 . 28
4.6 Template 5 . 29
4.7 Template 6 . 31
4.8 Template 7 . 32
4.9 Illustration of basic template matching algorithm 35

5.1 Illustration of applying moving rule . 39
5.2 Illustration of improved template matching algorithm 47

ix

Chapter 1

Introduction

1.1 Introduction

Power dissipation and heat generation are serious problems in today’s traditional cir-

cuit technologies. According to R. Landauer’s observation in 1961, the amount of energy

dissipated for each lost bit of information is KT ln2 where K is the Boltzmann’s constant

(1.3807×10−23JK−1) and T is the Temperature [8]. This is a significant amount of energy

for millions of operations. In [1], Bennett showed that in order to not dissipate energy the

system must be logically reversible. Reversible circuits do not erase any information when

operations are performed. In reversible circuits, all operations are performed in a bijective

manner. Thus fan-out and feedback operations are not allowed in reversible circuits. Such

features of reversible circuits prevent the use of existing algorithms and tools for circuit

synthesis and optimization. Reversible logic synthesis is the process of generating a circuit

from a given reversible specification. Reversible circuits have applications in fields such

as optical computing [3] and nanotechnology [18]. Research on reversible logic synthesis

has attracted much attention after the discovery of powerful quantum algorithms in the mid

1990s [25]. Quantum circuits are inherently reversible. Quantum gates are represented by

unitary matrices which may include complex elements. The most commonly used quantum

gate library includes NOT, CNOT, Controlled-V , and Controlled-V † gates. Interested read-

ers can refer to [25] for a detailed discussion of quantum computing. As a result, reversible

logic is being considered as an alternative to conventional logic. Instead of conventional

logic gates reversible gates like Toffoli gates, Fredkin gates, and Peres gates are used in re-

1

1.2. ORGANIZATION OF THE THESIS

versible circuits. Different gate libraries developed using reversible gates are listed in [37].

The main focus of this thesis is to optimize the reversible circuit by applying templates.

We propose two new templates for positive and negative control Toffoli gates (templates 4

and 7). Template 4 can be applied to two ≥ 3-bit Toffoli gates with controls on the same

lines while template 7 can be applied to two different size≥ 3-bit Toffoli gates. We propose

algorithms to optimize reversible circuits utilizing the set of templates.

1.2 Organization of the Thesis

The remainder of the thesis is organized as follows.

The necessary background material of this thesis is presented in chapter 2. We present

various reversible gates, gate libraries, and cost metrics for evaluating reversible circuits.

Chapter 3 begins with the overview of various logic synthesis approaches. This chapter

also describes several post-synthesis optimization approaches with examples.

In chapter 4, we describe the proposed set of templates including the basic algorithm

with an example. Experimental results are also tabulated with discussions.

Next in chapter 5 we discuss the basic template matching technique along with use of the

moving rule and illustrate the approach step-by-step with an example. Another improved

algorithm with experimental evaluations is described in a later section. Part of this chapter

has been published in [28].

Chapter 6 concludes the thesis and provides direction for possible future work.

2

Chapter 2

Background

2.1 Boolean Logic Functions

A Boolean function f (B) is a function of the form f : Bn→ Bm, where B = {0,1} and

n,m ∈ N. The input vectors for the function can take 2n possible values, i.e. all possible

values from 0 to 2n−1. The truth table is the simplest way to represent a Boolean function.

For example, Table 2.1 shows the truth table of the full adder function. The function has

3-inputs (cin, x, y) and 2-outputs (cout and sum).

Table 2.1: Truth table of a full adder function

cin x y cout sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

2.2 Traditional Logic

In traditional logic the number of inputs to a circuit may be not equal to the number

of outputs. In many cases the number of inputs is greater than the number of outputs or

vice-versa. Consider the truth table of a full adder function is given in Table 2.1, where the

function has three inputs (i.e. cin, x, y) and two outputs called sum (sum) and carry (cout).

3

2.4. REVERSIBLE GATES

AND, OR, NOT, EX-OR, EX-NOR, NAND, and NOR are used as standard gates in tradi-

tional logic. Among all the gates, NAND and NOR gates are universal gates. This means

that it is possible to implement any logical function using NAND (alternatively NOR) gates

alone.

2.3 Reversible Logic

In reversible logic the number of inputs and outputs are equal. In other words, a re-

versible logic function is bijective (i.e. one-to-one and onto). If a gate has n-inputs, then

it has n-outputs. A 3-input (a, b, c) and 3-output (a′, b′, c′) reversible function is given

in Table 2.2. There is a one-to-one correspondence between its input and output vectors.

To keep the number of inputs and outputs equal, introducing constant inputs and garbage

outputs is a solution. An irreversible function can be embedded into a reversible function

by adding constant inputs and garbage outputs. However, the constant inputs must have

certain values to realize the functionality in the outputs and the garbage outputs have no

impact on the computation. The minimum number of garbage outputs required to convert

an irreversible function to a reversible function is log2(q), where q is the number of times

that an output pattern is repeated in the truth table [12]. As shown in the truth table of the

irreversible full adder function in Table 2.1, the output 01 and 10 has the most number of

occurrences and is repeated three times. Thus, at least dlog2(3)e = 2 garbage outputs and

one constant input are required to make the full adder function reversible. The truth table

of the reversible full adder function is shown in Table 2.2 where gi is the constant input and

go1 and go2 are the garbage output. There is more than one reversible function associated

with each irreversible function depending on the number of constant inputs and garbage

outputs. Thus the circuits resulting from synthesizing these embedded reversible functions

have a different number of gates and hence have different quantum costs. A traditional and

reversible full adder is shown in Figure 2.1.

4

2.4. REVERSIBLE GATES

Table 2.2: Truth table of a reversible full adder function

gi cin x y cout sum go1 go2

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1

x
y

z

xy

S

C

⊕yx

(x⊕y)z

(a) Traditional full adder [9]

x
x
x

C
S

a
b
C

0
0

(b) Reversible full adder [6]

Figure 2.1: A traditional and reversible full adder

2.4 Reversible Gates

A reversible gate has the same number of inputs and outputs and realizes a reversible

function. All traditional logic gates (except NOT) are irreversible because they have a

different number of inputs and outputs. On the other hand, Toffoli [35], Fredkin [7], and

Peres [27] gates are the most popular reversible gates. Definitions of these gates are given

below. In this research we focus solely on the Toffoli gate.

5

2.4. REVERSIBLE GATES

2.4.1 Toffoli Gates

An n-bit Toffoli gate or Multiple Control Toffoli (MCT) gate is a reversible gate that has

n inputs and n outputs where (i1, i2, . . . , in) is the input vector, (o1,o2, . . . ,on) is the output

vector, and o j = i j where j = 1,2, . . . ,n− 1 and on = i1i2 . . . in−1⊕ in. The first n− 1 bits

are known as controls and the last nth bit is known as the target. The MCT gate passes all

the inputs to the outputs and inverts the target bit when all control bits are 1. When n = 1,

this gate is known as a NOT gate with no controls. When n = 2, the gate is known as a

controlled-NOT (CNOT) gate or Feynman gate. For the sake of simplicity we assume that

the nth bit is the target; however the target bit could be any of the n bits with which the gate

interacts.

A negative-control Toffoli gate is a gate that may have one or more negative controls.

The gate maps the n inputs (i1, i2, . . . , in) to the n outputs (o1,o2, . . . ,on) where o j = i j,

j = 1,2, . . . ,n−1 and on = i1i2 . . . in−1⊕ in, and i1 is a negative control. This gate passes all

the inputs to the outputs and inverts the target bit when all the positive controls have value

1 and negative controls have value 0.

When a Toffoli gate has more than one target, this gate is called a multiple target Toffoli

gate. This gate passes all the inputs to the outputs and inverts the target bit when all the

controls are 1 and is known as a multiple target Toffoli gate or an extended Toffoli gate

(ETG).

Here, ⊕ represents the target line, • indicates a positive control, and ◦ is use to indicate

a negative control line. A Toffoli gate can also be written as T (C; t) where C is the set of

controls and t is the target line. The size of a Toffoli gate refers to the number of controls

plus target. Figure 2.2 illustrates different versions of the Toffoli gate as described above.

2.4.2 Fredkin Gates

An n-bit Fredkin gate or Multiple Control Fredkin (MCF) gate is a reversible gate that

has n inputs and n outputs where (i1, i2, . . . , in) is the input vector, (o1,o2, . . . ,on) is the out-

6

2.5. REVERSIBLE GATE LIBRARY

1i 11 io =
(a) A NOT gate

212 iio ⊕=2i

1i 1o

(b) A CNOT gate

3213 iiio ⊕=

1o

2o

3i

2i

1i

(c) A 3-bit Toffoli gate

3i

2i

1i

3213 iiio ⊕=

1o

2o

(d) A negative-control Toffoli gate

1i

2i

3i

1o

212 iio ⊕=

313 iio ⊕=

(e) A multiple-target Toffoli gate

Figure 2.2: Toffoli gates

put vector, and o j = i j where j = 1,2, . . . ,n−2 and on−1 =(i1 i2 . . . in−2)in−1 + i1i2 . . . in−2in

and on = (i1 i2 . . . in−2)in + i1i2 . . . in−2in−1. Here,⊕ represents the target and • indicates the

positive control line. The first n−2 bits are known as controls and the last n−1 and n bits

are known as the targets. This gate passes all the inputs to the outputs and they are swapped

iff all the first n−2 bits are 1. A 2-bit Fredkin gate is known as a swap gate. A swap gate

and a 3-bit Fredkin gate are shown in Figure 2.3.

2i
1i

12 io =
21 io =

(a) A SWAP gate

2i
1i

3i

1o

3o

2o

(b) A 3-bit Fredkin gate

Figure 2.3: A swap gate and a 3-bit Fredkin gate

2.4.3 Peres Gate

A 3-bit Peres gate is a reversible gate that has 3-inputs and 3-outputs where (i1, i2, i3)

is the input vector and (o1, o2, o3) is the output vector, where o1 = i1, o2 = i1⊕ i2 and

o3 = i1i2⊕ i3. Here,⊕ represents the target and • indicates the positive control line. A 3-bit

Peres gate is shown in Figure 2.4.

7

2.7. SELF-REVERSIBLE AND CONSERVATIVE

3i

2i

1i

3213 iiio ⊕=

1o

212 iio ⊕=

Figure 2.4: A 3-bit Peres gate

2.5 Reversible Gate Library

A gate library consists of different types of gates that can be used in building a circuit.

In traditional logic circuits a commonly used gate library consists of AND, OR, and NOT

gates. A reversible gate library is composed of a set of reversible gates that can be combined

to realize any reversible function. Different gate libraries developed using reversible gates

are listed below [37]:

• Multiple Control Toffoli gates (MCT)

• Multiple Control Fredkin gates (MCF)

• NOT, CNOT, and Toffoli gates (NCT)

• Multiple Control Toffoli gates plus Peres gates (MCT+P)

• Multiple Control Toffoli gates plus Multiple Control Fredkin gates (MCT+MCF)

2.6 Reversible Circuit

A reversible circuit is a cascade of reversible gates, generally from a gate library as

discussed above, without fan-out and feedback. If a reversible circuit is built using only

NOT, CNOT, and Toffoli gates (NCT) or Multiple Control Toffoli gates (MCT), then it is

known as a Toffoli circuit. Figure 2.5 shows an example of a Toffoli circuit.

8

2.8. COST METRICS

Figure 2.5: A reversible circuit

2.7 Self-reversible and Conservative

A gate is said to be self-reversible if the gate reverses its logic function [26]. The Toffoli

gate is self-reversible. Consider the circuit shown in Figure 2.6. The outputs of the second

Toffoli gate are X = P, Y = Q, and Z = PQ⊕R, and the input of the second Toffoli gate is

the output of the first Toffoli gate, that is, P = A, Q = B, and R = AB⊕C. By substituting

P, Q, R with A, B, C, we obtain X = A, Y = B, and Z = AB⊕AB⊕C =C.

R
Q
P

Z
Y
X

C
B
A

Figure 2.6: Self-reversibility of Toffoli gate

A gate is said to be conservative if it preserves the number of logical ones in the in-

put [26]. The Toffoli gate is not a conservative gate because the mapping changes from

(111) to (110) as shown in Table 2.7(a). This property allows us to build sequential circuits

with zero internal power dissipation.

As shown in Table 2.7(b), the Fredkin gate maintains both the self-reversible and con-

servative property.

2.8 Cost Metrics

A given reversible function may be realized in different ways, resulting in different

circuits. The following three common cost metrics are used in evaluating the reversible

circuits.

9

2.8. COST METRICS

i1 i2 i3 o1 o2 o3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(a) 3-bit Toffoli gate

i1 i2 i3 o1 o2 o3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

(b) 3-bit Fredkin gate

Figure 2.7: Truth table of (a) the 3-bit Toffoli gate and (b) the 3-bit Fredkin gate

2.8.1 Gate Count

Gate count is the simplest way to evaluate different reversible circuits. This refers to

a simple count of the number of gates in a circuit. It does not, however, consider the

complexity of the circuit. Consider two circuits where the first circuit consists of three

2-input Toffoli gates and the second circuit consists of two 6-input Toffoli gates. In this

case a gate count might indicate that the second circuit is preferable, as it has fewer gates.

However, the second circuit contains significantly more complex gates.

2.8.2 Garbage Output

Garbage output is another measure to evaluate circuits. In reversible circuits, some extra

outputs are required to maintain the reversibility. Adding a garbage output adds extra line(s)

to the circuit. In some cases it is not possible to remove all the garbage outputs. According

to [21], reduction of reversible circuit cost is possible by adding lines.

2.8.3 Quantum Cost

The quantum cost is an important measure for comparison of reversible circuits. The

quantum cost of a gate is defined as the number of basic quantum operations needed to

realize the gate [13]. Any reversible gate can be decomposed into basic quantum (1× 1

and 2× 2) gates. The number of basic quantum gates required to implement a circuit is

10

2.8. COST METRICS

referred to as the quantum cost of the circuit. The quantum cost of the NOT, CNOT, and

3-bit Toffoli gate is 1, 1, and 5, respectively. In general, as the number of controls for a gate

increases so does the quantum cost.

The quantum cost of an n-bit negative control Toffoli gate with at least one control is

exactly the same as the cost of an n-bit Toffoli gate. When all the controls are negative, an

extra cost of 2 is required if zero or (n− 3) garbage lines are used. An additional cost of

4 is required when only one garbage line is used [17]. The quantum costs for the Toffoli

gates are given in Table 2.3 [10]. The first column represents the size of the gate, the second

column represents the number of garbage line, the third column is the name of the gate, and

the last column is the quantum cost.

Table 2.3: Quantum cost of Toffoli gates

Size (n) Garbage Name Quantum Cost
with all positive controls with all negative controls

1 0 NOT,t1 1 1
2 0 CNOT,t2 1 3
3 0 Toffoli,t3 5 6
4 0 Toffoli,t4 13 15
5 0 t5 29 31
5 2 t5 26 28
6 0 t6 61 63
6 1 t6 52 56
6 3 t6 38 40
7 0 t7 125 127
7 1 t7 80 84
7 4 t7 50 52
8 0 t8 253 255
8 1 t8 100 104
8 5 t8 62 64
9 0 t9 509 511
9 1 t9 128 132
9 6 t9 74 76

10 0 t10 1021 1023
10 1 t10 152 156
10 7 t10 86 88

n > 10 0 tn 2n−3 2n−1
n > 10 1 tn 24n−88 24n−84
n > 10 n−3 tn 12n−34 12n−32

11

2.9. SUMMARY

Since a Fredkin gate is efficiently simulated by a size n Toffoli gate and 2 CNOT gates,

the cost of a size n Fredkin gate is calculated by adding 2 to the size n Toffoli gate.

The cost of T (a,b,c) T (a,b) (Peres gate) or T (a,b) T (a,b,c) (inverse of Peres gate) is

set to be 4 instead of 5+ 1 = 6, as the quantum implementation of each of these patterns

was found with cost 4 [19].

2.9 Summary

This chapter describes the necessary background required for the subsequent chapters.

The chapter focuses on various reversible gates, reversible circuits, reversible gate libraries,

and cost metrics for the evaluation of reversible circuits.

12

Chapter 3

Reversible Logic Synthesis and
Post-Synthesis Approaches

3.1 Logic Synthesis

Logic synthesis is the process of realizing a logic function into a circuit design in terms

of gates. Reversible logic synthesis tools transform a given reversible function to a re-

versible circuit. In reversible logic synthesis, the number of gates, the number of constant

inputs, and the number of garbage outputs in the cascade should be as small as possible.

The resulting circuit from different synthesis approaches may not be optimal. Hence, post

synthesis optimizations are required to achieve low quantum cost reversible circuits. A

general flow in reversible logic synthesis approaches is depicted in Figure 3.1.

QC/GC
improvement

Gate-level
circuit

Reversible
functions

Embedding irreversible
functions to reversible

functions (if applicable)

Synthesis

Input
specifications Boolean

functions

Optimized gate-
level circuit Post-synthesis

optimization
Realizable

Circuits

Figure 3.1: General flow in reversible logic synthesis approaches

A Boolean function is the input to the process. The function can be either reversible or

irreversible. An irreversible function can be embedded into a reversible function by adding

13

3.2. LOGIC SYNTHESIS APPROACHES OF REVERSIBLE LOGIC

constant inputs and garbage outputs [12]. Different synthesis approaches are available to

realize the given function. For instance, the transformation-based synthesis approach [19]

deals only with reversible functions. On the other hand, ESOP-based synthesis [6] can

take reversible or irreversible functions as input. The output of any synthesis step is the

gate-level circuit. The resulting circuits may not be optimal. Post-synthesis optimization

techniques need to be applied to minimize the gate count and quantum cost of a circuit.

In the following section we summarize several existing logic synthesis approaches. Sec-

tion 3.3 gives a brief overview of the existing post-synthesis optimization approaches for

reversible logic.

3.2 Logic Synthesis Approaches of Reversible Logic

Several reversible logic synthesis approaches have been proposed, including transfor-

mation based synthesis [19], Exclusive-OR Sum-of-Products (ESOP) based synthesis [6],

and binary decision diagram (BDD) based synthesis [36].

3.2.1 Transformation-based Synthesis

The transformation-based approach [19] is based on the examination of the truth table of

a given reversible function. A basic naive and greedy algorithm has been given to synthesize

the circuits in one direction. The approach maps the input to the corresponding output by

transformation. The individual steps of each transformation correspond to a cascade of

gates. When both sides are matched, the cascade of gates implements the given function.

The steps of the basic algorithm include:

• use NOT gates to transform the first row of the output to 00 . . .0 and update the

corresponding positions of all the output rows in the truth table.

• use a simplest gate to transform each output pattern to the corresponding input pattern

without affecting the previous rows.

14

3.2. LOGIC SYNTHESIS APPROACHES OF REVERSIBLE LOGIC

This approach does not introduce any unnecessary garbage outputs and the circuit will have

at most (m−1)2m +1 gates, where m is the number of variables.

An improvement of the basic algorithm is the bidirectional algorithm also proposed

in [19]. This algorithm can be applied in both directions simultaneously. The approach

then compares the gates at both the input and output side of the circuit and chooses the

gates which offer the best advantage. The resulting circuit has a reduced number of gates

compared to the circuit provided by the basic algorithm.

3.2.2 Binary Decision Diagram-based Synthesis

Every Boolean function f can be represented by a Binary Decision Diagram (BDD).

A Binary Decision Diagram (BDD) over Boolean variables X is a directed acyclic graph

G = (V ;E) with the following properties [32]:

• Each node v ∈V is either a terminal or a nonterminal.

• Each terminal node v ∈ V is labeled by a value t ∈ T = {0,1} and has no outgoing

edge.

• Each nonterminal node v ∈V is labeled by a Boolean variable xi ∈ X .

• The Shannon decomposition [33], f = xi fxi=0 + xi fxi=1, (1 ≤ i ≤ n) holds for each

nonterminal node which leads to two outgoing edges e ∈ E whose successors are

denoted by low(v) (for fxi=0) and high(v) (for fxi=1), respectively.

The size of a BDD is defined by the number of non-terminal nodes. The size of a BDD can

be significantly reduced, if shared nodes are used. Asymptotically, the resulting reversible

circuits are bounded by the size of the BDD.

The approach proposed in [36] can cope with Boolean functions containing more than

one hundred variables. The approach synthesizes a given reversible function from a BDD

representation of the function. A BDD of the given reversible function is built using a tool

such as CUDD [34]. Each node of the BDD is substituted by a cascade of Toffoli gates.

15

3.2. LOGIC SYNTHESIS APPROACHES OF REVERSIBLE LOGIC

BDDs may use shared nodes. The use of shared nodes in BDD causes fan-outs in the

resulting circuit, which are not allowed in reversible logic. To avoid fan-outs, an additional

line is introduced. If f is a function with n primary inputs which is represented by a BDD

containing k nodes, then the resulting circuit consists of at most k+ n circuit lines and 3k

gates.

3.2.3 ESOP-based Synthesis

The Exclusive-OR Sum-Of-Products (ESOP) representation of a Boolean function is

the same as the SOP (Sum-Of-Products) representation except that the OR operator is re-

placed by the EX-OR operator. For example, the SOP and ESOP expression of the function

f (x,y,z) = (x+ yz)(x+ y+ z) are xyz+ xy+ xz and x⊕ yz, respectively. A function in the

ESOP form is commonly written as a list of cubes, known as a cube-list. In any cube, a

literal is a Boolean variable in the negative or positive polarity. A product term composed of

the Boolean AND of literals is called a cube. 1 denotes the positive polarity, 0 denotes the

negative polarity, and− denotes the don’t care value. The cube list of a full adder (rd32 19)

is illustrated in Figure 3.2.

x1 x2 x3 f1 f2
1 1 - 1 0
1 - 1 1 1
- 1 1 1 0
0 - 0 0 1
- 0 - 0 1

Figure 3.2: Full Adder ESOP cube list

The approach proposed in [6] derives a cascade of Toffoli gates from an ESOP cubelist.

Each positive (negative) control leads to a positive (negative) literal in the respective cube.

Each line that does not contain a control connection is represented by a don’t-care in the

cube. Like the BDD-based approach, the ESOP-based approach has the ability to handle

functions with large number of input variables. The resulting circuit will require 2n+m

lines, where n is the number of inputs and m is the number of outputs. The two input

16

3.2. LOGIC SYNTHESIS APPROACHES OF REVERSIBLE LOGIC

lines correspond to each input in the positive and negative polarity. The output of the basic

algorithm generates a Toffoli gate for each cube of each output in the list of ESOP cubes.

Since the basic algorithm always requires 2n+m lines, an optimization technique was

also proposed in [6]. However, in many cases the negated forms of a literal are not used, and

this is easy to get by using a NOT gate when necessary. This way the basic approach opti-

mizes by removing the unnecessary negated lines, which considerably reduces the number

of lines to n+m but adds some NOT gates.

As described in section 2.4.1, a Toffoli gate has both positive and negative controls.

By using this gate in the ESOP based circuits, the gate count and quantum cost can be

reduced. A Toffoli gate is generated for each cube of each output. If a variable has positive

polarity in the cube, the positive control of the Toffoli gate is connected to the input line.

If the variable has negative polarity in the cube, the negative control of the Toffoli gate is

connected to that line. Thus additional NOT gates are not required except for the one cube

with negative polarity only.

3.2.4 Shared Cube Synthesis

The approaches discussed in the previous section generate Toffoli gates for each cube

in the ESOP expression. The generated Toffoli gates have the same controls but different

targets when the cubes are shared by two or more outputs. The shared cube synthesis ap-

proach [30] improves the quality of the circuit by generating a Toffoli gate for each such

cube and transfers the cube to the other output lines via CNOT gates. Using a greedy ap-

proach the algorithm examines all pairs of outputs that have the largest number of common

cubes. One Toffoli gate is generated for each of these cubes and then a CNOT gate is

added to connect the shared Toffoli gates between two outputs. This process is repeated

for all pairs of outputs with shared cubes. Finally, Toffoli gates for the remaining cubes are

added to the circuit. As in the optimized ESOP-based approach [6] the resulting circuit also

contains n+m lines. This approach proposed in [30] does not use negative-control Toffoli

17

3.3. POST-SYNTHESIS OPTIMIZATION

gates; however, the usage of this type of gates was later suggested in [29] and [31].

The approach described in [30, 29, 31] takes the best advantage of shared functionality

if the ESOP terms are shared by only two outputs. However, if the shared terms exist

in more than two outputs then transformation of each term may require more than one

Toffoli gate, which is inefficient. The approach proposed in [24] optimizes the synthesis

by generating exactly one Toffoli gate for a cube. CNOT gates then are used to pass these

to other outputs. The cubes which are not shared by multiple outputs are called ungrouped

cubes and are treated separately. The resulting circuits generated by this approach used

negative-control Toffoli gates. The approach is much better compared to the shared cube

synthesis approach [30] in terms of quantum cost. We use the circuits resulting from the

improved shared cube synthesis approach [24] for post-synthesis optimization.

3.3 Post-synthesis Optimization

The circuits obtained by different synthesis methods may not optimal. This can be

achieved by rearranging the gates to improve gate count, quantum cost, and garbage output

in a circuit. Gate count simply refers to the number of gates in a circuit without considering

the complexity of the gate. The quantum cost of a complex gate is much higher than a sim-

ple gate. Consider the two circuits shown in Figure 3.3. The circuit shown in Figure 3.3(b)

has higher gate count but lower quantum cost compared to the circuit in Figure 3.3(a). To

calculate the quantum cost of a gate, we use the values from Table 2.3. As described in sec-

tion 2.8.3, quantum cost is one of the most important measures to evaluate circuits. Garbage

output is also another measure to evaluate circuits. Template matching is one post-synthesis

technique used to improve the gate count and quantum cost of a circuit.

If a circuit is non-optimal then it may be possible to decrease the size and quantum cost

of a circuit by replacing sequences of gates with another equivalent sequence; this is known

as a template-driven reduction method, or template matching [19]. Template matching is

an approach to reduce the number of gates and quantum cost by removing unnecessary

18

3.3. POST-SYNTHESIS OPTIMIZATION

(a) (b)

Figure 3.3: Gate count comparison of two circuits

gates from the network and has no effect on the functionality of the circuit. A complete

set of templates for reversible circuits is given in [19]. For instance, some of the templates

are shown in Figure 3.4. The matching procedure finds all suitable sets of gates for each

template. When a template match is found, the substitution is performed by the templates.

The process then repeats and may cause a template rejected earlier to become applicable.

(a) (b) (c)

Figure 3.4: Some reversible templates [19]

One of the properties of reversible circuits is that if two circuits c1 and c2 realize the

functions f and f−1, then c1c2 realizes the identity function. Therefore, if a sub-circuit

realizes the identity function, then the sub-circuit can be removed from the circuit [15]. A

template matching method generally defines all the templates up to a certain size for a given

gate library. All Fredkin-Toffoli templates with less than six gates are given in [14]. All

Toffoli gate templates of size up to 7 and some templates of size 9 can be found in [16].

Figure 3.5 shows some reversible templates. A circuit is examined to find a subsequence

of gates (more than half) in either forward or backward direction in a template. Then the

matched sequence of gates in the circuit can be substituted with the inverse cascade of the

remaining sequence of gates in the corresponding template [15]. For instance, the template

G0G1 . . .Gm−1 can be applied in two directions as follows [15]:

• Forward application: A sequence of gates in the circuit that matches the cas-

19

3.3. POST-SYNTHESIS OPTIMIZATION

(a) (b) (c) (d)

Figure 3.5: Some reversible templates [15]

cade GiG(i+1) mod m . . .G(i+k−1) mod m in the template is replaced with the sequence

G−1
(i−1) mod mG−1

(i−2) mod m . . .G−1
0 G−1

m−1 . . .G
−1
(i+k) mod m, where m

2 ≤ k ≤ m.

• Backward application: A sequence of gates in the circuit that matches the cas-

cade GiG(i−1) mod m . . .G(i−k+1) mod m in the template is replaced with the sequence

G−1
(i+1) mod mG−1

(i+2) mod m . . .G−1
m−1G−1

0 . . .G−1
(i−k) mod m, where m

2 ≤ k ≤ m.

If more than half of the gates in the template are matched, then the portion of the net-

work is replaced with the remaining gate in the template. However, it may be advantageous

to replace exactly the half of the matched gates, if the replaceable gates have lower quantum

cost than the replaced gates. For instance, if a template consists of four gates, then the idea

is to find a portion of the circuit that matches a majority of the template, e.g. the first three

gates, and then these three gates can be replaced with the remaining gate in the template.

Consider the example shown in Figure 3.6, where the cascade has 6 Toffoli gates. The last

gate in the cascade can be moved into the third position (from the left) as shown in Fig-

ure 3.6(b) based on the moving rule described in section 5.1.1. Then the first 3 gates match

with the templates as shown in Figure 3.5(b) and are substituted by the remaining gates

from the template. The resulting circuit after template matching is shown in Figure 3.6(c).

In [2], the authors defined positive/negative control Toffoli gates as PNC gates and

proposed new merging, moving, and splitting rules and an algorithm for PNC gates. A

deletion rule is defined as if two adjacent PNC gates have the same control and target bits,

then the two gates can be deleted. This is also known as self-reversibility as described in

section 2.7. If two PNC gates have the same target bit and control bits, but one of the control

20

3.3. POST-SYNTHESIS OPTIMIZATION

(a) (b) (c)

Figure 3.6: An example of identity template matching

bits has reverse value, then one gate is termed as a brother gate relative to the other gate.

The two brother gates can be merged into one gate. This new merged gate is defined as a

parent gate and the two brother gates are defined as child gates relative to the parent gate. A

child gate can be obtained by merging the parent gate and the other child gate. These rules

are defined as merging rules [2]. Alternatively, a parent gate can be split into its two child

gates or a child gate can be split into its parent gate and its brother gate. This is defined

as splitting rules [2]. Figure 3.7(a) and 3.7(b) shows two brother (child) gates and a parent

gate in Figure 3.7(c).

(a) (b) (c)

Figure 3.7: Brother (child) gates and parent gate [2]

If the target bit of one gate is not the control of the other gate or two gates have the

same target bit then the position of these two gates can be interchanged which is known as

a moving rule. A simplification algorithm utilizing the above deletion, merging, splitting,

and moving rules was proposed in [2].

Templates and rules using both positive and negative control Toffoli gates were pro-

posed in [4]. Templates were introduced that allow for a substitution of a cascade of (pos-

itively controlled) Toffoli gates with a single but an equivalent (negatively controlled) Tof-

foli gate. For example, a cascade of Toffoli gates with all possible combinations of positive

21

3.3. POST-SYNTHESIS OPTIMIZATION

control connections can be subsumed into a single negative control Toffoli gate as shown

in Figure 3.8, where the left circuit has only one 3-bit negative control Toffoli gate. The

quantum cost of all 3-bit negative control Toffoli gates is 6. This gate can be represented

by the cascade of 4 Toffoli gates with all possible combinations of positive control con-

nections. The gate count for this cascade is 4 and the quantum cost is 8, which is more

than the single 3-bit all negative control Toffoli gate. Initially, this transformation increases

the number of gates and also the quantum cost of a circuit. However, this transformation

will increase more chance to apply template matching rules with other gates. By analyzing

Figure 3.8: Substitution of a cascade of positive control Toffoli gates with an equivalent
single negative control Toffoli gate [4]

these patterns, 7 generalized rules were proposed for post synthesis optimization to reduce

both the number of gates and the quantum costs [4]. The proposed algorithm traverses the

given reversible circuit and checks for any possible rules and the algorithm is iterated until

no further reduction is possible. In another paper [5], the authors defined two MCT gates as

adjacent gates if they have targets on the same line and differ in only one line with respect

to the control connections. These adjacent gates are defined as brother (child) gates in [2]

and are depicted in Figure 3.7. If two MCT gates have targets on the same line and differ

in two control lines, then they are defined as distance-2 gates. The replacement rules for

the distance-2 gates were proposed in [5]. The merging rules for adjacent gates were also

discussed as merging rules in [2] and [32]. In [5], the authors proposed an optimization

algorithm using the merging and replacement rules to optimize the circuits and showed that

the algorithm performs better than the algorithm proposed in [4].

In [32], the author defined the negative/positive Toffoli gate as a Mixed Polarity Multiple

Control Toffloi (MPMCT) gate and gave reduction rules that can be applied to MPMCT

gates as follows:

22

3.4. SUMMARY

• T (C;xt)T (C;xt)≡ I

• T (C;xt)T (C∪ xi;xt)≡ T (C∪ xi;xt)

• T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j)

• T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j)

• T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j)

To optimize the circuit, the above reduction rules are applied with the new optimization

procedure proposed in [32].

3.4 Summary

In this chapter several logic synthesis approaches for reversible circuits have been

briefly described. We have also discussed various template matching techniques with ex-

amples.

23

Chapter 4

Template Matching with Negative
Controls

In chapter 3, we have discussed several existing logic synthesis and post-synthesis opti-

mization approaches. In this chapter the proposed templates and algorithms are described

with experimental results.

4.1 Proposed Approach

Toffoli gates can appear in various ways in a circuit, as shown in Figure 4.1. The target

of a Toffoli gate can be either totally different than the control line of the other gates or can

be in one of the control lines of another gate. For instance, in the ESOP based synthesis

approach [6] the target line of a gate is always different than the control line of the other

gates. On the other hand, in the transformation based approach [19], the target of a gate

can be in any of the control lines of other gates. Based on the target line, pairs of gates in a

circuit can be categorized as:

• same or different size gates having the same target line, as shown in Figure 4.1(a)

and 4.1(b), or

• same or different size gates having different target lines, as shown in Figure 4.1(c)

and 4.1(d).

Different target line Toffoli gates can be further classified as:

24

4.1. PROPOSED APPROACH

(a)

(b)

(c)

(d)

Figure 4.1: Possible ways for two Toffoli gates to appear in a circuit.

• different target line Toffoli gates having targets on any line, as shown in Figure 4.1(c),

or

• different target line Toffoli gates having targets always other than control lines, as

25

4.1. PROPOSED APPROACH

shown in Figure 4.1(d).

In developing our templates we considered the various ways in which two Toffoli gates with

the same target line can appear in a circuit, as shown in Figure 4.1(a) and 4.1(b).

We have proposed 7 templates that may be applied in various situations. Templates

1− 5 can be applied to two adjacent Toffoli gates T1(C1, t1) and T2(C2, t2) where Ci is the

set of controls, |C1|= |C2| and ti is the target, |t1|= |t2|. In templates 1−4, two gates share

the same control line but in template 5 one of the controls of one gate is on a different line.

Templates 6− 7 can be applied to two different size Toffoli gates T1(C1, t1) and T2(C2, t2)

where Ci is the set of controls, |C1| > |C2| or |C2| > |C1| and ti is the target, |t1| = |t2|. In

template 6 the two gates may differ, but only by at most 1 line. In template 7, the difference

in the size of two Toffoli gates is at least 1. In all cases we are interested in Toffoli gates

that have the same target line. We propose 2 new templates for positive and negative control

Toffoli gates (templates 4 and 7). Template 4 can be applied to two ≥ 3-bit Toffoli gates

with controls on the same lines while template 7 can be applied to two different size≥ 3-bit

Toffoli gates. Details of each type of template are as follows.

4.1.1 Template 1

Template 1 can be applied to two adjacent CNOT gates in the case where one CNOT

gate has a positive control and the other has a negative control. In this case the two CNOT

gates can be replaced by a single NOT gate [4]. An example is shown in Figure 4.2 and the

proof is given below.

T (C;xt)T (C;xt)≡ T (;xt) (4.1)

Figure 4.2: Template 1

Proof: Two CNOT gates have different controls. Thus the output of this two adja-

26

4.1. PROPOSED APPROACH

cent CNOT gates as: T (C;xt)T (C;xt) = C⊕ xt ⊕C = 1⊕ xt = xt ' T (;xt) which can be

represented by a NOT gate.

4.1.2 Template 2

If two Toffoli gates have the same controls, then the two gates negate each other. This

property is known as self-reversibility [26] as introduced in section 2.7.

T (C;xt)T (C;xt)≡ I (4.2)

I

Figure 4.3: Template 2

Proof: Since the two Toffoli gates have same controls and target, the output of one

Toffoli gate is the input of the next Toffoli gate. The output of the second Toffoli gate:

T (C;xt)T (C;xt) =C⊕xt⊕C =C⊕C⊕xt = 0⊕xt = xt ' T (;), which is equal to the input

and the two gates negate each other.

4.1.3 Template 3

If two Toffoli gates have the same controls but one of the controls is the inverse polarity

of that of the previous gate, then these two gates can be replaced by one Toffoli gate with

all the common controls [2]. The expression is given in Equation 4.3 and an example is

shown in Figure 4.4.

T (C∪ xi;xt)T (C∪ xi;xt)≡ T (C;xt) (4.3)

Figure 4.4: Template 3

27

4.1. PROPOSED APPROACH

Proof: As shown in Figure 4.4, the two Toffoli gates have controls of opposite polarity

in one of the controls. The output of this cascade is: T (C∪ xi;xt)T (C∪ xi;xt) =Cxi⊕ xt ⊕

Cxi =C(xi⊕xi)⊕xt =C⊕xt =C⊕xt ' T (C;xt), which includes all the common controls

and the target.

4.1.4 Template 4

If two n-bit (n ≥ 3) Toffoli gates have controls on the the same lines but two (i.e. xi,

x j) of the controls have different polarity, then the two n-bit (n ≥ 3) gates can be replaced

by two CNOT gates and one (n− 1)-bit (n ≥ 2) Toffoli gate. Equations (4.4a) and (4.4b)

formalize this, while Figure 4.5 illustrates two possible ways to apply this template.

T (C∪ xi∪ x j;xt)T (C∪ xi∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.4a)

T (C∪ xi∪ x j;xt)T (C∪ xi∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.4b)

(a) (b)

Figure 4.5: Template 4

Proof: As shown in Figure 4.5 and in Equations (4.4a) and (4.4b), the output of these

two cascades can be represented by two CNOT gates and one (n− 1)-bit Toffoli gate as

proved in Equations (4.5a) and (4.5b).

T (C∪ xi∪ x j;xt)T (C∪ xi∪ x j;xt) =Cxix j⊕ xt⊕Cxix j

=C(xix j⊕ xix j)⊕ xt

=C(xi⊕ x j)⊕ xt

' T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.5a)

28

4.1. PROPOSED APPROACH

T (C∪ xi∪ x j;xt)T (C∪ xi∪ x j;xt) =Cxix j⊕ xt⊕Cxix j

=C(xix j⊕ xix j)⊕ xt

=C(xix j⊕ x j⊕ xix j)⊕ xt

=C(xix j⊕ xi⊕ x j⊕ xix j)⊕ xt

=C(xi⊕ x j)⊕ xt

' T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.5b)

4.1.5 Template 5

This template can be applied to two Toffoli gates of the same size where one of the

controls is on a different line. In this case the two Toffoli gates can be replaced by two

CNOT gates and one Toffoli gate [32]. The three situations in which this may occur are

formally described in Equations (4.6a), (4.6b), and (4.6c) and illustrated in Figure 4.6.

T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.6a)

T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.6b)

T (C∪ xi;xt)T (C∪ x j;xt)≡ T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.6c)

Proof: The above threes cases can be represent by two CNOT gates and one Toffoli gate.

(a) (b) (c)

Figure 4.6: Template 5

29

4.1. PROPOSED APPROACH

The proof of these three cases is shown in Equations (4.7a), (4.7b), and (4.7c).

T (C∪ xi;xt)T (C∪ x j;xt) =Cxi⊕ xt⊕Cx j

=C(xi⊕ x j)⊕ xt

' T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.7a)

T (C∪ xi;xt)T (C∪ x j;xt) =Cxi⊕ xt⊕Cx j

=C(xi⊕ x j)⊕ xt

=C(xi⊕1⊕ x j⊕1)⊕ xt

=C(xi⊕ x j)⊕ xt

' T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.7b)

T (C∪ xi;xt)T (C∪ x j;xt) =Cxi⊕ xt⊕Cx j

=C(xi⊕ x j)⊕ xt

=C(xi⊕1⊕ x j)⊕ xt

=C(xi⊕ x j)⊕ xt

' T (xi;x j)T (C∪ x j;xt)T (xi;x j) (4.7c)

4.1.6 Template 6

If the size of two Toffoli gates differs by 1 and all the controls except the additional

control in the larger gate are on the same lines, then this sequence of gates can be replaced

by a Toffoli gate of the same size as the larger gate [32]. The two situations are described

in Equations (4.8a) and (4.8b) and illustrated in Figure 4.7.

T (C;xt)T (C∪ xi;xt)≡ T (C∪ xi;xt) (4.8a)

T (C;xt)T (C∪ xi;xt)≡ T (C∪ xi;xt) (4.8b)

Proof: As shown in Figure 4.7, the two different sized Toffoli gates have controls on the

30

4.1. PROPOSED APPROACH

(a) (b)

Figure 4.7: Template 6

same lines except the additional control of the larger gate. The above two scenarios can be

represented by a Toffoli gate of the same size as the larger gate as proved below and shown

in Equations (4.9a) and (4.9b).

T (C;xt)T (C∪ xi;xt) =C⊕ xt⊕Cxi

=C(1⊕ xi)⊕ xt

=Cxi⊕ xt

' T (C∪ xi;xt) (4.9a)

T (C;xt)T (C∪ xi;xt) =C⊕ xt⊕Cxi

=C(1⊕ xi)⊕ xt

=Cxi⊕ xt

' T (C∪ xi;xt) (4.9b)

4.1.7 Template 7

This template can be applied to two different sized n-bit (n ≥ 3) Toffoli gates as de-

scribed in Equations (4.10aa)-(4.10db) and illustrated in Figure 4.8.

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10aa)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10ab)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10ba)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10bb)

31

4.1. PROPOSED APPROACH

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.8: Template 7

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10ca)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10cb)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10da)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt)≡ T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.10db)

Proof: The proofs of all the above cases are given in Equations (4.1a)-(4.1h).

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1a)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1b)

32

4.2. BASIC TEMPLATE MATCHING ALGORITHM

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1c)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1d)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1e)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1f)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1g)

T (C∪ xi∪ x j;xt)T (C∪ xk;xt) =Cxix j⊕ xt⊕Cxk

=C(xix j⊕ xk)⊕ xt

' T (xi∪ x j;xk)T (C∪ xk;xt)T (xi∪ x j;xk) (4.1h)

4.2 Basic Template Matching Algorithm

We propose a basic algorithm to apply the above templates. This algorithm maintains

two separate gate lists; the original list of gates, and a new list of gates that at the end of the

algorithm will replace the original list. The basic template matching process is performed

as follows:

Consider two adjacent gates g1 and g2 from the gate list of a circuit.

33

4.2. BASIC TEMPLATE MATCHING ALGORITHM

1. if g1 and g2 have the same target line then we begin searching for templates

(a) if g1 and g2 match any of the templates then replace g1 and g2 with the equiva-

lent gates from that template (i.e. g′1, g′2,) and add the new gates at the end

of the new gate list and then move on to consider the next two gates (i.e. g3 and

g4) in the original gate list; go to step 1.

(b) if no match is found then add g1 at the end of the new gate list, g2 and g3 become

the gates under consideration; go to step 1.

2. else add g1 and g2 at the end of new gate list and consider the next two gates (i.e. g3

and g4) in the original gate list; go to step 1.

This algorithm is iterated until no further reduction is possible in quantum cost i.e., after

each iteration the quantum cost of the new gate list is compared to the quantum cost of the

old gate list. If there is a reduction in quantum cost, then the new gate list becomes the old

gate list, and a new iteration begins.

Consider the example shown in Figure 4.9(a) where the input circuit has 7 gates. The

quantum cost of the circuit is 15. Consider the first two gates from the circuit and apply

templates according to the algorithm. Since the first two gates have two different targets,

we consider the next two gates (second and third gate). The second and third gates also

have two different targets, so we move on to the next two gates (third and fourth gate). As

shown in Figure 4.9(b), these two gates have the same target line, so then we search for

templates and apply template 5. In this way we consider all of the gates as we search for

templates. Now all adjacent pairs of remaining gates have different target lines, thus there

are no possibilities to apply templates using this approach. The output circuit is shown in

Figure 4.9(c).

34

4.2. BASIC TEMPLATE MATCHING ALGORITHM

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(a) An example input circuit

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(b) Applying template 5

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(c) Output circuit

Figure 4.9: Illustration of basic template matching algorithm

4.2.1 Experimental Results and Discussion

The proposed templates along with the basic algorithm were implemented in Java. The

programs have been run on an Intel Core 2 Duo CPU T6670 @ 2.20GHz×2 system running

Ubuntu 13.04 with 2GB main memory for 110 benchmark circuits. These benchmarks

were obtained from RevLib [37] and preprocessed by applying the improved shared cube

synthesis approach [22]. All the resulting circuits are verified using QMDD (Quantum

Multiple-valued Decision Diagrams) [20]. Using QMDD, we compare the resulting circuits

(after applying templates) with the input circuits, in order to ensure that the behavior of the

circuit has not been modified. The running time is negligible and the results are listed in

Table 4.1. Table 4.1 compares the outputs obtained in the current experiment to the results

from the improved shared cube synthesis approach in terms of quantum cost and gate count.

In this table PrevGC/PrevQC refers to the gate count/quantum cost obtained from the circuit

generated by the improved shared cube synthesis approach, while NewGC/NewQC refers

to the new gate count/quantum cost as computed from the circuits generated from the basic

template matching post-processing approach. The proposed templates reduce the quantum

35

4.3. SUMMARY

cost of circuits 8.76% on average. col4 135 is the best reported circuit in terms of reduction

in quantum cost. Among 110 circuits 40 of them showed improvement.

Table 4.1: Applying templates using basic algorithm

Circuit PrevGC[22] NewGC GCImp.(%) PrevQC[22] NewQC QCImp.(%)
co14 135 14 21 -50.00 3472 1750 49.60
4mod5 8 4 4 0.00 21 13 38.10
cm85a 127 48 60 -25.00 2206 1434 35.00
add6 92 153 170 -11.11 5135 4075 20.64
majority 176 5 6 -20.00 133 106 20.30
fredkin 3 7 8 -14.29 15 12 20.00
0410184 85 218 249 -14.22 7636 6330 17.10
adr4 93 41 45 -9.76 645 538 16.59
rd32 19 6 7 -16.67 25 22 12.00
clip 124 78 85 -8.97 3824 3386 11.45
x2 223 23 24 -4.35 433 385 11.09
cm82a 126 17 18 -5.88 126 115 8.73
alu 9 4 5 -25.00 40 37 7.50
f51m 159 327 348 -6.42 28382 26292 7.36
max46 177 42 45 -7.14 4524 4210 6.94
root 197 48 51 -6.25 1811 1688 6.79
alu4 98 454 473 -4.19 41127 38701 5.90
9symml 91 52 57 -9.62 10943 10393 5.03
sym9 71 52 57 -9.62 10943 10393 5.03
5xp1 90 58 59 -1.72 786 750 4.58
rd73 69 43 44 -2.33 856 820 4.21
sym10 207 83 88 -6.02 15640 15006 4.05
ex3 152 4 5 -25.00 76 73 3.95
rd84 70 68 70 -2.94 2329 2241 3.78
alu2 96 78 80 -2.56 4369 4217 3.48
example2 156 78 80 -2.56 4369 4217 3.48
tial 214 459 472 -2.83 43412 42032 3.18
misex3 180 854 868 -1.64 49076 47670 2.86
cycle10 2 61 42 43 -2.38 1273 1237 2.83
life 175 50 52 -4.00 6074 5960 1.88
urf2 73 479 483 -0.84 8742 8582 1.83
dist 144 94 95 -1.06 3700 3652 1.30
misex3c 181 822 828 -0.73 49720 49152 1.14
urf3 75 1501 1512 -0.73 53157 52553 1.14
urf1 72 960 963 -0.31 23769 23649 0.50
ex1010 155 1675 1678 -0.18 52788 52594 0.37
hwb9 65 1011 1013 -0.20 23471 23405 0.28
sqr6 204 54 55 -1.85 583 582 0.17
hwb7 15 233 234 -0.43 3015 3012 0.10
urf5 76 210 211 -0.48 5364 5359 0.09
Average -7.73 8.76

36

4.3. SUMMARY

4.3 Summary

In this chapter we have described the various possible ways that Toffoli gates appear in

a circuit. Seven templates have been discussed, two of them are new. A basic algorithm was

also proposed and discussed with an example. The experimental results were also discussed

with a list of the benchmark circuits used in our experiments.

37

Chapter 5

Improved Template Matching Algorithm

In the previous chapter, we discussed several templates with a basic template matching

algorithm. This chapter presents improved template matching algorithms along with use of

a moving rule. Section 5.2 describes the basic template matching process along with the

moving rule. An improved algorithm is presented in section 5.3.

5.1 Gate Rearrangements

Gate rearrangements in a circuit increases the possibilities for matching more templates

and can lead to further optimization. Gate rearrangements have usually been performed

based on the moving rule [11]. The moving rule preserves the functional behavior of a

circuit while moving gates within the circuit. In the example circuit shown in Figure 5.1(a),

the gate count for this circuit is 7 and the quantum cost is 15. After rearranging gates and

applying templates the gate count of the new circuit is 7, while the quantum cost has been

reduced to 11. The gate rearrangements and templates applied are shown in Figure 5.1. The

basic template matching techniques along with the moving rule are described below.

5.1.1 Moving Rule

Two adjacent gates g(C1, t1) and g(C2, t2) in a reversible circuit can be interchanged iff

C1∩ t2 = /0 and C2∩ t1 = /0, i.e. the target of each gate is not a control of the other gate [11].

From Figure 4.9(a) and 5.1(b) it can be seen that, according to the moving rule the first

CNOT gate T (x0; f1) can pass the second CNOT gate T (x1; f0) because the target of the

first gate is not the control of the second gate. This movement allows the application of

38

5.2. BASIC ALGORITHM WITH MOVING RULE

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(a) An example input circuit

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(b) Moving gate

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(c) Applying template 6

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(d) Applying template 5

f2

f1
f0

x2

x1
x0

0
0
0
x2

x1
x0

(e) Output circuit

Figure 5.1: Illustration of applying moving rule

template 6 on gates 2 and 3 and generates a new Toffoli gate with positive and negative

controls.

5.2 Basic Algorithm with Moving Rule

The template matching process along with use of the moving rule is performed as fol-

lows:

Consider two gates g1 and g2 from the gate list of a circuit.

1. if g1 and g2 have the same target line then we can check for template matches:

(a) if g1 and g2 match any of the templates then replace g1 and g2 with the equiva-

39

5.2. BASIC ALGORITHM WITH MOVING RULE

lent gates from that template (i.e. g′1, g′2,) and add the new gates to the new

gate list and then move on to consider the next two gates (i.e. g3 and g4) in the

original gate list; go to step 1.

(b) if no match is found for any template then apply the moving rule:

i. if g1 can pass g2 then interchange g1 and g2; add g2 into the new gate list,

g1 and g3 become the gates under consideration; go to step 1.

ii. else add g1 and g2 to the new gate list and consider the next two gates from

the original gate list (i.e. g3 and g4); go to step 1.

2. else apply moving rule to g1 and g2

(a) if g1 can pass g2 then interchange g1 and g2; add g2 into the new gate list, g1

and g3 become the gates under consideration; go to step 1.

(b) else add g1 and g2 to the new gate list and consider the next two gates from the

original gate list (i.e. g3 and g4) in the circuit; go to step 1.

This algorithm is iterated until no further reduction is possible in quantum cost i.e., after

each iteration the quantum cost of the new gate list is compared to the quantum cost of the

old gate list. If there is a reduction in quantum cost, then the new gate list becomes the old

gate list, and a new iteration begins.

5.2.1 Experimental Results and Discussion

The proposed algorithm with the moving rule has been implemented in Java and tested

on the same platform for the same set of circuits as the first experiment. The resulting

circuits were again verified using QMDD [20]. The run time is again negligible. Results

are listed in Table 5.1. Table 5.1 compares the outputs obtained in the current experiment

to the results from the improved shared cube synthesis approach in terms of quantum cost

and gate count. In this table PrevGC/PrevQC refers to the gate count/quantum cost ob-

tained from the circuit generated by the improved shared cube synthesis approach, while

40

5.2. BASIC ALGORITHM WITH MOVING RULE

NewGC/NewQC refers to the new gate count/quantum cost as computed from the circuits

generated from our template matching post-processing. The proposed templates reduce the

quantum cost of circuits 16.93% on average which is an improvement of almost double that

of the previous experiment. 86 of the 110 circuits generated by the improved shared cube

synthesis approach [22] showed improvement in quantum cost after applying our templates.

As in the previous experiment col4 135 is the best reported circuit in terms of reduction in

quantum cost. The next best reported circuit is cm85a 127 where the quantum cost re-

duction (44.15%) is higher than the previous (35%). decod24-enable 32 has the third best

reduction in quantum cost (41.38%) although we did not obtain any improvement in the

previous experiment. Gate count average (15.91%) also improved compared with the pre-

vious gate count average (−7.73%). table3 209 exhibited the greatest reduction in gate

count, at 71.33%. 4mod5 8, fredkin 3, adr4 93, x2 223, miller 5, sqn 203, and pcler8 190

showed no changes in gate count, but significant reductions in quantum cost.

Table 5.1: Applying templates using basic algorithm with moving rule

Circuit PrevGC [22] NewGC GCImp.(%) PrevQC [22] NewQC QCImp.(%)

co14 135 14 21 -50.00 3472 1750 49.60

cm85a 127 48 54 -12.50 2206 1232 44.15

decod24-enable 32 9 5 44.44 29 17 41.38

bw 116 287 94 67.25 637 387 39.25

4mod5 8 4 4 0.00 21 13 38.10

decod24 10 9 4 55.56 16 10 37.50

C7552 119 89 32 64.04 399 250 37.34

decod 137 89 32 64.04 399 250 37.34

ham15 30 114 46 59.65 263 183 30.42

ham7 29 37 17 54.05 67 47 29.85

rd73 69 43 52 -20.93 856 619 27.69

add6 92 153 159 -3.92 5135 3714 27.67

clip 124 78 80 -2.56 3824 2803 26.70

fredkin 3 7 7 0.00 15 11 26.67

mod5d2 17 15 12 20.00 38 28 26.32

0410184 85 218 256 -17.43 7636 5662 25.85

plus127mod8192 78 36 31 13.89 803 602 25.03

41

5.2. BASIC ALGORITHM WITH MOVING RULE

Table 5.1: Applying templates using basic algorithm with moving rule

Circuit PrevGC [22] NewGC GCImp.(%) PrevQC [22] NewQC QCImp.(%)

adr4 93 41 41 0.00 645 489 24.19

apla 107 72 40 44.44 1683 1277 24.12

dc1 142 31 18 41.94 127 97 23.62

mod5mils 18 11 12 -9.09 30 23 23.33

max46 177 42 52 -23.81 4524 3540 21.75

3 17 6 11 9 18.18 28 22 21.43

cycle10 2 61 42 46 -9.52 1273 1004 21.13

sym6 63 13 16 -23.08 721 571 20.80

plus63mod8192 80 35 31 11.43 847 672 20.66

majority 176 5 6 -20.00 133 106 20.30

sym10 207 83 105 -26.51 15640 12990 16.94

cm42a 125 42 17 59.52 161 134 16.77

pm1 192 42 17 59.52 161 134 16.77

graycode6 11 12 10 16.67 12 10 16.67

cm151a 129 26 25 3.85 769 642 16.51

dc2 143 51 39 23.53 1084 906 16.42

sqrt8 205 22 23 -4.55 466 393 15.67

root 197 48 44 8.33 1811 1528 15.63

hwb7 15 233 118 49.36 3015 2551 15.39

hwb6 14 92 52 43.48 839 711 15.26

x2 223 23 23 0.00 433 367 15.24

sao2 199 41 33 19.51 3767 3203 14.97

aj-e11 81 18 11 38.89 74 63 14.86

urf2 73 479 254 46.97 8742 7453 14.74

wim 220 23 14 39.13 139 119 14.39

urf5 76 210 115 45.24 5364 4614 13.98

miller 5 9 9 0.00 29 25 13.79

inc 170 75 32 57.33 892 769 13.79

sqn 203 37 37 0.00 1346 1171 13.00

mlp4 184 80 67 16.25 2496 2174 12.90

hwb8 64 480 261 45.63 8195 7158 12.65

5xp1 90 58 44 24.14 786 687 12.60

cu 141 28 20 28.57 781 687 12.04

rd32 19 6 7 -16.67 25 22 12.00

cm82a 126 17 14 17.65 126 111 11.90

42

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

Table 5.1: Applying templates using basic algorithm with moving rule

Circuit PrevGC [22] NewGC GCImp.(%) PrevQC [22] NewQC QCImp.(%)

f51m 159 327 359 -9.79 28382 25020 11.85

in0 162 245 115 53.06 7949 7014 11.76

f2 158 14 13 7.14 112 99 11.61

alu4 98 454 483 -6.39 41127 36371 11.56

9symml 91 52 63 -21.15 10943 9729 11.09

sym9 71 52 63 -21.15 10943 9729 11.09

misex1 178 42 22 47.62 332 296 10.84

rd84 70 68 70 -2.94 2329 2079 10.73

table3 209 701 201 71.33 18606 16630 10.62

life 175 50 58 -16.00 6074 5429 10.62

misex3 180 854 576 32.55 49076 43865 10.62

alu3 97 72 56 22.22 1986 1780 10.37

ham3 28 6 5 16.67 10 9 10.00

mod5adder 66 28 26 7.14 353 318 9.92

tial 214 459 490 -6.75 43412 39133 9.86

hwb9 65 1011 554 45.20 23471 21173 9.79

alu2 96 78 82 -5.13 4369 3942 9.77

example2 156 78 82 -5.13 4369 3942 9.77

urf1 72 960 524 45.42 23769 21497 9.56

dist 144 94 82 12.77 3700 3348 9.51

sqr6 204 54 50 7.41 583 528 9.43

sf 232 4 5 -25.00 32 29 9.38

urf3 75 1501 941 37.31 53157 48218 9.29

ex1010 155 1675 775 53.73 52788 48110 8.86

dk17 145 34 27 20.59 1014 930 8.28

misex3c 181 822 584 28.95 49720 45785 7.91

alu 9 4 5 -25.00 40 37 7.50

plus63mod4096 79 32 28 12.50 676 634 6.21

4mod7 26 12 11 8.33 84 79 5.95

pcler8 190 18 18 0.00 323 308 4.64

ex3 152 4 5 -25.00 76 73 3.95

one-two-three 27 8 5 37.50 38 37 2.63

ex2 151 7 8 -14.29 146 143 2.05

cm163a 133 35 27 22.86 546 536 1.83

Average 15.91 16.93

43

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

5.3 Improved Template Matching Algorithm

The algorithm described in section 4.2 considered two consecutive gates in the circuit

and applied templates. It didn’t consider gate movement in the circuit. However the algo-

rithm described in section 5.2 made use of a moving rule along with the basic algorithm to

apply templates. Neither of the previously mentioned algorithms searched for the templates

that offered the best match in terms of reduction in quantum cost. In this section we pro-

pose an improved algorithm which will consider rank while applying templates. The next

section describes the various quantum cost savings for each template, which is used for the

ranking of the templates in this algorithm. For instance, consider two gates (gi and gi+1,

(1 ≤ i ≤ n) where i is the index of a gate and n is the number of gates in a circuit) from a

circuit. If gi and gi+1 have the same target, then the algorithm searches for templates and

sets the rank for this pair of gates as described in Table 5.2. In the next step, if gi can pass

gi+1, then we consider gi and the next gate after gi+1 (i.e. gi+2) from the circuit. If gi and

gi+2 have the same target, then the algorithm searches for templates and sets the rank for

these two gates. Now we compare the new rank with the previous rank and update the rank

and the pair of gates (i.e. gi and gi+2) to apply templates if the new rank is less than the

previous rank. Next, if gate gi can also pass gi+2, then we consider gi with the next gate of

gi+2 and check conditions to apply templates and update the rank and the pair of gates to

apply templates. After considering gi with all the other gates in the circuit, we get the best

rank for gi and g j, (i+ 1 ≤ j ≤ n). We then apply the template on gi and g j and replace

the gates with the new set of gates (i.e. g′i, g′j,). In this way, the algorithm searches for

the pair of gates gi, g j and corresponding template that offers the best possible reduction in

quantum cost.

5.3.1 Quantum Cost Savings in Templates

The 7 templates described in section 4.1 can be applied in various situations. We assign

rank to the templates based on the quantum cost savings for each template. The template

44

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

ranking strategies are summarized in Table 5.2 with an example for each case and described

below.

Template 1

Template 1 can be applied to two adjacent CNOT gates. Alternatively, the cascade of

two CNOT gates can be replaced by a single NOT gate. If m and p is the quantum cost of

the NOT and CNOT gate, respectively, then the quantum cost is reduced from 2p to m.

Template 2

Template 2 can be applied to two n-bit Toffoli gates with the same controls. In this case

the two gates negate each other and the gate count and quantum cost savings is 100%.

Template 3

In template 3, two n-bit Toffoli gates are replaced by one (n−1)-bit Toffoli gate. If the

quantum cost of a n-bit Toffoli gate is x and that of the (n−1)-bit Toffoli gate is y, then the

quantum cost is reduced from 2x to y.

Template 4

Template 4 can be applied to two n-bit Toffoli gates with the conditions described in

section 4.1.4 where n≥ 3. The cascade is replaced by two CNOT gates and one (n−1)-bit

Toffoli gate where n≥ 2. If x is the quantum cost of an n-bit Toffoli gate, p is the quantum

cost of a CNOT gate, and y is the quantum cost of an (n− 1)-bit Toffoli gate, then the

quantum cost is reduced from 2x to 2p+ y and the template is given a rank of 4.

Template 5

In template 5, the cascade of two n-bit Toffoli gates are replaced by two CNOT gates

and one n-bit Toffoli gate. If x and p is the quantum cost of an n-bit Toffoli gate and a

CNOT gate, respectively, then the quantum cost is reduced from 2x to 2p+ x.

45

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

Table 5.2: Quantum cost savings of different templates

Templates QC savings Example Example QC savings Rank

Template 1 2p to m 2 to 1 2

Template 2 2x to 0
I

26 to 0 1

Template 3 2x to y 26 to 5 3

Template 4 2x to 2p+ y 26 to 7 4

Template 5 2x to 2p+ x 26 to 15 5

Template 6 y+ x to x 18 to 13 6

Template 7 x+ y to 2q+ y 18 to 15 7

Template 6

Template 6 can be applied to two different size Toffoli gates with the conditions de-

scribed in section 4.1.6. If the quantum cost of an n-bit Toffoli gate is x and an (n−1)-bit

Toffoli gate is y, then the quantum cost is reduced from y+ x to x and the template is given

a rank of 6.

Template 7

Template 7 can be applied to the various situations discussed in section 4.1.7. If x is the

quantum cost of an n-bit Toffoli gate, q is the quantum cost of a 3-bit Toffoli gate, and y is

the quantum cost of an (n−1)-bit Toffoli gate, then the quantum cost is reduced from x+y

to 2q+ y and the template is assigned a rank of 7.

As an example of how these rankings are used, we consider the subcircuit of an arbitrary

46

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

circuit shown in Figure 5.2(a) where the subcircuit has three Toffoli gates. All the gates have

the same target line. We can see that gates 1 and 2 satisfy the conditions to apply template

4. Now we set rank 4 for gates 1 and 2 and save it. According to the moving rule described

in section 5.1.1, gate 1 can pass gate 2 since none of the controls of either gate is the target

of the other gate. As shown in Figure 5.2(b), we consider gates 1 and 3 and we can see that

these two gates satisfy the conditions to apply template 7. We set rank 7 for gates 1 and

3. Now we compare the new rank (7) with the previous rank (4) and we can see that the

new rank (7) is higher than the previous rank. Thus we apply template 4 on gates 1 and 2

and replace with the new set of gates as shown in Figure 5.2(c). In each iteration for each

gate in a circuit and considering the moving rule we compare the rank and take the best pair

that offers the best savings in quantum cost after applying different templates. In the next

section we describe the algorithm.

321

(a) An example
input circuit

32 1

(b) Moving gate

3

(c) Applying template 4

Figure 5.2: Illustration of improved template matching algorithm

5.3.2 Improved Template Matching Algorithm

The improved template matching process is performed as follows: The Im-

proved Template Matching algorithm takes a circuit as an input, where gate list repre-

sents the set of gates and n is the the number of gates (input gate list) in a circuit. This

algorithm maintains two separate gate lists; the original list of gates, and a new list of

gates that at the end of the algorithm will replace the original list. The algorithm Pro-

cess Circuit(temp gate list) takes temp gate list as input and returns new gate list as out-

47

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

put after each iteration. The algorithm assigns new gate list to the temp gate list and is

iterated if the quantum cost of the new gate list is not equal to the quantum cost of the

temp gate list or the gate count of the new gate list is not equal to the temp gate list.

Algorithm 1 Improved Template Matching
1: procedure IMPROVED TEMPLATE MATCHING(input gate list)
2: if (input gate list is not empty) then
3: temp gate list← input gate list
4: iteration← 0
5: new gate list = Process Circuit(temp gate list)
6: if (new qc! = temp qc||new gc! = temp gc) then
7: temp gate list← new gate list
8: ++ iteration
9: Improved Template Matching(temp gate list)

10: end if
11: end if
12: end procedure

Algorithm 2 Improved Template Matching
1: procedure PROCESS CIRCUIT(gate list)
2: for (i← 1 to n) do . n is the number of gates (gate list) in a circuit in each iteration
3: if (gate[i] is not flagged) then
4: Process Gates(i, last gate,gate[i])
5: end if
6: end for
7: end procedure

For each gate in a circuit, the algorithm Process Circuit calls the function Pro-

cess Gates(i,last gate,gate[i]) where i is the index of the gate in a circuit, last gate is a

Boolean variable to check whether gate i is the last gate of the circuit, and gate[i] repre-

sents the ith gate in the circuit. The algorithm Process Gates saves the temp rank for each

pair of gates and compares with rank and updates the rank and the pair of gates to apply

templates when temp rank is less than rank. The algorithm assigns flag to the gates of a

circuit after applying templates. The function Process Gates sets flag variables for the two

gates and returns immediately when two gates follow the self-reversible property, which is

the best case. For other cases, the function Process Gate checks and applies templates to

48

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

the two gates based on the given conditions and sets flag variables for the two gates. If two

gates (i.e. gate[i] and gate[j]) do not match with any templates then the gate[j] is added to

the new gate list and the algorithm considers the gate (i.e. gate[j+1]) from the circuit and

continues the iterations for each gate in a circuit.

Algorithm 3 Applying templates and moving rule

1: procedure PROCESS GATES(i, last gate,gate[i])
2: rank←MAX VALUE
3: if (!last gate) then
4: for j← i+1 to n do
5: if (gate[i].target == gate[j].target && gate[j] is not flagged) then
6: if (apply moving rule(gate[i],gate[j])) then
7: temp rank← check templates(gate[i],gate[j])
8: if (temp rank < rank) then
9: rank← temp rank

10: end if
11: if (rank == 1) then . template 2
12: template one(gate[i],gate[j])
13: gate[i] = true
14: gate[j] = true
15: return
16: end if
17: end if
18: end if
19: end for
20: if (rank == 2) then . template 1
21: template two(gate[i],gate[j])
22: gate[i] = true
23: gate[j] = true
24: else if (rank == 3 ‖ rank == 5) then . template 3 or 5
25: template three plus f ive(gate[i],gate[j])
26: gate[i] = true
27: gate[j] = true
28: else if (rank == 4) then . template 4
29: template f our(gate[i],gate[j])
30: gate[i] = true
31: gate[j] = true
32: else if (rank == 6) then . template 6
33: template six(gate[i],gate[j])

49

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

34: gate[i] = true
35: gate[j] = true
36: else if (rank == 7) then . template 7
37: template seven(gate[i],gate[j])
38: gate[i] = true
39: gate[j] = true
40: else
41: add gate[i] to the new gate list
42: gate[i] = true
43: end if
44: else
45: add gate[i] to the new gate list
46: gate[i] = true
47: end if
48: end procedure

5.3.3 Experimental Results and Discussion

The ImprovedTemplateMatchingAlgorithm has been implemented in Java and the ex-

periments run on the same platform as we did in the first two experiments. The evaluation

of the improved template matching technique is performed on three different test suites. All

circuits generated in our experiments have been verified using the QMDD-based verifica-

tion approach [20]. The run time of all the tested benchmarks was under 81,314 millisec-

onds (ms) (urf3 75), and our experiments showed that each circuit was iterated over at most

7 times (f51m 233).

The first test suite consists of the same number of circuits from the improved shared

cube synthesis approach [22] that is used in the previous two experiments. In this experi-

ment, 86 circuits showed improvement where 56 of them showed more improvement than

the approach described in the previous section. The results are summarized in Table 5.3.

For the circuits listed in Table 5.3, the average quantum cost reduction is 23.80% compared

to the improved shared cube synthesis approach. In this experiment, for the 86 benchmark

circuits the average quantum cost reduction is 21.34% while in the second experiment, the

average quantum cost reduction was 15.80%.

50

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

Table 5.3: Applying templates using improved template matching algorithm

Circuit PrevGC [22] GC 5.1 NewGC PrevQC [22] QC 5.1 QCImp.(%) 5.1 NewQC QCImp.(%)
cm85a 127 48 54 55 2206 1232 44.15 1024 53.58
4mod5 8 4 4 5 21 13 38.10 10 52.38
adr4 93 41 41 38 645 489 24.19 330 48.84
bw 116 287 94 77 637 387 39.25 332 47.88
C7552 119 89 32 29 399 250 37.34 210 47.37
decod 137 89 32 29 399 250 37.34 210 47.37
0410184 85 218 256 257 7636 5662 25.85 4631 39.35
add6 92 153 159 154 5135 3714 27.67 3267 36.38
rd73 69 43 52 51 856 619 27.69 581 32.13
ham15 30 114 46 45 263 183 30.42 179 31.94
clip 124 78 80 85 3824 2803 26.70 2726 28.71
3 17 6 11 9 7 28 22 21.43 20 28.57
sym6 63 13 16 17 721 571 20.80 521 27.74
sqrt8 205 22 23 24 466 393 15.67 339 27.25
urf2 73 479 254 272 8742 7453 14.74 6395 26.85
dc1 142 31 18 19 127 97 23.62 93 26.77
dc2 143 51 39 38 1084 906 16.42 794 26.75
cycle10 2 61 42 46 45 1273 1004 21.13 934 26.63
max46 177 42 52 54 4524 3540 21.75 3324 26.53
hwb8 64 480 261 270 8195 7158 12.65 6172 24.69
sqn 203 37 37 39 1346 1171 13.00 1035 23.11
hwb7 15 233 118 119 3015 2551 15.39 2332 22.65
sao2 199 41 33 33 3767 3203 14.97 2917 22.56
urf1 72 960 524 545 23769 21497 9.56 18445 22.40
ex1010 155 1675 775 810 52788 48110 8.86 41027 22.28
hwb9 65 1011 554 573 23471 21173 9.79 18363 21.76
aj-e11 81 18 11 10 74 63 14.86 58 21.62
urf3 75 1501 941 967 53157 48218 9.29 42226 20.56
root 197 48 44 44 1811 1528 15.63 1452 19.82
dist 144 94 82 80 3700 3348 9.51 2985 19.32
cm42a 125 42 17 17 161 134 16.77 130 19.25
pm1 192 42 17 17 161 134 16.77 130 19.25
5xp1 90 58 44 43 786 687 12.60 637 18.96
hwb6 14 92 52 49 839 711 15.26 683 18.59
sym10 207 83 105 107 15640 12990 16.94 12752 18.47
f51m 159 327 359 366 28382 25020 11.85 23168 18.37
9symml 91 52 63 69 10943 9729 11.09 9027 17.51
sym9 71 52 63 69 10943 9729 11.09 9027 17.51
miller 5 9 9 8 29 25 13.79 24 17.24
sqr6 204 54 50 47 583 528 9.43 484 16.98
alu4 98 454 483 507 41127 36371 11.56 34155 16.95
in0 162 245 115 103 7949 7014 11.76 6630 16.59
mlp4 184 80 67 61 2496 2174 12.90 2092 16.19
urf5 76 210 115 107 5364 4614 13.98 4500 16.11
misex3 180 854 576 583 49076 43865 10.62 41231 15.99
misex3c 181 822 584 602 49720 45785 7.91 41837 15.85
tial 214 459 490 512 43412 39133 9.86 36747 15.35
rd84 70 68 70 70 2329 2079 10.73 1976 15.16
table3 209 701 201 193 18606 16630 10.62 15862 14.75
inc 170 75 32 34 892 769 13.79 768 13.90
life 175 50 58 60 6074 5429 10.62 5277 13.12
alu3 97 72 56 55 1986 1780 10.37 1730 12.89
alu2 96 78 82 85 4369 3942 9.77 3837 12.18
example2 156 78 82 85 4369 3942 9.77 3837 12.18
mod5adder 66 28 26 27 353 318 9.92 317 10.20
4mod7 26 12 11 8 84 79 5.95 76 9.52
Average 17.03 23.80

51

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

Our second test suite consists of 29 benchmark circuits obtained from the RevLib li-

brary [37]. Compared with the optimization technique proposed in [32], 10 of them showed

improvement, 14 of them remained same and 5 of them did not show any improvement in

quantum cost. The results are given in Table 5.4, sorted based on the quantum cost improve-

ment. The column circuit is the name of the circuit, the column RevLibGC/QC represents

the gate count and quantum cost of the benchmark circuits. The gate count and quantum

cost of these circuits are calculated based on the values in Table 2.3. The PrevQC col-

umn lists the quantum cost from [32]. The column NewGC/QC represents the gate count

and quantum cost of the improved template matching algorithm. For the circuits listed in

Table 5.4 that showed improvement, the average quantum cost reduction is 18.14%.

Table 5.4: Comparison of [32] and the improved template matching algorithm

Circuit RevLibGC [37] RevLibQC [37] PrevQC [32] NewGC NewQC QCImp.(%)
rd32-v0 67 2 8 12 2 8 33.33
rd32-v1 69 3 9 13 3 9 30.77
rd73 141 14 64 76 14 64 15.79
sys6-v0 144 15 62 72 15 62 13.89
sym9 147 21 94 108 21 94 12.96
rd84 143 21 98 112 21 98 12.50
4gt5 76 13 29 27 12 24 11.11
4gt13 90 14 34 32 13 29 9.38
4mod5-v0 19 5 13 11 4 10 9.09
one-two-three-v1 99 8 36 34 9 33 2.94
4gt11 82 12 16 16 12 16 0.00
4mod5-v0 21 6 19 19 6 19 0.00
miller 11 5 17 17 5 17 0.00
mod5d2 70 8 16 13 9 13 0.00
mod5mils 65 5 13 11 5 11 0.00
mod5mils 71 5 13 11 5 11 0.00
rd32-v0 66 4 12 12 4 12 0.00
rd32-v1 68 5 13 13 5 13 0.00
rd53 133 12 128 104 13 104 0.00
rd73 140 20 76 76 20 76 0.00
rd84 142 28 112 112 28 112 0.00
sym9 146 28 108 108 28 108 0.00
sys6-v0 111 20 72 72 20 72 0.00
toffoli double 4 2 10 7 3 7 0.00
ham15 107 132 1831 1434 134 1446 -0.84
alu-v2 31 13 101 91 13 95 -4.40
4mod5-v0 18 9 25 19 10 22 -15.79
sym6 145 36 777 297 48 408 -37.37
sym9 148 210 4368 798 276 2189 -174.31
Average 18.14

The third test suite consists of 45 benchmark circuits obtained from RevLib [37] and the

52

5.3. IMPROVED BASIC ALGORITHM WITH MOVING RULE

Table 5.5: Comparison of [4], [5] and the improved template matching algorithm

Circuit RevLibGC [37] RevLibQC [37] GC [4] QC [4] GC [5] QC [5] NewGC NewQC QCImp1(%) QCImp2(%)
sym9 148 210 4368 154 3668 143 3433 276 2189 40.32 36.24
sym6 145 36 777 31 647 23 517 48 408 36.94 21.08
max46 240 107 5444 51 4498 52 4538 112 3632 19.25 19.96
add6 196 229 6455 179 6005 167 5534 244 4581 23.71 17.22
clip 206 174 6731 111 6535 109 6119 173 5462 16.42 10.74
life 238 107 6766 57 5740 57 5744 99 5210 9.23 9.30
sym9 193 129 14193 58 12747 63 13090 124 11929 6.42 8.87
9symml 195 129 14193 58 12747 62 13026 124 11929 6.42 8.42
alu4 201 1063 55388 523 46413 529 46764 1013 43097 7.14 7.84
mux 246 35 1078 20 804 20 804 42 742 7.71 7.71
tial 265 1041 56203 516 47145 522 47556 981 44394 5.84 6.65
apla 203 80 3438 74 3438 64 3024 78 2839 17.42 6.12
f51m 233 663 37400 358 33333 355 32882 637 30981 7.06 5.78
dc2 222 75 1886 55 1789 53 1688 78 1592 11.01 5.69
mod5adder 306 96 292 84 281 70 270 72 265 5.69 1.85
hwb5 300 88 276 80 270 67 259 67 255 5.56 1.54
in2 236 405 23802 283 23146 250 20600 394 20289 12.34 1.51
alu2 199 157 5654 87 4776 87 4611 147 4561 4.50 1.08
cycle10 293 78 202 74 199 57 186 56 184 7.54 1.08
frg1 234 212 15265 130 14737 130 14702 210 14815 -0.53 -0.77
cu 219 40 1148 31 1054 29 954 37 962 8.73 -0.84
cm150a 210 53 1096 38 822 38 822 46 830 -0.97 -0.97
sqn 258 76 2122 50 2041 51 1887 76 1923 5.78 -1.91
dist 223 185 7601 126 7288 122 6631 177 6796 6.75 -2.49
rd73 312 73 217 65 214 53 200 55 205 4.21 -2.50
rd84 313 104 304 95 301 71 275 71 285 5.32 -3.64
misex3c 243 1721 115190 1188 111258 1049 96064 1711 101512 8.76 -5.67
ham7 299 61 141 46 135 34 121 36 128 5.19 -5.79
sqr6 259 81 1033 66 1034 53 876 87 946 8.51 -7.99
rd53 131 28 119 12 104 12 104 22 113 -8.65 -8.65
table3 264 1012 80039 744 79326 577 61412 934 67157 15.34 -9.35
misex3 242 1752 119177 1199 115637 1043 99119 1749 108621 6.07 -9.59
alu3 200 94 2632 79 2512 69 2162 87 2405 4.26 -11.24
ham15 298 153 309 100 290 91 266 82 297 -2.41 -11.65
5xp1 194 85 1406 65 1327 59 1155 85 1290 2.79 -11.69
in0 235 338 20031 245 18999 218 16985 330 18988 0.06 -11.79
pm1 249 35 377 31 354 24 275 30 312 11.86 -13.45
inc 237 93 2140 72 2104 63 1745 92 2114 -0.48 -21.15
sf 275 11 51 6 44 5 41 11 51 -15.91 -24.39
dc1 220 39 416 33 419 26 249 39 416 0.72 -67.07
rd32 273 20 116 8 112 7 67 20 116 -3.57 -73.13
C7552 205 80 1728 79 1745 23 623 74 1250 28.37 -100.64
decod 217 80 1728 79 1745 21 613 74 1250 28.37 -103.92
sf 274 19 155 7 145 6 38 19 155 -6.90 -307.89
sf 276 16 152 8 146 6 27 16 152 -4.11 -462.96
Average 13.19 9.40

results are compared with two existing template matching techniques from [4] and [5]. The

results are listed in Table 5.5 sorted in order of quantum cost improvement. The column

RevLibGC/QC represents the gate count and quantum cost of the circuit obtained from

RevLib. The gate count and quantum cost of these circuits are calculated based on the

values in Table 2.3. The column NewGC/QC represents the gate count and quantum cost of

the improved template matching algorithm. Compared to [4] and [5], the average quantum

53

5.4. SUMMARY

cost reduction for the top 19 circuits is 13.19% and 9.40%, respectively. sym9 148 is the

best reported circuit in this list and worst in the previous list. From Table 5.4 we can see

that the quantum cost of sym9 148 is 798 [32] which is much lower than all previously

obtained results [4, 5, 32] and the results from the proposed approach. The same situation

is also observed for the circuit sym6 145.

5.4 Summary

At the beginning of this chapter we discussed the basic template matching algorithm

along with the moving rule and an example. The improved template matching algorithm

is also discussed with an example. The results are compared with improved shared cube

synthesis and three other existing template matching techniques.

54

Chapter 6

Conclusion

6.1 Conclusion

Research on reversible logic synthesis has attracted much attention due to the many pos-

sible applications. The circuits obtained from different logic synthesis approaches may not

be optimal and post-synthesis optimization techniques are used to improve the gate count

and quantum cost of the circuits. Template matching is one post-synthesis technique used

to improve the gate count and quantum cost of a circuit. The proposed approach considers

both positive and negative control Toffoli gates to develop templates. In developing tem-

plates we consider the various ways in which two Toffoli gates with the same target line can

appear in a circuit. We propose two new templates for positive and negative control Toffoli

gates (template 4 and template 7). Template 4 can be applied to two ≥ 3-bit Toffoli gates

with controls on the same line while template 7 can be applied to two different size ≥ 3-bit

Toffoli gates. In our proposed template matching algorithm we rank the templates based on

the savings in quantum cost and select templates to apply based on their rank. 86 of the 110

circuits generated by the improved shared cube synthesis approach [23] show improvement

in quantum cost after applying templates. Results show that the proposed templates can

reduce quantum cost up to 53.58% (on average, 21.34%).

6.2 Future Work

Future work may pursue several avenues related to this work, including identifying

additional templates, particularly for Toffoli gates with different target lines, and also im-

55

6.2. FUTURE WORK

proving the template matching algorithm. Of course, the issue of template matching with

negative controls has not yet been thoroughly studied, and as we pursue this work a broader

investigation will also be required.

All positive control Toffoli gate templates of size 7 and some templates of size 9 are

listed in [16]. Other templates for Toffoli gates with positive and negative controls were

proposed in [2, 4, 5, 32]. Finding and classifying the complete set of templates for positive

and negative control Toffoli gate is another direction for further research. Garbage/line

count reduction through the application of templates is also a possible research direction.

56

Bibliography

[1] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, November 1973.

[2] Xueyun Cheng, Zhijin Guan, Wei Wang, and Lingling Zhu. A simplification algorithm
for reversible logic network of positive/negative control gates. In Fuzzy Systems and
Knowledge Discovery (FSKD), 2012 9th International Conference on, pages 2442–
2446, May 2012.

[3] R. Cuykendall and D. R. Andersen. Reversible optical computing circuits. Optics
Letters, 12(7):542544, 1987.

[4] K. Datta, G. Rathi, R. Wille, I. Sengupta, H. Rahaman, and R. Drechsler. Exploiting
negative control lines in the optimization of reversible circuits. In Gerhard W. Dueck
and D.Michael Miller, editors, Reversible Computation, volume 7948 of Lecture Notes
in Computer Science, pages 209–220. Springer Berlin Heidelberg, 2013.

[5] K. Datta, I Sengupta, and H. Rahaman. A post-synthesis optimization technique for
reversible circuits exploiting negative control lines. Computers, IEEE Transactions
on, PP(99):1–1, 2014.

[6] K. Fazel, M. A. Thornton, and J. E. Rice. Esop-based Toffoli gate cascade generation.
In Communications, Computers and Signal Processing, 2007. PacRim 2007. IEEE
Pacific Rim Conference on, pages 206–209, 2007.

[7] E. Fredkin and T. Toffoli. Conservative logic. Int’l J. of Theoretical Physics, 21:219–
253, 1982.

[8] R. Landauer. Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development, 44(1.2):261–269, 2000.

[9] M. M. Mano and M. D. Ciletti. Digital Design With An Introduction to the Verilog
HDL. Pearson Education, 2013.

[10] D. Maslov. Reversible logic synthesis benchmarks page, http://www.cs.uvic.ca/
d̃maslov/.

[11] D. Maslov. Reversible Logic Synthesis. PhD thesis, University of New Brunswick,
2003.

[12] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23(11):1497–
1509, 2004.

57

BIBLIOGRAPHY

[13] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23(11):1497–
1509, 2004.

[14] D. Maslov, G. W. Dueck, and D. M. Miller. Fredkin/toffoli templates for reversible
logic synthesis. In Computer Aided Design, 2003. ICCAD-2003. International Con-
ference on, pages 256–261, Nov 2003.

[15] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with templates.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
24(6):807–817, 2005.

[16] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of reversible
toffoli networks. ACM Trans. Des. Autom. Electron. Syst., 12(4), September 2007.

[17] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum circuit sim-
plification and level compaction. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(3):436–444, March 2008.

[18] R. C. Merkle. Reversible electronic logic using switches. Nanotechnology, 4:2140,
1993.

[19] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for re-
versible logic synthesis. In Design Automation Conference, 2003. Proceedings, pages
318–323, 2003.

[20] D. M. Miller and M. A. Thornton. Qmdd: A decision diagram structure for reversible
and quantum circuits. In Multiple-Valued Logic, 2006. ISMVL 2006. 36th Interna-
tional Symposium on, pages 30–30, May 2006.

[21] D. M. Miller, R. Wille, and R. Drechsler. Reducing reversible circuit cost by adding
lines. In Multiple-Valued Logic (ISMVL), 2010 40th IEEE International Symposium
on, pages 217–222, 2010.

[22] N. M. Nayeem. Synthesis and Testing of Toffoli Circuits. Master’s thesis, University
of Lethbridge, 2011.

[23] N. M. Nayeem and J. E. Rice. Improved ESOP-based synthesis of reversible logic. In
Proceedings of the 2011 Reed-Muller Workshop, pages 57–62, 2011.

[24] N. M. Nayeem and J. E. Rice. A shared-cube approach to ESOP-based synthesis of
reversible logic. Facta Universitatis Series: Electronic Engineering, 24(3):385–402,
December 2011.

[25] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge Univ. Press, 2000.

[26] W. D. Pan and M. Nalasani. Reversible logic. Potentials, IEEE, 24(1):38–41, Feb
2005.

58

6.2. FUTURE WORK

[27] A. Peres. Reversible logic and quantum computers. Physical Review A, 32(6):3266–
3276, 1985.

[28] M. Z. Rahman and J. E. Rice. Templates for positive and negative control toffoli
networks. In Shigeru Yamashita and Shin-ichi Minato, editors, Reversible Computa-
tion, volume 8507 of Lecture Notes in Computer Science, pages 125–136. Springer
International Publishing, 2014.

[29] Y. Sanaee. Generating Toffoli networks from ESOP expressions. Master’s thesis,
University of New Brunswick, 2010.

[30] Y. Sanaee and G. W. Dueck. Generating toffoli networks from esop expressions.
In Communications, Computers and Signal Processing, 2009. PacRim 2009. IEEE
Pacific Rim Conference on, pages 715–719, Aug 2009.

[31] Y. Sanaee and G. W. Dueck. Esop-based toffoli network generation with transforma-
tions. In Multiple-Valued Logic (ISMVL), 2010 40th IEEE International Symposium
on, pages 276–281, May 2010.

[32] Z. Sasanian. Technology Mapping and Optimization for Reversible and Quantum
Circuits. PhD thesis, University of Victoria, 2012.

[33] C. E. Shannon. A symbolic analysis of relay and switching circuits. American Institute
of Electrical Engineers, Transactions of the, 57(12):713–723, Dec 1938.

[34] F. Somenzi. Cudd: CU decision diagram package release 2.3.1. University of Col-
orado at Boulder, 2001.

[35] T. Toffoli. Reversible computing. Tech Memo LCS/TM-151, MIT Lab for Comp. Sci,
1980.

[36] R. Wille and R. Drechsler. Bdd-based synthesis of reversible logic for large functions.
In Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 270–275,
2009.

[37] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-Valued
Logic, pages 220–225, 2008. RevLib is available at http://www.revlib.org.

59

